
Springer Books on Professional Computing

Springer Books on Professional Computing

Computer Confidence: A Human Approach to Computers
Bruce D. Sanders. viii, 90 pages. 23 figures. 1984. ISBN 0-387-90917-6

The Unix System Guidebook: An Introductory Guide for Serious Users
Peter P. Silvester. xi, 207 pages. 6 figures. 1984. ISBN 0-387-90906-0

The American Pascal Standard: With Annotations
Henry Ledgard. vii, 97 pages. 1984. ISBN 0-387-91248-7

Modula-2 for Pascal Programmers
Richard Gleaves. x, 145 pages. 18 figures. 1984. ISBN 0-387-96051-1

Ada® in Practice
Christine N. Ausnit, Normam H. Cohen, John B. Goodenough, R. Sterling Eanes.
xv, 192 pages. 79 figures. 1985. ISBN 0-387-96182-8

The World of Programming Languages
Michael Marcotty, Henry Ledgard. xvi, 360 pages. 30 figures. 1986.
ISBN 0-387-96440-1

Taming the Tiger: S~ftware Engineering and Software Economics
Leon S. Levy. viii, 248 pages. 9 figures. 1987. ISBN 0-387-96468-1

Software Engineering in C
Peter A. Darnell, Philip E. Margolis. xv, 612 pages. 62 figures. 1988.
ISBN 0-387-96574-2

The Unix System Guidebook: Second Edition
Peter P. Silvester. xiv, 334 pages. 16 figures. 1988.
ISBN 0-387-96489-4

Peter P. Silvester

The UNIXTMSystem
Guidebook

Second Edition

With 16 Illustrations

Springer-Verlag
New York Berlin Heidelberg
London Paris Tokyo

Peter P. Silvester
Department of Electrical Engineering
McGill University
Montreal, Quebec
Canada H3A 2A 7

Unix is a trademark of Bell Laboratories.

Library of Congress Cataloging in Publication Data
Silvester, Peter P.

The UNIX system guidebook / Peter P. Silvester.-2nd ed.
p. cm. - (Springer books on professional computing)

Bibliography: p.
Includes index.

ISBN-13: 978-0-387-96489-8
DOl: 10.1007/978-1-4612-3724-2

e-ISBN-13: 978-1-4612-3724-2

I. UNIX (Computer operating system) I. Title. II. Series.
QA76.76.063S5585 1988
005.4' 3---dc 19
© 1984, 1988 by Springer-Verlag New York Inc.
Reprint of the original edition 1988

87-32136

All rights reserved. This work may not be translated or copied in whole or in part without
the written permission ofthe publisher (Springer-Verlag, 175 Fifth Avenue, New York, NY
10010, USA), except for brief excerpts in connection with reviews or scholarly analysis.
Use in connection with any form of information storage and retrieval, electronic adaptation,
computer software, or by similar or dissimilar methodology now known or hereafter developed
is forbidden.
The use of general descriptive names, trade names, trademarks, etc. in this publication,
even if the former are not especially identified, is not to be taken as a sign that such names,
as understood by the Trade Marks and Merchandise Marks Act, may accordingly be used
freely by anyone.

Media Conversion by David E. Seham Associaties, Inc., Metuchen, New Jersey.

9 8 7 6 5 4 3 2 1

ISBN-13: 978-0-387-96489-8

e-ISBN-I3: 978-1-4612-3724-2

Preface

Well suited to medium-scale general purpose computing, the Unix time­
sharing operating system is deservedly popular with academic institutions,
research laboratories, and commercial establishments alike. Its user com­
munity, until recently a brotherhood of experienced computer profes­
sionals, it now attracting many people concerned with computer appli­
cations rather than the computer systems themselves. This book is
intended for that new audience, people who have never encountered the
Unix system before but who do have some acquaintance with computing.

While helping beginning users get started is the primary aim of this
book, it is also intended to serve as a handy reference subsequently.
However, it is not designed to replace the definitive Unix system docu­
mentation. Unix operating systems now installed in computing centers,
offices, and personal computers come in three related but distinct breeds:
Seventh Edition Unix, Berkeley 4.2 BSD, and System V. These differ
from each other in details, even though their family resemblance is strong.
This book emphasizes System V, while paying heed to its two popular
cousins. It also includes a few facilities in wide use, but not included in
the normal system releases. Individual details, of course, must be found
in the manuals supplied with each system.

This second edition of Unix System Guidebook is in many ways like
Unix itself. Although it resembles its earlier edition in structure and layout,
it is much bigger and extensively rewritten, even in those parts which
may superficially seem similar. About three quarters ofthe text is entirely
new. Practically every example has been tried out on three systems derived
from Seventh Edition Unix, System V, and 4.2 BSD.

vi Preface

Many people have been instrumental in shaping this book, and all richly
deserve the author's gratitude. Particular thanks are due to David Lowther,
for our many helpful discussions; and to the many students whose sug­
gestions enlivened the task.

Peter P. Silvester

Contents

Preface

Chapter 1. Introduction
A Multimachine Operating System

System Characteristics
Portability

Past and Future
Ancient History
Unix Goes Public
The Modern Age
Versions and Derivatives
Through a Glass Darkly

Getting Acquainted with Unix
Things to Read
Typographic and Lexical Curios
Using This Book

Chapter 2. Getting Started
Communicating with the System

The System Manager
User Names and Passwords
Logging In
Logging Out
The Terminal
Typing at the Keyboard

v

1
I
2
3
4
4
5
6
7
9
9
9

10
II

12
12
13
13
14
15
16
17

viii

Running the System
Commands
Files and File Names
Wild-Card File Names
A Session at the Terminal

Writing and Running Programs
Running Fortran Programs
The vi Text Editor
Creating and Modifying Text
Sample Terminal Session

Chapter 3. Files in the Unix System
The Unix System File Structure

Ordinary Disk Files
Special Files
Directories
Directory Hierarchies
File Names and Paths
Extensions and Suffixes
The System Directory Structure

Working with the File Structure
Changing Directories
File Access Permissions
Keeping Track of Directories
Directory Listings
Altering Access Permissions
Moving and Removing Files
File Location and Identification
Archives and Libraries

Removable File Volumes
Extending the File Structure
The mount and umount Commands
Making New File Structures
Working with Floppy Disks
Restrictions on Removable Volumes
Backup Files

Chapter 4. Unix Command Shells
Issuing Commands

Basic Shell Action
Form of Shell Commands
Multitasking and Waiting

Contents

18
19
20
22
23
24
25
26
27
30

31
31
32
33
33
34
36
37
38
39
39
41
42
44
45
46
47
50
50
50
52
53
54
55
56

59
59
60
61
63

Contents

Standard Files
Pipes and Pipelines

Input Handling by the Shell
Input Buffering
Errors and Error Correction
Characters Given Special Treatment
Protection of Special Characters
Argument Echoing
Resetting Terminal Parameters

The Shell Programming Language
Shell Programs
Shell Scripts
Parameter Passing
Conditional Execution
Testing for Exit Status
Repeated Program Loops
Shell Variables
for .•• do Loops

Running the Unix Shells
Customizing the Bourne Shell
History and the C Shell
Aliases and Commands
Customizing the C Shell
Choosing the Right Shell

Chapter 5. The System Kernel
Nature of the Kernel

Functions of the Kernel
Kernel Structure
System Calls
System Standards

Process Coordination and Management
Process Initiation
A Process Hierarchy
Memory Allocation
Time and Resource Sharing
fork, execl, and walt
Effective User Identification
cron the Clock Daemon

Input and Output Operations
Device Independence
First Level Interrupt Handling
Special Files: Block and Character

ix

64
66
68
68
69
70
71
72
73
75
75
7,7
78
79
81
83
85
87
88
88
90
92
93
95

97
97
98
98
99

100
101
102
103
105
106
108
109
110
111
111
111
112

x

Physical Structure of Files
Sequential and Random Access
Input-Output Buffering
Mechanisms for File Access
File Identification

Chapter 6. Facilities and Utilities
Communications

Mail Services
Sending Mail
Immediate Messages
Two-Way Communication
Logging in Elsewhere

File Management
Copying Files
Display and Examination
Printing Services
File Sorting
Comparing Files
Filtering Files
Controlling File Size

Other General Utilities
Timed Requests
System Documentation

Chapter 7. Editing with vi and ed
Text Editors
U sing the vi Text Editor

Starting and Running vi
The vi Screen Display
Communicating with vi
Editor Commands

Local Commands
Text Insertion
Command Repetition
Erasure and Replacement
Text Markers

Range Commands
Command Structure
Target Types

Contents

113
115
116
117
118

120
120
121
122
123
124
124
126
127
128
130
132
134
136
139
141
141
142

144
145
146
146
148
149
150
152
152
153
154
154
155
156
156

Contents

Range Specification
Moving the Editing Cursor
Deletion of Text
Moving and Copying Text
Changing Text
Delete and Save Buffers

Global Commands in vi
Undoing
Exiting

Using ex Commands from vi
Passing Commands to ex
Reading, Writing, and Filing
Reaching for Another Shell

Customizing vi
Abbreviations
Command Macros
Options
The .exrc File
Text Entry with vi
Computer Programming with vi

The ed Line Editor
Line Numbers
Editor Commands
Pointer Manipulation and Text Examination
Inserting, Appending, and Deleting Text
String Searching and Replacing
Cut and Paste Operations
File Handling by the Editor

Chapter 8. Text Preparation and Processing
Tools and Facilities

Text Files and Processes
Text Formatting Programs
Programs for Writers

The nroff Text Formatter
The nroff Command Language
Basic nroff Requests
Filling and Adjusting
Page Layout
Hyphenation
Margin Characters

xi

158
159
159
160
161
162
163
164
164
165
165
166
167
168
168
169
170
171
172
173
174
175
176
177
178
179
180
181

182
182
183
183
184
185
185
186
187
188
190
191

xii

Using nroff to Advantage
Defining and Using Macros
Traps, Headers, and Page Numbers
Strings and Number Registers
Diversions
Standard Macro Libraries

Other Text Formatting Programs
The troff Text Formatter
Equation Processing with eqn and neqn
Table Manipulation with tbl

Spelling and Typographic Errors
The Dictionary Check
Running spell
Typographic Errors

style and diction
Readability Grades
Sentence Analysis
Word Usage
Phrasing and Style
Practical Use of style and diction

Chapter 9. Languages and Compilers
Programming Languages Available

Structured Languages
Fortran
A Veritable Babel

Fortran 77
The m Fortran 77 Compiler
Non-Unix Fortran Compilers
Running Fortran Programs
Textual Extensions to Fortran 77
Extensions to Language Scope
Fortran 77 Input and Output
Fortran 77 Rule Violations

Ratfor: A Rational Fortran
The ratfor Preprocessor
Program Text Formatting in Ratfor
Statement Groups and if Statements
Program Loops in Ratfor
Text Insertions and Substitutions
Ambiguity and Duplication
Using ratfor

Contents

192
193
194
1%
198
199
200
200
201
202
204
204
205
207
207
207
208
210
211
212

215
215
216
216
217
217
218
218
219
220
221
223
224
225
225
226
227
228
229
231
231

Contents

Reverse Processing with struct
Non-Unix Ratfor

The C Language
General Characteristics of C
Structure of C Programs
Constants, Variables, and Pointers
Arithmetic and Logical Operations
Structures
Input and Output with C
The C Preprocessor

Compiling, Assembling, and Loading
The Id Loader
The cc and m Commands
The Process Option Hierarchy
Program Archives

Berkeley Pascal
Structure of the Pascal System
Interpreted Pascal
Compiled Pascal
Error Flagging
Execution Profiling
Program Tidying

Basic
Expressions, Names, and Statements
Running bas

Assembler Language Programming
Assemblers under Unix

Chapter 10. A Selected Command Set
Definitions of Commands
A Selection of Commands
Summary of Common Commands

Chapter 11. An Annotated Bibliography
Books

Elementary Books
General Books
Manuals and Standards
Specialized Books
Books on Allied Subjects

xiii

232
232
233
234
234
237
239
241
242
242
244
244
245
247
248
248
249
249
251
252
253
254
254
255
255
256
256

258
258
259
298

305
305
306
307
310
313
316

xiv

Periodicals
Articles

Appendix. The ASCII Character Set
Character Names

Subject Index

Command Index

Contents

317
318

321
322

325

333

Chapter 1

Introduction

The Unix time-sharing system is rapidly becoming the most popular com­
puter operating system ever designed. its unique popularity may be the
result of portability: Unix systems are available for various different com­
puters, while practically all other operating systems are tied to specific
machines. Whether for this reason or another, the Unix system is tending
to become universal, much as Fortran became the universal language in
its day. And just as Fortran influenced the style of other programming
languages, so Unix software characteristics are becoming visible-both
by emulation and deliberate avoidance-in other operating systems. For
computer users, some acquaintance with the Unix system is therefore
taking on increasing importance.

A Multimachine Operating System

Although it was originally intended for the PDP-II family of computers,
Unix software has been recreated for use on many other machines both
smaller and larger. There now exist versions of the Unix system, or other
operating systems which closely resemble it, for many widely used small
computers based on 16-bit microprocessor chips. Upmarket from the PDP-
11, Unix systems, in some cases several, exist for all Hewlett-Packard
computers, for the VAX-II family, and many other-indeed probably
most-large minicomputers. Large-scale individual workstations such as

2 I. Introduction

the Sun use Unix either exclusively or as an option. Other versions run
on large mainframe computers like the Amdahl. At the opposite end of
the computer spectrum, Unix or Unix~like operating systems are available
for personal computers such as the IBM PC series.

System Characteristics

Three main reasons are usually cited for the current popularity of Unix
and Unix-like operating systems with users. First, they provide a simple
and logically almost consistent command language through which the user
can interact with the system; a language easy to learn, fairly easy to un­
derstand, and not very easy to forget. Second, Unix systems provide a
very wide variety of software tools and services, so that program devel­
opment can progress rapidly. Third, and perhaps most important, is that
both system services and user programs are insured against too rapid ob­
solescence, by being nearly machine independent. Programs can be moved
to new computers along with the operating system, while new system
services become available on practically all versions of the Unix system
at once.

Traditionally, many computer manufacturers have regarded operating
system software as an unpleasant hurdle to be overcome before a new
machine could be marketed. The relative portability of the Unix system
has endeared it to hardware makers, for computers can be designed to
run under this operating system by investing only a modest amount of
software effort. New hardware can be made ready for the market not only
quickly, but with all the sureness of an already accepted product. To the
user, a knowledge of Unix software structure and command language is
of long-term value, for it is very likely that his next computer will employ
a close cousin of the same system. Relative machine independence also
enriches the range of general utility programs available; because programs
can migrate to new computers along with the operating system, devel­
opment of good general-purpose programs becomes attractive.

Not surprisingly, the Unix operating system is less than perfect. Its
major shortcoming is that it assumes a friendly user community. There
are ways that one user can cause the system to halt, or to run very slowly;
such situations are perceived by most users as a nuisance to be laughed
off if they happen occasionally on a computer shared by three people in
the same terminal room, but they can become major gripes among a
hundred strangers. Next, many of the command structures and conven­
tions of Unix bear the marks of having been developed by a circle of
friends, without much regard for subsequent distribution to others. For
instance, many commands are abbreviated to extremely short forms and
appear easy to confuse with others. Finally, protection against operator
error is imperfect; certain users can even accidentally destroy all files on
the system, including the operating system itself. This latter disadvantage

A Multimachine Operating System 3

can be serious, especially in commercial or financial applications. But
fortunately it only matters to highly experienced users, who have gradually
acquired a knowledge of pretty well everything the system can do. Novices
are unlikely ever to have access to quite so much destructive power.

Portability

Because Unix programs are almost entirely written in a high-level pro­
gramming language called C, this system is practically guaranteed to be­
come available on many future computers as well as already existing ones.
To install a Unix system on yet another computer, two main things are
necessary: a C compiler and a modest amount of machine-dependent cod­
ing. A compiler for the C language is always required, to permit translating
the Unix operating system itself to the native language of the new machine.
Construction of such a compiler generally takes a few man-months or
perhaps a man-year of programming effort. In addition to the compiler,
transporting Unix to another machine requires a few machine-dependent
input-output hardware service routines. These must necessarily be written
in the native language of the new machine, so that they are strictly locked
to that computer. Fortunately, they are usually short so that not much
programming effort is needed. U suaUy, a matter of man-weeks or, at worst,
man-months, is involved. These amounts of time are tiny when compared
to the investment required to design and write a new operating system.
The initial effort that produced the Unix kernel amounted to two or three
man-years, but the addition of the many utility programs that make Unix
systems useful has taken much, much more.

Most Unix system services now available-editors, compilers, file
sorting and merging programs, and much else-are written in high-level
languages, with C the most widely used language by far. New utility pro­
grams constructed by the now widespread Unix user community are also
written in high-level languages, C being again the most frequent choice.
As a result, the new programs can be incorporated in almost any Unix
installation without alteration.

Portability of source programs from one Unix version to another un­
fortunately does not extend to the binary modules ordinarily delivered to
end users by software suppliers. Executable program modules are nec­
essarily compiled for one type of machine so they are clearly not usable
on a different hardware configuration. But worse is yet to come: often
several variants of Unix are available for a particular machine, over half
a dozen different ones for the IBM PC. Program modules runnable under
one are not normally runnable under another. Every implementor has at­
tempted to produce the best possible software, curing known problems
and introducing desirable enhancements. Unfortunately, the tesult oc­
casionally verges on a mild form of chaos. Standardization is clearly de­
sirable and there have been two attempts to define a standard, one by the

4 1. Introduction

IEEE and the other by AT&T. The IEEE standard is a far-reaching effort
which very likely will lead to national and international standards in a few
years. The AT&T approach is more pragmatic: it consists of publishing
a precisely detailed statement, nearly 700 pages of it, on its System V. It
is likely that these efforts at standardization will enjoy widespread support
and will improve the portability of Unix software further.

Past and Future

Although it has gained wide popularity only recently, the Unix system is
mature software, the product of years of testing and rewriting. To assess
its probable future, its history may deserve at least brief mention.

Ancient History

The first Unix system was written by D. M. Ritchie and K. Thompson
at Bell Laboratories some time in 1969, to run on the now all but forgotten
PDP-7 and PDP-9 computers. Its authors' primary objective was to pro­
duce a system convenient for inexperienced users; in this they succeeded
at least well enough to be encouraged to construct an improved version
to run on a much more modem machine, the PDP-1I/20. It became op­
erative in 1971 and was accompanied by a booklet that subsequently turned
out to be the first, but far from the last, edition· of the Unix Programmer's
Manual. The second edition appeared in 1972; it introduced the notion
and mechanism of interprocess pipes and therewith assumed more or less
the external appearance that all Unix systems have presented to the user
since. Because the PDP-II family of computers became enormously pop­
ular in the 1970s, a third version of Unix, again fully rewritten, appeared
in due course; it supported the PDP-1l/34, 140, 145, 160, and /70. By 1973
the system authors had abandoned assembler language coding, for it was
becoming clear that transportability from machine to machine would be
easiest to achieve if a major part (ideally, but impossibly, all) of the system
were written in a high-level language. A language called C was developed
for the purpose. C remains the principal language of the Unix operating
system; it is well suited to writing operating systems, while retaining most
other characteristics of good high-level languages such as Fortran or Pas­
cal. C res.embles Pascal in many respects, but it does allow programming
a little closer to the machine register level-as if Pascal were to recognize
the existence of registers and bits! The structure and capabilities of C thus
allowed building the Unix system in a fashion which made it largely in­
dependent of the machine hardware structure: at least transportable, if
not actually portable.

Past and Future 5

The name Unix appears to have been coined by Kernighan and was
the accepted name of this system by some time in 1970. It appears to
have originated as a diminutive of Multics, the name of a large multiuser
system then in use by several of the members of the original Unix pro­
gramming group. It has been suspected (probably wrongly) of having
served initially as a deliberately misleading cover name, for Unix hardly
sounds a likely name for a multiuser system!

A paper on the Unix operating system was published by Ritchie and
Thompson in 1974, in the Communications of the Association for Com­
puting Machinery. This paper quickly became a defining landmark for the
system. It outlined the basic system structure and methods of work; al­
though these have been refined considerably since that time, the basic
notions have remained almost unchanged. What has changed, to be sure,
is the range of system services and utilities available. Unix probably con­
tains a better selection of software tools than any other operating system.
Not only is their range wide, but they have for the most part been written
to go together well. Four years later, in July 1978, the Bell System Tech­
nical Journal produced a special issue on Unix, thereby forever estab­
lishing the system structure as set out in the Ritchie and Thompson paper.

Unix Goes Public

Even before the landmark paper of Ritchie and Thompson, there were
persistent rumors about the interesting new system being developed at
Bell Laboratories. Mter its publication interest became widespread, par­
ticularly in the academic community. Bell Laboratories therefore took the
decision to release the then current version to universities practically free
of charge, with the proviso that it be used for nonprofit academic work
only. That system, first released in 1975, was popularly though somewhat
incorrectly referred to as Version 6, or more correctly as Sixth Edition
Unix. The number in either case refers to the system manuals, which had
by that time reached their sixth edition.

The seventh edition, widely called Version 7 or V7, of the system was
released to universities in 1979, although it is known to have been op­
erational within Bell Laboratories as early as 1977. The delay was probably
occasioned by the preparation of the Seventh Edition of the Unix Pro­
grammer's Manual, a book about the size and shape of the Manhattan
telephone directory! This version came to be known as the Unix system
to thousands of computer science students, for it rapidly spread to prac­
tically all computers in the PDP-ll family, including the PDP-1l/23, 124,
144, and other latter-day additions.

A significant and continuing influence on the course of Unix software
development came in the late 1970s: a major development project was
begun at the University of California, Berkeley. It produced another se­
quence of Unix systems. The Berkeley Unix systems adhered closely to

6 I. Introduction

the spirit and objectives of their Bell Laboratories ancestors but introduced
substantial extensions and improvements. Many of the improvements were
internal, invisible to the casual user. Others, however, are immediately
visible. They include the vi text editor and an alternative command in­
terpreter, support for the Pascal and Lisp programming languages, and
Ingres, a now widespread data base management system.

The Modem Age

Unix systems for computers other than the PDP-ll started appearing in
the late 1970s. A version for the Interdata 8/32 computer was undertaken
by Ritchie and Johnson as early as 1976, and one for the V AX-ll/780
came not long thereafter. Several versions for other processors, notably
the model 68000 and Z8000 16-bit microprocessor chips and thus for the
many computers built around them, followed. By 1983, quite a few smaller
manufacturers had chosen to design computers suitable for running Unix,
rather than to look for operating systems appropriate to their hardware.
The IBM Systeml34, intended for small and medium business data pro­
cessing, was supplied with Unix under license from AT&T, though the
potential rivalry of AT&T and IBM in both the computer and commu­
nications businesses must have caused considerable worry on both sides.
By 1984, IBM even offered a modified Seventh Edition for its extremely
successful PC personal computer under the name of PCIlX; to round out
matters, it was followed by VM/IX for large IBM mainframes.

Medium-sized computer companies took to the Unix system rapidly in
the 1980s and to small companies it must have come as a godsend. Gone
were the worries about software compatibility, of having to persuade cus­
tomers to accept yet another new operating system-well, nearly gone,
anyhow. The initial acceptance of Unix by large computer manufacturers,
on the other hand, was slow and grudging. After all, the system was owned
by a potential commercial rival! Laying aside doubts and hesitations,
Hewlett-Packard formally adopted HP-UX (yet another name for Unix!)
in 1983 as the company's main operating system, the same year as Digital
Equipment Corporation began to furnish Ultrix on its V AX range as an
alternative to its own proprietary operating systems. After some hesitation,
IBM took up Unix in the scientific computing area in 1986, choosing it
as the only operating system supplied with the Personal Computer
PCIRT, a large and powerful machine despite its modest name.

Between 1978 and 1982, other operating systems similar to Unix ap­
peared, developed independently but with a remarkable similarity to Ver­
sion 7 (and the predecessor Version 6) Unix systems. Some resemble Ver­
sion 7 only in what the system looks like to the user at the terminal. In
others, the similarity extends to such internal details as file formats and
system calls, so that not only programs but even disk or tape files can be
moved between systems. There have been a few Unix look-alike systems

Past and Future 7

for computers based on 8-bit microprocessor chips, but Unix is really too
large to fit into their restricted memory and slow speed; most look-alikes
are intended for computers that employ 16-bit processors.

Until 1980-1981, the creation and marketing oflook-alike Unix systems
were lent strong encouragement by the fact that the Bell Laboratories
Unix system itself was, for all practical purposes, available to outsiders
only for academic research and teaching use. Look-alike systems therefore
appeared to fill the commercial gap. For example, the Coherent, Idris,
and Unix systems are independent, but look similar to the user, and are
largely compatible with each other. Around 1981, there was a change in
distribution policy; although the Unix name has been retained exclusively
for use by AT&T, the Unix operating system has been made available
commercially through licenses granted to various independent repackagers
and to computer manufacturers. Unix is therefore aVailable under a variety
of computer makers' names such as HP-UX, Zeus, or Ultrix, as well as
under names given to it by repackagers: Xenix, Venix, Unisis, Unity, and
many others. These are not look-alikes, but Unix itself dressed in a com­
mercial suit. They are not only entirely compatible with Unix systems;
they are Unix systems. Most such derivative systems are enhanced, mod­
ified, or adapted to perform well in particular environments.

Both the independently developed systems and the licensed variants
of the original appear on the market under names other than Unix. Dif­
ferent names are used for both commercial and legal reasons, among which
trademark protection probably ranks high. With Unix systems coming
into widespread use, and commercially available almost everywhere short
of drugstore counters, AT&T is presumably concerned lest its trademark
pass into the public domain through excessively great success-along with
aspirin, bakelite, and many others. At present, there is no generic name
to cover Unix, Xenix, Coherent, Onyx, Zeus, Omnix, Cromix, Flex,
Qunix, ... and much of the computer press refers to them all as "Unix­
like operating systems".

Versions and Derivatives

During the 1970s AT&T was thought to be a holding company for telephone
utilities, which in many respects is precisely what it was. Computer op­
erating systems were seen as an incidental though important part of the
telephone business, not as products in their own right. Copies of the Sixth
Edition (popularly called Version 6) were therefore released to universities,
sparking among academics the interest in Unix which has remained alive
ever since. It was distributed as modifiable source code, so that almost
every academic institution with a Unix license actually used a maverick
"improved" version rather than the original Bell Laboratories system.
The Seventh Edition, which came later with various improvements over
its predecessor, was still distributed as source code, so it too formed the

8 I. Introduction

starting point for new offshoots. Careful control over the terms of user
licenses by AT&T, however, prevented the many maverick versions from
travelling very far. The only derivative versions to reach a wide audience
were those emanating from the Berkeley Unix project whose products
were again disseminated to universities but not released for commercial
use. The most commonly known Berkeley release goes by the curious
name 4.2 BSD; the letters are said to stand for Berkeley Software Dis­
tribution.

While the Berkeley project gained speed and spawned a whole new
breed of system programmers, the AT&T Bell organization, well aware
ofthe potential commercial value of Unix, went to work on a new version
of Unix which eventually came to be System III. It was the first version
not to be distributed to academic institutions for study and emulation.
System III was followed quickly by System V and then, as illustrated in
the rough sketch of a Unix family tree in Figure 1.1, by its Release 2.
This release is also called System V.2 (pronounced five-dot-two), pre­
sumably as the result of someone's inability to tell arabic numerals from
roman. The most noteworthy children of System III include the near­
abortive PC/IX system and Xenix 3. Latterly, many ofthe derivative sys­
tem suppliers and repackagers have adopted numbering schemes paral­
lelling those of AT&T, so that system names are suggestive of their origins,
as, for example, Venix 7 and Venix V. The naming of systems, however,
is no less complicated than the naming of wines-except that wines are
at least partly controlled by governments and viticultural councils, but no
such supervising authority exists for software. To illustrate the pitfalls for

Version 6

Version 7

System III

System V

?????

Commercial
versions

Commercial
versions

FIGURE 1.1. Approximate family tree of Unix systemS.

Getting Acquainted with Unix 9

the unwary: one look-alike system not derived from any version of Unix
has chosen to call itself Version 4.2. Caveat emptor!

Through a Glass Darkly

Will the Unix operating system prove sufficiently long-lived and suffi­
ciently universal to merit study and practice? No one can tell for sure,
but since Unix installations now number in the millions the answer may
already be yes. This system is no longer new; it has been seasoned by
more than a decade of development, through several stages, and has settled
down. There is an American national standard (and quite possibly an ISO
standard) in prospect. The future of Unix systems in the 1980s and 1990s
may well resemble that of the Fortran language in the 1960s and 1970s.
Both Unix and Fortran were initially developed with particular computer
systems in mind but quickly outgrew their original hosts. Both suffer from
structural and logical deficiencies, which seemed minor or unimportant
at the outset but became irksome after the first decade. Both have had
to put up with numerous well-meant but nonstandard and standard-de­
stroying improvements. Both seem better suited to their tasks (warts and
all) than any currently available competitor. Both may therefore live on
long after better languages and more portable systems become available­
like the English language, with its constrictive syntax, underhandedly dif­
ficult grammar, incomprehensible spelling, ... and two or three billion peo­
ple who continue to use it simply because they all understand it.

Getting Acquainted with Unix

The Unix system is not hard to learn and fairly easy to get used to. Until
serious commercial distribution began in the early 1980s, however, be­
ginning users experienced some difficulty because most members of the
then existing user community were in fact system programmers and system
modifiers, sometimes unable to grasp that there actually could be people
who just wanted to use Unix, not to improve it. That day, however, has
passed. Concerns for the intending Unix user today are a bit different:
they include choosing some reading material to get started with and learn­
ing to live with the idiosyncrasies of the system.

Things to Read

Until about 1982-1983, little reading material was available to provide a
simple introduction to the Unix operating system. Most beginners were

10 I. Introduction

expected to cut their teeth on photocopies of the admittedly excellent
brief articles that survey the system characteristics-and by perusal of
the Unix Programmer's Manual, which resembles the telephone directory
of a major city. Indeed, it is the definitive work, but hardly easy for the
beginner.

With the growing popularity of Unix systems, a substantial number of
textbooks and descriptions of a tutorial nature have appeared. These tend
to be a good deal more readable than the full manual and should constitute
the major reference point for the beginner. Others treat specialized topics
within Unix, like system management, text editing, or systems program­
ming. A bibliography listing most of these, annotated to give some i~ea
of their contents, appears at the end of this book.

The Unix Programmer's Manual is the defining document of the system.
It is normally furnished both as paper copy and in machine-readable form.
Provision is made in Unix systems for keeping much of the user docu­
mentation available as disk files, so that users can read particular portions
of the manual without having access to a printed copy or without even
needing one. Keeping the system manuals in computer-readable form,
and therefore easy to modify, is vital for most Unix installations, for there
are probably no two installations exactly alike. While every system man­
ager strives to keep documentation current, in many places no up-to-date
paper manual exists; the disk-file version is the only true version.

Typographic and Lexical Curios

The words used in Unix system commands, the ways words are abbre­
viated, and occasionally the ways they are spelled are a bit idiosyncratic.
Presumably, this is the result of having been developed initially within a
circle offriends prepared to put up with each other's foibles. Some users
take to the strange habits of Unix like a duck takes to water; others show
enthusiasm more appropriate to a cat. There is no choice; Unix commands
come the way they come.

Lowercase letters are used almost exclusively in Unix system com­
mands, naming conventions, and programming languages. Although they
are comparatively rare, exceptions do exist where uppercase characters
are used instead. Thus, it is not simply a matter of using lower case instead
of upper; both are used, but for some reason capital letters occur much
less frequently than they do in English. A particularly irksome idiosyncrasy
to some is the failure to use initial capitals even where the conventions
of English demand it. The author, for example, will probably never grow
completely accustomed to identifying himself to the system as peter,
without a capital P.

The almost, but not quite, total use of lower case causes certain prob­
lems when documentation is written in natural languages. For example,
the Unix text editor program is called vi, and the phototypesetter program

Getting Acquainted with Unix 11

has the name trotT. (Not unreasonably, some users would have preferred
mnemonically more useful names, e.g., Editor and Phototype.) They are
never called Vi and Troff, because the system regards the letters V and
vas simply two different, unrelated, characters. But what should one do
when a sentence begins "trotT is a program for ... "? In this book, the
Unix program naming convention is followed strictly: program names exist
in one case only, so that names in lower case do not acquire initial capitals
even if they occur at the beginnings of sentences. Much Unix system
literature, occasionally even including the system manuals, is somewhat
inconsistent (and confusing) about this point of usage.

Word usage in the Unix system shows up curious details rooted in
history and often difficult for the newcomer. For example, the word
"print" is used almost everywhere in the manuals to imply that output
is to be sent to the user terminal. That verb may have been accurate at
some past time, but today few users employ printing terminals; display
screens are much more common. (The verb "print" to most computer
users implies use of a line printer, not the user terminal.) As another ex­
ample, the verbs "move" and "remove", when referring to files, are em­
ployed to mean "rename" and "delete". The reference here is to the
software technique employed: deletion is achieved by removing a linking
pointer.

U sing This Book

The best way of learning to use an operating system is to use it. To allow
the beginner to learn in this natural way, the first (short) part of this book
contains an introduction to the system and its use, in brief and simple
form. It is sufficiently concise to be usable while sitting at the terminal,
trying out the commands. The main part of this book is longer. It is in­
tended for reading away from the terminal and for reference; it therefore
consists of a few explanatory chapters, followed by a summary description
of the more important system commands.

Chapter 2

Getting Started

The Unix operating system is generally considered reasonably easy to
learn and quite easy to use. But even the easiest operating system takes
a little getting used to, especially at the very start when nothing looks
even remotely familiar and every response from the system appears
vaguely ominous-if indeed the system responds at all! Most computer
users dislike the first hour or so spent with a new operating system, when
the initial difficulties of a new command language, new name conventions,
and new protocol rules all appear together. This chapter is intended to
provide a launching pad for the novice user and to help overcome the
problems of that first hour. It is brief enough to be read at the terminal,
trying out the various commands on the spot. Or it can be read at another
time and place, in preparation for that first hour.

Communicating with the System

Several users can be logged in to the same computer at the same time
under a Unix time-sharing operating system. Learning to use Unix there­
fore begins with becoming an authorized system user, then acquiring fa­
miliarity with the procedures for communication with the system. Pro­
cedures and practices for doing so are described very briefly in this chapter,
by way of a rapid introduction and overview. Details then follow else­
where.

Communicating with the System 13

The System Manager

To keep track of users and their needs, every Unix system has a human
system manager. In large computing centers, the system manager may
well consist of a whole office establishment with receptionists and sec­
retaries to cater to the needs of milling thousands. In small installations,
an experienced user is often conscripted to fill this role. The choice gen­
erally falls on someone who happens to be particularly knowledgeable
about the system and who is prepared to undertake the bureaucratic chores
of management willingly. Whoever he may be, this individual authorizes
users, issues passwords and user group affiliations, creates ftle directories,
and takes care of all the other administrative needs that always arise when
numerous people attempt to share the same computer. The intending user's
first requirement is therefore a visit to the system manager, not only to
obtain the necessary authorizations but also to obtain a briefing on the
social customs of the establishment.

Although the official functions of the system manager form the most
visible point of contact for the new user, the manager also has various
duties of a more technical nature. An important one is system backup, a
detail even neophyte users ought to know about early along. Computers
do malfunction from time to time, so in most installations the manager,
as part of everyday housekeeping routines, makes a complete copy of
everything in the system at regular intervals. If machine problems, power
outages, software failures, or other forms of disaster should strike, the
system can be restarted and all ftles restored as they were at the time of
the last backup. Who does the backing up? and how often? are questions
to be asked of the system manager; how reliably they are done might be
better asked of some other users.

User Names and Passwords

The Unix system manager issues every user a login name (also called the
user id) and (on most systems) a password. The login name isjust a name
in the ordinary sense of the word, except for being limited in length (usually
to eight characters). In many installations, it is actually the user's real
name; in any case, it is publicly known. The password, on the other hand,
is only known to the user and can be changed by the user himself at any
time so as to maintain confidentiality. System managers often assign new
users a blank password (i.e., no password at all) or a string of nonsense
characters like zyS3qP, in the expectation that the user's first action on
the system will be to change to a more easily remembered password.
Passwords really are secret; even the system manager cannot find out
what the user's current password is. Like all other password-based security
systems, Unix presents the user with an irresolvable dilemma: it seems
desirable to write down the password in lots of accessible places (to avoid

14 2. Getting Started

forgetting it), yet it is undesirable to have it written down at all (to keep
it secret).

Users of Unix systems can communicate with each other over the sys­
tem through various message-passing techniques, described later in this
book. The user login name serves as the address for all communications.
Wherever there is any choice of login name, as there is in most instal­
lations, it pays to use a name that almost everybody else can understand
and remember. Just the opposite holds for passwords: it is not a good
idea to employ easily guessed items like birthdate, telephone number, or
spouse's first name.

Passwords and user login names may make use of both uppercase and
lowercase characters. Here, as elsewhere in the Unix system, lowercase
characters are considered to be totally distinct from their uppercase
brothers; Unix has no idea at all that there is any relationship between
the letters X and x. The user passwords Butch and butch are therefore
different and will not be taken as substitutes for one another. Some Unix
systems do not believe in uppercase characters in user names and every­
thing is done in lower case only. In any case, the uppersllowers distinction
must be observed carefully in all login ~ames and passwords and indeed
everywhere throughout the Unix system.

In many Unix installations, the system manager also assigns a user
group affiliation to each user. User groups are generally just what the
word implies: groups of people associated in common goals or common
administrative frameworks. In industrial programming environments,
groups are usually people working on the same projects. In an educational
setting, a user group might be all the students in a particular course.
Broadly speaking, groups are people needing access to a common pool
of files.

Logging In

When a Unix system is started up, all the terminals connected to it display
a login prompt and wait for users to log in. The prompt is displayed at
the left margin of the terminal. It may take different forms in different
systems, sometimes even including a message for the day or recent system
news. In the simplest version, it consists of the request

login:

To log in, a valid user name is typed, all lowercase in most systems (it
does look strange, but it works), followed by a carriage return. The system
will then ask for the password, which is typed exactly as agreed with the
system manager-in upper or lower case, or a mixture-again followed
by a carriage return. On most terminals, the password will refuse to show

Communicating with the System 15

on the screen or paper, to guard its secrecy, but it will be received by the
system all the same. If the password is correct, the login attempt is ac­
cepted and the user's terminal is permitted access to the system itself. If
the password is not correct, or the user name is not valid, access to the
system is refused. Unix does not tell the user whether it objected to the
password or the login name; it merely refuses.

Once the login procedure is complete, Unix signals the user that it is
ready to accept commands, by placing a brief message called the shell
prompt at the left margin. (Its strange name comes about because the
program that actually sends out this character is called shell). The shell
prompt, which often consists of just a single character, can be changed
easily and therefore varies from installation to installation. In most sys­
tems, users can even adopt individual shell prompts. Historically, the dollar
sign $ has been commonly used and the percent sign % is another popular
choice. In this book, the dollar sign is used, except where it is necessary
to distinguish between two different situations.

Many system managers like to have messages of general interest
broadcast as part of the login procedure. Such messages follow validation
of the user password and precede the first shell prompt.

Logging Out

Logging out is probably the most important single activity in learning to
use a new operating system-just as the beginning pilot must master land­
ing at an early time. Most operating system designers have tried to make
the task easy by providing a command such as "bye" or "exit". Not so
Unix!

Logging out of most Unix systems is done by typing control-D in re­
sponse to the shell prompt, i.e., by striking the D key while holding down
the CONTROL key on the terminal. Like the SHIFf key, the CONTROL key
by itself does nothing; it only modifies the behavior of other keys. Control­
D is usually written as AD or i D in books on Unix; it normally does not
echo on the terminal screen as anything at all. Although some systems
may send out a brief message to indicate disconnection, the usual response
to control-D is simply

login:

showing that the system has disconnected itself, is not talking to anybody,
but is prepared to initiate a new login sequence.

The idiosyncratic and unexpected logout procedure of Unix may seem
irrational at first glance, but it makes sense after a certain fashion. The
control-D character (ASCII octal 004) is employed almost everywhere in
Unix software as an end-of-transmission mark. Many utility programs that

16 2. Getting Started

expect input from the keyboard use AD in this way. Consistent with this
usage, a control-D sent from the terminal is taken to mean "end of trans­
mission from the keyboard"-in other words, "good-bye". Despite its
consistency with the rest of Unix, this scheme has two unfortunate flaws.
First, some users find it all a little strange and certainly not easy to re­
member. Second, most modem terminals are equipped with a feature called
auto-repeat, meaning that they will keep sending the same character over
and over again as long as a key remains pressed. Slight carelessness with
the keyboard can therefore result in sending not just one control-D but
several, so the user intending only to leave a utility program may suddenly
and unexpectedly end up logged out as well!

A note to the unwary: There do exist a few Unix systems which accept
control-Z instead of control-D as the end-of-activity marker. All the above
comments still apply, since control-Z is used for everything in such cases.

Because the control-D logout procedure is hardly obvious and can be
a nuisance, one popular category of Unix installations provides a logout
command, called simply "logout". There are also some mavericks which
use "off', "goodbye", "arrivederci" , ... or whatever the imagination
of the local programming support staff dictates. Attempts to log out using
control-D are then usually refused.

Whether logging out is done by a single control-D or by a logout com­
mand, escaping from individual Unix programs is normally effected by
typing control-D or DELETE. The control-D keystroke signals that no more
keyboard input will be sent, a clear signal to most programs that activity
should continue to completion. The DELETE keystroke, on the other hand,
is an emergency brake: it stops anything and stops it immediately, without
enquiring about possible consequences. Beginning users sometimes ex­
perience the dreadful situation of getting mired in a program, unable to
escape and unable to log out. Under Unix, a DELETE keystroke, perhaps
interspersed with a few control-Ds, ought to do the trick in a hurry.

The Terminal

One striking and unusual fact about Unix commands is that Unix insists
on working with lowercase characters even where the normal conventions
of English clearly demand capitals (e.g., user names, initial words of com­
mand sentences). However, uppercase characters are used in some cases.
A terminal capable of using lower as well as upper case is therefore es­
sential. Some versions of Unix do provide for automatic character con­
version from upper to lower case, so that capitals-only terminals can be
used; but these are messy at best. Anyhow, there are not many modem
terminals incapable of handling lowercase characters!

Practically every terminal is equipped with a whole row of little switches
somewhere. These switches set the various terminal characteristics: com-

Communicating with the System 17

munication speed (baud rate), fuU/half duplex communication, upperllower
case, treatment of line terminators, tab characters, and a host of other
matters. Of course, the switches must be set up in precisely the way the
system expects. If they are not, logging in may be impossible or may
result in incomprehensible strings of apparently random characters on the
screen. Because there are many types of terminal and many variations
on the acceptable switch settings for each, it is almost impossible to give
any firm rules-except that if the terminal is used only for communicating
with the Unix system, it is likely to be set up correctly and to remain so,
since nobody has an interest in altering the switch settings. Problems or­
dinarily arise only in computer installations where the same terminal is
used with several different operating systems.

Sometimes it happens that resetting the terminal switches has no effect
at all. In most new, modern, microprocessor-controlled terminals, the
switches do not control any electronic circuits directly; instead, the mi­
croprocessor reads the switch settings when it is first turned on and then
controls all terminal functions in accordance with the switch settings as
they were at the time they were read. Changing switch settings alters
nothing unless the microprocessor is forced to read the switch settings
again. The easiest way of doing so is to turn the terminal power off and
on again after a few seconds, whenever any switch setting is altered.

The Unix internal software maintains a record of the characteristics of
each terminal, a record which can be changed by users and in some cir­
cumstances by programs. Obviously, the characteristics that the system
has on record must correspond to the actual nature of the terminal. If a
terminal refuses to log in, then either the terminal switches are set wrong
or the operating system records are wrong. Sending a control-D or two
should reset the internal system records and allow logging in to proceed;
switch-twiddling should only be resorted to in extreme cases.

Typing at the Keyboard

Characters entered at the keyboard are not immediately acted upon; they
are merely stored until a carriage return is typed (with the RETURN key)
to signify termination of the line. The Unix system only attempts to read
and understand a keyboard line once it has been terminated. This allows
typing mistakes to be corrected on the spot.

If a wrong character is typed at the keyboard, it can be corrected with
the BACKSPACE key, which works in the obvious way on screen-type ter­
minals. But when printing terminals are used, there is no way of erasing
a character once it has been printed. When such terminals are used, a
character is considered to have been erased if it is followed by a special
character, the erase character. Usually, the # character is employed for
this purpose. When decoding, any character will be ignored if it is im-

18 2. Getting Started

mediately followed by the erase character. Thus la#of#gim#n is in­
terpreted as login, the characters a, f, and m having been "erased" by
the # sign. Similarly, a kill character, usually but not always @, is used
to "kill" everything typed since the beginning of the line, so that kif@
login is interpreted as login. If either of the characters # or @ is actually
wanted as part of a line, it must be preceded by the backslash character
\ to avoid erasure. In other words, A \ #B is decoded as A#B, not AB.

Because typed characters are not decoded on the spot but merely stored
for decoding when a carriage return is sent, it is both possible and per­
missible to "type ahead", that is, to keep typing even though the screen
echo of the typed characters does not keep up. (It will come eventually.)
But this practice is not generally to be encouraged, because typing without
an immediate screen echo can leave typing errors unnoticed, with possible
unexpected consequences to come!

Like many other computer operating systems, Unix employs all the
printable ordinary keyboard characters, as well as a set of control char­
acters which are not printable. The latter are formed by striking the ap­
propriate key while holding down the CONTROL key. (One such, the con­
trol-D character used for terminating activity, has already been discussed.)
The CONTROL key works much like the SHIff key, that is, it alters the
meanings of the other keys. Simply striking the CONTROL key by itself
produces nothing whatever, just like striking the SHIff key. Consequently,
it is normal to press and hold down the CONTROL or SHIff key, as ap­
propriate, before striking the character key required. Control characters
are unprintable, that is, there is no printed character that corresponds to
the internal computer representation of any control character. When it is
desired to indicate a control character in print, the character is shown
preceded by a caret (as in AD) or an upward arrow (as in t D); alterna­
tively, one writes "control-D" or "ctrl-D". The most commonly used
control characters are probably control-D, which generally denotes an
end-of-activity and therefore also serves for logging out; control-S, which
allows terminal display to be halted temporarily; and control-Q, which
allows terminal display to continue after being halted by control-So

Running the System

All actions which the Unix operating system is able to perform are re­
quested by the user through the Unix command language, which is both
rich and flexible. The Unix system provides the user with an unusually
wide variety of utilities-text editors, language translators, file manage­
ment tools, and much else. These tools, like actions by the system itself,
are also controlled by keyboard commands.

Running the System 19

Commands

When the shell prompt is displayed at the left screen edge, the Unix com­
mand decoder is awaiting instructions. Nearly all Unix commands are
actually requests to run particular programs. For example, the command

$ who

causes the system to find the program named who and to execute it. (This
particular program looks in the system tables to find out which users are
logged in at which terminals and displays their particulars on the terminal
screen.) When execution is complete, the shell prompt is displayed again
to show that another command is expected. Execution of any program
may be stopped by pressing the DELETE key (sometimes labelled RUBOUT)

on the terminal, so errors in typing need not be disasters. The DELETE

key is one of a select few whose effect is immediate, i.e., it is not necessary
to send a carriage return for it to take effect.

There is nothing particularly magic about Unix commands, for the set
of commands can be extended at any time simply by adding more programs
capable of being executed. The standard system-provided set of commands
totals well over 100 in small Unix systems and easily reaches several
hundred in large ones. Those most likely to be of immediate interest to
beginning users are

cat
cp
date
f17
Ipr
Is
mkdir
mv
nrotT
passwd
rm
tty
vi
who

concatenate files and display on screen
copy contents of one file to another
display correct date and time
run the Fortran 77 compiler
queue files for sending to line printer
list the contents of a directory
make a new directory
move (rename) a file
run the nroff text formatter
change the login password
remove (delete) a file
display the terminal name
run the full-screen editor
display who is logged in to the system

Many of the commands listed above have to be augmented by file spec­
ifications. For example, to move a file to another name with mv, it is
(reasonably enough) necessary to specify which file, and what its new
name is to be. Other commands permit (or require) additional qualifiers
to specify how and where the desired action is to be taken. In other words,
the commands are really command verbs and may need to be augmented

20 2. Getting Started

by other words so as to form coherent sentences. Some informal illus­
trations will be found in the examples below. More or less complete de­
scriptions of the above commands, and quite a few others, will be found
in a later chapter. Full details on each command appear in the Unix Pro­
grammer's Manual or in the system manuals available at each installation.

Any user can add more commands easily, since no distinction is made
between a command and an executable program. Every command cor­
responds to an executable program and the name of every executable
program is automatically a command, simply by virtue of being there. In
fact, the only way of executing a program under the Unix system is to
type its name, as a command, when the shell prompt shows. There isjust
one significant distinction between user-added commands and those sup­
plied by the system: programs added by a user are ordinarily accessible
to that user and that user only, inaccessible to other users unless special
arrangements are made. System commands, on the other hand, are always
equally available to everybody.

What happens if the user, not knowing any better, introduces a new
program with the same name as an existing system command? No serious
interference results, for the system always searches for the command first
in the user's own directory of programs. Only ifthe command is not found
in the user's directory does the system search elsewhere. Thus the du­
plication of a name already in use as a system command causes only one
inconvenience: the system command becomes unavailable. It might be
expected, however, that users who unwittingly use names of system com­
mands are unlikely to want or need those commands in any case!

Because new commands are easily added and existing commands can
be modified almost as easily, there are probably no two Unix installations
with precisely the same set of available commands and precisely the same
usage of the existing commands. This great flexibility allows tailoring every
computer system to serve its user community to best advantage. Yet flex­
ibility can also confuse users, because every Unix system seems forever
fluid, forever almost as the manual describes it, but never exactly like
that. There is no known cure for this ailment; all one can do is watch for
unexpected behavior and to enquire whether it arises from a recent local
system modification.

Files and File Names

The Unix operating system is designed to process files, so it regards prac­
tically every assemblage of information as a me, no matter what its physical
form or storage medium. The formal definition of a file is about as simple
as it could be: a file is a string of characters. Often enough, it is desirable
to organize a Unix file as a set of "lines". This form of file subdivision
is accepted as perfectly reasonable; indeed many Unix utility programs
expect files to be collections of lines, every one terminated by a newline

Running the System 21

character which is generated at the keyboard by pressing the RETURN

key. However, such a subdivision is a matter of convenience; there is no
requirement for a file to have any particular internal structure.

Files are identified by file names and are kept track of by recording
their names in file directories. Every user is allocated a personal file di­
rectory when his login name and password are authorized. Although there
may be many files belonging to many users on the system, the allocation
of a separate directory to each user means that he can ordinarily work in
a universe of files which includes (1) those he created himself and (2)
those supplied by the system, as system commands. No user need ever
be aware of the names, or even of the existence, of any other users' files.
Only rarely will there be any interference between files listed in directories
belonging to different users. On logging in, a user gains full access au­
tomatically to all the files listed in his own directory, and only to those
files, unless some special arrangements are made. A listing of all files in
this directory is always available by means of the Is command.

File names may contain up to 14 characters. The characters may include
almost anything printable, the blank character being a notable exception.
Even the erase and kill characters are acceptable. For example, it is per­
fectly proper to use file#27 as a file name. However, if a printing ter­
minal is used, the # character may be understood to denote an erasure.
Thus, it is usually wise to name files using only lowercase letters and
numerals, because several of the special characters and punctuation marks
have peculiar special uses that may cause grief.

The period (the. character) is usable and permissible within file names
and causes no unexpected bad effects. It is used by many experienced
programmers, and by many system-provided programs, to differentiate
between related files. For example, the Unix Fortran compiler expects
Fortran source file names to end in . f, as in program. f; it produces
output files with the same names but substitutes . 0 for . f at the end.
Thus program. 0 would be the compiled (object code) version of pro­
gram. f. It must be emphasized, however, that characters preceding and
following the period do not have any special significance to the Unix sys­
tem, even though some programs (some provided with the system, as well
as those created by the user) may attach particular meanings to them. In
contrast to some other popular operating systems, file names are not di­
vided into two parts separated by a period, with the two parts treated
separately. The period is simply another character, as far as the Unix
system itself is concerned, and several may well be included in a fIle name,
as, for example, file a. y.

File names occur in command sentences frequently. For example, sup­
pose it is desired to remove file program. o. ("Removal" means that the
file name is removed from the directory and the file space is released for
reuse; in other words, the fIle is deleted.) To do so, the command

$ rm program. 0

22 2. Getting Started

is typed in response to the shell prompt. Most other Unix command sen­
tences are constructed in an analogous fashion. Some actions, of course,
will require more than one file name to be specified. As an example of a
command with two file references, consider the mv ("move") command,
which moves a file from one name to another (i.e., it renames the file).
Entering

$ mv a.out program. x

"moves" the file around in a directory, by reassigning its name from
a. out to program. x.

Wild-Card File Names

File name references may be unique, or they may use wild-card characters,
that is, characters understood to stand for several others. Wild cards are
convenient and useful when several files with similar names must be re­
ferred to. For example, suppose it is desired to remove a whole set of
files, whose names are all of the form problemfile One may issue
a string of commands

$ rm problemfileOl
$ rm problemfile02
$ rm problemfile03

and so on, but it is easier to type

$ rm problemfile*

The * character in file references is understood to mean "any and every
string of characters". In other words, every file whose name begins
problemfile and terminates in any characters whatever (or indeed none)
will be removed by the above command. Similarly, the command line

$ rm *fil*

will remove all files whose names contain the character string f i 1 any­
where-with anything at all, or even nothing, preceding and following.
In effect, the * character in a file reference means "any, or no, charac­
ters". In a similar way, the question mark ? can be used as a wild card
standing for a single character. The difference between * and ? is that
the former stands for a character string of any length, while the latter
signifies one and exactly one character. For example, ? f i I? denotes any
file name containing exactly five characters, the middle three of which
are fil.

Running the System 23

A Session at the Terminal

The foregoing explanations and examples should suffice to permit even
a rank novice to tryout a Unix system. The timid may wish to try the
sample terminal sessions shown here by following them through step by
step; the intrepid may prefer to rush in and attempt something more im­
aginative. The first example, shown in Figure 2.1, is very simple.

Several interesting points emerge in the session of Figure 2.1. To begin,
the login prompt (which asks for the user name and password) displays
a message identifying the computer system, then asks the user to log in.
The user's login name is restricted to eight characters, of which the first
must be a lowercase letter; this rule causes a bit of pain for those with
long surnames! The password is not echoed on the screen, of course; the
user can tell that it has been accepted because the shell prompt % appears
next. The actions which follow in this session are typical of any terminal
session and require little comment. The logout process, however, is note­
worthy; the user enters i D at the terminal, which the system echoes as
logout, not AD, and the cycle begins over again with a new login message.

It may be of interest to examine the same, or rather a very similar,
session carried out on a larger Unix system. The terminal conversation
runs as shown in Figure 2.2. Here the login process is enriched by the
inclusion of a message-of-the-day from the system manager. The who en­
quiry yields a larger haul of users than in the small system example but
is otherwise similar. The commands and operations do not differ markedly,
except that the shell prompt is different ($ instead of %) and that the attempt
to log out by typing i D fails. However, there is little confusion because

McEEucl - Simian system with unix V7

login: peter
Password:

% who
rcs console Feb 10 11:01
peter tty7 Feb 10 16:11
% date
Mon Feb 10 16:11:46 EST 1986
% Is
helloprog. f
% cat helloprog.f

write (6,100)
100 format (" Hello! ")

stop
end

% logout

McEEucl - Simian system with Unix V7

login:

System identifies
itself,

asks for login name
and password.

Note % shell prompt:
Who is logged in

right now?
Oust we two)

What is the right
time and date?

List my files!
(there's just one)

Oisplay it on the
terminal screen
(it's a
Fortran
program)

Logout with "0
echoed as "logout"

System identifies
itself,

asks for login name.

FIGURE 2.1. Brief terminal session on a small Unix system.

24

4.2 BSO UNIX (VLSI Lab)

login: peter
Password:
Last login: Mon Feb 10 10:52:31 on ttyOO

System shutdown today at 2300 hours.

$ who
peter ttyOO Feb 10 16:16
michael ttyOl Feb 10 14:32
nora tty02 Feb 10 14:19
boss tty03 Feb 10 09:29
cleo tty05 Feb 10 15:15
benny ttyh3 Feb 10 15:14
wurzel ttyh4 Feb 10 16:06
adler ttyh8 Feb 10 15:21
$ date
Mon Feb 10 16:19:48 EST 1986
$ Is
helloprog. f
$ mv helloprog. f hello. f
$ Is
hello. f
$ cat hello. f

wri te (6,100)
100 format ("Hello! ")

stop
end

$ "0
Use "logout" to logout.
$ logout
4.2 BSO UNIX (VLSI Lab)

login:

2. Getting Started

System identifies
itself,

asks for login name
and password.

Login accepted!

Message of the day.

Who is logged in
right now?

What is the right
time and date?

List my files!
(there's just one)

Change its name
then list again
(OK, new name)

Display it on the
terminal screen

Logout with "0
not accepted

System identifies
itself,

asks for login name

FIGURE 2.2. Terminal session similar to that of Figure 2.1, but on a larger Unix
system with more users.

the refusal to log out is accompanied by a clear instruction to show what
the proper logout procedure is.

Writing and Running Programs

Development of applications programs is a truly common activity of com­
puter users. Development work generally begins with the design and initial
writing of a program, followed by testing and gradual correction of errors.
Typically, this kind of work requires repeated program compilation and

Writing and Running Programs 25

trial execution, interspersed with editing sessions to eliminate from the
source file whatever errors turned up.

Program development requires at least two distinct facilities: a language
compiler and loader for running the program and a text editor to permit
preparation and correction of source programs. The Unix family of op­
erating systems provides compilers for several computer languages, several
text editors, and a host of advanced debugging aids for serious program­
mers.

Running Fortran Programs

The full Fortran 77 language and several other programming languages
are supported by Unix systems. To illustrate how Fortran programs are
tested and executed, suppose the file mainprogram. f contains a source
program in the usual form. The command

$ f77 mainprogram.f

causes the Fortran 77 compiler to be run. The compiler translates the
source program into the corresponding object program, which is left in
ftle mainprogram. o. Because users most often wish to link the compiled
object program with library modules and to execute it, the Fortran 77
compiler is automatically followed up by the linking loader, unless in­
structed otherwise. The loader assigns memory locations to the program
and performs other housekeeping tasks that permit the program to be ac­
tually run. Loader output is always placed in a file named a.out. Any
previous contents of a.out will be destroyed, so that if it is desired to save
the executable object module for the long run, it should be moved to an­
other name:

$ mv a.out mainprogram.x

Next, it is desired to execute the program. In Unix systems there is no
distinction between commands and executable program modules, so that
to execute the program it suffices to issue its own name as a command:

$ mainprogram.x

The Fortran program should now run and produce whatever output it
might. When its execution has terminated, the shell prompt will again
appear to signify readiness for further commands. To check what files
have been generated in the process, the Is command may be issued; it
produces on the terminal screen a listing of the files currently listed in
the user's directory.

26 2. Getting Started

IT compilation had been wanted without linking-as often happens when
subroutines are developed and compiled individually-the additional ar­
gument -c would be included in the request to compile, signifying "com­
pile only":

$ f77 -c mainprogram.f

Other program modules, such as subroutines developed separately, may
then be combined with the compiled program by asking for the linking
loader Id explicitly:

$ Id mainprogram.o subprogram.o

The system will respond by running the linkage editor (linking loader),
again producing an executable output file called a.out. All files named in
the command will be linked, together with any system library components
that may be necessary. Execution, perhaps moving of the file to a more
memorable name, and examination of output then follow as above.

The vi Text Editor

Preparation of text such as source programs is generally done using the
text editor vi. This editor manipulates text stored in files by reading the
file content into a text buffer (an area of computer memory), manipulating
it in accordance with user commands, then rewriting it into the file. vi is
a line-oriented editor which works much like word processing programs:
it regards text as being composed of lines, each of which is made up of
characters. This line-oriented approach makes vi well suited to preparing
computer programs. Of course, vi knows nothing of the programs or pro­
gramming languages; it only handles lines composed of characters. It is
therefore not restricted to program preparation and is often used for other
textual matter as well.

The vi editor is invoked by a simple command. In response to the shell
prompt, one types (and follows with a carriage return)

$ vi filename

where f i 1 ename is the name of the file to be edited. The editor responds
by reading the file and displaying the first screenful of it. If the file is
being newly created, there are of course no characters in it. In that case,
vi does its best in these trying circumstances, by showing a screenful of
empty lines, each with a tilde'" at the left margin. The file name appears
at the bottom of the screen, in the last line which is generally reserved
for messages rather than text. vi then awaits commands.

All operations of the vi editor are controlled by keyboard commands.

Writing and Running Programs 27

Commands generally consist of single letters, though these short forms
are often augmented by some additional information. Editor commands
are expected and understood by vi, not by the shell, so that their form is
totally different from shell commands. When ready to accept commands,
vi does not issue a prompt, but simply waits patiently. If there is serious
question about whether vi is listening, or something bad has happened,
one possible action is to type an ESCAPE or two. The ESCAPE keystroke
is understood by vi as a request to drop everything and listen for com­
mands. If already in the proper mode for accepting commands, vi says
so by tinkling the terminal bell. Two or more ESCAPES should therefore
produce a reassuring little noise.

If alterations to a file are desired, the file is fetched and opened for
editing just as a new file would; the only difference is that the screen will
not show blank lines but the first screenful of text. When alterations have
been completed, the changed text must be written backto a file. To write
out the text and exit from vi, the zz command (one of the few made up
of more than just a single character) is used:

zz

This command replaces the file content with whatever was there previ­
ously. U ntiI the zz command is issued, the altered file resides only in the
editing buffer, an area of computer memory employed as a temporary
scratchpad area, as it were; the original copy of the file is still in the
archival file store and can be resurrected if necessary. Once the zz com­
mand is accepted, however, the old version of the file is destroyed and
replaced by the edited version. While doing the replacement operation,
vi shows the number of lines and characters in the new version.

When the editing session is finished with a zz command, vi stops run­
ning and the shell prompt appears again, to signify that the Unix system
itself (rather than vi) is awaiting further instructions.

Creating and Modifying Text

There exist various ways for vi to modify text. But curiously, there is no
explicit facility for creating text in the first place. When a new file is started,
vi assigns it its name and immediately considers it to be a perfectly normal
and proper text file, one that just happens to contain zero characters of
text. These zero characters are displayed on the screen. Despite its meager
content, the file is formally valid and may be modified. Of course, the
only modification that makes any sense at this point is the insertion of
additional characters. In other words, the only new file that can be created
is an empty file, all further operations being regarded as merely modifi­
cations of an existing file.

Most of the editing operations using vi refer to positions in the text

28 2. Getting Started

identified by the editing cursor, in a way similar to most office word proc­
essors. The cursor is a mark attached to one character in the text; it can
be moved by the user and serves as a pointing tool to say, in effect, "this
one here". The precise nature of the cursor is dependent on the terminal
type; blinking underscores and highlighted characters are often used. For
example, text insertion is performed at the cursor location, characters to
be deleted are identified by pointing at them with the cursor, and so on.

Text can be entered into the workspace (usually called the text buffer)
of vi with the i command ("insert"). Typing the single character i warns
vi that the characters to follow are to be taken literally and placed into
the text buffer: they are not to be understood as commands. The string
of text continues on and on, until an ESCAPE character is encountered; vi
takes the ESCAPE to signify the end of the text to be inserted. To insert
the word write in the text buffer, one types

iwri teEsC

where ESC denotes the ESCAPE keystroke. Similarly, to enter the small
Fortran program shown earlier, one types

i write (6,100)RET
100 format (" Hello!")RET

stopRET
endRET

ESC

Here RET denotes the RETURN key. What shows on the screen is the pro­
gram as it normally reads, for initial i and ESCAPE keystrokes do not give
any visual echo, while the RETURN key echoes as a new line beginning,
exactly as it would on a typewriter:

write (6,100)
100 format (" Hello!")

stop
end

The entire text need not be entered in one stream; it is perfectly all right
to stop from time to time with an ESCAPE, then to resume insertion else­
where. Insertion always takes place at the left-hand edge of the cursor,
just ahead of the character over which the cursor is placed. Text can also
be entered by using the a ("append") command. It works exactly like i,
except that the new characters are placed at the right of the cursor char­
acter. The two commands act identically otherwise; both are needed be­
cause the i command cannot append at the end of a text line (beyond the
rightmost character), while the a command cannot insert ahead of the
leftmost character in the a line.

To move the cursor around, four keys suffice for the four compass

Writing and Running Programs 29

directions. The cursor moving commands must be issued, of course, while
vi is listening for commands, not while it is inserting text; if necessary,
an ESCAPE character will get it to command mode. The four are

h
j
k
1

moves the cursor left one position
moves the cursor up one line
moves the cursor down one line
moves the cursor right one position

Some terminals actually have little arrows painted on these four key tops
as a reminder, for there are software systems other than Unix which em­
ploy the same cursor motions.

When typing errors occur, correction can be effected by deleting the
incorrect characters and inserting new ones. Deletion is effected by taking
aim with the cursor, then issuing the command character x. Voila, the
character under the cursor disappears and its right-hand neighbors move
over to ftll the vacant space. If the deletion was wrong -or for that matter,
if the last insertion contained a bad error-the last text alteration can
always be undone with the command u. In fact, even the nasty effect of
an erroneous u can be reversed with another u!

The a, i, x, u, ZZ commands and the h, j , k, 1 cursor movements
actually suffice to prepare simple programs. However, vi can use much
more sophisticated command forms and greater familiarity with it should
be acquired at an early stage if any substantial program preparation is
contemplated. A much more detailed description of vi will be found in a
later chapter of this book.

login: bftsplk
Password:
$ Is
hello. f
$ cat hello. f

wri te (6,100)
100 format (IIHello! ")

stop
end

$ f77 hello. f
hello. f:

MAIN:
$ Is
a.out hello.f hello.o
$ mv a.out hello.x
$ hello. x
Hello!

$ rm hello. 0

$ Is
hello.f hello.x
$

User types AD to reset,
responds to login,
gives password (blind!)

Lists current catalogue;
it contains one file.

Displays it on screen:
it is the
"hello" program
written in
Fortran

Requests compilation:
compiler echoes name,
compiles main program.

Lists current catalogue;
two new files appear!
move (rename) a.out

Executes "hello" program:
it produces output.

Removes intermediate file,
lists catalogue again:

Fortran and executable.
User now logs out!

FIGURE 2.3. Working session involving program compilation.

30 2. Getting Started

Sample Terminal Session

It may be useful for the beginner to examine a sample terminal session
and perhaps to try duplicating it under Unix, thereby acquiring some feel
for how the system works and how it responds. The example of Figure
2.3, which follows on the editing example given earlier, may serve. Here
once more the terminal conversation is printed at the left-hand margin;
the right-hand column contains explanatory comments.

The program involved here is uncommonly short. Its extreme shortness
may perhaps explain why it compiled and executed correctly the first
time-something that even short programs rarely do! The terminal con­
versation, however, is precisely what would be involved in a more am­
bitious program. Even readers not very familiar with Fortran should find
it easy to substitute equivalent programs in their own favorite languages.

Chapter 3

Files in the Unix System

An important function of any operating system is to house, safeguard,
and manage various files. To be useful, files must be easy to store and
easy to find again. To be practical, files must fit conveniently onto the
available physical media. These requirements imply that the file system
must have a logical structure that makes sense to users in terms of their
needs and a physical structure chosen to suit the devices used for file
storage.

The Unix System File Structure

The Unix system allows complex structures of files to be managed with
ease. Its ease of use results mainly from separating the physical organi­
zation of files (their form of storage) from their logical organization, which
deals with their content and purpose and therefore concerns the user di­
rectly.

There are three kinds of Unix files: ordinary files, special files, and
directory files. Ordinary files are what most people think of when they
use the word "files": programs, manuscripts, collections of data. Direc­
tories are just what their name implies, listings of files with information
for the operating system about where and how to find them. Special files
contain the rules for managing input-output devices so that most other

32 3. Files in the Unix System

Unix programs need not concern themselves with such details as how the
keyboard handles characters and where on the screen output is to be
placed.

Ordinary Disk Files

Ordinary files are the type users are most often interested in. They include
both the files created by users and the files that come as part of the Unix
system itself; neither is accorded any distinctive privileges. The normal
storage medium for Unix files is a magnetic disk, a random access medium
to which files can be written and read back with equal ease. However,
the structure of any Unix file is independent of the physical medium on
which it is written; files on magnetic tape, for example, are laid out
in the same fashion and contain the same characters as they would on a
disk.

As far as the Unix system is concerned, an ordinary file is simply a
string of bytes, stored on disk or on some other physical medium. There
is no distinction between program files, data files, or any others; all files
are merely strings of bytes. The bytes in the file may represent printable
characters; in that case, the file is termed a text file. Characters stored
in a text file do not have any particular significance to the system it­
self, though they presumably mean something to the user or to some par­
ticular programs. There is one exception to this general rule: when files
are transmitted, the control-D character (in some maverick systems,
control-Z) is employed as an end-of-transmission marker. Some confu­
sion may arise when files containing such characters are transmitted be­
tween devices, so it is usually wise to avoid such privileged characters
in text files.

No special form of internal organization is prescribed for an ordinary
file. However, it is often convenient to subdivide text files into lines, sep­
arated from each other with the newline character (ASCII 012 octal). The
lines need not be of any particular length so that a text file may quite
properly consist of a single "line". Of course, individual programs may
be quite fussy about the internal structure of files; for example, Fortran
programs that read data usually expect specific data items to be located
in predefined positions in the input line. But in such cases the structural
requirements are imposed by the Fortran program, not by the Unix op­
erating system.

While no particular logical structure is imposed on files, the physical
structure of a file must be precisely defined-otherwise the operating sys­
tem could not find files and could not know how to read them. Fortunate­
ly, most system users are never concerned with exactly how the reading
and writing of files is actually carried out. They need only be aware
of the internal logical structure of files and know the rules for naming
files.

The Unix System File Structure 33

Special Files

One interesting peculiarity of the Unix operating system is that under
Unix all input-output devices are made to look like flIes to the programmer;
there is no distinction between writing to a file, writing to the screen, or
writing characters into a telephone coupler for transmission elsewhere.
Programs that transfer data to and from files can with equal ease transfer
data to input-output devices. In fact, the programs themselves cannot even
tell what their data sources and sinks are. For example, to print a file the
system may be instructed to copy its contents into another file, called
/dev!lp. The latter is a special file-special in the sense that the in­
struction to copy into it does not overwrite the original content of file
/ dey / Ip, but causes the line printer to be activated. The special file itself
contains the rules according to which characters are treated by the pe­
ripheral device. In other words, an attempt to copy into file /dev!lp
does not result in its content being overwritten by a new character string,
as would be the case if / dey !l p were an ordinary file. Instead, the Unix
system identifies / dey / Ip as being a special file and uses its contents as
a rule book for determining what should be done with the characters copied
(in this case, they are simply passed on to the line printer). Of course,
the physical file /dev!lp must never actually be written into, otherwise
the rule book will be destroyed!

Every input-output device on the system is associated with at least one
special file. It could be associated with several, however. If a line printer
is also to be used for graphic plotting, for instance, the plotting routines
may conveniently be placed in a special file, say /dev!lpplot. Copying
to this special file will then cause character strings to be interpreted in
such a way as to produce graphic output; copying to /dev!lp will print
out the characters themselves. Thus, the two special files appear to the
programmer like two distinct output files, although only one physical de­
vice is actually in use.

Directories

Once a file has been written on the magnetic disk, a way must exist to
find it again when required. Files are stored on disk in some convenient
fashion, not necessarily in the order oftheir creation. They are made easy
to find by name by creating an additional file called a directory, which
shows where to find the individual files. Like a city directory, a file di­
rectory contains the file names and their physical addresses on the disk.
Directories are files with a strictly prescribed internal structure, for they
must be comprehensible to numerous system routines. However, there
is no physical difference at all between a directory and any ordinary file.
Every directory is itself a file, stored on disk like any other file.

To furnish a simple example, suppose a disk has room for 960 blocks

34 3. Files in the Unix System

of 512 characters. At a particular moment, it contains the following layout
of files:

Blocks 000-028
029-112
113-219
220-227
228-473
474-478
479-480
481-960

unused
file, number 003
file, number 002
unused
file, number 001
unused
file, number 004
. . . other files . . .

The numbers assigned to the files are not related to the file contents in
any way, but are assigned as needed. They can be made visible to users,
if desired, but they rarely are, for few users consider them to have any
value. Users always access files by their names. In fact, the main purpose
of a directory is just precisely to keep track of which name corresponds
to which index number, so that users may be spared the bother of knowing
about index numbers. If file 004 in the present example is a directory, it
might contain (among other things) the entries

datafile 001
matrixprogram 002
matrixoutput 003

004
265

showing the correspondence between file names and index numbers. The
user only ever refers to matrixprogram; the system itself will take care
of looking in the directory, determining the index number, and finding
out just where on the disk this program file is located. In addition, it will
also determine whether the file is an ordinary file or not, whether the user
has the right to access it, and a host of other administrative details.

The directory itself is listed as a directory entry, with the curious special
name. (the dot, or period, character) assigned to it. It might seem pointless
to list it, for the location of the directory itself must be known in order
to consult the directory! However, the entry is conventionally included
because it simplifies such system operations as calculating how much un­
used space is left on the disk. When users list the directory contents,
which they normally do with the Is command, this special entry is sup­
pressed to avoid clutter and confusion, unless the user specifically requests
that it be made visible.

