F(f)—

0000

Korn She,ll
Programming

B Y ESCACACM P L E

7

g

let ntimes=0;while ((ntimeg
50)); do print -ud 'p Ibg

Send command to coprod

sread -ru3time bo
Read output from coprocé
print $timebolt >> times
let ntimes=ntimes+1 done

uue‘ Dennis 0'Brien with David Pitts

Korn ohell
Programming

B Y E X A M P L E

Indianapolis, Indiana 4620 . Dennis O’Brien

Korn Shell Programming by Example

Copyright © 2001 by Que

All rights reserved. No part of this book shall be reproduced,
stored in a retrieval system, or transmitted by any means, elec-
tronic, mechanical, photocopying, recording, or otherwise, with-
out written permission from the publisher. No patent liability is
assumed with respect to the use of the information contained
herein. Although every precaution has been taken in the prepa-
ration of this book, the publisher and author assume no respon-
sibility for errors or omissions. Nor is any liability assumed for
damages resulting from the use of the information contained
herein.

International Standard Book Number: 0-7897-2465-0
Library of Congress Catalog Card Number: 00-111668
Printed in the United States of America

First Printing: March 2001

02 01 4 3 2 1

Trademarks

All terms mentioned in this book that are known to be trade-
marks or service marks have been appropriately capitalized. Que
cannot attest to the accuracy of this information. Use of a term
in this book should not be regarded as affecting the validity of
any trademark or service mark.

Warning and Disclaimer

Every effort has been made to make this book as complete and
as accurate as possible, but no warranty or fitness is implied.
The information provided is on an “as is” basis. The author and
the publisher shall have neither liability nor responsibility to
any person or entity with respect to any loss or damages arising
from the information contained in this book.

Associate Publisher
Dean Miller
Acquisitions Editor
Gretchen Ganser
Development Editor
Sean Dixon
Managing Editor
Thomas F. Hayes
Project Editor

Tricia Sterling Liebig
Copy Editors

Cynthia Fields

Megan Wade

Indexer
Chris Barrick

Proofreader
Harvey Stanbrough

Technical Editor
Paul Love

Team Coordinator
Cindy Teeters

Interior Designer
Karen Ruggles

Cover Designer
Maureen McCarty

© 0 3 O Ot & W N =

T =
w>03[\DF—‘O

Contents at a Glance

Introduction 1
The Environment 4
Process Control e 38
Variables 72
Regular Expressions 0. . 86
QUOting 100
Flow Control i 116
Data Manipulation 142
Information Passing 178
File and Directory Manipulation 204
Output Control 242
Diagnostics 260
rapS « o e 274
Pulling It All Together 288
Useful Commandsc.. i iiiieinnnann. 320
vi Tutorial 400

Table of Contents

Introduction 1
Assumptions About the Reader 1
What This Book Will Give You 2
What This Book Will Not Give You 2
Conventionsiii i e 2

1 The Environment it iiiiininn.. 5
What Isa Shell? 6
What Is a Shell Script? 7
#!/bin/ksh Explained 7

File Attributes 10
Directories e 13
chmod e 17
Coming Full Circle—Back toumask 18
#—Comments Explained 19
The .profile Script e 20
AlASES . ot e 22
Ksh Environment Options 23
Variables 24
Shell Variables 25
Built-In Variables 28
Environment Variables 29
Environment File 30
History File and Repetition 33

2 Process Control 39
HowtoRunaScript 40
Jobs and Processes 42

Starting a Process 43
Stopping a Process i 45
Background 48
Foreground 49
Signals e 52
Control Key Signals 55
PO i e 57

nohup Explained 62

Scheduling Jobs 64
140 o Y 64
Al 67
Variables e 73
Case Sensitivity0 74
Valid Characters 74
Scalar 75
ACCeSSING e 75
ASSIgNING 76
typeset e 76
Four Common Errors 78
N ' 81
Declaring 81
Assigning—Two Ways 82
Accessing—Two Ways 83
Read-Only e 84
Unsetting e 84
Regular Expressions 0. 87
Regular Expressions Versus Wildcards 88
Character Classes i 920
Pattern Matching 92
Front 95
Back 95
Metacharacters e 96
Back References 97
QUOtING . . .ot e 101
Escape Character00 .. 102
Asterisk with NoEscapes 102
Asterisk with Escape 103
Asterisk with No Escapes from a Different Directory 103
Asterisk with Two Escapes 104
Aggregate Quoting Options 104
Single Quotes 104
Double Quotes 106
Line Continuation 106

Command Substitution—Two Ways 107

Vi

Parameter Expansion 108
Arithmetic Expansion 0ou..... 113
Arithmetic Expressions 114
Flow Control 117
IfTest ... e 118
Exit Status e 118
The ((and [[Commands 119
Syntax Options Used for Testing 121
Commands Within If Tests 123
One-Line If Tests Using && or || 123
Compound If Tests 126
Nested If Testso 127
case Conditionals 128
Looping Constructs 129
while Loops 130
until Loops 131
for Loops . . oo 132
select LoOps . ..o 135
Loop-Related Commands 137
Backup Loop Example 137
Data Manipulation 143
Functions 144
Command-Line Functions 145
Viewing Functions 146
Function Arguments Versus Command-Line Arguments . . .146
Function Return Values (Integer) 148
Function Return Values (String) 149
Function Programming Details 150
Local Variables 150
Global Variables 151
Argument Passing by Reference 152
Object-Oriented Discipline Functions 154
Recursive Functions 155
Using autoload on Functions 156

Built-In Extension Functions 158

Math e 160
Filterso o e 165
Testing Files i 169
Testing Stringsiiii ... 171
Testing Numerals u... 172
Testing Numbers, 172
Combining Tests, 175
Information Passing 179
Command-Line Arguments 180
UserInput i 185
Redirection 194
COPTOCESS . v vttt e 197
File and Directory Manipulation 205
Paths 206
Descriptors 209
Special Files 211
Links e 212
Directories 216
Hidden Files i 218
Attributes 219
Permissions 222
Acceptable Filenames 223
Accessing Files 224
Filtering 229
head 229
tall L 230
G o e e e e e e e 230
Cal . 230
B . o e 231
3T) 2 232
0 =Y o T 233
SeA 234
XATES o o v e e e e e e e e e e e 236
AWK L 237

vii

viii

11

12

13

Output Control 243
Echoing Output 244
printf . .. 248
Output Redirection 252
Subshell Output Redirection 253
Loop Output Redirection 254
Multiple Output Redirection 255
Pipes Versus Redirection 255
stderr Redirection 256
Here Documents 257
Diagnostics e 261
Syntax Checking 262
Command Interpretation Sequence 264
Verbose Mode i 265
Execution Trace 267
Debugging Hooks 270
raPS « o e 275
Defining and Using Trapst .. 276
Documentation Support 281
Self-Help Scriptso oot e e 282
Bulletproofing 282
Pulling It All Together 289
The sys_check Script 290
Command Options-h 290
Command Options (Invalid) 290
Command Options -nciiiu.... 290
First sys_check Run 292
Second sys_check Run 305
Numbered Version of sys_check Script 308
Comments on Selected sys_check Lines (10-59) 315
Comments on Selected sys_check Lines (70-102) 316
Comments on Selected sys_check Lines (108-125) 317
Comments on Selected sys_check Lines (130-140) 317
Comments on Selected sys_check Lines (144-204) 317
Comments on Selected sys_check Lines (207-220) 317

Comments on Selected sys_check Lines (222-264) 318

Comments on Selected sys_check Lines (275-281) 318

Comments on Selected sys_check Lines (285-319) 319

A Useful Commands i, 321
AllaS .. 322
autoload e 324
D 325
break e 326
builtin 327
A o ittt e e e e e e 328
Al L e 329
ed e e 330
chmod 331
command 332
CONBINUE . ..ottt e e 333
D et e e e 335
UL Lo e 336
date e 337
AISOWIL .« o\ ettt e 338
echo e 339
ed . 339
eval ... e 340
EXEC o v v et e e e e e e e 341
eXIt . e 342
15:4 70 o 343
false ... e 345
T 346
= 347
find 348
float e 350
for . 350
function 351
getconf ... 352
getopts 353
o =Y o T 353
hash e 354

1 357
INteger .. e 358
JObS 359
Kill .. 359
[e 360
Lot . 361
In 362
00 32 363
TEWETD o o v e e ettt et e e e e e e 363
NONUD ..ot e 364
P 364
PaASte . . e 365
Print . 366
printf . .. 366
PWA o e 367
T 367
A . ottt e 369
readonly 369
TELUI . . .o 370
00 371
PINAIT . o e 372
SCIIPL . o e 372
Select . .o 375
Seb L e 375
Shift ... 376
SlEeD . e 377
3T) 2 378
SEOD o e 379
17721 1 380
171 S 381
Best o 382
TIme . .. e 382
touch ..o 383
1 384

TrUe .. e 385
1717/ 386
1774 0 1< 386
typeset 387
ulimit ... 389
UMAaSK . .. e 390
unalias 390
L8 T [391
UNSEE . . o 393
until .. 394
Wall . . e 394
L L4 395
whence 396
while e 396
Who .. e 397
vi Tutorial 401
Where vi Came From 402
Starting an Edit Session 403
Modes of Operation 404

Command Mode 0., 404

Insert Mode 0. .. 404
Last-Line Mode 0. 406
Exiting from the Editor 406
Moving the Cursort 407
Deleting e 408
Cuttingand Pasting iuu.... 409
Using Multiple Buffers 409
Searching and Replacing 410

Combining Buffers and Substitute Commands 412
Changing vi Environment Settings 412
Edit Session Recovery 415
Miscellaneous Commands 416

Xi

Xii

About the Authors

Dennis O’Brien started his technical career as a COBOL programmer during
the early 1970s. He has participated in each daring step made by the industry
since then and stands in awe of all that has transpired.

This is his first book-writing effort, although he has delivered many symposium
sessions and papers, and portions of his published code lives in private software.
Through his company, Bruden Corp. (www.bruden.com), he has created materials
for many technical classes with focus on C language programming, Shell pro-
gramming, UNIX User, UNIX Admin, UNIX Internals, and various OpenVMS
courses.

Dennis is a co-owner of the Bruden Corporation. He started working in the
computer industry in 1972, began working with and delivering training on
OpenVMS in 1983 with Digital Equipment Corp., and has been providing UNIX
training and development since 1989 with Vastek Co. and Bruden Corp. He was
a co-founder of the Vastek Company. He won five Instructor Excellence awards
while working for Digital Equipment Corporation. He provides training and
development in UNIX from the user to the internals level. He also provides
training in OpenVMS and C programming languages.

He has trained many Compaq Computer Corporation’s customer support center
engineers. He is known by many of Compaq’s employees and customers as one
of the best technical instructors in the industry. He has a unique ability to
address the needs of the most novice and the most technical audiences in a
manner that makes learning technical details easy and fun.

Dennis lives in Danvers, Massachusetts with his wife Cheryl Dyment and his
stepsons Scott Manley and Christopher Manley.

Dennis can be reached at dennis.obrien@bruden.com.

David Pitts (dpitts@mk.net) has been a part of the writing of more than half a
dozen books. He was the primary author for Red Hat Linux Unleashed (Second
and Third Editions), Red Hat Linux 6 Unleashed, and Linux Unleashed, Fourth
Edition, for Sams Publishing. David has been a supporting author on Que’s
Using Unix, Using Linux, and Programming CGI in Perl, Visual Basic, and C.
In addition, David writes a regular column on Perl for internet.com.

David is the president and CEO of Pitts Technical Resources, Inc.
(http://www.dpitts.com), a company that specializes in programming and devel-
opment consulting around the world. In addition, PTRi develops off-the-shelf
software, including the increasingly popular CorPortal, which—according to one
source—is “doing for the business world what AOL has done for the home user.”

xiii

David lives in Lexington, Kentucky (http://www.visitlex.com), with his won-
derful, intelligent, and compassionate wife Dana, whom he loves and adores
more than any human on earth. A graduate from Asbury College
(www.asbury.edu), David has been programming commercially since high
school—1983. His goal in life is to appear in every type of media available. He is
still looking for a nationally televised television show (Oprah, you have a book
list!!) and a movie role.

David is a founding member of TM3. His favorite quote comes from Saint
Francis of Assisi: “Preach the Gospel, and, if necessary, use words.”

Xiv

Dedication

This book is dedicated to my beautiful wife, Cheryl Dyment. Her belief in me
and her encouragement throughout this project have been an inspiration. After
listening to my plaintive technobabble, she would always provide some real-
world insight and praise when I desperately needed it. Thanks, beautiful lady!

Acknowledgments

I’d like to thank the folks at Que for helping me with my first book project.
Their sensitivity to my needs has been outstanding. Thanks in particular to
Gretchen Ganser, Sean Dixon, Megan Wade, Paul Love, and Tricia Liebig for
scrubbing it all up for me.

Thanks to David Pitts for outlining and starting the project.

I'd also like to thank my partner and friend, Bruce Ellis, for his encouragement
and for providing the inspiration for some of the example scripts. Thanks to all
the folks at Bruden Corp. for their understanding while I toiled in the darkness.
Thanks to Susan Ellis, Glenn Oehms, Laurel Zolfonoon, Keith McLaughlin, and
Scott Fafrak.

Many thanks to Robert Katz, a spectacular Korn Shell script writer from
Compagq. His scripts opened my eyes to the nooks and crannies of the Korn
Shell.

I have been blessed with a wonderful family, all of whom have provided support
and emotional nourishment throughout this project. Thanks to my loving par-
ents, Mary and Cliff O’Brien (always my biggest fans), and to my brothers CIiff
(Linda, Erin, and Mike), Clint (Sue, Greg, and Scott), and Mark O’Brien. I love
you guys.

Thanks to Scott and Chris Manley and all their friends for providing an infinite
variety of teenager metaphors.

Cheryl, you have inspired me. You do inspire me. You will forever inspire me.
Thank you. I love you.

Introduction

What is this book that you are holding? It is a book that teaches you, the system
administrator or user, how to program using the Korn shell. For my Linux
friends out there who say, “What, not in bash??” let me say a couple of things.
First of all, ksh is a wonderful shell (ksh is the name of the Korn shell program,;
bash is the name of the Born again shell, common in many Linux systems). It
has many features that make it an excellent choice for creating scripts as a sys-
tem administrator. Second, ksh is and has been a standard in the UNIX commu-
nity for a number of years. My goal is to help you become a better system
administrator by showing you how to automate many of your daily tasks. I plan
on accomplishing that goal without making you cry from boredom.

I have been in the computer industry for many years (since 1972) and have
helped many administrators and users create many useful tools. But throughout
my career, I have consistently found the following things to be true. I have seen
good quality IT (and other) professionals placed way too often in positions where
they are asked to either develop some process or update some tool that they are
unfamiliar with, and that is written in some language that they do not under-
stand. I have also seen these same talented IT professionals buy a book, find an
answer, and leave the book on the shelf never to be opened again after that one
use. If the book is good, it comes off the shelf many times; if it is bad, it stays
there.

What these professionals need, what they are looking for, and what you are
probably looking for right now, is a good book that will help you automate
processes, produce information, and take the boredom and monotony out of your
day. And that is what you have in your hands right now!

Having said all that, the following should be obvious. This book is not a history
of Unix/Linux. It will not tell you how things were done in the good old days.
Great lengths were taken to ensure that this book does not resemble academia.
This is a practical, hands-on book jammed with useful examples.

Assumptions About the Reader

I have two assumptions about you, the reader. First, you have access to a
UNIX/Linux box, or ksh on Win98 or NT. Second, you have some familiarity
with UNIX/Linux commands and the command line. Appendix A does include
many pages of useful commands, and we use many of them throughout this
book. The examples are based on Korn Shell 93. I have tried to point out places
where I use syntax that will not work on earlier releases of the Korn shell. Korn
Shell 93 is freely available on the Web for personal use. Perform a general
search for Korn Shell and you will find locations from which to download the
program.

2

Introduction

What This Book Will Give You

This book will give you good, usable, tested scripts. It will give you easy-to-
follow and easy-to-use examples that will help you to write your own scripts.
Many times this will mean that I will give you more information than you were
probably looking for, but I follow the adage that if I give you all the information,
you will be able to apply it yourself.

What This Book Will Not Give You

This book will not give you

* A history of UNIX or of Linux. Some good books are out there that do that;
get one of those if you don’t want to learn how to program.

e A tutorial on UNIX/Linux. Some great books on UNIX and Linux are avail-
able. When delivering introductory UNIX material, I sometimes suggest A
Practical Guide to the UNIX System by Mark Sobell, but many others are
available.

* A history on shells, shell scripting, types of shells, and so forth. As a mat-
ter of fact, great effort has gone into this work to not bore you with this
stuff. Besides, you likely wouldn’t read it anyway!

* Probably most importantly, you will find absolutely no references to
XXX.edu for where to get errata, answers to questions, or other informa-
tion. I am not in school, and this is not a class project. These are real-life
examples from real systems programmed by real systems administrators
that you can use in your real life as a real, live systems administrator.
(Really!)

¢ Code lines, commands, statements, variables, and any text you type or see
onscreen appear in a computer typeface. Bold computer typeface is used
to represent the user’s input.

* Placeholders in syntax descriptions appear in italic computer typeface.
Replace the placeholder with the actual filename, parameter, or whatever
element it represents.

® Jtalics highlight technical terms when they first appear in the text and are
being defined.

e wThis special icon will be used before a line of code that is really a contin-
uation of the proceeding line. Sometimes a line of code is too long to fit as a
single line on the page, given this book’s limited width. If you see this spe-
cial symbol before a line of code, remember that you should interpret that
line as part of the line immediately before it.

The Environment

The assumption of this book, and particularly this chapter, is that you are
at least familiar with a shell. You have typed in some commands—such as
changing your password—and are fairly comfortable with the environment.
The chapter begins by explaining a few items common to all scripts, includ-
ing comments and the cryptic #! /bin/ksh that mysteriously lurks on the
first line of most shell scripts. After that, a few environment issues are
explained.

This chapter teaches you the following:

The meaning of #! /bin/ksh

How to understand file and directory permissions
How to use the chmod and umask commands

How to provide comments in your script

How to use the .profile file

What the Korn shell environment options are

How to use shell variables and environment variables

How to use the history file and command-line recall

Chapter 1: The Environment

What Is a Shell?

A shell is a program that enables the user to enter commands. The com-
mands entered by the user are checked and interpreted by the shell. The
shell produces a prompt (typically the $) and waits for the user to type a
command.

The command might be executed within the context of a new process (for
example, 1s), cause some functionality within the shell program itself to
execute (for example, print), or cause an error to be reported (for example,
non existent_command).

If you are totally new to the shell environment, you probably are envision-
ing a shell covering over the critical essence of something, much like a
peanut shell covers and protects the peanut. Consider the shell as a neigh-
borhood through which you can pass to get to downtown. Downtown, in this
case, is the kernel of your operating system. Any program, including the
shell, might need to communicate with the UNIX kernel for low-level
activities such as file access.

The shell discussed in this book is the Korn Shell created by David Korn
of Bell Labs. We will also include features of the ksh 93 version of his
program.

When used interactively, a shell prompts the user for input. The input is a
string in the form of a command. Each interactively entered command is
interpreted by the shell. The interpretation checks the syntax of the com-
mand and performs other shell-level processing before the interactive com-
mand is actually executed.

For example, if you type in a command of 1s -1 obrien, the shell interprets
the line as a series of tokens consisting of the following: the 1s, the -1, and
the obrien. The shell must locate the command file, check to see whether
this user is actually permitted to execute the command, and perform other
sanity checks before it actually runs the 1s command. When the 1s program
runs, it checks the -1 and the obrien and uses them appropriately, or issues
an error if necessary.

The 1s program runs in the context of a process. All programs run within
their own process contexts. I like to think of the process as the ocean in
which the program floats. The context provided by a process is used to sup-
port the running of a program. (You learn more about processes later in the

book.)

Ay

/=4
EXAMPLE

#!/bin/ksh Explained 7

What Is a Shell Script?

When Hollywood actors are given a script to read, they follow the sequence
of dialogue as it appears in the document. Likewise, a shell script is a pre-
defined sequence of dialogue to be presented to a shell. A shell script is a
file full of commands to be executed.

#! /bin/ksh Explained

As discussed previously, a shell script is nothing more than a set of com-
mands saved in a file. When the script is executed, the set of commands in
the file are passed to an interpreter for processing. Several shells are avail-
able that a script writer can choose. How do you indicate that your script is
a Korn Shell script, and is to be interpreted by ksh (and not csh, sh, bash,
tesh, or any other shell program)?

In shell scripting, the way to do this is to make the first line of the script
file contain special characters that will precede a file specification locating
the program responsible for interpreting the remaining lines in the file.

Normally a pound sign (#) begins a comment. Comments are lines in the
script file that are not to be interpreted by the shell, but usually provide
some documentation or description for script maintenance purposes. As
soon as the shell sees a # within a line, it does not interpret any characters
that appear after that point. Therefore, if the # appears as the first charac-
ter in a line, the whole line is taken as a comment. If, on the other hand,
the pound sign is followed immediately by an exclamation point (!), and is
in the first line and first two characters in the file, the currently running
shell interprets the file spec following the #! as being the program to run to
interpret the rest of the script file.

In fact, a separate process is created within which the ksh program runs.
The rest of the script file is presented to the ksh program as its stream of
input. The input is interpreted and executed, provided no errors occur.

Therefore, a simple shell script could look like this:

#!/bin/ksh

echo "Hello World!"

This script would produce the following output:

Hello World!

Note that your system’s Korn shell program might be in a directory other

than /bin. If so, just change the first line of your script to match the loca-
tion and name of your ksh program. In the case of this simple introductory

Chapter 1: The Environment

Ay
EXAMPLE

script, you could have typed echo Hello World! at the interactive prompt
and done the same task.

What happens if you have a file containing just the second line (in other
words, the #!/bin/ksh is not there)?

If the shell you are currently executing can understand the command(s) in
the script file, it runs them; if it cannot, it produces some kind of error mes-
sage and exits from the script. A simple example such as displaying some
text should work in just about any shell.

By having the #!/bin/ksh in the first line of the script, you ensure that the
script will do exactly what you want it to do regardless of the environment
or default interactive shell of the user, because you have explicitly told it to
use the Korn shell to interpret the rest of the contents of the file. You
should realize that the #! is a very special line, not just an ordinary com-
ment line. The #! must be the first two characters in the first line of the
file.

Now, you might have had some problems getting your simple program to
run. If you edited a file and tried to run it, you might have gotten the error
Permission denied. The reason for this has to do with, you guessed it, per-
missions. Permissions are discussed in detail in this chapter. In essence,
permissions determine who can do what with a file. You must tell the com-
puter that the file you have just created should be treated as an executable.

The following example shows a simple script that displays output onscreen.
The permissions indicate that the file is not executable (no x in the permis-
sions); therefore, the attempt to execute the script fails. The example then
uses the chmod command to add execute access for the owner (u) and group
(g) categories (ug+x—more later). After changing the permissions, the script
runs successfully.

$ cat hello-k

#! /bin/ksh # Uses Korn shell to execute the rest of the file (one line)
print hello

$ 1s -1 hello-k # No execute permission

SIW=r--r-- 1 obrien users 27 Sep 28 17:36 hello-k
$

$ hello-k

ksh: hello-k: cannot execute

$

$ chmod ug+x hello-k # Add execute permission

$

$ hello-k # Script runs now

hello

v

[=4
EXAMPLE

#!/bin/ksh Explained 9

What happens if you try to run your Korn shell script from an interactive C
shell? Because the script starts with the #! /bin/ksh, it should be capable
of executing from any environment.

The following example starts a C shell interactive environment by running
the csh program. Notice that the prompt changes from $ to %. The Korn
shell script still runs properly, and the exit command exits from the csh
program and returns to the ksh interactive shell.

$

$ csh # Start C shell

% hello-k # Runs in C shell also
hello

% exit

$

The next example uses the sed stream editor command (discussed in
Chapter 9, “File and Directory Manipulation”) to create a new file (hello-g)
with the #! line removed from the script. This provides the opportunity to
see whether the script can succeed in a non-ksh environment without the
#! /bin/ksh. The result is that the altered script will not run within the C
shell because it tries to interpret the contents of the script as if it were C
shell script syntax, not Korn shell script syntax. Once again, the example
uses the chmod ug+x command to give execute access to the user (owner)
and group categories:
$ sed 's/*#.*//' hello-k > hello-g # Create script without #! in the

first line
$
$ cat hello-g
print hello # Single line file
$
$
$ 1s -1 hello-g
SPW-r--r-- 1 obrien users 16 Sep 28 17:41 hello g
$
$ chmod ug+x hello-g # Add execute permission
$
$ hello-g # runs fine in Korn shell
hello
$
$ csh

o°

% hello-g

10

Chapter 1: The Environment

hello-g: print: not found # Errors out in C shell

o°

o°

exit

©»

File Attributes

If a new file, such as the previous echo hello program, is created, the per-
missions assigned to the file are based on the user’s umask. The default
umask on most systems is 022. This default can be changed globally by the
system administrator and individually in one of several files in a user’s
directory, or interactively. The most common place to change this setting is
in the user’s profile file (typically named .profile). The entry would look
like this:

umask 002
Assuming you have created a temporary file (use touch david for now),

have saved it in your home directory, and have called the file david, a long
listing of the file would look like this:

$ 1s -1 david
SPW-rW-r- - 1 Pitts users 24 May 13 16:57 david

NOTE

The $ is the default Korn shell prompt; it is not typed when you run the listing command.
What was typed was 1s -1 david.

Technically, nine pieces of information are given when you perform a long
listing of a file (or directory):

e Type of file

* Permissions

¢ Number of hard links
* Owner

e Group

e Size

¢ Month last modified
¢ Day last modified

* Time last modified

e Name of the file

#!/bin/ksh Explained 11

The permissions, owner, group, and name of the file are what is important
to us presently.

The permissions for the file are rw-rw-r--. The first character on the line
shows the type of file; - means regular file; d means directory; and the
others are listed in Table 1.1.

* The owner is Pitts.
* The owning group is users.
¢ The name of the file is david.
The permissions for files are split into four sections:
¢ A special file type field (one character)
* Permissions for the owner of the file (three characters)
* Permissions for the group associated with the file (three characters)

* Permissions for everyone else (the world—three characters)

Each section has its own set of three file permissions, which provide the
capability to read, write, and execute (or, of course, to deny the same).
These permissions are called the file’s filemode. Filemodes are set with the
chmod command.

The object’s permissions can be specified in two ways—the numeric coding
system or the letter coding system. Using the letter coding system, the
three sections are referred to as follows:

e u for user
¢ g for group
e o for other

e a for all three

The following are three basic types of permissions:
e r for read
e w for write

e x for execute

Combinations of r, w, and x with each of the three groups of users provide
the complete set of permissions for the files. In the following example, the

12 Chapter 1: The Environment

owner of the file has read, write, and execute permissions, and everyone
else has read access only:

Ay $ 1s -1 test
%:‘ SPWXP - -1 - 1 obrien users 24 May 13 16:57 test

/=32 The command 1s -1 test tells the computer to retrieve a long (-1) listing
EXAMPLE (1s) of the file (test). The second line is the result of the command.

Therefore, the permissions are made up of 10 character positions. A dash
(-) indicates no permission granted for that category of user (user, group,
others) for that capability (read, write, execute). The user category would
probably be better served if it were named owner, but that would lead to
confusion between o for others and o for owner. The first field is a little dif-
ferent. Refer to Table 1.1 to identify many entries that could be found in
the first position.

Table 1.1: Object type identifier

Character Description

Plain file

Block special file
Character special file
Directory

Symbolic link

Named pipe

Socket

»w T H O O T

Following the file type identifiers are the three sets of permissions: rwx
(user), r-- (group), and r- - (other).

NOTE

A small explanation needs to be made as to what read, write, and execute actually
mean. For files, a user who has read permission can see the contents of a file; a user
with write permission can write to it; and a user who has execute permission can exe-
cute the file. If the file to be executed is a script, the user must have read and execute
permissions to execute the file. If the file is a binary file (created through a compile
and link sequence), just the execute permission is required to execute the file.

A compiled and linked binary file is created when a high-level language program (C,
COBOL, FORTRAN, Pascal, Ada, C++, and so on) is presented to a program called a
compiler, which translates the C code into machine instructions to be executed when
the program is run. The compiler sends its output to the linker program, which resolves
any global references and produces a binary executable file.

This type of executable runs four or five times faster than a shell script in which each
line must be interpreted and potentially executes a separate process per line. In con-
trast, a compiled and linked program is more difficult to write, but executes more
quickly. A script should be faster to write (and easier), but executes more slowly.

Ay
EXAMPLE

#!/bin/ksh Explained 13

The interactive shell can distinguish between a request to execute a compiled and
linked binary program versus a shell script by examining the first two bytes of the file.
If it finds the #!, it knows it is about to execute a script. If it finds some other values in
the first two bytes, the shell assumes that the file is a compiled and linked executable
and prepares to execute the program. The first two characters of a file contain the
magic numbers (see man magic) identifying the type of file.

Directories

The permissions on a directory are the same as those used by files: read,
write, and execute. The actual permissions, however, mean different things.
For a directory, read access provides the capability to list the names of the
files in the directory, but does not allow the other attributes to be seen
(owner, group, size, and so on):

The following example demonstrates that a directory without the execute
permission bit set disallows the display of file attributes. However, it allows
the display of filenames within the directory. The 1s -1d ob command
requests that permission information be displayed for the ob directory file,
not the files within the directory. Here’s the example:

$

$ mkdir ob # Make a test directory named ob

$

$ 1s -1d ob

drwxr-xr-x 2 obrien users 8192 Sep 27 19:00 ob # Note r and x
permissions

$

$ cd ob

$

$ cat > tmp1 # Create a file in ob directory

junk in file

$

$1s -1 # No problem getting new file's attributes
total 1

SrW-r--r-- 1 obrien users 13 Sep 27 19:01 tmp1
$

$cd ..

$

$ 1s -1d ob # Show directory permissions

drwxr-xr-x 2 obrien users 8192 Sep 27 19:01 ob
$

$ chmod ugo-x ob # Remove execute permissions from all categories
$

$ 1s -1d ob # No execute permission for the directory

14

Chapter 1: The Environment

A

[=1

EXAMPLE

drw-r--r-- 2 obrien users 8192 Sep 27 19:01 ob
$
$ 1s -1 ob # Displays no attribute info without
execute permission on the directory
1s: ob/tmp1: No permission
total 0
$
$ 1s ob # No problem viewing filenames
tmp1

Write access provides the capability to alter the directory contents. This
means the user could create and delete files in the directory.

The following example demonstrates that an attempt to create a file within
a directory that does not have write permission will fail. After adding exe-
cute permission, the file creation request is tried again, successfully. The
cat command is used to create a small file. To terminate the creation activ-
ity begun by the cat > command, you must press Ctrl+D at the beginning
of a blank line:

$ pwd

/usr/users/obrien/ob

$ 1s -1d # Note no write permission
dr-xr--r-- 2 obrien users 8192 Sep 27 19:01 .
$

$ cat > tmp3 # File create fails

ksh: tmp3: cannot create

$

$ chmod utw ../ob # Add write permission

$

$ cat > tmp3 # Success

ddddd

$

$1s -1d

drwxr--r-- 2 obrien users 8192 Sep 27 19:16 .
$

Finally, execute access enables the user to make the directory the current
directory:

$ 1s -1d ob # No execute permission of the directory file
drw-r--r-- 2 obrien users 8192 Sep 27 19:01 ob

$

$ cd ob # Can't cd to the directory

ksh: ob: permission denied

$

$ chmod u+x ob # Add execute permission

$

$ cd ob # Success

#!/bin/ksh Explained 15

Execute access on a directory file also provides list capabilities, but brows-
ing is supported by read permission.

The following example shows successful browsing of a directory due to read
access. After removing read access, but retaining execute access, browsing
is not allowed. However, access is successful provided that the user already
knows the name of the file to be accessed:

$ 1s -1d # Directory allows browsing
drwx------ 2 obrien users 8192 Sep 27 19:16 .
$
$ 1s # Browsing away
tmp1 tmp3
$
$ chmod u-rw ../ob # Remove read access (write also just because!)
$
$ 1s # Can't browse
: Permission denied
$
$ 1s tmp3 # Can get info if I know filenames
tmp3
$
$ 1s -1 tmp3 # Attributes too
SPW-r--r-- 1 obrien users 6 Sep 27 19:16 tmp3
$

Table 1.2 summarizes the differences between the permissions for a file and
those for a directory.

Table 1.2: File permissions versus directory permissions

Permission File Directory
View the contents Search the contents, browse
w Alter file contents Alter directory contents
(delete files, add files)
X Run executable file Make it the current directory, list

but no browse

Combinations of these permissions also allow certain tasks. It was previ-
ously mentioned, for example, that it takes both read and execute permis-
sions to execute a script. This is because the shell must first read the file to
see what to do with it. (Remember that the #!/bin/ksh tells the shell to
execute a Korn shell and pass the rest of the file’s contents to the Korn
shell as input.) Other combinations allow certain functionality. Table 1.3
describes the combinations of permissions and what they mean, both for a
file and for a directory.

16 Chapter 1: The Environment

Table 1.3: Comparison of file and directory permission combinations

Permission File Directory
Cannot do anything. Cannot access it or any of its
subdirectories.
r-- Can see the contents. Can see the contents.
rw- Can see and alter the Can see and alter the
contents. contents.
rwx Can see and change the Can list the contents, add
contents, as well as or remove files, and make
execute the file. the directory the current
directory (cd to it).
r-x If a script, can execute Provides capability to
it. Otherwise, it change to directory and
provides read and execute list contents, but not to
perms. delete or add files to the
directory.
--X Can execute if a Users can execute a binary
binary. they already know about.

As stated, the permissions can also be manipulated with a numeric coding
system. The basic concept is the same as the letter coding system. As a
matter of fact, the permissions look exactly alike—the difference is in the
way the permissions are identified when using the chmod command. The
numeric system uses binary counting to determine a value for each permis-
sion and sets them. Also, the find command can accept the numeric form of
the permissions as an argument, using the -perm option, providing the
capability to locate files containing certain permission values.

With binary, you count from right to left for each set of values. Therefore, if
you look at a file, you can easily come up with its numeric coding system
value. The following file has full permissions for the owner and read per-
missions for the group and the rest of the world:

$ 1s -1 test
-PWXP- -1 - - 1 shell shell 24 May 13 16:57 test

This would be coded as 744. Table 1.4 illustrates how this number was
developed.

Table 1.4: Permission access values

Permission Value
Read 4
Write 2

Execute 1

#!/bin/ksh Explained 17

Permissions use an additive process; therefore, a person with read, write,
and execute permissions to a file would have a 7 (4 + 2 + 1). Read and exe-
cute would have a value of 5. Remember that three sets of values exist (for
user, group, and others categories), so each section would have its own
value.

Table 1.5 shows both the numeric system and the character system for the
permissions.

Table 1.5: Numeric permissions

Permission Numeric Character
Read-only 4 r--
Write-only 2 -W-
Execute-only 1 --X
Read and write 6 rw-
Read and execute 5 r-x
Read, write, and execute 7 rwx

You can change permissions by using the chmod command, which is
explained in the next section.

chmod

With the numeric system, the chmod command must be given the value for
all three fields. Remember, the numeric system uses numbers to define per-
missions. The nine permissions (rwxrwxrwx) are represented as three series
of three-bit fields. An on bit (set to 1) means the particular permission is
present for this category of user (user, group, others) for this particular file.
An off bit means the opposite. Quite often, you will see permissions of 777
used in a chmod command. Each 7 represent 3 on bits, or rwx. Therefore, to
change a file to read, write, and execute for everyone, issue the following
command:

$ chmod 777 <filename>

The character system uses characters such as u for user, g for group, o for
others, and a for all three at once—as well the rwx to reflect permissions. To
add a permission, use a plus (+); to remove a permission, use a minus (-).
To perform the same task as the numeric example shown previously, with
the character system, issue the following command:

$ chmod a+rwx <filename>

18

Chapter 1: The Environment

Of course, more than one type of permission can be specified at one time.
The following command adds write access for the owner of the file and adds
read and execute access to the group and everybody else:

$ chmod u+w,og+rx <filename>

The advantage that the character system provides is that you do not have
to know the previous permissions. You can selectively add or remove per-
missions without worrying about the rest. With the numeric system, each
section of users must always be specified. The downside of the character
system is apparent when complex changes are being made. Looking at the
preceding example, (chmod u+w,og+rx <filename>), an easier way might
have been to use the numeric system and replace all those letters with
three numbers: 755.

Coming Full Circle—Back to umask

As you recall, the default umask on many systems is 022. Now that you
understand the numeric system, it is easy to explain what this number
means. When a non-directory file is created, the umask value is subtracted
from 666 (directories subtract from 777) to come up with the default permis-
sion value to be assigned to the newly created file. Therefore, a umask of 022
makes the permissions of the file 644. This gives the owner read and write
access, and gives the group and the rest of the world read permission.

When a new directory is created, the umask is subtracted from 777 instead
of 666 to set the default permissions. Therefore, a umask of 822 would give a
newly created directory permissions of 755. This means the owner has read,
write, and execute permissions, while the owning group and the rest of the
world have read and execute permissions.

Now that you are starting to feel as if you understand permissions and
their relationship to the umask value, you are ready to handle the truth. The
subtraction technique described in the previous paragraphs will suffice in
most situations. But what if the umask value is set to something like 027?
What would the resulting file permissions be? How do you subtract a 027
from 666? Do we borrow a one from the middle 6 as in normal subtraction
and put permissions of 639 (666—027) on any new non-directory files cre-
ated?

The truth is that the bitwise one’s complement (described in the next para-
graph) of the umask value is bitwise-anded (described in the next para-
graph) with octal 777 for directories or octal 666 for regular files to produce
the default permissions placed on newly created files. (I'll wait while you
get up off the floor.)

Ay
EXAMPLE

#—Comments Explained 19

Are you ready? A umask of 027 is 000010111 in binary. The one’s complement
of 027 is 111101000 (just flip the bits—O0s become 1s, and 1s become 0s).
Octal 666 is 110110110 in binary. A bitwise-and operation analyzes each bit
combination and produces a result of 1 if the bit on top AND the bit on bot-
tom are both on (1). The bitwise-and operation produces a 0 otherwise. So,
111101000 bitwise-anded with 110110110 (666) yields 110100000, or 640, or
rw-r----- .

111 101 000 (I’s complement of 027)
110 110 110 (666)

----------- (bitwise and)

110 100 000 (640 which is rw-r-----)

Feel free to erase the previous merriment from your memory banks. Most
of the time, the good old subtraction method will work just fine for you. But
now you know the truth about umask. You also know why the command is
called “umask.” It is the user file creation bitmask filter.

The following example demonstrates the permissions on a newly created
file given a umask value of 022. It then changes the umask to 027 and gen-
erates a different set of permissions for a subsequently created file:

$ umask # Current umask value

022

$

$ touch newfile # Create empty new file

$

$ 1s -1 newfile # Check permissions

SPW-r--r-- 1 obrien users 0 Sep 27 20:22 newfile
$

$

$ umask 027 # Alter umask

$

$ touch newfile2 # Create another new file

$

$ 1s -1 newfile2 # Note permissions

SPW-r----- 1 obrien users 0 Sep 27 20:23 newfile2
$

#—Comments Explained

As you would expect, someone who has been a part of the writing of nine
different books would be pushing documentation. And it is true, I am. More
importantly, documenting what I have done while it is fresh in my mind

20

Chapter 1: The Environment

has saved me countless hours of work. I usually take a few minutes and
provide some simple headers and some quick explanations of what I am
doing in a script. Comments are the way to add these simple headers and
quick explanations within your script. In shell scripting, a comment runs
from where the pound sign (#) begins to the end of the line. Therefore,
something like this is feasible:

$ 1s -1 # give a listing of all files in the current directory!

But the shell will interpret this as follows:
$1s -1

This is because the shell ignores everything from the pound sign to the end
of the line unless it is the first line of the program and the character follow-
ing the pound sign is an exclamation point. This means that a comment can
either be a part of a line with a command, such as this:

$ 1s -1 # this command gives a listing of all files in the current directory

Or it can be on a line by itself, such as this:

$ # The next command gives a listing of all files in the current directory
$1s -1

The .profile Script

In its simplest form, a script is nothing more than one or more commands
lumped together in a file. The file has had its permissions adjusted so that
the intended user(s) has both read and execute permissions. The most obvi-
ous reason for such a file is user friendliness. Using a script can save typ-
ing. Instead of typing the same thing over and over again, you can save the
commands in a file and execute the commands by typing in the name of the
script.

In reality, scripts are much more than that. Scripts typically contain a large
number of commands, logic flow statements, and other information that
simplifies a task. One other nice thing about a script is that it enables you
to automate some process. For example, in my home directory a program
called .profile runs automatically every time I log on:

The following example shows a typical user’s .profile file. It sets up the
user’s PATH variable (used to locate command files), creates a non-default
prompt, sets the umask value, and defines several environment variables.

Ay

/=4
EXAMPLE

The .profile Script 21

Have no fear, we cover all these topics in this and upcoming chapters.
Here’s the example code:

$ cat .profile
/etc/profile
Systemwide environment and startup programs
PATH="8$PATH: /usr/X11R6/bin"
PS1="\$ "
typeset -uxL5 HOSTCHAR=$(uname -n)
PS1="$HOSTCHAR" ' : ${PWD#HOME/}: !$ '
ulimit -c¢ 1000000
if ['id -gn' = 'id -un' -a 'id -u' -gt 14]; then
umask 002
else
umask 022
fi
USER="'id -un'
LOGNAME=$USER
MAIL="/var/spool/mail/$USER"
HOSTNAME="/bin/hostname'
HISTSIZE=100
HISTFILESIZE=1000
LINES=53
INPUTRC=/etc/inputrc
set -0 vi
export PATH PS1 USER LOGNAME MAIL HOSTNAME HISTSIZE HISTFILESIZE INPUTRC LINES
for i in /etc/profile.d/*.sh ; do
if [-x $i]; then
. %1
fi
done
unset I

This script sets up the environment the way I want it. Because it runs
every time I log on, I do not have to bother making changes to my environ-
ment every time I log on. It is automated for me.

Shell scripts are used for the following:
¢ Saving time in typing
* Automating processes
¢ Enabling complex processes to occur without user intervention

* Providing program-like functionality without having to learn a pro-
gramming language

22

Chapter 1: The Environment

Ny

/=4

EXAMPLE

To maximize their productivity, and be comfortable in their computing envi-
ronment, system administrators and other computer professionals should
learn how to write shell scripts.

Another shell technique that can save you a few keystrokes is using an
alias. An alias is a way of doing something in shorthand. An alias is defined
using a name/value pair. For example, the following alias takes the com-
mand 1s -la and assigns it to the alias 11:

alias 11='ls -la'

After this alias has been created (either in a script, such as .profile, or
manually at a shell prompt), the user can type 11 and get a long listing:

$ 11

total 56

drwx------ 6 shell shell 4096 May 16 10:32 .

drwxr-xr-x 22 root root 4096 Mar 27 14:26 ..
SPW-r--r-- 1 shell shell 1422 Mar 27 14:26 .Xdefaults
SPW-r--r-- 1 shell shell 24 Mar 27 14:26 .bash_logout
-rw-r--r-- 1 shell shell 230 Mar 27 14:26 .bash_profile
SPW-r--r-- 1 shell shell 173 Mar 27 14:26 .bashrc
drwxr-xr-x 3 shell shell 4096 Mar 27 14:26 .kde
SPW-r--r-- 1 shell shell 435 Mar 27 14:26 .kderc
SPW-r--r-- 1 shell shell 634 May 16 10:32 .profile
SPW-P--r-- 1 shell shell 3394 Mar 27 14:26 .screenrc
drwxr-xr-x 5 shell shell 4096 Mar 27 14:26 Desktop
drwxr-xr-x 2 shell shell 4096 Mar 27 14:26 public_html
drwxrwxr-x 2 shell shell 4096 May 1 19:51 scripts
SPWXP - -1 - 1 shell shell 24 May 13 16:57 test

The unalias command is used to remove an alias:

$ unalias 11
$ 11
ksh: 11: not found

The value of an alias can be seen by typing the alias command:

$ alias
autoload="'typeset -fu'
functions="'typeset -f'
hash='alias -t'
history='fc -1'
integer="typeset -i'
local=typeset
login="exec login'
newgrp="'exec newgrp'

Ay
EXAMPLE

Ksh Environment Options 23

nohup="'nohup '

r='fc -e -'

stop='kill -STOP'
suspend='kill -STOP $$'
type='whence -v'

As you can see, several predefined aliases are listed here. If I were to add
my alias back in, it too would be added to the list:

$alias 11='1ls -1la'

$ alias

alias 11='ls -1la‘

MOOSE: /home/shell:10$ alias
autoload='typeset -fu'
functions="'typeset -f'
hash='alias -t'
history='fc -1'
integer='typeset -1i
11='1s -1la' # There it is
local=typeset

login="exec login'
newgrp="'exec newgrp'
nohup="nohup '

r='fc -e -'

stop='kill -STOP'
suspend="kill -STOP $$'
type='whence -v'

Notice that the alias command returns all the aliases in alphabetical order.
Therefore, my 11 is in the middle of the list, not at the end.

Ksh Environment Options

The Korn shell is itself an executable program. This is why you put the
#!/bin/ksh at the beginning of the file. Several environment options are set
by default, and others can be set manually either when Ksh is invoked or
afterward with the set command. Options can do many things, including
affecting how Ksh processes commands. By typing set -o, you can see how
your current options are set:

$ set -0

Current option settings

allexport off keyword off nolog off trackall off
braceexpand on login on notify off verbose off
bgnice off markdirs off nounset off vi on

emacs off monitor on physical off viraw off

24

Chapter 1: The Environment

Ay

[=1

EXAMPLE

errexit off noclobber off posix off vi-show8 off
gmacs off noexec off privileged off vi-tabcomplete off
ignoreeof off noglob off restricted off vi-esccomplete off
interactive on nohup on stdin on xtrace off

This happens to be the output from my Linux box (named “Moose”). The
man pages will tell the inquisitive user what each option means. An option
can be changed from off to on by supplying the option after the set -o
command. For example, the command line

set -0 vi

sets vi to be the default built-in editor for Ksh. To turn off an option, use a
plus sign instead of a minus sign, as shown in the next example:

set +0 vi

If it seems like the plus and minus should be reversed, remember that this
came about as an option to a command. Options for commands are indi-
cated by the minus sign (-), such as 1s -1 or shutdown -r. The plus sign (+)
indicates to turn something off.

Variables are used to store values. In the following equation, two vari-
ables—x and y—are given:

X +y=4

In this particular case, you can infer that the values associated with the
variables are numeric. But variables can just as easily be character-based.
Variables are used extensively in programming, so more will be discussed
later. A variable is a name/value pair. The variable has a name, called a
varname—x and y, previously shown—and a value, such as 2 or
/home/shell as seen in the following example:

$ echo $HOME

/home/shell

The dollar sign ($) is placed in front of the varname to indicate that you are
accessing the value of the variable. It forces the shell to check its table of
variables to see whether it contains a variable matching the name appear-
ing after the $. If the varname is followed immediately by other characters
or the underscore, the varname must be enclosed in curly braces ({ }). This
can be useful if you are trying to concatenate two variables. The curly
braces can be used even when not necessary.

The following example shows an instance in which the curly braces are
mandatory. Without them, the shell looks for a variable named
USERisadude, which doesn’t exist. Surrounding USER with the curly braces

Ay
EXAMPLE

A

[=4
EXAMPLE

Variables 25

indicates you want the shell to look for the variable named USER—not
USERisadude—and concatenate the contents of the variable $USER with the
string isadude. Here’s the example code:

$ echo $USER # Works without curly braces
obrien
$
$ echo ${USER} # Works with curly braces
obrien
$
$ echo $USERisadude # Looks for 'USERisadude'
Not found
$

$ echo ${USER}isadude # Looks for USER, concatenates 'isadude'
obrienisadude
$

Three types of variables exist: shell variables, built-in variables, and envi-
ronment variables. Each of these is discussed in the following sections.

Shell Variables

Shell variables are name/value pairs. Some shell variables are set automat-
ically when the shell is instantiated. Many of these variables change on
their own as the user performs certain tasks. For example, two such shell
variables are PWD and OLDPWD. PWD stands for present working directory. Its
value is the current directory to which the user has set his default. If the
user has changed directories then the second variable, 0LDPWD—old present
working directory—stores the default working directory that the user had
set previous to the current working directory. This makes switching back to
the previous directory much quicker, as is demonstrated in the following
text.

First, view the contents of the two variables (you might need to change
directories before OLDPWD will instantiate itself):

$ cd /usr/local/vmware

$ echo $PWD

/fusr/local/vmware # Current directory

$ echo $OLDPWD

/home/shell # Previous directory

From the current directory (/usr/local/vmware), switching back to the pre-
vious directory (/home/shell) without typing in or even remembering the
name of the directory is easy. The change directory command (cd) followed
by a dash and no arguments tells the shell to change directories to the old
present working directory, as is evident in the following example:

26 Chapter 1: The Environment

$ cd /usr/local/vmware
$ echo $PWD
/usr/local/vmware

$ echo $OLDPWD
/home/shell

$cd -

/home/shell

Some shell variables are local variables, and others are environment
variables. Environment variables are discussed in a later section. Briefly,
however, the difference between an environment variable and a local vari-
able is that an environment variable’s value is accessible to any child
process of the current shell, but the same is not true for a local variable.
Typically, a variable used in a script is a local variable and has no contex-
tual value outside the script of which it is a part. The set command shows
all currently set variables within an environment:

$ set

HISTFILESIZE=1000
HISTSIZE=100
HOME=/home/shell
HOSTCHAR=MOOSE
HOSTNAME=moose.qgx.net

IFS="

INPUTRC=/etc/inputrc
KDEDIR=/usr
KSH_VERSION='@(#)PD KSH v5.2.14 99/07/13.2'
LANG=en_US

LC_ALL=en_US

LINES=55

LINGUAS=en_US

LOGNAME=shell
MAIL=/var/spool/mail/shell
MAILCHECK=600
OLDPWD=/usr/local/vmware
OPTIND=1
PATH=/usr/local/bin:/bin:/usr/bin:/usr/X11R6/bin:/usr/X11R6/bin
PPID=715

PS1="MOOSE: ${PWD#HOME/}: !$ '
ps2="'>

PS3="#? '

PS4="+ '

PWD=/home/shell
QTDIR=/usr/lib/qt-2.0.1
RANDOM=20850

SECONDS=1271

v

[=4
EXAMPLE

Variables 27

SHELL=/bin/ksh
TERM=ansi
TMOUT=0
USER=shell

_=set
kdepath=/usr/bin

One more variable to spotlight is PS1. The value of this variable is dis-
played as the user’s prompt. The one I use displays the name of my server,
the present working directory, and which command I am on in the history
file along with the dollar sign:

MOOSE: /home/shell:20$ cd /tmp

MOOSE: /tmp:21$

For clarity, in most of the examples, I have replaced my customized prompt
with the standard Korn shell dollar sign prompt. Later in the chapter when
the history file is discussed, you will see the true value of my customized
prompt. If you have terminal windows emanating from several servers dis-
playing on your workstation, it is helpful to be able to quickly discern from
which machine the prompt comes. This is accomplished by the MOOSE part of
the prompt.

Similarly, it can be efficient to be reminded of what the current working
directory is. This is accomplished by the /tmp part of the last prompt.

The last part of my customized prompt displays a number from the history
file. This indicates which number command I am about to type in. These
numbers can be used to recall previously issued commands. All of this is
discussed at the end of this chapter.

Shell variables are set with the equal sign. No spaces are allowed in the
setting of the varname value pair. If spaces are needed in the value then
the value must be placed between quotes to let the system know that it is
only one value and that you are not trying to do multiple things at once.
The following example shows setting a varname of ME equal to David and
then unsetting the value with the unset command:
$ ME=David # Setting a variable
$ echo $ME # Displaying a variable
David
$ unset ME # Unsetting a variable
$ echo $ME

Blank

There is a blank line after the command because the Ksh returned nothing:

28

Chapter 1: The Environment

Ay

[=1

EXAMPLE

The following example demonstrates the shell’s misinterpretation of a
request to set a nonquoted variable containing a space:

$ echo $ME

$ ME=David Pitts # Shell assigns David

ksh: Pitts: not found # But thinks Pitts is a command
$ echo $ME # So it aborts the entire line
$ ME="David Pitts" # Works with quotes

$ echo $ME

David Pitts

You should notice the error stating that Pitts could not be found. Because
an error occurred, even the seemingly valid ME=David did not occur.

Built-In Variables

A number of built-in variables change as the environment changes.
Specifically, the values change as commands are executed. The values of
these variables hold information relevant to the current shell, the current
process, or the most recently completed process. These are similar to shell
variables, but the values are generated when the value is accessed. The fol-
lowing example shows this. Notice that no error is generated:

$ echo $0 # $0 contains command name
-ksh

$ set 0=Moose # Reset upon access

$ echo $0

-ksh

Because the value is generated each time it is accessed, the previous com-
mand really did set the value of shell variable 0 equal to Moose. But when
you asked for it to be displayed, it was reset to the name of the current pro-
gram, which is ksh (the shell itself). This is the reason no error was gener-
ated. Many of these variables can be used in scripts. Table 1.6 shows these
variables and gives a brief explanation as to what each means.

Table 1.6: Built-in variables

Variable Explanation
$0 Name of the command or script being executed.
$n Argument passed as a positional parameter (for example, n is a num-

ber between 1 and 9) indicating which value is passed to the script
from the command line. Arguments can exceed 9 if enclosed in curly
braces—for example, ${14} indicates the 14th positional parameter.
$# Number of positional parameters passed as arguments to the script
from the command line.
$* A list of all command-line arguments.

v

[=4
EXAMPLE

Variables 29

Table 1.6: continued

Variable Explanation

e An individually double-quoted list of all command-line arguments.

$! PID (process ID) number of the last background command.

$$ PID (process ID) number of the current process.

$? A numerical value indicating the exit status of the last executed
command.

Environment Variables

As already mentioned, the values associated with an environment variable
are visible by child processes of the shell. For a variable to be part of the
environment, it must be exported to the environment. This is done with the
export command. Earlier, we examined a .profile script. In that file sev-
eral variables were set, including the PATH, the prompt setting (PS1), and
the hostname of the computer. After all the values were set, the varnames
were exported to the environment:

PS1="$HOSTCHAR" ' : ${PWD#HOME/}: !$ ' # Set the prompt variable PS1

PATH="$PATH: /usr/X11R6/bin" # set the path variable PATH

HOSTNAME="'/bin/hostname' # Set the hostname variable
HOSTNAME

export PATH PS1 USER LOGNAME MAIL HOSTNAME HISTSIZE HISTFILESIZE INPUTRC LINES
Export them all

As you can observe from the export list, several varnames can be exported
on a single line delimited with spaces. The lines could have just as easily
been written like this:

PS1="$HOSTCHAR" ' : ${PWD#HOME/}: !$ '

export PS1 # Export individual variable
PATH="$PATH: /usr/X11R6/bin"

export PATH

HOSTNAME="/bin/hostname’

export HOSTNAME

export USER LOGNAME MAIL HISTSIZE HISTFILESIZE INPUTRC LINES

Many times commands can be included on a single line or split onto several
lines.

Typically, environment variables use uppercase names, and shell variables
use lowercase names. Note that this is a convention and not a rule.

Either type of variable can be created using the same syntax: name=value.
The shell assumes you are creating a shell variable, not an environment
variable. You must describe your intention to make your variable an

30 Chapter 1: The Environment

environment variable by using the export command export name. This can
be accomplished in a single line with the following syntax:

$ export name=value

The following example creates an environment variable (DENENV), and
then uses the ksh command to create a subshell. It shows that the environ-
ment variable is known to the subshell. It then exits from the subshell, cre-
ates a local shell variable (den), and then creates another subshell to show
that the local variable is not known in the subshell:

$ export DENENV=Valkyrie # Create environment variable
$

$ echo $DENENV # Display contents

Valkyrie

$

$ ksh # Create sub shell

$

$ echo $DENENV # Accessible in sub shell
Valkyrie

$

$ exit # Exit from sub shell

$

$ den="local Valkyrie" # Create local variable

$

$ echo $den # Display local variable
local Valkyrie

$

$ ksh # Create sub shell

$

$ echo $den # Not accessible from sub shell

$

$ exit # Back to original shell

$

$ echo $den # Still available in local shell
local Valkyrie

$

Environment File

Many systems have an environment file that the system administrator uses
to set some basic environments for all users. Typically, this file is located in
the /etc directory and can be called env, ENV, environment, or environments.
If your system has such a file, another file (such as .profile) contains a
line that invokes this script. In addition, some systems have a universal
profile that is called as well. A typical Linux system, for example, has one

Ay

/=4
EXAMPLE

Environment File 31

or more files in the /etc/profile.d/ directory that execute at the end of a
user’s customized profile. The following is an example of such a call:
for i in /etc/profile.d/*.sh ; do

if [-x $1i]; then

. %1

fi
done
unset i

This snippet of code sets up a variable (i) containing the names of all the
files in /etc/profile.d/ whose filenames end in .sh. It then checks each
one. If the file is executable, it runs that file in the context of the current
shell using the dot command (. $i). After it has finished, it unsets the
value of i. Don’t worry, the for loop is explained in Chapter 6, “Flow
Control.”

It seems as if ksh has several startup files. We have just discussed the
.profile file, which is a script that runs each time you log on. In addition,
system-wide profile files and environment files exist. But what about a
script that runs each time a new shell is created?

Each time a new shell is created, ksh searches to see whether the environ-
ment variable named ENV is defined. If it is, the script that it points to is
executed.

This is useful because it executes each time a shell is created, not just
when you log on (although it is executed then also):

$ cat .profile

#! /bin/ksh

print "In the profile file"

set -0 emacs

PS1='§ '

PATH=$PATH: .

alias 11='ls -la' # Set up an alias named 11
$

$ alias 11 # Display alias 11
11="1s -la'

$

$ 11 # The alias works
total 643

SPW-rW-r- - 1 obrien obrien 0 Nov 4 16:05 !
drwx------ 11 obrien obrien 1024 Nov 9 10:22 .
(w)

$

$ ksh # Create a sub shell

32 Chapter 1: The Environment

$ alias 11 # Alias is gone

11: alias not found

$

$ 11 # Won't work in sub shell
ksh: 11: not found

$

$ exit # Back to parent shell

$

The point is that aliases are treated differently from variables. No capabil-
ity to export aliases exists. (Although an earlier ksh version supported the
-x option, that option no longer has any effect.) The only way to get your
aliases to be in effect in a subshell is to recreate them. Fortunately, a way
to automate the process of recreating your aliases does exist.

As mentioned previously, the ENV environment variable can be used to point
to a script that will run as each new ksh is begun. Usually, this variable
points to a script in your home directory named .kshrc. But the script can
be named anything as long as it is pointed to by the ENV variable. The
.kshrc file is a perfect place to put any aliases you want to have available
within your subshells.

While experimenting with this functionality, you might want to include a
line that displays a message indicating you are currently executing the
.kshrc file. You might be surprised at how often the .kshrc script executes!

The following example shows the ENV variable pointing to a script that will
run as each new ksh is started. It creates an alias when it executes:

$ echo $$ # Parent pid is 606

606

$

$ alias 11 # Alias 11 exists

11="'1ls -la'

$

$ echo $ENV # ENV variable not yet set

$

$ ksh # Create sub shell

$

$ alias 11 # Alias 11 does not exist
11: alias not found

$

$ echo $$ # Child pid is 8435
8435

$

$ exit # Exit from sub shell
$

History File and Repetition 33

$ echo $$ # Back to parent pid 606
606

$

$ export ENV=/home/obrien/.kshrc # Set up ENV variable
$

$ echo $ENV

/home/obrien/.kshrc

$

$ ksh # Create another sub shell
Executing the .kshrc file

$

$ alias 11 # Alias exists now
11='1ls -la'

$

$ echo $$ # Child pid is 8439
8439

$

$ exit # Back to parent 606
$

$ echo $$

606

$

History File and Repetition

Earlier it was discussed that my customized prompt gives a number associ-
ated with the command that was run. As commands are run, they are saved
in the history file. Think of it as building a script as you go along. A couple
of benefits of having this file are evident. First is the ability to repeat a
command without having to retype it, and second is that the commands can
then be saved in a different file for later scripting. For ease of viewing, here
is the prompt string again:

PS1="$HOSTCHAR" ' : ${PWD#HOME/}:!$ '

Notice that it looks slightly different from the output the set command
provides:

PS1="MOOSE : ${PWD#HOME/}:!$

This is because the value for the varname HOSTCHAR is interpreted in the set
command.

The prompt looks like this:
MOOSE : /home /shell:35$

34

Chapter 1: The Environment

Ay

/=4

EXAMPLE

By typing the history command, the user can see the last several com-
mands that were executed, preceded by a number:

MOOSE: /home/shell:36$ history

20 clear

21 man set

22 export LINES=50
23 clear

24 1s

25 cat test.pl
26 vi test.pl
27 man man

28 clear

29 1s

30 script

31 1s -la

32 cat .profile
33 set -0

34 set

35 h

It is the number in the leftmost column that is important. By typing an r
for repeat, any command in the history file can be repeated:
MOOSE: /home/shell:38$% r 32 # Repeat command number 32
cat .profile

/etc/profile

Systemwide environment and startup programs

PATH="$PATH: /usr/X11R6/bin"

PS1="\$ "

typeset -uxL5 HOSTCHAR=$(uname -n)

PS1="$HOSTCHAR" ' : ${PWD#HOME/}:!$ '

(...)

The size of the history file is set with the environment variable
HISTFILESIZE. In addition, a number of the commands are kept in memory
with the environment variable HISTSIZE. Each of these is set (and exported)
in my .profile file.

A second way of repeating commands is available. The shell comes with a
choice of built-in editors. My editor of choice—and the most popular for
UNIX/Linux—is vi (pronounced “vee eye,” not “vie,” although, in jest, you
can refer to it as “six”). If you have vi enabled, and you should, you can use
the editing keystrokes of vi to move up and down, left and right through
your history file. To do this, ensure that vi is your editor. (You can do this
with Emacs, but I do not cover Emacs in this book. I do, on the other hand,
provide a guide to vi in Appendix B, “vi Tutorial.”) To set vi as your editor

History File and Repetition 35

permanently, place the command inside your .profile or some other appro-
priate environment file. The command is as follows:

set -0 vi
The following example shows my environment options. Notice that vi is

turned off. Then, the command is run to turn on vi as my default editor.
The options are then rechecked to ensure that the value was set to on:

$ set -0

Current option settings

allexport off keyword off nolog off trackall off
braceexpand on login on notify off verbose off
bgnice off markdirs off nounset off wvi off
emacs off monitor on physical off viraw off
errexit off noclobber off posix off vi-show8 off
gmacs off noexec off privileged off vi-tabcomplete on

ignoreeof off noglob off restricted off vi-esccomplete on

interactive on nohup on stdin on xtrace off
$ set -0 vi # Turn on vi command-line editing

$ set -o # Display shell option settings

Current option settings

allexport off keyword off nolog off trackall off
braceexpand on login on notify off verbose off
bgnice off markdirs off nounset off wvi on

emacs off monitor on physical off viraw off
errexit off noclobber off posix off vi-show8 off
gmacs off noexec off privileged off vi-tabcomplete on

ignoreeof off noglob off restricted off vi-esccomplete on

interactive on nohup on stdin on xtrace off

With the option set to on, you can press the Esc key, which is the equivalent
to switching from insert mode to command mode. You can then use the J
key to move down, the K key to move up, the H key to move left, and the L
key to move right—just as if they were arrows. This enables you to move up
and down through the history list. After you have the desired command at
the prompt, you can edit it with the standard editing keystrokes used in vi.
If you need to insert something, the command i places you back in insert
mode.

Despite the fact that we focus on vi as the editor of choice, you should also
be aware of the emacs editor. In particular, the emacs editor might be a
more intuitive choice for your command-line editor, even if you use the vi
editor for your file edits. You can enable emacs as your command-line editor
using the same syntax as shown with vi:

$ set -0 emacs

36

Chapter 1: The Environment

The emacs editor enables the use of the up and down arrow keys to move
forward and backward through the history list, and the left and right arrow
keys to move the cursor through the selected line. The actual edits are
achieved through the Backspace key (to delete characters), and inserting
characters occurs as you type.

The emacs editor might not be present on all systems. The vi editor, how-
ever, most likely is available on all systems.

When writing this chapter, it seemed like a lot of jumping around, hitting
highlights, and juggling was going on. This is because some of the day-to-
day shell activities are typically performed by rote and not given much
thought as to what is actually happening. So, I thought we should sort out
the meanings and uses of environment variables, shell variables, startup
files, and other shell items.

Having a basic understanding of the environment will help you regardless
of how you use UNIX/Linux. It will make you a more efficient programmer,
a better-qualified DBA, a better system administrator, and just an all-
around better human being!

You have probably figured out by now that most of the shells are similar,
particularly ksh, bash, and sh. Although they are not exactly alike, they are
close enough that if you are using any of these three, this book will be a
wonderful guide for your adventure to come.

After you are comfortable with the environment, the step to programming
in ksh is a relatively small, simple, baby step! Having read this chapter you
are prepared for the next step. You are able to take a script, change its per-
missions as appropriate—based on the users, groups, and other people who
need access—and are able to run the script. An old adage states, “History
repeats itself.” Whoever said this must have been a UNIX guru!

In Chapter 2, “Process Control,” we examine how to control the script,
enabling it to run either in the foreground or the background and how to
have it run automatically. Stay tuned!

Process Control

The previous chapter introduced you to the Korn shell environment. This
chapter helps you take that information a step further. You take a closer
look at the concept of a process. The environment discussed in Chapter 1,
“The Environment,” is part of the process context within which a script or
command runs. You find out how to schedule the execution of scripts (or
commands) at predefined times and examine the difference between back-
ground processing and foreground processing. You also discover ways to
interact with a process during its execution through signals. In essence,
this chapter looks at processes and shows some ways of interacting with
them.

This chapter teaches you the following:
e What has to happen for your script to run
e How to start and stop a process
* How to move jobs between foreground and background
* How to schedule jobs to run at specified times
¢ How to obtain process status

e How to Kkill, suspend, or terminate a process

40

Chapter 2: Process Control

Ay

[=1

EXAMPLE

How to Run a Script

Simply speaking, executing a script is as easy as typing its name at the
shell prompt. Of course, if that were all there was to it, a whole section
wouldn’t be dedicated to it, now would it? A number of pieces must fall into
place for a script to be executed. Here are a few of the prerequisites for
script execution:

¢ The permissions must be correct.

* You must be able to locate the script through the PATH variable or
through an absolute file specification.

* System resources must be available to support the execution of the
script.

* The correct shell must be invoked to interpret the script’s contents.
* The script’s syntax must be correct.
¢ All files referenced during the run must be available.

¢ The user interaction must be reasonable.

As discussed in the previous chapter, the permissions must be such that the
user has both read and execute permissions on the file. Execute access is
needed for the actual execution, and read access is needed because the file
is not a binary and the shell (which is running under the user’s ID) must be
able to read the contents of the file.

In addition, the shell must be capable of locating the script file. The
directory where the file is located must either be part of the user’s PATH
variable or the full path and filename must be used at the shell prompt. In
the following sample code, the path setting is such as might be established
in a .profile file:

PATH="$PATH: $HOME : $HOME /bin: " # Adds two locations to current PATH
export PATH

Although it does not look like much, it is really doing something. In this
particular command, the PATH variable is having two additional directories
appended to it. Notice that the current value of PATH (as indicated by $PATH)
is included in the assignment. This enables the additional directories to be
appended. Had the $PATH not been there, any directories already a part of
the $PATH would have been lost. Echoing out the PATH provides the following
results:

Ay
EXAMPLE

Ay
EXAMPLE

How to Run a Script 41

$ echo $PATH
/usr/local/bin:/bin:/usr/bin:/usr/X11R6/bin:/home/david: /home/david/bin

Two things should be noticed at this point. The first is that each directory
is delimited by a colon (:). The second is that $HOME is expanded out to be
the location of the user’s actual directory of /home/david. This means that
the user named david can execute any script in any of the directories listed
in the user named david’s PATH statement. Permissions still are used to
determine whether the script can be executed. Finding the location of a
script is just half the battle.

CAUTION

It is legal to place a dot (.) in the path. Many users do this so they can execute files in
their current directory. Under no circumstances should a privileged user have the dot
directory in her path. This is a HUGE security hole because the root user might cd to a
directory where, for example, a script named 1s might have been placed. The 1s script
might show filenames as the real 1s command would, but maybe it also removes the
password field from the root account (or some similar dastardly act). This is more likely
to be a problem if the . appears early in the PATH. This is a famous security hole
exploited by hackers over the years!

Because this PATH was for a non-privileged user, /sbin, /usr/sbin, and
/usr/local/sbin were not a part of the string. These directories are tradi-
tionally reserved for commands and scripts usable only by privileged users
and are typically for system (the s in sbin) programs. Many of these scripts
and binaries look like they can be run by the ordinary user, but the “dan-
gerous” ones have safeguards built in. The shutdown command is an exam-
ple of a command containing safeguards:

$ /sbin/runlevel

N 3

$ /sbin/shutdown # Attempt to shut down the system

shutdown: must be root.

$

First, the user runs the runlevel command. This is a fairly innocuous pro-
gram that returns the previous and current runlevel (see the man pages on
runlevel for more information). Then, the user decides to try a different
command—shutdown. If the user is successful then the system comes down.
Fortunately, a built-in safeguard checks to see whether the user is root
(privileged), and—because the user david does not have a UID of zero (the
root account’s UID)—the program aborts with an error. Later in the book
you will see how to set up such error checking.

42

Chapter 2: Process Control

Ay

/=4

EXAMPLE

Jobs and Processes

When a script is run, the shell goes through several steps to begin the exe-
cution. Basically, the current shell opens the executable file, sees that it is a
script (not a compiled and linked program executable), and creates a new
process, running the shell indicated in the first line of the script file. If the
script file does not have the #! /bin/ksh in the first line, the current shell
creates a process running the same shell program as the shell from which
the script was executed.

Most of what happens is internal and of no concern unless you are studying
the kernel, in which case you want a book on UNIX internals and C pro-
gramming, not on shell programming. From the scripter’s perspective, what
happens is that a process is added to the system’s process table. The
process contains several pieces of information that can be viewed using the
ps command. The ps command has a wealth of options capable of producing
many process statistics. A partial process table is shown for reference. The
-ef options request a display showing full information about every process:
$ ps -ef |more

UID PID PPID STIME TTY TIME CMD

david 6724 6702 23:54 pts/2 00:00:00 ps -ef

david 6725 6702 23:54 pts/2 00:00:00 -ksh

Seven columns (that we are interested in) are associated with a process as
indicated by the first line of headers. There are, or can be (depending on
your OS) other columns that provide additional information, but we are not
concerned with those at this point. The meaning of the ps -ef columns is
presented here:

uID This is the user ID of the person who called the exe-
cutable.
PID This is the process ID assigned to the process. This ID

is unique to each process. More about this ID is dis-
cussed later in this chapter.

PPID This is the parent process ID. This is the process ID of
the process that actually created the process you are
examining.

STIME This is the time the process started.

TTY The terminal type is listed next. The pseudo-terminal

(pts/#) contains the terminal number. This number
indicates which pseudoterminal the user was using
when he executed the command.

Ay

/=4
EXAMPLE

Jobs and Processes 43

TIME This indicates the execution time of the process. Note:
This is not how long the process has been running, but
how much processor time it has used.

CMD The command being executed is the final field.

Starting a Process

Starting a process is as easy as executing a command. A simple command

that can be captured in the process list (as an example) is the man com-
mand. The man command requests a display of the manual page for some

command. Therefore, the following example uses the man command to dis-

play the manual pages for the kill command (in Linux):
$ man kill

KILL(1) Linux Programmer's Manual KILL(1)

NAME
kill - terminate a process

SYNOPSIS
kill [-s signal | -p] [-a] pid ...
kill -1 [signal]

DESCRIPTION

kill sends the specified signal to the specified process.
If no signal is specified, the TERM signal is sent. The
TERM signal will kill processes which do not catch this
signal. For other processes, it may be necessary to use
the KILL (9) signal, since this signal cannot be caught.

Most modern shells have a built-in kill function.

OPTIONS
pid ...

Specify the list of processes that kill should sig-

nal. Each pid can be one of four things. A pro-

cess name in which case processes called that will
be signaled. n where n is larger than 0. The pro-

cess with pid n will be signaled. -1 in which case

all processes from MAX_INT to 2 will be signaled,

as allowed by the issuing user. -n where n is

larger than 1, in which case processes in process

group n are signaled. IFF a negative argument is

a4

Chapter 2: Process Control

Ay

[=1

EXAMPLE

given, the signal must be specified first; otherwise,
it will be taken as the signal to send.

-S Specify the signal to send. The signal may be
given as a signal name or number.

-p Specify that kill should only print the process id
(pid) of the named process, and should not send it
a signal.

-1 Print a list of signal names. These are found in
/fusr/include/linux/signal.h

SEE ALSO
bash(1), tecsh(1), kill(2), sigvec(2)

AUTHOR

Taken from BSD 4.4. The ability to translate process
names to process ids was added by Salvatore Valente <sva-
lente@mit.edu>.

Linux Utilities 14 October 1994

The man command has to retrieve the appropriate manual pages holding the
information describing a particular command. Usually, the man pages are
compressed in some way. The result is that the process running the man
command must create a subprocess running an uncompress program of
some kind (gunzip in this case) to prepare the data for display. The last
thing the man command has to do is actually display the manual page infor-
mation.

Most implementations present the output of the unzip to the UNIX more
command. My Linux system uses the less command to do the display work.
(The less command is a newer, more streamlined version of more.) If the
output display is longer than one screen’s worth, the less command waits
until the user requests the next page.

