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Preface

Well suited to medium-scale general purpose computing, the Unix time-
sharing operating system is deservedly popular with academic institutions,
research laboratories, and commercial establishments alike. Its user com-
munity, until recently a brotherhood of experienced computer profes-
sionals, it now attracting many people concerned with computer appli-
cations rather than the computer systems themselves. This book is
intended for that new audience, people who have never encountered the
Unix system before but who do have some acquaintance with computing.

While helping beginning users get started is the primary aim of this
book, it is also intended to serve as a handy reference subsequently.
However, it is not designed to replace the definitive Unix system docu-
mentation. Unix operating systems now installed in computing centers,
offices, and personal computers come in three related but distinct breeds:
Seventh Edition Unix, Berkeley 4.2 BSD, and System V. These differ
from each other in details, even though their family resemblance is strong.
This book emphasizes System V, while paying heed to its two popular
cousins. It also includes a few facilities in wide use, but not included in
the normal system releases. Individual details, of course, must be found
in the manuals supplied with each system.

This second edition of Unix System Guidebook is in many ways like
Unix itself. Although it resembles its earlier edition in structure and layout,
it is much bigger and extensively rewritten, even in those parts which
may superficially seem similar. About three quarters of the text is entirely
new. Practically every example has been tried out on three systems derived
from Seventh Edition Unix, System V, and 4.2 BSD.



vi Preface

Many people have been instrumental in shaping this book, and all richly
deserve the author’s gratitude. Particular thanks are due to David Lowther,
for our many helpful discussions; and to the many students whose sug-

gestions enlivened the task.

Peter P. Silvester
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Chapter 1

Introduction

The Unix time-sharing system is rapidly becoming the most popular com-
puter operating system ever designed. Its unique popularity may be the
result of portability: Unix systems are available for various different com-
puters, while practically all other operating systems are tied to specific
machines. Whether for this reason or another, the Unix system is tending
to become universal, much as Fortran became the universal language in
its day. And just as Fertran influenced the style of other programming
languages, so Unix software characteristics are becoming visible—both
by emulation and deliberate avoidance—in other operating systems. For
computer users, some acquaintance with the Unix system is therefore
taking on increasing importance.

A Multimachine Operating System

Although it was originally intended for the PDP-11 family of computers,
Unix software has been recreated for use on many other machines both
smaller and larger. There now exist versions of the Unix system, or other
operating systems which closely resemble it, for many widely used small
computers based on 16-bit microprocessor chips. Upmarket from the PDP-
11, Unix systems, in some cases several, exist for all Hewlett-Packard
computers, for the VAX-11 family, and many other—indeed probably
most—Ilarge minicomputers. Large-scale individual workstations such as
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the Sun use Unix either exclusively or as an option. Other versions run
on large mainframe computers like the Amdahl. At the opposite end of
the computer spectrum, Unix or Unix-like operating systems are available
for personal computers such as the IBM PC series.

System Characteristics

Three main reasons are usually cited for the current popularity of Unix
and Unix-like operating systems with users. First, they provide a simple
and logically almost consistent command language through which the user
can interact with the system; a language easy to learn, fairly easy to un-
derstand, and not very easy to forget. Second, Unix systems provide a
very wide variety of software tools and services, so that program devel-
opment can progress rapidly. Third, and perhaps most important, is that
both system services and user programs are insured against too rapid ob-
solescence, by being nearly machine independent. Programs can be moved
to new computers along with the operating system, while new system
services become available on practically all versions of the Unix system
at once.

Traditionally, many computer manufacturers have regarded operating
system software as an unpleasant hurdle to be overcome before a new
machine could be marketed. The relative portability of the Unix system
has endeared it to hardware makers, for computers can be designed to
run under this operating system by investing only a modest amount of
software effort. New hardware can be made ready for the market not only
quickly, but with all the sureness of an already accepted product. To the
user, a knowledge of Unix software structure and command language is
of long-term value, for it is very likely that his next computer will employ
a close cousin of the same system. Relative machine independence also
enriches the range of general utility programs available; because programs
can migrate to new computers along with the operating system, devel-
opment of good general-purpose programs becomes attractive.

Not surprisingly, the Unix operating system is less than perfect. Its
major shortcoming is that it assumes a friendly user community. There
are ways that one user can cause the system to halt, or to run very slowly;
such situations are perceived by most users as a nuisance to be laughed
off if they happen occasionally on a computer shared by three people in
the same terminal room, but they can become major gripes among a
hundred strangers. Next, many of the command structures and conven-
tions of Unix bear the marks of having been developed by a circle of
friends, without much regard for subsequent distribution to others. For
instance, many commands are abbreviated to extremely short forms and
appear easy to confuse with others. Finally, protection against operator
error is imperfect; certain users can even accidentally destroy all files on
the system, including the operating system itself. This latter disadvantage
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can be serious, especially in commercial or financial applications. But
fortunately it only matters to highly experienced users, who have gradually
acquired a knowledge of pretty well everything the system can do. Novices
are unlikely ever to have access to quite so much destructive power.

Portability

Because Unix programs are almost entirely written in a high-level pro-
gramming language called C, this system is practically guaranteed to be-
come available on many future computers as well as already existing ones.
To install a Unix system on yet another computer, two main things are
necessary: a C compiler and a modest amount of machine-dependent cod-
ing. A compiler for the C language is always required, to permit translating
the Unix operating system itself to the native language of the new machine.
Construction of such a compiler generally takes a few man-months or
perhaps a man-year of programming effort. In addition to the compiler,
transporting Unix to another machine requires a few machine-dependent
input-output hardware service routines. These must necessarily be written
in the native language of the new machine, so that they are strictly locked
to that computer. Fortunately, they are usually short so that not much
programming effort is needed. Usually, a matter of man-weeks or, at worst,
man-months, is involved. These amounts of time are tiny when compared
to the investment required to design and write a new operating system.
The initial effort that produced the Unix kernel amounted to two or three
man-years, but the addition of the many utility programs that make Unix
systems useful has taken much, much more.

Most Unix system services now available—editors, compilers, file
sorting and merging programs, and much else—are written in high-level
languages, with C the most widely used language by far. New utility pro-
grams constructed by the now widespread Unix user community are also
written in high-level languages, C being again the most frequent choice.
As a result, the new programs can be incorporated in almost any Unix
installation without alteration.

Portability of source programs from one Unix version to another un-
fortunately does not extend to the binary modules ordinarily delivered to
end users by software suppliers. Executable program modules are nec-
essarily compiled for one type of machine so they are clearly not usable
on a different hardware configuration. But worse is yet to come: often
several variants of Unix are available for a particular machine, over half
a dozen different ones for the IBM PC. Program modules runnable under
one are not normally runnable under another. Every implementor has at-
tempted to produce the best possible software, curing known problems
and introducing desirable enhancements. Unfortunately, the result oc-
casionally verges on a mild form of chaos. Standardization is clearly de-
sirable and there have been two attempts to define a standard, one by the
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IEEE and the other by AT&T. The IEEE standard is a far-reaching effort
which very likely will lead to national and international standards in a few
years. The AT&T approach is more pragmatic: it consists of publishing
a precisely detailed statement, nearly 700 pages of it, on its System V. It
is likely that these efforts at standardization will enjoy widespread support
and will improve the portability of Unix software further.

Past and Future

Although it has gained wide popularity only recently, the Unix system is
mature software, the product of years of testing and rewriting. To assess
its probable future, its history may deserve at least brief mention.

Ancient History

The first Unix system was written by D. M. Ritchie and K. Thompson
at Bell Laboratories some time in 1969, to run on the now all but forgotten
PDP-7 and PDP-9 computers. Its authors’ primary objective was to pro-
duce a system convenient for inexperienced users; in this they succeeded
at least well enough to be encouraged to construct an improved version
to run on a much more modern machine, the PDP-11/20. It became op-
erative in 1971 and was accompanied by a booklet that subsequently turned
out to be the first, but far from the last, edition of the Unix Programmer’s
Manual. The second edition appeared in 1972; it introduced the notion
and mechanism of interprocess pipes and therewith assumed more or less
the external appearance that all Unix systems have presented to the user
since. Because the PDP-11 family of computers became enormously pop-
ular in the 1970s, a third version of Unix, again fully rewritten, appeared
in due course; it supported the PDP-11/34, /40, /45, /60, and /70. By 1973
the system authors had abandoned assembler language coding, for it was
becoming clear that transportability from machine to machine would be
easiest to achieve if a major part (ideally, but impossibly, all) of the system
were written in a high-level language. A language called C was developed
for the purpose. C remains the principal language of the Unix operating
system,; it is well suited to writing operating systems, while retaining most
other characteristics of good high-level languages such as Fortran or Pas-
cal. C resembles Pascal in many respects, but it does allow programming
a little closer to the machine register level—as if Pascal were to recognize
the existence of registers and bits! The structure and capabilities of C thus
allowed building the Unix system in a fashion which made it largely in-
dependent of the machine hardware structure: at least transportable, if
not actually portable.
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The name Unix appears to have been coined by Kernighan and was
the accepted name of this system by some time in 1970. It appears to
have originated as a diminutive of Multics, the name of a large multiuser
system then in use by several of the members of the original Unix pro-
gramming group. It has been suspected (probably wrongly) of having
served initially as a deliberately misleading cover name, for Unix hardly
sounds a likely name for a multiuser system!

A paper on the Unix operating system was published by Ritchie and
Thompson in 1974, in the Communications of the Association for Com-
puting Machinery. This paper quickly became a defining landmark for the
system. It outlined the basic system structure and methods of work; al-
though these have been refined considerably since that time, the basic
notions have remained almost unchanged. What has changed, to be sure,
is the range of system services and utilities available. Unix probably con-
tains a better selection of software tools than any other operating system.
Not only is their range wide, but they have for the most part been written
to go together well. Four years later, in July 1978, the Bell System Tech-
nical Journal produced a special issue on Unix, thereby forever estab-
lishing the system structure as set out in the Ritchie and Thompson paper.

Unix Goes Public

Even before the landmark paper of Ritchie and Thompson, there were
persistent rumors about the interesting new system being developed at
Bell Laboratories. After its publication interest became widespread, par-
ticularly in the academic community. Bell Laboratories therefore took the
decision to release the then current version to universities practically free
of charge, with the proviso that it be used for nonprofit academic work
only. That system, first released in 1975, was popularly though somewhat
incorrectly referred to as Version 6, or more correctly as Sixth Edition
Unix. The number in either case refers to the system manuals, which had
by that time reached their sixth edition.

The seventh edition, widely called Version 7 or V7, of the system was
released to universities in 1979, although it is known to have been op-
erational within Bell Laboratories as early as 1977. The delay was probably
occasioned by the preparation of the Seventh Edition of the Unix Pro-
grammer’s Manual, a book about the size and shape of the Manhattan
telephone directory! This version came to be known as the Unix system
to thousands of computer science students, for it rapidly spread to prac-
tically all computers in the PDP-11 family, including the PDP-11/23, /24,
/44, and other latter-day additions.

A significant and continuing influence on the course of Unix software
development came in the late 1970s: a major development project was
begun at the University of California, Berkeley. It produced another se-
quence of Unix systems. The Berkeley Unix systems adhered closely to
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the spirit and objectives of their Bell Laboratories ancestors but introduced
substantial extensions and improvements. Many of the improvements were
internal, invisible to the casual user. Others, however, are immediately
visible. They include the vi text editor and an alternative command in-
terpreter, support for the Pascal and Lisp programming languages, and
Ingres, a now widespread data base management system.

The Modern Age

Unix systems for computers other than the PDP-11 started appearing in
the late 1970s. A version for the Interdata 8/32 computer was undertaken
by Ritchie and Johnson as early as 1976, and one for the VAX-11/780
came not long thereafter. Several versions for other processors, notably
the model 68000 and Z8000 16-bit microprocessor chips and thus for the
many computers built around them, followed. By 1983, quite a few smaller
manufacturers had chosen to design computers suitable for running Unix,
rather than to look for operating systems appropriate to their hardware.
The IBM System/34, intended for small and medium business data pro-
cessing, was supplied with Unix under license from AT&T, though the
potential rivalry of AT&T and IBM in both the computer and commu-
nications businesses must have caused considerable worry on both sides.
By 1984, IBM even offered a modified Seventh Edition for its extremely
successful PC personal computer under the name of PC/IX; to round out
matters, it was followed by VM/IX for large IBM mainframes.
Medium-sized computer companies took to the Unix system rapidly in
the 1980s and to small companies it must have come as a godsend. Gone
were the worries about software compatibility, of having to persuade cus-
tomers to accept yet another new operating system—well, nearly gone,
anyhow. The initial acceptance of Unix by large computer manufacturers,
on the other hand, was slow and grudging. After all, the system was owned
by a potential commercial rival! Laying aside doubts and hesitations,
Hewlett-Packard formally adopted HP-UX (yet another name for Unix!)
in 1983 as the company’s main operating system, the same year as Digital
Equipment Corporation began to furnish Ultrix on its VAX range as an
alternative to its own proprietary operating systems. After some hesitation,
IBM took up Unix in the scientific computing area in 1986, choosing it
as the only operating system supplied with the Personal Computer
PC/RT, a large and powerful machine despite its modest name.
Between 1978 and 1982, other operating systems similar to Unix ap-
peared, developed independently but with a remarkable similarity to Ver-
sion 7 (and the predecessor Version 6) Unix systems. Some resemble Ver-
sion 7 only in what the system looks like to the user at the terminal. In
others, the similarity extends to such internal details as file formats and
system calls, so that not only programs but even disk or tape files can be
moved between systems. There have been a few Unix look-alike systems
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for computers based on 8-bit microprocessor chips, but Unix is really too
large to fit into their restricted memory and slow speed; most look-alikes
are intended for computers that employ 16-bit processors.

Until 1980-1981, the creation and marketing of look-alike Unix systems
were lent strong encouragement by the fact that the Bell Laboratories
Unix system itself was, for all practical purposes, available to outsiders
only for academic research and teaching use. Look-alike systems therefore
appeared to fill the commercial gap. For example, the Coherent, Idris,
and Unix systems are independent, but look similar to the user, and are
largely compatible with each other. Around 1981, there was a change in
distribution policy; although the Unix name has been retained exclusively
for use by AT&T, the Unix operating system has been made available
commercially through licenses granted to various independent repackagers
and to computer manufacturers. Unix is therefore available under a variety
of computer makers’ names such as HP-UX, Zeus, or Ultrix, as well as
under names given to it by repackagers: Xenix, Venix, Unisis, Unity, and
many others. These are not look-alikes, but Unix itself dressed in a com-
mercial suit. They are not only entirely compatible with Unix systems;
they are Unix systems. Most such derivative systems are enhanced, mod-
ified, or adapted to perform well in particular environments.

Both the independently developed systems and the licensed variants
of the original appear on the market under names other than Unix. Dif-
ferent names are used for both commercial and legal reasons, among which
trademark protection probably ranks high. With Unix systems coming
into widespread use, and commercially available almost everywhere short
of drugstore counters, AT&T is presumably concerned lest its trademark
pass into the public domain through excessively great success—along with
aspirin, bakelite, and many others. At present, there is no generic name
to cover Unix, Xenix, Coherent, Onyx, Zeus, Omnix, Cromix, Flex,
Qunix,. . . and much of the computer press refers to them all as ‘‘Unix-
like operating systems’’.

Versions and Derivatives

During the 1970s AT&T was thought to be a holding company for telephone
utilities, which in many respects is precisely what it was. Computer op-
erating systems were seen as an incidental though important part of the
telephone business, not as products in their own right. Copies of the Sixth
Edition (popularly called Version 6) were therefore released to universities,
sparking among academics the interest in Unix which has remained alive
ever since. It was distributed as modifiable source code, so that almost
every academic institution with a Unix license actually used a maverick
“improved’’ version rather than the original Bell Laboratories system.
The Seventh Edition, which came later with various improvements over
its predecessor, was still distributed as source code, so it too formed the
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starting point for new offshoots. Careful control over the terms of user
licenses by AT&T, however, prevented the many maverick versions from
travelling very far. The only derivative versions to reach a wide audience
were those emanating from the Berkeley Unix project whose products
were again disseminated to universities but not released for commercial
use. The most commonly known Berkeley release goes by the curious
name 4.2 BSD; the letters are said to stand for Berkeley Software Dis-
tribution.

While the Berkeley project gained speed and spawned a whole new
breed of system programmers, the AT&T Bell organization, well aware
of the potential commercial value of Unix, went to work on a new version
of Unix which eventually came to be System III. It was the first version
not to be distributed to academic institutions for study and emulation.
System III was followed quickly by System V and then, as illustrated in
the rough sketch of a Unix family tree in Figure 1.1, by its Release 2.
This release is also called System V.2 (pronounced five-dot-two), pre-
sumably as the result of someone’s inability to tell arabic numerals from
roman. The most noteworthy children of System III include the near-
abortive PC/IX system and Xenix 3. Latterly, many of the derivative sys-
tem suppliers and repackagers have adopted numbering schemes paral-
lelling those of AT&T, so that system names are suggestive of their origins,
as, for example, Venix 7 and Venix V. The naming of systems, however,
is no less complicated than the naming of wines—except that wines are
at least partly controlled by governments and viticultural councils, but no
such supervising authority exists for software. To illustrate the pitfalls for

Version 6

. Commercial
4.2 BSD H Version 7j—> versions

Commercial System 111
versions
A
Commercial
@e@—' versions

FIGURE 1.1. Approximate family tree of Unix systems.
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the unwary: one look-alike system not derived from any version of Unix
has chosen to call itself Version 4.2. Caveat emptor!

Through a Glass Darkly

Will the Unix operating system prove sufficiently long-lived and suffi-
ciently universal to merit study and practice? No one can tell for sure,
but since Unix installations now number in the millions the answer may
already be yes. This system is no longer new; it has been seasoned by
more than a decade of development, through several stages, and has settled
down. There is an American national standard (and quite possibly an ISO
standard) in prospect. The future of Unix systems in the 1980s and 1990s
may well resemble that of the Fortran language in the 1960s and 1970s.
Both Unix and Fortran were initially developed with particular computer
systems in mind but quickly outgrew their original hosts. Both suffer from
structural and logical deficiencies, which seemed minor or unimportant
at the outset but became irksome after the first decade. Both have had
to put up with numerous well-meant but nonstandard and standard-de-
stroying improvements. Both seem better suited to their tasks (warts and
all) than any currently available competitor. Both may therefore live on
long after better languages and more portable systems become available—
like the English language, with its constrictive syntax, underhandedly dif-
ficult grammar, incomprehensible spelling,... and two or three billion peo-
ple who continue to use it simply because they all understand it.

Getting Acquainted with Unix

The Unix system is not hard to learn and fairly easy to get used to. Until
serious commercial distribution began in the early 1980s, however, be-
ginning users experienced some difficulty because most members of the
then existing user community were in fact system programmers and system
modifiers, sometimes unable to grasp that there actually could be people
who just wanted to use Unix, not to improve it. That day, however, has
passed. Concerns for the intending Unix user today are a bit different:
they include choosing some reading material to get started with and learn-
ing to live with the idiosyncrasies of the system.

Things to Read

Until about 1982-1983, little reading material was available to provide a
simple introduction to the Unix operating system. Most beginners were
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expected to cut their teeth on photocopies of the admittedly excellent
brief articles that survey the system characteristics—and by perusal of
the Unix Programmer’s Manual, which resembles the telephone directory
of a major city. Indeed, it is the definitive work, but hardly easy for the
beginner.

With the growing popularity of Unix systems, a substantial number of
textbooks and descriptions of a tutorial nature have appeared. These tend
to be a good deal more readable than the full manual and should constitute
the major reference point for the beginner. Others treat specialized topics
within Unix, like system management, text editing, or systems program-
ming. A bibliography listing most of these, annotated to give some icea
of their contents, appears at the end of this book.

The Unix Programmer’s Manual is the defining document of the system.
It is normally furnished both as paper copy and in machine-readable form.
Provision is made in Unix systems for keeping much of the user docu-
mentation available as disk files, so that users can read particular portions
of the manual without having access to a printed copy or without even
needing one. Keeping the system manuals in computer-readable form,
and therefore easy to modify, is vital for most Unix installations, for there
are probably no two installations exactly alike. While every system man-
ager strives to keep documentation current, in many places no up-to-date
paper manual exists; the disk-file version is the only true version.

Typographic and Lexical Curios

The words used in Unix system commands, the ways words are abbre-
viated, and occasionally the ways they are spelled are a bit idiosyncratic.
Presumably, this is the result of having been developed initially within a
circle of friends prepared to put up with each other’s foibles. Some users
take to the strange habits of Unix like a duck takes to water; others show
enthusiasm more appropriate to a cat. There is no choice; Unix commands
come the way they come.

Lowercase letters are used almost exclusively in Unix system com-
mands, naming conventions, and programming languages. Although they
are comparatively rare, exceptions do exist where uppercase characters
are used instead. Thus, it is not simply a matter of using lower case instead
of upper; both are used, but for some reason capital letters occur much
less frequently than they do in English. A particularly irksome idiosyncrasy
to some is the failure to use initial capitals even where the conventions
of English demand it. The author, for example, will probably never grow
completely accustomed to identifying himself to the system as peter,
without a capital P.

The almost, but not quite, total use of lower case causes certain prob-
lems when documentation is written in natural languages. For example,
the Unix text editor program is called vi, and the phototypesetter program
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has the name troff. (Not unreasonably, some users would have preferred
mnemonically more useful names, e.g., Editor and Phototype.) They are
never called Vi and Troff, because the system regards the letters V and
v as simply two different, unrelated, characters. But what should one do
when a sentence begins ‘‘troff is a program for. . .”’? In this book, the
Unix program naming convention is followed strictly: program names exist
in one case only, so that names in lower case do not acquire initial capitals
even if they occur at the beginnings of sentences. Much Unix system
literature, occasionally even including the system manuals, is somewhat
inconsistent (and confusing) about this point of usage.

Word usage in the Unix system shows up curious details rooted in
history and often difficult for the newcomer. For example, the word
“print’’ is used almost everywhere in the manuals to imply that output
is to be sent to the user terminal. That verb may have been accurate at
some past time, but today few users employ printing terminals; display
screens are much more common. (The verb ‘‘print’’ to most computer
users implies use of a line printer, not the user terminal.) As another ex-
ample, the verbs ‘‘move’’ and ‘‘remove’’, when referring to files, are em-
ployed to mean ‘‘rename’’ and ‘‘delete’’. The reference here is to the
software technique employed: deletion is achieved by removing a linking
pointer.

Using This Book

The best way of learning to use an operating system is to use it. To allow
the beginner to learn in this natural way, the first (short) part of this book
contains an introduction to the system and its use, in brief and simple
form. It is sufficiently concise to be usable while sitting at the terminal,
trying out the commands. The main part of this book is longer. It is in-
tended for reading away from the terminal and for reference; it therefore
consists of a few explanatory chapters, followed by a summary description
of the more important system commands.



Chapter 2
Getting Started

The Unix operating system is generally considered reasonably easy to
learn and quite easy to use. But even the easiest operating system takes
a little getting used to, especially at the very start when nothing looks
even remotely familiar and every response from the system appears
vaguely ominous—if indeed the system responds at all! Most computer
users dislike the first hour or so spent with a new operating system, when
the initial difficulties of a new command language, new name conventions,
and new protocol rules all appear together. This chapter is intended to
provide a launching pad for the novice user and to help overcome the
problems of that first hour. It is brief enough to be read at the terminal,
trying out the various commands on the spot. Or it can be read at another
time and place, in preparation for that first hour.

Communicating with the System

Several users can be logged in to the same computer at the same time
under a Unix time-sharing operating system. Learning to use Unix there-
fore begins with becoming an authorized system user, then acquiring fa-
miliarity with the procedures for communication with the system. Pro-
cedures and practices for doing so are described very briefly in this chapter,
by way of a rapid introduction and overview. Details then follow else-
where.
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The System Manager

To keep track of users and their needs, every Unix system has a human
system manager. In large computing centers, the system manager may
well consist of a whole office establishment with receptionists and sec-
retaries to cater to the needs of milling thousands. In small installations,
an experienced user is often conscripted to fill this role. The choice gen-
erally falls on someone who happens to be particularly knowledgeable
about the system and who is prepared to undertake the bureaucratic chores
of management willingly. Whoever he may be, this individual authorizes
users, issues passwords and user group affiliations, creates file directories,
and takes care of all the other administrative needs that always arise when
numerous people attempt to share the same computer. The intending user’s
first requirement is therefore a visit to the system manager, not only to
obtain the necessary authorizations but also to obtain a briefing on the
social customs of the establishment.

Although the official functions of the system manager form the most
visible point of contact for the new user, the manager also has various
duties of a more technical nature. An important one is system backup, a
detail even neophyte users ought to know about early along. Computers
do malfunction from time to time, so in most installations the manager,
as part of everyday housekeeping routines, makes a complete copy of
everything in the system at regular intervals. If machine problems, power
outages, software failures, or other forms of disaster should strike, the
system can be restarted and all files restored as they were at the time of
the last backup. Who does the backing up? and how often? are questions
to be asked of the system manager; how reliably they are done might be
better asked of some other users.

User Names and Passwords

The Unix system manager issues every user a login name (also called the
user id) and (on most systems) a password. The login name is just a name
in the ordinary sense of the word, except for being limited in length (usually
to eight characters). In many installations, it is actually the user’s real
name; in any case, it is publicly known. The password, on the other hand,
is only known to the user and can be changed by the user himself at any
time so as to maintain confidentiality. System managers often assign new
users a blank password (i.e., no password at all) or a string of nonsense
characters like zyS3qP, in the expectation that the user’s first action on
the system will be to change to a more easily remembered password.
Passwords really are secret; even the system manager cannot find out
what the user’s current password is. Like all other password-based security
systems, Unix presents the user with an irresolvable dilemma: it seems
desirable to write down the password in lots of accessible places (to avoid
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forgetting it), yet it is undesirable to have it written down at all (to keep
it secret).

Users of Unix systems can communicate with each other over the sys-
tem through various message-passing techniques, described later in this
book. The user login name serves as the address for all communications.
Wherever there is any choice of login name, as there is in most instal-
lations, it pays to use a name that almost everybody else can understand
and remember. Just the opposite holds for passwords: it is not a good
idea to employ easily guessed items like birthdate, telephone number, or
spouse’s first name.

Passwords and user login names may make use of both uppercase and
lowercase characters. Here, as elsewhere in the Unix system, lowercase
characters are considered to be totally distinct from their uppercase
brothers; Unix has no idea at all that there is any relationship between
the letters X and x. The user passwords Butch and butch are therefore
different and will not be taken as substitutes for one another. Some Unix
systems do not believe in uppercase characters in user names and every-
thing is done in lower case only. In any case, the uppers/lowers distinction
must be observed carefully in all login names and passwords and indeed
everywhere throughout the Unix system.

In many Unix installations, the system manager also assigns a user
group affiliation to each user. User groups are generally just what the
word implies: groups of people associated in common goals or common
administrative frameworks. In industrial programming environments,
groups are usually people working on the same projects. In an educational
setting, a user group might be all the students in a particular course.
Broadly speaking, groups are people needing access to a common pool
of files.

Logging In

When a Unix system is started up, all the terminals connected to it display
a login prompt and wait for users to log in. The prompt is displayed at
the left margin of the terminal. It may take different forms in different
systems, sometimes even including a message for the day or recent system
news. In the simplest version, it consists of the request

login:

To log in, a valid user name is typed, all lowercase in most systems (it
does look strange, but it works), followed by a carriage return. The system
will then ask for the password, which is typed exactly as agreed with the
system manager—in upper or lower case, or a mixture—again followed
by a carriage return. On most terminals, the password will refuse to show
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on the screen or paper, to guard its secrecy, but it will be received by the
system all the same. If the password is correct, the login attempt is ac-
cepted and the user’s terminal is permitted access to the system itself. If
the password is not correct, or the user name is not valid, access to the
system is refused. Unix does not tell the user whether it objected to the
password or the login name; it merely refuses.

Once the login procedure is complete, Unix signals the user that it is
ready to accept commands, by placing a brief message called the shell
prompt at the left margin. (Its strange name comes about because the
program that actually sends out this character is called shell). The shell
prompt, which often consists of just a single character, can be changed
easily and therefore varies from installation to installation. In most sys-
tems, users can even adopt individual shell prompts. Historically, the dollar
sign $ has been commonly used and the percent sign % is another popular
choice. In this book, the dollar sign is used, except where it is necessary
to distinguish between two different situations.