Directory Hierarchies

Since a directory is a file, it is readily possible to construct directories of
directories. In fact, Unix assigns a personal directory to each user and

The Unix System File Structure 35

lists that directory as an entry in a directory of user directories, which in
its turn is listed as an entry in a system directory. (Fortunately, it really
isn't quite so complicated as it first sounds.) In other words, each user's
directory appears as a file when viewed from the system. The user in turn
can create subdirectories which appear as entries in his own directory.
The tip of this hierarchical pyramid is found in the root directory, which
is maintained by the system. This directory structure is a great strength
of Unix systems, for it implies that large numbers of users may create
large numbers of files but still find them easily. Each user need only be
aware of his own private universe of files and need not even know that
any other users exist.

The Unix file directory structure always has the form of a tree, with
the root directory at its root. That is, every directory must be listed in
exactly one, and only one, predecessor directory. Such a relationship is
illustrated in Figure 3.1. All files shown in this diagram are directories;
to keep the picture simple, any ordinary files listed in them are not shown.
By the tree structure rule, none of the directories listed as subdirectories
under jones (j oe, bob, jim) can appear as a subdirectory under smi th;
they are subdirectories under j ones and a given directory may be listed
in only one predecessor directory. However, there may exist another di­
rectory called joe, entered as a subdirectory under smi tho The analogy
with people's names is apt: the Jones family may have only one son named
Joe, but there is nothing wrong with the Smith family also having a son
named Joe. Despite the similarity of their names, the two Joes are alto­
gether distinct individuals who have nothing to do with each other. Cor­
respondingly, the two directories named joe are distinct and unrelated.
The rule that directories must have a tree structure permits creating one
subdirectory named joe under every single directory, if users so desire.

Two special entries appear in every directory as . (dot) and .. (two
dots). The first refers to the directory itself-it is a file, after all-while
the second identifies the parent directory in the tree structure, i.e., the
directory of which the present one is a subdirectory. (The root directory,
which has no parent, is considered to be its own parent.) The Is directory
listing command normally suppresses display of these entries. However,
if the user wishes, an option exists to call for them to be shown.

The tree structure rule-every directory must be listed in exactly one

evans

(root ----If--- jones ---E ~ .. i:
directory)

Joe ----.L-- ~am

Joe

smith joe
FIGURE 3.1. Hierarchical structure of a directory tree.

36 3. Files in the Unix System

predecessor directory-prevents circular listings. Were it not for this rule,
directory A could be a subdirectory of B, B a subdirectory of A. But this
rule applies only to directories, not to ordinary files. In other words, an
ordinary file may be listed in any number of directories while a directory
must always be listed in one, and only one, predecessor directory. The
ability to list an ordinary file in many directories means that it can be
made available to many users. It can be exploited to allow many users
to read a communal data file or to make use of a single copy of a program
file. On the other hand, it can sometimes also create confusion if several
users wish to write into the file at the same time!

File Names and Paths

Any file may be accessed by specifying the path to it through the directory
tree. The path specification is the full and proper name of the file; it is
known as the pathname of the file. It is the list of directory tree nodes
which must be traversed to reach the desired file. Successive tree nodes
(i.e., subdirectories) are separated by the slant character (also called a
slash or oblique stroke) so that a typical file reference takes the form

direcl/direc2/direc3/ ... /name

Here name is the desired ordinary file and direcl must be a directory
file currently accessible, that is, a subdirectory listed within the user's
current directory. Files not listed in some subdirectory of the current user
directory can be sought out by beginning the path at the root directory.
The root directory is the only directory not to have a name, so that the
path

/j ones/j oe/pam

will be interpreted as beginning at the root: no name, followed by the I
delimiter, is taken as specifying the unnamed, i.e., the root, directory as
the start. In contrast,

j ones/j oe/pam

causes a search to start at the current user directory. If j ones is not a
subdirectory of the current user directory, the search will fail.

To state the matter in slightly different words, every Unix ftle is uniquely
defined by specifying the path from the root directory to the file. But since
the path is always downward through the structure, the rules permit the
user to omit, as a matter of convenience, all those portions of the path
which lie above the current directory. Thus

/usr/jones/joe/pam

The Unix System File Structure 37

would be a full specification of a file, valid in all circumstances, but

joe/pam

is its proper and complete specification, if the current directory happens
to be /usr / j ones. Because. used as a file name always refers to the
current directory,

./joe/pam

would be equally acceptable and would produce the same result.

Extensions and Suffixes

File names under Unix are simply character strings; the system does not
classify files by any feature of the file name. This contrasts with various
other operating systems in which data files, text fIles, executable programs,
and other file types are made recognizable by suffixing a name extension
of a few letters to the file name proper.

Saying that the Unix system does not recognize file name tags or ex­
tensions, however, does not imply that individual programs may not do
so, nor that users might not occasionally like to. There is no objection to
such a practice; indeed, it is conventional to follow it in many aspects of
work under Unix. Frequently, names of ordinary files are given a one­
character suffix, separated from the file name proper by a dot, as in

/lib/mseg.o

Tagging characters may be made up by users to suit themselves. However,
several tags are recognized by commonly used programs:

· a archives (often of system data)
· c C language source files
· d data files for utility programs
· f Fortran language source files
· h data files for system services ("headers")
· i C preprocessor output (C source) files
· 0 relocatable object files
· p Pascal language source files
· r Ratfor language source files
· s assembler language source files
· z compacted files produced by pack

It must be kept in mind that to the Unix system itself the dot and the
suffixing character are simply part of an ordinary fIle name. They constitute
two characters, so the other characters preceding them must number 12

38 3. Files in the Unix System

or fewer for the ftle name as a whole to fit within the permissible maximum
of 14 characters.

The System Directory Structure

Although at first glance the Unix file system may seem to be complicated,
familiarity makes it seem less so. Most Unix systems adhere to (roughly)
similar structures of the root file system, so it is worthwhile to examine
a typical file system at least briefly.

A diagrammatic view of the directory tree for a typical Unix system
is shown in Figure 3.2. Only the portion near the root directory is given
in detail; the farther from the root, the more individual implementations
diverge from each other. It must be kept in mind that almost every in­
stallation involves not only a different hardware configuration but also a

(root)

dev-{

bin-'{

lib-{

etc-{

Special files for physical devices: system console,
terminals, disk drives, line printer, .. ,

Executable utility programs: compilers, assembler,
editors, program development, .. ,

libraries of system utilities and subroutines: Fortran and
C run·time support, system calls, i/o routines, .. ,

Restricted system data and dangerous utility programs
restricted to system manager: password file, login, ...

{
Temporary (scratch) files used by the various system

tmp--- utilities: editor, compilers, assembler, ...

usr----\

bin--

tmp-­

dict--

lib--

Less·used utility programs

Less·used temporary files

Word lists, spelling checker

Less-used library files

{
Directories to text files containing the

man-- full Unix Programmer's Manual

spool
r=at--Timed processes

Ipd-Jp directory

userl-- User directory structure

user2-- User directory structure

user3-- User directory structure

userN-- User directory structure

FIGURE 3.2. A typical Unix system directory structure.

Working with the File Structure 39

different user community, so that the system manager most often will
have had to restructure the ftle directories to suit local needs. For example,
in a user community with few Fortran programmers but a large amount
of text processing to be done, the file system may well be set up to have
the text editor and spelling checker quickly available, while the Fortran
compiler may even reside on a slower physical device. Nevertheless, most
installations resemble each other closely near the root directory and adhere
to the same organizational principles elsewhere.

As may be seen in Figure 3.2, the root directory has several subdirec­
tories, with each containing more or less logically related matter. The first
five directories shown-/dev, /bin, /lib, jete, /tmp-are generally
used by the system itself in carrying out user commands or by the system
manager in maintaining administrative files and system software. The files
are grouped within these directories primarily by the access permissions
granted to users. For example, the general public is ordinarily given ex­
ecute permission for files in /bin but not in jete. It is usual to keep
these five directories on a high-speed disk, so that users have rapid access
to the files as they require them. The sixth subdirectory /usr shown in
the diagram is generally the largest. The home directory of every au­
thorized user is normally attached to /usr as a subdirectory, which can
easily account for hundreds of entries in /usr even in modest-sized sys­
tems. In addition, /usr is employed to house system utilities of the same
kind as found in /bin, /lib, and /tmp but needed less frequently.
/usr is physically housed on a large, but possibly slower, disk drive in
many installations. There is considerable incentive to keep the most com­
monly used items (which usually amount to a small percentage of the
whole) in a small but rapidly accessible place, while the less often used
larger part of the system resides on a slower but bigger device.

Working with the File Structure

The hierarchical arrangement of files within the Unix system is a valuable
tool for maintaining and using large file structures in a tidy and orderly
fashion. Getting around in this hierarchical maze, however, presupposes
some familiarity with the actions that users are able to carry out. This
section therefore outlines the main activities possible, indicating what can
be done, how to do it, and who is allowed to do it.

Changing Directories

When a login name is first authorized, a home directory is associated with
it and that directory is opened whenever the user logs in. Any file names
used in commands then refer to files within the home directory, including

40 3. Files in the Unix System

any subdirectories attached to it. The thousands of files owned by others
are thus invisible to anyone user so order prevails despite the large number
of files resident in the Unix file structure.

On many occasions it is useful to group various ftles containing logically
related material into subdirectories. For example, Fortran programmers
often find it convenient to store the source code for the subroutines of a
large program in a directory structure that resembles the calling sequence
of the subroutines themselves. Similarly, the author of a book may store
individual subsections in separate files small enough to edit conveniently
and to join them together through a hierarchy of directories. For example,
book/chapt3/sect4/subsec2 might be one file in such a hierarchy.
The disadvantage of such a structure is evident at once: ftle names become
awkward and unwieldy even if the individual file names do not come any­
where near the 14-character length permitted under Unix. For the book­
writer to work on the subsections of a particular section, for example, it
would be best to make the current user directory be that subdirectory
which contains the desired material, say book/chapt3/sect4. Such a
change is perfectly possible; Unix permits any directory whatever to be
the current working directory. The home directory is privileged or special
only in the sense that it is made the working directory at login time.

Changing to another directory as the working directory is accomplished
by the cd command, in the form

$ cd book/chapt3/sect4

which makes the named directory into the current directory. From this
point on, all file references will be sought in the new current directory,
so that file book/chapt3/sect4/subsec2 is referred to simply as
subsec2.

Changing directories downward in the hierarchy is easy, since only the
subdirectory names need to be specified. Changing upward requires
knowing the full pathname of the desired directory. It can be determined
using the pwd command, which produces the full pathname of the working
directory. This command allows no parameters or arguments and returns
the name of the current directory in the fullest form possible:

$ pwd
/usr/bftsplk/book/chapt3/sect4

The cd command may then be used to change to a different directory as
the working directory:

$ cd /usr/bftsplk/book/chapt2/sectl
$ pwd
/usr/bftsplk/book/chapt2/sectl

Working with the File Structure 41

If issued without any argument at all, cd returns the user to his home
directory, the directory automatically assigned when logging in. In most
cases, the home directory of every user is a subdirectory of /usr:

$ cd
$ pwd
/usr/bftsplk

File hierarchies can become quite intricate. As a result, cd and pwd are
among the most frequently used Unix commands of all.

File Access Permissions

Not all users need to have access to all Unix files, nor is it desirable that
they should. On many occasions, a user may wish to keep some files
strictly private, as for example in commercial data processing. Others
must therefore be denied access to those files. An even more important
reason for denying access is that there are ways in which a small mistake
can result in disastrous damage. For example, destruction of the root di­
rectory of a file system can easily make the entire file system useless. To
prevent such damage, users must be forbidden to delete certain protected
files, which surely must include the root directory. For reasons of both
privacy and security, all Unix systems therefore include a formal scheme
of file access permissions. Except as otherwise arranged, users have full
access to their own files, restricted access to selected system files, and
no access at all to files belonging to others.

Under the Unix file access permission scheme, an ordinary file can be
accorded three forms of permission: read, write, and execute. Any given
user may be granted any desired combination of these; the three permis­
sions are entirely independent and none presupposes any other. Permission
to write means permission to alter the file contents, including destruction
of the file. Most often, users have writing permission to their own files,
but at times they may wish even their own files to be denied writing per­
mission, to guard against inadvertent alteration or removal of valuable
material. Permission to read really means permission to copy. Since Unix
does not differentiate between fIles and devices, listing a fIle at the terminal
is regarded as copying it to the special fIle which represents the terminal.
Hence, no distinction can be drawn between reading and copying; reading
permission therefore does have significance even for a binary file which
is unreadable in the ordinary sense. Execute permission means that the
file may be used as a running process; it does not presuppose permission
to read, for the user does not need to copy a file to execute it. Typically,
users have execute permission for a large number of system facilities­
editors, compilers, linkers, and so on-but they very likely do not have
permission to read or write into those files.

It is worth noting that permission to write into a file and permission to

42 3. Files in the Unix System

erase items from the file are not distinguished. This arrangement is gen­
erally satisfactory for scientific computing, but it may complicate matters
a little in some types of administrative or financial data processing. In an
accounting department, for example, it may be convenient to allow many
account cler:ks to write transactions into the same journal, but it is not at
all desirable to allow any account clerk to delete transactions!

Directories are assigned the same three categories of permission as
ordinary files: read, write, and execute. Directory files are stored in a
binary format, not as text files, so that simple reading produces apparently
random garbage on the terminal screen; they are displayed by the Is com­
mand, which processes the binary representation into legible form. Readmg
permission is therefore interpreted to mean listing permission, while writing
permission constitutes the right to attach new files to the directory or to
delete files. Having execute permission for a directory means that the files
in the directory can be accessed (provided the appropriate permissions
exist for the files themselves) or searched. For example, if a user has
reading permission but not execute permission for file /usr /spool, he
can list this directory and discover that it contains a subdirectory /usr /
spool/at. However, he cannot access /usr /spool/at itself, because
he lacks execute permission for /usr /spool.

Access permissions are granted to a user in three categories: personally,
as a member of a user group, or as a member of the general public. When
first authorized by the system manager, every user is assigned a personal
login name and membership of a group. Classification of users by groups
is a convenience, particularly in large installations. For example, a new
experimental Fortran compiler might well be made executable by all
members of the compiler development group, so as to permit testing by
group members; but execute permission will probably be denied to other
members of the general public until the compiler has been certified to
work properly. In small installations, groups may be insignificant or trivial;
the group may well consist of a single user, or all authorized users may
belong to a single group. Even if they are not really used, groups are
always defined for purposes of defining access privileges.

When a file is newly created, it is assigned a set of access permissions
by default. A common arrangement would be to grant full permissions to
the file owner, read and execute permissions to other members of the
same group, and execute permission only to the general public. But default
settings differ from installation to installation, indeed from user to user.
If the default settings locally used appear inconvenient for some user, the
system manager should be consulted, for it is a simple matter to reset the
default values.

Keeping Track of Directories
At anyone time, every user has some directory serving as his working
directory. The operations he must be able to carry out, so as not to get
lost in the system, include at least the following:

Working with the File Structure 43

1. changing to another directory as the working directory,
2. determining which directory is the working directory,
3. listing the contents of a directory,
4. creating new subdirectories, and
5. removing an existing directory.

There are five commands corresponding to these five operations: cd, pwd,
Is, mkdir and rmdir. The cd and pwd commands have been dealt with
above; the remainder will be described briefly in the following.

Making new directories and removing old ones are almost as easy as
changing them. A new directory is made by the mkdir command. For
example, the command conversation

$ pwd
/usr/johnson
$ mkdir book

creates a new directory /usr / johnson/book. The current directory,
however, is not changed. The newly created directory is automatically
made to be a subdirectory of the current directory, unless a full pathname
is given in the mkdir command so as to create it somewhere else. Naturally,
a new directory can only be created in an existing directory where the
user has write permission.

Removal of a directory, if desired, is accomplished by the rmdir com-.
mand, which is analogous to (but not the same as) the rm command:

$ rmdir manuscr

Removal of a directory should not be attempted unless the directory is
empty, i.e., unless it contains no subdirectories and no ordinary files.
Disaster may otherwise befall the fIles listed in the directory to be removed!
Whether the directory is empty or contains any file names can be verified
by asking for a listing of the directory contents, using the Is command.
This command simply lists the file names at the terminal, in alphabetical
order:

$ Is /usr/johnson
book
grub
prog

The listing may produce one name per line, or it may string out the names
across the screen (a better idea) in various versions of the Unix operating
system. In any case, it is not absolutely necessary to give the directory
name in the Is command; if none is shown, the current directory is as­
sumed. The Is command is necessary, simple printout of a directory file
will not do, because directories are stored in a special, compacted, binary

44 3. Files in the Unix System

format. Attempts to display them in the same way as ordinary text files
(e.g., using cat) will produce what appears to be gibberish.

Directory Listings

A file can be attached to a directory in various ways. It may be attached
to that directory only, ever since its creation; or it may be linked to it at
some later date. Furthermore, it may be attached with various user access
permissions.

The access permissions, number of directory links, indeed almost every
conceivable form of information about a file may be determined by using
the Is command. In its simplest form, Is merely lists the names of all files
in a directory. But there are options for asking Is to sort the listing by the
time of last file access, time of last modification, time of last permission
alteration, or alphabetically-or any of these in reverse order. There are
options also to list not only names but to give much more extensive in­
formation (file sizes, i-numbers), as well as to include both the directory
itself and its parent directory. Some of the more commonly employed
options include -I (long form), -a (all entries), -t (sort by time of last mod­
ification), and -r (reversed order). For example,

$ Is -al
total 24
drwxrwxr-x 6 johnson friends 678 Feb 28 17:32
drwxrwxr-x 9 johnson friends 212 Jan 12 10:02
drwxrwxr-x 1 johnson friends 143 Mar 11 15:50 book
-rwxr-x--- 2 johnson friends 8822 Feb 14 12:09 grub
drwx------ 1 johnson friends 657 Feb 22 19:33 prog

In this listing, the first line shows how many file blocks are occupied by
the fIles listed. Blocks are 512 characters each in most older Unix systems,
1024 characters in some of the newer ones (such as System V). The re­
maining lines of the listing give the actual directory entries, beginning
with the directory itself(.), then continuing with its parent directory (..),
and finally giving the other files (grub, book, prog). Their order is al­
phabetic (Le., in order of ASCII character sequence). It bears no particular
relationship to sequence of creation, time of last access, or file content.

In the line given for each file, the first character indicates whether the
file is a directory (d), special file (b or c), or ordinary file (-). The next
nine characters constitute three groups of three and describe the access
permissions granted to the owner of the file (first three characters), other
members of the same group (next three characters), and the general public
(last three). The letters r, W, x are used to denote read, write, and execute
permissions, always listed in that order. If the relevant letter appears,
permission exists; if it has been replaced by a minus sign, the indicated

Working with the File Structure 4S

permission is denied. For example, grub is identified as an ordinary file
by the absence of a leading d. The file owner johnson has full access
privileges to grub. Members of user group friends may read the file or
execute it but may not write into it. The general public is denied all access
to grub.

The long-form listing above also shows, following the permissions, the
number of directories in which the file appears (the number of links, in
Unix jargon), the owner's name, the owner's group name, the number of
characters in the file, and the time the file was last modified.

A subtle point about Is is that the file name given in the command line
could be the name of a directory or the name of a non-directory file. If
it is the latter and such a fIle is resident in the current directory, information
will be given about that file only:

$ Is -1 grub
-rwxr-x--- 2 johnson friends 8822 Feb 14 12:09 grub

This feature is useful if a directory contains many fIles and full information
is only required about one.

Altering Access Permissions

From time to time it becomes necessary to make files accessible to other
users or to deny previously existing access privileges. To alter the per­
missions on a file, the chmod (change mode) command is used. In this
command, it is necessary to specify

1. whose permissions are to be set,
2. what the settings are to be, and
3. which file.

Thus, the chmod command must have three arguments, leading to the
form

$ chmod who settings filename

The characters u (user = login owner), g (group), 0 (others), or a (all)
may be used to indicate whose permissions are to be set. The settings are
given in the form of a sign (+ - or =) followed by one of the characters
r, w, x. For example,

$ chmod u-w precious

says that the user wishes to deny (minus sign) himself (u) write permission
(w) on file precious, presumably to guard against accidents. The minus
sign - removes permission, the plus sign + grants it, and the = assigns

46 3. Files in the Unix System

permissions absolutely (without reference to what they may have been
previously). The command

$ chmod a=rx precious

sets the permissions to r -xr -xr -x, allowing everybody to have read
and execute permission and nobody to have write permission.

chmod can be used equally well for ordinary files or for directories,
with exactly the same results. It should be noted that, unlike most com­
mands, chmod insists that no blanks be placed between the who-identifier,
the signs, and the r, W, x characters. Blanks placed there will usually
result in error messages, because the next character following a blank will
be assumed to be a file name.

It is probably redundant to point out that the alteration of permissions
is a privilege available to the owner of a file but not to others. Were it
not so, the accident protection aspects of the permissions system might
still be workable. Privacy, on the other hand, cannot be safeguarded by
locked doors if everybody has a key!

Moving and Removing Files

Files attached to a particular directory may be moved to another quite
easily. The command mv, issued in the form

$ mv filename directoryname

moves a me to another directory. The moving is accomplished by rewriting
the links (directory entries) that form the directory tree, not by actually
copying the file. Thus the "moving" really is just a matter of moving the
me name; the name is removed from one directory, inserted in another.
Nothing is left behind in the old directory.

Variations on mv are obtained by moving a file to another file or a
directory to another directory. These operations amount to simple re­
namings, since once again the moves are done by rewriting names and
links (indexing pointers), not by actually copying meso An exception arises
when a request is made to move a me from one physical device to another,
say from disk me to magnetic tape. To remain consistent in usage, mv in
this case does really copy the me; the old copy is destroyed and all di­
rectory entries are rewritten to point to the new copy.

Removing a me by the rm command amounts to deletion. The removal
is effected by destroying the specified directory entry, then checking
whether the file has any entries left in any other directory. If no entries
are left, the file has become inaccessible and has ceased to exist so far
as any user is concerned. The physical storage space occupied by the file
is therefore cleared and released for other use. Removing is a potentially

Working with the File Structure 47

dangerous activity, particularly if wild-card constructions are used; for
example,

$ rm * .old

(with a blank following the asterisk) will destroy all files in the current
directory!

It is possible for an ordinary file to be listed in two or more different
directories, just as a single physical telephone may be listed in several
telephone books. Any number of listings is permitted, all with different
names if desired. A new directory entry may be created for an existing
file by the In (link) command, which has the form

$ In oldname newname

The names oldname and newname are given in the usual form of file
names-either as full pathnames or as partial pathnames from the working
directory downward. Creation of multiple links is particularly convenient
if, for example, several users need to have access to a common data file.
However, it should be noted that under the general system rules, directory
structures must always be strictly hierarchical. Therefore, it is possible
to create a duplicate listing for an ordinary file, but not for a directory.

It should be emphasized that creating a new link with the In command
does not create a new copy of any file; it merely lists the same physical
file in another directory, exactly as a telephone might be listed in several
telephone directories. Any alteration made to the file will be made in the
file as seen by every user, a point to keep in mind if several users have
permission to write into the file.

File Location and Identification

The hierarchical directory layout used by Unix systems is powerful and
flexible. But it does make it easy for users to lose themselves in the intricate
nooks and crannies of the directory structure. There is probably no ex­
perienced user who has not at some time remembered with absolute cer­
tainty that a particular file was called trig-but without recalling the
precise directory and subdirectory path. In such circumstances, the find
command is invaluable. It permits searching an entire tree structure, from
a specified directory on downward, to find all files that answer a particular
description. find is in general used in the form

$ find pathname conditions

where pathname identifies the root directory for the search (all its sub­
directories, sub-subdirectories, etc. will be searched) and conditions is a

48 3. Files in the Unix System

set of qualifiers which tell what characteristics are to be sought. Con­
ventionally, the pathname of the current working directory may be given
as . and the pathname of its parent directory as . . if it is not desired to
specify full pathnames.

A simple application of find occurs when the name of a file is known,
but its full path name is not. The command

$ find . -name trig -print

will begin searching at the current working directory (signified by .) and
continue through all subdirectories, for all ordinary files named trig.
Whenever one is located, its full pathname will be displayed at the terminal,
as a result of the -pr int qualifier. In a more or less similar fashion, one
can search for files whose names contain specified character strings, files
of a particular size, files belonging to particular owners, ... , indeed almost
all specifiable characteristics of a file. These descriptions can be joined
in logical combinations using logical union, intersection, and negation op­
erators. The complexity of combinations is limited only by the imagination
of the user. For example, it is possible to issue a command (despite its
appearance, it is not gibberish!) like

$ find /usr/joe -name trig -mtime -6 -atime -2 -print

to find and display full pathnames for all files named trig, which were
modified less than six days ago and most recently accessed over two days
ago. The search will start at directory lusr / joe.

The great flexibility of find arises from the way in which the string of
specifiable conditions is handled. While getting the conditions right is
sometimes not easy at all, the principle is simple: the character string
denoted by conditions is considered to be a logical expression and is eval­
uated for every file in turn. In point of fact, find does nothing other than
evaluate the logical expression; it does not even produce any output. To
produce output, the logical function -print is included in the logical
expression as its final member. This function always has the value true,
but evaluating it has the side effect of sending the name of the file currently
being examined to the standard output. The trick here is that evaluation
of the logical expression is continued only until the expression is known
to be false, so - pr int is not evaluated (and therefore nothing is sent to
the standard output) if the logical predicates ahead of -print are found
to guarantee that the entire conditions predicate is false. The evaluation
sequence is important: the command

$ find . -name trig -print

will cause display of all files named trig in the current directory and its
subdirectories, but the command

Working with the File Structure 49

$ find . -print -name trig

will evaluate the -print function (hence send the ftle name to the output)
before it examines the ftle name, so it will display the names of all ftles!

The find command can locate ftles, but it does not examine their con­
tents. Although Is does indicate the general type of a ftle (ordinary, special,
or directory), it does not identify what kind of material the ftle might con­
tain. Thus, there is need for some command which will permit identifying
ftle contents without necessarily printing them out. The file command at­
tempts to do so by not only examining the identification bits attached to
each ftle but also by looking at the file content itself. It has a form as
simple as one might hope for,

$ file filename

which contrasts pleasantly with the complexities of find. Several file
names, or file names with wild cards, may be specified. file then responds
by producing an informed guess of the contents of each file named. For
example, in one version of Unix

$ file /etc/*

produces a long list which includes (among many others) the lines

/etc/accton: separate executable
/etc/checklist: ascii text
/etc/ddate: empty
/etc/defaul t:
/etc/lpini t:
/etc/mnttab:
/etc/ttytype:

directory
commands text
data
English text

If the file is identified as ASCII character text, file usually tries to guess
further. If the text looks like a recognizable programming language, it also
takes a stab at identifying the language. Unfortunately, file does not always
guess right. To see why, a somewhat contrived little example might suffice.
The set of lines

call johnny
stop
end

constitutes a correct and valid Fortran program. It is also a syntactically
correct shell command file. It might well be intended as input for the nrotT
text formatter and would be valid as such. It might even be thought to

so 3. Files in the Unix System

constitute English text. The correct answer can never be known by ex­
amining the file itself, only by asking its owner what was intended!

Archives and Libraries

A special form of object file called a library or archive is available under
all Unix systems. Such files differ from other object files in having internal
directories which the Id (loader) program can scan. Like most operating
systems, Unix provides ready-made libraries of mathematical functions,
commonly used input-output routines, and much else.

Any user can create and maintain archives or libraries, using the ar
archive maintainer program. Users with many small subprograms of fre­
quent application are wise to do so.

In using and creating libraries, it should be borne in mind that searches
performed through libraries are done strictly in one direction. When loading
programs, users should therefore always specify file names in a sequence
that will make searches successful. If program A calls B as a subprogram,
which in tum calls C, loading will be successful if ftles present the program
modules to Id in the order A, B, C; but it will be unsuccessful in the order
C, A, B because (searching one way only) C cannot be found when it is
required by B. The ar program permits the user to arrange the order of
modules in a library, so that at least within each archive such problems
can be avoided.

Removable File Volumes

One great convenience that results from setting up directories hierarch­
ically is th~t whole new file volumes can be attached to the existing file
structure easily. Such volumes may take various physical forms such as
magnetic tapes, disk cartridges, or floppy disks. Floppy disks in particular
are assuming increasing significance as the computer user community
comes to recognize the inherent merits of a cheap machine-readable me­
dium which conveniently fits into a standard filing folder. But having re­
movable media means that the operating system has to be informed,
whenever appropriate, that the disk or tape on a given storage device has
been changed. Appropriate commands for this purpose are provided; they
are described in this section.

Extending the File Structure

To use a removable (demountable) volume, it must first be mounted (i.e.,
attached to the Unix system). The physical act of mounting, for example,

Removable File Volumes 51

placing a floppy disk in a disk drive and closing its gate, is necessary but
not sufficient. In addition to making the new volume physically available,
the system must be told of its existence and its place in the file hierarchy
by means of an appropriate command. To be compatible with directory
management rules, every physical file volume is made to contain a di­
rectory structure of its own. The directory structure of a volume is hier­
archical as always, and it begins at a root directory which has no name.
All files on the volume can be made available simultaneously by making
the root directory ofthe removable volume be a subdirectory of the user's
working directory. To do so, the user requests the system to substitute
the root directory of the newly mounted volume for an existing (but empty)
directory in all file references.

Like many things, the principle of mounting removable volumes may
appear complicated, but it isn't really. Suppose user joe possesses a floppy
disk containing the manuscript of a report, structured as shown in Figure
3.3(a). On first logging in, the working directory is automatically made
/usr / joe. To access the files on floppy disk, joe first makes a new di­
rectory report, a subdirectory of one of his existing directories. The
new directory of course is part of the already existing file structure in the
system, as indicated in Figure 3.3(b). Incorporation of the file structure
on floppy disk only requires the empty subdirectory report and the root
directory ofthe floppy disk to be made the same, as in Figure 3.3(c). Once
the two directories have been identified as being the same, the fIle structure
on the floppy disk has become in every way a part of the entire Unix fIle

frontmat

chapterl

(root) --+--- chapter2

chapter3

appendix

(a)

oldfiles

/usr/joe --E nonsense

report

(b)

frontmat -f0ldfiles

/usr/joe nonsense chapterl

report ---+--- chapter2

chapter3

appendix

(c)
FIGURE 3.3. (a) Directory structure on a floppy disk. (b) An empty directory report
is added to the user's file structure. (c) The floppy disk directory is identified with
report.

52 3. Files in the Unix System

structure. The file reference lusr I joe Ireport I chapter 3, for ex­
ample, is understood by the system immediately.

The mount and umount Commands

The user with a volume to attach generally first performs the physical act
of mounting the tape or inserting the diskette in its slot, then tells the
system about it by using the mount command. Typically,

mount /dev/fdO /usr/joe/report

achieves the desired result: the root directory of floppy disk drive fdO
(accessed through the device special file Idev IfdO) becomes identical
with the already defined but empty directory lusr Ij oe/report. Aside
from the time delays occasioned by the need to access files on such slow
devices as cartridge tapes, the user will not even be aware that the file
storage is split between several devices.

Under most Unix systems, a volume is generally mounted with a com­
mand in the form

$ mount /dev/xxx direetoryname

or

$ jete/mount /dev/xxx direetoryname

where I dey I xxx is the name of the special file that handles the physical
device in question and directoryname is the name of the directory file
for which the root directory of the removable volume will be substituted.
Both the device special file and the directory be taken over by the root
directory must exist when the mount command is issued. The directory
to be taken over must be empty at the time it is taken over. It should be
noted that the mount command itself resides in lete, a directory normally
reserved to the system manager. In several versions of Unix the mount
command requires the full pathname to be given for direetoryname;
names relative to the current directory are not accepted.

When the time has come to unmount the removable volume, the same
steps are retraced in reverse. The command for doing so is umount (not
"unmount"):

$ /ete/umount /dev/xxx

This command has only one argument, the name of the special file I dev /
xxx associated with the physical device on which the volume resides.
The directory file to which the volume root directory was attached is re-

Removable File Volumes 53

leased after the umount and appears as a healthy, normal, but empty di­
rectory. The umount command, like mount, resides in directory jete.

If the physical volume (disk or tape) mounted by the mount command
does not contain a Unix file structure (if there is no directory on it), the
system will attempt to read and to mount it all the same. The most usual
result is a system crash. This disaster potential probably explains why
the Version 7 Unix system reserved the mount command to the system
manager. It might be presumed that the system manager, of all people,
should know better!

The mount and umount commands are among the least consistent and
least standardized Unix commands. Options differ considerably between
system versions and so do the access permissions. Although the principles
remain much the same, details differ sufficiently to make it essential to
consult the full system manuals on these two commands.

Mounting and unmounting a volume is also possible by way of system
calls, which may be accessed from C, Fortran, assembler, or other pro­
grams. This fact allows mounting and unmounting data sets under program
control, while a program is actually executing. However, only advanced
users and system programmers are likely to be interested in this possibility.

Making New File Structures

When a removable volume is mounted on some physical device, the logical
task of mounting is performed by substituting the root directory of the
demountable volume in place of an existing directory. As detailed above,
the procedure is to substitute the volume root directory for one of the
leaves of the Unix directory tree. The substituted directory must initially
be empty, precisely to guarantee that it really is a leaf of the tree. Such
a substitution is clearly impossible unless a directory structure exists on
the removable volume before any attempt is made to mount it. A brand
new magnetic tape, for example, cannot be mounted because it does not
contain any directory.

To create a directory structure on a new magnetic medium, the mkfs
command is used. This command first cleans the volume, irretrievably
destroying all records on it. It then creates a single brand new (empty)
directory on it, unnamed because it is the root directory for that volume.
The volume can then be mounted in the usual fashion. The mkfs command
is commonly used in the form

$ jetejmkfs specia/file filesize

where specia/file is the name of the special file which serves to access
the physical device in question, and file size is the size of the file structure
in blocks, a decimal number. The ftle size will usually (but not necessarily)
be equal to the full size of the physical volume. It is perfectly possible,

54 3. Files in the Unix System

though not very often of practical interest, to make two or more file struc­
tures on the same tape or disk.

Like mount and umount, the mkfs command resides in directory jete.
In larger Unix systems, it is therefore available only to the system manager.
This arrangement is not altogether unreasonable, since unrestricted access
to mkfs makes it possible for any user to destroy entire diskfuls of files
simply by mistyping the name of a special file!

Working with Floppy Disks

Floppy disks are a popular file medium in small Unix systems. The design
of Unix in its early versions (including Versions 6 and 7) did not cater
particularly well to removable media under user control and it certainly
could not consider floppy disks, for floppy disks were just being invented!
Procedures appropriate to using floppies exist under System V, however.
To what extent they exist (and to what extent they are available) depends
on the system size and the nature of the user community, for almost any­
thing that can be done with removable volumes exposes all users to some
risk. Small scientific installations, for example, can usually afford to take
liberties quite unthinkable in large systems that maintain commercial data
bases.

Floppy disks are used under Unix in two ways: as block-structured
devices with random access to data (resembling a hard disk) or as se­
quential devices (resembling a magnetic tape). Either way, a floppy disk
is unusable until it has been formatted, that is, until it has had sector
marks written on it that will subsequently allow the system to locate places
on the disk. This operation is perhaps analogous to drawing a grid on a
map, making it possible to identify precise locations and to return to them
at will. Many Unix systems do so by means of the format command; the
floppy disk is placed in drive 0 (in most small computers, the upper or
left-hand drive) and the command

$ format /dev/fdO

is issued. In System V derivatives, it is usually not even necessary to
specify the device name; jdevjfdO is understood by default. Some sys­
tem versions will not even allow formatting of any device except j dey j
fdO, presumably to avoid the horrible consequences of some user acci­
dentally reformatting the hard disk on which the system resides!

Once a floppy disk has been formatted, a file structure may be made
on it with the mkfs command. In some systems, that operation is not even
necessary; format automatically invokes mkfs as well. In others, the user
needs to run mkfs explicitly. How large a ftle system can be accommodated
on a floppy disk depends on all the usual factors that surround the peculiar
world of floppy disks: how many tracks per inch, how many sectors, single

Removable File Volumes 55

or double sided. Floppy disks house half a megabyte, give or take a factor
of two or three; it is essential to consult the system manuals for local
details.

A useful feature of the mkfs command of particular benefit to the floppy
disk user is its ability not only to accept a file structure size but to create
a file structure identical to a prototype specification given in a named
prototype file. In plain English, this means that a user can have available
a version of mkfs that says effectively' 'make a file structure for a double­
sided floppy" without worrying about the details.

Restrictions on Removable Volumes

Once a removable volume has been mounted, the directory structure does
not show, indeed it makes it difficult to find out, on what physical device
the files reside. However, there are a few subtle difficulties which may
arise in the use of removable media. These are resolved by placing some
restrictions, fortunately gentle ones, on the directory structure.

Suppose a magnetic tape contains a root directory, with a single sub­
directory math which in turn contains ordinary files algb and trig.
Suppose user joe mounts the tape on a tape drive and attaches its root
directory to a previously empty directory whose pathname is /usr / joe /
tape. To user joe it then becomes irrelevant whether the ordinary files
reside on tape or elsewhere, since reference to /usr / j oe/tape/mathl
trig serves to access the ordinary file trig,just as if it had resided on
the system disk fIles. The user directory structure is then (in part) as shown
in Figure 3.4.

The file-naming rules in general insist that directories must be related
to each other in tree structures. On the other hand, ordinary files may be
listed in any number of directories. In other words, the insistence on hier­
archical structuring applies to directories only, not to ordinary files. In­
deed, the In command exists precisely so that ordinary files can conve­
niently be listed in two or more directories. However, a problem may
arise when ordinary files resident on removable volumes are cross-listed
in several directories. For example, file /usr / j oe/tape/math/trig

etc

(rootl--+-- usr -f :: -- tape __ math -{ ."b

bob tng

dev

FIGURE 3.4. Directory structure resulting from the mounting of a tape.

56 3. Files in the Unix System

may also interest user bob, who may therefore wish to attach it to his
directory. In principle, it is perfectly acceptable to provide a second listing
for the same file, as /usr /bob/trig. But the directory /usr /bob is
resident on a physical device (typically, the system disk) different from
the device where file /usr /j oe/tape/math/trig is located (the mag­
netic tape unit). If user joe unmounts the tape file structure from directory
/usr /j oe/tape and then removes the physical tape, file /usr /bob/
trig suddenly becomes inaccessible to user bob!

To avoid problems of the sort described, ordinary files on removable­
medium devices may not be cross-listed to directories on other devices.
Linking file tr ig to directory /usr /bob as above is therefore forbidden.
This rule is imposed to keep system management simple; if the rule did
not exist, the procedure of unmounting any volume would become very
difficult. For example, what should the system do if user joe wished to
unmount the tape while user bob was not even logged in? This prohibition
on cross-listings is not really so draconian as it may seem, for it does not
prevent any user from having access to files, merely from listing them in
directories in a particular way. If user bob really wishes to have a copy
of math/trig, he must request it by means of the mv command which
will actually copy the file across devices. Alternatively, a copy of it may
be made using cpo

Backup Files

Few computer users have not experienced a total feeling of frustrated
defeat as the realization gradually dawns that a whole day's work has just
evaporated, the result of accidental file erasure. Once burnt twice shy,
goes the saying-one learns to keep backup files. Keeping backup copies
is more of an issue with Unix than with many other operating systems,
for Unix is miserly with disk space; it does not keep copies of previous
versions of modified files.

Backup copies are necessary not only because hardware and operating
systems sometimes malfunction but also to protect against the user's own
blunders. Blunder protection is not hard to arrange if one adopts systematic
working habits. For example, suppose user joe is working on a report,
kept in a directory structure like that of Figure 3.3(c). To provide blunder
protection, another directory is created, say /usr / joe/report. bak,
into which to copy a backup version. To do so, user joe need only request

$ cp report/* report.bak

every now and then. While working on the report, making a new backup
copy every half an hour or so probably suffices; the loss is limited to
whatever has been done since the last backup copy. Unix even allows for

Removable File Volumes 57

forgetful people, by permitting regularly timed processes (so-called at­
processes) to do the backup creation automatically at specified intervals.

Protection against externally caused disasters clearly requires that a
storage medium not part of the computer system be used to house the
backup copy. For moderate-sized file structures that will fit on a single
floppy disk, a procedure similar to the above is used, with the difference
that the floppy disk must first be mounted and must be unmounted af­
terward:

$ mount /dev/fdO/usr/joe/report.bak
$ cp report/* report.bak
$ umount /dev/fdO

A system crash may of course occur while this backup procedure goes
on. In that case, user joe is left high and dry in spite of the most sensible
precautions, because no backup copy exists at all during the moment when
the old backup copy is being replaced by the new one. Very careful users
therefore keep two copies on floppy disk, not merely one.

Where floppy disks and removable disk-packs are inconvenient-be­
cause they do not exist or because the files to be backed up are too ex­
tensive-Unix provides an alternative in the standard command tar. Its
name is an abbreviation for tape archiver; its operation runs accordingly.
The general format is

$ tar options directories

where director i es is the name of a directory, or of several directories,
whose contents are to be archived. The archiving is recursive, in the sense
that the directory structure is followed through all subdirectory levels down
to the ordinary files. Options available under tar are numerous and for
the most part obvious: tar will either write to tape or extract files from
an existing tape. It can be told to write to a new tape, or else to an existing
tape in an update mode, replacing only those files which differ from their
earlier versions. For backup creation,

$ tar u report

is the right choice; it tells tar to update the tape contents, comparing with
the contents of directory report. The word tape may of course mean other
physical media used in a sequential fashion, as if they were tape; diskettes
(floppy disks) are often used this way in small systems.

The file format used by tar has changed little between Unix versions
and does not vary between implementations. Tapes or diskettes in tar
format are therefore the favored distribution medium for Unix files; they
come as near to universal readability as anything can. On the other hand,

58 3. Files in the Unix System

a file in tar format really is archivally stored; it is inaccessible until it has
been copied into its place in the system file structure. File-structured vol­
umes are thus more convenient, provided the files are small and transport
to another computer is not envisaged.

The distinction between tar formatted media and file-structured media
is important; the two are different and cannot be mixed. Here is another
source of potential blunders. Because a diskette may contain files in either
format, users must remember to label them to identify not only the content
but also the format in which it is written -and must remember to change
the label when different contents in a different format are placed onto the
same disk.

Chapter 4

Unix Command Shells

The Unix operating system contains many software components. Two
hold particularly privileged positions: the kernel and the shell. The kernel
is the operating system in the narrowest sense of that word, the supervisory
program which schedules all processes and executes them in the proper
way at the right time. Which programs to execute, how to run them, what
to do with the output, and similar matters are communicated to the kernel
through the Unix command decoder program, the shell. In this chapter,
the external appearance of the shell is described in sufficient detail to
allow reasonably complete use of its main facilities. However, the shell
is a complex program and many of its more esoteric features can only be
hinted at here.

To be precise, Unix does not have a shell; it has several. The most
common is known as the Bourne shell after its originator; there is probably
no Unix system where the Bourne shell is not available. The next most
common is the C shell (pronounced sea shell). Both are general-purpose
programs. Various special-purpose shells, not discussed in this chapter,
also exist. For reasons now lost in history, the usual shell prompt character
is $ for the Bourne shell and % for the C shell; wherever it is necessary
to distinguish between them in this chapter, the $ and % characters will
be used.

Issuing Commands

The shells are the Unix command decoder programs; they request com­
mands from the user, decode them, and communicate the user's wishes

60 4. Unix Command Shells

to the kernel. As the name shell suggests, the shell envelops the kernel,
in the sense indicated by Figure 4.1. All communication between the kernel
and the terminal user must pass through the shell.

Basic Shell Action

Whenever a user logs in, a Unix shell is automatically invoked and started
running, a separate and personal copy for each user. Once started, the
shell displays the $ prompt on the screen, signalling its readiness to accept
a command. When the user issues a command, the shell institutes a search
for a program with the same name as the command. If such a program is
found, the shell instructs the kernel to execute it. When execution is com­
plete, the shell tells the user and requests another command, by displaying
the $ prompt again. In other words, the shell alternately requests com­
mands and executes them, in the following cycle:

issue shell prompt;
wait for keyboard input;
decode command line and search for program;
instruct kernel to execute program and wait;
accept kernel reply, then go back to issue a prompt;

This cycle continues until the shell encounters a control-D character in
the keyboard input. This character is used consistently throughout the
system to denote end of transmission. From the shell's point of view, the
string of keyboard characters coming from the user is very much like a
file, so the shell interprets control-D to mean "end of keyboard input",
that is, to signify that the user does not intend to send any further com­
mands. The shell therefore instructs the kernel to log out the user.

Command verbs in the Unix system are invariably names of executable
programs, so that execution of a command really means execution of the
program with the same name. Indeed, any user can define more commands
at will, simply by creating programs and using their names as command
verbs.

User

FIGURE 4.1. The user at the terminal is isolated from the system kernel by the
command decoding shell.

Issuing Commands 61

Form of Shell Commands

All commands understood by the shell, and therefore all commands the
kernel can act upon, have the same general form. This fact should not be
surprising since they are all processed by the same decoder. The form is

command-verb [argument] [argument] [argument]

The command-verb is always required, but arguments are optional; they
mayor may not be needed. Because the command verb is understood by
the shell to denote the name of a program, it will institute a search of the
system file directories for a name to match the command verb, usually
in the following sequence:

1. user's current directory; if not found,
2. directory /bin; if not found,
3. directory /usr /bin; if not found,
4. message issued, search terminated.

The command must appear in one of these directories as the name of an
ordinary file for which the user has execute permission. Because the
searching sequence is defined in advance, the shell does not expect full
pathnames for files which can be located unambiguously by the above
order of searching. For example, the Fortran compiler is always invoked
by the command

$ f77 arguments

There is no need to specify it by its full pathname as

$ /hin/f77 arguments

but there is nothing wrong with doing so. An exceptional case occurs if
a file name in the user's own directory duplicates the name of a system­
provided command. If, for example, the user creates a brand new file
called f 77, it will be found in the very first step of the search; but it will
not be the Fortran compiler! To override the default search sequence, the
full pathname will be required in such cases.

Most of the system-provided general utilities reside in directory /bin,
some in /usr /bin. A few are elsewhere. The users' own contributions
of course may reside anywhere their creators care to (or can!) put them.

Arguments in the system-provided commands are of two principal
forms: adverbs (modal arguments) and direct objects (fIle names). Adverbs
are usually called options in the Unix Programmer's Manual as well as
in other descriptive literature. For example, to compare two files f ilel
and file2, one may use the command

$ diff -e file! file2

62 4. Unix Command Shells

The argument -e is an option; when used with diff, it indicates that an
editor script is to be produced so that the standard Unix editor ex can
recreate filel from file2 and the differences that form the output of
diff. The option must be preceded by a hyphen (a minus sign) in this com­
mand, and indeed in practically all the system-provided commands, to
show the shell that -e is not a file name.

Like most of Unix, the command syntax lacks a formally defined
standard. It is probable that one will be defined before long; for the mo­
ment, however, some informally proposed standards do exist. By common
agreement, all command verbs are at least two and not more than nine
characters long, always composed of lowercase letters and possibly nu­
merals. Options are ordinarily one character long, preceded by a minus
sign. Some options take additional option arguments; these, if there are
any, follow the option letter. Sadly, these simple rules are broken by some
common commands-occasionally because there is a good reason, more
often because it just happened that way and nobody has got around to
repairing the damage.

Options naturally differ from command to command. Nevertheless,
most standard commands use the same letters to signify similar actions
(though exceptions do exist). For example, -I often denotes "long form",
whatever that may mean in the context of a particular command. Some
commands allow few or no options; some admit more than ten, which
may be specified in almost any sensible combination. For example,

$ Is -1 -r -t

requests that the current directory contents be listed, giving all entries in
long form (I), sorted in reverse (r) order by time (t) of last modification.
Multiple single-character options are normally combined into a single ad­
verb clause by concatenating all the option letters and prefixing them with
a single hyphen, as in

$ Is -lrt

Blanks or commas must not be inserted between option letters in an adverb
clause, for if a blank is inserted, the shell will assume that the next char­
acter belongs to a file name, not an option.

When file names are specified as command arguments, the standard
conventions for ftle naming are used. In other words, pathnames beginning
with / denote paths starting at the root directory and pathnames beginning
without the / character begin at the current directory. However, the search
sequence applicable to commands does not apply to files named as direct
objects; if a named file is not found exactly where specified, no other
directories are searched for it.

Issuing Commands 63

Multitasking and Waiting

In the ordinary course of events, the shell initiates execution of a command
and does nothing until the appropriate process has entirely run its course.
Typically, the user requests a process to be run, the output appears on
the terminal screen, and the shell comes back with the $ prompt when
ready for the next command. For example, anyone wishing to know who
is currently logged on the system may use the who command:

$ who
michael tty01 Feb 10 14:32
nora tty02 Feb 10 14:19
boss tty03 Feb 10 09:29
cleo tty05 Feb 10 15:15
wurzel ttyh4 Feb 10 16:06
adler ttyh8 Feb 10 15:21
$

who checks the system tables to see which user is logged in at what terminal
and since what time. The answers are presented on the terminal screen,
while the shell simply waits for who to finish. On completion of who, the
shell prompt reappears, indicating that the shell has regained control.

Sometimes it is desirable to set a program running but to go on doing
something else at the terminal while the job runs. For instance, running
a spelling check to find typographic errors in a long document may be a
time-consuming job, but it requires no intervention at the keyboard. The
user may therefore simply wish to set it going and to get on with editing
some other files with the vi editor while the spelling check runs. Unix is
fortunately a multiprocessing operating system, one which permits a user
to have multiple processes running concurrently. To make the programs
spell and vi run at the same time, the user instructs the shell to run spell
but not to wait for its completion. Not waiting is implied by the & (am­
persand) character when used as a command suffix:

$ spell longdocument > mistakes &
21
$ vi

Here spell is told to use longdocument as its input file and to redirect
any suspect words (which would normally be sent to the terminal screen)
into file mistakes, but to do so without waiting for completion. In re­
sponse to the command, the shell requests the kernel to set the spelling
task running and returns to the user a process identification number, 21
in the above example. Because the ampersand sign & was included in the
command line, the shell does not wait for the kernel to signal that the

64 4. Unix Command Shells

spelling job is complete; instead, it immediately issues the $ prompt,
showing that it is prepared to accept another command. The user replies
by asking for vi to be run. From that moment on, two processes are running
for the same user, speD and vi. (In fact there are more, probably at least
half a dozen.) The latter is interactive and will eventually be terminated
by the user; the former will keep going until its job is complete. Nonin­
teractive processes set running in this fashion are sometimes known as
background processes, because they run invisibly while the user is engaged
in doing something else at a higher priority.

Background processes are known to the system only by their process
identification numbers. When a time-consuming process is set running in
the background, it may be useful to note down its process identification
number so the system can be given instructions about it later on. At other
times, the user may realize, a moment after pressing RETURN, that the
background process just launched was the wrong one (perhaps smell in­
stead of spell) or that the wrong input file was specified. In that case, the
background process can be stopped by the klll command. The instruction

$ kill 21

will stop speD in the above example, provided of course it has not yet
terminated its run.

The status of background processes may be enquired into with the ps
(process status) command. This command produces a screen display
showing from which terminal the job was started, by what command, and
how long it has been running; whether it is still running; for which user
it is running; and a host of other (for the most part less interesting) things.

Standard Files

Every user process is automatically assigned a standard input stream and
a standard output stream when it is started. In ordinary cases, these will
be connected to the terminal keyboard and screen by default. Most com­
mands that produce output, produce it on the standard output device;
correspondingly, they expect input from the standard input device. Under
this scheme, the user frequently does not need to bother specifying where
output should be directed. For example, to list directory contents it suffices
to give the command

$ Is

without any indication that the listing should be presented on the terminal
screen. That is precisely where the listing will appear, unless the standard
output assigned by default was altered.

If the user prefers to have input and output directed to devices other

Issuing Commands 65

than the predefined standard, data can always be redirected elsewhere by
reassigning the input or output streams to some other device or file. In
the normal course of events, redirection is desired only for the duration
of one particular command. Such temporary reassignment is achieved by
the characters) or » as in

$ Is -1) file!

or

$ Is -1 » file!

commands which cause the current directory contents to be listed (in long
form, as specified by -I) to a fd~. The single right-arrow character) causes
the contents of f ilel to be replaced by the listing, without presenting
the listing on the terminal screen. The double right-arrow» causes the
listing to be appended to the existing contents of f i 1 e l, without affecting
previous file contents. If there was no filel in the first place, one is
created. In a similar fashion, the left-arrow character < may be used to
reassign input temporarily.

Many commands permit file names to be given as arguments but will
assume that standard input or output is intended if file names are omitted.
For example, the command cat (an ugly abbreviation for concatenate)
copies one or more named files to its standard output:

$ cat file! fi1e2

It can be used to concatenate two files or simply to list one on the terminal
screen, as in

$ cat myfile

If no file name is given, cat uses its standard input. Thus

$ cat

performs the (not always useful) task of merely echoing on the screen
whatever is typed at the keyboard. If the standard input is reassigned,

$cat < myfile

file myfile is again displayed on the screen; the commands

$ cat myfile
$ cat < myfile

66 4. Unix Command Shells

are thus equivalent. Redirection can even be used to make cat copy a file:

$ cat file!) file2

There is a third standard data stream, the standard error output; it han­
dles error messages and other supplementary communications. Redirection
of the standard output does not affect the standard error output. This
separation of streams is deliberate and convenient. When the standard
output is redirected, complaints about missing files, wrong access per­
missions, and the like do not mess up the output file but appear on the
screen instead.

Pipes and Pipelines

The Unix shell permits establishing interprocess pipes. Pipes are data
channels that funnel output from one program directly to another without
creating any intermediate files. A pipe appears like an output file to one
program and an input file to another. It is created by routing the standard
output of one program directly into the standard input of the other, how­
ever, without the creation of any intermediate entity. The vertical rule
character I represents a pipe in shell commands. For example,

$ who I lp

requests execution of two programs, who and Ip (a program that copies
its input file to the line printer); the standard data streams are redirected
so that the output of who is piped directly to Ip as its input. Together,
this command pair will list who is currently logged on the system, but on
the line printer instead of at the terminal. The apparent effect is precisely
the same as would be achieved by the command sequence

$ who) temporaryfile
$ lp < temporaryfile
$ rm temporaryfile

But no file space is needed for temporaryfile, because no such file is
ever created.

When a pipe is specified, the kernel starts both processes running im­
mediately, just as if they were background tasks. In the above pipeline,
who starts producing output right away and Ip proceeds to do the house­
keeping necessary to prepare for printing. The output of who is handed
over to Ip as rapidly as it is produced, without waiting for who to terminate.
By way of contrast, if the job is done by a sequence of three separate
commands the Ip program is only launched after completion of who. In
the pipeline, who and Ip will execute synchronously, forced into syn-

Issuing Commands 67

chronism by their interlocking needs for input and output. In fact, for all
practical purposes the two may be regarded as a single compound process.

The notation for pipes differs from the notation used for redirection:
it lists commands whereas redirection lists files. The command line

$ who) lp

is syntactically quite correct. However, it sends the output of who to a
user ftle called Ip, not to the line printer; the redirection symbol) informs
the system that Ip is a file name, not a command name.

A pipeline may contain as many processes as desired. The individual
processes in it are always executed from left to right, with the output of
one process chained to the next as input. To illustrate, the above example
may be extended to include alphabetic sorting, using the sort utility:

$ who I sort I lp

This pipeline works as follows. The who program will produce the iden­
tifiers for all users currently logged in and hand over this output to sort
as it is produced. In its turn, sort will place them in alphabetical order.
Finally, Ip will send the output to the line printer, which will eventually
yield

adler ttyh8 Feb 10 15:21
boss tty03 Feb 10 09:29
cleo tty05 Feb 10 15:15
michael tty01 Feb 10 14:32
nora tty02 Feb 10 14:19
wurzel ttyh4 Feb 10 16:06

All processes in a long pipeline are set running simultaneously and their
running is synchronized by the need of each to wait until it receives input
from the process preceding it. The effect is that of a bucket brigade moving
information from hand to hand as soon as it becomes available, never
waiting for more information to accumulate than is actually required for
the next step.

In plumbing, fittings are needed in addition to straight pipe runs. Unix
provides one standard fitting, the tee; it copies its standard ihput to its
standard output and makes an additional copy to another file besides. If
a record is wanted of who is logged in on the system,

$ who I sort I tee whofile I lp

will pass the output of sort to Ip and write a file whof i 1 e at the same
time. If desired, tee can be used to copy to several files at once, or to
append to them rather than overwrite, by specifying the -a option.

68 4. Unix Command Shells

Input Handling by the Shell

User interaction with the Unix shell takes place through the keyboard
and screen. Commands are received by the shell through the keyboard
handler, a program for collecting the keystrokes as they arrive and or­
ganizing them into lines the shell can interpret. The shell proper deals
with input lines rather than characters; it tries to parse lines and to decode
them to make sense as commands. An understanding of shell operation
simplifies effective use of the Unix system; it is therefore worth examining
the rules of shell input in some detail.

Input Buffering

All keyboard characters are received by the keyboard handler which
echoes them to the screen and immediately places them in its text buffer,
a reserved memory area used to store the characters until they are needed.
Whatever is typed at the keyboard is not immediately processed by the
shell; it is stored in the buffer until the shell develops an appetite for input
and at least one input line is complete. Only at that time is the input line
actually handed over to the shell for decoding. On the other hand, the
keyboard handler may accept from the keyboard, and store in the buffer,
two or more lines. If the shell is not ready to accept the extra lines, they
are simply left to wait in the buffer.

The buffer area used for keyboard input is of a fixed size, usually 256
characters. In normal use, the shell displays the $ prompt on the screen
and the user replies by typing a command, terminated by a RETURN key­
stroke. The command line is then handed on to the waiting decoder and
processed. When it is ready for more, the decoder prompts for more. But
if the user continues to type at the keyboard without waiting for the prompt
to reappear, no harm is done. The keyboard handler only stores the char­
acters as they are typed; they will be transmitted from the keyboard buffer
to the decoder program whenever the latter is ready for more input. A
difficulty only arises if the user attempts to type too many extra characters,
thereby overflowing the buffer. In that case, the surplus characters are
discarded without any prior warning. However, problems rarely arise in
practice, since 256 characters represents over a dozen average commands.

Experienced users tum the keyboard buffer capacity to good profit by
typing ahead the commands they know they will wish to issue next, es­
pecially if the execution times of some are known to be a bit long. The
screen display can then become truly confusing. The keyboard handler
echoes characters on the screen as they are typed; but the shell prompt
and any program responses only come when the commands are executed.
The screen display therefore will not reflect the actual sequence of op­
erations, but will show all the commands as they are typed, then a sequence

Input Handling by the Shell 69

of shell prompts and program outputs as they are produced. The order of
input lines on the screen will be a faithful image of their typing sequence,
not of the order they were received and decoded by the shell.

Errors and Error Correction

Even the most expert computer user occasionally issues a wrong command
or strikes the wrong key. The way keyboard input is buffered means that
no action is ever taken in response to keystrokes until the RETURN key
has been pressed at the terminal, so errors can be remedied at least until
that moment.

Incorrect characters typed at the keyboard may be corrected by erasing
them. Erasure of a single character is achieved by the erase character,
which is usually the BACKSPACE key. Each time the BACKSPACE key is
struck, one character is erased in the input buffer and the screen cursor
is moved back one character. Many display terminals, however, only move
the cursor, they do not erase the incorrect characters on the screen. Since
backspacing is usually followed by overwriting, the correct characters
appear on the screen in the end; however, the screen appearance may
temporarily be wrong. For example, a user may type the command passwd
incorrectly, discover the error, and backspace four times,

$ Pc&wd
ending up with the screen cursor at the first x. The text buffer will now
contain the characters pa, the four characters xxwd having been deleted.
Typing sswd yields the screen display

$ passwd

again a faithful reflection of the buffer contents.
When using a printing terminal, backspacing and overstriking are not

possible. Instead of BACKSPACE, the # key is then used. Each time # is
struck, one character is erased in the buffer but # is printed at the terminal.
The resulting printout can be a bit messy, with

$ paxxwd####sswd

understood to mean passwd despite its curious appearance.
If an error occurs near the beginning of a long command line, a great

many characters may have to be erased and retyped. Starting the line
over, without individually erasing every character, may be easier; typing
the kill character expunges everything typed so far. The kill character is
usually @, sometimes control-X.

70 4. Unix Command Shells

The erase and kill characters are both resettable. In other words, they
are not permanently fixed as BACKSPACE and @ respectively but can be
altered by the user. A table of terminal characteristics is maintained to
describe every terminal connected to the system and these two characters
are part of the terminal description. The user can alter any of the infor­
mation in the terminal description table through the stty command, which
is described more fully below. The most common default settings are those
described here. But if the default settings should prove inconvenient, a
user may indeed define some other erase and kill characters, for example
% and <.

The BACKSPACE key on any normal terminal generates the control-H
character. If a terminal does not have a BACKSPACE key, no matter; con­
trol-H will always do precisely the same job.

Characters Given Special Treatment

The shell does not consider all characters to mean what they say; quite
a few have special meanings. Peculiar uses of the characters & <) I
have already been encountered above. Several other so-called metachar­
acters have special meanings to the shell. These will be considered briefly
in the following.

The semicolon ; is treated as equivalent to RETURN, provided the key­
board buffer contains at least one full line terminated by RETURN. To
restate this bit of gobbledygook in plain words: several shell commands
may be typed on a single line with semicolons between commands. When
the time comes for command decoding, semicolons will be replaced by
RETURNS, so that the individual commands will be decoded as individual
lines. The shell does not act any differently, but the screen display looks
different. For example,

$ who > temporaryfile; Ip < temporaryfile; rm temporaryfile

This feature is particularly useful when long shell script files are built up.
Since many shell commands are quite short, long command sequences
form narrow ribbons of typing along the left edge of the terminal screen.
They can be made to occupy fewer but longer lines, and thereby become
easier to read, if semicolons are used judiciously.

In many commands, it may be desirable to name a whole range of file
names. As an example, a particular project may have involved creating
a whole family of files project. f, project. 0, project. a, ... and
it may be desired to remove all the files at the completion of the project.
Rather than typing out the names individually, the shell decoder permits
using so-called wild-card characters, which are considered equivalent to
any and all others. The asterisk * and question mark? are used for this
purpose; the asterisk is taken to represent any string of characters (of any

Input Handling by the Shell 71

length, including no characters at all), the question mark to stand for any
one character. Consequently,

$ rm project*

will remove all fIles whose names begin with the character string proj ect
and continue with any (or no) characters. On the other hand,

$ rm project.?

will remove all fIles whose names begin with the eight-character string
proj ect. and contain exactly one additional character.

Sometimes it is necessary to identify groups of characters more finely,
e.g., "any lowercase letter from a to k" or "anyone of the numerals 3,
5,8". For such purposes, wild cards to match only within specified sets
may be defined. A range of characters, or a list of characters, encased in
square brackets is taken as a match for exactly one character in the set.
For example,

$ rm project. [a-k] [358]

will cause removal of all files whose names begin with the eight- character
string proj ect. , contain a lowercase letter in the range a-k next, and
end with one of the numerals 3, 5, or 8, for example proj ect. b3. As
indicated in this example, the square brackets may contain either a range
of naturally ordered characters (e.g., alphabetics or numerals) or a list of
individually identified characters. Where ranges of characters are shown,
they are assumed to be listed in their ASCII character sequence, with all
numerals, special characters, alphabetics, and even unprintables having
their proper order. Thus, the range specification [7 - C) is equivalent to
the list [789: ; < =)? @ABC] because part of the set of punctuation marks
appears between the numerals and the uppercase alphabet in the ASCII
character definition.

Protection of Special Characters

Shell operation often involves special characters to delimit commands, to
denote wild cards in file names, and indeed for other purposes yet to be
discussed. It is not generally a good idea to use special characters in file
names, because confusion may arise. For example, star*wars is a le­
gitimate Unix file name, but one best avoided because the asterisk char­
acter may be misunderstood as a wild card. If such difficulties are en­
countered, all is not yet lost. Special characters can be stripped of their
special nature by use of still more special characters: reverse slants (back­
slashes) and quotation marks.

72 4. Unix Command Shells

The reverse slant character", can be used in shell commands to force
any character to have its literal (rather than special) meaning. The two
commands

$ rm star*wars
$ rm star*wars

are not the same. The first removes all files whose names begin s tar and
end wars, no matter what characters may occur between these two strings;
the asterisk is taken to stand for any string of zero or more characters.
The second, however, treats the asterisk as a literal asterisk character,
not as a symbol standing for some other string; it removes the file named
star *war s and no others. In cases of doubt, giving a character its literal
value with the reverse slant is always a safe course, for if an ordinary
character had no special meaning in the first place, preceding it with a
reverse slant endows it with no new meaning. The super-cautious user
might therefore like to type file names in the form
\ s \ t \ a \ r \ * \ w \ a \ r \ s to be safe! Even the reverse slant character
itself can be protected by another reverse slant. Perverse souls may wish
to use reverse slants in me names, as file \name; but it will be necessary
to ask the shell to deal with file\ \name. Reasonable people for the
most part choose to stick with lowercase alphabetics and numerals, with
an occasional period (dot) thrown in for good measure.

Reverse slants protect single characters, not character strings. Protec­
tion for character strings is obtained by enclosing them in quotation marks.
Two sorts of quotation mark are used, double and single. (Single quotes
, are of the apostrophe variety, ASCII octal 047-not which is called
the grave accent or the back-quote). Double quotation marks cause all
characters between them to be considered a single character string, thus
solving the problem (among others) of how to include the blank character
in a string. Single quotes play a similar role to double ones in keyboard
work, but having two kinds of quotation marks solves another perennial
problem-how to place a quotation mark inside a quoted string!

Argument Echoing

Because the shell command decoder may understand wild cards or other
special characters in a way not intended by the user, a utility command
echo is provided for previewing the effect of any particular command line.
The echo command actually does nothing except display on the terminal
screen the arguments entered with the command; but it displays them in
fully expanded explicit form. For example, a user may feel diffident about
a file name such as proj ect. *, particularly in a destructive command
like rm. Just what would be removed can be determined by first issuing
the command:

Input Handling by the Shell 73

$ echo project. *
project.c project.f project. 0

The response lists all the currently possible values of the echo argument,
i.e., all the file names in the current directory which match the wild-card
construction given. Similarly, a user may feel uncertain about a character
string like star \ \ \ *wars (how many and which reverse slants are going
to be taken literally?). The shell's understanding of the character string
may be checked by

$ echo star*wars
star*wars

The echo again shows exactly what the character string, as finally decoded
by the shell, will look like. echo is of course not a part of the shell, but
a system utility just like Is or cat.

Resetting Terminal Parameters

Experienced users at times find it desirable to alter the erase and kill
characters associated with their terminals or to reset other terminal char­
acteristics. To do so, the stty program may be used. Like echo, the stty
program is not really a part of the shell at all, but it does affect the operation
of the shell.

Resetting the erase and kill characters is easily accomplished. The new
characters are given in the command as arguments; for example,

$ stty erase % kill +

will make % the erase character and + the kill character, until the system
is otherwise instructed by another stty command.

Terminals vary widely in their operating characteristics. The basic ma­
chine, on which nearly all later computer terminals were patterned, was
designed and built by Teletype Corporation a long time before the com­
puter era. Standard terminals are therefore widely termed "teletypes" in
computer jargon, and the name is echoed in such abbreviations and mne­
monics as stty. Modern terminals generally are equipped with either a
cathode-ray tube (television type) display screen or a paper printing
mechanism. The latter is slower than a display screen, because mechanical
motions are required to make it run. At line-ends, they need extra idle
time to allow the printing head or carriage to return to the start of a new
line. They generally also require slower character transmission than display
terminals. The speed settings, tab settings, in fact all the characteristics
of the terminal can be reset through stty. Of course, resetting these merely
tells the system what the terminal characteristics are; it does not alter the

74 4. Unix Command Shells

terminal itself. A slow mechanical printer will still run at its natural speed
regardless of what the system might expect. Most of the facilities of stty
are therefore used when changing the real terminal characteristics, such
as the transmission speed or character parity. To find out the current
settings of a terminal (as the system terminal communication software
imagines them to be, not necessarily as they really are!), the stty command
is issued without any arguments. For a fairly ordinary screen terminal,
the result might be

$ stty
speed 9600 baud; evenp hupel
brkint -inpek iernl onler ffl
echo eehoe eehok

The first phrase in this output shows that the communication speed is
9600 baud (960 characters per second); the remainder have the following
significance:

evenp
hupel
brkint
-inpek
iernl
onler
ffl
eeho
eehoe
eehok

transmission is done with even character parity
hang up the phone connection after last close
signal interruptions on all breaks
no parity checking is done on the input
input carriage returns are made into newlines
output newlines are made into carriage returns
delay one time unit after a form feed
echo every character typed at the keyboard

echo erasures so erased character disappears
echo a newline after each kill character

The form of display varies considerably from one Unix system to the next
and the various system versions keep track of different sets of terminal
characteristics; the sets seem to keep growing as time goes on. Most of
the settings are of a yes/no variety-characters either are echoed or they
are not-and show a minus sign where the negative choice is made (as
for - inpek above).

In System V, stty allows about fifty or sixty different options; the Sev­
enth Edition manuals listed only half that many. Options may be combined
in any way the user likes even though many combinations are senseless.
No checking is done by stty to find out whether the options a user specifies
are reasonable. It is therefore possible to become deeply mired in non­
sense, but escape is available through

$ stty sane

The sane option resets all terminal parameters to be pedestrian but sen­
sible.

The Shell Programming Language 75

The Shell Programming Language

In describing shell commands, it has been assumed so far that all com­
mands are issued by the user at the keyboard and are executed imme­
diately. In other words, the shell command language has been regarded
as a control language that enables the user to specify each action as and
when it is to be carried out. But there is an alternative possibility: shell
commands can be used as a programming language. Sequences of shell
commands actually constitute programs, for they prescribe sequences of
actions. Such sequences, called shell procedures or shell scripts in Unix
jargon, may be stored away in files just like Fortran or Pascal programs,
to be executed when required.

Shell Programs

The key to understanding how shell scripts are written and used lies in
recognizing that the shell itself is just another utility program. In point of
fact, several different shells are available in most Unix installations, the
most popular being the Bourne shell and the C shell (pronounced sea
shell). The Bourne shell, named after its designer Stephen Bourne, is called
sh; the C shell goes by the name of csh and is so called because much of
its command syntax resembles that of the C programming language. There
are also several other shells, which are much more rarely encountered.
Many of the elementary commands used by the Bourne and C shells are
identical, so that a beginning Unix user may not even know which one is
in use. When writing shell scripts, however, the divergences begin to make
themselves felt. In the following, both shells will be dealt with and their
differences noted.

The shell differs from all the other system utilities in one important
particular: it is automatically set running when the user logs in. However,
being just another program, another copy of the shell can be started up
at any time by the sh command. sh reads its input (which could be the
keyboard or a file) and interprets the file contents as shell commands.
For example, suppose the file status contains

date
ps -f

and that it is handed to a copy of the shell as input:

$ sh < status
Tue Jun 3 18:49:44 EDT 1986

UID PID PPID C STIME TTY TIME
peter 37 1 0 09:26:51 02 0:39
peter 388 37 0 18:49:40 02 0:01
peter 391 388 6 18:49:46 02 0:12

COMMAND

-csh
sh status
ps -f

76 4. Unix Command Shells

The processor status report given by ps shows that user peter had three
processes concurrently running at the moment the date stamp was placed
in the output. One was a copy of the C shell, launched at login time; one
a copy of the Bourne shell sh; the third the processor status enquiry ps.
While the ps program was actually running, sh was waiting for ps to finish;
csh was waiting for sh to finish.

Because the default input file to sh is the terminal keyboard, simply
issuing the command

$ sh

causes a copy of the shell to run, taking its input from the keyboard. This
is precisely the manner in which Unix and its many cousins normally
operate, the first copy of the shell being started for the user by the system
itself at login. It remains to note-as might be obvious from the above­
that the shell uses the standard input mechanism so that

$ sh < status
$ sh status

are equivalent in their action though slightly different in the internal
mechanisms. Since the shell thus launched is just another program as far
as Unix is concerned, it could be made a background process,

$ sh status) record &

Output is directed to a file so the process is able to run without bothering
the user at the terminal.

Because the shell can accept input from fties, users can create processes
not ordinarily provided in the Unix system, simply by putting together
pipelines of existing utility programs. To illustrate, suppose it is desired
to know which users are logged in on terminals of type ttyh, ignoring users
logged in at any other type of terminal. The who command gives a full
listing of users, containing not only the desired information but a lot of
superfluous items as well. A file can be weeded by the grep command,
which extracts those lines containing a predetermined character pattern,
in this case ttyh. They can be pipelined with sort, to form a file called
whottyh containing just a single command line:

who I grep t tyh I sort

Whenever it is desired to determine what users are logged in on terminals
of the ttyh type, one issues the command

$ sh whottyh

The Shell Programming Language 77

and the above short pipeline is executed. An earlier illustrative example
produced the screen display

$ who
michael tty01 Feb 10 14:32
nora tty02 Feb 10 14:19
boss tty03 Feb 10 09:29
cleo tty05 Feb 10 15:15
wurzel ttyh4 Feb 10 16:06
adler ttyh8 Feb 10 15:21
$

but now there will only result

$ sh whottyh
adler ttyh8 Feb 10 15:21
wurzel ttyh4 Feb 10 16:06
$

Four more users are shown in the output of who, because they are logged
in; but they are filtered out by grep, because their corresponding output
lines from who do not contain the string ttyh.