The behavior of the 1less command enables you to get the following example
of some data describing the processes involved with executing a man com-
mand:

uID PID PPID STIME TTY TIME CMD

shell 27375 27329 10:23 pts/4 00:00:00 man kill

shell 27376 27375 10:23 pts/4 00:00:00 sh -c /bin/gunzip -c /var/catman
shell 27378 27376 10:23 pts/4 00:00:00 /usr/bin/less -is

Jobs and Processes 45

In reality, three processes were spawned. The first is the command that
was run, man kill. This command is the first one in the previous list. The
second process that was run was a child process of the first command,

sh -c /bin/gunzip -c /var/catman. Notice that the parent process ID of
this second process is the process ID of the first process. Finally, the third
process was spawned from the second—again, with the parent process ID
of the third command being the process ID of the second command. Also
notice that the command appeared to take no time. It actually did, but it
was such a small amount of process time that it rounds down, becoming
zZero.

When this command is run from a terminal, the result of the command is
displayed on the terminal. This means that the terminal is busy until the
command finishes. For an example such as looking at a man page, this is
very reasonable and expected. When the command finishes executing, the
system will, of course, remove the processes from the process list.

Stopping a Process

Suppose a running process is tying up your terminal. (And suppose you
aren’t working on a Windows-based workstation on which you could just
bring up another terminal window.) What are the options for getting the
running process to stop tying up your terminal?

If the goal is to make the process cease and desist, you could kill the
process (assuming you are the owner or root). More realistically, you want
to get the process to run in the background. Running in the background
means that the process is running without tying up a terminal. If the back-
ground job needs input from a terminal, it sends a message to the terminal
and waits until it is brought back to the foreground and given its input.

Getting a process that is currently running in the foreground to be running
in the background requires two steps. The first step is to stop the process.
Note that you are stopping it, not killing it. You can stop a foreground
process by pressing Ctrl+Z. This control sequence puts the current process
in the background and stops it. In effect, you have suspended the execution
of the process. It still exists, but is not eligible to use the processor until it
is “unsuspended.”

A process that has been suspended is still a “live” process in that it still
exists within memory, has its own environment, and is listed on the process
list. A process that has been killed—the method used will determine the
actual process involved—is not a “live” process. It does not exist in memory,
it no longer has its own environment, and it is not included in the process
list. More on killing a process is discussed later in this chapter.

46

Chapter 2: Process Control

Ay

[=1

EXAMPLE

Suspending a process means putting it on hold. It is allowed no more pro-
cessing time and is in a wait state.

In the following example, a man page is displayed and then the Ctrl+Z key
combination is pressed:

$ man man # Man page for the man command
man (1) man(1)

NAME
man - format and display the online manual pages
manpath - determine user's search path for man pages

SYNOPSIS
man [-acdfFhkKtwW] [-m system] [-p string] [-C con-
fig_file] [-M path] [-P pager] [-S section_list] [section]
name ...

DESCRIPTION
man formats and displays the online manual pages. This
version knows about the MANPATH and (MAN)PAGER environment
variables, so you can have your own set(s) of personal man
pages and choose whatever program you like to display the
formatted pages. If a section is specified, man only looks
in that section of the manual. You may also specify the
order to search the sections for entries and which prepro-
cessors to run on the source files via command-line
options or environment variables. If name contains a /
then it is first tried as a filename, so that you can do

: # Ctrl+Z was pressed here

[1]+ Stopped man man

$

Notice that a couple of things happened. First, the system informed the
user that the process had stopped:

[1]+ Stopped man man

Second, the user was returned to the prompt. (On some systems, you must
press the Enter key after the Ctrl+Z combination to get the prompt to
appear.) Looking at the process list confirms that the process is still
running:

$ ps -ef |grep man

david 8894 8870 23:18 pts/4 00:00:00 man man

david 8895 8894 23:18 pts/4 00:00:00 sh -c /bin/gunzip -c /var/catman
david 8896 8895 23:18 pts/4 00:00:00 /bin/gunzip -c /var/catman/cat1/
david 8926 8870 23:20 pts/4 00:00:00 grep man

Ay

/=4
EXAMPLE

Jobs and Processes 47

By the way, the |grep man part of the command does two things. The first
part is the pipe symbol (|). This tells the system to take the output of the
command ps -ef and pass it to whatever follows the pipe instead of send-
ing the output to standard output (the screen). The second part, grep, is a
way of searching for specific text. Whatever follows the grep command is
what is being sought. So, in the previous example, the grep command says
to return any line that contains the text “man”.

Hopefully, you saw something else that intrigued you when the system sus-
pended the process. Here is another look at the output when the system
informed the user that the process had stopped:

[1]+ Stopped man man

Four pieces of information are here. In reverse order are the command
(man man), what the system is doing to the command (Stopped), and then
two other pieces of information—{[1]+.

The [1] is the job number. A job is a command or sequence of commands
(like a pipeline) presented to the shell on one line. The + after the job num-
ber indicates that this is the most recent job that was placed in the back-
ground.

The command jobs will list out all jobs currently in the background or
stopped for the current user. In the following example, two more commands
are started and then put in the background with the Ctrl+Z sequence:

$ jobs
[3] + Stopped more .Xdefaults
[2] - Done 1s -la /usr |
Stopped more
[1] Stopped man man

Note that now three jobs are displayed, and that the job with the + next to
it has changed. As mentioned earlier, the + indicates the job most recently
placed in the background. The job with the - next to it is the job second
most recently placed in the background. Maybe you’re thinking that the job
numbers would suffice to define the order, so who needs the + and -?
Consider that a job can be moved from background to foreground many
times during its execution. This means that the + can move from job to job
based on recent activities.

The shell keeps track of the most current and previously most current jobs.
The most current job is indicated by the + sign. (Some operating systems
use the percent [%] sign.) The previously most current job is indicated by
the - sign.

48

Chapter 2: Process Control

Ay

/=4

EXAMPLE

The job can fall into one of three status categories: running, stopped, and
done. The Done and stopped status categories could have a code after them
indicating how the process was stopped or indicating the exit status of the
done (finished) process.

Each of the processes listed previously is in a stopped state. You will recall
that this means they are not receiving any processing time and are not
doing anything. These processes can be started again either in the back-
ground or in the foreground. Each of these terms is explained in the follow-
ing sections.

Background

The bg command resumes a suspended process in the background. This
means the process will continue to run in the background until it either
finishes or requires access to the terminal. If it requires access to the
terminal, it stops on its own, and displays a message to the terminal.

The bg command, if executed without any parameters, assumes you mean
to take the most current job (+) and make it run in the background. The fol-
lowing example shows this:

$ bg # Operates on job number 3
[3] more .Xdefaults
$ jobs
jobs
[3] + Stopped (tty output) more .Xdefaults # Waiting for input
[2] - Done 1s -la /usr |
Stopped more
[1] Stopped man man

When the jobs command is run, you can see that the job placed in the
background has stopped. The reason for this is indicated by (tty output)
and means that the job needs to access the terminal before it can proceed.

Jobs that are known to require the terminal—such as the ones we have
been using—are poor candidates for background execution, but it provides
some insights into the world of job control.

NOTE

If you attempt to exit from a shell that has jobs either running in the background or in a
stopped state, the shell reminds you of these processes and will not let you exit with-
out informing you of your stopped jobs:

$ exit

You have stopped jobs

A second exit command must be given to allow the user to exit the shell. The shell
then kills (discussed following) the jobs and then kills the shell.

Jobs and Processes 49

More jobs than just the most current one can be resumed in the back-
ground. As implied earlier, the bg command can have parameters. These
parameters fall into one of two categories. Either a plus (+) or minus (-)
symbol can be used to indicate the most current or previously most current
process, or %job_number can be used, where job_number is the bracketed
number as shown in bold here:

$ jobs
[3] + Stopped more .Xdefaults
[2] - Done 1s -la /usr |
Stopped more
[1] Stopped man man

Therefore, an example of getting a different background command to start
executing in the background would be as shown here:
$ bg %1
[1] man man

You might have guessed that the process man man was restarted. However,
it immediately stopped because that particular process requires access to
the terminal to continue, as shown in the following output:

$ jobs
jobs
[1] + Stopped (tty output) man man
[3] - Stopped more .Xdefaults
[2] Done 1s -la /usr |
Stopped more

Now that you have a process that needs to run with repetitive interaction
from the terminal, the question becomes, “How can this be done?” The fg
command can be used to take care of this.

Foreground

When a command is executed from the command line, it is automatically
run in the foreground. This means that it has access to (and control of) the
terminal, and the user must wait for the command to finish executing
before the shell can be used for other purposes. The fg command can be
used similarly to the bg command to bring a stopped command or a com-
mand currently running in the background into the foreground. This is the
situation we were left with in the background discussion.

In the previous section, a process had stopped because it needed access to
the terminal. The jobs listing is repeated here for easy reference:

50

Chapter 2: Process Control

$ jobs

jobs

[1] + Stopped (tty output) man man

[3] - Stopped more .Xdefaults
[2] Done 1s -la /usr |

Stopped more

Originally, when job number one (man man) was run, it was suspended after
showing the first page of the man page for the command man. Remember
that suspending a process puts it in the background and stops its execution.
Also note the man command uses the more command (or a more-like com-
mand) to display text on the terminal in a controlled fashion (pressing the
spacebar shows the next page, Enter shows the next line, the slash allows
searching, B brings you back a page, F brings you forward a page, G takes
you to the end of the file, 1G takes you back to the beginning of the file,
and ? gets a help display). When you bring the process back into the fore-
ground, it picks up where it left off displaying the next page of text.

The following example brings job number one to the foreground:
$ fg %1

When the spacebar is pressed, the more command associated with the man
command displays another page of text from the man pages describing the
man command. After the command has finished, it is removed from the
process list and from the job list. The new jobs listing shows this:

$ jobs

[3] + Stopped more .Xdefaults

[2] - Done 1s -la /usr |

Notice that the previously most current job is now the most current job and
a new previously most current job is assigned.

Just like the bg command, the fg command can be used to start up any of
the stopped jobs in the jobs list. Additionally, it brings the job to the fore-
ground, which provides convenient terminal interaction. The fg command
uses the same parameters as the bg command. Either the plus (+) or minus
(-) symbol is used, or %job_number is used to indicate which job to continue
execution in the foreground, where job number is the bracketed number
from the jobs command output.

A\l
EXAMPLE

Jobs and Processes 51

NOTE

A third way to move processes to either the background or the foreground has not been
discussed. A prefix can be used with the percent sign (sprefix), where the prefix is
enough of the command to ensure uniqueness within the job list. For example, instead
of bringing the command man man to the foreground with the job number, it would have
been just as correct to use %prefix, as shown in the following example:

$ fg %ma

[1] man man

Sometimes, the user wants to have a command run in the background
when the command is issued. As mentioned before, the default is to have
the process run in the foreground. In order to run a command in the back-
ground, you must place an ampersand (&) at the end of the command, as
shown in the following example:

$ sleep 10000 &
[1] 13947

The shell responds by placing the sleep command in the background. Note
that this technique puts a job in the background, but does not stop it. The
shell returns the PID of the process as well as the job number of the
process:

$ jobs

[2] + Stopped more .Xdefaults

[1] - Running sleep 10000 # Running, not stopped

If another command is also sent to the background then that new process’s
PID and job number are shown:

$ sleep 99999 &

[3] 13959

$

A quick peek at the jobs listing ensures that everything is running
smoothly:

$ jobs

[2] + Stopped more .Xdefaults
[3] - Running sleep 99999

[1] Running sleep 10000

The ampersand is very useful in that it allows processes that do not require
access to the display to run, and at the same time allows the user to con-
tinue using the terminal.

52

Chapter 2: Process Control

Ay

/=4

EXAMPLE

I recently watched the movie The Bachelor. In the movie, one of the sup-
porting cast playing the character of Margo is driving a limousine. The
light changes, and the car in front of them sits there. Margo yells at the
driver, “What, not your shade of green?!?” Apparently, in New York there
are various shades of signals. The same (sort of) holds true for UNIX/Linux.
There are different kinds of signals, but, unlike green traffic lights, the dif-
ferences do matter.

A signal can occur any time during the execution of a command or script.
A signal is an interrupt sent to the command or script that indicates
something has happened that requires attention.

Every UNIX/Linux variant has a slightly different set of signals, but the
capability they present is common. The signals that are most commonly
used are shown in Table 2.1.

Table 2.1: Signals

Name Value Description

SIGHUP 1 Hang up detected on controlling terminal or death of
controlling process

SIGINT 2 Interrupt from the keyboard (Ctrl+C)

SIGQUIT 3 Quit signal from the keyboard (Ctrl+\)

SIGKIL 9 Kill signal

SIGTERM 15 Termination signal

Depending on your system, several ways exist to see all your system’s par-
ticular signals. For the most part, the kill -1 command lists the signals
available for your system. Note that the command is kill dash ell, not
kill dash one. The letter 1 stands for list in this case. The following are
the signals for Linux:

$ kill -1

1 HUP Hangup 33 33 Signal 33
2 INT Interrupt 34 34 Signal 34
3 QUIT Quit 35 35 Signal 35
4 ILL Illegal instruction 36 36 Signal 36
5 TRAP Trace trap 37 37 Signal 37
6 ABRT Abort 38 38 Signal 38
7 BUS Bus error 39 39 Signal 39
8 FPE Floating point exception 40 40 Signal 40
9 KILL Killed 41 41 Signal 41
10 USR1 User defined signal 1 42 42 Signal 42
11 SEGV Memory fault 43 43 Signal 43
12 USR2 User defined signal 2 44 44 Signal 44

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

Signals
PIPE Broken pipe 45 45 Signal 45
ALRM Alarm clock 46 46 Signal 46
TERM Terminated 47 47 Signal 47
STKFLT Stack fault 48 48 Signal 48
CHLD Child exited 49 49 Signal 49
CONT Continued 50 50 Signal 50
STOP Stopped (signal) 51 51 Signal 51
TSTP Stopped 52 52 Signal 52
TTIN Stopped (tty input) 53 53 Signal 53
TTOU Stopped (tty output) 54 54 Signal 54
URG Urgent I/0 condition 55 55 Signal 55
XCPU CPU time limit exceeded 56 56 Signal 56
XFSZ File size limit exceeded 57 57 Signal 57
VTALRM Virtual timer expired 58 58 Signal 58
PROF Profiling timer expired 59 59 Signal 59
WINCH Window size change 60 60 Signal 60
I0 I/0 possible 61 61 Signal 61
PWR Power-fail/Restart 62 62 Signal 62
UNUSED Unused 63 63 Signal 63

32 Signal 32

53

According to the table, only the first 30 signals are defined. Many vendors

also provide a man page for viewing this information. In Linux, the com-

mand is man 7 signal; in HP-UX, the command is man 5 signal. The sug-
gestion would be that you read the man page associated with your version

of UNIX/Linux to see the particulars. For example, some of these signals
have default actions—such as stopping a program’s execution—whereas

others have the default of being ignored.

NOTE

The number between man and the command indicates the section number. Therefore,
in HP-UX it is explained in section 5 of the man pages, and in Linux it is explained in
section 7. Read the man pages on man to find out more on this.

Generally, UNIX man page sections are as follows:
1—User commands
2—System calls
3—Library routines
4—File formats
5—Miscellaneous
6—Games (usually empty)
7—Special files, drivers, networking,

8—Administrator commands

54 Chapter 2: Process Control

You can usually get a quick summary of a man page section by typing man 7 intro:

$ man 8 intro
Reformatting page. Please wait... completed

intro(8)
NAME

intro - Introduction to system maintenance and operation commands
DESCRIPTION

This section contains information related to system operation and
maintenance. In particular, commands (such as newfs) used to create new
file (...)

You can generate a one-line description of each man page in a particular section by
typing man -k " (8" or apropos "(8":

$ man -k "(8"

ac (8) - Outputs connect-session records

acct, chargefee, ckpacct, dodisk, lastlogin, monacct, nulladm, prctmp,
prdaily,

prtacct, remove, shutacct, startup, turnacct (8) - Provide accounting
commands for shell scripts

acctcms (8) - Produces command usage summaries from
accounting

records

acctcom (8) - Displays selected process accounting record
summaries

acctcon1, acctcon2 (8) - Display connect-time accounting summaries
acctdisk, acctdusg (8) - Perform disk-usage accounting

acctmerg (8) - Merges total-accounting files into an
intermediary

file or a daily accounting file

acctprc1, acctprc2, accton (8) - Perform process-accounting procedures
addgroup (8) - Adds a new group interactively

adduser (8) - Adds a new user interactively

addvol (8) - Adds a volume to an existing file domain

(v.2)

Finally, these signals can be seen in the signal.h file, which is typically
located in /usr/include/sys/signal.h, but can also be in /usr/include/asm/
signal.h. The following command finds the file for you:

$ find /usr/include -name signal.h -print

An understanding of C is helpful in understanding this file.

Ay
EXAMPLE

Signals 55

Control Key Signals

Control key signals are a fancy way of referring to a key sequence in which
the Ctrl key is held down and another key is pressed. One such signal has
already been discussed, the Ctrl+Z signal. As you will recall, this signal
stops the foreground process and puts it in the background. Some programs
use control key signals to perform tasks.

One program that is not discussed in this book is emacs. There is a huge
discussion, with people very devout on both sides, as to which is a better
editor—vi or emacs. Given that there is an appendix at the back of this
book on vi, you probably have a good idea of which editor the author
prefers. The vi editor is the more commonly available editor and is there-
fore recommended here.

When you see something that begins with the letters Ctrl followed by a
plus sign and then another letter, it means you hold down the Ctrl key and
then press the other character. For example, when you see Ctrl+C, it means
you hold down the Ctrl key, press the C key once, and then let up on the
Ctrl key.

The following is not an exhaustive list of the control key signals available
on your system. They are, however, many of the default key signals avail-
able on almost all systems:

¢ Ctrl+\—The Ctrl+\ key signal is the quit signal. It is basically a
stronger signal than the Ctrl+C (interrupt) signal. Stronger means
that it stops some programs that ignore the interrupt signal and pro-
duces a core file also. Core files can be used by programmers for
debugging purposes.

¢ Ctrl+C—Ctrl+C is the default interrupt signal. The user wanting to
interrupt a process would use this key sequence. In the following
example, a simple but long running 1s command is set up. The output
of this command is being redirected into a special file (/dev/null) that
accepts all data sent to it and ignores it. Shortly after its execution,
Ctrl+C is pressed:
$ 1s -1R / > /dev/null

(ctrl+c)

$ jobs
$

Following the Ctrl+C being pressed, the list of jobs is shown to empha-
size that the 1s command was not suspended, but was actually inter-
rupted and the process was removed from execution and from the
process list with the Ctrl+C signal.

56

Chapter 2: Process Control

v

[=4

EXAMPLE

Ctrl+D—This key sequence is the default end-of-file interrupt. See
the at command near the end of this chapter for an example of its use.

Ctrl+H—The default key sequence to erase a character is to use the
Ctrl+H key sequence. On many systems, the default is to bind the
Backspace key to perform a Ctrl+H signal. Sometimes, however, the
Backspace key does not work, and either the Ctrl+H key sequence or
the Ctrl+Backspace key sequence must be used.

Ctrl+Q—This is the signal that tells the shell to restart output to
your terminal that had been previously stopped with the Ctrl+S sig-
nal. It is important to note that whatever is typed at the keyboard still
goes to the computer; it just does not echo to the display. See the
example after the Ctrl+S signal.

Ctrl+S—The Ctrl+S signal stops output from echoing to your termi-
nal. The Ctrl+Q key sequence is used to restart echoing to your termi-
nal. From the user’s perspective, the terminal is frozen. But, as
mentioned in the Ctrl+Q discussion, after the output has been
restarted, all the buffered output is sent to the screen.

In the following example, Ctrl+S is pressed; a command is then run
(1s -1a). After this, Ctrl+Q is pressed:

$ (Ctrl+s)

Ctrl+S has been pressed and the command entered. Now, Ctrl+Q is

pressed to turn on output (you will either have to take my word on
this, or try the experiment yourself):

$ 1s -la

total 96

drwx------ 6 david shell 4096 Jun 8 22:29 .
drwxr-xr-x 23 root root 4096 May 25 18:09 ..
SPW-r--r-- 1 david shell 1422 Mar 27 14:26 .Xdefaults
SrW-r--r-- 1 david shell 695 Jun 8 22:29 .profile
SPW-r--r-- 1 david shell 3394 Mar 27 14:26 .screenrc
drwxr-xr-x 5 david shell 4096 Mar 27 14:26 Desktop
SPW-rwW-r- - 1 david shell 836 May 22 17:14 man.set
SPW-rW-r- - 1 david shell 22840 May 23 00:01 ps.man
SPW-rW-r- - 1 david shell 126 May 22 17:44 test

Ctrl+Z—This is the control key sequence discussed earlier in the
chapter, and it is used to suspend a foreground operation. See the ear-
lier discussions of foreground and background for examples of using
this key sequence.

Signals 57

ps
So far, we have only looked at the jobs that a user has had suspended or
that are running in the background. In reality, many processes are usually
running that are owned by that user but do not show up on the jobs list. In
addition, any number of other jobs are running on the system, from other
users’ programs to daemons taking care of the system itself. Obviously, the
jobs command will not show these processes. These processes can be seen,
however, by using the process status command, ps.

The ps command by itself shows the processes running for the current user.
In the following example, the jobs command is run, followed by the ps com-
mand. In this example, neither of the commands use any parameters or

arguments:
Ay $ jobs
%}IJ [2] + Stopped more .Xdefaults
[1] - Stopped 1s -la /etc | more
$ ps
EXAMPLE PID TTY TIME CMD

7776 pts/1 00:00:00 ksh
12462 pts/1 00:00:00 1s
12463 pts/1 00:00:00 more
12475 pts/1 00:00:00 more
12565 pts/1 00:00:00 ps

Notice that the jobs command shows two stopped processes. These
processes have been given the process job numbers of 1 and 2.

The ps command shows that five processes are running. In this default
display of the output, four columns are shown, PID (process identifier,
TTY (terminal), TIME (CPU time used), CMD (command).

NOTE

Some UNIX variants support two implementations of the ps command. Be aware that
your default PATH might execute the Berkeley flavor of the ps command, or it might exe-
cute the System V flavor of the command. A difference in the columns of information
displayed and the command options supported for each type of ps command will exist.
Check your man pages for details.

Your UNIX might discern whether your ps command is BSD (Berkeley Software
Distribution) or System V by the way you present the options. For example, ps lax (no
dash before the options) would request a BSD interpretation, and ps -ef would
request a System V interpretation.

Fortunately, most UNIX commands do not suffer from this type of schizophrenia.

You might need more or different information than the actual process
status command shows. A number of columns can be retrieved using this

58 Chapter 2: Process Control

Ay

/=4
EXAMPLE

powerful command. I refer you to your man pages for more specifics, but I
list a few more here because of their importance later:

$ ps -f

UID PID PPID C STIME TTY TIME CMD

shell 7776 7775 0 Juni@ pts/i 00:00:00 -ksh

shell 12462 7776 0 16:04 pts/i1 00:00:00 1s -la /etc

shell 12463 7776 0 16:04 pts/1 00:00:00 more

shell 12475 7776 0 16:05 pts/1 00:00:00 more .Xdefaults

shell 12710 7776 0 17:04 pts/i 00:00:00 ps -f

The two that are important additions when using the full option (-f), are
PPID and STIME. The C column is obsolete and won’t be discussed. The fol-
lowing explains PPID and STIME:

PPID This is the parent process ID from which the current
process has been instantiated. In this example,
processes 12462, 12463, 12465, and 12710 are all child
processes of process ID 7775. Process ID 7775 is the
parent process of those processes, and in turn, is the
child process of 7775, which is not shown.

STIME STIME shows the time the process was started, if it was
started during the same day the process list was
shown. If the process has been running longer than the
current day, the day the process was started is shown.
In this example, the first process (-ksh) was started
sometime on June 10th, but the other processes were
started today at the time indicated. For example, the
ps -f process was started at 17:04 (5:04 p.m.).

The everything option (-e) can be used to see all the processes currently
running on the system. It is commonly used with the full option (-f) to give
a more complete picture of the processes running on the system. That com-
mand would look like this: ps -ef. On a minimal system, at least 60 or 70
processes would be running. A BSD ps command to see all the processes on
the system might be ps -laxw (the options are long listing, all processes,
even the extra ones not associated with a terminal, and wrap the lines if
they are too long for the display).

kill

Such a daunting word, kill. If you are not used to UNIX/Linux, you proba-
bly find this word a little aggressive. Just imagine you are applying it
toward Barney, the purple dinosaur, and a smile will unfold across your
face and the apprehension will vanish.

Signals 59

As a shell programmer, you will have many opportunities to use the kill
command. The kill command sends a signal to a running process and tells
it to do something. The signals are distinguished by their signal numbers.
A program or script can be prepared to handle, ignore, or take a default
action when interrupted by a signal.

The kill command uses the following syntax:
/fusr/bin/kill -s signal pid

fusr/bin/kill [-signal#] pid

fusr/bin/kill -1 exit_status

The part inside the square brackets is optional. The difference between the
first two listed is the signal part. A signal can be identified either by its
number or by its symbolic name. If the symbolic name is used, the -s
signal variant is used. If the signal number is used, the -# variant is used,
in which the pound sign (#) is replaced by the appropriate signal number.

These are the same signals discussed earlier in the chapter, and you can
refer to that earlier discussion for more information. The signal table is
repeated in Table 2.2 for ease of viewing.

Table 2.2: Signals (again)

Name Value Description

SIGHUP 1 Hang up detected on controlling terminal or death of con-
trolling process

SIGINT 2 Interrupt from the keyboard

SIGQUIT 3 Quit Signal from the keyboard

SIGKIL 9 Kill Signal

SIGTERM 15 Termination Signal

Table 2.2 shows that you can send a number of signals to a process. The
default signal used if no explicit signal is given is 15, SIGTERM. Therefore, if
a process were running that you owned, which you wanted to terminate,
the kill command is for you. Of those listed, the two most commonly used
are 15 and 9.

The first signal, 15, as stated earlier, is the default signal. This tells the
program to stop running. If the process is in the middle of a write or read,
the kill command allows it to finish its work first. This is the polite way of
killing the process. This is also the preferred method to use because it
allows the program to clean up after itself.

The second signal, 9, is the mean and nasty killer. It is a signal that can’t
be handled. It does not allow any signal handlers or termination handlers
built into the script or program to execute. On many occasions the -9 option
is the only way to go. Signal number nine is one of the few signals a script

60

Chapter 2: Process Control

b

v

[=4

EXAMPLE

writer or programmer does not have the ability to handle. Only one result
is possible when number nine is received—process termination.

With any kill command, you can identify the target process using either
the PID or job number. You must, however, precede the job number with a
percent symbol to distinguish it from a PID number. The first example
shows taking a command that is running and stopping it by killing it using
its process ID. First, you look to see which jobs and processes are running:

$ jobs
[2] + Stopped more .Xdefaults
[1] - Stopped 1s -la /etc | more
$ ps
PID TTY TIME CMD
7776 pts/1 00:00:00 ksh
12462 pts/1 00:00:00 1s
12463 pts/1 00:00:00 more
12475 pts/1 00:00:00 more
13532 pts/1 00:00:00 ps

After you know which process you are going to kill, carefully enter the kill
command, making sure you got the process ID (PID) correct:

$ kill 12462

$ ps
PID TTY TIME CMD
7776 pts/1 00:00:00 ksh
12462 pts/1 00:00:00 1s
12463 pts/1 00:00:00 more
12475 pts/1 00:00:00 more
13533 pts/1 00:00:00 ps

Next, glance at the process status listing again, and you see that the
process is still running. You want it dead, and you want it dead now, so
reissue the kill command—Dbut this time, add the -9:

$ kill -9 12462

$ ps
PID TTY TIME CMD
7776 pts/1 00:00:00 ksh
12463 pts/1 00:00:00 more
12475 pts/1 00:00:00 more
13534 pts/1 00:00:00 ps
[1] + Killed 1s -la /etc |
Stopped more

Signals 61

The process status shows it is dead, and job control indicates it is dead as
well. A follow-up of the jobs command further proves this:

$ jobs

[1] + Killed 1s -la /etc |
Stopped more

[2] - Stopped more .Xdefaults

When I was in college, I watched a movie called The Princess Bride. In that
movie, Westley is dead. His body is taken to Miracle Max to see whether he
can be brought back to life. Miracle Max declares that Westley isn’t dead,
but is mostly dead.

Like Westley, the job is also mostly dead. The job listing cannot remove it
from the list until the process associated with it is also killed. And, when
the process control listing is examined, it is not obvious which process is
the correct more to Kkill:
$ ps
PID TTY TIME CMD
7776 pts/1 00:00:00 ksh
12463 pts/1 00:00:00 more
12475 pts/1 00:00:00 more
13537 pts/1 00:00:00 ps

Fortunately, the -1 option with the jobs command can be used to find out
the process IDs of the remaining jobs:

$ jobs -1

[1] + 12462 Killed 1s -la /etc |
12463 Stopped more

[2] - 12475 Stopped more .Xdefaults

The process ID 12463 is now identified as the one associated with the previ-
ously killed command. If the user were killing it with the PID number as
was done before, the user would enter the following command:

$ kill -9 12463

Because the user can also kill it with the job ID, this route is shown for
completeness:

$ kill %1
$ jobs
[1] + Killed 1s -la /etc |
Terminated more
[2] - Stopped more .Xdefaults

$ jobs
[2] + Stopped more .Xdefaults

62

Chapter 2: Process Control

The jobs command was run twice quickly after the kill command. By
doing so, the user was able to take a glimpse at what was happening. It
seems that the more command was first terminated. Then, after that
process was released, the killed process could be released.

The third way of using the kill command is shown here:
fusr/bin/kill -1 exit_status

The kill -1 was used by itself earlier in the chapter to get the exit status
list available on the system. If a status number is provided, kill -1
returns the text name assigned to that particular value. In the following
example, the text name “HUP” is displayed as assigned to the value 1 (one):

$ kill -1 1 # Kill dash ell one
HUP

You might recall from the discussion on background processing that when
processes are running in the background, and the shell is shut down, the
shell informs you that processes are running and that you must exit a sec-
ond time to kill the processes and exit the shell. This is the default
response of the shell when it receives the HUP signal (HUP stands for
hangup). If a process is a child of the shell and that shell goes away, so do
its children:

$ ps -ef |grep pts

root 7775 7774 0 Jun10 pts/1 00:00:00 [login]

david 7776 7775 0 Juni@ pts/i 00:00:00 -ksh

david 12475 7776 0 16:05 pts/1 00:00:00 [more]

david 13642 7776 0 21:26 pts/1 00:00:00 ps -ef

david 13643 7776 0 21:26 pts/1 00:00:00 -ksh

In the previous listing, the logon process is the parent process of ksh. Also,
ksh is the parent of the other commands.

Now, about this time you are probably thinking, “Does this mean that if I
start a process, I cannot log out until that process finishes? What if I just
want the process to run all night, or at least until it finishes?”

Well, I am glad you asked. This shows you are paying attention.
Fortunately, there is a way of having a process run where it ignores the
hang up. This is accomplished through the nohup command and is explained
next.

nohup Explained

The command nohup is used to ensure that a process will run even if it loses
contact with the terminal in which it is attached.

v

[=4
EXAMPLE

nohup Explained 63

The syntax is simple:

/usr/bin/nohup command

Showing how the nohup command works requires the use of two terminals.
In the first terminal, a simple sleep command is executed with nohup:

$ nohup sleep 10000
nohup: appending output to “nohup.out'

You might recall that the problem with a process existing in the back-
ground is that it gets into trouble when it needs to access the display. To
get around this, nohup appends all output to a file in the current directory
called nohup.out. This is the meaning of the line following the nohup com-
mand in the previous example.

The sleep command is a way of having a pause. The number following the
sleep command is how long the process should sleep in seconds. Therefore,
you are telling the shell to run the sleep command for 10,000 seconds (just
over 27 hours), which provides plenty of time to kill the shell and watch
what is happening from another shell.

First, you must ensure that the process is running:

$ ps -ef |grep sleep
david 13793 13774 0 22:02 pts/2 00:00:00 sleep 10000

After killing the parent shell of the command, existence of the sleep com-
mand is again checked. To find out what has happened with the command,
the ps -ef command is run with the output passed through the grep com-
mand searching for “137”. This is a simple way of seeing all the process
lines that have that number in them. This number was chosen because it is
the first three numbers of the PID for the process (13793) and also the first
three numbers of the PPID for the process (13774):

$ ps -ef |grep 137

david 13774 1 0 22:01 7 00:00:00 -ksh

david 13793 13774 0 22:02 ? 00:00:00 sleep 10000

david 13811 7776 0 22:05 pts/1 00:00:00 grep 137

Killing the process requires nothing special; however, a HUP or signal 1 will
not work. Therefore, a simple kill (which sends signal 15) will work to kill
the process:

$ kill 13793

$ ps -ef |grep 137

david 13903 7776 0 22:32 pts/1 00:00:00 grep 137

64

Chapter 2: Process Control

Because the command had no output, the file nohup.out is empty, as shown
in the following example:

$ 1s -la nohup.out
PWe - 1 david shell 0 Jun 11 22:02 nohup.out

Just a reminder, the nohup.out file is placed in the current directory where
the command is executed. If the user does not have permission to write to
that directory, nohup notices this and informs the user that it is writing the
output to the user’s home directory. This is shown here:

$ cd /opt

$ nohup sleep 10000

fusr/bin/nohup: nohup.out: Permission denied

nohup: appending output to " /home/shell/nohup.out’

Because the process runs in the foreground, the user does not have access
to the shell. This process is a fine candidate for the ampersand to place it in
the background.

Scheduling Jobs

Two utilities are available to manage job scheduling. Which utility the user
chooses should depend on what he is trying to accomplish. The first utility
is cron. The cron utility is used to schedule events that will occur repeat-
edly at a fixed time. The second utility is at. The at utility is used to sched-
ule events that will occur only once. I explain each of these utilities in the
next sections.

cron

Commands, including scripts, can be set to run on a schedule. This sched-
ule allows fine-tuning for any combination of minutes, hours, day of the
month, month of the year, day of the week. The cron file contains crontab
entries. A crontab entry is one scheduled event. The following is the syntax
of a crontab entry for a Linux system:

12 3 4 5 user command

For a UNIX system it is
123 45 command
Each number corresponds to the time entries previously mentioned (min-

utes, hours, day of month, month, day of week). The following table
describes each of those times and gives the valid entries for each.

Ay

/=4
EXAMPLE

Scheduling Jobs 65

Value Time Valid Entries

1 Minute (0-59)

2 Hour (0—23)

3 Day of the month (1-31)

4 Month of the year (1-12)

5 Day of the week (0—6, with @ = Sunday)

Several valid patterns are legal for each time entry. The following table
shows these values and gives a description of what they mean.

Value Description

* Any valid entry for that time entry

Comma-separated list Indicates which times are valid for that time
increment

Two numbers separated by a dash (-) Indicates a range of times inclusive of the two
numbers

To better understand the crontab entries, think of the minutes and hours
falling into one section, the days of the month and the months of the year
falling into a second section, and the days of the week falling into a third
section. Within each section, the numbers are inclusive of each other, and
each section is additive. Therefore, a minute of 15 and an hour of 15 means
to run the command at 15 minutes past the 15th hour (3:15 p.m.). A day of
the month of 15,30 and a month of the year of * would mean to run the
command on the 15th and 30th of the month, and on any month of the year.
A day of the week of 1 would mean run this on Mondays. Because an
example is worth a thousand misunderstood words, look at the following
example:

0,15,30,45 15 1,16 * 1 /run/your/script/here
In this example, the script /run/your/script/here would run on the 1st and

the 16th of every month. It would also run every Monday, and it would run
at 3:00 p.m., 3:15 p.m., 3:30 p.m., and 3:45 p.m.

Because flexibility promotes ambiguity, the following table shows some
examples of crontab entries and a brief explanation of what they mean.

Time Command Explanation
Q1 * * * * run-parts /etc/ Run this command if it is 1 minute
cron.hourly past the hour, and it is any hour, and it

is any day of the month, and it is any
month of the year, and it is any day of

the week.
02 4 * * * run-parts /etc/ Run this command if it is 2 minutes
cron.daily past the hour, and it is 4 hours past

midnight, and it is any day of the month,
and it is any month of the year, and it is
any day of the week.

66 Chapter 2: Process Control

Time Command Explanation
22 4 * * run-parts /etc/ Run this command if it is 22 minutes
cron.weekly past the hour, and it is 4 hours past

midnight, and it is any day of the month,
and it is any month of the year, and it is
the O day (Sunday) of the week.

42 4 1 * * run-parts /etc/ Run this command if it is the 42nd

cron.monthly minute of the hour, and it is the 4th
hour past midnight, and it is the 1st day
of the month, and it is any month of the
year, and it is any day of the week.

*[1Q * *x x * /sbin/rmmod -as Run this command if the minutes past
the hour can be evenly divided by 10,
and it is any hour of the day, and it is
any day of the month, and it is any
month of the year, and it is any day of

the week.
0,10,20,30,40, /sbin/rmmod -as This is the same as the previous
50 * * * * example,but the minutes are explicitly
given instead of using the division.
15 3 * * 1-5 find $HOME -name Run this command if it is 15 minutes
nohup.out 2>/dev/ past the hour, and it is 3 hours past
null | xargs rm -f midnight, and it is any day of the month,

and it is any month of the year, and it is
Monday, Tuesday, Wednesday, Thursday,

or Friday.
0,12-15,27-30 * /do/something/to/ Run this command if it is O minutes,
21 12 * remind/me/of/my/ 12 to 15 minutes, and 27 to 30
wife's/birthday minutes past the hour, and it is any

hour, and it is the 21st day of the
month, and it is the 12th month of the
year, and it is any day of the week.

It is improper to edit the cron file directly. The proper way of adding a cron
entry to the crontab file is by using the -e option to the crontab command.
The -e option makes a copy of that user’s cron file (or creates a new one if
one does not exist), and brings it up in the default editor. When the user
exits out of the file, it replaces the original file with the edited one and noti-
fies the cron daemon (called cron or crond) that a new cron file is in place.

The cron daemon then re-reads the file. If the crontab file is edited directly,
the cron daemon does not get informed of this, and it then continues to read
the crontab file it has cached in memory. This means the changes would be

ignored.

Scheduling Jobs 67

at

Use of cron is excellent for tasks that need to be repetitive. But for tasks
that need to occur once, the way to go is to use the at utility.

The at utility reads commands from the keyboard and groups them
together to be executed at a later, specified time. An at job runs as a sepa-
rate invocation of the shell (with a separate process group); has no control-
ling terminal; and inherits the environment variables, umask, the current
working directory, and the system resource limits that are in place when
the at job is scheduled. Two ways of setting up an at job exist. Their syn-
taxes are shown here:

at [-c|-k|-s] [-m] [-f file] [-q queuename] -t time

at [-c|-k|-s] [-m] [-f file] [-q queuename] timespec...

The -c|-k|-s causes the process to run through a C shell, Korn shell, or
Bourne shell. These options are not available under most Linux systems.
The -m sends mail notification to the user that the job has completed.
Conversely, the -f file reads from the indicated file the list of what is to be
executed instead of reading from standard input.

The -q queuename indicates on which queue to schedule the job. The options
are lowercase letters, a—z (some UNIX variants also support uppercase let-
ters A-Z), with a couple of exceptions. The queuename of a is the default
queue for at jobs. The queuename of b, on the other hand, is used for batch
processing (this is started with the batch command and executed when the
system is not busy with other processing). The queuename of ¢ is used for
cron jobs and is not allowed to be used with the at job on most UNIX/Linux
systems. Any letter higher than c is valid, but as the queuename
approaches z, some UNIX systems increase the niceness under which the
queuename runs.

NOTE

A process can be nice by indicating a willingness to utilize the CPU less often than it
would if it were not being nice. This is accomplished with the nice command. The
higher the specified nice factor, the nicer you are being. The root user can be nasty with
the nice command by specifying a negative number. This makes a process utilize the
CPU more heavily than normal. The following is an example:

$ nice -n 19 sleep 200 & # runs sleep (or some other command) niced

[1] 68773
$
$ ps -0 nice,pid,comm,pri # shows nice factor, pid, command, priority
NI PID COMMAND PRI
Q0 68767 ksh 44
19 68773 sleep 63 # The higher the number, the less

=important you are

68

Chapter 2: Process Control

Ay

[=1

EXAMPLE

The only difference between the two is how you specify the time. Some dif-
ferences (particularly with options) from what I describe here depends on
your particular operating system, so be sure to read the man pages for at
for your version of UNIX/Linux. For the most part, though, the following
examples should work across the board:

$ at -m now + 1 min # Execute the sort command 1 min from now

at> sort < test > test.sorted

at> <e0T> # Ctrl+D

warning: commands will be executed using /bin/sh

job 1 at 2000-06-12 01:57

In this example, the file named test is sorted and the output of the com-
mand sent to a file called test.sorted. The <EOT> was not typed, but the
control key signal Ctrl+D was used, indicating the end of the commands to
be run. Notice that the -m option was used so the user would receive email
notification that the process ran. That email on a Linux system looks like
this:

$ mail

Mail version 8.1 6/6/93. Type ? for help.

"/var/spool/mail/shell": 1 message

> 1 shell@moose.gx.net Mon Jun 12 01:57 11/341 "Output from your job "

& 1

Message 1:

From shell Mon Jun 12 01:57:00 2000

Date: Mon, 12 Jun 2000 01:57:00 -0400

From: shell@moose.qgx.net

Subject: Output from your job 1

&

Had there been any output from the job, that information would have been
mailed to the user. This would include any standard output, such as echoes
or print statements, as well as any standard errors. The following example
is designed to produce an error. Notice that when the at job is invoked, no
validation takes place. All validation is done at the time of the execution of
the command (technically, validation is done to ensure the at job was set up
properly, but the commands the at job contains are not validated):

$ at -m now + 1 min

at> sort < not_a_real_file > not_a_real file.output

at> <EOT>

warning: commands will be executed using /bin/sh

job 2 at 2000-06-12 02:03

Ay
EXAMPLE

Scheduling Jobs 69

The output from the at job is listed next:
$ mail

Mail version 8.1 6/6/93. Type ? for help.
"/var/spool/mail/shell": 1 message

> 1 shell@moose.gx.net Mon Jun 12 02:03 13/389 "Output from your job "
&

Message 1:

From shell Mon Jun 12 02:03:48 2000

Date: Mon, 12 Jun 2000 02:03:48 -0400

From: shell@moose.qgx.net

Subject: Output from your job 2

sh: not_a_real_file: No such file or directory # Error message

&

It is important, as this example shows, to make sure the commands are
entered correctly. Also, you should make sure that either all files are reach-
able in the path of the user executing the at utility or the full pathname is
indicated; otherwise, you too will receive a not a real file error.

Relative times are not the only times that are allowed. Depending on your
system, you can list a day and time. For example, you could tell it to run at
5 p.m. on Friday with the following command:

$ at 5 pm FRIday

at> sort < test > test.input

at> <E0T>

warning: commands will be executed using /bin/sh

job 4 at 2000-06-16 17:00

at jobs can be listed with the -1 option, as shown with the following syntax:
at -1 [-q queuename] [at_job_id...]

If no queuename is used, the default is the a queue. For example, the fol-
lowing code performs a sorting routine 20 minutes from the time the user
executed the command. Again, the system sends the user an email indicat-
ing that the process finished:

$ at -m now + 20 min

at> sort < test > test.sorted.2

at> <EOT>

warning: commands will be executed using /bin/sh

job 3 at 2000-06-12 02:29

70

Chapter 2: Process Control

Next, the at utility is run with the -1 option to show all currently queued
jobs:

$ at -1

2000-06-12 02:29 a

Finally, at jobs can have their jobs removed with the -r option (on most
UNIX systems):

at -r at_job_id...

For the Linux people out there, the atrm command is used to remove a job:

atrm job

In either case, as long as you are the owner of the at job or superuser of the
system, you can delete the job before it has time to execute.

At this point, you should know how to run a command. The command can
be a system-supplied command, such as 1s, or it can be a shell script that
either you or someone else has supplied.

In addition, you now know how to find information about processes you
have running, as well as other processes running on the system. You have
learned how to suspend processes, move processes to the background, and
even kill processes.

This chapter also showed you how to schedule a process to run at a later
time either repetitively with the cron utility or on a one-time basis using
the at utility.

Now that the environment is a more comfortable place, you can start build-
ing your own scripts. Chapter 3, “Variables,” introduces the use of tempo-
rary variables used during the execution of a script.

Variables

When I was in first grade, my teacher gave us this problem:
_+3=5
As a budding mathematician, my job was to figure out what number went

in the blank space. When I was in ninth grade, my algebra teacher gave us
the following problem:

X+3=5

As a budding mathematician, my job was to figure out what number the X
represented.

Now that I am older and wiser, I have moved away from such nonsense.
Today, I know that it was wrong to use X because it has no meaning. Today,
I know that the problem should have been written something like this:

Number_Of _Oranges + 3 =5

As a budding programmer, I have learned that the use of descriptive vari-
ables is better than either a blank space or an X.

In all three examples—blank space, X, and Number_Of_Oranges—what is
really happening is that a variable is put in place of a value. We know,
because we have been doing this since first grade, that each of these vari-
ables has the value of 2.

This chapter talks about variables. It explores the various types of vari-
ables allowed in shell programming and shows how to set and unset the
variables. Along the way, common errors are pointed out.

This chapter teaches you the following:
e How to use variables in a script
e How to use the typeset command

e How to avoid common errors with variables

74

Chapter 3: Variables

Ay

[=1

EXAMPLE

* How to use arrays in a script

e How to customize variable attributes

Case Sensitivity

The basics of variables were discussed in Chapter 1, “The Environment.”
In review, a variable is simply a way of expressing a value with a name.
Hence, variables are called name-value pairs. When designing your own
variable, you should keep a number of things in mind. The first is case sen-
sitivity.

Case sensitivity means that the case—uppercase and lowercase—of each
letter in the varname is significant. Therefore, two variables can look alike,
but if one or more of the letters is of a different case in one of the variables
then they are two different variables.

For example, each of these is a different variable:
Apple APple APPle APPLe APPLE
aPple aPPle aPPLe aPPLE applE
apPle apPLe apPLE appLE ApPle
appLe appLE ApPLe ApPLE AppLE

Some standards in programming concerning uppercase and lowercase are
probably wise to follow. You might remember from Chapter 1 that environ-
ment variables are conventionally (but not necessarily) all uppercased. As
an example, here are two environment variables shown in Chapter 1. A
shell variable that is exported becomes an environment variable, whether it
is uppercase or not:

PS1='$

PATH=/usr/local/bin:/bin:/usr/bin:/usr/X11R6/bin:/usr/X11R6/bin

Other variables, such as the ones you use to program, should be all—or at
least mostly—lowercase. A simple rule when naming a variable is that its
name should be as descriptive as its value is important. Therefore, a tempo-
rary variable used to hold a value or as a counter could have a name as
simple as counter or even x. Another simple rule to remember is that the
program you code can be the program you have to change six months from
now—so do yourself a favor and name the variables wisely! Variable names
should document their purposes.

Valid Characters

Part of naming variables wisely is knowing which characters are valid
characters to be used in the varname. Valid characters for varnames are

Ay

/=4
EXAMPLE

Scalar 75

the letters of the alphabet (both upper- and lowercase), numbers, and the
underscore character. One caveat is that the varname cannot start with a
number. For example, consider the following varnames:

Peaches

2Peaches

PeachesAndCream

Peaches4

_2Peaches

The second is not a legal varname, but the rest are. Notice that the last
example begins with an underscore, which is valid. The second one is not
valid because it begins with a number.

Two types of variables exist in the Korn shell. The first is a string; the sec-
ond is a number. Of the numbers, two types are available: integers and
floating-point. Most Korn shell implementations support integer numbers
only. Korn shell 93, however, supports floating-point numbers. Integers are
whole numbers, such as 14 and -999. Floating-points are numbers that can
contain a fraction, such as 3.14159 or -99.54.

A scalar is your basic name-value pair that has been discussed in this book.
A scalar has a varname and a value. That value can be accessed and
assigned by the programmer, as is shown in the next two sections.

Accessing

To this point, the discussion has indicated that a variable has a value. The
question therefore becomes, How do you access the value of the variable?
Fortunately, the answer is simple. The dollar sign ($) preceding the variable
name is used to access the value of the variable.

As an example, look at the following work that was done at the command
line:

$ echo PS1

PS1

$ echo $PS1

$ # Displays the contents of PS1 which is the $

The command echo is used to show values. In the first line of the previous
code, PS1 is echoed. Sure enough, the shell returns PS1. When the dollar
sign is placed before the varname, $PS1, the shell returns the value associ-
ated with the variable PS1 (PS1 means prompt string number one).

76

Chapter 3: Variables

Ay
[x]

/=4

EXAMPLE

Assigning

Assigning a value to a varname can be accomplished by placing an equal
sign between the varname and the value. A space can’t exist either before
or after the equal sign. Although you might not have thought about it, you
have already seen the assigning of variables in action when you looked at
the .profile file in Chapter 1. Here are some examples from that file:

HISTSIZE=1000
HISTFILESIZE=1000

If a space is used in the value, the value must be placed within quotes, as
seen in the following examples:

KSH_VERSION='@(#)PD KSH v5.2.14 99/07/13.2'
PS1='$

More on quoting is discussed in Chapter 5, “Quoting.” In the following
example, three variables are defined as integers:

integer x=0

integer y=1000

integer Num=0

typeset

The typeset command is used to define variables. Many variables have
aliases that are actually typeset commands. For example, integer, from
the previous section, is an alias for typeset -i. The syntax for typeset is
typeset [+-AHlnprtux] [+-ELFRZi[n]] [name[=value]]

This command is used to set and unset attributes for variables, or to list
the varnames and attributes of all variables.

Table 3.1 lists many commonly used attributes and their meanings. Note
that not all of these are compatible with all versions of UNIX/Linux. Some
of these are specific to Korn Shell 93. Check the man pages for your distrib-
ution of UNIX/Linux for a complete listing.

Table 3.1: Typeset attributes

Attribute Meaning
Used to set attributes after setting value(s)
+ Used to unset attributes after setting values

Associative array

Exponential number; n specifies the significant digits
Floating-point number; n specifies the number of decimal places
(ksh 93)

Integer; n specifies the arithmetic base

Lowercase

Ay
EXAMPLE

Table 3.1: continued

Scalar

77

Attribute Meaning
-L Left justifies; n specifies field width
-LZ Left justifies and strips leading zeros; n specifies field width
-n Name reference
-p Displays variable names, attributes, and values of all variables
-R Right justifies; n specifies field width
-r Read-only
-RZ Right justifies; n specifies field width and fills with leading zeros
-u Uppercase
-X Export
z Zero-filled; n specifies field width; same as -Rz

Here are some examples using typeset. The first displays the names and

attributes of all variables:

$ typeset -p # Print typeset variables

readonly
readonly
readonly
readonly
readonly
readonly
readonly
readonly
readonly
readonly
readonly
readonly
readonly
readonly
readonly
readonly
readonly
readonly

HISTFILESIZE=1000
HISTSIZE=1000
HOME=/home/shell
HOSTCHAR=MOOSE
HOSTNAME=moose.net
IFS="

INPUTRC=/etc/inputrc
KDEDIR=/usr
KSH_VERSION='@(#)PD KSH v5.2.14 99/07/13.2'
LANG=en_US

LC_ALL=en_US

LINES=53

LINGUAS=en_US
LOGNAME=shell
MAIL=/var/spool/mail/shell
MAILCHECK=600

OPTIND=1

PATH=/usr/local/bin:/bin:/usr/bin:/usr/X11R6/bin:/home/shell:/home/

shell/bin:/usr/X11R6/bin

readonly
readonly
readonly
readonly
readonly
readonly
readonly
readonly
readonly

PPID=28568

PS1="'§ '

ps2='> '

PS3="#7 '

PS4="'+ '
PWD=/home/shell
QTDIR=/usr/lib/qt-2.0.1
RANDOM=5837
SECONDS=13191

78

Chapter 3: Variables

Ay

[=1

EXAMPLE

readonly SHELL=/bin/ksh
readonly TERM=vt100
readonly TMOUT=0

readonly USER=shell
readonly _=-p

readonly kdepath=/usr/bin

The next two examples show initializing and assigning values to two new
variables:

$ typeset Program=$0
$ typeset host='hostname'

The following example (note, this does not work in Linux or any ksh earlier
than 93 because they do not recognize the -F attribute) makes salary a
floating-point variable that prints two spaces after the decimal point:

$ typeset -F2 salary

Throughout this book, if an alias for a typeset is available, it usually is
used because it is easier to remember (and tends to be a little more cross-
platform friendly).

Four Common Errors

You should watch out for four common errors when assigning and accessing
variables. These errors do not necessarily produce syntax errors, which
makes them an even worse enemy.

The first common error is accessing the variable incorrectly. The following
example shows this error:

$ WIFE=Dana

$ echo $WIFE

Dana

$ SWIFE=Computer

ksh: Dana=Computer: not found

More than likely, the previous example is an attempt to set the varname
WIFE equal to Computer. However, with the dollar sign there, the shell
returns the value of WIFE and is left with Dana=Computer, which is not cor-
rect. If the value of WIFE were not previously set, a slightly different error
would occur, as shown in the next example:

$ $WIFE=Dana
ksh: =Dana: not found

A\ i
EXAMPLE

Ay
EXAMPLE

Scalar 79

The second common error is in not having the dollar sign. The following
example shows this error, which is the same error shown previously in the
chapter:

$ echo PS1
PS1

In this example, the user is trying to access the value associated with the
varname PS1. By not having the dollar sign, it returns the string PS1
instead of the value of PS1. This type of error is much more difficult to catch
because no error occurs from the computer’s perspective; it just did what
the programmer told it to do.

The third common error is assigning a variable that has been previously
defined. This is an error despite the fact that it works. This one, similar to
the previous one, falls into the category of the computer doing what you
said, and not what you meant. The following code shows an example of this:

$ cat assigning
#!/bin/ksh

x=4
y=10

while [$x -le $y]

do
echo $x
((x=x+1))
if [$x -eq $y |
then ((x=4))
fi

done

This code, although syntactically accurate, is an endless loop because reas-
signing x means that whenever x becomes equal to y, its value is reset to 4:
$ assigning

4

0 N O O s © 0N O O

80

Chapter 3: Variables

Ny

/=4

EXAMPLE

Ay

[=1

EXAMPLE

9
4
5
6
7
(

This continues ad infinitum or until Ctrl+C is pressed!)

Finally, the fourth common error that a programmer can make is assigning
a variable if that variable is not previously defined. A small modification to
the previous script accomplishes this. The modification has been bolded to
make it easier to find:

#!/bin/ksh

X=4
y=10

while [$x -le $y]

do
echo $x
((x=x+1))
if [$x -eq $y]
then ((x=z))
fi

done

The change is that when x equals y, x is set to z. Unfortunately, z has not
been previously defined. The question therefore is what happens when the
program is executed? The following code shows the result:

$ assigning

»~

N O O ON =2 © 0N O

Ay
EXAMPLE

Array 81

8
9
0
(This continues ad infintum or until Ctrl+C is pressed!)

The shell automatically sets the undefined z to have a value of zero. Notice
that the script will still run forever and that no error is ever produced.

A simple definition for an array is that it is a single variable (varname)
that can store one or more values. The Korn shell has two types of arrays:
indexed and associative.

In an indexed array, each element of the array is indexed with an arith-
metic expression. The index is valid as long as the value of the arithmetic
expression is at least zero. The upper value of the arithmetic expression is
dependent on the implementation, but in all versions of Linux and UNIX, it
is at least 4,095.

NOTE

On a sample Red Hat Linux 6.1 system, a simple program to increment an indexed
array had a memory fault after 13088. This means that 13,088 values were stored in
one array before a memory error caused the system to crash the program.

In an associative array, the subscript is an arbitrary string, such as
“Yankees,” “Red Sox,” or “Tigers.”

Declaring
Associative arrays must be declared with typeset -A:
$ typeset -Ai Alteams # values will be integers

$ Alteams["Yankees"]=92
$ Alteams["Red Sox"]=88

An indexed array does not have to be previously declared. If the program-
mer knows or wants to specify the maximum size of an indexed array, he
can use the typeset -u variable[n] command, where n is the upper bound
of the array and variable is the name of the array, as seen in the following
example:

typeset -u children[2]

There are two ways of assigning values to array elements, and there are
two ways of accessing arrays. These are explained next.

82

Chapter 3: Variables

Ay

/=4

EXAMPLE

Assigning—Two Ways

The first way of assigning a value to an array is similar to what would be
done with scalars. Just as a scalar is a variable name with a single value
associated with it, an individual array element is treated as a scalar. Using
an array name without an element number in square brackets is the equiv-
alent of referencing the zero element of the array. The syntax is
varname=value, as shown in the following example:

$ Children="Meshia"

This example looks identical to a scalar. It could also have been written like
this:
$ Children[@]="Meshia"

The arithmetic expression inside the square brackets indicates which array
element is being referenced. In most computer languages, including shell
programming, indexes begin with the zero value. Therefore, Children[2]
actually is a reference to the third indexed value of Children.

The second way of assigning a value to an array is to assign multiple ele-
ments at the same time. The syntax is set -A varname valuel value2 ...
valuen, as shown in the following example:

$ set -A Children Meshia Andy Ashley Tommy

NOTE
In other shells, such as bash, it is written slightly differently and looks like this:

Children=(Meshia Andy Ashley Tommy)

The following are a couple of items to note:

* The arithmetic expression used for the index must be a positive inte-
ger. This means that it cannot be negative, nor can it have a decimal
point.

* The term arithmetic expression means that the value does not have to
be a number, but can be a variable or even an equation, as long as the
result of the expression is a positive integer.

The following two examples show using a variable for the indexvalue when
assigning a value to an array:

$ Cmd[x]="hostname"
$ Cmd[x]="uname -a"

These two examples are part of the CHECKIT program used in Chapter 13,
“Pulling It All Together.”

A\l
EXAMPLE

Array 83

Accessing—Two Ways

Now that some values are assigned to the arrays, the next question
becomes how to access the values. Both indexed and associative arrays are
accessed the same way. Just as there are two ways of assigning values to
arrays, there are also two ways of accessing those values.

The first way of accessing the value of an array is with the following syn-
tax:

${varname[index or string]}

The following example uses the Children array assigned earlier and returns
one of its values:

$ echo ${Children[2]}
Ashley

The second way of accessing the value of an array is to access more than
one value at a time. Two characters can be placed in the index portion of
the command that allows this. These are shown here:

$ echo ${Children[*]}
Meshia Andy Ashley Tommy

$ echo ${Children[@]}
Meshia Andy Ashley Tommy

You are thinking, and rightfully so, that these two commands produce the
same output. The difference would have existed if one or more of the values
had contained spaces. To further explain this, we will set up a new array
for Children:

$ Children="Meshia Davidson"

$ Children[1]="Ashley Davidson"

Now, if the array is accessed, a slightly different output is produced:
$ echo ${Children[*]}

Meshia Davidson Ashley Davidson

$ echo ${Children[@]}

Meshia Davidson

Ashley Davidson

In most versions of UNIX, the echoing of the children with the * produces
four items. In contrast, in most versions of UNIX, the echoing of the chil-
dren with the @ produces two items, as shown in the previous example.
Linux’s version of the Korn shell, however, produces four items either way.

84

Chapter 3: Variables

Ay

/=4

EXAMPLE

Ay

/=4

EXAMPLE

Read-Only

The shell provides a way of making a variable read-only. After a variable is
declared as read-only, its value cannot be changed. This is shown in the fol-
lowing example:
$ Children=Meshia
$ readonly Children # Sets the readonly attribute
on the Children variable
$ echo $Children
Meshia
$ Children=David
ksh: Children: is read only

You cannot have any more children because when an attempt to change its
value occurred, the shell produced an error and would not allow the value
associated with Children to change.

This brings up an interesting problem. If a value is set, such as when

you assigned multiple children to the varname Children, how can it be
changed? Better yet, when a variable has been set to readonly, how do you
get rid of it?

This is addressed next through the use of the unset command.

When going through the examples earlier in the chapter, the variable
Children was used several times. What was not shown was the command
that was run in between to free up that variable so it could be used again.
Here is a more complete listing of commands to let you see what was really
going on:

$ echo ${Children[*]}

Meshia Andy Ashley Tommy

$ unset Children

$ echo ${Children[*]}

$

As you can see from the previous code, the unset command is followed by
the variable to be freed. If the variable’s value is not freed from memory, it
cannot be set to something else. But, what about when you made Children
a read-only variable? How do you get rid of it?

The quick answer is that you cannot. If you could, it would go against the
basic idea of identifying the variable as crucial and unchangeable.

What’s Next 85

The long answer is that the variable will remain as long as the shell or pro-
gram environment of which it is a part exists. Therefore, a variable that is
set as a part of the environment, such as KSH_VERSION in the following
example or the variable Children that you set earlier to be readonly,
remains part of the environment until that environment goes away:

$ readonly # Displays all readonly variables

Children

KSH_VERSION

If a new environment is instantiated, that new environment will not have
the variable Children. It will have the variable KSH_VERSION instead because
it is set with each new login. This is shown in the next example:

$ su - dennis

Password:

$ readonly

KSH_VERSION

When the environment in the previous code is exited, and the previous
environment is back in control, the read-only variable Children again
returns:

$ exit

$ readonly

Children

KSH_VERSION

After the environment that contains the variable Children is terminated,
the variable is released from memory.

As a summary, what can I say? We started out in first grade with

_+3=5

and advanced to defining what went in place of the blank space with a vari-
able. Along the way, we looked at how to assign and access the two types of
variables allowed in shell programming—scalars and arrays.

Remember, if a variable is read-only, do not attempt to change it; just put
your keyboard down and back away slowly!

In Chapter 4, “Regular Expressions,” you look at one of the most powerful
ways of manipulating values. You explore regular expressions and delve
into pattern matching.

Regular Expressions

Many UNIX programs, languages, editors, and shells use regular expres-
sions. They are a way of describing a set of strings through pattern-match-
ing. When you use the expression, “That’s cool,” you are not presenting
literal information on the temperature of the object. You probably are trying
to indicate that the object is good, or interesting, or well done, or accept-
able, or neat, or...cool.

Similarly, expressions are used by the shell and by utilities to represent an
aggregate of string information in a succinct manner.

This chapter teaches you the following:
* The value of regular expressions in scripts
¢ How to represent groups of characters through character classes

e How to use special pattern-matching characters

88

Chapter 4: Regular Expressions

A

[=1

EXAMPLE

Regular Expressions Versus Wildcards

The Korn shell uses a form of regular expressions similar to those used by
grep, awk, sed, and other programs. Be aware that the regular expressions
used by utilities such as sed and grep are not to be confused with filename
expansion used by the shell.

Unfortunately, most syntax used for filename expansion expressions (some-
times called wildcards) is the same as the syntax used for string pattern-
matching regular expressions. You must take a breath and ask yourself
what you are trying to do. Does it involve filenames, or does it involve
string patterns? The next sequence shows some filename expansion (wild-
cards) expressions being used:

$ 1s
obr obrr obrrr regextest # four files in the directory
$

$ 1s obr # no wildcards used

obr

$

$ 1s obr? # single character match wildcard (?)
obrr

$

$ 1s obr* # multiple character match wildcard (*)
obr obrr obrrr

$

$ 1s obr.* # pattern '.*' has no special meaning
1s: obr.*: No such file or directory

$

The next sequence shows regular string expressions being used. Note that
you can start off by thinking of any string as a regular expression, but their
power is shown when the special characters are used for pattern matching:

$ cat regextest # file contents

obr

obrr

obrrr

obrrrabcrrr

$ grep 'obr' regextest # uses regular expression
containing no 'special' characters

obr

obrr

obrrr

obrrrabcrrr

$

v

[=4
EXAMPLE

Regular Expressions Versus Wildcards 89

$ grep 'obr$' regextest # looks for 'obr' anchored to the end of a line

obr

$

$ grep 'obr?$' regextest # question mark has no special meaning
in this context

$

$ grep 'obr*$' regextest # asterisk means zero or more repeats
of previous R.E.

obr

obrr

obrrr

$

$ grep 'obr.*$' regextest # Dot means match any single character,
so '.*' means any sequence
of zero or more characters

obr

obrr

obrrr

obrrrabcrrr

$

$ grep obr.*$ regextest # Are the apostrophes superfluous?

obr

obrr

obrrr

obrrrabcrrr

$

As you will see in the next sequence, using apostrophes is a good habit to
develop when using regular expressions as string pattern input to a utility.
Recall that the shell was happy to expand an asterisk to mean multiple
character match for filenames in the first set of examples in this chapter.
Given the context of a command, unless you tell it differently, the shell
assumes it has the responsibility to filename expand any wildcards you pre-
sent on the command line. This next sequence uses the xtrace debugging
option, which is discussed further in Chapter 11, “Diagnostics,” but which
is used here to expose the shell’s actions:

$ grep obr* regextest # No apostrophes surrounding the R.E.

regextest:obr

regextest:obrr

regextest:obrrr

regextest:obrrrabcrrr

$

$ set -0 xtrace # Turn on extended tracing to see what
the shell does

$

$ grep obr* regextest

90 Chapter 4: Regular Expressions

+ grep obr obrr obrrr regextest # Looks for string 'obr' in files
named 'obrr, obrrr, regextest'
regextest:obr
regextest:obrr
regextest:obrrr # Output includes the name of the file
in which it found string matches
regextest:obrrrabcrrr
$
$ grep 'obr*' regextest
+ grep obr* regextest # Use apostrophes to avoid any surprises
obr
obrr
obrrr
obrrrabcrrr

$

This chapter examines how ksh uses regular expressions. The topics
include character classes, pattern matching, back references, and metachar-
acters. Although this is a fairly short chapter, the information contained
herein is powerful and extremely useful.

Mastering regular expressions will save you hours because complicated pro-
cessing can be performed with simple lines of code that, if they had to be
programmed by hand, would be tedious and error prone.

Character Classes

When I was in school, I took a number of classes, but none of them were on
character. Ten years after graduation, I learned that my class was having a
class reunion. Apparently, someone—in their wisdom—had associated me
with 226 other people and had called us the “Class of 1985.” Although I am
an individual and am unique (just like everybody else), I have been catego-
rized as part of this larger group of people and am forever associated with
them whether I like it or not. I recall that when I was in high school there
were always four classes. There were then these other people who could
also be categorized into parents, teachers, administrators, and staff.

Similarly, characters are thrown together into classes. These classes are
broken down according to function. Therefore, a class exists for all the let-
ters and another for numbers. Several classes cover the types of characters,
as well. Table 4.1 shows the character classes recognized by ksh and gives a
brief description as to why they are grouped together. Be aware that most
of these classes were created in Korn Shell 93 and will not work in earlier
releases of ksh.

Character Classes 91

Table 4.1: Character classes

Class Description

alnum All digits, all uppercase characters, and all lowercase characters
alpha All uppercase characters and all lowercase characters

blank Tabs and spaces

cntrl Any control character:

digit 0-9

graph Any digit, uppercase, lowercase, or character

lower Any lowercase letter

print Any digit, uppercase, lowercase, character, or the space character
punct Any punctuation character

Character Explanation of Special Use
! Negation operator

" Grouping quoting

Comment Character

Substring operator, left truncate

Default primary prompt for superuser
$ Default prompt

$ Parameter expansion

$ Special parameter

% Substring operator, right truncate

% Job identifier

& Asynchronous background execution
' Single quote
- No options
(Subshell grouping
) Subshell grouping
* Wildcard match on pattern
(dot) Working directory
/ Name of root directory

Null built-in command

Command delimiter

Single character match in patterns
All Arguments

Escape quoting; begin single character match
options

Escape next character

] End single character match options
8 Anchor to beginning of line

B (underscore)

+ Plus sign; performs addition

< Redirects command input

= Used in variable assignments

> Redirects command output

—_ O W) -

922

Chapter 4: Regular Expressions

Ay

[=4

EXAMPLE

Table 4.1: continued

Class Description
> Built-in command to create empty file
> Default secondary prompt
/ Pathname delimiter
{ Command grouping
| Pipe command output
} Command grouping
~ Tilde substitution
space Tab and spacebar (same as blank)
upper All uppercase letters
xdigit All numbers and the letters A-F, both uppercase and lowercase

Now that the classes of characters have been defined, what does this all
mean? It means a great deal when pattern-matching is discussed later in
the chapter. Suffice it for now to say that it enables the programmer to
match any character within a set without having to identify every character
within that set. For example, if you want to refer to all characters that are
between A and Z and all characters between a and z (remember case is
important), it could be written as one of the following:

[a-zA-Z]
[[:alpha:]]

Examples of using these can be found later in the chapter in the sections
“Pattern Matching” and “Metacharacters.”

Pattern Matching

For those familiar with regular expressions in other programs—including
Perl, awk, grep, and sed—remember the context, but forget the format. The
format of regular expressions is different. A fairly easy way of converting
the format into the shell format so that it can be used within a shell script
exists. The %P format of printf converts the formats for most versions of
UNIX, but it is not an option with older versions of printf. The printf com-
mand is discussed in Chapter 10, “Output Control.”

The following is an example of printf with the %P modifier. It shows the
shell equivalent of the regular expression obr.*$. This regular expression
matches any string containing obr and then 0 or more characters up to the
end of the line:

$ printf "%P\n" 'obr.*$'

obr

A

[=4
EXAMPLE

Pattern Matching 93

The ksh uses four pattern characters for pattern processing. These charac-
ters are "*", "?", "[", and "]". The pattern characters can appear anywhere
in a word and any number of times within a word. If a pattern character is
quoted, as they are previously shown, the special meaning associated with
the pattern character is removed and the shell treats the character just like
a regular character instead of a pattern.

Square brackets ([1) delimit a set of characters from which to choose for a
single character match. This was alluded to earlier with the illustration of
a character class. Within the brackets, several characters take on special
meaning and are handled differently from the way they would normally be
handled. The first is the minus sign (-), which indicates a range of charac-
ters. For example, a-z tells the shell to match any one character that is any
of the lowercase letters. In the previous section, the following was used to
indicate all alphabet characters:

[a-zA-Z]

The brackets indicate that a successful match is any one of that set of char-
acters. The following example shows a more complicated example of match-
ing any of a set of characters:

[Cclhapter[1-6]

Notice that more than one bracket is used. This particular example would
match any of the following words:

Chapterl chapterl Chapter2 chapter2 Chapter3 chapter3
Chapter4 chapter4 Chapter5 chapter5 Chapter6 chapter6

This simple example should help illustrate how much typing, time, and pro-
gramming energy is saved with a bare minimum of pattern matching.

Simple pattern matching can include the character classes as well. Char-
acter classes are distinguished from the characters used to make their
names by the brackets and colons placed around them. Consider the follow-
ing two regular expressions:

[[:digit:]]

[:digit:]

Although they look similar, the second has only one set of brackets. When
you apply each of these to a pattern-matching routine—such as a grep—you
get vastly different results. To illustrate this, a sample file has been set up.
That file is listed here for reference:

$ cat david
#!/bin/ksh

Written by David Pitts
written on July 2, 2000

94 Chapter 4: Regular Expressions

Pitts Technical Resources, Inc.
3175 Custer Drive, Suite 203
Lexington, Kentucky 40515
Phone: 859-552-3262

RS

first_variable="This is a test of the Emergency System. This is only a test."
second_variable="If this had been an actual emergency, you would have been"
third_variable="instructed on what to do. Now, go back to your game of "
forh_variable="Quake. "

The first regular expression is used here. The example uses the grep com-
mand to search the lines in the file and display all lines that contain at
least one digit:

Ay $ grep [[:digit:]] david # Searches for digit class
%3 # written on July 2, 2000
3175 Custer Drive, Suite 203
Lexington, Kentucky 40515
EXAMPLE 4 phone: 859-552-3262

As expected, the lines containing digits were returned. Now the second reg-
ular expression is used. It searches for any lines that contain any of the set
of characters inside the brackets:
vy $ grep [:digit:] david # Single character match request

?‘}IJ #!/bin/ksh
Written by David Pitts

written on July 2, 2000

Pitts Technical Resources, Inc.

3175 Custer Drive, Suite 203

Lexington, Kentucky 40515

Phone: 859-552-3262

first_variable="This is a test of the Emergency System. This is only a test."

second_variable="If this had been an actual emergency, you would have been"

third_variable="instructed on what to do. Now, go back to your game of "

[=4
EXAMPLE

RS

Notice that any line containing any of the characters d, i, g, t, or : was
returned. You might have noticed that the fourth variable was spelled dif-
ferently to allow this example to be shown.

The following is another regular expression example. This time, the search
is for any use of the word “emergency”:
i}_ﬂ\ 1/ $ grep [Ee]lmergency david # Upper or lowercase E, then mergency

first_variable="This is a test of the Emergency System. This is only a test."

= second_variable="If this had been an actual emergency, you would have been"

exampLE Notice that with both the uppercase and lowercase “e” between the brack-
ets, it returns all lines containing either “Emergency” or “emergency”.

Ay
EXAMPLE

Ay

/=4
EXAMPLE

Ay
EXAMPLE

v

[=4
EXAMPLE

Pattern Matching 95

Sometimes you might want to find instances in which an expression begins
or ends with a particular set of characters.

Front

To find a set of characters that match the front of a line, the caret (*) is
used. The following example finds all the lines that begin with the com-
ment character (#) in the file david using this method:

$ grep “# david # shows lines that start with the #
#1/bin/ksh

Written by David Pitts

written on July 2, 2000

Pitts Technical Resources, Inc.

3175 Custer Drive, Suite 203

Lexington, Kentucky 40515

Phone: 859-552-3262

B3

HH H O I I F

Another example would be to find all the lines that begin with an f or an F:
$ grep “[fF] david

first_variable="This is a test of the Emergency System. This is only a test."
forh_variable="Quake. "

$

This example returns two matching instances.

Back

Just as a special character can be used to match the front of a line, another
character can be used to match the end of a line. That character is the dol-
lar sign ($). In the following example, all lines are found that end in a
number:
$ grep [[:digit:]]$ david # Dollar sign anchors the expression

to the end of the line
written on July 2, 2000
3175 Custer Drive, Suite 203
Lexington, Kentucky 40515
Phone: 859-552-3262

HH I H

Obviously, this could have also been done this way:

$ grep [0-9]$ david

written on July 2, 2000

3175 Custer Drive, Suite 203
Lexington, Kentucky 40515

Phone: 859-552-3262

926

Chapter 4: Regular Expressions

Ay

/=4

EXAMPLE

One further example is needed to show how to handle special characters.
Later in the book, you learn that the double quote (") is a special character.
To use the double quote in the search pattern, it must be indicated that it is
not to be used for its specialness, but as a regular character. This is done
with a backslash (\):

$grep ' \"'$ david

third_variable="instructed on what to do. Now, go back to your game of "
forh_variable="Quake. "

The previous example actually takes the next step. It uses single quotes to
indicate that the space before the double quote is included as a character.
Two lines end with a space and a double quote, and that is exactly what is
returned.