Many system managers like to have messages of general interest
broadcast as part of the login procedure. Such messages follow validation
of the user password and precede the first shell prompt.

Logging Out

Logging out is probably the most important single activity in learning to
use a new operating system—just as the beginning pilot must master land-
ing at an early time. Most operating system designers have tried to make
the task easy by providing a command such as ‘‘bye’’ or ‘‘exit’’. Not so
Unix!

Logging out of most Unix systems is done by typing control-D in re-
sponse to the shell prompt, i.e., by striking the D key while holding down
the CONTROL key on the terminal. Like the SHIFT key, the CONTROL key
by itself does nothing; it only modifies the behavior of other keys. Control-
D is usually written as D or 1 D in books on Unix; it normally does not
echo on the terminal screen as anything at all. Although some systems
may send out a brief message to indicate disconnection, the usual response
to control-D is simply

login:

showing that the system has disconnected itself, is not talking to anybody,
but is prepared to initiate a new login sequence.

The idiosyncratic and unexpected logout procedure of Unix may seem
irrational at first glance, but it makes sense after a certain fashion. The
control-D character (ASCII octal 004) is employed almost everywhere in
Unix software as an end-of-transmission mark. Many utility programs that
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expect input from the keyboard use D in this way. Consistent with this
usage, a control-D sent from the terminal is taken to mean ‘“‘end of trans-
mission from the keyboard’’—in other words, ‘‘good-bye’’. Despite its
consistency with the rest of Unix, this scheme has two unfortunate flaws.
First, some users find it all a little strange and certainly not easy to re-
member. Second, most modern terminals are equipped with a feature called
auto-repeat, meaning that they will keep sending the same character over
and over again as long as a key remains pressed. Slight carelessness with
the keyboard can therefore result in sending not just one control-D but
several, so the user intending only to leave a utility program may suddenly
and unexpectedly end up logged out as well!

A note to the unwary: There do exist a few Unix systems which accept
control-Z instead of control-D as the end-of-activity marker. All the above
comments still apply, since control-Z is used for everything in such cases.

Because the control-D logout procedure is hardly obvious and can be
a nuisance, one popular category of Unix installations provides a logout
command, called simply ‘‘logout’’. There are also some mavericks which
use ‘“‘off”’, ‘‘goodbye’’, ‘‘arrivederci’’,. . . or whatever the imagination
of the local programming support staff dictates. Attempts to log out using
control-D are then usually refused.

Whether logging out is done by a single control-D or by a logout com-
mand, escaping from individual Unix programs is normally effected by
typing control-D or DELETE. The control-D keystroke signals that no more
keyboard input will be sent, a clear signal to most programs that activity
should continue to completion. The DELETE keystroke, on the other hand,
is an emergency brake: it stops anything and stops it inmediately, without
enquiring about possible consequences. Beginning users sometimes ex-
perience the dreadful situation of getting mired in a program, unable to
escape and unable to log out. Under Unix, a DELETE keystroke, perhaps
interspersed with a few control-Ds, ought to do the trick in a hurry.

The Terminal

One striking and unusual fact about Unix commands is that Unix insists
on working with lowercase characters even where the normal conventions
of English clearly demand capitals (e.g., user names, initial words of com-
mand sentences). However, uppercase characters are used in some cases.
A terminal capable of using lower as well as upper case is therefore es-
sential. Some versions of Unix do provide for automatic character con-
version from upper to lower case, so that capitals-only terminals can be
used; but these are messy at best. Anyhow, there are not many modern
terminals incapable of handling lowercase characters!

Practically every terminal is equipped with a whole row of little switches
somewhere. These switches set the various terminal characteristics: com-
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munication speed (baud rate), full/half duplex communication, upper/lower
case, treatment of line terminators, tab characters, and a host of other
matters. Of course, the switches must be set up in precisely the way the
system expects. If they are not, logging in may be impossible or may
result in incomprehensible strings of apparently random characters on the
screen. Because there are many types of terminal and many variations
on the acceptable switch settings for each, it is almost impossible to give
any firm rules—except that if the terminal is used only for communicating
with the Unix system, it is likely to be set up correctly and to remain so,
since nobody has an interest in altering the switch settings. Problems or-
dinarily arise only in computer installations where the same terminal is
used with several different operating systems.

Sometimes it happens that resetting the terminal switches has no effect
at all. In most new, modern, microprocessor-controlled terminals, the
switches do not control any electronic circuits directly; instead, the mi-
croprocessor reads the switch settings when it is first turned on and then
controls all terminal functions in accordance with the switch settings as
they were at the time they were read. Changing switch settings alters
nothing unless the microprocessor is forced to read the switch settings
again. The easiest way of doing so is to turn the terminal power off and
on again after a few seconds, whenever any switch setting is altered.

The Unix internal software maintains a record of the characteristics of
each terminal, a record which can be changed by users and in some cir-
cumstances by programs. Obviously, the characteristics that the system
has on record must correspond to the actual nature of the terminal. If a
terminal refuses to log in, then either the terminal switches are set wrong
or the operating system records are wrong. Sending a control-D or two
should reset the internal system records and allow logging in to proceed;
switch-twiddling should only be resorted to in extreme cases.

Typing at the Keyboard

Characters entered at the keyboard are not immediately acted upon; they
are merely stored until a carriage return is typed (with the RETURN key)
to signify termination of the line. The Unix system only attempts to read
and understand a keyboard line once it has been terminated. This allows
typing mistakes to be corrected on the spot.

If a wrong character is typed at the keyboard, it can be corrected with
the BACKSPACE key, which works in the obvious way on screen-type ter-
minals. But when printing terminals are used, there is no way of erasing
a character once it has been printed. When such terminals are used, a
character is considered to have been erased if it is followed by a special
character, the erase character. Usually, the # character is employed for
this purpose. When decoding, any character will be ignored if it is im-
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mediately followed by the erase character. Thus la#of #gim#n is in-
terpreted as 1ogin, the characters a, f, and m having been ‘‘erased’’ by
the # sign. Similarly, a kill character, usually but not always ®, is used
to “‘kill”’ everything typed since the beginning of the line, so that kif @
login is interpreted as 1ogin. If either of the characters # or @ is actually
wanted as part of a line, it must be preceded by the backslash character
\ to avoid erasure. In other words, A\ #B is decoded as A#B, not AB.

Because typed characters are not decoded on the spot but merely stored
for decoding when a carriage return is sent, it is both possible and per-
missible to ‘‘type ahead’’, that is, to keep typing even though the screen
echo of the typed characters does not keep up. (It will come eventually.)
But this practice is not generally to be encouraged, because typing without
an immediate screen echo can leave typing errors unnoticed, with possible
unexpected consequences to come!

Like many other computer operating systems, Unix employs all the
printable ordinary keyboard characters, as well as a set of control char-
acters which are not printable. The latter are formed by striking the ap-
propriate key while holding down the CONTROL key. (One such, the con-
trol-D character used for terminating activity, has already been discussed.)
The coNTROL key works much like the SHIFT key, that is, it alters the
meanings of the other keys. Simply striking the CONTROL key by itself
produces nothing whatever, just like striking the SHIFT key. Consequently,
it is normal to press and hold down the CONTROL or SHIFT key, as ap-
propriate, before striking the character key required. Control characters
are unprintable, that is, there is no printed character that corresponds to
the internal computer representation of any control character. When it is
desired to indicate a control character in print, the character is shown
preceded by a caret (as in D) or an upward arrow (as in 1 D); alterna-
tively, one writes ‘‘control-D’’ or ‘‘ctrl-D’’. The most commonly used
control characters are probably control-D, which generally denotes an
end-of-activity and therefore also serves for logging out; control-S, which
allows terminal display to be halted temporarily; and control-Q, which
allows terminal display to continue after being halted by control-S.

Running the System

All actions which the Unix operating system is able to perform are re-
quested by the user through the Unix command language, which is both
rich and flexible. The Unix system provides the user with an unusually
wide variety of utilities—text editors, language translators, file manage-
ment tools, and much else. These tools, like actions by the system itself,
are also controlled by keyboard commands.
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Commands

When the shell prompt is displayed at the left screen edge, the Unix com-
mand decoder is awaiting instructions. Nearly all Unix commands are
actually requests to run particular programs. For example, the command

$ who

causes the system to find the program named who and to execute it. (This
particular program looks in the system tables to find out which users are
logged in at which terminals and displays their particulars on the terminal
screen.) When execution is complete, the shell prompt is displayed again
to show that another command is expected. Execution of any program
may be stopped by pressing the DELETE key (sometimes labelled RUBOUT)
on the terminal, so errors in typing need not be disasters. The DELETE
key is one of a select few whose effect is immediate, i.e., it is not necessary
to send a carriage return for it to take effect.

There is nothing particularly magic about Unix commands, for the set
of commands can be extended at any time simply by adding more programs
capable of being executed. The standard system-provided set of commands
totals well over 100 in small Unix systems and easily reaches several
hundred in large ones. Those most likely to be of immediate interest to
beginning users are

cat concatenate files and display on screen
cp copy contents of one file to another
date display correct date and time

77 run the Fortran 77 compiler

Ipr queue files for sending to line printer
Is list the contents of a directory

mkdir make a new directory

mv move (rename) a file

nroff run the nroff text formatter

passwd change the login password

rm remove (delete) a file

tty display the terminal name

vi run the full-screen editor

who display who is logged in to the system

Many of the commands listed above have to be augmented by file spec-
ifications. For example, to move a file to another name with mv, it is
(reasonably enough) necessary to specify which file, and what its new
name is to be. Other commands permit (or require) additional qualifiers
to specify how and where the desired action is to be taken. In other words,
the commands are really command verbs and may need to be augmented



20 2. Getting Started

by other words so as to form coherent sentences. Some informal illus-
trations will be found in the examples below. More or less complete de-
scriptions of the above commands, and quite a few others, will be found
in a later chapter. Full details on each command appear in the Unix Pro-
grammer’s Manual or in the system manuals available at each installation.

Any user can add more commands easily, since no distinction is made
between a command and an executable program. Every command cor-
responds to an executable program and the name of every executable
program is automatically a command, simply by virtue of being there. In
fact, the only way of executing a program under the Unix system is to
type its name, as a command, when the shell prompt shows. There is just
one significant distinction between user-added commands and those sup-
plied by the system: programs added by a user are ordinarily accessible
to that user and that user only, inaccessible to other users unless special
arrangements are made. System commands, on the other hand, are always
equally available to everybody.

What happens if the user, not knowing any better, introduces a new
program with the same name as an existing system command? No serious
interference results, for the system always searches for the command first
in the user’s own directory of programs. Only if the command is not found
in the user’s directory does the system search elsewhere. Thus the du-
plication of a name already in use as a system command causes only one
inconvenience: the system command becomes unavailable. It might be
expected, however, that users who unwittingly use names of system com-
mands are unlikely to want or need those commands in any case!

Because new commands are easily added and existing commands can
be modified almost as easily, there are probably no two Unix installations
with precisely the same set of available commands and precisely the same
usage of the existing commands. This great flexibility allows tailoring every
computer system to serve its user community to best advantage. Yet flex-
ibility can also confuse users, because every Unix system seems forever
fluid, forever almost as the manual describes it, but never exactly like
that. There is no known cure for this ailment; all one can do is watch for
unexpected behavior and to enquire whether it arises from a recent local
system modification.

Files and File Names

The Unix operating system is designed to process files, so it regards prac-
tically every assemblage of information as a file, no matter what its physical
form or storage medium. The formal definition of a file is about as simple
as it could be: a file is a string of characters. Often enough, it is desirable
to organize a Unix file as a set of “‘lines’’. This form of file subdivision
is accepted as perfectly reasonable; indeed many Unix utility programs
expect files to be collections of lines, every one terminated by a newline
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character which is generated at the keyboard by pressing the RETURN
key. However, such a subdivision is a matter of convenience; there is no
requirement for a file to have any particular internal structure.

Files are identified by file names and are kept track of by recording
their names in file directories. Every user is allocated a personal file di-
rectory when his login name and password are authorized. Although there
may be many files belonging to many users on the system, the allocation
of a separate directory to each user means that he can ordinarily work in
a universe of files which includes (1) those he created himself and (2)
those supplied by the system, as system commands. No user need ever
be aware of the names, or even of the existence, of any other users’ files.
Only rarely will there be any interference between files listed in directories
belonging to different users. On logging in, a user gains full access au-
tomatically to all the files listed in his own directory, and only to those
files, unless some special arrangements are made. A listing of all files in
this directory is always available by means of the Is command.

File names may contain up to 14 characters. The characters may include
almost anything printable, the blank character being a notable exception.
Even the erase and kill characters are acceptable. For example, it is per-
fectly proper to use file#27 as a file name. However, if a printing ter-
minal is used, the # character may be understood to denote an erasure.
Thus, it is usually wise to name files using only lowercase letters and
numerals, because several of the special characters and punctuation marks
have peculiar special uses that may cause grief.

The period (the . character) is usable and permissible within file names
and causes no unexpected bad effects. It is used by many experienced
programmers, and by many system-provided programs, to differentiate
between related files. For example, the Unix Fortran compiler expects
Fortran source file names to end in . f, as in program. f; it produces
output files with the same names but substitutes . o for . f at the end.
Thus program. o would be the compiled (object code) version of pro-
gram. f. It must be emphasized, however, that characters preceding and
following the period do not have any special significance to the Unix sys-
tem, even though some programs (some provided with the system, as well
as those created by the user) may attach particular meanings to them. In
contrast to some other popular operating systems, file names are not di-
vided into two parts separated by a period, with the two parts treated
separately. The period is simply another character, as far as the Unix
system itself is concerned, and several may well be included in a file name,
as, for example, file....a.y.

File names occur in command sentences frequently. For example, sup-
pose it is desired to remove file program. o. (‘“‘Removal’’ means that the
file name is removed from the directory and the file space is released for
reuse; in other words, the file is deleted.) To do so, the command

$ rm program.o
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is typed in response to the shell prompt. Most other Unix command sen-
tences are constructed in an analogous fashion. Some actions, of course,
will require more than one file name ta be specified. As an example of a
command with two file references, consider the mv (‘‘move’’) command,
which moves a file from one name to another (i.e., it renames the file).
Entering

$ mv a.out program.x

““moves’’ the file around in a directory, by reassigning its name from
a.out to program. X.

Wild-Card File Names

File name references may be unique, or they may use wild-card characters,
that is, characters understood to stand for several others. Wild cards are
convenient and useful when several files with similar names must be re-
ferred to. For example, suppose it is desired to remove a whole set of
files, whose names are all of the form problemfile. ... One may issue
a string of commands

$ rm problemfileO1
$ rm problemfile02
$ rm problemfile03

and so on, but it is easier to type
$ rm problemfile*

The * character in file references is understood to mean ‘‘any and every
string of characters’’. In other words, every file whose name begins
problemfile and terminates in any characters whatever (or indeed none)
will be removed by the above command. Similarly, the command line

$ rm *filx*

will remove all files whose names contain the character string fil any-
where—with anything at all, or even nothing, preceding and following.
In effect, the * character in a file reference means ‘‘any, or no, charac-
ters’’. In a similar way, the question mark ? can be used as a wild card
standing for a single character. The difference between * and ? is that
the former stands for a character string of any length, while the latter
signifies one and exactly one character. For example, 7fi1? denotes any
file name containing exactly five characters, the middle three of which
are fil.
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A Session at the Terminal

The foregoing explanations and examples should suffice to permit even
a rank novice to try out a Unix system. The timid may wish to try the
sample terminal sessions shown here by following them through step by
step; the intrepid may prefer to rush in and attempt something more im-
aginative. The first example, shown in Figure 2.1, is very simple.
Several interesting points emerge in the session of Figure 2.1. To begin,
the login prompt (which asks for the user name and password) displays
a message identifying the computer system, then asks the user to log in.
The user’s login name is restricted to eight characters, of which the first
must be a lowercase letter; this rule causes a bit of pain for those with
long surnames! The password is not echoed on the screen, of course; the
user can tell that it has been accepted because the shell prompt % appears
next. The actions which follow in this session are typical of any terminal
session and require little comment. The logout process, however, is note-
worthy; the user enters 1 D at the terminal, which the system echoes as
logout, not #D, and the cycle begins over again with a new login message.
It may be of interest to examine the same, or rather a very similar,
session carried out on a larger Unix system. The terminal conversation
runs as shown in Figure 2.2. Here the login process is enriched by the
inclusion of a message-of-the-day from the system manager. The who en-
quiry yields a larger haul of users than in the small system example but
is otherwise similar. The commands and operations do not differ markedly,
except that the shell prompt is different ($ instead of %) and that the attempt
to log out by typing 1 D fails. However, there is little confusion because

McEEucl - Simian system with Unix V7 System identifies
itself,
login: peter asks for login name
Password: and password.
Note % shell prompt:
% who Who is logged in
rcs console Feb 10 11:01 right now?
peter tty7 Feb 10 16:11 (just we two)
% date What is the right
Mon Feb 10 16:11:46 EST 1986 time and date?
% ls List my files!
helloprog.f (there’s just one)
% cat helloprog.f Display it on the
write (6,100) terminal screen
100 format (" Hello!") (its a
stop Fortran
end program)
% logout Logout with "D
echoed as “logout”
McEEucl - Simian system with Unix V7 System identifies
itself,
login: asks for login name.

FIGURE 2.1. Brief terminal session on a small Unix system.
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4.2 BSD UNIX (VLSI Lab)

login: peter
Password:
Last login: Mon Feb 10 10:52:31 on tty00

Fede e de e e e s ke de s e ke ek sk e de e e ke sk e de ol e ke ke e e de Aok e e Aok ok ke ek

System shutdown today at 2300 hours.
oo de e ke gk ke Ak e ok ke ke ok ok Ak

$ who
peter ttyoo Feb 10 16:16
michael ttyo01 Feb 10 14:32

nora ttyo2 Feb 10 14:19
boss tty03 Feb 10 09:29
cleo tty05 Feb 10 15:15

benny ttyh3 Feb 10 15:14
wurzel ttyh4 Feb 10 16:06
adler ttyhs8 Feb 10 15:21

$ date
Mon Feb 10 16:19:48 EST 1986
$ 1s

helloprog. f
$ mv helloprog.f hello.f
$ 1s
hello.f
$ cathello.f
write (6, 100)
100 format ("Hello!™")

stop

end
$ D
Use "logout" to logout.
$ logout

4.2 BSD UNIX (VLSI Lab)

login:

2. Getting Started

System identifies
itself,

asks for login name
and password.

Login accepted!

Message of the day.

Who is logged in
right now?

What is the right
time and date?
List my files!
(there’s just one)
Change its name
then list again
(OK, new name)
Display it on the
terminal screen

Logout with "D
not accepted

System identifies
itself,
asks for login name

FIGURE 2.2. Terminal session similar to that of Figure 2.1, but on a larger Unix

system with more users.

the refusal to log out is accompanied by a clear instruction to show what

the proper logout procedure is.

Writing and Running Programs

Development of applications programs is a truly common activity of com-
puter users. Development work generally begins with the design and initial
writing of a program, followed by testing and gradual correction of errors.
Typically, this kind of work requires repeated program compilation and
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trial execution, interspersed with editing sessions to eliminate from the
source file whatever errors turned up.

Program development requires at least two distinct facilities: a language
compiler and loader for running the program and a text editor to permit
preparation and correction of source programs. The Unix family of op-
erating systems provides compilers for several computer languages, several
text editors, and a host of advanced debugging aids for serious program-
mers.

Running Fortran Programs

The full Fortran 77 language and several other programming languages
are supported by Unix systems. To illustrate how Fortran programs are
tested and executed, suppose the file mainprogram. f contains a source
program in the usual form. The command

$ £77 mainprogram. f

causes the Fortran 77 compiler to be run. The compiler translates the
source program into the corresponding object program, which is left in
file mainprogram. o. Because users most often wish to link the compiled
object program with library modules and to execute it, the Fortran 77
compiler is automatically followed up by the linking loader, unless in-
structed otherwise. The loader assigns memory locations to the program
and performs other housekeeping tasks that permit the program to be ac-
tually run. Loader output is always placed in a file named a.out. Any
previous contents of a.out will be destroyed, so that if it is desired to save
the executable object module for the long run, it should be moved to an-
other name:

$ mv a.out mainprogram.x

Next, it is desired to execute the program. In Unix systems there is no
distinction between commands and executable program modules, so that
to execute the program it suffices to issue its own name as a command:

$ mainprogram. x

The Fortran program should now run and produce whatever output it
might. When its execution has terminated, the shell prompt will again
appear to signify readiness for further commands. To check what files
have been generated in the process, the Is command may be issued; it
produces on the terminal screen a listing of the files currently listed in
the user’s directory.
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If compilation had been wanted without linking—as often happens when
subroutines are developed and compiled individually—the additional ar-
gument -c would be included in the request to compile, signifying ‘‘com-
pile only’’:

$ £77 -c mainprogram.f

Other program modules, such as subroutines developed separately, may
then be combined with the compiled program by asking for the linking
loader 1d explicitly:

$ 1d mainprogram.o subprogram.o

The system will respond by running the linkage editor (linking loader),
again producing an executable output file called a.out. All files named in
the command will be linked, together with any system library components
that may be necessary. Execution, perhaps moving of the file to a more
memorable name, and examination of output then follow as above.

The vi Text Editor

Preparation of text such as source programs is generally done using the
text editor vi. This editor manipulates text stored in files by reading the
file content into a text buffer (an area of computer memory), manipulating
it in accordance with user commands, then rewriting it into the file. vi is
a line-oriented editor which works much like word processing programs:
it regards text as being composed of lines, each of which is made up of
characters. This line-oriented approach makes vi well suited to preparing
computer programs. Of course, vi knows nothing of the programs or pro-
gramming languages; it only handles lines composed of characters. It is
therefore not restricted to program preparation and is often used for other
textual matter as well.

The vi editor is invoked by a simple command. In response to the shell
prompt, one types (and follows with a carriage return)

$ vi filename

where filename is the name of the file to be edited. The editor responds
by reading the file and displaying the first screenful of it. If the file is
being newly created, there are of course no characters in it. In that case,
vi does its best in these trying circumstances, by showing a screenful of
empty lines, each with a tilde ~ at the left margin. The file name appears
at the bottom of the screen, in the last line which is generally reserved
for messages rather than text. vi then awaits commands.

All operations of the vi editor are controlled by keyboard commands.
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Commands generally consist of single letters, though these short forms
are often augmented by some additional information. Editor commands
are expected and understood by vi, not by the shell, so that their form is
totally different from shell commands. When ready to accept commands,
vi does not issue a prompt, but simply waits patiently. If there is serious
question about whether vi is listening, or something bad has happened,
one possible action is to type an ESCAPE or two. The ESCAPE keystroke
is understood by vi as a request to drop everything and listen for com-
mands. If already in the proper mode for accepting commands, vi says
so by tinkling the terminal bell. Two or more ESCAPEs should therefore
produce a reassuring little noise.

If alterations to a file are desired, the file is fetched and opened for
editing just as a new file would; the only difference is that the screen will
not show blank lines but the first screenful of text. When alterations have
been completed, the changed text must be written back to a file. To write
out the text and exit from vi, the ZZ command (one of the few made up
of more than just a single character) is used:

VA4

This command replaces the file content with whatever was there previ-
ously. Until the ZZ command is issued, the altered file resides only in the
editing buffer, an area of computer memory employed as a temporary
scratchpad area, as it were; the original copy of the file is still in the
archival file store and can be resurrected if necessary. Once the ZZ com-
mand is accepted, however, the old version of the file is destroyed and
replaced by the edited version. While doing the replacement operation,
vi shows the number of lines and characters in the new version.

When the editing session is finished with a ZZ command, vi stops run-
ning and the shell prompt appears again, to signify that the Unix system
itself (rather than vi) is awaiting further instructions.

Creating and Modifying Text

There exist various ways for vi to modify text. But curiously, there is no
explicit facility for creating text in the first place. When a new file is started,
vi assigns it its name and immediately considers it to be a perfectly normal
and proper text file, one that just happens to contain zero characters of
text. These zero characters are displayed on the screen. Despite its meager
content, the file is formally valid and may be modified. Of course, the
only modification that makes any sense at this point is the insertion of
additional characters. In other words, the only new file that can be created
is an empty file, all further operations being regarded as merely modifi-
cations of an existing file.

Most of the editing operations using vi refer to positions in the text



28 2. Getting Started

identified by the editing cursor, in a way similar to most office word proc-
essors. The cursor is a mark attached to one character in the text; it can
be moved by the user and serves as a pointing tool to say, in effect, ‘‘this
one here”’. The precise nature of the cursor is dependent on the terminal
type; blinking underscores and highlighted characters are often used. For
example, text insertion is performed at the cursor location, characters to
be deleted are identified by pointing at them with the cursor, and so on.

Text can be entered into the workspace (usually called the text buffer)
of vi with the i command (‘“‘insert’’). Typing the single character i warns
vi that the characters to follow are to be taken literally and placed into
the text buffer: they are not to be understood as commands. The string
of text continues on and on, until an ESCAPE character is encountered; vi
takes the ESCAPE to signify the end of the text to be inserted. To insert
the word write in the text buffer, one types

iwriteEgsc

where ESC denotes the ESCAPE keystroke. Similarly, to enter the small
Fortran program shown earlier, one types

i write (6,100)RET
100 format (‘‘ Hello!”)RET
StOpRET
endRET
ESC

Here RET denotes the RETURN key. What shows on the screen is the pro-
gram as it normally reads, for initial i and ESCAPE keystrokes do not give
any visual echo, while the RETURN key echoes as a new line beginning,
exactly as it would on a typewriter:

write (6,100)

100 format (‘‘° Hello!”)
stop
end

The entire text need not be entered in one stream; it is perfectly all right
to stop from time to time with an ESCAPE, then to resume insertion else-
where. Insertion always takes place at the left-hand edge of the cursor,
just ahead of the character over which the cursor is placed. Text can also
be entered by using the a (‘‘append’’) command. It works exactly like i,
except that the new characters are placed at the right of the cursor char-
acter. The two commands act identically otherwise; both are needed be-
cause the i command cannot append at the end of a text line (beyond the
rightmost character), while the a command cannot insert ahead of the
leftmost character in the a line.

To move the cursor around, four keys suffice for the four compass
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directions. The cursor moving commands must be issued, of course, while
vi is listening for commands, not while it is inserting text; if necessary,
an ESCAPE character will get it to command mode. The four are

moves the cursor left one position
moves the cursor up one line
moves the cursor down one line
moves the cursor right one position

-

Some terminals actually have little arrows painted on these four keytops
as a reminder, for there are software systems other than Unix which em-
ploy the same cursor motions.

When typing errors occur, correction can be effected by deleting the
incorrect characters and inserting new ones. Deletion is effected by taking
aim with the cursor, then issuing the command character x. Voila, the
character under the cursor disappears and its right-hand neighbors move
over to fill the vacant space. If the deletion was wrong —or for that matter,
if the last insertion contained a bad error—the last text alteration can
always be undone with the command u. In fact, even the nasty effect of
an erroneous u can be reversed with another u!

The a, i, x, u, ZZ commands and the h, j, k, 1 cursor movements
actually suffice to prepare simple programs. However, vi can use much
more sophisticated command forms and greater familiarity with it should
be acquired at an early stage if any substantial program preparation is
contemplated. A much more detailed description of vi will be found in a
later chapter of this book.

User types D to reset,

login: bftsplk responds to login,
Password: gives password (blind!)
$ 1s Lists current catalogue;
hello.f it contains one file.
$ cat hello.f Displays it on screen:
write (6,100) it is the
100 format ("Hello!™) “hello” program
stop written in
end Fortran
$ f£177 hello.f Requests compilation:
hello. f: compiler echoes name,
MAIN: compiles main program.
$ 1s Lists current catalogue;

a.out hello.f hello.o
$ mv a.out hello.x

two new files appear!
move (rename) a.out

$ hello.x Executes “hello” program:
Hello! it produces output.

$ rm hello.o Removes intermediate file,

$ 1s lists catalogue again:

hello.f hello.x Fortran and executable.

$ User now logs out!

FIGURE 2.3. Working session involving program compilation.
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Sample Terminal Session

It may be useful for the beginner to examine a sample terminal session
and perhaps to try duplicating it under Unix, thereby acquiring some feel
for how the system works and how it responds. The example of Figure
2.3, which follows on the editing example given earlier, may serve. Here
once more the terminal conversation is printed at the left-hand margin;
the right-hand column contains explanatory comments.