Shell Scripts

Files containing shell command strings can be executed by causing another
copy of the shell to run, taking its input from the file, by either of

$ sh commandfile
$ sh < commandfile

Both forms are acceptable. A neater and more elegant way of dealing with
command files, however, is to turn them into commands in their own
right. This conversion is extremely simple: it is only necessary to turn
the command file into an executable file, by attaching the correct per­
missions to it. For example,

$ chmod a+x commandfile

gives everybody permission to execute commandfile, which has now be­
come a command! Consequently,

$ commandfile

will be executed just as if it were a system-provided command.

78 4. Unix Command Shells

Conversion of shell command files into commands, or shell scripts, is
feasible because the kernel and shell coordinate their interpretations of
what is executable. When commandfile is issued as a command, the kernel
finds it unacceptable because its contents do not make up an executable
object file in the proper form. It is therefore handed back to the shell for
interpretation. To state the matter briefly: executable files which do not
contain machine language code are assumed to contain shell scripts.

Parameter Passing

Shell scripts may contain symbolic parameters which are given real values
only when the commands are interpreted and executed. Symbolic param­
eters are handed to shell scripts in an extremely simple manner. Up to
nine special symbols $1, $2, ... , $9, each consisting ofa dollar sign and
a numeral, may be used in place of character strings in the file containing
the shell script. When the script is invoked as a command, the corre­
sponding number of file names, numeric values, or other actual arguments
must be provided, as strings of characters. These are then substituted in
place of the symbolic parameters by the shell, the first one in place of
$1, the second in place of $2, and so on.

To illustrate, suppose once again that a listing of all users logged in at
a particular type of terminal is desired. Procedure whot tyh as described
above works for one particular terminal type, but not for any other type,
because the character string t tyh is permanently embedded in it. The
whot tyh procedure can be generalized, creating a procedure fIle whoterm
containing just the one command line

who I grep $1 I sort

This procedure contains one symbolic parameter, so when it is invoked,
one parameter value must be supplied. Since grep expects a character
string to use in pattern matching, the actual parameter must be a character
string also. Thus,

$ whoterm ttyh
adler ttyh8
wurzel ttyh4
$

Feb 10 15:21
Feb 10 16:06

produces exactly the same result as whot tyh because the character string
ttyh is substituted for $1 before execution. But parameter passing makes
for flexiblIity:

$ whoterm ttyO
boss tty03
cleo tty05

Feb 10 09:29
Feb 10 15:15

The Shell Programming Language

michael ttyOl Feb 10 14:32
nora tty02 Feb 10 14:19
$

79

Here the same script whoterm was used unchanged, but with a different
parameter substituted for $1.

Conditional Execution

The command language understood by the shell has an interesting and
somewhat unusual feature: when executed, every command has an at­
tribute called exit status. The exit status is merely a logical flag which
indicates success (or failure) in executing the command. For example,
suppose the rm command is issued to remove a file. If the specified file
cannot be found, it cannot be removed and the attempt to execute rm is
regarded as unsuccessful. The exit status is therefore returned as false.
Its value can be tested by the shell and used to decide whether to take
some other action. It is thus possible to give the shell such conditional
commands as "remove fIle qtty. c, and if successful, remove fIle qtty. f
as well".

The basic mechanism by which conditional commands are made to run
will be familiar, at least in principle, to Pascal and Fortran programmers.
Just as in those high-level languages, ordinary command statements can
be qualified by an if clause. In the shell language, if exists in two forms:
if . .. then and if . .. then . .. else A simple illustration will serve:

$ cat rmqtty
if rm qtty.c
then echo "Removed qtty.c and qtty.f"; rm qtty.f
else echo "No qtty.c found"
fi
$ Is -m q*
qtty.a, qtty.c, qtty.f, qtty.x
$ rmqtty
Removed qtty.c and qtty.f
$ Is -m q*
qtty.a, qtty.x

The first three or four lines of this example show the contents of fIle rmqtty.
It attempts to remove file qtty. c; if successful, it removes qtty. f as
well and echoes a message to that effect; otherwise, it sends a message
declaring its failure. Note the terminator fi used to identify the end of the
conditional clauses; it is essential because the shell would not otherwise
know how far the conditional command list extends. Next in the example,
the Is command is run to see that fIles qtty. c and qtty. f do exist.

80 4. Unix Command Shells

Executing rmqtty produces the expected message, and a second Is clearly
shows that the files were indeed removed.

The shell script shown above has a flaw, quickly evident when it is
executed a second time:

$ rmqtty
rm: qtty.c non-existent
No qtty.c found
$

The first message comes from the system, the second from the shell script.
If the messages are not desired, the second one is easily suppressed by
altering the shell script, but the first one cannot be reached quite so readily.
To prevent messages from Heaven-knows-where popping up when shell
scripts are run as background jobs, the command test is provided. It ex­
amines files, character strings, or integers and yields an exit status but
performs no other activity. It can be used, for example, to determine
whether a file exists and is writable, by

test -w filename

The key to message suppression is to test first and take action thereafter.
The same example, done a bit better, then reads as follows:

$ cat rmqtty
if test -w qtty.c
then echo "Removed qtty.c and qtty.f"
rm qtty.c; rm qtty.f
else echo "No qtty.c found"
fi
$ls -m q*
qtty.a, qtty.c, qtty.f, qtty.x
$ rmqtty
Removed qtty.c and qtty.f
$ rmqtty
No qtty.c found

This time the absence of qtty. c causes no protest messages, for an at­
tempt to remove this file is made only if it exists and if the user has write
permission for it.

The keywords if, then, else, fi (as well as numerous others used in shell
scripts to provide control of command execution) are only taken to denote
a control construct if they appear as the first word of a line (or, what is
equivalent, the first word following a semicolon). On the other hand, there
is no restriction on the number of commands in an if clause; it may contain
one single command (probably the most usual case), or there may be a

The Shell Programming Language 81

set of several. However, only the success of the last command to be ex­
ecuted is tested, for there is only one exit status flag and that one is set
or reset after each command.

Testing for Exit Status

The test function is the key to decision-making in shell scripts so a few
lines devoted to its operation will be well invested. test actually evaluates
the logical expression which follows it and sets the exit status accordingly.
The arguments of admissible logical expressions may be file names, char­
acter strings, or integers.

Tests for file names are almost always of the form already encountered
above: an option letter indicating what to test for, followed by the file
name. There are over a dozen possibilities, of which the following might
be the most important:

-rfile
-wfile
-xfile
-ffile
-dfile
-sfile

f i 1 e has read permission
file has write permission
file has execute permission
f i 1 e is an ordinary file
file is a directory
file size is greater than zero

The exit status is returned as true if the file meets the given description;
if it does not, or if the file does not exist, the exit status is false.

Some of the tests available on strings and integers are

stringl = string2
string
integl -eq integ2

the two strings are identical
string exists (is not the null string)
the two integers are numerically equal

In the integer comparison, various comparison operators may be used,
abbreviated in Fortran style as - gt (greater than), - ge (greater than or
equal to), and so on. The exit status is in each case returned as true if
the relevant condition is met.

The test expressions used with test are logical expressions, not options
in the usual Unix command style; they cannot be combined in adverb
clauses simply by stringing them together. However, they can be combined
with logical operators! (not), - a (and), and - 0 (or). They can be grouped
with parentheses as required. For example,

test -f file -a -w file

determines whether file is an ordinary file with write permission.
The arguments that enter into logical expressions need not be explicit;

symbolic parameters or variables are perfectly acceptable. To illustrate

82 4. Unix Command Shells

this point, consider the shell script vib. Its object is to run the vi editor
but to keep a backup copy of the file being edited. vib is invoked with a
file name, as in

$ vib file

file is then opened for editing and a backup copy file. b is preserved.
The shell script runs as follows:

if test $1
then if test -w $1 -a -f $1

then cp $1 $1. b
fi
vi $1

else echo "Must name file! "
fi

The first line checks that the command was accompanied by a character
string argument; if not, vib issues a protest message and exits. If a name
is given, the file is checked to determine that it is a writable ordinary file.
If it passes that test, a copy is made with the cp command; the name of
the copy is the same as the name of the file, with a . b suffix appended.
(Note that $1 stands for the character string, so $1. b is the same string
with the . b suffix.)

One criticism often heard of the Unix editors is that they always ov­
erwrite the original file; they do not keep backup versions. The script vib
shows why: if users wish to have backup copies (or several levels of backup
copies!) they certainly should have them. After all, it only takes a simple
shell script. The general Unix philosophy is to provide a selection of simple
working tools, supplemented by shell programming facilities to permit a
high degree of customization.

The command verb test is frequently left out of shell scripts, for the
Unix shells are willing to accept an alternate form. Instead of writing the
word test, the test condition may be encased in square brackets insulated
from it with blanks, as in

vib: vi editor with backup

if [$1
then if -w $1 -a -f $1]
then cp $1 $1. b
fi
vi $1
else echo "Must name file! "
fi

Was file name specified?
if so, writable ordinary?
Make a backup copy first,

then edit the file.
If no file name, protest!

The Shell Programming Language 83

Comments have also been added here, to improve the legibility of the
script and to make it comprehensible even a few days after its creation.
Any occurrence of the # character at the beginning of a word (i.e., pre­
ceded by a blank or other whitespace) is taken to introduce a comment.
In this form, the shell script begins to look just like a program written in
Pascal, Fortran, or C. Indeed, a large part of the difference between the
Bourne shell sh and the C shell csh lies in the niceties of language; where
the two differ, the syntactic conventions of the C shell are close to those
of C, so experienced C programmers find it easy to write shell scripts.

Repeated Program Loops

The if ... then ... else ... fi construction is the fundamental form of
program flow control in shell scripts. However, there are others with which
Pascal or C programmers will immediately feel at home. For example,
there is a case or switch statement, a generalization of the if construct to
choose between several courses of action, not just two. There is afor . ..
do loop similar to that of Pascal, useful for actions to be repeated for some
denumerable class of cases. Repetitive looping, continued forever provided
a specified condition remains true, is available with the while . .. do .. .
done construct, which may also be regarded as a generalization of if . . .
then . .. fi: if· .. then only carries out its action once, while . .. do does
it again and again.

While the actions performed by the Bourne and C shells are similar,
the command syntax differs, the Bourne shell resembling the Pascal lan­
guage while the C shell hews a little closer to C. For the casual user,
however, the distinctions are not too important because most constructs
valid for the Bourne shell are accepted by the C shell as well. Again pro­
ceeding by example, here is a shell script to notify the user when another
logs in:

await #
#---#

while test • who Igrep $1 I wc -1 ' -eq 0 # test if there
do sleep 120; done # if not, wait;
echo \AG\AG\AG\AG\AG\AG\AG\AG\AG # on login,

echo "$1 is now logged in." # squawk.

The structure of this script is really very simple; it just contains a single
while ... do ... done construct. It is set running by a request such as

$ await joe &

It will check whether the specified user is logged in and return a message
if so. If not, it will wait for two minutes (the sleep command does nothing

84 4. Unix Command Shells

but wait for the specified number of seconds) and then check again-and
again, and again, untiljoe does log in.

Several points of detail in the await script merit attention. The first
concerns methodology. The who command produces a list of everybody
currently logged in; grep extracts the iines that contain the name joe.
The word count program wc, with the -I (lines only) option, is then applied
to courit lines. The result is a single numeric string whose value equals
the number of terminals on which joe is logged in. A second point, perhaps
marginal to the issue of shell programming, concerns the output messages.
The character string \AG (reverse slant followed by control-G) is echoed
as a single control-G, a nonprintable character which rings the terminal
bell. The two echoes shown therefore send both visual and aural notifi­
cation of joe's arrival!

The most important point requiring explanation is unfortunately a little
more complicated. The pipeline preceding - eq is placed in back-quotes.
These cause their enclosed pipeline to be executed and the standard output
of its last member to be substituted for the character string that defines
the pipeline, so that the - eq comparison examines the line count output
by wc. Were the quotes not there, test would check the exit status of who,
then feed its null output (for test produces nothing) to grep, which would
of course find no match, ... with no useful result at the end. Ordinary
single or double quotes would not do the trick:

$ echo 'who I grep joe I we -1'
1

$ echo "who I grep joe I we -I"
who I grep joe I we -1
$ echo 'who I grep joe I we -1'
who Igrep joe I we -1

In the first case, the output of echo is the number of lines counted by wc
(i.e., the number of terminals on which joe is logged in). In the second
and third, the argument of echo is the literal character string that makes
up the pipeline definition. These characters are not numerals so they cannot
be compared arithmetically to zero; and even if they could, the answer
would not be what is wanted.

Simple shell scripts like await are quickly written and handy but often
not robust enough for use by other people. The request

$ await

will produce a diagnostic message because grep does not like to search
for null strings; after that, it will go to sleep for 120 seconds, then produce
the diagnostic again and again and again. This sort of failure is usually
tolerated by the author-"I made a stupid mistake in not specifying a
name, there is nothing wrong with my program!"-but it is unacceptable

The Shell Programming Langqage 85

if others are to have access to it. Good software practice requires not
only documentation of better quality than shown above, but also a set of
validity checks. If no name was furnished; either a default value should
be used or, better still, the program should ask the user to specify a name.

The form of while loop discussed above applies to the Bourne shell.
In the C shell, a directly comparable looping structure exists. However,
its syntax is a little different.

Shell Variables

The shell language would certainly not be a true programming language
were it not to allow symbolic variables to be defined and used. Variables
are given names much like names in conventional programming languages;
they may contain letters, numerals, and the underscore character, but no
other special characters. A few variables do use special characters, but
these are all predefined in the shell and users cannot redefine them. In
programming the Bourne shell, it is conventional to use uppercase letters
for variables. However, this practice is mere habit; the shell is quite as
happy with lower case. Upper and lower case are considered distinct, so
dAy, DAY, and Day are three different names. Bourne shell variables are
assigned values by a simple assignment statement much like that familiar
in Fortran:

$ DAY=Wednesday
$ WAM="Wolfgang Amadeus Mozart"

In the second case, quotes are used to make the blank characters part of
the character string. Were they not there, the shell would assign WAM the
value Wolfgang and would then be confused what to do with all the leftover
characters on the same line. There are no blanks before or after the equal
signs; the Bourne shell dislikes them because it cannot make up its mind
whether they are part of the character strings or not.

To find out the values of shell variables, the echo command may be
used:

$ echo DAY WAM
DAY WAM

but this does not work, because echo does exactly what it has been told
to do: it echoes the character strings DAY and WAM. To replace the variable
names by their values, the names are encased in braces and prefixed with
a dollar sign:

$ echo ${DAY} ${WAM}
Wednesday Wolfgang Amadeus Mozart

86 4. Unix Command Shells

Wherever no confusion can arise, the braces can be dropped:

$ echo $DAY $WAM
Wednesday wolfgang Amadeus Mozart

The need for braces is illustrated by

$ echo ${DAY}s we always meet for lunch
Wednesdays we always meet for lunch
$ echo $DAYs we always meet for lunch
we always meet for lunch

When the braces are dropped, the shell tries to find the variable DAYs,
which does not exist; it therefore substitutes the null string. With the braces
in place, however, exactly the desired result is obtained.

To assign values to variables in the C shell requires use of the set com­
mand; simple mention of the variable name is not enough. On the other
hand, the C shell is more tolerant of spaces:

% set day = TUesday
% echo $day
TUesday

In keeping with the traditions of the C language, C shell programmers
generally stick to lowercase letters in variable names. As with the Bourne
shell, this preference is purely a matter of usage; the shell is equally happy
either way.

A sticky little problem of Unix file structures can be solved elegantly
by defining new variables. The In command permits ordinary files to be
cross-listed in several directories. Unfortunately, a whole lot of files cannot
be cross-listed automatically by linking the directory in which they reside,
because directories may not be linked into others under any circumstances.
This seeming shortcoming is easily circumvented by defining a variable
name to stand for the directory name. For example, suppose user bob
needs access to all the files in directory usr /j oe/lispint/artin/
source which belongs to user joe. Provided all the files have the necessary
permissions, user bob defines a new variable j oes as a synonym for the
directory name, and the job is done:

joes=/usr/joe/lispint/artin/source
$ echo ${joes}/main
/usr/joe/lispint/artin/source/main

The only immediately visible difference between linking and defining a
synonymous name is the need to type an extra dollar sign and braces, a
small price to pay for not having to bother with the otherwise insufferably
long pathnames!

The Shell Programming Language 87

Aside from variables defined by the user, the shells recognize a dozen
or more others which are permanently defined. These can be accessed in
shell scripts just like any user-defined variables. The most important are

HOME
PATH
PSI

$

name of the home (login) directory
search path (directory path) for commands
shell prompt, dollar sign $ by default
number of positional parameters (decimal number)
process identification number of this shell
process number of the last background process

The value $HOME figures prominently in many system-provided shell
scripts. The convenience of knowing how many arguments (positional pa­
rameters) were presented to a shell script in the command line is probably
obvious.

for . . . do Loops

Wherever an action needs to be carried out for every member of a set of
objects, the for . .. do loop provides a natural control mechanism. For
example, the following shell script finds out how much disk space is used
by each of a selection of files:

$ cat space
for i in /usr/joe/indx /usr/joe/sourc /usr/joe/objct
do du $i
done
$ space
2

1368
1788

/usr/joe/indx
/usr/joe/sourc
/usr/joe/objct

The loop is executed by making the variable i-which is a true shell var­
iable-assume every value in the list of three directory names. For every
one, the du command is executed; it reports the number of 512-byte slices
of disk space occupied by each directory and gives its name. The keywords
for, do, and done must be the first words follQwing a newline or a semi­
colon, just as they did in the while and if control constructs.

Many shell scripts are run with parameter values following the script
name. To generalize the disk space reporting script shown above, the list
of variables can be made to be the string of positional parameters appended
to the command line, so that different names can be typed in at different
times:

$ cd /usr/joe
$ space indx sourc objct
2 indx

88

1368
1788

sourc
objct

4. Unix Command Shells

This use of for loops is extremely common, so much so that a special
form of the for construct exists.

$ cat space
for i
do du $i ; done

Omitting the list altogether is taken to mean that the variable i is to range
over all the positional parameters given with the shell script invocation;
there is no need to list them as $1 $2 $3

The C shell, as one might well expect, also provides a looping construct
of similar effect but differently expressed:

foreach i /usr/joe/indx /usr/joe/sourc /usr/joe/objct
repeat du $i
end

As before, the choice of shells is more a matter of taste than science.

Running the Unix Shells

If at least two shells are available on most Unix systems, which one is
the best? Many people feel that the C shell offers more to the interactive
user at the terminal, while the programming constructs of the Bourne shell
are a bit more powerful. For most users, therefore, the C shell is "the
shell" when it comes to keyboard work, while shell scripts are often written
using the Bourne shell. Taste certainly plays an important role in this
choice; it is hard to defend any position firmly.

Customizing the Bourne Shell

After an initial try at running Unix, most serious users grow to wish the
shell acted a little differently from how it really does. The Bourne shell
permits considerable latitude in user tastes, for many of the decisions
made by the shell are alterable by the user.

Every time a Bourne shell is started two files are executed as shell
scripts: /ete/profile and $HOME/.profile, the latter being located in the
user's home directory. The former is normally not modifiable by users,
but the latter can be edited as desired. So far as user wishes can be ac-

Running the Unix Shells 89

commodated through setting variables or executing shell scripts, .profile
is the place and time to take care of them. Typically, this file will contain
a set of commands like the following:

PATH=:/bin:/usr/bin
MAIL=/usr/spool/mail/joe
PSI="$HOME $ "
umask 022
export PATH MAIL

directory search path
mailbox
shell prompt
file creation mask
available to others

Users with unconventional needs or tastes often have much more com­
plicated .profile files. For example, anyone who often logs in from a par­
ticular maverick terminal type is wise to include in .profile one or more
stty commands.

The PATH definition in .profile consists of the names of directories to
be searched for commands, in the order of searching. Directory names
are separated by colons and the first directory to be searched must follow
immediately after the equal sign. A null string is taken to denote the current
directory. This strange convention implies that the PATH given above
searches

l. (current directory)
2. Ibin
3. lusr/bin

The mailbox location is more or less standard, though some users keen
on privacy hide their mail somewhere else. Prompt strings are something
else, though; users and user groups delight in making up interesting
prompts. From a practical point of view,

PSI="peter $ "
PSI="$HOME $ "
PSI = 'pwd' $ "

are good choices because they do something useful. The first displays the
user login name, a useful identifying mark; the second shows the home
directory name. The third identifies the working directory at the time the
shell was started (note the back-quotes!); because the variable is set once
and left at that value, the prompt will not change when the working di­
rectory is changed. All three prompts include a dollar sign $, a reminder
that they are Bourne shell prompts.

The umask command specifies what access permissions shall be denied
any newly created file. Its numeric argument is coded in the same way
as in the chmod command. However, the action here is one of masking
(i.e., denial); the permissions attached to the file will be the standard ones,
less anything held back by umask.

90 4. Unix Command Shells

History and the C Shell

The C shell includes a selection offeatures not present in the Bourne shell
but particularly well liked for interactive terminal use. The most striking
is undoubtedly historical recall, the ability of csh to remember what it
was doing some time ago. To see what commands were decoded by the
shell recently, all one needs to do is ask:

122 % history
112 pwd
113 rm tempry
114 vi annrep
115 nroff annrep I more
116 vi annrep
117 nroff annrep I more
118 spell annrep I Ip
119 vi annrep
120 nroff annrep I more
121 nroff annrep) text
122 history

123 %

In response to the history command, the C shell exhibits the last few com­
mands and the history command itself. The numbers shown in the left
column are called event numbers. Every command received by the C shell
is assigned an event number and many systems show the current event
number in the command prompt, as illustrated in the prompts above.

Commands can be repeated without having to retype them at the key­
board, by saying which previous event is to be repeated. For example,
to verify the current directory name, it suffices to request that historical
event 112 be repeated:

123 % !112
pwd
/usr/bob/repts

The C shell retrieves the appropriate command from its historical record,
echoes it to show what it remembers, then immediately executes it. The
exclamation mark ! is a predefined C shell variable and stands for the
event number, so ! 112 is event 112. The historical recall ability of the
shell is limited to the commands shown in the historical display; there is
no point in attempting to go back further.

Historical events can be recalled precisely by their numbers, but it is
also possible to recall them in more general terms. In the above example,
a repetition of the spelling check could be requested in the following ways:

Running the Unix Shells 91

!118 the command of event 118
! -5 the fifth last command
!s the last command beginning with s
!spe the last command beginning with spe
! ?lp the last command to contain the string lp.

Repeating the last command requires typing ! -1. Because this request
is a frequent one, the special form !! is accepted as a synonym for ! -
1.

Repetition of commands usually involves some alteration, since the
most frequent reason for repetition is that some slight change or improve­
ment is wanted. The historical recall mechanism of the C shell makes
extensive-probably much too extensive-provision for selecting and ed­
iting within a command line before it is repeated. Individual words within
a command can be selected by following the command description with
a colon and the word number (beginning the count with O!), while word
ranges can be described by giving beginning and ending numbers:

123 % echo !120:0-1
echo nroff annrep
nroff annrep
124 %

The first response shows what the C shell thinks the command consists
of; the second response is that obtained when the echo command is ex­
ecuted. The selection mechanism used in this way allows various changes,
for example, the inclusion of a forgotten option:

123 % !120:0 -01-5 !120:1-3
nroff -01-5 annrep I more

Here ! 120: 0 refers to the zeroth word of event 120, ! 120: 1- 3 to the
frrst through third words. The insertion of -01-5 instructs nrofTto produce
only the first five pages of the text document. To substitute one character
string for another (e.g., to have the output called annrep. tx instead of
text), a simpler construction would be

123 % !120:s/text/annrep.tx
nroff annrep > annrep.tx

There are nearly a dozen ways of selecting a word out of a historically
known command, and nearly a dozen ways of modifying it. For most
users, however, simple selection and substitution will probably suffice;
commands are only single lines so it is often less trouble to retype a line
than to figure out clever ways of editing it.

92 4. Unix Command Shells

Aliases and Commands

The command repertoire of any Unix system can be extended by defining
new shell scripts and making them into executable commands. Many such
scripts only amount to a line or two, however, and will be entirely personal;
maintaining lists of scripts may seem like unnecessary fuss. Some users,
for example, rarely wish any directory listings except full ones and prefer
them in reversed order of time and date. Having to type the command
with its full list of options, as

% Is -otr

can be avoided by using a mechanism called aliasing, which the C shell
provides. One declares

alias 1st Is -otr

and thereby creates a new command 1st, synonymous to Is -otr:

% 1st
total 10
-rwxr-xr-x 1 peter 406 Jun 4 10:30 agchr
-rw-r--r-- 1 peter 129 Jun 10 09:50 out text
drwxr-xr-x 1 peter 29 Jun 10 09:52 stuff

This newly defined alias behaves exactly like a command. Admittedly,
an equivalent effect could be achieved in either the Bourne or C shell by
defining a variable name 1st; however, invoking it as a command then
requires typing a dollar sign (and possibly curly brackets) to force eval­
uation-not much trouble, but less tidy and one more thing to remember.
More than one command can be placed in an alias,

% alias info "date; Is I sort; pwd"

but quotation marks are then essential to clarify that the first semicolon
separates commands within the alias and does not terminate the alias com­
mand itself. The alias command, without any arguments at all, displays
the list of currently recognized aliases; the unalias command removes a
named alias from the list.

Aliases are stored as character strings but they are not merely another
form of shell variable; they cannot be used for any purpose other than
commands. They are treated as commands rather than as character strings
in every respect including their listing in the history file where the single
command info will appear, not the commands or pipelines that define it.
As far as the shell is concerned, the input command is info. This arrange-

Running the Unix Shells 93

ment makes it possible to introduce parameters into the middle of an alias
string. For example,

150 % alias info "date; Is \! * I sort; pwd"
151 % info subdir
Tue Jun 10 12:23:40 EDT 1986
alice
budget
textpr
/usr/joe/direc

uses the parameter subdir given with the current event (i.e., with the info
command) as the argument for Is. Note that the current event number
symbol is protected by a reverse slant, for it must survive translation by
the alias mechanism so as to reach the shell for execution.

There is no interference between aliases, shell commands, executable
files, and shell variables. For example, there exists an internal command
in the C shell called history and there is also a shell variable called his­
tory. There is nothing much wrong with creating an alias called history,
but the built-in history command then becomes unreachable because the
C shell looks for aliases first, built-in commands thereafter, and executable
files last. If the same name has been used for all three, the alias will be
executed. There is a way of reaching executable files, however: the full
pathname can be given so there is no confusion. Files in the current work­
ing directory or near it can be made accessible by using abbreviated path­
names such as ./history instead of simply history.

Customizing the C Shell

The C shell, more even than the Bourne shell, can be tailored to suit the
tastes of individual users. While the Bourne shell seeks and executes files
called .profile when it starts up, the C shell looks for three different files,
two on starting and one when it exits. The startup file .Iogin is executed
as a shell script when the user logs in to a C shell; the login shell and any
further C shell initiated for the same user look for and execute another
file called .cshrc. When the user logs out, the login shell executes the shell
script .logout. All three are sought in the user's home directory; if one or
more are not present, they are simply ignored.

The startup and shutdown files of the C shell can be used to set up
shell variables, define aliases, set the shell prompt, indeed to do anything
that can be done by a shell script. A .Iogin fIle typically contains statements
like the following:

setenv SHELL /bin/csh
set ignoreeof
set path = (. /bin /usr/bin)

identify shell
no logout with AD
command search path

94 4. Unix Command Shells

Typically, it will also contain statements that describe the terminal on
which the user habitually logs in. The path variable setting is much like
its opposite number in the Bourne shell, except for notation; the setenv
command (equivalent to the Bourne shell export statement) makes the
login shell identification available to other processes. The ignoreeof
variable prevents logging out with a control-D and makes csh demand the
word logout instead.

Other user-definable settings may occur in the .cshrc file, which is ex­
ecuted every time a new shell is spawned. It may contain commands such
as

set history=10
set prompt=\!\ %\

alias dir Is -lrt

save 10 commands
establish prompt
directory listing

The history variable is set to the number of commands retained in the
recall file. The choice of prompt is subject to much the same considerations
as for the Bourne shell, with one exception: the event number is often
included in C shell prompts, as an aid to users who make extensive use
of historical substitutions and repetitions.

The .Iogout file on occasion allows the local system programming staff
to have its bit offun. It is widely agreed that the control-D form oflogging
out is not convenient, although it is logically consistent and accepted in
the Bourne shell. The standard defeat mechanism in the C shell is to set
the variable ignoreeof, so that the word logout must be typed; but there
are other, more interesting, possibilities. For example, the C shell script

. logout
tonintr -
unset ignoreeof
set bye

Ignore all interrupts,
defeat "logout".
Create bye

while ($bye ! = adieu) # check if it's "adieu";
echo "Use \"adieu\" to log out\!" # remind with message,
set bye = 'line' # request keyboard input.
end

asks the user to type the word adieu in order to log out, then sets the
variable bye to the word received from the terminal keyboard (via the
command line). It repeats this action until the word adieu is finally rec­
ognized. More serious uses of the. logout file include tidying-up op­
erations such as reminding the user to remove any magnetic tapes and
floppy disks or displaying an accounting log of the computer resources
used during the terminal session.

Running the Unix Shells 95

Choosing the Right Shell

Received wisdom in the Unix community holds that the C shell is pref­
erable for interactive work, the Bourne shell for writing shell scripts.
Choosing the C shell for terminal work is probably a good idea. The Bourne
shell has several unpleasant habits (as does the C shell); logging out users
when the shell receives a control-D must rank high among them. While
the Bourne shell can be customized to make it more agreeable, there is
little doubt that the C shell allows more custom alterations and therefore
can come closer to the user's individual wishes. However, extensive al­
terations take knowledge, patience, and time; most beginning users lack
at least one of these.

A good reason for choosing the C shell as the normal interactive shell
is that the C shell can deal with Bourne shell scripts, but the converse is
not true. The following example will illustrate why and how:

% cat cshsrc
C shell script
echo "SHELL = $ SHELL , shell
% cat shsrc

Bourne shell script

$shell"; ps

echo "SHELL = $SHELL, shell = $shell"; ps
% cshsrc
SHELL = /bin/csh, shell = /bin/csh

PID TTY TIME COMMAND
38 03 0:33 csh

204 03 0:04 csh
205 03 0:12 ps

% shsrc
SHELL = /bin/csh, shell

PID TTY TIME COMMAND
38 03

206 03
208 03

0:33 csh
0:01 sh
0:11 ps

Here two short shell scripts are run: both ask the system to identify the
currently active shell and to display the status of every process associated
with the user terminal. The scripts are identical except for their comment
lines. These differ in one major respect: the comment character # is the
first character in the file in cshscr, while a blank precedes it in shscr. The
C shell uses this first character as an identifier. It treats the file as a C
shell script if # is present, as a Bourne shell script if not. (Conventionally,
Bourne shell scripts are begun with the colon: to identify them.) To
execute either kind of script, the user's C shell process (38 in the example)
launches a new shell, either csh or sh as required. This action is evident

96 4. Unix Command Shells

in the example: when executing cshscr the active shell (process 204) is
identified as csh, but when executing shscr it is sh (process 206).

The Bourne shell is the "senior" shell, so it does not recognize most
things peculiar to the C shell. However, the C shell does understand many
Bourne shell conventions. For example, the requests to echo $SHELL and
$she 11 above are understood by csh, but only $SHELL is echoed by sh.
Similarly, repeating the above experiment with sh as the login shell will
lead to sh being used for both scripts; the Bourne shell does not spot the
character at the head of the file as anything special.

The Bourne shell is available under virtually any Unix system; the C
shell under most but not all. The System V Interface Definition, for ex­
ample, does not mention the C shell. To be sure that shell scripts can be
run anywhere by anybody, it is probably wise to write them using the
Bourne shell conventions. On the other hand, the slightly less universal
availability of the C shell is no disadvantage when working at the terminal,
while its greater flexibility can be an asset.

Chapter 5

The System Kernel

The kernel is that part of a Unix operating system which actually controls
the allocation of machine time, memory space, and communication chan­
nels to the various tasks that users may have running at any particular
moment. It consists of a central supervisory program flanked by service
routines to take care of such essentials as fetching characters from a key­
board, writing to memory, and looking at the system clock.

A great many data processing activities are relegated to separate, es­
sentially autonomous, programs under the Unix system. Most, though not
all, such programs are directly visible to the user: they are stored in sep­
arate files whose names the shell considers to be commands. Since most
users communicate only with the shell, not directly with the kernel, a
knowledge of what the kernel contains and how it operates is not really
necessary to most people. This chapter is directed primarily to those who
wish to know a little more about the inner structure of the system, as well
as to others who may occasionally need access to some of its internals
and wish to consult a brief overview before tackling the much more com­
plete system manuals.

Nature of the Kernel

By its external appearance, the Unix operating system seems to be made
up of two parts: a large set of programs, each one corresponding to a
command, and the shell, which manages user commands and coordinates

98 5. The System Kernel

the running of programs. In an analogous fashion, the inner part of Unix
may be divided into two portions: a large set of service routines, to perform
functions actually related to hardware and software tasks, and the kernel,
which takes care of their interplay with currently running processes. The
service routines are invoked as needed, while much of the supervisor code
is permanently resident in memory. It provides the basic software envi­
ronment for practically everything that happens. This part occupies only
a small amount of computer memory, leaving as much as possible to user
processes.

Functions of the Kernel

Most computer users are not deeply interested in the machine hardware
employed to solve their problems, nor in the details of the operating system
software. The Unix system caters to this common user preference by in­
terposing the shell between user and machine so that the user commu­
nicates with a virtual Unix machine whose appearance is entirely that of
the shell.

The Unix kernel has an analogous role, but one level below the shell:
it hides the physical machine from those programs and also from those
sophisticated users who may from time to time request access to the lower­
level system services. The kernel does so by creating a virtual machine
whose characteristics closely resemble those of a broad class of physical
machines. Real computers are then made to look like the virtual machine
by interposing a program of a few thousand lines between machine and
user. Rarely does the physical machine hidden beneath the shell become
visible. This structure is the key to creating portable operating systems.
Since the shell addresses itself to the virtual machine, it can be mounted
on a new computer by rewriting only the machine-level programs that
convert the real machine into the virtual machine.

The virtual machine created by the kernel has three primary functions:
(1) it schedules, coordinates, and manages process execution; (2) it pro­
vides system services such as input/output and file management; and (3)
it handles all other machine dependent operations. All three functions are
related to the details of computer hardware structure.

Kernel Structure

The overall size of a Unix kernel is around 1()()()() lines of program code,
but this figure varies widely with the Unix version as well as the type of
machine. As a fraction oftotaI Unix program code (shell, utilities, kernel,
and all else), it may range from under 5% to over 10%. The proportion
of total code in the kernel is variable not only because kernel size varies

Nature of the Kernal 99

from one machine to another, but also because Unix installations differ
in the number of utility programs provided.

A substantial part of the kernel deals with memory management, in­
cluding user scheduling and process scheduling. This part also keeps track
of stack contents, machine register contents, and the various other en­
vironmental details, as processes are swapped into memory. Furthermore,
it responds to processor traps which may arise, for example, from hard­
ware memory faults. This major portion of the kernel, perhaps 70-90% of
the whole, is written in the C language. It deals almost entirely with the
virtual machine and is therefore portable to any machine for which a C
compiler can be found. A large part of the kernel code is consequently
the same in systems and system versions intended for broadly similar
kinds of computer.

Scheduling, memory management, and control of process execution
are matters requiring fast response. They are therefore initiated and con­
trolled by the permanently resident part of the kernel. On the other hand,
the service routines are numerous and more extensive, so they are loaded
into memory only as needed.

Device drivers, the programs that actually address the data registers
in peripheral devices, form another substantial part of the kernel. They
handle interrupts raised by peripheral devices and effect error recovery.
Device drivers are entirely hardware dependent; after aU, the whole object
of a device driver is to move data into particular hardware device registers.
Most Unix device drivers are also written in the C language. The device
driver code in minimal Unix systems may be around 1000 source lines,
but it is sure to rise much higher in systems with many peripheral devices.

The third important part of the kernel, the only one that must be written
in assembler language, is a set of machine primitives. These are the true
creators of the virtual machine. They place characters in the line printer
data register, enable or disable machine interrupts, read the disk drives,
and so on. These may amount to 1000 or more lines of assembler-language
code. This number too is highly variable, depending on the complexity
of the real computer and how closely it resembles the virtual machine.

System Calls

The shell and large parts of the Unix kernel are written in high-level lan­
guages. These programs, as well as many others that users create from
time to time, require access to various facilities for which high level lan­
guages provide no standard commands. Such actions include

initiating a new process,
opening a file for reading,
writing on a file,

100

getting the system clock time,
terminating a running process, and
changing read/write/execute permissions.

5. The System Kernel

Most such machine-dependent actions are intrinsically simple and those
of the virtual machine created by the kernel are among the simplest. They
are accessible through system calls, programs that fetch information, write
words into a machine register, or consult the relevant tables. System calls
are the instructions that the virtual machine carries out-indeed, it could
well be said that the set of system calls is the virtual machine.

System calls are commands issued to the kernel, just as ordinary Unix
commands are instructions given to the shell. They are accessible to pro­
grams written in C, exactly as if they were ordinary C functions. They
are available to Fortran 77 and Pascal programmers through function calls
because the conventional Unix language processor structure handles For­
tran 77 and Berkeley Pascal through the second pass of the C compiler.
The entire repertoire of system calls extends to a hundred or more, a long
list of individually simple things. Compared to the list of system-provided
commands, the set of system calls has grown slowly as updates and new
versions of Unix derivatives have come along.

Some system call actions are also available as shell commands. The
shell command then usually consists of a short program which does little
more than rephrase the user's request and pass it on to the kernel as a
system call. Obvious examples include ehdir, kill, mount, sleep, and umask,
all requests for some simple action to be performed on directories, process
tables, peripheral devices, or the system clock.

A few commonly employed system calls are briefly described in this
chapter. They represent only the smal!est tip of a very large iceberg, but
most of the iceberg is of interest only to true Unix cognoscenti. For more
information on what system catls are available and how to use them, a
serious session with the full Unix Programmer's Manual is recommended.
Volume 2 in particular defines the actions performed by each system call
and gives details of how they are accessed from both assembler language
and C.

System Standards

The relative portability of Unix systems derives largely from the ability
of C programs to issue system calls. Both the applications programmer
and the systems programmer can do their work almost entirely in high­
level languages, allowing machine dependence to be localized in the C
compiler and the system primitives. As indicated in the chapter on language
compilers, C is a language well suited to writing operating systems, for
it is able to deal with entities at the machine word level. However, even
the best C programs cannot be portable unless the virtual machine is stan-

Process Coordination and Management 101

dardized-in other words, if the same system calls are available on all
computers that support Unix.

Until about 1983 or 1984 the Unix system-the Seventh Edition or the
Berkeley 4.2 BSD release-was largely used and maintained by academic
institutions or commercial firms. No standard prescribed what system calls
were to be available; worse, many versions of the system incorporated
improvements or modifications. These no doubt made the system run bet­
ter but also prevented software from being moved between Unix systems.
In 1984, /usr/group, an independent society of Unix users, published a
proposed system standard comprising two parts: about three dozen system
calls and equally many C functions, intended to constitute the fundamental
library of utilities for the C programmer. About the same time, the AT&T
organization appears to have realized that random unchecked growth
would hurt rather than help the Unix cause; to clarify and standardize,
the System V Interface Definition was published in 1986. This book is
descriptive rather than normative-it says exactly what System V actually
does rather than what any Unix-style operating system ought to do. The
Institute of Electrical and Electronics Engineers, Inc. (IEEE), an orga­
nization active in various facets of computer standards, also in 1986, drew
up its Standard for Portable Operating System for Computer Environ­
ments. (Of course, Unix does not enter the name-it is a trade mark, after
all.) Although there are differences, the IEEE document and the AT&T
definition come remarkably close to each other. There is reasonable hope,
therefore, that something very much like the IEEE definition (or System
V) will be adopted as an ISO as well as ANSI standard within a few years.

One important point needs to be observed: the IEEE standard, as well
as its precursor the /usr/group document, only deals with kernel-level
standardization. Standardization of shell commands will likely follow, but
in the near future it will still be a matter of every man for himself in the
shell jungle.

Process Coordination and Management

Under a multiuser operating system, many user programs can be running
at the same time. Of course, there is only one central processing unit in
the computer so only one program can really be running at a given instant;
the phrase "at the same time" means that the several programs are in­
terleaved in time, with the central processor allocated briefly to each one
in turn. But although only one user program may be actually running,
several could be resident in memory at the same time if the memory is
large enough. The kernel must keep track of how programs use processor
time and memory space; in other words, it is responsible for process
scheduling and memory management. The latter includes not only sharing

102 5. The System Kernel

out the available slices of memory but also deciding whether and when
to swap a process from memory to disk and back again.

Process Initiation

A process under Unix is distinguished from a program: a process is a
program executing in a specified environment. The word environment here
means which files are open, what access permissions are attached to files,
the values assigned to shell variables, the identity of the user, and all the
other things the system must know to run a program but which are not
part of the program itself. A process is said to be active if the kernel
knows about it and intends to do something about it. In other words, a
process is considered active even though its program may be waiting its
turn for time and memory.

A process is initiated under the Unix operating system through the
action of another process: processes start up other processes. When a
user first logs in, the kernel sets a copy of the shell running for him; if
the user then issues some command, say who, the shell finds and initiates
who. In fact, there is no way for the user to initiate a process, except to
have it done for him by some other (already active) process! The natural
result is a hierarchical structure of processes. This hierarchy is created
by means of a mechanism called afork (after the system call which requests
the mechanism). To fork, the kernel replaces an existing process by two,
as in Figure 5.1(a): itself and another, newly initiated, process. The original
process is called the parent process; the newly added one is called its
child. The child generally shares all files with the parent process. Once
forked, both processes run as if they were independent, unless a specific
request is made for the parent to wait until completion of the child. Of
course, the child process (process 2) may need to initiate yet another pro­
cess. It can do so, by forking again.The result is shown in Figure 5.1(b),
three processes active concurrently. The new process (process 3) is re­
garded as a child of process 2. It will have access to files opened by the
previous two processes, though they may not have access to files it has
opened. The general rule is that files are always made accessible to pro­
cesses lower down in the hierarchy.

When a user first logs in, the kernel initiates a copy of the shell to run
as a process for him. Process 1 is created when the user issues some
command to the shell. As a result, process 3 would be executed concur­
rently with the shell as well as processes 1 and 2. In fact, the shell could
well fork again (e.g., if 1,2, and 3 were background processes), thereby
creating process 4. The result is sketched in Figure 5.1(c). Intricate process
hierarchies can be created easily and rapidly in this way.

When new processes are initiated by the shell, the forking is normally
so arranged that the shell waits for the process to complete. In other words,
the normal procedure is for all processes to wait until the most recent one
has finished work. If it is desired to run some process in the background,

Process Coordination and Management 103

process 1 fork--~ process 1

(a)

~ L-___J

fork 1----1 process 1 I '---------'
fork 2'----1 process 2
~ L-____ ~

(b)

fork 0 -----fork 3----1 shell
~ L-___ ~

fork 1----l process 1

I '---------'
fork 2 ----I process 2
~ L-____ ~

(c)

FIGURE 5.1. Forking of processes. (a) A single process is replaced by itself and
its child process. (b) If the child process forks, multiple concurrent processes are
created. (c) Repeated forking creates a process hierarchy.

say process 1, the user can so request (by appending an ampersand & to
the shell command). The shell prompt is then issued as soon as the child
process has been initiated. More detail on forking and waiting will be
found below.

A Process Hierarchy

To see the process hierarchy as it exists at a particular moment, the ps
command may be used. With the appropriate options selected, this com­
mand can show practically every kind of known information about the

104 5. The System Kernel

processes currently known to the system. On a particular Unix system,
with three users logged on, the output (slightly edited to eliminate su­
perfluous information) shown in Figure 5.2 is obtained. This display shows
the status S associated with each process (sleeping or running); the user
identification number UID; the process identification number PID and the
number PPID of its parent process; the priority number PRI of the process
and the size SZ of its program (blocks); the terminal number TTY with
which the process is associated; the TIME the process has consumed to
date; and the command CMD which caused the process to be initiated.
System-initiated processes have no terminal numbers associated with
them, hence the question marks in the TTY column.

The number of concurrent processes may seem large at first glance,
and it may seem strange that some are not associated with any terminal
at all. These processes belong to the system itself; they reside at the root
of the process hierarchy as it were. A better overview of the process
structure may be obtained by drawing a graph of the parent-child inter­
dependences of processes, as in Figure 5.3. The processes at the left and
top of the graph, with process numbers below 30 and process 34, are
initiated by the system; those further to the right and downward are caused
by the users. The initial provisions made by the system are for initialization
and swapping of processes and updating of system information. The pro­
grams Ipsched and cron are, respectively, the line printer scheduler and
the clock daemon, who watches for timings and initiates all actions de­
pendent on clock time. There is a fourth terminal on the system, idle at
the time shown; the getty program checks from time to time whether any­
one is trying to log in on it.

S UID PID PPID PRI SZ TI'Y TIME CMD
S 0 0 0 0 2 ? 0:02 swapper
S 0 1 0 30 15 ? 0:02 init
S 201 31 1 30 23 co 0:26 csh
S 202 32 1 28 20 02 0:13 sh
s 0 18 1 40 12 ? 0:24 update
S 14 23 1 26 26 ? 0:02 Ipsched
S 0 27 1 26 26 ? 0:12 cron
S 0 33 1 30 20 03 0:16 sh
S 0 34 1 28 15 04 0:04 getty
S 201 175 31 28 46 co 5:55 vi
S 202 217 32 30 20 02 0:02 sh
S 202 219 217 30 22 02 0:00 sh
S 202 220 217 26 7 02 0:02 tee
S 202 221 219 26 35 02 0:13 sed
S 202 222 220 26 14 02 0:13 deroff
R 202 223 220 54 66 02 0:10 sort
S 202 224 220 26 18 02 0:01 spellpro
S 202 225 220 26 65 02 0:02 spellpro
S 202 226 220 26 6 02 0:01 comm
R 0 227 33 54 26 03 0:14 ps

FIGURE 5.2. Status report on all processes running in a four-user system with
three terminals active and one dormant.

Process Coordination and Management 105

o
swapper init

18
update

23
Ipsched

27
cron

31 175
csh vi 219 221
32 --217----L sh ---- sed

sh sh 220 222
----,---

33 227 tee deroff
sh -- ps 223

34 sort
getty 224

spellpro

225
spellpro

226
comm

FIGURE 5.3. Process structure in a four-terminal system, with one user editing,
one running a spelling check, and one terminal idle.

When the process status shown in Figure 5.3 was taken, one user (on
the console) was editing with the vi editor and one (terminal 2) had just
recently launched a spelling checker job. The speD program invokes several
other processes, so process 32 has a whole subgraph of further processes
attached to it, including two more copies of the shell itself. All these pro­
cesses, however, are seen to be sleeping, except for the sort program
(process 223) which presumably is sorting words at this time. Terminal
03 has another copy of the shell attached; it is currently running the process
status enquiry command ps.

Process identification numbers are on occasion needed by users, for
processes (unlike their associated programs) have no names. To kill an
existing process is easy enough if the process is running at the terminal­
interrupting with a DELETE keystroke suffices. Background processes, on
the other hand, can only be killed with the kill command which requires
specifying the process number.

Memory Allocation

Unix is both a multitasking and a multiprogramming operating system.
That is to say, it not only keeps track of many concurrent processes but
also maintains control over all the programs resident in main memory at
the same time. In normal operation, each program is loaded into a different

106 5. The System Kernel

area of main memory. Time-sharing operation can then proceed without
swapping the memory content onto disk. Each program can be made to
run for its allocated slice of time in turn, remaining quiescent in memory
when it is not running. Only the machine registers themselves are shared
between programs, so that swapping programs really only amounts to
swapping register contents. The system kernel is responsible for keeping
track of which processes are considered active at any given time and which
one is actually executing, deciding whether and when to swap and de­
termining where in memory to load newly initiated programs. When a
process terminates, the kernel decides whether termination was normal
(successful) and sets the exit status variable accordingly. This status ~an
be examined and used by the shell.

Unix programs can be set up in two different ways, reentrant or not.
Reentrant code has all program instructions occupy a group of memory
locations separate from any modifiable data and all writable data locations
separate from the program code. Nonreentrant code mixes the two. While
running, processes whose programs are reentrant are allocated three dis­
tinct portions of machine memory: a text segment, a data segment, and
a stack segment. The text segment contains pure code and is write-pro­
tected. The data segment contains all user-defined data, values of variables,
and so on. The stack segment contains system information, required to
keep the process intact when it is swapped in and out. Nonreentrant pro­
grams of course cannot separate stack and data from program.

Making the program code and data separate achieves two useful goals.
First, it reduces the quantity of information to be swapped, by swapping
the text segment one way only. Since the text segment is never modified,
it must always be an exact image of the user program initially available
on disk, so there is no need to write it to disk when swapping the process
out. Second, some programs such as the vi editor are used often; in larger
installations several users may need it at the same time. The shell, in fact,
must exist in at least as many copies as there are users logged in, for a
new shell is started for every user when he arrives. If two or more users
need the same program text, there is no need to create duplicate copies
of the text segment, for text is guaranteed to be and remain identical in
all copies. It suffices to create, and swap when needed, one writable data
segment and one stack segment for each user. The writable segments are
rarely large compared to the executable code of a complicated program
like the shell.

Time and Resource Sharing

In multitasking operating systems, individual processes are not ordinarily
allowed to run to completion but are granted slices of processor time on
a modified round-robin basis. It is not usual to grant them equal time
slices in turn, because the needs of different processes may differ con­
siderably.

Process Coordination and Management 107

The time slices granted to individual processes depend on several fac­
tors, among them process importance, availability of required input data,
and availability of output devices. Some can be decided and acted upon
entirely by examining the process itself. Others may be altered by the
needs of other processes (e.g., if input data are awaited from some other
program) or the computer hardware (e.g., printer presently busy). Unix,
like most operating systems, therefore allocates time slices to individual
processes so as to maximize the use of hardware resources while giving
due precedence to critical tasks.

The Unix kernel allocates time to competing processes in accordance
with process priorities. Priorities are expressed numerically, with the
largest numbers signifying the least important tasks. (In other words, a
high priority under Unix is a low priority!) Priority ratings can be examined
with the ps command; they are updated periodically, typically at intervals
of a few seconds. At every updating interval, jobs with a high ratio of
processor time to terminal time are downgraded, while those requiring
relatively less computing are upgraded. In this way, users with a great
deal of interactive work (e.g., typing at the keyboard) have high priority
and therefore should have nearly instant terminal response. Tasks with
large amounts of computing, it is argued, are quite likely to keep someone
waiting anyway, so there is no harm in making them wait a little longer.
For similar reasons, system-initiated tasks always have higher priority
than user-initiated tasks. Because priorities are regularly updated, pro­
cesses which change character will have the wrong priority for only a
short time. For example, a computation-intensive task initially launched
with high priority will soon enough have its priority number increased.
Conversely, a process with initially low priority will tend to move into
the foreground if it requires little processing but a good deal of terminal
input and output.

Priority numbers of Unix processes run backwards, with high numbers
denoting low priority. Numbers typically lie between 0 (for the vitally
important kernel processes) and perhaps 50 or higher. Users can influence
the priority ratings of processes in two ways: by declaring them to be
background jobs or by asking for the priority number (the nice number,
in Unix programmer jargon) to be incremented. The command

$ nice -10 Is -IR $HOME) alldir &

is equivalent to

$ Is -IR $HOME) alldir &

but with the priority augmented by 10 so as to push the task further into
the background. The command itself creates a file alldir containing a
long-form listing of all the directories the user owns (the - R option forces
recursive consultation of all subdirectories). Normal users can increment

108 5. The System Kernel

the nice number but not decrement it; that privilege is reserved to the
system manager.

When the time allotted to a particular process has been used up and
another takes a turn, the first program may need to be removed from main
memory to make room for the second. Processes are swapped by writing
into a disk file (the swap file) an image of each user process; when the
user is swapped in again, the swap file is read and the state of the computer
is restored exactly as it was when the user was swapped out. In this way,
the user program can resume precisely where it left off, having merely
been delayed. The process image maintained in the swap file includes the
contents of the user writable parts of memory, the contents of the machine
registers, the name of the directory currently in use, a list of open files,
and a few other relevant items of information.

fork, execl, and wai t

To clarify how the access permissions and priority ratings of Unix pro­
cesses work, the forking procedure needs to be examined a little more
closely. The fork system call creates a new process, with both parent
and child active. The terms parent and child are apt in this context; the
two processes are created alike. fork does actually make two processes
exist but endows both with the same program and almost the same en­
vironment-almost, because one differs from the other by being listed in
the system tables as the other's child. This procedure may seem a little
curious, but it does have its own logic: since the two processes are iden­
tical, there is no need to swap any program code in or out, nor to copy
anything but writable data areas. Execution of another program is re­
quested by another system call, which specifies what program is desired.
Half a dozen system calls, essentially alike but differing a little in the way
their arguments are presented, serve this purpose. For example, forking
can be requested from a C program by

i = fork();

and subsequent execution of the program newprog through

j = execl (newprog, argl, arg2, ... , argo, 0);
where newprog, argl,. . ., argn are pointers to character strings
that specify the program name and the names of its arguments. In response
to execl, the kernel will cause the original program to be replaced (ov­
erwritten) by the new one. In other words, the sequence fork-execl
first cheaply creates a copy of the parent process, then replaces the pro­
gram text of the child with the program it is actually desired to run. Al­
though it contains a new program and probably new data, the identity of
the process (as contrasted with the program) is still the same.

Process Coordination and Management 109

In normal interactive work at the keyboard, processes are set running
as soon as commands are issued and the requesting process (usually the
shell) is asked to wait until the child process has exited. Simply forking
will not do the trick here; to make the parent process wait, the system
call wai t is issued. It forces the parent process to hang until the kernel
signals it that the child process has terminated.

Effective User Identification

The fork-execl system call sequence creates a new process which in­
herits the environment of its parent, then overlays the program with a
new one. Except as deliberate changes are made, the environmental pa­
rameters remain those ofthe parent process: same owner, same terminal,
same home directory. This arrangement works well in most cases but
causes difficulty with access permissions occasionally. The problem and
its solution merit brief examination.

Various programs resident in a Unix system are available publicly but
require access to closely restricted files. The passwd program, for example,
may be used by anyone; but the file of user passwords is. available for
writing only by the system manager. A conflict arises here, however: user
joe can run the passwd program but that program cannot update the file
of passwords, because the password file is writable only by its owner,
not joe! Much the same problem arises in many commercial applications,
where a data file may need to be updated by several account clerks but
no account clerk can be allowed unlimited access to the whole file. The
problem is solved by trickery. When the shell owned by user joe initiates
the process containing the passwd command, the child process inherits
joe as the process owner, so a conflict arises when needing access to files
owned by the system itself. If the user identification of the child process
is altered to root (i.e., the system itself) rather than joe , all necessary files
will be available to the child. The child process, in other words, has an
apparent owner different from the parent process. In Unix jargon, the
user identification of the child process is called the effective user identity,
as contrasted to the real user identity inherited from the parent. The ef­
fective user identification belongs to the environment of the child process,
not of the parent; it therefore expires with the child.

Processes running for a user may appear to belong either to the same
owner as the parent process or to the owner of the program file. When a
new process is launched, the effective user identification is set to match
the ownership of the file, provided a flag bit (called the SUID-set-user­
identity bit) attached to the command file is set. If it is, the file is shown
in directory listings not merely as executable but executable with SUID
set, the permission letter shown being s rather than x:

-rws--x--x 1 sysinfo 12826 df
-rws--x--x 1 root 6898 mkdir

110

-rws--x--x 1 root
-rws--x--x 1 sysinfo
-rws--x--x 1 root

5. The System Kernel

19168 passwd
25525 ps

7181 rmdir

Setting the effective ownership can cause some system security problems.
If some program owned by root can fork to produce a new shell, that
shell inherits the ownership of its parent and therefore has unlimited access
to the entire system!

cron the Clock Daemon

Timed processes in the Unix system are governed by the system clock
through the agency of cron, a process described by the manuals as the
clock daemon. A daemon is a minor god of Greek mythology, not to be
confused with a demon (an evil spirit); cron is thus the clock-god who
ensures the correct timing of events.

When first launched, cron consults a set of tables to see when the first
event needing the clock-god's attention is scheduled to occur. All such
events are processes to be initiated at specified times. Having consulted
the schedule, cron goes to sleep, awakening just in time to fork the first
scheduled process. It starts that process, consults the tables for the next
scheduled event, and goes to sleep again. System managers make extensive
use of cron for administrative tasks, for cron does not forget, nor does it
mind doing accounts in the wee hours of the morning when the computer
is probably lightly loaded anyway.

Not only the system manager but ordinary users as well can ask cron
to take care of processes. Processes to be launched periodically are con­
veniently copied from a file into the cron tables by the crontab command,

$ crontab filename

The same command, with appropriate options, also serves to remove table
entries or to list the current ones. Events may be scheduled by giving a
sequence of five integers corresponding to the minute, hour, date, month,
and day of the week, stating what command is to be executed at that time.
For example,

0,55 9-16 * 1-5,9-12 1-5 bell

might serve for the class bell in a school: it will execute the command
bell at 0 and 55 minutes past the hour, for all hours from 0900 to 1600,
on any date of the month (as signified by *) during January-May and Sep­
tember-December, Mondays through Fridays.

A pleasing feature of cron is that anything sent to the standard output
file when the user is not logged in is automatically redirected to mail;

Input and Output Operations 111

nothing need be lost. A displeasing feature is that if the computer is shut
down at the time a process should be initiated, it is omitted forever, not
caught up when the machine is restarted.

Input and Output Operations

To the shell, all input-output operations look like file operations; the shell
does not recognize the existence of any peripheral devices. Indeed, this
equivalence of files and devices is a key characteristic of the shell command
structure. However, this viewpoint cannot be appropriate to work in­
volving the kernel, for the kernel's job is precisely to hide the real physical
devices behind the facade of apparent files.

Device Independence

Most present-day operating systems permit programs to access files on
different physical volumes in a similar fashion, so that applications pro­
grams can read any files on any volume or device. Systems with this char­
acteristic are said to exhibit a high degree of device independence. Device
independence is achieved by creating a fictitious physical machine with
the external appearance of a disk drive containing numerous files, then
writing all programs to communicate with files stored in this virtual device.
Every real physical device naturally does not have all the assumed char­
acteristics of the virtual device. Each physical device is therefore endowed
with a special program, called a device driver, which translates the required
actions of the virtual device into those of the real one. User programs
can then communicate with any new device added to the system, provided
a device driver exists for it. The Unix system carries device independence
to its logical conclusion, by making all physical devices on the system
look to the user's programs as if they were simply files. Because these
files are somewhat different from user files, they are referred to as special
files. Reasonably enough, special files have read and write permissions
attached to them, as indeed they must; after all, the line printer is a write­
only device and all users must therefore be denied reading access.

First Level Interrupt Handling

Many events that occur in a multiuser computing system occur in real
time and must be dealt with on the spot. Such events include, for example,
a user pressing a key at the terminal keyboard. A keystroke may well be
followed by another within a hundred milliseconds or so, and whatever

112 5. The System Kernel

action is to be taken in response to it must be taken within that length of
time.

Events requiring immediate attention are signalled to the kernel through
hardware. Such an event causes an interrupt condition to exist: whatever
program is currently running is halted at the end of the current machine
instruction cycle and control is transferred to another, usually very small,
program called an interrupt service routine. The interrupt service routine
determines the cause of the interrupt, does whatever is necessary in re­
sponse, and thereafter returns control to the program that was executing
previously. Servicing an interrupt is thus an action somewhat similar to
executing a subroutine: the principal program is left waiting while some
other activity is carried out. But unlike a subroutine, an interrupt service
routine is initiated by hardware and executed asynchronously, in response
to some external event.

Since a multiuser installation may contain many terminals and each
terminal can send out several characters per second, the time available
for dealing with interrupts is small. Keyboard input is therefore handled
in a two-level fashion by almost all operating systems. The first level in­
terrupt handler merely collects the newly arrived keyboard character, ex­
amines it to see whether it is one of the special characters requiring im­
mediate response (e.g., DELETE), places it in a keyboard buffer area for
later attention, and echoes it to the terminal. The time taken for these
actions might amount to a few dozen or a few hundred microseconds,
depending on the type of computer. The user can easily gain the impression
that typed characters are merely stored at the terminal, so fast is the echo
sent by the interrupt handler. Even several users typing along furiously
will leave plenty of machine time for other processes to run.

If the first level interrupt handler finds that the character typed at the
keyboard requires action, a second level of activity is called into play:
the action required is identified and carried out. For example, if an end­
of-line is received from a terminal, the input line is examined for kill and
erase characters and any necessary editing is done. The processed text
is then placed in another queue from which it is sent on to the program
expecting input. This process is likely to take much longer than a simple
storage of commands.

Special Files: Block and Character

Special files are of two generic varieties: block and character. Prototypes
of these are disk files and terminals, respectively. In other words, two
kinds of peripheral device are recognized: disk-like and terminal-like. De­
vices which are neither are made to look like one or the other to the
system; and the system in tum strives to make all devices look like files
to the user.

Input and Output Operations 113

Block input-output is arranged through a pool of data buffers. Typically,
a dozen or more buffers may be in use. In normal operation, none is per­
manently dedicated to any particular user, buffers are allocated as required.
When a process requests input, the kernel searches the buffers for the
desired data. If the text requested is resident in a buffer, it is communicated
to the process without any data transfers between memory and disk having
to take place. Correspondingly, a request to write is understood to mean
writing into the buffer. The buffer content is actually transferred only at
a later time when the buffer is needed for some other purpose or when
an explicit request is made to flush buffers. Since the buffers are not ear­
marked for any particular user, output buffer contents are not transferred
as soon as each buffer is full, but only when all buffers are full and more
buffer space is requested by some process. The input buffers are kept
ftlled by reading ahead a good deal; output operations may involve delayed
writing. Input-output operations are thus asynchronous with the program,
so programs rarely need to wait for data transfers.

Character-oriented input-output by Unix device drivers is of the clas­
sical mould: the driver deals with individual characters which it either
passes on or else recognizes as having particular meanings. As a simple
example, a newline character, which denotes the end of a line in a Unix
file, must be recognized and transmitted to a terminal as a sequence of
two characters, carriage return followed by a line-feed. Similarly, terminals
unable to tab to a particular column must be sent an appropriate number
of blank spaces; terminals unable to skip pages must be sent the right
number of blank lines in place of a form feed character. These substitutions
all take place in the device driver.

Block input-output devices require only simple device driver programs,
for all operations are directed to buffers of a standard form. By contrast,
character devices need more complex drivers but can make do with less
sophistication in the buffer management software.

Unix input-output arrangements are generally transparent to the user,
and appear to be program synchronous: input is read and output is pro­
duced in exactly the sequence one would expect from reading a listing of
the program. Should the system malfunction, however, the complexities
of the Unix buffering scheme can become annoying. For example, output
may sometimes be delayed or lost because it is still resident in buffers
and hence not printed, although completely terminated as far as the pro­
gram is concerned.

Physical Structure of Files

Users rarely need be concerned about the physical structure of files be­
caliSe the Unix system makes every file appear to the user as a simple
contiguous byte (or character) string. But there are some occasions when

114 5. The System Kernel

even a rudimentary knowledge of the physical file structure allows better
applications programs to be written. Besides, some users are interested
as a matter of simple curiosity.

Disk files under the Unix system are physically organized into blocks.
Blocks were invariably 512 bytes long in the early versions of Unix; more
recently, both 512 and 1024 byte blocks have come into use. Every file
is allocated an integral number of blocks and every block begins at a mul­
tiple of 512 bytes from the beginning of the file. However, successive
blocks of a file are not necessarily contiguous on the disk; they may reside
anywhere at all. This flIe organization contrasts with some small computer
operating systems, which allocate space in one single contiguous area of
disk. The advantage gained is that no file compaction or "garbage col­
lection" is ever needed. In fact, the speed advantages of contiguous space
allocation remain largely valid for Unix files, since contiguous space is
used when it is available. Fragmentation of disk space, with every file
spreading allover the disk in little pieces, only occurs when the disk is
nearly full. But it is hardly necessary to point out that the management
of flies scattered about in penny packets is trickier than constructing simple
tables of contents for contiguous files.

Ordinary files and directory files may be classified into four different
size classes, occupying at most 10, 138, 16522 and 2113674 blocks of file
space (assuming 512-byte blocks). The reason for this curious classification
is that space is provided for 13 block numbers used to access data. The
method of access is described below.

Storage of small files is straightforward enough. If a file occupies ten
blocks or fewer, the spaces provided in the system tables are used simply
to house the actual block numbers. For example, a file that requires three
blocks might have the thirteen block numbers given as 07526, 16201,01004,
00000, 00000, 00000, ... , 00000. The first three denote physical block
addresses on the disk; zeros show unused space. Up to ten blocks are
addressed in this way, the last three words being reserved. This scheme
is beautifully simple but only allows small files. Ten file blocks is 5120
bytes, about two or three typewritten pages.

Larger files are handled by an indirect addressing scheme. The first
ten of the 13 block address words are used to point to fIle blocks containing
data, exactly as if a small file were being stored. The eleventh address
points not to data but to a block containing the addresses of up to 128
further file blocks. The desired data are stored in those further blocks.
Since there can be up to 128 further blocks, files up to (10 + 128) = 138
blocks, or 70656 bytes, can be stored in this way. In other words, the
first 10 blocks are addressed directly and the next 128 are addressed in­
directly via the thirteenth block. This chapter is about 70,000 bytes long.

To store still larger files, a second level of indirect addressing is em­
ployed. The first eleven addressing words are used exactly as described
above; the twelfth points to a block containing the addresses of up to 128
blocks which in turn contain the addresses of up to 128 data blocks each.

Input and Output Operations liS

The number of additional data blocks made in accessible this way is clearly
16384 (1282), so the total accessible data space is 10 + 128 + 16384 =
16522 blocks, or roughly eight megabytes. This book corresponds to about
a megabyte of text.

The largest flIes are arranged in a similar fashion, but with the thirteenth
addressing word used in a triple-indirect addressing scheme. The amount
of additional space made available in this way is 2097152 (1283) blocks,
so that the largest possible file is approximately one gigabyte in size.

Directories are treated in the same way as ordinary files, though it is
unusual to find directories growing quite so large; most users tend to
structure their files hierarchically, with successive subdirectories con­
taining perhaps one or two dozen entries. It is usually convenient to keep
directories to a size that can be displayed on the terminal screen at one
time.

For special files, the first of the 13 block addresses has a different sig­
nificance. The first half of this word is viewed as the identification of a
physical device type (e.g., magnetic tape drive), the second as the iden­
tification of a subdevice number (e.g., tape drive number 7). Restricting
special files to a megabyte is not a problem, for they rarely exceed a few
kilobytes.

Sequential and Random Access

The Unix system treats all devices and media alike as containing files
composed of strings of characters. However, various physical file media
differ in their characteristics so that some distinction must be made in
practice between different kinds of file access. For example, a magnetic
disk is an inherently random access device: it is as much work and takes
as long to retrieve information from one place as another, so all characters
on the disk are equally accessible. Writing or reading can take place in
various sequences, including in one place several times. It is then necessary
to keep track of where the next character is to be transmitted to (or from).
A very simple mechanism is employed for doing so: a pointer is initially
set to the beginning or end of a file and repositioned as reading and writing
are done. Because the system always reads from the location pointed at,
random access is achieved by repositioning the file pointer.

Certain media-for example, input keyboards and line printers-are
strictly sequential. Characters once sent to a printer cannot be read back
and reading is possible only in the sequence ordained by the input-output
device. Unix achieves uniform treatment of all peripheral devices by pre­
tending they too are files and equips them with a file pointer. Of course,
movement of the file pointer associated with a sequential device is strictly
unidirectional.

Media of an intermediate character, such as magnetic tapes, are viewed
as logically indistinguishable from disk files. The only differences arise

116 5. The System Kernel

in their physical response, for operation of magnetic tapes as random ac­
cess devices can require frequent rewinding and thus result in excruciat­
ingly slow operation.

In addition to being strictly sequential, keyboards and line printers are
also read-only and write-only devices. This physical fact presents no
structural problem, since Unix software works with a system of read­
write-execute permissions. A physical device which cannot be read is log­
ically indistinguishable from a file without read permission. Thus, the ex­
istence of read-only and write-only devices fits naturally into the general
system structure.

The Unix operating system provides random access to files in high­
level languages such as Fortran and C, so that the average user never
needs to worry about how the internal operation is carried out.

Input-Output Buffering

As far as the ordinary user can tell, file reading and writing operations
appear to be synchronized to programs. In other words, all Fortran read
or write statements, or equivalent commands of other languages, appear
to be executed exactly when and where they appear in the program. They
appear to be unbuffered: every read or write operation appears to fetch
or send exactly the required number of characters, without reference to
the file block size.

Since the files are physically organized in blocks, and the blocks do
not necessarily occupy adjacent locations on the physical medium, such
a synchronous and unbuffered appearance is only achievable by actually
reading and writing files in a buffered fashion. While the details of the
buffering are complicated, the principle is simple. A read instruction, for
example, causes an entire block to be read from disk into a buffer area
in memory. But only the required number of characters is transferred
from the buffer to the program area. Similarly, writing is actually done
by moving characters from the program area into a writing buffer; only
when the buffer is full does physical transfer to disk take place. For ex­
ample, suppose that a user program reads successive 64-character records
via Fortran read statements. An actual disk transfer of data is required
only once for every eight read requests, provided they ask for sequentially
arranged data. On the other hand, reading randomly arranged 64-character
records may require one disk access per read, if a different file block has
to be fetched for each one.

Because most user programs tend to read or write to sequential loca­
tions, Unix uses a relatively complicated buffering scheme in which the
next file block is preread ahead of time. Most input requests therefore
find the necessary data already resident in buffers and do not need to wait
for physical movement of disk heads or magnetic tapes. This speedup Of

Input and Output Operations 117

operation is particularly valuable with large files, where multiple levels
of indirect indexing may be needed to locate and retrieve the next se­
quential file block.

Data are always stored in file blocks of 1024 or 512 bytes. Input-output
intensive programs theoretically should run a little faster if reading and
writing are done in multiples or submultiples of the block size. However,
the Unix input-output buffering scheme removes a substantial part of the
speed advantage and most users do not find it worthwhile to concern
themselves with this level of detail except where truly random me accesses
are involved.

Buffering of output to and from special files is carried out in different
ways for block and character files. Block files, i.e., special files that cor­
respond to block-structured devices, are handled in much the same way
as ordinary files. Character-structured special files naturally must work
on a single-character basis. Their buffering scheme is quite simple and
straightforward by comparison, without the many clever ideas incorporated
in block buffering.

Mechanisms for File Access

Before a program can read or write to a file, the file must be opened or,
if it did not previously exist, created. Similarly, a me must be closed before
exiting a program that opened it. Files are opened and closed by the system
calls open and close. In C programs, these calls can appear as function
invocations, for example,

filds = open (name, mode)

where name is a pointer to the file name and mode indicates whether the
me is to be opened for reading, writing, or both. The function value filds
returned by open is an integer called the me descriptor. All further system
calls dealing with the file refer to it by this number. For example, the file
is closed by

j = close (filds)

and nchar characters are read from it by

j = read (filds, buffer, nchar)

Two basic system calls, read and wri te, transfer characters from a file
(which could be a special file, such as a peripheral device driver) to a
specified memory buffer area. The function value returned by either call
is the number of characters transferred; it might well be smaller than nchar

118 5. The System Kernel

if the file contained fewer characters than requested. File descriptors are
numbers associated with processes; in fact, they are the linking numbers
which tie together processes with files.

Certain file descriptors are allocated to processes automatically. File
o refers to the standard input file, which is the terminal keyboard by de­
fault. File 1, the standard output file, is the terminal screen by default.
File 2 is the standard error file, normally attached to the terminal screen
also. It serves for handling system messages and diagnostics. Having this
file separate from the standard output permits system messages to appear
on the terminal screen even if the standard output has been diverted to
a disk file or printer. The default file assignments can be changed by the
user. Since the normal rules on forking apply to the shell, any files opened
by the shell are accessible to any process spawned by the shell-therefore
also to all its children, their children, and so on. The standard file as­
signments of the parent process are therefore carried through to all its
descendants. The standard files are of course reassignable so input and
output can be diverted from anywhere to anywhere else.

A Unix file is simply a string of bytes of known length. An open call
opens a file and sets a pointer to point to its first byte; a read call reads
bytes and moves the pointer the number of bytes read. Any subsequent
read begins reading wherever the pointer last came to rest and moves it
on by the number of bytes read. Writing operations move the pointer in
a similar fashion. Files thus have the logical appearance of being sequential.
Nonsequential access is provided by resetting the pointer to an appropriate
place, for any subsequent reading or writing operations will then proceed
from the new pointer position. Repositioning to newplace is done by the
1 seek system can.,

newplace = Iseek (filds, where, how)

Here f ilds is the file descriptor and where is the desired pointer position,
expressed either relative to the old position or absolutely, as indicated by
how.