Metacharacters

“I have never meta character I didn’t like.” No, that is not what is meant
here. A metacharacter is a character that has a special meaning. Five char-
acters have special meanings. They are shown in Table 4.2 with an expla-
nation of each of their meanings.

Table 4.2: Metacharacters for sub-patterns

Symbol Meaning
! Matches all strings except those matched by the pattern-list
* Matches zero or more occurrences of the pattern-list

Matches zero or one occurrence of the pattern-list
Matches exactly one occurrence of the pattern-list
+ Matches one or more occurrences of the pattern-list

A pattern-list is one or more patterns separated by an ampersand (&) or a
vertical bar (|). An & between two patterns indicates that both patterns
must be matched. A | between two patterns indicates that either one pat-
tern or the other must be matched. The pattern-list is placed inside a set of
parentheses. The parenthesized pattern-list optionally might be preceded
by one of the special characters from Table 4.2. Pattern-lists can be used
within [[...]], for filename expansion (wildcards), matching in the case state-
ment, and substring expansion.

The following example shows a pattern match of any instance that does not
contain the string David or the string Pitts:

! (David|Pitts)

Ay

/=4
EXAMPLE

Ay
EXAMPLE

Ay

/=4
EXAMPLE

Ay
EXAMPLE

Back References 97

The following example shows a pattern match for any occurrence in which
the pattern-list is found only one time:

@(Custer & Suite)

The following example requests a match on zero or more occurrences of the
pattern-list. It will match Den, Dennis, Dennie, or Denny:

Den*(nis|nie|ny)

The following example requests a match on one or more occurrences of the
pattern-list. It will match Dennis, Dennie, or Denny:

Den+(nis|nie|ny)

The following example requests a match on zero or one occurrence of the
pattern-list. It will match Den123, Dennis123, Denniel23, or Denny123:

Den?(nis|nie|ny)123

Back References

Some versions of ksh allow for back references. Back references allow a sub-
pattern to be referred to by number. The number refers to the instance of
the open parentheses (counting from the left) starting with 1. Within a pat-
tern, back references are referred to by a backslash followed by the number
just mentioned. Therefore, the following example will match any string that
begins and ends with the same letter, such as “mom”, “dad”, or “dumb-
founded”:

@(?)*\1

Here is the breakdown of the expression. The @ means to match exactly one
pattern; the (?) says to match exactly one character. The * says to match
zero or more characters, and the \1 says to go back and reference what was
after the first parenthesis. Therefore, it matches the same character
matched with the (?). The following example is similar to the previous one,
but by adding the additional *\1, it says to match any string which begins
and ends with the same letter and contains that letter somewhere within
the expression. Therefore, it would match “dumb-founded”, but would not
match “mom” or even “mommy”:

@(?)*\1*\1

The next example uses the back reference pattern-matching capability to
request that the sed command rearrange the data in a file. I'll explain the
pattern after you check out the example:

$ cat names # current contents

obrien, dennis m

ellis, bruce a

98

Chapter 4: Regular Expressions

dyment, cheryl c

$

$ sed '"1,8s/\([*,1*\), \(.*\)/\2 \1/' names
dennis m obrien # revised output

bruce a ellis

cheryl c dyment

$

This one can give you a headache pretty quickly. Take your time and make
sure you understand each of my explanations before you move on to the
next part of the pattern. First of all, it is a stream edit request (sed) to be
applied to the contents of the file named names. The entire edit request is
placed in a set of apostrophes to make sure the shell keeps its hands off of
it (no filename expansion or other shell interpretations). The edit should be
presented to sed as it exists on the command line.

The edit can be broken into two pieces. The first part indicates which lines
should be edited. The 1,$ indicates from line one to the end of the file. The
second part indicates that there should be a substitution(s) of the pattern
between the first pair of slashes, with the pattern between the second pair
of slashes. The trouble comes when trying to pick out the slashes!

If the request were s/a/b/, it would be pretty easy to pick out the slashes.
With the more complex edit, your eyes are deceived into seeing teepees and
other bizarre constructs. The first slash is after the s; the second slash is
before the \2; and the third slash is at the end. Draw over those three
slashes with your pen to make them obvious. Therefore, the substitution
says to take the stuff between the first pair of slashes and replace it with
the stuff in the last pair of slashes. (The slash in the middle is in both
pairs.)

The last pair of slashes encompasses a \2 \1 sequence. These represent
back references to the second pattern of matched data (\2), and the first
pattern of matched data (\1). Now you want to know what was the first
pattern of matched data, don’t you? The first pattern is represented by
\([*,1*\). Focus on the \ (and the \). They surround what matched data
should go in back reference location number one. The square brackets indi-
cate a single character match; the ~ inside the square brackets says match
any characters other than what is in the square brackets; and the asterisk
after the brackets means multiple instances of the previous match. So, it
gathers all characters on the line up to a comma into back reference loca-
tion number one.

What’s Next 99

The next things that appear are a literal comma and a space, which means
it must match those two characters exactly, but you are not requesting that
they be captured in a back reference location.

After that, you see another \ (, which begins the second back reference loca-
tion match. The contents of the back reference match parentheses is the .*
combination, which indicates multiple character match (*) of any characters
(.). So, the second back reference location gets the characters after the
comma and space (the rest of the line).

So now that sed knows what it is supposed to match, the next question is
what is it supposed to replace the pattern with? The final pair of slashes
contain the \2 \1 sequence. As you have probably figured out by now, they
indicate the contents of back reference location two, a space, and the con-
tents of back reference location one.

What could be easier than that?

Although the back reference capability is probably not one you will use
every day, it is a very powerful tool to have in your arsenal. When the
need occurs, grab this book off the shelf, refresh your memory, and have
a go at it.

The way regular expressions are used varies between the Korn shell and
many other applications and programming languages. Not only that, the
implementation of regular expressions is the most widely varied topic
within the Korn shell environment. This means that some of the topics dis-
cussed in this chapter might not work with your particular implementation
of the Korn shell.

Most of the basic regular expressions used in this chapter should work
across the board, with the back references section being the obvious excep-
tion to this rule.

As a summary, regular expressions are a way of describing a set of strings
through pattern matching. Learning the basics of regular expressions will
save you hours of coding and logic problem-solving.

Up to this point, quoting has been used without much explanation as to
when and when not to use it. Chapter 5, “Quoting,” delves into quoting and
gives examples of how to use various quotes to get the desired results and
to ensure that the program does exactly what you intend.

Quoting

Freud has been credited with the saying, “Sometimes a cigar is just a
cigar.” The same concept holds true in shell scripting, “Sometimes an * is
just an *.” In the time that I have spent writing and helping others write
shell scripts, the single biggest confusion has come from quotes. When do
you need to single quote? When do you need to double quote? How do you
make a special character, such as an *, just be an *?

This chapter looks at examples of using the escape character and single

and double quotes. From there, it moves to cover line continuation. After
that, command substitution and parameter expansion are explored. The

chapter finishes with arithmetic expansion and arithmetic evaluation.

This chapter teaches you the following:
* The various quoting techniques in the Korn shell
¢ How to perform command substitution

¢ How the shell performs parameter and arithmetic expansion

102

Chapter 5: Quoting

Ay

/=4

EXAMPLE

Escape Character

The shell has a number of special characters available. Many times these
are called metacharacters. These characters are special because the shell
interprets them to mean something other than the actual character value.
For example, the * is a metacharacter. When the shell sees an *, it replaces
it with a ‘glob’ of stuff. The term globd is used in UNIX to represent a bunch
of characters—I believe the letters stand for great lot of bytes.

Asterisk with No Escapes

For example, a simple find command using an * (and using no escape char-
acter) would look like the following example:

$ find . -name C*
. /CHECKIT

In the previous example, the shell interprets the C* to mean “anything that
starts with a capital C and has zero or more characters following it.” There-
fore, the entire command means “Find from the current directory any file
that has as its first character a capital C and has zero or more characters
in its name. For every file that you find, list its location relative to the cur-
rent directory.”

What if there were a file literally named c*t? Certainly, the find command
could have found it because it met the criteria. But, without some way of
telling the system that we literally mean C*t, trying to do anything with
that file would be close to impossible.

This is where the escape character comes in. The escape character tells the
system that the character being referred to is literally that character, and
not some metacharacter. To better show this, a file literally called c*t has
been added to the current directory. The following is a listing of the direc-
tory:

$ 1s

C*t CHECKIT array_index assigning integers

Now that this file exists, a find command is again run. You will notice that,
with the exception of the additional file, nothing has changed. Here is the
find command again:

$ find . -name C*

find: paths must precede expression

Usage: find [path...] [expression]

Now, an error exists. What happened? The shell did not know how to inter-
pret the C* this time because it could not decide whether you meant find all
the files that are named C* or find all the files that begin with a capital C
and contain zero or more characters after that.

Ay
EXAMPLE

A

[=4
EXAMPLE

Escape Character 103

Asterisk with Escape

This problem is solved as soon as the escape character is used. The escape
character is a backslash (\). Here is the same find command with a back-
slash (escape character) placed before the *:

$ find . -name C*

. /CHECKIT

. /C*t

This is an interesting case that needs some explanation of what is happen-
ing. There is always a hierarchy to any command. The hierarchy means the
shell interprets the line and searches out any special characters. After
expanding (or interpreting) the special characters, the shell presents the
newly re-formed command line to the program.

The shell looks at the syntax of the line (with the backslash) and recognizes
the escape character. It knows, therefore, to pass C* to the find command
instead of trying to perform filename expansion. With the backslash (escape
character) before the *, the filter within the find command says to ignore
the special meaning that the shell assigns to the * character. Therefore, the
find command is presented with the * as one of its command-line argu-
ments. Because it is an *, however, the find command recognizes it as a
metacharacter within its own program. It then lists out all files that begin
with a capital C and contain zero or more characters after that.

Asterisk with No Escapes from a Different Directory

Now, to muddy the waters a little more, what if the command was run from
a directory different from the current one? To ask this in a different way: If
the user were to back up one directory, in which no files begin with C*,
what would happen if the find command were run? If that is the case, as
shown in the following example, then no confusion exists and either method
works:

$ find . -name C*

./scripts/CHECKIT

./scripts/C*t

$

$ find . -name C*

./scripts/CHECKIT

./scripts/C*t

The reason for this goes back to the syntax check the shell does. No files
begin with C* exist in the current working directory, so the shell
knows that the * is a metacharacter. It then passes on that metacharacter
to the find command, which performs its recursive search and eventually
finds the files in question.

104

Chapter 5: Quoting

Ay

/=4

EXAMPLE

Asterisk with Two Escapes

Before leaving this subject, the next level of complexity would be to find the
file ¢*t without finding CHECKIT. The trick would be to escape the * as
before, but then to escape the * again. The first escape would get us past
the shell’s syntax checker, and the second one would escape the * for the
find command. The net result would be the non-special * for the find com-
mand. This double escaping is shown here:

$ find . -name C*t
./C*t

Aggregate Quoting Options

At this point, most readers think that there must be an easier way. Fortu-
nately, there is. It is at this point that aggregate quoting becomes useful. I
call it aggregate quoting because it enables a mechanism to indicate to the
shell that a series of characters are not to have their special meaning.

The next sections describe two power levels of aggregate quoting.

Single Quotes

Simply speaking, single quotes around one or more characters are the
equivalent of placing escape characters before each of the characters. In
the previous example, the file C*t could be found by any of the following
methods:

$ find . -name 'C*t'

./C*t
$ find . -name C'*'t
./C*t
$ find . -name C'*t'
./C*t

As long as the * is included in the single quotes, the correct interpretation
is found. Notice that the single quotes in no way hurt the regular charac-
ters. In fact, quoting non-special characters is completely harmless. This is
also true for the escape character and for the double quotes, which I explain
in the next section.

A time does exist when a single quote has problems. Any time that an apos-
trophe (which is, in reality, a single quote) is used in the string, it must be
escaped so that the shell does not assume it is a special character. The fol-
lowing shows an example of incorrectly using an apostrophe:

$ echo David's Book is Fantastic!!
> ~C

Aggregate Quoting Options 105

Notice that the shell gives the secondary shell prompt (>), assuming that a
multiline command had been entered. The secondary shell prompt is exited
with Ctrl+C, but this also kills the echo. Notice what happens when a sin-
gle quote is placed at the secondary shell prompt instead of Ctrl+C:

$ echo David's Book is Fantastic!!

-

Davids Book is Fantastic!!

This is obviously a better response because the echo command is allowed to
execute, but we lost the apostrophe toward the end of the word “David’s”.
Even placing single quotes around the whole string does not help:

$ echo 'David's Book is Fantastic!!'

5

Davids Book is Fantastic!!

The escape character is needed to remove the specialness associated with
the single quote, as shown here:

$ echo David\'s Book is Fantastic!!
David's Book is Fantastic!!

The other problem that occurs many times with single quotes is that they
take away too much of the specialness. For example, what happens if you
want to have a variable within the command? In the following example, the
current logged-in user is being charged a fee for using the session. If the
single quotes were around the variables, the following would result:

$ echo '$USER you owe us $0.01 per minute for using $HOSTNAME. '

SUSER you owe us $0.01 per minute for using $HOSTNAME.

It is obvious that substitutions should have been made for both $USER and
for $HOSTNAME but not for $0.01. One way around this is to move the single
quotes so that they are not around the variables:

$ echo $USER' you owe us $0.01 per minute for using '$HOSTNAME'.'
david you owe us $0.01 per minute for using moose.gx.net.

Another option is to escape the dollar sign in front of the 0.01 and leave the
rest of the sentence alone:

$ echo $USER you owe us \$0.01 per minute for using $HOSTNAME.
david you owe us $0.01 per minute for using moose.gx.net.

Because of how strictly the single quote blocks everything, a middle-of-the-
road approach is available. This approach enables most things to act as if
they are escaped—Ilike the single quotes do—but keeps other things as if
they are not escaped. This middle-of-the-road approach is achieved through
the use of double quotes.

106

Chapter 5: Quoting

Ay

[=4

EXAMPLE

Ay

/=4

EXAMPLE

Double Quotes

Double quotes take an approach between escaping everything and escaping
nothing. Double quotes take away the special meaning for everything
except for the following:

End of double-quoted string
$ Variables
\ Escaping characters

Command substitution

This, however, does not help with our monetary problem in the previous
example, because the dollar sign still needs to be escaped, as is shown in
the following example:

$ echo "$USER you owe us \$0.01 per minute for using $HOSTNAME."
david you owe us $0.01 per minute for using moose.gx.net.

Double quoting saves some time and confusion when the commands begin
to get more complex:

$ echo "$USER, Today's date is *** date +%m/%d ***"
shell, Today's date is***Q7/Q9***

Line Continuation

Line continuation is the capability to have a command span more than one
line. Two ways of causing a line continuation are available. The first was
done accidentally earlier in the chapter; this method is not recommended.
It is done by not closing a quote:

$ echo 'hell
> 0 world
> this

> is line
> continuation the
> non-

> recommended

> way!'

hell

o world

this

is line
continuation the
non-

recommended

way !

v

[=4
EXAMPLE

Command Substitution—Two Ways 107

This happens because the newline character loses its specialness within the
single quotes. This means that instead of signifying that the user is ready
to submit a command for processing, the user wants to have the new line as
part of the string. Here’s the other method:

echo Hell\

o world \

this \

is line \

continuation the \

recommended way!

Hello world this is line continuation the recommended way!

V V. V V V &

I do not recommend that you separate a line arbitrarily as this shows, but
when necessary, the technique is a good way of breaking up a line to make
it easier to read. Here is an example:

$ typeset Separator='#== \

$ echo $Separator

mn
#

Command Substitution—Two Ways

The example in the “Double Quotes” section containing the syntax ‘date’ is
an example of command substitution. Command substitution occurs when a
command is included as part of the line of code (such as ‘date"), and when
the line is interpreted, the part of the line containing the embedded com-
mand is replaced with the output of the embedded command. Two ways of
using command substitution are available. The first way is the way shown
earlier in the chapter. This method simply places back tics around the com-
mand. The back tics are easily confused with the apostrophes. The apostro-
phe is near the Enter key on most keyboards, whereas the back tic is found
above the Tab key in the upper-left of the keyboard (usually). The visual
confusion introduced by these two characters looking so much alike has
brought a change to the syntax of ksh.

The example from before is shown here for easy viewing:
$ echo "$USER, Today's date is *** date +%m/%d ***"
shell, Today's date is***Q7/Q9***

The second method works on most implementations of the Korn shell. It
should be the preferred method if your version supports it. Instead of using

108

Chapter 5: Quoting

Ay

/=4

EXAMPLE

back tics, the command is placed between $(and). The following is the
previous command but with the newer syntax for command substitution:

echo "$USER, Today's date is ***$(date +%m/%d)***"
shell, Today's date is***@7/09***

The second way of performing command substitution is much clearer and
easier to follow than with the back tics.

Parameter Expansion

Parameter expansion substitutes the contents of the parameter in the com-
mand line. If the parameter is a variable name, the shell expands the value
of the variable and replaces the variable name with the value of the vari-
able. If the parameter is a number, the parameter is a positional parameter
and represents a value on the command line. In the following example, two
variables are defined. A third variable is then defined that uses the first
two variables as parameters:

typeset Program=$0

typeset host=$(hostname)

typeset OutFile="/root/CHECKIT/checkout/${Program}.${host}.Current Output"

echo $0utFile

To better illustrate this example, the example has been placed in a file
called Example51.ksh. The following is the execution of that file:

$./Example51.ksh
/root/CHECKIT/checkout/./Example51.ksh.moose.qgx.net.Current_Output

If this were the extent of the parameter expansion, there would be no rea-
son not to use the variable name instead, such as the following:

typeset OutFile="/root/CHECKIT/checkout/$Program.$host.Current Output"

One strength of parameter expansion is evident when the value of the vari-
able is null or undefined. Default values can be set, allowing the default
value to be used if the value of the variable is either null or undefined.

The file from the previous example has been modified and saved as
Example52.ksh. Here is a listing of the new file:

#!/bin/ksh

typeset OutFile=\
"/root/CHECKIT/checkout/${Program: -CHECKIT}.${host: -Moose.com}.Current
wOutput"echo "Outfile is $OutFile"

Program="Test.ksh"
echo "New program is $Program"
echo "Outfile is $OutFile"

Ny

/=4
EXAMPLE

Parameter Expansion 109

OutFile="/root/CHECKIT/checkout/$Program.$host.Current Output"
echo "Outfile is $OutFile"

Program=$0

echo "New program is $Program"

echo "Outfile is $OutFile"
OutFile="/root/CHECKIT/checkout/$Program.$host.Current_Output"
echo "Outfile is $OutFile"

In this new file, the first couple of lines have been removed. This means
that the initial value of $Program is nothing, as is the initial value of $host.
In addition, defaults are placed within the parameters. The : - tells the sys-
tem that if the variable has a null value or is undefined, use the default
specified after the : -. Here is the output of that file:

$./Example52.ksh

Outfile is /root/CHECKIT/checkout/CHECKIT.Moose.com.Current_Output

New program is Test.ksh

Outfile is /root/CHECKIT/checkout/CHECKIT.Moose.com.Current Output

Outfile is /root/CHECKIT/checkout/Test.ksh..Current_Output

New program is ./Example52.ksh

Outfile is /root/CHECKIT/checkout/Test.ksh..Current_Output

Outfile is /root/CHECKIT/checkout/./Example52.ksh..Current_Output

Another strength of parameter expansion is the capability to substitute a
different variable. Similar to : -, but with a subtle but powerful difference,
is :=. Whereas : - replaces a null or empty string with the word following
the : -, := replaces a null or empty string with the word following it and
then performs the parameter expansion with that default word.

For example, in the following code, the value for OutFile has its default
value set, a value is then given for the name of the program, and the value
for OutFile is then reset. This new file is called Example53.ksh:

#!/bin/ksh
typeset DEFAULT_OUTFILE="CHECKIT"
echo "Default outfile:\t\t$DEFAULT_OUTFILE"

typeset OutFile="${Program:=$DEFAULT_OUTFILE}"
echo "After typeset:\t\t\t$OutFile"

Program=$0

echo "New program:\t\t\t$Program"

typeset OutFile="${Program:=$DEFAULT OUTFILE}"
echo "Outfile is :\t\t\t$OutFile"

110 Chapter 5: Quoting

Ny

/=4
EXAMPLE

Here is the output of that script:
$./Example53.ksh

Default outfile: CHECKIT
After typeset: CHECKIT
New program: . /Example53.ksh
Outfile is : . /Example53.ksh

After a value has been given for the file, that value becomes the value for
OutFile; until then, the default value is used.

A third strength of the parameter expansion is its capability to display a
default error message if the value of the parameter is empty or null. The
syntax for this command is :?. In the following example, a message is given
to indicate that the value is null. First, here is the source code. Notice it is
exactly the same as the previous code, but that the new code (: ?message) is
inserted instead of :=variable. This enables the programmer to place error
messages within the code that will be displayed. The following example is
in a file called Example54.ksh:

#1/bin/ksh

typeset DEFAULT_OUTFILE="CHECKIT"

echo "Default outfile:\t\t$DEFAULT_OUTFILE"

typeset OutFile="${Program:?"Error, The value of Outfile is Null!"}
echo "After typeset:\t\t\t$OutFile"

Program=$0

echo "New program:\t\t\t$Program"

typeset OutFile="${Program:?"Error, The value of Outfile is Null!"}
echo "Outfile is :\t\t\t$OutFile"

Here is the output of that script:

$./Example54.ksh
Default outfile: CHECKIT
./Example54.ksh[10]: Program: Error, The value of Outfile is Null!

Had that message not been coded into the script, the following would have
resulted. First, here is the code without the error message built in:

#!/bin/ksh
typeset DEFAULT_OUTFILE="CHECKIT"
echo "Default outfile:\t\t$DEFAULT_OUTFILE"

typeset OutFile="${Program}
echo "After typeset:\t\t\t$OutFile"

Program=$0

echo "New program:\t\t\t$Program"
typeset OutFile="${Program}

echo "Outfile is :\t\t\t$OutFile"

Parameter Expansion 111

Here is the output of the file:

$./Example54.ksh

Default outfile: CHECKIT
Outfile is :

echo After

Notice that the system did not care that the variable was either null or
empty.

Other options can also be used with parameter expansion. The syntax is
similar to those shown previously. Table 5.1 shows several other available
options.

Table 5.1: Parameter expansion options

Expansion Modifier Description

${parameter: -word} Substitutes word if parameter is unset or null.

${parameter:=word} Sets parameter to word and substitutes word if parameter
is unset or null.

${parameter:+word} Use word if variable is set. Use null otherwise.

${parameter:?word} If parameter is unset or null, display word at standard

error and abort script with unsuccessful status (1).

Note that all four of the previous options can be used with
or without the :. With the colon, the meaning of null (which
is a variable that exists but has a null value) is treated the
same as the value of unset (a variable that has been
unset does not exist).

${#parameter} Substitutes the number of characters in the contents of
parameter.

${#array[*]} Substitutes the number of elements in the array.

${parameter#pattern} If the regular expression pattern given is found at start of

the contents of parameter, it deletes the matching charac-
ters and substitutes the remainder. The smallest possible
match is deleted.

${parameter##pattern} If the regular expression pattern given is found at start of
the contents of parameter, it deletes the matching charac-
ters and substitutes the remainder. The largest possible
match is deleted.

${parameter%pattern} If the regular expression pattern given is found at the end
of the contents of parameter, it deletes the matching char-
acters and substitutes the remainder. The smallest possi-
ble match is deleted.

${parameter%%pattern} If the regular expression pattern given is found at the end
of the contents of parameter, it deletes the matching char-
acters and substitutes the remainder. The largest possible
match is deleted.

112 Chapter 5: Quoting

The following sequence shows examples of many of the parameter expan-
sion options, including a few modifiers:

\is $ unsetn
%3 $ print ${n-dennis} # The ':' is optional, without it,
the check is on unset, not null
(=1 dennis

EXAMPLE $

$ print $n # Did not set the value of variable n

$

$ print ${n=dennis}

dennis

$ print $n # Did set the value of variable n
dennis

$

$ print ${n+den} # Use den if n is set. Use null if unset or null
den

$ print $n

dennis

$

$ print ${z?whoops!}

/bin/ksh: z: whoops!# To standard error

$

$ print ${#n} # Count of characters in variable n

6

$ 1s

names obr obrr obrrr regextest

$ filenames=(*) # Creates indexed array named filenames (ksh 93),
use [*] in an earlier ksh

$

$ print ${#filenames[*]}

5 # Count of array elements

$

$ name=dennis.michael.patrick.obrien # Set new variable

$

$ print ${name%.*} # Removes smallest matching right pattern
dennis.michael.patrick

$

$ print ${name%%.*} # Removes largest matching right pattern
dennis

$

v

[=4
EXAMPLE

Arithmetic Expansion 113

$ print $name # Does not change the original variable
dennis.michael.patrick.obrien

$ print ${name#*.*} # Removes smallest matching left pattern
michael.patrick.obrien

$ print ${name##*.*} # Removes largest matching left pattern

$

Arithmetic Expansion

Command substitution uses the expression $(...), where the output of
what is inside the parentheses replaces the expression. Arithmetic expan-
sion uses a similar expression: $((...)).

An easy example demonstrates this. The following is a simple program for
performing arithmetic expansion:

#!/bin/ksh

a=5

b=6

c=$((a*b))

echo "$a * $b equals $c"

At first glance, the reader is probably unsure what will happen with the
echo command. Here is the output of the script (named Example55.ksh):

$./Example55.ksh
5 * 6 equals 30

Notice that the echo command does not expand the math, but gives it liter-
ally. A common error here is in removing the double quotes from around the
echo command. Here is the program without the double quotes:

#1/bin/ksh

a=5

b=6

c=$((a*b))

echo $a * $b equals $c

And the following is the output:
$./Example55.ksh

5 C*t CHECKIT Example51.ksh Example52.ksh Example53.ksh Example54.ksh Example55.
ksh array_index assigning integers 6 equals 30

It is important to recognize that the program took the metacharacter * and
expanded it to equal all the files in the current directory. It then assigned 6
to equal 30. This is obviously not what was intended; more than likely, it is
not what the reader expected to happen either.

114 Chapter 5: Quoting

Ay

[=4
EXAMPLE

Arithmetic Expressions

The Korn Shell evaluates arithmetic expressions. A null value evaluates to
0. An easy example taking the previous program and removing the line
assigning a value to $b is shown in the following code:

#!/bin/ksh

a=5

c=$((a*b))

echo "$a * $b equals $c"

As expected, the value for $b should evaluate to 0. Here is the output of the
code:

$./Example56.ksh
5 * equals 0

The results are as expected. Because $b is undefined, no value is printed in
the echo command.

In addition to the standard expressions of plus (+), minus (-), multiply (*),
divide (/), and modulus (%), a number of other expressions (normally
referred to as functions) are allowed. The standard function is denoted by
function (expression). Table 5.2 lists some of the mathematical functions
available. In this table, functions requiring angles expect the angles to be
expressed in radians. Functions are explained in much more depth in
Chapter 7, “Data Manipulation.”

NOTE

The following list works with some implementations of ksh and not with others. As a
general rule, these do not work with the standard implementation of ksh shipped with
Linux.

Table 5.2: Functions built into the Korn Shell

Function Description

abs Absolute value

acos Arc cosine of angle in radians

asin Arc sine

atan Arc tangent

cos Cosine

cosh Hyperbolic cosine

exp Exponential with base e, where e = 2.718
int Greatest integer less than or equal to value of expression
log Logarithm

sin Sine

sinh Hyperbolic sine

What’s Next 115

Table 5.2: continued

Function Description

sqrt Square root

tan Tangent

tanh Hyperbolic tangent

The Freud-accredited quote at the beginning of the chapter has been
proven true. There are indeed times when a cigar is just a cigar (and an
asterisk is just an asterisk), and when in doubt, quoting helps out. The dif-
ference between a single quote and a double quote has been explored. In
addition, substitution—both command and arithmetic—has been explored.

Chapter 6, “Flow Control,” begins what is for many the real meat of pro-
gramming—control structures. According to the X-Files, the truth is out
there, and in the coming pages, we will find that truth!

Flow Control

The truth about shell programming is that there is no single way to get a
job done. Sometimes a given set of circumstances dictates the best way to
accomplish a task, but if the circumstances change, the path down which
to travel to arrive at the point of accomplishment becomes less certain.
Sometimes logic says we should take the path less traveled.

This chapter introduces control structures, mechanisms by which you can
automate decision making as your script runs. These decisions can involve
the termination of repetitive activities, the testing of a variable value
against a series of cases, testing file existence and characteristics, or simply
testing a variable for equality. You will see several syntax options that
enable the script’s logic to branch, flow and repeat infinitely, flow and
repeat a set number of times, or flow and repeat until a condition is met.
You also will find ways to break out of a looping construct.

This chapter teaches you the following:
* The syntax of an if test
e How touse ((and [[
* How to use the case statement
* How to use while loops
¢ How to use until loops
¢ How to use for loops
* How to use select loops

e How to use the break and continue commands

118

Chapter 6: Flow Control

Ay

[=1

EXAMPLE

If Test

To find out the truth, you must ask questions. The if test provides a means
for the script to query a variable, compare strings, check a loop counter,
find out whether a command completed successfully, and perform similar
activities.

Basic if-test syntax is as follows:
if command

then

command(s)

fi

Cute, huh? The logic of the if test is bracketed by the words if and fi,
which is “if” spelled backwards. You will see this same cuteness one other
time in this chapter (case/esac). The syntax means that if the command is
true, then do the command or commands appearing between the then and
the fi. But how does a command become true or false?

As a command completes, it reports its exit status to the shell. This status
is held in a special variable named $? (see Chapter 1, “The Environment”).
Therefore, all you have to do is test $? after a command executes and you
can decide which road to travel by. That is, do you execute the commands
between the then and the fi, or do you skip them and continue processing
with the command that follows the fi?

Exit Status

Note that any command, program, or script can exit with an arbitrary exit
status, but a status of zero usually represents success.

The following shows a directory with one file in it named tf1:
$ 1s

tf1

$

The following is the successful execution of an 1s -1 command. Note that
the print $? command shows a status of 0 (success):
$ 1s -1 tft
SPW-r--r-- 1 obrien users 31 Aug 26 15:17 tfi
$
$ print $?
0

The following is the unsuccessful execution of an 1s -1 command. Note that
the print $? command shows a non-zero status (failure):

Ay
EXAMPLE

If Test 119

$ 1s -1 tf2
1s: tf2 not found
$
$ print $?
2
$

The exit status of the 1s -1 command indicates a failure of some sort. The
number to display is determined by the logic of the 1s program.

You might be wondering why I have spent some energy on describing the
return status from a command when I am supposed to be describing the if
test. In essence, an if test looks at the return status (@ equals success, and
non-zero equals failure) of the command that appears after the if syntax. If
the status is 0 (success), the commands between then and fi are executed.
On the other hand, if the status is non-zero (failure), the commands
between then and fi are not executed. Take another look at my general
description of the syntax of an if test. It is repeated here for your conve-
nience:

if command

then

command(s)

fi

Notice that the syntax expects a command after the if. This might not jibe
with your recollections of various script snippets you may have seen in
other books or at your job site because the syntax seems to imply that you
don’t need to have a test after the if. You most likely recall syntax such as
the following:

if ((a==1b))

then

commands_to_do

fi

or
if [[$a = $b 1]
then
commands_to_do
fi

The ((and [[Commands

Given these two simple examples, and considering the template that has
been shown twice, indicating that after the if there should be a command,
you must conclude that the ((and the [[are actually commands! Indeed,

120

Chapter 6: Flow Control

Ay

/=4

EXAMPLE

they are commands, although not exactly what you would call standard
commands.

The following example initializes the variable named x to the value of 5 and
then executes some ((commands:

$ x=5 # Set variable x to 5

$ ((x==5)) # Test contents of x against 5
$ print $? # Show previous command status
0 # Success (0), so x must = 5

$ ((x==6)) # Is x = 6?

$ print $?

1 # Nope

Notice that the return status is @ (success) for the first test and 1 (failure)
for the second test. You won’t be doing tests using the technique shown in
the previous examples. I'm trying to open the hood on the if test so you can
peer into the engine of it.

The following example uses more complete and standard syntax to perform
a test:

$ if ((x==5))

> then

> print "Result is true"
> fi

Result is true

$

The ((command is actually a modernization of the 1let command. You
won’t find many modern-day scripts performing if tests as follows:

$ if let "x==5"

> then

> print "result is true"
> fi

result is true

$

This also can open the hood on string comparisons (the ((examples are
doing arithmetic comparisons). String tests are surrounded by [[instead of
((. The syntax of the [[command is similar to ((, but it tends to be a bit
more picky with respect to whitespace. Make sure that each item within
the [[1] is separated from the others by at least one space. Note that in
the arithmetic comparisons, you could use spaces or not; it made no differ-
ence to the shell. It definitely makes a difference with the following string
tests:

Ay
EXAMPLE

If Test 121

[[x =51] # Must precede variable with $
print $?

[[$x =5]]
print $?
[[$x = 5]] # Oops, no space after the 5

The shell assumes there is more syntax coming

[[$x = "5" 1] # Quotes are ok too
print $?

[[$x == "5"]]
print $?

S & P S PPV AL S B L = PP

Notice that the test for equality is made using a single =. In ksh93, you
should use the == for string equality tests (although the = will still work).
If you are using ksh88, the == will cause an error when used for string
comparisons.

Other syntax options exist that can appear in older scripts you might be
responsible for maintaining. The following example uses some syntax avail-
able for numeric tests of string contents (for instance, a string containing
the numerals 1 and 7 can be interpreted as the integer 17 or the string
containing 1 and 7):

$ [[$x -eq 5 1]
$ print $?

0

$

Syntax Options Used for Testing

The following are conditional tests for numerics using [[]1:
e .eq—Tests for equality
* -ne—Not equal
e .gt—Greater than
* -ge—Greater than or equal to
e -1t—Less than

® .le—Less than or equal to

122

Chapter 6: Flow Control

Ay

/=4

EXAMPLE

The following are conditional tests for numerics using (()):
e == Kquality
e 1=—Not equal
* >—QGreater than
* >=—Greater than or equal to
* <—Less than

® <=—Less than or equal to

Here are the conditional tests for strings using [[]1:
* == (or = ksh88)—Strings are equal.
e |=—Strings are different.
e > First string is lexically (ASCII precedence) before second.
e <—First string is lexically (ASCII precedence) after second.

A standard if test for string equality might look like the following:
$ if [[$x == "5"]]

> then

> print "Strings are the same"
> fi

Strings are the same

$

You are probably wondering what the command underlying the [[is. The
[[command is actually the test command in disguise. The test command
can still be used to evaluate an expression, but you will seldom see it in an
if test. The following is an example of what your if tests could look like:

$ test $x == # test command at prompt

$ print $?

if test $x == 5 # test command in an if test
then

print "Strings are equal"

fi

Strings are equal

$

V V V & &4

This syntax tends to be unwieldy and confusing. Your habit should be to
use the [[1] for your string tests and the (()) for your numeric tests.

If Test 123

Commands Within If Tests

The conclusion you should be drawing by now is that an if test expects to be
given a command to execute. It evaluates the return status (in variable $?)
to see whether the command reports success status. If it was successful, the
if logic forces the commands between the then and fi to execute. If the
command does not report success status, the commands between then and
fi do not execute.

The following examples show simple commands within an if test. The first
shows a successful 1s command, whereas the second shows a failing 1s

command:
1y $ 1s j* # Two junk files exist
i}ﬂ junk junk2
$
$ if 1s -1 junk2 # Successful test
EXAMPLE ..
> print "ls was successful"
> fi
-PWXP-X- - - 1 obrien obrien 1398 Nov 19 13:54 junk2
1s was successful
$
$ if 1s -1 junk3 # Unsuccessful test
> then
> print "ls was successful"
> fi
1s: junk3: No such file or directory
$
The same result could be attained by an overt test of the contents of $?, but
this style would be clumsy and unnecessary:
Ay $ 1s -1 junk2
?‘}/j SPWXP-X- - - 1 obrien obrien 1398 Nov 19 13:54 junk2
$
$ if [[87 =0 1]
EXAMPLE ...
> print "ls was successful"
> fi
1s was successful
$

One-Line If Tests Using && or | |

Two operators are available in the Korn Shell to provide a one-line if test.
They are the && and | | operators. The && means execute the command to
the right only if the command on the left was successful. The | | means

124

Chapter 6: Flow Control

Ay

/=4

EXAMPLE

execute the command to the right only if the command on the left was not
successful:

$ 1s junk2 && print "Done"

junk2

Done

$

$ 1s junk3 && print "Done"

1s: junk3: No such file or directory
$

$ 1s junk2 || print "Done"

junk2

$

$ 1s junk3 || print "Done"

1s: junk3: No such file or directory
Done

$

This can be useful in scripts to quickly test whether a user has presented
enough command-line arguments for the script to run, and if not, to prompt
the user again. The following example uses the set command to prepare
the first three command-line arguments ($1, $2, and $3). Normally, this
would be done by the executing shell as a script is started:

$ print $# # No command-line args currently
0
$
$ set first second third # Set up first three command-line args
$
$ print $1 # Display them
first
$
$ print $2
second
$
$ print $3
third
$
$ print $# # Count is now three
3
$
$ (($#!=3)) &% print "Need three items, dude!"
Use && to decide on reprompt
$
$ shift # Remove one argument
$
$ print $# # Count is now two

Ny

/=4
EXAMPLE

If Test 125

LT B \V]

(($#!=3)) &% print "Need three items, dude!"

Reprompt is necessary now
Need three items, dude!
$

An if test can also have one or more elif sections and one else section. If
you are sure that the test is binary—meaning it can go one way or the
other—then you can use an if/then/else sequence. If I had read this book
two months ago then I would have had an easier time with my job, else I
just muddle along:

$ if ((x==5))

> then

print "x equals 5"

else

print

print "x does not = 5"

fi

equals 5

€ X V V V VvV V

If your if test is complex enough, you might have to test for several condi-
tions. The following script uses an elif clause to check for more than one
condition in a single if construct:

$ cat guess
#!1/bin/ksh
read guess?"What is your guess? " # Prompts for number
if [[$guess -gt 48 1]
then
print "too high"
elif [[$guess -1t 48]] # elif statement
then print "too low"
else
print "correct"
fi
$
$ guess
What is your guess? 23
too low
$
$ guess
What is your guess? 78
too high

$

126

Chapter 6: Flow Control

$ guess
What is your guess? 48
correct

$

Compound If Tests

If you need to combine more than one test to see whether a condition is
met, you can use the syntax from the one-line conditionals (&& and | |) to
create compound conditionals. Keep in mind that the && causes the execu-
tion of the command to its right only if the command to its left reports suc-
cess status. Well, suppose the command to its left is an if test? This would
result in the left test being performed, and if the test evaluates to true
(success), the if test to the right of the && will also execute, and so forth.
Essentially, the && functions as a logical and in this case. This means that
the entire logical and evaluates to true only if both the if tests evaluate to
true.

Likewise, the | | functions as a logical or, which means the test to the left of
the || or the test to the right must evaluate to true for the result of the
entire logical or to be true. The following example tests to see whether the
user responds with y or yes, and if so, it tests to see whether the filename
found in the first command-line argument ($1) is a regular file. If the user
response (prompt is not shown here) is y or yes, the type of file is checked.
If it is a regular file, the entire compound if evaluates to true. So whatever
commands appeared after the then would be executed:
if [[($resp=="yes" || $resp=="y") && -f $1 1]
then

do_some_commands
fi

Be aware that the testing part of a compound if terminates when enough
information has been gathered to determine the result of the compound
test. For instance, in the previous example, if the user had responded to the
prompt with no, the -f $1 test would not have been performed. The reason
for this is that the result of the && could be determined after the left part of
it evaluated to false. If the left half of the && compound test—which evalu-
ates to true only if both halves are true—evaluates to false, why even
bother with the right half? The shell already knows how the movie turns
out. It doesn’t get the girl and the truck blows up! No. I'm sorry. I got lost
in a Die Hard plot.

The shell realizes that the entire compound test evaluates to false if the
left half of a logical and (&&) evaluates to false, so the testing is “short
circuited” at that time and the right part of the compound test is never

Ny

/=4
EXAMPLE

Compound If Tests 127

executed. Most of the time this is not an issue. I mention it here so you can
consider what is really happening during a compound if. Understanding
the way a compound if works might get you out of a sticky debugging mess
at some point in the future.

Nested If Tests

If tests can be used within other if tests. Be aware that the indentation you
might use is meaningless to the shell. The syntax determines the logic of
your request. Indentations, however, can be very useful for script readabil-
ity, which will enhance maintenance efforts in the future.

The following script uses a special file conditional (discussed in Chapter 7,
“Data Manipulation”) to check whether a file is executable before using the
cat command to display its contents. I include it here to show you an exam-
ple of nested if tests:

$ 1s -1 dowd
- PWXPWXT - - 1 obrien obrien 266 Oct 11 14:19 dowl # Executable file
$
$ 1s -1 yy
SPW-rW-r- - 1 obrien obrien 111 Nov 6 23:42 yy # Regular file
$
$ cat showit
#!/bin/ksh
example of file conditionals
(($# != 1)) && { print "Next time, gimme a file!"; exit 1; }
Checks for 1 command-line arg

if [[-f $1 1] # Makes sure file is regular
then
if [[-x 81 1] # Checks if file is executable
then

read response?"$1 is executable still want to see it?"
if [[$response == [Yy]*]]
Checks for yes response
then cat $1
else
print "Not displaying."
fi
else
cat $1
fi

128

Chapter 6: Flow Control

else
print "$1 is not a regular file.\nNot printing."
fi

$
$ showit
Next time, gimme a file!
$
$ showit yy
PID TTY TIME CMD
614 pts/1 00:04:30 ksh
16911 pts/1 00:00:00 ps
16912 pts/1 00:00:00 tee
$
$ showit dow1
dowl is executable still want to see it?y # Asks before displaying executable
#! /bin/ksh

function dow
{

if [[-z 81 1]
(...)

$

case Conditionals

You might find yourself generating a series of if/elif/elif/elif/else syntax
and wondering whether a better way of handling a multiway test exists.
The case statement provides a succinct way to express multiway tests. This
construct is similar to a switch statement in some programming languages
and is vaguely similar to computed go tos. The syntax checks a certain
value against several cases. Each case is terminated by ;;, and the value to
be tested appears after the case syntax. The syntax is as follows (keywords
are bold):

case test_variable in

test_patterni) command(s) HH

test_pattern2) command(s) HH

pattern3|or_pattern4) command(s) HH

*) commands_to_execute_for_default_case HH

esac

The patterns can include file matching wildcards (?, *, and []). The follow-
ing example shows a case statement with patterns using the * to represent
multiple character match:

v

[=4
EXAMPLE

Ay
EXAMPLE

Looping Constructs 129

$ date

Mon Nov 20 22:49:15 EST 2000

$

$ date +%B

November

$

$ cat mon

#!/bin/ksh

month=$(date +%B) # get the month name

case $month in

J*)
print "Current month $month begins with a \"J\"."
3

M*) print "Current month $month begins with a \"M\"."
3

*) print "$month starts with letter other than J or M."
3

esac

$

$ mon

November starts with letter other than J or M.

$

Looping Constructs

In the next several sections of this chapter, you are introduced to four types
of looping mechanisms. A looping mechanism is what enables a script
writer to repeat a sequence of lines as many times as necessary. Without
looping capability, if you wanted to repeat the same three lines of com-
mands five times, you would have to simply type the lines in repetitively in
your script. Using a looping mechanism, a repeat sequence is formed and a
test is evaluated to determine whether the looping should repeat. As you
will see, the positioning of the test and the steps for executing the loop vary
slightly for the four flavors of looping.

This clunky technique does work, by the way. But it certainly has no ele-
gance to it. It’s like going to the prom in galoshes—you’ve got shoes on all
right, but you sure do look like a jerk.

The next example demonstrates galoshes at the prom:

$ cat galoshes

#! /bin/ksh
print "left"
print " right"

print "I'm dancing"

130

Chapter 6: Flow Control

print "left"
print " right"
print "I'm dancing"
print "left"
print " right"
print "I'm dancing"
print "left"
print " right"
print "I'm dancing"
print "left"
print " right"
print "I'm dancing"
$
$ galoshes
left

right
I'm dancing
left

right
I'm dancing
left

right
I'm dancing
left

right
I'm dancing
left

right

I'm dancing

$

Pretty ridiculous, huh? You know a better way must exist, and one does. In
fact, several better ways are available. Let’s have a look at them.

while Loops

The while loop is useful when you want to repeat a series of lines but aren’t
quite sure how many times to loop. Your script can set up a test to control
whether your logic continues within the loop or jumps out of the loop and
executes whichever commands appear after the loop. The general syntax

follows:

while test

do

command(s)

done

Ay
EXAMPLE

Looping Constructs 131

The commands between do and done repeat until the test evaluates to
false. Be aware, however, that if the test evaluates to false as you enter
the loop for the first time, the commands between do and done do not exe-
cute at all. The following example has our promgoer dancing slightly more
elegantly:

$ cat galoshes?

#! /bin/ksh

at_prom="yes"

integer count=0

while [[$at_prom == "yes"]] # Dance while at prom
do
print "left"
print " right"
print "I'm dancing"
count=count+1 # Keep track of dances
if ((count==5)) then at_prom="no"; fi # Alter control variable after 5
done
$
$ galoshes2
left
right
I'm dancing
left
right
I'm dancing
left
right
I'm dancing
left
right
I'm dancing
left
right

I'm dancing

$

The previous example could have used the count variable to control the
loop, but it gave me the opportunity to show you a different type of if test
and a new loop construct. Once again, keep in mind that the test part of a
while loop is at the top of the while loop. If at_prom were set to no at the
beginning of the script, our galoshes wearer would not have danced at all!

until Loops

The until loop is similar to the while loop except that the loop continues to
execute until the test result changes from false to true. So an until loop

132 Chapter 6: Flow Control

continues until some condition becomes true, whereas a while loop contin-
ues until a condition becomes false. The following example continues until
the variable time_to leave becomes yes:

W $ cat galoshes3
%‘ #! /bin/ksh
time_to_leave="no"
integer count=0
EXAMPLE

until [[$time_to_leave == "yes"]] # Begin until loop
do

print "left"

print " right"

print "I'm dancing"
count=count+1
if ((count==5)) then time_to_leave="yes"; fi
done # End until loop
print "Time to leave"
$
$ galoshes3
left

right
I'm dancing
left

right
I'm dancing
left

right
I'm dancing
left

right
I'm dancing
left

right
I'm dancing
Time to leave
$

for Loops

The for loop is typically used when the loop count is somewhat predictable.
It also lends itself to repeating the same action on a series of values. The
for loop has two syntax options. If your ksh is not ksh93 or beyond, you
will probably be restricted to the first style of syntax. The following is the
traditional for loop syntax:

Ny

/=4
EXAMPLE

Looping Constructs 133

for control variable in list of values
do

command(s)

done

The following example uses our dancing dude to illustrate a for loop. The
until loop is not necessary, but I'll leave it there so our dancer knows when
to get his galoshes home:

$ cat galoshes4

#! /bin/ksh
time_to_leave="no"
until [[$time_to_leave == "yes"]]
do
for dance in tango lambada twist chacha stroll # Begin for loop
do
print "left"
print " right"
print "I'm dancing the $dance!"
done # End the for loop
time_to_leave="yes"
done
print "Time to leave"
$
$ galoshes4
left
right
I'm dancing the tango!
left
right
I'm dancing the lambada!
left
right
I'm dancing the twist!
left
right
I'm dancing the chacha!
left
right

I'm dancing the stroll!
Time to leave
$

The newer form of the for loop matches what is available within the C pro-
gramming language. So if you have some experience with C, you will find
this very familiar. If not, I'll get you through it.

134

Chapter 6: Flow Control

Ny

/=4

EXAMPLE

Essentially, the newer style of for loop consists of a set of double parenthe-
ses within which are three semicolon-separated statements. The three
statements are the initializer, which is executed once; the test, which
causes the loop body to execute if it evaluates to true; and the iteration,
which can be used to increment (or decrement) a variable. The syntax is as
follows:
for ((initializer_command; test; increment_or_decrement))
do
command(s)
done

The following example uses the newer for loop syntax to keep track of the
time so that the dancer knows when to leave the prom:

$ cat galoshesb

#! /bin/ksh

time_to_leave="no"

integer time=0

set -A dances tango lambada twist chacha stroll # Array of dances

until [[$time to leave == "yes"]]
do
for ((hour=8; hour<12; hour++)) # New (ksh93) for loop format
do
time=hour-8
print -n "At $hour o'clock "
print "left"
print " right"
print "I'm dancing the ${dances[$time]}!\n"
done # End of for loop
time_to_leave="yes"
done
print "Time to leave"
$

$ galoshes5

Execute script

At 8 o'clock left
right

I'm dancing the tango!

At 9 o'clock left
right
I'm dancing the lambada!

Ay

/=4
EXAMPLE

Looping Constructs 135

At 10 o'clock left
right
I'm dancing the twist!

At 11 o'clock left
right
I'm dancing the chacha!

Time to leave
$

select Loops

The final looping construct is the select loop. It produces a simple num-
bered menu with choices for the user. The format of this loop is close to that
of the old for loop, except the for is replaced with select and the list con-
sists of menu items. The general syntax is as follows:

select control_variable in list_of_menu_items

do

command(s)

done

The user is prompted with the string contained in the PS3 variable. The
default prompt is #?, but it might be different on your system. If necessary,
you can customize a large menu with the LINES and COLUMNS variables. The
user’s response to the menu should be a number selected from the dis-
played menu list. The value entered by the user is stored in a variable
named REPLY.

The following example provides a menu of dances from which our dancer
can choose:

$ print $PS3 # Default prompt for select
#2
$
$ cat galoshes6
#! /bin/ksh
time_to_leave="no"
integer hour=8
PS3="Select a dance :" # New select prompt
select dance in tango lambada twist chacha stroll go_home # Menu of dances
do
print "left"
print " right"
case $dance in # Check dance choice
tango)
print "At $hour o'clock I'm ${dance}ing\n"

136

Chapter 6: Flow Control

lambada)

twist)

chacha)

stroll)

esac
done

$

$ galoshes6
1) tango

2) lambada
3) twist

4) chacha
5) stroll
6) go_home
Select a dance
left

hour=hour+1

L)

print "At $hour
hour=hour+1

35

print "At $hour
hour=hour+1
print "At $hour
hour=hour+1

35

print "At $hour
hour=hour+1

35

print "At $hour
exit

:3

right

At 8 o'clock I'm twisting

Select a dance
left

15

right

At 9 o'clock I'm strolling

Select a dance :
left

At 10 o'clock I'
$

6

right
m outta here.

o'clock I'm ${dance}ing\n"

o'clock I'm ${dance}ing\n"

o'clock I'm ${dance}ing\n"

o'clock I'm ${dance}ing\n"

o'clock I'm outta here."

Execute script

Ay

/=4
EXAMPLE

Backup Loop Example 137

Loop-Related Commands

The shell provides several loop-related commands to be used in special
logic circumstances. For instance, suppose you were executing a while loop
and wanted to skip the execution of the rest of the current pass of the loop
but continue processing the loop. The continue command provides this
capability.

You also might want to exit from a loop prematurely. The break command
provides this capability. If you want to exit from the script, you can use the
exit command. The exit command can be followed by an exit status, which
will be accessible outside the script through $2.

The shift command is a specialized command used to shift the positional
parameters (sometimes called command-line arguments) so that one fewer
exists than before the shift. The parameter dropped after a shift
command is the $1 (first) argument. The following example shows the shift
command used in a loop to access the next command-line argument:

$ cat argshift
#!/bin/ksh
This script echoes script arguments using
shift and until
integer next=1
until (($# == 0)) # Checks count, decremented by shift
do
echo "Parameter $next is $1"
shift # Shifts arguments
next=next+1
done

$

$ argshift den cheryl chris scott
Parameter 1 is den

Parameter 2 is cheryl

Parameter 3 is chris

Parameter 4 is scott

$

Backup Loop Example

The following example might stimulate some thoughts on the power of the
looping constructs learned in this chapter. The example takes the output of
a df command, isolates the file system names, places them in the list por-
tion of a for construct and performs a dump command on each one of them.
The level of the dump command is based on the day of the week (Sunday is

138

Chapter 6: Flow Control

Ay

/=4

EXAMPLE

level 0, or full dump day). You most likely will have to tweak this script to
make it work on your system, but the ideas are powerful and solid.

The script also does some pattern work to isolate the file system name with
no slashes (/home becomes home). But this causes a problem with the root
file system, so the script handles the special case of the root file system (/)
with more pattern work, yielding the backup location for the root file sys-
tem in /home/backup_root.

The date +%0w command yields the day of the week, with Sunday being day
0. This script would be a good candidate for inclusion as a crontab job so
that it could run every night. The dump command is usually restricted to the
root user, so this script would have to be run as root:

$ df | sed -e '1d' -e 's/.* /]! # Generates list of file systems
Deletes first header line
Preserves first field in other lines

/boot
/home
/usr
$
$ date +%0w # Generates numeric day of week
2
$
$ date
Tue Nov 21 02:10:40 EST 2000
$
$ fs_dir=/home # Syntax check
$ fs_nam=${fs_dir##/}
$ print $fs_nam
home # Isolates file system name
$
$ fs_dir=/
$ fs_nam=${fs_dir##/}
$ print $fs_nam
Root (/) will be a special case
$
$ fs_nam=${fs_nam: -root} # If fs_nam is blank, use "root"
$
$ print $fs_nam
root
$
$
$ cat backemup # Script starts
#!/bin/ksh
HHHHH AR R

Backup Loop Example

Script to perform incremental
backups on a daily basis with Sunday = 0
H##HHBHAHHH R R R B H
PATH=$PATH: /sbin: /usr/sbin
Get the file system directory names
for fs_dir in $(df | sed -e '1d' -e 's/.* //")
do
CHANGE /home/backup to appropriate tape/filename
fs_nam=${fs_dir##/}
fs_nam=${fs_nam:-root}
backup_loc=/home/backup_${fs_nam}
blevel=$(date +%0w)
print "\n*********************"
print "Starting level $blevel backup of $fs dir"
Do incremental backup
dump -${blevel}uf $backup_loc $fs_dir

if [[$2 =0]]
then
print "Backup of $fs_dir complete."
else
print "Error backing up $fs_dir"
fi
print "*********************\n"
done
$
$ su - # Become root
Password:

[root@linden /root]#
[root@linden /root]#
[root@linden /root]# ./backemup # No dot in PATH for root

kkhkkkkkkkkkkkkkkkkkkk%x

Starting level 2 backup of /
DUMP: Date of this level 2 dump: Tue Nov 21 02:16:31 2000
DUMP: Date of last level @ dump: the epoch
DUMP: Dumping /dev/hda8 (/) to /home/backup_root
(..2)
Starting level 2 backup of /boot
DUMP: Date of this level 2 dump: Tue Nov 21 02:17:30 2000
DUMP: Date of last level @ dump: the epoch
DUMP: Dumping /dev/hdal (/boot) to /home/backup_boot
(on2)
Starting level 2 backup of /home
DUMP: Date of this level 2 dump: Tue Nov 21 02:17:32 2000
DUMP: Date of last level @ dump: the epoch

139

140

Chapter 6: Flow Control

DUMP: Dumping /dev/hda6 (/home) to /home/backup_home

(v.2)
Starting level 2 backup of /usr
DUMP: Date of this level 2 dump: Tue Nov 21 02:18:09 2000
DUMP: Date of last level @ dump: the epoch
DUMP: Dumping /dev/hda5 (/usr) to /home/backup_usr

(...)

[root@linden /root]# exit # Back to normal user
logout

$

Chapter 7 adds to the powerful syntax introduced in this chapter. File tests
are introduced to build some sanity checking into your scripts. The use of
the filter type of command is discussed, and functions are presented to
enable you to build some modularity into your scripts. This chapter and the
next chapter should enable you to toss the galoshes and feel pretty confi-
dent about your potential for script-writing success.

Data Manipulation

Now that you have the power to control the flow of logic in your scripts, you
can learn how to manipulate data within a script. Data can be displayed,
changed, filtered, tested, compared, declared, or presented to a function.
This chapter shows you some examples of the many forms of data manipu-
lation.

Many powerful constructs are shown in this chapter. You will see several
examples of filters, as well as numerous test operators for files and strings.
Along the way you will see how to manipulate data in functions and use it
in computations.

This chapter teaches you the following:

How to use command-line functions

How to present arguments to functions

How to use function return values

The difference between local and global variables
How to use object-oriented discipline functions
How to use a recursive function

How to autoload a function

How to use functions to extend the Korn Shell
The power of filters

How to use test operators for file and string testing

144

Chapter 7: Data Manipulation

As you develop a script, you might find yourself repeating a sequence of
lines. An example is a sequence of commands to check for a yes or no
response from the user of your script. You might find the same script
sequence appearing many times throughout the script.

Let’s say the sequence of lines consists of 10 commands. If the sequence
needs to be repeated 50 times in a row, it is a candidate to be put in one
of the looping constructs discussed in Chapter 6, “Flow Control.”

But what if the 50 times that the sequence of 10 commands is to be
repeated turn out to be dispersed randomly over the body of your script?
Consider the following:

Lines

Lines

Lines

(Sequence of 10 commands)

Lines

Lines

(Sequence of 10 commands)

Other lines

Other lines

Lines

(Sequence of 10 commands)

(.. .)

This situation is not solved by any of the looping constructs from the previ-
ous chapter. You might be thinking that you can handle this by creating a
small script containing the sequence of 10 commands and then executing it
at the appropriate times. This idea works but involves excess overhead due
to the potential for many separate script invocations.

Korn Shell functions can contain many commands and do not cause a sepa-
rate script invocation when used. Functions provide a method to group
together commands that might require repetitive, distinct (nonloop) execu-
tions. Functions typically execute in the context of the environment in
which they are declared. They execute more quickly than dot scripts
(scripts run within the current context with the . command—for instance,
$. myscript) because they are preread by the shell, they can have local
variables, and they preserve positional parameters ($1, $2, and so on).

The two ways to define functions are POSIX-style and Korn Shell-style. The
Korn Shell supports both styles, which are differentiated by their syntax.
I'm going to present the POSIX-style syntax for reference only. I recom-
mend using the Korn Shell-style functions because they support local vari-
ables, unlike the POSIX-style functions, which do not.

POSIX syntax is as follows:

function_name()

Korn Shell syntax is as follows:

function name

Functions 145

In the previous code, function is a keyword.

Command-Line Functions

The following example declares a Korn Shell-style function called dow,
which displays the day of the week and has an option to set the variable
WEEKDAY to the current day. This example is typed at the interactive prompt
for illustration only. Normally, the following syntax appears at the begin-
ning of a script. Functions created at the command line are removed when

the shell exits:

$ function dow
> {

> if [[-z $1]]
wline

> then
date +%A
return 0
fi
case $1 in
-s) WEEKDAY=$(date +%A);;
*) print "Format is \ndow [-s]"
return 1;;
esac
}

V V. V V V V V V V

$

$ dow
Wednesday
$

$ dow -s
$

$ print $WEEKDAY
Wednesday
$

$ dow -x
Format is
dow [-s]
$

#

Check for existence of option on command

If not, display day of week on stdout
Return success

If -s is used, set variable WEEKDAY
Anything else is an error
Return failure

Sets variable silently

Invalid option

146

Chapter 7: Data Manipulation

A

[=1

EXAMPLE

Viewing Functions
Functions can be viewed with the following typeset options:

e typeset -f—Shows function names and definitions

* typeset +f—Shows names only

* typeset -f name of function—Shows named function definition only
The following example requests that the shell display the names of func-

tions it currently knows. The dow function is the one just created. The mc
function happened to be in existence on my Red Hat UNIX system:

$ typeset +f # Shows names only
dow
mc

The following example shows the actual contents of the function named mc.

$ typeset +f mc # Linux function found on Red Hat 6.1,
runs Midnight Commander visual shell
me()
{
mkdir -p ~/.mc/tmp 2> /dev/null # Make parent directories if needed
chmod 700 ~/.mc/tmp # Make sure owner has rwx permissions
MC=~/.mc/tmp/mc$$ - "SRANDOM" # Make a random filename, store in MC
/usr/bin/mc -P "$@" > "$MC" # Run the mc program
cd "'cat $MC'" # cd to temp directory
rm "$MC" # Remove temporary file
unset MC; # Clear variable
}
$

Function Arguments Versus Command-Line Arguments

The dow function shown previously checks for one argument. If it gets
passed no arguments, it assumes you want the output on the screen. If you
present it with the -s argument, it assumes you want to set the value of
the variable WEEKDAY. Note that command-line arguments presented to a
script do not automatically become command-line arguments to a function
executing within that script:

The following example creates a function named dow within a script named
dow1. The lesson to be learned from the example is that $1 inside of a
function refers to the first argument to the function, whereas $1 inside of a

Functions 147

script refers to the first positional parameter passed to the script on the
command line:

vy $ cat dowl
%3 #! /bin/ksh

— function dow # Defines function within this script
EXAMPLE
if [[-z $1]] # $1 is first argument to function
then
date +%A
return 0
fi
case $1 in
-s) WEEKDAY=$(date +%A);;
*) print "Format is \ndow [-s]"

return 1;;
esac
}
Script begins execution here
print "first arg is $1" # Script gets argument from command line
into $1
dow # Function call, presents no arguments
print "WEEKDAY contains $WEEKDAY"
$
$ chmod ug+x dowl # Make script executable
$
$. /dowt # Execute (not relying on PATH)
first arg is
Wednesday
WEEKDAY contains
$ dowl -s # Execute (relying on PATH)
-ksh: dowi: not found
$
$ echo $PATH # No dot (current directory) in PATH
fusr/local/bin:/bin:/usr/bin:/usr/X11R6/bin
$
$ PATH=$PATH: . # Add current directory to PATH
$

$ echo $PATH

Jusr/local/bin:/bin:/usr/bin:/usr/X11R6/bin:.

$

$ dowl -s # Present argument to script
first arg is -s

148

Chapter 7: Data Manipulation

Ay

/=4

EXAMPLE

Wednesday
WEEKDAY contains # Variable not set
$

If you change the script so you call the dow function and present $1 to it,
you effectively are giving the script’s command-line argument to the
function:

$ cat dow2
#! /bin/ksh

function dow
}
(+n4) # Same as in dowl

}

Script begins execution here

print "first arg is $1"

dow $1 # Added $1
print "WEEKDAY contains $WEEKDAY"

$

$ dow2 -s

first arg is -s

WEEKDAY contains Wednesday # WEEKDAY is set
$

Function Return Values (Integer)

The function can pass a return value back to the calling script by using the
return statement. Typically, this technique is used to pass small (< 255)
integer values back to the script. The return value then can be checked by
the calling script by examining the contents of $?. The next example adds
some return statements to the dow function and checks the returned value:
$ cat dow3

#! /bin/ksh

function dow

(.n2)
case $1 in
-s) WEEKDAY=$(date +%A)
return 2;; # Added this return statement
#Returns value to dow3 script
*) print "Format is \ndow [-s]"
return 1;; # Returns value to dow3 script
esac
}

Script begins execution here

Functions 149

print "first arg is $1"
dow $1 # Call dow
case $? in # Check return value from function dow
0) print "Displayed";;

1) print "Error";;

2) print "Set";;

*) print "undefined";;
esac
print "WEEKDAY contains $WEEKDAY"
return 0 # This value is returned to the shell
$
$ dow3
first arg is
Wednesday
Displayed # Function returned 0
WEEKDAY contains
$
$ dow3 -s
first arg is -s
Set # Function returned 2
WEEKDAY contains Wednesday
$
$ dow3 -x
first arg is -x
Format is
dow [-s]
Error # Function returned 1
WEEKDAY contains
$
$ print $70

Script returned @ to the shell

Function Return Values (String)

If necessary, you can return a string from a script. You simply enclose the
function call in a set of parentheses preceded by a dollar sign. In effect, you
are capturing the script’s output as a string. Typically, you would store the
string in a variable. In the next example, I have removed a few lines from
the script, but included syntax to enable the function to return a string:

$ cat dow4

#! /bin/ksh

function dow

{

(«.2) # Same as previous examples
}

Script begins execution here

150 Chapter 7: Data Manipulation

v

[=4
EXAMPLE

retval=$(dow $1) # Captures function output
in variable 'retval’
print "String value returned from the function is $retval."
Prints returned string
print "WEEKDAY contains $WEEKDAY"
return 0
$
$ dow4
String value returned from the function is Wednesday.
String returned from function
WEEKDAY contains
$

Function Programming Details

The next few subtopics might be a bit on the shaky side for nonprogram-
mers. But hey, we’re here to learn how to write scripts (which are very pro-
gram-like), so damn the torpedoes, let’s dive in! You are about to learn that
functions can have local and global variables, present function arguments
by value or by reference, be recursive, be autoloaded, be made to execute in
an object-oriented way, and even be used to execute home-grown C pro-
gramming language functions. If you are starting to feel queasy, put a yel-
low tab in the book at this point and move on to the math section of this
chapter. Come back here after you have digested the rest of the information
in this very important chapter. If you’re still with me, strap in tightly. Here
we go!

Local Variables

Earlier in this chapter, I mentioned that a function can declare a local
variable, which is a variable whose value is meaningful only within the
function. Any variable that is explicitly declared within the function is con-
sidered local to that function. So, if funcA uses a variable named count and
funcB also uses a variable named count, no problems would occur if the
variables were local to each function. In the next example, you mess with
your trusty dow function and overtly declare your intentions to use the vari-
able WEEKDAY. You do this within the curly braces of the function, which
makes WEEKDAY local to the function dow:

$ cat dowbs

#! /bin/ksh

function dow

typeset WEEKDAY # Declare local variable
if [[-z $1]]
then

i

[=4
EXAMPLE

Function Programming Details 151

date +%A
return 0
fi
case $1 in

-s) WEEKDAY=$(date +%A)
print "Inside the function, WEEKDAY contains $WEEKDAY."
Access local variable within function

return 2;;
*) print "Format is \ndow [-s]"
return 1;;
esac
}
Script begins execution here
dow $1

print "Outside the function, WEEKDAY contains $WEEKDAY"
Try to access WEEKDAY outside of function
return 0
$
$ dow5 -s
Inside the function, WEEKDAY contains Wednesday.
Outside the function, WEEKDAY contains
Not available outside of function

Global Variables

You might be wondering why accessing variables inside and outside of func-
tions wasn’t a problem in the earlier scripts examples. When ksh sees a
variable for the first time, it checks to see whether it has been declared; if
not, it automatically assumes it is a global variable. Global variables are
available to all functions within the script. If you feel compelled to declare
your variables (or your boss demands it), you can make the variable global
by declaring it outside any function boundaries. The following example
declares WEEKDAY as a global variable. If a local variable with the same
name as the global variable exists, the local variable takes precedence
within the function:

$ cat dowé

#! /bin/ksh

typeset WEEKDAY # Global variable

function dow

{
if [[-z 81 1]
then
date +%A
return 0
fi

152

Chapter 7: Data Manipulation

case $1 in
-s) WEEKDAY=$(date +%A)
print "Inside the function, WEEKDAY contains $WEEKDAY."
Global variable accessed within function

return 2;;
*) print "Format is \ndow [-s]"
return 1;;
esac
}
Script begins execution here
dow $1

print "Outside the function, WEEKDAY contains $WEEKDAY."
Global variable accessed outside of function
return 0
$
$ dow6 -s
Inside the function, WEEKDAY contains Wednesday.
Outside the function, WEEKDAY contains Wednesday.
$
$ print $WEEKDAY # Globals are not set at the shell level

$

Argument Passing by Reference

When the dowé script calls the dow function, you present an argument to the
function. Don’t think of the argument as being a yelling match between the
function and the script. Instead, think of it as a reasonable conversation in
which points are made and you actually persuade someone to act differ-
ently based on your eloquent dissertation. The latter case more accurately
describes what happens when arguments are presented to a function. They
are items of information the function can process and base subsequent
actions on.

Perhaps you’d like your conversation to have a tangible result—meaning
you are not happy with someone being persuaded by your argument.
Rather, you want him to really see the light and make a change. It’s like
the difference between convincing someone that it’s a good idea to donate to
the Salvation Army, and convincing him to put a few bucks in the pot. How

can you get your functions to have an effect on the pot (argument) they are
handed?

This can be achieved by presenting your argument by reference. The pro-
grammers know that this means presenting the address of a variable,
rather than the current contents of a variable. So far, all the arguments in

Ay

/=4
EXAMPLE

Function Programming Details 153

this chapter have been by value, and most of the time, you will use by value
style arguments. But here’s the news on by-reference argument passing:

Setting up by reference argument passing consists of two parts. First, the
calling script must present the argument to the function without preceding
it with the dollar sign. (Remember that the $ in front of a variable tells the
shell to find the value of the variable.) You don’t want to present the value
of a variable as an argument; instead, you want to present the variable
name itself as an argument.

Second, the function must declare the variable using the nameref keyword.
This prepares the function for the responsibility of altering the contents of
a variable in the caller’s environment:

$ cat dow7
#! /bin/ksh
function dow

nameref optarg=$1 # Use nameref to define optarg
as a by reference variable

if [[-z $optarg]]
then

date +%A

return 0
fi
case $optarg in
-s) WEEKDAY=$(date +%A)

optarg="set" # Alter by ref_arg indirectly

return 2;;
*) print "Format is \ndow [-s]"

return 1;;
esac
}
Script begins execution here
by ref_arg=$1 # Create by ref_arg to pass
print "Before function call, by ref_arg contains $by ref_arg."
dow by ref_arg
print "After function call, by ref_arg contains $by ref_arg."
return 0
$
$ dow7 -s
Before function call, by ref_arg contains -s.
After function call, by ref_arg contains set.

Note the change after the function is called

$

154

Chapter 7: Data Manipulation

Ay

/=4

EXAMPLE

NOTE

The nameref keyword is available in ksh93 and beyond. Check your version by pressing
the Ctrl+V sequence.

Object-Oriented Discipline Functions

One of the cornerstone concepts of object-oriented programming is to be
able to associate certain functions with certain actions on a data object. The
Korn Shell provides for three types of functions you can associate with
actions on a data object. (Note that discipline functions are available in
ksh93 and above.) As you might have guessed, the data object in the Korn
Shell is a shell variable. The supported action functions are as follows:

¢ get—Called automatically when the variable is accessed (referred to
as an accessor method in C++)

¢ set—Called automatically when the variable is assigned a value
(referred to as an assignor method in C++)

¢ unset—Called automatically when the variable is unset (referred to as
a destructor method in C++)

Note that all these functions are called automatically—you never call the
function explicitly. It’s called for you as the variable is used during the run
of your script. Sounds pretty different, huh? This concept is a bit of a leap
for the Korn Shell (and I suspect it is for you and me, too). Needless to say,
some special syntax is required to support this capability. The functions
called as described previously are referred to as discipline functions. This is
probably because they must be disciplined enough to adhere to a strict set
of rules dictating when they are to be called.

For variable x, the discipline functions can be defined using the function
names of x.get, x.set, and x.unset. Within the discipline functions, special
reserved variables are available to access the name of the variable you are
manipulating (.sh.name), the value of the variable you are manipulating
(.sh.value), and the name of the subscript if you are examining an array
element (.sh.subscript). The following example sets up several discipline
functions using several reserved variables:

$ cat dow8

#! /bin/ksh

integer count=0 # Global variable
function data_object.set # Set discipline function

for variable data_object

{

Function Programming Details 155

print "In the set function."

vararr[count]=${.sh.value} # Reserved variable
count=count+1

}

function data_object.get # Get discipline function

for variable data_object

{

print "In the get function."

vararr[count]=${.sh.name}

count=count+1

}

Script begins execution here

data_object=15 # Data object being disciplined

print "data_object contains $data_object"

for z in ${vararr[*]} # Prints strings from array filled in
by discipline functions

do print $z

done

return 0

$

$ dow8

In the set function.

In the get function.

data_object contains 15

15

data_object

$

Recursive Functions

You probably won’t be needing recursive functions very often. A recursive
function is one within whose curly braces a call is made to itself. This is a
powerful tool, but it can be a bit tricky. Have you ever looked in a mirror on
one wall of a barber shop, only to see the reflection of the mirror on the
other wall, which has the reflection of the first wall, and so on? If so, then
you’ve experienced a form of recursion gone amok. The following example
shows a reasonable use of a recursive function to generate the factorial of
an input number (a factorial of 4 = 4*3%2%1):

$ cat recurse

#! /bin/ksh
integer res # Global variable
function factorial # Recursive function

{

156 Chapter 7: Data Manipulation

integer ret_val=0
integer factarg=0

if ((($1<=1))
then
res=1
return 0
else

((factarg = $1 - 1))
factorial $factarg # Recursive call
((ret_val = $1 * $res))
res=$ret_val
return 0

fi

}

Script begins execution here

factorial $1

printf "Factorial of %d is %d\n" $1 $res

return 0

$

$ recurse 3

Factorial of 3 is 6

$ recurse 7

Factorial of 7 is 5040

$

$ recurse 8

Factorial of 8 is 40320

$

$ recurse 12

Factorial of 12 is 479001600

$

Using autoload on Functions

As you get more comfortable with functions and start to make some corkers,
you should consider sharing them with your fellow workers. Korn Shell pro-
vides a method for creating a repository for functions that can be referenced
from script files. The repository is nothing more than a directory into which
you place files named after the functions they contain. The directory must
be pointed to using the FPATH reserved variable. In addition, the script must
reference the function with the autoload keyword. The following example
removes the factorial function from the recurse script and places it in an
autoload directory:

Ay
EXAMPLE

Function Programming Details

$ cat recurseft

#! /bin/ksh

integer res

autoload factorial # Autoload request
Script begins execution here

factorial $1

printf "Factorial of %d is %d\n" $1 $res

return 0

$

$ 1s autofuncs # Autoload directory
factorial

$

$ cat autofuncs/factorial # Function factorial is in autoload directory

function factorial

{
integer ret_val=0
integer factarg=0

if ((81 <=1))

157

then
res=1
return 0
else
((factarg = $1 - 1))
factorial $factarg
((ret_val = $1 * $res))
res=$ret_val
return 0
fi
}
$
$ recursel 5
recursel: line 5: function: not found # Shell must know autoload directory
$

$ print $FPATH

$ FPATH=/home/obrien/scripts/autofuncs # Set FPATH variable
$

$ recursei

recursel: line 5: function: not found # Must be exported
$ export FPATH

$

$ recursel 5 # Works now

Factorial of 5 is 120
$

158

Chapter 7: Data Manipulation

Built-In Extension Functions

If you have a hotshot C programmer handy (or if you are one), you will be
interested in this section. The Korn Shell has many built-in functions.
Some of them we use repetitively without giving it any thought, such as cd,
print, umask, and typeset. A complete list of built-ins is at the end of this
section. What exactly are the built-ins built into? They are functions (mas-
querading as commands) that are built into the ksh code. They do not cause
a new process to be created to function (as a command such as 1s would).
Therefore, built-ins have less overhead, and their use can improve the per-
formance of your script.