The program involved here is uncommonly short. Its extreme shortness
may perhaps explain why it compiled and executed correctly the first
time—something that even short programs rarely do! The terminal con-
versation, however, is precisely what would be involved in a more am-
bitious program. Even readers not very familiar with Fortran should find
it easy to substitute equivalent programs in their own favorite languages.



Chapter 3

Files in the Unix System

An important function of any operating system is to house, safeguard,
and manage various files. To be useful, files must be easy to store and
easy to find again. To be practical, files must fit conveniently onto the
available physical media. These requirements imply that the file system
must have a logical structure that makes sense to users in terms of their
needs and a physical structure chosen to suit the devices used for file
storage.

The Unix System File Structure

The Unix system allows complex structures of files to be managed with
ease. Its ease of use results mainly from separating the physical organi-
zation of files (their form of storage) from their logical organization, which
deals with their content and purpose and therefore concerns the user di-
rectly.

There are three kinds of Unix files: ordinary files, special files, and
directory files. Ordinary files are what most people think of when they
use the word ‘‘files’’: programs, manuscripts, collections of data. Direc-
tories are just what their name implies, listings of files with information
for the operating system about where and how to find them. Special files
contain the rules for managing input-output devices so that most other
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Unix programs need not concern themselves with such details as how the
keyboard handles characters and where on the screen output is to be
placed.

Ordinary Disk Files

Ordinary files are the type users are most often interested in. They include
both the files created by users and the files that come as part of the Unix
system itself; neither is accorded any distinctive privileges. The normal
storage medium for Unix files is a magnetic disk, a random access medium
to which files can be written and read back with equal ease. However,
the structure of any Unix file is independent of the physical medium on
which it is written; files on magnetic tape, for example, are laid out
in the same fashion and contain the same characters as they would on a
disk.

As far as the Unix system is concerned, an ordinary file is simply a
string of bytes, stored on disk or on some other physical medium. There
is no distinction between program files, data files, or any others; all files
are merely strings of bytes. The bytes in the file may represent printable
characters; in that case, the file is termed a text file. Characters stored
in a text file do not have any particular significance to the system it-
self, though they presumably mean something to the user or to some par-
ticular programs. There is one exception to this general rule: when files
are transmitted, the control-D character (in some maverick systems,
control-Z) is employed as an end-of-transmission marker. Some confu-
sion may arise when files containing such characters are transmitted be-
tween devices, so it is usually wise to avoid such privileged characters
in text files.

No special form of internal organization is prescribed for an ordinary
file. However, it is often convenient to subdivide text files into lines, sep-
arated from each other with the newline character (ASCII 012 octal). The
lines need not be of any particular length so that a text file may quite
properly consist of a single ‘‘line’’. Of course, individual programs may
be quite fussy about the internal structure of files; for example, Fortran
programs that read data usually expect specific data items to be located
in predefined positions in the input line. But in such cases the structural
requirements are imposed by the Fortran program, not by the Unix op-
erating system.

While no particular logical structure is imposed on files, the physical
structure of a file must be precisely defined—otherwise the operating sys-
tem could not find files and could not know how to read them. Fortunate-
ly, most system users are never concerned with exactly how the reading
and writing of files is actually carried out. They need only be aware
of the internal logical structure of files and know the rules for naming
files.
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Special Files

One interesting peculiarity of the Unix operating system is that under
Unix all input-output devices are made to look like files to the programmer;
there is no distinction between writing to a file, writing to the screen, or
writing characters into a telephone coupler for transmission elsewhere.
Programs that transfer data to and from files can with equal ease transfer
data to input-output devices. In fact, the programs themselves cannot even
tell what their data sources and sinks are. For example, to print a file the
system may be instructed to copy its contents into another file, called
/dev/1p. The latter is a special file—special in the sense that the in-
struction to copy into it does not overwrite the original content of file
/dev/1p, but causes the line printer to be activated. The special file itself
contains the rules according to which characters are treated by the pe-
ripheral device. In other words, an attempt to copy into file /dev/1p
does not result in its content being overwritten by a new character string,
as would be the case if /dev/1p were an ordinary file. Instead, the Unix
system identifies /dev/1p as being a special file and uses its contents as
a rule book for determining what should be done with the characters copied
(in this case, they are simply passed on to the line printer). Of course,
the physical file /dev/1p must never actually be written into, otherwise
the rule book will be destroyed!

Every input-output device on the system is associated with at least one
special file. It could be associated with several, however. If a line printer
is also to be used for graphic plotting, for instance, the plotting routines
may conveniently be placed in a special file, say /dev/1pplot. Copying
to this special file will then cause character strings to be interpreted in
such a way as to produce graphic output; copying to /dev/1p will print
out the characters themselves. Thus, the two special files appear to the
programmer like two distinct output files, although only one physical de-
vice is actually in use.

Directories

Once a file has been written on the magnetic disk, a way must exist to
find it again when required. Files are stored on disk in some convenient
fashion, not necessarily in the order of their creation. They are made easy
to find by name by creating an additional file called a directory, which
shows where to find the individual files. Like a city directory, a file di-
rectory contains the file names and their physical addresses on the disk.
Directories are files with a strictly prescribed internal structure, for they
must be comprehensible to numerous system routines. However, there
is no physical difference at all between a directory and any ordinary file.
Every directory is itself a file, stored on disk like any other file.

To furnish a simple example, suppose a disk has room for 960 blocks
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of 512 characters. At a particular moment, it contains the following layout
of files:

Blocks 000-028 unused
029-112 file, number 003
113-219 file, number 002
220-227 unused
228-473 file, number 001
474-478 unused
479-480 file, number 004
481-960 . . . other files . . .

The numbers assigned to the files are not related to the file contents in
any way, but are assigned as needed. They can be made visible to users,
if desired, but they rarely are, for few users consider them to have any
value. Users always access files by their names. In fact, the main purpose
of a directory is just precisely to keep track of which name corresponds
to which index number, so that users may be spared the bother of knowing
about index numbers. If file 004 in the present example is a directory, it
might contain (among other things) the entries

datafile 001
matrixprogram 002
matrixoutput 003
. 004

265

showing the correspondence between file names and index numbers. The
user only ever refers to matrixprogram; the system itself will take care
of looking in the directory, determining the index number, and finding
out just where on the disk this program file is located. In addition, it will
also determine whether the file is an ordinary file or not, whether the user
has the right to access it, and a host of other administrative details.

The directory itself is listed as a directory entry, with the curious special
name . (the dot, or period, character) assigned to it. It might seem pointless
to list it, for the location of the directory itself must be known in order
to consult the directory! However, the entry is conventionally included
because it simplifies such system operations as calculating how much un-
used space is left on the disk. When users list the directory contents,
which they normally do with the Is command, this special entry is sup-
pressed to avoid clutter and confusion, unless the user specifically requests
that it be made visible.

Directory Hierarchies

Since a directory is a file, it is readily possible to construct directories of
directories. In fact, Unix assigns a personal directory to each user and
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lists that directory as an entry in a directory of user directories, which in
its turn is listed as an entry in a system directory. (Fortunately, it really
isn’t quite so complicated as it first sounds.) In other words, each user’s
directory appears as a file when viewed from the system. The user in turn
can create subdirectories which appear as entries in his own directory.
The tip of this hierarchical pyramid is found in the root directory, which
is maintained by the system. This directory structure is a great strength
of Unix systems, for it implies that large numbers of users may create
large numbers of files but still find them easily. Each user need only be
aware of his own private universe of files and need not even know that
any other users exist.

The Unix file directory structure always has the form of a tree, with
the root directory at its root. That is, every directory must be listed in
exactly one, and only one, predecessor directory. Such a relationship is
illustrated in Figure 3.1. All files shown in this diagram are directories;
to keep the picture simple, any ordinary files listed in them are not shown.
By the tree structure rule, none of the directories listed as subdirectories
under jones (joe, bob, jim) can appear as a subdirectory under smith;
they are subdirectories under jones and a given directory may be listed
in only one predecessor directory. However, there may exist another di-
rectory called joe, entered as a subdirectory under smith. The analogy
with people’s names is apt: the Jones family may have only one son named
Joe, but there is nothing wrong with the Smith family also having a son
named Joe. Despite the similarity of their names, the two Joes are alto-
gether distinct individuals who have nothing to do with each other. Cor-
respondingly, the two directories named joe are distinct and unrelated.
The rule that directories must have a tree structure permits creating one
subdirectory named joe under every single directory, if users so desire.

Two special entries appear in every directory as . (dot) and .. (two
dots). The first refers to the directory itself—it is a file, after all —while
the second identifies the parent directory in the tree structure, i.e., the
directory of which the present one is a subdirectory. (The root directory,
which has no parent, is considered to be its own parent.) The Is directory
listing command normally suppresses display of these entries. However,
if the user wishes, an option exists to call for them to be shown.

The tree structure rule—every directory must be listed in exactly one

evans
—— jim
(root .
directory) Jones bob
joe pam
joe
smith joe

FIGURE 3.1. Hierarchical structure of a directory tree.
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predecessor directory—prevents circular listings. Were it not for this rule,
directory A could be a subdirectory of B, B a subdirectory of A. But this
rule applies only to directories, not to ordinary files. In other words, an
ordinary file may be listed in any number of directories while a directory
must always be listed in one, and only one, predecessor directory. The
ability to list an ordinary file in many directories means that it can be
made available to many users. It can be exploited to allow many users
to read a communal data file or to make use of a single copy of a program
file. On the other hand, it can sometimes also create confusion if several
users wish to write into the file at the same time!

File Names and Paths

Any file may be accessed by specifying the path to it through the directory
tree. The path specification is the full and proper name of the file; it is
known as the pathname of the file. It is the list of directory tree nodes
which must be traversed to reach the desired file. Successive tree nodes
(i.e., subdirectories) are separated by the slant character (also called a
slash or oblique stroke) so that a typical file reference takes the form

direcl/direc2/direc3/. .. /name

Here name is the desired ordinary file and direc1 must be a directory
file currently accessible, that is, a subdirectory listed within the user’s
current directory. Files not listed in some subdirectory of the current user
directory can be sought out by beginning the path at the root directory.
The root directory is the only directory not to have a name, so that the
path

/jones/joe/pam

will be interpreted as beginning at the root: no name, followed by the /
delimiter, is taken as specifying the unnamed, i.e., the root, directory as
the start. In contrast,

jones/joe/pam

causes a search to start at the current user directory. If jones is not a
subdirectory of the current user directory, the search will fail.

To state the matter in slightly different words, every Unix file is uniquely
defined by specifying the path from the root directory to the file. But since
the path is always downward through the structure, the rules permit the
user to omit, as a matter of convenience, all those portions of the path
which lie above the current directory. Thus

/usr/jones/joe/pam



The Unix System File Structure 37

would be a full specification of a file, valid in all circumstances, but
joe/pam

is its proper and complete specification, if the current directory happens
to be /usr/jones. Because . used as a file name always refers to the
current directory,

. /joe/pam

would be equally acceptable and would produce the same result.

Extensions and Suffixes

File names under Unix are simply character strings; the system does not
classify files by any feature of the file name. This contrasts with various
other operating systems in which data files, text files, executable programs,
and other file types are made recognizable by suffixing a name extension
of a few letters to the file name proper.

Saying that the Unix system does not recognize file name tags or ex-
tensions, however, does not imply that individual programs may not do
so, nor that users might not occasionally like to. There is no objection to
such a practice; indeed, it is conventional to follow it in many aspects of
work under Unix. Frequently, names of ordinary files are given a one-
character suffix, separated from the file name proper by a dot, as in

/lib/mseg. o

Tagging characters may be made up by users to suit themselves. However,
several tags are recognized by commonly used programs:

archives (often of system data)

C language source files

data files for utility programs

Fortran language source files

data files for system services (‘‘headers’’)

C preprocessor output (C source) files

relocatable object files

Pascal language source files

Ratfor language source files

assembler language source files

compacted files produced by pack

It must be kept in mind that to the Unix system itself the dot and the
suffixing character are simply part of an ordinary file name. They constitute
two characters, so the other characters preceding them must number 12

n RHT O KHDHQALOWE

N
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or fewer for the file name as a whole to fit within the permissible maximum
of 14 characters.

The System Directory Structure

Although at first glance the Unix file system may seem to be complicated,
familiarity makes it seem less so. Most Unix systems adhere to (roughly)
similar structures of the root file system, so it is worthwhile to examine
a typical file system at least briefly.

A diagrammatic view of the directory tree for a typical Unix system
is shown in Figure 3.2. Only the portion near the root directory is given
in detail; the farther from the root, the more individual implementations
diverge from each other. It must be kept in mind that almost every in-
stallation involves not only a different hardware configuration but also a

Special files for physical devices: system console,

dev terminals, disk drives, line printer, ...

Executable utility programs: compilers, assembler,
editors, program development, ...

bin:

Libraries of system utilities and subroutines: Fortran and

lib C run-time support, system calls, i/o routines, ...

root
(root) Restricted system data and dangerous utility programs

restricted to system manager: password file, login, ...

etc

Temporary (scratch) files used by the various system
utilities: editor, compilers, assembler, ...

tmp:

s e e i

bin

tmp
dict

lib

usr

mary

spool——'_:at

Less-used utility programs
Less-used temporary files
Word lists, spelling checker

Less-used library files

Directories to text files containing the
full Unix Programmer’s Manual

Timed processes
1pd—lp directory

User directory structure

userl

user2 User directory structure
users3s User directory structure
userN User directory structure

FiGURE 3.2. A typical Unix system directory structure.
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different user community, so that the system manager most often will
have had to restructure the file directories to suit local needs. For example,
in a user community with few Fortran programmers but a large amount
of text processing to be done, the file system may well be set up to have
the text editor and spelling checker quickly available, while the Fortran
compiler may even reside on a slower physical device. Nevertheless, most
installations resemble each other closely near the root directory and adhere
to the same organizational principles elsewhere.

As may be seen in Figure 3.2, the root directory has several subdirec-
tories, with each containing more or less logically related matter. The first
five directories shown—/dev, /bin, /1lib, /etc, /tmp—are generally
used by the system itself in carrying out user commands or by the system
manager in maintaining administrative files and system software. The files
are grouped within these directories primarily by the access permissions
granted to users. For example, the general public is ordinarily given ex-
ecute permission for files in /bin but not in /etc. It is usual to keep
these five directories on a high-speed disk, so that users have rapid access
to the files as they require them. The sixth subdirectory /usr shown in
the diagram is generally the largest. The home directory of every au-
thorized user is normally attached to /usr as a subdirectory, which can
easily account for hundreds of entries in /usr even in modest-sized sys-
tems. In addition, /usr is employed to house system utilities of the same
kind as found in /bin, /1lib, and /tmp but needed less frequently.
/usr is physically housed on a large, but possibly slower, disk drive in
many installations. There is considerable incentive to keep the most com-
monly used items (which usually amount to a small percentage of the
whole) in a small but rapidly accessible place, while the less often used
larger part of the system resides on a slower but bigger device.

Working with the File Structure

The hierarchical arrangement of files within the Unix system is a valuable
tool for maintaining and using large file structures in a tidy and orderly
fashion. Getting around in this hierarchical maze, however, presupposes
some familiarity with the actions that users are able to carry out. This
section therefore outlines the main activities possible, indicating what can
be done, how to do it, and who is allowed to do it.

Changing Directories

When a login name is first authorized, a home directory is associated with
it and that directory is opened whenever the user logs in. Any file names
used in commands then refer to files within the home directory, including
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any subdirectories attached to it. The thousands of files owned by others
are thus invisible to any one user so order prevails despite the large number
of files resident in the Unix file structure.

On many occasions it is useful to group various files containing logically
related material into subdirectories. For example, Fortran programmers
often find it convenient to store the source code for the subroutines of a
large program in a directory structure that resembles the calling sequence
of the subroutines themselves. Similarly, the author of a book may store
individual subsections in separate files small enough to edit conveniently
and to join them together through a hierarchy of directories. For example,
book/chapt3/sect4/subsec2 might be one file in such a hierarchy.
The disadvantage of such a structure is evident at once: file names become
awkward and unwieldy even if the individual file names do not come any-
where near the 14-character length permitted under Unix. For the book-
writer to work on the subsections of a particular section, for example, it
would be best to make the current user directory be that subdirectory
which contains the desired material, say book/chapt3/sect4. Such a
change is perfectly possible; Unix permits any directory whatever to be
the current working directory. The home directory is privileged or special
only in the sense that it is made the working directory at login time.

Changing to another directory as the working directory is accomplished
by the ¢d command, in the form

$ cd book/chapt3/sect4

which makes the named directory into the current directory. From this
point on, all file references will be sought in the new current directory,
so that file book/chapt3/sect4/subsec2 is referred to simply as
subsec2.

Changing directories downward in the hierarchy is easy, since only the
subdirectory names need to be specified. Changing upward requires
knowing the full pathname of the desired directory. It can be determined
using the pwd command, which produces the full pathname of the working
directory. This command allows no parameters or arguments and returns
the name of the current directory in the fullest form possible:

$ pwd
/usr /bftsplk/book/chapt3/sect4

The c¢d command may then be used to change to a different directory as
the working directory:

$ cd /usr/bftsplk/book/chapt2/sectl

$ pwd
/usr/bftsplk/book/chapt2/sectl
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If issued without any argument at all, cd returns the user to his home
directory, the directory automatically assigned when logging in. In most
cases, the home directory of every user is a subdirectory of /usr:

$ cd
$ pwd
/usr/bftsplk

File hierarchies can become quite intricate. As a result, cd and pwd are
among the most frequently used Unix commands of all.

File Access Permissions

Not all users need to have access to all Unix files, nor is it desirable that
they should. On many occasions, a user may wish to keep some files
strictly private, as for example in commercial data processing. Others
must therefore be denied access to those files. An even more important
reason for denying access is that there are ways in which a small mistake
can result in disastrous damage. For example, destruction of the root di-
rectory of a file system can easily make the entire file system useless. To
prevent such damage, users must be forbidden to delete certain protected
files, which surely must include the root directory. For reasons of both
privacy and security, all Unix systems therefore include a formal scheme
of file access permissions. Except as otherwise arranged, users have full
access to their own files, restricted access to selected system files, and
no access at all to files belonging to others.

Under the Unix file access permission scheme, an ordinary file can be
accorded three forms of permission: read, write, and execute. Any given
user may be granted any desired combination of these; the three permis-
sions are entirely independent and none presupposes any other. Permission
to write means permission to alter the file contents, including destruction
of the file. Most often, users have writing permission to their own files,
but at times they may wish even their own files to be denied writing per-
mission, to guard against inadvertent alteration or removal of valuable
material. Permission to read really means permission to copy. Since Unix
does not differentiate between files and devices, listing a file at the terminal
is regarded as copying it to the special file which represents the terminal.
Hence, no distinction can be drawn between reading and copying; reading
permission therefore does have significance even for a binary file which
is unreadable in the ordinary sense. Execute permission means that the
file may be used as a running process; it does not presuppose permission
to read, for the user does not need to copy a file to execute it. Typically,
users have execute permission for a large number of system facilities—
editors, compilers, linkers, and so on—but they very likely do not have
permission to read or write into those files.

It is worth noting that permission to write into a file and permission to
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erase items from the file are not distinguished. This arrangement is gen-
erally satisfactory for scientific computing, but it may complicate matters
a little in some types of administrative or financial data processing. In an
accounting department, for example, it may be convenient to allow many
account clerks to write transactions into the same journal, but it is not at
all desirable to allow any account clerk to delete transactions!

Directories are assigned the same three categories of permission as
ordinary files: read, write, and execute. Directory files are stored in a
binary format, not as text files, so that simple reading produces apparently
random garbage on the terminal screen; they are displayed by the Is com-
mand, which processes the binary representation into legible form. Reading
permission is therefore interpreted to mean listing permission, while writing
permission constitutes the right to attach new files to the directory or to
delete files. Having execute permission for a directory means that the files
in the directory can be accessed (provided the appropriate permissions
exist for the files themselves) or searched. For example, if a user has
reading permission but not execute permission for file /usr/spool, he
can list this directory and discover that it contains a subdirectory /usr/
spool/at. However, he cannot access /usr/spool/at itself, because
he lacks execute permission for /usr/spool.

Access permissions are granted to a user in three categories: personally,
as a member of a user group, or as a member of the general public. When
first authorized by the system manager, every user is assigned a personal
login name and membership of a group. Classification of users by groups
is a convenience, particularly in large installations. For example, a new
experimental Fortran compiler might well be made executable by all
members of the compiler development group, so as to permit testing by
group members; but execute permission will probably be denied to other
members of the general public until the compiler has been certified to
work properly. In small installations, groups may be insignificant or trivial;
the group may well consist of a single user, or all authorized users may
belong to a single group. Even if they are not really used, groups are
always defined for purposes of defining access privileges.

When a file is newly created, it is assigned a set of access permissions
by default. A common arrangement would be to grant full permissions to
the file owner, read and execute permissions to other members of the
same group, and execute permission only to the general public. But default
settings differ from installation to installation, indeed from user to user.
If the default settings locally used appear inconvenient for some user, the
system manager should be consulted, for it is a simple matter to reset the
default values.

Keeping Track of Directories

At any one time, every user has some directory serving as his working
directory. The operations he must be able to carry out, so as not to get
lost in the system, include at least the following:
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changing to another directory as the working directory,
determining which directory is the working directory,
listing the contents of a directory,

creating new subdirectories, and

removing an existing directory.

There are five commands corresponding to these five operations: c¢d, pwd,
Is, mkdir and rmdir. The c¢d and pwd commands have been dealt with
above; the remainder will be described briefly in the following.

Making new directories and removing old ones are almost as easy as
changing them. A new directory is made by the mkdir command. For
example, the command conversation

$ pwd
/usr/johnson
$ mkdir book

creates a new directory /usr/johnson/book. The current directory,
however, is not changed. The newly created directory is automatically
made to be a subdirectory of the current directory, unless a full pathname
is given in the mkdir command so as to create it somewhere else. Naturally,
a new directory can only be created in an existing directory where the
user has write permission.

Removal of a directory, if desired, is accomplished by the rmdir com-
mand, which is analogous to (but not the same as) the rm command:

$ rmdir manuscr

Removal of a directory should not be attempted unless the directory is
empty, i.e., unless it contains no subdirectories and no ordinary files.
Disaster may otherwise befall the files listed in the directory to be removed!
Whether the directory is empty or contains any file names can be verified
by asking for a listing of the directory contents, using the Is command.
This command simply lists the file names at the terminal, in alphabetical
order:

$ 1s /usr/johnson

book

grub

prog
The listing may produce one name per line, or it may string out the names
across the screen (a better idea) in various versions of the Unix operating
system. In any case, it is not absolutely necessary to give the directory
name in the Is command; if none is shown, the current directory is as-
sumed. The Is command is necessary, simple printout of a directory file
will not do, because directories are stored in a special, compacted, binary
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format. Attempts to display them in the same way as ordinary text files
(e.g., using cat) will produce what appears to be gibberish.

Directory Listings

A file can be attached to a directory in various ways. It may be attached
to that directory only, ever since its creation; or it may be linked to it at
some later date. Furthermore, it may be attached with various user access
permissions.

The access permissions, number of directory links, indeed almost every
conceivable form of information about a file may be determined by using
the Is command. In its simplest form, Is merely lists the names of all files
in a directory. But there are options for asking Is to sort the listing by the
time of last file access, time of last modification, time of last permission
alteration, or alphabetically—or any of these in reverse order. There are
options also to list not only names but to give much more extensive in-
formation (file sizes, i-numbers), as well as to include both the directory
itself and its parent directory. Some of the more commonly employed
options include -1 (long form), -a (all entries), -t (sort by time of last mod-
ification), and -r (reversed order). For example,

$ 1s -al
total 24

drwxrwxr -x 6 johnson friends 678 Feb 28 17:32
drwxrwxr -x 9 johnson friends 212 Jan 12 10:02 ..
drwxrwxr -x 1 johnson friends 143 Mar 11 15:50 book
-rwWXr-x--- 2 johnson friends 8822 Feb 14 12:09 grub
drwx------ 1 johnson friends 657 Feb 22 19:33 prog

In this listing, the first line shows how many file blocks are occupied by
the files listed. Blocks are 512 characters each in most older Unix systems,
1024 characters in some of the newer ones (such as System V). The re-
maining lines of the listing give the actual directory entries, beginning
with the directory itself (. ), then continuing with its parent directory (. . ),
and finally giving the other files (grub, book, prog). Their order is al-
phabetic (i.e., in order of ASCII character sequence). It bears no particular
relationship to sequence of creation, time of last access, or file content.

In the line given for each file, the first character indicates whether the
file is a directory (d), special file (b or c), or ordinary file (-). The next
nine characters constitute three groups of three and describe the access
permissions granted to the owner of the file (first three characters), other
members of the same group (next three characters), and the general public
(last three). The letters r, w, x are used to denote read, write, and execute
permissions, always listed in that order. If the relevant letter appears,
permission exists; if it has been replaced by a minus sign, the indicated
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permission is denied. For example, grub is identified as an ordinary file
by the absence of a leading d. The file owner johnson has full access
privileges to grub. Members of user group friends may read the file or
execute it but may not write into it. The general public is denied all access
to grub.

The long-form listing above also shows, following the permissions, the
number of directories in which the file appears (the number of links, in
Unix jargon), the owner’s name, the owner’s group name, the number of
characters in the file, and the time the file was last modified.

A subtle point about Is is that the file name given in the command line
could be the name of a directory or the name of a non-directory file. If
it is the latter and such a file is resident in the current directory, information
will be given about that file only:

$ 1s -1 grub
“TWXT—X-~ - 2 johnson friends 8822 Feb 14 12:09 grub

This feature is useful if a directory contains many files and full information
is only required about one.

Altering Access Permissions

From time to time it becomes necessary to make files accessible to other
users or to deny previously existing access privileges. To alter the per-
missions on a file, the chmod (change mode) command is used. In this
command, it is necessary to specify

1. whose permissions are to be set,
2. what the settings are to be, and
3. which file.

Thus, the chmod command must have three arguments, leading to the
form

$ chmod who settings filename

The characters u (user = login owner), g (group), o (others), or a (all)
may be used to indicate whose permissions are to be set. The settings are
given in the form of a sign (+ - or =) followed by one of the characters
r, w, x. For example,

$ chmod u-w precious
says that the user wishes to deny (minus sign) himself (u) write permission

(w) on file precious, presumably to guard against accidents. The minus
sign - removes permission, the plus sign + grants it, and the = assigns
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permissions absolutely (without reference to what they may have been
previously). The command

$ chmod a=rx precious

sets the permissions to r -xr -xr -x, allowing everybody to have read
and execute permission and nobody to have write permission.

chmod can be used equally well for ordinary files or for directories,
with exactly the same results. It should be noted that, unlike most com-
mands, chmed insists that no blanks be placed between the who-identifier,
the signs, and the r, w, x characters. Blanks placed there will usually
result in error messages, because the next character following a blank will
be assumed to be a file name.

It is probably redundant to point out that the alteration of permissions
is a privilege available to the owner of a file but not to others. Were it
not so, the accident protection aspects of the permissions system might
still be workable. Privacy, on the other hand, cannot be safeguarded by
locked doors if everybody has a key!

Moving and Removing Files

Files attached to a particular directory may be moved to another quite
easily. The command mv, issued in the form

$ mv filename directoryname

moves a file to another directory. The moving is accomplished by rewriting
the links (directory entries) that form the directory tree, not by actually
copying the file. Thus the ‘“‘moving’’ really is just a matter of moving the
file name; the name is removed from one directory, inserted in another.
Nothing is left behind in the old directory.

Variations on mv are obtained by moving a file to another file or a
directory to another directory. These operations amount to simple re-
namings, since once again the moves are done by rewriting names and
links (indexing pointers), not by actually copying files. An exception arises
when a request is made to move a file from one physical device to another,
say from disk file to magnetic tape. To remain consistent in usage, mv in
this case does really copy the file; the old copy is destroyed and all di-
rectory entries are rewritten to point to the new copy.