File Identification

Directory entries in Unix directories only identify files by giving an index
number (called the i-number in Unix system programming jargon) for each
file. The index numbers for any given physical volume (disk, tape, etc.)
are actually pointers to another table, called the i-list, which resides on
the same device.

The i-list of a given device contains a set of entries called i-nodes; for
this reason, the i-list is sometimes referred to as the inode table. An
i-node is a set of data that contains the following information regarding
each file:

Input and Output Operations 119

1. The identifying number of the user who created the file.
2. The protection status of the file (read-only, open, etc.).
3. Thirteen words showing device blocks occupied by the file.
4. The size of the file.
S. The time the file was last modified.
6. The number of times the file is referred to in directories.
7. Bits to identify directories, special files, and large files.

Keeping track of how many times the file is listed in directories is im­
portant, because a non-directory file may appear in the directories of sev­
eral users. If one of them wishes to remove the file from his own directory,
only the directory entry (not the file itself) should be removed if there are
any other directories in which the file still appears. On the other hand,
the actual file itself should be purged (the file space should be released
for other use) if the last user of the file removes it.

There are some occasions on which users may wish to inspect the
i-numbers associated with fIles, usually because information regarding disk
space is needed. The i-numbers are available through the Is command,
invoked with the -i option. This option provides the listing that would
normally be expected from Is, augmented by the i-number corresponding
to each file name. These name-to-number correspondences are called links
and serve as the main file identification and management tool. In principle,
the mv command moves a link, rm removes one, and In creates a new
one. This fact may explain the curious command names employed for file
deletion, renaming, and synonym creation.

Chapter 6

Facilities and Utilities

The Unix operating system provides a large variety of utility routines for
performing computations, communicating with other users, and handling
files. Some are important enough to merit chapters of their own, like the
shell programs; or to deserve at least a large part of a chapter, like ed.
Others appear in context with the shell, language compilers, or files.
However, there are still others of considerable value which do not naturally
belong in another chapter of this book. They have been collected together
here, as a miscellany of handy items.

Communications

Under the Unix system and other similar operating systems, facilities are
provided for the system manager to communicate with users and for users
to communicate with each other. Two forms of communication are pro­
vided: mail and immediate messages. In principle, these two are analogous
to the post office and the telephone company. One leaves messages in a
mailbox for later collection; the other communicates directly but risks
that no one will answer the phone.

Communications 121

Mail Services

Every user is assigned a file called his mailbox, which is not part of his
directory structure (it actually resides in the directory /usr/spool/mail
in most systems) but which he can read using the mail command. The
same command makes it possible to write into another user's mailbox,
leaving messages for collection later.

If there is any fresh mail waiting, Unix informs the user about it when
logging in, before the first shell prompt:

You have mail.
$

When the user reads the messages in his mailbox, the system notes that
there no longer exists any unread mail. The You have mail message will
then not appear at the next login, unless of course another new message
has been placed in the mailbox in the meantime. The Unix mail system
can also be set up to delete old mail once it has been read; it is then up
to the user to save it if he prefers. Such automatic deletion is considered
desirable in systems with many users but little disk space; it economizes
space by leaving little unused trash on disk. Mail arriving while logged in
at the terminal is simply placed in the mailbox; this postman does not ring
to notify about the arrival of new mail.

The message regarding mail is sent out at the conclusion of the login
procedure, before the shell is started running. Thus, the message will only
appear once, preceding the first appearance of the shell prompt. Any fur­
ther $ prompts will appear without the mail message, as usual.

To read what mail there is, the user enters the command mail. In re­
sponse, mail fetches messages from his mailbox and displays them one
at a time, the most recent one first. For example,

$ mail
From bftsplk Thu Feb 29 11:29:44 1984
check your files, I may have wrecked some by accident

Every piece of mail is stamped with its time and date of transmission,
exactly like ordinary post office mail. The name of the sender is also affixed
to each message.

When the addressee looks at his mail, only one message is displayed
at a time; it is followed by an enquiry about how the message is to be
disposed of. Its recipient may simply make a mental note of the message,
or have it deleted, or ask for it to be saved. In fact, a wide range of choices
is open to the user: the message may be saved with or without the header
(postmark), may be mailed on to someone else, may be repeated (useful
for long messages), or retained in the mailbox. The most usual response
is to go on to the next message by simply striking the RETURN key.

122 6. Facilities and Utilities

The mail command permits a few options, of which the most useful
are -e (suppress display) and -r (reverse order). The former is useful in
shell scripts because it returns an exit status of true if there is any mail,
false if not; it therefore permits testing without reading. The -r option
displays the oldest mail first.

Sending Mail

Any user may send mail to another, again by means of the mail command.
To do so, the addressee's name is appended to the command, as in the
following message sent to user bftsplk:

$ mail bftsplk
Which files do you suspect?
All my directories look OK.

The mail command line is followed by the message to be sent. It is perfectly
all right to send more than one line; the message is considered terminated
whenever either a control-D character is sent or whenever a period (the
. character) occurs on a line by itself. But it is usually wise to keep mes­
sages reasonably short. The entire message is displayed on the terminal
screen at once when the recipient looks at his mail, so messages longer
than a screenful can be difficult to read.

Mail may be sent to more than one recipient at once, by listing the
names of all the recipients in the command line. It should be noted that
all mail handling is done by user login name; obviously, it is not possible
to send a message to anybody whose login name is not known. The login
name thus plays the same role here as do name and address at the post
office. If a nonexistent login name is given in the command, mail may
reply with an error message or (in some systems) simply ignore the com­
mand. If a message is addressed to the wrong login name, it is delivered
as addressed.

A user is permitted to address mail to himself. The procedure for doing
so is precisely the same as for sending to any other system user. Many
users like sending messages to themselves, as reminder notes to remove
unneeded files or to take action in some other matter. However, there is
a basic danger here: when greeted by the you have mail message.itis
tempting to assume the mail consists of the reminder note and not to bother
reading it. Real mail from other users may thus become lost, or at any
rate ignored.

It may seem strange that the mail command is fully implemented even
on single-user Unix systems on microcomputers. It needs to be, for much
Unix mail is sent to users by the system itself or by processes launched
on the user's behalf by cron. The line printer spooler Ip, for example, can
be asked to notify users by mail when print jobs have run to completion.

Communications 123

Immediate Messages

In addition to mail, which is deposited in a mailbox for later collection,
system users may send messages directly to others using the write com­
mand. Such messages are not placed in the addressee's mailbox, they are
immediately transmitted to his terminal instead. Naturally, such direct
transmission is only possible if the addressee is logged in at the time. The
who command may be used to determine who is, and at which terminal
(or terminals). Attempts to write to nonexistent users, or to users not
logged in, result in error messages and no communication. The write com­
mand works somewhat like sending mail:

$ write abner
Please check your files.
I may have corrupted some by mistake.

In contrast to the mail command which deals with whole messages, write
transmits every keyboard line immediately when the RETURN key is
pressed. The write command line itself produces at the receiving end a
line identifying the sender, for example,

message from bftsplk tty6
Please check your files.
I may have corrupted some by mistake.

Transmission initiated by write overrides whatever else the addressee may
have been doing, and each transmitted line is displayed at his terminal
even if that puts it in the middle, say, of a directory listing he may have
been trying to read.

Once the write program has been set running, any and all lines typed
at the keyboard will be transmitted to the addressee. Transmission is turned
off by sending a control-D. This control-D will not cause logout, merely
an exit from write. Once the write program is running, it takes two suc­
cessive control-D's to log out: one to exit from write to the shell and one
more to exit from sh.

If a user is logged in at more than one terminal at the same time, it is
possible to indicate in the command line to which terminal the messages
are to be sent. For example,

$ write bftsplk tty6

will display the transmitted lines at tty6, but not at any other terminals
where user bjtsplk may also be logged in.

124 6. Facilities and Utilities

Two-Way Communication

When a message is received from another user, it is natural to reply im­
mediately. But doing so is a little tricky, because only one user can be
transmitting at a time. Two-way communication thus resembles CB radio
rather more than the telephone, for it is important to let the recipient
know when the other fellow is prepared to listen for an answer and when
he intends to keep on talking. One widely used method is to employ the
word over, usually abbreviated to - 0 -, to signify "I will now listen for
a reply", the words over and out (-00- for short) to mean "I have finished
and will neither transmit nor listen". A conversation may then look (from
one end) like

$ write abner
Please check your files.
I may have corrupted some by mistake. -0-

message from bftsplktty6
which files do you suspect?
All my directories look OK. -0-

Glad all is well, thanks for checking! -00-

The words message from . .. signify that the other user has also started
up a copy of write. They will only occur once at the startup of that program,
not between every pair of messages.

At times when a critical job is running, no messages may be wanted
from anyone. Some sensitive processes (e. g., the nrotT text formatter)
disable the message facilities automatically whenever they are initiated.
But users may block the message passing channel at any time by means
of the mesg command, as in

$ mesg n

where the D indicates "no". To tum messages on again, the same command
is issued with a y (for "yes") argument replacing D. Blocked messages
are not saved for later presentation to the intended recipient; they are
simply discarded.

Logging in Elsewhere

Many Unix users hold valid login names on several systems. For example,
a small system may reside in the executive office, a bigger one in an ad­
ministrative complex, a third one at a laboratory or production facility­
and the same user may need services from all three. On many occasions,
it is desirable to log in to two or more systems simultaneously, so processes
running on one system can have access to data resident in another or, in

Communications 125

the simplest case, to move text files between machines. Unix provides a
simple communication facility called cu (short for call Unix) able to do
so.

In the following, it will be supposed that a user joe of a local system
wishes to use a second, remote, machine as well. To establish commu­
nication, the cu program is first called into action. If the local system has
an automatic dialler, as it often will, telephone connection is established
by

$ ell 3925397

where the digits are the telephone number of the remote machine (without
spaces or dashes!). Alternatively, the system name may be given in place
of the telephone number; if the name is known to the local system, it will
look up and dial the telephone number itself. Direct-wired connections
only require naming the direct line, usually (but not in all systems) preceded
with -I:

$ ell -1 dir

When the remote system is connected, it behaves for all the world as if
the user had logged in at a terminal, without going through the local system:
it will demand a login name and password, notify about any mail waiting
at the remote location, and issue its system prompt. The local computer
merely acts as a terminal to the remote one. A simple example is

login: joe
Password:
L$ ell remote
Connected
welcome to BIGSYS. Please login: palooka
Password:
R$

Here user joe has logged in to the local system (whose prompt is L$),
then immediately called remote. The login name used does not need to
be the same, nor the password, because the systems are really independ­
ent; the remote system neither knows nor cares that another Unix system,
not merely a dumb terminal, is doing the calling. Its login procedure may
be different, and so may its system prompt. Once communication with
the remote computer has been established, cu acts merely as a message
passer; the user really only sees the remote machine.

The point of logging in to the remote system through cu is surely to
allow messages to be passed between machines; if not, the local system
is only being used as a rather expensive terminal. While passing messages
along, cu therefore watches for keyboard lines beginning with the tilde

126 6. Facilities and Utilities

(the - character) and interprets these as commands directed to CU, not
intended for passing to the remote computer. The most important is un­
doubtedly -. (tilde followed by a dot), which terminates the conversation.
This one should normally be used only after logging out from the remote
system. The -! command causes cu to start up a local shell, with which
the user can do whatever seems appropriate; it also exists in the shorter
form -! <command>, in which a single command is given to a shell. An
interesting embellishment is provided by -$<command> which works
exactly like -! <command> except that the standard output of <com­
mand> is piped to the remote system. Although this command set is small,
it effectively taps all the resources of two Unix systems, since it allows
execution of any command at either machine!

The general co commands can be used to send fIles or messages between
machines, but file transfer is so frequent a need that special commands
are provided: -%take for importing from the remote system and -%put
for exporting to it. They are used much like the cp command on a single
system:

R$ ---%take rfile lfile

where rfile is the file name at the remote system and !file at the
local system. The second argument may be omitted if file names are to
be the same.

Only text files can be transmitted with cu because the communication
protocol between machines can otherwise be confused by some nonprint­
able characters. File transfers under cu are not checked for errors and
lack convenience because they are done on the spot, locking up the com­
munication line while the transfer proceeds. Thus, cu is convenient for
moving small quantities of text, but for substantial files a more appropriate
tool is uucp. The latter permits file transfers to take place at the systems'
convenience, much like background jobs.

File Management

The Unix family of operating systems provides a rich selection of file
management tools applicable to text files. In fact, the standard tool kit is
so large that most simple operations on files require no programming; the
user need only ask for them. For more complicated tasks, the program­
mability of the shell allows new and unexpected combinations to be created
out of elementary operations-all without any programming other than
writing a few shell scripts.

File Management 127

Copying Files

Making copies of files, one or several at a time, in disk file form or as
printed copy, is an elementary operation of file management. There are
various ways of doing so. The most useful commands for this simple kind
of file management are

cat which concatenates files
cp which copies a file, or several files

cp is straightforward: if one issues the command

$ cp filel file2

filel is copied, the copy being named file2. Full pathnames may of
course be given, so that the two files need not be within the same directory.
When making copies, it will pay to remember that cp will happily replace
an old file named f i le2 by overwriting. In fact, cp always destroys first
and writ~s afterward; care should be taken not to make mistakes in file
names!

To copy files from one directory to another, a variant form of the cp
command is available, which avoids the necessity of typing full pathnames
both times. In the variant form, it suffices to name the files to be copied
and the directory to which they are to be copied. Copies in both directories
will then have the same file name, though of course the full pathnames
will differ.

It is important not to confuse cp with mv or In. cp really makes a copy,
so that after the operation there are two real copies of the file occupying
physical space on the disk. mv, on the other hand, merely renames the
existing copy; no data transfer takes place. In establishes two or more
synonymous names but retains only the original physical copy of the file.
After an In operation, there will be two or more directory entries for the
file, though only a single file will really exist. Directory entries (links) are
allowed only if both the directory and the file reside on the same physical
device (e.g., the same magnetic tape) or if the device is permanently at­
tached to the Unix system (e.g., the permanent system disk drives). But
cp, which makes physical copies, can be used to copy across devices.

To avoid the irreparable loss of precious files that might occur in a
power failure or other computer malfunction, it is a good idea to make
backup copies of files from time to time. These should preferably reside
on a removable medium such as floppy disk or magnetic tape, one that
can be physically removed from the computer. After all, the building might
burn one day!

The cat command sends a copy of one or more files to the standard
output device. Thus a file is easily inspected by the simple command

128 6. Facilities and Utilities

$ cat filel

Naming several files in the cat command merely produces a concatenation
of the files in the standard output. The files will be concatenated in the
order in which they are named in the command. cat may be made to per­
form much of the work of cp, by suitably redirecting input and output.
In fact, cat may be used to turn the whole Unix system into a giant electric
typewriter, by taking its input from the keyboard and directing its output
to the printer.

When files are displayed at the terminal, lines are ordinarily scrolled
up from the bottom to the top of the screen, and the top line is discarded.
When large files are displayed, the inconvenience of losing the top line
may be avoided by stopping the display scrolling. A control-S character
sent from the keyboard at any time will halt transmission of more lines
to the terminal, thereby stopping scrolling; a control-Q will restart trans­
mission.

Display and Examination

Displaying a file on the terminal screen is easy enough; the near-universal
cat program does the necessary once again. And once again, does it not
well enough to be acceptable as the only program for the purpose. Because
cat simply copies input to output, a large file can flash past at incredible
speed and even the stop/start facilities of pressing control-S and control­
Q will not allow the desired part of the file to be positioned on the screen.
Any Unix system therefore includes either or both of two programs de­
signed for screen display: more and pg.

The more program is simple and easy to use. Like cat, it displays its
standard input, but unlike cat it pauses after each screenful and waits for
the user to signal before continuing. For most users of fast communication
lines (say 120 characters/second or faster), feeding almost everything to
the screen through more quickly becomes a habit.

A pleasing extension of more, available on many Unix systems, is calling
the vi editor through more. Normally, the user advances through the file
by pressing the space bar (to see the next screenful) or the d key (to scroll
half a screenful). Pressing v causes more to fork a new process which
runs the vi editor, starting with the text positioned at the same place where
more stopped. Because vi is entered through process forking, exiting from
vi returns the user to precisely the erstwhile position in the more display.
It is therefore possible to flip back and forth between file perusal and file
editing, without exiting from either program.

The disappointing part of more is its inability to back up. It really does
little more than cat, though that little represents a major advance in con­
venience. The pg program resembles more, but is cleverer to the extent

File Management 129

of knowing how to page both ways, or to go to an altogether different
part of the file. Pressing the space bar or the ri key works exactly as with
more; but prefixing either keystroke with a signed number causes display
of a screenful either further on, or further back, in the file. Thus, typing
-ISPACE goes back a screen, + 3SPACE forward three screenfuls. The ex­
tremely frequent * lSPACE may have the * 1 qualifier omitted. Like more,
pg also knows how to start display at some intermediate point in the file,
including points specified by giving a search pattern rather than a line
number.

There is no v keystroke available in pg. However, pg recognizes! as
an instruction to pass information to the shell. Thus, ! vi filename ac­
complishes more or less the same objective as the v keystroke in more:
a copy of vi is launched to edit filename.

Often enough the last few lines or pages in a file are of major interest.
The tail utility delivers the end of a file quickly and easily. It allows the
amount of text to be specified, as in

$ tail -100 bigfile

meaning that the last 100 lines are wanted. However, requests for large
chunks of file may go unheeded because tail works with a limited amount
of buffer space.

The pg, more, tail, and cat utilities all work well with text files but
prove useless with files containing non-ASCII characters or files which
do not have a textual interpretation. There is one Unix facility guaranteed
to yield up the secrets of any file, called od (octal dump). It displays the
file content byte by byte (or, optionally, word by word -usually a word
means a byte pair) in decimal, octal, hexadecimal, or character form. A
directory, for example, is not a readable file; od delivers its contents as
easily as anything else:

o 001 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0

m 001 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0

021 003 1 P i n s t a 1 \0 \0 \0 \0 \0 \0

035 004 z u s e \0 \0 \0 \0 \0 \0 \0 \0 \0 \0

\0 \0 f r a s e r t x t \0 \0 \0 \0

\0 \0 f r a s e r 0 1 d \0 \0 \0 \0

This display is in (nominally) ASCII character form. It shows the directory
to contain six files: itself, its parent directory, and four ordinary files.
The ordinary flIes have their names shown, padded out with null characters
(echoed as '\.0). The leading two bytes are pointers to further information
about the files. For the last two files in the directory, the pointers have
been reset to nulls, to show that the files have been removed and no in­
formation can be obtained about them any more.

130 6. Facilities and Utilities

Printing Services

To print a file, the output of cat may be redirected to the line printer. But
cat is rarely used in practice because it is not quite clever enough. Being
a simple copying program, cat merely echoes the exact file content to its
standard output, so attempting to copy a file to the printer special file,
say /dev!lpO, entails the risk that some other user or system process
might do likewise. The accepted way to do printing is therefore to use
the line printer spooler process, which does more than just print: it queues
files for printing so no interference can occur. This process is started up
automatically when the system is started. The command

$ Ip printfile

places printfile into the queue for printing when its turn comes and
responds immediately by giving the user the print request identifying
number. Printing will begin immediately if the printer is not busy, later if
it has other work to do first. The user need not stay logged in to wait for
the print job. The spooler and printer processes belong to the system;
whether the owner of pr in tf il e is logged in at printing time is irrelevant.

Impatient or curious users can ask about the progress of their print
jobs at any time, referring to them by their request numbers. So long as
the printing has not yet been completed, print jobs may be cancelled.
Cancelled requests are simply deleted from the queue if not yet started;
if printing has begun, further transmission of data to the printer is stopped.
Many modern printers, however, will keep on printing for a little while
because they keep several lines (or several pages) of text in a local buffer
memory within the printer. Although Unix can stop transmission of any
more data, it cannot take back the characters already sent to the printer.
Enquiries and cancellations use the commands Ipstat and cancel. Their
use is illustrated by the following:

$ Ip wrongfile
request id is LprtO-106 (1 file)
$ Ip rightfile
request id is LprtO-107 (1 file)
$ Ips tat
LprtO-106 peter
LprtO-107 peter
$ cancel LprtO-106

51923
79677

request ILprtO-106" cancelled
$

Jun 12 10:27 on LprtO
Jun 12 10:27

After placing two printing requests, the user realizes the first was erro­
neous. A status enquiry with Ipstat shows two requests queued for peter,

File Management 131

with the first already started printing on device LprtO. The cancel com­
mand removes it from the queue and from the printer; how many pages
will be printed despite cancellation depends on the printer speed, system
response time, and the user's own dexterity.

When several users have printing requests pending, quite some time
may elapse before any given request can be carried out. Repeated status
inquiries are both irksome and distracting. Rather than to ask for status
at frequent intervals, the Ip command can be embellished with the -w
option,

$ Ip -w printfile

The print spooler will then write a message on the user's terminal when
the job has finished; if the user has logged out in the meantime, it will
send mail instead. If terminal messages are not desired, then -m will send
mail in any case.

The printing request queue maintained by the spooler is effectively a
directory of files maintained by the spooler for its own use. A file to be
printed is not copied; instead, a link is established to the queue by a mech­
anism like the In command. This means the files named in a print request
must be ordinary files, otherwise the strict tree structure rule of Unix
directories will be violated. All files in directory /usr /bloggs can be
printed by requesting /usr /bloggs/* but not merely the directory name.
Furthermore, what will be printed is the file content at the time the printing
request is honored, not the file as it was when the request was placed. If
there is any likelihood the file might be altered or removed before the
printing task is completed, the -c option should be specified with Ip. A
temporary copy of the file will then be made immediately and any future
changes in the file will not appear in the printed version.

Numerous Unix installations use an alternative command Ipr for
queueing print requests. This is an older version than Ip and poorer in its
range of options. For most ordinary purposes, however, the two differ in
convenience features only; thus, Ipr will send mail but will not write to
the user's terminal.

Like cat, the Ip and Ipr programs do no text processing of any kind;
they deliver a faithful image of their inputs to another place and time. For
example, they know nothing about page lengths or page breaks. To obtain
tidy file listings, it is usually more convenient to use pr, which breaks up
large files neatly into numbered and dated pages. The output of pr is sent
to its standard output device, so that pr is normally used in a pipeline to
feed Ip. Because pr knows how to print in two or more columns and is
willing to truncate rather than fold long lines, it is particularly convenient
for program listings written in assembler language or other languages (C
included!) which tend to large numbers of short text lines.

132 6. Facilities and Utilities

File Sorting

One very comprehensive and flexible sorting program, called sort, is
standard equipment in all Unix systems. sort expects input organized as
lines of moderate length and sorts these lines into sequential order. The
lines are not required to contain anything in particular, so sort can be
applied to text files, numeric data, or even to nonprintable files containing
anything at all. In its simplest form, one invokes sort by

$ sort inputfile > outputfile

and inputfile ends up sorted. Order is determined by the standard
ASCII collating sequence, so that alphabetic characters are sorted into
alphabetic order and numerics into ascending order. (A table of ASCII
character codes appears in the Appendix). The ASCII character set in­
cludes not only the alphabetics and numerals, but punctuation marks and
special characters, so these will be sorted too.

Sorting can be carried out according to a fabulous variety of criteria.
First, characters may be sorted in different ways. It is possible to force
"dictionary" sorting, i.e., to ignore all characters except alphabetics, nu­
merals, and blanks. It is possible also to ignore the distinction between
upper and lower case. White space (blanks and tab characters) can be
ignored if desired. Duplicated lines can be eliminated and lines can be
sorted into reversed as well as natural order. These possibilities are ex­
ercised through options specified in the sort command. For example,

$ sort -ubdfr inputfile > outputfile

will dictionary sort (d option) inputfile in reverse (r) order, ignoring
blanks and tabs (b) while eliminating other than unique lines (u); upper
and lower case will be considered equivalent (f option).

Sorting can be carried out using only parts of a line. In general, sort
considers a line to be made up of a set of fields. A field is a string of
characters, with a minimum width of one character. Fields are considered
to be demarcated by a separator character, which is normally the blank
but can be altered to be <character> by the -t<character> option. sort
can be instructed to skip one or more fields at the start of a line and to
ignore all fields following some subsequent one. For example,

$ sort +2 -4 inputfile > outputfile

will begin sorting (+) after field 2 (i.e., with the third field) and will ignore
(-) everything after the fourth field; in other words, only the third and
fourth fields will be considered. Here is an immediate application:

File Management 133

$ Is -0 annrept I sort +3 -4
total 174
-rw-r--r-- 1 peter 68 May 4 10:19 tcont
-rwxr-xr-x 1 peter 749 Jun 12 09:16 savscrp
-rw-r--r-- 1 peter 777 Jun 10 09:05 umacros
-rw-r--r-- 1 peter 3891 Jun 12 09:14 appdx
-rw-r--r-- 1 peter 14833 Jun 10 09:45 front
-rw-r--r-- 2 peter 29980 May 13 12:40 chaptl
-rw-r--r-- 1 peter 37156 Jun 10 09:14 chapt2

Sorting is keyed to the fourth column only; in other words, the directory
listing is sorted by file size.

Even within a field, initial characters can be ignored to refine sorting
still further. For example, in

$ Is -0 annrept sort +0.3 -0.4
-rw-r--r-- 1 peter 68 May 4 10:19 tcont
-rw-r--r-- 1 peter 777 Jun 10 09:05 umacros
-rw-r--r-- 1 peter 3891 Jun 12 09:14 appdx
-rw-r--r-- 1 peter 14833 Jun 10 09:45 front
-rw-r--r-- 1 peter 38624 Jun 12 12:45 chapt2
-rw-r--r-- 2 peter 29980 May 13 12:40 chaptl
total 1440
-rwxr-xr-x 1 peter 749 Jun 12 09:16 savscrp

the sort command says: "skip zero full fields and three characters of the
next, also skip everything after the fourth character; sort on what lies
between". In other words, the sorting is done on the fourth character in
the first field. This example also shows why so few Unix utilities produce
output with titles, header lines, or the like: unless filtered out beforehand,
the header line ends up sorted with the rest.

Sorting can be carried out on a set of key fields, not merely a single
one. Furthermore, each key field can have a string of options attached.
For example,

$ Is -0 annrept I sort -n +6 -7 -M +5 -6
total 174
-rw-r--r-- 1 peter 68 May 4 10:19 tcont
-rw-r--r-- 2 peter 29980 May 13 12:40 chaptl
-rw-r--r-- 1 peter 777 Jun 10 09:05 umacros
-rw-r--r-- 1 peter 14833 Jun 10 09:45 front
-rw-r--r-- 1 peter 37156 Jun 10 09:14 chapt2
-rw-r--r-- 1 peter 3891 Jun 12 09:14 appdx
-rwxr-xr-x 1 peter 749 Jun 12 09:16 savscrp

134 6. Facilities and Utilities

sorts by date: numeric sorting on field 6 first, sorting by month names
(M option) on field 5 thereafter. Very complicated sorting procedures can
be designed in this way.

The sort command can be employed to merge files if the -m option is
specified. Together with the -u ("unique", i.e., eliminate duplications)
option, it can be used for tasks such as merging mailing lists, indeed for
updating them, since the entry retained is always the one first encountered.
As the sorting options become more and more complicated, sort clearly
ceases to have value as an interactive command at the terminal and be­
comes an important tool for writing shell scripts.

Comparing Files

Two distinct commands are available for comparing two files, diff and
cmp. Interactive terminal users probably find diff to be the more useful
because its output is richer and easy to read. The output of cmp is numeric
and better suited to machine processing, so cmp finds ready application
in the writing of shell scripts.

diff compares two files on a line-by-line basis, looking forward and
backward in an attempt to spot where the common ground lies. It keeps
two line counters, one for each file, and tells the user how the lines cor­
respond. The correspondence is expressed in algorithmic terms, that is,
diff tells the user what should be done to tum one file into the other. The
command

$ diff filel file2

will produce instructions on how to modify f i I e I so as to make it identical
to file2. The modifications are presented as two sets of line counter
readings and a single-character instruction, which may be a (add), d (de­
lete), or c (change).Each one is followed by the set of lines subject to
modification, flagged by < ifthey belong to f i leI ("less than", meaning
before any changes) or) if they belong to file2. For example, files
left and right are obviously different, but related:

Interactive terminal users
probably find diff to be the
more useful because its
output is richer and easy to
read. The output of cmp is
numeric and better suited to
machine processing, so cmp
finds ready application in
the writing of shell scripts.

Interactive terminal users
new to Unix
probably find diff to be the
more useful because its
output is richer and easy to
read. The output of cmp is
numeric, so cmp
finds ready application in
the writing of shell scripts.

File Management 135

The difference program shows what must be done to make them the same:

$ diff left right
la2
) new to unix
6,7c7
< numeric and better suited to
< machine processing, so cmp

) numeric, so cmp

Two corrections are reported. The first is la2, meaning "after line 1 of
left, append line 2 of right". The line to be appended is then displayed.
The second alteration is 6, 7 c 7, which might be read "lines 6 through 7
of left changed to read as line 7 of right" and shows a substitution
of one line for two. The lines are again reproduced on the spot. To put
the matter simply, ditT produces the set of editing instructions which will
allow the right file to be recreated from the left.

Producing editing scripts so people can read them is all very well-but
if the editing steps are so clearcut, why should not a machine carry them
out? In reply, ditT allows two different forms of output. One, illustrated
above, is readily comprehensible by people. The other is not quite so easy
to read; it consists of instructions to the ed editor. It may be used to
recreate right (by means of ed itself) from left:

$ diff -e left right) difrnc
$ cat difrnc
6,7c
numeric, so cmp

la
new to Unix

This script only needs to be augmented with two further ed commands,
to write the output file and to quit,

wright
q

to form a complete sequence of editor commands. File right can then
be recreated from left and the augmented file difrnc by

$ ed left < difrnc

136 6. Facilities and Utilities

If left is large, the space required for saving left and the editing script
difrnc will amount to only a little more than left itself. Even in this
smaU example, the full editing script only contains 50 characters, as against
259 for left. Major economies can be effected in disk space by storing
the original file and one or more editing scripts instead of several versions
of the file. The saving is particularly great if the file versions do not differ
greatly-for example, in program debugging where quite a few editing
operations may be needed but each involves only a few lines. In effect,
it becomes possible to save a whole sequence of intermediate versions of
the program source code in little more disk space than required by the
original version itself.

The cmp command also compares two files, but it does not yield an
editing script. Instead, cmp shows exactly where (if anywhere) a difference
was first found:

$ cmp left right
left right differ: char 29, line 2

cmp can be asked to produce all the differences, character by character;
for files left and right, it produces no less than 195 lines of numeric
output! On the other hand, cmp can be asked to keep quiet and say nothing
at all, merely to make its exit status true if the files are alike. The latter
form is attractive to shell programmers.

Filtering Files

As used in Unix literature, the term filter means a program which trans­
forms its input in some simple way and copies it to its output. Many pro­
grams can be regarded as filters, depending on how far the notion of a
simple transformation can be stretched. In this section, it will be under­
stood more narrowly as transformation of character strings or extraction
of specific lines from a file. Even then, there are five important filters to
discuss: prep, uniq, comm, tr, and grep.

The grep command is the most powerful and flexible of the five filters
examined here. It reads its standard input, one line at a time, finds the
lines that contain a particular character string, and takes some action when
such are found. Its basic action is to copy the line to its standard output,
but variations are possible. The line may be counted toward a total and
not displayed, or it may be counted and displayed. The action may be
inverted, displaying or counting the lines that do not contain the required
string. The power and complexity of grep lie largely in its ability to deal
with wild-card constructions in the character strings, so the searches need
not look merely for words like grep but could seek, for example, anything
consisting of six alphabetic characters with the second letter 0 and the

File Management 137

last two at. To do so, searching a Unix spelling dictionary (stored one
word to a line) might be worth a try:

$ grep ,[a-z] 0 [a-z] [a-z] at' /usr /dict/words wordout

However, this won't do the job because it only looks for a six-character
string of the appropriate description, without limiting the word length to
six characters. It results in a very long file,

adsorbate
apostate
aristocrat

transportation
woolgather

The expressions grep can find are formed in exactly the same way as the
searching patterns in the ed and ex editors. Thus, the period (dot.) can
be used to match any single character, [a - k] the specified range of low­
ercase letters, [13579] any odd numeral. Character position in the line
can also be specified; if" is placed at the beginning of a string or $ at its
end, it is considered to match the beginning of a line or the end of a line,
respectively. To locate the six-character word (permitting an uppercase
initial letter just to be sure) is not hard:

$ grep '''[A-Za-z]o[a-z] [a-z]at$' /usr/dict/words
bobcat
combat
format

If only grep could tell which output word also matches the description
marsupial herbivore, solving crossword puzzles could become a matter
of writing shell scripts-provided the dictionary is also improved to include
wombat!

A complementary application of grep might also be illustrated briefly.
The command

$ grep -v '''[ec]' feprog.f) nocomment.f

strips all comment lines from the Fortran program feprog. f. The search
string "[Cc] finds all lines containing either C or c in the first column
position; the -v option discards them, keeping all the rest.

The -I option of grep throws away all lines but keeps track of the file
names in which a pattern match is found. Because the input to grep may
consist of a whole sequence of files-keeping in mind that wild card file
names can cover large numbers of files-this option can be used to identify

138 6. Facilities and Utilities

all documents containing a particular string. Such could include, for ex­
ample, all Fortran programs containing a given variable or all letters signed
by a particular person.

The character translation filter tr also searches for characters, but only
single ones rather than strings. It accepts a table of character translation
equivalences and replaces specified characters with others. For example,
replacement of all uppercase letters with their lowercase equivalents is
achieved by

tr '[A-Z]' '[a-z]' < fortprog.f) lowers.f

so that the old-fashioned (but standard) Fortran program written in upper
case is translated to a form better liked by Unix programmers. The prin­
ciple here is simple. tr is handed two character sets, each 26 characters
long, and it replaces all occurrences of any character belonging to the
first set [A - Z] with the corresponding character in the second set
[a - z]. Options available include elimination of characters (mapping them
into nothing at all) and squeezing multiple characters into single ones.
While tr is easy to use in principle, it can become tricky because many
translation tasks involve special characters. These must convey their in­
tended meanings to tr but need to be protected against misinterpretation
by the shell. Quotes and backslashes are used to shelter them temporarily.

Few programs could be simpler in principle than prep. It reduces a file
to a list of words, one per line, by throwing out all nonalphabetic char­
acters, lowering all uppercase letters and replacing all whitespace by line
breaks. The remaining words, however, are in their original order, not
sorted in any way. Superficially, the need for prep might be questioned,
since the pipeline

tr '[A-Z]" [a-z]' < text I tr -cs '[a-z]' '[12*]') words

does much the same thing. Explanation may be in order: after reducing
all letters to lowercase, tr maps all nonletters (option -c complements the
first character set) to newline characters (octal 012) and squeezes down
multiple newline characters to single ones with the -s option. There cannot
be any doubt, however, that typing

prep text) words

requires less by way of mental gymnastics. Furthermore, prep does a better
job with hyphenated words and embedded apostrophes. prep or its de­
rivatives are used in various Unix utilities (e.g., spelling checkers) for
reducing text to a set of distinct words.

comm compares two files, both supposed to have been sorted into se­
quence with sort or some equivalent process, and looks for differences.

File Management 139

It could be regarded as a highly specialized version of ditT, one that does
not produce an editing script. Instead, it filters its input lines into three
columns of output: those unique to file 1, those unique to file 2, and those
contained in both files. In other words, if the files are regarded as sets of
lines, eomm locates the intersection of both (column 3) and the exclusions
both ways (columns 1 and 2). When output is produced, anyone or two
columns may be suppressed. Suppressing all three columns is also possible,
but then there will be no output at all!

In contrast to comm, uniq works on a single fIle. It compares successive
pairs of lines and spots repeated lines. The output consists of the input
file but with repetitions eliminated; or it can be made to contain only the
lines repeated two or more times. To work fast, uniq only compares ad­
jacent lines, so any fIles to be processed must be sorted with sort first.
In a certain sense, uniq may be regarded as a highly specialized version
of sort, for its comparison operations are similar. Like sort, it can be made
to ignore leading blanks, to compare part of the line only, and to ignore
segments of input lines. However, its searching arrangements are not quite
so sophisticated as those of sort.

While there are applications in which these and other filters find in­
dividual use, they really come into their own when made to work together.
To give another simple example, the pipeline

$ prep text I sort I uniq I grep I * I > bigwords

produces an alphabetically sorted list of all words in file text, provided
they are at least three characters long. (In the search string with grep, the
dot . matches anyone character and the combination . * matches zero
or more characters.) Such a list is useful in assessing the lexical difficulty
of written text because it permits critical examination detached from con­
text.

Controlling File Size

File size is a measure of general interest. It may be measured in two distinct
ways. For a text file, the numbers of lines, words, or characters may be
of value as indices of its overall length. On the other hand, lines and words
do not make much sense for a file containing data or executable programs.
In such cases, the most important index of size is probably the amount
of disk space occupied by the file. Commands exist for both forms of size
assessment.

For readable files, the we command may be used to produce a word
count. we also counts lines and characters and outputs the number of
lines, words, and characters (in that order). Like most other Unix system
utilities, it is able to accept input streams consisting of numerous files or

140 6. Facilities and Utilities

indeed file specifications containing wild cards. Line and word counts can
therefore be produced for numerous files by a single command. For ex­
ample,

$ we ehapt*
850 6227
662 4591

1512 10818

32261 ehaptl
20834 ehapt2
53095 total

yields the line, word, and character counts for all files in the current work­
ing directory beginning with the character string chapt. The totals for
all files listed are also shown if there is more than one file.

When nrolT files are processed by wc, some confusion may arise be­
tween word counts that include nrolT commands and the true net word
count. If the difference is likely to be significant, the net word count may
be found by piping nrolT output directly into wc. Of course, the processor
time will be increased substantially, for nrolT itself must process the text.
A more elegant and equally accurate solution is to use derolT, a program
that removes all nrolT, trolT, eqn and tbl requests but does not otherwise
alter the text. It does less work and therefore runs faster than nrolT.

The size command is useful with compiled object modules, for Unix
object code traditionally comprises separate text, data, and stack sections.
The command

$ size /bin/esh
44120 + 4268 + 3316 = 51704 = Oxe9f8

shows the sizes of the three sections (in decimal notation). This information
is of particular interest to programmers using libraries or archives, for
size applied to an archive shows the size of every member of the archive
individually.

For files of any kind at all, readable or otherwise, the du command
may be employed to determine the amount of disk space used. The space
used is reported by du either in 512-byte units or in blocks (which may
be 512 bytes or 1024, depending on the system). Reports may be requested
either for files or for directories. If the block count is requested for a
directory, the result is returned for that directory and for all its subdi­
rectories as well. There does exist an option (-a) that also gives the block
sizes for every file listed in the directory and its subdirectories.

The complementary question-how much disk space is there left-is
of particular significance with removable ftle volumes, such as floppy disks.
The df command permits enquiring after the space remaining on a par­
ticular device; again, the answer is reported in 512-byte units or in blocks
as used by the system.

Other General Utilities 141

Other General Utilities

In addition to the file-handling utilities listed above, Unix systems incor­
porate various other convenient items. It is never easy to determine which
will please most users by satisfying a real need and which might be re­
garded as luxuries. The following list therefore includes a few commands
more likely to be necessary than frivolous.

Timed Requests

Because it is a time-sharing multitasking operating system, it is incon­
ceivable that any Unix system could be run without a time clock. The
user may access this clock in two ways: he can examine the clock, and
he can ask the system to keep an eye on the clock for him.

The usual way of looking at the clock is through the date command,
which causes the current day, date, and time to be displayed in the standard
output. Time is given to the nearest second. In addition to serving a useful
purpose for people who do not wear watches, date is often employed in
shell scripts for date-stamping processes. By redirecting the output of date
into a file along with other program outputs, the time and date of file
creation can be recorded automatically.

One reason users are interested in clock times is to find out the execution
speed of individual programs. It is not really convenient to determine ex­
ecution times by asking for the clock time before and after; in fact, the
answers are likely to be wrong, because date reports the clock time, not
the processor time devoted to that particular program. With many users
on the system, the difference could be extremely large! A tidier and more
accurate procedure is to ask the system to do the timings with the time
command. On requesting

$ time command

command will be executed and its execution time monitored. Unavoidably,
the result may still be a bit inaccurate if there are many other users on
the system and the process has to be swapped in and out several times.

The accuracy of the time given by the system clock, depends on the
type of computer hardware used. Many small systems simply use the
power line to generate clock pulses, so that the time accuracy is exactly
that of an electric wall clock. A more critical point is that the system
manager may well have just set the clock by a wristwatch when bringing
up the system; the clock time is then as reliable as the system manager's
watch.

Users can ask the kernel to keep an eye on the clock, and to do some

142 6. Facilities and Utilities

specified thing at a specified future time. Since "clock" in this context
includes "calendar", the delay times requested can be quite long. Ex­
amples might range from writing a message at the user terminal after a
half-hour, as a reminder of the time, to the automatic removal of unused
files at the end of the month. The at command is used for this purpose.
Its general form is

$ at time < file

file will be used as input to the shell at time. In other words, file
contains the sequence of shell commands to be executed at the specified
time. The commands might include almost anything, even another at com­
mand to set up another timed process!

Execution of at commands does not actually take place at exactly the
time specified. The kernel periodically looks for pending at commands
and executes them if their time is due or overdue, and if they have not
been executed yet. In other words, at processes are picked up on a spec­
ified schedule, each time taking those processes which are currently wait­
ing, much as a bus picks up waiting passengers. The time specified in the
at command is not the exact time of execution, but rather the time when
the process is set waiting for the next scheduled time (the time of joining
the bus queue, as it were, not the time the bus is scheduled to come). An
at process may therefore execute at the set time or a bit later, depending
on the frequency with which the local system handles such processes.
Delays of minutes, even of a quarter or half an hour, may occur in some
installations. If there is any reason for concern, the system manager should
be consulted to find out how often waiting at processes are disposed of.

Timed processes are managed by cron, using event tables which it con­
sults from time to time. Some system managers restrict access to cron
drastically and may thereby make at processes unreachable. These access
privilege denials, like others, may suggest passing an agreeable quarter­
hour with the system manager, discussing the weather and other things.

System Documentation

Substantial sections of the Unix Programmer's Manual, the defining doc­
ument for the Version 7 system release, have traditionally been furnished
in machine-readable form, as an nrotT text file. These sections may be
consulted by invoking the man command. For example,

$ man date

will produce at the terminal the manual description of the date command.
If required, this description can of course be redirected to the line printer,
to yield a paper document. However, few users are likely to wish extensive

Other General Utilities 143

printouts of command descriptions, because the same machine-readable
documentation will still be there the next day.

By default, the man command searches that section of the manual which
gives descriptions of the shell commands. The traditional organization of
the Seventh Edition manual is in eight sections:

1. Shell commands
2. System calls (kernel access points)
3. Subroutine libraries
4. Input-output device driver descriptions
5. Include files and formats
6. Computer games
7. Special files
8. System procedures

The organization of the Berkeley 4.2 BSD manuals (and manuals of sys­
tems derived from it) is similar. Obviously, the contents of the sections
are a bit different; but even then, many of the entries are virtually un­
changed.

With System V, the manual organization appears to be shifting. The
System V defining document views this system as having a layered struc­
ture:

I. Base System
2. Kernel Extension
3. Base Utilities Extension
4. Advanced Utilities Extension
5. Administered Systems Extension
6. Software Development Extension
7. Terminal Interface Extension

The Base System and the Kernel Extension provide a run-time environ­
ment for programs but include little that the casual user can easily ap­
preciate. The bulk of frequently consulted manual material comes in layers
3-5. The Base Utilities are things of everyday need, like Is and sh; Ad­
vanced Utilities include Ip and vi; Administered Systems administer mkfs
and mount as well as accounting. The Software Development Extension
concentrates largely on the C language, with a magnificent bundle of soft­
ware development tools to go along with cc. Each layer, in effect, has a
manual of its own within the System V Interface Definition. Systems de­
livered to customers by the various vendors generally have interfiled at
least some of the manual pages, without regard to the layered structure.

Not every installation provides on-line access to all the manuals. In
fact, the current trend is away from on-line manuals. Several vendors of
Unix systems no longer provide any magnetically stored documentation,
even though their printed books still show the man command and tell how
to use it!

Chapter 7

Editing with vi and ed

Text editing is a fundamental activity under any operating system, for the
excellent reason that every user must be able to create and modify files.
Editors serve a variety of purposes ranging from program preparation to
the writing of books, tasks which cannot all be best fulfilled by the same
software package even though those provided under Unix come surpris­
ingly close to being universal. Although many different editors run under
the Unix system, the most common ones, capable of handling an incredibly
wide range of tasks, are vi and ed. They are described in this chapter
in some detail. Others of potential use to a wide circle of Unix users in­
clude sed and awk, batch-run programs capable of systematic alteration
of text at a sophisticated level; these will not be discussed in this chap­
ter.

The Unix operating system has been endowed with good editing fa­
cilities from the very start; indeed, the editing techniques initially devel­
oped for use with Unix have profoundly influenced text editing software
ever since. Users acquainted with office word processors will be interested
to discover within Unix the roots of many methods now considered con­
ventional.

Text Editors 145

Text Editors

The most widely known and used Unix editor program is undoubtedly vi,
a screen editor that displays text on the terminal screen and allows changes
to be made by commands much like those of conventional word pro­
cessors. In fact, early versions of vi formed the pattern on which many
of the now common word processing programs were based. Fortunately,
the vi control language is well structured and consistent in its grammar,
so getting started is not difficult. Full mastery of vi and all its facilities,
on the other hand, can take some time. A product of the Berkeley Unix
project, vi only became part of "official" Unix at a relatively late date.
However, it was commonly available evep before being welcomed into
the command repertoire formally. It has been distributed for quite a few
years with the Berkeley system releases as well as with several com­
mercially available systems based on the Seventh Edition.

Because vi permits a considerable amount of customization and tailoring
of commands to user needs, learning to use vi well is at least partly a
matter of learning to adapt vi to specific tasks. A better choice for book
writing and document preparation than ed, vi is no less convenient for
programming, especially in C, Pascal, Fortran, and Lisp.

The truly basic editing tool included in all versions since Unix time
began is ed, an editor which this chapter also describes in some detail.
Until vi came along, ed was the main editor in most Unix systems. Ac­
tually, vi is just the screen-oriented part of a larger editing system called
ex, and ex in turn is an enlarged rewrite of ed. Being thus related, vi and
ed have command sets similar in spirit. Of course, ed is not a screen editor
so it is more difficult to use than vi. For text entry, ed has little to rec­
ommend it, except for a very high tolerance of varying terminal charac­
teristics. Almost any terminal can be used with ed, whether of the printing
or screen type, slow or fast, intelligent or dumb. Even terminals unable
to handle lowercase characters can be pressed into service, though they
are hardly to be recommended!

Both vi and ed are strongly line oriented, that is, they deal with material
organized as individual text lines. This aspect makes them particularly
attractive for the preparation of computer programs, though it can some­
times become a nuisance when dealing with manuscripts.

One reason ed has remained part of the Unix editor repertoire despite
the appearance of vi is that ed can be used noninteractively: it is possible
to write a script of ed commands and to have ed perform a set of editing
operations on a large file, all automatically and without human interven­
tion. In fact, some standard Unix utility programs can produce such ed
scripts; it may not even be necessary for the user to write them. Such

146 7. Editing with vi and ed

work, often called stream editing, can also be well done by a third member
of the Unix editor family, called sed, which is totally noninteractive. It
accepts commands broadly similar to those of ed and applies them to all
or part of a file. Stream editors are useful for such brute-force jobs as
replacing all occurrences of Bell Laboratories with AT&T in a large file.

U sing the vi Text Editor

The basic text editor in the Unix system is vi. Its name is usually pro­
nounced vee-eye and is supposed to stand for visual interactive, though
not a few users refer to the program as she and pronounce the name as
if it were the short form of Violet. vi is line oriented, that is, it regards a
segment of text as being composed of individual lines. This feature makes
it particularly convenient for preparation of computer programs. While
organizing every text file as a set of lines is not natural for English text
whose intrinsic unit is the sentence, it is at worst a minor nuisance most
users are willing to live with.

In normal use, vi is asked to read a file, which is then modified; the
modified text is subsequently written out to the same file. Unlike many
office word processors, vi does not automatically save the old version as
a sort of disaster insurance; backup copies must be created separately.
The reading, writing, and intervening modification are all controlled by
keyboard commands; so is the screen display. Quite a few different func­
tions need to be controlled, hence there are many command sentences in
the vi language. In the following, a subset of its many commands is dis­
cussed, one extensive enough to satisfy most ordinary editing needs yet
small enough to avoid confusion.

Starting and Running vi

The operation of vi resembles that of many other editing programs or
word processors. To edit a file, vi makes a copy of it in an area of computer
memory called the editing buffer or text buffer. The user can examine the
text in the buffer, correct it, rearrange it, and modify it in various ways.
When alterations to the text are complete, the content of the editing buffer
replaces the original file. If the file being edited is small, the editing buffer
is entirely contained in the immediate-access memory of the computer.
Otherwise, space is allocated for the buffer partly in memory, partly in a
temporary disk file. The general pattern of organization is shown in Figure
7.1. Any text movement between memory and temporary file is handled
automatically by vi so that the user normally does not know, indeed cannot

Using the vi Text Editor

buffer
memory

area

buffer
temporary
disk file

147

FIGURE 7.1. Text is automatically swapped between buffer areas in memory and
on disk; the user is unaware of the swapping.

find out, whether the buffer is entirely housed in immediate-access memory
or swapped into and out of it. So far as the user can tell, the buffer is
extremely large, large enough to handle any file of any size.

Starting up vi is similar to starting up most other Unix utility programs.
It is done in the obvious way,

$ vi filename

where f i 1 ename is the name of the file to be edited. This command starts
vi running, reads the file into the buffer, and displays the first screenful
of lines.

As editing proceeds, vi automatically moves text from memory to disk
and back again, making the buffer size appear enormous. Consequently,
there is no size limitation on the files to be edited, other than the size of
the disk itself. Because the use of disk and memory space is automatically
taken care of, the user need never be concerned about where and how
much space is available. Of course, operations that require swapping disk
and memory contents may take perceptibly more time than operations
that only involve the memory-resident buffer area, especially if there are
many other processes running.

Exiting from vi is straightforward even though the command for doing
so is not obvious:

zz

while vi is expecting commands. When vi ceases operation, the content
of the editing buffer is written to the original file by ZZ. Before writing,
however, vi checks to see whether any text modification has taken place.

148 7. Editing with vi and ed

If not, writing is considered unnecessary; it is therefore omitted and the
buffer content is simply discarded.

The vi Screen Display

When vi is running, the terminal screen shows a portion of the text being
edited. The screen can be thought of as a "window" through which a
portion of the file (which might be huge) is made visible to the user. The
principle is illustrated by Figure 7.2. The text is taken to be very long
and to continue for a long distance in both directions; the window shows
only the part currently of interest. If the text is too short to fill the screen,
as it is certain to be when a new file is started, vi will show the tilde
(the ... character) at the left edge of every screen line that might other­
wise contain text-saying, as it were, that the line is quite intentionally
blank.

Because the screen window is small compared to most text files, vi
permits the user to move the window relative to the text, so that different
segments of the text housed in the editing buffer can be examined at dif­
ferent times. There is a group of vi commands which permit the window
to be moved-4lr the text to be scrolled past the window, depending on
the point of view. In the system manuals and i~ various descriptive lit­
erature on vi, the words forward and down are used to signify the direction
of a movable window relative to fixed text, i.e., the direction of movement
which results when a long text file is listed on a conventional screen-type

screen shows a portion of
the text being edited. The screen can be thought
of as a "window" through
which a portion of the

file (which might be huge) is made visible to
the user. The principle is illustrated
by Fig. 2. The text
is taken to be very long, and to continue
for a long distance in blQlth di·rections; the window
shows only the
part currently of interest. If the text is
"textedit" [Modified) line 255 of 2080 -- 12%--

too short to fill the screen, as
it is certain to be when a new file is
started, vi will show the tilde (the - character) at
the left edge of every screen line which
might otherwise contain text --

FIGURE 7.2. The terminal screen shows part of the text file, with the cursor placed
on one character. Note bottom line of window.

Using the vi Text Editor 149

terminal. Correspondingly, backward and up signify that the window is
moved to a position nearer the beginning of the text.

The bottom line of the screen display is reserved for messages sent by
vi. This space is not used for text, but shows the size of the file currently
being edited, displays error messages, identifies files, and takes care of
other administrative details. The actual text area is therefore always slightly
smaller than the full screen; but it could be a great deal smaller, for the
window size is controllable by the user. The point of a smaller window
is usually a gain in speed. To erase and rewrite a screen of ordinary size
takes a second or less on a single-user workstation console, five or ten
seconds if an ordinary serial line connection is used, or about 40 seconds
over a slow dial-up telephone line at 300 baud. To cater for these widely
different speeds, vi permits the window to be made smaller than the full
screen. Although less text is then visible, screen updates are effected rap­
idly.

Working with text using vi resembles working with many popular word
processing programs: the text being edited is shown on the screen with
one character distinguished from the rest by a cursor. Depending on the
terminal, the cursor may appear as a video inversion, blinking underscore,
or some other distinguishing mark; but it is always attached to a single
character. Practically all editing operations in vi are guided by the screen
cursor, which serves as a pointing tool to identify position. For obvious
reasons, vi possesses cursor positioning facilities which allow the cursor
to be moved around from place to place within the display window. These
are entirely distinct from the window control commands. They are ex­
tensive in scope and rich in variety; they will be dealt with at length further
below.

Communicating with vi

The user generally needs to communicate two different forms of infor­
mation to vi: commands that tell vi how to manage the editing buffer and
text characters to be included in the buffer. For example, the instruction
insert here the word "horse" contains the character string horse, which
is intended for inclusion in the text. On the other hand, the character
string insert here the word clearly should be understood and acted on as
an instruction; it should not be included as text in the file. Were the com­
puter terminal equipped with two keyboards, it would be a simple matter
to enter the commands at one and the text at the other! In the real world,
the single keyboard is made to do double duty by receiving and interpreting
characters in two different ways, as commands to be acted upon or as
text to be inserted in the fIle, by making vi understand characters differently
at different times. Accordingly, vi is said to be in command mode, meaning
that vi will attempt to interpret any character typed at the keyboard as a
command; or in insertion mode, meaning that characters typed at the key-

ISO 7. Editing with vi and ed

board will be understood to be text and will be placed in the editing buffer
along with any text that is already there.

Since vi accepts characters in two different modes and responds to
them in two different ways, it is obviously important to be able to switch
between the two modes. It might be imagined that the most straightforward
scheme for doing so would be to have a special key on the keyboard for
toggling from one mode to the other. A more complicated but elegant
alternative might conceivably be to have vi itself determine from context
which mode the user probably needs at any given time and to do the
necessary switching all by itself. In fact, both solutions are only half good,
so both have been half accepted by the designers of vi. Changing from
insertion mode to command mode is mostly done by manual switching,
while changing from command to insertion mode happens automatically.

The ESCAPE character is used by vi as a mode switch. Whenever this
key is struck, vi attempts to change over to command mode. If already
in command mode, vi does nothing in response to ESCAPE; it will, however,
object loudly by bleeping the terminal bell, buzzer, or noisemaker. Some
experienced vi users have the habit of punctuating their commands with
liberal helpings of ESCAPE characters, just to be sure. The result can be
noisy and annoying. Nevertheless, vi will always end up in command mode
in response to an ESCAPE keystroke. Hence, if in doubt, press ESCAPE!

Insertion mode is entered automatically whenever the command being
entered at the keyboard requires it. For example, the i command says,
in effect, "insert into the text buffer the characters that follow". Once in
insertion mode, any printable character as well as most others are entered
into the text buffer. Any significance the same characters might have as
commands is totally ignored. Only a few characters-notably ESCAPE­

are intercepted and acted upon, rather than being placed into the text.
But almost any character, including ESCAPE, can be included in the text
by prefixing it with control-V.

Editor Commands

Cursor control, despite its importance, forms only a small part of the vi
command repertoire. Other commands include text insertion and deletion;
text alteration and searching; file manipulation; display management; and
of course an inevitable miscellaneous category. All commands are typed
while vi is in command mode (some versions of the vi manual use the
term quiescent state). Most commands are not echoed on the screen as
they are typed; some appear on the bottom screen line because verification
is needed, or for some other good reason.

Most vi commands involve a single basic keystroke each (i.e., the com­
mand verbs are generally single characters), but these keystrokes are fre­
quently augmented by numeric arguments or other qualifiers. Thus, the

Using the vi Text Editor 151

typical command may be made up of several characters. Any command
can be abandoned before it is fully typed, by striking the ESCAPE key. In
general, this key serves to terminate a command and causes it to be ex­
ecuted; however, if the command is incomplete, it cannot be executed
and will therefore be abandoned. A corollary of this argument follows: if
unsure whether vi is prepared to accept commands, the user may strike
the ESCAPE key a few times. If vi wasn't in a receptive mood before, it
will be after!

The DELETE key may be used to abandon whatever activity is currently
in progress. It may be used to cancel wrong instructions, once their ex­
ecution has begun. Disaster relief is also provided by the u ("undo") com­
mand, which can be employed to reverse the unfortunate effect of almost
any incorrect command after it has been executed. Of course, the u com­
mand can only be used to go back one step, for a second u will simply
undo the first!

While editing with vi, the terminal screen is used as a "window" on
the text buffer. In most installations, the entire screen is used as the text
window; in some, only part of the screen is used. The default window
size is half the screen height for slow terminals and the full screen height
for fast ones.

The display window can be moved to expose different parts of the buffer
to view. It may be moved forward or back along the buffer in four different
ways: a full window height at a time, or a partial window height at a time;
forward or backward. There are four commands for doing so, all com­
municated by control characters:

control-F
control-B
control-D
control-U

forward a window
backward a window
forward part ofa window ("down")
backward part of a window ("up")

When vi is first started, the partial-window commands scroll up or down
half the window size. The amount of scrolling can be reset, by prefixing
either command with a number. The number is taken to show how many
lines to scroll; it is not only used in the command executed immediately
but is remembered for all future control-D and control-U commands.

Just precisely how the window movement is carried out depends on
the terminal type. There are so-called intelligent terminals, with plenty
of built-in memory used to buffer text. Such terminals can carry out nearly
all the above operations by scrolling text already stored in the terminal.
At the other end of the intelligence spectrum, there are terminals which
can only scroll in the "down" direction, to simulate printing. Backward
movements then require erasing the screen and rewriting whatever should
be there. With many users loading down the system or when using a slow
communication line, the result can be less than joyous.

152 7. Editing with vi and ed

Local Commands

Local commands in vi are commands that perform actions at the place
where the editing cursor happens to be currently. They all deal with in­
sertion, deletion, or rearrangement of text and yield results clearly visible
on the screen; local commands have no "hidden" effect. They are easy
to use both because they are exceedingly brief-only one, or at the most
two, characters long-and because not many of them are essential. There
actually exist more than a dozen distinct commands in this family, but
four or five are all that the average vi user really needs.

Text Insertion

Insertion of new text in the editing buffer requires the user to switch from
command mode into insertion mode and eventually to switch back again.
These mode switches are performed by the insert and append commands
i and a. Switching back is invariably effected by an ESCAPE keystroke,
so that insertion and appending of text take the form

itext to be inserted before the cursor characterESC

and

atext to be placed after the cursor characterESC

Like practically all other vi commands, i and a do not show on the screen;
neither are the ESCAPES echoed in visible form. The inserted text, on the
other hand, is displayed because it has been placed into the text buffer,
and the screen is supposed to represent a true image of the buffer contents.
Anyhow, seeing the text makes typing a lot easier!

In addition to the i and a commands, which insert text before and after
the cursor character respectively, there are two similar commands I and
A. These insert and append before and after the current line, the line on
which the cursor happens to be. Handy, no doubt; but also quite ines­
sential, for it does not take much work to move the cursor around.

A pair of commands closely related to i and a are 0 and o. Either will
create a blank line, move the cursor to it, and switch to insertion mode:

otext to be inserted on a new line after the current oneESC
Otext to be inserted on a new line before the current oneESC

A moment's reflection will show that 0 and 0 do nothing that cannot be
done by combinations of other, perhaps more elementary, vi commands.

Local Commands 153

For example, the effect of 0 is readily obtained by moving the cursor to
the beginning of the next line and inserting text with i; or appending with
A and making the first inserted keystroke RETURN; or indeed in several
other ways which the imaginative user can readily construct. There is not
much economy in work either; the keystrokes involved are

o
j I

RET i
A RET

$ a RET

I keystroke
2 keystrokes
2 keystrokes
2 keystrokes
3 keystrokes

Saving a keystroke or two is clearly meaningless for a user about to type
in a manuscript of 2000 words.

The apparent duplication of commands here, and elsewhere in vi, prob­
ably arises from two causes rooted in history. First, vi was initially de­
veloped in the era of single computers serving large numbers of concurrent
users-woefully slow computers working into highly unintelligent terminals
by today's standards. Irritating delays can occur between command key­
strokes, making it attractive to concentrate a lot of activities into single
commands. A second likely cause is the development of vi in a university,
an environment of brilliant but idiosyncratic and voluble people with widely
differing preferences, where compromise is sometimes best struck by
heaping together all contending views. The resulting multiplicity of com­
mands is not necessarily bad; after all, some can always be ignored!

Command Repetition

Any command which changes the text buffer content can be repeated
without reentering the command keystrokes. The dot command . may
be used instead: it repeats the previous action. For example, deletion of
several lines is easiest to accomplish by deleting the first with a dd com­
mand, then getting rid of each succeeding one by a single . keystroke.
To choose a slightly more imaginative example: there is no need to type
the ruler line

---- + ---- + ---- + ---- + ---- + ---- + ---- + ---- + ---- +

by pecking away laboriously at repeated minus signs; it suffices to insert
the initial string of four minuses and a plus, then to replicate it with the

command as many times as desired.
A cautionary point must be made about the. command: it only applies

to commands which change the text buffer content. In other words, it
repeats the last text alteration. Cursor movements, which may change
the display but make no change to the text, do not count; . always seeks

154 7. Editing with vi and ed

out and repeats whatever the most recent text alteration may have been.
If a lot of cursor movement and screen rearrangement have occurred since
the last change, the result may well be a surprise. Fortunately, u will undo
one (but only one!) . command.

Erasure and Replacement

Correction of text errors or alteration of characters for any other reason
is readily effected in vi, as in most other screen editors, by erasing the
offending characters and inserting new ones. Erasure in its simplest form
is achieved by the x command, which erases the character under the editing
cursor, or by x, which erases the character immediately to the left of the
cursor. To replace it with another, a text insertion may then be performed
with the i command.

Because replacement of a single wrong character with one or more
others is a common operation, vi provides a composite command s. It
combines erasure and insertion; in other words, it erases the character
under the cursor and immediately places vi in insertion mode. All text
following s is inserted into the text buffer, until insert mode is terminated
by the usual ESCAPE. Whether s is really necessary is unclear; it cannot
do anything that cannot be done in other ways and it rarely saves much
work.

Replacement of a single erroneous character using x and i requires
four keystrokes; replacement by s takes three. There is a command verb
r which allows erasure and replacement of one (and only one) character
with two keystrokes, obviously the minimum possible. Entering r erases
the character under the cursor and then replaces it with the character
typed next after the command itself. No ESCAPE is necessary because
exactly one replacement character is allowed. Although there are other
ways of doing the job, this command is much more convenient than x
followed by i for making many small corrections.

The r command also exists in a "large" version R, which replaces
characters by overwriting the existing text. It bears a resemblance to i
in that it inserts characters into the text, but differs in that every character
inserted replaces, i.e., overwrites, an existing character. The replacement
process is terminated, as might be expected, by means of ESCAPE.

Text Markers

When working with large files, it is often necessary to page back and forth
between various points in the text. To simplify this process, vi permits
the user to set markers at any desired point in the text buffer. Markers
are temporary mileposts established expressly as spots to which the user
may wish to return from time to time.

Range Commands 155

A text marker is an invisible character, one placed in the file but not
visible on the screen. Although its location is initially specified by the
cursor, the marker resides at a fixed place within the text subsequently.
Markers are single characters planted at the cursor location by means of
the vi command m, as in

rna

While the marker cannot be seen, it certainly can be found again. The
cursor will be moved to marker a immediately, from anywhere in the file,
in response to the command

'a

Note that the two single quote marks I and 'are not interchangeable;
one slants to'the right, the other to the left. Both are perfectly acceptable
commands but have differing meanings: the down-slanting one (also called
the back quote or grave accent) makes 'a represent the exact location of
the marker while I a refers to the beginning of the marked line.

Markers are handy to have when two parts of a file must be compared
and brought into agreement. When consulting reference books, most peo­
ple find themselves using all the fingers of one hand as bookmarks while
trying to sort out which index references to pursue or how to resolve
apparent contradictions between statements on different pages. Markers
set by vi are the electronic equivalent of fingers, for they permit flicking
back and forth between two text segments rapidly without needing to
trouble about the intervening material.

Range Commands

Many, perhaps even most, vi commands instruct vi to do something with
a range of text. For purposes of this discussion, a range is the portion of
text spanned by the present cursor position and another specific point or
target in the text file. The deletion of a block of text, for example, involves
a range command, for it specifies that the text located between the cursor
position and a target point is to be removed. Similarly, a cursor movement
spans a range, taking the cursor from its erstwhile position to a specific
target point. Although a large fraction of vi commands make use of range
information, only a few command verbs are actually employed in range
commands, far fewer than might appear at first glance. However, vi un­
derstands a large number of different range-delimiting targets. This section
therefore sets out a selection of target types, then lists and illustrates the
range commands themselves.

156 7. Editing with vi and ed

Command Structure

Range commands, more than any other feature of vi, are probably re­
sponsible for the complex and heavyweight appearance that vi often pre­
sents to novice users. They are actually easy to master; the grammar of
range commands is quite simple. On the other hand, an extensive vocab­
ulary is available for constructing such command sentences. A simple
grammar and a large vocabulary make light work for the beginner-one
need not learn all the words at once-but there is a lot of room for growth
later on.

A range command in vi always has the same general structure. It always
specifies a target, a uniquely identified place in the text, and may include
a verb clause to tell vi what to do with the range. The verb clause comprises
a command verb and possibly the name of a temporary buffer in which
fragments of text are stored pending further action. The command form
is always

[[<buffer>] <command verb>] <target>

where the square brackets denote optional items. Curiously enough, the
command verb itself is optional, while the target to be aimed at is not.

Making range commands work requires some consideration of what
can be a target, what verbs are available, and how to manage buffers.
These matters will be dealt with in the following, beginning with that most
essential ingredient, the target that delimits the range of a command.

Target Types

Ranges of text begin at the cursor position and end at a target. Every
possible target must be a single, uniquely defined, character; the require­
ment of uniqueness aside, however, it could be almost anything anywhere.
It is easy to gain the mistaken impression that all conceivable targets have
been included in vi, so great is the number of ways targets may be defined.
The principal target symbols are shown in Table 7.1. Incredible as it may
seem, this list is still not complete! Fortunately it is unnecessary to re­
member all of these, for many differ only a little in their effect.

In the early days of computing when terminal response was often very
slow, software designers tried hard to minimize the number of keystrokes
required for any particular operation. While this consideration may still
be important on a busy afternoon in large multiuser systems-it is annoying
to be forced to type extra slowly while the machine decides whether to
listen-most people now believe that a small, effective set of command
verbs good for just about everything is preferable to a vast arsenal of
special-purpose tools. Keystrokes are a minor consideration with most
people who spend hours at a keyboard; it is much more important to avoid

Range Commands

TABLE 7.1.
Target
identifier

h
j
k
1
nl

o
+

$
nG
G
b, B
e, E

w, W

)

{

}

te, fe
Te, Fe
IstrRET

?strRET
'x
'X

Description

character to left
character below
character above
character to the right (or use SPACE)

nth character position in current line
left edge of previous line
left edge of the current line
left edge of next line (or use RETURN)

next right edge of the text line
left edge of the nth line in the file
left edge of the last line in the file
next word beginning to the left
next word end to the right
next word beginning to the right
left to beginning of a sentence
right to beginning of a sentence
left to beginning of a paragraph
right to beginning of a paragraph
right to the character e in this line
left to the character e in this line
right to the character string str

left to the character string str

place where the marker x is set
beginning of the line containing marker x

157

mental fatigue by using simple command sequences that make logical
sense. Deleting five lines, for example, is possible in vi with just three
keystrokes, but it is necessary to stop to count the lines first. Most users
prefer to delete one at a time, saying what amounts to "delete one; re­
peat; ... ; repeat"; how far the work has progressed is immediately visible
on the screen. Although the latter approach takes a few more keystrokes,
many people prefer it because the activity is both visually guided and
interactive-just precisely the characteristics vi was supposed to contribute
in the first place!

Most of the targets in Table 7.1 are probably self-explanatory, or nearly
so. Others, however, may need a few words of description. The upper
and lower case versions of B, E, and w arise because vi is prepared to
accept two definitions-"small" and "big"-of just what constitutes a
word. Under the smaller definition, a word is a string composed entirely
of alphabetic characters or entirely of nonalphabetic characters; under the
larger one, a word is a string of characters which contains no blanks, tabs,
or newlines. Hence, a string containing punctuation marks, such as /usr /
spool/lp/interface, would be counted as eight words under the
"small word" definition (usr, spool, Ip, and interface count as one
word each, and so does each slant /) but it is a single word under the
"big word" definition. The f ,F and t,T pairings refer to targets right and

158 7. Editing with vi and eel

left of the present cursor position and in the current line; lowercase com­
mands search forward, uppercase backward. F and T are almost the same
thing, but f c is targeted at the next character c while tc aims at the char­
acter before the next c. Few users bother to worry about the difference;
they habitually use one or the other and make the necessary one-character
adjustment with the hand 1 keys as need dictates.

Range Specification

To make using vi really flexible-and a bit more complicated-most of
the targets shown in Table 7.1 may be embellished with a mUltiplier. The
multiplier n always precedes the target symbol (with no intervening
spaces!) and effectively makes the target the nth occurrence ofthe object
indicated. The general form of a target specification is therefore

<multiplier><identifier>

For example,

3 (

identifies the third sentence break to the right as the target, and

4/drabRET

aims at the fourth occurrence of the character string dr ab, counting from
the present position of the cursor. Where the target is defined by giving
several characters, as in the search 4/drabRET, the actual target location
is one character in the string (keeping in mind that a target is always exactly
one character), though which one depends on the direction of search.
Except in rare circumstances, it is really not worth the bother to know
whether, for example, the first character of a search string is included in
the range or not; it is easier to assume that it is and to make any necessary
one-character adjustments afterward.

All the target identifiers shown in the Table 7.1 may have multipliers
attached, except for those which can occur only once in the file so that
a search for their nth occurrence is guaranteed to be fruitless. These ex­
ceptions are as follows:

nl
o
nG
G

'x
'x

nth character position in current line
left edge of the current line
left edge of the nth line in the file
left edge of the last line in the file
place where the marker x is set
beginning of the line containing marker x

Range Commands 159

The most obvious are nand nG, which already have mUltipliers of sorts.
G, which refers to the last line, denotes a unique fixed location; similarly,
o is a natural exception, for at any moment there exists only one current
line.

It may be worth noting that some of the target locations are defined
only in relation to the cursor while others are absolute. For example,
"five characters left from the cursor" is clearly a cursor-relative location,
while "left edge of ninth line in the file" is an absolute place, always the
same no matter where the cursor may be located currently.

Moving the Editing Cursor

A curious point about the vi editor is that there is no "move" command
for moving the cursor. Instead, there are various range delimiting targets,
symbols that stand for places in the text file. What look to the novice like
commands for moving the cursor are in reality merely symbols for place
names, targets for cursor movements (or indeed other vi operations) to
aim at. Naming a target while vi is in command mode is tantamount to
saying "move the cursor to that place".

At first glance the lack of a verb to move the cursor may seem strange;
on second thought, it is reasonable enough (or do users simply become
accustomed to the strangely surrealistic logic of Unix?). All range com­
mand verbs do two things: perform some action and, if appropriate, move
the cursor to the target end of the range. A cursor movement thus amounts
to no action whatever, followed by a move. No action whatever is ap­
propriately enough requested by no command verb. Consequently, moving
the cursor requires no action verb, followed by the target specification:

<target>

In other words, a cursor movement is regarded as a null command followed
by a range specification. This arrangement may well be open to some
criticism as being not entirely obvious to the novice user, even if it does
effect the greatest conceivable economy in the number of keystrokes.

Deletion of Text

Targets are used by vi not only to move the cursor but also to define the
ranges of several other commands. These include deleting, moving, or
changing of text segments. Deletion in vi always removes a range of text
which begins at the location of the cursor and ends at the specified target.
The general form of the delete command is

d <target>

160 7. Editing with vi and ed

where <target> is any valid target. All the characters between the current
cursor location and the target are deleted; it does not matter whether the
cursor is located before or after the target in the file. Examples, beginning
with the simple and moving on to more complicated ones, are:

dw delete rightward to the beginning of the next word
dO delete leftward to the beginning of this line
d5h delete five characters to leftward
d2j delete to corresponding position two lines down
d3) delete the rest of this sentence and the next two
d2 } delete rest of this paragraph and all of the next
dG delete from cursor to the end of the file
d'u delete from cursor to the marker u

Strangely, this tidy logical structure cannot include a command that simply
deletes the current line. The current line is not a range because it is not
in general spanned by the cursor location and some definable target; it
therefore refuses to fit into the otherwise very neat scheme shown here.
On the other hand, deletion of the current line is obviously a useful activity.
To get around this problem, a special command is provided:

dd deletes the current line
dnd deletes the current line and the next n-l as well

Deletions in vi do not annihilate text without trace but remove it to an
invisible storage buffer. They should properly be thought of as throwing
sections of text into a garbage bin, rather than as destroying them. So
long as the bin has not yet been littered with other garbage, an inadvertently
discarded item can still be retrieved from the trash can and resurrected.
To retrieve it and put it back where it came from the u ("undo") command
is normally employed. The existence of such a trash depository, a tem­
porary storage buffer for discarded text, is essential to make the undo
command work at all; if there were no copy of the discarded text, how
would vi know what is to be undone?