Well, suppose you're interested in the improvement of speed, but the func-
tionality you want is not available in a currently existing built-in? In the
UNIX tradition, you can roll your own. The next example shows the cre-
ation of a home-grown extension to the Korn Shell using the built-in func-
tion extension capability. This example makes a built-in named ppid, which
displays the PID of the parent process of the one currently executing. It’s
not the most exciting example, but it will give you the idea:

$ cat getppidfunc.c

#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
int b_ppid(int argc, char *argv[]) # Function name must start with b_
{
printf("Parent PID is %d\n",getppid());
return(EXIT_SUCCESS);
}
$
$ cc -c getppidfunc.c # Produce an object file
$1s *.0
getppidfunc.o
$
$ 1d -share -o ./libppid.so getppidfunc.o
Create a shared library
$
$ builtin -f ./libppid.so ppid # Register the new builtin
$
$ ppid # Try it out
Parent PID is 986
$
$ builtin # Show all builtins

alarm
alias

bg
/bin/basename
/bin/cat
/bin/chmod
/bin/cmp
/bin/dirname
/bin/head
/bin/mkdir
/bin/uname
break
builtin

cd

command
continue
disown
echo

eval

exec

exit
export
false

fc

fg

getconf
getopts
hash

hist

jobs

kill

let

login

ppid

print
printf

pwd

read
readonly
return

set

shift
sleep

test

trap

true

Function Programming Details

Hey, that's ours

159

160 Chapter 7: Data Manipulation

type

typeset
ulimit

umask
unalias
unset
/usr/bin/cut
/usr/bin/logname
/usr/bin/wc
vmap

vpath

wait

whence

$

One of the more common data manipulation needs involves arithmetic. You
saw a few simple math operations in some of the sample scripts in the pre-
vious section of this chapter. The Korn Shell provides the standard add,
subtract, multiply, and divide capabilities. Additionally, Korn Shell 93
greatly expands the math options available to the script writer by providing
floating-point variables and additional canned math functions such as
sin(), cos(), tan(), sqrt(), and others.

Korn Shell 93 also has provisions for various base number systems.
Because the shell provides different base numbering systems, it also pro-
vides the tools to use those bases. Not that the average shell script writer
will need them very often, but the Korn shell actually provides bitwise
operators along with the integer operators.

Two ways exist to indicate to the shell that you want a mathematical opera-
tion performed. You can enclose your arithmetic in a set of double parenthe-
ses, as in the following:

((count=$count+1))

Or, you can use the let statement:

let count=count+1

Note that the let statement variable (count) is not preceded by a $. This
works only if the variable—count in this case—has been previously
declared as an integer. Otherwise, the dollar sign is mandatory. Besides
addition, Table 7.1 shows the basic Korn Shell arithmetic operators.

v

[=4
EXAMPLE

Math 161

Table 7.1: Arithmetic operators

Operator Operation

+ Addition
Subtraction

* Multiplication

/ Division

% Modulo

>> Bit-shift right

<< Bit-shift left

» Exclusive or

~ 1’s complement

& Bit-wise and

| Bit-wise or

= Assignment

op= +=, =, ...

++ Increment
Decrement

Note that many bit-oriented operations are supported. Several of these are
used in the example at the end of this section. If you're going to become a
bithead in your scripts, you'll probably want to express values in number-
ing systems other than good old base 10. A typical base 10 variable declara-
tion might look like this:

$ typeset -i a=17

$ ((a=atl))

$ print $a

18

$ integer b=12
$ let a=atb

$ print $a

30

To indicate hex (base 16), you would use the following:

$ typeset -i16 hexnum=5A # Shell needs to be told that 5A is hex
-ksh: typeset: 5A: arithmetic syntax error

$

$ typeset -i16 hexnum=16#5A # Base#value is the correct format

$

$ print $hexnum

16#5a

$

$ printf "Ssd\n" $hexnum

90 # Decimal value displayed

162 Chapter 7: Data Manipulation

NOTE

Be aware that different versions of ksh provide varying levels of support for number
bases.

You also can represent integer constants of any base using the previous for-
mat for hex. Simply replace the 16 with the number representing the base
you want to use:

$ typeset -i2 binnum=2#110 # Binary 110

$

$ print $binnum

2#110

$

$ typeset -i decnum=0

$

$ let decnum=binnum

$

$ print $decnum

6 # Is six in decimal

$

Script writers have many built-in math functions at their disposal. Most of
these are new with Korn Shell 93, so don’t be surprised if you can’t find
these in older ksh implementations. I see most of these as icing on the cake,
anyway. If you need to get down to this level, you will probably end up writ-
ing a C or FORTRAN program. However, these functions can be useful for
prototyping your logic. Table 7.2 lists the math functions.

Table 7.2: Math functions

Function Operation

abs Absolute value
acos Arc cosine

asin Arc sine

atan Arc tangent

cos Cosine

cosh Hyperbolic cosine
exp ~2.718 raised to a power
int Integer truncation
log Logarithm

sin Sine

sinh Hyperbolic sine
sqrt Square root

tan Tangent

tanh Hyperbolic tangent

v

[=4
EXAMPLE

Math 163

As an example, let’s look at the sqrt function. This returns the square root
of its argument. Let’s see, 9 times 9 is 81, right? So the square root of 81
should be 9. But let’s make it a bit more difficult for the sqrt function. Let’s
ask it to figure out the square root of 82. The answer should be a bit over 9,
right? But how will the shell deal with the fractional value? Let’s see. This
example uses the sqrt math function and also introduces the new floating-
point capabilities within ksh:

$ ((z=sqrt(82)))

“

$ print $z
9.05538513814
$

Pretty slick, huh? You can declare a variable to be floating point using the
typeset command or the float command:

$ typeset -f fl3=4.5 # Declaring a float

$

$ print $f13

.5

float fl4=5.4 # Alternative float declaration

print $fl14
.4

let tot=f13+fl4 # Variable tot holds float result

print $tot
.9

((trunc=int(tot))) # Use int function to truncate tot

print $trunc

P O A B P OB B UL LB D

The following script uses several base numbering systems (base 8, 2, and
10) and shows some of the mathematical power of the Korn Shell. Along the
way, it also provides a chance to revisit the grimy underbelly of the umask
command. Don’t forget that ~ is the one’s complement operator (flip the
bits), and & is the bit-wise and operator. Also note that ${defa#*#} is a
request for substring removal—the first # removes the smallest matching
left pattern. The pattern to be removed is *#, which means any bunch of
characters up to and including the first # in the string. In this case, the

164 Chapter 7: Data Manipulation

string is something like 2#111100000. The goal is to remove the 24, as
shown in the following example:

$ cat mask_magic

#1/bin/ksh

#

Script which will display default

permissions in formatted fashion

based on the current umask setting

#

typeset -i2 defa # Make variable defa display in binary
typeset -i onescomp

((onescomp=~(8#$(umask)))) # Get one's complement of current umask

((defa=(8#666)&onescomp)) # Calculate default permission mask
default perm=${defa#*#} # Strip off leading 2#

print "Default regular file permissions with current umask ($(umask))"
print "u g o'

print ' '

print "rwxrwxrwx"
print $default_perm

print "
print "Default directory file permissions with current umask ($(umask))"
typeset -i2 ddefa # make ddefa display in binary

((ddefa=(8#777)&onescomp)) # Calculate default permission mask
for directory

default perm=${ddefa#*#} # strip off leading 2#
print "u g o"
print ' '

print "rwxrwxrwx"

print $default_perm

print ""

print "1s are on, 0s are off"

$

$ umask

0002

$

$ mask_magic

Default regular file permissions with current umask (0002)
u g o

PWX WX rwX
110110100 # Represents rw-rw-r--

Default directory file permissions with current umask (0002)
u g o

Filters 165

rPWXrWXrwx
111111101 # Represents rwxrwxr-x

1s are on, 0s are off

$

$ umask 027 # Change to a different umask value
$

$ umask

0027

$

$ mask_magic

Default regular file permissions with current umask (0027)

u g o

PWXPWX PWX
110100000 # New default for files is rw-r-----

Default directory file permissions with current umask (0027)
u g o

PWXPWXPWX
111101000 # New default for directories is rwxr-x---

1s are on, 0s are off
$

We are often called on to filter the barrage of visual input we face every
day. Depending on your nature, you might have filtered out the view of
most of the oddly shaped and sized folks at the public beach last summer.
After this filtering, you were left with a few choice items upon which you
wanted to spend some processing time.

The Korn Shell provides many mechanisms for filtering data. You probably
recognize some of these mechanisms as commands you use everyday. But
most likely you don’t usually consider the fact that the following are all fil-
ters: head, tail, grep, awk, sed, wc, tr, sort, unig, more, cat, and so on.

What is the common thread that binds the previous list together as filters?
They all expect their input from standard input (stdin) and place their out-
put on standard output (stdout). This seemingly innocuous characteristic
can become a very powerful tool in the hands of a skilled Korn Shell user or
script writer.

166 Chapter 7: Data Manipulation

Ay
Bl
[=4

EXAMPLE

Filters are particularly useful in a pipeline of commands. Pipes are one of
the distinguishing features of UNIX shells. The basic idea is that the out-
put of one command is piped to another command as its standard input.
Thus, filter commands are important components of pipelines. Think of a
plumbing pipe with threads on each end. UNIX processes get threaded onto
each end of the pipe. The image is even better if you tilt the left end of the
pipe up a bit, so the information can flow in only one direction. Now you’ve
got the correct picture of a pipe. It is a unidirectional communication chan-
nel between two processes in which the left process presents its output to
the right process as input.

$1s-R /| more

Figure 7.1: A pipe enables the unidirectional communication of information
between one process and another.

You can have multiple pipes in a command line. This promotes a toolkit
philosophy of command interface. So you can tinker with pipes and cobble
together a single command that accomplishes what would normally take a
program or a script to accomplish. Eventually you could assign an alias to
your pipeline to reduce your typing and have a convenient name by which
to remember it. The following example sorts an 1s output based on file size
and reports on the five largest files:

$1s -1

total 29

drwxrwxr-x 2 obrien obrien 1024 Oct 12 00:02 autofuncs
-PWXPWXI - - 1 obrien obrien 266 Oct 11 14:19 dowt
-PWXPWXI - - 1 obrien obrien 269 Oct 11 14:35 dow2

- PWXPWXT - - 1 obrien obrien 393 Oct 11 14:59 dow3

- PWXPWXT - - 1 obrien obrien 336 Oct 11 15:15 dow4
-PWXPWXT - - 1 obrien obrien 364 Oct 11 15:55 dowb
-PWXPWXI - - 1 obrien obrien 364 Oct 11 16:03 dow6

- PWXPWXT - - 1 obrien obrien 425 Oct 11 17:08 dow7
-PWXPWXT - - 1 obrien obrien 363 Oct 11 22:26 dow8
-rwxrwxr-x 1 obrien obrien 11804 Oct 12 00:19 getppid

“rW-rw-r- -
“IPW-rw-r- -
“IPW-rw-r- -
-PWXPWXI - X
-PWXIPWXI - -
-PWXIPWXI - -
-PWXPWXT - -

$

- a4 s

$ 1s -1 | sort

- PWXPWXT - X
- PWXPWXT - X
drwxrwxr -x
SPW-rW-r- -
-PWXPWXI - -
-PWXPWXP - -
-PWXPWXT - -
-PWXPWXT - -
-PWXPWXT - -
-PWXPWXP - -
- PWXPWXT - -
- PWXPWXT - -
- PWXPWXT - -
- PWXPWXT - -
SPW-rW-r- -
- PWXPWXT - -
SPW-PW-r- -
total 29

$

1
1
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1

$ 1s -1 | sort

- PWXPWXT - X
- PWXPWXT - X
drwxrwxr -x
SPW-PW-r- -
- PWXPWXT - -

$

1

1
2
1
1

obrien
obrien
obrien
obrien
obrien
obrien
obrien

+4nr

obrien
obrien
obrien
obrien
obrien
obrien
obrien
obrien
obrien
obrien
obrien
obrien
obrien
obrien
obrien
obrien
obrien

+4nr |
obrien
obrien
obrien
obrien
obrien

$ alias top5='ls -1 |

$

$ top5

- PWXPWXI - X
-PWXPWXT - X
drwxrwxr -x
SPW-PW-r- -
-PWXPWXP - -

$

1
1
2
1
1

obrien
obrien
obrien
obrien
obrien

obrien
obrien
obrien
obrien
obrien
obrien
obrien

98
160
984

2006
923
330
141

Oct
Oct
Oct
Oct
Oct
Oct
Oct

12
12
12
12
12
11
12

00:
00:
00:
00:
09:
23:
00:

Sorts after skipping 4

obrien
obrien
obrien
obrien
obrien
obrien
obrien
obrien
obrien
obrien
obrien
obrien
obrien
obrien
obrien
obrien
obrien

head -5
obrien
obrien
obrien
obrien
obrien

11804
2006
1024

984
923
425
393
364
364
363
336
330
269
266
160
141

98

11804
2006
1024

984
923

sort +4nr | head -5

obrien
obrien
obrien
obrien
obrien

11804
2006
1024

984
923

Oct
Oct
Oct
Oct
Oct
Oct
Oct
Oct
Oct
Oct
Oct
Oct
Oct
Oct
Oct
Oct
Oct

Oct
Oct
Oct
Oct
Oct

Oct
Oct
Oct
Oct
Oct

12
12
12
12
12
11
11
11
11
11
11
11
11
11
12
12
12

00:
00:
00:
00:
09:
17:
14:
15:
16:
22:
15:
23:
14:
14:
00:
00:
00:

19
23
23
25
50
41
03

fields, numeric, reverse

19
25
02
23
50
08
59
55
03
26
15
41
35
19
23
03
19

Filters

getppid.c
getppidfunc.c
getppidfunc.o
libppid.so
mask_magic
recurse
recursef

getppid
libppid.so
autofuncs
getppidfunc.o
mask_magic
dow7

dow3

dow5

dow6

dow8

dow4

recurse

dow2

dow1
getppidfunc.c
recurset
getppid.c

Shows top 5 only

12 00:19 getppid

12 00:25 libppid.so

12 00:02 autofuncs

12 00:23 getppidfunc.o
12 09:50 mask_magic

Make an alias

Use the alias

12 00:19 getppid

12 00:25 libppid.so

12 00:02 autofuncs

12 00:23 getppidfunc.o
12 09:50 mask_magic

167

The next example uses many filters, including cat, grep, xargs, sed, awk,
sort, unig, and others. It was created to make a master HTML file that can

168

Chapter 7: Data Manipulation

be read into a browser and provide access to locations in many files conve-
niently. The idea here is to look at it as an example of pipes and filters.
Along the way, it just might be useful for some of you. When you open this
file in your browser, it displays alphabetized list of URLs to access with a
brief note on what they are about.

First, the script creates a file full of the names and locations of htm and
html files. Feel free to give the script a wider scope if you want. I chose the
directory in the example so the output wouldn’t go on forever. The xargs
command executes the grep command on each file it sees coming in the
pipe. The cat command opens the file created by the find command and
feeds the names to xargs, which kicks in the appropriate grep commands.
Without using xargs, the grep would create a command line too large for
the shell to swallow, and the script would fail. The curly braces in the grep
command function as the placeholders for the filenames xargs is being fed.
The /etc/hosts seems spectacularly out of place. I agree. But without it,
grep thinks it is searching through only one file, so it doesn’t bother dis-
playing the name of the file in which it found the string match. (There’s
probably a better way.) The -i means ignore case sensitivity.

So, now you have a bunch of lines containing a filename and some form of
the string “title”. The next sequence of sed removes all the “title” strings
and replaces the first : on every line with the @ symbol. Sort that output for
sanity, and then present the sort results to awk, which recognizes the @ sym-
bol as the field separator and produces a line containing the <A HREF= nota-
tion for HTML. The $1 and $2 in the awk command are not to be confused
with the $1 and $2 for command-line parameters. Within awk, the $1 repre-
sents input field number 1, and $2 represents field number 2. The final sort
ignores blanks (b), folds cases (f, which means it ignores case), considers
characters only in keys (i), uses the > as the field separator (-t \>), and
skips one field before getting to the key field (+1). Finally, the uniq removes
any duplicate lines.

It’s not the most friendly script you’ll see in this book, but it does serve to
emphasize the power of pipes, filters, and scripts. I call it “ouch” because of
all the pain it caused when I put it together:

$ 1s /usr/doc/bzip2-0.9.5¢c # Target could be scoped
more widely if desired

README manual_2.html manual_4.html

manual_1.html manual_3.html manual_toc.html

$

$ cat oucht

#1/bin/ksh

Create the tmp file that holds the html files
find $1 -name "*.htm*" -print > web.tmp # Find all htm and html files

Testing Files 169

ouch command ...

cat web.tmp | xargs -i grep -i '<title>' {} /etc/hosts| sed -e 's/<TITLE>//'\
-e 's/<\/TITLE>//' -e 's/<title>//' \

-e 's/<\/title>//' -e 's/:/@/"\
| sort | awk -F@ '{ printf("%s\n",$1,$2); }'\
| sort -bfi -t \> +1 | uniq > jimeee.html

$

$ ouch1 /usr/doc/bzip2-0.9.5¢C # Execute the script

$

$ cat jimeee.html # Output file for use in browser

bzip2 and libbzip2 - How
to use bzip2

bzip2 and libbzip2 - Introduction

bzip2 and libbzip2 - Misc

ellanea

bzip2 and libbzip2 - Prog

ramming with libbzip2

bzip2 and libbzip2 - Ta

ble of Contents

$

Testing Files

Before walking on a frozen pond during early winter, don’t you test it first?
You know, have your little brother go out on it and see whether he falls
through. (Kidding!) Likewise, you might want to test files and strings
before you march out to the center of the ice and end up falling through.

Sometimes the data to be manipulated is the name of a file. Your script
might need to open the file and process the lines in the file. If the file is an
executable program or a script, the processing of the file could involve exe-
cuting it. If it is a directory, you might want to get a listing of the files in
the directory. So where does the data manipulation come into the picture?

Before opening a file for reading, you might want to check that the file con-

tains what you expect it to contain. Your script might be expecting a file full
of ASCII characters, but the user might have presented a directory file—or

worse yet, a compiled and linked executable!

170

Chapter 7: Data Manipulation

NOTE

Directory files contain a mix of ASCII characters and binary data. The ASCII characters
represent filenames, and the binary data represents an inode number (or some other
offset into an array of file header metadata).

The result is that you get some readable stuff onscreen, but you probably
also get some weird beeps, backward question marks, and other gibberish.
The gibberish would be overwhelming if you had tried to access a nonscript
executable file.

Therefore, it would be to your advantage to test the filename the user has
presented to ensure it will function as your script expects it to function.

For instance, if a script were expecting a directory file, the script could cap-
ture the output of an 1s -1 filename command and check the first charac-
ter to see whether it is a directory (the first character would be a “d”). You
also could use a similar technique to check for an executable. In addition,
you could use the file command to find out whether the file is a script.

These solutions would work. And that’s a good thing, right? But the over-
head would be exorbitant, and it would just be totally clunky. (“Clunky” is
a techno term for not-so-good.)

The Korn Shell provides numerous test operators to efficiently handle situ-
ations in which file existence or characteristics should be checked (see
Table 7.3).

Table 7.3: Test conditions

Test Condition True If (Note: Each Category Requires Existence)

file File exists (same as -a).
file File is readable.

file File is writeable.

file File is executable.

file File exists and is a regular file.
file User owns it.

file It's a directory file.

file File exists and is non-empty.
file It is character special.

file It is block special.

file It is named pipe.

file It is setuid bit set.

file It is setgid bit set.

file It is sticky bit set.

file It is a symbolic link.

file User is in same group.
file It is a socket.

mnm O T xX@ c T o o0 »n a o -h X = 3 0

i

[=4
EXAMPLE

Testing Files 171

The following example tests to see whether a few files are executable. Note
that the [[1] notation provides the test capability and that the command
if can be used in a script for more reasonable syntax. For you C program-
mers, note that @ means yes (or true), whereas non-zero means no (or false).
This is the exact opposite of what you are used to within the C program-
ming language, where @ means false and non-zero means true. Read it and
weep:

$ [[-x dow5]] # Is dow5 executable?

$ echo $?

0 # 0 means a successful test (yes)
$ [[-x web.tmp 1] # Is web.tmp executable?

$ echo $?

1 # 1 means a failed test (no)

$

Testing Strings

If the data to be manipulated consists of character strings, the Korn Shell
provides several special test operators for handling typical string manipula-
tions (see Table 7.4). For instance, you might need to check whether a
string variable is empty before presenting it to a function or using it in a
test.

Table 7.4: String tests

Test Condition True If

-z string string is zero length

-n string string is non-zero length

-0 option option iS on

-t [unit] unit is associated with a terminal (default unit 1)

Generally, the command after an if statement can be

® [[test-expression 1], which allows multiple expressions, grouped
with (), !, &&, and | |

For instance
[[(($a>$b) && ($c<$d)) || !($e<s$f) 11

tests whether either a>b and c<d, or e is not less than f.
* An arithmetic expression using ((...))

¢ A standard command

172

Chapter 7: Data Manipulation

Some conditional tests are specific to strings:
e if [[str1=str2]]—True if strings are equal
e if [[str1 != str2]]—True if strings are not equal
o if [[str1 > str2]]—True if str1 is greater than str2

e if [[str1 < str2]]—True if str1 is less than str2

Testing Numerals

If a variable holds a series of characters representing a number, specific
tests exist that should be used. If a variable has not been declared as an
integer or a float, yet it contains numerals, the following syntax can be
used for comparisons:

[[expl -eq exp2]] # expl is equal to exp2
You can also use the following instead of -eq:

* -ne—Not equal to

¢ .gt—Greater than

* -ge—Greater than or equal to

e .1t—Less than

® .le—Less than or equal to

Testing Numbers

If the variables being tested have been declared as integers or floats, the
following syntax can be used for comparisons:

((expl == exp2)) # expl is equal to exp2
You can also use the following instead of ==:

e 1=—Not equal to

* >—Greater than

e >=— Greater than or equal to

* <—Less than

® <=—Less than or equal to

The following three tests are for comparing two files:

[[filel -nt file2]] # Newer than
[[filel -ot file2]] # Older than
[[filel -ef file2]] # Is another name for

Testing Files 173

The following script is a simple example of numeric testing using [[]]:

Ay $ cat you_guess
#1/usr/bin/ksh

read num?"pick a number? "
if [[$num -gt 85]] # Greater than
EXAMPLE then print "too high"
elif [[$num -1t 85]] # Less than
then print "too low"
else

print "you got it"
fi
$ you_guess
pick a number? 39
too low
$

The next example uses a few more test operators:

$ saver web.tmp
Happy? y
web.tmp preserved
$
$ cat saver
#1/bin/ksh
if [[-f ${1} 1] #checks if file named as first
then #command-line arg. exists and
#1is not a directory file.
read ans?"Happy? "
if [[${ans} = "y" 1]

then
cp ${1} ${11${$}
Copies input file to a name trailed by PID
print "${1} preserved"
fi
fi
$
$ 1s web*

web.tmp web.tmp6177

How many times have you used cat to display the contents of a file and had
reams of gibberish spew across your screen before you knew it? More than
once, I bet. One of the drawbacks of the UNIX file-naming conventions is
that no mandated extension exists to identify the type of the file. This can

174 Chapter 7: Data Manipulation

be looked upon as a blessing or a curse. The next example uses some file
conditionals to determine whether to display the file:

vy $ cat showit
#!1/bin/ksh

example of file conditionals

if [-f ${1} 1]
EXAMPLE ..
if [[-x ${1} 1]
then
read response?"${1} is executable still want to see it?"
case ${response} in
y*) cat ${1} ;;
*) print "Not displaying." ;
esac
else
cat ${1}
fi
else
print "${1} is not a regular file.\nNot printing."
fi
$
$ showit web.tmp # Displays regular files

/usr/doc/bzip2-0.9.5c/manual_1.html
/usr/doc/bzip2-0.9.5c/manual_2.html
/usr/doc/bzip2-0.9.5¢c/manual_3.html
/usr/doc/bzip2-0.9.5¢c/manual_4.html
Jusr/doc/bzip2-0.9.5¢c/manual_toc.html
$
$ showit ../scripts # Not directories
../scripts is not a regular file.
Not printing.
$
$ showit dow2
dow2 is executable still want to see it?y

Sanity check on request to print executable
#! /bin/ksh

function dow
{

(vn4)
print "WEEKDAY contains $WEEKDAY"

Ay

/=4
EXAMPLE

What’s Next 175

Combining Tests

If you need to combine several tests, the Korn Shell provides logical opera-
tors: || (or), ! (not), && (and), and != (not equal). Table 7.5 lists some of the
operators available to form compound tests.

Table 7.5: Compound test operators

Test True If

if [[test_1 || test 2 1] Either is true

if [[test_1 && test 2 1] Both are true

[r | testt 11 Opposite of test is true

The following is a pseudocode example of a compound test:

read ans?"Sure? "
if [[(${ans}="y" || ${ans}="yes") && -f ${1} 1]
#if user says yes and
#file on command line
#exists...
rm ${1}
fi

When the condition is satisfied, the processing of the conditional stops. This
is sometimes referred to as short circuiting a test. You must be aware of
this if you use compound tests. Consider a situation in which you need to
find out whether a > b AND ¢ > d before executing some commands. If the
shell finds that a is not greater than b, why should it bother checking
whether ¢ > d? It knows that the result of the compound if will be false.
This behavior mimics the C language. It is not an issue unless some side
effects are produced by the second (nonperformed) test. For example, if you
had set up some discipline functions to trigger when a variable is accessed,
you might be surprised by the shell’s actions (or nonactions). The variable

¢ would not have been accessed in the test discussed here. Be careful, but
don’t avoid the compound test because of this minor and occasionally irri-
tating personality trait.

What a long and wondrous path you’ve walked! You started out getting
familiar with functions. Then, you found that they bring modularity and
conciseness to your scripts. You also saw that they can be used in an object-
oriented way and can be used to extend the existing Korn Shell built-ins.
You then visited the math functions and associated expressions. Along the
way, you also picked up the ability to work with floating-point variables

176

Chapter 7: Data Manipulation

and variables storing values from other number systems. And you now
know that ksh can support bit-level operations. I'll wager that you were not
expecting that level of capability within the Korn Shell.

Next, you reviewed the power of pipes and filters, and a few powerful
scripts were discussed, including an HTML mega-table-of-contents genera-
tor. Your trip ended with the ability to test the ice even before you send lit-
tle brother out there with a rope around his waist. (No, Mom, I never did
that.) Finally, you saw the many tests available for string and file condition
testing.

I'm sure you are starting to feel pretty empowered at this point. This chap-
ter and the previous chapter have given you many weapons for the shell
battles. However, we’re not through yet. Chapter 8, “Information Passing,”
presents command-line arguments, redirection, getting input from the user,
and the mysterious coprocess ability.

Information Passing

Have you ever wished that you could talk back to your TV? I mean actually
interact with it? Have an effect on its subsequent displays? Or have you
looked for the key to communication with your teenage son or daughter?
Have you felt like you were not getting through? That none of your input
was being processed properly?

If you can relate to any of the previous paragraph, you are ready to attack
this chapter. Now that you have some pretty sophisticated looping and test-
ing mechanisms in your script writing tool kit, let’s see how you can give
the outside world the capability to communicate with your scripts.

This chapter demonstrates how to present data to the script at runtime. It
also examines how the script can alter the typical screen-based presenta-
tion of data to the user.

This chapter teaches you the following:
¢ How to use command-line arguments
e How to get information from the user
* How to redirect information to and from files

e How to interact with a coprocess

180

Chapter 8: Information Passing

Ay

[=1

EXAMPLE

Command-Line Arguments

You have already seen several scripts using command-line arguments. As a
script is started, the initiating shell searches for extra data on the com-
mand line. Anything beyond the script name is treated as a command-line
argument and is placed in shell variables. The shell variables used for
command-line storage are named $1 (first argument), $2 (second argument),
and so on. These are also referred to as positional parameters because the
position of the argument determines the name of the shell variable into
which it is placed. Table 8.1 provides a list of the positional and special
parameters available to you within your shell script.

Table 8.1: Positional and special parameters

Parameter Meaning

0 Name of script, shell, or function.

1,2, 3,and so on Value of positional arguments.

@ All parameters delimited by space. If @ is quoted, quoted para-
meters are set to a single position.

* Same as e except quoted arguments are separated by $IFs.

Number of command arguments.

The following example displays three positional parameters regardless of
whether they are present on the command line. The curly braces ({ })
around the numbers are optional:

$ cat params

#!/bin/ksh

print "Argument 1 is ${1}"
print "Argument 2 is ${2}"
print "Argument 3 is ${3}"
print "There are $# arguments."

$ params 0\ 'Brien Pitts Ellis
Argument 1 is 0'Brien
Argument 2 is Pitts

Argument 3 is Ellis

There are 3 arguments.

$

$ params O\'Brien Pitts Ellis Dyment
Argument 1 is 0'Brien
Argument 2 is Pitts

Argument 3 is Ellis

There are 4 arguments.

$

$ params 0\ 'Brien

Argument 1 is 0'Brien

Command-Line Arguments 181

Argument 2 is # Parameters are blank if not used
Argument 3 is

There are 1 arguments.

$

Positional parameters also can be set using the set command. The follow-
ing example shows the set command being used at the command prompt to
set up positional parameters. The same syntax can be used within a script:

$ set Cheryl Den "Bruce Susan" # Set up 3 positional parameters
$

$ print $2

Den

$

$ print $3

Bruce Susan

$

$ print $# # Count of parameters

3

$

$ print %@ # ALl parameters

Cheryl Den Bruce Susan

$

$ print $* # All separated by IFS (which is a space)
Cheryl Den Bruce Susan

$

The following example takes an input value of base 10, 16, 8, or 2 and dis-
plays its equivalent in the other bases. It accepts input from the command
line:

$ cat convertnum

#!/bin/ksh

#itH##H

Script to convert values to hex, octal, and binary

Gets input from command line.

#Hit###H#H

integer -i10 value=$1 # Store first parameter as a decimal integer
print "$value \t\t decimal"

typeset -rii16 value

print "$value \t\t hex"

typeset -ri8 value

print "$value \t\t octal"

typeset -ri2 value

print "$value \t binary"

$
$ convertnum 32 # Input is decimal

182 Chapter 8: Information Passing

32 decimal
16#20 hex
8#40 octal
2#100000 binary
$

$ convertnum 2#10001 # Input is binary
17 decimal
16#11 hex
8#21 octal
2#10001 binary
$

The shell script can be designed to accept options as well as parameters.
Options are similar to the command options you use daily. For instance,
-11is an option and file1 is a parameter in 1s -1 filel.

The Korn Shell has a special getopts command to ease the building of com-
mand-like scripts. Rather than having to build some special-case code into
a script that wants to accept options on the command line, because the
Korn Shell is a top-notch shell, it provides a technique for handling them.

A few steps are necessary to handle options. First, the script must recog-
nize that it has been presented with an option, as opposed to a parameter.
(The -1 is dealt with much differently than the file1 in the 1s -1 file1
command.) Second, the script needs a place to store the option presently
under examination. Third, the script must be capable of handling multiple
options (-1i or -1 -i for instance). Fourth, the script needs a way to handle
options that have an argument associated with them, such as -f filename.

The getopts built-in command enables you to process arguments as options,
similar to standard UNIX commands. The getopts command expects two
fundamental arguments: a list of the options to be supported within your
script and a variable name in which to place the next option.

Options in the options list that are followed by a : are expected to accept
an argument that will be stored in the variable OPTARG. This handles the
previously mentioned situation in which you have an option, such as

-f filename.

The getopts command updates a variable called OPTIND each time getopts
is executed. In effect, getopts is executed once for each argument you
process. Therefore, you most likely will place the getopts command within
a loop. OPTIND starts at 1 and is updated with each run of getopts. This
variable can be used to shift the arguments beyond the options to get at the
nonoption arguments. An item on the command line that does not begin
with - indicates the end of the options. Likewise, an argument of - - termi-
nates the options part of your command. In the newer implementations of

Ay

/=4
EXAMPLE

Command-Line Arguments 183

ksh, the getopts command can also handle + in front of the options, to han-
dle situations in which the option could indicate set or unset. Check your
man pages to see whether your getopts has the capability.

In addition, a special syntax within getopts is available that can be used to
handle bad options presented by the user. (We all know that never hap-
pens!) A leading : in the options list tells getopts to set invalid options to
the character ? and to place the bogus argument in OPTARG. It sets the
options variable to : if the option has a missing value and the option that is
missing the value into the special variable OPTARG.

The next example shows the basics of using getopts to handle command-
line arguments and errors. The getopts command is at the top of the while
loop. The loop is repeated until getopts reports an unsuccessful status,
which occurs when no more options are on the command line. Note that the
extra parameters (nonoptions) are not considered by getopts unless they
follow the -o or -n options (in the example script).

Let’s examine the options list :rwn#o:. The : at the beginning of the options
list requests that getopts put bogus arguments into OPTARG and set the
variable opt (in this script) to hold a ?. The r and w are normal options, and
the n# indicates that the option should be followed by a numeric value. The
o:, on the other hand, indicates that the option should be followed by an
argument. This is handy for file input options. The opt variable name holds
the option being processed currently, so it is perfect for using in a case
statement within the getopts loop:

$ cat getopt1

#!/bin/ksh

#ittH#

Illustration of using getopts, OPTARG, and OPTIND

to parse a command line

#ittH##

while getopts :rwn#o: opt # Setting up the expected options
do

case $opt in

r)
print "Processing for r option ..." # Could set a flag or call
33 # a function
w)
print "Processing for w option ..."
n)
print "Processing for n option ..."
num=$0PTARG # OPTARG gets the numeric value
print "Number is $num" # accompanying -n

184 Chapter 8: Information Passing

0)
print "Processing for o option ..."
0file=$0PTARG # OPTARG gets the argument
print "Output file: $ofile" # accompanying -0
1)
1) print -u2 "OPTION: $OPTARG requires additional info."
exit 1 # Variable opt gets : when -o
M # or -n are incomplete
\?) print -u2 "$OPTARG is an invalid option to $0."
exit 2 # Variable opt gets ? for
HE # invalid options
esac
done
Shift to arguments after options
shift OPTIND-1 # Eliminates options from
print "Processing filenames." # command line
for nfile # Access the rest of the
do # command line
print $nfile
done
$
$ getoptt fi1 # No options used
Processing filenames.
f1
$

$ getopt1 -r f1

Processing for r option ...
Processing filenames.

f1

$

$ getopt1 -rwo denfile f1 f2 f3
Processing for r option ...
Processing for w option ...
Processing for o option ...
Output file: denfile

Processing filenames.

f1

f2

f3

$

$ getopt1 -rwo denfile -n 17 f1 f2 f3
Processing for r option ...
Processing for w option ...
Processing for o option ...

Ay

/=4
EXAMPLE

User Input 185

Output file: denfile # From -o option
Processing for n option ...

Number is 17 # From -n option
Processing filenames.

f1

f2

f3

$

$ getoptl -rq # Bogus option
Processing for r option ...

g is an invalid option to getoptit.

$
$ getoptl -r -o # Options can be presented
individually

Processing for r option ...

OPTION: o requires additional info.
$

$ getoptl -r -o denfile

Processing for r option ...
Processing for o option ...

Output file: denfile

Processing filenames.

$

Getting input through to your teenager may require anything from a gentle
tap on the shoulder to a shouted “Wassup?” But either way, the ultimate
goal is to alter the behavior based on the input you supply. A shell script
may be written such that it requires no input from the user. An example
would be the masks_magic script from the previous chapter. A sample run is
shown to refresh your memory:

$ mask_magic

Default regular file permissions with current umask (0002)

u g o

PWXPWXPWX
110110100

Default directory file permissions with current umask (0002)
u g o

WX WX rwx
111111101

1s are on, 0s are off
$

186

Chapter 8: Information Passing

Or it can be written so that it checks the contents of certain environment
variables and branches inside of the logic of the script based on what it
finds in the variable. Note that this example uses some interesting syntax
beyond the simple test of the contents of MASKSDIRS. It uses a function to
generate a more readable permission mask. The function is given an argu-
ment that is treated as binary and stored in the variable shiftval, which is
processed one bit at a time to see whether the associated permission is set
or clear. If it is set, the appropriate value in the associative array named
perms is placed in the res array for later display:

$ cat masks_env

#!/bin/ksh

#

Script which will display default

permissions in formatted fashion

based on the current umask setting

#

function gen_modes

{

integer count=0

typeset -i2 shiftval=2#$1 # Sets up a binary value

perms=([1]=r [2]=w [3]=x [4]=r [5]=w [6]=x [7]=r [8]=w [9]=x)
Associative array

while ((count <=9)) # Nine permission bits

do

((count=count+1))

let lment=10-count # Fill target array from the right to the left

if ((($shiftval & 1) == 1)) # Bitwise-and to check if rightmost bit is set
then

res[$lment]="${perms[$1lment]}"
If so, put letter in res array

else
res[$lment]="-" # If not, put dash in res array
fi
((shiftval = shiftval >> 1)) # Get rid of rightmost bit
done
}
#i#t#### Script Begins ########HH
typeset -i2 defa # make defa display in binary

typeset -i onescomp

((onescomp=~(8#$(umask)))) # Get ones complement of current umask
((defa=(8#666)&onescomp)) # Calculate default permission mask
default_perm=${defa#*#} # Strip off leading 2#

print "Default REGULAR FILE permissions with current umask ($(umask))"
print " u g 0"

User Input 187

gen_modes $default perm # Call gen_modes function
print ${res[*]}
print "(In binary -- $default perm)"

print ""
if [["$MASKSDIRS" != "YES"]] # Check to see if the user would like
directory information also

then

exit 0
fi
print "Default DIRECTORY FILE permissions with current umask ($(umask))"
typeset -i2 ddefa # make ddefa display in binary

((ddefa=(8#777)&onescomp)) # Calculate default permission mask
for directory

default perm=${ddefa#*#} # strip off leading 2#
print " u g 0"

#print '_ _ _ _ _ _ _ _ _ '

gen_modes $default_perm # Call gen_modes function

print ${res[*]}
print "(In binary -- $default_perm)"

$

$ print $MASKSDIRS # Nothing in the MASKSDIRS variable

$

$ masks_env

Default REGULAR FILE permissions with current umask (0002)

u g 0

rw-rw-r - - # Shows regular file default permissions only

(In binary -- 110110100)

$

$ MASKSDIRS="YES" # Set MASKSDIRS variable locally

$

$ masks_env # Still no directory permission info?
Default REGULAR FILE permissions with current umask (0002)

u g 0

rw-rw-r - - # MASKSDIRS needs to be exported

(In binary -- 110110100)

$

$ export MASKSDIRS # That should do it

$

$ masks_env

Default REGULAR FILE permissions with current umask (0002)
u g 0

188

Chapter 8: Information Passing

v
[X]

[=4

EXAMPLE

rw-rw-r - -
(In binary -- 110110100)

Default DIRECTORY FILE permissions with current umask (0002)

u g 0

PwXrwxr-x # Includes directory permissions also
(In binary -- 111111101)

$

It also might just flat out ask the user for some input. This case would
require the script to prompt the user for some information and react to the
user’s response. The next example takes the masks script and allows the
user to present a umask value to be analyzed. So far, you have been using
the current umask value. To see a different result, you have been altering
the umask value at the command line and rerunning the script:

$ cat masks_ask
#!/bin/ksh
#

Script which will display default
permissions in formatted fashion
based on the requested umask setting

#

function gen_modes

{

(vn4) # Same function as before
#i######H Script Begins ########HH

typeset -i2 defa # make defa display in binary

typeset -i8 onescomp
typeset -RZ3 inumask8 inumask # Three characters, right justified, zero filled

typeset -i8 inumask8 # Display as octal

print -n "What umask would you like to use? " # Prompt the user

read inumask # Read response from stdin into variable inumask
((inumask8=8#$inumask)) # Set input to octal

((onescomp=~(8#$inumask8))) # Get ones complement of current umask
(vn4)

$

$ umask

0002

$

$ masks_ask

What umask would you like to use? 027 # User responds with '027'
Default REGULAR FILE permissions with specified umask 027

u g 0

rw-r - - - - -

(In binary -- 110100000)

$

User Input 189

$ masks_ask

What umask would you like to use? 002 # User responds with '002'
Default REGULAR FILE permissions with specified umask 002

u g 0

rw-rw-r - -

(In binary -- 110110100)

$

The read statement can be used to read from files other than stdin. By
default, a script that executes a read statement waits until the user
responds with some input. Well, how long do you wait after you ask your
teenager, “What did you do last night?” Presumably, after a reasonable
amount of time, you veer off into another course of action, such as saying,
“Earth to teenager!” The point is that the read statement can provide a
timeout factor (in seconds) by using the -t secs option (available in ksh93).
You will see examples of reading from data files in the next chapter. The
read command has many options. If you prefer, you can shorten the prompt
and read combination as follows:

read inumask?'What umask would you like to use? "

If you want to include a timeout factor of 10 seconds, use the following
command:

read -t 10 inumask?"What umask would you like to use? "

Although you can use the echo command to display information, you might
have noticed that the example scripts are now using the print command
almost exclusively. The print command is the preferred method for display-
ing output under the Korn Shell. It is more portable and faster. Many ksh
implementations use a separate program to execute the echo command. The
following example shows that on Red Hat Linux the echo command is a
separate program, whereas the print command is built into the shell:

$ whereis echo

echo: /bin/echo # The echo command is a separate program

$

$ whereis print

print: # Not found

$

$ builtin | grep "“p

print # The print command is a built-in

printf

pwd

But does this difference between print and echo really matter? Take a look
at the next example. Two scripts do exactly the same thing, but one uses
echo, and the other uses print. Both programs drop their output into the

190

Chapter 8: Information Passing

i

/=4

EXAMPLE

bit bucket, otherwise known as /dev/null. Note that if your implementa-
tion of ksh has an echo built in, you still are better off using the print com-
mand because of its portability. The massive speed difference shown in the
following is due to the fact that the echolots script forces UNIX to create
(and destroy) 5,000 processes to complete the task. The printlots script is
executed within one UNIX process.

Be aware that the same performance difference can be seen when a script
writer uses sed, grep, and awk, when shell pattern sequences would have
done the job. If it is used just once or twice during the running of a script, it
won’t make much difference. But if you are in a many-pass loop, the differ-
ence can be significant:

$ time echolots
..working...
..working...
..working...
..working...
..working...

real 1m7.54s # Takes over a minute using echo program
user Om36.51s
Sys Om30.99s
$
$ time printlots
..working...
..working...
..working...
..working...
..working...

real 0m3.10s # Takes 3 seconds using print
user Om2.48s
Sys 0mo.63s
$
$ cat echolots
#!/bin/ksh
x=17
integer count
while ((count < 5000))
do
/bin/echo $x > /dev/null # Uses the echo program
((count=count+1))
(((count%1000) == 0)) & print "...working..."

User Input 191

Occasional sanity message
done

$

$ cat printlots
#!/bin/ksh

x=17

integer count

while ((count < 5000))

do
print $x > /dev/null # Uses the print builtin command
((count=count+1))
(((count%1000) == 0)) & print "...working..."

done

$

Following are some of the common options used with the print command:
print [-Rnprsu[n]] [arg...]

The -n option is used for prompting (no trailing newline):
print -n "Anybody out there?"

For option conflicts, use -. Option conflicts can occur when a variable con-
tains a value that starts with a -. The print command interprets the value
as an option that is supposed to alter the print command’s behavior:

$ print - -n

-n

The other options to the print command are less heavily used. The follow-
ing is a list of the less common print options:

* .Ror -r—Raw output. All characters following this option are dis-
played.

¢ -p—Can be used to send output to a pipeline connected to a coprocess
(discussed later in this chapter).

* .s—Sends the output to the history file.

* .u—Sends the output to a unit number representing a file you have
previously opened.

As you have seen in some of the scripts examined in this chapter, the read
command is useful for getting input from the user. The read command
pauses the execution of the script until the user enters some data, or until
the specified timeout is reached. If the timeout option is used (-t secs), the
script writer must check the status in $? after the command completes. If it
contains a nonzero value, it means the read command completed because of

192 Chapter 8: Information Passing

a timeout rather than from the user entering data. The following examples
show some simple uses of the read command:

vy $ updatenumbers
%3 last name?dyment
phone?555-1234
[=1
EXAMPLE ¢ updatenumbers
last name?0'Brien
phone?555-3456
$
$ cat updatenumbers
#!/bin/ksh
writes to friends file
print -n "last name?"

read last # Reads input into variable named last
print -n "phone?"
read phone # Reads input into variable named phone

echo "$last $phone" >> friends # Appends to the file named friends

$

$ cat friends
dyment 555-1234
0'Brien 555-3456
$

Alternatively, the program could use the more succinct read-prompt
command:

$ updatenumbers?2

last name?ellis

phone?555-4567

$

$ cat updatenumbers2

#1/bin/ksh

writes to friends file

read last?"last name?" # Uses the read with prompt option
read phone?"phone?"

print "$last $phone" >> friends

$

$ cat friends
dyment 555-1234
0'Brien 555-3456
ellis 555-4567

$

But what do you do if the user is common-sense impaired and responds
with unexpected input? Covering all the bases for these unexpected

Ay

/=4
EXAMPLE

User Input 193

responses results in making the script bulletproof. A bulletproof script is
one in which the user’s input is thoroughly checked for sanity before being
processed. This can require some extensive testing. If the script is for per-
sonal use only, you might not want to spend the time bulletproofing your
script, but it is a good habit to develop. The following example builds on the
umask example, but it checks the user’s input to ensure that it is reason-
able.

Generally, if a way to break your script exists, users will find it. Either they
will specifically search for the holes in your logic, or they will stumble
across your script’s weaknesses inadvertently. The most obvious example of
input that would break your umask script is if the user presented some
input that was out of range. The valid values for the umask are between 000
and 777 octal, which means that no numbers higher than seven can exist in
any of the three numeral positions. The following example scopes out that
potential foul-up:

$ masks_aski

What umask would you like to use? 999

masks_ask1: line 31: 1inumask8=8#999 : arithmetic syntax error

Somehow, you must check the user’s response and see whether it makes
any sense. If it doesn’t, you should help the user to understand her mistake
(or you could blow it off and just bomb out of the script). The following
example tries to capture aberrant input and react accordingly:

$ cat masks_ask2

#!/bin/ksh

#

Script which will display default

permissions in formatted fashion

based on the requested umask setting, checks for bogus input

#

function gen_modes

{

(.n4)

read inumask?'What umask would you like to use? "

while (((inumask%10)>7 || (inumask%100)>80 || (inumask%1000)>800))
do # Checks for numerals > 7

print "Mask value must be between octal 000 and 777: try again"
read inumask?"What umask would you like to use? "

done

(.

$

$ masks_ask2

What umask would you like to use? 029

Mask value must be between octal 000 and 777: try again

194

Chapter 8: Information Passing

What umask would you like to use? 810

Mask value must be between octal 000 and 777: try again
What umask would you like to use? 817

Mask value must be between octal 000 and 777: try again
What umask would you like to use? 027

Default REGULAR FILE permissions with specified umask 027
u g 0

rw-r - - - - -

(In binary -- 110100000)

That seems to do the trick, don’t you think? But consider the fact that a
user could insert negative numbers or numbers with more than three
numerals, throw some characters at your script, or just hit the carriage
return and give you nothing. Now you see that this script has a ways to go
before it can be deemed bulletproof.

Many times you wish you could play back a tape of a past conversation
with your teenager. To do this, you would have to have created an audio
tape as the teenager was spouting the output. In the world of scripts, you
might want to store the output in a file. You also might prefer to capture all
the output, or just some of it. This section examines input and output redi-
rection.

Three streams can be redirected: stdin, stdout, and stderr. By default, all
three of these streams are directed to (or from in the case of stdin) your
terminal device. A stream can be thought of as an open file, despite the fact
that we are talking about the terminal device being open. Therefore, the
shell deals with stdin, stdout, and stderr as permanently open files for
your process.

Each file that is open in a process is represented by a file descriptor. File
descriptors are small (usually) integer numbers that represent the open file
to your process. The file descriptor numbers representing stdin, stdout,
and stderr are, 0, 1, and 2, respectively. Some UNIX variants allow a
process to have up to 64 open files. I know of one UNIX variant (Compaq’s
Tru64 UNIX) that allows a process to have up to 65,525 concurrently open
files. That ought to do it, huh?

We will focus on redirection involving stdin, stdout, and stderr. Back to
your teenager for an analogy. (By the way, if you ARE a teenager, no offense
meant in all these examples, but 'm sure you can relate with the situations
portrayed.) If your teenager keeps asking you for permission to attend a
Metallica concert and repeats the request again and again, you eventually
say, “Go ask your mother.” (Or father as the case may be.) If you can relate,

Redirection 195

you understand output redirection. The goal is to take an output stream
that is going to its normal place (such as your ear or the terminal) and redi-
rect it so it goes some other place (such as someone else’s ear or a file).

Output redirection provides the capability to capture the output of a com-
mand or a script in a file. The following examples show some basic output
redirection. Note that a > at the end of a command requests stdout redirec-
tion, whereas >> also requests stdout redirection but appends the output to
an existing file. If a file already exists and you redirect output to the exist-
ing file using >, the current contents of the file are lost. This is referred to
as clobbering an existing file.

When the shell sees a line that has an output redirection indicator at the
end of it, one of the first things it does is truncate the existing output file
down to zero bytes in size. Then, it places the current output stream in the
file. This usually has some uproarious consequences for the novice UNIX
user. Incidentally, uproarious is only a hop away from disastrous. Imagine
that the file you inadvertently clobbered was your startup company’s criti-
cal R&D database!

Fortunately, the Korn Shell provides a technique for avoiding clobbers
when you don’t want to clobber—a shell option called, you guessed it,
noclobber. It can be set with the set -o noclobber command. Picture a
rookie user trying to sort some database. It makes sense to use a command
such as the following:

sort infile > infile

You have no desire to end up with two copies of the data, so this command
seems reasonable. Unfortunately, the shell sees the > before the sort is even
started. So, the first thing that happens is the file named infile is trun-
cated down to zero bytes. Then, the shell—feeling all smug and happy
because it has done its duty for its good friend sort—Xkicks in the sort com-
mand, which sees an input file named infile that has zero bytes of data to
be sorted. The sort command then does its duty, which is to sort nothing,
and produces an output file named infile—which contains nothing. Poof,
away goes your data, your credibility, your job, and maybe your company
goes belly up also. Okay, I'm exaggerating, but did you get my point?

The following are some examples of stdout redirection:

$ man 1ls > ls.man # man pages sent to file
$ man cat >> ls.man # appends to ls.man
$ (date; du) > stats # output of subshell goes to stats file

If you can redirect stdout, you must be able to redirect stdin. The symbol
for stdin redirection is <. Imagine that every time your teenage son goes
out on a date, you preach the same litany of do’s and don’ts to him. Your

196

Chapter 8: Information Passing

harangue takes about two minutes, during which you get the same grunt-
ing sequence of whys and why nots. Rather than waiting for the questions
to be asked before you present your answers, you can have the answers on
an audio tape so all you have to do is push Play, and your teenager hears
your canned responses. Because your teenager is probably listening with
about an eighth of his attention, you will be repeating this sequence many
times.

Think of the input audio tape with the canned answers for your teenager as
an example of stdin redirection. Instead of hearing the answers from the
standard place (which is you), you redirect the input to him so that it comes
from the tape. Likewise, you can use a file to present input to a program
that queries the user repetitively. All you have to do is create the file con-
taining the responses and present it to the command as a substitute (redi-
rection) for stdin. The fictitious payroll program shown in the following
would normally query the user for employee name, hourly rate, and hours
worked in the current week. Suppose 90% of the employees work the same
number of hours each week, their rates don’t change that often, and their
names don’t change. The input file would contain all the normal informa-
tion for the company’s employees, and all that would have to be done each
week is change the hours worked if necessary.

The following are examples of stdin redirection:
$ payroll < file_containing_employee_hours_and rates
$ mailx obrien < spammail # mails spammail file contents to obrien
$ tr "OB" "ob" < f1 > f2 # redirects input and output
#changes Os and Bs in f1 to
os and bs in f2.

Sometimes a command you execute during the run of your script can cause
error messages to be displayed. Normally, those error messages go to your
terminal device, represented by stderr (file descriptor 2). Suppose your
script produces a carefully laid out menu interface. If an unexpected error
message were to appear in the middle of the run of the script, the carefully
planned menu interface could look like a train wreck.

If you want, you can dump the error messages into the bit bucket
(/dev/null) so they don’t display at all. That solution is fine if you want to
take the head-in-the-sand approach, which assumes that if you can’t see the
errors then all is well.

A better approach is to redirect the error messages to some file, the console
device, or some other terminal, rather than letting them appear on your
terminal with the neat menu. This approach is certainly more enlightened
than the head-in-the-sand approach, which eliminates the possibility of

Coprocess 197

reacting to the error messages. Remember that stderr is associated with
file descriptor 2. Therefore, the redirection syntax for stderr is 2>, which
means redirect file descriptor 2. You also can use the syntax 1> to indicate
stdout redirection, although no script that I have ever seen does that.

The following are examples of stderr redirection:

$ payroll < emps1 >pay.out 2> pay.err
payroll program gets input from empsi,
writes output to pay.out,
error messages go to pay.err

$ payroll >pay.out 2>&1 # make 2 (stderr) be the same as 1 (stdout)

$ noerrprog 2> /dev/null #errors to bit bucket

If any of these redirection options end up clobbering a file or two, you might
be interested in this next Korn Shell capability. You can prevent clobbering
(overwriting of existing files through redirection) by setting the noclobber
option using the following syntax:

$ set -o noclobber

Later on, you might want to override the noclobber option. You can turn it
off with the following syntax:

$ set +o noclobber

Or, you can override the option for a particular command by using the fol-
lowing syntax:

$ prog >|bagfile # writes even if bagfile exists

$ prog >>|bagfile # writes even if bagfile does not exist

Coprocess

Occasionally, a script needs to present input to a program, command, or
another script, but not all at once. For instance, you might need to present
one item during the beginning of your script, others during the run, and
still others at the end. This is generally done by redirecting some input to
the appropriate target program. It also can be done through a pipeline. As
you saw earlier, a command to the left of the pipe operator presents its out-
put as input to the command to the right of the pipe operator. So, the pip-
ing operation is similar to performing redirection, BUT NOT TO A FILE!
The redirection is done to the PIPE instead, and the pipe is connected to
the next process in the pipeline.

Now consider a situation in which you need to get input to a program
through a pipe, but you need to pipe to it many items throughout the run of

198

Chapter 8: Information Passing

your script. The implementation is not difficult if you are willing to accept
some performance degradation. Remember that in UNIX, every time a com-
mand is executed, it is executed in the context of a UNIX process. Each
UNIX process has internal support structures and other resources that
need to be allocated, and all this takes time.

Without getting into the internals of it, trust me, it would be massively
more efficient to run the target program once, and have it stay in existence
while you occasionally ask it to process another piece of pipelined input.

Needless to say, you will also want to capture responses from the program
running in parallel with yours. A script can achieve this bidirectional
pipeline capability through the use of a coprocess and two pipes. Be aware,
however, that this is a powerful capability that is not used very heavily
because most script writers are only vaguely aware of the coprocess concept
and syntax.

I hate to use the teenager analogy again, but what the heck. You’re into it
now, right? Imagine an off-the-cuff argument with your teenager.
Remember all those times when, after it was over, you said to yourself, “I
should have said ...,” so you went back and said, “... and another thing”

The difference between using a coprocess and not using a coprocess is the
same as if you had to start the argument from the beginning each time you
remembered something else you wanted to say, rather than just saying,

“... and another thing”

Can you see the waste in starting over for each item of input? It would be
like having to start the argument over again from the beginning point, even
though you just wanted to add one last little jab. The following example
uses a sophisticated utility called dbx, which is used to debug user pro-
grams or to look at kernel cells. You’'ll see this being used without using a
coprocess first, and then with a coprocess.(Another example of using a
coprocess is shown in Chapter 13, “Pulling It All Together.” It creates a
coprocess running another instance of ksh to which your script presents
commands.)

Figure 8.1 depicts the communication between your script (copro1) and the
coprocess running dbx.

You don’t need to focus on the dbx utility as you read the example. Instead,
focus on the concept of a coprocess, which is a process that coexists with
another process and communicates through pipelines. The following exam-
ple uses dbx to examine a kernel cell (1bolt) without using a coprocess.

Figure 8.2 depicts what happens when you don’t use a coprocess.

Ay
EXAMPLE

Coprocess 199

coprocess

Figure 8.1: A coprocess communicates with another process through
pipelines.

50 processes

Figure 8.2: Without a coprocess, dox looks at the 1bolt kernel cell 50 times
in a row.

1bolt doesn’t need to be looked at 50 times in a row; it is just a sample ker-
nel cell. If you are curious, though, it holds the system time. Note that the
example output also gives a feel for how many UNIX processes had to be
created when the script was not using a coprocess:

echo $$

725

ksh

echo $$

1440 # Next available PID is approximately 1441
exit

#

time ./copro2 /vmunix /dev/mem

real 0m21.06s # Takes about 21 seconds when not using a coprocess
user Om19.46s
sys omi.21s

#

200

Chapter 8: Information Passing

Ay

/=

EXAMPLE

ksh

echo $$

1596 # Note how many processes were created (~156)
#

The next example does the same thing using a coprocess. Note that the
code within the script is a bit more complex, but the payoff is potentially
huge, as you can see from the performance comparison:

time ./coproil /vmunix /dev/mem

real 0m3.90s # Took about 4 seconds using a coprocess.

user om0 .00s

Sys om0 .03s

#

#

ksh

echo $$

1599 # Approximately 3 processes were created
to run with a coprocess

#

Before you take a look at the script that provided this 7000% increase in
the performance of your code, let me show you what an interactive session
with dbx looks like. This example uses the live kernel for its target, so you
must be root to perform the following command. Note all the preliminary
messages before you actually get to present some input to the utility.
Interactively, you can ignore this output. But in a script, you must get rid of
this data to capture nothing but the data you want. You see two distinct
ways of handling this excess output in the following two scripts:

dbx -k /vmunix /dev/mem

dbx version 5.1

Type 'help' for help.

stopped at [thread_block:3074 ,0xfffffc00002d0450] Source not available

warning: Files compiled -g3: parameter values probably wrong
(dbx) p lbolt

5190922

(dbx) quit

#

The first script does not use a coprocess and therefore suffers from some
poor performance. Note the succinct check of the command-line arguments.
It asks whether the count of arguments is not equal to two, and then exe-
cutes the command after the &&. The main body of the script falls inside a
50-pass loop in which you repetitively present the output of a print
command as the input to the dbx command. It’s as if you typed in two

Coprocess 201

commands at the interactive dox prompt: p 1lbolt and quit. The
2>/dev/null syntax removes the display line starting with warning from the
dbx output by redirecting stderr. (And you thought that stderr redirection
would never come in handy, didn’t you?) The tail -1 says that all you are
interested in is the last line of output, which you want appended to the file
named times.

If you are thinking that you could use this same technique of piping the
output of a print (or echo) command to just about any interactive utility,
you are right. And I congratulate you for the thought. However, don’t run
off and start changing your production scripts yet. Wait until you see the
coprocess example:

cat copro2
#!/bin/ksh

[$# 1= 2] && { # Display message if we don't get two args
print "Usage: $0 vmunix vmzcore"
exit 1

}

main loop

let ntimes=0;

while ((ntimes < 50)); do

print 'p lbolt;quit' | dbx -k $1 $2 2>/dev/null | tail -1>>times2
Creates a process

let ntimes=ntimes+1

done

exit

The next example uses a coprocess running dbx to handle the 50 requests
for the current value of the kernel cell named 1bolt. An innocuous-looking
but very powerful command is shown after the usage help. It simply says
>times. This looks as if you are trying to redirect the standard output of,
um, nothing, into the file named times. The shell sees the >times, puts on
its truncation hat, and chops the current contents of times to zero bytes,
which is what you wanted. This prevents an uncontrolled growth of the out-
put file for each time the script is run. It also effectively deletes the current
contents of the file and readies it for subsequent processing.

The line that actually starts up the coprocess is dbx -k $1 $2 2>

/dev/null 2> /dev/null |& The key syntax is the last |&. This special syn-
tax looks like a combination of a pipe request and a background request; in
fact, it uses facets of both activities. When a process is placed in the back-
ground, it can coexist with the interactive shell—just as you want in this
example. In addition, when a process uses a pipe, it wants a means of com-
municating with the piped-to process—which also is just what you want

202

Chapter 8: Information Passing

Ay

/=4

EXAMPLE

here. So, if you can’t remember the syntax for a coprocess in the future, just
remember the two parts of it: sorta piping and sorta background |&.

Next, you need a means of opening a communication path to the waiting
coprocess. The exec command can be used to execute a new command in the
context of the current process. UNIX programmers are familiar with the
system-call level of the function. Here, you use it inside your script to indi-
cate that the current process wants to open up file descriptor 3 (exec 3<) as
a means to get input (note the direction of the symbol <) from the pipeline
that comes from the coprocess &p. Yes, I know the syntax is not intuitive.
But it’s not as if we have never seen anything nonintuitive in UNIX before!!

Using the same technique, the next command, exec 4>&p, opens up file
descriptor number 4 to write output to the coprocess. In summary, writing
to file descriptor 4 provides input commands to dbx, and reading from file
descriptor 3 gets output from dbx. The while test tries to read from unit 3,
and the -r handles reads with a continuation character at the end (\) as
part of the line. The semicolon allows the do to be on the same line for read-
ability and style, whereas the variable line is filled with a line of output
from dbx running in the coprocess. The case statement looks for and elimi-
nates the lines of introductory information issued by dbx as it starts.

The main loop is executed 50 times. The print command is directed to file
descriptor unit number 4 (-u4) and contains a simple dbx command you will
send to the coprocess 50 times. In reality, you would be sending a bunch of
commands to the utility running in the coprocess. The read gets the next
line of output from dbx on unit 3 and dumps it into the variable timebolt.
Then, the next print appends the line to the file named times. Subse-
quently, this repeats 50 times, at which point you finally send the quit com-
mand to dbx, which ends the coprocess:

cat coproi

#!/bin/ksh
[$# 1= 2] && {
print "Usage should be: $@ vmunix vmzcore"
exit 1
}
>times # truncates times file
dbx -k $1 $2 2> /dev/null 2> /dev/null |& # start dbx coprocess
exec 3<&p # use fd 3 to read from dbx
exec 4>&p # use fd 4 to write to dbx
while read -ru3 line; do # get through dbx banners
case $line in

"") continue;; skip blank lines

dbx) continue;;
Type) continue;;
stopped) break;;

skip dbx banner
skip dbx banner
exit this loop

= o I I

What’s Next 203

esac
done

main loop

let ntimes=0;

while ((ntimes < 50)); do

print -u4 'p lbolt' # Send command to coprocess
read -ru3 timebolt # Read output from coprocess
print $timebolt >> times

let ntimes=ntimes+1

done

print -u4 'quit’

exit

#

This chapter presented some powerful options to the script writer.
Command-line arguments enable a smoother user interface to the script by
allowing the user to provide input without having to be prompted. The
getopts command provides a special case to handle shell command-like
options on the command line. You also looked at the read command as a
means of providing user input to your script. This provides the script writer
with yet another means for acquiring data from the user.

After you were presented with the data from the user, you saw several redi-
rection techniques for storing the output from the script in a file. Input
redirection was discussed as a means to simplify user input that might
repeat, and you also saw examples of redirecting error messages to a desti-
nation of your choosing.

The final section of the chapter introduced the high performance coprocess-
ing technique for interacting with a utility repetitively. Special options were
shown in scripts using print commands and read commands to communi-
cate with the coprocess. Emphasis was placed on the performance implica-
tions of using a coprocess to entice the script writer to take the leap into
the brave new world of coprocesses.

Chapter 9, “File and Directory Manipulation,” builds on the notions of file
descriptors seen in the coprocess example. You’'ll see how to open and access
data files in your scripts. You’ll also take a closer look at file attributes, file
access techniques, and creating temporary files as your script runs. In addi-
tion, you’ll revisit filtering relative to open files.

File and Directory Manipulation

When you receive an important document, you probably store it in a file
cabinet. Chances are the file cabinet has an organization involving several
drawers and various folders and maybe even subfolders. The alternative is
to throw all your important documents into a shoebox and stash it under
your bed. Note that both methods achieve the goal of storing the document.

The difference is apparent when the time comes to retrieve the document.
If you are of the shoebox persuasion, you will probably spend some time
pawing through all the unordered papers you had heaped into the shoebox.
On the other hand, if the papers are organized into drawers, file folders,
and subfolders, retrieving the appropriate paper would be a matter of open-
ing the correct drawer and grabbing the correct folder. The latter approach
closely resembles a description of file storage within a directory hierarchy.

All modern file systems provide a directory hierarchy to help organize the
storage and retrieval of files. Access to files and directories is a very visible
part of the shell’s interaction with the system and the user.

This chapter teaches you the following:
* How the PATH variable works
* How files and directories interact
¢ How file attributes describe files
* The use of device special files
¢ How to use hard links and symbolic links
* Methods of file access
® The nature of filter commands

¢ A safe way to create temporary files

206

Chapter 9: File and Directory Manipulation

Ay

/=4

EXAMPLE

A user or script can request access to a file using an absolute file specifica-
tion or a relative file specification. An absolute file specification provides the
directory and subdirectory hierarchy path to locate the target file. A rela-
tive file specification locates the target file relative to the current working
directory. The following example starts by accessing a file using a relative
file specification. After changing the default directory, the relative file spec
no longer works, but an absolute file spec will always work no matter
where your directory default is currently.

The following example successfully uses a relative file specification,
changes the default directory, and then fails when attempting to re-execute
the same command using the relative file specification. The problem is then
solved by using an absolute file specification:

$ cat params # Relative file spec

#!/bin/ksh

print "Argument 1 is ${1}"

print "Argument 2 is ${2}"

print "Argument 3 is ${3}"

print "There are $# arguments."

$

$ pwd

/home/obrien/scripts

$

$cd/ # Change default directory
$

$ cat params # Relative spec fails
-ksh: cat: params: cannot open [No such file or directory]
$

$ cat /home/obrien/scripts/params # Absolute spec works
#!1/bin/ksh

print "Argument 1 is ${1}"

print "Argument 2 is ${2}"

print "Argument 3 is ${3}"

print "There are $# arguments."

A relative file specification is, at first glance, an incomplete file spec. If you
present the command 1s -1 obrien to the shell, it looks for the obrien file
in the current working directory (displayed with the pwd command). If it is
a command file being sought by the shell—such as when a command,
script, or program is being sought—it looks at the contents of the $PATH
variable for a list of locations in which to look for the file.

Ny

/=4
EXAMPLE

Ay

/=4
EXAMPLE

Paths 207

The shell can determine whether to use the PATH variable or use the current
working directory, by the position on the command line. Filenames appear-
ing immediately after the shell prompt ($) are treated as commands, and
therefore are sought using the directories listed in the PATH variable.

In the command 1s -1 mydata, the 1s is sought by looking in the PATH
directories, whereas the mydata is sought from the current working direc-
tory. Both of these search locations can be overridden by using an absolute
file specification, such as /usr/bin/1ls -1 /usr/users/obrien/mydata.

The following example displays the current working directory and the
contents of the PATH variable. It also documents how to change the PATH
variable:

$ pwd # Data files are sought from this directory
/home/obrien
$ print $PATH # Commands and scripts are

sought from these directories
fusr/local/bin:/bin:/usr/bin:/usr/X11R6/bin:.
$
$ PATH=$PATH: /usr/opt/networker/bin # Changing PATH variable
$

In a script, the habit should be to provide an absolute spec wherever possi-
ble. This eliminates the possibility of a user-defined alias replacing the
command you had intended to run. This would introduce a level of unpre-
dictability to the script. The next example shows the danger of relying on
relative file specs in a script. For illustration purposes, this example is
command-line-based. The same principles apply for scripts.

The following example shows the 1s command being replaced by an alias:

$ 1s #'1ls' working properly
getppid.c getppidfunc.c
$

$ alias ls='cat *' # Make an alias for 'ls'
$
$ 1s # Now 'ls' does a 'cat' command

#include <unistd.h>
#include <stdio.h>

int main(void) #Some file contents
{

printf("Parent PID is %d\n",getppid());

}

#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>

208 Chapter 9: File and Directory Manipulation

A\l
EXAMPLE

int b_ppid(int argc, char *argv[])

{

printf("Parent PID is %d\n",getppid());
return(EXIT_SUCCESS);

}

$

$ whereis 1s # Locate the 1s program

1s: /bin/1ls /usr/man/mant/ls.1

$

$ /bin/ls # Execute it presenting its full file specification
getppid.c getppidfunc.c

$

The actual location of a command can usually be found with the whereis
command (or the which command or the whence command). If the command
is still among the missing, try using the find command. Not all commands
will be located by the whereis command, however. The RedHat Linux man
page for whereis states, “whereis has a hard-coded path, so may not always
find what you’re looking for.” If I can’t find a command that I am quite sure
exists, I use the find command to do the grunt work. What the heck, we've
got a computer at our fingertips; let’s let it do the searching.

Running find as a user can yield many permission denied messages. Be
patient, and let it run. If what you are looking for is there, find will find it.
If you get annoyed or embarrassed by the error messages, send them to
their exile in the bit bucket. You learned stderr redirection in the last chap-
ter, so you should be able to use syntax such as 2> /dev/null to eliminate
those pesky messages.

The following example uses the find command to locate the 1s program. It
also shows the redirection of stderr to eliminate error messages generated
by the find command. Note that your system’s find command might
require the -print option on the end of the command line:

$ whereis 1s
1s: /bin/1ls /usr/man/mani/ls.1
$
$ find / -name 1s # Search for the 1s program
find: /usr/doc/ppp-2.3.10/scripts/chatchat: Permission denied
find: /proc/1/fd: Permission denied
(...)
/bin/1ls
(...)
$ find / -name 1ls 2> /dev/null # Redirect error messages into the
'bit bucket'
/bin/1s

v

[=4
EXAMPLE

Descriptors 209

Either method helps you bulletproof your script if you build in absolute
paths for commands. You might feel that this makes the script cumbersome
and unwieldy. If so, try hiding the actual locations of the commands in shell
variables. Even though this technique might not get rid of the cumbersome
feeling, it can prevent errors that might have cropped up if you had to
repeat the full file spec for each and every invocation of the 1s command.

The following example creates a shell variable to hold the directory location
for the 1s command and uses it to avoid inadvertent use of aliases:

$ lsloc='/bin' # Create shell variable containing
directory spec for 1ls command
$
$ $1sloc/ls # Use absolute spec through shell variable

getppid.c getppidfunc.c

As discussed in the previous chapter, a file descriptor is a small integer
value representing an open file. You might recall the three famous (infa-
mous) file descriptors: stdin, stdout, and stderr. These mnemonics repre-
sent file descriptors 0, 1, and 2, respectively. They are usually open and
typically represent your terminal display device. When you use the redirec-
tion symbols on the command line, you are altering file descriptor 0, or 1, or
2 (stdin, stdout, or stderr).

The following example uses the > and >> symbols to redirect output to a file
(>), and also to redirect output and append it to an existing file (>>):

$ date > stats # Put output of date command into stats file
$ vmstat >> stats # Append vmstat output into stats file
$
$ cat stats
Mon Oct 16 13:00:15 EDT 2000
procs memory swap io system cpu
r b w swpd free buff cache si so bi bo in cs us sy id
0 0 0 2124 808 13616 7860 0 0 1 0 108 6 0 0100

Other descriptors can be used to represent other files you might want to
open in your script. The Korn Shell (and other shells) has so many file
manipulation commands built into it that the need to directly open a file
and read individual lines is rare. However, for advanced file processing
where you might want to have access to data in several files at once, the
Korn Shell provides the exec command to open access to a file(s).

The following example script creates a file containing the current date and
time, followed by the output of a vmstat command repeated five times. The

210

Chapter 9: File and Directory Manipulation

v

[=4

EXAMPLE

goal is to produce a log file (named summary in the script) that contains the
date and time, and also contains the average number of interrupts occur-
ring per second over the 10-second interval following the recorded date and
time. It uses the exec command to open access to files as the script runs. It
also shows the read -A command, which enables the reading of a line of
data into an array. Note that the -A option might not be available on sys-
tems using earlier releases of ksh:

$ cat openone

#! /bin/ksh

integer tot=0 ave=0

set -A line # Variable 'line' is an array
date > stats # Put date in stats file

vmstat 2 5 >> stats # Put vmstat output in stats file,
repeats every 2 seconds, does it 5 times

exec 3< stats # Open access to stats on file descriptor number 3
exec 4> summary # Open write access to summary file on fd number 4
read -u3 line # Read date into variable line

print -u4 $line # Write contents of line to fd 4

read -u3; read -u3 ; read -u3 ; read -u3 # Eliminate header lines

while read -A -u3 line # Read second vmstat line into array

do

tot=tot+${line[12]} # Access interrupt count in field 12

done

ave=tot/4 # Calculate average

print "Average number of interrupts during the last 10 seconds is $ave ."
To stdout

print -u4 "Average number of interrupts during the last 10 seconds is $ave ."
To fd 4

exit

$

$ openone

Average number of interrupts during the last 10 seconds is 90 .
Script output display

$

$

$ cat summary # Summary file contents

Thu Nov 2 00:54:00 EST 2000

Average number of interrupts during the last 10 seconds is 90 .