Removing a file by the rm command amounts to deletion. The removal
is effected by destroying the specified directory entry, then checking
whether the file has any entries left in any other directory. If no entries
are left, the file has become inaccessible and has ceased to exist so far
as any user is concerned. The physical storage space occupied by the file
is therefore cleared and released for other use. Removing is a potentially
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dangerous activity, particularly if wild-card constructions are used; for
example,

$ rm * .old

(with a blank following the asterisk) will destroy all files in the current
directory!

It is possible for an ordinary file to be listed in two or more different
directories, just as a single physical telephone may be listed in several
telephone books. Any number of listings is permitted, all with different
names if desired. A new directory entry may be created for an existing
file by the In (link) command, which has the form

$ 1n oldname newname

The names oldname and newname are given in the usual form of file
names—either as full pathnames or as partial pathnames from the working
directory downward. Creation of multiple links is particularly convenient
if, for example, several users need to have access to a common data file.
However, it should be noted that under the general system rules, directory
structures must always be strictly hierarchical. Therefore, it is possible
to create a duplicate listing for an ordinary file, but not for a directory.

It should be emphasized that creating a new link with the In command
does not create a new copy of any file; it merely lists the same physical
file in another directory, exactly as a telephone might be listed in several
telephone directories. Any alteration made to the file will be made in the
file as seen by every user, a point to keep in mind if several users have
permission to write into the file.

File Location and Identification

The hierarchical directory layout used by Unix systems is powerful and
flexible. But it does make it easy for users to lose themselves in the intricate
nooks and crannies of the directory structure. There is probably no ex-
perienced user who has not at some time remembered with absolute cer-
tainty that a particular file was called trig—but without recalling the
precise directory and subdirectory path. In such circumstances, the find
command is invaluable. It permits searching an entire tree structure, from
a specified directory on downward, to find all files that answer a particular
description. find is in general used in the form

$ find pathname conditions

where pathname identifies the root directory for the search (all its sub-
directories, sub-subdirectories, etc. will be searched) and conditions is a
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set of qualifiers which tell what characteristics are to be sought. Con-
ventionally, the pathname of the current working directory may be given
as . and the pathname of its parent directory as . . if it is not desired to
specify full pathnames.

A simple application of find occurs when the name of a file is known,
but its full pathname is not. The command

$ find . -name trig -print

will begin searching at the current working directory (signified by .) and
continue through all subdirectories, for all ordinary files named trig.
Whenever one is located, its full pathname will be displayed at the terminal,
as a result of the -print qualifier. In a more or less similar fashion, one
can search for files whose names contain specified character strings, files
of a particular size, files belonging to particular owners,. . ., indeed almost
all specifiable characteristics of a file. These descriptions can be joined
in logical combinations using logical union, intersection, and negation op-
erators. The complexity of combinations is limited only by the imagination
of the user. For example, it is possible to issue a command (despite its
appearance, it is not gibberish!) like

$ find /usr/joe -name trig -mtime -6 -atime -2 -print

to find and display full pathnames for all files named trig, which were
modified less than six days ago and most recently accessed over two days
ago. The search will start at directory fusr/joe.

The great flexibility of find arises from the way in which the string of
specifiable conditions is handled. While getting the conditions right is
sometimes not easy at all, the principle is simple: the character string
denoted by conditions is considered to be a logical expression and is eval-
uated for every file in turn. In point of fact, find does nothing other than
evaluate the logical expression; it does not even produce any output. To
produce output, the logical function -print is included in the logical
expression as its final member. This function always has the value true,
but evaluating it has the side effect of sending the name of the file currently
being examined to the standard output. The trick here is that evaluation
of the logical expression is continued only until the expression is known
to be false, so -print is not evaluated (and therefore nothing is sent to
the standard output) if the logical predicates ahead of -print are found
to guarantee that the entire conditions predicate is false. The evaluation
sequence is important: the command

$ find . -name trig -print

will cause display of all files named trig in the current directory and its
subdirectories, but the command
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$ find . -print -name trig

will evaluate the -print function (hence send the file name to the output)
before it examines the file name, so it will display the names of all files!

The find command can locate files, but it does not examine their con-
tents. Although Is does indicate the general type of a file (ordinary, special,
or directory), it does not identify what kind of material the file might con-
tain. Thus, there is need for some command which will permit identifying
file contents without necessarily printing them out. The file command at-
tempts to do so by not only examining the identification bits attached to
each file but also by looking at the file content itself. It has a form as
simple as one might hope for,

$ file filename
which contrasts pleasantly with the complexities of find. Several file
names, or file names with wild cards, may be specified. file then responds
by producing an informed guess of the contents of each file named. For
example, in one version of Unix

$ file /etc/*

produces a long list which includes (among many others) the lines

/etc/accton: separate executable
/etc/checklist: ascii text
/etc/ddate: empty

/etc/default: directory
/etc/1pinit: commands text
/etc/mnttab: data

/etc/ttytype: English text

If the file is identified as ASCII character text, file usually tries to guess
further. If the text looks like a recognizable programming language, it also
takes a stab at identifying the language. Unfortunately, file does not always
guess right. To see why, a somewhat contrived little example might suffice.
The set of lines

call johnny
stop
end

constitutes a correct and valid Fortran program. It is also a syntactically
correct shell command file. It might well be intended as input for the nroff
text formatter and would be valid as such. It might even be thought to
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constitute English text. The correct answer can never be known by ex-
amining the file itself, only by asking its owner what was intended!

Archives and Libraries

A special form of object file called a library or archive is available under
all Unix systems. Such files differ from other object files in having internal
directories which the 1d (loader) program can scan. Like most operating
systems, Unix provides ready-made libraries of mathematical functions,
commonly used input-output routines, and much else.

Any user can create and maintain archives or libraries, using the ar
archive maintainer program. Users with many small subprograms of fre-
quent application are wise to do so.

In using and creating libraries, it should be borne in mind that searches
performed through libraries are done strictly in one direction. When loading
programs, users should therefore always specify file names in a sequence
that will make searches successful. If program A calls B as a subprogram,
which in turn calls C, loading will be successful if files present the program
modules to Id in the order A, B, C; but it will be unsuccessful in the order
C, A, B because (searching one way only) C cannot be found when it is
required by B. The ar program permits the user to arrange the order of
modules in a library, so that at least within each archive such problems
can be avoided.

Removable File Volumes

One great convenience that results from setting up directories hierarch-
ically is that whole new file volumes can be attached to the existing file
structure easily. Such volumes may take various physical forms such as
magnetic tapes, disk cartridges, or floppy disks. Floppy disks in particular
are assuming increasing significance as the computer user community
comes to recognize the inherent merits of a cheap machine-readable me-
dium which conveniently fits into a standard filing folder. But having re-
movable media means that the operating system has to be informed,
whenever appropriate, that the disk or tape on a given storage device has
been changed. Appropriate commands for this purpose are provided; they
are described in this section.

Extending the File Structure

To use a removable (demountable) volume, it must first be mounted (i.e.,
attached to the Unix system). The physical act of mounting, for example,
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placing a floppy disk in a disk drive and closing its gate, is necessary but
not sufficient. In addition to making the new volume physically available,
the system must be told of its existence and its place in the file hierarchy
by means of an appropriate command. To be compatible with directory
management rules, every physical file volume is made to contain a di-
rectory structure of its own. The directory structure of a volume is hier-
archical as always, and it begins at a root directory which has no name.
All files on the volume can be made available simultaneously by making
the root directory of the removable volume be a subdirectory of the user’s
working directory. To do so, the user requests the system to substitute
the root directory of the newly mounted volume for an existing (but empty)
directory in all file references.

Like many things, the principle of mounting removable volumes may
appear complicated, but it isn’t really. Suppose user joe possesses a floppy
disk containing the manuscript of a report, structured as shown in Figure
3.3(a). On first logging in, the working directory is automatically made
/usr/joe. To access the files on floppy disk, joe first makes a new di-
rectory report, a subdirectory of one of his existing directories. The
new directory of course is part of the already existing file structure in the
system, as indicated in Figure 3.3(b). Incorporation of the file structure
on floppy disk only requires the empty subdirectory report and the root
directory of the floppy disk to be made the same, as in Figure 3.3(c). Once
the two directories have been identified as being the same, the file structure
on the floppy disk has become in every way a part of the entire Unix file
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FIGURE 3.3. (a) Directory structure on a floppy disk. (b) An empty directory report
is added to the user’s file structure. (c) The floppy disk directory is identified with
report.
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structure. The file reference /usr/joe/report/chapters3, for ex-
ample, is understood by the system immediately.

The mount and umount Commands

The user with a volume to attach generally first performs the physical act
of mounting the tape or inserting the diskette in its slot, then tells the
system about it by using the mount command. Typically,

mount /dev/fd0 /usr/joe/report

achieves the desired result: the root directory of floppy disk drive fd0
(accessed through the device special file /dev/fd0) becomes identical
with the already defined but empty directory /usr/joe/report. Aside
from the time delays occasioned by the need to access files on such slow
devices as cartridge tapes, the user will not even be aware that the file
storage is split between several devices.

Under most Unix systems, a volume is generally mounted with a com-
mand in the form

$ mount /dev/xxx directoryname
or
$ /etc/mount /dev/xxx directoryname

where /dev/xxx is the name of the special file that handles the physical
device in question and directoryname is the name of the directory file
for which the root directory of the removable volume will be substituted.
Both the device special file and the directory be taken over by the root
directory must exist when the mount command is issued. The directory
to be taken over must be empty at the time it is taken over. It should be
noted that the mount command itself resides in /etc, a directory normally
reserved to the system manager. In several versions of Unix the mount
command requires the full pathname to be given for directoryname;
names relative to the current directory are not accepted.

When the time has come to unmount the removable volume, the same
steps are retraced in reverse. The command for doing so is umount (not
‘“‘unmount’’):

$ /etc/umount /dev/xxx
This command has only one argument, the name of the special file /dev/

xxx associated with the physical device on which the volume resides.
The directory file to which the volume root directory was attached is re-
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leased after the umount and appears as a healthy, normal, but empty di-
rectory. The umount command, like mount, resides in directory /etc.

If the physical volume (disk or tape) mounted by the mount command
does not contain a Unix file structure (if there is no directory on it), the
system will attempt to read and to mount it all the same. The most usual
result is a system crash. This disaster potential probably explains why
the Version 7 Unix system reserved the mount command to the system
manager. It might be presumed that the system manager, of all people,
should know better!

The mount and umount commands are among the least consistent and
least standardized Unix commands. Options differ considerably between
system versions and so do the access permissions. Although the principles
remain much the same, details differ sufficiently to make it essential to
consult the full system manuals on these two commands.

Mounting and unmounting a volume is also possible by way of system
calls, which may be accessed from C, Fortran, assembler, or other pro-
grams. This fact allows mounting and unmounting data sets under program
control, while a program is actually executing. However, only advanced
users and system programmers are likely to be interested in this possibility.

Making New File Structures

When a removable volume is mounted on some physical device, the logical
task of mounting is performed by substituting the root directory of the
demountable volume in place of an existing directory. As detailed above,
the procedure is to substitute the volume root directory for one of the
leaves of the Unix directory tree. The substituted directory must initially
be empty, precisely to guarantee that it really is a leaf of the tree. Such
a substitution is clearly impossible unless a directory structure exists on
the removable volume before any attempt is made to mount it. A brand
new magnetic tape, for example, cannot be mounted because it does not
contain any directory.

To create a directory structure on a new magnetic medium, the mkfs
command is used. This command first cleans the volume, irretrievably
destroying all records on it. It then creates a single brand new (empty)
directory on it, unnamed because it is the root directory for that volume.
The volume can then be mounted in the usual fashion. The mkfs command
is commonly used in the form

$ /etc/mkfs specialfile filesize

where specialfile is the name of the special file which serves to access
the physical device in question, and filesize is the size of the file structure
in blocks, a decimal number. The file size will usually (but not necessarily)
be equal to the full size of the physical volume. It is perfectly possible,
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though not very often of practical interest, to make two or more file struc-
tures on the same tape or disk.

Like mount and umount, the mkfs command resides in directory /etc.
In larger Unix systems, it is therefore available only to the system manager.
This arrangement is not altogether unreasonable, since unrestricted access
to mkfs makes it possible for any user to destroy entire diskfuls of files
simply by mistyping the name of a special file!

Working with Floppy Disks

Floppy disks are a popular file medium in small Unix systems. The design
of Unix in its early versions (including Versions 6 and 7) did not cater
particularly well to removable media under user control and it certainly
could not consider floppy disks, for floppy disks were just being invented!
Procedures appropriate to using floppies exist under System V, however.
To what extent they exist (and to what extent they are available) depends
on the system size and the nature of the user community, for almost any-
thing that can be done with removable volumes exposes all users to some
risk. Small scientific installations, for example, can usually afford to take
liberties quite unthinkable in large systems that maintain commercial data
bases.

Floppy disks are used under Unix in two ways: as block-structured
devices with random access to data (resembling a hard disk) or as se-
quential devices (resembling a magnetic tape). Either way, a floppy disk
is unusable until it has been formatted, that is, until it has had sector
marks written on it that will subsequently allow the system to locate places
on the disk. This operation is perhaps analogous to drawing a grid on a
map, making it possible to identify precise locations and to return to them
at will. Many Unix systems do so by means of the format command; the
floppy disk is placed in drive 0 (in most small computers, the upper or
left-hand drive) and the command

$ format /dev/fdo

is issued. In System V derivatives, it is usually not even necessary to
specify the device name; /dev/fdO0 is understood by default. Some sys-
tem versions will not even allow formatting of any device except /dev/
£d0, presumably to avoid the horrible consequences of some user acci-
dentally reformatting the hard disk on which the system resides!

Once a floppy disk has been formatted, a file structure may be made
on it with the mkfs command. In some systems, that operation is not even
necessary; format automatically invokes mkfs as well. In others, the user
needs to run mkfs explicitly. How large a file system can be accommodated
on a floppy disk depends on all the usual factors that surround the peculiar
world of floppy disks: how many tracks per inch, how many sectors, single
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or double sided. Floppy disks house half a megabyte, give or take a factor
of two or three; it is essential to consult the system manuals for local
details.

A useful feature of the mkfs command of particular benefit to the floppy
disk user is its ability not only to accept a file structure size but to create
a file structure identical to a prototype specification given in a named
prototype file. In plain English, this means that a user can have available
a version of mkfs that says effectively ‘‘make a file structure for a double-
sided floppy’’ without worrying about the details.

Restrictions on Removable Volumes

Once a removable volume has been mounted, the directory structure does
not show, indeed it makes it difficult to find out, on what physical device
the files reside. However, there are a few subtle difficulties which may
arise in the use of removable media. These are resolved by placing some
restrictions, fortunately gentle ones, on the directory structure.

Suppose a magnetic tape contains a root directory, with a single sub-
directory math which in turn contains ordinary files algb and trig.
Suppose user joe mounts the tape on a tape drive and attaches its root
directory to a previously empty directory whose pathname is /usr/joe/
tape. To user joe it then becomes irrelevant whether the ordinary files
reside on tape or elsewhere, since reference to /usr/joe/tape/math/
trig serves to access the ordinary file trig, just as if it had resided on
the system disk files. The user directory structure is then (in part) as shown
in Figure 3.4.

The file-naming rules in general insist that directories must be related
to each other in tree structures. On the other hand, ordinary files may be
listed in any number of directories. In other words, the insistence on hier-
archical structuring applies to directories only, not to ordinary files. In-
deed, the In command exists precisely so that ordinary files can conve-
niently be listed in two or more directories. However, a problem may
arise when ordinary files resident on removable volumes are cross-listed
in several directories. For example, file /usr/joe/tape/math/trig

etc

— jim algb
(root) usr joe tape math
bob trig
dev

FIGURE 3.4. Directory structure resulting from the mounting of a tape.
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may also interest user bob, who may therefore wish to attach it to his
directory. In principle, it is perfectly acceptable to provide a second listing
for the same file, as /usr/bob/trig. But the directory /usr/bob is
resident on a physical device (typically, the system disk) different from
the device where file /usr/joe/tape/math/trigis located (the mag-
netic tape unit). If user joe unmounts the tape file structure from directory
/usr/joe/tape and then removes the physical tape, file /usr/bob/
trig suddenly becomes inaccessible to user bob!

To avoid problems of the sort described, ordinary files on removable-
medium devices may not be cross-listed to directories on other devices.
Linking file trig to directory /usr/bob as above is therefore forbidden.
This rule is imposed to keep system management simple; if the rule did
not exist, the procedure of unmounting any volume would become very
difficult. For example, what should the system do if user joe wished to
unmount the tape while user bob was not even logged in? This prohibition
on cross-listings is not really so draconian as it may seem, for it does not
prevent any user from having access to files, merely from listing them in
directories in a particular way. If user bob really wishes to have a copy
of math/trig, he must request it by means of the mv command which
will actually copy the file across devices. Alternatively, a copy of it may
be made using cp.

Backup Files

Few computer users have not experienced a total feeling of frustrated
defeat as the realization gradually dawns that a whole day’s work has just
evaporated, the result of accidental file erasure. Once burnt twice shy,
goes the saying—one learns to keep backup files. Keeping backup copies
is more of an issue with Unix than with many other operating systems,
for Unix is miserly with disk space; it does not keep copies of previous
versions of modified files.

Backup copies are necessary not only because hardware and operating
systems sometimes malfunction but also to protect against the user’s own
blunders. Blunder protection is not hard to arrange if one adopts systematic
working habits. For example, suppose user joe is working on a report,
kept in a directory structure like that of Figure 3.3(c). To provide blunder
protection, another directory is created, say /usr/joe/report.bak,
into which to copy a backup version. To do so, user joe need only request

$ cp report/* report.bak
every now and then. While working on the report, making a new backup

copy every half an hour or so probably suffices; the loss is limited to
whatever has been done since the last backup copy. Unix even allows for
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forgetful people, by permitting regularly timed processes (so-called at-
processes) to do the backup creation automatically at specified intervals.

Protection against externally caused disasters clearly requires that a
storage medium not part of the computer system be used to house the
backup copy. For moderate-sized file structures that will fit on a single
floppy disk, a procedure similar to the above is used, with the difference
that the floppy disk must first be mounted and must be unmounted af-
terward:

$ mount /dev/fdO/usr/joe/report.bak
$ cp report/* report.bak
$ umount /dev/fdo

A system crash may of course occur while this backup procedure goes
on. In that case, user joe is left high and dry in spite of the most sensible
precautions, because no backup copy exists at all during the moment when
the old backup copy is being replaced by the new one. Very careful users
therefore keep two copies on floppy disk, not merely one.

Where floppy disks and removable disk-packs are inconvenient—be-
cause they do not exist or because the files to be backed up are too ex-
tensive—Unix provides an alternative in the standard command tar. Its
name is an abbreviation for tape archiver; its operation runs accordingly.
The general format is

$ tar options directories

where directories is the name of a directory, or of several directories,
whose contents are to be archived. The archiving is recursive, in the sense
that the directory structure is followed through all subdirectory levels down
to the ordinary files. Options available under tar are numerous and for
the most part obvious: tar will either write to tape or extract files from
an existing tape. It can be told to write to a new tape, or else to an existing
tape in an update mode, replacing only those files which differ from their
earlier versions. For backup creation,

$ tar u report

is the right choice; it tells tar to update the tape contents, comparing with
the contents of directory report. The word tape may of course mean other
physical media used in a sequential fashion, as if they were tape; diskettes
(floppy disks) are often used this way in small systems.

The file format used by tar has changed little between Unix versions
and does not vary between implementations. Tapes or diskettes in tar
format are therefore the favored distribution medium for Unix files; they
come as near to universal readability as anything can. On the other hand,
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a file in tar format really is archivally stored; it is inaccessible until it has
been copied into its place in the system file structure. File-structured vol-
umes are thus more convenient, provided the files are small and transport
to another computer is not envisaged.

The distinction between tar formatted media and file-structured media
is important; the two are different and cannot be mixed. Here is another
source of potential blunders. Because a diskette may contain files in either
format, users must remember to label them to identify not only the content
but also the format in which it is written —and must remember to change
the label when different contents in a different format are placed onto the
same disk.



Chapter 4

Unix Command Shells

The Unix operating system contains many software components. Two
hold particularly privileged positions: the kernel and the shell. The kernel
is the operating system in the narrowest sense of that word, the supervisory
program which schedules all processes and executes them in the proper
way at the right time. Which programs to execute, how to run them, what
to do with the output, and similar matters are communicated to the kernel
through the Unix command decoder program, the shell. In this chapter,
the external appearance of the shell is described in sufficient detail to
allow reasonably complete use of its main facilities. However, the shell
is a complex program and many of its more esoteric features can only be
hinted at here.

To be precise, Unix does not have a shell; it has several. The most
common is known as the Bourne shell after its originator; there is probably
no Unix system where the Bourne shell is not available. The next most
common is the C shell (pronounced sea shell). Both are general-purpose
programs. Various special-purpose shells, not discussed in this chapter,
also exist. For reasons now lost in history, the usual shell prompt character
is $ for the Bourne shell and % for the C shell; wherever it is necessary
to distinguish between them in this chapter, the $ and % characters will
be used.

Issuing Commands

The shells are the Unix command decoder programs; they request com-
mands from the user, decode them, and communicate the user’s wishes
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to the kernel. As the name shell suggests, the shell envelops the kernel,
in the sense indicated by Figure 4.1. All communication between the kernel
and the terminal user must pass through the shell.

Basic Shell Action

Whenever a user logs in, a Unix shell is automatically invoked and started
running, a separate and personal copy for each user. Once started, the
shell displays the $ prompt on the screen, signalling its readiness to accept
a command. When the user issues a command, the shell institutes a search
for a program with the same name as the command. If such a program is
found, the shell instructs the kernel to execute it. When execution is com-
plete, the shell tells the user and requests another command, by displaying
the $ prompt again. In other words, the shell alternately requests com-
mands and executes them, in the following cycle:

issue shell prompt;

wait for keyboard input;

decode command line and search for program,;
instruct kernel to execute program and wait;

accept kernel reply, then go back to issue a prompt;

This cycle continues until the shell encounters a control-D character in
the keyboard input. This character is used consistently throughout the
system to denote end of transmission. From the shell’s point of view, the
string of keyboard characters coming from the user is very much like a
file, so the shell interprets control-D to mean ‘‘end of keyboard input”’,
that is, to signify that the user does not intend to send any further com-
mands. The shell therefore instructs the kernel to log out the user.

Command verbs in the Unix system are invariably names of executable
programs, so that execution of a command really means execution of the
program with the same name. Indeed, any user can define more commands
at will, simply by creating programs and using their names as command
verbs.

User

Unix supervisor

(kernel)

FIGURE 4.1. The user at the terminal is isolated from the system kernel by the
command decoding shell.
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Form of Shell Commands

All commands understood by the shell, and therefore all commands the
kernel can act upon, have the same general form. This fact should not be
surprising since they are all processed by the same decoder. The form is

command-verb [argument] [argument] [argument]

The command-verb is always required, but arguments are optional; they
may or may not be needed. Because the command verb is understood by
the shell to denote the name of a program, it will institute a search of the
system file directories for a name to match the command verb, usually
in the following sequence:

1. user’s current directory; if not found,
2. directory /bin; if not found,

3. directory /usr/bin; if not found,

4. message issued, search terminated.

The command must appear in one of these directories as the name of an
ordinary file for which the user has execute permission. Because the
searching sequence is defined in advance, the shell does not expect full
pathnames for files which can be located unambiguously by the above
order of searching. For example, the Fortran compiler is always invoked
by the command

$ £77 arguments
There is no need to specify it by its full pathname as
$ /bin/f77 arguments

but there is nothing wrong with doing so. An exceptional case occurs if
a file name in the user’s own directory duplicates the name of a system-
provided command. If, for example, the user creates a brand new file
called £77, it will be found in the very first step of the search; but it will
not be the Fortran compiler! To override the default search sequence, the
full pathname will be required in such cases.

Most of the system-provided general utilities reside in directory /bin,
some in /usr/bin. A few are elsewhere. The users’ own contributions
of course may reside anywhere their creators care to (or can!) put them.

Arguments in the system-provided commands are of two principal
forms: adverbs (modal arguments) and direct objects (file names). Adverbs
are usually called options in the Unix Programmer’s Manual as well as
in other descriptive literature. For example, to compare two files filel
and file2, one may use the command

$ diff -e filel file2



62 4. Unix Command Shells

The argument -e is an option; when used with diff, it indicates that an
editor script is to be produced so that the standard Unix editor ex can
recreate filel from file2 and the differences that form the output of
diff. The option must be preceded by a hyphen (a minus sign) in this com-
mand, and indeed in practically all the system-provided commands, to
show the shell that -e is not a file name.

Like most of Unix, the command syntax lacks a formally defined
standard. It is probable that one will be defined before long; for the mo-
ment, however, some informally proposed standards do exist. By common
agreement, all command verbs are at least two and not more than nine
characters long, always composed of lowercase letters and possibly nu-
merals. Options are ordinarily one character long, preceded by a minus
sign. Some options take additional option arguments; these, if there are
any, follow the option letter. Sadly, these simple rules are broken by some
common commands—occasionally because there is a good reason, more
often because it just happened that way and nobody has got around to
repairing the damage.

Options naturally differ from command to command. Nevertheless,
most standard commands use the same letters to signify similar actions
(though exceptions do exist). For example, -1 often denotes ‘‘long form’’,
whatever that may mean in the context of a particular command. Some
commands allow few or no options; some admit more than ten, which
may be specified in almost any sensible combination. For example,

$ 1s -1 -r -t

requests that the current directory contents be listed, giving all entries in
long form (1), sorted in reverse (r) order by time (t) of last modification.
Multiple single-character options are normally combined into a single ad-
verb clause by concatenating all the option letters and prefixing them with
a single hyphen, as in

$ 1s -1rt

Blanks or commas must not be inserted between option letters in an adverb
clause, for if a blank is inserted, the shell will assume that the next char-
acter belongs to a file name, not an option.

When file names are specified as command arguments, the standard
conventions for file naming are used. In other words, pathnames beginning
with / denote paths starting at the root directory and pathnames beginning
without the / character begin at the current directory. However, the search
sequence applicable to commands does not apply to files named as direct
objects; if a named file is not found exactly where specified, no other
directories are searched for it.
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Multitasking and Waiting

In the ordinary course of events, the shell initiates execution of a command
and does nothing until the appropriate process has entirely run its course.
Typically, the user requests a process to be run, the output appears on
the terminal screen, and the shell comes back with the $ prompt when
ready for the next command. For example, anyone wishing to know who
is currently logged on the system may use the who command:

$ who

michael ttyo01 Feb 10 14:32
nora ttyo2 Feb 10 14:19
boss tty03 Feb 10 09:29
cleo ttyo5s Feb 10 15:15

wurzel ttyh4 Feb 10 16:06
adler ttyhs Feb 10 15:21
$

who checks the system tables to see which user is logged in at what terminal
and since what time. The answers are presented on the terminal screen,
while the shell simply waits for who to finish. On completion of who, the
shell prompt reappears, indicating that the shell has regained control.

Sometimes it is desirable to set a program running but to go on doing
something else at the terminal while the job runs. For instance, running
a spelling check to find typographic errors in a long document may be a
time-consuming job, but it requires no intervention at the keyboard. The
user may therefore simply wish to set it going and to get on with editing
some other files with the vi editor while the spelling check runs. Unix is
fortunately a multiprocessing operating system, one which permits a user
to have multiple processes running concurrently. To make the programs
spell and vi run at the same time, the user instructs the shell to run spell
but not to wait for its completion. Not waiting is implied by the & (am-
persand) character when used as a command suffix:

$ spell longdocument > mistakes &
21
$ vi

Here spell is told to use longdocument as its input file and to redirect
any suspect words (which would normally be sent to the terminal screen)
into file mistakes, but to do so without waiting for completion. In re-
sponse to the command, the shell requests the kernel to set the spelling
task running and returns to the user a process identification number, 21
in the above example. Because the ampersand sign & was included in the
command line, the shell does not wait for the kernel to signal that the
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spelling job is complete; instead, it immediately issues the $ prompt,
showing that it is prepared to accept another command. The user replies
by asking for vi to be run. From that moment on, two processes are running
for the same user, spell and vi. (In fact there are more, probably at least
half a dozen.) The latter is interactive and will eventually be terminated
by the user; the former will keep going until its job is complete. Nonin-
teractive processes set running in this fashion are sometimes known as
background processes, because they run invisibly while the user is engaged
in doing something else at a higher priority.