Moving and Copying Text

When a text segment is deleted by the d command, it is removed from
the editing buffer and placed into a temporary discard buffer. The u com­
mand can be used to replace it in its original location; but a more interesting
possibility is to reinsert the discarded text elsewhere. The p command
serves just this purpose: it retrieves whatever is in the discard buffer and
inserts it at the current cursor location. In other words, a section of text
may be moved from one place to another in a document by discarding it
with the d command, then moving the cursor to the new, desired location

Range Commands 161

and placing the text there with the p command. The word "there" can
have two different meanings, depending on the nature of the text deletion.
If whole lines were deleted, as with a dd command, then the lines are
inserted as lines, immediately following the line on which the cursor sits.
On the other hand, if characters were deleted, as for example with the x
command, the placement is made foliowing the cursor position within the
line.

The ability of a p command to replace lost characters leads to an in­
teresting and fast way of curing a letter inversion, one of the most common
typing problems. Suppose, for example, that the word example had been
mistyped as exmaple. Placing the cursor over the m, the x command re­
moves the letter m, leaving exaple-with the cursor covering the a. The
p command copies into the text whatever is in the deletion buffer (here
just the letter m) at the right edge of the cursor position, after the letter
a. The inversion is thus cured by placing the cursor over the first of the
two letters and giving the commands xp.

Multiple copies of a text segment may be made by repeated p com­
mands. One simple method is to delete the wanted text segment with the
d command, then to undo the damage immediately with a p command.
The result of this apparently useless activity is to leave a copy of the
desired text segment in the discard buffer. Further p commands will then
place duplicates wherever desired.

To simplify work and to avoid any risk of inadvertent harm to the orig­
inal text, vi provides a special command y ("yank") which has the effect
of d followed by P; that is, it copies a text segment into the discard buffer
without altering the text itself. A range command of the same form as d,
y accepts all the normal target specifications and behaves just as might
be expected.

Changing Text

One of the most frequent editorial activities undertaken by anyone with
a bit of writing to get through is text alteration. In drafts of reports or
articles, changes of wording often occur: an awkward sentence, for ex­
ample, might be improved by substitution of a noun clause for a simple
pronoun. Typically, the change required might involve a few or a half­
dozen words. It can be achieved easily enough, eliminating the erroneous
material with a d command, then inserting the new text with i or a. How­
ever, vi provides a combined command c ("change") able to do the entire
job. It is another range command:

c <target>

When a c command is executed, the text in its range is first eliminated,
then the new material is inserted. On most terminals, the deletion is not
immediately shown by rearranging the screen contents, but only by placing

162 7. Editing with vi and ed

a dollar sign at the target to serve as a visible marker of the range. As
with the other range commands, the target may be to the right or left of
the cursor; it does not matter. Text insertions of course always proceed
from left to right. If the target is to the left of the cursor when the command
is issued, the display positions of the target and cursor are swapped to
make the inserted text run in the natural direction. Of course, the c com­
mand always copies the text to be changed into the delete buffer so that
a subsequent u is able to undo the change. If desired, the p command
can then be used to fetch the old (unchanged) text segment and place it
at some other location.

The c command is really equivalent to d followed by a, so it should
not be surprising that the structural deficiency suffered by d is repeated
here: the current line cannot be the object of a c command because it is
not necessarily spanned by the demarcating pair of cursor and target. This
problem is solved in the same way here as it was for deletions, by inventing
a special command. In analogy with dd,

cc changes the current line
cnc changes the current line and the next n-l as well

In screen displays it is easy to eliminate and scroll whole lines; changing
the content of an individual line of characters is a slower process. The
cc and cnc commands therefore perform visible deletion on the screen
and at the same time open up a new line for editing.

Delete and Save Buffers

Deletion buffering is a mechanism clearly fundamental to most range
commands of vi. The management and use of delete buffers are not quite
so simple as might seem at first glance, however, for vi does more than
just maintain a delete buffer for the text yanked or deleted-it keeps nine
of them! Text obtained by a d or y command is placed in the first buffer.
But as editing proceeds, vi moves deleted or yanked text from the first
buffer to the second, from the second to the third, and so on down the
line; recovery from grievous error is therefore possible not merely to the
extent of a single u command but to nine levels of recovery. To extract
text from a particular buffer, the p command is prefixed by the buffer
identification, as in

"3p

in which the text from buffer 3 is placed at the cursor location. The nine
buffers are sequentially numbered from "1 to "9 and text is moved through
them in numerical order.

Not only the p command but the c, d, and y commands also can be

Global Commands in vi 163

prefixed with buffer names. Thus, the full form of a range command in
vi is

<buffer> <command predicate> <target>

In addition to the nine buffers automatically managed in response to
d and y commands, vi has an additional 26 text buffers identified by al­
phabetic characters. These are not used by vi in any automatic procedure;
they are entirely at the user's disposal as temporary storage areas. Text
may be written into them or extracted from them by any range command.
For example, one simple way of reversing the order of three paragraphs
of text is to delete them in order, requesting the deleted text to be placed
into three separate buffers, then to put them back with p commands in
inverted order.

The text buffers are addressed similarly to their numbered counterparts:
a double quote mark followed by a letter. Both capital and small letters
are used to refer to the same buffers. The difference is that when a buffer
is addressed by the small letter, as in "k, its existing content (if any) is
overwritten, while use of the capital letter "K implies that the new text
is appended to whatever was already there. Examples can range from
very simple to absurdly complex:

"3p place a copy of the text from buffer 3 at the cursor
location

"be (change the rest of this sentence but keep a copy
of the original in buffer b

"Dy2/nilRET append a copy of the text from here to the second
occurrence of the character string ni 1 without
changing the text now in the editing buffer

Although the makeup of such commands is logical and consistent, it prob­
ably contributes toward making users feel that vi is a complicated program.
It is not easy to convince a novice that "Xd3? ARET is an obvious and
self-evident statement!

Global Commands in vi

A few vi commands are neither local in effect nor do they affect a range
of text. They are global in the sense that they act on the text buffer without
reference to the editing cursor. Some global commands are obvious while
others represent truly obscure recesses of vi. Happily, there are only a
few global commands, even though they include some of fundamental
importance-like ZZ, the command for exiting gracefully from vi!

164 7. Editing with vi and ed

Undoing

Especially for beginning users of vi, the u (undo) command is a boon. It
undoes the effect of the last command that made any change in the text
buffer content, thus restoring the buffer to its previous state. The cursor
position is not included in what is undone; hence, u cannot be used to
return the cursor to its previous position. Quite the contrary: if the cursor
has been moved a long distance since the last deletion or insertion, so
that the effect ofu would not be visible on the screen, vi moves the cursor
and the screen display in such a way as to make the effect clearly visible.
In other words, every effort is made to guard against unwelcome or unseen
surprises.

An old chestnut of editor design, indeed of many areas of the software
art, is the philosophical question posed by undo: what exactly is meant
by two successive requests to undo? In some software systems, successive
undoings effectively roll back history. vi, on the other hand, takes a math­
ematician's attitude: a negation of a negation results in an identity. In
other words, a second u undoes the first; any odd number ofu commands
is equivalent to one and any even number achieves nothing.

Old hands at using vi make extensive use of u as well. A mildly nasty
aspect of vi is that almost all command verbs are only one character long,
with the corollary that almost every keystroke corresponds to a command.
This circumstance can lead to surprises if, for example, the user accus­
tomed to office word processors forgets to switch to insertion mode with
an i or a command and simply proceeds to type in some text instead.
Starting to type For example . .. will result in

Fo move to next 0 leftward in the current line
r substitute a blank for the 0

e move to next word-end
x delete last character of word
a start appending text

and so on

Any reasonable English text is likely to contain an a or an i, so an insertion
will probably take place sooner or later-though at an unexpected place
and possibly after some damage hard to locate. The u command cannot
yield a full recovery in all circumstances, but it is certainly helpful.

Exiting

There are several ways of exiting from vi. Only one is recommended: the
zz command. It checks whether any changes have been made to the text
buffer and writes out the new file contents if so. In other words, zz makes
sure the newly edited file contents have been properly saved, then exits
tidily.

Using ex Commands from vi 165

An alternative way of exiting is through the ex command: q, about
which more later. That is a dangerous route, however, for it is possible
to escape from vi without having saved the edited text at all: fine for
experts, but fraught with hazard for the novice!

U sing ex Commands from vi

The vi editor is actually not a complete editor program, but only the in­
teractive portion of a composite editor system that includes both vi and
the keyboard-oriented editor ex. This fact explains some otherwise startling
shortcomings in vi: there are no provisions for switching files, no search­
and-replace function, no graceful way of exiting without writing to the
input file. All these, and numerous other facilities, are provided by ex and
not duplicated by vi; instead, vi is made to pass on commands to ex. The
command-passing mechanism can handle exactly one command at a time,
so any action that ex can take in response to a single command line is
available to the vi user also.

Passing Commands to ex

The ex editor is a classical keyboard editor. It handles two input streams:
a command input and a text input. It also has two outputs: a message
stream and an output text file. When operated by itself, without reference
to vi, the command input and message output are connected to the user
terminal, while the text files are files in the normal sense of the word.
When ex is operated in conjunction with vi, both have access to the same
files; command input to ex consists of keyboard lines passed on by vi.
Messages sent to the user by ex are shown on the screen, mildly filtered
by vi to avoid undue interference.

When operating by itself, ex prompts the user for commands by showing
a colon : at the left edge of the screen. The signal for vi to transmit a
command to ex is also a colon, but one typed by the user. For example,
the command verb to quit an editing session under ex is the single character
q, so to quit editing with vi, it suffices to say

:q

Other ex commands are handled similarly. It should be noted, incidentally,
that the q command is not a synonym for the vi command ZZ; unlike ZZ,
q quits without saving the contents of the editing buffer. This command
is of value to vi users when things have gone wrong, the edit buffer content
is irretrievably botched, and the only reasonable course of action is to
scrap the whole mess.

166 7. Editing with vi and ed

Incorrect or ill-advised use of the q command can have serious con­
sequences. To ward off disaster, ex tries to spot dangerous actions and
refuses any commands it considers suspect. Its objections can be over­
ridden by attaching an exclamation mark to the command, as in

:q!

to say, in effect, "do not argue, I know what I am doing." Responsibility
for any consequent disaster of course lies entirely with the user.

Reading, Writing, and Filing

Like its older brother ed, ex understands commands for writing and reading
files. The r command reads in a named file at the location of the editing
cursor, thus effectively performing an insertion of one file into the middle
of another. The command takes the obvious form

:r filename

Once inserted in the editing buffer, the files are effectively merged and
no longer have any separate identity. Of course, the reading is done in
the usual Unix fashion, without affecting the original file.

The w command is used for writing out buffer contents to files. It is
used much like the r command, but with the difference that, if desired,
only part of the buffer need be written. Thus, the commands

: w wholef ile
:1,10 w partfile

will copy the entire buffer content into wholef i Ie, and lines 1 through
10 of the buffer into another file partfile. The line numbers may be
given as numbers or in any of the various symbolic formats permitted by
ex and ed. The buffer content is not changed by writing.

The ex and vi editors keep track of the file name so as to know where
to deposit the edited copy. At times it is desirable to switch file names.
The memory area in which the file name is remembered can have a different
file name written into it by the f command:

:f newname
This command is useful if several different versions, with different names,
need to be fabricated from a single root file.

There is no provision in any of the Unix editors for automatically saving
backup copies of the original (unedited) file. Since the w command does
not alter the content of the editing buffer, it is a good idea to write out
the buffer every ten or fifteen minutes during long editing sessions, es-

U sing ex Commands from vi 167

pecially on small computers. Files on disk are relatively secure, whereas
even a minor power interruption, not to mention a system crash, can de­
stroy editing buffer contents totally . Very long editing sessions are perhaps
even better safeguarded by taking copies of the file every hour or two on
a removable backup medium such as a floppy disk.

In program development it is often wise to secure a backup copy of
the source file before beginning a serious session of editing, compilation,
and testing and to delete it only after ensuring that the alterations had the
intended effect. These backup copies represent insurance against human
error, not machine malfunction. Such extra copies entail a very small cost
in file space if editing scripts are created with the Unix ditT command.
These list only the differences between files, in a form that can later be
used to convert the old copies into new, or vice versa.

Sophisticated search-and-replace functions are provided under ex. These
are similar to the facilities provided under ed and will be found discussed
at some length further below.

Reaching for Another Shell

Both ex and ed provide an escape to the shell without forcing the user to
leave the editor. When the command

: ! abcdefg

is given to vi, vi strips off the colon (which it recognizes as the sign of an
ex command) and passes the string! abcdef g to ex. In tum, ex strips off
the exclamation mark (which it recognizes as the sign of a shell command),
asks the kernel to start a new shell, and passes abcdef g to the new shell
as a command. After the command has been executed, the shell returns
control to ex, which hands it back to vi again.

At first glance, passing commands from program to program may seem
to be of doubtful use. Consider, however, the following situation. A large
program file is open for editing under vi, the cursor is located in the right
spot, and the time has come to insert at that point a subprogram known
to be in another file. Unfortunately, the file name which seemed obvious
at the time has now managed to escape, so there is nothing to do but
consult some file directories to find it. Issuing the command

: !ls -1 .. /which

permits the user to have a look at this directory without leaving the editor,
to find out the missing file name and to continue work. In fact, nothing
stops the user from making some quick corrections on the lost file by
launching another copy of vi,

: ! vi .. Iwhich/lost
before reading it into the main program file and resuming work.

168 7. Editing with vi and ed

Customizing vi

An important reason why vi should be a widely respected editor program,
despite its shortcomings as compared to state-of-the-art word processors,
is that few design decisions made in creating vi are forever fixed. Many
characteristics of vi can be altered by the user to suit vi to particular jobs
or to please in matters of taste. The principles underlying such custom­
ization are given in this section, along with a few examples of what might
be considered appropriate parameter settings.

Abbreviations

Abbreviations and macros are tools for shortening work both in text entry
and in subsequent text editing and processing. An abbreviation is exactly
what its name implies: a short form to represent some longer expression
or character string.

Abbreviations are useful for writing decent English despite the ten­
dency, particularly of technical authors, to indulge in short forms as ac­
cepted by particular disciplines or trades. Every technical jargon includes
a host of short forms, as indeed does everyday speech. The computer
professions in particular seem to delight in prose such as

Being part of the CPU, the ALU accesses RAM via the MAR.

To turn computer argot into something resembling English, the user can
define a set of abbreviations to have meanings, as, for example,

:ab CPU central processing unit
:ab ALU arithmetic and logic unit
:ab RAM random access memory
:ab MAR memory address register

These definitions are entered at the keyboard (and terminated with RE­

TURN) while vi is in command mode. When the above sentence is sub­
sequently typed at the terminal, the text buffer and screen both show

Being part of the central processing unit, the
arithmetic and logic unit accesses random access
memory via the memory address register.

Abbreviations are recognized and acted upon by vi while in insertion mode,
never in command mode. During text entry, words are checked against
the list of abbreviations and synonymous full forms are substituted. Sub­
!!titution is undertaken only if the full word entered at the keyboard exactly

Customizing vi 169

matches the abbreviation, so that the string ALU in ALUM and ALU­
MINUM would not be replaced in the above example. When no longer
required, the command

: una ALU

can be used to remove ALU from the list of recognized abbreviations.

Command Macros

Macros are like abbreviations, but they are recognized only in command
mode. A macro is therefore no more and no less than an extension to the
vi language, the definition of a new command verb. An only slightly con­
trived example is furnished by the macro declaration

:map v bdwwP

which means that whenever the character v is entered at the keyboard in
command mode, the character string bdwwP is to be understood instead.
This string will be interpreted as

b move cursor left to the next word beginning
dw delete that word
w move right to the next word beginning
P place the deleted word to the left

all of which says in simple English: exchange the two words. Applying
these commands, the character string

this character is not long forgotten

turns into

this character is long not forgotten

if the cursor was initially under the 0 in not. Many useful extensions to
vi can be made in this way, either on a temporary basis or more or less
permanently. Since macros must be defined in terms of already existing
commands, they cannot endow vi with any actions it could not perform
before; but they certainly can make work faster and more agreeable.

A note of caution may be in order. Macros are strings of commands,
so they are really programs written in the vi language and need debugging
just like any other programs. The vi language is subtle and terse so de­
bugging is not always easy. The five-character macro shown above, for
example, contains a bug not immediately obvious to most people (it fails

170 7. Editing with vi and ed

if the cursor is at the beginning of a line). A second, perhaps even trickier,
problem is that macro names must not contain characters that might be
misunderstood; a macro name beginning with d, for example, would be
exceedingly dangerous! Macro names are therefore somewhat constrained,
safe characters being any that vi does not already use for something else:

Other characters can certainly be used but may entail some risk. At the
very least, debugging should be done using some "scrap" text!

Macros are susceptible to a particularly wicked variety of bug. When
a macro name is replaced by the defining command string, the commands
in the string are executed as if they had been typed at the keyboard. If
the command string should contain a reference to the macro name itself,
the macro substitution is made and interpreted up to the point where the
macro name occurs; then the macro is substituted for the name and inter­
pretation is begun again. This process then continues recursively! For
example, mistyping the character string bdwwp in the example above as

: map v bdwvP

causes the entire text buffer content to be reduced to a few punctuation
marks by a single request for the macro v.

The set of currently defined macros can be viewed by using the macro
definition command: map without any arguments, and existing macros
may be cancelled by : unmap. In spite of the warnings given, macros are
a very useful tool for anyone interested in retuning vi even slightly.

Options

Many habits of vi can be altered by resetting internal numeric or logical
parameters. These settings, called options in the manuals, are dealt with
by the : set command. One particular option, which will serve to illustrate
the point, deals with searches implied by the / and? target identifiers.
Such searches normally continue to the end of the file and then "wrap
around" to its beginning, so that the entire file will be searched no matter
where the search was begun. At times, users may wish to search only to
the end of the file. The command

:set nowrapscan

will defeat wrap-around in searching, and the command

Customizing vi 171

: set wrapscan

will turn it on again when required. Options available total between three
and four dozen, depending on the version of vi; they include window size
management, scrolling speed, default line width, checking for control
character inclusion in the file, tab stops, and a great deal more. The com­
mand : set, with no arguments, displays what options have been set since
vi started running; the command

: set all

displays the entire list of options available and their present settings.

The . exrc File

Every time vi starts up, the file called . exrc is read, if it exists, and
interpreted as a set ofvi commands. Customizing vi is therefore best done
by creating an . exrc file, to contain option settings, macros, or indeed
anything that vi is able to recognize as a command.

A simple example of customization may be helpful here. The IBM PC
keyboard has a keypad often used to steer the cursor, as shown on the
left in Figure 7.3. When struck, these keys actually send out three char­
acters each: an ESCAPE (which echoes as A [), followed by [, followed
by a capital letter. The character sequences are shown in the middle portion
of Figure 7.3, while the right-hand part shows the vi commands which
correspond to the cursor movements marked on the key tops.

To make the keypad function under vi as marked, a set of macros must
be defined, one for each key, so that the character sequences actually
sent by the keys are recognized as macro names; vi will then substitute

7 8 9
Home + PgUp A[[H A[[A A[[G H k AF

4 5 6 -- - A[[O A[[E A[[C h M I

1 2 3
End + PgOn A[[F A[[B 1'[[1 L j AB

FIGURE 7.3. Control keypad of a small computer, its character sequences and
corresponding vi commands. A [denotes the ESCAPE character.

172 7. Editing with vi and ed

the appropriate characters shown on the right. Such a set of macros is
incorporated in the . exrc file

:set nowrapscan
:set window=18
: map A[[A k

: map A [[B j

: map A [[C 1
: map A[[D h

: map A[[E M

: map A[[F L

: map A[[GAF

: map A [[H H

: map A [[I AB

To insert the control characters and the ESCAPES into a file with vi, they
must be preceded with control-V; for example, one types

control-V ESCAPE [I control-V control-B

to get the last of the macro definitions right. If placed in file . exrc and
left there permanently, these macros are loaded automatically every time
vi is invoked. Clearly, the same technique can be used to customize vi to
any other terminal or computer.

Text Entry with vi

Writing plain prose text with vi is not only possible, it can even be agree­
able; many books and innumerable technical reports have been written
with this editor. In its default form, vi is usable for writing, as it is for
programming; but better use can result from slight adaptation to the task.

People accustomed to office word processors can be forgiven for dis­
liking the line orientation of vi, for it is pleasing to type text without wor­
rying about line ends. Although there is no way vi can be made to format
lines automatically, there is provision for automatic insertion of line ends.
Requesting

:set wrapmargin=8

requires vi to insert line ends automatically, with as much text as possible
on each line but with no line exceeding 72 characters (screen width of 80
characters less 8 for the wrap margin) in length. The line ends inserted
will be genuine RETURN keystrokes, so the text is organized in lines just
as it would have been manually. However, there is no need to pay heed
to the line ends any more. Of course, the margin width can be reset at

Customizing vi 173

any time. Resetting it to zero, however, defeats the automatic insertion
of line ends.

The text processing facilities normally provided under Unix include
one or more large packages of macros for text formatting. These provide
numerous combinations of paragraph and section styles, saving the writer
a good deal of trouble. Two options provided by ex, paragraphs and sec­
tions, store character strings which can subsequently be recognized by
nrotT or trotT as macro indentifications. They allow customizing vi to the
user's preferences in typographic style.

Computer Programming with vi

For writing computer programs in most conventional programming lan­
guages, and even some unconventional ones, vi provides options that can
make life a little easier. Three of these bear particular mention: autoin­
dentation, line numbering, and parenthesis matching.

Every line entered at the keyboard will be preceeded by exactly as
many blank character spaces as its predecessor, provided autoindentation
is turned on with the command

:set auto indent

The result is that formatting styles common for Pascal or Fortran programs
follow naturally and automatically:

begin
read (tops) ;
twopower : = 2;
threepower : = 3;
while threepower < tops do
begin

·twopower : = twopower * 2;
threepower := threepower * 3;

end;
writeln(tops, twopower, threepower);

end;

Much to the liking of some programmers, and much to the dislike of some
others, the number option attaches a line number to every line automat­
ically:

262 begin
263 read(tops);
264 twopower : = 2;
265 threepower := 3;

174 7. Editing with vi and ed

266 while threepower < tops do
267 begin
268 twopower : = twopower * 2;
269 threepower : = threepower * 3;
270 end;
271 writeln(tops, twopower, threepower);
272 end;

Languages such as Lisp and C, indeed even Fortran, sometimes involve
many nested parentheses or brackets, in the manner of

KQ = IP(IK(IJ(l,II(L)), IK(IJ(2,II(L-1)), K), L))

Such statements can be a prolific source of program errors. The showmatch
option of vi may be turned on to help here. Whenever a closing parenthesis
is typed, this option causes the cursor to travel to the matching opening
parenthesis for a second or so, then to return. The hand is quicker than
the eye, so it is possible to miss the cursor action; nevertheless, a great
many puzzling compiler messages can be avoided by this means.

Computer program writing can be simplified considerably by creat­
ing a . exrc file containing any desired keyboard reconfiguring macros,
plus

:set auto indent
:set showmatch
:set number
: map v a A [

where 1\ [is the echo of a control-V followed by ESCAPE. The macro at
the end of this file inserts three blank spaces for program indentations.
It is better than tab characters because tab settings on the terminal do
not necessarily correspond to the tab settings on the printer.

A minor inconvenience of vi is that there can only be one. exrc file
in anyone directory. The rather different requirements of text processing
and program writing suggest that different. exrc files should be invoked.
There are several clever ways of getting around this problem; the easiest
is undoubtedly to keep separate directories for programs and text, with
an appropriate . exrc file in each.

The ed Line Editor

Long the main editor furnished with the Unix system, ed has suffered a
relative decline in popularity as vi has become the normal working tool
of programmers and writers alike. Like vi, ed is a line editor and expects

The ed Line Editor 175

text to be organized into lines separated by newline characters. Aside
from minor exceptions, its commands are compatible with those of ex,
so users of vi and ex generally find themselves quite at home with ed.

Line Numbers

Like vi, ed regards the text buffer content as a set of lines, a line being
simply a string of any printable characters including blanks and terminated
by a newline character. Unlike vi, ed does not have an editing cursor; but
it does maintain a line pointer which identifies one particular line in the
file as being the current line. For example, a small text file might contain
the character sequence

This is a small\ntext file to\ndemonstrate editing.

Here \n represents the newline character (ASCII 012 octal). When this
file is copied into the text buffer for editing, ed will regard it as containing
three lines, with a pointer pointing at one of them:

1

2

This is a small
text file to

3 demonstrate editing.

ed permits reference to lines by number. It assigns the number 1 to the
first line in the file and numbers the rest sequentially. Whenever any new
lines are inserted in the buffer, or any lines are deleted, ed automatically
renumbers all lines then and there. Neither line numbers nor the pointer
ever appear on the terminal screen, however, so the user does not see
the renumbering taking place.

Because the first line in the buffer is always numbered I, it is always
easy to locate. However, the number of the last line is not usually known
so the symbol $ is used to denote it. Similarly, the user does not usually
wish to keep track of the current line number; the symbol . (pronounced
"dot") may be used instead. Both symbols may be employed in any ed
command which refers to line numbers. In other words, text normally
appears to the user as

1

2

This is a larger
text file which

This is the current line

$ and this line is the last.
It is rarely worth worrying about the actual numerical values of . and $;
the symbols are used in practically all cases.

176 7. Editing with vi and ed

Editor Commands

Most of the text manipulation commands used by ed contain a single com­
mand verb. The verb may refer to a particular segment of text, in which
case it is augmented by a line number or a range identified by a pair of
line numbers. Of course, the symbols . and $ may be substituted for line
numbers where appropriate. The usual form of an ed command is

[[linenumber,] linenumber] verb

All command verbs are made up of just a single character. For example,
p ("print") may be used to display lines on the screen. The command

1,$ P

will cause the entire butTer content to be listed (the range is from line 1
to line $, the last line in the butTer). Other commands available in ed are

a append appends more lines at a specified place
c change changes specified lines to new material
d delete deletes specified lines
e edit sets edit buffer to contain a given file
f filename prints a remembered filename
g global applies following commands to whole buffer
i insert inserts lines at the specified place
m move moves lines to a new place (cut and paste)
p pointer positions pointer and displays lines
q quit exits from the editor, to the Unix shell
r read reads a file into the editing buffer
s substitute substitutes new character string for old
v applies following commands selectively
w write writes buffer contents into a file

shows current numeric value of . or $
passes the following command to the shell

Where a line number is required for a command to make sense (e.g.,
for the p command), but the user does not supply one, ed assumes that
the current line number is meant. In other words, commands with line
numbers omitted are executed as if the dot symbol . had been included
in the command.

Line numbers and line number ranges must make sense, otherwise ed
will ignore them. Line numbers below I, or above $, are not acceptable,
and ranges must always ask for line numbers in ascending order. For ex­
ample, line 0 cannot be printed, nor can all lines from number 12 to number
8.

Because ed is normally operated in an interactive fashion, any errors

The ed Line Editor 177

in commands can be identified immediately as they occur. They are sig­
nalled by the single error message provided by ed, a question mark ?
displayed at the left-hand screen edge.

Pointer Manipulation and Text Examination

Lines in the editing buffer may be displayed with the p ("pointer" or
"print") command. Displaying causes the line pointer to move to the last
line displayed. Thus, the p command may be used not only to cause display
but also to move the pointer about.

In general, one or two line numbers precede the command letter p. If
only one number is supplied, it is understood to denote the desired line;
two line numbers are taken to identify a range. The p command is specially
privileged among ed commands: if a command is issued with the command
verb omitted, p is understood by default. Thus, it is not necessary to type

5 P

to position the pointer at the fifth line of text; it suffices to enter

5

In addition to numeric values and the symbols. and $, the line number
identification may contain addition and subtraction operations. For ex­
ample,

. -1, $-10 P

will cause display to start at the buffer line preceding the current pointer
position and to continue until the 10th last line in the buffer. Because it
is permissible to omit p, the same effect will result from the abbreviated
command

. -1, $-10

Because eel always assumes that the dot . is meant if line number infor­
mation is omitted,

-1,$-10

is also acceptable. There is a difference between signed and unsigned pos­
itive numbers; 5 is understood to denote the fifth line in the buffer, whereas
+ 5 is interpreted to mean . + 5 and therefore denotes the fifth line counted
from the current pointer position. No ambiguity can arise with negative
signs, since the lowest line number in the buffer is always 1.

178 7. Editing with vi and ed

Under the syntax rules of ed, very few unacceptable command lines
can be devised, for ed employs an extensive set of rules to fill in missing
information. The limiting case arises when trying to abbreviate

. p

which requests display of the current line. The rules allow both the letter
p and the dot to be omitted, for both will be supplied by default. Typing
a blank line Gust pressing RETURN) should therefore display the current
line. In fact, this ultimate abbreviation forms an exception to the rules:
a blank line is interpreted as equivalent to

. +1 P

While nobody likes exceptions to rules, this one is quite beneficial because
it permits displaying a succession of lines, one at a time, simply by pressing
the RETURN key.

Inserting, Appending, and Deleting Text

Text insertion in eel follows the same principles as in vi, but with one
major exception: inserting or appending is done before or behind the cur­
rent line, not the current cursor position. Since eel is a strictly line-oriented
editor, it follows also that the text to be inserted must be made up of one
or more complete lines; partial lines or individual characters cannot be
inserted. Insertion is terminated by typing a dot. as the first (and only)
character of a new line. For example,

i
This is an inserted line
and this is another.

results in insertion of the two lines shown (but not of the i and the dot
.) in the editing buffer. When an insertion is completed, the current line
pointer remains at the last line inserted. There is an a ("append") com­
mand as well as an i, just as there is in vi. When either is used, lines are
automatically renumbered to take account of the new insertions.

Lines are deleted using the d command, which is a range command
just like p and employs the same syntax conventions. Thus,

d
1,2 d
-1,+1 d
1,$ d

deletes the current line
deletes the first and second lines in the buffer
deletes current line, plus one before and after
deletes the entire buffer contents

The eel Line Editor 179

After a deletion, the pointer is set to the line following the last line de­
leted-unless that was the last line in the buffer, in which case the pointer
is set to $.

A group of lines can be deleted and immediately replaced with the c
("change") command, which deletes the specified lines and leaves ed in
insertion mode. For example, the current line and the two immediately
adjacent lines are removed and replaced by a single line, by

. -1,. +1 c
This line replaces three old ones.

As might be expected, the syntax rules of c are exactly those of d and i
combined.

String Searching and Replacing

Instead of line numbers, ed will accept line identification in the form of
a character string delimited fore and aft by the slant /, as in / line / .
For example,

/line/,/example/ p

causes display of a range of lines determined as follows. The first line to
be displayed is the first line after the current line which contains the char­
acter string line; the last line is the first line thereafter to contain the
string example. In other words, /example/ means "the next line to
contain example". Of course, the rule still applies that p is assumed if
no other command letter appears. Hence,

/line/, /example/

causes an action similar to that described above, while the single string

/line/

causes the next line to contain line to be found and displayed. Note that
the character string line need not coincide with the word line; the search
may turn up such other strings as lineman, collinear, feline, millinery.
Searching always proceeds in the natural text sequence. But if the search
is not successful when the end of the buffer is reached, searching is con­
tinued on a "wrap-around" basis, as if line 1 followed line $. If the search
is totally unsuccessful, ed will simply display a question mark.

When a particular character string has been found, another can be sub­
stituted for it using the s command. Thus,

180 7. Editing with vi and ed

1,5 s/use/employment/

will find all first occurrences of the string use in the first five lines of the
editing buffer and substitute employment for use.

Null strings are acceptable in substitutions. If by a slip of the finger
the string use7 was typed instead of use, correction could be achieved
by either

s/use7/use/

or

s/7//

The latter merely substitutes "no characters" for 7. Note that since no
line number range was given, ed will assume that the current line was
meant, as if . , . s/7/ / had been typed.

Substitution is occasionally required for all occurrences of a word or
character string. The s command can achieve global replacement, if the
g ("global") command is attached to it. For example,

1,$ s/use/employment/gp

will replace all occurrences (as specified by g) of use in the entire edit
buffer (lines 1,$) by employment and will display on the screen every
line in which the replacement is made. The latter echoing is useful for
detecting unwanted changes, since global replacement of use will result
in amusement being replaced by the unintended amemploymentment!

Cut and Paste Operations

In "cut and paste" operations text is rearranged by moving entire para­
graphs or sentences. To do so, ed permits moving groups of lines by means
of the m ("move") command. This command removes a group of lines
and inserts them elsewhere. For example,

-5,. m +7

moves six lines (. - 5 to . inclusive) so that they follow line . + 7 after
the command has been executed. It should be noted that the m command
requires a total of three line numbers: two (or one) preceding, to identify
the range of lines to be moved, and one following the m, to specify where
to move them to. Of course, the line specifications may be either numeric
or contextual; the command

The eel Line Editor 181

/necessary/,/example/ m .-5

could be used to move an entire paragraph beginning with a line containing
necessary and ending with the first line thereafter to contain example.

File Handling by the Editor

File handling by ed is similar to the file handling done by ex (and therefore
vi). However, there are a few small differences. The first concerns the r
command, as, for example,

r filename

which under vi reads in a file at the current cursor location. In ed, it is
considered more natural for such reading to append at the end of the text
buffer, so that

r firstfile
r secondfile

causes two files to be read into the buffer and concatenated.
To exit from ed, the q ("quit") command is issued. This command has

probably caused more grief to beginners than any other, because the q
command quits the editor without writing out the buffer content. In other
words, issuing a q without a preceding w command will simply abandon
whatever work may have been expended in editing. Writing out the edit
buffer content is the responsibility of the user!

Chapter 8

Text Preparation and
Processing

Everybody who computes needs to do some text processing from time to
time. Even scientific programmers must be able to prepare program doc­
umentation to accompany their cleverly constructed source code. Others
may be directly concerned with text in its more usual sense-manuscripts,
letters, and documents. Unix has traditionally catered for both needs better
than most other operating systems.

Tools and Facilities

The Unix system includes an unusually good set of software tools for text
preparation, editing, and formatting. Many, indeed probably the great ma­
jority, of its users at Bell Laboratories during the 1970s employed Unix
not to compute numbers, nor to develop operating systems, but to set up
and format text. The Unix programming team responded to this need by
creating many utility programs, well thought out and carefully imple­
mented. These were quickly incorporated in the succession of standard
system releases. Other text processing utilities developed outside the Bell
environment, yet many remained well within the Unix tradition. Tech­
niques developed for use with Unix have profoundly influenced practically
all text processing software ever since. Users acquainted with office word
processors will be interested to discover within Unix the roots of many
methods now considered conventional.

Tools and Facilities 183

Text Files and Processes

Text preparation involves two distinct facets, which might be termed ma­
terial and intellectual. The material aspect of text is the physical presen­
tation and arrangement of characters and lines on the page, the layout of
paragraphs and the choice of typographic style. Its intellectual or literary
side concerns content rather than form and thus includes matters of style,
phrasing, grammar, and orthography. Both are important to the writer,
whether of poems or programs. Both are provided for in standard Unix
software.

The design philosophy underlying Unix is to provide flexible general­
purpose tools for individually simple jobs and to allow users to combine
them for specific tasks. This viewpoint is perhaps more clearly expressed
and more extensively carried into practice in text processing software
than in any other part of Unix. Subdividing the task of writing into parts
is best begun by separating form from content, as indeed happens in Unix
software. Creating an attractive physical arrangement of text, a task gen­
erally called formatting, is taken care of by programs that do not care
about content. En revanche, as it were, content is analyzed by programs
that do not care about physical layout.

Text files must clearly contain information about both content and form.
The content part may appear more or less self-explanatory. Characters
were invented, after all, expressly for the purpose of writing down words
and sentences, so Unix ordinary files which simply consist of strings of
characters seem ideally suited to contain formatless text. Physical layout
of text-text placement on the page, choice of typeface, size, and balance
of white space-is another matter. It is incorporated in text files as a set
of formatting directives or, as they are usually called in the manuals, re­
quests. These specify margin widths, indicate what typefaces are to be
used, determine page lengths, and generally tie down exactly what the
writer had in mind. In other words, a text file under Unix ordinarily con­
tains two interlaced sets of character strings: those which specify content
and those which specify form. Either can be altered without affecting the
other. This sort of file structure is essential if the task of formatting text
is to be separable from the task of writing and editing its content, if pro­
grams are to be created to affect either aspect of a text file independently
of the other.

Text Formatting Programs

To prepare properly formatted and attractive documents, software facilities
are required far beyond the minimal level provided by editor programs
such as vi or ed. The main formatting program available under the Unix
system is nrotT (pronounced en-rofj). The structure and style of nrotT derive
from an earlier precursor program rotT, now obsolete but said to be still

184 8. Text Preparation and Processing

in use at some Unix installations. The command structure of rolT and nrolT
has been widely accepted by the text processing community; indeed, nu­
merous commercial word processors otherwise unrelated to nrolT have
borrowed it. nrolT will justify margins, place footnotes at the bottom of
the page, number pages, center titles, indent paragraphs, and take care
of a thousand things normally expected of a professional typesetter.

In addition to nroff, which produces output suitably formatted for
printing terminals and line printers, all releases of Unix provide some
version of troIT (tee-rojJ), a program similar to DroIT in principle but capable
of producing book-quality output from a phototypesetting machine or laser
printer. The distinction is straightforward enough: trolT knows about dif­
ferent fonts and different type sizes, while nrolT does not. The two are
mutually compatible, in the sense that nroff requests are a subset of all
troff requests; trolT will happily execute requests intended for nrolT and
nroff will do likewise so far as the printer used can rise to the task. The
full command language of nrolT and trolT is extensive and not easy to
master. A small subset, some fifteen or twenty requests, fortunately suf­
fices to do practically everything required in routine report writing. This
chapter describes it in sufficient detail to enable users to cope with simple
documents.

The Unix system includes a wide range of further formatting aids to
the report writer. For mathematical typesetting (equations and the like)
there exists a program called eqn; for setting up tables, there is tbl, a table
editor. The trolT and eqn programs are able to drive an ordinary printing
terminal, but obviously they cannot do anything the terminal cannot do.
To realize their full potential, they require a phototypesetting machine or
laser printer. Because such are rare (compared to terminals), these pro­
grams will interest a smaller community than nrotT, so they are described
here in less detail than the more fundamental text formatting software.

A note of caution should perhaps be introduced about trolT and its var­
ious clever derivatives. Typesetting-in particular mathematical typeset­
ting-is a skilled craft not easily learned overnight. On first encountering
troff and eqn, most writers are enchanted with the power to determine
both content and form of their work, for they are instinctively aware that
art includes not only an intellectual element but also an aesthetic one.
Only later does the realization dawn that the art of making beautiful books
involves two crafts, writing and typography; the typographer's craft is de­
manding and the author who wishes to take full charge of typography must
be prepared to spend time at it. Where the layout requirements exceed
those of typewriting, the writer certainly ought to experiment with trotT
for a day or two, but it may be wise to entrust the final job to an expert.

Programs for Writers

For checking documents to find spelling errors, Unix software includes
a program called (not surprisingly) spell. Similarly, stylistic errors can

The nrotT Text Formatter 185

sometimes be caught by the programs diction and style-though writing
style is a matter of taste. In addition, the Unix system includes various
utility programs able to compare, sort, and modify files. These are often
convenient for text processing. However, they are more broadly useful
than that; they are therefore described in Chapter 6: Facilities and Utilities.

The DroiT Text Formatter

Editing programs such as vi or ed used by themselves are satisfactory for
developing and correcting computer programs, in which the layout and
formatting of the text are more or less fixed. On the other hand, reports,
manuscripts, and other purely textual matter look better if certain essen­
tially cosmetic operations are performed. For example, it is often thought
desirable to move words across line ends and to insert blank spaces so
right-hand margins come out straight. Such operations are performed under
Unix by troff and nroff, text formatting programs included in practically
all releases and versions of the Unix system. nroff reads a file containing
the "raw" text and writes an output file containing the same text, refor­
matted in accordance with appropriate requests. The requests are embed­
ded in the text file itself.

The DrotT Command Language

In essence, nroff may be regarded as a processor for a batch programming
language, in which program commands operate on data (the raw text itself)
in a prescribed fashion. Every command in this language begins at the
left-hand margin, preceded by a . (dot) to identify it as a command. For
example, the request

.pI55

sets the page length to 55 lines. An automatic line counter in nroff keeps
track of how many lines have been printed and causes a new page to be
started whenever 55 lines of output have been generated. To produce the
above paragraph and heading, the following text might have been set up
using vi:

. pI 55

.11 50
The nroff Command Language
. sp 1

.ti 6
In essence, nroff may be regarded

186 8. Text Preparation and Processing

as a processor for a batch programming
language, in which program commands operate on data
(the raw text itself) in
a prescribed fashion. Every command
in this language begins at the left-hand margin,
preceded by a. (dot) to identify it as a command .
. sp 2

The requests at the head of this text segment instruct nroff to make the
page length 55 lines and the line length 50 characters, to insert a blank
line after the heading, and to indent 6 characters at the start of the par­
agraph. The text itself is furnished to nroff in lines of random length. nroff
removes the line breaks from the text and inserts new ones so it will fit
into the specified page layout. After processing, the sample text shown
looks much tidier:

The nroff Command Language

In essence, nroff may be regarded as a
processor for a batch programming language, in
which program commands operate on data (the raw
text itself) in a prescribed fashion. Every
command in this language begins at the left-hand
margin, preceded by a . (dot) to identify it as a
command.

The document content is not altered by nroff in any way; only the for­
matting requests are translated into the page layout. Form and content
make up two interlaced data streams, with nroff acting on one stream but
not the other. Because there is only one file, running nroff is a simple
matter:

$ nroff datafile I lpr

nroff feeds the standard output, so redirecting or piping is necessary if
the output is not to go to the terminal screen.

Basic nrotT Requests

Every nroff request begins with the dot (or sometimes the apostrophe) at
the left margin and contains precisely two other characters. The characters
may be followed by a space, then by a signed or unsigned number. Un­
signed numbers mean just what they say; for example, . pl 55 means
"make the page length 55 lines". If the number is preceded by a + sign
it is understood to say "add to the previous value", so . pl + 55 means
"make the page length 55 lines longer than it was up to now". Corre-

The nroff Text Formatter 187

spondingly, the - sign (as in . pI -55) means "shorten the the page
length by 55 lines". In practically all cases, a missing numeric argument
is taken as 1 (page length = 66 is one of the rare exceptions). The numeric
values are subject to a host of restrictions, but most of these are not worth
mentioning because they are obvious: line and page lengths must not be­
come negative, paragraph indentations must not exceed the line length,
and so on.

All the numeric values that nroff is obliged to know-such as line spac­
ing and line length-have initial values set when nroff is first started up.
The average user happy to fill pages 66 lines long with single-spaced 65-
character lines (on most printers, the right numbers for 8.5 inch by 11
inch paper) therefore need not bother setting page and line lengths. The
same goes for non-numeric option settings; nroff will insert enough blank
spaces between words to make left and right margins straight, unless in­
structed otherwise.

The full nroff language includes nearly a hundred requests, a truly for­
midable list. Fortunately, a very modest subset is enough to permit working
with ordinary text. The informal overview given here actually deals with
fewer than two dozen requests, but these probably suffice to cover a great
many requirements.

Filling and Adjusting

Text is really a one-dimensional entity, a string of characters. The purpose
of any text formatter is to map this one-dimensional continuum onto a
two-dimensional page in accordance with some set of rules. The first rule
is to cut up the text into "lines" by inserting line breaks. This is done by
removing any existing line breaks, then forming each new line by taking
as many words as possible without overflowing the permissible line length.
In nroff terminology, this process is called filling. A second rule of text
formatting, often though not always applied, is to adjust all lines to have
equal length so the output document has straight left and right margins.
Adjusting is done by inserting blanks next to existing blanks. The result
can be excellent if lines are long and words short, otherwise "white rivers"
can occur in the text. Sometimes adjusting is not desired; nroff permits
turning it off with the. na ("no adjustment") request and on again with
the. ad ("adjust") request. No adjusting does not mean no filling; lines
are still made as long as they can be. For example,

In essence, nroff may be regarded as a
processor for a batch programming language, in
which program commands operate on data (the raw
text itself) in a prescribed fashion. Every
command in this language begins at the left-hand
margin, preceded by a. (dot) to identify it as a
command.

188 8. Text Preparation and Processing

is filled exactly the same way as in the first example, but no extra blanks
are inserted for adjustment.

Filling of lines may on occasion not be desirable (for example, if printing
out a table !). It can be turned off by the. nf ("no fill") request and back
on again with the . f i ("fill") request. With filling turned off, input text
lines are copied to the output with line breaks intact, even if the lines
then exceed the specified line length:

In essence, nroff may be regarded
as a processor for a batch programming
language, in which program commands operate on data
(the raw text itself) in
a prescribed fashion. Every command
in this language begins at the left-hand margin,
preceded by a. (dot) to identify it as a command.

It is worth noting that the paragraph indentation in the first line is inserted
even though filling is turned off. In other words, the input lines are not
simply copied exactly as they come; other nrolT requests still apply.

Adjustment without filling makes little sense, so the . nf request turns
off both filling and adjusting. There is no way to turn adjusting on if filling
is off; the . ad request is simply ignored after . nf. Similarly, the . f i
request turns both filling and adjustment on again, unless the adjustment
has been deliberately turned off.

Centered lines, often used in titles, are never filled by nrolT. The. ce
("center") request causes the next line to be copied into the output exactly
as it is, but with enough blanks inserted at the left edge to make the text
appear at the center. The. ce request may specify that more than a single
line is to be centered. For example, . ce 3 causes each of the next three
lines to be centered.

When filling, nrolTremoves all line breaks and inserts new ones. Where
a line break is definitely wanted, as at the end of a paragraph, the . br
("break") request is used. This request causes a line break to be placed
in exactly the place where it occurs, no matter what the effect on filling.
In addition to . br, a host of other nroff requests introduce forced line
breaks. For example, . fi and. nf both do. These implied breaks may
be suppressed by using the apostrophe instead of the dot at the left margin;
the . f i request thus introduces a break, the 'f i request does not.

Page Layout

A new page is started in the output fIle by the request. bp ("begin page").
It causes a line break as well as a page break; that is, it will not delay
starting a new page until the current output line is complete. If a page
break is wanted at the next natural line end but not earlier, 'bp can be
used.

The oroff Text Formatter 189

Left and right margins are set in nrotT by the . 11 N ("line length N")
and. po ("page offset N") requests. The former defines line length, the
latter moves the entire line N spaces to the right. There are no requests
for moving margins, so the user can never set the left margin beyond the
right! Page length is controlled by . pI N, as discussed above. These re­
quests may be issued at any time and take effect at the next line end or
page end. None of them causes a line break.

When started up, nrotT is set for single-spaced output. If double line
spacing is desired, the. Is 2 ("line spacing") request is used. Triple,
quadruple, or wider line spacing may also be asked for by including the
appropriate number with. 1 s. If a single block of N blank lines is desired,
the request. sp N is employed. It causes the printer to produce N blank
lines. A break is caused by . sp but not by the. Is request. Both accept
only absolute numeric arguments: it is not possible to increase or decrease
spacing by . 1 s + 1 and . 1 s -1. However, no number at all is understood
to mean 1, so . sp and . sp 1 are equivalent.

Paragraph indentations are achieved by the. ti N ("temporary indent")
request, which causes a break. "Temporary" means that only a single
line is indented. The. in N ("indent") request is similar, but indents all
subsequent lines. These two may be used in combination to cause indented
text to be preceded by item numbers or other identifiers. Indentations
may be added to or subtracted, but the total indentation is not allowed
to be negative. Hence, the "hanging" paragraph style, in which the first
word sticks out beyond the left edge of the text, can be produced easily
but cannot run out into the left margin proper. The input file

.in +5

.ti -5
In essence, nroff may be regarded
as a processor for a batch programming
language, in which program commands operate on data
(the raw text itself) in
a prescribed fashion. Every command
in this language begins at the left-hand margin,
preceded by a. (dot) to identify it as a command .
. in -5

thus produces

In essence, nroff may be regarded as a processor
for a batch programming language, in which
program commands operate on data (the raw
text itself) in a prescribed fashion. Every
command in this language begins at the left­
hand margin, preceded by a (dot) to
identify it as a command.

190 8. Text Preparation and Processing

Word emphasis in nrolT is available by boldfacing, which really means
double printing, and by underlining. Underlining is usually the more ef­
fective by far. The. ul N request causes all alphanumeric characters (but
not the blanks) in the next N lines to be underlined. This request does
not cause a break, so that a single word may be underlined:

. ti 5
In essence,
. ul
nroff
may be regarded
as a processor for a batch programming
language, in which program commands operate on data
(the raw text itself) in
a prescribed fashion. Every command

The word nrolT will now appear underlined in an otherwise normal, jus­
tified, paragraph whose first line is indented five spaces:

In essence, nroff may be regarded as a
processor for a batch programming language, in
which program commands operate on data (the raw
text itself) in a prescribed fashion. Every

It is possible to underline several lines with the . ul request, much as the
. ce request permits centering several lines. However, the value of such
prolific underlining is questionable.

Hyphenation

The English language lends itself particularly well to the fill-and-adjust
process because it is an almost uninflected language whose sentences in­
clude large numbers of "little" words-articles, prepositions, conjunc­
tions, auxiliary verbs. Despite that, large streams of white space still mar
the appearance of printed text when line lengths must be kept short, as
in two-column magazine articles or scientific papers. Good formatting of
text therefore requires hyphenation.

Hyphenation is carried out by nrolT only in response to the . hy request;
no hyphenation is done unless the user asks for it. It is turned off again
with the . nh request. To find good places to hyphenate, nrolT overfills
the line, then backtracks to locate a consonant or string of consonants
that will permit word division. For example,

In essence, nroff may be
cessor for a batch programming

regarded as
language,

a pro­
in which

The DroIT Text Formatter

formatting requests operate on data
ted text itself) in a prescribed
formatting request in this language
left-hand margin, preceded by a
tify it as a command.

191

(the unformat­
fashion. Every
begins at the

(dot) to iden-

Hyphenation is an onerous task which can only be accomplished passably,
never perfectly, because the rules of hyphenation in English are keyed to
syllables and phonemes, not to characters. For example, the word present
must be divided differently as emphasis shifts: "I would like to pre-sent
to you my pres-ent spouse." No computer program is likely to achieve
that in the near future.

To decide the fate of their own words, nrotT provides users a selection
of mechanisms for manual control. The crudest of these is naturally the
. nh request which defeats hyphenation altogether. The next level of re­
finement is still automatic, but a little neater; it consists of allowing the
. hy request to be restricted by a numeric argument, as in

.hy 4

The numeric arguments are purely symbolic, not really numbers. Their
meanings are

2 do not hyphenate on the last line before a page break
4 do not divide off the last two characters of a word
8 do not divide off the first two characters of a word

Values may be added arithmetically. For example, 12 denotes 4 and 8:
not less than three characters are to be divided off.

Some words should never be divided and some should only be divided
at places which nroff does not guess correctly. Such cases can be handled
by using the hyphenation indicator character \ %. It may be included
somewhere in a word, as in pres\%ent, to show where hyphenation is
permitted. Prefixing a word with this character, as in \%fashion, means
that the word must not be divided at all.

Margin Characters

When text is revised and corrected, as often happens with software man­
uals or with successive revised drafts of manuscripts, simply handing
readers a copy of the new version is not good enough. More often than
not, the key question "what is new?" must be answered at the outset.
nrotf provides a mechanism for identifying alterations by printing a margin
character at the right edges of output lines. Printing of the margin character
begin~ when the . me request appears, showing which character is to be

192 8. Text Preparation and Processing

used. It ends when the. me request reappears without a character spec­
ified, effectively saying "from here on use nothing as the margin char­
acter. " The writer is of course obliged to insert these requests; they will
not appear automatically. For example, the asterisk * is used as the marker
character in

In essence, nroff may be regarded
as a processor for a batch programming
.mc *
language, in which formatting requests operate on data
(the unformatted text itself) in
a prescribed fashion. Every formatting request
.mc
in this language begins at the left-hand margin,
preceded by a. (dot) to identify it as a command.

Here three lines have been rewritten; the revision is identified by first
requesting an asterisk as the margin character, then switching it off again.
The output then contains asterisks next to every line that contains any
part of any marked line after filling is done:

In essence, nroff may be regarded as a
processor for a batch programming language, in *
which formatting requests operate on data (the *
unformatted text itself) in a prescribed fashion. *
Every formatting request in this language begins
at the left-hand margin, preceded by a . (dot) to
identify it as a command.

In principle, the writer is entirely-responsible for turning marginal markings
on and off. However, the standard Unix program diff compares two files
and creates an editor script able to create one out of the other. It is not
hard to write a shell script to insert . me requests into such an editor script,
thereby automating the process of comparing two files and marking
changes. Where continuous and extensive revision of documents is fre­
quent, creating appropriate shell scripts is well worth the trouble. In fact,
a shell script to place. me requests is available in some Unix systems as
part of the standard release package.

Using nroff to Advantage

Although many simple documents can be prepared effectively using no
more than a dozen or two built-in nroff requests, the preparation of more
ambitious texts can benefit greatly from the use of various programming

Using nroiT to Advantage 193

facilities provided by nroIT. The most important of these are macros, traps,
and registers, devices that permit users to write text processing programs
in which the DroIT requests themselves play the part of a programming
language. In effect, every user and every project can acquire a specialized
text processor suited to its own purposes.

Defining and U sing Macros

The true power of DroIT lies in the fact that the user is allowed to define
new requests (macrorequests, or macros) in terms of requests already
known to the system. Experienced DroIT users in fact employ only a few
of the system requests directly and do almost everything with macros.
The Unix system itself provides several libraries of predefined macros,
so users often blend system-provided macros with their own. To define
a new macrorequest, it is only necessary to write out its definition as a
string of known requests (which may of course include known macros),
then to identify it as a macro definition by the. de ("define") request in
front and .. ("end of definition") behind. When DroIT is called on to
execute the new request, it simply copies the definition and executes it
step by step.

To give a simple example, paragraph breaks can be inserted by defining
the. PA request to mean exactly what the user desires: a blank line and
an indentation of five spaces. The macro definition is entered as

.de PA

. sp

. ti 5

To cause paragraph breaks, . PA as newly defined is used instead of any
other requests. nrolT will actually substitute and execute the pair of re­
quests which form its definition, so one request entered by the user is
able to do the job of two. The real point, however, is not merely to save
a little typing; it arises when the user decides that more white space be­
tween paragraphs and a deeper indentation would produce a better looking
document. There is no need to alter the text at all; instead, the above
macro definition is replaced by

.de PA

.sp

.ti 8

and a job is done which would probably never have been attempted oth­
erwise!

Macros may include instructions, as in the example above, text lines,

194 8. Text Preparation and Processing

and arguments. Arguments may be almost any character strings, numeric
or alphabetic. They are included in the macro definition as symbols of
the form \ \$1, \ \$2, ... up to \ \$9; when the macro definition is
copied, these place holders are replaced by actual values. For example,
the paragraph break request above could be set up as

.de PA
· sp \\$1
· ti \\$2

and then invoked by the request

.PA 2 8

A double blank line and an eight-space indentation will result, just as if
the actual values had been written into the macro definition.

Arguments passed to macros can be alphabetic strings. For example,
the macro

.de ow

.bp

.sp 4
· ce
Appointments for \\$1
.sp 2

· ti 5

might be suitable for creating a personal appointment calendar. It may be
used to begin a new week, for example, by

.OW "Monday"

The result will be to start a new page with the centered title

Appointments for Monday

with some blank space above and below. Other days ofthe week are then
given the same treatment. Whatever text may follow is indented in good
paragraph form.

Traps, Headers, and Page Numbers

Traps may be planted in any nrotTinput file by the. wh ("when") request.
This request has the general form . wh N me. It causes the macro me to

Using nroff to Advantage 195

be invoked whenever the line counter (on the current page) reaches N,
that is, after the Nth line of every page of output. If N is zero or positive,
lines are counted from the top of the page, if N is negative, lines are
counted from the bottom.

Traps are commonly used to create page headers and page footers. To
begin printing six line widths (usually one inch) below the top edge of the
paper and to stop printing six line widths above the bottom edge, traps
are set at those places:

.wh 0 HD

.wh -7 FT"

These invoke the macro . lID at the very start of the page and the macro
. FT when exactly six lines remain (the trap is placed after the seventh
last line). The macros themselves can be very simple, amounting to no
more than insertion of blank lines and beginning a new page:

.de HD
'sp 6

.de FT
'bp

The 'sp and 'bp requests are prefixed with an apostrophe rather than a
dot, to suppress the line break that would otherwise result.

Complicated header and footer macros are often used in manuscripts
to insert running titles or to reverse page numbering formats for even and
odd numbered pages. For such purposes, the. tl ("title") request is very
convenient. Inclusion of

.tl 'Leftstuff'middlestuff'Rightstuff'

in the input file will cause the string Leftstuff to be set flush to the
left margin, Rightstuff to be placed flush to the right margin, and rnid­
dlestuff to be centered between them:

Leftstuff middles tuff Rightstuff

This command must fit on one line, thereby all but guaranteeing that the
line length is sufficient to house the whole lot!

Page numbering can be effected with the . tl request, which has a
peculiar property: whenever the % sign appears in any of the alphabetic
strings in the. tl request, it is replaced by the current page number.
Hence, the header macro

.de HD
'sp 3

196

'tl 'Draft Manuscript' 'Page %'
'sp 2

8. Text Preparation and Processing

will left-adjust the words Draft Manuscript and right-adjust the page
number. Right-adjustment will shift the word Page leftward so that
Page 3 and Page 103 will not have the character P in the same location,
but the character 3 will occupy corresponding places on the two pages.

Traps are usually set at the beginning of a file and left on. However,
it may be desirable to alter them if the printout format is changed in midftle.
Trap removal and resetting are achieved with the . wh request. To be
precise, . wh N me does not invoke the macro me at line N; it alters the
name of the macro to be invoked at line N to me. Hence, issuing the
instruction . wh N (with no macro name given) resets the name from me
to blank, causing no action to be taken at place N.

Strings and Number Registers

Page headers and footers often include not only page numbers but running
heads or titles. Typically, a page header in a book will have a two-part
title, with the title of the book itself on the left and the chapter name on
the right; alternatively, the chapter name and current section title may
appear. A header of the latter type might be produced by the macro

. de lID

'sp 3
'tl 'Languages and Compilers' 'The C Language'
'sp 2

which is invoked at the head of every page. The difficulty with this ap­
proach is that the HI) macro will need to be redefined at the beginning of
every section because the section title changes. It works, but it is a bit
too fussy.

The nroiT command language includes a form of variable called the
string, a sequence of characters with a name. The name is usually two
characters long (a one-character version with slightly different rules also
exists) and should not duplicate the name of any request or macro. A
string name is assigned a value by the . ds ("define string") request,

. ds SC "The C Language"

No separate declaration is required to create the string name SC; assigning
it a value also defines it to exist. A string value may be inserted anywhere
in an nroiT request or macro by mentioning its name, prefixed with the

Using nrolf to Advantage 197

strange character sequence \ \ * (. The page header shown above may be
made somewhat more flexible by leaving the section title variable:

.de lID
'sp 3

'tl 'Languages and Compilers' , \ \ * (SC'
'sp 2

It may seem that the victory gained is at best pyrrhic, for now the string
SC must be redefined at the start of every section instead of the three­
part title. Furthermore, nothing in this arrangement guarantees that the
string Sc will be identical to the section title, as it should be. Both problems
are cured at one stroke if section titles are inserted by a title macro:

.de ST

· sp 2

· ds SC \\$1
.tl '*(SC'"

· sp

The single macro request

.ST

now prints the section title and redefines the running head at the same
time.

Numeric variables can be handled within nroff in a way similar to
strings. They are called number registers and are also referred to by name.
Number register names are subject to much the same rules as string names
and macro names. A number register is set up and assigned a value just
as a string would be; for example,

.nr SN 0

assigns the value 0 to number register SN. Because number registers are
frequently used in nroff as counters, autoincrementation and autodecre­
mentation are provided, and the standard increment is part of the value
assignment. Thus,

.nr SN 0 1

assigns the current value 0 and the increment size 1. When the character
string \ \n (SC is encountered by nrotT, the current value contained in
Sc is inserted in the text; but when \ \n+ (SC or \ \n- (SC occur, the

198 8. Text Preparation and Processing

value of SC is incremented or decremented first and the new value is
inserted in text.

U sing number registers as counters is convenient for numbering sec­
tions, equations, figures, tables, indeed anything and everything that needs
to be numbered. For example, to number the sections of a manuscript, a
number register SN is set up at the start, with an initial value 0 and an
increment of 1, as shown above. Printing of the section title is then pre­
ceded by incrementing and printing the section number:

· de ST
.sp 2
· ds SC \\$1
.tl '\\n+(SN. *(SC'"
.sp

A major advantage of using number register values is that sections are
automatically renumbered if a section is deleted or another added-all
without human intervention!

Diversions

Diversions are temporary but invisible data files into which text may be
written for retrieval and later reuse. A common use of diversions is for
making footnotes. The footnote text is typed into the input file adjacent
to the point where the footnote is referenced; but instead of being printed,
the footnote text is sent to a diversion. When the main text approaches
the bottom of the page, the diverted text is fetched and incorporated at
its rightful place.

Diversions look to the nroff user much like macros. They have two­
character names like macros and are incorporated into the text like macros.
To divert text into diversion CT the . di request is used twice, once to
begin the diversion and then again to end it:

.di CT
text ...

· di

Recovering the text afterward is similar to incorporating a macro in the
nroff file:

.CT

The diversion may of course include any alphanumeric text at all-even
nroff requests or macros.

U sing DroIT to Advantage 199

An alternative request is . da, which is similar to . di but appends to
the text already in ST instead of replacing the content of ST as . di would
do. In this way, text can be gathered from many places into a single di­
version. One example of such gathering is making up tables of contents.
In principle, the table of contents of a book is a collection of the chapter,
section, and subsection titles as they appear in the main text, with page
numbers appended. The easiest way to compile it is therefore to make
copies of the titles as the text is formatted, noting the page numbers. This
task can be entrusted to the . ST macro with a little extra added:

· de ST

· sp 2

· ds SC \\$1
.tl '\ \n+ (SN. *(SC'"

· sp
.da CT

. tl '\ \n(SN . \ * (SC' '%'

.da

The final three lines, just before the macro terminator, append to diversion
CT. One line is sent to the diversion, comprising the section number (nu­
meric register SN), the section name (string SC), and the page number (%).
When nrotT finishes reading the input text, CT contains the complete table
of contents; it remains only to fetch it and perhaps to tidy it up a bit.

Standard Macro Libraries

For users with more or less routine document preparation requirements,
there exist libraries of prewritten nrotT macros, so even novice users can
gain access to much of the power of nrotT without needing to write any
macros of their own. Two are currently distributed: -ms and -mm.

The -ms macro library is the older of the two libraries. It was particularly
designed for scientific manuscripts, technical reports, and similar literature.
It provides a set of macros for commonly encountered constructions, such
as

. FS to . FE

. KS to . KE

.LP

.NH

.PP

.SH

.TL

footnote start and end
keep blocks of text together
unindented (left flush) paragraphs
numbered headings
indented paragraphs
simple (unnumbered) headings
titling

200 8. Text Preparation and Processing

and many others. Multicolumn formatting, as often used for technical pa­
pers, is available, with the column arrangement automatically set up.

The newer -mm ("memorandum macros") package is larger, more
heavily parametrized, and more flexible. For the same reason, it can also
be a little more difficult to use than -ms. The choice is often limited by
the habit of system suppliers to include one or the other, but not both,
with the Unix system.

Other Text Formatting Programs

In addition to ed and DroIT, which are fundamental tools for almost every
user, Unix provides three other programs: trolT, eqD, and tbl. All three
are text formatting tools in the same generic family as DroIT. They are
intended for driving a phototypesetting machine and can produce output
of excellent quality. In fact, the popularity of Unix in its early years was
based largely on the ease with which large numbers of sophisticated tech­
nical reports, scientific papers, and even books could be produced by
engineers, scientists, and secretaries, working to tight schedules without
any of the usual tools of the printing trade.

The troff Text Formatter
The trolT formatter is in principle similar to DroIT, but there are striking
changes in hardware performance. The phototypesetter (unlike a standard
terminal) is capable of producing several different fonts, so that boldface,
italic, and varying sizes of type can be intermixed with the font selected
as standard. User selectable parameters include not only the font to be
used, but also the character size and line spacing, plus of course the overall
page format: line length, default indentation, tabs, page size, page num­
bering, etc. The phototypesetter is in principle capable of drawing almost
anything; it is able to move both horizontally and vertically, creating inked
area as it goes. Hence, the selection of fonts is limited less by the hardware
than the cleverness of the embedded software. Character and line sizes
are variable, so there is no longer much sense in instructions like "page
length 51 lines"; it is more sensible and useful to say "page length 8.5
inches" .

Font changes can occur anywhere in a text, and although they could
be handled by standard nrolT-like request lines beginning with a dot at
the left margin, setting single words in italic or boldface by this method
becomes messy. Various trolT functions are therefore introduced by an
escape character, which is usually the reverse slant \ but which may be
altered by the user. For example, the character sequence \fB changes
to a boldface font when encountered anywhere in the text.

Other Text Formatting Programs 201

Command lines used in troff are similar in structure to those employed
by nroff, but a much wider range of possibilities exists. In fact, the troff
and nroff requests are deliberately created so that the nroff command
interpreter can understand troff requests and can make substitutions within
the limited capabilities of its printing device. It is thus correct to say that
troff files can be processed by nroff; but hardware functions not locally
available obviously cannot be used. Since the nroff and troff command
sets are both programming languages, any troff script must be debugged
and corrected before it can be finally printed. Debugging cannot be un­
dertaken with much hope of success if the hardware functions are not
available. Users without phototypesetting equipment, and with little hope
of obtaining access to any, are probably well advised to stick with nroff!

Equation Processing with eqn and neqn

Much scientific text involves mathematical equations or chemical for­
mulae, whose typesetting requires special symbols and mixed fonts as
well as critical placement in both the horizontal and vertical directions.
In principle, all the necessary phototypesetter motions and font selection
can be handled by troff. In practice, the detailed work required to make
troff do so is finicky, error-prone, and unattractively time-consuming. To
lighten this load, Unix contains eqn, a utility capable of writing troff request
sequences for equations. To allow dealing with simple equations and to
enable users to proofread troff text quickly, there is also neqn; it produces
output suitable for nroff.

Mathematical usage includes a great deal of convention and standard­
ization. Scalar variables are set in light face italic, vectors in bold roman;
names of trigonometric functions appear in lightface roman, their argu­
ments in italic. Superscripts and subscripts are reduced in size by a con­
ventional amount and offset by a standard height difference. The eqn
package knows a good deal about these conventions but almost nothing
about mathematics. It accepts input instructions in an essentially verbal
language which describes equations and transcribes these verbal instruc­
tions into troff requests for font changes, vertical or horizontal motions,
and special symbols (e.g., integral signs). Its input will typically contain
text like

2 pi sum from k=O to 20 A sub k cos (k omega t + psi sub k)
to denote a 20-term Fourier series. eqn will recognize "pi", "omega",
and "psi" as Greek letters and "sum" as a summation sign. It will au­
tomatically reduce the size of the subscripts identified by "sub" and will
choose italic or roman fonts for the remaining characters as appropriate.
On the other hand, it knows next to nothing about mathematics, just as
troff knows next to nothing about English. It will happily typeset rank
garbage that hardly even resembles mathematics.

202 8. Text Preparation and Processing

The eqn package works as a preprocessor to trotT. To use eqn, the
mathematical portions of text are marked off with special delimiters (. EQ

and. EN for starting and ending equations), thereby indicating that trans­
lation is required. All unmarked text, which normally includes standard
trotT requests and text, passes through to the output unaltered. Thus, the
output of eqn is actually the trotT text that could have been produced,
albeit laboriously and with errors, by a human programmer. However,
this intermediate text is hardly ever seen by a human eye, for under Unix
it is easiest to pipe the eqn output directly to trotT:

$ eqn textfile I troff

The output then appears as if eqn and trotT constituted a single program.
Since trotT requests are fully acceptable to nrotT, it is in principle possible

to use eqn or neqn to set up equations for nrotT as well. However, the
results are rarely attractive; mathematical typesetting does benefit greatly
from the availability of Greek characters and multiple fonts.

Table Manipulation with tbl

Tabular matter is often difficult to set up quickly with normal editing pro­
grams. For one thing, columns in tables are justified in many different
ways, as may be seen in the following simple example:

Average Annual Increase Rates

Industry Class Increase

Electronics B 1. 25

Construction AA 12.7

Aircraft K 103.

Here one column is left-justified, one right-justified, and one justified to
keep the decimal points in line. Many other variations are encountered:
inclusion of special symbols, ruling of boxes around tables, and so on.

The tbl program is another troll preprocessor which allows tables to
be set up using specialized commands. These commands, along with the
tabular data, are encased in delimiters that identify material to be processed
by tbl: . TS to start the table and. TE to end it. When tbl is run, all material
marked as tables is processed into a string of troll requests; the rest is
passed through unmodified. As in the case of eqn, the result is the same
as if a human operator had produced the same request string.

The principles involved in using tbl are delightfully simple; complexities
only arise when large, complicated tables need to be dealt with. In spirit,
processing of tables is viewed as being much like processing of straight

Other Text Formatting Programs 203

text: form is separated from content so that formatting instructions can
be issued without reference to the tabular data. Every table to be processed
by tbl takes the general form

.TS
global options;
format image •
data
.TE

The global options take up one input line; they specify such matters as
whether the table is to be centered on the page and whether a box is to
be ruled around it. This line is always terminated by a semicolon. The
format image is an abstract representation of the table, one line of the
image corresponding to one (or more) lines of the table. It shows the type
of entries to be placed in each column and how they are to be formatted.
The example above is generated by the following input file:

.TS

center;
c s s
c s s
I c r
c s s
I c n
Average Annual Increase Rates

Industry Class Increase

Electronics B 1. 25
Construction AA 12.7
Aircraft K 103.
.TE

The format image contains fewer lines than the table; this situation is
common, for the rule is that the last line of the image is used again and
again until all data are exhausted. This last line, in other words, describes
the body of the table. It contains three letters to show that the table has
three columns; 1, c, and n denote left-adjusted alphabetic entries, centered
alphabetic entries, and numeric (aligned decimal point) entries. The head­
ing lines which precede the tabulated data are similar; the three column
headings are identified by 1, c, and r to request left alignment, centering,
and right alignment. The main column header is centered; the character
s in the second and third columns says that the first column is allowed
to swallow the space that might otherwise have been allocated to the oth­
ers. The last line of the format image is terminated by . (dot).

204 8. Text Preparation and Processing

The data to be entered into a table are simply typed row by row, with
tab characters as column spacers. When the raw tb. input file is viewed
on a terminal or printer, data thus usually appear in left-aligned columns
whose precise placement depends on how the tab stops on the terminal
are set.

The eqn and tb. preprocessors may of course be combined by a pipeline,

$ eqn inputfile I tbl I troff > outputfile

Invoking the preprocessors costs little, since any text not flagged for pre­
processing is simply passed through unmodified. tb. can be used with nrotT
as easily as with trotT, provided the limitations of nrotT are respected:
there must be no changes of type size, style, or other attributes that a
plain printing terminal cannot manage.

Spelling and Typographic Errors

Despite the best intentions, spelling errors and typographic errors will
creep in when text is prepared. Unix provides a certain measure of error­
proofing by allowing text to be checked against a built-in spelling
dictionary. The spelling check may of course also turn up typographic
errors.

The Dictionary Check

The basic facility in Unix for checking spelling is a program called spell.
spell is invariably used with a spelling dictionary. It reads the text file to
be checked and identifies as words all character strings encased by suitable
combinations of terminator characters-blanks, line ends, and punctuation
marks. Each word is then checked against entries in a spelling dictionary.
In most Unix implementations, the dictionary resides in file /usr /dict/
words, but in some installations it may be located elsewhere. spell pro­
duces as output a list of words not found in the dictionary, which therefore
qualify as potential spelling errors.

Spelling checking is a fascinating problem in both lexicography and
computer science. To spot misspellings, it is helpful to know what to ex­
pect, so that a detailed analysis of each word is indicated. People auto­
matically recognize the word recreation as being composed of the prefix
re-, the stem creat-, and the suffix -tion, the composition being subject
to rules which drop one of the two t's that would arise from agglutinating
re-creat-tion. People, as a rule, will therefore spot recreattion as being
misspelled even if the word is not a familiar one. For a computer program

Spelling and Typographic Errors 205

to do as well is not at all easy. The rules are complicated, the stems many
and confusing.