$

$

Special Files 211

$ cat stats # Stats file FYI

Thu Nov 2 00:54:00 EST 2000

Virtual Memory Statistics: (pagesize = 8192)
procs memory pages intr cpu
rw u act free wire fault cow zero react pin pout in sy c¢s us sy id

3 154 31 60K 14K 10K 14M 3M 4M 1056 3M 0 83 2K 1K 10 4 86
2 165 31 60K 14K 10K 121 8 0 9 0 122 1K 808 0 1 99
2 165 31 60K 14K 10K 0 0 0 0 0 ®0 75915 719 0 1 99
2 155 31 60K 14K 10K 379 93 54 0 75 0 86 2K 1K 10 5 85
2 155 31 60K 14K 10K 0 0 0 0 0 0 78 1K 1K 7 1 91

Special Files

My first experiences with UNIX were as a C programmer. I was familiar
with writing programs for low-level access to devices for reads or writes, or
getting or setting device characteristics, but had never done it in UNIX. I
had always done this by opening a channel to the device and using func-
tions that run in kernel mode (referred to as system calls or system services)
to get or set what I wanted. I figured I could do the same kind of thing in
UNIX, but I didn’t know how. I spoke with a new hire who had UNIX expe-
rience and asked him how to perform low-level I/Os to a device in UNIX.
He thought for a few seconds and said, “Well, that’s easy. You just open a
file. Everything in UNIX is represented by a file.”

I thanked him and backed away thinking to myself, “This guy doesn’t have
a clue.” It turned out it was I who didn’t have a clue. Just about everything
in UNIX is indeed represented by a file. Files represent all your terminals,
printers, disks, virtual memory, physical memory, pseudo-devices, and

SO on.

Files representing hardware devices are called device special files. They can
be character special files for terminals, printers, and other character-
oriented devices, or they can be block special files for disk devices. Note
that these files are actually 0 bytes in size. Take a look at the size field in
the following examples (just to the left of the date field). The size field is
replaced by two numbers, such as 6 and 27, or 19 and 38.

The leftmost number is the device major ID and is used to identify which
device driver is to be used to service this device. The other number is the
device minor ID. It is used to distinguish one device (in a class of devices)
from the other. If you had 15 SCSI disks, they would all be served by the
same driver, so the major ID in their device special files would be the same
for all of them. The minor IDs, however, would all be different to differenti-
ate I/O from each individual device. All the device special files consist of is

212 Chapter 9: File and Directory Manipulation

Ny

/=4
EXAMPLE

metadata containing the major and minor IDs, and other typical file attrib-
utes such as permissions.

The following example displays the metadata from several device special
files (note that all device special files are found under the /dev directory):

$ 1s -1 ttygb
crw-rw-rw- 2 root system 6, 27 Feb 7 2000 ttygb

Character special file for terminal
$
$ 1s -1 /dev/rdisk/dsk*c # Character special files for raw disks
CrW------- 1 root system 19, 38 Dec 6 1999 /dev/rdisk/dsk@c
Crw------- 1 root system 19, 70 Sep 21 20:45 /dev/rdisk/dskic
$
$ 1s -1 /dev/disk/dsk*c # Block special files for disks
brw------- 1 root system 19, 37 Dec 6 1999 /dev/disk/dskoc
brw------- 1 root system 19, 69 Sep 21 20:27 /dev/disk/dskic

Do you have a nickname? When you are at work, you might be called
Mr. Smith. When at the ball field, you might be Shorty, and when with
your mate, you might be Sweetie. These monikers all refer to the same
thing: you.

Similarly, files can have multiple names. When you create a file and give it
a name, you create a hard link to the file. Note the link count field in the
following example. The link count field appears immediately after the per-
missions. It contains a 1, indicating that currently only one hard link exists
to the body of data represented by the file’s name:

$ 1s -1 stats

SPW-r--r-- 1 obrien guest 629 Nov 2 00:54 stats

In addition, the 1n command can be used to create more hard links to the
same file.

The following example creates a second hard link to an existing file and
subsequently drives the link count field from 1 to 2:

$ 1n stats hardlinktostats # Creates a hard link
$
$ 1s -1 *stats
-rw-r--r-- 2 obrien guest 629 Nov 2 00:54 hardlinktostats

Link count is now two
SPW-r--r-- 2 obrien guest 629 Nov 2 00:54 stats

All links to the same file can be used to access the file similarly. Unlike
your name and nicknames, no distinction exists between the first link to

i

[=4
EXAMPLE

Links 213

the file and the last. (When signing a check, you typically don’t use your
nickname, do you?) The hard links to a file are all equal in their capability
to represent the file. Additionally, a hard link is represented in its directory
by a filename that is associated with the same inode number as an existing
file.

The following example shows that two hard-linked filenames will have the
same inode number, and therefore will access the same data:

$ 1s -1i *stats # Note same inode number (first field)

75261 -rw-r--r-- 2 obrien guest 629 Nov 2 00:54 hardlinktostats
75261 -rw-r--r-- 2 obrien guest 629 Nov 2 00:54 stats

$ cat stats # Both access the same data

Thu Nov 2 00:54:00 EST 2000
Virtual Memory Statistics: (pagesize = 8192)
procs memory pages intr cpu

rw u act free wire fault cow zero react pin pout in sy c¢s us sy id

3 154 31 60K 14K 10K 14M 3M 4M 1056 3M 0 83 2K 1K 10 4 86

2 155 31 60K 14K 10K 121 8 0 9 0 122 1K 808 0 1 99

2 155 31 60K 14K 10K 0 0 0 0 0 0 75915719 0 1 99

2 155 31 60K 14K 10K 379 93 54 0 75 0 86 2K 1K 10 5 85

2 155 31 60K 14K 10K 0 0 0 0 0 0 78 1K 1K 7 1 91
$

$ cat hardlinktostats # Both access the same data
Thu Nov 2 00:54:00 EST 2000
Virtual Memory Statistics: (pagesize = 8192)
procs memory pages intr cpu

rw u act free wire fault cow zero react pin pout in sy c¢s us sy id

3 154 31 60K 14K 10K 14M 3M 4M 1056 3M 0 83 2K 1K 10 4 86

2 155 31 60K 14K 10K 1 21 8 0 9 0 122 1K 808 © 1 99

2 155 31 60K 14K 10K 0 0 0 0 0 0 75915719 0 1 99

2 155 31 60K 14K 10K 379 93 54 0 75 0 86 2K 1K 10 5 85

2 155 31 60K 14K 10K 0 0 0 0 0 0 78 1K 1K 7 1 91
$

Have you ever wondered why UNIX has no delete command? Sure, it has
the rm command, but what do the letters “rm” stand for? They stand for
“remove,” meaning remove a link. The rm command decrements the link
count in a file’s metadata by one. If the link count is brought down to 0 by
the rm command, the storage used by the file is freed.

Hard links do, however, have limitations. They cannot be used to represent
a directory, and they can be used only within a file system. Note that a
UNIX system can have many file systems. Each file system has its own
storage locations and characteristics. You can see your machine’s currently
available file systems by examining the output of the df command.

214 Chapter 9: File and Directory Manipulation

Ay

/=4
EXAMPLE

The following example attempts to create a hard link to a file in another
file system, and attempts to create a hard link to a directory:
$ 1n /etc/passwd pass # Attempt to make a hard link
from my directory to /etc/passwd
In: /etc/passwd and pass are located on different file systems.
$
$ 1In /etc toetc # Attempt to make a hard link to a directory
/etc is a directory.
$

These limitations are addressed through symbolic links. A symbolic link is
also a nickname for a file, but the mechanism it uses to represent the file
does not revolve around the directory and inode mechanism mentioned ear-
lier. Each symbolic link is a file that contains a string of characters repre-
senting the absolute file spec of the target file.

The following example creates a symbolic (sometimes referred to as soft)
link to a file and displays the symbolic link’s attributes. Note the permis-
sive permissions (rwxrwxrwx). A final permission check will occur when the
linked-to file is accessed:

$ 1n -s stats softlinktostats # Create symbolic (soft) link to stats file
$

$ 1s -1i *stats

75261 -rw-r--r-- 2 obrien guest 629 Nov 2 00:54 hardlinktostats

50994 lrwxrwxrwx 1 obrien guest 5 Nov 2 01:17 softlinktostats -> stats
75261 -rw-r--r-- 2 obrien guest 629 Nov 2 00:54 stats
$

Using the symbolic link mechanism, a link can be created pointing to a
directory or to a file in another file system:

$ 1In -s /etc/passwd pass # Create symbolic link to /etc/passwd

$

$ 1n -s /etc toetc # Create symbolic link to /etc

$ 1s -1 pass

Irwxrwxrwx 1 obrien guest 11 Nov 2 01:20 pass -> /etc/passwd
$

$ 1s -1 toetc # Symbolic link permissions

Irwxrwxrwx 1 obrien guest 4 Nov 2 01:20 toetc -> /etc

$

$ 1s -1L pass # Follow symbolic link

SPW-r--r-- 1 root system 1316 Oct 30 15:15 pass

$

$ 1s -1L toetc # Follow symbolic link to access a directory
total 1204

-rwxr-xr-x 1 bin bin 1 Jul 20 1999 TIMEZONE

Ay
EXAMPLE

Links
-rwxr-xr-x 1 root uucp 12008 Apr 5 2000 acucap
drwxrwx--x 4 auth auth 8192 Jul 21 1999 auth
(vn2)
drwxr-xr-x 3 root system 8192 Jun 1 18:54 yp
drwxr-xr-x 20 root system 8192 Oct 31 00:53 zoneinfo
$
$ cat pass # Use symbolic link to access password file

root:ycjCpCjPIrUzI:0:1:system PRIVILEGED account:/:/bin/ksh
nobody:*Nologin:65534:65534:anonymous NFS user:/:

215

If you delete the file to which a symbolic link is pointing, subsequent uses
of the symbolic link will fail. You can, however, recreate the file to which a

symbolic link points, and the symbolic link will function once again:

$ pwd

/home/obrien/scripts

$

$ 1s -1i stats

4036 -rw-rw-r-- 1 obrien obrien 589 Nov 4 15:36 stats
Note size of stats is 589

$
Note inode number is 4036

$cd .. # Change to another directory

$

$ 1In -s /home/obrien/scripts/stats symstats
Create symbolic link symstats

$
$ 1s -1i symstats
16090 Lrwxrwxrwx 1 obrien obrien 26 Nov 4 15:37
Note linkage and permissions
symstats -> /home/obrien/scripts/stats
Note size is 26 (length of file spec)
$

$ 1s -1L symstats
-L shows what the link points to
SPW-rwW-r- - 1 obrien obrien 589 Nov 4 15:36 symstats
Note size is 589
$
$ rm /home/obrien/scripts/stats
Remove file pointed to by link

$
$ 1s -1 symstats
Lrwxrwxrwx 1 obrien obrien 26 Nov 4 15:37
Link still exists
symstats -> /home/obrien/scripts/stats
$

$ 1s -1L symstats

216

Chapter 9: File and Directory Manipulation

Lrwxrwxrwx 1 obrien obrien 26 Nov 4 15:37

-L shows no difference

symstats -> /home/obrien/scripts/stats

$
$ cat symstats

Link use fails
-ksh: cat: symstats: cannot open [No such file or directory]
$
$ cat > /home/obrien/scripts/stats

Re-create file called stats
New stuff in new stats file.

$

$ cat symstats # Link works now

New stuff in new stats file to replace missing stuff.

$

$ 1s -1i symstats

16090 lrwxrwxrwx 1 obrien obrien 26 Nov 4 15:37
symstats -> /home/obrien/scripts/stats

$

$ 1s -1Li symstats

4079 -rw-rw-r-- 1 obrien obrien 52 Nov 4 15:39 symstats
Note size is 52
Different inode number

$

Directories

Some of our first experiences with a computer involve the organizing of
files. Directories are files that provide the capability to catalog files in rec-
ognizable logical locations. Rather than having to hunt for an accounting
file whose name you have forgotten, you can look in the accounting direc-
tory. If you have been lax in your file organization, though, you can still end
up hunting. The point is that creating several directories does NOT orga-
nize your files. Putting your files in the appropriate directories DOES
organize your files.

As I pointed out earlier, directories are files. But they are special files with
a special format. They contain a mix of ASCII and binary information. The
ASCII information represents a filename, and the binary information repre-
sents the file’s inode number (or other file system metadata location indica-
tor). Metadata is data that describes other data. Many types of file systems
are supported by the various UNIX operating systems. For this discussion,
we’ll stick with the UNIX File System (UFS) because it is common to most
UNIX systems.

Ny

/=4
EXAMPLE

Directories 217

Most UNIX users labor under the misconception that the information visi-
ble from an 1s -1 command is held in the directory file. However, most of
this information is actually held in the inode that represents the file. Each
inode is approximately 128 bytes in size. The first 64 bytes usually holds
the file type, permissions, link count, owner, group owner, size, modification
date, access date, and metadata modification date.

The inode does not hold the file’s name. The filename is held in the direc-
tory file. And the directory file associates the filename with an inode num-
ber. The inode number is used as an offset into the on-disk inode table to
find the metadata for a file. The second 64 bytes of an inode contain loca-
tion information indicating where on the disk the actual body of the file can
be found. Think of the inode as the file’s header, and the actual file contents
as the file’s body.

The following example shows two files in a directory, and then uses an

od -Xs command to dump out the raw contents of the directory file in hexa-
decimal (base 16). (Check the od man page on your system to see which
options you can use. The -X option might not be available on all systems.)
The -s asks the utility to show any strings that are in the file. The output
shows the string dennnn associated with the number 6583 (hex), and the
string cheryl111 associated with the number 6584 (hex). It then uses the bc
command (basic calculator) to display the hex equivalent of the decimal
inode numbers 25988 and 25987:

$ pwd

/usr/users/obrien/subdir

$

$ 1s -1i

total 8031

25988 -rw-r--r-- 1 obrien users 8192000 Nov 2 16:14 cheryllll
Note name and inode numbers

25987 -rwxr-xr-x 1 obrien users 30910 Nov 2 16:14 dennnn

$

$cd ..

$

$ od -Xs subdir

0000000 00006582 00010014 0000002e 00006582

0000020 00008001 00006367 00020014 00002e2e

0000040 00006367 00008001 00006583 00060018

0000060 6e6€6564 00006e6e 00006583 00008001 # Inode is 6583 (hex)

0000060 dennnn # Note name

0000100 00006584 0009001c 72656863 6C6C6C79

0000120 0000006Cc 00006584 00008001 00000000 # Inode is 6584 (hex)

0000110 cheryllll # Note name

218 Chapter 9: File and Directory Manipulation

Ny

/=4
EXAMPLE

0000140 00000124 00000000 00000000 00000000
(«02)
$ bc
obase=16
ibase=10
25988 # 6584 hex = 25988 dec
6584
25989 # 6585 hex = 25989 dec
6585
quit
$

Hidden Files

Certain files are listed only when you specifically ask to see them. These
are called hidden files. Your .profile file is an example of a hidden file.
Any file whose name begins with a . is treated as hidden. These filenames
are not displayed by an unadorned 1s command, but are displayed when
requested with the -a option (-a means all).

The following example shows an 1s -1 command with no hidden files dis-
played, followed by an 1s -la command that includes hidden files in its
output:

$1s -1 # Does not display
hidden files
total 4
-rw-r--r-- 2 obrien guest 629 Nov 2 00:54 hardlinktostats
-PWXP-XI - - 1 obrien guest 412 Nov 2 00:53 openone
lrwxrwxrwx 1 obrien guest 11 Nov 2 01:20 pass -> /etc/passwd
Lrwxrwxrwx 1 obrien guest 5 Nov 2 01:17 softlinktostats -> stats
-rw-r--r-- 2 obrien guest 629 Nov 2 00:54 stats
SPW-r--r-- 1 obrien guest 92 Nov 2 00:54 summary
Irwxrwxrwx 1 obrien guest 4 Nov 2 01:20 toetc -> /etc
$
$ 1s -la # Shows hidden files
total 20
drwxr-xr-x 2 obrien guest 8192 Nov 2 01:33 . # Hidden file
drwxr-xr-x 5 obrien guest 8192 Nov 2 00:10 .. # Hidden file
-rw-r--r-- 1 obrien guest 0 Nov 2 01:33 .dbxinit

Hidden file
-rw-r--r-- 2 obrien guest 629 Nov 2 00:54 hardlinktostats
-PWXI - XTI - - 1 obrien guest 412 Nov 2 00:53 openone
Irwxrwxrwx 1 obrien guest 11 Nov 2 01:20 pass -> /etc/passwd
Irwxrwxrwx 1 obrien guest 5 Nov 2 01:17 softlinktostats -> stats
-rw-r--r-- 2 obrien guest 629 Nov 2 00:54 stats

A\l
EXAMPLE

A

[=4
EXAMPLE

Attributes 219

SPW-r--r-- 1 obrien guest 92 Nov 2 00:54 summary
Irwxrwxrwx 1 obrien guest 4 Nov 2 01:20 toetc -> /etc
$

Each file has attributes associated with it to describe its characteristics.
Some attributes are ownership, group ownership, permissions, type of file,
and link count. Oh, that’s the stuff from the inode! Yes. The inode contains
the file’s attributes. Some attributes are more shell-oriented than file-
oriented, yet they control the behavior of file activities. All of us have had
the UNIX file clobber experience. You know, when you inadvertently name
a new file the same as an existing file on a redirection. ‘Fess up. We’ve all
done that, much to our chagrin.

The following example shows the existence of a 629-byte file named stats,
followed by a redirection that clobbers the file and then replaces the file
contents with the output of a ps command consisting of 159 bytes:

$ 1s -1i stats

75261 -rw-r--r-- 2 obrien guest 629 Nov 2 00:54 stats
$ ps > stats
Oops, I just clobbered the stats file
$
$ 1s -1i stats
75261 -rw-r--r-- 2 obrien guest 159 Nov 2 01:35 stats
Note size difference
$

This can be controlled by the noclobber shell attribute.

The following example sets the noclobber option and shows that a user will
be prevented from clobbering an existing file:

$ set -0 noclobber # Protecting myself from myself
$

$ 1s -1i stats

75261 -rw-r--r-- 2 obrien guest 159 Nov 2 01:35 stats

$

$ vmstat > stats
dtksh: stats: file already exists [File exists]
No clobbering allowed

$
$ 1s -1i stats
75261 -rw-r--r-- 2 obrien guest 159 Nov 2 01:35 stats

Unchanged

220

Chapter 9: File and Directory Manipulation

Ay

[=1

EXAMPLE

Ny

/=4

EXAMPLE

You can override the noclobber option for an individual command by insist-
ing that you want it done with the >| syntax. The following example uses
the >| syntax to temporarily override the noclobber option. It also uses the
wc -c command to count the characters in the test file named f2:

$ we -c f2
35 f2 # f2 has 35 characters
$
$ set -o noclobber # Turn off clobbering
$
$ set -0 | grep clobber
noclobber on # Note noclobber option is on
$
$ ps > f2 # Prevents clobbering f2
-ksh: f2: file already exists [File exists]
$
$ we -c f2
35 f2 # f2 still has 35 characters
$
$ ps >| f2 # Override noclobber with >|
$
$ we -c f2
83 f2 # f2 has 83 characters now
$
$ set -0 | grep clobber
noclobber on # Noclobber is still on
$
$1s -1 > f2 # Can't clobber

unless overridden with >|
-ksh: f2: file already exists [File exists]
$
You can turn clobbering back on by using the set +o0 noclobber command:

$ set +o noclobber # Turn noclobber off

@

$ set -0 | grep clobber
noclobber off
$
$1ls -1 > f2 # Clobber away!
$
$ we -c f2
826 f2
$

File ownership and permissions are some of the more visible file attributes.
These can be viewed with the 1s -1 command. A file is owned by its creator.
The user account from which the command to create the file was issued is

Ay
EXAMPLE

Attributes 221

recorded in the inode as the owner of the file. Once again, the ownership,
permissions, and other attributes of a file are NOT stored in the directory
file. That information is held in the metadata (typically the inode) that sup-
ports every file that currently exists in your file system.

The following example shows the typical file ownership and related file
attributes:
$ 1s -1 stats

-rw-r--r-- 2 obrien guest 159 Nov 2 01:35 stats
$

The file is also imprinted with a group-level ownership. Most Berkeley-
flavored UNIX variants record the group ownership of a newly created file
as the group ownership of the directory in which the file was created. This
is not intuitively obvious, so I suggest you take note here. Check to see
whether your UNIX exhibits this behavior.

The following example shows that the group ownership of a new file
matches the group ownership of the directory file in which it is created. It
creates a file in the /usr/users/obrien directory and then creates another
file in the /tmp directory:

$1s -1d ..

drwxr-xr-x 5 obrien guest 8192 Nov 2 00:10 ..
Directory's group is guest

$ touch test1

$

$ 1s -1 testi

SPW-r--r-- 1 obrien guest 0 Nov 2 01:41 testl
New file's group is guest

$

$ 1s -1Ld /tmp

drwxrwxrwt 9 root system 8192 Nov 2 01:05 /tmp
Directory's group is system

$

$ touch /tmp/test2

$

$ 1s -1 /tmp/test2

-rw-r--r-- 1 obrien system 0 Nov 2 01:42 /tmp/test2
New file's group is system

$

Most System V-flavored UNIX variants assign group ownership based on

the primary group of the user creating the file. Be aware that your UNIX

might be capable of switching between the two behaviors (Compaq’s Tru64
UNIX can do this, as shown in the following).

222

Chapter 9: File and Directory Manipulation

Ay

/=4

EXAMPLE

The following example shows the typical Berkeley-style behavior for assign-
ing group ownership of a new file, and then it shows what happens when
the system administrator switches to the System V style of group owner-
ship (typically done by changing a kernel attribute):
$ id
uid=201(obrien) gid=15(users)

User obrien is in the 'users' group

$ cd /tmp
$
$ 1s -1Ld
drwxrwxrwt 4 root system 8192 Nov 2 16:47 .
Note group ownership of directory is system
$
$ touch dent # Make a new file
$
$ 1s -1 dent
SPW-r--r-- 1 obrien users 0 Nov 2 16:52 dent
Note group ownership is 'users'’
$

$ #Change the system's behavior to its default which is BSD style.
(SysAdmin will have to do this.)

$
$ touch den2 # Make another new file
$
$ 1s -1 den2
SPW-r--r- - 1 obrien system 0 Nov 2 16:53 den2
Note group ownership is 'system'

$

NOTE

These group ownership issues are related to the UNIX operating system you are running
and are not directly the result of running a particular shell.

Permissions

Permissions determine the access allowed to a file. In an earlier chapter,
you looked at permission basics. We proposed that the umask value could be
subtracted from octal 777 for directories and octal 666 for nondirectory files.
The truth is a bit more complicated, and because you’ve made it this far in
the book, you might as well know the truth. If you consider that the umask
value can be set to octal 777—which is an extreme and unusual value, but
legitimate nonetheless—you can deduce that the subtraction technique

v

[=4
EXAMPLE

Ny

/=4
EXAMPLE

Acceptable Filenames 223

presented earlier, while useful, is flawed. With a umask of 777, the subtrac-
tion technique yields -1,-1,-1, which makes no sense.

The one’s complement of the umask is derived and then bitwise ANDed with
the raw permission value (666 for files; 777 for directories). The resulting
permissions for a nondirectory file when the umask is set to 677 would be - -

The following example sets an unusual umask value (677) and then creates a
file to demonstrate the application of the umask:

$ umask 677 # Set umask value
$

$ touch test4 # Create file

$ 1s -1 test4

---------- 1 obrien guest O Nov 2 01:51 test4 # Note permissions
$

Acceptable Filenames

The single most visible attribute of a file is its name. As mentioned in an
earlier section, filenames are cataloged in a directory file. The Korn Shell
accepts files with names containing letters, numbers, the period, and the
underscore. It also accepts characters drawn from the following set: *, &, ?,
L1-<>3%,1!°¢and . However, I would recommend against using them.
Believe it or not, it is also legitimate to use a space in a filename. Note that
some unusual and unexpected characters are in this set. Using some of the
special characters in filenames can lead to difficulty in deleting or accessing
files. Common sense is suggested here.

The following example shows potential problems with using characters with
special meaning to the shell in filenames. This example uses the asterisk
(*). Most problems with special characters in filenames can be overcome
through the use of apostrophes or quotes:

$ cat > "a*b" # Create file with asterisk in its name

junk in file

$

$ cat a*b # Seems to work ok

junk in file

$

$ cat > axxxb # Create another file that begins with 'a' and ends with 'b'
more junk

$

$ 1s a*b # Asterisk expands. Not what we wanted

224

Chapter 9: File and Directory Manipulation

Ay

/=4

EXAMPLE

A

[=1

EXAMPLE

a*b axxxb

$

$ 1s 'a*b’ # Apostrophes remove special meaning of *
a*b

$

Accessing Files

Files can be created through editors, commands, redirection, or programs.
The mechanism you choose to create a file should be based on your needs
and abilities. Needless to say, you wouldn’t create a file with the emacs edi-
tor if you were unfamiliar with emacs! An empty file can be created with
the touch command.

The following example demonstrates several techniques for creating files:
$ touch sm3 sm4 # Create two empty files

$

$ 1s -1 sm*

SPW-r--r-- 1 obrien guest 0 Nov 3 00:22 sm3
SPW-r--r-- 1 obrien guest 0 Nov 3 00:22 sm4

$

$ 1s > sm5 # Create a small file through output redirection
$

$ >sm6 # Shell creates an empty file whenever it sees >
$

$ 1s -1 sm*

SPW-r--r-- 1 obrien guest Q0 Nov 3 00:22 sm3
SPW-r--r-- 1 obrien guest O Nov 3 00:22 sm4
SPW-r--r-- 1 obrien guest 99 Nov 3 00:22 sm5
SPW-r--r-- 1 obrien guest O Nov 3 00:23 smé

$

Many commands create files as part of their function (for example, cc and
script). The script command captures all commands and output until the
user types exit.

The following example uses the script command to capture some screens
from the terminal and place them in a file:

$ script outstuff # Start gathering

Script started, file is outstuff

$ 1s -1 sm*

SPW-r--r-- 1 obrien guest Q0 Nov 3 00:22 sm3
SPW-r--r-- 1 obrien guest ® Nov 3 00:22 sm4
SPW-r--r-- 1 obrien guest 99 Nov 3 00:22 sm5
SPW-r--r-- 1 obrien guest O Nov 3 00:23 smé

$ ps

Ay
i
[=4

EXAMPLE

PID TTY s TIME
204646 pts/2 S 0:00.23
204657 pts/2 1 0:00.07
204703 pts/2 S + 0:00.02
204719 pts/2 S + 0:00.00
204716 pts/6 S 0:00.03

$ pwd
/usr/staff/g1/obrien/denscrs
$ exit
Script done, file is outstuff

$ 1s -1 ou*
SPW-P--r-- 1 obrien
$

$ cat outstuff

guest

Accessing Files

CMD

dtksh

-ksh (ksh)
script outstuff
script outstuff
sh -is

End the script session

648 Nov 3 00:26 outstuff

File outstuff contains screen dumps

Script started on Fri Nov 3 00:25:58 2000

$ 1s -1 sm*
SPW-r--r-- 1 obrien guest
SPW-r--r-- 1 obrien guest
SPW-r--r-- 1 obrien guest
SPW-r--r-- 1 obrien guest
$ ps

PID TTY S TIME
204646 pts/2 S 0:00.23
204657 pts/2 I 0:00.07
204703 pts/2 S + 0:00.02
204719 pts/2 S + 0:00.00
204716 pts/6 S 0:00.03

$ pwd
/usr/staff/g1/obrien/denscrs
$ exit

0 Nov
0 Nov
99 Nov
0 Nov

3 00:22 sm3
3 00:22 sm4
3 00:22 smb5
3 00:23 sm6

CMD

dtksh

-ksh (ksh)
script outstuff
script outstuff
sh -is

script done on Fri Nov 3 00:26:24 2000

$

End of contents of file named outstuff

Simply redirecting the output of a command also creates a file:

$ 1Is -1 sm* > smfiles

$

$ cat smfiles

SPW-r--r-- 1 obrien guest
SPW-r--r-- 1 obrien guest
SPW-r--r-- 1 obrien guest
SPW-r--r-- 1 obrien guest

$

0 Nov
0 Nov
99 Nov
0 Nov

3 00:22 sm3
3 00:22 sm4
3 00:22 sm5
3 00:23 sm6

225

226

Chapter 9: File and Directory Manipulation

Ay

/=4

EXAMPLE

Use an editor if you need to craft a file (see Appendix B, “vi Tutorial,” for
more information):

$ vi letter
"letter" [New file]
Dear Boss,
I deserve a raise.
Regards,
Den
1w
$
Files can be joined through the use of the append redirection operator (>>):
$ 1s -1 o*
-PWXP - XTI - - 1 obrien guest 412 Nov 2 00:53 openone
-rw-r--r-- 1 obrien guest 648 Nov 3 00:26 outstuff # Note size 648
$
$ cat openone >> outstuff # Append file
$
$ 1s -1 o*
-PWXP-XP- - 1 obrien guest 412 Nov 2 00:53 openone
“PW-r--r-- 1 obrien guest 1060 Nov 3 00:35 outstuff # Note size 1060
$

Files can be copied with the cp command:
$ cp openone openother

$

$ 1s -1 op*

-PWXP-XP- - 1 obrien guest 412 Nov 2 00:53 openone
-PWXP-XP - - 1 obrien guest 412 Nov 3 00:38 openother
$

Files also can be deleted using rm. Note that rm removes a hard link to a
file. As such, you might not be freeing up any disk space in the case where
a file has several hard links. The rm command would simply subtract one
from the hard link count in that case. It would check to see whether the
result of the subtraction yields a result of zero. If so, the file’s body would
truly be deleted and disk space would be regained. I emphasize that this
behavior is exhibited by hard links only. Symbolic links are essentially files
whose contents are a file specification to locate another file.

The following example shows two filenames that are links to the same data.
It then shows how the link count changes when one of the file links is
removed:

Ay

/=4
EXAMPLE

Accessing Files 227

$ 1s -1 *stats

-rw-r--r-- 2 obrien guest 159 Nov 2 01:35 hardlinktostats
Note link count
Irwxrwxrwx 1 obrien guest 5 Nov 2 01:17 softlinktostats -> stats
-rw-r--r-- 2 obrien guest 159 Nov 2 01:35 stats
$
$ rm stats # Remove a link
$
$ 1s -1 *stats
-rw-r--r-- 1 obrien guest 159 Nov 2 01:35 hardlinktostats
Note link count
Irwxrwxrwx 1 obrien guest 5 Nov 2 01:17 softlinktostats -> stats
$

A file can be moved from one directory to another. On the way, the file can
have its name changed. Thus, the mv command functions as a rename com-
mand.

TIP

mv can be used to move a file beyond the border of its file system. The mv command
also can be used to rename a file without moving it to another directory.

The following example shows the mv command functioning as a rename
command:

$ 1s /tmp/ha* # No file starting with ha in /tmp
1s: /tmp/ha* not found
$

$ mv hardlinktostats /tmp # Move it (rename) to a different directory
$

$ 1s /tmp/ha* # Successfully moved

/tmp/hardlinktostats

$

File contents can be read with several commands (cat, page, 1pr, any editor,
view, and so on). While in a script, you might want to open a file for reading
and then access the data line by line. A combination of the exec command
and the read command provides this capability. Several files can be open at
once.

The following example uses the exec command to open access to a file; it
then processes the lines of the file one at a time using the read command:

$ cat /tmp/hardlinktostats # Display file contents
PID TTY S TIME CMD
200691 pts/6 S 0:01.11 dtksh

200731 pts/6 I 0:00.19 -ksh (ksh)

228

Chapter 9: File and Directory Manipulation

Ny

/=4

EXAMPLE

200774 pts/6 I 0:00.17 dtksh

$

$ exec 5< /tmp/hardlinktostats # Open access to file through fd 5
$

$ read -u5 line # Read a line from fd 5
$

$ print $line # Display line

PID TTY S TIME CMD

$

$ read -u5 line # Read next line

$

$ print $line # Print line

200691 pts/6 S 0:01.11 dtksh

$

$ read -u5 line

$

$ print $line

200731 pts/6 I 0:00.19 -ksh (ksh)

$

Suppose you need to empty the contents of a file, but not delete the file.
Clipping off the end of a file is sometimes referred to as file truncation.

Redirection to an existing file causes file truncation down to a size of 0

bytes.

Each time the shell is asked to perform redirection of output, it makes sev-
eral checks. It checks to see whether the target of the redirection is an
existing file. If so, it checks to see whether noclobber is set. If not, the file
is truncated down to 0 bytes in size, and then the redirected output is used
to repopulate the file. This behavior can be seen in a rookie’s use of the
sort command, where the same file is used for input and output.

The following example requests output redirection to a file that is used as
input for the command. One of the first things the shell does when it inter-
prets a line is to look for redirection syntax (>, <, >>, and so on). If it finds
output redirection, it immediately truncates the target file down to 0 bytes
in size. In the example, the file to be sorted is truncated before the sort
command gets its hands on the file. sort sees an empty file, so it doesn’t do
anything:

$ cat sortfile # Unsorted file

pears

oranges

apples

beer

$

Ay

[=4
EXAMPLE

Filtering 229

$ sort sortfile # Sorted output onscreen
apples
beer
oranges
pears
$
$ sort sortfile > sortfile # Redirect output to same file as input
$
$ cat sortfile # Empty!
$
$ we -c sortfile
0 sortfile # Empty!
$

Many filter style programs provide the capability to manipulate the con-
tents of files (for example, the commands, grep, tail, head, wc, sed, awk,
xargs, and so on). Several of these are so powerful that they are the subject
of separate books. Generally, a filter can accept input from stdin and
pushes output to stdout. Become proficient with filter commands, and the
need for using scripts to open individual files is diminished. Your creations
will become more succinct and powerful. Many of these commands could
easily take up a chapter on their own, but in this book, I'll introduce them
and entice you to check them out on your own.

head

If you need to display the beginning lines of a file, use the head command.
The head command outputs the first 10 lines of a file by default. You also
can specify a count of lines to display.

The following example uses the head command to display the first 2 lines of
a file:

$ cat sortfile2

pears

oranges

apples

beer

$

$ head -n 2 sortfile2
pears

oranges

$

230

Chapter 9: File and Directory Manipulation

Ay

[=4

EXAMPLE

tail

Sometimes you might need to access the tail end of a file. The tail com-
mand displays the last 10 lines of a file by default.

The following example displays the last 2 lines of the sortfile2 file:

$ tail -n 2 sortfile2
apples
beer

wc

The we command displays the count of bytes, whitespace separated words,
and lines found in a file.

The following example shows a wc command reporting three counts; a sec-
ond use counts lines only:

$ wc sortfile2
4 4 26 sortfile2
$
$ we -1 sortfile2
4 sortfile2
$

cat

The cat command is used to display the full contents of a file. The name
“cat” comes from the little-used English word catenate, which is a synonym
for concatenate. Basically, it concatenates the contents of the input file to
the bottom of the output display (or output file).

The following are some of the cat command’s options:
¢ -p—Displays the number of nonblank output lines
e -E—Displays $ at the end of each line
¢ -n—Displays the number of all output lines

* .s—Squeeze; if multiple blank lines separate nonblank lines, never
show more than one blank line in the output

e .T—Displays Tab characters as *I

¢ .v—Show nonprinting characters

Ay
EXAMPLE

Ay

/=4
EXAMPLE

Filtering 231

The following example shows a vanilla-flavored cat command, followed by a
cat command using the -n option, which causes the display to include line
numbers:
$ cat sortfile2
pears
oranges
apples
beer
$
$ cat -n sortfile2 Number of the output lines
1 pears
2 oranges
3 apples
4 beer

tee

The tee command writes whatever is presented as its standard input and
writes to standard output, but it also writes to any other files placed on its
command line. It provides an opportunity to redirect the output of a com-
mand into many locations, including the stdin for the process.

The following are some of the tee command’s options:
* .a—Appends to the given files, but does not overwrite

e .i—Ignores interrupt signals

The following example shows the tee command being used to redirect the
output of a ps command into two files, named newfile and newfile2. The

tee command does not prevent the output from appearing onscreen, as a

typical redirect of stdout would. Therefore, the output of the ps command
has gone to three places: stdout, newfile, and newfile1:

$ ps | tee newfile newfile2
Show output of ps onscreen, and place in two files
PID TTY TIME CMD
614 pts/1 00:00:00 ksh
727 pts/1 00:00:00 ps
728 pts/1 00:00:00 tee

$ cat newfile
PID TTY TIME CMD
614 pts/1 00:00:00 ksh
727 pts/1 00:00:00 ps
728 pts/1 00:00:00 tee

232 Chapter 9: File and Directory Manipulation

$ cat newfile2
PID TTY TIME CMD
614 pts/1 00:00:00 ksh
727 pts/1 00:00:00 ps
728 pts/1 00:00:00 tee

sort

The sort command places sorted input onto standard output. It performs
an ASCII sort (see the man page on ascii). If no input file is presented, it
looks for the data to be sorted from stdin. By default, the command sorts
using whitespace-separated key fields, starting with the leftmost field.
Older scripts using sort might indicate a different sort key field using the
+field_num syntax. That syntax is now obsolete. A sort command, such as
sort +5 -6 +2 -3 file to be sorted, requests that the first key field be
found after the fifth field and stop at the sixth field, and the tiebreaker key
be found after the second field and stop at the third field. That syntax
should be replaced with the following:

sort -k 6 -k 3,4 file to be_sorted

NOTE

The second key field could have been shown as -k 3. The syntax shown is useful if the
sort key encompasses more than one field. Also, the -k option represents the first field
as field number 1. (The obsolescent syntax represented the first field as field number
0.) Obviously, the UNIX gods were totally uninterested in keeping any form of consis-
tency with this command!

Some of the options for the sort command are as follows:
* -p—Ignores leading blanks in sort fields or keys
® .c—Checks whether given files are already sorted; does not sort
e .d—Considers only [a—z, A-Z, and 0-9] characters in keys
e .f—Folds lowercase to uppercase characters in keys

e .g—Compares according to general numerical value (might not be
available on all UNIX variants)

* .k P0OS1[,P0S2]—Starts a key at P0S1 and ends it at P0S2
¢ -m—DMerges already sorted files; does not sort
¢ .n—Compares according to string numerical value

® .o FILE—Writes the result on FILE instead of standard output

Ay

/=4
EXAMPLE

Filtering 233

e .r—Reverses the result of comparisons

¢ .u—Outputs only the first of an equal sequence (unique)

The following example shows a simple sort using field 4 (the CMD column)
as the key field. It performs the same sort job using the new syntax and
then the obsolescent syntax:
$ cat newfile2

PID TTY TIME CMD

614 pts/1 00:00:00 ksh

727 pts/1 00:00:00 ps

728 pts/1 00:00:00 tee

$ sort -rk 4 newfile2 # Reverse sort based on key field number 4
728 pts/1 00:00:00 tee
727 pts/1 00:00:00 ps
614 pts/1 00:00:00 ksh
PID TTY TIME CMD

$ sort -r +3 -4 newfile2 # Same but using old syntax
728 pts/1 00:00:00 tee
727 pts/1 00:00:00 ps
614 pts/1 00:00:00 ksh
PID TTY TIME CMD

grep

The grep command uses regular expressions to search for a pattern of char-
acters. The letters stand for global regular expression print. The grep com-
mand searches through the contents of files for the requested patterns; it
does not search for filenames. If you need to search for filenames, use the
find command.

Some of the options for the grep command are as follows (check your man
pages to see whether your UNIX supports all these options):

* -A NUM—Prints NUM lines of trailing context after matching lines
* .B NUM—Prints NUM lines of leading context before matching lines

* .p—Prints the byte offset within the input file before each line of
output

¢ -c—Prints a count of matching lines for each input file

e .f FILE—Obtains patterns from FILE, one per line

234 Chapter 9: File and Directory Manipulation

* -h—Suppresses the prefixing of filenames on output when multiple
files are searched

e .i—Ignores case distinctions in both the pattern and input files

¢ -n—Prefixes each line of output with the line number within its input
file

¢ .r—Reads all files under each directory, recursively

e .v—Inverts the sense of matching, to select nonmatching lines

The following examples show the grep command being used to locate
selected strings within files. The examples use several regular expressions
to represent aggregates of string information:

Ay $ cat sortfile2
pears

oranges
[=4

=% apples
EXAMPLE ...

$

$ grep app sortfile2 # Search for expression app in sortfile2

apples

$

$ grep s$ sortfile2 # Search for lines ending with the letter 's'
pears

oranges

apples

$

$ grep "b sortfile2 # Search for lines beginning with the letter 'b'
beer

$

$1s -1 | grep "d # Search the output of an 1s -1 command for directories
drwx------ 2 obrien obrien 1024 Oct 12 19:30 Mail

drwxrwxr-x 3 obrien obrien 1024 Nov 4 15:39 scripts
drwxrwxr-x 2 obrien obrien 1024 Oct 16 12:59 temp

$

sed

The sed command is a noninteractive editor. You can present your edit
requests on the command line or in a sed script file. The command applies
the edits to the data it reads from the input file and writes the altered data
and the unaltered data to the standard output device unless redirected. The
edit syntax is derived from the ex editor (see man ex). Note that sed does
not alter the data in the input file. See the sequence at the end of the sed
examples for some ideas on getting sed to make changes in many files.

Ay
EXAMPLE

Filtering 235

Some of the options to the sed command are
* -n—Does not produce output lines unless requested by the p command
* .e¢ edits—Provides a mechanism to present multiple edits to the data

e _f script-file—Presents a file full of sed edits to the command

The following example uses the sed command to replace any occurrences of
the string appl with snapple. Note that the output displays all lines in the
file, including unchanged lines. Remember that sed is an editor, not a
string search command like grep:

$ cat sortfile2
pears

oranges

apples

beer

$

$

$ sed 's/appl/snappl/' sortfile2 # Replace appl with snappl
pears

oranges
snapples

beer

$

The following examples show how to limit the lines displayed by sed:

$ sed '2q' sortfile2 # Display two lines and then quit
pears

oranges

$

$ sed '2d' sortfile2 # Delete line 2 from the display
pears

apples

beer

$

$ sed '1,2d' sortfile2 # Delete first two lines from the display
apples

beer

$

The following example combines the sed command with a Korn Shell loop
to make changes to the contents of files:

$ cat sedtestt # Contents of first test file

Welcome to the world of Donald Davis.

$
$ cat sedtest2 # Contents of second test file

236

Chapter 9: File and Directory Manipulation

Donald Davis knows how to quack jokes.

$

$ cat sedtest3 # Contents of third test file

Goodbye to the world of Donald Davis.

$

$ for f in sedtest? # Use a for loop to make global changes
> do

> mv $f 0ld$f # Rename files

> sed 's/Davis/Duck/' old$f > $f # Recreate original files applying edits
> done

$

$ cat sedtestt

Welcome to the world of Donald Duck.
$

$ cat sedtest2

Donald Duck knows how to quack jokes.
$

$ cat sedtest3

Goodbye to the world of Donald Duck.
$

xargs

The xargs command builds a command line consisting of the argument you
present to it and the standard input the command is given. It is most com-
monly used in a pipeline. The term xargs comes from execute arguments.
The key thing to remember about xargs is that it will form multiple com-
mands if necessary to handle the size of input data presented from the
pipe.

Some options to xargs are as follows (check your xargs man page to see
whether your system supports all these options):

* -0—Input filenames are terminated by a null character instead of by
whitespace.

* .i[replace-str]—Replaces occurrences of replace-str in the initial
arguments with names read from standard input.

® .1[max-lines]—Uses at most max-lines nonblank input lines per com-
mand line.

* .n max-args—Uses at most max-args arguments per command line.

* -p—Prompts the user about whether to run each command line and
read a line from the terminal.

v

[=4
EXAMPLE

Filtering 237

e .t—Prints the command line on the standard error output before
executing it.

®* -P max-procs—Runs up to max-procs processes at a time.

The following example uses a while loop to create 19,000 files. The loop is
stopped by a Ctrl+C. The files are then deleted by piping the output of a
find command into an xargs using rm. The find command is used because
an attempt to use rm * at the command line would cause a 1ine too long
error on most flavors of UNIX.

Another option is to use the find command’s -exec option. However, it
requires a process creation per file. In addition, it is not as efficient as
xargs, which makes each process execute an rm command with as many file-
names as it can fit on a single command line. This therefore leads to fewer
processes being created during the delete operation:

$ integer count=1

$

$ while >file$count # Create files using the redirect operator

> do

> count=count+1

> done

$ # Terminate loop with a Ctrl+C

$

$1s -1 | we -1 # Count how many files we have created
19168

$

$ pwd

/home/obrien/lotsofiles

$

$ find . -name 'file*' | xargs rm # Use find and xargs to remove
$
$1s -1 | we -1
2
$

awk

The awk command is a pattern scanning and processing language. It is a
programmable filter. The name “awk” comes from the initials of the three
creators of the program: Aho, Weinberger, and Kernighan. It searches for a
pattern and performs an action upon pattern match. The actions to be per-
formed are surrounded by curly braces ({ }). awk can be used to extend the
features of the sed command.

238 Chapter 9: File and Directory Manipulation

Some options to the awk command are as follows:

* .F fs field-separator—Indicates that a nondefault field separator is
being used. The default field separator is whitespace (blank(s), tabs).

* .v var=val—Assigns the value, val, to the variable, var, before execu-
tion of the program begins.

e -f file—Reads the awk program source from the file, instead of from
the first command-line argument.

The following example uses the awk filter command to process the data in
the stats file:

Y $ cat stats
PID TTY TIME CMD

200691 pts/6 0:01.11 dtksh
200731 pts/6 0:00.19 -ksh (ksh)
EXAMPLE 599774 pts/6 0:00.17 dtksh
$
$ awk '{print $4}' stats # Prints field four in the stats file
TIME
0:01.11
0:00.19
0:00.17
$

= W W

The following example uses awk to process data from the /etc/passwd file. It
also uses the -F option, which identifies a nondefault field specifier, the
colon (:).
Ay $ sed 3q /etc/passwd | awk -F: '{print $1}'

%3 # Shows field 1 of the first 3 records in /etc/passwd
root

bin

daemon

$

$ awk -F: '{print $1}' /etc/passwd

Shows all usernames from /etc/passwd

/=4
EXAMPLE

root
bin
daemon
adm
(..2)
obrien
$

Ay
EXAMPLE

Ay

/=4
EXAMPLE

Using Temporary Files 239

The following example uses awk as a formatter:

$ cat firstlastamount

Dennis 0'Brien 234.56

Cheryl Dyment 12345.67
Al Smith 66.33

Juana D'Ance 22.11

$ # Awk being used as a formatter

$ awk '{printf "%4d %-10s %-10s %10.2f\n", NR, $1, $2, $3 }' firstlastamount

Unformatted data

1 Dennis 0'Brien 234.56
2 Cheryl Dyment 12345.67
3 Al Smith 66.33
4 Juana D'Ance 22.11

$

The following example uses an awk script to search through the password
file looking for records with an empty password field (second field). This is
a major security break because it would allow anyone to log in without
needing to present a password:

$ cat breakers # An awk script

BEGIN { # BEGIN section executed first
print "Investigate these accounts:";
}
{ # Pattern search and action section
if ($2 == "") { print "Account name is ", $1,"\nUser is", $5 };
}

END {print "Done. \n"} # END section done last

$

$ awk -F: -f breakers /tmp/passwd

Present awk script file to awk command
Investigate these accounts:
Account name is hacker
User is Bertha D. Blooze
Done.

$

$ grep hacker /tmp/passwd

hacker::13:30:Bertha D. Blooze:/usr/lib/hacker:/bin/ksh
$

Using Temporary Files

As presented earlier in this chapter, many options exist when it comes to
filenames. Often, scripts might need to create a temporary file in an
unpredictable directory, or in the /tmp directory. The script should be
designed so that it will not clobber the script user’s existing files and will

240

Chapter 9: File and Directory Manipulation

Ny

/=4

EXAMPLE

not inadvertently clobber another user’s files in the shared /tmp directory.
But how can this be achieved without cumbersome file existence and name-
checking code?

If you name your temporary file with the shell variable $$ at the end, you
will be creating a filename with your process identification number (PID)
tacked on the end. Because the system guarantees that two processes with
the same PID will never be in existence at the same time, you are all but
guaranteed a unique filename. The $$ will be expanded into the PID of the
current process.

The following example creates a file with a PID on the end of the name:

$ print $$ # Shows current PID

204646

$

$ touch denfile$$ # Create file using current PID to make it unique
$

$ 1s -1 den*

SPW-r--r-- 1 obrien guest 0 Nov 3 01:03 denfile204646

Note number in name

Now that you have buffed up your file and directory knowledge, your next
job is to try for more sophistication in the output you generate from your
scripts. Chapter 10, “Output Control,” distinguishes the echo, print, and
printf commands. It also introduces some additional redirection options,
including here documents.

.10
Output Control

The vocabulary you have at this point in your life is not the same as it

was many years ago. The style and content of your speech has matured.
Likewise, the way you produce output in your scripts has matured since the
start of this book. You began by using the echo command almost exclusively.
As you continued to mature as a script writer, you began using the more
sophisticated, portable, and efficient print statement.

You also went from the vanilla style of placing output on your terminal to
using various forms of redirection to better achieve the goals of your
scripts. Have you reached full maturation? Is there no further improvement
possible on the styles and techniques you already have seen?

This chapter examines the Korn Shell’s printf command as a logical exten-
sion of the print command. You'll also see several twists on output redirec-
tion, including a method for selectively redirecting output from loops. This
chapter ends by taking a look at the often misunderstood here document
capability that enables input redirection to be pointed toward lines within
the currently executing script.

This chapter teaches you the following:
¢ The difference between the echo and print commands
e How to use the printf command
* Qutput redirection from loops and subshells
* The difference between pipes and redirection
e How to redirect stderr

e How to use here documents

244 Chapter 10: Output Control

Ay

/=4
EXAMPLE

Echoing Output

One of the first commands a rookie UNIX wizard learns is the echo com-
mand. It is a simple program that places the input parameters from the
command line on stdout. It’s easy enough for anyone to wrap his mind
around. The echo command can be used in a pipeline to present input to a
utility (as seen in the next example). In scripts, the echo command can be
used for prompt display duty, as well as producing standard script output.

The following example uses the echo command to produce the input com-
mand stream to the ex editor. The following script uses ex to search for any
lines in the file containing a ?. All such lines are deleted when found. This
eliminates all processes that are not associated with a terminal (the TTY
column contains a ?). A count of remaining lines is created using we -1 and
is then displayed using substring removal of the largest right pattern
(${count%% /*}). The pattern removal request eliminates all characters
from the first / to the end of the line. Without using the substring removal
syntax, the count variable would contain a number followed by /tmp/
newstatsi1234.

$ ps laxw # Generate long ps output

F UID PID PPID PRI NI ~VSZ RSS WCHAN STAT TTY TIME COMMAND
100 0 1 o 0 0 1104 368 do_sel S ? 0:04 init [5]
040 0 2 1 0 0 0 0 bdflus SW ? 0:00 [kflushd]
(vn4)
100 500 614 613 12 0 2084 1284 wait4 S pts/1 4:28 -ksh
000 500 15954 614 19 0 2496 828 - R pts/1 0:00 ps laxw
$
$ ps laxw | we -1

34 # Note Line count

$
$ cat noquestions # Korn shell script
#1/bin/ksh
ps laxw > /tmp/newstats$$ # Redirect output to temp file

echo 'g/?/d\nwg' | ex /tmp/newstats$$
Use echo to create input to ex command

noques=$(wc -1 /tmp/newstats$$)
print "Count of processes using terminals is "${noques%% /*}

Substring removal
rm /tmp/newstats$$ # Remove temporary file
$
$ noquestions
Count of processes using terminals is 13
$

Ay
EXAMPLE

Echoing Output 245

The echo command has several options, including the heavily used -n,
which means do not produce a newline after producing the prompt. This
enables a script writer to produce a prompt and have the cursor remain at
the end of the prompt string, rather than appearing on the next line. The
slight difference in the behavior of echo provided by the -n option is built
into many scripts. Here comes the bad news: Not all implementations of the
echo command understand the -n option!

You might ask, “But aren’t all Korn Shell implementations the same?” Most
of them are, but Korn Shell portability is not the issue. Suppose your UNIX
has an administrative command called disklabel. Does that mean all
UNIX variants will have the same command available? Of course not. Well,
this is also true for the echo command. What I’'m trying to do is emphasize
that the echo command can be implemented as a separate program, and as
such will be executed in a separate process. Therefore, it has little to do
with the Korn Shell proper.

Having said that, you will probably find that many ksh implementations do
indeed have a built-in echo command, but you can’t rely on it being there.
And if it’s not built in, it will be run as a separate program. The details of
its behavior and option support is up to the UNIX implementation.

The following example shows that using the echo command can be a per-
ilous choice. It shows that the echo executable program interprets the -n
option to mean produce no trailing newline, whereas the built-in echo just
sees it as more characters to echo to stdout.

$ find / -name echo 2>/dev/null

/bin/echo # Echo executable program

$

$ whence -v echo # Shell has a built-in version

echo is a shell builtin

$

$ echo -n Say what? # Built-in does not interpret -n

-n Say what?

$

$ /bin/echo -n Say what? # Program does interpret -n

Say what?$

$

How do you create your scripts such that when they produce output, they
have a chance of being portable? I recommend getting into the habit of using
the print command. This command is built in to the Korn Shell and has
reliable syntax. You have seen many examples of the print command in the
last few chapters, but here is a refresher example of the print command.

246

Chapter 10: Output Control

" i

/=4

EXAMPLE

Ay

/=4

EXAMPLE

Use the -n option to prompt with no trailing newline:

print -n "Anybody out there?"

Use the - option if the output should consist of strings that can be mis-
taken as command options:

$ print - -n

-n

Use the following escape sequences in your print commands to achieve var-
ious formatting needs (the -R option ignores these options). The following
list documents optional syntax that can be used within the print string to
achieve non-printable (generally) output:

* \a—Bell

* \n—Newline

e \f—Formfeed

¢ \r—Return

e \t—Tab

e \v—Vertical tab

* \\—Backslash

¢ \0n—ASCII character with octal value n

* \c—Same as the -n option, except it skips the remaining characters

The following example uses the \a sequence in a print string to make a bell
ring after the output is displayed. It provides an audio cue to pay attention
to the output:

$ print "A bell has rung! \a"
A bell has rung! « Makes a 'bing' sound.

Many times the item to be displayed needs to be doctored up a bit before
you send it on its way to stdout. The following examples show some options
available by coupling the print command with variable substitution and
escape sequences.

The following series of examples uses the print command to display various
parameter expansion options. All escape sequences are also available to the
print statement.

$ x="Freddie is a dreamer. " # Set contents of variable x
$
$ print $x # Display contents using print

Freddie is a dreamer.
$

$ print ${x}

Freddie is a dreamer.

$

$ print $xand a bird.

a bird.

$

$ print ${x}and a bird.

Freddie is a dreamer. and a bird.

$

$ print ${x#*a}
dreamer.

$

$ print ${x##*a}
mer.

$

$ print ${x%a*}
Freddie is a dre

$

$ print ${x%%a*}
Freddie is

$

$ print ${x:4:3}
die

$

$ print ${x:4}

die is a dreamer.

$

$ print ${x/Fredd/Denn}
Dennie is a dreamer.
$

$ print ${x/#Fr/T}
Teddie is a dreamer.
$

$ print ${x/%e*r*/ump.}
Frump.

$

$ print ${x//e/o}
Froddio is a droamor.
$

$ print ${x//e}
Frddi is a dramr.

$

$ print ${#x}

22

$

Echoing Output 247

Braces are optional

Looks for $xand, which is null

Looks for $x and appends

Remove small left pattern matching *a

Remove large left pattern

Remove small right pattern

Remove large right pattern

Skip 4 bytes, grab the next 3

(Must be fully ksh93 to use)

Eliminate 4 bytes

Replace Fredd with Denn

Replace string at beginning of line

Replace string at end of line

Replace all instances of e with o

Eliminate all instances of e

(Must be fully ksh93 to use)

Report string length

248

Chapter 10: Output Control

If your output vocabulary and style needs another level of maturation, the
Korn Shell provides the printf command. The “f” in printf stands for “for-
matted.” So, this command provides some formatting options for your out-
put. It can handle floating-point displays, integer displays, and string
displays. If this is starting to sound familiar to you C language program-
mers out there, it should. The printf command is based on the printf
function available in the standard C library.

Its syntax includes a quoted format section followed by the variables to be
placed in the formatted specification. The format string can contain zero or
more control variables, which will be replaced by the respective variables at
the end of the command line.

The control variables are designated by the % symbol. The following com-
mand produces an output line of -. The total is 245. followed by a newline
(A\n). The value 245 is the contents of the shell variable tot:

printf "The total is %d.\n" $tot

NOTE

printf does not include the newline unless you request it. In contrast, the print com-
mand automatically includes the newline.

Table 10.1 documents the printf format specifiers.

Table 10.1: printf Format Specifiers

Specifier Description

%d Decimal integer

%€ Float (scientific notation)
%f Float (decimal)

% Octal integer

%P R.E. to shell exp

%S String

%X Hexadecimal integer

Table 10.2 displays some twists on the format specifiers.

Table 10.2: printf Format Specifier Wrinkles

Specifier Description

%+d Positive integer with + sign.
%8d Right justify, eight places, int.
%*d * specifies width variable.

o®

q Surround output with quotes.

Ay
EXAMPLE

printf 249

Table 10.2: continued

Specifier Description

%BHX Hex number with Ox.

%.2f Two characters after the period.
%9s String nine places.

The following examples use many of the printf statement’s format speci-
fiers.

The first example uses %d, %x, and %o to request that an integer variable be
displayed in different number system bases (decimal, hex, and octal). The
example emphasizes that any format specifiers not matched with a shell
variable will be displayed as a zero:

$ integer x=82 # Decimal examples

©@

$ printf "x contains %d decimal, %x hex, %0 octal\n" $x
X contains 82 decimal, @ hex, 0 octal

The following example uses three format specifiers and three shell vari-
ables ($x three times):
$ printf "x contains %d decimal, %x hex, %0 octal\n" $x $x $x

X contains 82 decimal, 52 hex, 122 octal
$

The following example shows how printf interprets a mismatch in the
number of format specifiers (one in this case) and the number of shell vari-
ables to be substituted (three in this case). Note that if you present more
variables than specifiers, printf uses the last format specifier repeatedly
for the trailing shell variables. This is another instance in which the behav-
ior of the printf command differs from the printf function in the C pro-
gramming language standard library:

integer x=82

contains 82 decimal
contains 82 decimal

$
$
$ printf "x contains %d decimal\n" $x $x $x
X
X
X contains 82 decimal

$

The following example uses the plus sign in front of a format letter to indi-
cate that a sign is desired in the output:
$ printf "x contains %+d decimal, %x hex, %0 octal\n" $x $x $x

X contains +82 decimal, 52 hex, 122 octal
$

250

Chapter 10: Output Control

Ay

/=4

EXAMPLE

The next example precedes each format letter with a number (5) to request
a minimum of five spaces be allocated to display the number. Note that if
more than five spaces are needed, it expands as necessary:

$ printf "x contains %5d decimal, %5x hex, %50 octal\n" $x $x $x

X contains 82 decimal, 52 hex, 122 octal
$

This example also requests five spaces for each formatted display value, but
it includes a dash (-) in front of the size number, which requests that the
display be left justified:

$ printf "x contains %-5d decimal, %-5x hex, %-50 octal\n" $x $x $x

X contains 82 decimal, 52 hex, 122 octal
$

The next series of examples switches to floating point. The first example
establishes a shell variable named ave and initializes it to 18.654. Note
that the command float is new in ksh93 and might not be available in your
version of ksh. It then displays the contents of ave in float format (%f), in
scientific notation (%e), and formatted within a 10-space field with only two
characters after the decimal point (%10.2f):

$ float ave=18.654 # Floating point examples
$

$ printf "ave contains %f, %e, %10.2f. \n" $ave $ave $ave

ave contains 18.654000, 1.865400e+01, 18.65.

$

The next example asks for the floating point variable to be displayed with
three characters after the decimal point and then one character after the
decimal point. Note that the %.1f format request resulted in the value
being displayed rounded off (not truncated):

$ printf "ave contains %.3f, %.1f. \n" $ave $ave

ave contains 18.654, 18.7.

$

Many script writers are unaware of the advantage of declaring a shell vari-
able as type float. Remember that float is an alias for typeset -E. Most
scripts produce correct output whether or not the shell variable is declared
as type float. The following example uses a few loops to perform some
floating-point calculations repetitively:

$ cat floatert

#! /bin/ksh

x=17.56 # x is of type string, not float

integer y=0

Ay
EXAMPLE

printf 251

for ((y=0; y<5; y++))

do
while ((x<20000.0)) # Repeat as long as x is less than 20,000.0
do
((x=x+1.2)) # x must be converted to float each time
done

done

print $x

print $y

$

$ time floatert

20001.16 # Correct output
5
real 0m4.56s # Took about 4.5 seconds to run

user Om4.49s
Sys 0mo.04s
$

Now let’s see what happens if you take the time to properly prepare the
variable that is the focus of all this floating-point activity (x). The following
example emphasizes that the shell is forced to convert a string into a float
in order to perform a floating-point calculation or display. This example
does some simple addition repetitively. The time spent performing the con-
versions causes the previous script to run more than twice as slowly as the
script in the next example:

$ cat floater
#! /bin/ksh
float x=17.56 # Declare x as a float
integer y=0
for ((y=0; y<5; y++))
do
while ((x<20000.0))
do
((x=x+1.2)) # Calculation using float
done
done
print $x
print $y
$
$ time floater
20001.16 # Correct result (same as floatert)
5

252

Chapter 10: Output Control

i

/=4

EXAMPLE

real 0m1.96s # Much faster
user Om1.93s

Sys omo.02s

$

The next example creates a shell variable named s and initializes it to the
string “Dennis”. The printf command uses several string-oriented format
specifiers:

* %s—Format as string
* %.2s—Format as string showing the first two characters

* %g—Format as string but surround output with quotes if the string to
be substituted is surrounded by apostrophes and contains at least one
space

* %12s—Format as string in a field 12 spaces wide
* %-12s—Format as string left justified in a field 12 spaces wide

* %12.5s—Format as string in a field 12 spaces wide, displaying the first
five characters

Note that %q is not interpreted correctly in some Korn Shell implementa-
tions. Here is the code:

$ s=Dennis # String examples

$

$ printf "s contains %s, %.2s, %(q, %12s, %-12s, %12.5s.\n" $s $s 'Dennis OB'
$s $s $s

s contains Dennis, De, 'Dennis OB', Dennis, Dennis s Denni.
$

The printf command can also handle escape sequences by placing them
within the control string. The following example makes the bell sound and
then applies three tabs before displaying the string.

$ printf "s contains \a\t\t\t %s\n" $s

s contains Dennis

$

Output Redirection

In the last chapter, we discussed the redirection of stdin, stdout, and
stderr. By far the most commonly used is output redirection. You have seen
that output can be redirected into a file, using the >, or appended to an

\u i

[=4
EXAMPLE

Output Redirection 253

existing file, using >>. Output can be redirected for the entire script, for the
output of a subshell, for the output of a command, or for the output of a
loop. The subshell and loop options are not intuitive, so we’ll take a look at
them next.

Subshell Output Redirection

You can run commands or scripts within a subshell by surrounding them
with a set of parentheses on the command line. This forces the creation of a
new process running a new copy of the Korn Shell program. Therefore, any
changes made to aliases, environment variables, or the default directory
will have no effect on the original shell. Remember the teenager analogy?
Well, if your teenager gets a nose ring, does that mean you have to get one,
too? No, because the teenager, in effect, is running in a subshell. The sub-
shell is obviously, and maybe unfortunately, related to the originating shell,
but there is not an immediate impact on the originating shell upon an
alteration to the subshell. Am I stretching it here? Forgive me, I'm just try-
ing to get the point across.

The following example creates a subshell that changes the default directory
and performs a few other commands. The output of the subshell is redi-
rected into a file. Note that the current working directory of the parent
shell is not altered by the actions within the subshell.

$ pwd

/home/obrien/scripts

$

$ (cd /tmp; pwd; date; 1s -1) > subshellout # Redirect output of subshell

$

$ pwd

/home/obrien/scripts

$

$ cat subshellout

/tmp

Mon Nov 6 23:22:44 EST 2000

total 32

SPW-rW-r- - 1 obrien obrien 143 Nov 6 01:06 breakers
SPW-rW-r- - 1 obrien obrien 0 Nov 4 16:21 denn
SPW-PW-r- - 1 obrien obrien 79 Nov 6 00:39 firstlastamount
SPW-rW-r- - 1 obrien obrien 1105 Nov 6 11:12 newstats15924
rw-rw-r- - 1 obrien obrien 1105 Nov 6 11:14 newstats15929
rw-rw-r- - 1 obrien obrien 1105 Nov 6 11:19 newstats15935
rw-rw-r- - 1 obrien obrien 1105 Nov 6 11:21 newstats15943

drwx------ 2 root root 4096 Nov 5 00:38 orbit-root
SPW-rwW-r- - 1 obrien obrien 704 Nov 6 01:03 passwd

254 Chapter 10: Output Control

Loop Output Redirection

If capturing all the output from your script gathers too much information,
and capturing the output of a command gathers too little, you might be a
interested in redirecting the output of a loop. The technique is the same as
you have learned for subshell and script redirection: Simply place a > or a
>> after the last syntax of the loop.

The following example produces some output during a five-pass loop. The
output produced outside the loop is not of interest. The done statement at
the end of the loop construct has a redirect at the end of it indicating that
all output produced during the loop is to be placed in a file. Note that the
output produced by the date command in the loop is not displayed, it is
redirected into a file:

Ay $ cat counter
#! /bin/ksh

/=4

_—F integer count=0
EXAMPLE

print "lots of other lines"

while ((count <5))

do

date

print $count

count=count+1

sleep 1

done > loopout # Note redirect at end of loop

print "lots of other lines"

$

$ counter

lots of other lines

lots of other lines

$

$ cat loopout

Mon Nov 6 23:37:03 EST 2000
0

Mon Nov 6 23:37:04 EST 2000
1

Mon Nov 6 23:37:05 EST 2000
2

Mon Nov 6 23:37:06 EST 2000
3

Mon Nov 6 23:37:07 EST 2000
4

$

Ay
EXAMPLE

Pipes Versus Redirection 255

Multiple Output Redirection

Sometimes you might prefer that the output from your command be placed
in a file and be placed on stdout. The tee command provides this function-
ality. If you dwell on the name of the program—tee—you can almost visual-
ize what the command does. Picture the output travelling up the vertical
part of the letter “T”. When it reaches the top of the T, it splits the stream
and the output goes in both directions (left and right). By default, the out-
put will go to stdout and to the file whose name you specify at the end of
the command syntax. The tee command can be used to redirect output to
many places at once (not just two, as the name implies).

The following example directs the output of a ps command to files named xx
and yy, as well as to the terminal:
$ ps
PID TTY TIME CMD
614 pts/1 00:04:30 ksh
16910 pts/1 00:00:00 ps

$

$

$ ps | tee xx yy # Directs output to stdout, file xx, and file yy
PID TTY TIME CMD

614 pts/1 00:04:30 ksh
16911 pts/1 00:00:00 ps
16912 pts/1 00:00:00 tee
$
$ cat xx

PID TTY TIME CMD

614 pts/1 00:04:30 ksh
16911 pts/1 00:00:00 ps
16912 pts/1 00:00:00 tee
$
$ cat yy

PID TTY TIME CMD

614 pts/1 00:04:30 ksh
16911 pts/1 00:00:00 ps
16912 pts/1 00:00:00 tee
$

Pipes Versus Redirection

The pipe operator (|) indicates that the output of the command on the left
is presented to the command on the right as its stdin. As such, it is related
to the redirection operators. However, writing to a pipe, although close in
concept, is radically different in action and implementation. The concept is

256 Chapter 10: Output Control

Ay

(=4
EXAMPLE

close because both involve taking the stdout from a program and doing
something different with it. However, the pipe sends the output to another
command for processing, whereas the redirect (>) sends the stdout to a file.

This concept can get confusing if you are not used to it. Just remember that
the item to the right of a pipe is a command (usually a filter of some kind),
whereas the item to the right of a redirect is a file. Consider this example:

$ ps | we # ps command output piped to the wc command
3 12 83
$
$ ps > we # ps command output redirected to a file named wc
$
$ cat we # Examine contents of the wc file
PID TTY TIME CMD

614 pts/1 00:04:30 ksh
16914 pts/1 00:00:00 ps
$

stderr Redirection

If you are starting to feel comfortable with stdout redirection after our sec-
ond visit, let’s build further on that by briefly revisiting stderr redirection.
Just as you might want a file full of the stdout produced by your script, or
produced by a command, you also might want a file full of the error mes-
sages produced by your script. Not that you are going to want to print it out
and hang it on the refrigerator, but you might want to produce a log of bad
input records, erratic processing, or other exceptional events.

Don’t worry, in Chapter 12, “Traps,” you learn ways to control the default
action of the Korn Shell when it experiences certain errors or is sent cer-
tain signals. Consider the following example.

$ find / -name 'den*' 2> illegal # Direct error messages to file named illegal
/proc/sys/fs/dentry-state
/tmp/denn

$ cat illegal # Messages in file

find: /usr/doc/ppp-2.3.10/scripts/chatchat: Permission denied
find: /proc/1/fd: Permission denied

(.

find: /var/lib/slocate: Permission denied

find: /var/spool/cron: Permission denied

find: /var/spool/at: Permission denied

find: /var/gdm: Permission denied

find: /tmp/orbit-root: Permission denied

find: /etc/X11/xdm/authdir: Permission denied

Here Documents 257

find: /etc/default: Permission denied
find: /etc/uucp: Permission denied

find: /root: Permission denied

find: /.gnome: Permission denied

find: /.gnome_private: Permission denied

$

Here Documents

No, this is not an example of what you do when you have a dog named doc-
uments and you want him to come to you. I have found that the concept of
the here document has caused much weeping and gnashing of teeth among
script writers. More specifically, this capability has caused heads to be
scratched when trying to make changes or additions to production- or
admin-level scripts.

I think the reason for all the uproar is that the syntax is not intuitive and
the name “here document” doesn’t bring a picture to mind. Let’s review. The
> symbol redirects output, and the >> symbol redirects output but appends
to the target file rather than clobbering the target. The < symbol redirects
input so that it comes from the file appearing after the symbol. Well, that
leaves the << symbol, doesn’t it?

Prior to seeing the << symbol, you're probably feeling pretty good about
your shell- and script-writing knowledge. You are using loops, patterns,
functions, tests, and redirections and having a spectacular time. So, you
decide to accept the assignment of making several changes to an aging
admin script written years ago by some guru who is long gone. You proba-
bly blast along, enjoying the semivoyeuristic experience of getting into
somebody else’s mind and trying to re-discover what he had in mind for the
various sections of his script.

Remember what it was like to hit a speed bump when you weren’t expect-
ing it? That’s probably how you felt when first confronted with the << syn-
tax. What the heck is this? Two requests to redirect stdin? Then you
probably reviewed what the difference is between >> and > and wondered if
there was some kind of append-related difference to equate with the < and
<< symbols.

Try as you might, you just couldn’t get your aching brain around it. Does
this story sound like it stems from first-hand experience? Well, it does. And
I wish I could say that it wasn’t me who was suffering from confusion and
delusion. It was.

I looked in the man page for ksh and found what I needed. The << is fol-
lowed by a string of characters that indicate the beginning of a stream of

258

Chapter 10: Output Control

Ay

/=4

EXAMPLE

input lines. The characters after the << are arbitrary (you can choose any
series of characters). The shell knows that if you issue a command followed
by the << and some characters, it is to interpret each line of input from that
point on as input to be presented to the command. But when does the
stream of input lines end?

The input lines end when the exact same sequence of characters that was
placed after the << appears as an input line. So, the string of characters
acts as a bracketing mechanism. It says between this point here in the doc-
ument (the string of characters after the <<) and this point here in the doc-
ument (the same string of characters appearing at the beginning of a line
in the script) is the input to be presented to the command in front of the <<.
Ahh, so the input information is right “here” in the “document.” Thus the
name here document.

This mechanism works at the command line as well, but it tends to be
much more useful within the body of a script.

The following example uses a here document to present the data through
which the grep command should search:

Example
$ cat dates
#! /bin/ksh
print "\nToday's date is $(date). \n\n"
grep -i "$1" <<abcde # Begin the here document
Dennis Sept. 16
Cheryl Sept. 3
Mark Sept. 19
Cliff May 17
Clint May 17
abcde # End the here document
if (($? !1=0))
then
print "No info here in the document for $1."
fi
$

$ dates cliff
Today's date is Tue Nov 7 00:20:33 EST 2000.
Cliff May 17

$
$ dates harry

What’s Next 259
Today's date is Tue Nov 7 00:20:38 EST 2000.

No info here in the document for harry.
$

The here document capability enables a script writer to avoid the creation
of extraneous files and the overhead of opening and processing their con-
tents using a series of disk I/Os.

Needless to say, as you gather more shell tools to help customize your
scripts, and you introduce more complexity and sophistication into your
creations, the potential for errors is increased. Chapter 11, “Diagnostics,”
provides a quick look at the options available within the Korn Shell for
debugging scripts.

- ~.
.

. ‘
.

.

'

'

'

)

.

.
N .

.

Sl

Diagnhostics

Now that you have a grip on the bulk of a script writer’s tools, you are
ready to march off into the world of Korn Shell scripts, write your master-
pieces and never make any mistakes or get confused by the shell’s peccadil-
loes! If that’s what you are thinking, it’s time to eat a reality cookie. Reality
cookies are what I eat (or feed my readers) when laboring under false
assumptions.