Background processes are known to the system only by their process
identification numbers. When a time-consuming process is set running in
the background, it may be useful to note down its process identification
number so the system can be given instructions about it later on. At other
times, the user may realize, a moment after pressing RETURN, that the
background process just launched was the wrong one (perhaps smell in-
stead of spell) or that the wrong input file was specified. In that case, the
background process can be stopped by the kill command. The instruction

$ kill 21

will stop spell in the above example, provided of course it has not yet
terminated its run.

The status of background processes may be enquired into with the ps
(process status) command. This command produces a screen display
showing from which terminal the job was started, by what command, and
how long it has been running; whether it is still running; for which user
it is running; and a host of other (for the most part less interesting) things.

Standard Files

Every user process is automatically assigned a standard input stream and
a standard output stream when it is started. In ordinary cases, these will
be connected to the terminal keyboard and screen by default. Most com-
mands that produce output, produce it on the standard output device;
correspondingly, they expect input from the standard input device. Under
this scheme, the user frequently does not need to bother specifying where
output should be directed. For example, to list directory contents it suffices
to give the command

$ 1s

without any indication that the listing should be presented on the terminal
screen. That is precisely where the listing will appear, unless the standard
output assigned by default was altered.

If the user prefers to have input and output directed to devices other
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than the predefined standard, data can always be redirected elsewhere by
reassigning the input or output streams to some other device or file. In
the normal course of events, redirection is desired only for the duration
of one particular command. Such temporary reassignment is achieved by
the characters » or >> as in

$ 1s -1 > filel
or

$ 1s -1 >> filel

commands which cause the current directory contents to be listed (in long
form, as specified by -l) to a file. The single right-arrow character > causes
the contents of filel to be replaced by the listing, without presenting
the listing on the terminal screen. The double right-arrow > > causes the
listing to be appended to the existing contents of file1, without affecting
previous file contents. If there was no filel in the first place, one is
created. In a similar fashion, the left-arrow character < may be used to
reassign input temporarily.

Many commands permit file names to be given as arguments but will
assume that standard input or output is intended if file names are omitted.
For example, the command cat (an ugly abbreviation for concatenate)
copies one or more named files to its standard output:

$ cat filel file2

It can be used to concatenate two files or simply to list one on the terminal
screen, as in

$ cat myfile
If no file name is given, cat uses its standard input. Thus
$ cat

performs the (not always useful) task of merely echoing on the screen
whatever is typed at the keyboard. If the standard input is reassigned,

$cat < myfile
file myfile is again displayed on the screen; the commands

$ cat myfile
$ cat € myfile



66 4. Unix Command Shells

are thus equivalent. Redirection can even be used to make cat copy a file:
$ cat filel > file2

There is a third standard data stream, the standard error output; it han-
dles error messages and other supplementary communications. Redirection
of the standard output does not affect the standard error output. This
separation of streams is deliberate and convenient. When the standard
output is redirected, complaints about missing files, wrong access per-
missions, and the like do not mess up the output file but appear on the
screen instead.

Pipes and Pipelines

The Unix shell permits establishing interprocess pipes. Pipes are data
channels that funnel output from one program directly to another without
creating any intermediate files. A pipe appears like an output file to one
program and an input file to another. It is created by routing the standard
output of one program directly into the standard input of the other, how-
ever, without the creation of any intermediate entity. The vertical rule
character | represents a pipe in shell commands. For example,

$ who |1p

requests execution of two programs, who and Ip (a program that copies
its input file to the line printer); the standard data streams are redirected
so that the output of who is piped directly to lp as its input. Together,
this command pair will list who is currently logged on the system, but on
the line printer instead of at the terminal. The apparent effect is precisely
the same as would be achieved by the command sequence

$ who > temporaryfile
$ 1lp <€ temporaryfile
$ rm temporaryfile

But no file space is needed for temporaryfile, because no such file is
ever created.

When a pipe is specified, the kernel starts both processes running im-
mediately, just as if they were background tasks. In the above pipeline,
who starts producing output right away and Ip proceeds to do the house-
keeping necessary to prepare for printing. The output of who is handed
over to Ip as rapidly as it is produced, without waiting for who to terminate.
By way of contrast, if the job is done by a sequence of three separate
commands the Ip program is only launched after completion of who. In
the pipeline, who and lp will execute synchronously, forced into syn-
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chronism by their interlocking needs for input and output. In fact, for all
practical purposes the two may be regarded as a single compound process.

The notation for pipes differs from the notation used for redirection:
it lists commands whereas redirection lists files. The command line

$ who > lp

is syntactically quite correct. However, it sends the output of who to a
user file called 1p, not to the line printer; the redirection symbol > informs
the system that 1p is a file name, not a command name.

A pipeline may contain as many processes as desired. The individual
processes in it are always executed from left to right, with the output of
one process chained to the next as input. To illustrate, the above example
may be extended to include alphabetic sorting, using the sort utility:

$ who | sort |1p

This pipeline works as follows. The whe program will produce the iden-
tifiers for all users currently logged in and hand over this output to sort
as it is produced. In its turn, sort will place them in alphabetical order.
Finally, Ip will send the output to the line printer, which will eventually
yield

adler ttyh8 Feb 10 15:21

boss tty03 Feb 10 09:29
cleo ttyo5 Feb 10 15:15
michael ttyo01 Feb 10 14:32
nora ttyo2 Feb 10 14:19

wurzel ttyh4 Feb 10 16:06

All processes in a long pipeline are set running simultaneously and their
running is synchronized by the need of each to wait until it receives input
from the process preceding it. The effect is that of a bucket brigade moving
information from hand to hand as soon as it becomes available, never
waiting for more information to accumulate than is actually required for
the next step.

In plumbing, fittings are needed in addition to straight pipe runs. Unix
provides one standard fitting, the tee; it copies its standard ifiput to its
standard output and makes an additional copy to another file besides. If
a record is wanted of who is logged in on the system,

$ who | sort | tee whofile | 1p
will pass the output of sort to Ip and write a file whofile at the same

time. If desired, tee can be used to copy to several files at once, or to
append to them rather than overwrite, by specifying the -a option.
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Input Handling by the Shell

User interaction with the Unix shell takes place through the keyboard
and screen. Commands are received by the shell through the keyboard
handler, a program for collecting the keystrokes as they arrive and or-
ganizing them into lines the shell can interpret. The shell proper deals
with input lines rather than characters; it tries to parse lines and to decode
them to make sense as commands. An understanding of shell operation
simplifies effective use of the Unix system,; it is therefore worth examining
the rules of shell input in some detail.

Input Buffering

All keyboard characters are received by the keyboard handler which
echoes them to the screen and immediately places them in its text buffer,
a reserved memory area used to store the characters until they are needed.
Whatever is typed at the keyboard is not immediately processed by the
shell; it is stored in the buffer until the shell develops an appetite for input
and at least one input line is complete. Only at that time is the input line
actually handed over to the shell for decoding. On the other hand, the
keyboard handler may accept from the keyboard, and store in the buffer,
two or more lines. If the shell is not ready to accept the extra lines, they
are simply left to wait in the buffer.

The buffer area used for keyboard input is of a fixed size, usually 256
characters. In normal use, the shell displays the $ prompt on the screen
and the user replies by typing a command, terminated by a RETURN key-
stroke. The command line is then handed on to the waiting decoder and
processed. When it is ready for more, the decoder prompts for more. But
if the user continues to type at the keyboard without waiting for the prompt
to reappear, no harm is done. The keyboard handler only stores the char-
acters as they are typed; they will be transmitted from the keyboard buffer
to the decoder program whenever the latter is ready for more input. A
difficulty only arises if the user attempts to type too many extra characters,
thereby overflowing the buffer. In that case, the surplus characters are
discarded without any prior warning. However, problems rarely arise in
practice, since 256 characters represents over a dozen average commands.

Experienced users turn the keyboard buffer capacity to good profit by
typing ahead the commands they know they will wish to issue next, es-
pecially if the execution times of some are known to be a bit long. The
screen display can then become truly confusing. The keyboard handler
echoes characters on the screen as they are typed; but the shell prompt
and any program responses only come when the commands are executed.
The screen display therefore will not reflect the actual sequence of op-
erations, but will show all the commands as they are typed, then a sequence
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of shell prompts and program outputs as they are produced. The order of
input lines on the screen will be a faithful image of their typing sequence,
not of the order they were received and decoded by the shell.

Errors and Error Correction

Even the most expert computer user occasionally issues a wrong command
or strikes the wrong key. The way keyboard input is buffered means that
no action is ever taken in response to keystrokes until the RETURN key
has been pressed at the terminal, so errors can be remedied at least until
that moment.

Incorrect characters typed at the keyboard may be corrected by erasing
them. Erasure of a single character is achieved by the erase character,
which is usually the BACKSPACE key. Each time the BACKSPACE key is
struck, one character is erased in the input buffer and the screen cursor
is moved back one character. Many display terminals, however, only move
the cursor, they do not erase the incorrect characters on the screen. Since
backspacing is usually followed by overwriting, the correct characters
appear on the screen in the end; however, the screen appearance may
temporarily be wrong. For example, a user may type the command passwd
incorrectly, discover the error, and backspace four times,

s pefews

ending up with the screen cursor at the first x. The text buffer will now
contain the characters pa, the four characters xxwd having been deleted.
Typing sswd yields the screen display

$ passwd

again a faithful reflection of the buffer contents.

When using a printing terminal, backspacing and overstriking are not
possible. Instead of BACKSPACE, the # key is then used. Each time # is
struck, one character is erased in the buffer but # is printed at the terminal.
The resulting printout can be a bit messy, with

$ paxxwd# # # #sswd

understood to mean passwd despite its curious appearance.

If an error occurs near the beginning of a long command line, a great
many characters may have to be erased and retyped. Starting the line
over, without individually erasing every character, may be easier; typing
the kill character expunges everything typed so far. The kill character is
usually ®, sometimes control-X.
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The erase and kill characters are both resettable. In other words, they
are not permanently fixed as BACKSPACE and @ respectively but can be
altered by the user. A table of terminal characteristics is maintained to
describe every terminal connected to the system and these two characters
are part of the terminal description. The user can alter any of the infor-
mation in the terminal description table through the stty command, which
is described more fully below. The most common default settings are those
described here. But if the default settings should prove inconvenient, a
user may indeed define some other erase and kill characters, for example
% and <.

The BACKSPACE key on any normal terminal generates the control-H
character. If a terminal does not have a BACKSPACE key, no matter; con-
trol-H will always do precisely the same job.

Characters Given Special Treatment

The shell does not consider all characters to mean what they say; quite
a few have special meanings. Peculiar uses of the characters & < >
have already been encountered above. Several other so-called metachar-
acters have special meanings to the shell. These will be considered briefly
in the following.

The semicolon ; is treated as equivalent to RETURN, provided the key-
board buffer contains at least one full line terminated by RETURN. To
restate this bit of gobbledygook in plain words: several shell commands
may be typed on a single line with semicolons between commands. When
the time comes for command decoding, semicolons will be replaced by
RETURNS, so that the individual commands will be decoded as individual
lines. The shell does not act any differently, but the screen display looks
different. For example,

$ who > temporaryfile; lp < temporaryfile; rm temporaryfile

This feature is particularly useful when long shell script files are built up.
Since many shell commands are quite short, long command sequences
form narrow ribbons of typing along the left edge of the terminal screen.
They can be made to occupy fewer but longer lines, and thereby become
easier to read, if semicolons are used judiciously.

In many commands, it may be desirable to name a whole range of file
names. As an example, a particular project may have involved creating
a whole family of files project. f, project. o, project. a,. .. and
it may be desired to remove all the files at the completion of the project.
Rather than typing out the names individually, the shell decoder permits
using so-called wild-card characters, which are considered equivalent to
any and all others. The asterisk * and question mark ? are used for this
purpose; the asterisk is taken to represent any string of characters (of any
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length, including no characters at all), the question mark to stand for any
one character. Consequently,

$ rm projectx*

will remove all files whose names begin with the character string project
and continue with any (or no) characters. On the other hand,

$ rm project.?

will remove all files whose names begin with the eight-character string
project. and contain exactly one additional character.

Sometimes it is necessary to identify groups of characters more finely,
e.g., ‘“‘any lowercase letter from a to k’” or ‘‘any one of the numerals 3,
S5, 8”’. For such purposes, wild cards to match only within specified sets
may be defined. A range of characters, or a list of characters, encased in
square brackets is taken as a match for exactly one character in the set.
For example,

$ rm project. [a-k][358]

will cause removal of all files whose names begin with the eight- character
string project., contain a lowercase letter in the range a-k next, and
end with one of the numerals 3, 5, or 8, for example project.b3. As
indicated in this example, the square brackets may contain either a range
of naturally ordered characters (e.g., alphabetics or numerals) or a list of
individually identified characters. Where ranges of characters are shown,
they are assumed to be listed in their ASCII character sequence, with all
numerals, special characters, alphabetics, and even unprintables having
their proper order. Thus, the range specification [ 7-C] is equivalent to
the list [789: ; €=>?®@ABC] because part of the set of punctuation marks
appears between the numerals and the uppercase alphabet in the ASCII
character definition.

Protection of Special Characters

Shell operation often involves special characters to delimit commands, to
denote wild cards in file names, and indeed for other purposes yet to be
discussed. It is not generally a good idea to use special characters in file
names, because confusion may arise. For example, star*wars is a le-
gitimate Unix file name, but one best avoided because the asterisk char-
acter may be misunderstood as a wild card. If such difficulties are en-
countered, all is not yet lost. Special characters can be stripped of their
special nature by use of still more special characters: reverse slants (back-
slashes) and quotation marks.
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The reverse slant character \ can be used in shell commands to force
any character to have its literal (rather than special) meaning. The two
commands

$ rm star*wars
$ rm star\*wars

are not the same. The first removes all files whose names begin star and
end wars, no matter what characters may occur between these two strings;
the asterisk is taken to stand for any string of zero or more characters.
The second, however, treats the asterisk as a literal asterisk character,
not as a symbol standing for some other string; it removes the file named
star*wars and no others. In cases of doubt, giving a character its literal
value with the reverse slant is always a safe course, for if an ordinary
character had no special meaning in the first place, preceding it with a
reverse slant endows it with no new meaning. The super-cautious user
might therefore like to type file names in the form
\s\t\a\r\*\w\a\r\s to be safe! Even the reverse slant character
itself can be protected by another reverse slant. Perverse souls may wish
to use reverse slants in file names, as file\name; but it will be necessary
to ask the shell to deal with file\ \name. Reasonable people for the
most part choose to stick with lowercase alphabetics and numerals, with
an occasional period (dot) thrown in for good measure.

Reverse slants protect single characters, not character strings. Protec-
tion for character strings is obtained by enclosing them in quotation marks.
Two sorts of quotation mark are used, double and single. (Single quotes
> are of the apostrophe variety, ASCII octal 047—not which is called
the grave accent or the back-quote). Double quotation marks cause all
characters between them to be considered a single character string, thus
solving the problem (among others) of how to include the blank character
in a string. Single quotes play a similar role to double ones in keyboard
work, but having two kinds of quotation marks solves another perennial
problem—how to place a quotation mark inside a quoted string!

Argument Echoing

Because the shell command decoder may understand wild cards or other
special characters in a way not intended by the user, a utility command
echo is provided for previewing the effect of any particular command line.
The echo command actually does nothing except display on the terminal
screen the arguments entered with the command; but it displays them in
fully expanded explicit form. For example, a user may feel diffident about
a file name such as project. *, particularly in a destructive command
like rm. Just what would be removed can be determined by first issuing
the command:
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$ echo project. *
project.c project.f project.o

The response lists all the currently possible values of the echo argument,
i.e., all the file names in the current directory which match the wild-card
construction given. Similarly, a user may feel uncertain about a character
string like star \ \ \*wars (how many and which reverse slants are going
to be taken literally?). The shell’s understanding of the character string
may be checked by

$ echo star\\\*wars
star \ *wars

The echo again shows exactly what the character string, as finally decoded
by the shell, will look like. echo is of course not a part of the shell, but
a system utility just like Is or cat.

Resetting Terminal Parameters

Experienced users at times find it desirable to alter the erase and Kkill
characters associated with their terminals or to reset other terminal char-
acteristics. To do so, the stty program may be used. Like echo, the stty
program is not really a part of the shell at all, but it does affect the operation
of the shell.

Resetting the erase and kill characters is easily accomplished. The new
characters are given in the command as arguments; for example,

$ stty erase % kill +

will make % the erase character and + the kill character, until the system
is otherwise instructed by another stty command.

Terminals vary widely in their operating characteristics. The basic ma-
chine, on which nearly all later computer terminals were patterned, was
designed and built by Teletype Corporation a long time before the com-
puter era. Standard terminals are therefore widely termed ‘teletypes’ in
computer jargon, and the name is echoed in such abbreviations and mne-
monics as stty. Modern terminals generally are equipped with either a
cathode-ray tube (television type) display screen or a paper printing
mechanism. The latter is slower than a display screen, because mechanical
motions are required to make it run. At line-ends, they need extra idle
time to allow the printing head or carriage to return to the start of a new
line. They generally also require slower character transmission than display
terminals. The speed settings, tab settings, in fact all the characteristics
of the terminal can be reset through stty. Of course, resetting these merely
tells the system what the terminal characteristics are; it does not alter the
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terminal itself. A slow mechanical printer will still run at its natural speed
regardless of what the system might expect. Most of the facilities of stty
are therefore used when changing the real terminal characteristics, such
as the transmission speed or character parity. To find out the current
settings of a terminal (as the system terminal communication software
imagines them to be, not necessarily as they really are!), the stty command
is issued without any arguments. For a fairly ordinary screen terminal,
the result might be

$ stty

speed 9600 baud; evenp hupcl
brkint -inpck icrnl onler ff1
echo echoe echok

The first phrase in this output shows that the communication speed is
9600 baud (960 characters per second); the remainder have the following
significance:

evenp transmission is done with even character parity
hupcl hang up the phone connection after last close
brkint signal interruptions on all breaks

-inpck  no parity checking is done on the input

icrnl input carriage returns are made into newlines
onlcr output newlines are made into carriage returns
ff1 delay one time unit after a form feed

echo echo every character typed at the keyboard
echoe echo erasures so erased character disappears
echok echo a newline after each kill character

The form of display varies considerably from one Unix system to the next
and the various system versions keep track of different sets of terminal
characteristics; the sets seem to keep growing as time goes on. Most of
the settings are of a yes/no variety—characters either are echoed or they
are not—and show a minus sign where the negative choice is made (as
for - inpck above).

In System V, stty allows about fifty or sixty different options; the Sev-
enth Edition manuals listed only half that many. Options may be combined
in any way the user likes even though many combinations are senseless.
No checking is done by stty to find out whether the options a user specifies
are reasonable. It is therefore possible to become deeply mired in non-
sense, but escape is available through

$ stty sane

The sane option resets all terminal parameters to be pedestrian but sen-
sible.
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The Shell Programming Language

In describing shell commands, it has been assumed so far that all com-
mands are issued by the user at the keyboard and are executed imme-
diately. In other words, the shell command language has been regarded
as a control language that enables the user to specify each action as and
when it is to be carried out. But there is an alternative possibility: shell
commands can be used as a programming language. Sequences of shell
commands actually constitute programs, for they prescribe sequences of
actions. Such sequences, called shell procedures or shell scripts in Unix
jargon, may be stored away in files just like Fortran or Pascal programs,
to be executed when required.

Shell Programs

The key to understanding how shell scripts are written and used lies in
recognizing that the shell itself is just another utility program. In point of
fact, several different shells are available in most Unix installations, the
most popular being the Bourne shell and the C shell (pronounced sea
shell). The Bourne shell, named after its designer Stephen Bourne, is called
sh; the C shell goes by the name of esh and is so called because much of
its command syntax resembles that of the C programming language. There
are also several other shells, which are much more rarely encountered.
Many of the elementary commands used by the Bourne and C shells are
identical, so that a beginning Unix user may not even know which one is
in use. When writing shell scripts, however, the divergences begin to make
themselves felt. In the following, both shells will be dealt with and their
differences noted.

The shell differs from all the other system utilities in one important
particular: it is automatically set running when the user logs in. However,
being just another program, another copy of the shell can be started up
at any time by the sh command. sh reads its input (which could be the
keyboard or a file) and interprets the file contents as shell commands.
For example, suppose the file status contains

date
ps -f

and that it is handed to a copy of the shell as input:

$ sh € status
Tue Jun 3 18:49:44 EDT 1986
UID PID PPID C STIME TTY TIME COMMAND
peter 37 1 0 09:26:51 02 0:39 -csh
peter 388 37 0 18:49:40 02 0:01 sh status
peter 391 388 6 18:49:46 02 0:12 ps -f
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The processor status report given by ps shows that user peter had three
processes concurrently running at the moment the date stamp was placed
in the output. One was a copy of the C shell, launched at login time; one
a copy of the Bourne shell sh; the third the processor status enquiry ps.
While the ps program was actually running, sh was waiting for ps to finish;
csh was waiting for sh to finish.

Because the default input file to sh is the terminal keyboard, simply
issuing the command

$ sh

causes a copy of the shell to run, taking its input from the keyboard. This
is precisely the manner in which Unix and its many cousins normally
operate, the first copy of the shell being started for the user by the system
itself at login. It remains to note—as might be obvious from the above—
that the shell uses the standard input mechanism so that

$ sh < status
$ sh status

are equivalent in their action though slightly different in the internal
mechanisms. Since the shell thus launched is just another program as far
as Unix is concerned, it could be made a background process,

$ sh status > record &

Output is directed to a file so the process is able to run without bothering
the user at the terminal.

Because the shell can accept input from files, users can create processes
not ordinarily provided in the Unix system, simply by putting together
pipelines of existing utility programs. To illustrate, suppose it is desired
to know which users are logged in on terminals of type ¢tyh, ignoring users
logged in at any other type of terminal. The who command gives a full
listing of users, containing not only the desired information but a lot of
superfluous items as well. A file can be weeded by the grep command,
which extracts those lines containing a predetermined character pattern,
in this case ttyh. They can be pipelined with sort, to form a file called
whottyh containing just a single command line:

who |grep ttyh | sort

Whenever it is desired to determine what users are logged in on terminals
of the ttyh type, one issues the command

$ sh whottyh
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and the above short pipeline is executed. An earlier illustrative example
produced the screen display

$ who

michael ttyo01 Feb 10 14:32
nora ttyo2 Feb 10 14:19
boss ttyo3 Feb 10 09:29
cleo ttyos Feb 10 15:15

wurzel ttyh4 Feb 10 16:06
adler ttyhs8 Feb 10 15:21

$

but now there will only result

$ sh whottyh
adler ttyhs8 Feb 10 15:21
wurzel ttyh4 Feb 10 16:06

$

Four more users are shown in the output of who, because they are logged
in; but they are filtered out by grep, because their corresponding output
lines from who do not contain the string ttyh.

Shell Scripts

Files containing shell command strings can be executed by causing another
copy of the shell to run, taking its input from the file, by either of

$ sh commandfile
$ sh < commandfile

Both forms are acceptable. A neater and more elegant way of dealing with
command files, however, is to turn them into commands in their own

right. This conversion is extremely simple: it is only necessary to turn
the command file into an executable file, by attaching the correct per-

missions to it. For example,

$ chmod a+x commandfile

gives everybody permission to execute commandfile, which has now be-
come a command! Consequently,

$ commandfile

will be executed just as if it were a system-provided command.
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Conversion of shell command files into commands, or shell scripts, is
feasible because the kernel and shell coordinate their interpretations of
what is executable. When commandfile is issued as a command, the kernel
finds it unacceptable because its contents do not make up an executable
object file in the proper form. It is therefore handed back to the shell for
interpretation. To state the matter briefly: executable files which do not
contain machine language code are assumed to contain shell scripts.

Parameter Passing

Shell scripts may contain symbolic parameters which are given real values
only when the commands are interpreted and executed. Symbolic param-
eters are handed to shell scripts in an extremely simple manner. Up to
nine special symbols $1, $2, . . ., $9, each consisting of a dollar sign and
a numeral, may be used in place of character strings in the file containing
the shell script. When the script is invoked as a command, the corre-
sponding number of file names, numeric values, or other actual arguments
must be provided, as strings of characters. These are then substituted in
place of the symbolic parameters by the shell, the first one in place of
$1, the second in place of $2, and so on.

To illustrate, suppose once again that a listing of all users logged in at
a particular type of terminal is desired. Procedure whottyh as described
above works for one particular terminal type, but not for any other type,
because the character string ttyh is permanently embedded in it. The
whottyh procedure can be generalized, creating a procedure file whoterm
containing just the one command line

who | grep $1 | sort

This procedure contains one symbolic parameter, so when it is invoked,
one parameter value must be supplied. Since grep expects a character
string to use in pattern matching, the actual parameter must be a character
string also. Thus,

$ whoterm ttyh

adler ttyhs Feb 10 15:21
wurzel ttyh4 Feb 10 16:06
$

produces exactly the same result as whottyh because the character string
ttyh is substituted for $1 before execution. But parameter passing makes
for flexibility:

$ whoterm ttyo
boss ttyo03 Feb 10 09:29
cleo ttyo5s Feb 10 15:15
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michael ttyo1 Feb 10 14:32
nora ttyo2 Feb 10 14:19
$

Here the same script whoterm was used unchanged, but with a different
parameter substituted for $1.

Conditional Execution

The command language understood by the shell has an interesting and
somewhat unusual feature: when executed, every command has an at-
tribute called exit status. The exit status is merely a logical flag which
indicates success (or failure) in executing the command. For example,
suppose the rm command is issued to remove a file. If the specified file
cannot be found, it cannot be removed and the attempt to execute rm is
regarded as unsuccessful. The exit status is therefore returned as false.
Its value can be tested by the shell and used to decide whether to take
some other action. It is thus possible to give the shell such conditional
commands as ‘‘remove file qtty. c, and if successful, remove file qtty. f
as well”’.

The basic mechanism by which conditional commands are made to run
will be familiar, at least in principle, to Pascal and Fortran programmers.
Just as in those high-level languages, ordinary command statements can
be qualified by an if clause. In the shell language, if exists in two forms:
if...thenand if. .. then . .. else. . .. A simple illustration will serve:

$ cat rmqtty

if rm qtty.c

then echo "Removed qtty.c and qtty.f"; rm qtty.f
else echo "No qtty.c found"

fi

$ 1s -m g*

qtty.a, qtty.c, qtty.f, qtty.x
$ rmqtty

Removed qtty.c and qtty.f

$ 1s -m g*

qtty.a, qtty.x

The first three or four lines of this example show the contents of file rmqtty.
It attempts to remove file qtty. c; if successful, it removes qtty. f as
well and echoes a message to that effect; otherwise, it sends a message
declaring its failure. Note the terminator fi used to identify the end of the
conditional clauses; it is essential because the shell would not otherwise
know how far the conditional command list extends. Next in the example,
the Is command is run to see that files qtty. c and qtty. f do exist.
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Executing rmqtty produces the expected message, and a second Is clearly
shows that the files were indeed removed.

The shell script shown above has a flaw, quickly evident when it is
executed a second time:

$ rmqtty

rm: qtty.c non-existent
No qtty.c found

$

The first message comes from the system, the second from the shell script.
If the messages are not desired, the second one is easily suppressed by
altering the shell script, but the first one cannot be reached quite so readily.
To prevent messages from Heaven-knows-where popping up when shell
scripts are run as background jobs, the command test is provided. It ex-
amines files, character strings, or integers and yields an exit status but
performs no other activity. It can be used, for example, to determine
whether a file exists and is writable, by

test -w filename

The key to message suppression is to test first and take action thereafter.
The same example, done a bit better, then reads as follows:

$ cat rmqtty

if test -w qtty.c

then echo "Removed qtty.c and qtty.f"
rm qtty.c; rm qtty.f

else echo "No qtty.c found"

fi

$1ls -m g*

qtty.a, qtty.c, qtty.f, qtty.x
$ rmqtty

Removed qtty.c and qtty.f

$ rmqtty

No qtty.c found

This time the absence of qtty. ¢ causes no protest messages, for an at-
tempt to remove this file is made only if it exists and if the user has write
permission for it.

The keywords if, then, else, fi (as well as numerous others used in shell
scripts to provide control of command execution) are only taken to denote
a control construct if they appear as the first word of a line (or, what is
equivalent, the first word following a semicolon). On the other hand, there
is no restriction on the number of commands in an if clause; it may contain
one single command (probably the most usual case), or there may be a
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set of several. However, only the success of the last command to be ex-
ecuted is tested, for there is only one exit status flag and that one is set
or reset after each command.