The spell program can be run in two ways: it may be asked to accept
only words found in the dictionary in their exact forms, or it may consider
correct all words formed from dictionary words by applying a limited set
of word transformation rules. When asked to check for literal accuracy,
without applying any transformation rules, many words may be flagged
as possibly erroneous, because project, projective, and projectively will
be considered unrelated; each will be accepted only if it appears in the
dictionary in precisely that form. Under the word transformation rules,
possessive endings, various prefixes such as reo, in-, and a variety of suf­
fixes (-tion, -ing) are all sorted out nicely. In a few cases they may be
spotted incorrectly, for the English language is simply not so consistent
as to permit encoding all valid transformation rules in a program of rea­
sonable size. Nevertheless, it is surprising and pleasing how few real mis­
takes spell actually does make when operated this way.

Running spell

As one might well expect, the spell program is operated just like any other
Unix command: it uses the standard input unless file names are provided,
and it delivers the results to the standard output unless redirected. Typ­
ically,

$ spell -b +unixdict manuscript > errors

will cause the file manuscript to be scanned for unrecognized words,
choosing British spellings in preference to American ones (about which
more below) and accepting the words listed in the user-supplied file
unixdict in addition to those found in the standard dictionary. The out­
put is directed to file errors.

Several options are available under spell. Of these, -v and -b deserve
special mention. The -v option flags all words not found in the dictionary
in exactly the same form as they occur in the text file; no derivations
(possessives, adverbial endings, plurals, etc.) are accepted. However, all
plausible derivations that can be constructed from the words in the
dictionary are shown. The -x option views the world in a complementary
light and shows every stem from which a word could plausibly have been
derived. To give an example, the output produced by the -v option of
spell takes the following form:

+s additions
+s adds
+ing applying
+s besides

206 8. Text Preparation and Processing

+ed collected
+ion+s constructions
-y+ ies copies
+d created
-e+ion derivation
-e+ion+s derivations
+s does
+s errors

Brief study will show that every derived word in this list was arrived at
by a different route. Most have added suffixes, but several have dropped
letters as well, for example, derivations which is obtained from the root
derive listed in the dictionary.

Because the -v and -x options go into considerable detail in analyzing
the makeup of individual words, they will at times signal invalid derivations
or derivations that might be valid but could be arrived at in several ways.
In the report shown above, the word does is shown-but the derivation
shown does not identify it as the third person form of a common auxiliary
verb. In spite of what one might have expected, spell views this word as
a noun, meaning a herd offemale deer. Hard indeed is the lot of the English
lexicographer!

Comfortingly, spell provides a "British" switch (the -b option) to make
room for people who do not fancy American spellings. British and Amer­
ican spellings differ a good deal. There are distinct forms for many words
as well as for several common suffixes. spell provides the option of ex­
amining for either form of spelling, but it does so by providing alternate
valid dictionary entries. As a result, speD can proofread text that conforms
to either one standard or the other, but not to mixtures. Some inconven­
ience may well be felt by Canadians or Australians, who frequently choose
American spellings for some words, British for others. Under the rules
as understood by spell, anyone who favors colour and odour is not per­
mitted the z in recognize-not even if used with absolute consistency­
and is required to spell tyre with a y.

Mixed tastes in spelling can be accommodated, more or less, by two
techniques, neither wholly satisfactory. One way, useful to people who
generally stick by one convention but wander off to use the other for some
words, is to collect a file of personal deviations and to include them as a
+ option (as illustrated above). The other, handy where the mixing is
extensive, is to run with the command

$ spell textfile I spell -b I errorfile

In this way any acceptable spelling is guaranteed to pass muster. Unfor­
tunately, there is no consistency check so that mixing British and American
spellings for the same word in a single document will not be spotted.

style and diction 207

Typographic Errors

The easiest way of finding typographic errors in text is to employ spell;
words such as ditcionary and dicctionary will be flagged as suspect and
can then be picked out. Ifthere are only a few distinct typographic errors,
they can be corrected easily enough with the vi editor. If there are a great
many, one of the fancier batch-mode editors can be used instead.

One variety of typographic error spotting program simply scans words
and reports as suspect any character string which does not satisfy certain
rules (e.g., three consonants in a row are suspect). Such checkers are
fast, but often unreliable. None is provided with most standard Unix re­
leases.

It should be kept in mind that any existing program designed to find
misspellings or mistypings can only look for errors in individual words;
it will not perform textual analysis. Hence, typographic errors can never
be spotted if they produce semantic nonsense out of lexically acceptable
words; for example, test in place of text will pass all spelling checks.
Similarly, errors in homonyms (similar-sounding but differently spelled
words), such as waist and waste, cannot be located by spelling checkers.

style and diction

Two programs are provided under most Unix releases for assisting the
writer with style improvement. Both attempt to provide the sort of critique
expected of a tutor in Freshman English: they say "too many compound
sentences made up with semicolon splices" or "say now, not at this point
in time". The human tutor can be unfair but understanding, having ap­
prehended the objective in view. Being mere computer programs, style
and diction are totally unforgiving but impartial; they report what they
regard as facts and leave the user to judge whether the facts are useful.

The style program analyzes the grammatical structure of a document
and produces several statistical indicators to show how the text might be
improved, or indeed whether improvement is needed. The analysis is
purely formal; style makes no pretense to understand the content. diction
attempts to criticize content, or at least its wording, by looking for phrases
it considers inelegant or downright bad.

Readability Grades

A fundamental form of output always produced by style, almost inde­
pendently of the options the user may specify, is a listing of readability

208 8. Text Preparation and Processing

grades. These stem from the world of public education and therefore report
their findings in terms of grades-meaning that text with a grade level of
8 is within the ability of Grade 8 pupils to comprehend. Because the ana­
lysis style makes is purely structural, such indices are likewise; style will
happily assign readability grades to well-formed sentences made up of
pure nonsense words or to sentences in foreign languages.

Four different indices are computed, corresponding to four different
authoritative studies on readability. In all four, the readability grade is a
function of both sentence length and word length. The formulae used differ
a little: two count characters to determine word length, while the other
two attempt to count syllables. None takes account of the things most
readers of technical text really find difficult: complicated technical terms,
symbols and abbreviations that readers were expected to remember from
three chapters ago, a presupposition of familiarity with the residue calculus
(or with recent writings on comparative paraliterature, as the case may
be). The gradings are therefore guides of a sort but should not be taken
too seriously.

Invoking and using style is much like using any other Unix utility. style
is given a set of options and an input file name or names to work on, the
output being placed in the standard output. style can be downright garrulous
under some options, so the output is usually best channeled to a file. For
the introductory chapter of this book, stored in file intro,

$ style intro I tee intro. styl I more

produces. the output shown in Figure 8.1.
Readability grades around 14 imply that college students should on the

whole have no difficulty with this text. However, in the real world there
is a lot more to readability than just word length, so style obviously reports
a great many other things as well. These will be discussed next.

Sentence Analysis

Surprising as it may seem, useful grammatical analysis of plain English
really can be carried out by computer programs of tolerable complexity.
style proceeds by first identifying sentences, then parsing each one in turn.
The parse is carried out partly by referring to a vocabulary of common
words, partly on a structural basis. The findings are reported in a statistical
summary as shown above.

Basic statistics include the total numbers of words and sentences in
the document analyzed and the lengths of sentences. The report includes
average, maximum, and minimum sentence lengths, also the number of
very short and unusually long sentences. Sentences more than ten words
above average are judged to be unusual, as are any that fall short of the
average by five or more.

style and diction 209

readability grades:
(Kincaid) 14.3 (auto) 14.6
(Coleman-Liau) 13.0 (Flesch) 15.2 (35.4)

sentence info:
no. sent 179 no. wds 4274
av sent leng 23.9 av word leng 5.11
no. questions 3 no. imperatives 0
no. nonfunc wds 2627 61.5% av leng 6.47
short sent «19) 30% (54) long sent (>34) 12% (22)
longest sent 57 wds at sent 24
shortest sent 5 wds at sent 79

sentence types:
simple 37% (67) complex 36% (65)
compound 15% (26) compound-complex 12% (21)

word usage:
verb types as % of total verbs
tobe 38% (159) aux 14% (56) inf 20% (84)
passives as % of non-inf verbs 24% (80)
types as % of total
prep 11.6% (494) conj 3.8% (161) adv 6.9% (294)
noun 25.7% (1100) adj 20.6% (880) pron 4.4% (187)
nominalizations 2 % (75)

sentence beginnings:
subject opener: noun (29) pran (23) pos (3)

adj (34) art (31) tot 67%
prep 13% (23) adv 7% (13)
verb 2% (4) sub conj 4% (8) conj 2% (3)
expletives 4% (8)

FIGURE 8.1. Output of style for analysis of the introductory chapter of this book.

Word lengths are not subjected to the same searching scrutiny as sen­
tences; presumably the author can spot a long word as easily as a program!
A more significant issue is that English, a practically uninflected language,
includes in any real sentence a large number of "little" words: articles,
particles, conjunctions, prepositions. Such important small items are re­
ferred to asfunction words in the report generated by style. Their number
is often larger than one might imagine; in the report of Fig. 8.1, they ac­
count for almost 40% of the words in the chapter. Accuracy in assessing
text is improved by reporting word length statistics two ways: first for all
except the function words, then for all words in the text. The difference
is significant; in the chapter shown here, the "little" words average 2.86
characters in length while the others have a mean length of 6.47. Of sig­
nificance is the variation in the latter with writing style, for the function
words are the same in practically all writing: the,for, in, to, and so on.

Sentence structure is also analyzed by style, with all sentences classified
into simple, compound (containing two principal clauses), complex (one
principal and one dependent clause), and compound-complex. No easy
recipe can be given for sentence structure, except that most people seem
to think it should be varied. Charles Dickens and Tom Wolfe are interesting
to read at least partly because they vary their sentences from short and
simple to multiply compound-complex. Thomas Hardy, on the other hand,

210 8. Text Preparation and Processing

is generally considered difficult to read because his sentences are both
long and intricate.

What can be said for variety in sentence structure can be said equally
well for ways of starting sentences: variety is the spice of life. style there­
fore reports in some detail what parts of speech were used to begin sen­
tences, from nouns to subordinating conjunctions.

Word Usage

What words are used (and how) has an obvious effect on writing style,
so style classifies the parts of speech and reports on word use. Verbs in
particular are given searching analysis. They are classified by their use
as auxiliaries or otherwise, and they are scrutinized to distinguish active
from passive voice. There is a part of the English-teaching community
which believes the passive voice should be avoided at almost any cost
because it is terribly difficult to understand; but the scientific community
generally prefers the passive because it reflects a long tradition of dealing
with impersonal fact rather than personal experience or opinion.

While statistical information on word usage may be of some value, a
much more interesting use of style results from the -P option of style.
Under this option, the detailed analysis of each sentence is shown in an
output file generally much longer than the input file. For example, the
sentence

The Unix time-sharing system is rapidly becoming one of the
most popular computer operating systems ever designed.

is mapped into the output file as
art The
adj Unix
adj time-sharing
noun system
be is
adv rapidly
verb becoming
pron one
prep of
art the
adj most
adj popular
adj computer
adj operating
noun systems
adv ever
adj designed

style and diction 211

The analysis uses both lexical and structural data: most, computer, and
operating are all spotted as adjectives, even though computer may look
like a noun, operating like a verb.

Admittedly, there is no point in reading reams of output merely to dis­
cover that rapidly is an adverb. A useful purpose is served, on the other
hand, by asking style to report in great detail wherever a sentence is con­
voluted, full of difficult words and ideas, hard to read and hard to grasp.
If style is confused by a welter of present participles masquerading as
adjectives, is it not likely that some readers will be too?

Phrasing and Style

The diction program actually does what style promises: it gives hints for
improving the aesthetics and stylistics of prose. Unfortunately, diction is
a critic, not a teacher-it only looks for things it does not like. In use,
diction acts and feels different from style in every possible way. One pro­
gram, after all, deals with statistical facts, something computers are really
quite good at, but the other can do no more than carp at things it believes
are bad. It is a useful program, faute de mieux; one just wishes it were
better.

When invoked, diction strips the text of its capitals and most of its
punctuation, then seeks out words and phrases it thinks bad. The output
of diction consists of all the sentences that contain one or more of the
offending phrases, with the offenders shown in brackets:

introduction the unix time sharing system is rapidly
becoming [one of the] most popular computer operating
systems ever designed.

To obtain clarification about the phrases marked, including suggestions
for improvement or more appropriate synonyms, the explain program may
be run. explain asks the user to type in the phrase to be explained and
suggests alternatives if it knows any. Thus,

$ explain
phrase?
one of the
use "one, a" for "one of the"
phrase?

This example illustrates both the strengths and weaknesses of diction. No
doubt one of the is an overused phrase and probably deserves flagging.
Two alternatives are suggested by explain; clearly neither is appropriate,
though it would admittedly be unreasonable to expect a computer program
to know that. In this way, diction incorrectly picks out large numbers of
non-errors. Not only do these unwarranted criticisms irritate the user,

212 8. Text Preparation and Processing

they lead him to ignore the real ones, as in the story of the little boy who
cried "Wolf!"

The diction-explain pair was developed at the University of California
at Berkeley and shows it in its choice of blacklisted phrases. The list in­
cludes many illiteracies and sophomorisms:

absolutely complete
added increments
adequate enough
and etc
another additional
as regards
at about
at this point in time
in back of
basic fundamentals
basically
brief in duration
collaborate together

Unfortunately, the overuse of perfectly good words by undergraduates
apparently led to the inclusion of words which not only deserve to be
used but make for vigorous or precise writing:

actual
accomplished
aggregate
assistance
awful
commence
compensation
conjecture
construct
contemplate
demean
demonstrate
discontinue

Blacklisting of these words may help some less literate members of the
community, but it is a misery for others.

Practical Use of style and diction

Allowed to run unchecked, both style and diction like to generate piles of
unwanted trash. The key to effective use of either is selectivity; ways

style and diction 213

must be found to make the programs filter out useless output before it
even arrives in a file or on a terminal screen. While no single method is
wholly agreeable to everybody, a few general hints may be broadly useful.

The style program can be made selective by requesting output of only
those sentences which meet some specified criterion. Readability index
and sentence length are available as criteria, so it is possible to have a
look at very long or very complicated sentences only, ignoring the rest.
Less usefully, sentences containing the passive voice or beginning with
an expletive can be selected. Curiously, it is only possible to ask for the
difficult sentences of a file; no provision is made in style for the easy ones.
Thus, style lends itself to revision tending to reduce the readability grade
of a document, but there is no easy way to make a boringly straightforward
text more interesting to a sophisticated audience.

To make diction genuinely useful is harder but rewarding. diction looks
for phrases listed in its blacklist file, usually /usr/lib/dict. d, and
explain searches through /usr/lib/explain. d for suggestions to make.
If these files are absent, then dict. d and explain. d are presumably
elsewhere and can be tracked down with

$ find / -name dict.d -print

Modification of these files is not strictly necessary to make diction behave
better; the user can substitute a pair of files for those provided in the
system release. However, it is no use throwing out all the 500 or more
phrases in /usr/lib/dict. d just because there are some silly ones.
It is better to copy the system-provided file, then to use an edited version.
The same goes for /usr /lib/explain. d.

Editing the diction files is easy enough since they are text files and
contain one phrase per line. The only sticky point is that the phrases as
listed must be exact matches for character strings in the text file after
capitals and most punctuation marks have been stripped. Thus, words
should be separated by exactly one space and the phrase should have one
space preceding and following to ensure that partial words will not be
spotted. For example, the file entries

haggle
hood

huge profits
'" brotherhood

will cause the phrases [haggle] and [huge profits] to be
marked, along with all words ending in -hood: mother [hood], man [
hood]. The latter is spotted when a suffix because it is not prefixed by
a leading blank. The word brotherhood is not flagged, however, because
the tilde"" character beginning a line is understood to mean acceptance.

214 8. Text Preparation and Processing

The file /usr/lib/explain. d is organized similarly, one line per ex­
planation, with the bad phrase first, the preferred form following.

The Unix manuals hint that a 50% useful hit rate for diction should be
regarded as good. With some clever customization, most users should be
able to do better. However, it pays to walk slowly and carefully, not mak­
ing changes in the phrase blacklist too quickly!

Chapter 9

Languages and Compilers

While some Unix users are only interested in running ready-made pro­
grams, others wish to make at least occasional use of the program de­
velopment facilities available under this system. They find themselves
well served; because the Unix operating system is widely used, compiler
writers have found it worthwhile to produce language compilers to run
under it. This chapter provides an overview of the programming languages
generally available, giving details on the most important and popular.

Programming Languages Available

Though only a few languages are furnished with standard Unix system
releases, support software is of high quality. The C language is almost
always furnished with the system. A Fortran compiler is often included;
Pascal appears a little less frequently. However, numerous other language
compilers are available for almost all Unix-derived operating systems.
Proprietary versions of Unix, particularly those destined for the newer
computer hardware configurations, may offer such further languages
as Lisp or Ada. The result is a rich haul indeed, comprising most of
the programming languages commonly employed in scientific work as
well as several others whose primary orientation is to commercial data pro­
cessing.

216 9. Language and Compilers

Structured Languages

The key language of the Unix system, in which most of the system itself
is written, is a language called C. The basic Unix software tool kit in­
variably includes a C compiler. A structured high-level language, C bears
some resemblance to both Fortran and Pascal but retains closer ties to
the computing machine than either. C occupies a special role in the Unix
structure because some other high-level languages are processed at least
part way by the C compiler. An important benefit of this arrangement is
that subprograms or procedures originating in different high-level languages
can often be intermixed.

Pascal is also supported under virtually all Unix systems; indeed several
Unix-compatible Pascal compilers are now in existence. Unfortunately,
Versions 6 and 7 of Unix as released by Western Electric did not include
a Pascal compiler, so several "unofficial" Pascals appeared. However,
the University of California, Berkeley 4.2 BSD version of Unix includes
a Pascal compiler which has gained wide acceptance. It is available in
many Unix installations and is therefore briefly described in this chapter.

The Ada language is not yet widely supported-as yet there are few
full Ada compilers in existence anywhere-but it is sure to become wide­
spread before long. Ada is a structured language and has been specified
by the United States Department of Defense as its preferred high-level
language.

Turning to non-numeric computing, the Lisp and Prolog languages have
been linked to Unix for several years; so has Cobol, the most widespread
standard commercial data processing language. Basic was initially sup­
ported under Unix, presumably as a result of outside pressure since its
characteristics and spirit run counter to the general design philosophy of
Unix. Interest in Basic has waned as the computer user community has
come to recognize that Basic really is very basic.

Fortran

The best known and most widely used high-level language for scientific
computing is undoubtedly Fortran. Despite its many acknowledged short­
comings, engineers and physicists habitually use almost nothing else. For­
tran was intended for scientific computing from the outset; indeed, its
name was coined as an acronym for FORmula TRANslator. It has been
in use for almost a third of a century, so there now exists a large amount
of acquired programming expertise in the scientific community and also
an immense pool of Fortran software. For serious scientific computing,
Fortran will probably remain the language of choice for many years to
come. No operating system can be considered a serious candidate for
large-scale computing if it does not support at least one version of Fortran,
so despite their apparent distaste for this language, the Bell Laboratories

Fortran 77 217

Unix software team did make Fortran available. A Fortran compiler may
be missing, however, from repackaged versions of the Unix system pri­
marily intended for business data processing.

Versions of Unix that include Fortran compilers normally also support
a Fortran dialect called Ratfor (rational Fortran), which permits structured
forms similar to those of Pascal or C. There is no Ratfor compiler; instead,
Ratfor is translated into ordinary Fortran by a preprocessor called ratfor.
A reverse translator, for turning Fortran into Ratfor, also exists.

A Veritable Babel

Turning from the "official" languages distributed in the standard Unix
package, and from Pascal which is so widespread that it is at least "se­
miofficial", the Unix system user is faced with a veritable Babel. The
languages available under Unix in some form include almost everything
imaginable.

Snobol, APL, and Algol 68 are three established high-level languages
for which compilers are available under Unix. While none of them is fur­
nished with the standard system releases, various Unix systems do support
them and they are fairly widely used. Modula-2 compilers are less wide­
spread but they do exist. Cobol appears to be running satisfactorily at
various installations, while Lisp and Prolog are employed by many workers
in artificial intelligence. Basic has been available since the early Version
6 and Version 7 releases, though one might well enquire why it should
be when such a wide range of better languages exists.

There is one language always available under any operating system,
which is absolutely not transportable-the native assembler language of
the host machine. Very little use need-or should-be made of it in Unix
systems because most user needs are covered by C. However, there do
arise some occasions when use of machine instructions is essential and
for those occasions an assembler is imperative. Of course, it is not practical
to give details here ofthe assemblers for all, or even a significant number,
of the many machines on which Unix now runs. Assembler language pro­
gramming therefore rates no more than a brief mention in this chapter.

Fortran 77

The Fortran language is supported under most Unix systems in its most
recent version, Fortran 77. Fortran was first introduced in the late 1950s
and was brought into standard form ten years later, the nominal date of
the standard being 1966. The need for another revision became obvious
some time thereafter and led to the creation of Fortran 77, a new standard.

218 9. Language and Compilers

Almost all the old standard Fortran (Fortran 66) is included as a subset
of the Unix dialect of Fortran 77, so Fortran 66 programs usually run
without difficulty.

Because Fortran is well known, no attempt is made here to describe
the language itself. People not acquainted with Fortran but interested in
learning about it are well advised to begin by reading one of the many
excellent introductory textbooks on this language.

The f77 Fortran 77 Compiler

The normal Fortran language compiler available in most Unix systems is
f77, which implements the Fortran 77 standard.

Unlike many compilers, f77 does not translate Fortran directly to as­
sembler code or machine language. Instead, it produces C intermediate
code. This approach to compilation implies that many features of C, which
are not considered part of Fortran under the standard rules, become ac­
ceptable automatically. For example, recursive subroutine calls are not
permitted in standard Fortran, but they are accepted in f77 Fortran. All
Unix system calls and library subroutines which are available through C
become available through Fortran also. Compiling Fortran into C inter­
mediate code further implies that procedures written in the two languages
may be intermixed: Fortran programs can use C functions as if they had
been written in Fortran and C functions can call Fortran subroutines
equally well. Indeed, the intermixing extends to any other language, past
or future, whose compilation passes through C intermediate code.

In f77 Fortran there are also some variations from the Fortran 77 stand­
ard not easy to explain in terms of C dependence. Few compiler writers
have ever created Fortran compilers true to the published standard; the
temptation to extend and improve is too strong to resist. f77 is no excep­
tion: it does accept (almost) any correct Fortran 77 program but it also
provides additional features not part of the Fortran 77 standard. Fortran
77 rules are violated by f77 only in a few minor ways. The enhancements
and added features are rather more numerous. Both the improvements
and the exceptions will be treated in detail below.

Non-Unix Fortran Compilers

Many Unix-derived operating systems now available use the Unix kernel
and shell as originated by Bell Laboratories but employ language proc­
essors produced by other software makers. Microcomputer implemen­
tations of Unix or Unix-like systems in particular tend to use nonstandard
compilers.

Many of the Fortran compilers now running on personal computers
under Unix began life on small machines intended for the now almost

Fortran 77 219

forgotten CP/M operating system, which was keyed to the 8080 and Z80
eight-bit processor chips. As CP/M approached obsolescence, several
compiler makers modified their code to cater for newer processor chips;
at the same time, others entered the marketplace with entirely new com­
pilers. These were usually not oriented to Unix and therefore produced
machine language code directly without passing through C intermediate
code. There is nothing inherently wrong with such compilers; indeed, some
are said to produce faster running code than f77. However, they are wholly
independent and do not use the common facilities provided by the Unix
system for all language compilers. The machine code they produce cannot
be combined with machine code produced by the Unix C compiler, so
mixing of subprograms originating from several different languages is only
possible in roundabout ways, if at all.

Running Fortran Programs

The compilation, loading, and execution of a Fortran program under any
operating system is a complicated affair involving a sequence of processes.
Fortunately, there is no need for most Unix users to see the complexities,
because the commands needed to run simple jobs are pipelined and appear
to the user as a single command. To run a Fortran 77 program stored in
file fortprog, it suffices to enter the command

$ f77 fortprog

When the shell prompt $ next appears, an executable object program called
a.out will be found in the user's current directory. It contains the machine
language code corresponding to f ortprog. It can be moved to a more
sensible name, if desired; in any case, it can be executed. A more sensible
name, say newfile, can also be specified in the command itself, following
the option flag -0; for example,

$ f77 -0 newfile fortprog

The f77 user may request various other options. Those most directly con­
cerned with program debugging are probably -onetrip, -u, -W, and -c. The
-onetrip option makes all do loops execute at least once, by arranging for
the index to be checked at the end of the loop. The -u option causes all
variables to be undefined at the start, thus forcing the programmer to
declare every variable explicitly (as happens automatically in Algol or
Pascal). Many subtle programming errors can be caught in this way.
Warning messages are suppressed by the -w option. Very usefully in
mathematical work, -C causes all array SUbscripts to be checked during
program execution, to ensure that they do not exceed array bounds.

Like any good compiler, f77 permits an enormous variety of options.

220 9. Language and Compilers

These are shared with the C compiler, the assembler, and the loader,
through a unified structure of option names and letters. Details of this
structure will be found below, in the section on compilation and linking.

Textual Extensions to Fortran 77

Numerous extensions to Fortran 77 are accepted by f17, but many of
them affect only a small minority of users. Those likely to prove of general
interest involve formatting of program text, extensions to data types, and
some rule relaxations on input and output.

Program form in standard Fortran 77 continues the tradition of the 80-
column punch card: Fortran text must be placed in columns 7 to 72. State­
ment numbers, if there are any, belong in column positions 1 to 5, and
any character in column 6 means that the statement in the previous card
is being continued on a second or subsequent card image. f17 is much
more tolerant than the Fortran 77 standard in such matters. Lines may
be of any convenient length and may be typed anywhere in the available
space. Continuation lines must contain an ampersand (the & character) in
the leftmost character position, with Fortran text following anywhere
thereafter. Statement numbers are separated from statement text by a tab
character.

While the Fortran 77 standard recognizes only the 26 uppercase al­
phabetic characters, one should not be surprised to find that f17 shares
the general Unix addiction to lowercase. In an attempt to achieve com­
patibility with the standard, f17 works in lowercase only and translates
all characters from upper case to lower (except in character constants).
It is possible, however, to suppress this translation; uppercase characters
are then regarded as distinct from their lowercase brothers, so that sum
and Sum become distinct variables. Fortran keywords are only recognized
in lowercase form, so that when character translation is suppressed,

subroutine x (a, b) is considered normal,
subroutine x (A, b) is all right, but different;
SUBROUTINE x (a, b) is unacceptable,

because subroutine is recognized as a Fortran keyword but SUBROU­
TINE is not. Within character string constants, either case is acceptable.

In program text, the Hollerith character construction of Fortran 66 may
be employed for character string constants and for initializing noncharacter
variables in data statements, even though the Fortran 77 standard does
not care for it. For example, one may communicate a string of 23 characters
by

23hthis ' is an apostrophe

Fortran 77 221

or analogously for uppercase characters. Such usage is particularly con­
venient where the string contains the apostrophe character, which Fortran
77 uses to delimit strings. f77 allows an alternative way of handling the
apostrophe problem, through the provision of two standard quote char­
acters, ' and ". A character string may be started with either and is con­
sidered terminated at its second occurrence. Hence,

"this ' is an apostrophe"

will also work nicely. The Hollerith construction was standard in Fortran
66, so its inclusion in f77 makes for program compatibility.

To strengthen compatibility with C, rT7 also recognizes certain character
combinations beginning with a reverse slant to be single special characters,
not the two-character combinations that they seem to be. These are

\n new line
\ t tab character
\ b backspace character
\ ' apostrophe'

\f form feed (new page)
\ 0 null character
\ \ reverse slant \
\ " quotation mark "

The existence of these combinations provides yet a third solution to the
apostrophe problem:

'this \' is an apostrophe'

which may be a little less elegant than those above, but works.

Extensions to Language Scope

The Fortran accepted by f77 includes two data types not wholly standard,
as well as one entirely unknown to programmers in conventional Fortran.
The declarations

integer*2 j
double complex zl

are accepted by f77. Experienced programmers will no doubt guess that
the first allocates two bytes (a 16-bit word) of memory for variable j . The
second declaration makes variable zl both double precision and complex,
thus occupying four times the storage allocated to an ordinary real number.
The standard Fortran functions applicable to complex numbers, such as
cabs (zl) , cexp (zl) , etc. cannot be used with the double complex data
type. To cope, it was necessary for the designers of f77 to introduce func­
tions applicable to complex data in two parallel families, exactly as the

222 9. Language and Compilers

original designers of Fortran provided real functions in both single and
double precision versions. Function names beginning with c, like
csqrt (zl) , are used with single precision complex numbers, while
functions whose names begin with z, like zsqrt (zl) , are used with dou­
ble complex arguments. Happily, a similar family of function pairs is not
required for long and short integers; one can write, for example,
iabs (ij) , without worrying about whether ij is long or short. In other
words, integer type mixing works just fine in integer functions.

A new data type, which is perhaps a bit less obvious, might be best
introduced by the declarations

implicit undefined (a-z)
integer ij; real ai, box

The first declaration invalidates the Fortran convention that any symbol
beginning with the letters i to n is an integer and any other symbol must
be a real number; it says that no variable will be considered acceptable
unless its type has been explicitly declared. The next two declarations
(typed on one line!) then create the specific variables ij, al, bnx. It is
conventional in Algol, Pascal, C, and some other languages to require
every variable to be declared explicitly. The same discipline can be im­
posed on the Fortran programmer by declaring everything to be undefined
at the start. As one might expect, no operations of any kind are permissible
with undefined data.

Data statements serve to initialize variable values. In f77, bit strings
may be specified in a data statement for any variable declared logical,
real, or integer. The bit strings may be given in one of three notations:
binary, octal, or hexadecimal, as in

data a, b, c /b'lOOlO', 0'477', z'2f'/

Care must be taken, if both long and short integers are used, to specify
only as many bits as the variable actually contains.

Finally, a truly convenient nonstandard feature of r17 is the inc 1 ude
statement. In normal usage, it takes the form

include textfile

where textfile is the name of a file containing Fortran statements. r17
does not translate this statement; instead, it causes textfile to be copied
into the Fortran program in place of the inc 1 ude statement. Blocks of
Fortran text needed in many subroutines, such as array dimensions, com­
mon statements, and equivalences, can be placed in a single file and
included in numerous places in a Fortran program (e.g., at the head of
each subroutine). An immense amount of debugging and editing labor can

Fortran 77 223

be saved during program development, since changes in array dimensions
or variable declarations will be carried through all program segments au­
tomatically if they are changed in just the single file containing the de­
clarations.

Fortran 77 Input and Output

In principle, all Fortran input and output operations are directed to logical
input-output units identified by numbers. f77 recognizes logical units 0
through 9 as being valid. Three unit assignments are made at the start of
any program run and remain in force unless changed by the program:

unit 5 is the standard input, usually the keyboard;
unit 6 is the standard output, usually the screen;
unit 0 is the standard error output, usually the screen.

The remaining seven Fortran logical units are automatically connected to
seven formatted sequential files when program execution starts. Unit I
is connected to file fort. 1, unit 2 to file fort. 2, and so on. These files
are located in the user's current directory (default directory) at the time
the program is run. The files fort. 1, ... , fort. 9 are actually created
only if the program attempts to access them so users need not bother to
open them, nor to remove them if they were not used.

Fortran logical unit assignments to files can be altered at any time,
using the Fortran 77 open and close statements. In their simplest form,
these are

open (2, file='filename')
close (2)

The open statement attaches a file to a Fortran logical unit. In the normal
course of events, the file could be a Unix special file, if input or output
from a specific physical device (e.g., the keyboard) is expected; or it could
be an ordinary fIle. The fIle name must be encased in apostrophes to satisfy
the rules of Fortran 77; in all other respects it is a normal file name. If
the unit was previously attached to another file, that file is detached au­
tomatically before the new attachment is made. The close statement
detaches whatever file was attached to a logical unit, leaving the logical
unit free.

Fortran files may be formatted or unformatted (binary) and they may
permit either sequential or direct access. The Unix system supports all
four types of file, handling them all as ordinary files. Newline characters
are written at ends of records and newline characters are expected as
record terminators on input. Internally, direct access files are handled by

224 9. Language and Compilers

moving the file pointer. For Unix to know how far to move the pointer,
the record length must be declared (in bytes) when a direct access file is
opened. For example, the Fortran statement

open (unit = 2, file = phonebook, form = formatted,
& access = direct, recl = 60, status = old, err = 999)

opens phonebook as an already existing formatted direct access file with
a record length of 60 bytes and connects it to logical unit 2.

When first opened, sequential files have their pointers positioned at
their ends. In this way, writing can be done naturally, by appending to
the already existing file content. Attempts to read, on the other hand, will
produce an end-of-file indication. To read a file, it is therefore necessary
to rewind it first.

When reading numeric input, f77 takes a somewhat more relaxed at­
titude to formatting than the Fortran 77 standard prescribes. The standard
Fortran format statement is oriented to card images (column counts in
format statements), while f77 attempts to preserve its orientation to the
screen display terminal. Commas are therefore accepted as data separators
between numeric fields, overriding the field widths shown in the format
statements. For example, the format specification 2f12. 0 will be satisfied
by the character string

l. 2758, 3.7

despite its failure to respect the format specification. This broadmind­
edness is unfortunately only applicable to numeric data. There is no con­
venient way to extend the same leniency to character string variables, for
the comma itself could be a legitimate part of a character string.

Fortran 77 Rule Violations

Little that is specified by the Fortran 77 standard is not implemented in
f77. The exceptions include

(1) the treatment of double precision variables in common or equi va­
lence statements,

(2) the treatment of character-valued variables when passed as subroutine
arguments, and

(3) the treatment of tab (absolute tab and leftward tab) format control
codes in sequential files or devices.

Ratfor: A Rational Fortran 225

Happily, the rules are violated only in cases most ordinary programmers
never run into, so they are not aware that differences exist. The rarity of
any malfunctions makes the shock doubly great when violations do occur,
hence the warnings given here.

The first exception above only arises on computers where the hardware
requires all double precision variables to start at even word locations. If
there is any problem, a diagnostic message is issued, so unwelcome sur­
prises are rare. Unfortunately, some machines care about even address
boundaries, others do not. Hence f77 cannot be made totally machine
independent.

The second exception results from the way character variables are han­
dled by f77, which in turn stems at least partly from a desire to remain
compatible with C. Again, a warning message is issued if there appears
to be any difficulty. Problems of this kind can always be cured by a few
external declarations.

The third exception arises from a logical inconsistency in Fortran 77,
or rather from inclusion in the standard of assumptions about how the
language is implemented. Backing up (as implied by a left tab) is clearly
not possible on any truly sequential device or fIle. The Fortran 77 standard
seems to assume that the input or output of any sequential device is suf­
ficiently buffered to allow backing up at least within the current record,
but the f77 dialect of Fortran does not make a similar assumption about
genuinely sequential devices (e.g., a terminal display screen). Attempts
to back up where Unix will not allow it lead to execution-time error mes­
sages.

Ratfor: A Rational Fortran

Ratfor is an extended form of Fortran which includes many of the control
structures familiar in Pascal and C. Initially introduced as part of the Unix
system, Ratfor has recently found wider acceptance. Several other op­
erating systems now have Ratfor preprocessors available.

The ratfor Preprocessor

The Fortran language has long been the language favored by scientific
programmers for various reasons including its almost universal acceptance.
Computer scientists generally consider Fortran an unattractive antique
because it contains neither the syntactic niceties that make for clean pro­
gram structure nor the flexible data structures provided by Pascal, Ada,
and other newer languages.

226 9. Language and Compilers

Short of redefining the Fortran language, there is not much to be done
about its paucity of data types. But deficiencies in syntax lend themselves
to treatment by language preprocessors. The Ratfor language represents
a welcome step in this direction. In contrast to other extended Fortran
dialects, Ratfor text is never actually compiled, only translated into stand­
ard Fortran. Ratfor is therefore locked to the Unix system only to the
extent of the Ratfor-to-Fortran conversion; from there on, the programs
will run anywhere that a Fortran compiler can be found. Using the normal
Unix language translators, the sequence from Ratfor to executable code
thus passes through four intermediate forms, of which two are human­
readable languages:

Ratfor translates to Fortran
Fortran translates to C intermediate code
C intermediate code translates to assembler language
assembler translates to relocatable object code
relocatable object code translates to executable object code

The multiplicity of intermediate forms implies that program segments
originating in other languages, or created at other times, can be grafted
on to the structure easily and naturally. On the other hand, all the necessary
processes are usually pipelined together to form a single compiie-and-load
pass; thus, the average user need never even know what intermediate
stages existed.

Program Text Formatting in Ratfor

Ratfor strikes the newcomer at first glance as being a free-format version
of Fortran. Statements may be placed anywhere on a line and may be
continued on as many lines as desired. Continuation characters are not
needed. The ratfor preprocessor will reformat statements to begin in col­
umn 7 and will supply continuation characters in column 6 where nec­
essary. Multiple statements on one line are permitted, with the semicolon
(the ; character) used to separate them. Semicolons are also permitted
(but not required) if a statement ends at a line end. ratfor does try to spot
incomplete statements and assumes that continuation across a line end is
meant if a line ends with a character that implies arithmetic or logical
operations to follow:

The underscore (the _ character) can be used to force ratfor to understand
that a continuation is meant. Underscore characters are not reproduced
in the Fortran output. Semicolons and underscores can always be used
to dispel confusion about statement ends and continuations.

Ratfor: A Rational Fortran 227

Statement numbers may be entered anywhere in a Ratfor line, but of
course they must always precede the statement itself. In fact, ratfor as­
sumes that any number at the beginning of a line is a statement number
and places it in columns 1-5 of the Fortran output. However, the structure
of Ratfor is such that statement numbers are likely to occur rarely in the
Ratfor text.

The comparison operators generally used to form Fortran logical
expressions may be replaced in Ratfor by symbols a little closer to their
mathematical origins. They are subsequently translated by ratfor into their
usual Fortran equivalents:

- - becomes . eq.
) . gt.
)= . ge.

< becomes. It.
< = .le.

.not.

! = becomes . ne.
& . and.
I . or.

While experienced Fortran programmers may find expressions like
x. gt. 0 natural, many people would prefer x) o.

Ratfor is deliberately designed so that the ratfor preprocessor need not
understand any Fortran. Sometimes it seems desirable to prevent ratfor
from even attempting to read Fortran lines, and for this purpose the percent
mark (the % character) at the beginning of a line is used. Any line that
begins with the % character is copied into the Fortran output unaltered
except for removal of the % sign itself. In Ratfor jargon, the % character
when so used is called the transparency operator because every line
marked with it passes through ratfor unseen and unprocessed.

Statement Groups and if Statements

Ratfor control flow strongly resembles that of Algol or Pascal; indeed, it
is surprising how little translation is required to produce standard Fortran
out of Ratfor programs that hardly look like Fortran at all. A key Ratfor
idea is to use statement groups (like Pascal compound statements) where
Fortran ordinarily allows only single statements. A statement group is
exactly what its name says: a group of statements which logically belong
together and which may be inserted in Ratfor text wherever the Fortran
rules would allow a single statement. Statement groups are identified by
enclosing them in braces { ... }. To give a simple example, the Fortran
if statement permits conditional execution of just one statement, while
Ratfor allows several actions to be requested in one statement group:

if (x<O) {call errmsg; answer = 0.0; return}

In ordinary Fortran, the equivalent would read

if (x .ge. 0) go to 100
call errmsg

228

ansWer = 0.0
return

100 continue

9. Language and Compilers

Few statement numbers and very few go to statements are needed in
Ratfor. Many of the inverted-if constructs of Fortran are also eliminated:
Ratfor makes it easy to say "if x is negative, do this ... " rather than "if
x is not negative, don't do this ... " as illustrated by the Fortran example
above.

Ratfor allows an if-then-else construct to be used with statement
groups, in the natural form

if (x<O) then {a = res; j = 1} else {a = -res; j = O}

This form is cleaner and tidier than its Fortran 66 equivalent, which re­
quires at least one if-inversion (below, left). It is less verbose than its
Fortran 77 equivalent (below, right) and distinctly easier to read than
either:

if (x .ge. 0) go to 10 if (x .It. 0) then
a = res a = res
j = 1 j = 1
go to 20 else

10 a = -res a = -res
j = 0 j = 0

20 continue end if

Ratfor if-then and if-then-else constructs can be nested. Intermixing the
two in nested constructs could lead to ambiguity, for it may not always
be clear to which if an else belongs because every if does not necessarily
require an else. The ambiguity is resolved by a simple rule: an else belongs
to the most recent preceding if not matched by another else.

Program Loops in Ratfor

Ratfor provides four convenient looping constructs which all permit one
statement group to be repeated. Pascal programmers will recognize them
instantly; for others, they are perhaps best introduced by examples:

do i = 1,10 {. .. statements . .. }
for (i = n; i > 0; i = i+1) { ... statements . .. }
while (x>O) {. .. statements . .. }
repeat { ... statements . .. } until (x > 0)

Ratfor: A Rational Fortran 229

Unlike its Fortran counterpart, the Ratfor do statement does not require
a range ("from here down to statement number so-and-so") to be defined;
its range is always exactly one statement group. Otherwise, it is similar
to an ordinary Fortran do loop. In fact, ratfor translates the Ratfor do
statement into an ordinary Fortran do loop, so the rules of loop indexing
are ultimately those of the Fortran compiler which will follow ratfor.

The for loop provides a very flexible looping structure. Like the do
loop, it is guided by an integer loop index. The index is initialized at some
value when the loop is first entered. During each trip around the loop, it
is examined to see whether it meets the prescribed terminating condition
and is then altered according to a prescribed rule. The initial value, ter­
minating condition, and alteration rule are listed in the parentheses fol­
lowing the keyword for. Initialization and alteration may be performed
by anyone Fortran statement, and the condition may be any valid logical
expression. Since "anyone Fortran statement" may well be a subroutine
call, progression through a for loop can take place in infinitely many ways.
The ratfor preprocessor creates Fortran code which tests for loop com­
pletion first and performs the index alteration only after loop completion.
Thus, the loop indexed for (i = 10; i < 0; i = i + 1) will not be executed
at all. Looping backwards or looping through chains of pointers is easy
with for loops.

The while loop and the repeat-until loop are index-free. Both merely
examine a logical condition and continue if it is met (while loop) or not
met (repeat-until). The condition must be a single valid Fortran logical
expression, but this rule is not excessively harsh because the expression
may involve a call to a separately defined logical function. The while loop
tests for the condition before executing the statement group, so it is pos­
sible that the statement group will not be executed at all. The repeat-until
condition is tested after loop completion; its statement group will therefore
be executed at least once.

Ratfor allows two additional statements, next and break, to be
embedded in the statement groups controlled by loops. Any statement
group in any type of loop can be cut short by the Ratfor statement next.
Unconditional exit from any type of loop is caused by the statement
break. The next statement only skips the remainder of the statement
group. What happens next depends on the type of loop. In afor loop the
index is incremented; the other three loop types proceed to test the loop
terminating condition.

Text Insertions and Substitutions

Two kinds of Ratfor statement permit text substitution: def ine and in­
clude. The define statement allows a character string value to be as­
signed to a name:

230 9. Language and Compilers

define long 500

Wherever the name long appears in any subsequent Ratfor text, the
character string 500 is substituted. Calling long a name implies that the
character string long is recognized as such only if immediately preceded
and followed by characters other than alphanumeric. Thus, the program
segment

define long 500
dimension xarray(long); oblong

will become on translation

dimension xarray(500)
oblong = x + 27.5

x + 27.5

because the string long in the dimension statement has nonalphanu­
meric characters fore and aft so it constitutes a name in the foregoing
sense; but in the arithmetic assignment next following, long is preceded
by the alphabetic character b so it is not a name. The def ine statement
is useful for achieving much the same effects as the parameter statement
of Fortran 77. However, it is much more powerful because the name may
be defined to stand for any character string whatever; it is not required
to denote a single numeric value. For example, many Fortran programmers
ask for intermediate printouts during program debugging either through
subroutine calls, say

call dump

or by simply inserting wri te statements into program code. Under Ratfor,
temporary printout requests are easy to create by including in.the program
a line containing a particular character string, say pr intI, wherever
printout is required. Subsequently,

define print! call dump

or

define print! write(6,!00)x,y,z

will cause printout statements to be inserted as required. When the program
has been satisfactorily debugged, altering just one statement,

define print! continue

turns all the printout requests into harmless continue statements.

Ratfor: A Rational Fortran 231

The inc I ude statement of Ratfor is similar to the corresponding state­
ment of Fortran 77:

include filename

causes the file f i I ename to be found and copied into the program text,
replacing the inc I ude statement. It is convenient for inserting mUltiple
copies of the same text, such as common blocks or globally applicable
parameter definitions, while maintaining only one actual copy of the text.
Any editing changes in the master text then automatically appear every­
where.

Ambiguity and Duplication

A fundamental principle of Ratfor design is that ratfor should not under­
stand, nor for the most part recognize, the Fortran language. Some po­
tential difficulties may arise from this fact.

In Fortran, keywords are not reserved and may be used as variable
names, subroutine names, common block labels, and so on. Thus,

call call

may look a bit curious, but it is perfectly valid Fortran. The compiler will
sort out that the first call is a Fortran keyword, the second a subroutine
name! However, ratfor cannot do the same because it does not know
Fortran. Ratfor keywords are therefore reserved. It is not permissible in
Ratfor to use call as the name of a subroutine, nor if as the name of
an integer variable.

Any dubious lines can be dealt with by placing % signs in the first col­
umn, thereby preventing ratfor from reading them. The arithmetic if
statement, for example, must be handled in this way, otherwise ratfor
will spot the keyword if and attempt to process the rest as an ordinary
logical if statement. Similarly, the include statement may be intended
for action by 177 at a later time. It can be shielded from ratfor by the %

sign which ratfor will remove, thereby exposing the statement to 177.

Using ratfor

ratfor can be invoked in two ways: by itself or as part of an 177 run. If
Ratfor text is placed in a file whose name terminates with. r (e.g.,
text. r), 177 will automatically include ratfor as the first step in the For­
tran pipeline. Thus, the command

$ f77 text.r

232 9. Language and Compilers

will cause the file text. r to be translated to Fortran, compiled, linked,
and loaded into an executable object file called a.out.

If only a translation to Fortran is desired, without compilation, the
command ratfor will invoke the preprocessor on its own. Some quite
straightforward options are provided with ratfor. If none are specified,
output compatible with the 177 compiler is produced. However, Fortran
text agreeable to other compilers can be provided as an alternative.

Reverse Processing with struct

Fortran programs can be made easier to maintain by using the convenience
features of Ratfor. To do so with already existing Fortran programs, it is
necessary first to invert the translation process so as to generate a Ratfor
program from the Fortran source code. The struct program does precisely
this, producing reasonable Ratfor from either Fortran 66 or Fortran 77
text.

Like the result of any reverse translation process, the inversion pro­
duced by struct is not unique. Options are therefore provided, to allow a
measure of control over the Ratfor text produced by struct. Most struct
options can be safely ignored because their effects are not critical. For
example, break statements might be tidier than goto statements, but
neither will really hurt. Nevertheless, there are a few possible pitfalls;
some statements may appear to translate without difficulty while producing
troublesome output. For example, the use of Ratfor keywords as Fortran
variable names in the original source code may yield nonsense without
seeming to do so. Conversion of a large program is therefore best done
in several passes, inverting the program using struct and following up with
ratfor to check whether the inversion ran into any snags. The resulting
files can be compared by diff to see whether any significant differences
exist. At least two round trips through the struct-ratfor cycle may be
necessary, otherwise the formatting of the Fortran text will not be similar
in the two fIles and diff will report numerous differences of no consequence
to the Fortran compiler.

Translation of old Fortran 66 programs to Fortran 77 can be achieved
by a similar means. The Fortran 66 program is turned into Ratfor by struct,
then into Fortran 77 by ratfor. The automatic translation frequently needs
to be augmented by manual editing of a few really nasty patches, especially
if the Fortran 66 program is old and was produced by highly experienced
programmers; large programs of the late 1960s or early 1970s sometimes
contain clever tricks for saving memory, too clever for struct to handle.
They are usually obvious enough once they have been located.

Non-Unix Ratfor

Programs written in Ratfor are much easier to read, easier to maintain,
and easier to move to different computer operating systems than programs

The C Language 233

written in Fortran. At the same time, they are usable wherever a Fortran
program is usable because Ratfor is always converted to Fortran before
compilation; as far as the compiler can tell, Ratfor programs are Fortran
programs. The Ratfor programmer thus works in a more agreeable language
than Fortran, yet has ready access to existing Fortran facilities and sub­
routine libraries.

Ratfor translators are usually furnished with any Unix system that sup­
ports Fortran. Where the Fortran compiler is separately acquired from a
third-party source, ratfor may well be missing. In such cases, a Ratfor
translator is still easily acquired and installed. There exist several trans­
lators which were written in Ratfor itself and which can therefore be in­
stalled (after translation into Fortran) wherever a Fortran compiler is
available. Such "foreign" Ratfor translators may not provide define
and inc 1 ude statements in their full generality but may have other agree­
able facilities by way of compensation.

The C Language

The language C is the prime language of the Unix system. Unix and C
are related because they were developed concurrently and grew together,
the needs of the system shaping the language while ideas about the lan­
guage led to system revision. In many respects C represents a halfway
house between true high-level languages (like Pascal or Algol, which strive
to be machine independent) and assembler languages entirely keyed to
the structure of a particular computer. Since C recognizes the various
lower-level entities of interest to the system programmer, it is considered
by many an ideal language for writing operating systems. C compilers are
now available under several operating systems of widely varying character,
not merely under Unix.

In this chapter, C occupies a position slightly different from Fortran
and Pascal. Nearly all C programmers are already acquainted with the
Unix system or another similar operating system; people usually learn
the language because they work with the system, not often the other way
around. On the other hand, many experienced Fortran or Pascal pro­
grammers are newcomers to both C and Unix. Consequently, this section
is intended primarily for programmers already acquainted with other high­
level languages. It describes the main characteristics of C, how C is related
to other languages, and hints at why its authors should have deemed a
new language necessary at all. The discussion given here is not sufficient
to learn programming in C; for that, the definitive book by Kernighan and
Ritchie should be consulted.

Most C compilers distribl,lted with Unix or Unix-like systems derive
from the original Bell Laboratories version and are therefore (almost by
definition!) authoritative. They do not violate the C standard in any sig-

234 9. Language and Compilers

nificant way. Nevertheless, they were produced years before there was
a published and agreed standard for the C language, so some deviations
are likely to be found in due course.

General Characteristics of C

The structure of C places it midway between Fortran and Pascal, with
the significant difference that C understands some machine dependent
facts of life deliberately ignored by the other two languages. Although the
C language is more or less machine-independent, C programs frequeiltly
are not. Unlike Pascal or Algol, C implicitly assumes a twos complement
binary machine of fixed and finite word length. It presupposes that char­
acters are represented by single bytes or by byte-like subsections of words.
Within these constraints, easily met by many computers, C provides a
large set of data types and operators, almost as large as one might expect
in a machine language. Bit-level operations such as shifts and maskings,
logical unions and intersections, are as easy in C as in machine language.
C includes various constructs customarily found in assembler languages
but not in high-level languages: address values, indices, incrementation
and decrementation operators. At the same time, C contains most of the
mathematical capabilities of Fortran or Pascal.

As compared to Fortran, C may be considered a superior language in
at least one major respect: its greater richness in data types and data
structures. Mter all, the only data structure conveniently available in For­
tran is the array. Even fairly elementary constructs such as linked lists
and trees cause great difficulty in Fortran while they are easily dealt with
in either C or Pascal. C may be preferred to Pascal for a different reason,
one perhaps a little more controversial: it is not a block-structured language
in the Algol or Pascal sense. It therefore permits separate compilation of
program modules and makes it easy to ascertain the scope of variables.
Program modularity and separate compilation have made Fortran the dar­
ling of the scientific computing community. The design of C takes this
requirement very seriously, so much so that the standard Unix compilers
for Fortran and C share a considerable amount of code.

Structure of C Programs

A C program consists of one or more functions, each possessing zero or
more arguments. A function is comparable in form and purpose to a func­
tion in Fortran or Pascal. Functions in C have names; the function ex­
ample is invoked by mentioning its name, with its arguments listed in
parentheses:

example (a,b,c);

The C Language 235

There is nothing to correspond to the Fortr~n subroutine or the Pascal
procedure; in C, the function does everything. Functions without argu­
ments may exist, but parentheses are required even if there are no ar­
guments, as in example2 () . A function is declared to exist by naming
it, with a dummy argument list, and giving the set of C statements that
define it. The set of defining statements is enclosed in braces, as in

example2 (... arguments . ..)
{ ... C statements . . . }

A function generally involves computation with its arguments and also
with variables purely internal to itself. Arguments given in the argument
list of a function are defined ahead of the left brace that begins the body
of the function itself:

addup (a, b)
int a, b;
{ int z;

z = a + b;
return z; }

This function computes the sum of two integers a and b. As in Pascal,
semicolons serve to terminate statements. In contrast to Pascal, however,
they are terminators, not separators; a semicolon is required after the last
statement.

A function returns a value, that is, it may appear in C statements in
all contexts where an arithmetic value is expected. By default, all functions
are considered to return integer values. If desired, the function value may
be of any other data type acceptable in C, but a type declaration must
then precede the function name. Thus,

double dexample (x, y)
int x, y;
{

.}

defines a function dexample which returns a double precision value.
Functions may also perform other activities, such as reading a character
or writing a block to tape. Where a function value is in principle not ex­
plicitly necessary, it is often used as a success flag. For example, a function
which copies one file to another may return the integer value 1 if the
operation was carried out successfully and the value 0 if not (e.g., if the
file to be copied was not found).

There is no such thing in C as a "main program" in the Fortran sense;
instead, there is one privileged function name main. Execution of a C
program always begins with main, which in turn must invoke any other

236 9. Language and Compilers

functions required. Although main is privileged in this way, it is a function
and its declaration must contain parentheses. When a C program is run
under Unix, the arguments declared for main are passed on to or from
the kernel, so that the program becomes almost an extension of the op­
erating system itself. The form of a typical C program is illustrated by the
following simple example:

main ()
{

}

int a, b, c;
do {

scanf("%d", &a); scanf("%d", &b);
c = addup (a, b);
printf("%d + %d = %dO, a, b, c); }

while (c ! = 0);

addup (a, b)
int a, b;
{ int z;

z = a + b;
return z; }

It is noteworthy that the function addup (x, y) is not defined inside the
main () function, as a Pascal procedure might be; it resides outside, like
a Fortran subroutine. C functions are defined separately, not in nested
blocks. As may be evident from the example, braces { ... } are used to
turn a whole string of statements into a single compound statement, much
like the braces used in Ratfor or the Pascal begin and end brackets. Even
though details differ, the punctuation rules of C resemble those of Pascal
in principle.

No special statement exists in C for defining a function, a strange break
with habit for both Fortran and Pascal programmers. If the C compiler
encounters a previously unknown name followed by a left parenthesis, it
assumes that the name identifies a function and remembers it as a function
name. The rules for exiting from a function are also more liberal than
those of Pascal or Fortran. Control is returned to the calling program
when execution logically reaches the closing brace, even without a return
statement. A return statement does exist, but its use is optional in most
circumstances.

Recursion is permitted in a C function, that is, a function may invoke
itself. On the other hand, functions may not be defined within functions.
In this respect, C differs fundamentally from Pascal or Modula-2 and the
structure of a C program resembles that of a Fortran program much more
closely than the procedures-within-procedures nesting of Pascal. This ar­
rangement makes for both structural simplicity and simplicity in compi­
lation. Unlike Pascal but like Fortran, C easily allows separate compilation
of individual functions. Furthermore, their structural similarity allows the

The C Language 237

C and Fortran compilers to translate both languages into a common in­
termediate code and to process them in an identical fashion thereafter.
Fortran, C, and assembler language programs may therefore be intermixed,
so different sections of a large program can be written in different languages
chosen to suit each processing task.

All C variables are passed to functions by value, not by name. In effect,
duplicate local variables are created when a function is called and values
are assigned to the duplicates. The function operates on the duplicates
only and therefore cannot affect the variables or constants in the function
that called it into action. If modification of variables in the calling function
is really desired, the equivalent of a call by name is possible in C through
the mechanism of pointers.

The sequence in which C functions are called into play is controlled
by program flow mechanisms resembling those of Pascal and Ratfor: if
statements have a similar form, afor ... while construct exists, and the
case of Pascal reappears under the Algol name of swi tch.

Constants, Variables, and Pointers

The C language contains an unusually rich set offundamental data types,
each requiring a different amount of memory. The memory allocated de­
pends on the machine word length and memory organization. Machine
word lengths of 16, 32, and 36 bits are common and implementations of
Unix for each of these have been in common use for some years now.
The data types available in C and the number of memory bits allocated
to each are given in Table 9.1. Most types in this table, excepting perhaps
unsigned, will be familiar to experienced programmers. Type unsigned
is useful for indexing operations, counting, or addressing where sign is
not a consideration. All numerical operations on unsigned integers are
done in straight (uncomplemented) binary arithmetic. The other integer
types are stored in twos complement notation and arithmetic is performed
accordingly. There is no type logical or boolean in the C language.
However, logical operations are defined on integers. C considers any non­
zero value to signify true and zero to denote false.

TABLE 9.1. Memory bits per C variable
Data type as defined in C Machine word

Name Characteristics 16 32 36

int signed integer 16 32 36
char single character 8 8 9
short integer (short) 16 16 36
long integer (long) 32 32 36
unsigned nonnegative integer 16 16 36
float floating point 32 32 36
double double precision 64 64 72

238 9. Language and Compilers

All variables must be declared in a C program; a new variable may
never be introduced by simply using it. Fortran programmers feel this
insistence on strong typing of variables contrasts strangely with the lack
of a function declaration statement but Pascal and Algol programmers
find themselves quite at home. In C, the usual place for declarations is
at the head of each function. A declaration consists of a type name, fol­
lowed by a list of variables:

float a, b, c;
int i, j, k;

The scope of a variable is confined to the function in which it is defined;
it is undefined outside. Variables can be made external by declaring
them outside any function, for example,

int x,y;
main () {nt f, g; ... funct (a, b) ... {
funct (p,q) int p,q; {extern int x,y; ... }

extern variables are somewhat like Pascal variables declared in the out­
ermost block. They permit global use of values, perhaps resembling var­
iables in a Fortran common declaration, but neater and easier because
variable identification is always by name, not by storage position in a
common block. Mercifully, there is no precise analogue of the Fortran
equi valence, which many programmers find a rich source of particularly
difficult bugs.

Pointers are widely used in C, much like pointers in Pascal. The value
of a pointer is the memory address of the variable to which it points.
There is no declaration pointer; instead, they are declared implicitly
by saying, for example, "p is a pointer containing the address of a floating­
point variable":

float *p;

The asterisk operator implies "the variable to which p points". Its inverse
is the ampersand: &x is the pointer to (Le. the address of) the variable x.
Pointers and variables are associated implicitly by assignment statements.
For example,

P &x;
y *p;

In pointer manipulation, the different word lengths associated with dif­
ferent variable types are taken care of automatically. Thus, there are in
reality several different kinds of pointer, one corresponding to each pos­
sible data type.

The C Language 239

Arrays in C are in principle one-dimensional. They are established by
a type declaration statement like

float a [5];

Indexing of arrays always starts at zero, so this declaration says that array
components a [0] to a [4] inclusive exist. Two-dimensional arrays are
declared as arrays of one-dimensional arrays. Arrays are declared by at­
taching the number of repetitions, in square brackets, to an existing var­
iable or array declaration. Thus,

float x [5] [3];

is equivalent to the Fortran declaration real x (3, 5) . Array storage
is by rows (Fortran programmers take note!): the rightmost index varies
fastest.

C knows about various constants: integer, floating, character, and
string. All floating constants are automatically taken to be double length;
the exponential or E notation therefore covers both single and double
precision. Character constants are placed between apostrophes, e.g. I A I.
They can be used in arithmetic; however, their numeric values may vary
from one installation to another. There also exists a set of character con­
stants, principally used to represent nonprinting characters, denoted by
two-character sequences. The main ones are \n (the newline character),
\r (carriage return), \b (backspace), and \ t (tab). Any desired bit pattern
may be placed in a character constant as \ nnn, where nnn is an unsigned
octal number of one to three digits. A string constant is a string of char­
acters encased in quotes, as in "string constant". They can be placed
into character arrays of the appropriate size.

Arithmetic and Logical Operations

As programming languages go, C recognizes and uses an immense set of
operators. Operators come in four principal classes: unary, binary, re­
lational, and assignment.

Unary operators are used as prefixes to values (variables, constants,
or functions), as is customary in almost any programming language. For
example, one writes

x = !x

to indicate logical complementation (negation) of the variable x. Other
unary operators are used in a similar fashion. An exception is formed by
the operators + + and - -, which increment or decrement the operand,
respectively. These operators may be applied either before or after eval-

240 9. Language and Compilers

uation of the operand (including a single variable) to which they relate.
They are positioned before the expression if predecrementation is required,
after it if postdecrementation or postincrementation is intended. For ex­
ample, + + x indicates incrementation prior to evaluation, while x + + asks
for incrementation afterward. While predecrementation and postincre­
mentation are notions familiar to most machine language programmers,
they are not frequently encountered in high-level languages. They are in­
cluded in the full set of available unary operators in Table 9.2.

Manipulative binary operations in C make up an unusually rich set.
They all employ infix notation, so that the operator op connecting variables
x and y always appears in C expressions in the form x op y. The re-

TABLE 9.2. Operators used in C

*
&

++

++

(type)

sizeof

*
/
%
+

«
»
&
A

&&
II

Unary operators
indirection (compute the value associated with a pointer)
pointer creation (compute pointer associated with a value)
arithmetic negation (negative of the value)
logical negation (zero produces I, nonzero produces 0)
bitwise (ones) complement of an integer variable
following operand incremented before evaluation
(e.g. + +x)
following operand decremented before evaluation
(e.g. - -x)
preceding operand incremented after evaluation (e.g. x+ +)
preceding operand decremented after evaluation
(e.g.x--)
typename in parentheses preceding operand converts type
size (in characters) of following operand or type name

Binary operators
multiply the two operands
divide, truncating if operands are integers
find remainder from integer division
add the operands
subtract
shift first operand left the given number of bits
shift first operand right the given number of bits
bitwise AND (boolean product) of the two operands
bitwise exclusive OR of the two integral operands
bitwise inclusive OR of the two integral operands
logical AND (yields I if both nonzero, 0 otherwise)
logical OR (yields I if either operand nonzero, 0 otherwise)

Relational operators
< less than
) greater than
< = less than or equal to
) = greater than or equal to

equal to
! = not equal to

The C Language 241

lational operators are similar to those in other high-level programming
languages. The full set of both manipulative and relational binary operators
is shown in Table 9.2. Despite the large variety provided, not everything
imaginable is included; for instance, there is no exponentiation operator.

C also contains an unusual variety of assignment symbols. The equal
sign = is used in its Fortran sense, but it may be augmented by a binary
operator sign to indicate an operation on the variable itself. For example,

x + = 2; means x
x 2; means x

x + 2;
x - 2;

and similar meanings apply for the * =, / = , % =, < < =, » =, & =, "=, and
! = operators. As far as the underlying bit manipulations are concerned,
the precise meaning of an operator is further affected by the data types
on which it operates. For example, the symbol + placed between two
unsigned integers does not lead to the same manipulative operations as
+ placed between two real (type float) variables.

Structures

C permits use of entities called structures, denoted by struct, to simplify
data handling. A structure is a set of data objects (not necessarily of the
same type) identified by a common name. It closely resembles a record
in Pascal. For example, a structure may be defined by

struct day
Hnt date;
char month [9];
int year;

} x, y;

Henceforth, x and yare understood to have the structure described in the
declaration. Once the structure has been defined, other variables of the
same type may be created by a simple declaration

struct day birthday;

without repeating the details of what the structure must contain.
Two operations are permitted on structures: (1) setting a pointer to the

address of a structure with the & operator, as in &birthday, and (2)
accessing one of its members. Fetching (accessing) uses syntax similar
to that in Pascal: the generic structural component name is suffixed to a
specific variable name. The two are separated by a dot. For example,

x = birthday. year;
birthday. year = y;

242 9. Language and Compilers

But

birthday = another;

is not permitted in C, because structures cannot be passed or copied di­
rectly, nor can they be made into function arguments. This restriction is
not nearly so severe as it might seem, for much the same effect can be
achieved by equating or manipulating pointers to structures.

Input and Output with C

In principle, C has no input and output statements. However, there does
exist a library of standard functions including both primitive (character
level) and formatted input and output. It may be requested from the loader
by the -I option, as, for example, in

$ cc filename -18

Here S denotes the standard library. The standard library relies on various
macros and external variables; they are included in a C program by

#include <stdio.h>

The angle brackets instead of quotation marks mean that the me in question
is system supplied, not a user file.

For formatted output, the printf (...) function is invoked. Its ar­
guments may include character strings containing text to be output, var­
iables, and possibly conversion (formatting) control. Output can be pro­
duced as signed or unsigned decimal, octal, or hexadecimal integers; real
numbers in plain decimal or exponential notation; or as characters. The
field width to be occupied, whether left or right justification is desired
within the field, and the number of digits to be printed for each variable
are matters controllable by appropriate arguments. Formatted input uses
the scanf (...) function and follows much the same rules, with one
significant exception: the arguments of scanf () must always be pointers
to variables, not the variables themselves.

The C Preprocessor

Before they are translated into lower-level code, C programs are passed
through the C preprocessor. The preprocessor looks for lines beginning
with # signs. Ignoring all other lines, it regards these as instructions. Pre­
processor instructions include conditional compilation and direct substi­
tution.

The C Language 243

There are two kinds of substitution: #define and #include. These
are similar to the define and include statements of Ratfor and are
handled by much the same system mechanisms. The preprocessor in­
struction

#include "filename"

(where the quotes are required) will read file filename and copy its con­
tents in place of the # inc! ude statement. When an inclusion is made,
preprocessing restarts at the beginning of the included file. Therefore, an
included file may have other #include statements in it. Recursive in­
clusion, in which file A contains the instruction #include "A", must
obviously be avoided. While this requirement may seem self-evident and
violations easy to spot, the sin of recursive inclusion can easily and almost
invisibly tum up in circular references, in which file A contains # in­
c 1 ude .. B" and file B contains # inc 1 ude " A " .

The C language itself includes very few built-in functions. Practically
everything useful, from input-output operations to evaluation of Bessel
functions, is done by including library functions from one of many C li­
braries. These are inserted by a #include preprocessor instruction much
like any other file, but with one key difference: the quotation marks are
replaced by left and right angle brackets (the < and) signs). This ar­
rangement permits the C libraries to be stored somewhere far away from
the user's own directory structure. The angle brackets distinguish system­
provided library files from any others and effectively tell the preprocessor
to look for them in the appropriate place. For example, any C program
that uses the curses screen window management package must declare

#include <curses.h>

Most of the common files required by users have names ending in . hand
are referred to as header files, probably because their #include state­
ments are conventionally placed at the head of the program file.

The preprocessor instruction #def ine replaces a given string of char­
acters by another string of characters. The replacement technique is similar
to that used with Ratfor. It is surprisingly clever; for example, it is possible
not only to replace a function name but to have arguments substituted at
the same time.

The C preprocessor allows declarations of structures, array sizes, var­
iable definitions, utility functions, and various other useful program seg­
ments to be placed in separate files and to be copied into other programs
where desired. Source code can therefore be arranged so that all the def­
initions and parameters that must be repeated in various program segments
(e.g., array sizes) only appear in one place. Program alteration is thereby
made easy, for a change made in a single place will automatically propagate

244 9. Language and Compilers

to wherever it is needed, through # include and #define statements.
Similar facilities are provided to the Ratfor and Fortran 77 programmer.

Compiling, Assembling, and Loading

High-level languages supported under Unix are commonly compiled in a
multistep process which passes through C intermediate code. The C lan­
guage is compiled in two passes, first from C itself to C intermediate code,
then from C intermediate code to assembler language. Other languages,
in particular Fortran 77, are processed by partial compilers which produce
C intermediate code also. The translation of intermediate code to relo­
catable object code and the loading of object code are tasks carried out
by a set of programs common to all languages in this family. The benefits
of this structure are many. Construction of additional compilers is sim­
plified, since they only need to go as far as C intermediate code; procedures
written in different languages can often be intermixed; subroutine libraries
can be shared; and system calls can be equally accessible from all. Best
of all, only one version need exist of the machine-dependent parts of the
system.

The Id Loader

The loader program Id produces executable machine language programs
by combining relQcatable object modules. Relocation amounts to final
translation of relocatable object code into absolute, executable machine
code. Numerous modules must be combined even when the source pro­
gram consists of only a single text file such as a Fortran program, because
the Fortran program commonly employs various library subroutines and
system calls for such tasks as floating-point calculation, reading files, and
sending characters to the screen. Typically, a Fortran or C program of
only a few lines, say to read the keyboard input and echo it to the screen,
will require combining dozens ~f individual program segments. The task
of Id is to locate all the pieces, to link them together correctly, and to
write the resulting machine language text into a file. The loader is invoked
by the command

$ ld file! file2

The files named in the command must be relocatable object programs
produced by the assembler, or the names of object program libraries. The
output is placed into a file named a.out unless the command is made to
specify otherwise with the -0 option, as in the command

Compiling, Assembling, and Loading 24S

$ ld -0 outfile filel file2

Libraries normally provided as part of the operating system do not have
to be named in the command, they are considered to be included auto­
matically. User-supplied libraries, on the other hand, must be named ex­
plicitly.

The Id program is used by most programmers without realizing that
they are using it, because the loader is usually included as the final stage
of language processing sequences such as cc and f77.

The cc and f77 Commands

The Fortran and C compilers usually provided in Unix systems are f77
and cc. Both produce output in the same language, the C intermediate
code. This code is translated to the assembler language of the machine
in use, by another program called (for historical reasons) "the second
pass of the C compiler"; its file name is usually /lib/c2. C intermediate
code is not implementation dependent: it is the same for every installation.
On the other hand, the assembler language text is necessarily different
for every hardware configuration because it reflects the machine instruc­
tion set on a line for line basis. The text obtained from the C second pass
is finally translated by the assembler into relocatable object code, machine
instructions which are final and absolute except for assignment of the
memory locations where the program is to reside at execution time.

When the command cc is issued, a pipeline is created including the first
and second phases of the C compiler followed by the loader. The pipeline
is some half a dozen programs long, because the individual phases of C
compilation involve several processes each. Indeed, the assembler itself
is part of the pipeline. On issuing the command

$ cc sourcefile.c

the program sequence is executed and the object code corresponding to
sourcef i 1 e. c is placed in a file called a.out. This default file name has
nothing to do with the C compiler, but rather reflects the habits ofld, the
final program in the pipeline. The exact structure of the pipeline, and
whether any intermediate fIles are teed off, depends on the options included
with the command.

The manner in which cc is set up permits numerous options. There are
actually only a dozen (mostly of little interest), but there appear to be
more because options and arguments are passed downstream to other
processes in the pipeline if they are not recognized. Option names are so
chosen that the several C compiler phases and the loader all recognize
different ones. For example, the -0 (output file name specification) option
may be given with the cc command; it is not used by the C compiler itself

246 9. Language and Compilers

but is passed on down the pipeline until it is finally recognized by the
loader. Thus,

$ cc -0 outfile sourcefile.c

produces the output in file outfile, the -0 having been passed down­
stream until it reached the loader. A nearly full set of options is shown
in Table 9.3. While not all the listed options are available under all Unix
versions, additional options are often provided.

The f77 command launches a process sequence similar to that of cc,
but it uses the Fortran 77 compiler instead of the first phase of the C
compiler to get started. In fact, it may even include ratfor as the starting
process. Again, the number of options looks vast; but in reality it is much
smaller than it seems, because unrecognized option symbols are passed
downstream until they are understood by some other program. In principle,

TABLE 9.3. Language compiler options

-c cc2 compile to object file, but do not load
-d Id define common storage in spite of -r option
-e<name> Id <name> is the entry point of assembled program
-i Id separate (shared) text and data address spaces
-f cc2 use floating point interpreter (no hardware)
-g cc2 generate sdb debugging information
-1<name> Id search library Ilib/lib<name>. a first
-m f77 use the M4 preprocessor ahead of ratfor and f77
-o<name> Id name the output file <name>, not a. out
-onetrip f77 do loops are tested at the end of loop execution
-p cc2 produce profile file and monitor execution
-r Id relocation symbols to be generated in output
-s Id strip symbol table and relocation symbols
-u f77 all variable names undefined by default
-u<name> Id tabulate <name> as an undefined symbol
-w f77 suppress compiler warning messages
-x Id keep only external symbols in symbol table
-z cc2 check stack overflow at subroutine entry points
-c f77 include subscript bound check in code
-D<name> cpp define <name> to C preprocessor, like #def ine
-E cpp run C macro preprocessor only, to standard output
-E<name> f77 <name> is a string of EFL options
-F f77 produce *. f files from *. r, don't compile
-I<name> ccl look for # include files in <name> before default
-L<name> ld before -1: search directory <name> before default
-0 cc2 optimize object code
-p cel run C macro preprocessor, produce *. i files
-R<name> f77 <name> is a string of ratfor options
-s cc2 produce assembler language output in files *. s
-U<name> cpp remove any initial definition of <name> (see -D)
-v Id identify version of loader in use
-W<p>,<a> cc2 pass argument <a> to processing phase <p>

as all undefined symbols are taken as global

Compiling. Assembling. and Loading 247

c

~ program
I C preproc. l

Ratfor
program ~ ratfor I I cc part 1 I

Fortran

~ program
I f77 I

C
interm ediate

Pascal r program

code
I pc I

I cc part 2 J
Assembler r program

assembler language

l as I
relocatable
object code

l Id I
executable (absolute)
machine language code

FIGURE 9.1. Processing path from programmer to machine language, for the com­
monly supplied languages under Unix.

the sequence is thus t77-second phase of cc-as-Id. The entire process
structure is .shown diagrammatically in Figure 9.1.