The reality is that script writing is a creative process. And in any creative
process there will be some false starts, errors, and even some disasters. Do
you think Picasso’s trash bin was forever empty? This chapter provides
some tools to help debug your masterpieces. Oh, and they will help with
any nonmasterpiece scripts you create as well.

Any program-oriented effort involves several phases: First, you are pre-
sented with a problem to solve; second, you dream up a possible method of
attack on the problem; third, you create a prototype to test your supposi-
tions; and fourth, you create the bulletproof version you will present to your
boss or co-workers. I'm leaving out the all-important step 3.5, which is
when you try to debug the script.

As you will see, a few very enlightening shell options can help to illuminate
the shell’s processing of your lines. These provide insight when your regular
expressions and wildcards are not doing what you expect them to do. That’s
the thing about computers—they do what you tell them to do, not what you
want them to do.

This chapter teaches you the following:

¢ How to check your syntax

The shell’s command interpretation sequence

e How to run the shell in verbose mode

How to get an execution trace

How to use other debugging hooks

262

Chapter 11: Diagnostics

Ny

/=4

EXAMPLE

Syntax Checking

Before you take a look at some of the debugging options, let’s review the
three primary ways to execute a script. Scripts can be run in a subshell,
run in the context of the current shell, or a separate ksh command can be
issued to customize the debugging environment.

From a debugging perspective, you can present options to the ksh command
specifying debugging options such as -v or -x. This technique creates a new
process running ksh, and that shell creates another process running ksh
with your script as stdin.

The trick is that the ksh command can be used as a standalone command
requesting the creation of a process running ksh. This might be used in the
case of a hapless C shell user who is stuck in a company steeped in the cul-
ture of the C shell. The administrator sets up the user’s account such that
it starts up csh upon login. The user might choose to execute the ksh pro-
gram to perform his interactive work in the comfort of a ksh environment.

The following example shows the ksh command executing a script named
your_script. Note that if you type the ksh command without the additional
script name syntax, the current shell starts a new, interactive instance of
the ksh program. Remember also that if you type the 1s command, it starts
a new process running the Is program. Similarly, if you type the ksh com-
mand, it starts a new process running the ksh program.

$ ksh your_script
Any shell variables and aliases created in the script are lost when the
script ends. A new process is created running the ksh program. The script

is actually executed within a process different from the parent ksh from
which the command is actually issued.

The following example starts a script that sleeps to enable you to get a look
at the processes supporting its run.

$ cat sleeper

#! /bin/ksh
if [[-z $1]]
then

length=30
else

length=$1
fi

print "About to sleep for $length seconds"
sleep $length

print "Awake again"

$

Syntax Checking 263

$ print $$
17000 # Current pid
$

$
$ sleeper 5 & # Start script
[1] 17316
About to sleep for 5 seconds
$
$ ps laxw | grep 17000
Next line shows parent process stats
100 500 17000 16999 9 0 1860 1040 wait4 S pts/1 0:00 -ksh
Next line shows child process stats
000 500 17316 17000 11 4 1884 1008 do_pol SN pts/1 0:00 ksh sleeper 5
000 500 17317 17000 14 0 2496 828 - R pts/1 0:00 ps laxw
000 500 17318 17000 10 @ 1240 492 pipe r S pts/1 0:00 grep 17000
$
$ Awake again
$
[1] + Done sleeper 5 &
$

You can execute your script within your current process by issuing the dot
command:

$. your_script

This option is useful when executing your .profile file after adding a few
lines to it. Rather than logging out and then logging back in to get .profile
to execute, you can execute it as a dot script. If you want the changes to be
in effect after the script finishes executing, this is the technique to use. Be
aware, however, that any variables altered within the script have an effect
on the environment of the shell from which the script was executed.

The most common way to execute a script is to make the script file exe-
cutable and type the script name at the shell prompt. This causes the script
to execute as a command would. A process is created within which to exe-
cute the script. From a debugging perspective, all shell attributes are inher-
ited by the script you are executing. This is the technique you have been
using throughout the book so far:

$ chmod ugo+x my_script

$ my_script

The man page on ksh details several options for debugging. An important
point to keep in mind is that you don’t have to perform all your script test-
ing through a script file—syntax can be checked at the command line. This
option provides a simple and efficient way to check for errors in the syntax
of your shell scripts.

264

Chapter 11: Diagnostics

Command Interpretation Sequence

Understanding the way the shell interprets a command is an important
debugging tool. The following sequence describes the order in which the

shell interprets a line of your script:

1. Process the following reserved words:

{1}

case
do

done
elif

else

2. Process built-in commands:

alias
export
readonly
typeset
unalias
unset
set
shift
break
continue
eval

exec

esac
fi

for
function
if

in

exit
return
trap
echo
print
read
cd

pwd
times
ulimit
umask

jobs

select
then
time
until

while

(r 1l

bg
o
kill

wait

fc
getopts
let
newgrp
test

whence

3. Search for functions on the command line.

4. Search for aliases on the command line.

5. Use the PATH variable to identify directories in which to look up programs/
scripts. These programs and scripts must have execute access enabled.
The directories in the PATH variable are delimited with a :.

AR

/=4
EXAMPLE

Verbose Mode 265

Now that you have reviewed the ways to request the execution of a script,
and now that you know the order in which a command line is interpreted,
you can execute your script and react to the errors, incorrect output, or
non-output it produces. You might even be able to bask in the satisfaction of
having created something that works, is useful, and is the product of your
own feverish brain.

Before actually attempting to execute the script, you can give it a dry run.
Using the ksh noexec option (-n), you can ask the shell to check your com-
mands for any syntax errors. It’s sort of like asking the boss’s secretary,
“How do I look?” before going in for your promotion interview. If she says,
“Straighten that tie before you go in,” you've been saved the embarrass-
ment of being told later that you lost the job because you looked disheveled.
I highly recommend this pre-emptive syntax check before executing any
semicomplex ksh script.

The following example uses ksh -n to check syntax in a script file. It
reports one error, which is subsequently corrected.

$ ksh -n masks_env_bad # ksh -n complains about line 50
masks_env_bad: syntax error at line 50: 'newline' unexpected

$

$ sed -n '50p' masks_env_bad # Use sed to display line 50
print ${res[*] # Oops. Forgot the trailing }

$

$ print "50s/]1/1}/\nwg" | ex masks_env_bad # Alter line 50 using ex editor
$
$ sed -n '50p' masks_env_bad

print ${res[*]} # Looks good to me
$

$ ksh -n masks_env_bad # ksh -n agrees

$

Verbose Mode

Have you ever wished you could follow the logic of your teenager to better
understand some conclusion he or she has drawn? (If you are a teenager,
you can reverse the roles. You might wonder about the series of logic steps
taken by your parents to arrive at a conclusion.) The next Korn Shell
debugging option does just that. It provides the bread crumbs to follow
through the dark woods of your script’s execution.

One of the ksh options for debugging is the verbose option. It displays each
shell command before it executes it.

266

Chapter 11: Diagnostics

Ay

/=4

EXAMPLE

The verbose shell option can be turned on in several ways. You can start a
new shell with the -v option using ksh -v. You can put a -v at the end of
the #! line at the beginning of your script, or you can type in set -o
verbose either at the command line or within your script. Each of these
options has the same result, which is to display each line of the script as it
is about to be executed. Consider the following example:

$ masks_env # Normal run of script
Default REGULAR FILE permissions with current umask (0002)
u g 0

rw-rw-r - -
(In binary -- 110110100)

$ head masks_env

#1/bin/ksh -v # Turn on verbose mode
#

Script which will display default
permissions in formatted fashion

based on the current umask setting
#

function gen_modes

{

integer count=0

typeset -i2 shiftval=2#$1

$

$ masks_env # Execute request shows lines of script
#1/bin/ksh -v
#
Script which will display default
permissions in formatted fashion
based on the current umask setting
#
function gen_modes
{
integer count=0
typeset -i2 shiftval=2#$1
perms=([1]=r [2]=w [3]=x [4]=r [5]=w [6]=x [7]=r [8]=w [9]=x)
while ((count <=9))
do
((count=count+1))
let 1lment=10-count
if ((($shiftval & 1) == 1))
then
res[$1lment]="${perms[$1ment]}"

Execution Trace 267

else
res[$lment]="-"
fi
((shiftval = shiftval >> 1))
done
}
#it####### Script Begins ##########
typeset -i2 defa # make defa display in binary
typeset -i onescomp
((onescomp=~($(umask)))) # Get ones complement of current umask
((defa=(8#666)&onescomp)) # Calculate default permission mask
default perm=${defa#*#} # Strip off leading 2#

print "Default REGULAR FILE permissions with current umask ($(umask))"

Default REGULAR FILE permissions with current umask (0002) # Normal output line

print " u g 0
u g 0 # Normal output line

gen_modes $default_perm

print ${res[*]}

rw-rw-r - - # Normal output line
print "(In binary -- $default_perm)"
(In binary -- 110110100) # Normal output line
print ""
if [["$MASKSDIRS" != "YES" 1] # Logic sequence is followed
then

exit 0
fi

Execution Trace

I find that the verbose option makes it difficult to locate the normal output
lines because they are lost within all the extra displays. Come to think of it,
I did ask for “verbose” output, didn’t I?

The next debugging option not only leaves the bread crumbs through the
woods, but it also leaves the type of bread, the baker, the expiration date,
and the names of any animals that might have given it a nibble. (Another
one over the top, no?) The idea is that it displays more information than
just the command sequence.

Besides displaying the command before executing the command, you also
might ask the Korn Shell to expand any wildcards and variables before dis-
playing the command to be executed. This gives you the chance to under-
stand how the Shell is interpreting your input. If a line has an asterisk on
it, you can find out whether the asterisk is expanded, and if so, how broadly.
All shell variable contents are displayed as well.

268

Chapter 11: Diagnostics

Ay

/=4

EXAMPLE

The output produced by this option can be distinguished from the regular
output of the script because it is preceded by the + sign.

In fact, the PS4 environment variable is being used to produce this charac-

ter. You can set it to any value that will help you with your debugging; how-
ever, the default value is the +. This prompting can be turned on at several

levels. You have now seen all four levels of prompting available in the Korn
Shell:

e PS1—Interactive shell prompt
e PS2—Line continuation prompt
e PS3—Menu selection prompt in a select loop

e PS4—Verbose debugging output indicator

The following example executes the masks_env script with the xtrace option
enabled:

$ head -2 masks_env
#!/bin/ksh -x # Xtrace debug option is on

masks_env # Run the script
typeset -i2 defa
typeset -i onescomp
umask
((onescomp=~(0002)))
((defa=(8#666)&onescomp))
default_perm=110110100
umask
print 'Default REGULAR FILE permissions with current umask (0002)'
Default REGULAR FILE permissions with current umask (0002) # Normal output
+ print ' u g o'
u g 0 # Normal output
+ gen_modes 110110100
+print -rw-rw-r - -

+ + + + + 4+ 4+ +

rw-rw-r - - # Normal output
+ print '(In binary -- 110110100)"

(In binary -- 110110100) # Normal output
+ print "'

+ [["' 1= YES 1] # Note test

+ exit 0

$

ANy
EXAMPLE

Execution Trace

For your maximum debugging pleasure, may I suggest using both the
verbose option and the xtrace option.

$ head -2 masks_env
#!/bin/ksh -xv # Set xtrace and verbose
#

$ masks_env

#1/bin/ksh -xv

#

Script which will display default

permissions in formatted fashion

based on the current umask setting

#

function gen_modes

{

integer count=0

typeset -i2 shiftval=2#$1

perms=([1]=r [2]=w [3]=x [4]=r [5]=w [6]=x [7]=r [8]=w [9]=x)

while ((count <=9))

do

((count=count+1))

let lment=10-count

if ((($shiftval & 1) == 1))
then
res[$lment]="${perms[$1ment]}"

else
res[$lment]="-"
fi
((shiftval = shiftval >> 1))
done
}
#i###### Script Begins ########H#H
typeset -i2 defa # make defa display in binary

+ typeset -i2 defa
typeset -i onescomp
+ typeset -i onescomp

((onescomp=~($(umask)))) # Get ones complement of current umask

+ umask

+ ((onescomp=~(0002)))

((defa=(8#666)&onescomp)) # Calculate default permission mask

+ ((defa=(8#666)&onescomp))

default_perm=${defa#*#} # Strip off leading 2# # Verbose line
+ default_perm=110110100 # Xtrace line

print "Default REGULAR FILE permissions with current umask ($(umask))"

269

270

Chapter 11: Diagnostics

+ umask
+ print 'Default REGULAR FILE permissions with current umask (0002)'
Default REGULAR FILE permissions with current umask (0002)

print " u g 0
+ print

gen_modes $default_perm
+ gen_modes 110110100

print ${res[*]} # Verbose line
+print -rw-rw-r - - # Xtrace line
rw-rw-r - - # Output line

print "(In binary -- $default perm)"
+ print '(In binary -- 110110100)'
(In binary -- 110110100)

print ""

+ print "'

if [["$MASKSDIRS" != "YES" 1]
then
exit 0
fi
+[[' 1= YES]]
+ exit 0

$

Debugging Hooks

One of the easiest and most effective ways to debug a script is to judiciously
place print statements in it to display the current contents of troublesome
variables. This technique is not smooth or sexy, but it is very effective.

If your script development is ongoing, you might want to insert some
debugging hooks in the script that indicate whether to display the variable
contents. If you choose, you can remove the extra print statements after
the script is debugged. However, I suggest leaving them in the script
because the overhead of leaving them in will probably be minimal. This
option is more directed than the ksh -xv technique and produces less busy
output.

As you start the script, you can give it an extra command line option, such
as -debug, which can be checked by the script as it runs. If it is defined, dis-
play the variable contents for debugging purposes. If it is not defined, skip
the print commands.

ANy
EXAMPLE

Debugging Hooks 271

$ cat masks_env
#!/bin/ksh
#

(...)
BHBBEEEEE Script Begins HHBHEHHHEE

typeset -i2 defa # make defa display in binary
typeset -i onescomp
((onescomp=~($(umask)))) # Get ones complement of current umask
((defa=(8#666)&onescomp)) # Calculate default permission mask
default_perm=${defa#*#} # Strip off leading 2#
print "Default REGULAR FILE permissions with current umask ($(umask))"
print " u g 0"
#print '~ '
if [["x$1" == "x-debug"]] # Check for debug switch
then
print "DEBUG -- default_perm contains $default perm"
fi

gen_modes $default_perm
print ${res[*]}
(...)

$
$ masks_env # Normal run
Default REGULAR FILE permissions with current umask (0002)

u g 0

rw-rw-r - -
(In binary -- 110110100)

$
$ masks_env -debug # Run with debug option
Default REGULAR FILE permissions with current umask (0002)
u g 0
DEBUG -- default_perm contains 110110100 # Extra output line

rw-rw-r - -
(In binary -- 110110100)

$

A similar effect can be achieved by surrounding the troublesome portion
of the script to be debugged with set -o xtrace and set +o xtrace.
Effectively, you would be turning on the xtrace option for the area of con-
cern only, rather than for the whole script, as was done in the previous
examples.

You can also set up a DEBUG trap, but because we don’t talk about traps
until the next chapter, we’ll hold off on that one.

272 Chapter 11: Diagnostics

The debugging options are useful for handling the script writer’s logic
errors. But is there anything that can be done about user errors? If your
script is to be used by users other than yourself, Chapter 12, “Traps,” will
help prevent those other users from interacting badly with your script. This
is what I refer to as bulletproofing a script. (Some would prefer to call it
idiot-proofing.)

12
Traps

Rather than waiting to hear through the grapevine about your teenager’s
latest hi-jinks and then ranting and raving long after the fact, wouldn’t it
be wonderful if every untoward action generated an “admonishment from
parent,” which echoed in his head as if it were between two stereo speakers
and you controlled the volume and content? Or how about a mechanism
where every time he leaves the house there is an automatic litany of do’s
and dont’s that bray into his mind? If either of these mechanisms sounds
enticing, you will find the Korn Shell’s capability to trap events to be of
interest.

Consider two of the most common events that occur during the execution of
a script: errors and exits. The errors referred to here are not the syntax and
script creation time errors. This chapter’s focus is on runtime errors.

This chapter teaches you the following:
* How to define and use script traps
¢ The importance of comments in scripts
e How to build help within a script
e How to bulletproof your script

276

Chapter 12: Traps

Defining and Using Traps

As you will see, your script can trap for errors and the exit condition. These
are probably the most commonly trapped-for events. Can other things be
trapped? Let’s answer that by examining the meaning of a trap.

Traps are typically described as asynchronous events. The event is asyn-
chronous because of its unpredictability. An example is a Ctrl+C being
pressed while your script is running. The event of the Ctrl+C is totally
unpredictable from the perspective of your script. During one run, it might
occur after 20 seconds; during another run, it might occur after 2 hours.
And during a third run, it might not occur at all.

You may be thinking that a Ctrl+C causes an interrupt, not a trap. The trap
is the action of reacting to the interrupt. The interrupt is massaged into a
UNIX signal. So ultimately, the Ctrl+C key sequence causes an interrupt,
which is transformed into a UNIX signal that is trappable by the process.
Most UNIX signals can be trapped (signal number 9, however, cannot be
trapped).

If a signal is not trapped by the script writer, the typical default action is to
terminate the script. I propose that we break the categories of traps into
groups based on function.

The first is the EXIT trap. This typically is used to perform some cleanup
processing at the end of a script. It’s useful if the logic of your script could
take several paths, any of which would end by exiting.

Next is the ERR trap. This trap is triggered any time a command executed
during your script returns a nonsuccessful status (a non-zero number in
$?). The alternative to this trap is to place an if test after every command
to check the return status of the command for a non-zero value. When this
event is trapped, you could try to correct the problem or perhaps write a
message to a log file, send some email to the person in charge of the appli-
cation, or ignore the error and continue processing.

Another trap is the SIGNAL trap. Note that no keyword SIGNAL is recognized
by the trap command. I am suggesting it as a functional category. This
includes all the traps seen in the output of a kill -1 command.

Next are the SPECIAL CASE traps, including
* DEBUG—ksh executes your trap response after each command.

* CHLD—Kksh uses this trap to inform you that a background command
has finished.

* KEYBD—ksh executes your response each time a character is typed
interactively.

i

[=4
EXAMPLE

Defining and Using Traps 277

The following example uses a SIGNAL trap. It traps the signal sent when the
user presses Ctrl+\ and reports how many files have been created at this
point in the run. It also traps the Ctrl+C signal and reports the total num-
ber of files created before it exits the script. Note that this is the only way
the script is designed to exit.

The keywords QUIT and INT can be replaced with the numbers 3 (for QUIT)
and 2 (for INT). See kill -1 output for other signals.

$ cat makem
#! /bin/ksh

integer count=0

trap 'print "Made $count files."' QUIT # Trap Ctrl+\
trap 'print "Exiting...";\
sleep 2;print "total files made is $count"; exit' INT # Trap Ctrl+C

while : # Infinite while loop

do

> file$count # Create filel, file2, ...
count=count+1

done

$
$ pwd
/home/obrien/lotsofiles
$
$ makem
Made 3083 files. # Ctrl+\
Made 4661 files. # Ctrl+\
Exiting... # Ctrl+C
total files made is 5311
$
$1s | we -1
5314
$ # Count of files

The following example uses an EXIT trap. This is the same makem script used
earlier, but with an EXIT trap included. The trap calculates a number repre-
senting half of the count of files just created. It then presents that number
as a parameter to a dot script called removem. The result is that it creates a
bunch of files and then deletes the lower-numbered half of them.

$ cat makem
#! /bin/ksh

integer count=0

278

Chapter 12: Traps

trap 'count=count/2; . removem $count ' EXIT # Exit trap, calls another script
trap 'print "Made $count files."' QUIT
trap 'print "Exiting...";\

sleep 2;print "total files made is $count"; exit' INT

while :

do

> file$count
count=count+1
done

$
$ cat removem
#! /bin/ksh

integer dels=$(ls | sed 's/....//" | grep '"[0-9]' | sort -n | head -1)
Calculates lowest number file

if [[-z 81]]
then
read count?"How many?"
else
count=$1+$dels
fi

print "Removing $count files, please wait"
while ((dels <= $count))

do

rm file$dels

dels=dels+1

done

$

$ makem

Made 2172 files. # CTRL+\
Made 3094 files. # CTRL+\
Exiting... # CTRL+C

total files made is 3693
Removing 1846 files, please wait

$

$1s | we -1
1849

$

The following example uses an ERR trap. The trap response appends any
error messages to a file named errlog. It also appends the date after the
name of the file that caused the error. The exec 2> /dev/null eliminates

Ay

[=4
EXAMPLE

Defining and Using Traps 279

the shell’s error displays so that the script can take full control of error
reporting and processing.

$ cat removenm
#! /bin/ksh

exec 2> /dev/null Get rid of shell errors
trap 'exec 3>> errlog; print -u3 "error file$dels -- $(date)"' ERR# Trap errors

integer dels=$(ls | sed 's/....//' | grep '*[0-9]' | sort -n | head -n 1)

if [[-z $1]]
then
read count?"How many?"
else
count=$1
fi

print "Removing $count files, please wait"

((count=count+$dels))

while ((dels <= $count))

do

/bin/rm file$dels # Supply location of your rm command
Eliminates aliases for rm

dels=dels+1

done

$

$ 1s errlog # Error log does not exist yet

1s: errlog: No such file or directory

$

$ makem # Make a bunch of files

Exiting...

total files made is 1296

Removing 648 files, please wait

$

$ rm file680 file690 # Remove a few by hand

$

$ removem 650 # Remove 650 files

Removing 650 files, please wait

$

$ cat errlog

error file680 -- Tue Nov 7 18:26:01 EST 2000 # Couldn't find these files

error file690 -- Tue Nov 7 18:26:02 EST 2000

error file1296 -- Tue Nov 7 18:26:10 EST 2000

error file1297 -- Tue Nov 7 18:26:10 EST 2000

error file1298 -- Tue Nov 7 18:26:10 EST 2000

error file1299 -- Tue Nov 7 18:26:10 EST 2000

$

280 Chapter 12: Traps

The following example uses a SPECIAL CASE trap. It sets up the DEBUG trap to
display the contents of the variable named dels. Even though it is not nec-
essary to do so, the script also requests that the default behavior be rein-
stated using trap - DEBUG. The DEBUG trap can be turned on for a select
portion of the script and turned off when not needed, enabling you to
bracket the troublesome area of your script.

Ay $ cat removem
#! /bin/ksh

/=4

=% exec 2> /dev/null
EXAMPLE

trap 'exec 3>> errlog; print -u3 "error file$dels -- $(date)"' ERR

integer dels=$(ls | sed 's/....//" | grep '"[0-9]' | sort -n | head -n 1)

if [[-z $1]]
then
read count?"How many?"
else
count=$1
fi
trap 'print "dels contains $dels."' DEBUG # Set up DEBUG trap

print "Removing $count files, please wait"

((count=count+$dels))

while ((dels <= $count))

do

/bin/rm file$dels

dels=dels+1

done

trap - DEBUG # Revert to default behavior
$

$ removem 385

dels contains 383.

Removing 385 files, please wait

dels contains 383.

dels contains 383.

dels contains 383. # Each line executed causes
dels contains 383. # the DEBUG trap to trigger
dels contains 384.

dels contains 384.

dels contains 384.

(...)

Documentation Support 281

Documentation Support

Back when I was a cub programmer in the olden days (early 70s), I would
feed lustily off the thrill of creating a well-functioning piece of software.
The creative thinking and teamwork were eagerly welcomed.

However, another responsibility was put on the programmer’s shoulders
that was not quite so attractive. Our boss wanted us to carefully document
our work so that maintenance programming could be efficiently performed
in the future if necessary. Needless to say, the FUTURE, as far as I was
concerned at that point in my life, was...maybe dinnertime. As a young
man, everything happened RIGHT NOW. There was no time to think about
the future.

So my approach to this wasteful busywork was to scribble some nonsense in
the document, to meet the letter of the law, but not really put any effort
into it. I had no mental energy to devote to this menial and boring task.

Approximately a year and a half after I had participated in my first large
software project, some changes had to be performed on the code I had cre-
ated. Because I was still doing the same job as I had been (you can see that
my career was skyrocketing), my boss (same guy—his career was skyrock-
eting also) came to me and plopped a bunch of printouts and specs on my
desk and described the essence of the changes that needed to be made.

On the top of the pile of materials was the documentation book. Yup, the
same one that I had not bothered to fill with much useful information a
year and a half ago. I cracked it open when I needed some help in figuring
out the algorithms I had used 540 days ago. Unfortunately, it contained
nothing but my amateurish attempts at whitewashing the fact that I saw
no use in documentation.

The bottom line was that a project that should have taken me two days
took me two weeks—all because I had taken a shortcut with my documen-
tation. Instead of taking a few hours while the thrill of the software hunt
was still fresh in my brain, I chose to write 10-minutes worth of gibberish
so I could rush on to the next creative endeavor.

I learned a major lesson at that time. I have since seen evidence that fur-
ther emphasizes that documentation is worth its weight in stock options.
Any pie chart that shows where the software bucks are being spent indi-
cates that more than 80% of the budget goes to maintaining existing code,
not the creation of new code.

Not that I expect you to write a separate document that describes all the
fine points of your script. I do, however, recommend that you use comments

282

Chapter 12: Traps

Ay

/=4

EXAMPLE

Ay

/=4

EXAMPLE

within your script to describe any sticky points in your logic or anything
else that might be of use to a maintenance person. Realize that the mainte-
nance person might be you!

Self-Help Scripts

As my mind gets more cluttered with UNIX commands and other technical
flotsam, my ability to remember the expected syntax of a particular com-
mand or script becomes limited.

One of the techniques I use to quickly recall which options are legitimate
and what the order of the parameters is supposed to be is to type the com-
mand with no other syntax. Usually this is incorrect for the command or
script in question. If the script has been designed with self-help in mind, it
displays a little syntax reminder onscreen. This functions as a mini man
page, as you can see in the following example.

You can alternatively set up your script to react to a parameter of ? or
-help.

$ gcdksh

Usage: gcdksh {integer_1} {integer_2} ...

$

Bulletproofing

The ultimate bulletproofing of a script comes by combining many of the
thoughts presented in this chapter. The goal is to make the script impervi-
ous to any kind of input the user might throw at it (or that it might read
from a file). This special-case “what-if” code can be so detailed and cumber-
some to write that it takes up more lines in your script than the main pro-
duction logic flow. Therefore, I suggest that you implement these ideas in
your nonpersonal scripts.

The following example shows an example of bulletproofing.

$ cat gcdksh
#! /bin/ksh

function gecd { # Function to generate gcd between two numbers
integer u v r

u=%$1
v=$2
while ((v)) # Key gcd loop
do
r=us%v

i

[=4
EXAMPLE

Bulletproofing 283

u=
V:

done
print $u # Returns value to caller of function if function
} # called using $(gcd ...) syntax

function syntax { # Function to report incorrect syntax
print -u2 Usage: "${comname##*/} {integer_1} {integer_2} ..."
exit 1 # Remove large left pattern up to last /
}

comname=$0

(($# < 2)) && syntax # Check if count of args < 2, call syntax

G=0

for f # Loop using command args

do
G=$(gcd G $f) # Call gcd function with current G contents

and next command-line param as args

done

print "Greatest common denominator is $G"

$

$ gcdksh 4 8

Greatest common denominator is 4

$

$ gcdksh 8 4

Greatest common denominator is 4

$

$ gcdksh 8 0

Greatest common denominator is 8

$

$ gcdksh 8 # Incorrect syntax

Usage: gcdksh {integer_1} {integer_2} ...

$

How do you protect against out-of-range input? The following example adds
another function to the gcdksh script, providing protection against out-of-
range input values.

$ cat gcdksh
#! /bin/ksh

integer BITS=32 # Assume 32-bit machine
integer len max

max="(1 << BITS-1) - 1" # Generate maximum value for this system
len=${#max} # How many bytes is it

284 Chapter 12: Traps

function gcd {
integer u v r

u=$1
v=$2
while ((v)) # Continue while v != 0
do
r=u%sv # Main calculation for gcd
u=v
v=r
done
print $u # Return value to caller if function
} # called using G=$(gcd ...)
function syntax { # Main syntax error report function
print -u2 Usage: "${comname##*/} {integer_1} {integer_2} ..."
exit 1 # Remove large left pattern up to last /
}
function inrange { # Function to determine if value is in range

typeset str str_len str_quot
Variables local to this function
str=$1
str_len=${#str}
((str_len < len)) &% return 0
((str_len > len)) && return 1

return 1
}
comname=$0
(($# < 2)) && syntax # Check if count of args < 2, call syntax
G=0
for f # Loop using command args
do
! inrange $f && { print -u2 - "$f: out of range"; syntax; }
G=$(gcd G $f) # Call gcd function with current G contents
and next command-line param as args
done
print "Greatest common denominator is $G"
$

$ gcdksh 9 999999999

Greatest common denominator is 9

$

$ gcdksh 9 99999999999

99999999999: out of range

Usage: gcdksh {integer_1} {integer_2} ...
$

Ay

/=4
EXAMPLE

Bulletproofing 285

But what happens if you pick a number between 999999999 and
999999999997 It reports an incorrect result! So you have more work to do.
The problem is that when checking for out-of-range values, you need to
somehow perform math involving a value that is too large to express. How
can you do that?

The solution is to eliminate the rightmost numeral from your test numbers,
and then check the range (the numbers must be stored in strings at first).
If the outcome is still in doubt, you must isolate the rightmost numeral and
check that against the rightmost numeral in the maximum supported
value.

Are we over the top here? Maybe. But I think you are getting the point that
if you want to make a bulletproof script, it takes some serious work.

The following example prepares for some of the extremes in range testing.
It should prevent user input beyond the supported integer range on the sys-
tem (it assumes a 32-bit system).

$ cat gcdksh
#! /bin/ksh

integer BITS=32
integer len max quot

max="(1 << BITS-1) - 1" # Generate maximum value for this system
len=${#max} # How long is the value

len=len-1 # Decrease by 1 for sign

quot=${max%?} # Maximum value with rightmost numeral eliminated

typeset -R1 rem=$max # Isolate the rightmost numeral, store in rem

function gcd {
integer u v r

u=$1
v=$2
while ((v)) # Continue while v != 0
do
r=u%sv # Main calculation for gcd
u=v
v=r
done
print $u # Return value to caller if function
} # called using G=$(gcd ...)
function syntax { # Main syntax error report function

print -u2 Usage: "${comname##*/} {integer_1} {integer_2} ..."

286

Chapter 12: Traps

exit 1 # Remove large left pattern up to last /

function inrange {
typeset str str_len str_quot
Local variables

str=$1
str_len=${#str} # Get length of parameter
Check against maximum allowable length
((str_len < len)) && return 0
If less, return success
((str_len > len)) && return 1
If more, return failure

str_quot=${str%?}

Remove rightmost numeral from test value
typeset -R1 str_rem=$str

Isolate rightmost numeral in test value

Check against max value's left numerals
((str_quot < quot)) && return 0

If less return success
((str_quot > quot)) && return 1

If more return failure

Still undecided, compare right numerals
((str_rem <= rem)) && return 0

return 1
}
comname=$0
(($# < 2)) && syntax # Check if count of args < 2, call syntax
G=0
for f # Loop using command args
do
! inrange $f && { print -u2 - "$f: out of range"; syntax; }
G=$(gcd $G $f) # Call gcd function with current G contents
and next command-line param as args
done
print "Greatest common denominator is $G"
$
$

$ gcdksh 9 9999999999

9999999999: out of range

Usage: gcdksh {integer_1} {integer_2} ...
$

$ gcdksh 9 999999999

Greatest common denominator is 9

$

Bulletproofing 287

You are now pretty much tooled up for the task of script writing. You will
surely bump across some new twist that was not covered in the materials,
but you have more than enough tools to write some serious scripts.

Chapter 13, “Pulling It All Together,” presents a final example of a script
that uses many of the tools and techniques you have learned in this book.

Pulling It All Together

Every now and then, it all comes together. The sun shines. The wind is at
your back. The air is crisp. You feel like you can do anything and do it well.
Your strength and confidence comes from having learned from all your past
experiences and having synthesized that information into a pool of knowl-
edge from which you can draw when necessary. That summarizes where we
are in the book.

You certainly don’t know everything (nobody does). Just as life can throw
some unexpected curve balls at us, our script writing can draw us into situ-
ations for which we are less than fully prepared. You are, however, ready to
confront a computing need, and address that need with a fairly sophisti-
cated script. I sincerely hope that the lessons learned throughout this book
will serve as a springboard for further growth and insights into the world of
script writing.

This chapter presents a script that uses many of the techniques discussed
in the book. The script executes many system admin level commands and
checks their output against a baseline file. If anything has changed since
the baseline was taken, a report is displayed. The user has the option of
re-executing selected commands or just viewing the differences.

Many interesting shell constructs are used throughout the example, includ-
ing the following:

¢ Functions

¢ Coprocess

* Looping constructs (for and while)
e Filters and pipes

* Traps

¢ Here documents

* Arrays

290

Chapter 13: Pulling It All Together

v

[=4
EXAMPLE

Ay

/=

EXAMPLE

The sys_check Script

The following script is shown in a vi session with the number option set. (In
a vi session, the last line-mode command, :set number, displays line num-
bers at the beginning of each line.) First, a few of the command-line options
built into the sys_check script are used; then, several sample runs are
shown after the script is introduced. The following example also provides
some preliminary insight into the run of the script. The baseline file (and
other files) will be stored in /root/checkit/checkout. The baseline file con-
tains the output of the first effective run of the script. You will see that the
script reacts differently if no baseline file exists (it creates it). I will provide
commentary on many of the lines in the script later in the chapter.

Command Options -h

The following example shows the -h option requesting help concerning the
user interface to the script:
./sys_check -h
Usage: syntax [-n] [-h]
-n: Print list of commands to be executed, do not execute.
-h: Print help message.

=

Command Options (Invalid)

The following example shows how the script reacts to an invalid option on
the command line. The script has no special error checking for command-
line arguments (as opposed to options, which it does handle); it simply
ignores them:
#
./sys_check -a
sys_check: unrecognized option \'a\'
Usage: syntax [-n] [-h]

-n: Print list of commands to be executed, do not execute.

-h: Print help message.

Command Options -n

The following example shows the -n option requesting that a list of the
commands to be executed be displayed. The -n option does not request that
the commands actually be executed. The default action is that the script
executes the commands and checks for differences:

The sys_check Script 291

vy # ./sys_check -n
%:‘

Printing Commands (not executing)
EXAMPLE

#1 /bin/date 2>&1

#2 /bin/date "+%Z" 2>&1

#3 /bin/hostname 2>&1

#4 /bin/uname -a 2>&1

#5 /bin/echo ${PATH} 2>&1

#6 /bin/cat /etc/hosts 2>&1

#7 /bin/cat /etc/fstab 2>&1

#8 /bin/cat /etc/passwd 2>&1

#9 /bin/cat /etc/group 2>&1

#10 /bin/cat /.rhosts 2>&1

#11 /bin/cat /etc/dhcpd.conf 2>&1

#12 /bin/cat /etc/inetd.conf 2>&1

#13 /bin/cat /etc/initlog.conf 2>&1

#14 /bin/cat /etc/lilo.conf 2>&1

#15 /bin/cat /etc/named.conf 2>&1

#16 /bin/cat /etc/resolv.conf 2>&1

#17 /bin/cat /etc/smb.conf 2>&1

#18 /bin/cat /etc/yp.conf 2>&1

#19 /bin/cat /etc/ypserv.conf 2>&1

#20 /bin/cat /etc/aliases 2>&1

#21 /bin/netstat -nr | grep -v "Kernel IP routing table" | awk '{ printf "S%s %s
%S %S %s\n", $1,$2,$3,$4,$8 }' 2>&1

#22 /bin/cat /etc/inittab 2>&1

#23 /bin/mount 2>&1

#24 /bin/df -k 2>&1

#25 [bin/netstat -rn | awk '{printf "%s %s %s %s\n", $1,$2,$3,$6}' 2>&1

#26 /bin/netstat -in 2>&1

#27 for i in $(/usr/bin/1lsdev | grep eth | awk '{printf "%s\n",$1}') ; do echo "
XXXXXXXXXXXXX ifconfig for $i XXXXXXXXXXXXXXXXX"; /sbin/ifconfig $i; done 2>&1
#28 /bin/ls /etc/rc.d/init.d 2>&1

#29 for i in $(/bin/1ls /var/spool/cron) ; do echo "XXXXXXXXXXXXXXX cron file $i
XXXXXXXXXXXXXXXXXXXXX" ; cat /var/spool/cron/$i; done 2>&1

#30 /sbin/chkconfig --list 2>&1

#31 /usr/bin/lsdev 2>&1

Exiting

292 Chapter 13: Pulling It All Together

First sys_check Run

The following example shows a first-time run of the script. Notice that the
target directory (/root/checkit/checkout) is currently empty. After the first
run, it has the baseline file in it. After the second run, it has a current file
and a differences file, along with the baseline file:

vy # 1s /root/checkit/checkout # No baseline file
II #
./sys_check
EXAMPLE
= = =
1

====COMMAND=======: # /bin/date 2>&1

+H
I
|
|
I
I

= = =
2 ====COMMAND=======: # /bin/date "+%Z" 2>&1

= ===== =

#2 EST

= = =

3 ====COMMAND=======: # /bin/hostname 2>&1

==== ==============z====== ======
#3 linden

= = =

4 ====COMMAND=======: # /[bin/uname -a 2>&1

= ===== =

#4 Linux linden 2.2.12-20 #1 Mon Sep 27 10:25:54 EDT 1999 1586

(S0

====COMMAND=======: # /bin/echo ${PATH} 2>&1

+H
I
|
|
|
I
I

#5 /bin:/sbin:/usr/bin:/usr/sbin:/usr/local/bin:/usr/local/sbin:/usr/bin/X11:/us
r/X11R6/bin:/root/bin

====COMMAND=======: # /bin/cat /etc/hosts 2>&1

H O

#6 127.0.0.1 localhost.localdomain localhost

First sys_check Run

#6 192.206.126.84 linden

#6 192.206.126.26 lapman

e

7 ====COMMAND=======: # /bin/cat /etc/fstab 2>&1

#

#7 /dev/hda8 / ext2 defaults 1
#7 /dev/hdai /boot ext2 defaults 1
#7 /dev/hda6 /home ext2 defaults 1
#7 /dev/cdrom /mnt/cdrom 1509660 noauto,owner,ro 0
#7 /dev/hda5 Jusr ext2 defaults 1
#7 /dev/hda7 swap swap defaults 0
#7 /dev/fdo /mnt/floppy ext2 noauto,owner 0
#7 none /proc proc defaults 0
#7 none /dev/pts devpts gid=5,mode=620 0
#

8 ====COMMAND=======: # /bin/cat /etc/passwd 2>&1

il

#8 root:x:0:0:root:/root:/bin/ksh

#8 bin:x:1:1:bin:/bin:

#8 daemon:x:2:2:daemon:/sbhin:

#8 adm:x:3:4:adm:/var/adm:

#8 lp:x:4:7:1p:/var/spool/lpd:

#8 sync:x:5:0:sync:/sbin:/bin/sync

#8 shutdown:x:6:0:shutdown:/sbin:/sbin/shutdown
#8 halt:x:7:0:halt:/sbin:/sbin/halt

#8 mail:x:8:12:mail:/var/spool/mail:

#8 news:x:9:13:news:/var/spool/news:

#8 uucp:x:10:14:uucp:/var/spool/uucp:

#8 operator:x:11:0:operator:/root:

#8 games:x:12:100:games:/usr/games:

#8 gopher:x:13:30:gopher:/usr/lib/gopher-data:
#8 ftp:x:14:50:FTP User:/home/ftp:

#8 nobody:x:99:99:Nobody:/:

#8 xfs:x:100:101:X Font Server:/etc/X11/fs:/bin/false

#8 gdm:x:42:42::/home/gdm:/bin/bash

#8 obrien:x:500:500:Dennis 0'Brien:/home/obrien:/bin/ksh

====COMMAND=======: # /bin/cat /etc/group 2>&1

I+ © H

293

294 Chapter 13: Pulling It All Together

#9 root:x:0:root

#9 bin:x:1:root,bin,daemon
#9 daemon:x:2:root,bin,daemon
#9 sys:x:3:root,bin,adm
#9 adm:x:4:root,adm,daemon
#9 tty:x:5:

#9 disk:x:6:root

#9 lp:x:7:daemon,lp

#9 mem:x:8:

#9 kmem:x:9:

#9 wheel:x:10:root

#9 mail:x:12:mail

#9 news:x:13:news

#9 uucp:x:14:uucp

#9 man:x:15:

#9 games:x:20:

#9 gopher:x:30:

#9 dip:x:40:

#9 ftp:x:50:

#9 nobody:x:99:

#9 users:x:100:

#9 floppy:x:19:

#9 utmp:x:22:

#9 xfs:x:101:

#9 console:x:102:

#9 gdm:x:42:

#9 pppusers:x:230:

#9 popusers:x:231:

#9 slipusers:x:232:

#9 slocate:x:21:

#9 obrien:x:500:

B

10 COMMAND======= : # /bin/cat /.rhosts 2>&1

£

#10 ksh[20]: cat: /.rhosts: cannot open [No such file or directory]

— =

1 COMMAND : # /bin/cat /etc/dhcpd.conf 2>&1

+

#11 ksh[22]: cat: /etc/dhcpd.conf: cannot open [No such file or directory]

First sys_check Run 295

H

12 COMMAND : # /bin/cat /etc/inetd.conf 2>&1

#

#12 #

#12 # inetd.conf This file describes the services that will be available
#12 # through the INETD TCP/IP super server. To reconfigure

#12 # the running INETD process, edit this file, then send the
#12 # INETD process a SIGHUP signal.

#12 #

#12 # Version: @(#)/etc/inetd.conf 3.10 05/27/93

#12 #

#12 # Authors: Original taken from BSD UNIX 4.3/TAHOE.

#12 # Fred N. van Kempen, <waltje@uwalt.nl.mugnet.org>

#12 #

#12 # Modified for Debian Linux by Ian A. Murdock <imurdock@shell.portal.com>
#12 #

#12 # Modified for RHS Linux by Marc Ewing <marc@redhat.com>

#12 #

#12 # <service_name> <sock_type> <proto> <flags> <user> <server_path> <args>
#12 #

#12 # Echo, discard, daytime, and chargen are used primarily for testing.
#12 #

#12 # To re-read this file after changes, just do a 'killall -HUP inetd'
#12 #

#12 #echo stream tcp nowait root internal

#12 #echo dgram udp wait root internal

#12 #discard stream tcp nowait root internal

#12 #discard dgram udp wait root internal

#12 #daytime stream tcp nowait root internal

#12 #daytime dgram udp wait root internal

#12 #chargen stream tcp nowait root internal

#12 #chargen dgram udp wait root internal

#12 #time stream tcp nowait root internal

#12 #time dgram udp wait root internal

#12 #

#12 # These are standard services.

#12 #

#12 ftp stream tcp nowait root fusr/sbin/tcpd in.ftpd -1 -a

#12 telnet stream tcp nowait root fusr/sbin/tcpd 1in.telnetd
#12 #

#12 # Shell, login, exec, comsat and talk are BSD protocols.

#12 #

#12 shell stream tcp nowait root fusr/sbin/tcpd in.rshd
#12 login stream tcp nowait root fusr/sbin/tcpd 1in.rlogind
#12 #exec stream tcp nowait root /usr/sbin/tcpd in.rexecd

296

Chapter 13: Pulling It All Together

#12 #comsat dgram udp wait root /usr/sbin/tcpd in.comsat

#12 talk dgram udp wait nobody.tty fusr/sbin/tcpd in.talkd
#12 ntalk dgram udp wait nobody.tty fusr/sbin/tcpd in.ntalk
d

#12 #dtalk stream tcp wait nobody.tty /usr/sbin/tcpd in.dtalk
d

#12 #

#12 # Pop and imap mail services et al

#12 #

#12 #pop-2 stream tcp nowait root /usr/sbin/tcpd ipop2d

#12 #pop-3 stream tcp nowait root /usr/sbin/tcpd ipop3d

#12 #imap stream tcp nowait root /usr/sbin/tcpd imapd

#12 #

#12 # The Internet UUCP service.

#12 #

#12 #uucp stream tcp nowait uucp fusr/sbin/tcpd /usr/lib/uucp/uu
cico -1

#12 #

#12 # Tftp service is provided primarily for booting. Most sites
#12 # run this only on machines acting as "boot servers." Do not uncomment

#12 # this unless you *need* it.

#12 #
#12 #tftp dgram udp wait root fusr/sbin/tcpd
#12 #bootps dgram udp wait root fusr/sbin/tcpd
#12 #

in.tftpd
bootpd

#12 # Finger, systat and netstat give out user information which may be
#12 # valuable to potential "system crackers." Many sites choose to disable

#12 # some or all of these services to improve security.

#12 #

#12 finger stream tcp nowait nobody /usr/sbin/tcpd in.fingerd
#12 #cfinger stream tep nowait root fusr/sbin/tcpd in.cfingerd
#12 #systat stream tcp nowait guest /usr/sbin/tcpd /bin/ps -auwwx
#12 #netstat stream tcp nowait guest /usr/sbin/tcpd /bin/netstat -f inet
#12 #

#12 # Authentication

#12 #

#12 auth stream tcp wait root /usr/sbin/in.identd in.identd -e -0
#12 #

#12 # End of inetd.conf

#12

#12 linuxconf stream tcp wait root /bin/linuxconf linuxconf --http

3 COMMAND======= : # /bin/cat /etc/initlog.conf 2>&1

o

First sys_check Run 297

#13 # /etc/initlog.conf

#13 #

#13 # initlog configuration file

#13 #

#13 # lines preceded by a '#' are comments

#13 #

#13 # anything not recognized is ignored. :)

#13

#13 # This sets the default logging facility. (can override with command-line
arguments)

#13 facility local7

#13

#13 # This sets the default logging priority. (
can override with command-line arguments)
#13 priority notice
#13
#13 # ignore foo
#13 # means to discard any output from a command that matches regexp foo
#13
#13 # This regexp is useful if you use fsck's -C option.
#13 ignore [~:]+: [[=]+
#13 # This regexp is useful for quotacheck
#13 ignore ~[-\|/1$

14 COMMAND : # /bin/cat /etc/lilo.conf 2>&1

H

#14 boot=/dev/hda

#14 map=/boot/map

#14 install=/boot/boot.b

#14 prompt

#14 timeout=50

#14 default=1linux

#14

#14 image=/boot/vmlinuz-2.2.12-20
#14 label=linux

#14 initrd=/boot/initrd-2.2.12-20.1img
#14 read-only

#14 root=/dev/hda8

5 COMMAND======= : # /bin/cat /etc/named.conf 2>&1

=

298

Chapter 13: Pulling It All Together

#15 ksh[30]: cat: /etc/named.conf: cannot open [No such file or directory]

— =

6

COMMAND : # /bin/cat /etc/resolv.conf 2>&1

+

#16
#16

search
nameserver

I+

COMMAND======= : # /bin/cat /etc/smb.conf 2>&1

£

#17
#17
#17
#17
#17
#17
#17
#17
#17
#17
#17
#17
#17

A~ FH I I H H O I I I O B W

This is the main Samba configuration file. You should read the
smb.conf(5) manual page in order to understand the options listed
here. Samba has a huge number of configurable options (perhaps too
many!) most of which are not shown in this example

Any line which starts with a ; (semicolon) or a # (hash)

is a comment and is ignored. In this example we will use a #
for commentry and a ; for parts of the config file that you
may wish to enable

NOTE: Whenever you modify this file you should run the command "testparm"
to check that you have not made any basic syntax errors.

—

COMMAND : # /bin/cat /etc/yp.conf 2>&1

E?

#18
#18
#18
#18
#18
#18
#18
#18
#18
#18
#18
#18
#18

#
#
#

/etc/yp.conf - ypbind configuration file
Valid entries are

#domain NISDOMAIN server HOSTNAME

#
#

Use server HOSTNAME for the domain NISDOMAIN.

#domain NISDOMAIN broadcast

#
#

Use broadcast on the local net for domain NISDOMAIN

#ypserver HOSTNAME

#
#
#

Use server HOSTNAME for the local domain. The
IP-address of server must be listed in /etc/hosts.

First sys_check Run 299

4
#

19 COMMAND : # /bin/cat /etc/ypserv.conf 2>&1

#

#19 ksh[38]: cat: /etc/ypserv.conf: cannot open [No such file or directory]
#

20 COMMAND======= : # /bin/cat /etc/aliases 2>&1

#

#20 #

#20 # @(#)aliases 8.2 (Berkeley) 3/5/94

#20 #

#20 # Aliases in this file will NOT be expanded in the header from
#20 # Mail, but WILL be visible over networks or from /bin/mail.
#20 #

#20 # >>>>>>>>>> The program "newaliases" must be run after
#20 # >> NOTE >> this file is updated for any changes to
#20 # >>>>>>>>>> show through to sendmail.

#20 #

#20

#20 # Basic system aliases -- these MUST be present.

#20 MAILER-DAEMON: postmaster

#20 postmaster: root

#20

#20 # General redirections for pseudo accounts.

#20 bin: root

#20 daemon: root

#20 games: root

#20 ingres: root

#20 nobody: root

#20 system: root

#20 toor: root

#20 uucp: root

#20

#20 # Well-known aliases.

#20 manager: root

#20 dumper: root

#20 operator: root

#20

#20 # trap decode to catch security attacks

#20 decode: root

#20

#20 # Person who should get root's mail

300 Chapter 13: Pulling It All Together

#20 #root: marc

#20

4

21 COMMAND : # /bin/netstat -nr | grep -v "Kernel IP routing table"
awk '{ printf "%s %s %s %S %s\n", $1,$2,$3,%4,$8 }' 2>&1
#

#21 Destination Gateway Genmask Flags Iface

#21 192.206.126.84 0.0.0.0 255.255.255.255 UH etho

#21 192.206.126.0 0.0.0.0 255.255.255.0 U eth0

#21 127.0.0.0 0.0.0.0 255.0.0.0 U lo

#21 0.0.0.0 192.206.126.82 0.0.0.0 UG etho

22 COMMAND : # /bin/cat /etc/inittab 2>&1
e
#22 #
#22 # inittab This file describes how the INIT process should set up
#22 # the system in a certain runlevel.
#22 #
#22 # Author: Miquel van Smoorenburg, <miquels@drinkel.nl.mugnet.org>
#22 # Modified for RHS Linux by Marc Ewing and Donnie Barnes
#22 #
#22
#22 # Default runlevel. The runlevels used by RHS are:
#22 # 0 - halt (Do NOT set initdefault to this)
#22 # 1 - Single-user mode
#22 # 2 - Multiuser,
without NFS (The same as 3, if you do not have networking)
#22 # 3 - Full multiuser mode
#22 # 4 - unused
#22 # 5 - X11
#22 # 6 - reboot (Do NOT set initdefault to this)
#22 #
#22 id:5:initdefault:
#22
#22 # System initialization.
#22 si:isysinit:/etc/rc.d/rc.sysinit
#22
#22 10:0:wait:/etc/rc.d/rc

#22
#22
#22
#22

11:1:wait:/etc/rc.d/rc
12:2:wait:/etc/rc.d/rc
13:3:wait:/etc/rc.d/rc
14:4:wait:/etc/rc.d/rc

B ° B \C T

First sys_check Run 301

#22 15:5:wait:/etc/rc.d/rc 5

#22 16:6:wait:/etc/rc.d/rc 6

#22

#22 # Things to run in every runlevel.

#22 ud::once:/sbin/update

#22

#22 # Trap CTRL-ALT-DELETE

#22 ca::ctrlaltdel:/sbin/shutdown -t3 -r now

#22

#22 # When our UPS tells us power has failed, assume we have a few minutes

#22 # of power left. Schedule a shutdown for 2 minutes from now.

#22 # This does, of course, assume you have powerd installed and your

#22 # UPS connected and working correctly.

#22 pf::powerfail:/sbin/shutdown -f -h +2 "Power Failure; System Shutting Down"
#22

#22 # If power was restored before the shutdown kicked in, cancel it.

#22 pr:12345:powerokwait:/sbin/shutdown -c "Power Restored; Shutdown Cancelled"
#22

#22

#22 # Run gettys in standard runlevels
#22 1:2345:respawn:/sbin/mingetty tty1
#22 2:2345:respawn:/sbin/mingetty tty2
#22 3:2345:respawn:/sbin/mingetty tty3
#22 4:2345:respawn:/sbin/mingetty tty4
#22 5:2345:respawn:/sbin/mingetty tty5
#22 6:2345:respawn:/sbin/mingetty tty6
#22

#22 # Run xdm in runlevel 5
#22 # xdm is now a separate service
#22 x:5:respawn:/etc/X11/prefdm -nodaemon

B

23 COMMAND======= : # /bin/mount 2>&1

I

#23 /dev/hda8 on / type ext2 (rw)

#23 none on /proc type proc (rw)

#23 /dev/hdal on /boot type ext2 (rw)

#23 /dev/hdaé on /home type ext2 (rw)

#23 /dev/hda5 on /usr type ext2 (rw)

#23 none on /dev/pts type devpts (rw,gid=5,mode=620)

24 COMMAND======= ¢ # /bin/df -k 2>&1

B

302 Chapter 13: Pulling It All Together

#24 Filesystem 1k-blocks Used Available Use% Mounted on
#24 /dev/hda8 1612808 46436 1484444 3% |/

#24 /dev/hdatl 23302 2647 19452 12% /boot

#24 /dev/hda6 202220 118914 72866 62% /home

#24 |dev/hda5 2197888 659880 1426360 32% /usr

mn

ki

25 COMMAND======= :
/bin/netstat -rn | awk '{printf "%s %s %s %s\n", $1,$2,

n

ki

#25 Kernel IP routing

#25 Destination Gateway Genmask Window

#25 192.206.126.84 0.0.0.0 255.255.255.255 0
#25 192.206.126.0 0.0.0.0 255.255.255.0 0
#25 127.0.0.0 0.0.0.0 255.0.0.0 0

#25 0.0.0.0 192.206.126.82 0.0.0.0 0

26 COMMAND======= : # /bin/netstat -in 2>&1

#26 Kernel Interface table
#26 Iface MTU Met RX-OK RX-ERR RX-DRP RX-OVR TX-0K TX-ERR TX-DRP TX-OVR

Flg
#26 etho 1500 0 134150 0 0 0 65650 0 0 0
BRU
#26 1o 3924 0 2 0 0 0 2 0 0 0
LRU

mn

il
27 COMMAND======= H

for i in $(/usr/bin/lsdev | grep eth | awk '{printf "S%s

#\n",$1}"') ; do echo "XXXXXXXXXXXXX ifconfig for $i XXXXXXXXXXXXXXXXX";
/sbin/ifc onfig $i; done 2>&1

E'S

#27 XXXXXXXXXXXXX ifconfig for eth@® XXXXXXXXXXXXXXXXX

#27 etho Link encap:Ethernet HWaddr 00:20:78:12:70:22

#27 inet addr:192.206.126.84 Bcast:192.206.126.255 Mask:255.255.255.0
#27 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

#27 RX packets:134154 errors:0 dropped:@ overruns:@ frame:0Q

#27 TX packets:65654 errors:0 dropped:0 overruns:Q carrier:0

#27 collisions:186 txqueuelen:100

First sys_check Run

Interrupt:11 Base address:0x2c00

COMMAND : # /bin/ls /etc/rc.d/init.d 2>&1

#28
#28
#28
#28
#28
#28
#28
#28
#28
#28
#28
#28
#28
#28
#28
#28
#28
#28
#28
#28
#28
#28
#28
#28
#28
#28
#28
#28
#28

apmd
arpwatch
atd
crond
functions
gpm

halt
identd
inet
keytable
killall
kudzu
linuxconf
1pd
netfs
network
nfslock
pcmcia
portmap
random
routed
rstatd
rusersd
rwhod
sendmail
single
syslog
xfs
ypbind

4
29

303

COMMAND : # for 1 in $(/bin/ls /var/spool/cron) ; do echo "XXXXXXXX

XXXXXXX cron file $i XXXXXXXXXXXXXXXXXXXXX"; cat /var/spool/cron/$i; done 2>&1

mn

i

304 Chapter 13: Pulling It All Together

4
#

30 COMMAND 1 # /sbin/chkconfig --list 2>&1

n
#

#30 keytable 0:off 1:off 2:on 3:on 4:on 5:on 6:0ff
#30 crond Q:off 1:0ff 2:on 3:on 4:on 5:on 6:0ff

#30 syslog 0:off 1:off 2:on 3:on 4:on 5:on 6:0ff

#30 netfs 0Q:off 1:0ff 2:0ff 3:on 4:on 5:on 6:0ff

#30 network @:off 1:off 2:on 3:on 4:on 5:on 6:0ff

#30 random @:off 1:on 2:on 3:on 4:on 5:on 6:0ff

#30 xfs 0:off 1:0ff 2:on 3:on 4:on 5:on 6:0ff

#30 apmd 0:off 1:off 2:on 3:on 4:on 5:on 6:0ff

#30 arpwatch Q:off 1:off 2:0ff 3:0ff 4:0ff 5:0ff 6:0ff
#30 atd 0:off 1:o0ff 2:0ff 3:on 4:on 5:o0n 6:0ff

#30 gpm 0:off 1:off 2:on 3:on 4:on 5:on 6:0ff

#30 pcmcia Q:off 1:off 2:on 3:on 4:on 5:on 6:0ff

#30 nfslock Q:off 1:o0ff 2:0ff 3:0ff 4:0ff 5:0ff 6:0ff
#30 kudzu Q:off 1:off 2:0ff 3:on 4:on 5:on 6:0ff

#30 linuxconf Q:off 1:off 2:on 3:on 4:on 5:on 6:0ff
#30 lpd 0:off 1:off 2:on 3:on 4:on 5:on 6:0ff

#30 inet Q:off 1:off 2:0ff 3:on 4:on 5:on 6:0ff

#30 identd 0:off 1:o0ff 2:0ff 3:0ff 4:0ff 5:0ff 6:0ff
#30 portmap 0:off 1:off 2:0ff 3:on 4:on 5:on 6:0ff
#30 routed 0:off 1:0ff 2:0ff 3:0ff 4:0ff 5:0ff 6:0ff
#30 rstatd 0:off 1:o0ff 2:0ff 3:0ff 4:0ff 5:0ff 6:0ff
#30 rusersd Q:off 1:o0ff 2:0ff 3:0ff 4:0ff 5:0ff 6:0ff
#30 rwhod @:o0ff 1:0ff 2:0ff 3:0ff 4:0ff 5:0ff 6:0ff
#30 sendmail @:off 1:o0ff 2:on 3:on 4:on 5:on 6:0ff
#30 ypbind Q:off 1:off 2:0ff 3:o0ff 4:0ff 5:0ff 6:0ff

31 COMMAND======= : # Jusr/bin/lsdev 2>&1

#

#31 Device DMA IRQ I/0 Ports

L N I e

#31 cascade 4 2

#31 dma 0080-008f

#31 dmai 0000-001f

#31 dma2 00c0-00df

#31 etho 11 ¢2822c00-c2822c7f

#31 fpu 13 00f0-00ff

#31 ide0 14 01f0-01f7 03f6-03f6 ffad-ffa7
#31 idet 15 0170-0177 0376-0376 ffa8-ffaf
#31 keyboard 1 0060-006f

#31 Mouse 12

Second sys_check Run 305

#31 pici 0020-003f
#31 pic2 00a0-00bf
#31 rtc 8 0070-007f
#31 serial 03f8-03ff
#31 timer 0 0040-005f
#31 vgat 03c0-03df
View session begins
#
1 ====COMMAND=======: # /bin/date 2>&1
S,

#1 Sat Nov 25 14:27:45 EST 2000

4
2 ====COMMAND=======: # /bin/date "+%Z" 2>&1

e ——

#2 EST

#

3 ====COMMAND=======: # [bin/hostname 2>&1

e ——

#3 linden

4

4 ====COMMAND=======: # /bin/uname -a 2>&1

e ——

H| # End view session
Want to re-execute any of the above commands (y/n)?n

#

1s -1 /root/checkit/checkout # Baseline file now exists
total 32

-rW-r--r-- 1 root root 32449 Nov 25 14:27

sys_check.linden.Good_Output

Second sys_check Run

The following example shows the second run of the script. It checks for dif-
ferences in the baseline file created by the first run (shown in the previous

306 Chapter 13: Pulling It All Together

Ay
EXAMPLE

code) and enables the user to view the differences between the baseline file
and the current set of output generated by a run of the script in a view
session:

./sys_check # Begin second run

-

====COMMAND=======: # /bin/date 2>&1

E?

#1 Sat Nov 25 14:30:54 EST 2000

#

2 ====COMMAND=======: # /bin/date "+%Z" 2>&1
#

#2 EST

e ——

3 ====COMMAND=======: # [bin/hostname 2>&1
4

#3 linden

#

4 ====COMMAND=======: # /[bin/uname -a 2>&1
#

#4 Linux linden 2.2.12-20 #1 Mon Sep 27 10:25:54 EDT 1999 1586

B

31 COMMAND======= 1 # Jusr/bin/lsdev 2>&1

#

#31 Device DMA IRQ I/0 Ports

BB - e
#31 cascade 4 2

#31 dma 0080-008f

#31 dmai 0000-001f

#31 dma2 00c0-00df

#31 etho 11 ¢2822c00-c2822c7f
#31 fpu 13 00f0-00ff

#31 1ide0 14 01f0-01f7 03f6-03f6 ffad-ffa7

#31 idel 15 0170-0177 0376-0376 ffa8-ffaf

Second sys_check Run

#31 keyboard 1 0060-006f
#31 Mouse 12

#31 pici 0020-003f
#31 pic2 00a0-00bf
#31 rtc 8 0070-007f
#31 serial 03f8-03ff
#31 timer 0 0040-005f
#31 vgat 03c0-03df

307

View session begins

ATTENTION!! THE FOLLOWING HAS CHANGED!!

Original_File <<<< = /root/checkit/checkout/./sys_check.linden.Good_Output
Current__File >>>> = /root/checkit/checkout/./sys_check.linden.Current_Output

I'l'l You are using view to view this data. (:q to quit)

< #1 Sat Nov 25 14:27:45 EST 2000

> #1 Sat Nov 25 14:30:54 EST 2000

< #24 [dev/hda8 1612808 46436 1484444 3%
> #24 /dev/hda8 1612808 46468 1484412 3%
< #26 ethd 1500 0 134150 0 0 0 65650

< #27 RX packets:134154 errors:0 dropped:@ overruns:@ frame:Q

< #27 TX packets:65654 errors:@ dropped:@ overruns:@ carrier:0Q

> #27 RX packets:134411 errors:0 dropped:@ overruns:0 frame:Q

> #27 TX packets:65798 errors:0 dropped:0@ overruns:0Q carrier:0Q

/

/

0

0 0 BRU

308 Chapter 13: Pulling It All Together

q

Want to re-execute any of the above commands (y/n)?y # Re-execute request
Which command number? 27

#27 XXXXXXXXXXXXX ifconfig for eth@ XXXXXXXXXXXXXXXXX

#27 etho Link encap:Ethernet HWaddr 00:20:78:12:70:22

#27 inet addr:192.206.126.84 Bcast:192.206.126.255 Mask:255.255.255.0
#27 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

#27 RX packets:134452 errors:0 dropped:@ overruns:@ frame:0Q

#27 TX packets:65821 errors:0 dropped:0 overruns:Q carrier:0

#27 collisions:186 txqueuelen:100

#27 Interrupt:11 Base address:0x2c00

#27

#
Another command (y/n) ? n

#

1s -1 /root/checkit/checkout # Three files in directory now
total 68

-rw-r--r-- 1 root root 32449 Nov 25 14:30 sys_check.linden.Current_Output
-rw-r--r-- 1 root root 914 Nov 25 14:30 sys_check.linden.Diff_File.112500
-rw-r--r-- 1 root root 32449 Nov 25 14:27 sys_check.linden.Good_Output

#

Numbered Version of sys_check Script

The following is the sys_check script with each line numbered. This was
created through vi by typing the :set number command in last line mode:

oy # vi sys_check

#1/bin/ksh
#checkout version 1.0 11/25/00
EXAMPLE

Function syntax displays correct syntax for the command line
when executing this script.

0 N O o~ WD =
=

_
S ©

function syntax {

11 print -u2 Usage: "${@##*/} [-n] [-h] " \

12 "\n\t -n: Print list of commands to be executed, do not execute." \
13 "\n\t -h: Print help message."

14 exit 1

15 }

—_
[«)]

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

Numbered Version of sys_check Script

Function cleanup is used as a signal handler for CTRL+C and CTRL+\
Also called at normal script termination with argument of 'Norm'

function cleanup {
if [[-f ${DiffFile}.$$]I

then

rm ${DiffFile}.$$
fi
[[$Noexec = @]] && print -u4 "exit" # End coprocess (if it exists)
[[$1 = "Norm"]] && exit @ # Check for normal exit
exit 99 # End script with error status
}

Function locate_command avoids problems with commands being in odd
directories. It finds the commands for processing.

function locate_command {
loc=$(find /bin /sbin /usr/bin /usr/sbin -name $1 2>/dev/null | head -1)
if [[$? == 0 1]
then print $loc
else
print ": ; #Can't locate $1 command. "
fi
}

Function 'check_exist' handles cases where the script's files or
directories

don't exist. It is not used for the system files.

function check_exist {
if [[! -f $1 1]
then
if [[$2 == "D" 1] then
mkdir -p $1 || { print "Can't make $1"; exit 2; }

return 2
else
return 1
touch $1 || { print "Can't make $1"; exit 2; }
fi
fi
return 0

309

310

Chapter 13: Pulling It All Together

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103

Funtion cleanup is called when user aborts from sys_check.

trap 'cleanup' INT QUIT

Initialize Variables

integer
integer
integer

typeset
typeset
typeset
typeset
typeset
typeset

x=0
Num=0
line_count=0

host=$(hostname)

Program=$0

Noexec=0

dat=$(date +%m%d%y)
FunctionMarker="=FUNCTION="
Headcmd=" COMMAND T #"

check_exist "/root/checkit/checkout" "D" # Check directory existence.

typeset
typeset
typeset
typeset
typeset

OutFile="/root/checkit/checkout/${Program}.${host}.Current Output"
GoodOutFile="/root/checkit/checkout/${Program}.${host}.Good Output"

DiffFile="/root/checkit/checkout/${Program}.${host}.Diff_File.${dat}"
CleanMsg="...${Program} ended with no changes"
Separator="# \

The following typeset uses a 'here document'.

typeset

DiffMsg=" $(cat << DATA

\n\t\tATTENTION!! THE FOLLOWING HAS CHANGED!!
\n Original File <<<< = ${GoodOutFile}
\n Current_ File >>>> = ${OutFile}

\n\n\t\t

\n
DATA

)

!'l'l You are using view to view this data. (:q to quit) !!!

104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148

Numbered Version of sys_check Script

while getopts :nh OPT
do
case $OPT in
n) Noexec=1 ;;
h) syntax ;;
\?) print -u2 "${0##*/}: unrecognized option \'$OPTARG\'"
syntax;;
esac
done
shift OPTIND-1

(($# > 1)) & syntax

rmcmd=$(locate_command "rm")
$rmemd -f ${OutFile} # -f ignores non-existent files, no errors

Check if the Good Output file has been created
and if not define it.

check_exist ${GoodOutFile}

if [[$72 =1 1] then
OutFile=${GoodOutFile}

fi

Command Array

Cmd[x] is the array element holding the command string
incx - increments the value of x the element by one

HH I I I I

311

312

Chapter 13: Pulling It All Together

149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184

printf

185
186
187
188
189
190
191
192

\83,

If you wish to use a function make sure you place the variable

ie incx;Cmd[x]="${FunctionMarker} Pdisk to Hdisk"

#
${FunctionMarker} in the Command Array pior to the function name.
#
#

Add other commands using the same format as below.

cmd_loc=$(locate_command date)

incx;Cmd[x]="$cmd_loc
incx;Cmd[x]="$cmd_loc

2>&1"
VIH%Z\ " 2581"

cmd_loc=$(locate _command hostname)

incx;Cmd[x]="%cmd_loc

2>81"

cmd_loc=$(locate_command uname)

incx;Cmd[x]="$cmd_loc

-a 2>&1"

cmd_loc=$(locate_command echo)

incx;Cmd[x]="$cmd_loc

\${PATH} 2>&1"

cmd_loc=$(locate_command cat)

incx;Cmd[x]="$cmd_loc
incx;Cmd[x]="$cmd_loc
incx;Cmd[x]="$cmd_loc
incx;Cmd[x]="$cmd_loc
incx;Cmd[x]="$cmd_loc
incx;Cmd[x]="$cmd_loc
incx;Cmd[x]="%cmd_loc
incx;Cmd[x]="$cmd_loc
incx;Cmd[x]="$cmd_loc
incx;Cmd[x]="$cmd_loc
incx;Cmd[x]="$cmd_loc
incx;Cmd[x]="$cmd_loc
incx;Cmd[x]="$cmd_loc
incx;Cmd[x]="$cmd_loc
incx;Cmd[x]="$cmd_loc

/etc/hosts 2>&1"
/etc/fstab 2>&1"
/etc/passwd 2>&1"
/etc/group 2>&1"
/.rhosts 2>&1"
/etc/dhcpd.conf 2>&1"
/etc/inetd.conf 2>&1"

/etc/initlog.conf 2>&1"

/etc/lilo.conf 2>&1"
/etc/named.conf 2>&1"
/etc/resolv.conf 2>&1"
/etc/smb.conf 2>&1"
/etc/yp.conf 2>&1"
/etc/ypserv.conf 2>&1"
/etc/aliases 2>&1"

cmd_loc=$(locate_command netstat)
incx;Cmd[x]="$cmd _loc -nr | grep -v \"Kernel IP

cmd_loc=$(locate_command cat)

incx;Cmd[x]="$cmd_loc

/etc/inittab 2>&1"

cmd_loc=$(locate_command mount)
incx;Cmd[x]="$cmd_loc 2>&1"
cmd_loc=$(locate_command df)

incx;Cmd[x]="$cmd_loc

-k 2>&1"

cmd_loc=$(locate_command netstat)

incx;Cmd[x]="$cmd_loc
\$6}' 2>&1"

-rn | awk '{printf

FH O OH M K FH H H H H K H H W W

#

"%S %S %S %S %s\\\n\", \$1,182,183,1$4,1$8

#
#

o
%S

21
routing table\" | awk '{
}o2>&1"

22
23

24
25
%S %S %s\\\n\", \$1,\$2,

193
194
195

$1}

196
197
198
199

Numbered Version of sys_check Script 313

incx;Cmd[x]="$cmd _loc -in 2>&1" # 26
cmd_loc=$(locate_command lsdev) # 27
incx;Cmd[x]="for i in \$($cmd_loc | grep eth | awk '{printf \"%ss\\\n\",\
) 5 do echo \"XXXXXXXXXXXXX ifconfig for \$i XXXXXXXXXXXXXXXXX\";
$(locate_command ifconfig) \$i; done 2>&1"
cmd_loc=$(locate_command 1s) # 28
incx;Cmd[x]="$cmd_loc /etc/rc.d/init.d 2>&1"

29
incx;Cmd[x]="for i in \$($cmd_loc /var/spool/cron) ; do echo \"XXXXXXXXX

XXXXXX cron file \$i XXXXXXXXXXXXXXXXXXXXX\";

200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233

cat /var/spool/cron/\$i; done 2>&1"
cmd_loc=$(locate _command chkconfig)

incx;Cmd[x]="$cmd_loc --list 2>&1" # 30
cmd_loc=$(locate_command lsdev)

incx;Cmd[x]="$cmd_loc 2>&1" # 31

Num=${x}

B oo e e e e e e e e e e e e e e e e aeeeeee e
Check to see if user just wants command list.

B ee e iieeaiaaas

if [[$Noexec = "1"]]

then
print "\n\nPrinting Commands (not executing)\n\n"
for ((x=1 ; x<=Num ; x++))
do
print "#${x} ${Cmd[${x}1}"
done
print "\n\n Exiting \n\n"
cleanup
fi
B e e o e e e e e e e e e e e e

If the logic goes here, the user wants the whole enchilada.

Loop through the previous command array executing each string.
If the string has the variable ${FunctionMarker} in it then
run the function

else

execute the command string

redirect output to screen and to a file.

This sequence uses a coprocess to execute the commands

in the command array.

314 Chapter 13: Pulling It All Together

234 ksh 2>&1 |& # Create coprocess running ksh
235 exec 3<&p # Use fd 3 to read from ksh
236 exec 4>&p # Use fd 4 to write to ksh

237

238 x=0

239 while ((${x} < ${Num}))

240 do

241 incx

242 print

243 print ${Separator} # Displays command to be executed.
244 cmd="${x} ${Headcmd} ${Cmd[${x}]}"

245 print ${cmd}

246 print ${Separator}

247 print

248 print "${Cmd[${x}1}" | grep ${FunctionMarker} > /dev/null 2>&1

249 if [[$72 =0]] # Checks for function.

250 then

251 TmpVar=$(print ${Cmd[${x}1} | sed "s/${FunctionMarker}//g")

252 func=${TmpVar}

253 ${func} 2>&1

254 else

255 print -u4 "${Cmd[${x}]}| wc -1" # Give command to ksh coprocess
256 read -u3 line_count # Read wc output from coprocess
257 print -u4 "${Cmd[${x}]}" # Redo command without wc

258 for ((; line_count > @ ; line_count--))

259 do

260 read -u3 subout # Read a line of output

261 print "#${x} $subout" # Present output to stdout

262 done # Handles multiline output in loop
263 fi

264 done |tee -a ${OutFile} 2>&1 # Output of while loop piped to tee
265

o e I T
267 # 1if we are creating the Good Output file then view it

268 # for user validation

269 # else

270 # compare the current output file with the Good Output file

271 # if the files are different

272 # print ATTN message and VIEW the read-only diff file

I R R R
274

275 if [[${OutFile} = ${GoodOutFile}]]

276 then

277 view ${OutFile}

278 else

279 diff ${GoodOutFile} ${OutFile} > ${DiffFile}.$$ # Create diff file

280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321

Numbered Version of sys_check Script

Rc=$? # Store return code
grep -v "< ===" ${DiffFile}.$$ > ${DiffFile}.$S$.$$
mv ${DiffFile}.$$.$$ ${DiffFile}.$$
if [[${Rc} =1 1] # diff status 1 means diffs found
then
print ${DiffMsg} > ${DiffFile} # Write ATTN message
grep -E "ATTENT|<|>" ${DiffFile}.$$| \
awk '{
if (substr($0,1,10) == "> ====COMM")
{ Cmd_Hdr=$0 }
else
{ print Cmd_Hdr
print $0
print "."
}
' >> ${DiffFile}
view ${DiffFile}
fi
fi
read ans?"Want to re-execute any of the above commands (y/n)?"

while [[$ans = "y"]]

do
read cmdnum?"Which command number? "
print -u4 "${Cmd[${cmdnum}]}" # Give command to ksh coprocess
while read -u3 -t1 subout # Read output from coprocess
do
print "#${cmdnum} $subout" # Present output to stdout
done # Handles multiline output in loop
print $Separator
read ans?"Another command (y/n) ? "
done
B o eee e
Cleanup
-
cleanup "Norm"

End of script

Comments on Selected sys_check Lines (10-59)

Lines 10-59 define four functions. The syntax function (lines 10-15) is used
when the script discovers some anomaly in the syntax used by the user. It

315

316

Chapter 13: Pulling It All Together

uses $0 to reference the command (. /sys_check) and removes the largest
matching left pattern. The result displays sys_check instead of
./sys_check. The print -u2 prints its message to stderr.