Testing for Exit Status

The test function is the key to decision-making in shell scripts so a few
lines devoted to its operation will be well invested. test actually evaluates
the logical expression which follows it and sets the exit status accordingly.
The arguments of admissible logical expressions may be file names, char-
acter strings, or integers.

Tests for file names are almost always of the form already encountered
above: an option letter indicating what to test for, followed by the file
name. There are over a dozen possibilities, of which the following might
be the most important:

rfile file has read permission
-wfile file has write permission
-xfile file has execute permission
ffile file is an ordinary file
-dfile file is a directory

-sfile file size is greater than zero

The exit status is returned as true if the file meets the given description;
if it does not, or if the file does not exist, the exit status is false.
Some of the tests available on strings and integers are

stringl = string2 the two strings are identical
string string exists (is not the null string)
integl -eq integ2 the two integers are numerically equal

In the integer comparison, various comparison operators may be used,
abbreviated in Fortran style as - gt (greater than), - ge (greater than or
equal to), and so on. The exit status is in each case returned as true if
the relevant condition is met.

The test expressions used with test are logical expressions, not options
in the usual Unix command style; they cannot be combined in adverb
clauses simply by stringing them together. However, they can be combined
with logical operators ! (not), -a (and), and - o (or). They can be grouped
with parentheses as required. For example,

test -f file -a -w file
determines whether file is an ordinary file with write permission.

The arguments that enter into logical expressions need not be explicit;
symbolic parameters or variables are perfectly acceptable. To illustrate
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this point, consider the shell script vib. Its object is to run the vi editor
but to keep a backup copy of the file being edited. vib is invoked with a
file name, as in

$ vib file

file is then opened for editing and a backup copy file. b is preserved.
The shell script runs as follows:

if test $1
then if test -w $1 -a -f $1
then cp $1 $1.b
fi
vi $1
else echo "Must name file!"
fi

The first line checks that the command was accompanied by a character
string argument; if not, vib issues a protest message and exits. If a name
is given, the file is checked to determine that it is a writable ordinary file.
If it passes that test, a copy is made with the ¢p command; the name of
the copy is the same as the name of the file, with a . b suffix appended.
(Note that $1 stands for the character string, so $1. b is the same string
with the . b suffix.)

One criticism often heard of the Unix editors is that they always ov-
erwrite the original file; they do not keep backup versions. The script vib
shows why: if users wish to have backup copies (or several levels of backup
copies!) they certainly should have them. After all, it only takes a simple
shell script. The general Unix philosophy is to provide a selection of simple
working tools, supplemented by shell programming facilities to permit a
high degree of customization.

The command verb test is frequently left out of shell scripts, for the
Unix shells are willing to accept an alternate form. Instead of writing the
word test, the test condition may be encased in square brackets insulated
from it with blanks, as in

# vib: vi editor with backup

#
if [ $1 1] # Was file name specified?
then if [ -w $1 -a -f $1 1 # if so, writable ordinary?
then cp $1 $1.b # Make a backup copy first,
fi
vi $1 # then edit the file.
else echo "Must name file!™" # If no file name, protest!

fi
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Comments have also been added here, to improve the legibility of the
script and to make it comprehensible even a few days after its creation.
Any occurrence of the # character at the beginning of a word (i.e., pre-
ceded by a blank or other whitespace) is taken to introduce a comment.
In this form, the shell script begins to look just like a program written in
Pascal, Fortran, or C. Indeed, a large part of the difference between the
Bourne shell sh and the C shell csh lies in the niceties of language; where
the two differ, the syntactic conventions of the C shell are close to those
of C, so experienced C programmers find it easy to write shell scripts.

Repeated Program Loops

The if . . . then . . . else . . . fi construction is the fundamental form of
program flow control in shell scripts. However, there are others with which
Pascal or C programmers will immediately feel at home. For example,
there is a case or switch statement, a generalization of the if construct to
choose between several courses of action, not just two. There is a for . . .
do loop similar to that of Pascal, useful for actions to be repeated for some
denumerable class of cases. Repetitive looping, continued forever provided

a specified condition remains true, is available with the while . . . do . . .
done construct, which may also be regarded as a generalization of if . . .
then . . . fi:if . . . then only carries out its action once, while . . . do does

it again and again.

While the actions performed by the Bourne and C shells are similar,
the command syntax differs, the Bourne shell resembling the Pascal lan-
guage while the C shell hews a little closer to C. For the casual user,
however, the distinctions are not too important because most constructs
valid for the Bourne shell are accepted by the C shell as well. Again pro-
ceeding by example, here is a shell script to notify the user when another
logs in:

# await #
# #

while test ¢ wholgrep $1| we -1’ -eq O # test if there
do sleep 120; done # if not, wait;
echo \*G\*G\*G\"*G\*G\*G\ "G\ "G\ "G # on login,
echo "$1 is now logged in." # squawk.

The structure of this script is really very simple; it just contains a single
while . . . do . . . done construct. It is set running by a request such as

$ await joe &

It will check whether the specified user is logged in and return a message
if so. If not, it will wait for two minutes (the sleep command does nothing
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but wait for the specified number of seconds) and then check again—and
again, and again, until joe does log in.

Several points of detail in the await script merit attention. The first
concerns methodology. The who command produces a list of everybody
currently logged in; grep extracts the lines that contain the name joe.
The word count program wc, with the -1 (lines only) option, is then applied
to count lines. The result is a single numeric string whose value equals
the number of terminals on which joe is logged in. A second point, perhaps
marginal to the issue of shell programming, concerns the output messages.
The character string \*G (reverse slant followed by control-G) is echoed
as a single control-G, a nonprintable character which rings the terminal
bell. The two echoes shown therefore send both visual and aural notifi-
cation of joe’s arrival!

The most important point requiring explanation is unfortunately a little
more complicated. The pipeline preceding -eq is placed in back-quotes.
These cause their enclosed pipeline to be executed and the standard output
of its last member to be substituted for the character string that defines
the pipeline, so that the -eq comparison examines the line count output
by we. Were the quotes not there, test would check the exit status of who,
then feed its null output (for test produces nothing) to grep, which would
of course find no match, . . . with no useful result at the end. Ordinary
single or double quotes would not do the trick:

$ echo ‘who |grep joe| we -1°
1

$ echo swho | grep joe | we -1"
who | grep joel we -1

$ echo 'who Igrep joe| we -1
who krep joe| we -1

In the first case, the output of echo is the number of lines counted by we
(i.e., the number of terminals on which joe is logged in). In the second
and third, the argument of echo is the literal character string that makes
up the pipeline definition. These characters are not numerals so they cannot
be compared arithmetically to zero; and even if they could, the answer
would not be what is wanted.

Simple shell scripts like await are quickly written and handy but often
not robust enough for use by other people. The request

$ await

will produce a diagnostic message because grep does not like to search
for null strings; after that, it will go to sleep for 120 seconds, then produce
the diagnostic again and again and again. This sort of failure is usually
tolerated by the author—‘‘I made a stupid mistake in not specifying a
name, there is nothing wrong with my program!”’—but it is unacceptable
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if others are to have access to it. Good software practice requires not
only documentation of better quality than shown above, but also a set of
validity checks. If no name was furnished; either a default value should
be used or, better still, the program should ask the user to specify a name.

The form of while loop discussed above applies to the Bourne shell.
In the C shell, a directly comparable looping structure exists. However,
its syntax is a little different.

Shell Variables

The shell language would certainly not be a true programming language
were it not to allow symbolic variables to be defined and used. Variables
are given names much like names in conventional programming languages;
they may contain letters, numerals, and the underscore character, but no
other special characters. A few variables do use special characters, but
these are all predefined in the shell and users cannot redefine them. In
programming the Bourne shell, it is conventional to use uppercase letters
for variables. However, this practice is mere habit; the shell is quite as
happy with lower case. Upper and lower case are considered distinct, so
dAy, DAY, and Day are three different names. Bourne shell variables are
assigned values by a simple assignment statement much like that familiar
in Fortran:

$ DAY=Wednesday
$ WAM="Wolfgang Amadeus Mozart"

In the second case, quotes are used to make the blank characters part of
the character string. Were they not there, the shell would assign WAM the
value Wolfgang and would then be confused what to do with all the leftover
characters on the same line. There are no blanks before or after the equal
signs; the Bourne shell dislikes them because it cannot make up its mind
whether they are part of the character strings or not.

To find out the values of shell variables, the echo command may be
used:

$ echo DAY WAM
DAY WAM

but this does not work, because echo does exactly what it has been told
to do: it echoes the character strings DAY and WAM. To replace the variable
names by their values, the names are encased in braces and prefixed with
a dollar sign:

$ echo ${DAY} ${wAM}
Wednesday Wolfgang Amadeus Mozart
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Wherever no confusion can arise, the braces can be dropped:

$ echo $DAY $wAM
Wednesday Wolfgang Amadeus Mozart

The need for braces is illustrated by

$ echo ${DAY}s we always meet for lunch
Wednesdays we always meet for lunch

$ echo $DAYs we always meet for lunch
we always meet for lunch

When the braces are dropped, the shell tries to find the variable DAYs,
which does not exist; it therefore substitutes the null string. With the braces
in place, however, exactly the desired result is obtained.

To assign values to variables in the C shell requires use of the set com-
mand; simple mention of the variable name is not enough. On the other
hand, the C shell is more tolerant of spaces:

% set day = Tuesday
% echo $day
Tuesday

In keeping with the traditions of the C language, C shell programmers
generally stick to lowercase letters in variable names. As with the Bourne
shell, this preference is purely a matter of usage; the shell is equally happy
either way.

A sticky little problem of Unix file structures can be solved elegantly
by defining new variables. The In command permits ordinary files to be
cross-listed in several directories. Unfortunately, a whole lot of files cannot
be cross-listed automatically by linking the directory in which they reside,
because directories may not be linked into others under any circumstances.
This seeming shortcoming is easily circumvented by defining a variable
name to stand for the directory name. For example, suppose user bob
needs access to all the files in directory usr/joe/lispint/artin/
source which belongs to user joe. Provided all the files have the necessary
permissions, user bob defines a new variable joes as a synonym for the
directory name, and the job is done:

joes=/usr/joe/lispint/artin/source
$ echo ${joes}/main
/usr/joe/lispint/artin/source/main

The only immediately visible difference between linking and defining a
synonymous name is the need to type an extra dollar sign and braces, a
small price to pay for not having to bother with the otherwise insufferably
long pathnames!
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Aside from variables defined by the user, the shells recognize a dozen
or more others which are permanently defined. These can be accessed in
shell scripts just like any user-defined variables. The most important are

HOME name of the home (login) directory

PATH search path (directory path) for commands

PS1 shell prompt, dollar sign $ by default

# number of positional parameters (decimal number)
$ process identification number of this shell

! process number of the last background process

The value $HOME figures prominently in many system-provided shell
scripts. The convenience of knowing how many arguments (positional pa-
rameters) were presented to a shell script in the command line is probably
obvious.

for . . . do Loops

Wherever an action needs to be carried out for every member of a set of
objects, the for . . . do loop provides a natural control mechanism. For
example, the following shell script finds out how much disk space is used
by each of a selection of files:

$ cat space
for i in /usr/joe/indx /usr/joe/sourc /usr/joe/objct

do du $i

done

$ space

2 /usr/joe/indx
1368 /usr/joe/sourc
1788 /usr/joe/objct

The loop is executed by making the variable i—which is a true shell var-
iable—assume every value in the list of three directory names. For every
one, the du command is executed; it reports the number of 512-byte slices
of disk space occupied by each directory and gives its name. The keywords
for, do, and done must be the first words following a newline or a semi-
colon, just as they did in the while and if control constructs.

Many shell scripts are run with parameter values following the script
name. To generalize the disk space reporting script shown above, the list
of variables can be made to be the string of positional parameters appended
to the command line, so that different names can be typed in at different
times:

$ c¢d /usr/joe
$ space indx sourc objct
2 indx
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1368 sourc
1788 objct

This use of for loops is extremely common, so much so that a special
form of the for construct exists.

$ cat space
for i
do du $i ; done

Omitting the list altogether is taken to mean that the variable i is to range
over all the positional parameters given with the shell script invocation;
there is no need to list them as $1 $2 $3 .. ..

The C shell, as one might well expect, also provides a looping construct
of similar effect but differently expressed:

foreach i /usr/joe/indx /usr/joe/sourc /usr/joe/objct
repeat du $i
end

As before, the choice of shells is more a matter of taste than science.

Running the Unix Shells

If at least two shells are available on most Unix systems, which one is
the best? Many people feel that the C shell offers more to the interactive
user at the terminal, while the programming constructs of the Bourne shell
are a bit more powerful. For most users, therefore, the C shell is ‘‘the
shell”” when it comes to keyboard work, while shell scripts are often written
using the Bourne shell. Taste certainly plays an important role in this
choice; it is hard to defend any position firmly.

Customizing the Bourne Shell

After an initial try at running Unix, most serious users grow to wish the
shell acted a little differently from how it really does. The Bourne shell
permits considerable latitude in user tastes, for many of the decisions
made by the shell are alterable by the user.

Every time a Bourne shell is started two files are executed as shell
scripts: /etc/profile and SHOME/.profile, the latter being located in the
user’s home directory. The former is normally not modifiable by users,
but the latter can be edited as desired. So far as user wishes can be ac-
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commodated through setting variables or executing shell scripts, .profile
is the place and time to take care of them. Typically, this file will contain
a set of commands like the following:

PATH=: /bin: /usr/bin # directory search path
MAIL=/usr/spool/mail/joe # mailbox

PS1="$HOME § " # shell prompt

umask 022 # file creation mask

*

export PATH MAIL available to others

Users with unconventional needs or tastes often have much more com-
plicated .profile files. For example, anyone who often logs in from a par-
ticular maverick terminal type is wise to include in .profile one or more
stty commands.

The PATH definition in .profile consists of the names of directories to
be searched for commands, in the order of searching. Directory names
are separated by colons and the first directory to be searched must follow
immediately after the equal sign. A null string is taken to denote the current
directory. This strange convention implies that the PATH given above
searches

1. (current directory)
2. /bin
3. /usr/bin

The mailbox location is more or less standard, though some users keen
on privacy hide their mail somewhere else. Prompt strings are something
else, though; users and user groups delight in making up interesting
prompts. From a practical point of view,

PS1="peter $ "
PS1=“"$HOME $ "
PS1=‘pwd‘ $ "

are good choices because they do something useful. The first displays the
user login name, a useful identifying mark; the second shows the home
directory name. The third identifies the working directory at the time the
shell was started (note the back-quotes!); because the variable is set once
and left at that value, the prompt will not change when the working di-
rectory is changed. All three prompts include a dollar sign $, a reminder
that they are Bourne shell prompts.

The umask command specifies what access permissions shall be denied
any newly created file. Its numeric argument is coded in the same way
as in the chmod command. However, the action here is one of masking
(i.e., denial); the permissions attached to the file will be the standard ones,
less anything held back by umask.
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History and the C Shell

The C shell includes a selection of features not present in the Bourne shell
but particularly well liked for interactive terminal use. The most striking
is undoubtedly historical recall, the ability of csh to remember what it
was doing some time ago. To see what commands were decoded by the
shell recently, all one needs to do is ask:

122 % history
112 pwd
113 rm tempry
114 vi annrep
115 nroff annrep| more
116 vi annrep
117 nroff annrep| more
118 spell annrep |1p
119 vi annrep
120 nroff annrep | more
121 nroff annrep > text
122 history

123 %

In response to the history command, the C shell exhibits the last few com-
mands and the history command itself. The numbers shown in the left
column are called event numbers. Every command received by the C shell
is assigned an event number and many systems show the current event
number in the command prompt, as illustrated in the prompts above.

Commands can be repeated without having to retype them at the key-
board, by saying which previous event is to be repeated. For example,
to verify the current directory name, it suffices to request that historical
event 112 be repeated:

123 % '112
pwd
/usr/bob/repts

The C shell retrieves the appropriate command from its historical record,
echoes it to show what it remembers, then immediately executes it. The
exclamation mark ! is a predefined C shell variable and stands for the
event number, so ! 112 is event 112. The historical recall ability of the
shell is limited to the commands shown in the historical display; there is
no point in attempting to go back further.

Historical events can be recalled precisely by their numbers, but it is
also possible to recall them in more general terms. In the above example,
a repetition of the spelling check could be requested in the following ways:
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1118 the command of event 118

1-5 the fifth last command

's the last command beginning with s

! spe the last command beginning with spe

1?1p the last command to contain the string 1lp.

Repeating the last command requires typing ! - 1. Because this request
is a frequent one, the special form !! is accepted as a synonym for ! -
1.

Repetition of commands usually involves some alteration, since the
most frequent reason for repetition is that some slight change or improve-
ment is wanted. The historical recall mechanism of the C shell makes
extensive—probably much too extensive—provision for selecting and ed-
iting within a command line before it is repeated. Individual words within
a commarnid can be selected by following the command description with
a colon and the word number (beginning the count with 0!), while word
ranges can be described by giving beginning and ending numbers:

123 % echo !'120:0-1
echo nroff annrep
nroff annrep

124 %

The first response shows what the C shell thinks the command consists
of; the second response is that obtained when the echo command is ex-
ecuted. The selection mechanism used in this way allows various changes,
for example, the inclusion of a forgotten option:

123 % '120:0 -o01-5 !120:1-3
nroff -o01-5 annrep | more

Here ! 120: 0 refers to the zeroth word of event 120, ' 120: 1-3 to the
first through third words. The insertion of -01-5 instructs nroff to produce
only the first five pages of the text document. To substitute one character
string for another (e.g., to have the output called annrep. tx instead of
text), a simpler construction would be

123 % !120:s/text/annrep. tx
nroff annrep > annrep. tx

There are nearly a dozen ways of selecting a word out of a historically
known command, and nearly a dozen ways of modifying it. For most
users, however, simple selection and substitution will probably suffice;
commands are only single lines so it is often less trouble to retype a line
than to figure out clever ways of editing it.
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Aliases and Commands

The command repertoire of any Unix system can be extended by defining
new shell scripts and making them into executable commands. Many such
scripts only amount to a line or two, however, and will be entirely personal;
maintaining lists of scripts may seem like unnecessary fuss. Some users,
for example, rarely wish any directory listings except full ones and prefer
them in reversed order of time and date. Having to type the command
with its full list of options, as

% ls -otr

can be avoided by using a mechanism called aliasing, which the C shell
provides. One declares

alias 1lst 1ls -otr

and thereby creates a new command Ist, synonymous to Is -otr:

% lst

total 10

-TWXT -XI -X 1 peter 406 Jun 4 10:30 agchr
-TW-Tr--Tr-- 1 peter 129 Jun 10 09:50 outtext
drwxr -xr-x 1 peter 29 Jun 10 09:52 stuff

This newly defined alias behaves exactly like a command. Admittedly,
an equivalent effect could be achieved in either the Bourne or C shell by
defining a variable name 1st; however, invoking it as a command then
requires typing a dollar sign (and possibly curly brackets) to force eval-
uation—not much trouble, but less tidy and one more thing to remember.
More than one command can be placed in an alias,

% alias info "date; 1ls |sort; pwd"

but quotation marks are then essential to clarify that the first semicolon
separates commands within the alias and does not terminate the alias com-
mand itself. The alias command, without any arguments at all, displays
the list of currently recognized aliases; the unalias command removes a
named alias from the list.

Aliases are stored as character strings but they are not merely another
form of shell variable; they cannot be used for any purpose other than
commands. They are treated as commands rather than as character strings
in every respect including their listing in the history file where the single
command info will appear, not the commands or pipelines that define it.
As far as the shell is concerned, the input command is info. This arrange-



Running the Unix Shells 93

ment makes it possible to introduce parameters into the middle of an alias
string. For example,

150 % alias info “date; 1ls \!=* |sort; pwd"
151 % info subdir

Tue Jun 10 12:23:40 EDT 1986

alice

budget

textpr

/usr/joe/direc

uses the parameter subdir given with the current event (i.e., with the info
command) as the argument for Is. Note that the current event number
symbol is protected by a reverse slant, for it must survive translation by
the alias mechanism so as to reach the shell for execution.

There is no interference between aliases, shell commands, executable
files, and shell variables. For example, there exists an internal command
in the C shell called history and there is also a shell variable called his-
tory. There is nothing much wrong with creating an alias called history,
but the built-in history command then becomes unreachable because the
C shell looks for aliases first, built-in commands thereafter, and executable
files last. If the same name has been used for all three, the alias will be
executed. There is a way of reaching executable files, however: the full
pathname can be given so there is no confusion. Files in the current work-
ing directory or near it can be made accessible by using abbreviated path-
names such as ./history instead of simply history.

Customizing the C Shell

The C shell, more even than the Bourne shell, can be tailored to suit the
tastes of individual users. While the Bourne shell seeks and executes files
called .profile when it starts up, the C shell looks for three different files,
two on starting and one when it exits. The startup file .login is executed
as a shell script when the user logs in to a C shell; the login shell and any
further C shell initiated for the same user look for and execute another
file called .cshrc. When the user logs out, the login shell executes the shell
script .logout. All three are sought in the user’s home directory; if one or
more are not present, they are simply ignored.

The startup and shutdown files of the C shell can be used to set up
shell variables, define aliases, set the shell prompt, indeed to do anything
that can be done by a shell script. A .login file typically contains statements
like the following:

setenv SHELL /bin/csh # identify shell
set ignoreeof # no logout with “D
set path = (. /bin /usr/bin) # command search path
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Typically, it will also contain statements that describe the terminal on
which the user habitually logs in. The path variable setting is much like
its opposite number in the Bourne shell, except for notation; the setenv
command (equivalent to the Bourne shell export statement) makes the
login shell identification available to other processes. The ignoreeof
variable prevents logging out with a control-D and makes csh demand the
word logout instead.

Other user-definable settings may occur in the .cshre file, which is ex-
ecuted every time a new shell is spawned. It may contain commands such
as

set history=10 # save 10 commands
set prompt=\!\ %\ # establish prompt
alias dir 1ls -1lrt # directory listing

The history variable is set to the number of commands retained in the
recall file. The choice of prompt is subject to much the same considerations
as for the Bourne shell, with one exception: the event number is often
included in C shell prompts, as an aid to users who make extensive use
of historical substitutions and repetitions.

The .logout file on occasion allows the local system programming staff
to have its bit of fun. It is widely agreed that the control-D form of logging
out is not convenient, although it is logically consistent and accepted in
the Bourne shell. The standard defeat mechanism in the C shell is to set
the variable ignoreeof, so that the word logout must be typed; but there
are other, more interesting, possibilities. For example, the C shell script

# . logout #

tonintr - # Ignore all interrupts,
unset ignoreeof # defeat "logout".

set bye # Create bye

while ( $bye != adieu ) # check if it's "adieu";
echo "Use \"adieul\" to log out\!" # remind with message,
set bye = ‘line’ # request keyboard input.
end

asks the user to type the word adieu in order to log out, then sets the
variable bye to the word received from the terminal keyboard (via the
command line). It repeats this action until the word adieu is finally rec-
ognized. More serious uses of the . logout file include tidying-up op-
erations such as reminding the user to remove any magnetic tapes and
floppy disks or displaying an accounting log of the computer resources
used during the terminal session.
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Choosing the Right Shell

Received wisdom in the Unix community holds that the C shell is pref-
erable for interactive work, the Bourne shell for writing shell scripts.
Choosing the C shell for terminal work is probably a good idea. The Bourne
shell has several unpleasant habits (as does the C shell); logging out users
when the shell receives a control-D must rank high among them. While
the Bourne shell can be customized to make it more agreeable, there is
little doubt that the C shell allows more custom alterations and therefore
can come closer to the user’s individual wishes. However, extensive al-
terations take knowledge, patience, and time; most beginning users lack
at least one of these.

A good reason for choosing the C shell as the normal interactive shell
is that the C shell can deal with Bourne shell scripts, but the converse is
not true. The following example will illustrate why and how:

% cat cshsrc
# C shell script

echo “SHELL = $SHELL, shell = $shell"; ps
% cat shsrc

# Bourne shell script
echo "SHELL = $SHELL, shell = $shell"; ps
% cshsrc
SHELL = /bin/csh, shell = /bin/csh

PID TTY TIME COMMAND
38 03 0:33 csh
204 03 0:04 csh
205 03 0:12 ps
% shsrc
SHELL = /bin/csh, shell
PID TTY TIME COMMAND
38 03 0:33 csh
206 03 0:01 sh
208 03 0:11 ps

Here two short shell scripts are run: both ask the system to identify the
currently active shell and to display the status of every process associated
with the user terminal. The scripts are identical except for their comment
lines. These differ in one major respect: the comment character # is the
first character in the file in cshscr, while a blank precedes it in shscr. The
C shell uses this first character as an identifier. It treats the file as a C
shell script if # is present, as a Bourne shell script if not. (Conventionally,
Bourne shell scripts are begun with the colon : to identify them.) To
execute either kind of script, the user’s C shell process (38 in the example)
launches a new shell, either csh or sh as required. This action is evident
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in the example: when executing cshscr the active shell (process 204) is
identified as csh, but when executing shscr it is sh (process 206).

The Bourne shell is the ‘‘senior’’ shell, so it does not recognize most
things peculiar to the C shell. However, the C shell does understand many
Bourne shell conventions. For example, the requests to echo $SHELL and
$shell above are understood by csh, but only $SHELL is echoed by sh.
Similarly, repeating the above experiment with sh as the login shell will
lead to sh being used for both scripts; the Bourne shell does not spot the
# character at the head of the file as anything special.

The Bourne shell is available under virtually any Unix system; the C
shell under most but not all. The System V Interface Definition, for ex-
ample, does not mention the C shell. To be sure that shell scripts can be
run anywhere by anybody, it is probably wise to write them using the
Bourne shell conventions. On the other hand, the slightly less universal
availability of the C shell is no disadvantage when working at the terminal,
while its greater flexibility can be an asset.



Chapter 5

The System Kernel

The kernel is that part of a Unix operating system which actually controls
the allocation of machine time, memory space, and communication chan-
nels to the various tasks that users may have running at any particular
moment. It consists of a central supervisory program flanked by service
routines to take care of such essentials as fetching characters from a key-
board, writing to memory, and looking at the system clock.

A great many data processing activities are relegated to separate, es-
sentially autonomous, programs under the Unix system. Most, though not
all, such programs are directly visible to the user: they are stored in sep-
arate files whose names the shell considers to be commands. Since most
users communicate only with the shell, not directly with the kernel, a
knowledge of what the kernel contains and how it operates is not really
necessary to most people. This chapter is directed primarily to those who
wish to know a little more about the inner structure of the system, as well
as to others who may occasionally need access to some of its internals
and wish to consult a brief overview before tackling the much more com-
plete system manuals.

Nature of the Kernel

By its external appearance, the Unix operating system seems to be made
up of two parts: a large set of programs, each one corresponding to a
command, and the shell, which manages user commands and coordinates
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the running of programs. In an analogous fashion, the inner part of Unix
may be divided into two portions: a large set of service routines, to perform
functions actually related to hardware and software tasks, and the kernel,
which takes care of their interplay with currently running processes. The
service routines are invoked as needed, while much of the supervisor code
is permanently resident in memory. It provides the basic software envi-
ronment for practically everything that happens. This part occupies only
a small amount of computer memory, leaving as much as possible to user
processes.

Functions of the Kernel

Most computer users are not deeply interested in the machine hardware
employed to solve their problems, nor in the details of the operating system
software. The Unix system caters to this common user preference by in-
terposing the shell between user and machine so that the user commu-
nicates with a virtual Unix machine whose appearance is entirely that of
the shell.

The Unix kernel has an analogous role, but one level below the shell:
it hides the physical machine from those programs and also from those
sophisticated users who may from time to time request access to the lower-
level system services. The kernel does so by creating a virtual machine
whose characteristics closely resemble those of a broad class of physical
machines. Real computers are then made to look like the virtual machine
by interposing a program of a few thousand lines between machine and
user. Rarely does the physical machine hidden beneath the shell become
visible. This structure is the key to creating portable operating systems.
Since the shell addresses itself to the virtual machine, it can be mounted
on a new computer by rewriting only the machine-level programs that
convert the real machine into the virtual machine.