Additional 'high-level languages can be added to such a structure with
no more than moderate effort; it suffices to devise a translator to convert
the new language into C intermediate code. Since C intermediate code is
not machine dependent, this translator will not be machine dependent
either. New languages can thus become available on all hardware imple­
mentations almost at once.

The Process Option Hierarchy

Because options are passed downstream, most option names are unique
in the entire suite of compiling, assembling, and linking programs. Both

248 9. Language and Compilers

capital and lowercase letters must be used to accommodate the whole
range of 30-40 options. Where simultaneous use of two options does not
seem to make sense, option letters are occasionally duplicated. There is
even an option -W for passing options on to specified downstream pro­
cesses, should it ever be necessary to override the natural sequence.

A comprehensive table of options applicable to the Fortran 77 and C
compilers, the assembler, and the loader appears below. In the table, the
various options are shown along with the processes that recognize them;
epp is the C preprocessor, eel and ee2 denote the first and second phases
of the C compiler. The table is as nearly complete as differences between
system versions permit. The locally available manuals should be consulted
for the finer details, should they ever be required.

Program Archives

Although the Unix file structure permits large numbers of files to be mar­
shalled conveniently, there is still a need for grouping together archives
(also called libraries) of subroutines. A typical high-level language program
may use several hundred system-provided routines such as mathematical
functions, input-output services, and data conversions. Many of these are
quite short, but each one must take up at least one block of file space
(512 or 1024 bytes) when stored in individual files. Furthermore, searching
for so many separate files would slow operation considerably even if file
space and directory clutter were not a consideration. The Unix system
therefore allows so-called library files to be built. These contain internal
directories which can be searched for the required routines.

Certain libraries exist in permanent form on every Unix system. But
users may also build private libraries of frequently used functions. Li­
braries are maintained by the ar (archivist) program. It permits insertion,
extraction, and moving of individual modules within a library or between
a library and other files. It also permits cataloguing libraries.

When loading programs, some system-provided libraries are automat­
ically included (e.g., Fortran mathematical routines). Others, including
all user-created libraries, must be explicitly named to the loader. Apart
from this fact, there is no distinction between system-provided and user­
created libraries.

Berkeley Pascal

Of the several Pascal compilers now available under the Unix operating
system, Berkeley Pascal is probably the most widely used. Initially built
during 1976-1978 and subsequently maintained at the University of Cal-

Berkeley Pascal 249

ifornia, Berkeley, it is mature, well debugged software. The Berkeley Pas­
cal subsystem includes both an interpreter and a compiler, an advantage
for serious program development.

Structure of the Pascal System

The whole Berkeley Pascal system contains the six main commands pi,
px, pix, pc, pxp, and pxref, as well as a few minor ones.

pi is a translator which converts the Pascal source code into an in­
terpretive (intermediate) code; px is an executive program which reads
the intermediate code and interprets it. In other words, px translates the
intermediate code commands into binary machine instructions, one com­
mand at a time, and executes them immediately. pix is essentially a pipeline
comprising pi and px.

The pc compiler can be used to produce executable modules, or it may
be employed to create assembler language programs. These can be linked
with other programs, possibly originating from other languages. Normally,
pc expects to work on complete Pascal programs. However, incremental
compilation is also possible.

pxp and pxref are utilities for supporting Pascal program development.
pxp is an execution profiler which monitors the execution of a program
and shows how many times each statement was executed. It can also be
used to reformat Pascal source programs into readable form. pxref is a
symbol cross-reference generator, useful in tracing variable names in large
programs.

The Berkeley Pascal system introduces a few conventions of its own.
File names ending in . p are taken to be Pascal source files. The file name
obj is reserved for interpreter output and the name a.out for executable
code.

Interpreted Pascal

The simplest way of running the Berkeley system is through the interpreter
pipeline. If file source. p contains a Pascal program, then

$ pix source.p

causes the source program to be translated into intermediate code by pi,
then to be interpreted by px. The next screen response should therefore
be whatever output the program source. p may produce. Alternatively,
the user may wish to do the job in two steps; the sequence is then

$ pi source.p
$ px obj

250 9. Language and Compilers

since pix subsumes both pi and px. The interpreter pi places its output
into file obj by default. Of course, it is possible to move this file to a
different name, in which case the new name would have to be substituted
for obj in the px instruction. The two-step procedure is useful for de­
velopment of large programs, where there is not much point in retranslating
sections already known to work.

Code produced by pi may be stored in files and executed by px at a
later time. To the user, files produced by pi appear to be executable. In
keeping with the usual Unix shell conventions, the file obj can therefore
be executed either by the command px obj or by obj. Furthermore, in the
absence of any file name px assumes that obj is the desired file, so that
simply typing px will have the same effect. pi is convenient and easy to
use, but it may place some restriction on program size since everything
has to be in memory at once. The limitation is not severe; even on small
computer systems, about 1000--2000 lines of source code can be handled.

The interpretive Pascal subsystem consisting of pi and px provides for
options in a style consistent with the Unix shell, so the command may
be followed by a minus sign, a string of option letters as appropriate, and
the file or files to be operated on. The available options are

- b <n> set output buffer to <n> blocks (output buffer = one line)
-i list include files in full (include statements only)
-1 source program listing to be generated (no listing)
-p postmortem error backtrace and dump omitted (trace is

done)
-8 standard Pascal language check (no checking is done)
-t subrange bound testing is suppressed (tests are performed)
-w warning diagnostics are suppressed (warnings are issued)
-z profile counters are set up for later pxp run (no counters)

All the options (except for b) are toggles; they reverse whatever their
previous settings may have been. The values given in parentheses are
those assumed by default, to be reversed if desired. Options may also be
invoked in the program itself, by including in the program text a special
comment line. However, when used in a program, the options no longer
act as toggles; they must be assigned firm ON or OFF values. Ordinary
comments may follow in the same comment brackets, permitting the user
to retrace his program logic at a later date. For example,

{$s+ standard Pascal checking turned on here}

{$s Standard Pascal checking turned off here}

The -I, oS, -t, -w options are probably self-explanatory. A few brief com­
ments on the others may be in order.

Berkeley Pascal 251

Berkeley Pascal permits sections of program text to be included via
include statements, somewhat in the manner of C. The statement

#include filename.i;

will be replaced at translation time by the text contained in filename. i.
The included files must have names ending in . i. They are not normally
fully listed in the program listings; only the #include statement will be
shown. The -i option causes them to be printed instead of the #include,
if requested.

Since the interpreter is most useful for program development, an error
backtrace (also called a postmortem dump) facility is provided. It counts
the number of statements executed, indeed limits it, thereby preventing
infinite loops. It also clocks the execution time and to some extent iden­
tifies runtime errors. If no backtracing is desired, it can be turned off with
the -p option.

The -z option may be employed to turn on counters that subsequently
allow execution profiles to be produced by pxp.

Ordinarily, Pascal output is buffered by print lines; that is, output char­
acters are saved up until an end of line is encountered. The buffer size
can be changed by the -b option to be larger or for the output to be un­
buffered; it is unlikely that any but expert users will need to make much
use of this facility.

Compiled Pascal

The pc compiler produces executable object code or, if preferred, assem­
bler language code. It is thus possible to link Berkeley Pascal programs
with programs originating in other languages at the assembler level. Pro­
gram loading and execution follow the procedures as given above for C
and Fortran 77, with a few differences that arise from the idiosyncrasies
of Pascal language structure. The procedures involved are similar to those
of Fortran 77, with pc instead of f17 feeding the second pass of the C
compiler (ee2 in the above).

The pc compiler is primarily intended for use where programs have
been more or less thoroughly debugged with pi. Hence, the options avail­
able are aimed at yielding good quality object code first, only secondly
at providing debugging information. Fewer facilities are provided in pc
than pi for finding programming errors.

The set of options provided with pc is wider than with pi. The options,
with default values in parentheses, are

-b<n>
-c

output buffer <n> blocks (buffer = one line)
compile partial program (full program expected)

pi

252 9. Language and Compilers

-c subrange bound test (no tests are performed)
-g log debugger information (none logged)
-i list all include files (include statements only) pi
-1 source program listing generated (no listing) pi
-o<name> output file name to be <name> (a.out is used) ld
-0 object code optimizer to be used (not used) cc2
-p profiling counters for prof (none generated) cc2
-8 standard Pascal check (no checking is done) pi
-s assembly language output (object code is produced) cc2
-w warning diagnostics (warnings are issued) pi
-z profile counters for later pxp run (no counters) pi

Options marked pi are identical in effect to the corresponding options
available with pi; they will not be discussed further. Those marked cc2
or ld are passed downstream and therefore have the same effect as with
the C compiler cc or the loader Id.

The subrange bound test option -c is similar to that provided by pi,
except that the default is set the other way around: unless the user asks
for it, no checking is done. This reversal will be seen to be consistent
with the general approach of pc: good object code comes first, debugging
second. The -g option provides for logging the information required by
the Unix symbolic debugger.

It is possible to compile parts of programs (e.g., individual procedures
or functions) separately and to use the resulting relocatable object code
later. The -c option informs pc that a partial compilation is intended. Be­
cause Pascal allows considerable flexibility in creating data types, partial
compilation is not as easy to arrange as in Fortran; similar data types
must be similarly defined across the boundaries of separately compiled
files. This problem is resolved in Berkeley Pascal by use of included files
containing the necessary definitions. For details of partial compilation,
the Berkeley Pascal manuals should be consulted.

Error Flagging

The interpreter pi and the compiler pc flag source code errors by drawing
a line across the source program listing, with a label showing the error
type and (where appropriate) an arrow to show the error location. For
example, a missing do in afor-do loop is flagged by displaying

37 for i : = 1 to n begin
e ___________________________ A _____ Inserted keyword do

meaning: in source line 37, there exists a nonfatal error, which pi has
attempted to cure by inserting the missing do. The label at the left of the
ruled line identifies the error as one pi was able to correct well enough

Berkeley Pascal 253

to allow execution. There are three categories of error flaggings: warnings
W, nonfatal errors e, and fatal errors E. Warnings may be suppressed if
there are many fatal errors in a program, on the reasonable supposition
that many major errors are unlikely to be cured in one attempt. In any
case, quite a few warnings may arise through secondary effects of major
program errors, then just as commonly disappear by themselves when
the errors are cured.

The error messages issued by Berkeley Pascal generally take the form
of nearly-English text, so that no book of error codes is required to de­
cipher them. However, clear messages are not necessarily correct mes­
sages. All that pi can tell with certainty is that something has gone wrong;
its guess as to what may well be incorrect. In the above simple example,
pi assumed that do should precede begin; it could not correctly guess
that the user, in a moment of absentmindedness, had typed in the word
begin when he really meant do. The incorrect guess will presumably man­
ifest itself much later in the program as the absence of an end to match
the begin!

Execution Profiling

The pxp execution profiler lists the Pascal program specified in the com­
mand and shows how many times each statement was executed. Such
operation counts are useful in at least two important ways. First, program
segments with zero execution count clearly have not been tested at all,
suggesting that the test data should be altered or that program logic needs
checking. Secondly, execution counts permit the programmer to identify
those (usually few) segments of the program which account for the biggest
part of execution time. Those, and few if any others, deserve to be reex­
amined with a view to code optimization. The profiling options available
with pxp are

-a all routines to be included in the profile (omit if unused)
- t tabulate procedure and function calls (no table given)
- z profile named included files, or all (no profile at all)

Note that if neither the -t nor the -z option is specified (i.e., neither a
detailed profile nor a table is asked for), no profiles will be given; all that
results is a listing of the program text.

Profiles produced by pxp include only those routines which were ac­
tually executed, but with the -a ("all") option pxp will also list those in­
cluded in the program file but not run. The execution count for the latter
will naturally be zero. However, it is often useful to have them included
in printout. Profiling can be made selective by requesting the -z option,
which permits a number of . i files to be named; only the named files
will then be profiled. If no . i file names are given, the -z option is under-

254 9. Language and Compilers

stood to ask for everything to be profiled. The -t option requests a sum­
marizing table of procedure and function calls.

Program Tidying

When pxp is run without requesting any proftle information, it will produce
a program listing only. Pleasing and readable output is obtained by guiding
pxp through its various options. These are

- d suppress listing of declarations (all source text listed)
- e substitute text for include statements (statements only)
- f full parentheses for mathematics (minimal parentheses)
- j left justify everything (nested blocks indented 4 spaces)
- s strip comments in listing (comments are fully listed)

underline keywords in listing (keywords are listed plain)
- <n> indent nestings <n> spaces (default value is 4 spaces)

In producing listings, Berkeley Pascal works in lower case, except for
any literally included text (e.g., text to be printed out). Keywords are
thus reduced to lower case, as are variable names.

The various options are probably self-explanatory, except perhaps for
-f. When analyzing mathematical expressions, pxp normally reduces pa­
rentheses to the fewest possible by exploiting the rules of operator pre­
cedence. Under the -f option, enough additional parentheses are included
to enforce the correct order of computation even if the precedence rules
of operators are ignored.

Listings produced by pxp contain date and time in the header. It should
be noted that these do not show the time when the listing was produced,
but constitute a version date stamp of the program. In other words, they
show the time of most recent modification of the program file.

Basic

Unix systems support a variety of interpreted as well as compiled lan­
guages, with bas, a dialect of Basic, included as part of the Version 7
release. Basic is a simple, interpreted, programming language whose major
advantage is immediate execution; every statement can be executed, and
its results can be known, on the spot. Like standard Basic, bas is not
generally well suited to "serious" computation where Fortran, Pascal,
and C have a strong edge. But it serves very well for occasional calcu­
lations, in the role of a superpowerful desk calculator. Because it is as­
sumed that Basic will normally be used only in a desk calculator role, bas
lacks refinements that some other versions of Basic possess.

Basic 255

Only a very brief description is given here, intended to highlight the
major features of bas; it is assumed that the reader is familiar with Basic
itself.

Expressions, Names, and Statements

As might be expected, bas works in lower case. Otherwise its statements
resemble those of standard Basic. Variable names in bas may be of any
length and composed of a letter followed by letters and numbers. Although
long names are permitted, only the first four characters are actually used.
Hence, voltage and volts would both be considered identical to volt. Nu­
meric values may be written in any of the notations acceptable to the f17
compiler.

Expressions are formed by combining operators, names, and numeric
values. The admissible operators are the usual arithmetic and relational
ones, as well as the logical operators & (and) and I (or). Precedence rules
for operations follow those of standard Basic and precedence may be
forced by parentheses.

A statement may consist of a single expression which may (but need
not) include an assignment operator. A statement consisting of an expres­
sion without any assignment operator (i.e., lacking an equal sign anywhere)
is evaluated and the result is immediately displayed, making bas useful
as a high-powered desk calculator. Most standard Basic statements are
acceptable to bas.

A statement in bas may be prefixed by a line number, as is usual in
Basic. Lines prefixed by numbers are stored in order of line numbers and
are only executed in response to the run statement. The internal (num­
bered) statements may be examined with the list statement.

Running bas

When bas is invoked, a file name may be passed to it as an optional ar­
gument. This file will be read as input; when the file is exhausted, input
is taken from the keyboard. One possible use of this arrangement is to
load flIed programs for execution with the run statement, but other uses­
for example, automatic partial execution of some calculation-can be de­
vised. No other options are provided with bas.

Internal statements in bas can be edited using the ed editor, which can
be reached by way of the edi t statement in bas. This statement reaches
out of bas to the shell and requests the ed editor to be run. The file edited
is always the file named in the bas command to the shell. In other words,
if bas was set running with the command

$ bas progrm

256 9. Language and Compilers

then ed will edit the fIle progrm; there is no choice. Editing and debugging
are thus possible with the full power of ed, without any separate editor
to go with bas. The internal statements may be listed any time with the
list statement and may be written to a fIle with the save statement.
Both list and save permit one, two, or no arguments, so they may be
issued in any of the three forms

list
list 20
list 20 40

In the first form, the entire fIle of internal statements is listed; in the second,
only statement 20; in the third, all statements from 20 to 40 inclusive. The
save statement works in the same way. If bas was invoked giving a fIle
name, internal statements are saved in the named fIle; if no file name was
given, they are saved in file b. out.

The mechanism provided in bas for reading external data is through a
built-in function called expr () . Whenever this function is employed, it
reads one line from the input and evaluates it as an expression. In other
words, the statement

answ = data * expr()

will cause an expression (including simply a number) to be read from the
input and to be used as if it had been written into the statement itself.

Assembler Language Programming

Assembler language has long been the traditional choice for operating sys­
tems programming. Since assembler language addresses machine registers
directly, it gives the programmer absolute control over exactly what action
will be taken and how. The number of operations to accomplish any par­
ticular task can therefore be minimized. For exactly the same reasons,
assembler language programs are totally machine dependent and cannot
be moved from one computer to another.

Assemblers under Unix

Within the Unix family of operating systems, the C language has largely
replaced assembler language. Little can be done in assembler language
that cannot be done in C, though that little is very important. A residual
need for programming at the machine level will therefore always remain.

Assembler Language Programming 257

Since C does nearly everything necessary for system programming, no
elaborate macro assemblers are needed under any operating system that
supports C. Every different computer type of course requires a wholly
new assembler. Most assemblers used with the Unix system are simple,
often lacking capabilities for macros or symbol equivalences. The reason
is inherent in the general design philosophy of Unix: nothing should ever
be done in machine-dependent programs if the same task can be accom­
plished in a machine-independent fashion. In other words, a simple,
straightforward assembler suitable for writing small programs ought to
suffice because small machine language programs are the only kind that
should ever be written!

Chapter 10

A Selected Command Set

Any command in the Unix system is merely the name of a program; in
response to the command, the shell causes the correspondingly named
program to be executed. Commands are therefore as fluid as programs
resident in the system. Strictly speaking, it is no more possible to catalogue
the available commands than to give a list of all programs. However, a
set of standard programs always forms part of every Unix system release.
These can be listed, and indeed the system manuals do so in full detail.
What follows in this chapter is a selection from that rather daunting list,
augmented by a few others found on many Unix systems but not "official"
in the sense that they are not provided by AT&T Technologies (or Western
Electric before them) as part of their system releases.

Definitions of Commands

For the novice user, and even for many practiced users who are not pri­
marily system programmers, the multiple volumes of system documen­
tation are heavy going at best. Although well enough written and nicely
laid out, manuals often tell much more, and in much greater detail, than
most users really want to know. Besides, the very volume of those en­
cyclopedic tomes prevents ready reference. The System V basic docu­
mentation is well over four inches thick in its typeset form as published,
and it consumes the better part of a box of paper when it is produced on

A Selection of Commands 259

the line printer. A full System V, Xenix, or 4.2 BSD are even more vo­
luminous than that. When maintenance and installation instructions are
included, the quantity of paper grows further; even small systems for per­
sonal computers are delivered with what looks like the Greater London
telephone directory. The following brief summary of the major system­
provided commands is therefore not intended to compete with the defin­
itive system documentation, but rather to make it easier to consult as a
quick reference.

The various commands are listed here in alphabetical order. A brief
description of its action is given for each, as well as a summary of the
command syntax and of the major options and qualifiers available. The
lists of options are not complete in most cases, and many of the subtleties
are omitted. A reference is also given in each case to the chapter of this
book in which the most complete discussion of the command will be found.
Only the chapter containing the fullest discussion is shown; further ref­
erences will be found in the Index.

The several Unix system releases are not uniform in their command
syntax, nor in the selection of commands provided. In the following an
effort has been made to find the common elements in the various system
versions, but this obviously cannot always be done; often enough, the
command descriptions note differences. About ninety commands are listed
here, less than half of what is listed in the Seventh Edition of the Unix
Programmer's Manual and much less than half the command repertoire
for either System V or 4.2 BSD. For a full description of each command,
the user should of course turn to the system manuals; the object here is
to present enough material to satisfy most users most of the time.

A Selection of Commands

Commands are listed in alphabetical order in the following. In the de­
scriptions, optional items are always enclosed in square brackets, for ex­
ample [item]. Items thus shown may be included in a command line or
omitted. Items not enclosed in square brackets are mandatory. The ellipsis
... means that the immediately preceding item may be repeated as many
times as desired. For example,

cat [option] <.file> ...

indicates that the command verb cat may be followed (optionally) by some
option qualifier; it must be followed by at least one file name <.file> or
several file names.

Words in angle brackets are generic identifiers, i.e., names of particular
kinds of entities. Thus, <.file> means a file name, <user> means a user

260 10. A Selected Command Set

login name, and so on. The most frequently occurring identifiers are prob­
ably <file> and <directory>.

Function: Maintains archives and libraries.
Syntax: ar <option> [<oldfile>] <archive> <file> ...
Usage: The archivist is used to insert, remove, or replace files in libraries.
Its major use is to update libraries used by the linker in making up exe­
cutable program modules. One of the characters dmpqrtx, preceded by a
minus sign and possibly followed by one or more of abciluv, constitutes
<option>; <archive> is the archive file, and <file> is the name(s) of
the constituent fIle(s). Replacements or additions may be specified to occur
either before or after the constituent file <oldfile>; if unspecified, they
are placed at the end of the archive. The initial characters in <option>
are

d deletes named files from the archive
m moves named files to the end of the archive
p prints the named files as they are in the archive
q (quick) appends to end of archive without checking position
r replaces the named files by new ones, allows repositioning
t tabulates (lists) constituents of the archive
x extracts named files from the archive

The most important second characters, following those above, are

a put <file> in archive after item <oldfile>
b put <file> in archive before item <oldfile>
1 local directory (most archives are in directory /temp)
u update (with r) replace only files newer than existing ones
v verbose (i.e., with complete reporting of actions)

In older system versions no minus sign is required with <option>.
More in: Languages and Compilers (Chapter 9)

Function: Assembler, details dependent on computer.
Syntax: as [options] <file>
Usage: as assembles programs and produces object code executable after

A Selection of Commands 261

loading with the loader Id. For obvious reasons, every type of computer
requires a different assembler so a large variety of assemblers exists under
Unix. Almost all accept one option:

-0 objfile output goes to file objfile, not a. out

The other common option is -m, which invokes the m4 macro preprocessor
(part of many Unix systems). as and similar assemblers are intended to
follow the C compiler. Few assemblers running under Unix are ambitious
in macro processing and related facilities-after all, what the C compiler
does not produce the assembler need not assemble. If any assembler lan­
guage coding is really necessary (which rarely happens), the full system
manuals should be read with care.
More in: Languages and Compilers (Chapter 9)

Function: Executes command file at a given time.
Syntax: at <time> [<day>] [<file>]
Usage: At or after the specified time, at reads the standard input and ex­
ecutes its contents as a shell script. (In some Unix versions a file name
may be specified as the last element in the command). Time may be given
in the 24-hour notation in all Unix systems, but many accept other rea­
sonable formats, e.g., 8am, 7:30pm. The day, if included, can be given
as a day of the week (sun, mon, ... , sat) or as a date (Jun 12). Systems
differ slightly on permissible date formats. Exactly when the file is exe­
cuted depends on the frequency with which the local system checks its
clock for such processes; delays of minutes are not uncommon. at uses
the timekeeping arrangements of cron, so at processes are available to
users with access to crontab.
More in: Facilities and Utilities (Chapter 6)

Function: A Basic language interpreter.
Syntax: bas [<file>]
Usage: A dialect of Basic is interpreted. If the optional file name is given
in the command, this file is read as input before the terminal keyboard.
The dialect has some peculiarities which fit neatly into the general Unix
framework. In part, they result from the view that there exist much better,
and better integrated, languages than Basic for writing programs, but Basic
will be employed by many users as a sort of powerful desk calculator.

262

More in: Languages and Compilers (Chapter 9)

Function: Cancels a waiting or running print job.
Syntax: cancel [<request number>] [<printer>]

10. A Selected Command Set

Usage: A print job is removed from the print queue. Every printing request
is assigned a number by Ip; it may be cancelled by that number. Naming
a printer cancels the job currently being printed on that printer. Either a
request number or a printer designation must be given; the command
without any arguments means nothing.
More in: Facilities and Utilities (Chapter 6)

Function: Concatenates, then displays, files.
Syntax: cat <file> ...
Usage: One or more files are joined end-to-end and fed into the standard
output stream. If the output is sent to a file, as with
cat file1 file2 > file3, then the destination file is cleared out
first. Thus, the command cat file1 file2 > file1 destroys
f i 1 e 1, thereafter copies f i 1 e 2 into a new file called f i 1 e 1. Caution is
necessary: the ftle destruction really is performed first, so that the erstwhile
content of file 1 is simply lost in this case. If no file names are given in
the command, the standard input and output files are used.
More in: Facilities and Utilities (Chapter 6)

Function: C language compiler, followed by loader.
Syntax: cc [option] ... <file> ...
Usage: Programs in the C language are compiled and loaded for execution.
Valid options include all loader Id options except -D, and a number of
options belonging to cc proper. The most important among the latter are

- c compile and assemble only (produce object file), do not load
- S compile only, leave assembler text in . s file

The ftles to be compiled should have their names end with . c if compilation
is needed; assembler language files may also be included, provided their

A Selection of Commands 263

names end in . s. Ifloading is suppressed, output files with similar names
but ending in . 0 are produced. If suffixes are not used, an output file
name can be specified via the loader - 0 option; if none is specified, the
resulting executable module is placed in file a.out.

Numerous other options are listed in the relevant chapter of this book.
Caution: upper as well as lower case are used in the options, with different
meanings.
More in: Languages and Compilers (Chapter 9)

Function: Changes the working directory.
Syntax: cd [<directory>]
Usage: The current directory is abandoned and <directory> is made the
current directory, provided of course it exists and provided the user has
execute (i.e., search) permission for it. If no directory is specified, the
login directory of the user is understood by default.
More in: Files in the Unix System (Chapter 3)

Function: Change file access permissions.
Syntax: chmod <permission> <file> ...
Usage: Permissions are granted to read, write, or execute (r, w, or x), to
the user who owns a file, the group to which its owner belongs, or others
(u, g, or 0). The <permission> can be specified in the command in two
ways. It can be set absolutely, by choosing an appropriate combination
of the following numbers and adding:

read
write
execute

user
0400
0200
0100

group
0040
0020
0010

other
0004
0002
0001

For example, chmod 0710 secret permits the program secret to be
openly accessed by the owner, to be executed but not read by members
of the group, and not to be accessed at all by the general public.

Alternatively, <permission> in the command may be given symboli­
cally, in the form <who> <opr> <permit> where <who> identifies the
users (one or more of u, g, 0; a may be substituted for ugo); <opr> is
the operation to be performed (+, - or =), and <permit> is any com­
bination of the permissions r, w, x. chmod examines the symbolic argument

264 10. A Selected Command Set

string and does the computation indicated above. The symbol + means
that the new permissions are added to what is already there, - indicates
removal, = requests replacement of what is already there. Note that ad­
dition and subtraction refer to permissions, not purely arithmetic opera­
tions; adding a permission where it already exists produces nothing new.
For example, if after execution of chrnod 0710 secret another ehmod
command is issued with the argument string shown below, the following
results could be obtained:

ug+r produces 0750 (permission 0040 added)
ug-r produces 0310 (permission 0400 removed)
ug=r produces 0440 (0400 and 0040 replace everything)

Several permission changes can be placed in the same command line,
separated by commas but without intervening blanks, as in u=rwx, g=x
to produce 0710.
More in: Facilities and Utilities (Chapter 6)

Function: Compares two files.
Syntax: emp [option] <file/> <file2>
Usage: The differences between files are noted, by displaying the byte and
line numbers where the differences occur. If the files are identical, no
action is taken. Two mutually exclusive options may be used:

- 1 show decimal byte number, and differing bytes
- s show nothing, return exit codes only

Exit codes: 0 means identical, 1 means different, 2 says there were some
errors in the files.
More in: Facilities and Utilities (Chapter 6)

Function: Finds and outputs common lines in two files.
Syntax: comm [option] <file/> <file2>
Usage: The two files, which should first have been ordered in ASCII se­
quence (e.g., by sort), are read and the lines in them sorted into three
columns: (1) those occurring only in <file/>, (2) those only in <file2>,
and (3) in both files. The option may be given as any combination of the

A Selection of Commands 265

digits 1, 2, 3, preceded by a minus sign; each digit suppresses the cor­
responding column in the output. Two input files must always be specified;
a minus sign instead of a file name means the standard input file.
More in: Facilities and Utilities (Chapter 6)

Function: Copies a file.
Usage: cp <file 1> <file2>

cp <file> ... <directory>
Usage: In the first form, cp makes a copy of <filel> and calls it <file2>.
In the second form, it copies one or more files into the specified directory,
with their file names as they are. A file cannot be copied onto itself.
More in: Facilities and Utilities (Chapter 6)

Function: Command shell with C-like syntax.
Syntax: csh [options]
Usage: csh is alternative to the Bourne shell. It takes more time to get
started but runs a little faster because data tables are kept in a rapidly
accessible format. csh starts by executing the shell commands in file
. cshrc; if it is a login shell it starts up by executing file . login as a
shell script and exits by executing. logout. About a dozen options are
provided but not often used because everything the options can do can
also be done by shell commands in . cshrc or by commands issued to
csh once it has started.
More in: Unix Command Shells (Chapter 4)

Function: Remote Unix calling and connection program.
Syntax: cu [options] <destination>
Usage: cu provides communication (calling up and logging in) to a remote
Unix system. It manages an interactive conversation, with the remote
system visible to the user and cu transparent most of the time. The main
options are

-e
-h

communicates with even parity (default: no parity)
emulates half-duplex terminal if remote expects that

266 10. A Selected Command Set

-0 communicates with odd parity
-s<speed> communicates at <speed> baud if that speed is available

The <destination> may be a telephone number (for dial-out modems), a
direct line name (for hard-wired lines), or a system name, or -1 followed
by a special file name. (Not all systems support all these.) Telephone
numbers must consist of numbers only, except for equal signs = to signify
waiting for a dial tone, or minus sign - to wait a few seconds.

The cu program transmits all keyboard conversation to the remote ma­
chine except for any line beginning with a tilde - character. These are
interpreted as commands to cu:

-!
-! <eomm>
-%take <rem> [<loe>]
.... %put <loe> [<rem>]

terminate the conversation, shut down cu
launch a new local shell, have it listen
have a new shell execute <eomm>
copy remote file <rem> to local file <loe>
copy local file <loe> to remote file <rem>

If the target file is not named, the same file name is used, prefixed by the
appropriate working directory name.
More in: Facilities and Utilities (Chapter 6)

Function: Displays current date and clock time.
Syntax: date
Usage: If its output is redirected to a file, this command records the time
and therefore can be useful for determining when some particular event
happened. The kernel uses the system clock for a great many things, from
timed processes to file date stamping. It is therefore important to persuade
the system manager (if persuasion is needed!) to keep accurate time. Man­
agers please note: different Unix versions accept input times and dates
in different formats (e.g., year first or last, seconds included or not).
More in: Facilities and Utilities (Chapter 6)

Function: Improves phrase usage in writing.
Syntax: diction [options] <filename>
Usage: diction is a stylistic improver of writing. It looks for bad things in
a text file, using a list of other people's vices. Options are of two sorts.
The first kind specifies how macro definitions, long lists, and trotT com-

A Selection of Commands 267

mands are dealt with; most people needn't worry. The second kind is
important:

-n
-f<file>

suppresses the standard file of nasty vices
uses the user-provided <file> of things that need attention,
in addition to (or instead of) the standard file

The options are a little nonstandard, each must carry its own minus sign.
Users probably will wish to tailor the system-provided phrase blacklist
to their own favorite mistakes.
More in: Text Preparation and Processing (Chapter 8)

Function: Shows amount of free disk space.
Syntax: df [<file system> ...]
Usage: The amount of unused disk space remaining on the specified file
systems is shown. If no file system is named, free space on. all the ac­
cessible and mounted systems is displayed. For most users, df is handy
to determine the remaining space on small external media such as floppy
disks. Caution: some systems report the number of 512-byte slices, some
the number of kilobytes.
More in: Facilities and Utilities (Chapter 6)

Function: Finds the differences between two files.
Syntax: ditT [options] <filel> <file2>
Usage: The two files are compared on a line by line basis. Differences
between the two files are listed in such a form as to exhibit how <file 1 >
can be made into <file2>. The available options are characters, preceded
by the usual minus sign:

- b ignore trailing blanks in lines being compared
- e produce ed script
- f produce backward ed script
- h hurried job, compare only a few neighboring lines

The - e option is truly useful: it can be used to keep a whole trail of file
versions very compactly. One need only store the root file, plus a set of
successive ed scripts that will change one to the next. The reverse script

268 10. A Selected Command Set

unfortunately can only be read by eye; ed does not know how to operate
backwards.
More in: Facilities and Utilities (Chapter 6)

Function: Shows the amount of disk space used.
Syntax: du [option] [<directory> ...]
Usage: The amount of file space tied up by all files listed in <directory>
and its subdirectories is determined. If no directory name is given, the
current directory is assumed. Without options, all subdirectory names are
listed and totals for subdirectories are shown. There are two options:

- a all file sizes (not just subdirectories) are listed
- s summary only: no names are listed, only the grand total

Only one option character may be given, preceded by a minus. For his­
torical reasons, the disk space is usually listed in units of 512 bytes, which
equal disk blocks in older systems (e.g., Seventh Edition) and half-blocks
in more recent ones (System V and its derivatives). Some systems, how­
ever, report kilobytes.
More in: Facilities and Utilities (Chapter 6)

Function: Echoes arguments
Syntax: echo [-n] arguments
Usage: echo displays exactly what arguments the shell will employ, wher­
ever argument strings get complicated. It is particularlY handy where wild­
card constructions are used, since these are fully expanded; also in check­
ing aliases and macros. The -n option, available in most systems based
on Version 7, suppresses the newline character normally appended to the
output of echo.
More in: Unix Command Shells (Chapter 4)

Function: The standard Unix text editor.
Syntax: ed [-] [<file>]
Usage: All the usual program preparation, documentation, and text prep-

A Selection of Commands 269

aration functions are provided in ed, except immediate screen display.
The - (minus sign) option suppresses character counts. If <file> is given
in the command line, the relevant file is read in for editing; otherwise, ed
begins with an empty editing buffer. There are many commands in ed,
with various options and variants; in point of fact, ed is an interactive
subsystem within the Unix operating system.
More in: Editing with vi and ed (Chaptel 7)

Function: Mathematical preprocessor for trotT.
Syntax: eqn
Usage: eqn accepts quasi-verbal descriptions of equations or formulae and
turns them into trotTrequest sequences. Closely related to neqn (intended
to work with nrotT) but much cleverer, it is normally used in a pipeline
with output taken directly to trotT.
More in: Text Preparation and Processing (Chapter 8)

Function: Interactive editor.
Syntax: ex [options] [<file> ...]
Usage: This editor is related to ed but much more comprehensive because
it includes both line-oriented and screen editing. Most ed facilities are
duplicated by ex; vi is a subset of this editing system. Options include

silent, all interactive prompts and feedback suppressed
-r recovery mode: rescues named files after system or ex crash
- R Read-only (file cannot be accidentally overyvritten)
-v starts up as vi (which is included within ex)

One or more files may be named in the command. They will be conca­
tenated as required.
More in: Editing with vi and ed (Chapter 7)

Function: Determines file type.
Syntax: tile <file> . . .
Usage: A series of tests is performed to try classifying what type <file>

270 10. A Selected Command Set

is-object, source, or whatever. If it is a text file (i.e., if it only contains
valid ASCII characters), file tries to determine in what language. It is not
always successful in that attempt.
More in: Files in the Unix System (Chapter 3)

Function: Finds a file or files of a particular kind.
Syntax: find <directory> . .. fiLespec ...
Usage: The directory specified in the command is searched, along with
all its subdirectories in their proper hierarchical order. For every file
reachable by starting at the specified directory, the Boolean expression
fiLespec is evaluated. Over a dozen different forms of file specification
are possible; each is given as a logical function preceded by a minus sign,
possibly followed by a parameter. The most important functions are

-atime <n>
- group <group>
-mtime <n>
-name <fiLe>
-newer <fiLe>
-print
-type <t>
-user <user>

all files accessed within the last <n> days
files belonging to a specified user group
all files modified within the last <n> days
specific name(s); * and? are taken as wild-cards
files newer than the file <fiLe>
outputs the currently examined file pathname
<t> = d or f (directory or plain files)
specific user; <user> may be login name or number

The various kinds of file specification can be combined logically. The
logical intersection (AND) is understood if two or more specifications are
given in a row; -0 is taken to mean logical union (OR); the exclamation
mark ! means negation. The curious part is that find does nothing with
the information about files. Output is available with the -print function
which always evaluates to true, but which will only be reached if everything
ahead of it in the chain of expressions was true. Thus,

$ find lusr -name dict.d -print

will print the full name of any fIle called diet. d anywhere in the directory
structure that begins with lusr. Logical combinations can produce com­
plex searches and can find the desired files even over a very large set of
directories.
More in: Files in the Unix System (Chapter 3)

I format I
Function: Formats floppy disks or other magnetic media.
Syntax: format [options] [<device>]

A Selection of Commands 271

Usage: Sector and block markers are written onto the magnetic surface.
This command is not well standardized; in some Unix systems formatting
is done by mkfs, while in others the format command also makes a file
structure. In small systems using floppy disks, the format and mkfs func­
tions are often separate. Options are in any case dependent on the hard­
ware system.
More in: Files in the Unix System (Chapter 3)

Function: Fortran 77 compiler
Syntax: f77 [option] ... <.file> ...
Usage: The f77 command compiles Fortran 77 text and, unless prevented
by options, pipelines the resulting code to the loader Id to produce an
executable module. Valid options include: all options accepted by Id except
-u, all options accepted by the second phase of the C compiler, and some
applicable to f77 only. The most important among these are

-onetrip
-u
-w
-w66
-c
-F

-R<string>

do-loops execute at least once (check at end of loop)
make all undeclared variables undefined (debugging)
suppress all warnings
suppress all warnings about Fortran 66 compatibility
subscript-out-of-bounds check done at execution time
translate Ratfor to Fortran, do not proceed farther
pass <string> to ratfor as option for *. r files

f77 expects Fortran text, unless the file name has a suffix that implies
otherwise: . r for Ratfor, . c for C, . s for assembler. The. f suffix may
be used to identify Fortran. Each file is compiled and/or assembled ac­
cording to its suffix. The loader output is placed in file a.out, unless a file
name is specified (see Id options), or unless files were identified by suffixes;
in the latter case, the output is placed in a file by the same name, but
with the. 0 suffix.

f77 implements a practically full Fortran 77, with some desirable ex­
tensions. Sufficiently legible diagnostics are produced to obviate any need
for a book of error codes.
More in: Languages and Compilers (Chapter 9)

Function: Filters input lines, looking for a pattern.
Syntax: grep [options] <character string> <.file>

272 10. A Selected Command Set

Usage: grep reads the specified file, looking for a specific character string
in each line. Only one input file name is permitted in the command, but
numerous files will be read if the name contains wild-card characters.
Without options, the input lines which contain the specified string are
copied into the standard output. Options are, as usual, one or more char­
acters preceded by a minus sign:

-c print only the number (count) of lines with matches
-1 list (once) every file name in which a match is found
-n number lines with line numbers from input file
-v output all lines where no character strings match

The rules for forming character strings are exactly the same as for the eel
editor. Class, wild-card, and repetitive constructions are all allowed; most
character strings need to be protected with quotes or reverse slants to
avoid their being misinterpreted by the shell. grep must be one of the least
obvious command names; even after finding out that it stands for Global
Regular Expressions Print, one never remembers.
More in: Facilities and Utilities (Chapter 6)

Function: Halts (aborts) a currently running process.
Syntax: kill <process>
Usage: Any currently running process may be halted, by giving its process
identification number <process> as the argument of this command. The
process identification number is shown whenever a background process
is set running; alternatively, process identification numbers can be de­
termined by using the ps command.
More in: The System Kernel (Chapter 5)

Function: Linking loader.
Syntax: Id [option] <file> ...
Usage: This command links together several object programs with any
necessary libraries, producing an object module. The object module may
be executed, or (if used with the - r option) it may be used later as a
component in another run of Id. The output is left in a file named a.out
unless a file name is given in the - 0 option.

The files specified may be relocatable object code, or libraries. They

A Selection of Commands 273

are concatenated in the order they are named. If libraries are included,
it is important to note that Id will search each library exactly once as it
proceeds from left to right through the list of files. Only those library
programs are loaded which are required by the files listed ahead of the
library. Program order within libraries is therefore important: calling pro­
grams must precede the programs they call. "Backward" references
among library modules are left unresolved.

The loader permits a variety of options, expressed by character strings
with a preceding minus sign. The following are the most useful:

- i load text and data into separate address spaces
-0 if a name follows -0, it is used as the output file name
- s strip debugging aids from object code, to save space

These options are standard between the various breeds of system; others,
of which there are many, vary. A detailed list is given as Table 9.3 in
Chapter 9, Languages and Compilers.

Several language compilers within the Unix system pipe their output
to Id automatically. In such cases, options can usually be passed through
from the compiler command to Id.
More in: Languages and Compilers (Chapter 9)

Function: Copies one line.
Syntax: line
Usage: One line is copied from standard input to standard output. line
differs from cat in automatically exiting when an end of line occurs. It is
used in shell scripts to collect keyboard input.
More in: Unix Command Shells (Chapter 4)

Function: Adds a further directory entry for a file.
Syntax: In <file 1 > <file2>
Usage: In creates a directory entry which refers to the ordinary file <file 1 >
by the alternative name <file2>. File name <filel> must follow the normal
Unix file conventions; <file2> may be a file name, or it may be abbreviated
to a directory name only. In the latter case, the full name <file2> is
understood to be the given directory name, suffixed by the last component
of name <filel>. In some Unix systems, <file2> may be omitted; the

274 10. A Selected Command Set

current directory is then understood to be meant. In other systems, both
names must appear. The old and new names have equal validity for all
further work; there is no "real" or "original" name. In only creates syn­
onymous names for files; it does not create duplicate files. Creation of
synonymous names across file systems (Le., to removable volumes) is
forbidden, as is creation of synonymous names for directories.
More in: Files in the Unix System (Chapter 3)

Function: Logs in a new user.
Syntax: login [<user>]
Usage: A new user can log in without the old user explicitly logging out.
If no user name <user> is given in the command, the system asks for it.
A password is always required to log in, and is asked for unless the user
password has been set to blank. System managers often assign blank
passwords when authorizing new accounts, to allow new users to choose
their own passwords.
More in: Getting Started (Chapter 2)

Function: Line printer spooler.
Syntax: Ip [option] ... [<file> ...]
Usage: The files named are queued for printing on the line printer. Options
are given by a character string prefixed by a minus sign. The most im­
portant option characters are

- c copy the file immediately (any later changes do not print)
-m report by mail when the print job is complete
-n<no> print <no> copies of the file
-r remove (Le., delete) the file after placing it in queue
-w write to terminal when printing done (mail if logged oft)

The -r option, which is not available on many newer systems, removes
the file after queueing it for printing, not after printing it. Thus, some time
may elapse during which there exists no printed copy as yet, nor a file
any longer.
More in: Facilities and Utilities (Chapter 6)

~
Function: Line printer spooler.
Syntax: Ipr [option] ... [<file> ...]

A Selection of Commands 275

Usage: This name is a synonym (now archaic) for Ip; systems based on
the Sixth or Seventh Editions may accept Ipr but not Ip.
More in: Facilities and Utilities (Chapter 6)

Function: Displays the current status of printing requests.
Syntax: Ipstat [options]
Usage: Where printers are remote, Ipstat avoids useless trips to see whether
a print job has finished yet; in all systems, it reports printing request num­
bers. (The latter must be known to cancel a print request.) The most useful
options are

-o[list]
-s
-u[list]

status of printers shown in list (all, if no list)
summary, showing defaults and available printers
status of requests belonging to users listed

Items in lists can be separated by commas, or by commas and whitespace
if the entire list is in quotes. The list must begin immediately after the
option letter. If several options are specified, simple concatenation oflet­
ters may not work; for example, - so is unambiguous but - os is mistaken
as an inquiry after printer s; -0 -s always works.
More in: Facilities and Utilities (Chapter 6)

Function: Lists contents of directories.
Syntax: Is [options] <file> ...
Usage: Every directory file named in the command has its contents dis­
played; every nondirectory file named shows information as specified by
the options. If no name is given, the current directory is listed. Options
may be combined, and must be preceded by a minus sign. The most im­
portant ones are

-a list all entries, including names beginning with. (dot)
- d list only the names for directory files, not their contents
-1 long form: permissions, number of links, owner, size, etc.
-r list in reverse order (alphabetic, or time if t given)
- s give size of files in terms of 512-byte blocks
- t list by last modification time, not alphabetically
-u use time of last access, not modification, with t and/or 1

276 10. A Selected Command Set

Under the -1 option, each file is classified by a character identifier as
follows:

b block special file
c character special file
d directory file
p named pipe (fifo special file)

ordinary file

The next three characters show read/write/execute permission, for the file
owner; the next three, permissions for users in the same group; and the
next three, for everybody else. The characters mean

r read permission granted
w write permission granted
x executable (directories: searchable)
s executable, with SUID set

The s identifier means that the process will be allowed to read and write
files as if it were run by the owner of the executable file. It can therefore
read and write files for which the process owner does not have read/write
permissions. This temporary privilege terminates with the process.
More in: Files in the Unix System (Chapter 3)

Function: Sends mail to others or reads mail.
Syntax: mail [- t] <user> ...

mail [option]
Usage: This command has two forms: one for reading mail, the other for
sending. To send mail, the addressees <user> ... are named; all sub­
sequent input on the standard input file is considered to be the message,
up to the next occurrence of a line containing only a period (. character)
or up to the next control-D. The message is prefixed by the sender's name
and time of transmission and is left in the addressee's mailbox. The -t
option, where available, lists all addressees. Mail thus takes the format
of a multiply addressed interoffice memo.

Messages are read, the most recent one first, by mail without an ad­
dressee's name. As each message is displayed, the user is expected to
specify how to dispose of it. (Note: most mail systems have no prompt;
they simply sit there silently waiting for the user to say something.) Valid
user requests are
d delete this message, go on to the next one
m [<user>] mail the message to <user> (default: same user)

A Selection of Commands

p
q
s [<file>]
w [<file>]
x

?
! <comm>
newline
EOT

repeat display of this message
quit reading mail, leave unread mail in mailbox
save this message in <file> (default: mbox)
save message, as with - s but without header
exit without changing the mailbox file
repeat display of previous message
give summary of valid responses (* in some systems)
execute the shell command <comm>, then continue
(RETURN key) go on to next message
(control-D) quit, same as q

277

The mail-reading form of this command permits options to be specified:

-f <file>
-p
-q
-r

read the <file> as if it were the mailbox file
display mail without pausing for disposal instructions
quit mail immediately on an interrupt (DELETE key)
examine mail in reverse order, old mail first

Options can be concatenated, and must be preceded by a minus sign.
While messages are being displayed, the display can be halted with an
interruption (DELETE key), which stops the current message only, not the
mail command.
More in: Facilities and Utilities (Chapter 6)

Function: Display or print the Unix Programmer's Manual.
Syntax: man [option] [<chapter>] <section> ...
Usage: The Unix Programmer's Manual is searched for the requested
<section> or sections. The search is confined to a particular chapter if
a chapter number is given; otherwise, the entire manual is searched and
all sections with the specified name are output on the standard output
file. Options may be specified as a character string preceded by a minus
sign. The most useful options are

-n output using nrotT
-w show pathnames of the manual sections, but display no text

If no options are given, the effect is that of -n; either an already formatted
text is output, or (if there is no such) nrotT is used to format it. This com­
mand appears in most systems based on the Seventh Edition and in some
derived from the Berkeley 4.2 BSD version. How sad that it is usually
absent from System V derivatives, which may have a help command in­
stead (an insipid, watery substitute for the real manual).
More in: Facilities and Utilities (Chapter 6)

278

Function: Blocks incoming messages.
Syntax: mesg [option]

10. A Selected Command Set

Usage: Without option, the present state of the message switch (yes or
no) is reported. To turn off incoming messages ("do not disturb") or to
accept them again, the command is used with the option n (no) or y (yes).
Note: no minus signs prefix the options for this command.
More in: Facilities and Utilities (Chapter 6)

Function: Makes new directories.
Syntax: mkdir <directory> ...
Usage: New directories are created, provided the user has write permission
in the parent directory. Any new directory is set up with read, write, and
execute permissions granted as prescribed by the current system defaults
and by the user's own umask setting (if any). It is up to each user to
protect his files differently if he wishes.
More in: Files in the Unix System (Chapter 3)

Function: Makes a file structure.
Syntax: letclmkrs <specialfile> <prototype>
Usage: mkfs writes a new file structure (directory tree) onto a magnetic
medium. In some Unix systems, it also formats the medium (i.e., writes
block and sector markers); in others, formatting is done separately. Either
way, making a new file structure irretrievably destroys anything previously
on the volume (disk or tape). The device is accessed through its special
file <specialfile>.

In the simplest form ofmkfs, <prototype> is simply a decimal number
which specifies how many blocks of file space the new file structure is
to cover. More generally, <prototype> is a file containing a string of
instructions to define the new file structure. The flexibility provided by
this command is enormous; almost any conceivable file characteristic may
be specified in <prototype>. The destructive power of mkfs is also enor­
mous, for it can destroy whole diskfuls of files at a single blow.

In the standard System V Unix, mkfs is restricted to the system manager
and is located in directory jete. Some other system versions and com-

A Selection of Commands 279

patible systems have user-accessible, possibly different or restricted, mkfs
commands.
More in: Files in the Unix System (Chapter 3)

Function: Displays one screenful and waits.
Syntax: more [+ <line>] [+ j <pattern>] <file>
Usage: more sends contents of <file> to the screen, much as cat does;
but whenever a screenful has been sent, more stops and waits. Pressing
the space bar on the terminal sends another screenful. Display normally
starts at the beginning of the file but may begin at a particular line number
as specified by the + <line> option. Display may begin at a place where
the character pattern <pattern> first occurs; if so, display can continue
as usual if the space bar is pressed, or restart at the next occurrence of
the same pattern if the n key is pressed. There are other options; they
mostly deal with how lines are counted to determine whether the screen
is full.
More in: Facilities and Utilities (Chapter 6)

Function: Mounts a file system.
Syntax: /etc/mount <specialjile> <directory> [-r]
Usage: This command connects the file directory of a disk, tape, etc. vol­
ume physically mounted on the device addressed through <specialjile>
to the Unix file system, by attaching the volume root directory as <di­
rectory>. The latter must previously exist and should be empty. The file
volume must have a Unix file structure; if it does not, using mount may
cause a system crash. If the -r option is specified, the volume is mounted
for reading only. This command may be issued without any arguments;
it will then display what devices are currently mounted.

In standard System V Unix, mount is restricted to the system manager
and is located in directory jete. Some other system versions and other
systems have user-accessible mount commands, slightly different or dif­
ferently restricted.
More in: Files in the Unix System (Chapter 3)

Function: Moves (i.e., renames) files.
Syntax: mv <filel> <file2>

mv <file> ... <directory>

280 10. A Selected Command Set

Usage: In the first form, the name of <.filel> is altered to <file2>. If
there already existed a <file2>, it is removed (destroyed) first. In the
second form, the specified <file>s are moved to the <directory> named.
mv cannot be used to destroy a file by moving it onto itself.
More in: Files in the Unix System (Chapter 3)

Function: Mathematical typesetting.
Syntax: neqn [-d<x><y>] [<file> ...]
Usage: neqn is a preprocessor for driving nrotT, capable of being used with
terminals. There is another program eqn which is preferable for use with
trotT, although neqn may'be used. Input is read from the specified files
or from the standard input if no files are shown in the command. Output
is directed to the standard output. All input is passed to the output un­
modified, except for (1) lines delimited by the command lines. EQ and
. EN, and (2) character strings encased in two delimiter characters <x>
and <y>, if any such are set by including the - d option in the command
line. The lines to be modified are processed by including such nrotT or
trotT commands as appropriate to reformat the equations or mathematical
expressions, so far as the hardware device (phototypesetter or printer) is
capable of forming mathematical expressions.
More in: Text Preparation and Processing (Chapter 8)

Function: Run a task at reduced priority.
Syntax: nice [<priority>] <command> [&]
Usage: To keep the execution of <command> from interfering with ter­
minal work, it can be made to run at reduced priority. If no <priority>
is specified, the priority that would otherwise be assigned to the command
is incremented by 10 (high numbers mean low priority). If <priority> is
given, it must be a number preceded by a minus sign. (The minus identifies
the number as being an option; it has no arithmetic significance.) The
detached job symbol & is not required, but must be included if the terminal
is to be freed for other work. The system manager is entitled to improve
the priority of a command, normal users can only push it farther into the
background.
More in: The System Kernel (Chapter 5)

A Selection of Commands 281

Function: Text formatter.
Syntax: nrotT [options] [<file> ...]
Usage: Text mes are reformatted in accordance with commands embedded
in the text itself. These set margins, justify and fiU lines, indent paragraphs,
number and title pages, and otherwise provide text formatting services.
A large number of options is allowed. Each option must be individually
preceded by a minus sign; all the options must be listed before any of the
meso The main options are

-m <name>

-n <n>

use macro library /usr / 1 i b / tmae /
tmae.<name>
number the first page <n>

-0 <nl-n2,nJ,n4-n5> print only pages nl to n2, nJ, and n4 to n5
stop every <n> pages to allow paper changing
use output device of type <name>

-s <n>
-T <name>

The <file>s listed are processed in the order given; if no files are listed,
the standard input is used. A single minus sign will also be understood
to signify the standard input. The standard manuscript-preparation macro
library ms is located in /usr / lib / tmae / tmae. s and is (in accordance
with the above) accessed by -ms. Many systems provide other macro
packages. They usually reside in /usr/lib/tmae or /usr/lib/ma­
eros; well-organized systems will provide access to the latter via the -m
option.
More in: Text Preparation and Processing (Chapter 8)

Function: File dump program
Syntax: od [options] <file> ...
Usage: File content is dumped to standard output. If no file name is given,
the standard input is used. Dumping is done on either a byte (character
by character) or 16-bit word basis. Two options are available for dumping
by bytes, four for dumping by words:

-b bytes: shown as three-digit octal numbers
-e bytes: as ASCII characters or octal numbers
-d words: as unsigned decimal numbers
-0 words: as six-digit octal numbers
-s words: as signed decimal numbers
-x words: as four-digit hexadecimal numbers

282 10. A Selected Command Set

With the - c option, all printable ASCII characters are represented by
themselves; nulls, backspaces, form feeds, newlines, carriage returns and
tabs echo as '\,. 0, '\,. b, '\,.f, '\,.n, '\,.r, '\,. t; all others are shown in octal.
The options are mutually exclusive; only one may be specified at a time.
More in: Facilities and Utilities (Chapter 6)

Function: Changes password, or installs one.
Syntax: passwd
Usage: The user is asked for both old and new passwords, and the new
one is installed. Passwords are refused if they are too short or contain
unacceptable characters. If the current password is blank (which counts
as no password at all), the passwd command is used to install a new one.
Blank passwords are often assigned by system managers to newly au­
thorized users.
More in: Getting Started (Chapter 2)

Function: Berkeley Pascal compiler.
Syntax: pc [options] <.file>
Usage: pc compiles Pascal, producing either assembler code or object code,
as specified by the options. It may be considered to feed into the second
pass of the C compiler, so that options not recognized by pc will be passed
on to the assembler and the loader Id. The Pascal accepted is close to the
ISO standard. The input file name must end in . p, so that pc may recognize
it as a Pascal source file.

The compiler pc is intended for compiling programs debugged with the
interpreter pi, which provides more facilities for finding program errors.
The set of options provided with pc is wider than with pi and is biased
toward yielding good object code. Options are specified by giving a string
of option letters, preceded by a minus sign. Option letters may be con­
catenated into a single string. Both upper and lowercase characters are
used in pc options; they are not interchangeable. The available options
are

-b<n>
-c
-c
-g
-i

output buffer <n> blocks (buffer = one line)
compile partial program (full program expected)
subrange bound test (no tests are performed)
log Unix debugger information (none logged)
list all include files (list include statements)

A Selection of Commands

-1
-0 <name>
-0
-p
-s
-s
-w
-z

source program listing generated (no listing)
output file name to be <name> (a.out is used)
Object code optimizer to be used (not used)
profiling counters for prof (none generated)
standard Pascal check (no checking is done)
assembly language output (object code is produced)
suppress warning diagnostics (warnings are issued)
profile counters for later pxp run (no counters)

283

If options are not specified, actions or values given in parentheses are
assumed.

Parts of programs (e.g., individual procedures or functions) may be
compiled separately, the resulting relocatable object code being linked
and loaded later. For details of partial compilation, the Berkeley Pascal
manuals should be consulted. pc is part of the Berkeley Pascal system;
it is not part of the standard AT&T Unix software.
More in: Language and Compilers (Chapter 9)

Function: Backward and forward paging screen display.
Syntax: pg [options] <file> ...
Usage: Copies <file>s to the terminal screen, one screenful at a time,
with the ability to page backward as well as forward (unlike more which
only pages forward). Important options are

-f
-s

truncate lines if over screen width, do not fold
show up messages in reverse video if possible

-<number> make the screen "page" <number> lines (default 23)
start display at line number <number> of <file> + <number>

When pg starts it immediately shows one screenful of text. Thereafter it
will page as requested by user commands: a number <a> followed by a
single letter followed by a suffix. The number specifies the address (some­
times in lines, sometimes screens) where to display next; if unsigned, <a>
is an absolute place in <file>, if signed then relative to the current cursor
location. Major commands are

<a>
<a>l
h
q
! <cmd>
$

displays a new screen as specified by <a> in screens
displays a new screen as specified by <a> in lines
gives an abbreviated helpful list of commands
quits running pg
starts a shell and passes <cmd> to it as a command
displays the last screenful of the file

284 10. A Selected Command Set

The default value for <a> is 1, so simply striking RETURN moves on one
screenful. A temporary exit to the vi editor is possible by ! vi <file>.
Editing and displaying can therefore be intermixed. This facility is par­
ticularly useful if the text displayed by pg is a filtered version of <file>.
More in: Facilities and Utilities (Chapter 6)

Function: Berkeley Pascal interpreter.
Syntax: pi [options] <file>
Usage: pi interprets Pascal, producing intermediate code which can be
executed by means of the px execution monitor. The code produced is
placed in a file named obj . The Pascal accepted is close to the ISO stand­
ard. The input file name must end in . p, so that pi may recognize it as a
Pascal source file.

pi options are stated in the usual style. The command may be followed
by a minus sign, a string of option letters as appropriate, and the file name
or names which are to be operated on. The available options are

- b<n> set output buffer to <n> blocks (buffer = one line)
- i list include files in full (list include statements)
- 1 source program listing to be generated (no listing)
-p postmortem error backtrace and dump omitted (trace is done)
- s standard Pascal language check (no checking is done)
- t subrange bound testing is suppressed (tests are performed)
-w warning diagnostics are suppressed (warnings are issued)
- z profile counters are set up for later pxp run (no counters)

The option values given in parentheses are those assumed by default, to
be reversed if desired. Options may also be invoked in the program itself,
by including in the program text a special comment line.

pi is often used to debug programs which, when finished, are compiled
into executable binary code with pc. In general, pc produces better op­
timized, faster running programs with lower memory requirements, while
pi runs quicker and provides better debugging aids.
More in: Languages and Compilers (Chapter 9)

Function: Berkeley Pascal interpreter and executor.
Syntax: pix [options] <file>
Usage: pix interprets and executes Pascal. It is the combination of the pi

A Selection of Commands 285

interpreter and the px execution monitor; command descriptions for these
should be consulted for details.
More in: Languages and Compilers (Chapter 9)

Function: Print-formats files.
Syntax: pr [option] ... <file> ...
Usage: Listings are produced in the standard output file (usually the ter­
minal screen) of one or more named input files. Each file starts on a new
page. The page starts with a header including date and file name. Options
for pr are listed separately, each with its proper preceding plus or minus
sign; the characters are not concatenated. The main options of importance
are

-1 <n> sets page length to be <n> lines (default = 66)
-m lists all files simultaneously, one per column
- <n> produces <n>-column formatted output
+ <n> begins printing at page <n>
-w<n> sets page width to be <n> characters (default = 72)

The right number of columns should be set up if the - <n> option is
given, that is, <n> should be the number of files, or an integer multiple
of it, or an integer submultiple. Note: during the running of pr, interter­
minal message passing is disabled.
More in: Facilities and Utilities (Chapter 6)

Function: Separates file into words.
Syntax: prep [options] <file> ...
Usage: Input files are copied to the standard output, one word per line.
Words are reduced to lower case only, numbers and punctuation are
stripped, whitespace is eliminated. Useful options are

- i<file>
-o<file>
-p

ignore (weed from output) all words in <file>
only include in output words listed in <file>
punctuation marks are to constitute words too

The files for the - i or - 0 options must be in prep format, one word to
a line.
More in: Facilities and Utilities (Chapter 6)

286

Function: Displays process status.
Syntax: ps [options] [<process> ...]

10. A Selected Command Set

Usage: Status information is provided about the currently active processes.
If a process identification number <process> is given, information is given
about the named process(es). Of the ten or eleven available options, the
most valuable are

- a all processes associated with a terminal
- e everything-all processes in the system
-f full form, including the relevant commands,
- 1 long form, with lots of other information

In System V and its derivatives, ps requires minus signs in front of the
option letters; in Seventh Edition based systems it does not, contrary to
most other commands. The long (-1) and full (- f) listings fill the screen
with voluminous though somewhat different information. Of likely interest
to users are: state of each process (s), the user identification number (UID),
process identification number (PID), the identification number of the parent
process (PPID), the terminal controlling the process (TTY), the cumulative
execution time (TIME), and the command that initiated the process (CMD).
The state reports give single characters with the following meanings:

I intermediate
R running
S sleeping
o nonexistent

T stopped
W waiting
Z terminated

In short form, ps shows only part of the information, but usually quite
enough.
More in: The System Kernel (Chapter 5)

Function: Pathname of working directory.
Syntax: pwd
Usage: The full pathname of the working directory is displayed at the ter­
minal (standard output). Users with many files do occasionally lose track
of where they were and where they are going; also useful for finding out
where in the Unix file structure the current working directory is located.
More in: Files in the Unix System (Chapter 3)

A Selection of Commands

Function: Berkeley Pascal execution monitor.
Syntax: px [<file>]

287

Usage: px executes Pascal intermediate code produced by pi. If no file
name is given, obj is assumed. px is most often used as part of the pix
command, which is a combination of pi and px.
More in: Languages and Compilers (Chapter 9)

Function: Berkeley Pascal reformatter and profiler.
Syntax: pxp [options] <file>
Usage: Produces an execution profile of a Pascal program, i.e., shows
how many times each source line was executed. The execution count is
shown on a reformatted program listing, so that by suppressing the ex­
ecution information, pxp may also be used as a program reformatterlbeau­
tifier. The input file name must end in . p, so that pxp may recognize it
as a Pascal source file.

Options available with pxp are communicated in the normal style, that
is, each option is specified by a single option letter and options may be
concatenated into a letter string. A minus sign must precede the string.
Two classes of options apply with pxp, those concerned with profiling
and those concerned with formatting the listings. The options are

-a
-d
-e
-f
-j
-8

-t
-z

-<n>

all routines included in the profile (omit those not used)
suppress listing of declarations (all source text listed)
substitute text for include statements (statements only)
full parentheses for mathematics (minimal parentheses)
left justify everything (nested blocks indented 4 spaces)
strip comments in listing (comments are fully listed)
tabulate procedure and function calls (no table given)
profile named included files, or all (no profile at all)
underline keywords in listing (no underlining)
indent nestings <n> spaces (4 spaces)

If options are not specified in the command line, action will be taken as
shown in the parentheses above. If neither t nor z is specified (i.e., neither
a detailed profile nor a table is asked for), no profile will result, only a
listing of the program text. All listings produced by pxp contain in the
heading the date and time of most recent modification of the program file
(not the time at which the listing was produced). Listings are produced

288 10. A Selected Command Set

in lower case, except for any literally included text (e.g., text to be printed
out). Both keywords and variable names are reduced to lower case, if
they were not so already.
More in: Languages and Compilers (Chapter 9)

Function: Translates Ratfor to Fortran.
Syntax: ratfor [options] <file> ...
Usage: The files named in the command, which must be Ratfor language
text, are translated into Fortran. The resulting output is deposited in the
standard output file. Options available with ratfor are prefixed with a minus
sign; they are

- h quoted strings are given as Holleriths, like Fortran 66
-c comments are copied to output, and neatly reformatted
-6c c in column 6 for continuation line (else & in column 1)

ratfor can also be invoked under t77; in that case, any options must be
passed via the - R option of t77.
More in: Languages and Compilers (Chapter 9)

Function: Removes files from the system.
Syntax: rm [options] <file> ...
Usage: Removes (Le., deletes) the named files from the current working
directory, provided the user has the appropriate permissions. Confirmation
is asked for, by a y from the terminal, for every file without write per­
mission. Options are characters, which may be concatenated, prefixed by
a minus sign. They are:

- i asks for a y response before removal of any file;
-r asks for y for every entry if removing a directory file;
-f forces removal without any questions asked.

More in: Files in the Unix System (Chapter 3)

Function: Removes directories.
Syntax: rmdir <directory> ...

A Selection of Commands 289

Usage: Removes directories from the system. Directories are not removed
unless they are empty. Otherwise, operation is similar in principle to the
rm command. No options are available with this command.
More in: Files in the Unix System (Chapter 3)

Function: Command decoder.
Syntax: sh <.fiLe>
Usage: sh is the standard Unix command decoder; in fact, sh is the decoder
that receives and understands all the commands listed in this chapter. Its
standard input is from the keyboard if no <.fiLe> is specified; it is then
an interactive decoder. Shell scripts may be passed to the shell as file
names, as standard input reassignments with the < symbol, or by making
the scripts executable.
More in: Unix Command Shells (Chapter 4)

Function: Shows object file size.
Syntax: size [<.fiLe>] ...
Usage: The size of one or more files is determined and delivered to the
standard output. The decimal number of bytes of each of the three portions
of an object file is shown, as well as the total size. The file name may be
omitted; a.out is then understood.
More in: Facilities and Utilities (Chapter 6)

Function: Suspends itself for a specified length of time.
Syntax: sleep <time>
Usage: Execution of this command is delayed by <time> seconds, thereby
introducing a known time delay. If placed in a loop, sleep is useful for
periodic activities like checking themailbox;outsidealoop.itis good for
signalling quitting time or timing three-minute eggs.
More in: Unix Command Shells (Chapter 4)

Function: Sorts the lines in one or more files.
Syntax: sort [option] [+ <pos> [- <pos>]] [<.fiLe>]

290 10. A Selected Command Set

Usage: The lines in the ftle(s) <file> are sorted and written to the standard
output. If no <file> is given, the standard input ftle is assumed. By default,
the lines are sorted in ASCII sequence. The options are stated in strings,
each beginning with a minus sign. The first string may contain one or
more of the letters emu, the second may choose from df iMnr, the third
either or both of bt. The options denote

- e check if ftle is already sorted, no output if it is
-m merge files only, the files are already sorted
-u "unique", i.e., discard extra copies of duplicate lines

-d dictionary sort (only letters, digits, and blanks count)
-f forget case differences (i.e., consider A = a)
- i ignore everything but ASCII 040-176 in non-numeric sorting
-M sort three-character months so Jan < Feb, ignore case
-n numeric strings at line starts sorted by arithmetic value
- r reverse the sorting order

- b blanks at the start of a line are ignored;
- t <x> the field separator character is defined to be <x> ..

The column options [+ <pos>] and [- <pos>] restrict the sort to consider
the field from after the first (+) to after the second (-) position. A position
has the form f[. e], where f is the number offull fields left of the position,
e the number of columns to its left within its field. In addition, each position
or position pair (i.e., each sorting key area) may be qualified by the al­
phabetic options of the second group (the options emu are global to the
whole sort). Thus mUltiple sort keys, modified sort keys. and various sub­
options are possible. Caution: The Seventh Edition and System V de­
scriptions of this command differ in several significant details.
More in: Facilities and Utilities (Chapter 6)

Function: Tries to find spelling errors.
Syntax: spell [options] [<file> ...]
Usage: <file>. or in its absence the standard input file. is read to find all
the words in it. These are compared against a spelling dictionary. Three
options. concatenated characters preceded by a minus sign. are available:

- b British spellings are given preference (colour, recognise)
-v verbose: anything slightly dubious is listed in detail
-x lists every plausible stem for doubtful words

A Selection of Commands 291

Spellings are checked but syntax is ignored. For example, no message is
issued if its replaces it's. The spelling dictionary can be updated and most
installations are well advised to do so; however, the updating must be
controlled so no errors slip into the certified correct spellings! Because
updating is possible, spell may vary a good deal between installations.
More in: Text Preparation and Processing (Chapter 8)

Function: Translates Fortran to Ratfor.
Syntax: struct [option] ... <file>
Usage: struct translates the <file> named in the command, which must
be Fortran language text, into Ratfor. The output goes to the standard
output file. The translation is not unique, and may be guided by options,
the most useful of which are

-a maps sequences of elseif's into a (non-Ratfor) swi tch
-b avoids multilevel break statements, uses go to's
- i does not map computed go to's into swi tches
-n avoids multilevel next statements, uses go to's
- s expects standard card-image (not free formatted) input

struct can be confused by some of the more esoteric (and badly structured)
constructions available in Fortran 77, such as multiple subroutine entry
and return points.
More in: Languages and Compilers (Chapter 9)

Function: Sets expected terminal characteristics.
Syntax: stty [options]
Usage: Matches the expectations of the Unix kernel software to the char­
acteristics of the terminal-a matter complicated by the fact that one might
also set up the terminal to match the expectations of the kernel. The num­
ber of options in stty verges on the incredible. Unfortunately, stty has
undergone drastic changes, in command syntax as well as specific options,
between the various Unix versions; furthermore, derivative systems may
show variations. For this command, it is best to consult the locally valid
system manuals and to have a talk with the system manager if there is
one.

When setting up a terminal, it is important to make sure all the option
switches on the terminal are set to correspond to the settings made by

292 10. A Selected Command Set

stty. On many terminals the switches actually set input bits for a micro­
processor. It may be necessary to turn the terminal off and on again after
a few seconds, thereby forcing the microprocessor to read the bit settings.
More in: Unix Command Shells (Chapter 4)

Function: Checks the writing style of a document.
Syntax: style [options] <file>
Usage: Parses the sentences of the document in <file> and reports on
sentence structure, readability indices, and sentence variation through the
document. Also gives detailed parses for individual sentences, if desired.
The options specify which sentences are to be printed out for examination
and whether a full sentence-by-sentence parse is desired. The option se­
quence is nonstandard, each option must have its own minus sign.
More in: Text Preparation and Processing (Chapter 8)

Function: Copies last part of a file to standard output.
Syntax: tail [options] [<file>]
Usage: Copies the file content, beginning at a designated place and con­
tinuing to the end of the file. The option specifies the number oflines (or
blocks, or characters) as + <n> if counted from the beginning of the file,
- <n> if counted from the end; the number <n> may be followed by one
of the characters 1, b, or c to denote lines, blocks, or characters. lethe
options are omitted, a small part of the tail end, about half a screenful,
is fetched by default.
More in: Facilities and Utilities (Chapter 6)

Function: Archiver and backup copier for removable media.
Syntax: tar [options] <file> ...
Usage: Tape archiver program, more recently adapted to floppy disks and
tape cartridges. It creates and modifies archives or extracts files from
them. The options admissible consist of one of the characters crtux,
followed by one of fvw. The first group specifies the activity:
c creates a new archive and writes the specified files to it
r appends files to the end of the archive

A Selection of Commands

t lists all the names of the files in the archive
u updates, appending new or recently modified files only
x extracts files from the archive

The second option group shows how the work is to be done:

f <dev> uses <dev> as device special file instead of default
v works verbosely, reporting all activity in detail
w queries every action and waits for confirmation

293

When extracting from an archive, or when appending to it, tar works
recursively: if <file> is a directory, the files contained in it are moved.
More in: Files in the Unix System (Chapter 3)

Function: Table formatter.
Syntax: tbl [<file> ...]
Usage: tbl is a preprocessor for nrotT or trotT. All input text is taken from
the named files or from the standard input if no files are named in the
command. The input is passed through to the standard output, except for
lines encased in the command lines. TS to . TE; the latter are preprocessed
by writing nrotT or trotT commands.
More in: Text Preparation and Processing (Chapter 8)

EJ
Function: Pipe fitting in Unix pipelines.
Syntax: tee [option] <file> ...
Usage: The standard input is transcribed to the standard output, with an
extra copy deposited in <file>. There are two useful options, each of
which must carry its own minus sign (if both are used):

-a append to <file>, do not overwrite
- i ignore any interruptions while transcribing

More in: Unix Command Shells (Chapter 4)

I test I
Function: Testing of file names or shell variables.
Syntax: test <expression>

294 10. A Selected Command Set

Usage: The <expression> is evaluated and the exit status of test is ac­
cordingly returned as true or false. Expressions are formed by combining
simpler expressions with logical operators - a (and), - 0 (or), ! (not). Ele­
mentary expressions are of three kinds: file identification, string analysis,
and arithmetic comparison. File tests take the form

- <ch> <file>

where the character <ch> describes the file, following the conventions
of the Is command, with one ofrwxfdcbp. Additionally, s (size greater
than zero) may be used. Tests show true if <file> exists and has the
required characteristic. String comparisons are of three forms:

- <ch> <string> string length is zero or nonzero «ch> z or n)
<st1> = <st2> strings <st1> and <st2> are identical
<string> <string> is not null

Arithmetic comparisons take the form <n]> <op> <n2>, where <op>
is a Fortran-style comparison operator: eq, ne, ge, gt, It, Ie.
More in: Unix Command Shells (Chapter 4)

Function: Times execution of a command.
Syntax: time <command>
Usage: Useful for finding out how much time a program takes to run;
<command> may be any valid command understood by the shell. The
elapsed time, processor time, etc. are displayed, in seconds. Caution: tim­
ings can vary quite a bit depending on what other jobs are running on the
system.
More in: Facilities and Utilities (Chapter 6)

Function: Character translation.
Syntax: tr [options] <string]> <string2>
Usage: The standard input fIle is transformed and written into the standard
output file, with every character in <string]> removed and replaced by
the character in the corresponding position in <string2>. This command
is useful for changing upper to lower case, or similar character-for­
character transformations. There are three options:

A Selection of Commands 295

-c use as <string]> the ASCII characters not listed (complement)
-d delete all characters listed in <string]>
- s squeeze all repeated characters from <string2> to singles.