The cleanup function is used when a CTRL+C or CTRL+\ is typed to abort
the script. It performs certain cleanup activities, such as deleting tempo-
rary files and killing the coprocess if necessary. Line 25 checks to see
whether the Noexec variable is set to 1, and if it’s not, it executes the

print -u4 command following the &&. Unit 4 is an open pipeline to the
coprocess. It causes the eco-process to terminate. Line 26 checks to see
whether this cleanup is due to a normal termination or an abort (CTRL+C)
and returns a different exit status in either case.

The locate _command function (lines 33—40) is used to find the location of
UNIX commands so that, when they get executed, they provide full file
specifications to the shell. This is part of the bulletproofing discussed ear-
lier in the book. It uses the $(comm) form of command expansion to execute
the find command and capture the output in a variable. Note that line 36
is not being used to print to stdout, despite what it looks like. When a func-
tion is called using the format x=$(func), any output of the function is
placed in variable x. See line 167 for an example.

The check_exist function (lines 42-58) checks the existence of sys_check’s
directories. If the directory does not exist, it is created. Notice the -p option
on the mkdir command (line 49), which creates any intermediate directories
in the path to the target directory if necessary. Notice also that this func-
tion uses a more standard type of return than the locate command function
does. This function returns a number using the return statement. The
locate_command function returned a string.

Comments on Selected sys_check Lines (70-102)

Two signals are trapped during the run of the script (line 70), and both
signals cause the cleanup function to execute.

Three integer variables are defined on lines 76-78, while other variables
are defined on lines 80-102. Lines 80, 83, and 94 use command expansion
to develop a value to place in the target variable. Line 93 embeds a here
document that is used to create an attention message. The document begins
at <<DATA on line 94 and ends at DATA on line 100. As is true with many of
the constructs shown in this example, other ways of handling this attention
message are available.

Numbered Version of sys_check Script 317

Comments on Selected sys_check Lines (108-125)

An alias is created on line 108 to streamline some of the upcoming lines
that repetitively increment x by 1.

The getopts while loop (lines 114-122) is used to process the command
options. Only two options (-n, -h) exist, as you can see in the syntax on line
114. The selected option is placed in the variable named OPT. The loop
processes the variables as they appear on the command line. The third case
(line 119) handles illegal options by calling the syntax function.

The shift command on line 123 eliminates the processed portions of the
command line. The test on line 125 checks whether the count of remaining
items is more than 1. If so, it calls the syntax function.

Comments on Selected sys_check Lines (130-140)

Lines 130 and 131 remove a Current_Output file if it exists at this point.
The script will be creating a new Current Output file. Lines 138—-140 check
whether the Good Output file exists, and if it doesn’t, sets the Outfile vari-
able to contain the name of the Good_Output file. This is the case when the
script is being run for the first time or if the target directory has had all
files removed.

Comments on Selected sys_check Lines (144-204)

Lines 144-204 populate an array containing the commands to be executed.
You can tinker with this as you see fit. Your needs might dictate that com-
mands different from the ones selected here execute. Use the ideas shown
in the script as a template for your needs. Many calls to the locate command
function are available to try to bulletproof the commands. Most commands
are terminated with the 2>&1 syntax, which sends the error messages to the
same place as stdout. This enables the execution loop to work properly with
the coprocess created on line 234. The wec command does not include error
messages in its count of lines unless stderr is redirected as shown.

Comments on Selected sys_check Lines (207-220)

The Noexec variable is set to 1 if the -n command-line option is used. Lines
207-220 check whether the user just wants a list of commands with no exe-
cution. If so, a for loop is executed to display the commands (lines
214-217). The for loop initializes x to a 1 and checks whether x<=Num. If it
does, it executes the print command and then increments x by 1 with the
x++ command. When the loop is complete, the cleanup function is called to
terminate the script.

318

Chapter 13: Pulling It All Together

Comments on Selected sys_check Lines (222-264)

Lines 222-264 form the heart of the script. They contain a loop that exe-
cutes the commands stored in the command array. A coprocess is used to
maximize the use of the ksh process created on line 234. The syntax to note
is the |& that terminates the line. This instructs the shell to create a
coprocess, which will run the ksh program. The alternative is to create a
new ksh for each command executed. The two exec commands on lines 235
and 236 are used to create channels for input to and output from the
coprocess—a small price to pay (in complexity) for the performance benefit
gained.

The while loop on lines 239—-264 works its way through the array and exe-
cutes the commands. Note that the output of this loop is piped (line 264) to
a tee command, which uses the -a option to provide for an append to the
Outfile. Although this script uses no functions in its main loop (everything
executed is a command), the syntax on lines 251-253 is prepared to check
for functions and react accordingly. This enables you to alter the script such
that it executes any functions you might create in the future, if you want.

The command to execute is actually presented twice to the coprocess—once
to find out how many lines of output it will generate (line 255) and again to
actually generate the output (line 257). The line count is obtained from the
coprocess in line 256. It is then used to control the number of passes
through the read loop on lines 258-262. All output of the commands is
piped to the tee command (line 264) and ultimately ends up in the
Current_Output file.

Comments on Selected sys_check Lines (275-281)

If the test on line 275 is true, the script reacts by executing a view com-
mand (read-only vi). This is the case when the script is being executed for
the first time or after the target directory is emptied. If the test is false, the
assumption that the script makes is that the user wants a report on the dif-
ferences between this run and the previous run (lines 279-299).

The diff command output is placed in a temporary file with the current pid
($$) appended to the end (line 279). Line 280 stores the return code of the
diff command for later analysis. The diff command returns a status of 1 if
it finds differences. The grep command on line 281 eliminates some of the
input file lines from the diff file (-v means invert the meaning, so lines
that have < === in them are eliminated).

What’s Next 319

Comments on Selected sys_check Lines (285-319)

Line 285 writes an attention message to the target differences file. The
grep -E on line 286 eliminates unnecessary diff output from the target file
by piping its output to an awk filter, which uses the substr awk function
(line 288) to check whether the first 10 characters match the > ====ComMM
sequence. The idea is to present command identification information as few
times as possible.

Line 297 creates a view session to enable the user to get a feel for the dif-
ferences between the current stats and the baseline stats. Line 301 asks
whether the user wants to re-execute any of the commands. The idea is
that the user might want to see more than just the lines that are different.
He might prefer to see the entire command output. All commands are iden-
tified by a number, so all the user has to do is respond appropriately to the
prompt (line 305) and the command is presented to the coprocess (which
still exists) for processing.

The while loop on lines 303—313 continues until the user indicates that he
does not want to see any more commands. Upon exit from the loop, the
script’s logic flows through line 319, where the cleanup function is called to
terminate the script.

Two appendices are included for your perusal. Appendix A, “Useful
Commands,” presents my comments on some commands that will be useful
for you to keep in mind as you go forth and develop your scripts. Not that
I'm trying to replace the man pages with Appendix A, but you tend to not
get qualitative commentary or subjective appraisals from them. Take a
look; maybe you’ll find something interesting.

I also have included an appendix on vi (Appendix B, “vi Tutorial”) for those
who need some help over some of the hurdles vi throws into a UNIX
rookie’s path. Enjoy.

Appendix A

Useful Commands

This appendix documents many commands that you will find useful in your
scripts. This is not meant to be a complete list of commands, nor do I
include comments on every command option. But I think you will find that
the examples are succinct and to the point, that the text is directed to the
main facts, and that you will not have to wade through mountains of man
pages to get what you want.

Take a look. See what you think. I have included a brief introduction to the
command, a syntax summary, details on some of the command’s options, a
comment on some of the oddities of the command, and an example.

322

Appendix A

Ay

/=4

EXAMPLE

Official Description
Defines or displays aliases.

Syntax

alias [-t] [alias-name[=string...]]
Options

-t establishes a tracked alias, providing faster alias translation. Allowed
only if the trackall shell option is set (set -h or set -o trackall).

Oddities

Some implementations provide a -x option, enabling the exporting of
aliases. This also enables aliases to be accessible in subshells.

Some implementations provide a -p option, which causes the word “alias” to
appear before each alias name displayed.

Aliasing is performed when scripts are read, not while they are executed.
Therefore, for an alias to take effect, the alias definition command must be
executed before the command that references the alias is read.

Aliases can be used to redefine special built-in commands but cannot be
used to redefine the following reserved words: if, for, case, then, while,
esac, else, until, function, elif, do, select, fi, done, time, { }, and [[1].

Alias processing is performed after the reserved words listed previously are
processed.

C shell alias command does not use the = in its syntax.

Example

$ alias # Red Hat Linux ksh93 alias list
2d="set -f;_2d'
autoload="'typeset -fu'
command="'command '
fc=hist

float="'typeset -E'
functions="'typeset -f'
hash='alias -t --'
history='hist -1'
integer='typeset -i'
11="1s -la'
nameref="'typeset -n'
nohup="nohup '

r="hist -s'
redirect='command exec'

Appendix A

stop='kill -s STOP'
suspend="kill -s STOP $$'
times="'{ { time;} 2>&1;}'
type='whence -v'

$

$ alias gg=ls # Make an alias named gg

$ gg

! f2 mbox ob oldsedtest1 scripts sortfile
Mail hosts names obr oldsedtest2 sedtesti sortfile2
core locate_command newfile obrr oldsedtest3 sedtest2 symstats
f1 lotsofiles newfile2 obrrr regextest sedtest3 temp

$

$ alias -p # List aliases preceded by 'alias'

alias 2d='set -f;_2d'

alias autoload='typeset -fu'
alias command='command '
alias fc=hist

alias float='typeset -E'
alias functions='typeset -f'

alias gg=1s
(vn4)
$
$ alias if=1s # Alias won't work for shell keyword
$
$ if # Alias 'if' exists but won't work
>
$
$ alias gg=1s # Make standard alias
$
$ g9 # Alias 'gg' works
! f2 mbox ob oldsedtest1 scripts sortfile
Mail hosts names obr oldsedtest2 sedtestl sortfile2
core locate_command newfile obrr oldsedtest3 sedtest2 symstats
f1 lotsofiles newfile2 obrrr regextest sedtest3 temp
$
$ alias cat=ls # Make alias for 'cat'
$
$ cat # Alias cat works
! f2 mbox ob oldsedtest1 scripts sortfile
Mail hosts names obr oldsedtest2 sedtest1 sortfile2
core locate_command newfile obrr oldsedtest3 sedtest2 symstats
f1 lotsofiles newfile2 obrrr regextest sedtest3 temp

$

323

324

Appendix A

b2

EXAMPLE

Official Description
autoload is an alias for typeset -fu.

Syntax

autoload function_name
Options
None

Oddities

autoload enables the shell to recognize a name as a function name (-f) but
not bother reading the function until it is actually needed (-u leaves the
function undefined). This saves shell processing time in the event that the
function is never used during the script run.

Example

$ cat funca
function funca {
print "In funca"

$
$ print $FPATH

$
$ pwd
/home/obrien
$
$ FPATH=/home/obrien # FPATH variable must include path
of file containing function
$
$ autoload funca # Make ksh aware of function funca
$
$ typeset -f # Not loaded yet
typeset -fu funca
me()
{
mkdir -p ~/.mc/tmp 2> /dev/null
chmod 700 ~/.mc/tmp
MC=~/.mc/tmp/mc$$ - " SRANDOM"
fusr/bin/mc -P "$@" > "$MC"
cd "'cat $MC'"
rm "$MC"
unset MC;

vy
(=

EXAMPLE

Appendix A 325

$ funca # Use the funca function

In funca

$

$ typeset -f # Loaded now

function funca

{

print "In funca"

}

mc()

{
mkdir -p ~/.mc/tmp 2> /dev/null
chmod 700 ~/.mc/tmp
MC=~/.mc/tmp/mc$$ - " SRANDOM"
fusr/bin/mc -P "$@" > "$MC"

cd "'cat $MC'"
rm "$MC"
unset MC;

}

$

Official Description
Runs jobs in the background.

Syntax
bg [job_id...]

Options

None

Oddities

If no job_id is given, the most recently suspended job is used.
Available on systems that support job control.

Used to get a stopped job to resume execution but remain in the back-
ground.

Example

$ cat buzz
#! /bin/ksh
integer x=17
while :

do

x=17

326

Appendix A

Ay

/=4

EXAMPLE

done

$

$ buzz

[1] + Stopped buzz # Ctrl+Z

$

$ jobs

[1] + Stopped buzz # Job buzz is stopped

$

$ bg %1 # Get it going in the background

[1] buzz&

$

$ jobs

[1] + Running buzz # Job buzz is running now,
in the background

$

Official Description
Exits from the enclosing for, while, until, or select loop, if any.

Syntax

break [n]
Options
None
Oddities

You can supply a number (n) indicating how many levels of nesting to break
out of.

Might not have its own man page. Look in ksh man page for information.

Example

$ cat buzzi
#! /bin/ksh
integer x=17
while : # Potentially infinite loop
do
X=X+1
if ((x>20))
then
break # Break out when x>20
fi
done
print $x
$

Appendix A 327

$ buzz1
21
$
$
$ cat buzz2
#! /bin/ksh
integer x=17
integer y=0
for ((y=0; y<5; yt++)) # Outer loop
do
while : # Inner loop
do
X=x+1
if ((x>20))
then
break 2 # Break out of both
fi
done
done
print $x
print $y
$
$ buzz2
21
0
$

Official Description

Displays the names of commands built into the shell itself. Allows C lan-
guage function extensions to the shell.

Syntax
builtin [-ds] [-f file] [path/basename]

Options

-f file names a shared library file containing built-in functions.
-d deletes a built-in.

-s displays special built-ins.

Oddities

Available in ksh93 and beyond.

328 Appendix A

Example
?Z\F\ 1, $ builtin | wc -1 # Count of built-in commands

II 61
/=4 s

— — $ builtin -s | wec -1 # Count of special built-in commands
EXAMPLE

19
$
$ builtin | head -5 # Lists several built-ins

[

alarm

alias

$

$ builtin -s | head -5 # Lists several special built-ins

alias
break
continue

$

Official Description

Executes the list associated with the first pattern that matches the word.
Syntax

case word in [[(] pattern [| pattern] ...) list ;;] ... esac

Options

None

Oddities

The form of the patterns is the same as that used for filename generation.

Example

Ay $ x=21 # Set value of x to 21

$ case $x in # Use case to check various values
2)
EXAMPLE print 2 1
17)
print 17 ;;
21)
print 21 ;;

©“

V V. V VvV V V

Appendix A 329

> *)

> print huh

> esac

21 # Correctly finds the 21
$

cat
Official Description
Concatenates or displays files.

Syntax
cat [-benstvA] file... | -

Options

-A shows all.

-b numbers nonblank output lines.

-e shows $ at the end of lines.

-n numbers all output lines.

-s means squeeze-blank; never more than one single blank line.
-t shows tabs as L.

-v shows characters that typically do not print.

With no file, or when file is -, it reads standard input.
Oddities

Used to create small files (cat > xx).

Example
Ay $ cat -n buzz # Numbers the output lines
#! [bin/ksh

integer x=17
while :
EXAMPLE do
x=17
done

o O B~ W N =

$

$ cat > small # Create small file

junk

more junk # Ctrl+D to end the input (at beginning of next line)
$

$ cat small

330 Appendix A

junk

more junk

$

$ cat -e small # Indicate line ends with $
junk$

more junk$

$

Official Description
Changes the current working directory.

Syntax

cd [directory]

Options

None

Oddities

C shell cd command is slightly different.

You must have execute (search) permission in the specified directory to cd
to it.

If - is specified as the directory, the cd command changes your current
(working) directory to the directory name saved in the environment vari-
able OLDPWD.

Example

A1y $ cd /tmp
$ print $OLDPWD # Previous directory is held in OLDPWD

/home/obrien
EXAMPLE ¢

$ cd /etc

$

$ print $OLDPWD

/tmp

$

$ pwd

/etc

$

$ cd - # Uses contents of OLDPWD

/tmp

$

$ pwd

©“

Appendix A 331

/tmp

$

$ cd # Uses contents of $HOME
$

$ pwd

/home/obrien

$

Official Description
Changes file-access permissions.

Syntax

chmod [option] mode file(s)
Options

-R causes chmod to recursively descend its directory arguments, setting the
mode for each file.

-f suppresses most error messages; forces the change.

-v stands for verbose and outputs a diagnostic for every file processed.

Oddities
Has a numeric form (755) and a mnemonic form (ug+x).
Example
$ 1s -1 buzz
- PWXPWXI = = 1 obrien obrien 47 Nov 26 12:19 buzz
$
——— $ chmod o+x buzz # Add execute access for others
EXAMPLE $
$ 1s -1 buzz
-rwxrwxr-x 1 obrien obrien 47 Nov 26 12:19 buzz
$
$ chmod 007 buzz # No access for user and group,
all access to others
$
$ 1s -1 buzz
------- rwx 1 obrien obrien 47 Nov 26 12:19 buzz
$
$ buzz # Others can execute, user (owner) is denied
-ksh: buzz: cannot execute [Permission denied]
$
$ chmod u+x buzz # Add execute access for user (owner)

$

332 Appendix A

$ 1s -1 buzz

--eX- - -TWX 1 obrien obrien 47 Nov 26 12:19 buzz

$

$ buzz # Owner can't read, read is necessary to execute
buzz: buzz: cannot open [Permission denied]

$

$ chmod utr buzz # Add read access for user (owner)
$

$ 1s -1 buzz

SP-X- - -TWX 1 obrien obrien 47 Nov 26 12:19 buzz

$

$ buzz # Now the script works (Ctrl+C to end)
$

$

$ chmod g=w buzz # Sets group to stated value (-w-)
$

$ 1s -1 buzz

SP-X=W= WX 1 obrien obrien 47 Nov 26 12:19 buzz

$

$ chmod o=rx buzz # Sets others to stated value (r-x)
$

$ 1s -1 buzz

SP-X-W-r-X 1 obrien obrien 47 Nov 26 12:19 buzz

$

Official Description
Executes command and eliminates functions from search order.

Syntax

command [-pvV] command_to be executed [args_to command...]
Options
-p uses the PATH variable to locate command.

-vV both request that the whence command be used to locate the command
to be executed.

Oddities
Available in ksh93 and beyond.

Ay
=
EXAMPLE

Appendix A 333

Example

$ function 1s { # Create function named ls (executes date command)
> date

>}

$ 1s # Function 1ls is found before 1ls command

Sun Nov 26 13:55:57 EST 2000

$

$ command 1s # The command command says execute the command,
not the function

! core locate_command newfile2 oldsedtestl sedtestl sortfile2

Mail 1 lotsofiles ob oldsedtest2 sedtest2 symstats

buzz f2 mbox obr oldsedtest3 sedtest3 temp
buzz1 funca names obrr regextest small

buzz2 hosts newfile obrrr scripts sortfile

$

$ command -V 1s # Sees ls as a function

1s is a function

$

$ 1s

Sun Nov 26 13:57:41 EST 2000

$

$ unset -f 1s # Removes 1ls as a function

$

$ 1s # Back in shape now

! core locate_command newfile2 oldsedtestl sedtestl sortfile2
Mail 1 lotsofiles ob oldsedtest2 sedtest2 symstats
buzz f2 mbox obr oldsedtest3 sedtest3 temp
buzz1 funca names obrr regextest small

buzz2 hosts newfile obrrr scripts sortfile

$

$ command -V 1s # May be different on your system

1s is a tracked alias for /bin/ls

$

continue

Official Description

Resumes the next iteration of the enclosing for, while, until, or select
loop.

Syntax

continue[n]
Options

None

334

Appendix A

Ay

/=4

EXAMPLE

Oddities

If n is specified, it resumes at the nth enclosing loop.

Example

$ cat buzz3

#! /bin/ksh

integer x=17

while ((x<25))

do

X=X+1

if ((x==21))

then
print "x>20"
continue

fi

done
print $x
$

$ buzz3
x>20

25

$

$

$ cat buzz4

#! /bin/ksh

integer x=17

integer y=0

for ((y=0; y<5; yt++))
do

while ((x<25))

Prints message when x=21,
then continues the loop

Note that x contains 25,
proving that the loop finished

Contains nested loops

continue 2 # Ends this pass through inner loop,

do
X=x+1
if ((x=21))
then
fi
done
done
print $x
print $y

$

but continues outer loop

Ay
EXAMPLE

Appendix A 335

$ buzz4

21

5 # Note that the value of y has progressed to 5.
$

Official Description
Copies files.
Syntax

cp [-fipr] [--] source destination
Options (not a complete list)

-f does not prompt you when an existing file is to be overwritten (not avail-
able in all UNIX variants).

-i prompts you with the name of the file whenever the copy would cause an
existing file to be overwritten.

-p preserves metadata (permissions, ownership, dates, and so on).

-r, when the source is a directory, copies the directory and the entire sub-
tree connected at that point.

Oddities
Do not give the destination the same name as one of the source files.

If you specify a directory as the destination, the directory must already
exist.

Example

$ 1s -1 buzz4

- PWXPWXT - - 1 obrien obrien 165 Nov 26 14:08 buzz4
Note date and time

$ cp buzz4 /tmp # Normal copy

$

$ 1s -1 /tmp/buzz4
Time has changed

- PWXPWXT - - 1 obrien obrien 165 Nov 26 14:23 /tmp/buzz4
$

$ 1s -1 buzz4

-PWXPWXI - - 1 obrien obrien 165 Nov 26 14:08 buzz4

Original file date
$
$ cp -p buzz4 /tmp

Use preserve option

336

Appendix A

Ay

/=4

EXAMPLE

$
$ 1s -1 /tmp/buzz4
Date is unchanged
- PWXIPWXT - - 1 obrien obrien 165 Nov 26 14:08 /tmp/buzz4
$

cut
Official Description
Displays specified parts from each line of a file.

Syntax

cut -b list [file...]

cut -c list [file...]

cut -f 1ist [-d delim] [-s] [file...]

Options

-b 1ist cuts based on a list of bytes (not available on all UNIX variants).
-¢ list cuts based on a list of characters.

-d delim uses the specified character as the field delimiter.

-f 1list specifies a list of fields assumed to be separated in the file by a
field delimiter character.

-s suppresses lines that do not contain delimiter characters.
Oddities

If you do not specify a file or you specify a hyphen (-), the cut command
reads standard input.

To change the order of columns in a file, use the cut and paste commands.
On Red Hat Linux, ksh93, cut is a shell built-in version of /usr/bin/cut.

Example

$ cat /etc/passwd # Standard password file
root:x:0:0:root:/root:/bin/ksh
bin:x:1:1:bin:/bin:
daemon:x:2:2:daemon:/sbhin:
adm:x:3:4:adm:/var/adm:
1p:x:4:7:1p:/var/spool/lpd:
sync:x:5:0:sync:/sbin:/bin/sync
shutdown:x:6:0:shutdown:/shin:/sbin/shutdown
halt:x:7:0:halt:/sbin:/sbin/halt
mail:x:8:12:mail:/var/spool/mail:
news:x:9:13:news:/var/spool/news:

Appendix A

uucp:x:10:14:uucp:/var/spool/uucp:

operator:x:11:0:operator:/root:

games:x:12:100:games: /usr/games:

gopher:x:13:30:gopher:/usr/lib/gopher-data:

ftp:x:14:50:FTP User:/home/ftp:

nobody:x:99:99:Nobody:/:

xfs:x:100:101:X Font Server:/etc/X11/fs:/bin/false

gdm:x:42:42::/home/gdm: /bin/bash

obrien:x:500:500:Dennis 0'Brien:/home/obrien:/bin/ksh

$

$ cut -f 1,5 -d : /etc/passwd # Cuts and displays fields 1 and 5,
delimited by :

root:root

bin:bin

daemon:daemon

adm:adm

1p:1p

sync:sync

shutdown:shutdown

halt:halt

mail:mail

news:news

uucp:uucp

operator:operator

games:games

gopher:gopher

ftp:FTP User

nobody :Nobody

xfs:X Font Server

gdm:

obrien:Dennis 0'Brien

$

337

Official Description
Prints or sets the system date and time.

Syntax
date [-u] [+field descriptor ...]

Options
-u uses a different time zone (Greenwich Mean Time).
Oddities

Can be used by the root user to set the system date and time.

338 Appendix A

Many field descriptors are available, several of which are listed here:
* %a—Locale’s abbreviated weekday name (Sun—Sat)
¢ %A—Locale’s full weekday name, variable length (Sunday—Saturday)
* %b—Locale’s abbreviated month name (Jan—Dec)
* %B—Locale’s full month name, variable length (January—December)
* %sc—Locale’s date and time format (Sat Nov 04 12:02:33 EST 1989)
* %d—Day of month (01-31)
¢ %j—Day of year (001-366)

Example

W $ date
i}/j Sun Nov 26 15:38:32 EST 2000

$
$ print "$(date) is day number $(date +%j) of the year."
EXAMPLE g, Nov 26 15:38:48 EST 2000 is day number 331 of the year.

$

Official Description

Prevents ksh from sending a HUP signal to existing jobs when the login
process ends.

Syntax

disown [job...]

Options

None

Oddities

Available in ksh93 and beyond.

Performs the same function as the nohup command, but it is used after the
target command has already started.

Example

NV $ buzz&
[1] 3994
X
%j $

$ jobs
EXAMPLE (4]
$

Running buzz&

Ay

/=4
EXAMPLE

Appendix A 339

$ ps laxw | grep buzz

000 500 3994 3993 12 4 1812 840 - RN pts/0 0:13 ksh buzz
$
$ disown %1 # The buzz job will keep running after logout.

Official Description
Writes its arguments to standard output.

Syntax

echo [-n] [string...]

Options

-n requests that no newline is added to the output.
Oddities

Many special characters are recognized (such as \n, which means newline;
\t, which means tab; and so on).

echo is not as portable as the print built-in command.

Example

$ type echo # Echo is built into some implementations of ksh
echo is a shell built-in

$ echo -n "What now? " # The built-in does not recognize the -n option
-n What now?

$

$ whereis echo # The echo program is in /bin

echo: /bin/echo /usr/man/mani/echo.1

$

$ /bin/echo -n "What now? " # It recognizes the -n option

What now? $ # Note that the prompt appears on the same line
$

Official Description
The ed command is a line editing program.

Syntax
ed [-p string] [-s] [file]

340 Appendix A

Options

-p string sets the ed prompt to string.

-s suppresses diagnostics (which is useful for scripts).
Oddities

The default for string is null (no prompt).

Example

vy $ cat buzz
#! /bin/ksh

integer x=17

while :
EXAMPLE .
x=17
done
$
$ ed buzz # Use ed to edit the buzz file
47 # Character count is automatically displayed
2 # Command 2 means display line 2
integer x=17
s/17/23/ # Changes the 17 to a 23
2 # Redisplay line 2
integer x=23
3 # Display line 3
while :
q
? # Editor displays a ? when confused
q # Quit the editor, (w saves changes)
$
$ cat -n buzz
1 #! /bin/ksh
2 integer x=17
3 while :
4 do
5 x=17
6 done

Official Description

The arguments are read as input to the shell, and the resulting
command(s) is executed.

AR

/=4
EXAMPLE

Appendix A 341

Syntax

eval [arg ...]

Options

None

Oddities

Evaluates arguments, forms a command, and executes the command.

Example

$ search=num

$ num=17

$ eval print /'$'$search/ | ed - buzz # $search evals to num, $num evals to 17
integer x=17

$

$ unset num

$ eval print /'$'$search/ | ed - buzz

?

$

Official Description

If an argument is given, the command specified by the argument is exe-
cuted in place of this shell without creating a new process.

Syntax

exec [argument ...]

Options

-¢ clears variables before execution.

-a assigns a different name to the command being run.
Oddities

Options -a and -c are available in ksh93 and beyond.

If no arguments are given, the effect of this command is to modify file
descriptors through redirection.

File descriptors > 2 opened with exec are closed when the shell exits.

342 Appendix A

Example

vty 8 ksh # Create new ksh
$ print $$ # Display pid
[=A 4088
EXAMPLE ¢

@

$ exec csh # Use exec to run a different shell
%

%secho $$ # Note pid is the same
4088

)
)

%ksh # Run a different shell without using exec
$

$ print $$ # Note different pid

4089

$

$ exec 6<buzz # Open acees to file named buzz using fd unit 6
$

$ read -u6 line # Read first line into variable named line
$

$ print $line # Display

#! /bin/ksh

$

$ read -u6 line # Read and display more lines

$ print $line

integer x=17

$ read -u6 line

$ print $line

while :

$

$ exec 6<&- # Close access to buzz file

$

$ read -u6 line # Read fails now

ksh: read: bad file unit number

$

Official Description

Causes the shell to exit with the exit status specified by n.
Syntax

exit [n]

A i

/=4
EXAMPLE

vy
(=

EXAMPLE

Appendix A 343

Options

None

Oddities

If n is omitted, the exit status is that of the last command executed.

The $? variable is changed after each command, including null commands
(carriage returns).

Example

$ print $$ # Current pid

3972

$

$ ksh # Make child process
$

$ print $$ # Child pid

4128

$

$ exit 5 # Exit from child with failing status
$ print $?

5 # Display status

$

Official Description

Variable names are marked for automatic export to the environment of sub-
sequently executed commands.
Syntax

export [name[=value ...]]

Options

-p displays variables preceded by export.
Oddities

Similar to typeset -x.

Example

$ myvar=den # Create local variable
$

$ print $myvar # Display contents

den

$

344

Appendix A

$ ksh
$

$ print $myvar # Variable myvar is local to parent shell

$
$ exit
$

Create new shell process

Back to parent shell

$ print $myvar # Still available

den
$

$ export myvar # Make it an environment variable

$

$ print $myvar # Looks the same

den

$

$ ksh
$

Create new shell

$ print $myvar # Variable is available

den

$

$ exit
$

$ export -p # List exported variables preceded by 'export'

export
export
export
export
export
export
export
export
export
export
export
export
export
export
export
export
export
export
$

Exit from child shell

_=ksh

HISTFILESIZE=1000
HISTSIZE=1000
HOME=/home/obrien
HOSTNAME=1inden
INPUTRC=/etc/inputrc
LANG=en_US

LC_ALL=en_US

LINGUAS=en_US
LOGNAME=0brien
MAIL=/var/spool/mail/obrien
myvar=den
PATH=/usr/local/bin:/bin:/usr/bin:/usr/X11R6/bin:.
PS1="$ '

PWD=/home/obrien
SHELL=/bin/ksh

TERM=vt320

USER=0brien

$ export # Simply list the variables

=-p

HISTFILESIZE=1000
HISTSIZE=1000
HOME=/home/obrien
HOSTNAME=1inden

Ay
EXAMPLE

Appendix A 345

INPUTRC=/etc/inputrc
LANG=en_US

LC_ALL=en_US

LINGUAS=en_US
LOGNAME=obrien
MAIL=/var/spool/mail/obrien
myvar=den
PATH=/usr/local/bin:/bin:/usr/bin:/usr/X11R6/bin:.
PS1='§ '

PWD=/home/obrien
SHELL=/bin/ksh

TERM=vt320

USER=obrien

$

Official Description
The false command returns a nonzero exit value.

Syntax

false

Options

None

Oddities

Typically used to check for nonzero exit status.

Can be considered a do-nothing, unsuccessful command.

Example

$ until false # Keeps looping until false returns true
(never happens)

> do

> date

> done

Sun Nov 26 17:38:22 EST 2000
Sun Nov 26 17:38:22 EST 2000

(...)
CTRL+C

346

Appendix A

b2

EXAMPLE

Official Description

Allows the user to fix previously executed commands through command-
line editing.

Syntax
fc [-r] [-e editor] [first [last]]
fc -1 [-nr] [first [last]]

fc -s [old=new] [command]

Options

-r reverses the search order.

-e enables you to choose a different editor (the default is ed).
-1 lists previous commands.

-n does not display command numbers for previous commands.

-s substitutes new for ol1d in the command (o1d is the old string to be
replaced by the new string).

Oddities
Typically performed using a command-line editor.
The history command is an alias for fc: history='fc -1'.

The r command (recall) is an alias for fc: r='fc -e -'.

Example

$ fc -1

1412 print $myvar
1413 ksh

1414 print $myvar
1415 exit

1416 print $myvar
1417 export myvar
1418 print $myvar

1419 ksh
1420 print $myvar
1421 exit

1422 export -p
1423 export
1424 man false

Appendix A 347

1425 until false
do
date
done

1426 fc -1

1427 fc -1

$ fc -1n
ksh
print $myvar
exit
print $myvar
export myvar
print $myvar
ksh
print $myvar
exit
export -p
export
man false
until false
do
date
done
fc -1
fc -1
fc -1n

Official Description

Runs jobs in the foreground.

Syntax
fg [job id...]

Options

None

Oddities

The C shell has its own version of fg.

It’s useful for jobs that are in the background and need to be brought to the
foreground for input processing.

348

Appendix A

Ay

/=4

EXAMPLE

Example

$ cd /tmp

$

$ /bin/rm -i *& # Do a rm -I command in the background
[1] 4272

$ in/rm: remove 'buzz4'? $

[1] + Stopped (SIGTTIN) /bin/rm -1 *&

$

$ jobs # Command is stopped and in the background
[1] + Stopped (SIGTTIN) /bin/rm -1 *&

$

$ fg %1 # Bring command to the foreground

/bin/rm -1 *

n

/bin/rm: remove 'dentest1'? n # Respond to its needs

/bin/rm: diffs: is a directory

/bin/rm: remove write-protected file 'difftemp2'? n

/bin/rm: remove 'junk'? n

(CTRL+C) # Stopped the rm command with a Ctrl+C
$

Official Description

Searches for files in a directory hierarchy.

Syntax

find [path...] [expression]
Options

-atime number returns TRUE if the file was accessed in the past number of
days.

-ctime number returns TRUE if the file inode was changed in the past number
of days.

-exec command\; returns TRUE if the command runs and returns a @ (zero)
value as the exit status. The command parameter { } is replaced by the
current pathname.

-follow causes symbolic links to be followed.

-fstype type returns TRUE if the filesystem to which the file belongs is of
the type type.

-group group returns TRUE if the file belongs to group.

-i number returns TRUE if the file has the specified inode number.

AR

/=4
EXAMPLE

Appendix A 349

-inum number returns TRUE if the file has the specified inode number.

-1s causes the pathname to be printed along with its associated statistics
(not available on all UNIX variants).

-mtime number returns TRUE if the file was modified in the past number of
days.

-name file returns TRUE if file matches the filename.

-newer file returns TRUE if the current file was modified more recently
than the file indicated by file.

-perm octal_number returns TRUE if the file permission code of the file
exactly matches octal number (for example, -perm 777).

-print causes the current pathname to be displayed.

-size number returns TRUE if the file is number blocks long (512 bytes per
block).

-size numberc returns TRUE if the file is number bytes long.
-size numberk returns TRUE if the file is number kilobytes long.
-type type returns TRUE if the file type is of the specified type.
-user user returns TRUE if the file belongs to user.

-xdev causes find not to traverse down a filesystem different from the one
on which the current pathname resides. Note that System V UNIX variants
may provide -mount instead of -xdev.

Oddities

find has its own anarchistic syntax, unlike all other commands, and follows
its own set of rules.

Example
$ find /bin -perm -4000 # Finds files with the setuid bit set in /bin
/bin/su
/bin/mount
/bin/umount
/bin/ping
$
$ 1s -1 /bin/mount # Note setuid bit (rws)
-rwsr-xr-x 1 root root 53620 Sep 13 1999 /bin/mount
$
$ find / -perm -4000 2>/dev/null | wc -1
42 # There are 42 programs with the setuid bit set

$

350

Appendix A

Ay

/=4

EXAMPLE

Official Description
Declares a variable as floating-point storage (allows a decimal point).

Syntax

float [variable[=value]]

Options

None

Oddities

Not available prior to ksh93.
float is an alias for typeset -E.

Example

$ float # No floats declared yet

$
$ float hourly=4.98 # Declare hourly as a float

$ float
hourly=4.98
$

$ hourly=hourly+2 # Can do float arithmetic
$

$ print $hourly # Display result

6.98

$

Official Description

B3

Displays current floats

Begins a for loop.

Syntax
for identifier [in word...] ;do list ;done

for ((initializer; test; increment))
Options

None

Oddities

The second format is not available prior to ksh93.

Ay
=
EXAMPLE

Ay
=
EXAMPLE

Appendix A 351

Example

$ 1s b*

buzz buzz1 buzz2 buzz3 buzz4

$

$ for x in b* # Each loop pass is made with a new filename
in variable x

> do

> print $x

> done

buzz

buzz1

buzz2

buzz3

buzz4

$

function

Official Description
Defines a function that is referenced by identifier.

Syntax
function identifier {list;}
identifier () {list;}

Options

None

Oddities

function executes more quickly than a separate script execution.

Example

$ function funcy { # Create function named funcy
> print den

>}

$ funcy # Execute function
den

$

$ integer count=0

$ time while ((count<1000))

> do

> count=count+1

352 Appendix A

> funcy # Time function called 1000 times
> done > /dev/null

real om0 .24s
user 0m0.25s
Sys 0mo.00s
$
$ cat do_funcy # Script mimicking function
#! /bin/ksh
print den
$
count=0

do
count=count+1
. do_funcy # Execute script 1000 times

$
$
$ time while ((count<1000))
>
>
>
> done > /dev/null

real Om0.79s # Over twice as slow
user 0mo.58s

Sys om0 .20s

$

Official Description
Displays system configuration variable values.

Syntax

getconf [-v specification] system var

Options

None

Oddities

Most systems have system specific utilities to gather this information.

Example
i}_/—l\ (] $ getconf CLK TCK # Get specific configuration values

100
II $
$ getconf CHILD_MAX
999
$
$ getconf # Get all configuration values

[=4
EXAMPLE

Appendix A 353

ABI_AIO_XFER_MAX=undefined
ABI_ASYNCHRONOUS IO=undefined
ABI_ASYNC_IO=undefined
AIO_LISTIO MAX=4294967295
_POSIX_AIO_LISTIO MAX=2
AIO_MAX=4294967295

(...)

Official Description
Parses command-line options (such as -x).

Syntax

getopts optstring name [arg...]
Options
None

Oddities

Can be flaky. I've had some incompatibilities with the Bourne shell in the
past—none recently, though.

Example

Chapter 13, “Pulling It All Together,” has an example of using getopts.

Official Description
Searches a file for patterns.

Syntax

grep [-E | -F]1 [-¢c | -1 | -q] [-bhinsvwxy]

[-pparagraph_separator] -e pattern_list [-e pattern_ list]...
[-f pattern_file]... [file...]

Options

-E functions as an egrep command.
-F functions as an fgrep command.
-¢ shows a count of matching lines.

-1 ignores case.

354 Appendix A

-1 lists filenames.

-v inverts the meaning of the search.

Oddities

The grep command looks to stdin for the data through which to search.

Example

Ay $ cat buzz
%:, #! /bin/ksh

integer x=17

while :

EXAMPLE .
x=17
done
$
$ cat buzz | grep 17 # Looks through piped data for 17
integer x=17
x=17
$ 1s | grep buzz # Looks through piped data for buzz
buzz
buzz1
buzz2
buzz3
buzz4
$ 1s | grep 17 # Looks through piped data for 17, not there
$
$ grep 17 buzz # Looks for 17 in the buzz file
integer x=17
x=17
$
$ grep -v 17 buzz # Looks for lines that do not contain a 17
#! /bin/ksh
while :
do
done
$

Official Description
Remembers or reports utility locations.

Syntax
hash [utility]

Ay

/=4
EXAMPLE

Appendix A 355

Options
-r forgets remembered locations.
Oddities

The hash command is an alias for alias -t. It sets up tracked aliases. (Not
heavily used because processor speeds and caching strategies eliminate the
penalty of multiple PATH lookups.)

Example

$ hash # Nothing remembered yet

“

$ hash 1s # Remember the location of ls

$ hash # In the list now

1s=/bin/1ls

$

$ hash cat # Location of cat will be remembered also
$

$ hash # Both in the hash list
cat=/bin/cat

1s=/bin/1s

$

$ hash -r # Refresh the list

$

$ hash # Names are known, locations aren't
cat

1s

$

Official Description

Defines or displays aliases.

Syntax
hist [-E editor] [-1nr] [command range]

Options
-1 lists 16 commands.
-n does not show command numbers.

-r Reverses display order.

356

Appendix A
Oddities
Command editing is typically done by emacs or vi.
Example
vy $ 1s -1 buzz3
-PWXPWXT - - 1 obrien obrien 116 Nov 26 14:07 buzz3
$
[=] . _
— —— $ hist -s zz3=zz4 # Make a change and re-execute
EXAMPLE 1s -1 buzz4
-PWXPWXI - - 1 obrien obrien 165 Nov 26 14:08 buzz4
$
$ hist -1 # Last 16 commands

1045 1s | grep buzz
1046 1s | grep 17
1047 grep 17 buzz
1048 grep -v 17 buzz

1049 hash
1050 hash 1s
1051 hash
1052 hash cat
1053 hash
1054 hash -r
1055 hash

1056 man hist
1057 1s -1 buzz3
1058 1s -1 buzz4
1059 1s -1 buzz4
1060

Official Description
Lists the last 16 commands you executed.

Syntax
history

Options
None

Oddities

history is an alias for fc -1.

Ay
EXAMPLE

A i

/=4
EXAMPLE

Appendix A 357

Example

$ history
1047 grep 17 buzz
1048 grep -v 17 buzz

1049 hash
1050 hash 1s
1051 hash
1052 hash cat
1053 hash
1054 hash -r
1055 hash

1056 man hist
1057 1s -1 buzz3
1058 1s -1 buzz4
1059 1s -1 buzz4
1060 hist -1
1061 man history
1062 history

$

Official Description

Executes the list following if and, if it returns a @ (zero) exit status, exe-
cutes the list following the first then.

Syntax

if 1ist ;then list [elif Iist ;then list] ... [;else list] ;fi
Options

None

Oddities

At least one command must appear between the then and the fi (it can be
a : if you want it to do nothing).

Place numeric tests in (()); place string testsin [[]].

Example
x=12

if ((x ==12))
then

print "equal"
else

print "not equal”

V V. V V & & &

358

Appendix A

Ay

/=4

EXAMPLE

> fi
equal
$

integer
Official Description

Declares a variable as an integer.

Syntax

integer [variable[=value]]

Options

None

Oddities

integer is an alias for typeset -i.

Makes calculations faster. Shell has to convert strings to integers before
performing a calculation.

Example
$ a=17

$ b=22

$

$ time for ((i=0; i<1000; i++))

> do

> ((c=%a+$b)) # Do calculations using strings
> done

real om0 .26s

user omo.26s

Sys 0mo.00s

$

$ integer d e f # Declare variables as integers
$

$ d=17

$ e=22

$

$ time for ((i=0; i<1000; i++))

> do

>((f=e+d)) # Do calculations using integers
> done

real omo.16s # Much faster

Ay
EXAMPLE

Appendix A 359

user omo.16s
Sys omo.00s
$

Official Description
Displays the status of jobs in the current session.

Syntax
jobs [-1 | -p] [-p] job_id...

Options
-1 provides more information about each job listed.
-p displays only the process ID.

-n displays jobs that have stopped, exited, or otherwise had a change of sta-
tus.

Oddities

Can optionally specify jobs with %string, where string is some characters
from the beginning of the name of the command being run within the job.

Example

$ buzz& # Start two background jobs
[1] 901

$ buzz&

[2] 902

$

$ jobs # Display jobs

[2] + Running buzz&

[1] - Running buzz&

$

$ jobs -1 # Include pids

[2] + 902 Running buzz&
[1] - 901 Running buzz&

$

$ jobs -p # Display pids only
902

901

Official Description

Sends a signal to a running process.

360 Appendix A

Syntax

kill [-signal_name | signal_number] process_ID...
Options

-1 lists all signals.

-n num sends the specified signal number.

-s name sends the specified signal name.

Oddities
The kill @ command terminates all your background processes.
Example
vy $ buzz & # Create three background jobs
‘i:? l! [1] 913
$ buzz&
(2] 914
EXAMPLE ¢\ .0
[3] 915
$
$ jobs -1 # Display the jobs
[3] + 915 Running buzz&
[2] - 914 Running buzz&
[1] 913 Running buzz &
$
$ kill -n 2 914 # Send signal # 2 to pid 914
$
(2] - buzz&
$
$ jobs -1 # Two jobs left
[3] + 915 Running buzz&
[1] - 913 Running buzz &
$
$ kill 0 # Eliminate all background jobs
[3] + Terminated buzz&
[1] - Terminated buzz &
$
$ jobs -1 # Gone
$

Official Description

Begins a comparison.

Ay
EXAMPLE

Ay
EXAMPLE

Appendix A

Syntax

[expression]

Options

-a can be used as a logical and operator in compound tests.
-0 can be used as a logical or operator in compound tests.
Oddities

It has pretty much been replaced by the [[]] command.

It’s similar to the test command.

[-x buzz]
echo $?
buzz is executable

[-x core]
echo $?
core is not executable

let
Official Description
Performs arithmetic evaluations.

Syntax

let argument ...

Options

None

Oddities

((...)) is equivalent to let "...".

Example
$ let f=d+e

©“

$ print $f
39
$
$ print $d
17

361

362

Appendix A

Ay

/=4

EXAMPLE

$ print $e
22
$

Official Description
Makes a hard link or a symbolic link to a file.
Syntax

In [-fs] sourcename [targetname]
Options
-f forces the removal of the existing target pathnames.

-s creates symbolic links. Symbolic links are sometimes referred to as soft
links.

-n can be included to prevent the creation of the link if the target already
exists.

Oddities

Hard links will not work beyond file system boundaries, nor will they work
for directories.

Example

$ 1n -s buzz 1n_buzz # Make symbolic link to buzz

©»

$ 1s -1 1n_buzz

Irwxrwxrwx 1 obrien obrien 4 Nov 27 08:24 1n_buzz -> buzz
$

$ 1s -1L 1n_buzz

-r-x-w-r-x 1 obrien obrien 47 Nov 26 12:19 1n_buzz
$

$ cat 1n_buzz # Use symbolic link

#! /bin/ksh

integer x=17

while :

do

x=17

done

$

b2

EXAMPLE

Appendix A 363

Official Description
Moves (renames) files and directories.

Syntax
mv [-i | -f] [--] file? file2

Options

-i prompts before renaming.

- - handles filenames beginning with -.
-f forces an override of restrictions.
Oddities

It cannot mv a file to itself.

Example

$ mv buzz buzz9

$

$ 1s -1 buzz

1s: buzz: No such file or directory

$

$ 1s -1 buzz9

SreX-W-r-X 1 obrien obrien 47 Nov 26 12:19 buzz9
$

newgrp
Official Description

Changes the primary group identification of a shell process.
Syntax

newgrp [group]

Options

None

Oddities

The C shell has its own version of this command.

364

Appendix A

Ay

/=4

EXAMPLE

Ay

/=4

EXAMPLE

Example

$ grep obrien /etc/group
users:x:100:obrien
obrien:x:500:

$ id

uid=500(obrien) gid=500(obrien) groups=500(obrien)
$

$ newgrp users # Change primary group
$

$ id

uid=500(obrien) gid=100(users) groups=500(obrien)

$

Official Description

The utility ignores hang-ups and quits. The command continues to run
after logout.

Syntax

nohup utility [argument...]

Options

None

Oddities

The C shell has its own version of this command.
It does not handle pipes well.

Example

$ nohup 1s -R / | grep bu > /tmp/bufiles # Continues to run after exit
$ exit

Official Description
Null command.

Syntax

Options

None

Ay
EXAMPLE

Ay
EXAMPLE

Appendix A 365

Oddities
Formerly used to precede a comment, it was replaced by #.
The syntax after the : is expanded.

Example
$ x=17

©»

$ if true
> then

> print $x
> else

> # Null command
> fi
17
$

Official Description
Joins corresponding lines of several files or subsequent lines in one file.

Syntax
paste [-d list] [-s] file...

Options
-d list establishes a delimiter list.

-s performs serial merging (one long line).

Oddities

Some implementations provide a -x option, enabling exportation.
Example

$ paste buzz buzzi # Two files are in two columns

#! /bin/ksh #! /bin/ksh
integer x=17 integer x=17
while : while :
do do
x=17 X=xX+1
done if ((x>20))

then

break

fi

done

print $x

366

Appendix A

Ay

/=4

EXAMPLE

$

$ paste -s buzz # Make a single line

#! /bin/ksh integer x=17 while : do x=17 done
$

Official Description
Shell output mechanism.

Syntax

print [-Rnprsu[n]] [argument ...]
Options

-p causes the arguments to be written to the pipe of the process spawned
with |&.

-u specifies the file descriptor (unit number) to which to print.
Oddities
It’s more efficient and more portable than the echo command.

Example

$ print $x
17

Official Description
Formats and prints data.

Syntax
printf FORMAT [ARGUMENT]...

Options

None

Oddities

Available in ksh93 and beyond.

Format is similar to the C language printf function.

Ay
EXAMPLE

Ay
EXAMPLE

Appendix A 367

Example
$ float f=8.78

@

$ printf "Float contains S%f\n" $f
Float contains 8.780000

$

$ printf "Float contains %.2f\n" $f
Float contains 8.78

$

$ printf "Float contains %10.2f\n" $f
Float contains 8.78

$

Official Description
Displays the pathname of the current working directory.

Syntax
pwd

Options

None

Oddities

Equivalent to print -r - $PWD.

Example

$ pwd
/home/obrien

$

$ print -r - $PWD
/home/obrien

$

Official Description

Re-execute a command.

Syntax

r [command number] | [beginning characters of command]
Options

None

368 Appendix A

Oddities
The r command is an alias for hist -s.

Example

Y $ history
1117 paste buzz

1118 paste buzz buzzi
1119 paste -s buzz
EXAMPLE ., 1s -1 | pg
1121 man pg
1122 pg
1123 man print
1124 print $x
1125 man printf
1126 float f=8.78
1127 printf "Float contains %f\n" $f
1128 printf "Float contains %.2f\n" $f
1129 printf "Float contains %10.2f\n" $f
1130 pwd
1131 print -r - $PWD
1132 history
$r # Re-execute previous command
history
1118 paste buzz buzzi
1119 paste -s buzz
1120 1s -1 | pg
1121 man pg
1122 pg
1123 man print
1124 print $x
1125 man printf
1126 float f=8.78
1127 printf "Float contains %f\n" $f
1128 printf "Float contains %.2f\n" $f
1129 printf "Float contains %10.2f\n" $f
1130 pwd
1131 print -r - $PWD
1132 history
1133 history
$
$r 1130 # Re-execute command number 1130
pwd
/home/obrien
$
$ropw # Re-execute last command starting with pw

i

/=4
EXAMPLE

Appendix A 369

pwd
/home/obrien
$

Official Description
Reads a line from standard input.

Syntax

read [-r] var...
Options

-r requests that the shell not treat a backslash character in any special
way.

Oddities
The -r option enables the read command to replace the 1ine command.
Example
$ 1s -1i b*
4054 -r-x-w-r-x 1 obrien obrien 47 Nov 26 12:19 buzz
4039 -rwxrwxr- - 1 obrien obrien 90 Nov 26 12:45 buzzi
4055 -rwxrwxr- - 1 obrien obrien 152 Nov 26 12:48 buzz2
4057 -rwxrwxr- - 1 obrien obrien 116 Nov 26 14:07 buzz3
4058 -rwxrwxr- - 1 obrien obrien 165 Nov 26 14:08 buzz4
$
$ 1s -1i b* | while read -r x y # Read first field int x,
rest of line into y
> do
> printf "%s %s\n" "$y" "$x" # Print y, then x
> done # Inode number field is now the last field
-r-x-w-r-x 1 obrien obrien 47 Nov 26 12:19 buzz 4054
-PWXPWXI - - 1 obrien obrien 90 Nov 26 12:45 buzz1 4039
-PWXPWXI - - 1 obrien obrien 152 Nov 26 12:48 buzz2 4055
- PWXPWXT - - 1 obrien obrien 116 Nov 26 14:07 buzz3 4057
- PWXPWXT - - 1 obrien obrien 165 Nov 26 14:08 buzz4 4058
$

Official Description

Defines or displays aliases.

370 Appendix A

Syntax

readonly [name[=value ...]]

Options

-p precedes the output with readonly.
Oddities

It’s similar to typeset -r.

The -p option is available in ksh93 and beyond.
Example

i}f‘\ 1y $ readonly -p # Displays read-only variables (none yet)

X

$ readonly x=17 # Create read-only variable
$
EXAMPLE

@

$ readonly -p # Display

readonly x=17

$

$ x=24 # Try to change read-only variable
/bin/ksh: x: is read only # No can do

$

return

Official Description

Causes a shell function to return to the invoking script with the return sta-
tus specified by n.
Syntax

return [n]
Options
None

Oddities

If return is invoked while not in a function or a . (dot) script, it is the same
as an exit.

Example

Ay $ function ob_1 { # Create function that returns 32
> print "Can ob?"
return 32 # Returns arbitrary number (32)

/=4 }

>
>
EXAMPLE ¢
$

ob_1 # Execute function

Ay

(=4
EXAMPLE

Appendix A 371

Can ob?

$ print $? # Display return status
32

$

Official Description
Removes (unlinks) files or directories.

Syntax
rm [-efirR] [--] file...

Options

-f forces the deletion of the file with no prompting and no error messages
(good for script use).

-i prompts you before deleting each file.

-r permits the recursive removal of directories and their contents.
- allows filenames beginning with -.

Oddities

Only when a filename is the last link to a file is the storage actually deallo-
cated.

Example

$ 1n buzz8 buzz9 # Create a link to buzz8's data

$

$ 1n buzz8 buzz10 # Create another link to buzz8's data
$ 1s -1 buzz[891]* # Note link count

-r-x-w-r-x 3 obrien users 47 Nov 27 13:31 buzzi10
-r-x-w-r-x 3 obrien users 47 Nov 27 13:31 buzz8
-r-x-w-r-x 3 obrien users 47 Nov 27 13:31 buzz9

$

$ rm buzz9 # Prompted because file is write protected
rm: remove write-protected file 'buzz9'? y

$

$ 1s -1 buzz[891]* # Link count is down to two
-r-x-w-r-x 2 obrien users 47 Nov 27 13:31 buzzi10
-r-x-w-r-x 2 obrien users 47 Nov 27 13:31 buzz8

$

$ rm -f buzz8 # The -f option eliminates the prompt

$

372 Appendix A

$ 1s -1 buzz[891]* # Link count down to one
SreX-W-r-X 1 obrien users 47 Nov 27 13:31 buzz10
$

rmdir

Official Description
Removes a directory.

Syntax

rmdir [-p] directory...

Options

-p removes all directories in a pathname.
Oddities

A directory must be empty before you can remove it, and you must have
write permission in its parent directory.

Example

Ay $ pwd
/home/obrien
$ mkdir sub1 # Make a series of subdirectories

$ cd subi

EXAMPLE ¢ nkdir sub2

cd sub2

mkdir sub3

cd sub3

pwd
home/obrien/sub1/sub2/sub3
cd

Ph P = L B B P P

$ pwd

/home/obrien

$

$ rmdir -p sub1/sub2/sub3 # Remove them in one fell swoop
$

$ cd subi # Gone

/bin/ksh: cd: sub1: [No such file or directory]

$

Official Description

Makes a transcript of the terminal session.

Ay
EXAMPLE

Appendix A 373

Syntax
script [-a] [file]

Options

-a appends the transcript to an existing file rather than writing it to a new
file (or clobbering the existing file).

Oddities
Writes to a file named typescript by default.
If you do not specify the -a option and the file exists, it is clobbered.

Be sure to terminate your script session with an exit command. A script
session left on inadvertently will eventually tie up large amounts of disk
space.

Example
$ script # Start screen capture
Script started, file is typescript
$ ps
PID TTY S TIME CMD
725 console I + 0:00.02 /usr/sbin/getty console console vt100
775 pts/1 S 0:00.10 -ksh (ksh)
2729 pts/1 S + 0:00.00 script
2730 pts/1 S + 0:00.00 script
2731 pts/2 S 0:00.00 sh -is
2732 pts/2 R + 0:00.01 ps
$
$ date
Mon Nov 27 14:12:23 EST 2000
$
$ exit # End screen capture
Script done, file is typescript
$
$ cat typescript # Displayed captured information
Script started on Mon Nov 27 14:12:14 2000
$ ps
PID TTY S TIME CMD
725 console I + 0:00.02 /usr/sbin/getty console console vt100
775 pts/1 S 0:00.10 -ksh (ksh)
2729 pts/1 S + 0:00.00 script
2730 pts/1 S + 0:00.00 script
2731 pts/2 S 0:00.00 sh -is
2732 pts/2 R + 0:00.01 ps
$

$ date

374 Appendix A

Mon Nov 27 14:12:23 EST 2000
$
$ exit

script done on Mon Nov 27 14:12:26 2000

$
script -a typescript # Append more info to existing file
Script started, file is typescript
$
$ print "#######E##H
#iHH# R
$ date
Mon Nov 27 14:13:10 EST 2000
$ exit # End screen capture
Script done, file is typescript
$
$ cat typescript # Display file contents
Script started on Mon Nov 27 14:12:14 2000
$ ps
PID TTY S TIME CMD
725 console I + 0:00.02 /usr/sbin/getty console console vt100
775 pts/1 S 0:00.10 -ksh (ksh)
2729 pts/1 S 0:00.00 script
2730 pts/1 S 0:00.00 script
2731 pts/2 S 0:00.00 sh -is
2732 pts/2 R + 0:00.01 ps
$
$ date
Mon Nov 27 14:12:23 EST 2000
$
$ exit

script done on Mon Nov 27 14:12:26 2000
Script started on Mon Nov 27 14:12:54 2000
$

$ print "#E##H#HEHEHE"

HitH#HH

$ date

Mon Nov 27 14:13:10 EST 2000

$ exit

script done on Mon Nov 27 14:13:13 2000
$

Appendix A 375

Official Description
Produces a menu of words preceded by numbers.

Syntax

select identifier [in word...] ;do list ;done
Options

None

Oddities

Writes the menu to stderr.

Example
%j\ 1/ $ select item in b* # Set up menu containing filenames

p)
B > print $item # Print selected filenames
/=4

> done

1) buzz

2) buzzi

3) buzz10

4) buzz2

5) buzz3

6) buzz4

#? 2 # Choose item # 2
buzzi

#? 6 # Choose item # 6
buzz4

#7 8 # Ignores non-existent items

EXAMPLE

#? # Ctrl+D exits

$ print $PS3
#? # Prompts with PS3 variable contents (default #7?)
$

Official Description
Sets shell options.
Syntax

set [+ | -abCefhkmnopstuvx] [+ | -0 option ...] [+ | -A name] [argument ...]

376 Appendix A

Options
-A name prepares a variable for array assignment.
-f disables filename generation.

-h causes each command to become a tracked alias when it’s first encoun-
tered.

-0 provides lots of options, including emacs, vi, noclobber, xtrace, verbose,
ignoreeof, and so on.

-v prints shell input lines as they are read.
-x prints commands and their arguments as they are executed.

Oddities

Other arguments are positional parameters and are assigned, in order, to
$1, $2, and so on.
Example
i}_/—l\ 1/ $ set den cheryl # Set up positional parameters using set
. $ print $1 $2

den cheryl
EXAMPLE ¢

©“

$ print $- # Show currently set options (interactive,

ims # Jobs complete with a message, sort parameters)
$

$ set -v # Set another option (verbose)

$

$ print $- # Show set options (includes v now)
print $-
imsv

$

$ set +v # Turn off verbose option
set +v

$

$ print $- # Back to normal

ims

$

Official Description

Shifts positional parameters to the left ($2 becomes $1 and so on).

Appendix A 377

Syntax
shift [n]

Options

None

Oddities

Decrements $# (parameter count) after the shift.
There is no right shift—only a left shift.

Example
?Z\F\ 1y $ set den cheryl chris scott # Set up four positional parameters

$ print $1 # $1 contains den
(=4 den

EXAMPLE $

$ shift # Shift to the left by 1
$

$ print $1 # $1 now contains cheryl
cheryl

$

$ print $# # Parameter count is now 3
3

$

$ shift 2 # Shift by 2

$

$ print $# # Count is down to one

1

$

$ print $1 # $1 now contains scott
scott

$

Official Description

@

Suspends execution for at least the specified time.

Syntax

sleep seconds
Options

None

378

Appendix A

Ay

/=4

EXAMPLE

Oddities

Depending on system activity, the actual time of suspension might be
longer.

Example

$ date

Mon Nov 27 14:45:37 EST 2000

$ sleep 15 # Sleep for 15 seconds

$ print $? # Reports success after 15 seconds
0

$ date

Mon Nov 27 14:46:04 EST 2000

$

$ sleep 15 # Interrupt the sleep with a Ctrl+C
$ print $?

258 # Non-success status due to interruption
$

sort

Official Description

Sorts or merges files.

Syntax

sort [-m] [-0 output_file] [-Abdfinru] [-k keydef]... [-t character]
[-T directory] [-y] [kilobytes] [-z record size]... file...

Options

-m performs a merge.

-b ignores leading spaces and tabs.

-f treats lowercase as uppercase.

-k keydef specifies one or more sort keys (start byte, end byte).
-n sorts any initial numeric strings.

-r reverses the order.

-u means no duplicates in output.

Oddities

No separate merge command exists.

Appendix A 379

Example

Ay $ sort buzz # Standard sort
#! /bin/ksh

do
done
EXAMPLE integer x=17
while :
x=17
$ sort -r buzz # Descending sort
x=17
while :
integer x=17
done
do
#! /bin/ksh
$
$ sort -k 3,1 buzz # Use one byte found after skipping three as
the sort key
#! /bin/ksh
do
done
integer x=17
while :
x=17
$

Official Description

Stops background jobs.

Syntax

stop %job_number or pid

Options

None

Oddities

The stop command is an alias for kill -s STOP.

Example

$ buzz& # Create two background jobs
[1] 1181
$ buzz&

_ =2 9 1182
EXAMPLE $

380

Appendix A

Ay

/=4

EXAMPLE

$ jobs

[2] + Running buzz&

[1] - Running buzz&

$

$ stop %1 # Stop job #1

[1] + Stopped (SIGSTOP) buzz&

$

$ jobs -1

[1] + 1181 Stopped (SIGSTOP) buzz&
[2] - 1182 Running buzz&
$

$ stop 1182 # Stop pid # 1182
[2] + Stopped (SIGSTOP) buzz&

$

Official Description

Displays the tail end of a file.

Syntax
tail [-f | -r] [-c number | -n number] [file]

Options

-¢ number requests that the output start displaying at a specified character
number.

-f requests that the tail function does not end after it copies the last line.
Can monitor file content growth.

-n number requestst that the output start displaying at specified line num-
ber.

-r reverses the display order.
Oddities
The default is to show the last 10 lines of a file.

Example

$ tail -n 3 buzz # Shows last 3 lines of file
do

x=17

done

$

$ tail -c 3 buzz # Shows last 3 chars of file
ne

$

EXAMPLE

Appendix A 381

Official Description

Reads from standard input and writes to standard output and files.

Syntax

tee [-ai] file...
Options
-a appends output to file.

-i ignores INT signal.

Oddities

If one target file is unavailable, the output continues to the others.

Example

$ 1s -1 b*

SPeX-W-r-X 1 obrien obrien 47 Nov 26 12:19
-PWXPWXI - - 1 obrien obrien 90 Nov 26 12:45
-r-x-w-r-x 1 obrien users 47 Nov 27 13:31
-PWXPWXI - - 1 obrien obrien 152 Nov 26 12:48
-PWXPWXI - - 1 obrien obrien 116 Nov 26 14:07
-PWXPWXI - - 1 obrien obrien 165 Nov 26 14:08
$

$ 1s -1 b* > some_file

$

$ 1s -1 b* | tee some_file

buzz
buzz1
buzz10
buzz2
buzz3
buzz4

Can't see output when redirected

(redirect and display)

-r-x-w-r-x 1 obrien obrien 47 Nov 26 12:19
-PWXPWXI - - 1 obrien obrien 90 Nov 26 12:45
SPeX-W-r-X 1 obrien users 47 Nov 27 13:31
- PWXPWXI - - 1 obrien obrien 152 Nov 26 12:48
-PWXPWXI - - 1 obrien obrien 116 Nov 26 14:07
-PWXPWXI - - 1 obrien obrien 165 Nov 26 14:08
$

$ cat some_file

Display redirected file

SP-X-W-r-X 1 obrien obrien 47 Nov 26 12:19
- PWXPWXT - - 1 obrien obrien 90 Nov 26 12:45
SP-X-W-r-X 1 obrien users 47 Nov 27 13:31
-PWXPWXT - - 1 obrien obrien 152 Nov 26 12:48
- PWXPWXI - - 1 obrien obrien 116 Nov 26 14:07
-PWXPWXT - - 1 obrien obrien 165 Nov 26 14:08

Pipe it to tee and it will do both

buzz
buzzi
buzz10
buzz2
buzz3
buzz4

contents
buzz
buzzi
buzz10
buzz2
buzz3
buzz4

382

Appendix A

EXAMPLE

Official Description

Evaluates conditional expressions.
Syntax

test [expression]

Options

None

Oddities

It’s the same as [.

Example

$

$ test -x buzz # Is buzz executable?

$ print $?

0 # Yup

$

$ test -b buzz # Is buzz a block special file?
$ print $?

1 # Nope

$

Official Description

Times the execution of a command.

Syntax

time [-p] command [argument...]
Options

-p writes the timing output to standard error (may not be available on all
UNIX variants).

Oddities

The C shell has its own version of this command.

Ay
EXAMPLE

A i

/=4
EXAMPLE

Appendix A 383

Example

$ time 1s b*
buzz buzz1 buzz10 buzz2 buzz3 buzz4

real om0 .02s # Elapsed time

user om0 .00s # User mode processing time

Sys om0 .02s # Kernel (system) mode processing time
$

Official Description
Updates file access and modification times.

Syntax

touch [-acfm] [-r reference file | -t time] file...
Options

-a changes only the access time.

-m changes only the modification time.

-r reference_file causes the specified file’s times to be used instead of the
current time.

-t time specifies the time to use.

Oddities

It can be used to create an empty file.

Example

$ 1s -1 d* # Note date

SPW-rW-r- - 1 obrien obrien 22 Nov 27 00:32 do_funcy
$

$ date # Current date

Mon Nov 27 15:32:30 EST 2000

$

$ touch do_funcy # Alter date on file

$

$1s -1 d* # Note date change

-rw-rw-r-- 1 obrien obrien 22 Nov 27 15:32 do_funcy
$

$ touch denfile # Create empty file

$

384

Appendix A

Ay

/=4

EXAMPLE

$ 1s -1 d* # Note size

SPW-rW-r- - 1 obrien users 0 Nov 27 15:33 denfile
SPW-rw-r- - 1 obrien obrien 22 Nov 27 15:32 do_funcy
$

Official Description
Translates characters.

Syntax
tr [-Acs] stringl string2

Options

-A requests ASCII translation, with no extended character sets (might not
be available on all UNIX variants).

-¢ requests the use of the complement of the chars in stringi.
-s substitutes characters in string1 into string2.
Oddities

Specifying the -A option improves ASCII performance, but the option might
not be available in all UNIX variants.

Example

$ cat funca # Note the { }
function funca {

print "In funca"

$ # Change to ()
$ tr '"{}' '()' <funca > funcanew

$

$ cat funcanew # Note the ()
function funca (

print "In funca"

)
$

Official Description
Traps a signal to be serviced by a signal handler.

Syntax
trap [argument][signal ...]1 | [-p]

Appendix A 385

Options
-p prints the currently trapped signals.
Oddities

If the argument is omitted or is -, all traps associated with signals are
reset to their original values.

Example
vy $ trap -p # No signals being trapped yet
R -
= $ trap 'print "Trapped"' INT QUIT # Trap INT (CTRL+C) and QUIT (CTRL+\)
EXAMPLE

$ trap -p # Print signals being trapped
trap -- 'print "Trapped"' QUIT

trap -- 'print "Trapped"' INT

$

$ Trapped # CTRL+C

$

$ Trapped # CTRL+\

$

$ trap - INT QUIT # Back to default trapping
$

$ trap -p # No more special traps

$

true

Official Description
Returns success status.

Syntax

true
Options
None
Oddities

You can use true when you need a command but don’t want it to perform
any processing.

It’s available as a built-in in ksh93 and beyond.

386 Appendix A

Example

Ay $ true # Returns success status
$ print $?

/=4

= false # Returns failure status
EXAMPLE

print $?

if true # Tests to see if true returns success
then

print "Must be true"

else

print "Must be false"

fi

Must be true # It does

$

Official Description

V V. V V V && & = &/ &# S

Returns the pathname of the terminal device.

Syntax
tty [-s]

Options

-s suppresses reporting the pathname. (It might be useful to check for the
existence of a terminal device.)

Oddities
It can be used to determine whether the standard input is a terminal.

Example

i}ﬂ\ I/ $ tty # Current terminal device
/dev/pts/0

$
$ tty -s # If successful, stdin is a tty
EXAMPLE $ print $?
0

$

type
Official Description

Writes a description of command type.

Ay
[x)

/=4
EXAMPLE

Appendix A 387

Syntax

type name. ..
Options
None
Oddities

The type command must be aware of the contents of the current shell exe-
cution environment to work properly.

Example

$ type cat

cat is a shell builtin version of /bin/cat
$

$ type if

if is a keyword

$

$ type find

find is a tracked alias for /usr/bin/find
$

typeset

Official Description
Sets attributes and values for shell parameters.

Syntax
typeset [+ | -HLRZfilprtux[n]] [name[=value ...]]

Options

-f sets up a function.

-1 sets up a shell variable as an integer.

-1 requests that contents be stored in lowercase only.
-L requests that contents be left justified.

-p requests that all variables be printed (displayed).
-r sets a variable’s characteristics to read-only.

-R requests that contents be right justified.

-u requests that contents be stored in uppercase only.

388 Appendix A

-x makes the shell variable an environment variable (marked for export).

-Z requests that contents be right justified and that any leading spaces be
filled with zeroes.

Oddities

Using + (plus sign) rather than - (hyphen) causes these options to be
turned off.

Example

Ay $ typeset -p # Print typeset shell variables

?z\/] typeset -i TMOUT
typeset -E f

typeset FCEDIT

typeset -x INPUTRC

typeset -i RANDOM

typeset _AST_FEATURES

typeset -x TERM

typeset HOME

typeset -x PSt1

typeset HISTEDIT

typeset PS2

typeset PS3

/=4
EXAMPLE

' '
X X X -

typeset -x LC_ALL
typeset -i PPID
typeset -x USER
typeset -x HISTSIZE
typeset -x LANG
typeset -x MAIL
typeset -x LOGNAME
typeset -x LINGUAS
typeset -i OPTIND
typeset -r x

typeset -i MAILCHECK
typeset -x HOSTNAME
typeset -x HISTFILESIZE
typeset -i LINENO
typeset -x PATH
typeset -i HISTCMD
typeset -r .sh
typeset -x _

typeset -x PWD
typeset -F 3 SECONDS
typeset -x SHELL

$

$

Appendix A 389

$ typeset -RzZ10 zfod # Variable zfod is right justified,
zero filled, 10 chars wide.

$

$ zfod=23 # Initialize to 23

$

$ print $zfod # Note zero fill

0000000023

$

ulimit
Official Description

Sets or displays a resource limit.

Syntax

ulimit [-HSacdfmnstvw] [1imit]

Options

-a lists current limits.

-¢ displays the maximum size of core dump files.
-d displays the maximum size of data area.

-f displays the maximum file size.

-m displays the limit on physical memory usage.
-n displays the maximum number of concurrently open files.
-s displays the maximum stack size.

-t displays the maximum CPU time in seconds.
-v displays the maximum virtual memory (kb).

-w displays the maximum swap area (kb) (not available on all UNIX
variants).

Oddities

The H and S options specify whether the hard limit or the soft limit for the
given resource is set.

A hard limit cannot be increased after it is set.

A soft limit can be increased up to the value of the hard limit. Warnings
will be issued when exceeding the soft limit. Errors also will be issued
when attempting to exceed a hard limit.

390

Appendix A
Example
vy $ ulimit -a
i}-/_, time(seconds) unlimited
file(blocks) unlimited
data(kbytes) unlimited
EXAMPLE stack(kbytes) 8192
memory (kbytes) unlimited
coredump(blocks) 1000000
nofiles(descriptors) 1024
vmemory (kbytes) unlimited
$
Official Description
Displays or sets the file mode creation mask.
Syntax
umask [-S] [mask]
Options
-S produces symbolic output.
Oddities
The one’s complement of the umask value is bitwise or’ed with octal 666 (for
regular files) or octal 777 (for directories) to determine the permission to set
on a new file or directory.
Octal? Isn’t this the twenty-first century? It shows the PDP 11 origins of
UNIX.
Example
vy $ umask
%3 0002
$
— $ umask -S
EXAMPLE \=rwx, g=rwx, 0=rx
$

unalias

Official Description

Removes alias definitions.

AR

/=4
EXAMPLE

Appendix A 391

Syntax

unalias alias-name... | [-a]

Options

-a removes all alias definitions.

Oddities

The C shell has its own version of this command.