The virtual machine created by the kernel has three primary functions:
(1) it schedules, coordinates, and manages process execution; (2) it pro-
vides system services such as input/output and file management; and (3)
it handles all other machine dependent operations. All three functions are
related to the details of computer hardware structure.

Kernel Structure

The overall size of a Unix kérnel is around 10000 lines of program code,
but this figure varies widely with the Unix version as well as the type of
machine. As a fraction of total Unix program code (shell, utilities, kernel,
and all else), it may range from under 5% to over 10%. The proportion
of total code in the kernel is variable not only because kernel size varies
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from one machine to another, but also because Unix installations differ
in the number of utility programs provided.

A substantial part of the kernel deals with memory management, in-
cluding user scheduling and process scheduling. This part also keeps track
of stack contents, machine register contents, and the various other en-
vironmental details, as processes are swapped into memory. Furthermore,
it responds to processor traps which may arise, for example, from hard-
ware memory faults. This major portion of the kernel, perhaps 70-90% of
the whole, is written in the C language. It deals almost entirely with the
virtual machine and is therefore portable to any machine for which a C
compiler can be found. A large part of the kernel code is consequently
the same in systems and system versions intended for broadly similar
kinds of computer.

Scheduling, memory management, and control of process execution
are matters requiring fast response. They are therefore initiated and con-
trolled by the permanently resident part of the kernel. On the other hand,
the service routines are numerous and more extensive, so they are loaded
into memory only as needed.

Device drivers, the programs that actually address the data registers
in peripheral devices, form another substantial part of the kernel. They
handle interrupts raised by peripheral devices and effect error recovery.
Device drivers are entirely hardware dependent; after all, the whole object
of a device driver is to move data into particular hardware device registers.
Most Unix device drivers are also written in the C language. The device
driver code in minimal Unix systems may be around 1000 source lines,
but it is sure to rise much higher in systems with many peripheral devices.

The third important part of the kernel, the only one that must be written
in assembler language, is a set of machine primitives. These are the true
creators of the virtual machine. They place characters in the line printer
data register, enable or disable machine interrupts, read the disk drives,
and so on. These may amount to 1000 or more lines of assembler-language
code. This number too is highly variable, depending on the complexity
of the real computer and how closely it resembles the virtual machine.

System Calls

The shell and large parts of the Unix kernel are written in high-level lan-
guages. These programs, as well as many others that users create from
time to time, require access to various facilities for which high level lan-
guages provide no standard commands. Such actions include

initiating a new process,
opening a file for reading,
writing on a file,
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getting the system clock time,
terminating a running process, and
changing read/write/execute permissions.

Most such machine-dependent actions are intrinsically simple and those
of the virtual machine created by the kernel are among the simplest.They
are accessible through system calls, programs that fetch information, write
words into a machine register, or consult the relevant tables. System calls
are the instructions that the virtual machine carries out—indeed, it could
well be said that the set of system calls is the virtual machine.

System calls are commands issued to the kernel, just as ordinary Unix
commands are instructions given to the shell. They are accessible to pro-
grams written in C, exactly as if they were ordinary C functions. They
are available to Fortran 77 and Pascal programmers through function calls
because the conventional Unix language processor structure handles For-
tran 77 and Berkeley Pascal through the second pass of the C compiler.
The entire repertoire of system calls extends to a hundred or more, a long
list of individually simple things. Compared to the list of system-provided
commands, the set of system calls has grown slowly as updates and new
versions of Unix derivatives have come along.

Some system call actions are also available as shell commands. The
shell command then usually consists of a short program which does little
more than rephrase the user’s request and pass it on to the kernel as a
system call. Obvious examples include chdir, kill, mount, sleep, and umask,
all requests for some simple action to be performed on directories, process
tables, peripheral devices, or the system clock.

A few commonly employed system calls are briefly described in this
chapter. They represent only the smallest tip of a very large iceberg, but
most of the iceberg is of interest only to true Unix cognoscenti. For more
information on what system calls are available and how to use them, a
serious session with the full Unix Programmer’s Manual is recommended.
Volume 2 in particular defines the actions performed by each system call
and gives details of how they are accessed from both assembler language
and C.

System Standards

The relative portability of Unix systems derives largely from the ability
of C programs to issue system calls. Both the applications programmer
and the systems programmer can do their work almost entirely in high-
level languages, allowing machine dependence to be localized in the C
compiler and the system primitives. As indicated in the chapter on language
compilers, C is a language well suited to writing operating systems, for
it is able to deal with entities at the machine word level. However, even
the best C programs cannot be portable unless the virtual machine is stan-
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dardized—in other words, if the same system calls are available on all
computers that support Unix.

Until about 1983 or 1984 the Unix system—the Seventh Edition or the
Berkeley 4.2 BSD release—was largely used and maintained by academic
institutions or commercial firms. No standard prescribed what system calls
were to be available; worse, many versions of the system incorporated
improvements or modifications. These no doubt made the system run bet-
ter but also prevented software from being moved between Unix systems.
In 1984, /usr/group, an independent society of Unix users, published a
proposed system standard comprising two parts: about three dozen system
calls and equally many C functions, intended to constitute the fundamental
library of utilities for the C programmer. About the same time, the AT&T
organization appears to have realized that random unchecked growth
would hurt rather than help the Unix cause; to clarify and standardize,
the System V Interface Definition was published in 1986. This book is
descriptive rather than normative—it says exactly what System V actually
does rather than what any Unix-style operating system ought to do. The
Institute of Electrical and Electronics Engineers, Inc. (IEEE), an orga-
nization active in various facets of computer standards, also in 1986, drew
up its Standard for Portable Operating System for Computer Environ-
ments. (Of course, Unix does not enter the name—it is a trade mark, after
all.) Although there are differences, the IEEE document and the AT&T
definition come remarkably close to each other. There is reasonable hope,
therefore, that something very much like the IEEE definition (or System
V) will be adopted as an ISO as well as ANSI standard within a few years.

One important point needs to be observed: the IEEE standard, as well
as its precursor the /usr/group document, only deals with kernel-level
standardization. Standardization of shell commands will likely follow, but
in the near future it will still be a matter of every man for himself in the
shell jungle.

Process Coordination and Management

Under a multiuser operating system, many user programs can be running
at the same time. Of course, there is only one central processing unit in
the computer so only one program can really be running at a given instant;
the phrase ‘‘at the same time’’ means that the several programs are in-
terleaved in time, with the central processor allocated briefly to each one
in turn. But although only one user program may be actually running,
several could be resident in memory at the same time if the memory is
large enough. The kernel must keep track of how programs use processor
time and memory space; in other words, it is responsible for process
scheduling and memory management. The latter includes not only sharing
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out the available slices of memory but also deciding whether and when
to swap a process from memory to disk and back again.

Process Initiation

A process under Unix is distinguished from a program: a process is a
program executing in a specified environment. The word environment here
means which files are open, what access permissions are attached to files,
the values assigned to shell variables, the identity of the user, and all the
other things the system must know to run a program but which are not
part of the program itself. A process is said to be active if the kernel
knows about it and intends to do something about it. In other words, a
process is considered active even though its program may be waiting its
turn for time and memory.

A process is initiated under the Unix operating system through the
action of another process: processes start up other processes. When a
user first logs in, the kernel sets a copy of the shell running for him; if
the user then issues some command, say who, the shell finds and initiates
who. In fact, there is no way for the user to initiate a process, except to
have it done for him by some other (already active) process! The natural
result is a hierarchical structure of processes. This hierarchy is created
by means of a mechanism called a fork (after the system call which requests
the mechanism). To fork, the kernel replaces an existing process by two,
as in Figure 5.1(a): itself and another, newly initiated, process. The original
process is called the parent process; the newly added one is called its
child. The child generally shares all files with the parent process. Once
forked, both processes run as if they were independent, unless a specific
request is made for the parent to wait until completion of the child. Of
course, the child process (process 2) may need to initiate yet another pro-
cess. It can do so, by forking again.The result is shown in Figure 5.1(b),
three processes active concurrently. The new process (process 3) is re-
garded as a child of process 2. It will have access to files opened by the
previous two processes, though they may not have access to files it has
opened. The general rule is that files are always made accessible to pro-
cesses lower down in the hierarchy.

When a user first logs in, the kernel initiates a copy of the shell to run
as a process for him. Process 1 is created when the user issues some
command to the shell. As a result, process 3 would be executed concur-
rently with the shell as well as processes 1 and 2. In fact, the shell could
well fork again (e.g., if 1, 2, and 3 were background processes), thereby
creating process 4. The result is sketched in Figure 5.1(c). Intricate process
hierarchies can be created easily and rapidly in this way.

When new processes are initiated by the shell, the forking is normally
so arranged that the shell waits for the process to complete. In other words,
the normal procedure is for all processes to wait until the most recent one
has finished work. If it is desired to run some process in the background,
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process 2
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FIGURE 5.1. Forking of processes. (a) A single process is replaced by itself and
its child process. (b) If the child process forks, multiple concurrent processes are
created. (c) Repeated forking creates a process hierarchy.

say process 1, the user can so request (by appending an ampersand & to
the shell command). The shell prompt is then issued as soon as the child

process has been initiated. More detail on forking and waiting will be
found below.

A Process Hierarchy

To see the process hierarchy as it exists at a particular moment, the ps
command may be used. With the appropriate options selected, this com-
mand can show practically every kind of known information about the
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processes currently known to the system. On a particular Unix system,
with three users logged on, the output (slightly edited to eliminate su-
perfluous information) shown in Figure 5.2 is obtained. This display shows
the status S associated with each process (sleeping or running); the user
identification number UID; the process identification number PID and the
number PPID of its parent process; the priority number PRI of the process
and the size SZ of its program (blocks); the terminal number TTY with
which the process is associated; the TIME the process has consumed to
date; and the command CMD which caused the process to be initiated.
System-initiated processes have no terminal numbers associated with
them, hence the question marks in the TTY column.

The number of concurrent processes may seem large at first glance,
and it may seem strange that some are not associated with any terminal
at all. These processes belong to the system itself; they reside at the root
of the process hierarchy as it were. A better overview of the process
structure may be obtained by drawing a graph of the parent-child inter-
dependences of processes, as in Figure 5.3. The processes at the left and
top of the graph, with process numbers below 30 and process 34, are
initiated by the system; those further to the right and downward are caused
by the users. The initial provisions made by the system are for initialization
and swapping of processes and updating of system information. The pro-
grams Ipsched and cron are, respectively, the line printer scheduler and
the clock daemon, who watches for timings and initiates all actions de-
pendent on clock time. There is a fourth terminal on the system, idle at
the time shown; the getty program checks from time to time whether any-
one is trying to log in on it.

202 224 220 26 18 02
202 225 220 26 65 02
202 226 220 26 6 02

0 227 33 54 26 03

:01 spellpro
:02 spellpro
:01 comm

:14 ps

S UID PID PPID PRI SZ TTY TIME CMD

S 0 0 0 0 2 ? 0:02 swapper
S 0 1 0 30 15 ? 0:02 init

S 201 31 1 30 23 co 0:26 csh

S 202 32 1 28 20 02 0:13 sh

S 0 18 1 40 12 ? 0:24 update
S 14 23 1 26 26 ? 0:02 1lpsched
S 0 27 1 26 26 ? 0:12 cron

S 0 33 1 30 20 03 0:16 sh

S 0 34 1 28 15 04 0:04 getty
S 201 175 31 28 46 co 5:55 vi

S 202 217 32 30 20 02 0:02 sh

S 202 219 217 30 22 02 0:00 sh

S 202 220 217 26 7 02 0:02 tee

S 202 221 219 26 35 02 0:13 sed

S 202 222 220 26 14 02 0:13 deroff
R 202 223 220 54 66 02 0:10 sort

S 0

S 0

S 0

R 0

FIGURE 5.2. Status report on all processes running in a four-user system with
three terminals active and one dormant.
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18
update
23
Ipsched
27
cron
0 1 31 175
swapper init csh vi 219 221
32 217 sh sed
sh sh 220 222
33 227 tee deroff
sh ps 223
34 sort
getty 224
spellpro
225
spellpro
226
comm

FIGURE 5.3. Process structure in a four-terminal system, with one user editing,
one running a spelling check, and one terminal idle.

When the process status shown in Figure 5.3 was taken, one user (on
the console) was editing with the vi editor and one (terminal 2) had just
recently launched a spelling checker job. The spell program invokes several
other processes, so process 32 has a whole subgraph of further processes
attached to it, including two more copies of the shell itself. All these pro-
cesses, however, are seen to be sleeping, except for the sort program
(process 223) which presumably is sorting words at this time. Terminal
03 has another copy of the shell attached; it is currently running the process
status enquiry command ps.

Process identification numbers are on occasion needed by users, for
processes (unlike their associated programs) have no names. To kill an
existing process is easy enough if the process is running at the terminal—
interrupting with a DELETE keystroke suffices. Background processes, on
the other hand, can only be killed with the kill command which requires
specifying the process number.

Memory Allocation

Unix is both a multitasking and a multiprogramming operating system.
That is to say, it not only keeps track of many concurrent processes but
also maintains control over all the programs resident in main memory at
the same time. In normal operation, each program is loaded into a different
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area of main memory. Time-sharing operation can then proceed without
swapping the memory content onto disk. Each program can be made to
run for its allocated slice of time in turn, remaining quiescent in memory
when it is not running. Only the machine registers themselves are shared
between programs, so that swapping programs really only amounts to
swapping register contents. The system kernel is responsible for keeping
track of which processes are considered active at any given time and which
one is actually executing, deciding whether and when to swap and de-
termining where in memory to load newly initiated programs. When a
process terminates, the kernel decides whether termination was normal
(successful) and sets the exit status variable accordingly. This status can
be examined and used by the shell.

Unix programs can be set up in two different ways, reentrant or not.
Reentrant code has all program instructions occupy a group of memory
locations separate from any modifiable data and all writable data locations
separate from the program code. Nonreentrant code mixes the two. While
running, processes whose programs are reentrant are allocated three dis-
tinct portions of machine memory: a text segment, a data segment, and
a stack segment. The text segment contains pure code and is write-pro-
tected. The data segment contains all user-defined data, values of variables,
and so on. The stack segment contains system information, required to
keep the process intact when it is swapped in and out. Nonreentrant pro-
grams of course cannot separate stack and data from program.

Making the program code and data separate achieves two useful goals.
First, it reduces the quantity of information to be swapped, by swapping
the text segment one way only. Since the text segment is never modified,
it must always be an exact image of the user program initially available
on disk, so there is no need to write it to disk when swapping the process
out. Second, some programs such as the vi editor are used often; in larger
installations several users may need it at the same time. The shell, in fact,
must exist in at least as many copies as there are users logged in, for a
new shell is started for every user when he arrives. If two or more users
need the same program text, there is no need to create duplicate copies
of the text segment, for text is guaranteed to be and remain identical in
all copies. It suffices to create, and swap when needed, one writable data
segment and one stack segment for each user. The writable segments are
rarely large compared to the executable code of a complicated program
like the shell.

Time and Resource Sharing

In multitasking operating systems, individual processes are not ordinarily
allowed to run to completion but are granted slices of processor time on
a modified round-robin basis. It is not usual to grant them equal time
slices in turn, because the needs of different processes may differ con-
siderably.
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The time slices granted to individual processes depend on several fac-
tors, among them process importance, availability of required input data,
and availability of output devices. Some can be decided and acted upon
entirely by examining the process itself. Others may be altered by the
needs of other processes (e.g., if input data are awaited from some other
program) or the computer hardware (e.g., printer presently busy). Unix,
like most operating systems, therefore allocates time slices to individual
processes so as to maximize the use of hardware resources while giving
due precedence to critical tasks.

The Unix kernel allocates time to competing processes in accordance
with process priorities. Priorities are expressed numerically, with the
largest numbers signifying the least important tasks. (In other words, a
high priority under Unix is a low priority!) Priority ratings can be examined
with the ps command; they are updated periodically, typically at intervals
of a few seconds. At every updating interval, jobs with a high ratio of
processor time to terminal time are downgraded, while those requiring
relatively less computing are upgraded. In this way, users with a great
deal of interactive work (e.g., typing at the keyboard) have high priority
and therefore should have nearly instant terminal response. Tasks with
large amounts of computing, it is argued, are quite likely to keep someone
waiting anyway, so there is no harm in making them wait a little longer.
For similar reasons, system-initiated tasks always have higher priority
than user-initiated tasks. Because priorities are regularly updated, pro-
cesses which change character will have the wrong priority for only a
short time. For example, a computation-intensive task initially launched
with high priority will soon enough have its priority number increased.
Conversely, a process with initially low priority will tend to move into
the foreground if it requires little processing but a good deal of terminal
input and output.

Priority numbers of Unix processes run backwards, with high numbers
denoting low priority. Numbers typically lie between 0 (for the vitally
important kernel processes) and perhaps 50 or higher. Users can influence
the priority ratings of processes in two ways: by declaring them to be
background jobs or by asking for the priority number (the nice number,
in Unix programmer jargon) to be incremented. The command

$ nice -10 1ls -1R $HOME > alldir &
is equivalent to

$ 1s -1R $HOME > alldir &
but with the priority augmented by 10 so as to push the task further into
the background. The command itself creates a file alldir containing a

long-form listing of all the directories the user owns (the -R option forces
recursive consultation of all subdirectories). Normal users can increment
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the nice number but not decrement it; that privilege is reserved to the
system manager.

When the time allotted to a particular process has been used up and
another takes a turn, the first program may need to be removed from main
memory to make room for the second. Processes are swapped by writing
into a disk file (the swap file) an image of each user process; when the
user is swapped in again, the swap file is read and the state of the computer
is restored exactly as it was when the user was swapped out. In this way,
the user program can resume precisely where it left off, having merely
been delayed. The process image maintained in the swap file includes the
contents of the user writable parts of memory, the contents of the machine
registers, the name of the directory currently in use, a list of open files,
and a few other relevant items of information.

fork, execl, and wait

To clarify how the access permissions and priority ratings of Unix pro-
cesses work, the forking procedure needs to be examined a little more
closely. The fork system call creates a new process, with both parent
and child active. The terms parent and child are apt in this context; the
two processes are created alike. fork does actually make two processes
exist but endows both with the same program and almost the same en-
vironment—almost, because one differs from the other by being listed in
the system tables as the other’s child. This procedure may seem a little
curious, but it does have its own logic: since the two processes are iden-
tical, there is no need to swap any program code in or out, nor to copy
anything but writable data areas. Execution of another program is re-
quested by another system call, which specifies what program is desired.
Half a dozen system calls, essentially alike but differing a little in the way
their arguments are presented, serve this purpose. For example, forking
can be requested from a C program by

i = fork();
and subsequent execution of the program newprog through

j = execl (newprog, argl, arg2, . . ., argn, 0);

where newprog, argl,. . ., argn are pointers to character strings
that specify the program name and the names of its arguments. In response
to execl, the kernel will cause the original program to be replaced (ov-
erwritten) by the new one. In other words, the sequence fork-execl
first cheaply creates a copy of the parent process, then replaces the pro-
gram text of the child with the program it is actually desired to run. Al-
though it contains a new program and probably new data, the identity of
the process (as contrasted with the program) is still the same.
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In normal interactive work at the keyboard, processes are set running
as soon as commands are issued and the requesting process (usually the
shell) is asked to wait until the child process has exited. Simply forking
will not do the trick here; to make the parent process wait, the system
call wait is issued. It forces the parent process to hang until the kernel
signals it that the child process has terminated.

Effective User Identification

The fork-execl system call sequence creates a new process which in-
herits the environment of its parent, then overlays the program with a
new one. Except as deliberate changes are made, the environmental pa-
rameters remain those of the parent process: same owner, same terminal,
same home directory. This arrangement works well in most cases but
causes difficulty with access permissions occasionally. The problem and
its solution merit brief examination.

Various programs resident in a Unix system are available publicly but
require access to closely restricted files. The passwd program, for example,
may be used by anyone; but the file of user passwords is available for
writing only by the system manager. A conflict arises here, however: user
joe can run the passwd program but that program cannot update the file
of passwords, because the password file is writable only by its owner,
not joe! Much the same problem arises in many commercial applications,
where a data file may need to be updated by several account clerks but
no account clerk can be allowed unlimited access to the whole file. The
problem is solved by trickery. When the shell owned by user joe initiates
the process containing the passwd command, the child process inherits
Jjoe as the process owner, so a conflict arises when needing access to files
owned by the system itself. If the user identification of the child process
is altered to root (i.e., the system itself) rather than joe, all necessary files
will be available to the child. The child process, in other words, has an
apparent owner different from the parent process. In Unix jargon, the
user identification of the child process is called the effective user identity,
as contrasted to the real user identity inherited from the parent. The ef-
fective user identification belongs to the environment of the child process,
not of the parent; it therefore expires with the child.

Processes running for a user may appear to belong either to the same
owner as the parent process or to the owner of the program file. When a
new process is launched, the effective user identification is set to match
the ownership of the file, provided a flag bit (called the SUID—set-user-
identity bit) attached to the command file is set. If it is, the file is shown
in directory listings not merely as executable but executable with SUID
set, the permission letter shown being s rather than x:

-TrwsS--X--X 1 sysinfo 12826 df
“rws--xXx--X 1 root 6898 mkdir



110 5. The System Kernel

“TWS--X-~-X 1 root 19168 passwd
“rwWs=~-X--X 1 sysinfo 25525 Ps
“rwWS=-~-X--X 1 root 7181 rmdir

Setting the effective ownership can cause some system security problems.
If some program owned by root can fork to produce a new shell, that
shell inherits the ownership of its parent and therefore has unlimited access
to the entire system!

cron the Clock Daemon

Timed processes in the Unix system are governed by the system clock
through the agency of cron, a process described by the manuals as the
clock daemon. A daemon is a minor god of Greek mythology, not to be
confused with a demon (an evil spirit); cron is thus the clock-god who
ensures the correct timing of events.

When first launched, cron consults a set of tables to see when the first
event needing the clock-god’s attention is scheduled to occur. All such
events are processes to be initiated at specified times. Having consulted
the schedule, cron goes to sleep, awakening just in time to fork the first
scheduled process. It starts that process, consults the tables for the next
scheduled event, and goes to sleep again. System managers make extensive
use of cron for administrative tasks, for cron does not forget, nor does it
mind doing accounts in the wee hours of the morning when the computer
is probably lightly loaded anyway.

Not only the system manager but ordinary users as well can ask cron
to take care of processes. Processes to be launched periodically are con-
veniently copied from a file into the cron tables by the crontab command,

$ crontab filename

The same command, with appropriate options, also serves to remove table
entries or to list the current ones. Events may be scheduled by giving a
sequence of five integers corresponding to the minute, hour, date, month,
and day of the week, stating what command is to be executed at that time.
For example,

0,55 9-16 * 1-5,9-12 1-5 bell

might serve for the class bell in a school: it will execute the command
bell at 0 and 55 minutes past the hour, for all hours from 0900 to 1600,
on any date of the month (as signified by *) during January-May and Sep-
tember-December, Mondays through Fridays.

A pleasing feature of cron is that anything sent to the standard output
file when the user is not logged in is automatically redirected to mail;
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nothing need be lost. A displeasing feature is that if the computer is shut
down at the time a process should be initiated, it is omitted forever, not
caught up when the machine is restarted.

Input and Output Operations

To the shell, all input—output operations look like file operations; the shell
does not recognize the existence of any peripheral devices. Indeed, this
equivalence of files and devices is a key characteristic of the shell command
structure. However, this viewpoint cannot be appropriate to work in-
volving the kernel, for the kernel’s job is precisely to hide the real physical
devices behind the facade of apparent files.

Device Independence

Most present-day operating systems permit programs to access files on
different physical volumes in a similar fashion, so that applications pro-
grams can read any files on any volume or device. Systems with this char-
acteristic are said to exhibit a high degree of device independence. Device
independence is achieved by creating a fictitious physical machine with
the external appearance of a disk drive containing numerous files, then
writing all programs to communicate with files stored in this virtual device.
Every real physical device naturally does not have all the assumed char-
acteristics of the virtual device. Each physical device is therefore endowed
with a special program, called a device driver, which translates the required
actions of the virtual device into those of the real one. User programs
can then communicate with any new device added to the system, provided
a device driver exists for it. The Unix system carries device independence
to its logical conclusion, by making all physical devices on the system
look to the user’s programs as if they were simply files. Because these
files are somewhat different from user files, they are referred to as special
files. Reasonably enough, special files have read and write permissions
attached to them, as indeed they must; after all, the line printer is a write-
only device and all users must therefore be denied reading access.

First Level Interrupt Handling

Many events that occur in a multiuser computing system occur in real
time and must be dealt with on the spot. Such events include, for example,
a user pressing a key at the terminal keyboard. A keystroke may well be
followed by another within a hundred milliseconds or so, and whatever
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action is to be taken in response to it must be taken within that length of
time.

Events requiring immediate attention are signalled to the kernel through
hardware. Such an event causes an interrupt condition to exist: whatever
program is currently running is halted at the end of the current machine
instruction cycle and control is transferred to another, usually very small,
program called an interrupt service routine. The interrupt service routine
determines the cause of the interrupt, does whatever is necessary in re-
sponse, and thereafter returns control to the program that was executing
previously. Servicing an interrupt is thus an action somewhat similar to
executing a subroutine: the principal program is left waiting while some
other activity is carried out. But unlike a subroutine, an interrupt service
routine is initiated by hardware and executed asynchronously, in response
to some external event.

Since a multiuser installation may contain many terminals and each
terminal can send out several characters per second, the time available
for dealing with interrupts is small. Keyboard input is therefore handled
in a two-level fashion by almost all operating systems. The first level in-
terrupt handler merely collects the newly arrived keyboard character, ex-
amines it to see whether it is one of the special characters requiring im-
mediate response (e.g., DELETE), places it in a keyboard buffer area for
later attention, and echoes it to the terminal. The time taken for these
actions might amount to a few dozen or a few hundred microseconds,
depending on the type of computer. The user can easily gain the impression
that typed characters are merely stored at the terminal, so fast is the echo
sent by the interrupt handler. Even several users typing along furiously
will leave plenty of machine time for other processes to run.

If the first level interrupt handler finds that the character typed at the
keyboard requires action, a second level of activity is called into play:
the action required is identified and carried out. For example, if an end-
of-line is received from a terminal, the input line is examined for kill and
erase characters and any necessary editing is done. The processed text
is then placed in another queue from which it is sent on to the program
expecting input. This process is likely to take much longer than a simple
storage of commands.

Special Files: Block and Character

Special files are of two generic varieties: block and character. Prototypes
of these are disk files and terminals, respectively. In other words, two
kinds of peripheral device are recognized: disk-like and terminal-like. De-
vices which are neither are made to look like one or the other to the
system; and the system in turn strives to make all devices look like files
to the user.
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Block input-output is arranged through a pool of data buffers. Typically,
a dozen or more buffers may be in use. In normal operation, none is per-
manently dedicated to any particular user, buffers are allocated as required.
When a process requests input, the kernel searches the buffers for the
desired data. If the text requested is resident in a buffer, it is communicated
to the process without any data transfers between memory and disk having
to take place. Correspondingly, a request to write is understood to mean
writing into the buffer. The buffer content is actually transferred only at
a later time when the buffer is needed for some other purpose or when
an explicit request is made to flush buffers. Since the buffers are not ear-
marked for any particular user, output buffer contents are not transferred
as soon as each buffer is full, but only when all buffers are full and more
buffer space is requested by some process. The input buffers are kept
filled by reading ahead a good deal; output operations may involve delayed
writing. Input-output operations are thus asynchronous with the program,
so programs rarely need to wait for data transfers.

Character-oriented input—output by Unix device drivers is of the clas-
sical mould: the driver deals with individual characters which it either
passes on or else recognizes as having particular meanings. As a simple
example, a newline character, which denotes the end of a line in a Unix
file, must be recognized and transmitted to a terminal as a sequence of
two characters, carriage return followed by a line-feed. Similarly, terminals
unable to tab to a particular column must be sent an appropriate number
of blank spaces; terminals unable to skip pages must be sent the right
number of blank lines in place of a form feed character. These substitutions
all take place in the device driver.

Block input—output devices require only simple device driver programs,
for all operations are directed to buffers of a standard form. By contrast,
character devices need more complex drivers but can make do with less
sophistication in the buffer management software.

Unix input-output arrangements are generally transparent to the user,
and appear to be program synchronous: input is read and output is pro-
duced in exactly the sequence one would expect from reading a listing of
the program. Should the system malfunction, however, the complexities
of the Unix buffering scheme can become annoying. For example, output
may sometimes be delayed or lost because it is still resident in buffers
and hence not printed, although completely terminated as far as the pro-
gram is concerned.