The strings may be made up using conventions similar to the expressions
built in ed. Unique to tr is the notation [<x>*<n>] which, if used in
<string2>, means <n> repetitions of <x>; [<x>*] denotes many rep­
etitions of <x>, useful for padding out <string2> to make its length match
<string]>.
More in: Facilities and Utilities (Chapter 6)

Function: Phototypesetter-based text formatter.
Syntax: trotT [options] [<file> ...]
Usage: Text fIles are reformatted in accordance with commands embedded
in the text itself and are transmitted to the phototypesetter. trotTfunctions
similarly to nrotT, except that the range of options is wider because the
output hardware device is more flexible.
More in: Text Preparation and Processing (Chapter 8)

Function: Displays the terminal name.
Syntax: tty
Usage: This command determines the pathname of the terminal special
file, thus identifying the terminal type. It is useful for checking whether
the system is healthy, a fast and harmless way to make it do something
and produce a little output. In shell files, tty provides a way of identifying
from what terminal activity originated.
More in: Facilities and Utilities (Chapter 6)

Function: Sets or reports the user file-creation mask.
Syntax: umask [<o><g><a>]
Usage: Masks (denies) file permissions. The specified permissions code
is taken away from what is granted by default when new files are created.
The three octal digits for <0> owner, <g> group, <a> all others, are

296 10. A Selected Command Set

made up by combining read = 4, write = 2, and execute = 1.
More in: Unix Command Shells (Chapter 4)

Function: Unmounts a file system.
Syntax: letclumount <directory>
Usage: umount disconnects the root directory of a disk, tape, etc. volume
from the Unix system, by releasing <directory>. The latter is returned
to whatever use it had before the corresponding mount command.

In standard System V Unix, umount is restricted to the system manager
and is located in directory jete. Numerous other system versions and
systems have user-accessible, but often slightly different or restricted,
umount commands.
More in: Files in the Unix System (Chapter 3)

Function: Finds repeated adjacent lines in a file.
Syntax: uniq [options [+ n] [-m]] [<irifile> [<outfile>]]
Usage: The input file <infile> is read and copied to <outfile>; if no names
are given, the standard files are used. Adjacent lines are compared while
copying. If no options are given, all second and further copies of repeated
lines are discarded. Specifying some number m in - m causes m fields to
be skipped in each line before comparing begins; giving + n causes n char­
acters to be ignored in the first field examined. Options are concatenable
characters preceded by a minus sign:

- e count repetitions of each line, and display their number
-d copy over only the duplicated lines, one copy of each
-u copy over only the unduplicated lines

The utility sort must be used first if the files in question are not already
sorted.
More in: Facilities and Utilities (Chapter 6)

Function: Unix-to-Unix file copier.
Syntax: uucp [options] <source file> <destination>

A Selection of Commands 297

Usage: Provides file transfers between Unix systems connected through
almost any communication medium. < source file > and <destination> are
file identifications, usually on two different systems. Files on the local
system may be identified by the usual pathname rules. Files on a remote
system may be given as pathnames, preceded by the system name and
an exclamation mark (e.g., remote! /usr /j oe/bxt). The abbreviation
---<name> may be used to stand for the login directory of user <name>.
The key options are

- c copy from original file, do not copy to a spooling file
- d make all necessary directory entries for the copy
-m mail notification to the requestor when the job is done

Copying to and from remote systems creates security problems of hair­
raising complexity. Most system managers are a bit protective about per­
missions granted for remote copying.
More in: Facilities and Utilities (Chapter 6)

Function: Screen editor for text preparation
Syntax: vi <file>
Usage: Screen editor with variable and independently controllable screen
window size and placement, with cursor-controlled editing functions. vi
is a very powerful editor with a large command set, often used in place
of ed for text preparation. It is a subset of the ex editor, whose listing
may be consulted for options and related detail. <file> is opened for ed­
iting when vi is invoked; it may be overwritten with edited text when
exiting.
More in: Editing with vi and ed (Chapter 7)

Function: Counts characters, words, and lines in files.
Syntax: wc [options] [<file> ...]
Usage: Word counting program, used to assess the size of text files. If
several files are named, both individual and cumulative totals are shown.
Characters, words, and lines are counted if no option characters are shown;
otherwise, anyone or combination of the three may be selected by the
option characters c, W, 1. If used, the option characters may be conca­
tenated and must be preceded by a minus sign. If no file name is given,

298 10. A Selected Command Set

the keyboard is taken as the default input device, and the typed input is
counted until a control-D is sent.
More in: Facilities and Utilities (Chapter 6)

Function: Shows who is on the system.
Syntax: who [am I]
Usage: Without option, who displays the terminal pathnames, user iden­
tification names, etc. of everybody currently on the system. It is essential
prior to using the write message passing facility, to determine whether
the intended message recipient is logged in. With the option, information
is displayed for the requestor only, a convenience for author identification
in shell scripts. who is useful as a harmless activity to check whether the
system is alive; possibly good also for amnesia sufferers.
More in: Getting Started (Chapter 2)

Function: Sends immediate message to specified user.
Syntax: write <user> [<terminal>]
Usage: The command line causes the intended recipient <user> to be
alerted that a message impends. All lines typed at the keyboard after the
write are immediately transmitted to the recipient, interrupting whatever
else he may have been doing (with a few exceptions). A terminal name
may also be given, a convenience if the recipient is currently logged in
at several. Transmission is terminated when a control-D is typed. Two­
way communication can be set up, provided some form of agreed "over
and out" protocol is used to avoid both parties sending or listening at the
same time.
More in: Facilities and Utilities (Chapter 6)

Summary of Common Commands

Most Unix systems accept similar, or almost similar, commands. To give
a broader overview of what is available, the following summary listing
shows the most common user-accessible commands in the Seventh Edi­
tion, 4.2 BSD, and System V versions of Unix. It should be understood,
of course, that not all the commands exist in all three versions, and that

Summary of Common Commands 299

anyone command may in any case be available or not as the local in-
stallation wishes.

Commands treated in detail above are marked with an asterisk.

adb general-purpose debugging program
apply applies a command to a set of arguments
apropos locates commands by keyword lookup
ar * maintains archives and libraries
as * assembler, details dependent on computer
at * executes command file at a given time
awk pattern scanner and processor language
backup system backup (incremental)
banner prints banner headline in large letters
bas * a Basic language interpreter
basename strips directory and suffix from file name
batch queues batch jobs for eventual execution
bc arbitrary-precision arithmetic language
cal prints calendar for any year or month
calendar diary or reminder service
cancel * cancels a waiting or running print job
cat * concatenates, then displays, files
cb C program beautifier
cc * C language compiler, followed by loader
cd * Changes the working directory
cOow generates C program flow graph
checkeq checks eqn requests in trotT files
checknr checks nrotT and trotT files
chfn changes finger entry
chgrp changes group
chmod * changes file access permissions
chown changes file ownership
clear clears terminal screen
cmp * compares two files
col filters out reverse line feeds
colrm removes columns from a file
comm * finds and outputs common lines in two files
compact compresses (packs) files
cp * copies a file
cpio archival copying program
cron clock daemon, controls process timing
crypt encryption/decryption of text files
csh * command shell with C-like syntax
csplit splits a file into several by context
ctags creates a tags file from C sources
cu * remote Unix calling and connection program

300 10. A Selected Command Set

cut cuts out specified parts of each line
cxref generates cross-references for e programs
date * displays current date and clock time
dc desk calculator simulation
dd converts and copies a file
delta changes sees files
deroD' removes nroD', troD', tbl and eqn requests
df * shows amount of free disk space
diction * improves phrase usage in writing
diD' * finds the differences between two files
diff3 three-way differential file comparison
dircmp compares directories, like diD' for files
dirname finds directory portion of file pathname
du * shows the amount of disk space used
dump dumps files to backup medium incrementally
dumpdir produces directory for dump tape or diskette
echo echoes arguments as understood by the shell
ed * the old standard Unix text editor
eO extended Fortran language processor
egrep extended version of grep
env finds out and alters shell environment
eqn * mathematical preprocessor for troD'
error analyzes compiler error messages
ex * interactive editor, which includes vi
expand expands tabs to spaces
explain interactive thesaurus to accompany diction
expr evaluates arguments as an expression
f77 * Fortran 77 compiler
factor factors numbers into primes
false no action, but false exit status
fgrep fixed-string version of grep
file * determines file type
find * finds a file, or files of a particular kind
finger mreports names and statistics on users
fmt simple text formatter
fold folds long lines to fit output device width
format * formats floppy disks or other magnetic media
fp Functional Programming Language translator
ftp transfers files to another system
get generates readable (ASCII) from SCCS file
graph draws a graph (as file for plot filters)
grep * filters input lines, looking for a pattern
groups shows group memberships
head gives first few lines of file
help helps user with command syntax interactively
hostname sets or displays name of current host system

Summary of Common Commands 301

id shows user and group (real and effective) IDs
indxbib builds inverted index for a bibliography
join joins files line by line, comparing fields
kill * halts (aborts) a currently running process
last shows last logins of users and terminals
lastcomm shows last commands executed in reverse order
Id * linking loader
learn computer-aided instruction about Unix
lex generates lexical analysis programs
line * copies one line
lint verifies C programs for syntax
lisp Lisp interpreter
In * adds a further directory entry for a file
login * logs in a new user
logname returns the user's login name
look finds lines in a sorted list
lookbib finds references in an indxbib bibliography
lorder finds ordering relation for object (ar) library
Ip * line printer spooler
Ipq see Ipstat (4.2 BSD)
Ip * line printer spooler, see Ip
Iprm removes line printer jobs, see cancel
Ipstat * displays current status of printing requests
Is * lists contents of directories
Ixref Lisp cross-reference program
m4 general macro processor
mail * sends mail to others, or reads mail
make maintains program or other files
man * displays Unix Programmer's ManuaL pages
mesg * blocks incoming messages
mkdir * makes new directories
mkfs * makes a file structure
mkstr creates error message file from C sources
more * displays one screenful and waits
mount * mounts a file system
mt manipulates magnetic tapes
mv * moves (i.e., renames) files
mvdir moves (i.e., renames) directories
ncheck finds names given i-numbers
neqn * mathematical typesetting preprocessor
netstat shows network status
newgrp changes user to a new group
news displays system news announcements
nice * runs a task at reduced priority
nl numbers the lines in a file
nm displays object file symbol table

302 10. A Selected Command Set

nohup runs program regardless of disconnection
nrotT * text formatter for fixed character pitch
od * file dump program, characters or words
pack packs file, exploiting redundancy
passwd * changes password, or installs one
paste merges lines from files as columns
pc * Berkeley Pascal compiler
pcat lists a file compressed with pack
pdx Pascal debugger
pg * backward and forward paging screen display
pi * Berkeley Pascal interpreter
pix * Berkeley Pascal interpreter and executor
plot graphics filters for various terminals
pmerge Pascal file merger
pr * print-formats files
prep * separates file into words
prof displays program execution profile data
prs outputs an sees file
pstat displays almost anything in system tables
ps * displays process status
ptx generates a permuted index
pwd * pathname of working directory
px * Berkeley Pascal interpreter and monitor
pxp * Berkeley Pascal reformatter and profiler
pxref Pascal cross-reference program
quot gives summary of files of each user
ranlib converts archives to random libraries
ratfor * translates Ratfor to Fortran
rcp remote file copy
red ed, restricted to current directory
refer finds literature references for documents
reset resets terminal to a sensible state
restor restores incrementally from backup medium
rev reverses lines in a file
rm * removes files from the system
rmail handles mail received via uucp
rmdel removes an sees file alteration (delta)
rmdir * removes directories
rsh restricted (Sys V) or remote (4.2 BSD) shell
sact shows activity in sees file editing
script makes typescript of terminal session
sed stream editor
sh * command decoder
size * shows object file size
sleep * suspends itself for a specified length of time
soelim eliminates . so from nrotT input

Summary of Common Commands 303

sort * sorts the lines in one or more files
sortbib sorts bibliographic database
spell * tries to find spelling errors
spline interpolates smooth curve
split splits a file into pieces of fixed size
strings finds printable strings in object files
strip removes symbols and relocation bits
struct * translates Fortran to Ratfor
stty * sets expected terminal characteristics
style * checks the writing style of a document
su substitutes different user id temporarily
sum sums and counts blocks in a file
sysline displays system status on terminal
tabs sets terminal tabs
tail * copies last part of file to standard output
tal talks to another user
tar * archiver, backup copier for removable media
tbl * table formatter
tee * pipe fitting in Unix pipelines
test * testing of file names or shell variables
time * times execution of a command
tip connects to a remote system
touch update alteration or access date of a file
tp manipulates tape archives
tr * character translation
trotT * phototypesetter-based text formatter
true no action, but true exit status
tsort sort with constrained partial ordering
tty * displays the terminal name
umask * sets or reports the user file-creation mask
umount * unmounts a file system
uname displays current system name and version
unexpand replaces strings of spaces with tabs
uniq * finds repeated adjacent lines in a file
units converts units of measurement to others
unpack restore text form of packed files
uptime shows how long system has been up
users compact list of users on the system
uucp * Unix-to-Unix file copier
uulog maintains or removes uucp activity log
uuname displays the names of other known systems
uusend sends a file to a remote host
uustat enquires about uucp status and controls jobs
uusub monitors the uucp network
uux Unix-to-Unix command execution
val validates an sees file

304 10. A Selected Command Set

vi * screen editor for text preparation
vip formats Lisp programs for nroiT
vmstat reports virtual memory statistics
w reports who is doing what, see whodo
wait awaits completion of process
we * counts characters, words, and lines in files
what shows what modules were used for a file
whatis describes what a command is
whereis locates source, binary, etc. for program
which locates file including aliases and paths
who * shows who is on the system
whodo reports who is logged in and doing what
write * sends immediate message to specified user
xargs permits argument substitution in commands
xstr extracts strings from C programs
yacc "yet another compiler-compiler"
yes infinite source for yes's (e.g., in pipes)

Chapter 11

An Annotated Bibliography

The literature now available on the Unix operating system includes some
fifty or sixty books as well as a substantial number of articles and technical
papers. Many of the technical papers will prove to be of little interest to
the system user whom this book is intended to serve, because they deal
with specialized internal details. On the other hand, texts and handbooks
are likely to be of greater importance. An attempt has therefore been made
to cover the textbook and monograph material thoroughly, while listing
only a small fraction of the periodical literature.

Books

The Unix user today finds a good selection of books available at several
levels. Accordingly, this annotated bibliography groups them by their
general character and objectives, into introductory and advanced; over­
views and treatments of specialized topics; Unix proper and closely related
topics such as the C language. The annotations, which naturally reflect
the author's personal opinion and reaction, are intended to serve the se­
rious user of Unix, the user who requires access to a range of system
utilities and needs to know how to coordinate their use.

Reasonably full bibliographic data appear for every book listed, in­
cluding the ISBN. Where several editions, forms of binding, or other var-

306 11. An Annotated Bibliography

iants are known to exist, the ISBN given is usually that of the paperback
or "student" edition.

Elementary Books

Books listed under this heading are intended for people with no under­
standing of computers who suddenly find themselves faced with Unix.
For some incomprehensible reason, their authors mostly seem to think a
lack of computing experience also implies a lack of intelligence; much of
the material is slow-paced and repetitious. The books are listed alpha­
betically by author's surname.

Birns, P. M., Brown, P. B., Muster, J. C. C.: Unixfor people. A modular
guide to the UNIX operating system: visual editing, document preparation,
& other resources. Englewood Cliffs, NJ: Prentice-Hall, 1985. ISBN 0-
13-937442-6. xiv + 533 pp.

The term "modular" means that the book is organized as class notes to
accompany 30 lessons. It would probably go over well as a teaching aid,
but both its folksy writing and its slow pace make it hard to read. Despite
the great length and relative completeness of this book, its usefulness is
probably limited to formal courses, with exercises and assignments to keep
the reader from straying.

Lomuto, A., Lomuto, N.: A Unix primer. Englewood Cliffs, NJ: Prentice­
Hall, 1983. ISBN 0-13-938886-9. xvi + 240 pp.

A very simple book directed at people with no computing experience
whatever. Its content is largely confined to using Unix files and the ed editor.
The book contains little cartoons to break the tedium of reading and it pro­
vides plenty of white space for readers to doodle in.

Shirota, Y., Kunii, T. L.: First book on Unix for executives. Tokyo:
Springer-Verlag, 1984. ISBN 4-431-70003-X. xi + 154 pp.

The phrase "for executives" presumably implies intelligent, literate peo­
ple with little computing experience and no desire to acquire any. If that is
its intended audience, the text of this book is well pitched; but the two­
color cartoons of rabbits might have been better used elsewhere. An in­
formative two hours' read while waiting for an airplane.

Thomas, R., Emerson, S., Yates, J., Campbell, J.: The business guide to
the Unix system. Reading, MA: Addison-Wesley, 1983. ISBN 0-201-08848-
7. xxi + 474 pp.

The introductory chapter, with its inevitable photographs of terminals,
is followed by an outline of the file system and editors; then the text for­
matting facilities of Unix and communication utilities. The book is organized
as a series of self-tutoring lessons, which progress very slowly through large

Books 307

numbers of excessively detailed examples. Zero knowledge of computers
is assumed.

Thomas, Rebecca, Yates, Jean: A user guide to the Unix system. Berkeley,
CA: Osborne/McGraw-Hill, 1982. ISBN 0-931988-71-3. xi + 508 pp.

This book is intended to serve the beginning user. It covers only a small
portion of the available Unix system utilities but gives examples of all the
commands which it does treat, in a beautifully clear form. Occasionally,
however, the examples are so lengthy and extensively detailed as to verge
on the boring. A useful summary list is given of those commands that do
appear in the book. Unfortunately, the user is assumed to be interested only
in the treatment of text files through basic system utilities, so that pro­
gramming language support (C, Fortran, etc.) is not even mentioned; the
strong text processing facilities included in Unix software, such as DroiT,
appear tantalizingly in marginal notes but are never treated as working tools.
Thomas and Yates thus provide the neophyte a good introduction but do
not accompany the reader very far in learning to use the system.

Waite, M., Martin, D., Prata, S.: Unix primer plus. Indianapolis, IN:
Howard W. Sams, 1983. ISBN 0-672-22028-8. 414 pp.

Written for the true beginner, this book contains a general description
of Unix structure, an introduction to text editing, and a brief mention of the
programming languages available. Like the Lomuto and Lomuto book, it is
designed not to overstress its audience. Little if any computing experience
is expected of the reader, while frequent changes in writing style, cartoons,
and two-color printing all contribute to easing understanding.

Waite, M., Martin, D., Prata, S.: Unix System V primer. Indianapolis,
IN: Howard W. Sams, 1984. ISBN 0-672-22404-6.431 pp.

A rewriting of the authors' previous book, with added material on the C
shell and the ex editor. Most of the text is not heavily altered so both the
positive and negative aspects of the former book are repeated.

General Books

Books aimed at the computer-literate with no Unix experience, the in­
tended audience of this book, are no longer in short supply. They vary
in their character and content, of course, but the selection now available
is good. As above, the following are listed alphabetically by author's sur­
name.

Banahan, M., Rutter, A.: Unix-the book. Wilmslow, Cheshire: Sigma
Technical Press, 1982. vi + 265 pp. (Distributed by Wiley). ISBN 0-905104-
21-8. vi + 265 pp.

Containing a great deal of material in very brief form, this book is of
reference value to anyone prepared to live with its two shortcomings: it is

308 II. An Annotated Bibliography

written in a distinctly unfunny style presumably intended to be humorous,
which quickly becomes wearying for the reader, and its glued binding of
poor quality begins shedding pages almost before leaving the bookstore.
The text processing facilities and utility programs that form part of Unix
software are covered in detail; so is the C language. Curiously, other more
common programming languages barely rate a mention. System startup,
shutdown, and maintenance occupy a chapter. All in all, a good reference
book for the experienced programmer willing to accept gratuitous insults
from the authors, but not an easy book for beginners.

Bourne, S. R.: The Unix system. Reading, MA: Addison-Wesley, 1982.
ISBN 0-201-13791-7. xiii + 351 pp.

Written by a member of the original Unix software team, this book deals
extensively with the shell, with document preparation, and with a selection
of utility programs. It contains a chapter on the C language and gives much
useful detail on system programming. Although beginning users will find it
readable, this well-written book really addresses itself to the experienced
programmer without previous Unix experience.

Brown, P. J.: Starting with Unix. Reading, MA: Addison-Wesley, 1984.
ISBN 0-201-10924-7. xii + 221 pp.

This book is accurately titled; it really is for beginners, but for beginners
with high objectives. It assumes that the reader knows little about Unix and
not very much about computers in general; but it moves on briskly toward
the goal of sophisticated use. Although the chapter on programming is dis­
appointing, the general level of the book is high and the material well chosen.
The author deserves particular commendation for including a brief chapter
on all the mysterious things that can go wrong, along with some advice on
how to try curing them. Light, almost amusing in its style, this book is a
pleasure to read and a valuable mine of information.

Budgen, D.: Making use of Unix. London: Edward Arnold, 1985. ISBN
0-7131-3519-0. vii + 194 pp.

Clearly intended for experienced computer users new to Unix, this book
contains a wealth of information about Unix and its derivatives, about using
the system and living with its idiosyncrasies, as well as about software en­
gineering and system management. It is well written and solidly packed with
facts-perhaps even so solidly packed that beginners may not find it pal­
atable. The experienced computer user would probably have preferred a
little more detail about program development tools, and perhaps a summary
of commands, but th~se can be found in other books.

Christian, K.: The Unix operating system. New York: John Wiley, 1983.
ISBN 0-471-87542-2. xviii + 318 pp.

This well-organized book is subdivided into two parts, suitable for be­
ginners and advanced programmers. The beginners' part occupies the first
138 pages, covering about the same subject matter as most other introductory
books: shell, login procedures, file management, text processing, and so

Books 309

on. The advanced programmers' part occupies about 120 pages. It is mainly
devoted to the facilities available for applications software development
(rather than to the needs of the system manager). The book is well designed
and produced, but a bit expensive.

Gauthier, Richard: Using the Unix system. Reston, VA: Reston Publishing
Co. (a Prentice-Hall Company), 1981. ISBN 0-8359- 8164-9. xiv + 297
pp.

Gauthier's book can be read by the novice, but it can be difficult going
for anyone who does not possess a good deal of prior experience with in­
teractive computer systems. Oriented to system managers and users rather
than to system programmers, it contains little internal detail but does give
a substantial amount of information on how to set up, manage, and maintain
a Unix system installation. Most of the text is directed at the system (in the
narrow sense), so that many of the programs commonly wanted by users
(e.g., nroff) are not covered, and languages used in computing (e.g., Fortran)
are not even mentioned. While examples are given for almost all the material
treated, the level of the material varies from very elementary to very ad­
vanced. A set of review questions is provided for each chapter, with sug­
gested answers at the back of the book.

Kochan, S. G., Wood, P. H.: Exploring the Unix system. Hasbrouck
Heights, NJ: Hayden, 1984. ISBN 0-8104-6268-0. vii + 371 pp.

A good introduction and overview of the Unix system, suitable for be­
ginners who have some acquaintance with computing. Sufficient to allow
the neophyte to get started, but includes in the bargain chapters on system
administration and software development-not enough to be expert, but
plenty for a start. Marred by bad printing on bad paper, which are more
than compensated by the good content.

McGilton, H., Morgan, R.: Introducing the Unix system. New York:
McGraw-Hill/Byte (McGraw-Hill Computer Books), 1983. ISBN 0-
07045001-3. xx + 556 pp.

The main strength of this book is its detailed treatment of text processing
(editing, formatting, and manipulation), to which over two-thirds of its text
is devoted. The remainder of the book consists principally of four or five
introductory chapters, which are suitable for beginners, and a useful chapter
directed to system managers. There is also a short chapter on the Berkeley
Unix system. In contrast to most other books, no summarizing chapter of
system commands is provided. The book is rich in well-chosen examples
and therefore probably better for initial study than for use as a reference
work.

Miller, C. D. F., Boyle, R. D.: Unix for users. Oxford: Blackwell, 1984.
ISBN 0-632-01182-3. x + 210 pp.

An excellent book for the mature scientific user, covering the facilities
available in Version 7 Unix admirably. Most topics are treated with brevity

310 II. An Annotated Bibliography

and, especially pleasing in a book of this kind, with wit; but the brevity may
mean additional reference sources must be consulted. Examples, though
extremely short, are plentiful and well chosen. System management is dis­
cussed in the context of medium or large computer centers, not personal
computers. A book to be recommended warmly, but not as the only book
on the shelf.

Prince, V.: Le systeme Unix. Paris, France: Editests, 1983. ISBN 2-86699-
003-X. 128 pp.

This first book on Unix to appear in the French language gives a well­
organized overview of the major commands and includes introductory
chapters to help the beginning Unix user to get started. It attempts to cover
too many commands in too little detail so that a large gap remains between
excessive brevity here, excessive garrulity in the full system manuals. Useful,
however, to readers unable to make good use of the English-language lit­
erature on the subject.

Topham, D. W., Truong, H. V.: Unix and Xenix: a step by step guide.
Bowie, MD: Brady, 1985. ISBN 0-89303-918-7. [ix] + 508pp.

Like many beginners' books, this one concentrates on the system proper
and does not even admit language compilers exist. Shell programming, on
the other hand, is well introduced. The book is divided into a large number
of short chapters and may be attractive as a course textbook, with one chap­
ter about the right amount of material to cover in an hour.

Walker, A. N.: The Unix environment. Chichester: John Wiley, 1984.
ISBN 0-471-90564-X. xi + 151 pp.

A lightly presented, chatty book written in that curious, somewhat idio­
syncratic English which parts of the academic computer community like to
affect; contains elements of both technical manual and personal reminiscence.
The content is broad and clearly the result of a good deal of experience; it
is most likely to be appreciated by experienced computer users with a leaning
to scientific work. Novices may find it expects a bit too much prior knowl­
edge to form a serious working tool.

Whiddett, R. J., Berry, R. E., Blair, G. S., Hurley, P. N., Nicol, R. J.,
Muir, S. J.: Unix; a practical introduction for users. Chichester: Ellis
Horwood, 1985. ISBN 0-85312-950-9. 195 pp.

A good overview for the serious beginner, with enough solid content to
keep the experienced coming back on occasion. Unfortunately, only the
basic system is treated, nothing is said about its use for purposes other than
text processing. Tidy in its British brevity, but as they say about Chinese
food-half an hour after you have eaten, you're hungry again.

Manuals and Standards

Every Unix system comes-or certainly should come-with a full set of
manuals detailing every aspect of system operation and use. These are

Books 311

generally tied to specific systems; two, however, have been published in
the open literature. Because they describe generic systems rather than
specific implementations, they tend to standardize the systems themselves.
Standards, on the other hand, deliberately set out to define what imple­
mentations should contain.

Bell Telephone Laboratories, Inc.: Unix programmer's manual. Revised
and expanded version. New York, NY: Holt, Rinehart and Winston, 1983.
Vol. 1: ISBN 0-03-061742-1, xvi + 425 pp. Vol. 2: ISBN 0-03-061743-X,
vii + 616 pp.

This book is the openly published version of the 7th edition of the Unix
system documentation, somewhat amended and revised. Its original version,
edited by B. Kernighan and M. D. McIlroy, has been the authoritative sup­
port manual for the Unix system as used at Bell Laboratories since 1979.
In machine-readable form, this pair of large quarto (22 cm by 28 cm) volumes
was furnished as part of the normal Unix Seventh Edition itself, thus available
at almost every installation (though often in a form edited and altered to
bring it into line with the software locally installed). Indispensable for system
maintenance, it is also a valuable reference for users; but it is not satisfactory
as a beginner's book. Most people employ it as an encyclopedia, to look
up specific details from time to time.

AT&T: Unix programmer's manual [Steven V. Earhart, ed.]. New York:
Holt, Rinehart and Winston, 1986. Vol I: Commands and utilities. ISBN
0-03-009317-1, xxix + 524 pp. Vol. 2: System calls and library routines.
ISBN 0-03-009314-7, xxxv + 465 pp. Vol. 3: System administration fa­
cilities. ISBN 0-03-009313-9, xiv + 142 pp. Vol. 4: Documentation prep­
aration. ISBN 0-03-011207-9, xiii + 355 pp. Vol. 5: Languages and support
tools. ISBN 0-03-011204-4, xvii + 618 pp.

This five-volume set, over 2200 pages in all, is to Unix System V what
its 1983 precursor was to the Seventh Edition: the definitive and encyclopedic
book that tells all. Mercifully, it is published as normal-sized octavo pa­
perbacks instead of large bundles of gigantic pages like its older brother. It
is organized into volumes well enough separated by logical subject area to
permit easier reference than was possible before-and a good thing too,
because many system releases based on System V reach the public with
manuals furnished only in printed form, without machine-readable copies.
The general format and layout of this book resembles the conventions es­
tablished by the Seventh Edition (and earlier) and much of the material is,
for obvious reasons, similar. Volumes 2 and 3 generally resemble the earlier
book, while Volume 3 is more of a novelty. If it seems that the average user
might not wish to know its contents, beware: there are many single-user
systems based on System V now running on personal computers, so that
administrative operations like file cleaning can become unavoidable even
to the otherwise uninterested user! Volume 4 is little changed from its earlier
counterparts, aside from descriptions of the newer mm and mv macro pack­
ages. In Volume V, it should be noted that System V supports C, Fortran
77, and Ratfor; there is no Pascal and no longer any Basic.

312 II. An Annotated Bibliography

AT&T: System V interface definition. Issue 2. Indianapolis, IN: AT&T,
1986. Vol. I: ISBN 0-932764-to-X. ix + 320 pp. Vol. II: ISBN 0-932764-
to-X. ix + 463 pp.

A chunky two-volume paperback intended mainly for the Unix appli­
cations programmer. The system variables, system calls, and conventions
for handling most programmer-accessible parts of System V are detailed in
a format reminiscent of the Unix Programmer's Manual. Many of its pages
closely resemble their conterparts in that five-volume work. Although not
written to be a user manual, this book can very well do double duty in that
role. It is small enough to be actually owned and consulted by individuals,
and it is surprisingly readable in spite of its forbidding title. Organized dif­
ferently from the traditional Unix manuals, this book proceeds by layers:
Volume I defines the rock-bottom system, including system calls and basic
library routines; Volume II builds on it. To the user, Volume II is particularly
handy because it sets out the command structure and such environmental
factors as the terminal capabilities file and the terminal screen manager. Most
unfortunately, the layered structure of the book means that the high-level
facilities of main interest to users are often missing: no compilers, no text
processing. This book strives to be a definitive document in much the same
way as the IEEE PlOO3 standard; but it does differ a little bit from the latter.
In addition, it also hints at the directions AT&T is likely to wish to steer
System V and (presumably) other Unix versions yet to come.

Institute of Electrical and Electronics Engineers, Inc.: IEEE trial-use
standard portable operating system for computer environments. IEEE
Std 1003.1. New York: IEEE, 1986. (Distributed by Wiley-Interscience.)
ISBN 0471-85027-6.207 pp. (+3 unpaginated).

A draft American national standard for the major internal parts of Unix.
Covers process, system, and input-output primitives; files, file directories,
and filing systems; parts of the C language library; password conventions,
encryption and management; data interchange (tar) format for moving files
between computers. The objective of this standard, like most standards, is
to define precisely which systems, and in in what circumstances, can be
stated to conform to the published description. Because Unix is a trade
name, the name POSIX has been registered as a trade mark by the IEEE
to identify any conforming system.

/usr/group: The /usr/group standard. Santa Clara, CA: /usr/group, 1984.
No ISBN, ca. 162 pp. unpaginated.

The first draft of a standard for system calls, created by a committee of
interested individuals from a broad cross-section of companies and insti­
tutions with an interest in Unix. This committee subsequently gave rise to
IEEE working group PlOO3, creators of the IEEE standard.

Buck, D. L.: Reader's guide to the 1984 /usr/group standard. Santa Clara,
CA: /usr/group, 1984. No ISBN, ca. 80 pp. unpaginated.

Annotations to accompany the draft standard by /usr/group. The standard
itself strives to be purely factual, free of opinion and explanatory material;
the necessary accompanying matter is in this separate volume.

Books 313

Specialized Books

The following are not necessarily difficult to read, in fact some are down­
right easy. However, they all deal with specialist topics ranging from text
processing to system maintenance. They are arranged alphabetically by
first author's surname.

Arthur, L. J.: Unix shell programming. New York: Wiley, 1986. ISBN
1-83900-0. xv + 261 pp.

The first book to concentrate exclusively on shell programming, this vol­
ume addresses itself to comparatively inexperienced Unix users. A pity,
then, that the typography is at times confusing and the writing often hard
to follow, that several commands discussed' exist neither in System V nor
the Seventh Edition, and that others have a syntax different from what the
author uses. There are some interesting examples and a lot of valuable ma­
terial, but the book will not be easy going for most people.

Bach, M. J.: The design of the UNIX operating system. Englewood Cliffs,
NJ: Prentice-Hall, 1986. ISBN 0-13-201799-7. xiv + 471 pp.

A serious and detailed book devoted to the structural details of the kernel,
the Unix file structure, and the management of processes. The principal
stress is on System V (Release 2 and also Release 3-the author is at Bell
Laboratories) but Berkeley releases are considered as well. This definitive
book is well written and easy reading for anyone who satisfies the prereq­
uisites: at least one good course in operating systems and some acquaintance
with programming in C.

Blackburn, L., Taylor, M.: Pocket guide: UNIX. London: Pitman, 1984.
ISBN 0-273-02106-0. [iiJ + 62 pp.

Spiral-bound booklet of postcard size printed in small type and designed
to stand up for consultation next to the terminal keyboard. Very wide cov­
erage of Unix commands and facilities, considering the compact format.
Somewhat too tutorial for anyone who uses Unix on a regular basis. Ty­
pographically less than ideal-commands and headings are not set off suf­
ficiently to be easy to find (this problem might be cured with a colored felt­
pen). Good for beginners and rare or irregular users.

Bolsky, M. I.: The Unix system user's handbook. Englewood Cliffs, NJ:
Prentice-Hall, 1982 (?). ISBN 0-13-937764-6. 100 pp. (incl. covers).

A spiral-bound booklet of the form sometimes called a "reference card"
by the computer community, this one is intended to be kept near the terminal
for ready reference. It summarizes the main points of keyboard use and
goes into excessive detail about the ed editor. About two-thirds of the book
is composed of pages taken from the Unix manual without alteration; the
result is far too extensive detail for a reference card and far too short for
a reference manual (because only some commands are given). The selection
of commands is curious-for example, In and more are nowhere to be found

314 11. An Annotated Bibliography

but esoterica like news, teach, and uuto take up a good bit of space. Summary:
there are better books and shorter reference cards!

Bolsky, M. I.: The vi user's handbook. AT&T Bell Laboratories, 1985
(?). No ISBN. 67 pp. (incl. covers).

A spiral-bound booklet similar in form to the same author's Unix System
User's Handbook and C Programmer's Handbook, but curiously enough
not published, or so it would seem, by the same publisher. The vi editor is
covered fully in this "reference card", perhaps too fully; the material is all
there but it is not always easy to locate the desired item among the mass
of details. A booklet obviously intended to be kept at the terminal-but only
a qualified success in that way, since its bulk at least rivals that of the manual
pages which describe vi.

Dunsmuir, M. R. M., Davies, G. J.: Programming the UNIX system.
New York: Wiley, 1985. ISBN 0-470-20192-4. 176 pp.

A guide to systems programming aimed at beginners in that esoteric art.
Definitely a second-level Unix book, this one presupposes a reasonable un­
derstanding of the Unix system structure and of the C language. The book
is well written but reading is made difficult by the bad photo-reduced ty­
pography.

el Lozy, M.: Editing in a Unix environment: the vi/ex editor. Englewood
Cliffs, NJ: Prentice-Hall, 1985. ISBN 0-13-235599-X. xiv + 226 pp.

A comprehensive tutorially organized book, this one includes all the nor­
mal Unix editors and their relatives: vi, ed, ex, sed, awk. There are useful
notes on differences between versions. Accurate and thoughtful presentation
of a large amount of information. Caution: this is intentionally not a book
about text processing, only about editing! nroIT and other formatting programs
are hardly even mentioned.

Foxley, E.: Unix for super-users. Wokingham: Addison-Wesley, 1985.
ISBN 0-201-14228-7. xiv + 213 pp.

An excellent guide for managers, particularly of small systems, who need
to administer a Unix system but do not wish to become system programmers.
Management of user accounts, system backup procedures, bringing the sys­
tem up and taking it down again, are accompanied by notes on performance
and security problems. Not specific to any particular hardware or Unix ver­
sion, it must still be accompanied by personal notes and system manuals.

Kernighan, B. W., Pike, R.: The Unix programming environment. En­
glewood Cliffs, NJ: Prentice-Hall, 1984. ISBN 0-13-937681-X. x + 357
pp.

An excellent book for people with extensive computing experience who
do not have any knowledge of Unix, this thickish volume stresses shell
programming, interfacing to system calls, and input/output from the C lan­
guage. There is a good deal of useful information about the file system and

Books 315

a detailed, well documented, example of program development in C which
covers over fifty pages. Anybody inclined to learn serious shell programming
or to get started in programming in C should take this book seriously. A
substantial level of maturity as a programmer and as a system user are pre­
requisites.

Kochan, S. G: Programming in C. Hasbrouck Heights, NJ: Hayden, 1983.
ISNB 0-8104-6261-3. [ix] + 373 pp.

C has been called a "write-only language" because its great flexibility
and its rich range of operators easily seduce programmers into writing mar­
vellously brief, clever, and altogether unreadable code. Kochan's book is
to be recommended because he takes a very disciplined approach; anyone
writing C in the way he suggests is likely to produce well-structured and
maintainable programs. Fortran programmers will probably like this book.

Krieger, M.: Word processing on the UNIX system. New York: McGraw­
Hill, 1985. ISBN 0-07-035498-7. xix + 380 pp.

Detailed expose, backed by voluminous examples, of the text formatting
facilities, macro libraries, and text-oriented utilities of Unix. The treatment
of nroff is extremely thorough, though curious shortcomings still remain.
The -ms macro package is described in very great detail. Incredibly, the
vi editor is only mentioned in the introductory pages-to say that the all
but obsolete ed line editor is far preferable! spell is given short shrift, and
many good Unix utilities like diction are simply ignored. A good book to
consult for nroff and troff, perhaps.

Rochkind, M. J.: Advanced Unix programming. Englewood Cliffs, NJ:
Prentice-Hall, 1985. ISBN 0-13-011800-1. xv + 265 pp.

A rare and welcome book by a system programmer, a breed notorious
for its inability to communicate with ordinary mortals. While highly spe­
cialized, this volume is quite readable and tells all about the Unix kernel;
about system calls, how they are used, and how they vary between versions
of the Unix system; and about system programming practices. Knowledge
of the C language is assumed, as is a good familiarity with the use of Unix.

Strong, B., Hosler, J.: Unix for beginners: basic word processing skills
with vi. New York: John Wiley, 1986. ISBN 1-80664-1.

Strictly devoted to word processing for beginners, this book does little
not implied by its title and does it in a series of "lessons" which are probably
best employed as a teaching aid in secretarial schools. Leaving aside the
obvious fact that vi is an obsolete word processor though a good computer
editor, typists are more likely to profit from this book than computer users.

Weber Systems, Inc.: XENIX user's handbook. Cleveland, OH: Weber
Systems, 1984. ISBN 0-938862-44-8. 308 pp.

Madly practical to the point of reproducing screen menus and checklists
of keys to press, this how-to book deals exclusively with Microsoft Xenix

316 II. An Annotated Bibliography

as installed on the IBM PC/XT: installation, maintenance, and administration.
Though some of it merely duplicates system manuals, it is detailed and likely
to prove helpful to people who suddenly find themselves system managers
of such tiny installations.

Thomas, R., Rogers, L. R., Yates, J. L.: Advanced programmer's guide
to Unix System V. Berkeley, CA: Osborne/McGraw-Hill, 1986. ISBN 0-
07-881211-9. vi + 575 pp.

A big book for the system programmer and for the serious applications
programmer, this one contains much of the fruit of experience and a great
many useful hints. The main topics treated are programming in C with the
standard subroutine library, the use of system calls, and shell programming.
There is a profusion of examples. On the negative side, this is a slow-paced
book, dragging its way from one example to the next with deliberate lassitude.

Yates Ventures, Inc.: The Unix system encyclopedia. Los Altos, CA: In­
strumentation Interface Incorporated, 1984. ISBN 0-917195-00-0.448 pp.

A magazine-format vendor directory interlaced with a great deal of ad­
vertising and some editorial matter, the latter appropriate to a mid-market
personal computer magazine and uneven in quality.

Books on Allied SUbjects

Quite a few books have appeared in recent years on subjects closely allied
to Unix but not actually about the system itself. A selection of these­
obviously not complete in any sense-follows.

Bolsky, M. I.: The C programmer's handbook. Englewood Cliffs, NJ:
Prentice-Hall, 1985 (?). ISBN 0-13-110073-4.85 pp. (incl. covers).

A spiral-bound booklet of the kind called a "reference card" by the com­
puter community and intended to be kept near the terminal for ready ref­
erence. Much too cryptic to learn about C from, but a good reference sum­
mary for the programmer.

Hume, J. N. P., Holt, R. c.: Pascal under Unix. Reston, VA: Reston
Publishing Co. (a Prentice-Hall Company), 1983. ISBN 0-8359-5445-5. xii
+ 386 pp.

A good elementary textbook on how to program in Pascal, suitable for
introductory courses in computer programming. The approach to Pascal is
by a sequence of nested subsets, a clean-cut pedagogic tool. The Unix com­
ponent is a short chapter on how to get programs up and running, in less
depth than the Getting Started chapter of this book. Not really a book that
can be told by its title!

Periodicals 317

Kernighan, B. W., Plauger, P. J.: Software tools. Reading, MA: Addison­
Wesley, 1976. ISBN 0-201-03669-X. iii + 338 pp.

The major utilities (and a few kernel-level functions) provided in the Unix
system are described by giving the underlying processing algorithms and
developing Ratfor programs to implement them. Full of examples, program
segments, and avuncular advice on good programming practices, this book
is easy to read right through but harder to dip into for bits and pieces, because
chapters tend to build upon each other. A small (incomplete) Ratfor translator
is included as part of the book.

Kernighan, B. W., Plauger, P. J.: Software tools in Pascal. Reading, MA:
Addison-Wesley, 1981. ISBN 0-201-10342-7. ix + 366 pp.

An extensive update of the 1976 book, with algorithms illustrated in Pascal
rather than Ratfor. Some additional material is provided but the Ratfor
translator of the earlier volume is unfortunately missing.

Kernighan, B. W., Ritchie, D. M.: The C programming language. En­
glewood Cliffs, NJ: Prentice-Hall, 1978. ISBN 0-13-110163-3. x + 228 pp.

This definitive book on C is well written and illustrated with a profusion
of examples. It is indispensable for anyone intending to develop Unix system
programs but optional (to put it mildly) for the casual user.

Periodicals

There are several magazines devoted exclusively to the Unix system and
closely related topics. Most of these are listed below. Of course, various
other periodicals also carry articles of Unix interest from time to time.

World Unix & C. New York: Springer-Verlag. ISSN 0176-9383. Quarterly,
begun 1980.

Quality newsletter of twenty or more pages, with lots of news about
software and hardware suppliers. A large part of it is composed of product
announcements; some advertising is carried.

Unix Review. San Francisco: Review Publications Co. No ISSN. Monthly,
begun 1983.

Trade magazine moderately light on editorial matter and heavy on glossy
advertising of an informative sort. About 100-125 pages an issue. Subscrip­
tions free to industrial executive personnel responsible for purchasing or
specifying purchases.

318 II. An Annotated Bibliography

Unix/World. Mountain View, CA: Tech Valley Publishing. ISSN 0739-
5922. Monthly, begun 1984.

A glossy addition to the drugstore computer magazine shelves. Carries
extensive advertising for hardware as well as software. Editorial content
thin, mostly product descriptions or reviews. The magazine seems to be
undecided about the sophistication as well as the composition of its audience.
About 125 pages per issue.

The UNIX System V software catalog. AT&T Technologies, Inc. Reston,
VA: Reston Publishing Co (a Prentice-Hall Company). (No ISSN; indi­
vidual issues are treated by the publisher as books and are assigned
ISBNs). Semiannual.

A semiannual listing of software available from a variety of vendors and
known to be operable with Unix System V. The listings are more strongly
oriented to business data processing than scientific or technical computation.
Typical size about 250 pp., as a paperbound book of letter-sheet (8.5 in. by
11 in.) format.

Articles

The range of books on Unix is wide, indeed wide enough to provide almost
all the information the neophyte user is likely to need. Periodical literature
therefore serves the specialist, though review articles and bibliographic
reviews are of more general interest as well. This very brief overview of
the periodical literature is confined to papers of general or bibliographic
interest; no specialist or research items are included.

Bourne, S. R.: Unix time-sharing system: The Unix shell. Bell System
Technical Journal, vol. 57, no. 6, pt. 2, pp. 1971-1990, July-Aug. 1978.

This clearly written article describes how the Unix shell appears to the
user. It is a little lacking in detail and too compact for reference, but the
description is good and the summary of commands is useful.

Cherlin, E.: The Unix operating system: portability A plus. Mini-Micro
Systems, vol. 14, no. 4, pp. 153-154, 156, 159, Apr. 1981.

The Unix system is transportable but still requires at least the writing of
device drivers, parts of the kernel, and a C compiler. It has served as a
model for several operating systems for 8-bit machines. The greatest port­
ability difficulties arise in interrupt handling and memory management.

Articles 319

Greenberg, R. B.: The Unix operating system and the Xenix standard
operating environment. Byte, vol. 6, no. 6, pp. 248-264, June 1981.

Historical origins of the Unix system, a review of its design goals and
characteristics, largely from the viewpoint of microcomputer users.

Johnson, S. C.: Language development tools on the Unix system. Com­
puter, vol. 13, no. 8, pp. 16-24, Aug. 1980. [16 refs.]

Software tools are described which make the writing of program gen­
erators relatively easy. (Program generators accept task specifications in
user-oriented terms and produce programs in standard languages for per­
forming the tasks).

Kernighan, B. W., Lesk, M. E., Ossanna, J. F., Jr.: Unix time-sharing
system: Document preparation. Bell System Technical Journal, vol. 57,
no. 6, pp. 2115-2135, July-Aug. 1978. [20 refs.]

An overview of the text processing facilities standard under the Unix
operating system-trotT, nrotT, tbl, etc.-and how they fit together.

Kernighan, B. W., Mashey, J. R.: The Unix programming environment.
Computer, vol. 14, no. 4, pp. 12-24, April 1981. [38 refs.]

A survey article, well written and easy to read. Describes the principal
system features and outlines the range of Unix software tools available. Of
interest mainly to newcomers to the system, though some details may be
news even to old hands.

Lions, J.: Experiences with the Unix time-sharing system. Software
Practice and Experience, vol. 9, no. 9, pp. 701-709, Sept. 1979.

Describes the author's experience in a university teaching environment.

Morgan, S. P.: The Unix system: making computers easier to use. Bell
Laboratories Record, vol. 56, no. 11, pp. 308-313, Dec. 1978.

A broad general description, possibly of value to readers of this book,
but certainly of interest to a broader audience.

Quaterman, J. S., Silberschatz, A., Peterson, J. L.: 4.2BSD and 4.3BSD
as examples of the UNIX system. ACM Computing Surveys, vol. 17, pp.
379-418, Dec. 1985.

A description of the major characteristics of the two most recent Berkeley
release versions of Unix, placed in a wide historical and technical context.
Bibliographic notes and almost two pages of references to publicly available
literature place this article on the recommended reading list.

320 II. An Annotated Bibliography

Ritchie, D. M.: Unix time-sharing system: a retrospective. Bell System
Technical Journal, vol. 57, no. 6, pp. 1947-1969, July-Aug. 1978. [15 refs.]

An overview of the Unix system and of its early technical history. Well
written and pleasantly readable, though no longer up to date.

Stiefel, M. L.: Unix. Mini-Micro Systems, vol. 11, no. 4, pp. 64-66, Apr.
1978.

A general description is given of the Unix operating system, noting that
commercial versions are now available. The review is optimistic and sees
few flaws in Unix.

Appendix

The ASCII Character Set

The various sorting, text processing, and character handling operations
for which Unix utilities are available assume that characters are ordered
in the sequence prescribed by the ASCII character set. An ASCII (Amer­
ican Standard for Computer Information Interchange) character is defined
as a string of 7 bits which represents a printable character or a nonprintable
control function. For example, 1 101 000 represents the printable char­
acter h, while a 001 000 represents the backspace function. For ease
in reading, the binary digits are often written in groups of three, and even
more frequently each group of three is given its natural numerical inter­
pretation, that is, an octal representation is used. Thus 1 101 000 is
normally written as 150, the groups 101 and 000 having been interpreted
as the octal numbers 5 and 0, respectively. Decimal and hexadecimal
representations, in which 1 101 000 appears as 104 or 6a, are also
commonly used.

Since an ASCII character is exactly seven bits long, 128 distinct char­
acters can be formed. These are given in Table A.l, The ASCII Character
Set.

Perhaps surprisingly, there are some installation-dependent differences
between printed symbols and the corresponding ASCII bit configurations.
For example, 043 (0 100 all) is rendered as the crosshatched "pounds"
sign in American practice and as the "pounds sterling" symbol on many
printers in Britain. Some other British printers and terminals substitute
the "pounds sterling" sign for the dollar sign. There is no ambiguity, how­
ever, about the alphabetic and numeric characters, nor about the math­
ematicaloperators.

322 Appendix: The ASCII Character Set

TABLE A.t. The ASCII Character Set

Nonprinting Printable characters

000 nul A@ 040 100 @ 140 ,

001 soh AA 041 101 A 141 a
002 stx AB 042 II 102 B 142 b
003 etx AC 043 # 103 C 143 c
004 eot AD 044 $ 104 D 144 d
005 enq AE 045 % 105 E 145 e
006 ack AF 046 & 106 F 146 f
007 bel AG 047 107 G 147 g
010 bs AH 050 (110 H 150 h
011 ht AI 051) III I 151 i
012 nl AJ 052 * 112 J 152 j
013 vt AK 053 + 113 K 153 k
014 np AL 054 114 L 154 1
015 cr AM 055 115 M 155 m
016 so AN 056 116 N 156 n
017 si AO 057 / 117 0 157 0

020 die Ap 060 0 120 p 160 p
021 del AQ 061 1 121 Q 161 q
022 dc2 AR 062 2 122 R 162 r
023 dc3 AS 063 3 123 S 163 s
024 dc4 AT 064 4 124 T 164 t
025 nak AU 065 5 125 U 165 u
026 syn Ay 066 6 126 y 166 v
027 etb AW 067 7 127 W 167 w
030 can AX 070 8 130 X 170 x
031 em Ay 071 9 131 y 171 Y
032 sub AZ 072 132 z 172 z
033 esc A[073 133 [173 {

034 Is A\ 074 < 134 \ 174 I
035 gs A] 075 135] 175 }

036 rs AA 076 > 136 A 176 '"
037 us A 077 ? 137 177 del

Character Names

Perhaps surprisingly, the names of all the ASCII characters are not well
known. The letters and numerals are called by their natural names, of
course; but that only accounts for 62 of the 128 characters. Of the re­
mainder, about half are not printable in the sense that they do not cor­
respond to any prescribed pattern of ink on paper. The first 32 characters

Character Names 323

TABLE A.2. Special characters in the ASCII set

Oct Mark Name Alternative or popular names

040 space blank
041 exclamation point exclamation mark
042 " quotation mark double quote
043 # number sign pound sign
044 $ dollar sign currency symbol
045 % percent sign
046 & ampersand
047 apostrophe closing single quote, solidus
050 opening parenthesis left parenthesis
051 closing parenthesis right parenthesis
052 * asterisk star
053 + plus
054 comma
055 hyphen minus, dash
056 period decimal point, dot
057 slant slash, virgule, oblique stroke
072 colon
073 semicolon
074 < less than left-arrow, left angle bracket
075 equals equal sign
076 > greater than right-arrow, right angle bracket
077 ? question mark
100 @ commercial at at
133 [opening bracket left [square] bracket
134 "'- reverse slant backslash, reverse slash
135] closing bracket right [square] bracket
136 A circumflex caret, up-arrow
137 underline underscore
140 opening single quote [single] back quote
173 { opening brace opening (left) curly bracket
174 I vertical line logical or, vertical rule
175 } closing brace closing (right) curly bracket
176 tilde

(octal 000 to 037) and the last entry in the table (octal 1 77) are nonprinting
control functions, the remainder are special characters (punctuation marks
and the like).

The punctuation marks and other special characters in the ASCII set
have clearly defined names (as laid out in the relevant standard) and are
popularly called by various additional names. Names of the special char­
acters, officially correct as well as popUlar, are shown in Table A.2, Special
Characters.

The nonprinting characters have standard names also, but they are fre­
quently called control characters, because they are formed by pressing a
key while the CONTROL key is held down. For example, the backspace
character (octal 010) is called backspace (bs) or control-H. In the relevant

324 Appendix: The ASCII Character Set

ANSI standards documents, the control characters are given the following
names:

A@ nul null Ap die data link escape
AA soh start of heading AQ del device control 1
AB stx start of text AR dc2 device control 2
AC etx end of text AS dc3 device control 3
AD eot end of transmission AT dc4 device control 4
AE enq enquiry AU nak negative acknowledge
AF ack acknowledge AV syn synchronous idle
AG bel bell AW etb end transmission block
AH bs backspace AX can cancel
AI ht horizontal tabulation Ay em end of medium
AJ If line feed AZ sub substitute
AK vt vertical tabulation A[esc escape
AL ff form feed A" fs file separator
AM cr carriage return A] gs group separator
AN so shift out rs record separator
AO si shift in us unit separator

The names given here are in accordance with the ANSI standard. They
differ from names as used by the Unix community in four cases. The
control-J character is usually called newline (abbreviated nl) by Unix pro­
grammers, the control-L character is sometimes called newpage (np).
Control-Q and control-S (del and dc3) are often called X-on and X-off,
respectively, because they control transmission of characters to the ter­
minal screen.

Subject Index

A
Abbreviations, 168-169
Access permissions, 39, 41-42, 43,

44
alteration, 45-46, 89
processes, 108-109

Active processes, 102
Ada, 216
Archive files, see Library files
Arrays, 239
ASCII character set, 321-324
Assembler language, 4, 99, 217, 218,

245
kernel and, 99-100
loader and, 244
Pascal and, 251
programming, 256-257

at-processes, 57

8
Background processes, 63, 64, 80, 87

killing, 105
Backslashes, 71-72, 200
BACKSPACE key, 17, 69; see also

Erase characters
Backup files, 13, 56-58, 127

shell scripts, 82
vi, 82, 146, 166-167

Basic, 254-256, 261-262
Berkeley Pascal, see Pascal
Blocks, 112-114, 116-117
Bourne, S., 59
Bourne shell, 59, 75, 83, 88, 95-96

.profile file, 88-89
customizing, 88-89
loops, 83-85, 87-88
variables, 85-86

Buffers, 113, 116-117
editing, 26, 28, 146-147, 163
deletion, 160, 162-163
shell, 68-69
special files, 117

c
C intermediate code, 218, 226, 244,

245
C language, 4, 83, 99, 216, 233-234

compilers, 3, 233-234, 245-248
Fortran and, 218, 221, 234
functions, 234-237
input-output, 242
operators, 239-241

326

C language (cont.)
preprocessors, 242-244
structures, 241-242
variables, 237, 238

C shell, 59, 75, 83, 88, 95-96, 265
.cshrc file, 93, 94
aliases, 92-93
customizing, 93-94
event numbers, 90, 93, 94
historical recall, 90-91
loops, 83, 85, 88
variables, 86

Calendars, 142
Character strings, 72, 85, 179-180

aliases, 92
protection, 72

Characters, see also Control charac­
ters; Metacharacters; Special
characters; Wild card charac­
ters

input-output, 112-113, 117
translation, 138

Chemical formulae,
typography, 184, 201-202

Child processes, 102
user identification, 109-110

Clock daemon, 1l0-1l1, 122, 141-142
close,1l7
Command decoder programs, see

Shells
Command mode, 149-150, 169
Commands, 2, 10-11, 18-20,60-61,

258-304; see also Command
Index immediately following
this index; Macros; Options;
System calls

arguments, 61, 62, 72-73
ed, 176-177
program execution, 25
shell, 61-64, 79-81, 91, 92-93, 100
user added, 20
vi, 26-27, 29, 149-170

Compilers, 25
C language, 3, 233-234, 245-248
Fortran, 21, 25-26, 218-219

f77, 218, 219-225
Pascal, 251-253

Conditional execution constructs,

C language, 237
Ratfor, 227-231
shell, 79-81

Subject Index

Control characters, 18, 323-324
B, 151
D, 15-16, 17, 18, 32, 123, 151
F, 151
G,84
H,70
J,324
L,324
Q, 18, 128, 324
S, 18, 128, 324
U, 151
X,69
Z, 16,32

cron, 1l0-1l1, 122, 141-142
csh, see C shell
Current processes, 98
Cursor, 28-29; see also Line pointer

vi, 149, 152, 159

D
Data segment, 106, 140
Data streams, 64-66
Data transfer, 33
Debugging,

f77, 219, 220-223
macros, 169-170
trotT, 201

DELETE key, 16, 19, 151
Deletion,

ed, 178-179
vi, 157, 159-160, 162-163

derotT, 140
Device drivers, 99, Ill, 113
Device independence 111
Dictionaries, 204-207
Directory files, 31, 33-45, 51, 87

.exrc files, 174
access permissions, 42

changing, 41
creation, 43
i-numbers, 118-119
links, 26, 44, 45, 47, 55-56, 86, 87,

119, 127
listing, 21, 34, 35, 42, 43, 44-45, 49

Subject Index

names, 34, 35, 43
parent, 35
physical structure, 114-115
removable storage media, 53-55
removal,43
tree structure, 34-41

Disk files, 33-34; see also Removable
storage media

physical structure, 114, 115, 140
special files, 112-113

Diversions, 198-199
Documentation, 9-10, 142-143, 258-259

Unix Programmer's Manual, 4, 5,
10, 20, 100, 142

E
ed, 145, 174-181,268-269

Basic and, 255-256
commands, 176-177
file handling, 181
scripts, 145-146
text manipulation, 178-181

Effective user identity, 109-110
Erase characters, 17-18, 69-70

resetting, 73
Errors,

Pascal 252-253
shell input, 69-70
spelling, 184, 204-207
standard output, 66
stylistic, 185, 207-214
typographic, 17-18, 29, 207
vi, 29, 154

Escape characters, 200
ESCAPE key, 27, 28, 150, 151, 152
Event numbers, 90, 93, 94
ex, 145, 165, 269

vi and, 165-168
exec 1, 108, 109
Executable files, 77-78
Executable programs, 19-20,25,60
Execute permissions, 41-42
Exit status, 79-83

F
File descriptors, 117-118
File location, 47-49

327

File management, 126-140
File volumes, see Disk files; Physical

volumes; Removable storage
media

Files, 20, 31-59; see also Directory
files; Library files; Special
files

comparing, 134-136, 138-139
content identification, 49-50
copying, 41, 127-128
creation, 42
deletion, 46-47
displaying, 128-129
filtering, 136-139
i-numbers, 34, 118-119
moving and removing, 46-47
names, 21-22, 34, 36-38, 62, 71
physical structure, 32, 33, 113-

118
removable media, 51-57
size, 139-140
sorting, 132-134
storage, 53-58
transfer, 126

Filling, 187-188
Filtering, 136-139
Floppy discs, 54-55; see also Remov-

able storage media
Footnotes, 198
fork, 108, 109
Forking, 102-103, 108-109
Formatting, see Text editing
Fortran 66, 217-218, 232
Fortran 77, 216-225; see also Ratfor

C language and, 218, 221
compilers, 21, 25-26, 215, 217, 218
r17 extensions and violations, 220-

223,224-225
file structure, 32, 223-224
input-output, 223-224
system calls, 101

Function calls, 100

G
Global commands, 163-165
Grammatical analysis, 207-211

328

H
History, 4-9, 101
Hollerith construction, 220--221
Home directories, 34-35, 39-40
HP-UX, 6, 7
Hyphenation, 190--191

I
IBM, 2, 3,6
if constructs, see Conditional execu-

tion constructs
i-lists, 118
Index numbers, see i-numbers
Indirect addressing, 114-115
i-nodes, 118
Input-output,

buffering, 113, 116-117
C language, 242
character, 112-113, 117
devices, 33,99,111,112-113
Fortran, 223-224
pipes, 66-67, 76, 85
redirection, 65-66, 67

Insertion,
ed, 178
vi, 28"':'29, 149-150, 152-153, 162,

168
Interactive terminal use, 90, 95, 109,

134; see also vi
Interrupts, 111-112
i-numbers, 34, 118-119

K
Kernel, 59, 97-119

structure, 98-99
Keyboard, 17-18, 115-116; see also

Control characters; Lower
case; Special characters; Wild
card characters

buffers, 68~9
handlers, 68, 111-112
shell, 68-72

Kill character, 18,69-70, 73

L
Library files, 50, 140, 245, 248

C language, 243

macros, 199-200
Line numbers, 175

Subject Index

Line pointers, 175, 177; see also
Cursor

Links, 26, 44, 45, 47, 55-56, 86, 87,
119, 127

Listing, 21, 44-45, 49, 119
directory names, 34, 35, 42, 43

Loaders, 244-245, 248
Logging in, 14-15, 17,23

mail, 121-122
remote, 124-126
shell, 60, 93

Logging out, 15-16, 23, 93, 94
Login names, 13, 14, 15, 23, 39

mailbox, 122
Login prompts, 14, 23
Look-alike systems, 6-7
Loops,

Bourne shell, 83-85, 87-88
C shell, 83, 85, 88
Ratfor, 228-229

Lower case, 10--11, 16
f77,220
login names, 14
passwords, 14
shell scripts, 85, 86

lseek,118

M
Machine independence, see Portability
Machine primitives, 99, 100
Macros, 169-170, 171-172, 174; see

also Abbreviations
nroff, 193-196, 198, 199-200

Magnetic disks, 115; see also Disk
files; Random access; Remov­
able storage media

Magnetic tape, 115-116
Mailbox, 120--122; see also Messages
Margin characters, 191-192
Margins, 189
Mathematical equations,

typography, 184, 201-202
Memory management, 99, 101-102,

105-106
Merging of files, 134
Messages, 14, 15, 120, 123-124

between machines, 125-126

Subject Index

mailbox, 120--122
standard error output, 66

Metacharacters, 70
protection, 71-72

Multiprocessing, 101-105
Multiuser systems, 101

interrupts, 111-112
memory management, 105-106
multitasking, 63-64, 10 1, 105-107

N
newline character, 20--21, 32, 324
nice numbers, 107-108
nrotT, 140, 142, 183-184,201,281

diversions, 198-199
macros, 193-196, 198, 199-200
mathematical equations and, 201,

202
number registers, 197-198
requests, 185-192
strings, 196--197
tables, 202-204

Number registers, 197-198

o
open, 117, 118
Operators, 239-241
Options, 61-62; see also individual

commands in Command Index
immediately following this
index

C language, 245-248
Fortran, 219-220, 245-248
Function calls, 100
Pascal, 215, 216, 248-254
vi, 170--171

Ordinary files, 31, 32, 36; see also
Files

Output, see Input-output

p

Pages,
headers, 195, 196--197
layout, 188-190
numbering, 195-196

Paragraph identations, 189
Parent directory, 35

Parent processes, 102
user identification, 109

Parsing, 207-211
Pascal, 215, 216, 248-254

system calls, 100
Passwords, 13-14, 15
Pathnames, 36--37, 40, 43, 49, 61
PDP-ll computers, 4, 5

329

Peripheral devices, see Input-out: de­
vices; Storage devices; Printers

Phototypesetting, 184, 200
eqn, 201-202
trotT, 200--201

Physical volumes, 115-116, 118; see
also Disk files; Removable
storage media

Pipelines, see Pipes
Pipes, 66--67, 76, 85
Portability, 1-4

virtual machine, 98, 99, 100
Preprocessors,

C language, 242-244
Ratfor, 217, 225, 231-232

Print, 11
Printer spooler, 130, 131
Printers,

laser, 184
line, 11,69, 115, 116, 130--131

Priority ratings, 107-108
Processes, 102; see also Background

processes
file descriptors, 118
forking, 102-103, 108-109
hierarchies, 102-103
identification numbers, 104,

105
parent-child, 102, 109
priorities, 107-108
scheduling, 63-64, 98, 99,

101-113
status, 104-105

Program execution, 19-20, 25-26, 60;
see also Processes

Programming languages, 3, 215-217;
see also C language; Fortran;
Pascal; nrotT; Ratfor; Shell
scripts; trotT

Prompts,
login, 14, 23
shell, 15, 59

330

Q
Quiescent state, 149-150, 169
Quotation marks, 71-72

single, 155

R
Random access, 115-116, 117, 118
Range commands, 155-163
Ratfor, 225, 288

non-Unix, 232-233
preprocessors, 217, 225, 231-232
reverse translation, 232
statements, 226-231

read, 117, 118
Readability grades, 207-208
Reading of files, 116

permissions, 41-42, Ill, 116
Redirection, 65-66, 67
Reentrant code, 106
Remote login! 124-126
Removable storage media, 51-57; see

also Disk files; Magnetic tape
disk space, 140
floppy disks, 54-55

Restricted files, see Access permis-
sions

RETURN key, 17,20-21
Reverse slants, 71-72, 200
Ritchie, D.M., 4, 5
Root directories, 35, 36, 38-39

removable volumes, 51
RUBOUT key, see DELETE key

S
Search and replace, 167, 179-180
Search path, 36-37
Security, see Access permissions; Ex­

ecute permissions; Passwords;
Reading: permissions; System
managers; Writing: permissions

Sequential access; 115-116, 118
Service routines, 98
sh, see Bourne shell
Shell prompts, 15, 19,59,87,89
Shell scripts, 75-96, 134

margin characters, 192
parameters, 78, 87, 93
program looping, 83-85, 87-88

Subject Index

Shells, 59-95, 106
commands, 61-64, 91, 92-93, 100
files, 64-66
input, 68-73
kernel and, 98
variables, 85-87
vi and, 167-168

Sorting, 132-134
Special characters, 70-71; see also

Kill characters; Wild card
characters

ASCII character set, 321-324
protection, 71-72

Special files, 31-32, 33, Ill, 112-113
buffers, 117
physical structure, 115

Spelling, 184, 204-207
Stack segments, 106, 140
Standard error output, 66
Standard input-output streams, 64-66
Standards, 3-4, 9

ASCII character set, 321-324
IEEE Ploo3, 3-4, 101
Kernel, 100-101
Shell commands, 62
System V Interface Definition, 3-4,

101
Storage devices, see Disk files; Mag­

netic tape; Removable storage
media

Stream editing, 145-146
Stylistic analysis, 207-214
Subdirectories, 35-39
SVID, see System V Interface

Definition
System calls, 53, 99-100

standards, 101
System managers, 13, 39, 42, 53, 54,

108, 110
System supervisor, see Kernel
System V Interface Definition, 3-4,

96, 101, 143

T
Tables, 184, 202-204
Tables of contents, 199
Tagging characters, 37
Target symbols, 156-159

Subject Index

Terminals, 16-18; see also Cursor;
Keyboard; Printers

messages, 123
resetting, 16-17,73-74
special files, 112-113
text editing, 145

Text editing, 25, 82, 144-146, 182-
183; see also vi; eel; ex; nrofr;
trofr

error detection, 204-214
formatting, 183-204

Text files, 32
Text markers, 154-155
Text processing, 131-140
Text segments, 106, 140
Thompson, K., 4, 5
Timed requests, 141-142
Timesharing, see Multiuser systems
Transmission speed, 16-17,73-74,

149
Transparency operator, 227-231
Traps, 194-196
kofr,184,200-201,295
Typographic errors, 17-18,29,207
Typography, 10-11, 184, 190; see also

Phototypesetting; kofr

U
Unix Programmer's Manual, 4,5, 10,

20, 142
system calls, 100

Unix systems,
advantages, 1, 2, 3-4, 5
commercial versions, 7
disadvantages, 2-3
standards, 3-4, 9, 62, 100-101
versions, 4-8, 74

Upper case, see Lower case
User groups, 13, 14, 42

331

User id, see Effective user identity;
Login names

Users, 101; see also Login names;
Multiuser systems; Passwords;
System managers

Utilities, 61, 120-143

v
vi, 26-29, 145-174,297

backup copies, 82, 146, 166-167
commands, 26-27, 29, 149-170
customizing, 168-172
ex and, 165-168
.exrc files, 171-172, 174
exiting, 147-148, 164-166
file display and, 128, 129
file handling, 166-167
insertion, 28-29, 149-150, 152-153,

162, 168
new files, 27
text entry, 172-173
text manipulation, 152-163

Virtual devices, III
Virtual machine, 98, 99, 100

W
wai t, 109
Wild card characters, 22

file removal, 47
grep,136
shell, 70-71

Windows, 148-149
Word processing, see Text editing
Working directory, 40, 42-43
Workspace, 28
wr i t e, 117, 118
Writing, 116

permissions, 41-42, 43, 111, 116

Command Index

For commands which do not appear in this index. please check the alphabeti­
cal sequence on pages 258-304.

alias, 92
ar, 50, 260

A

B
bas, 254-256, 261-262

c
cancel, 130, 262
cat, 65, 127-128, 262
cc, 245-248, 262
cd, 4~1, 43, 263
chmod, 45-46, 263-264
cmp, 134, 136, 264
comm, 138-139,264-265
cp, 127,265
cu, 125-126, 265-266

date, 141, 266
df, 140

D

diction, 185, 211-214, 26fr.267
ditT, 134-136, 167, 192,267-268
du, 140, 268

E
echo, 72-73, 268
eqn, 184, 201-202, 269
explain, 211-212

F
177, 218, 219, 271

nonstandard features, 220-223, 224-
225

options, 245-248
ratfor and, 231-232

file, 49-50, 269-270
find, 47-49, 270
format, 54-55, 270-271

G
grep, 13fr.138, 271-272

334

H
history, 90-91

K
kiD, 64, 105, 272

L
Id, 244-245, 272-273
In, 47, 119, 127,273-274
login, 14-15, 274
Ip, 130, 131, 274
Ipr, 131,274-275
Ipstat, 130, 275
Is, 21, 42, 44-45, 49, 275-276

directory names, 34, 35, 43
i-numbers, 119
options, 44

M
mail, 121-122,276-277
man, 142-143, 277
mesg, 124, 278
mkdir, 43, 278
mkfs, 53-55, 278-279
more, 128, 279
mount, 52-53, 279
mv,46, 119, 127,279-280

N
nice, 107, 280

o
od, 129, 281-282

p

passwd, 109,282
pc, 251-253, 282-283
pg, 128-129, 283-284
pi, 249-253, 284
pix, 249-251, 284-285
pr, 131, 285

Command Index

prep, 138, 285
ps,64, 103-105, 107, 286
pwd, 40, 43, 286
px, 249-251, 287
pxp, 249, 253-254, 287-288
pxref,249

R
ratfor, 217, 225, 226, 231-232, 288

f77 and, 227, 231, 288
rm,46-47, 119, 288
rmdir, 43, 288-289

size, 140
sleep, 83, 289

s

sort, 132-134,289-290
spell, 184,204-207, 290-291
stmct, 232, 291
stty, 70, 73-74, 89, 291-292
style, 185, 212-213, 292

T
tail, 129, 292
tar,57-58,292-293
tbl, 184, 202-204, 293
tee, 67, 293
test, 81-83, 293-294
time, 141,294
tr, 138, 294-295

u
u, 151, 154, 161
umask, 89, 295-2%
umount, 52-53, 296
unaIias,92
uniq, 139, 296
uucp, 126, 296-297

W
we, 139-140, 297-298
who, 63, 298
write, 123, 298

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200039002000280039002e0033002e00310029002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