Example

$ alias cat=1s # Make two aliases
$ alias p=ps
$

$ alias # Display alias list
2d='set -f;_2d'
autoload="'typeset -fu'
cat=1s

command="'command '
fc=hist

float="'typeset -E'
functions="'typeset -f'
hash='alias -t --'
history='hist -1'
integer='typeset -i'
nameref="'typeset -n'
nohup="nohup '

p=ps

r='hist -s'
redirect='command exec'
stop='kill -s STOP'
suspend='kill -s STOP $$'
times="'{ { time;} 2>&1;}'
type='whence -v'

$

$ unalias -a # Blow them all away
$

$ alias # Gone

$

Official Description
Removes or lists repeated lines in a file.

Syntax
uniq [-cdu] [-f fields] [-s chars] [input-file [output-file]]

392

Appendix A

EXAMPLE

Options

-¢ displays the count of occurrences of the line.

-d displays repeated lines only.

-f fields ignores specified fields when comparing lines.

-s chars ignores the specified number of chars when doing comparisons.
-u displays unique lines only.

Oddities

Repeated lines must be on consecutive lines to be found.

You can arrange them with the sort command before processing.

Example

$ uniq utest
den
cheryl
cheryl cheryl den
mark # Mark shows up once
den
den cheryl
dencheryl
den cheryl
$
$ uniq -c utest
1 den
cheryl
cheryl cheryl den
mark # There were four lines of mark
den
den cheryl
dencheryl
mark
den cheryl

- A) = .

$

$ sort utest # Sort test file
cheryl

cheryl cheryl den
den

den

den cheryl

den cheryl
dencheryl

mark

mark

Ay
EXAMPLE

Appendix A 393

mark

mark

$

$ sort utest > utestnew # Create sorted test file
$

$ uniq utestnew # Eliminates duplicate lines
cheryl

cheryl cheryl den

den

den cheryl

dencheryl

mark

$

unset

Official Description
The variables or functions given by the list of names are unassigned.

Syntax

unset [-fv] name ...

Options

-f names refer to functions.

-v names refer to variables.
Oddities

Read-only variables cannot be unset.

Example

$ readonly # Display read-only variables
x=17

$

$ unset x # Attempt to unset a read-only variable
/bin/ksh: unset: x: is read only

$

$ y=23 # Create a normal shell variable
$

$ print $y

23

$

$ unset y # Remove it with unset

$

$ print $y

394

Appendix A

EXAMPLE

Official Description

Executes until a condition becomes true.

Syntax

until I1ist ;do list ;done

Options

None

Oddities

An until loop is similar to a while loop, except that the test is negated.

Example

$ a=0

$

$ until ((%$a==5)) # Loop until variable a contains a 5
do

print $a

((a=at1))

done

print $a # Variable a contains a 5 now

gL WON -+ S V V V V

Official Description

Awaits process completion.

Syntax
wait [pid]

Options
None
Oddities

The C shell has its own version of this command.

Appendix A

395

Example
W $ sleep 15& # Start a job in the background
[1] 1309
$ wait # Wait for it to complete
[1] + Done sleep 15&
EXAMPLE ¢
$ sleep 15& # Start two jobs in the background
[1] 1310
$ sleep 30&
[2] 1311
$ jobs
[2] + Running sleep 30&
[1] - Running sleep 15&
$
$ wait 1311 # Wait for a particular one to complete
[1] + Done sleep 15&
$
Official Description
Counts the lines, words, characters, and bytes in a file.
Syntax
we [-¢ | -m] [-lw] [file...]
Options
-¢ counts bytes.
-1 counts lines.
-m counts characters.
-w counts words.
Oddities
Words are separated by whitespace.
Example
vy $ wec buzz* # Lines, words, chars
6 9 47 buzz
11 18 90 buzzi
6 9 47 buzz10
EXAMPLE 16 31 152 buzz2
12 22 116 buzz3
16 33 165 buzz4
67 122 617 total

396

Appendix A

AR i

/=4

EXAMPLE

$
$ wc -1 buzz # Lines only
6 buzz
$
$ ps laxw | we -1 # Useful in pipes
42
$

Official Description
Indicates how a command would be interpreted.

Syntax

whence [-pv] name ...

Options

-a shows all uses of name.

-f excludes functions.

-p searches the path for a name.

-v causes more verbose output.

Oddities

The -a and -f options are available in ksh93 and beyond.

Example

$ whence 1s
/bin/1s
$

$ whence -v 1s

1s is a tracked alias for /bin/ls

$

$ whence -a echo # Displays all uses of echo
echo is a shell builtin

echo is a tracked alias for /bin/echo

$

Official Description

Executes the while list repeatedly, and if the exit status of the last com-
mand in the list is @ (zero), it executes the do list.

i

[=4
EXAMPLE

Appendix A 397

Syntax

while 1ist ;do list ;done
Options

None

Oddities

The while loop is the same as the until loop except that the test is check-
ing for a true value. If it finds one, it repeats the loop. The until loop
checks for a false value and repeats the loop until the test evaluates to
true.

Example
$ a=5

©“

$ while ((%$a>0)) # Repeat the loop as long as a>0
> do

> print $a

> ((a=a-1))

> done

®“ = N W s~ O

Official Description
Identifies users currently logged in.

Syntax
who [-a] | [-AbdhHlmMpqrstTu] [file]

Options
-a displays all options.

There are many other options. See the man page. Not all options in the pre-
ceding list are available on all UNIX variants.

398 Appendix A

Oddities

Several commands are related to the who command that can be used to
display specific information, such as the following:

who am I, which displays the name, terminal, date, and host.

whoami, which displays the login name only.

Example

vy $ who

obrien pts/0 Nov 27 07:35
obrien pts/1 Nov 27 07:18

obrien pts/2 Nov 27 07:19
EXAMPLE ¢

$ who am i

linden!obrien pts/0 Nov 27 07:35
$

$ whoami

obrien

I hope this appendix is of use. It should get you pointed in the right direc-
tion (at least) if you forget about some command. If you are a rookie, I'd
recommend putting your feet up and flipping through this appendix a few
times when you have a few minutes to yourself. Plenty of examples are
included, which should stimulate your imagination and spur you on to
greater script-writing heights.

The final appendix (Appendix B, “vi Tutorial”) should be of use for new
users of vi. Come to think of it, it will probably help shake up some of you
old-timers as well. Take a look. Enjoy.

Appendix B

vi Tutorial

You wouldn’t be reading this appendix if you were comfortable with the vi
editor. The vi editor has many fans and many detractors. The detractors
tend to be those who don’t completely understand the way it works. My
goal here is to explain the way vi works so you can use this editor in peace
rather than in pain.

This appendix teaches you the following:

Where vi came from

How to start an edit session

The modes of operation within vi
Inserting and appending text
Last line mode

Exit options

Cursor movement

Cutting and pasting

Searching and replacing

How to use vi buffers

How to change the vi environment settings

402

Appendix B

Ay

/=4

EXAMPLE

Where vi Came From

UNIX editors have gone through an evolutionary process. The first UNIX
editor was the ed editor. It was strictly a line-oriented editor (as opposed to
a screen-oriented editor like vi). It still exists in most UNIX variants, but it
has been relegated to special-case use. As an example, if your UNIX runs in
single-user mode, the editor that tends to be used by a utility with an edit
subfunction, at that time, is the ed editor. Single-user mode is usually
entered to accomplish some specialized system admin task. While in single-
user mode, the only file system that is mounted is the root file system
(unless the administrator specifically mounts other file systems).

The vi editor program has been linked against shared libraries, and the
shared libraries are found in the /usr file system, which is not available in
single-user mode. The bottom line is that it is difficult (but not impossible)
to use vi in single-user mode. Therefore, if your responsibilities include
occasionally doing some work in single-user mode, it might help to know
the rudiments of ed as well as vi. I'll include a short summary at the end of
this appendix.

The vi editor libraries are not found in the root file system, and therefore vi
is not available in single-user mode unless the administrator mounts other
file systems manually.

The ed editor is a line-mode editor. This means that the display is line ori-
ented rather than screen oriented. (The vi editor is screen oriented.) A line-
mode editor does not have many requirements that limit terminal type and
characteristics. Conversely, a screen-mode editor (such as vi) requires a rec-
ognized terminal interface.

The ed editor evolved into the ex editor. Several extensions to the ed editor
were added, and the resulting editor was called ex, an extension of the ed
editor. It also provided a more friendly user interface, although it was still
not screen oriented.

The following example shows a simple ex session that creates a file and
inserts a line. Note that the insertion is terminated by a line starting with
a period:

$ ex dentestt

"dentest1" [New File]

Entering Ex mode. Type "visual" to go to Normal mode.

i

hello

Twq
"dentest1" [New File] 2 lines, 8 characters written

A i

/=4
EXAMPLE

i

[=4
EXAMPLE

Appendix B 403

$ cat dentestt
hello

$

To comfortably view many lines of a file while editing, the nature of the edi-
tor had to change from line oriented to screen oriented. The visual version
of the ex editor is vi. This means that the engine of the vi editor is the good
old ex editor. (And don’t forget that ex is just an extension of ed.)

Starting an Edit Session

The vi editor is invoked by the vi command:

$ vi filename

The editor functions in one of three modes: command mode, insert mode,
and last-line mode (sometimes called single-line mode, or ex mode). When
the edit session starts, vi enters command mode. Several commands can
change the mode to insert mode (1,1 , a, A, o, 0, and so on), and one com-
mand can change the mode to last-line (:).

If the file to be edited does not exist, vi reports that it is a new file and
enters the command mode of operation. The following example show the
startup of a vi session involving a new file:

$ vi junk

(...)
"junk" [New File]

If the file exists, vi displays a screen full of data from the file—or the whole
file if it is less than a screenful. It then reports on the size of the file and
enters command mode. Don’t be surprised if you see a bunch of tildes (~)
running down the screen. The editor uses them to indicate nonexistent
lines in the screen display. A new file shows nothing but the lines
containing ~s:

$ vi dentestt

hello

404

Appendix B

(...)
"dentest1" 2L, 8C

Modes of Operation

The vi editor supports three modes of operation: command mode, in which
keys are interpreted as commands; insert mode, in which keys are inter-
preted as input to the file; and last-line mode, in which ex commands can
be entered.

Command Mode

As indicated earlier, upon entering vi, the editor is in command mode. This
means that you can enter any of the vi command mode commands. The typ-
ical new user complaint is that no prompt exists in command mode. In fact,
this is true for two of the three vi modes. We can whine about it, or accept
it and move on. Basically, the editor accepts any characters typed while in
command mode as commands. The commands usually are one-letter com-
mands. They do not echo when typed, and the editor does not prompt you
for the next command. The commands also are accepted without the car-
riage return being entered.

The previous few characteristics are very important to understand. They
are major hurdles preventing the typical user from understanding and even
enjoying this editor.

The following are the most commonly used command mode commands:
e i—Switches to insert mode; inserts text before the cursor
e I—Switches to insert mode; inserts at the beginning of a line
¢ a—Switches to insert mode; inserts text after the cursor
e A—Switches to insert mode; inserts at the end of a line
* o—Switches to insert mode; opens the line below the current one

* 0—Switches to insert mode; opens the line above the current one

Insert Mode

After the user types one of the commands listed in the previous section, the
editor switches to insert mode. As the name implies, insert mode allows the
insertion of characters into the file. The assumption that rookie vi users
make is that after they get into the editor, they can just start typing the
characters they want to place in the file. If a user did this, he would type

Appendix B 405

characters until he happened to type a character that matches a command.
Then, the editor would do whatever the command was supposed to do.

If a user got into vi and started to type the string Dennis, he would end up
inserting an s into the file. The command mode of vi does not recognize any
of the characters D, e, or n as commands. The first letter that actually is a
command is the i, which means switch to insert mode. So the editor would
dutifully switch to insert mode and gladly accept whatever the user typed
in from that point on as characters to be placed in the file.

As I mentioned earlier, the editor does not (by default) indicate whether
you are in command mode or insert mode. This can leave you very confused
if you inadvertently type in something like Dennis while in command mode.
By the time you look up, you see something like s is a dude onscreen. The
natural question would be, “Where did the Denni disappear to?” The miss-
ing letters were all interpreted as commands (one at a time) and discarded
because they did not match any of vi’'s commands.

EscAPING FROM INSERT IVIODE

Now that you can get into insert mode (by typing i, I, a, A, o, or 0), the
question is, how do you get out of insert mode? You can’t type in a letter
because it will be interpreted as another character to be inserted into the
file. You must escape from insert mode. If the editor is given the escape
character while in insert mode, it means that the editor should switch back
to command mode. Essentially, six commands cause vi to enter insert mode,
and only one key sequence gets it out of insert mode (see Figure B.1). The
only mode vi goes to when it exits insert mode is command mode.

$vi junk

Command
mode

1,i,A a, 0,0

Escape,
CTRL+[

Last line
mode

Insert
mode

Figure B.1: The vi editor modes and how they relate to each other.

The Esc key on your keyboard can sometimes cause problems. It does not
always appear in the same place on all keyboards, and most importantly, it
does not always send the same escape sequence on all keyboards. This
means that you might be in the middle of an edit session, cruising along in

406

Appendix B

insert mode, decide to get back to command mode, and find that the Esc
key doesn’t work, or doesn’t exist, or causes the character that the cursor
is on to get uppercased, or some other weird action. None of the previous
results are correct behavior. (There is always the possibility that it will
work as advertised, I suppose.)

The incorrect behavior usually occurs because the keyboard is set up to
send some bizarre escape sequence when the Esc key is pressed, rather
than sending a pure escape sequence. The solution, strange as it might
seem, is to NOT USE THE ESC KEY! I know that sounds radical, but it
is exactly what I do. And I have successfully used vi on many terminals.

The way I get the correct escape sequence to be sent by the keyboard is to
press Ctrl+[. That is, while holding down the control key (Ctrl), press the

[key. Try it. You’ll see that it never fails to send the correct escape sequence
to the vi editor, which means it can get you out of insert mode without any
side effects.

Last-Line Mode

Last-line mode is entered by typing the : command while in command
mode. It is referred to as last-line mode because the editor actually places a
small prompt (:) on the last line of the screen to indicate that it is ready for
you to enter an ex command. Yes, it is expecting you to enter an ex editor
command. Remember that the engine of vi is ex. Vi is a visual (screen-
oriented) front end to the ex editor. Therefore, any commands you can
perform in the ex editor should also work in the vi editor. But you must
indicate to vi that you intend to enter an ex command, which you do by
typing the : command.

Exiting from the Editor

Your first few last-line mode commands are very simple. (They can get
much more complex.) You probably want to save your edits and exit from
the editor. The last-line mode command sequence to do this is :wq. This is
actually two last-line mode commands. It is the w, which means write the
changes to the file, and the g, which means quit from the editor.

Maybe you are hung over one morning, and you start making a bunch of
changes to a file, which, upon review (before exiting the editor, and as you
sober up) you find to be totally incorrect. It might behoove you at that time
to quit from the editor without saving your changes. This can be achieved
by the last-line mode sequence of :q!. The : is issued from command mode
and gets you to the : prompt, indicating that you are in last-line mode. The
g means you want to exit the editor. The !, on the other hand, means you

Appendix B 407

truly want to exit, and realizing that you've made changes, still want to
exit and not save the changes.

If you have entered the editor to be able to read the file, and not make any
changes, you can exit the editor with the :q sequence (no !), indicating that
you simply want to get out. If you have indeed made changes and type the
:q sequence, you are informed that you have made changes to the file and
given another chance to save your work (:wq) or exit without saving (:q!).

In addition, a command to exit the editor is available directly from com-
mand mode. It is the oddly named zZ command. It means quit the editor
and save changes. I guess the person who thought that one up was a fan
of Texas-based rock and roll played by guys with long beards (ZZ Top).

The following are the commands to exit the editor:
* :wg—Write changes to the file and quit the editor.
:g—Quit the editor.

® :q!—Quit the editor and don’t save changes.

zz—Command mode command to write and quit.

:w!—Write changes to the file and override permissions if necessary.

Moving the Cursor

Now that you know the basics of vi, the next step is to start honing your
skills. Many of the files you edit can be large. Suppose you want to move
through the file rapidly? Typically, the arrow keys on the keyboard are
available to move the cursor up, down, left, and right. If you try the arrow
keys and they refuse to cooperate (sometimes the keyboard mappings are
not what vi expects), you should be able to use the h, k, j, and 1 keys to
move left, down, up, and right, respectively.

Sounds like it might take many keystrokes (and much time) to move
through a large file, doesn’t it? Generally, if you find yourself typing
repeated cursor movement keys for many seconds, you should think of
another way to move around in your file. For instance, you can move for-
ward and backward by page (rather than by line) by using several control-
key sequences. For instance, you can use Ctrl+D or Ctrl+F to move down
many lines at a time, and you can use Ctrl+U or Ctrl+B to move the cursor
up many lines at a time.

Sometimes you might want to move immediately to the bottom of the file.
The G command assumes you want the cursor at the end of the file. You can
precede the G with a number to move to a specific line. I find the 16 com-
mand to be useful for moving back to the beginning of a file.

408

Appendix B

You also can move quickly within a line by using the 0 (that’s a zero) com-
mand to move to the beginning of a line and using the $ command to move
to the end of a line.

The following are the cursor movement commands:
* 0—Move to the beginning of the line
* $—Move to the end of the line
* h—DMove to the left
e j—Move down a line
* k—Move up a line
* 1—Move to the right
¢ Cctrl+D—Move down half a screen
® Ctrl+U—Move up half a screen
* Ctrl+F—Move down a screen
* ctrl+B—Move back a screen
* G—Go to the end of the file
* 16—Go to line one (beginning of file)
* 346—Go to line 34

e w—Move forward to the next word

Deleting

Occasionally, you will reread your document an hour after creating it and
decide that you need to delete a character, a word, an entire line, or an
entire group of lines. The following lists the commands to handle deletions.
Be aware that the dd and dw commands are two of the rare commands that
actually require two keystrokes to execute.

The following are the deletion commands:
e x—Delete the character where the cursor is
e dw—Delete the word where the cursor is

e dd—Delete the line where the cursor is

Suppose you make a deletion and realize that it wasn’t what you really
wanted to do. The vi editor allows you to undo the last command you exe-
cuted by using the u command. The u command actually takes the contents

Appendix B 409

of the delete buffer (called the general purpose buffer [GPB]) and puts it
back where it originated. Be aware that you can undo only the last com-
mand you performed. If you try to undo a second command, you will be
undoing the undo, which puts you right back where you started!

Cutting and Pasting

One of the more common deletion-oriented edits made when working with
an existing file is the cut-and-paste operation. This is useful when you have
a few lines of the file that need to be moved to another area of the file. You
typically cut the section to be moved, and then place it in a temporary
buffer (the GPB). Next, you move the cursor to the location you want the
data to be placed, and then paste it into its new home.

The sequence involves a dd command, followed by moving the cursor and
entering the p command. If you want to move more than one line, you can
use a line count in front of the dd command:

3dd

(move cursor)
p

The p command pastes the contents of the GPB on the line below the line
on which the cursor sits. If you want to paste the data in the GPB above
the current line, use the P command (capitol P).

Perhaps you want to perform a cut and paste but prefer to leave a copy of
the data to be pasted at its original location. This can be accomplished by a
dd command, followed immediately by a p to place a copy of the deleted
data right back where it came from. It can also be accomplished by using
the yy command. This command yanks a copy of the selected lines into the
GPB. The difference is that it does not delete the lines:

3yy
(move cursor)

p

Using Multiple Buffers

Be aware that any use of the GPB replaces the previous contents. So if you
perform a 100dd command to delete 100 lines (and place them in the GPB),
and then delete another character by using the x command, the single char-
acter removed by the x command replaces the 100 lines of data in the GPB.

410

Appendix B

Your goal might have been to append some extra bytes or lines onto the
current contents of the GPB. However, the result would be that you end up
with the last deleted (or yanked) command in the GPB. It does not perform
the append operation by default.

The vi editor provides buffers other than the GPB. Some of these other
buffers have the append characteristic discussed in the previous paragraph.
These buffers are referred to as named buffers. Their names are the letters
of the alphabet (so you can have an additional 26 buffers beyond the GPB).
To use them, you must precede your delete or yank command with a "
(double quote) and the name of the target buffer (a letter). The following
command deletes five lines and places them into a buffer named a:

"abdd

You then can place the contents of the buffer named a anywhere you want
by moving the cursor and typing "ap. This means get the contents of the
buffer named a and insert it below where the cursor is currently. If you
need to append to the current contents of the buffer named a, you can refer-
ence it with a capitol letter on the next delete or yank. The editor interprets
a request such as "A5dd as a request to append the deleted lines to the cur-
rent contents of the buffer named a. Note that the reference to the buffer
named A is actually a request to append to the buffer named a:

"b25dd

(move cursor to prepare for append)
"B5dd

(move cursor to prepare for paste)

"bp

Searching and Replacing

A variation on the cut-and-paste action is the search-and-replace action.
This is useful if you need to make changes to every instance of a string
within a file. The first step is the search. Searching is something you will
do even if you are not interested in performing a replace. The following
command places the cursor on the first instance of the string Den:

/Den/

Notice that no : exists in front of it; it is a command-mode command. This
command searches forward from the current cursor position to the end of
the file. If you want to search backward, you can surround the search
string with ? instead of /. If the search finds an instance of the string, and

Appendix B 411

you want to search for the same string again, you can type the n command,
which means find the next instance of the search string.

Table B.1 documents the most commonly used search commands available
within the vi editor.

Table B.1: Search commands

Command Description

/str/ Searches forward for next instance of str. (This won’t work without the
trailing / as well.)

n Finds the next instance of str.

/1! Finds the next instance of str.

?str? Searches backward for str.

?? Finds the next instance (backward).

To replace a string (as it is found) with another string, you must use the
substitute command. This command is a last-line mode command, so it is
preceded with a colon (:). The syntax is shown here:

:s/original str/replacement str/

To cause the substitute command to operate on all lines of a file and even
handle multiple occurrences of the search string found on one line, use the
following syntax:

:1,$s/original str/replacement str/g

The 1,$ means start at line one and proceed until the end of the file. The g

means do it globally on one line. It takes care of the situation in which the

search string is found more than once on the same line and also appears on
many lines within the file. As you can tell, this is a powerful construct.

The following example searches the entire file for instances of the string
Digital UNIX and replaces them with the string Trué4 UNIX:

:1,$s/Digital UNIX/Tru64 UNIX/g

Table B.2 documents the most commonly used substitute commands avail-
able within the vi editor.

Table B.2: Substitute commands

Command Description
:s/orig/new/ Replaces the first occurrence of orig with new on current line.
:s/orig/new/g Current line; handles multiple instances of orig on same line.

:1,$s/orig/new/ All lines; first instance of orig on each line is replaced.

:1,$s/orig/new/g All lines; all instances are replaced.

412

Appendix B

o

EXAMPLE

Searches can be customized by using regular expressions, such as
e ~—Search at the start of the line
* $—Search at the end of the line
e .—Match any single character
e *Match zero or more of previous characters
® [...]—Match any character in the brackets

® [~...]—Match any character except ones in the brackets

Combining Buffers and Substitute Commands

The notion of vi buffers discussed previously can be combined with any of
the ex commands to customize and streamline your session. Suppose you
find yourself typing in the following command (or commands similar to
this) repetitively:

:1,$s/orig/DEN/g

You can place this command in a buffer (exclude the :) and request the exe-
cution of the buffer full of commands with the :@buffer_name command. You
type the command as if you are trying to insert it into your file, leave off
the colon, and delete the line into one of your named buffers:

"add

This command requests a deletion of the current line and requests that the
contents of the line be placed in the buffer named a. When you are ready to
execute the stored command, type the following:

:@a

Changing vi Environment Settings

The vi editor has many environment settings. These can be used to cus-
tomize your editing sessions to meet your particular needs and habits. One
of the more popular options, especially to novice vi users, is the showmode
option. When set, it displays a small message on the bottom of your screen
to remind you when you are in insert mode. This eliminates a lot of the con-
fusion and hesitation experienced by neophyte vi users.

The following example demonstrates the effect of using the showmode option
within the vi editor:

$ vi junk

stuff
in the

i

[=4
EXAMPLE

Ay

/=4
EXAMPLE

Appendix B 413

junk file.

(vn-
:set

)

showmode

Because showmode is set, after entering insert mode, the screen looks like
this:

stuff

in the

junk file.

(...)
-- INSERT --

When in doubt as to which vi mode you are in, you can always just type the
escape key (or Ctrl+[). If you are in insert mode, it takes you back to com-
mand mode. If you are already in command mode, it doesn’t do any harm,
but it emits a small beep. Basically, after you type the escape sequence, you
are guaranteed that you are back in command mode.

Here is a list of all the vi settings. This display was acquired by typing the
last line-mode command :set all. Don’t panic—you won’t be using most of

these. I just thought you should be aware of their existence:

rset all
--- Options ---
noautoindent isprint=@,161-255 scrolloff=0 textwidth=0
noautowrite joinspaces nosecure notildeop
background=1ight keymodel= selectmode= timeout
backspace=0 keywordprg=man shell=/bin/ksh timeoutlen=1000
nobackup laststatus=1 shellcmdflag=-c nottimeout
backupext=~ nolazyredraw shellquote= ttimeoutlen=-1
nobinary lines=24 shellxquote= ttybuiltin
cmdheight=1 nolisp noshiftround nottyfast
columns=80 nolist shiftwidth=8 ttymouse=
nocompatible listchars=eol:$ noshortname ttyscroll=999
cpoptions=aABceFs magic noshowfulltag ttytype=vt320
display= matchtime=5 noshowmatch undolevels=1000
noedcompatible maxmapdepth=1000 showmode updatecount=200
endofline maxmem=5120 sidescroll=0 updatetime=4000
equalalways maxmemtot=10240 nosmartcase verbose=0
equalprg= modeline nosmarttab novisualbell
noerrorbells modelines=5 softtabstop=0 warn
esckeys modified nosplitbelow noweirdinvert
noexpandtab more startofline whichwrap=b,s

414

Appendix B

noexrc

mouse=

mousemodel=extend
mousetime=500

fileformat=unix
formatoptions=tcq

formatprg= nonumber
nogdefault nopaste

helpheight=20 pastetoggle=
nohidden patchmode=
nohlsearch previewheight=12

history=20 noreadonly
noignorecase remap
noincsearch report=2
noinfercase scroll=11
noinsertmode scrolljump=1

backupdir=.,~/tmp,~/
define="#\s*define
directory=.,~/tmp,/var/tmp,/tmp
fileformats=unix,dos

swapfile
swapsync=fsync
switchbuf=
tabstop=8
tagbsearch
taglength=0
tagrelative
tags=./tags,tags
tagstack
term=vt320

noterse

textauto

notextmode

helpfile=/usr/share/vim/vim54/doc/help.txt
highlight=8:SpecialKey,@:NonText,d:Directory,e:ErrorMsg,i:IncSearch,l:Search,m
:MoreMsg,M:ModeMsg,n:LineNr,r:Question,s:StatusLine,S:StatusLineNC,t:Title,v:Vis

ual,V:VisualNOS,w:WarningMsg,W:WildMenu
include="#\s*include
isfname=@,48-57,/,.,-, ,+,,,$,~
isident=@,48-57, ,192-255
iskeyword=@,48-57, ,192-255
matchpairs=(:),{:},[:]
nrformats=octal,hex
paragraphs=IPLPPPQPP LIpplpipbp
path=.,/usr/include,,
sections=SHNHH HUnhsh
selection=inclusive
shellredir=>%s 2>&1
shortmess=filnxtToO0
suffixes=.bak,~,.0,.h,.info,.swp,.obj

wildchar=<Tab>
wildcharm="@
wildmode=full
winheight=1
winminheight=1
wrap
wrapmargin=0
wrapscan
write
nowriteany
writebackup
writedelay=0

Besides the commonly used :set showmode, some others of immediate use

are as follows:

* :set number—Displays line numbers

* :set wrapmargin=10—Sets margin to 10 characters

* :set ignorecase—Makes searches case insensitive

* :set nowrapscan—Searches stop at the end of the file

* :set all—Shows all settings

Ay
EXAMPLE

Appendix B 415

The following example shows a request to set the option for line number
display within vi:

stuff

in the

junk file.

(...)
:set number

After setting the number option, the screen looks like this:
1 stuff
2 in the
3 junk file.
4

(...)

If you find that you are changing certain characteristics every time you
enter vi, you should place your changes in the .exrc file in your home direc-
tory. (You probably will have to create this file.) This file is searched for and
executed by vi each time it is invoked. Be sure that all commands placed in
the .exrc file are last-line mode (ex) commands and are not preceded by the
colon.

The following example shows the contents of an .exrc file, which sets the
number and showmode vi options:

$ cat .exrc

set number

set showmode
$

Edit Session Recovery

If you are in the middle of an edit session when the system crashes, or
some other event happens that abnormally terminates your edit session, vi
provides a way to recover most of your work. When the system comes back
up, you can type vi -r to see whether any recovery files are available. If so,
type vi -r filename and save the recovered work immediately.

416 Appendix B

Miscellaneous Commands

Tables B.3—-B.5 list some other commands I have found useful. Be aware
that there are many outgrowths from the vi editor. Additionally, many other
powerful features are not covered in this tutorial that are in the standard
vi editor.

Table B.3: Other useful commands

Command Description
Xp Transposes two characters.

Repeats the last activity.
J Joins the current line with the next line.

~ Changes the case of a character.

10~ Changes the case of the next 10 characters.

>> Moves the line about 8 characters to the left.

<< Moves the line about 8 characters to the right.

Ctrl+G Displays filename, line number, counts, and so on.

ir file Reads another file into the end of the work buffer.

:or file Reads another file into the front of the work buffer.

:w newf Writes the current contents to a file named newf.

:w! file Overwrites the existing file.

w>> file Appends to the existing file.

:sh Creates a shell session and exits back to vi.

Icomm Executes a shell command.

! l'comm Executes a command and output goes in the file (you might need to
use :r !command in some implementations).

:21comm Replace line 2 with output from the command.

rc Replaces the character under the cursor with a c.

R Replaces characters until you escape.

mz Marks the current position with the letter z.

'z Returns to the position marked z.

d'z Deletes from the current position to z.

As I promised earlier in the chapter, Table B.4 summarizes some of the
commonly used ed commands.

Appendix B 417

Table B.4: Some ed commands

Command Description
a Enters data.

Must be at the beginning of a line to end insert.

w Writes buffer out.

q Quits the editor.

p Shows contents of the file.
3p Displays line 3.

2,5p Prints a range of lines.
1,%p Prints all lines.

Table B.5 documents some of the commonly used ex commands.

Table B.5: Some ex commands

Command Description
i,a Inserts data.

When typed at the beginning of the line, the period character ends
the data insertion.

d Deletes the current line.

.+6d Deletes line 6 below the current line.

$-5,%p Prints the last 5 lines of the file.

c Replaces the existing line (might not be available in all

implementations).

u Undoes the last command.

Because this is the last appendix, I guess the only thing left to do is to say
adios and wish you the best of luck with your script writing. If you have
questions or comments, please send email to Dennis.Obrien@bruden.com.

Symbols

! (exclamation point)
metacharacters, 96-97
shell script comments, 7-8
” (double quotes), aggregate
quoting, 106
(pound sign)
comments, 19-20
shell script comments, 7-8
#!/bin/ksh, shell scripts, 7-8
$ (dollar sign)
command substitution, 107
Korn shell prompt, 10
$((...), arithmetic expansion,
113
$! variable, 29
$# variable, 28
$* variable, 28
$0 variable, 28
$? variable, 29
$@ variable, 29
$$ variable, 29
$n variable, 28
% (modulo) operator, 161
%job number, foreground
processes, 50
& (ampersand), commands,
background execution, 51
& (bit-wise and) operator, 161
&& operator, if test, 123-126
’ (single quotes), aggregate
quoting, 95-96, 104-105
* (asterisk), escape character,
96-97, 102
with escapes, 103
with no escapes, 102
with no escapes from different
directory, 103
with two escapes, 104
* (multiplication) operator, 161
+ (addition) operator, 161
+ (plus sign) operator, 96-97
++ (increment) operator, 161
- (dash), permissions, 12

S A
Index

- (minus) operator, 161

-- (decrement) operator, 161

-h option, sys_check script,
executing, 290

-n option, sys_check script,
executing, 290-291

/etc/directory, environment
files, 30-31

<< (bit-shift left) operator, 161

= (assignment) operator, 161

? (question mark), metachar-
acters, 96-97

@ (at), metacharacters, 96-97

[command, scripting example,
360-361

A

aberrant user input, scripts,
reacting to, 193-194
abs function (arithmetic
expression), 114, 162
absolute file specification, file
access, 206-209
access values, numeric direc-
tory permissions, 16
accessing
files
absolute file specification,
206-209
PATH variable, 207-209
relative file specification,
206-209
values in arrays, 83
variables
common errors, 78-81
values, 75
acos function (arithmetic
expression), 114, 162
addition (+) operator, 161
aggregate quoting
double quotes (“), 106
single quotes (), 104-105
alias command, 22-23
scripting example, 322-323

420

aliases

aliases
command interpretation
sequence, 264
environment files, 32-33
predefined, 23
returning value of, 22
uses, 22
values (alias command), 22-23
alnum class (characters), 91
alpha class (characters), 91
ampersand (&), commands,
background execution, 51
append redirection operator,
files, joining, 226
arguments
command-line versus functions,
146-148
files, presenting (xargs com-
mand), 236-237
functions, passing by reference,
152-154
functions versus command-line,
146-148
arithmetic expressions
array values, 82
functions
abs, 114
acos, 114
asin, 114
atan, 114
cos, 114
cosh, 114
exp, 114
int, 114
log, 114
sin, 114
sinh, 114
sqrt, 115
tan, 115
tanh, 115
null values, 114
standard, 114
arithmetic operators, 160-165
1’s complement (), 161
addition (+), 161
assignment (=), 161
bit-shift left (<<), 161
bit-shift right (>>), 161
bit-wise and (&), 161
bit-wise or (1), 161
decrement (--), 161
division (/), 161
exclusive or (M), 161

increment (++), 161
minus (-), 161
modulo (%), 161
multiplication (¥), 161
arrays
associative, declaring, 81
indexed, declaring, 81
values
accessing, 83
arithmetic expressions, 82
assigning, 82
asin function (arithmetic
expression), 114, 162
assigning
values in arrays, 82
variables
common errors, 78-81
values, 76
assignment (=) operator, 161
associative arrays, declaring,
81
asterisk (¥)
escape character
no escapes, 102
no escapes from different
directory, 103
with escapes, 103
with two escapes, 104
metacharacters, 96-97, 102
asynchronous events, traps,
276
at (@), metacharacters, 96-97
at utility
jobs, scheduling, 67-70
queuename, niceness, 67
syntax, 67
atan function (arithmetic
expression), 114, 162
attributes (files)
inodes, 219
information, 10
noclobber, 219-220
object type identifiers, 12
ownership, viewing, 220-222
permissions, 11-13
viewing, 220-222
autoload command, scripting
example, 324-325
autoload keyword functions,
156-157
awk command, file filters,
237-239
awk filter, 165-169

b file type identifier, 12
back ($) character pattern
matching, 95-96
back references, characters,
97-99
back tics (*), command substi-
tution, 107
background processes, 45
resuming (bg command), 48-49
backslash (\), escape charac-
ter, 103-104
baseline files
script output, checking against,
289
sys_check script
first-time run, 292-305
second-time run, 305-308
storage directory, 290
bg command
background processes, resuming,
48-49
scripting example, 325-326
bit-shift left (<<) operator, 161
bit-shift right (>>) operator,
161
bit-wise and (&) operator, 161
bit-wise or (|) operator, 161
blank class (characters), 91
break command
loops, 137
scripting example, 326-327
buffers, vi editor, command
placement, 412
built-in commands
command interpretation
sequence, 264
scripting example, 327-328
built-in extension functions,
158-160
built-in variables
$! variable, 29
$# variable, 28
$* variable, 28
$0 variable, 28
$? variable, 29
$@ variable, 29
$$ variable, 29
$n variable, 28
bulletproofing scripts, user
input, 282-286

C

c file type identifier, 12
case command, scripting
example, 328-329
case sensitivity, variables,
uppercase versus lowercase
letters, 74
case statement
file matching wildcards, 128-129
script flow control, 128-129
syntax, 128-129
cat command
file filters, 230-231
scripting example, 329-330
cat filter, 165, 167-169
cd command, 25
scripting example, 330-331
changing permissions (chmod
command), 17-18
characters
back references, 97-99
classes, 90
alnum, 91
alpha, 91
blank, 91
crtrl, 91
digit, 91
graph, 91
lower, 91
print, 91
punct, 91-92
space, 92
upper, 92
xdigit, 92
files, naming guidelines, 223-224
metacharacters
! (exclamation point), 96-97
* (asterisk), 96-97
+ (plus sign), 96-97
? (question mark), 96-97
@ (at), 96-97
pattern matching, 92-95
back ($), 95-96
front ("), 95
check exist function,
sys_check script, 316
chmod command
directory permissions, changing,
17-18
scripting example, 331-332
shell script permissions, 8-9
classes (characters), 90
alnum, 91
alpha, 91

blank, 91
crtrl, 91
digit, 91
graph, 91
lower, 91
print, 91
punct, 91-92
space, 92
upper, 92
xdigit, 92
cleanup function, sys_check
script, 316
clobbering (output redirec-
tion), 195
command line, parameter
expansion, 108-113
command mode (vi editor),
403-404
command-line arguments
getopts command, 182-185
positional parameters, setting
(set command), 180-181
versus function arguments,
146-148
command-line functions, 145
commands. See also functions
[, scripting example, 360-361
alias, 22-23
scripting example, 322-323
autoload, scripting example,
324-325
awk, file filter, 237-239
background execution, amper-
sand (&), 51
bg, 48-49
scripting example, 325-326
break, scripting example,
326-327
builtin, scripting example,
327-328
case, scripting example, 328-329
cat
file filter, 230-231
scripting example, 329-330
cd, 25
scripting example, 330-331
chmod, 17-18
scripting example, 331-332
continue, scripting example,
333-335
cp
files, copying, 226
scripting example, 335-336
cron, 64-66

commands 421

cut, scripting example, 336-337
date, scripting example, 337-338
disown, scripting example,
338-339
echo, 75, 189-191
scripting example, 339
uses, 244-246
ed, scripting example, 339-340
ed editor, 417
emagcs editor, 36
eval, scripting example, 340-341
ex editor, miscellaneous, 417
exec
files, opening, 227
scripting example, 341-342
exit, scripting example, 342-343
export, 29-30
scripting example, 343-345
false, scripting example, 345
fe, scripting example, 346-347
fg, 49-51
scripting example, 347-348
find, scripting example, 348-349
float, scripting example, 350
for, scripting example, 350-351
function, scripting example,
351-352
getconf, scripting example,
352-353
getopts, 182-185
scripting example, 353
grep
file filter, 233-234
scripting example, 353-354
text searches in processes, 47
hash, scripting example, 354-355
head, file filter, 229
hist, scripting example, 355-356
history, 33-34
scripting example, 356-357
if, scripting example, 357-358
if test, 119-122
integer, scripting example,
358-359
interpretation sequence
aliases, 264
built-in commands, 264
debugging options, 264-265
functions, 264
PATH variable, 264
reserved words, 264
jobs, 47
scripting example, 359
kill, scripting example, 359-360

422

commands

ksh
debugging options, 262-270
man page, 263
less, 44-45
let, scripting example, 361
line continuation, quoting,
106-107
In, scripting example, 362
loop-related
break, 137
continue, 137
exit, 137
shift, 137
Is, -1 option, 12
man, 43-45
more, 44-45
my
files, moving, 227
scripting example, 363
newgrp, scripting example,
363-364
nohup, 62-64
scripting example, 364
paste, scripting example,
365-366
pipes, 166-167
print, 189-190
escape sequences, 246-247
options, 191
scripting example, 366
printf
format specifiers, 248-250
scripting example, 366-367
ps, 42, 57
pwd, scripting example, 367
1, scripting example, 367-369
read
options, 192
scripting example, 369
read-prompt, options, 192
readonly, scripting example,
369-370
return, scripting example,
370-371
rm
files, deleting, 226
scripting example, 371-372
rmdir, scripting example, 372
runlevel, 41
script
file creation, 224-225
scripting example, 372-374
sed, file filter, 234-235
select, scripting example, 375

set, 26-27

-0 option, 23-24

scripting example, 375-376
set number, 308-315
shell scripts, 6-8
shift, scripting example, 376-377
signals, 52-54
sleep, 51, 63

scripting example, 377-378
sort

file filter, 232-233

scripting example, 378-379
stop, scripting example, 379-380
substitution, quoting, 107
syntax, self-help options, 282
tail

file filter, 230

scripting example, 380
tee

file filter, 231-232

scripting example, 381
test, scripting example, 382
time, scripting example, 382-383
touch

file creation, 224

scripting example, 383-384
tr, scripting example, 384
trap, scripting example, 384-385
true, scripting example, 385-386
tty, scripting example, 386
type, scripting example, 386-387
typeset, 76-78

scripting example, 387-389
ulimit, scripting example,

389-390
umask, scripting example, 390
unalias, scripting example,

390-391
uniq, scripting example, 391-393
unset, 27, 84-85

scripting example, 393
until, scripting example, 394
vi editor, 34

buffer placement, 412

cursor movement, 407-412

environment options, 35

miscellaneous, 416
wait, scripting example, 394-395
wce

file filter, 230

scripting example, 395-396
whence, scripting example, 396
while, scripting example, 396
who, scripting example, 398
xargs, file filter, 236-237

comments in shell scripts
! (exclamation point), 7-8
(pound sign), 7-8, 19-20
common errors, variables
accessing, 78-81
assigning, 78-81
compound if tests, 126
nested, 127-128
compound test operators, 175
continue command
loops, 137
scripting example, 333-335
control key signals
Crtl+C (interrupt signal), 55
Crtl+D (end-of-file interrupt
signal), 56
Crtl+H (erase character), 56
Crtl+Q (restart output), 56
Crtl+S (stop signal), 56
Crtl+Z (suspend signal), 56
Crtl+\ (quit signal), 55
coprocesses, 197-203
copying files (cp command),
226
cos function (arithmetic
expression), 114, 162
cosh function (arithmetic
expression), 114, 162
cp command
files, copying, 226
scripting example, 335-336
creating files
script command, 224-225
touch command, 224
cron command, jobs, schedul-
ing, 64-66
Crtl+\ (quit signal), 55
Crtl+C (interrupt signal), 55
Crtl+D (end-of-file interrupt
signal), 56
Crtl+H (erase character), 56
Crtl+Q (restart output), 56
Crtl+S (stop signal), 56
Crtl+Z (suspend signal), 46, 56
crtrl class (characters), 91
cursors, vi editor
character deletion, 408-409
cut-and-paste, 409
moving, 407-412
search-and-replace, 410-412
cut command, scripting exam-
ple, 336-337
cutting characters (vi editor),
409

D

d file type identifier, 12
dash (-), permissions, 12
date command, scripting
example, 337-338
debugging options
shells, command interpretation
sequence, 264-265
syntax checking
print statement insertion,
270-271
script execution (ksh com-
mand), 262-270
declaring
associative arrays, 81
global variables, 151-152
indexed arrays, 81
local variables, 150-151
variables, floating point, 163
decrement (--) operator, 161
defining variables (typeset
command), 76-78
deleting
characters (vi editor), 408-409
files (rm command), 226
descriptors (files)
stderr, 209, 211
stdin, 209, 211
stdout, 209, 211
designing variables, case sen-
sitivity, 74
device special files, hardware
major ID, 211-212
minor ID, 211-212
digit class (characters), 91
directories
organization of, 216-218
permissions
access values, 16
changing (chmod command),
17-18
execute, 13-15
numeric permissions, 17
read, 13-15
umask value, 18-19
versus file permissions, 15-16
write, 13-15
temporary files, 239-240
discipline functions
get, 154-155
set, 154-155
unset, 154-155
disown command, scripting
example, 338-339

displaying
files
BOF (beginning of file), 229
count statistics (wc com-
mand), 230
EOF (end of file), 230
jobs in processes (jobs com-
mand), 47
division (/) operator, 161
documentation in scripts,
importance of, 281
dollar sign ($)
command substitution, 107
Korn shell prompt, 10
done job status, 48
double quotes (), aggregate
quoting, 106

E

echo command, 189-191
-n option, 245-246
input streams to ex editor,
244-246
scripting example, 339
uses, 244-246
variable values, displaying, 75
echoing output, 244-247
ed command, 417
scripting example, 339-340
ed editor, 402-403
editing files, character pat-
terns (sed command), 234-235
editors
emacs, 36
vi, 34-35
emacs editor, 36
environment
aliases, returning value of, 22
files
/etc [directory, 30-31
aliases, 32-33
options
ksh, 23-24
environment variables, 26-29,
74
creating, 30
exporting (export command),
29-30
HISTFILESIZE, 34
set command, 26-27
shell variables, 26
ERR trap, 276-279
error messages, stderr stream,
196-197

exiting vi editor

escape character
asterisk (*) with escapes, 103
asterisk (¥*) with no escapes, 102
from different directory, 103
asterisk (*) with two escapes,
104
backslash (\), 103-104
eval command, scripting
example, 340-341
everything option (-e), ps com-
mand, 58
ex editor, 402-403
commands, 417
input streams (echo command),
244-246
exclamation point (!)
metacharacters, 96-97
shell script comments, 7-8
exclusive or (*) operator, 161
exec command
files, opening, 227
scripting example, 341-342
execute permissions
directories, 13-15
files, 12-13
shell scripts, 40
executing
scripts
current shell option, 262-263
subshell option, 262-263
shell scripts, 40
PATH variable, 40-41
permissions, 40
runlevel command, 41
signals, 52-54
sys_check script
-h option, 290
-n option, 290-291
baseline file directory, 290
first-time run, 292-305
invalid option, 290
line numbered version,
308-315
second-time run, 305-308
execution trace (ksh com-
mand), scripts, debugging,
267-270
exit command
loops, 137
scripting example, 342-343
exit status, if test, script flow
control, 118-119
EXIT trap, 276-278
exiting vi editor, 406-407

423

exp function (arithmetic expression)

exp function (arithmetic
expression), 114, 162

export command
scripting example, 343-345
variables, exporting, 29-30

exporting variables to envi-
ronment (export command),
29-30

F

false command, scripting
example, 345
fc command, scripting exam-
ple, 346-347
fg command
foreground processes, resuming,
49-51
scripting example, 347-348
file descriptors, 194
filemodes, 11
filename expansion expres-
sions. See wildcards
files
absolute file specification,
206-209
arguments, presenting (xargs
command), 236-237
attributes, 10-12
information, 10
inodes, 219
noclobber, 219-220
object type identifiers, 12
ownership, 220-222
permissions, 11-13, 220-222
BOF (beginning of file),
displaying, 229
characters
editing (sed command),
234-235
searching (grep command),
233-234
contents, full display (cat
command), 230-231
copying (cp command), 226
count statistics, displaying (wc
command), 230
creating (script command),
224-225
creating (touch command), 224
deleting (rm command), 226
descriptors
stderr, 209-211
stdin, 209-211
stdout, 209-211

device special files, 211-212
directories, organization of,
216-218
environment files
/etc/ directory, 30-31
aliases, 32-33
EOF (end of file), displaying, 230
filter commands
awk, 237-239
cat, 230-231
grep, 233-234
head, 229
sed, 234-235
sort, 232-233
tail, 230
tee, 231-232
we, 230
xargs, 236-237
hidden, viewing, 218-219
inodes, attributes, 219
joining (append redirection
operator), 226
links
count fields, 212-213
hard, 212-213
symbolic, 214-216
moving (mv command), 227
naming guidelines, character
usage, 223-224
opening (exec command), 227
output
redirecting (tee command),
228-232
sorting (sort command),
232-233
PATH variable, 207-209
patterns, searching (awk com-
mand), 237, 239
permissions
letter coding system, 11-12
umask values, 222-223
versus directory permissions,
15-16
relative file specification,
206-209
temporary, 239-240
testing, 169-171
truncation, 228
filters
awk, 165-169
cat, 165-169
commands
awk, 237-239
cat, 230-231
grep, 165-169, 233-234

head, 165-169, 229
sed, 165-169, 234-235
sort, 165-169, 232-233
tail, 165-169, 230
tee, 231-232
we, 165-169, 230
xargs, 236-237
standard input, 165
standard output, 165
find command, scripting
example, 348-349
float command, scripting
example, 350
floating point variables, 75
declaring, 163
flow control (scripts)
case statement, 128-129
if test, 118-119
&& operator, 123-126
((command, 119-122
[[command, 119-122
|'| operator, 123-126
compound, 126-128
looping constructs, 129-130
backup loop script example,
137-140
commands, 137
for loop, 132-135
select loop, 135-136
until loop, 131-132
while loop, 130-131
for command, scripting
example, 350-351
for loop, script example,
132-135
foreground processes
9%job number, 50
resuming (fg command), 49-51
formatting output (printf com-
mand), 248-250
front () character pattern
matching, 95
full option (-f), ps command, 58
function command, scripting
example, 351-352
functions. See also commands
arguments
passing by reference, 152-154
versus command-line argu-
ments, 146-148
arithmetic operators, 160-165
addition (+), 161
assignment (=), 161
bit-shift left (<<), 161
bit-shift right (>>), 161

bit-wise and (&), 161
bit-wise or (1), 161
decrement (--), 161
division (/), 161
exclusive or ("), 161
increment (++), 161
minus (-), 161
modulo (%), 161
multiplication (*), 161
autoload keyword, 156-157
built-in extension, 158-160
check exist, sys_check script
example, 316
cleanup, sys_check script exam-
ple, 316
command interpretation
sequence, 264
command-line, 145
global variables, declaring,
151-152
Korn Shell style syntax, 144
local variables, declaring,
150-151
locate command, sys_check
script example, 316
math, 160-165
abs, 162
acos, 162
asin, 162
atan, 162
cos, 162
cosh, 162
exp, 162
int, 162
log, 162
sin, 162
sinh, 162
sqrt, 162-163
tan, 162
tanh, 162
object-oriented discipline type
get, 154-155
set, 154-155
unset, 154-155
POSIX-style syntax, 144
recursive, 155-156
repository, 156-157
return values
integer, 148-149
string, 149-150
scripts, repetitive, 144
syntax, sys_check script
example, 315

uses, 144
viewing (typeset command), 146

G

get function, object-oriented
discipline type, 154-155
getconf command, scripting
example, 352-353
getopts command
command-line arguments,
182-185
scripting example, 353
getopts while loop, sys_check
script example, 317
global variables, functions,
declaring, 151-152
globs (great lot of bytes), 102
graph class (characters), 91
grep command (global regular
expression print), 233-234
file filters, 233-234
here document example, 258-259
options, 233-234
processes, text searches, 47
scripting example, 353-354
grep filter, 165-169

H

hard links in files, 212-213
removing (rm command), 226
hardware, device special files

major ID, 211-212
minor ID, 211-212
hash command, scripting
example, 354-355
head filter, 165-169, 229
here documents
grep command example, 258-259
redirection, 257-259
hidden files, viewing, 218-219
hist command, scripting
example, 355-356
HISTFILESIZE variable, 34
history command, 33-34
scripting example, 356-357
history files
benefits, 33-34
size, 34

IDs, object type identifiers, 12
if command, scripting
example, 357-358

ksh command 425

if test
commands
((; 119-122
[[, 119-122
compound, 126
nested, 127-128
exit status, 118-119
operators, 123-126
script flow control, 118-128
syntax, 118
increment (++) operator, 161
indexed arrays, declaring, 81
input scripts, bulletproofing,
282-286
input streams, ex editor (echo
command), 244-246
insert mode (vi editor), 403-405
escaping from, 405-406
int function (arithmetic
expression), 114, 162
integer command, scripting
example, 358-359
integer number variables, 75
integers, function return
values, 148-149
interrupts, trapping example,
276
invalid option, sys_check
script, executing, 290

J-K

jobs, 47
scheduling (at utility), 67-70
scheduling (cron command),
64-66
status
done, 48
running, 48
stopped, 48
jobs command, 47
scripting example, 359
joining files (append redirec-
tion operator), 226

kill command
processes, 58-62
scripting example, 359-360
syntax, 58-62
killed processes, 46
Korn, David, 6
ksh command
debugging options, 262-263
-n (noexec), 265
-v (verbose), 265-267

ksh command

-xtrace (execution trace),
267-270
sleep mode, 262-263
environment options, 23-24
man page, 263
SPECIAL CASE trap, 276, 280

L

1file type identifier, 12
last-line mode (vi editor), 403,
406
launching vi editor, 403-406
less command, process display,
44-45
let command, scripting
example, 361
letter coding system (file
permissions), 11-12
line continuation, quoting,
106-107
links (files)
count fields, 212-213
symbolic, 214-216
In command, scripting
example, 362
local variables, 26-27
functions, declaring, 150-151
locate command function,
sys_check script, 316
log function (arithmetic
expression), 114, 162
looping constructs
backup loop script example,
137-140
commands
break, 137
continue, 137
exit, 137
shift, 137
for, 132-135
output redirection, 254
script flow control, 129-140
select, 135-136
until, 131-132
while, 130-131
lower class (characters), 91
1s command, -1 option, 12

man command, manual pages
display, 43-45
man pages (documentation
manual), 263
ksh command, 263
signals
HP-UX, 53-54
Linux, 53-54
math functions, 160-165
abs, 162
acos, 162
asin, 162
atan, 162
cos, 162
cosh, 162
exp, 162
int, 162
log, 162
sin, 162
sinh, 162
sqrt, 162-163
tan, 162
tanh, 162
metacharacters
asterisk (%), 96-97, 102
at (@), 96-97
exclamation point (1), 96-97
globs, 102
plus sign (+), 96-97
question mark (?), 96-97
minus (-) operator, 161
modifying vi editor, environ-
ment settings (showmode
option), 412-415
modulo (%) operator, 161
more command, process
display, 44-45
moving files (mv command),
227
multiple buffers (vi editor),
409-410
multiple output redirection,
255
multiplication (*) operator, 161
mv command
files, moving, 227
scripting example, 363

name/value pair (variables),
24-25, 74
naming
files, character usage, 223-224
variables
rules, 74
valid characters, 74-75
nested if tests, 127-128
newgrp command
scripting example, 363-364
nice processes, 67
noclobber file attribute,
219-220
nohup command
processes, 62-64
scripting example, 364
syntax, 62-64
terminal contacts, 62-64
non-ksh environments, shell
scripts, 9-10
number 1 (kill command
signal), 62
number 9 (kill command
signal), 59
number 15 (kill command
signal), 59
number variables, 75
numbers, testing, 172-174
numeric directory permis-
sions, 17

o

object type identifiers, 12
object-oriented discipline
functions
get, 154-155
set, 154-155
unset, 154-155
OLDPWD variable, 25
opening files (exec command),
227
operators, compound tests,
175
organizing files into directo-
ries, 216-218
output
echoing, 244-247
files, redirecting, 228-229
formatting (printf command),
248-250

redirecting
here documents, 257-259
stderr, 256-257
versus pipes (1), 255-256
redirection
loops, 254
multiple, 255
subshells, 253
output redirection
stderr stream, 196-197
stdin stream, 195-196
stdout stream, clobbering, 195
ownership of files, attributes,
220-222

P

p file type identifier, 12
parameter expansion
options, 111-113
variables, 108-113
passing arguments by
reference, 152-154
paste command, scripting
example, 365-366
pasting characters (vi editor),
409
PATH variable
absolute file specification,
206-209
command interpretation
sequence, 264
files, accessing, 207-209
relative file specification,
206-209
shell scripts, executing, 40-41
pattern matching characters,
92-95
patterns in files, searching
(awk command), 237-239
permissions
directories
access values, 16
changing (chmod command),
17-18
execute, 13-15
numeric permissions, 17
read, 13-15
versus file permissions, 15-16
write, 13-15
files
- (dash), 12
attributes, 220-222
filemodes, 11
letter coding system, 11-12

r (read), 11-13
umask values, 222-223
w (write), 11-13
x (execute), 11-13
shell scripts
chmod command, 8-9
execute access, 40
read access, 40
umask, numbering system,
18-19
PID (process ID), 42
pipe symbol (1), process stop-
pages, 47
pipes (1)
coprocessing, 197-203
filters, 166-167
process stoppages, 47
versus output redirection,
255-256
plus sign (+), 96-97
positional parameters, com-
mand-line arguments, setting
(set command), 180-181
pound sign (#)
comments, 19-20
shell script comments, 7-8
PPID (parent process ID), 42,
58
predefined aliases, 23
print class (characters), 91
print command, 189-191
escape sequences, 246-247
scripting example, 366
print statement, debugging
options, 270-271
printf command
format specifiers, 248-250
scripting example, 366-367
processes
background jobs, 45
bg command, 48-49
sleep command, 51
execution process, 42
foreground
%job number, 50
fg command, 49-51
jobs, displaying (jobs command),
47
kill command, 58-62
niceness, 67
nohup command, 62-64
sleep command, 63
starting, 43-45
statistics, viewing (ps com-
mand), 42

read command 427

stopping, 45-46
suspended, 45
viewing (ps command), 57
prompts, $ (dollar sign), 10
ps command (process status),
57
CMD (command), 43
everything option (-e), 58
full option (-f), 58
PID (process ID), 42
PPID (parent process ID), 42, 58
process statistics, viewing, 42
processes, viewing, 57
STIME (start time), 42, 58
TIME (execution time), 43
TTY (terminal type), 42
UID (user ID), 42
UNIX variants
BSD, 57
System V, 57
punct class (characters), 91-92
pwd command, scripting
example, 367
PWD variable, 25

Q

question mark (?), 96-97
queuename, niceness (at
utility), 67
quoting
aggregate quoting
double quotes (%), 106
single quotes (9), 104-105
command substitution
$(command placement), 107
back tics (), 107
escape character
asterisk (*) with escapes, 103
asterisk (*) with no escapes,
102
asterisk (*) with no escapes
from different directory, 103
asterisk (*) with two escapes,
104
line continuation, 106-107
variable values, 76

R

r command, scripting
example, 367-369
read command
options, 192
scripting example, 369

428

read permissions

read permissions
directories, 13-15
files, 12-13
read-only variables, 84
shell scripts, 40
read-prompt command, 192
readonly command, scripting
example, 369-370
recursive functions, 155-156
redirecting output, 228-229
here documents, 257-259
loops, 254
multiple, 255
stderr, 256-257
subshells, 253
versus pipes (1), 255-256
redirection streams
stderr, 194-197
stdin, 194-196
stdout, 194-195
regular expressions, 87
characters
back references, 97-99
pattern matching, 92-96
versus wildcards, 88-90
relative file specification,
accessing, 206-209
replacing characters (vi edi-
tor), 410-412
repository functions, 156-157
reserved words, command
interpretation sequence, 264
retrieving user input in
scripts, 185-192
return command, scripting
example, 370-371
return values (functions)
integer, 148-149
string, 149-150
rm command
files, deleting, 226
scripting example, 371-372
rmdir command, scripting
example, 372
runlevel command, shell
script execution, 41
running job status, 48
runtime errors (traps)
ERR, 276-279
EXIT, 276-278
interrupt example, 276
SIGNAL, 276-277
SPECIAL CASE, 276-280

S

s file type identifier, 12
scheduling jobs
at utility, 67-70
cron command, 64-66
script command
files, creating, 224-225
scripting example, 372-374
scripts, 20-21
alias command example,
322-323
autoload command example,
324-325
benefits, 20-21
bg command example, 325-326
break command example,
326-327
builtin command example,
327-328
case command example, 328-329
cat command example, 329-330
cd command example, 330-331
chmod command example,
331-332
continue command example,
333-335
coprocessing, 197-203
cp command example, 335-336
cut command example, 336-337
date command example, 337-338
debugging
ksh command, 262-270
print statement, 270-271
disown command example,
338-339
documentation support, impor-
tance of, 281
echo command example, 339
ed command example, 339-340
eval command example, 340-341
example, 21
exec command example, 341-342
execution
current shell option, 262-263
subshell option, 262-263
execution prerequisites, 40
PATH variable, 40-41
permissions, 40
runlevel command, 41
exit command example, 342-343
export command example,
343-345
false command example, 345
fc command example, 346-347

fg command example, 347-348
file output options, 182
find command example, 348-349
float command example, 350
flow control
case statement, 128-129
if test, 118-128
looping constructs, 129-140
for command example, 350-351
function command example,
351-352
functions
distinct, 144
repetitive, 144
getconf command example,
352-353
getopts command example, 353
grep command example, 353-354
hash command example,
354-355
hist command example, 355-356
history command example,
356-357
if command example, 357-358
integer command example,
358-359
jobs command example, 359
kill command example, 359-360
1 command example, 360-361
let command example, 361
In command example, 362
mv command example, 363
newgrp command example,
363-364
nohup command example, 364
output, checking against base-
line files, 289
paste command example,
365-366
print command example, 366
printf command example,
366-367
pwd command example, 367
r command example, 367-369
read command example, 369
readonly command example,
369-370
return command example,
370-371
rm command example, 371-372
rmdir command example, 372
script command example,
372-374
select command example, 375
set command example, 375-376

shift command example, 376-377
signals, 52-54
sleep command example,
377-378
sort command example, 378-379
stop command example, 379-380
syntax, self-help options, 282
tail command example, 380
tee command example, 381
test command example, 382
time command example, 382-383
touch command example,
383-384
tr command example, 384
trap command example, 384-385
traps
ERR, 276-279
EXIT, 276-278
interrupt example, 276
SIGNAL, 276-277
SPECIAL CASE, 276, 280
true command example, 385-386
tty command example, 386
type command example, 386-387
typeset command example,
387-389
ulimit command example,
389-390
umask command example, 390
unalias command example,
390-391
uniq command example, 391-393
unset command example, 393
until command example, 394
user input
aberrant input reaction,
193-194
bulletproofing, 282-286
retrieving, 185-192
wait command example, 394-395
wc command example, 395-396
whence command example, 396
while command example, 396
who command example, 398
searching
characters (vi editor), 410-412
files, character patterns (grep
command), 233-234
sed command, file filters,
234-235
sed filter, 165-169
select command, scripting
example, 375
select loop, script example,
135-136

stdout streams, redirection 429

set command
-0 option, 23-24
environment variables, viewing,
26-27
positional parameters,
command-line arguments, 181
scripting example, 375-376
set function, object-oriented
discipline type, 154-155
setting shell variables, 27
shell scripts, 7
#!/bin/ksh, 7-8
benefits, 21
commands, interpretation, 6
comments
! (exclamation point), 7-8
(pound sign), 7-8, 19-20
debugging options, command
interpretation sequence,
264-265
execution prerequisites, 40
PATH variable, 40-41
permissions, 40
runlevel command, 41
file attributes
information, 10
object type identifiers, 12
permissions, 11-13
non-ksh environments, 9-10
peanut analogy, 6
permissions (chmod command),
8-9
simple example, 7
shell variables, 25-26
environment, 26-27
local, 26-27
OLDPWD, 25
PWD, 25
setting, 27
unsetting (unset command), 27
shift command
loops, 137
scripting example, 376-377
short circuiting tests, 175
showmode option (vi editor),
environment settings,
412-415
SIGHUP signal, 52, 59
SIGINT signal, 52, 59
SIGKIL signal, 52, 59
SIGNAL trap, 276-277
signals
control keys
Crtl+\ (quit signal), 55
Crtl+C (interrupt signal), 55

Crtl+D (end-of-file interrupt
signal), 56
Crtl+H (erase character), 56
Crtl+Q (restart output), 56
Crtl+S (stop signal), 56
Crtl+Z (suspend signal), 56
kill command, 58-62
number 1, 62
number 9, 59
number 15, 59
man pages
HP-UX, 53-54
Linux, 53-54
SIGHUP signal, 52, 59
SIGINT signal, 52, 59
SIGKIL signal, 52, 59
SIGQUIT signal, 52, 59
SIGTERM signal, 52, 59
sin function (arithmetic
expression), 114, 162
single quotes (‘), aggregate
quoting, 104-105
sinh function (arithmetic
expression), 114, 162
sleep command
processes, 63
background jobs, 51
scripting example, 377-378
seconds, setting, 63
soliciting user input (umask
value), 188-192
sort command
file filters, 232-233
options, 232
scripting example, 378-379
sort filter, 165-169
space class (characters), 92
SPECIAL CASE trap (ksh
command)
CHLD option, 276
DEBUG option, 276, 280
KEYBD option, 276
sqrt function (arithmetic
expression), 115, 162-163
standard arithmetic expres-
sions, 114
starting processes, 43-45
stderr streams, redirection,
194-197, 256-257
stdin file descriptor, 209-211
stdin streams, redirection,
194-196
stdout file descriptor, 209-211
stdout streams, redirection,
194-195

430

STIME (start time), ps command

STIME (start time), ps com-
mand, 42, 58
stop command, scripting
example, 379-380
stopped job status, 48
stopping processes, 45-46
streams
file descriptors, 194
redirection
stderr, 194-197
stdin, 194-196
stdout, 194-195
string variables, 75
strings
function return values, 149-150
testing, 171-172
subshells, output redirection,
253
suspended processes, 45-46
symbolic links, 214-216
syntax checking, debugging
options
ksh command, 262-270
print statement insertion,
270-271
syntax function, sys_check
script, 315
system admin level
commands, script output,
checking, 289
sys_check script
-h option, executing, 290
-n option, executing, 290-291
baseline files, storage directory,
290
check exist function, 316
cleanup function, 316
first-time run, executing,
292-305
getopts while loop, 317
invalid option, executing, 290
line-numbered version,
executing, 308-315
lines 10-59 comments, 315-316
lines 70-102 comments, 316
lines 108-125 comments, 317
lines 130-140 comments, 317
lines 144-204 comments, 317
lines 207-220 comments, 317
lines 222-264 comments, 318
lines 275-281 comments, 318
lines 285-319 comments, 319
locate command function, 316

second-time run, executing,
305-308
syntax function, 315

T

tail command
file filters, 230
scripting example, 380
tail filter, 165-169, 230
tan function (arithmetic
expression), 115, 162
tanh function (arithmetic
expression), 115, 162
tee command
file filters, 231-232
scripting example, 381
temporary buffers (vi editor),
409-410
temporary files, 239-240
terminals, screen captures
(script command), 224-225
test command, scripting exam-
ple, 382
test conditions
files, 170-171
numbers, 172-174
short circuiting, 175
strings, 171-172
test operators (compound),
175
testing
files, 169-171
numbers, test conditions,
172-174
strings, test conditions, 171-172
TIME (execution time), ps
command, 43
time command, scripting
example, 382-383
touch command
files, creating, 224
scripting example, 383-384
tr command, scripting
example, 384
trap command, scripting
example, 384-385
traps
asynchronous events, 276
ERR, 276-279
EXIT, 276-278
SIGNAL, 276-277
SPECIAL CASE, 276, 280
true command, scripting
example, 385-386

truncated files, 228

tty command, scripting
example, 386

type command, scripting
example, 386-387

typeset +f option, functions,
viewing, 146

typeset —f option, functions,
viewing, 146

typeset command
attributes, 76-78
scripting example, 387-389
variables, defining, 76-78

U

ulimit command, scripting
example, 389-390

umask value, 19
file permissions, 222-223
numbering system, 18-19
scripting example, 390
user default settings, 10
user input, soliciting, 188-192

unalias command, scripting
example, 390-391

uniq command, scripting
example, 391-393

unset command, 84-85
scripting example, 393
shell variables, 27

unset function, object-oriented

discipline type, 154-155
unsetting variables (unset
command), 27, 84-85
until command, scripting
example, 394
until loop, syntax, 131-132
upper class (characters), 92
user input

aberrant script reaction, 193-194

displaying
echo command, 189-191
print command, 189-191
read command, 192
read-prompt command, 192
scripts
bulletproofing, 282-286
retreiving, 185-192
timeout factors, 189
umask value
default settings, 10
numbering system, 18-19
soliciting, 188-192

\'}

valid characters in variables,
74-75
values
aliases, 22-23
arrays
accessing, 83
assigning, 82
variables
accessing, 75
assigning, 76
quoting, 76
variables, 24, 74
accessing, common errors, 78-81
arrays
associative, 81
indexed, 81
assigning, common errors, 78-81
built-in
$! variable, 29
$# variable, 28
$* variable, 28
$0 variable, 28
$2 variable, 29
$@ variable, 29
$8 variable, 29
$n variable, 28
case sensitivity, uppercase
versus lowercase letters, 74
defining (typeset command),
76-78
environment, 29-30, 74
floating point, declaring, 163
name/value pairs, 24-25, 74
naming rules, 74
parameter expansion, 108-113
read-only, 84
shell variables, 25-26
types
number, 75
string, 75
unsetting (unset command),
84-85
valid characters, 74-75
values
accessing, 75
assigning, 76
quoting, 76
varnames, 24-25
varnames, 24-25
verbose mode (ksh command),
scripts, debugging, 265-267

xdigit class (characters)

vi editor

buffers
command placement, 412
multiple, 409-410
temporary, 409-410

command mode, 403-404

commands, 34
environment options, 35
miscellaneous, 416

cursor movement commands,
407-412

environment settings (showmode
option), 412-415

evolution of, 402-403

exiting, 406-407

insert mode, 403-405

last-line mode, 403, 406

sessions
launching, 403-406
system crash recovery, 415

viewing

functions
typeset +f, 146
typeset -f, 146

hidden files, 218-219

history files (history command),
33-34

process statistics (ps command),
42

W-2

wait command, scripting
example, 394-395

wc command
file filters, 165-169, 230
scripting example, 395-396

whence command, scripting
example, 396

while command, scripting
example, 396

while loop, 130-131

who command, scripting
example, 398

wildcards (filename expansion
expressions), 88-90

write permissions
directories, 13-15
files, 12-13

xargs command, 236-237
xdigit class (characters), 92

431

Hey, you've got enough worries.

Don't let IT training be one of them.

Inform!i |
_/ J
r 4

Get on the fast track to I'T training at InformIT,
your total Information Technology training network.

@rm/ﬁ www.informit.com @ QUIE’

B Hundreds of timely articles on dozens of topics ® Discounts on IT books
from all our publishing partners, including Que Publishing ® Free, unabridged
books from the InformIT Free Library ®m “Expert Q&A”—our live, online chat
with IT experts ®m Faster, easier certification and training from our Web- or
classroom-based training programs ® Current IT news ® Software downloads
m Career-enhancing resources

InformlIT is a registered trademark of Pearson. Copyright ©2001 by Pearson.
Copyright ©2001 by Que Corporation.

	Korn Shell Programming by Example
	Copyright
	Contents at a Glance
	Table of Contents
	About the Authors

	Introduction
	Assumptions About the Reader
	What This Book Will Give You
	What This Book Will Not Give You
	Conventions

	Chapter 1 The Environment
	What Is a Shell?
	What Is a Shell Script?
	#!/bin/ksh Explained
	Coming Full Circle—Back to umask
	#—Comments Explained
	The .profile Script
	Aliases
	Ksh Environment Options
	Variables
	Environment File
	History File and Repetition
	What’s Next

	Chapter 2 Process Control
	How to Run a Script
	Jobs and Processes
	Signals
	nohup Explained
	Scheduling Jobs
	What’s Next

	Chapter 3 Variables
	Case Sensitivity
	Valid Characters
	Scalar
	Array
	Read-Only
	Unsetting
	What’s Next

	Chapter 4 Regular Expressions
	Regular Expressions Versus Wildcards
	Character Classes
	Pattern Matching
	Metacharacters
	Back References
	What’s Next

	Chapter 5 Quoting
	Escape Character
	Aggregate Quoting Options
	Line Continuation
	Command Substitution—Two Ways
	Parameter Expansion
	Arithmetic Expansion
	What’s Next

	Chapter 6 Flow Control
	If Test
	Compound If Tests
	case Conditionals
	Looping Constructs
	Loop-Related Commands
	Backup Loop Example
	What’s Next

	Chapter 7 Data Manipulation
	Functions
	Function Programming Details
	Math
	Filters
	Testing Files
	What’s Next

	Chapter 8 Information Passing
	Command-Line Arguments
	User Input
	Redirection
	Coprocess
	What’s Next

	Chapter 9 File and Directory Manipulation
	Paths
	Descriptors
	Special Files
	Links
	Directories
	Hidden Files
	Attributes
	Permissions
	Acceptable Filenames
	Accessing Files
	Filtering
	Using Temporary Files
	What’s Next

	Chapter 10 Output Control
	Echoing Output
	printf
	Output Redirection
	Multiple Output Redirection
	Pipes Versus Redirection
	stderr Redirection
	Here Documents
	What’s Next

	Chapter 11 Diagnostics
	Syntax Checking
	Command Interpretation Sequence
	Verbose Mode
	Execution Trace
	Debugging Hooks
	What’s Next

	Chapter 12 Traps
	Defining and Using Traps
	Documentation Support
	Self-Help Scripts
	Bulletproofing
	What’s Next

	Chapter 13 Pulling It All Together
	The sys_check Script
	First sys_check Run
	Second sys_check Run
	Numbered Version of sys_check Script
	What’s Next

	Appendix A Useful Commands
	alias
	autoload
	bg
	break
	builtin
	case
	cat
	cd
	chmod
	command
	continue
	cp
	cut
	date
	disown
	echo
	ed
	eval
	exec
	exit
	export
	false
	fc
	fg
	find
	float
	for
	function
	getconf
	getopts
	grep
	hash
	hist
	history
	if
	integer
	jobs
	kill
	[
	let
	ln
	mv
	newgrp
	nohup
	:
	paste
	print
	printf
	pwd
	r
	read
	readonly
	return
	rm
	rmdir
	script
	select
	set
	shift
	sleep
	sort
	stop
	tail
	tee
	test
	time
	touch
	tr
	trap
	true
	tty
	type
	typeset
	ulimit
	umask
	unalias
	uniq
	unset
	until
	wait
	wc
	whence
	while
	who
	What’s Next

	Appendix B vi Tutorial
	Where vi Came From
	Starting an Edit Session
	Modes of Operation
	Last-Line Mode
	Exiting from the Editor
	Moving the Cursor
	Deleting
	Cutting and Pasting
	Using Multiple Buffers
	Searching and Replacing
	Changing vi Environment Settings
	Edit Session Recovery
	Miscellaneous Commands
	What’s Next

	Index