Physical Structure of Files

Users rarely need be concerned about the physical structure of files be-
cause the Unix system makes every file appear to the user as a simple
contiguous byte (or character) string. But there are some occasions when
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even a rudimentary knowledge of the physical file structure allows better
applications programs to be written. Besides, some users are interested
as a matter of simple curiosity.

Disk files under the Unix system are physically organized into blocks.
Blocks were invariably 512 bytes long in the early versions of Unix; more
recently, both 512 and 1024 byte blocks have come into use. Every file
is allocated an integral number of blocks and every block begins at a mul-
tiple of 512 bytes from the beginning of the file. However, successive
blocks of a file are not necessarily contiguous on the disk; they may reside
anywhere at all. This file organization contrasts with some small computer
operating systems, which allocate space in one single contiguous area of
disk. The advantage gained is that no file compaction or ‘‘garbage col-
lection’’ is ever needed. In fact, the speed advantages of contiguous space
allocation remain largely valid for Unix files, since contiguous space is
used when it is available. Fragmentation of disk space, with every file
spreading all over the disk in little pieces, only occurs when the disk is
nearly full. But it is hardly necessary to point out that the management
of files scattered about in penny packets is trickier than constructing simple
tables of contents for contiguous files.

Ordinary files and directory files may be classified into four different
size classes, occupying at most 10, 138, 16522 and 2113674 blocks of file
space (assuming 512-byte blocks). The reason for this curious classification
is that space is provided for 13 block numbers used to access data. The
method of access is described below.

Storage of small files is straightforward enough. If a file occupies ten
blocks or fewer, the spaces provided in the system tables are used simply
to house the actual block numbers. For example, a file that requires three
blocks might have the thirteen block numbers given as 07526, 16201, 01004,
00000, 00000, 00000, . . ., 00000. The first three denote physical block
addresses on the disk; zeros show unused space. Up to ten blocks are
addressed in this way, the last three words being reserved. This scheme
is beautifully simple but only allows small files. Ten file blocks is 5120
bytes, about two or three typewritten pages.

Larger files are handled by an indirect addressing scheme. The first
ten of the 13 block address words are used to point to file blocks containing
data, exactly as if a small file were being stored. The eleventh address
points not to data but to a block containing the addresses of up to 128
further file blocks. The desired data are stored in those further blocks.
Since there can be up to 128 further blocks, files up to (10 + 128) = 138
blocks, or 70656 bytes, can be stored in this way. In other words, the
first 10 blocks are addressed directly and the next 128 are addressed in-
directly via the thirteenth block. This chapter is about 70,000 bytes long.

To store still larger files, a second level of indirect addressing is em-
ployed. The first eleven addressing words are used exactly as described
above; the twelfth points to a block containing the addresses of up to 128
blocks which in turn contain the addresses of up to 128 data blocks each.
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The number of additional data blocks made in accessible this way is clearly
16384 (128%), so the total accessible data space is 10 + 128 + 16384 =
16522 blocks, or roughly eight megabytes. This book corresponds to about
a megabyte of text.

The largest files are arranged in a similar fashion, but with the thirteenth
addressing word used in a triple-indirect addressing scheme. The amount
of additional space made available in this way is 2097152 (128 blocks,
so that the largest possible file is approximately one gigabyte in size.

Directories are treated in the same way as ordinary files, though it is
unusual to find directories growing quite so large; most users tend to
structure their files hierarchically, with successive subdirectories con-
taining perhaps one or two dozen entries. It is usually convenient to keep
directories to a size that can be displayed on the terminal screen at one
time.

For special files, the first of the 13 block addresses has a different sig-
nificance. The first half of this word is viewed as the identification of a
physical device type (e.g., magnetic tape drive), the second as the iden-
tification of a subdevice number (e.g., tape drive number 7). Restricting
special files to a megabyte is not a problem, for they rarely exceed a few
kilobytes.

Sequential and Random Access

The Unix system treats all devices and media alike as containing files
composed of strings of characters. However, various physical file media
differ in their characteristics so that some distinction must be made in
practice between different kinds of file access. For example, a magnetic
disk is an inherently random access device: it is as much work and takes
as long to retrieve information from one place as another, so all characters
on the disk are equally accessible. Writing or reading can take place in
various sequences, including in one place several times. It is then necessary
to keep track of where the next character is to be transmitted to (or from).
A very simple mechanism is employed for doing so: a pointer is initially
set to the beginning or end of a file and repositioned as reading and writing
are done. Because the system always reads from the location pointed at,
random access is achieved by repositioning the file pointer.

Certain media—for example, input keyboards and line printers—are
strictly sequential. Characters once sent to a printer cannot be read back
and reading is possible only in the sequence ordained by the input—output
device. Unix achieves uniform treatment of all peripheral devices by pre-
tending they too are files and equips them with a file pointer. Of course,
movement of the file pointer associated with a sequential device is strictly
unidirectional.

Media of an intermediate character, such as magnetic tapes, are viewed
as logically indistinguishable from disk files. The only differences arise
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in their physical response, for operation of magnetic tapes as random ac-
cess devices can require frequent rewinding and thus result in excruciat-
ingly slow operation.

In addition to being strictly sequential, keyboards and line printers are
also read-only and write-only devices. This physical fact presents no
structural problem, since Unix software works with a system of read-
write-execute permissions. A physical device which cannot be read is log-
ically indistinguishable from a file without read permission. Thus, the ex-
istence of read-only and write-only devices fits naturally into the general
system structure.

The Unix operating system provides random access to files in high-
level languages such as Fortran and C, so that the average user never
needs to worry about how the internal operation is carried out.

Input—Output Buffering

As far as the ordinary user can tell, file reading and writing operations
appear to be synchronized to programs. In other words, all Fortran read
or write statements, or equivalent commands of other languages, appear
to be executed exactly when and where they appear in the program. They
appear to be unbuffered: every read or write operation appears to fetch
or send exactly the required number of characters, without reference to
the file block size.

Since the files are physically organized in blocks, and the blocks do
not necessarily occupy adjacent locations on the physical medium, such
a synchronous and unbuffered appearance is only achievable by actually
reading and writing files in a buffered fashion. While the details of the
buffering are complicated, the principle is simple. A read instruction, for
example, causes an entire block to be read from disk into a buffer area
in memory. But only the required number of characters is transferred
from the buffer to the program area. Similarly, writing is actually done
by moving characters from the program area into a writing buffer; only
when the buffer is full does physical transfer to disk take place. For ex-
ample, suppose that a user program reads successive 64-character records
via Fortran read statements. An actual disk transfer of data is required
only once for every eight read requests, provided they ask for sequentially
arranged data. On the other hand, reading randomly arranged 64-character
records may require one disk access per read, if a different file block has
to be fetched for each one.

Because most user programs tend to read or write to sequential loca-
tions, Unix uses a relatively complicated buffering scheme in which the
next file block is preread ahead of time. Most input requests therefore
find the necessary data already resident in buffers and do not need to wait
for physical movement of disk heads or magnetic tapes. This speedup of
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operation is particularly valuable with large files, where multiple levels
of indirect indexing may be needed to locate and retrieve the next se-
quential file block.

Data are always stored in file blocks of 1024 or 512 bytes. Input—output
intensive programs theoretically should run a little faster if reading and
writing are done in multiples or submultiples of the block size. However,
the Unix input—output buffering scheme removes a substantial part of the
speed advantage and most users do not find it worthwhile to concern
themselves with this level of detail except where truly random file accesses
are involved.

Buffering of output to and from special files is carried out in different
ways for block and character files. Block files, i.e., special files that cor-
respond to block-structured devices, are handled in much the same way
as ordinary files. Character-structured special files naturally must work
on a single-character basis. Their buffering scheme is quite simple and
straightforward by comparison, without the many clever ideas incorporated
in block buffering.

Mechanisms for File Access

Before a program can read or write to a file, the file must be opened or,
if it did not previously exist, created. Similarly, a file must be closed before
exiting a program that opened it. Files are opened and closed by the system
calls open and close. In C programs, these calls can appear as function
invocations, for example,

filds = open (name, mode)

where name is a pointer to the file name and mode indicates whether the
file is to be opened for reading, writing, or both. The function value filds
returned by open is an integer called the file descriptor. All further system
calls dealing with the file refer to it by this number. For example, the file
is closed by

j = close (filds)
and nchar characters are read from it by

j = read (filds, buffer, nchar)
Two basic system calls, read and write, transfer characters from a file
(which could be a special file, such as a peripheral device driver) to a

specified memory buffer area. The function value returned by either call
is the number of characters transferred; it might well be smaller than nchar
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if the file contained fewer characters than requested. File descriptors are
numbers associated with processes; in fact, they are the linking numbers
which tie together processes with files.

Certain file descriptors are allocated to processes automatically. File
0 refers to the standard input file, which is the terminal keyboard by de-
fault. File 1, the standard output file, is the terminal screen by default.
File 2 is the standard error file, normally attached to the terminal screen
also. It serves for handling system messages and diagnostics. Having this
file separate from the standard output permits system messages to appear
on the terminal screen even if the standard output has been diverted to
a disk file or printer. The default file assignments can be changed by the
user. Since the normal rules on forking apply to the shell, any files opened
by the shell are accessible to any process spawned by the shell—therefore
also to all its children, their children, and so on. The standard file as-
signments of the parent process are therefore carried through to all its
descendants. The standard files are of course reassignable so input and
output can be diverted from anywhere to anywhere else.

A Unix file is simply a string of bytes of known length. An open call
opens a file and sets a pointer to point to its first byte; a read call reads
bytes and moves the pointer the number of bytes read. Any subsequent
read begins reading wherever the pointer last came to rest and moves it
on by the number of bytes read. Writing operations move the pointer in
a similar fashion. Files thus have the logical appearance of being sequential.
Nonsequential access is provided by resetting the pointer to an appropriate
place, for any subsequent reading or writing operations will then proceed
from the new pointer position. Repositioning to newplace is done by the
1seek system call,

newplace = lseek (filds, where, how)

Here filds is the file descriptor and where is the desired pointer position,
expressed either relative to the old position or absolutely, as indicated by
how.

File Identification

Directory entries in Unix directories only identify files by giving an index
number (called the i-number in Unix system programming jargon) for each
file. The index numbers for any given physical volume (disk, tape, etc.)
are actually pointers to another table, called the i-list, which resides on
the same device.

The i-list of a given device contains a set of entries called i-nodes; for
this reason, the i-list is sometimes referred to as the inode table. An
i-node is a set of data that contains the following information regarding
each file:
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The identifying number of the user who created the file.
The protection status of the file (read-only, open, etc.).
Thirteen words showing device blocks occupied by the file.
The size of the file.

The time the file was last modified.

The number of times the file is referred to in directories.
Bits to identify directories, special files, and large files.

N AEwD -~

Keeping track of how many times the file is listed in directories is im-
portant, because a non-directory file may appear in the directories of sev-
eral users. If one of them wishes to remove the file from his own directory,
only the directory entry (not the file itself) should be removed if there are
any other directories in which the file still appears. On the other hand,
the actual file itself should be purged (the file space should be released
for other use) if the last user of the file removes it.

There are some occasions on which users may wish to inspect the
i-numbers associated with files, usually because information regarding disk
space is needed. The i-numbers are available through the Is command,
invoked with the -i option. This option provides the listing that would
normally be expected from Is, augmented by the i-number corresponding
to each file name. These name-to-number correspondences are called links
and serve as the main file identification and management tool. In principle,
the mv command moves a link, rm removes one, and In creates a new
one. This fact may explain the curious command names employed for file
deletion, renaming, and synonym creation.



Chapter 6
Facilities and Utilities

The Unix operating system provides a large variety of utility routines for
performing computations, communicating with other users, and handling
files. Some are important enough to merit chapters of their own, like the
shell programs; or to deserve at least a large part of a chapter, like ed.
Others appear in context with the shell, language compilers, or files.
However, there are still others of considerable value which do not naturally
belong in another chapter of this book. They have been collected together
here, as a miscellany of handy items.

Communications

Under the Unix system and other similar operating systems, facilities are
provided for the system manager to communicate with users and for users
to communicate with each other. Two forms of communication are pro-
vided: mail and immediate messages. In principle, these two are analogous
to the post office and the telephone company. One leaves messages in a
mailbox for later collection; the other communicates directly but risks
that no one will answer the phone.
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Mail Services

Every user is assigned a file called his mailbox, which is not part of his
directory structure (it actually resides in the directory /usr/spool/mail
in most systems) but which he can read using the mail command. The
same command makes it possible to write into another user’s mailbox,
leaving messages for collection later.

If there is any fresh mail waiting, Unix informs the user about it when
logging in, before the first shell prompt:

You have mail.

$

When the user reads the messages in his mailbox, the system notes that
there no longer exists any unread mail. The You have mail message will
then not appear at the next login, unless of course another new message
has been placed in the mailbox in the meantime. The Unix mail system
can also be set up to delete old mail once it has been read; it is then up
to the user to save it if he prefers. Such automatic deletion is considered
desirable in systems with many users but little disk space; it economizes
space by leaving little unused trash on disk. Mail arriving while logged in
at the terminal is simply placed in the mailbox; this postman does not ring
to notify about the arrival of new mail.

The message regarding mail is sent out at the conclusion of the login
procedure, before the shell is started running. Thus, the message will only
appear once, preceding the first appearance of the shell prompt. Any fur-
ther $ prompts will appear without the mail message, as usual.

To read what mail there is, the user enters the command mail. In re-
sponse, mail fetches messages from his mailbox and displays them one
at a time, the most recent one first. For example,

$ mail
From bftsplk Thu Feb 29 11:29:44 1984
check your files, I may have wrecked some by accident

Every piece of mail is stamped with its time and date of transmission,
exactly like ordinary post office mail. The name of the sender is also affixed
to each message.

When the addressee looks at his mail, only one message is displayed
at a time; it is followed by an enquiry about how the message is to be
disposed of. Its recipient may simply make a mental note of the message,
or have it deleted, or ask for it to be saved. In fact, a wide range of choices
is open to the user: the message may be saved with or without the header
(postmark), may be mailed on to someone else, may be repeated (useful
for long messages), or retained in the mailbox. The most usual response
is to go on to the next message by simply striking the RETURN key.
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The mail command permits a few options, of which the most useful
are -e (suppress display) and -r (reverse order). The former is useful in
shell scripts because it returns an exit status of true if there is any mail,
Jalse if not; it therefore permits testing without reading. The -r option
displays the oldest mail first.

Sending Mail

Any user may send mail to another, again by means of the mail command.
To do so, the addressee’s name is appended to the command, as in the
following message sent to user bftsplk:

$ mail bftsplk
which files do you suspect?
All my directories look OK.

The mail command line is followed by the message to be sent. It is perfectly
all right to séend more than one line; the message is considered terminated
whenever either a control-D character is sent or whenever a period (the
. character) occurs on a line by itself. But it is usually wise to keep mes-
sages reasonably short. The entire message is displayed on the terminal
screen at once when the recipient looks at his mail, so messages longer
than a screenful can be difficult to read.

Mail may be sent to more than one recipient at once, by listing the
names of all the recipients in the command line. It should be noted that
all mail handling is done by user login name; obviously, it is not possible
to send a message to anybody whose login name is not known. The login
name thus plays the same role here as do name and address at the post
office. If a nonexistent login name is given in the command, mail may
reply with an error message or (in some systems) simply ignore the com-
mand. If a message is addressed to the wrong login name, it is delivered
as addressed.

A user is permitted to address mail to himself. The procedure for doing
so is precisely the same as for sending to any other system user. Many
users like sending messages to themselves, as reminder notes to remove
unneeded files or to take action in some other matter. However, there is
a basic danger here: when greeted by the you have mail message, it is
tempting to assume the mail consists of the reminder note and not to bother
reading it. Real mail from other users may thus become lost, or at any
rate ignored.

It may seem strange that the mail command is fully implemented even
on single-user Unix systems on microcomputers. It needs to be, for much
Unix mail is sent to users by the system itself or by processes launched
on the user’s behalf by cron. The line printer spooler Ip, for example, can
be asked to notify users by mail when print jobs have run to completion.
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Immediate Messages

In addition to mail, which is deposited in a mailbox for later collection,
system users may send messages directly to others using the write com-
mand. Such messages are not placed in the addressee’s mailbox, they are
immediately transmitted to his terminal instead. Naturally, such direct
transmission is only possible if the addressee is logged in at the time. The
who command may be used to determine who is, and at which terminal
(or terminals). Attempts to write to nonexistent users, or to users not
logged in, result in error messages and no communication. The write com-
mand works somewhat like sending mail:

$ write abner
Please check your files.
I may have corrupted some by mistake.

In contrast to the mail command which deals with whole messages, write
transmits every keyboard line immediately when the RETURN Kkey is
pressed. The write command line itself produces at the receiving end a
line identifying the sender, for example,

message from bftsplk ttyé
Please check your files.
I may have corrupted some by mistake.

Transmission initiated by write overrides whatever else the addressee may
have been doing, and each transmitted line is displayed at his terminal
even if that puts it in the middle, say, of a directory listing he may have
been trying to read.

Once the write program has been set running, any and all lines typed
at the keyboard will be transmitted to the addressee. Transmission is turned
off by sending a control-D. This control-D will not cause logout, merely
an exit from write. Once the write program is running, it takes two suc-
cessive control-D’s to log out: one to exit from write to the shell and one
more to exit from sh.

If a user is logged in at more than one terminal at the same time, it is
possible to indicate in the command line to which terminal the messages
are to be sent. For example,

$ write bftsplk ttyé6

will display the transmitted lines at ¢ty6, but not at any other terminals
where user bftsplk may also be logged in.
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Two-Way Communication

When a message is received from another user, it is natural to reply im-
mediately. But doing so is a little tricky, because only one user can be
transmitting at a time. Two-way communication thus resembles CB radio
rather more than the telephone, for it is important to let the recipient
know when the other fellow is prepared to listen for an answer and when
he intends to keep on talking. One widely used method is to employ the
word over, usually abbreviated to -o-, to signify ‘‘I will now listen for
areply”’, the words over and out (- oo - for short) to mean ‘I have finished
and will neither transmit nor listen’’. A conversation may then look (from
one end) like

$ write abner

Please check your files.

I may have corrupted some by mistake. -o-
message from bftsplktty6

Which files do you suspect?

All my directories look OK. -o-

Glad all is well, thanks for checking! -oo-

The words message from . . . signify that the other user has also started
up a copy of write. They will only occur once at the startup of that program,
not between every pair of messages.

At times when a critical job is running, no messages may be wanted
from anyone. Some sensitive processes (€. g., the nroff text formatter)
disable the message facilities automatically whenever they are initiated.
But users may block the message passing channel at any time by means
of the mesg command, as in

$ mesg n

where the n indicates ‘‘no’’. To turn messages on again, the same command
is issued with a y (for ‘‘yes’’) argument replacing n. Blocked messages
are not saved for later presentation to the intended recipient; they are
simply discarded.

Logging in Elsewhere

Many Unix users hold valid login names on several systems. For example,
a small system may reside in the executive office, a bigger one in an ad-
ministrative complex, a third one at a laboratory or production facility—
and the same user may need services from all three. On many occasions,
it is desirable to log in to two or more systems simultaneously, so processes
running on one system can have access to data resident in another or, in
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the simplest case, to move text files between machines. Unix provides a
simple communication facility called cu (short for call Unix) able to do
sO.

In the following, it will be supposed that a user joe of a local system
wishes to use a second, remote, machine as well. To establish commu-
nication, the cu program is first called into action. If the local system has
an automatic dialler, as it often will, telephone connection is established
by

$ cu 3925397

where the digits are the telephone number of the remote machine (without
spaces or dashes!). Alternatively, the system name may be given in place
of the telephone number; if the name is known to the local system, it will
look up and dial the telephone number itself. Direct-wired connections
only require naming the direct line, usually (but not in all systems) preceded
with -I:

$ cu -1 dir

When the remote system is connected, it behaves for all the world as if
the user had logged in at a terminal, without going through the local system:
it will demand a login name and password, notify about any mail waiting
at the remote location, and issue its system prompt. The local computer
merely acts as a terminal to the remote one. A simple example is

login: joe

Password:

L$ cu remote

Connected

Welcome to BIGSYS. Please login: palooka
Password:

R$

Here user joe has logged in to the local system (whose prompt is L$),
then immediately called remote. The login name used does not need to
be the same, nor the password, because the systems are really independ-
ent; the remote system neither knows nor cares that another Unix system,
not merely a dumb terminal, is doing the calling. Its login procedure may
be different, and so may its system prompt. Once communication with
the remote computer has been established, cu acts merely as a message
passer; the user really only sees the remote machine.

The point of logging in to the remote system through cu is surely to
allow messages to be passed between machines; if not, the local system
is only being used as a rather expensive terminal. While passing messages
along, cu therefore watches for keyboard lines beginning with the tilde
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(the ~ character) and interprets these as commands directed to cu, not
intended for passing to the remote computer. The most important is un-
doubtedly ~. (tilde followed by a dot), which terminates the conversation.
This one should normally be used only after logging out from the remote
system. The ~! command causes cu to start up a local shell, with which
the user can do whatever seems appropriate; it also exists in the shorter
form ~! <command>, in which a single command is given to a shell. An
interesting embellishment is provided by ~$<command> which works
exactly like ~! <command> except that the standard output of <com-
mand> is piped to the remote system. Although this command set is small,
it effectively taps all the resources of two Unix systems, since it allows
execution of any command at either machine!

The general cu commands can be used to send files or messages between
machines, but file transfer is so frequent a need that special commands
are provided: ~%take for importing from the remote system and ~%put
for exporting to it. They are used much like the cp command on a single
system:

R$ ~%take rfile 1file

where rfile is the file name at the remote system and 1file at the
local system. The second argument may be omitted if file names are to
be the same.

Only text files can be transmitted with cu because the communication
protocol between machines can otherwise be confused by some nonprint-
able characters. File transfers under cu are not checked for errors and
lack convenience because they are done on the spot, locking up the com-
munication line while the transfer proceeds. Thus, cu is convenient for
moving small quantities of text, but for substantial files a more appropriate
tool is uucp. The latter permits file transfers to take place at the systems’
convenience, much like background jobs.

File Management

The Unix family of operating systems provides a rich selection of file
management tools applicable to text files. In fact, the standard tool kit is
so large that most simple operations on files require no programming; the
user need only ask for them. For more complicated tasks, the program-
mability of the shell allows new and unexpected combinations to be created
out of elementary operations—all without any programming other than
writing a few shell scripts.
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Copying Files

Making copies of files, one or several at a time, in disk file form or as
printed copy, is an elementary operation of file management. There are
various ways of doing so. The most useful commands for this simple kind
of file management are

cat which concatenates files
cp which copies a file, or several files

cp is straightforward: if one issues the command
$ cp filel file2

filel is copied, the copy being named file2. Full pathnames may of
course be given, so that the two files need not be within the same directory.
When making copies, it will pay to remember that cp will happily replace
an old file named file2 by overwriting. In fact, cp always destroys first
and writes afterward; care should be taken not to make mistakes in file
names!

To copy files from one directory to another, a variant form of the cp
command is available, which avoids the necessity of typing full pathnames
both times. In the variant form, it suffices to name the files to be copied
and the directory to which they are to be copied. Copies in both directories
will then have the same file name, though of course the full pathnames
will differ.

It is important not to confuse cp with mv or In. cp really makes a copy,
so that after the operation there are two real copies of the file occupying
physical space on the disk. mv, on the other hand, merely renames the
existing copy; no data transfer takes place. In establishes two or more
synonymous names but retains only the original physical copy of the file.
After an In operation, there will be two or more directory entries for the
file, though only a single file will really exist. Directory entries (links) are
allowed only if both the directory and the file reside on the same physical
device (e.g., the same magnetic tape) or if the device is permanently at-
tached to the Unix system (e.g., the permanent system disk drives). But
cp, which makes physical copies, can be used to copy across devices.

To avoid the irreparable loss of precious files that might occur in a
power failure or other computer malfunction, it is a good idea to make
backup copies of files from time to time. These should preferably reside
on a removable medium such as floppy disk or magnetic tape, one that
can be physically removed from the computer. After all, the building might
burn one day!

The cat command sends a copy of one or more files to the standard
output device. Thus a file is easily inspected by the simple command
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$ cat filel

Naming several files in the cat command merely produces a concatenation
of the files in the standard output. The files will be concatenated in the
order in which they are named in the command. cat may be made to per-
form much of the work of cp, by suitably redirecting input and output.
In fact, cat may be used to turn the whole Unix system into a giant electric
typewriter, by taking its input from the keyboard and directing its output
to the printer.

When files are displayed at the terminal, lines are ordinarily scrolled
up from the bottom to the top of the screen, and the top line is discarded.
When large files are displayed, the inconvenience of losing the top line
may be avoided by stopping the display scrolling. A control-S character
sent from the keyboard at any time will halt transmission of more lines
to the terminal, thereby stopping scrolling; a control-Q will restart trans-
mission.

Display and Examination

Displaying a file on the terminal screen is easy enough; the near-universal
cat program does the necessary once again. And once again, does it not
well enough to be acceptable as the only program for the purpose. Because
cat simply copies input to output, a large file can flash past at incredible
speed and even the stop/start facilities of pressing control-S and control-
Q will not allow the desired part of the file to be positioned on the screen.
Any Unix system therefore includes either or both of two programs de-
signed for screen display: more and pg.

The more program is simple and easy to use. Like cat, it displays its
standard input, but unlike cat it pauses after each screenful and waits for
the user to signal before continuing. For most users of fast communication
lines (say 120 characters/second or faster), feeding almost everything to
the screen through more quickly becomes a habit.

A pleasing extension of more, available on many Unix systems, is calling
the vi editor through more. Normally, the user advances through the file
by pressing the space bar (to see the next screenful) or the d key (to scroll
half a screenful). Pressing v causes more to fork a new process which
runs the vi editor, starting with the text positioned at the same place where
more stopped. Because vi is entered through process forking, exiting from
vi returns the user to precisely the erstwhile position in the more display.
It is therefore possible to flip back and forth between file perusal and file
editing, without exiting from either program.

The disappointing part of more is its inability to back up. It really does
little more than cat, though that little represents a major advance in con-
venience. The pg program resembles more, but is cleverer to the extent
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of knowing how to page both ways, or to go to an altogether different
part of the file. Pressing the space bar or the D key works exactly as with
more; but prefixing either keystroke with a signed number causes display
of a screenful either further on, or further back, in the file. Thus, typing
- 1SPACE goes back a screen, +3sPACE forward three screenfuls. The ex-
tremely frequent * 1SPACE may have the *#1 qualifier omitted. Like more,
pg also knows how to start display at some intermediate point in the file,
including points specified by giving a search pattern rather than a line
number.

There is no v keystroke available in pg. However, pg recognizes ! as
an instruction to pass information to the shell. Thus, ! vi filename ac-
complishes more or less the same objective as the v keystroke in more:
a copy of vi is launched to edit filename.

Often enough the last few lines or pages in a file are of major interest.
The tail utility delivers the end of a file quickly and easily. It allows the
amount of text to be specified, as in

$ tail -100 bigfile

meaning that the last 100 lines are wanted. However, requests for large
chunks of file may go unheeded because tail works with a limited amount
of buffer space.

The pg, more, tail, and cat utilities all work well with text files but
prove useless with files containing non-ASCII characters or files which
do not have a textual interpretation. There is one Unix facility guaranteed
to yield up the secrets of any file, called od (octal dump). It displays the
file content byte by byte (or, optionally, word by word —usually a word
means a byte pair) in decimal, octal, hexadecimal, or character form. A
directory, for example, is not a readable file; od delivers its contents as
easily as anything else:

o 001 . N0 NO \O \O NO NO NO NO NO NO \NO NO NO
m 001 . N0 N0 N0 \NO \NO \NO \NO NO NO \NO NO NO NO
021 003 1 p i n s t a 1 1\N0\NO \NONO \NO MO
035 004 Zz u s e \0 N0 \O \NO \NO \O N0 \NO \O \O
\0 \O f r a s e r . t x t \0 \0 \O O
A0 \O f r a s e r . o 1 d\NO \NO \O MO

This display is in (nominally) ASCII character form. It shows the directory
to contain six files: itself, its parent directory, and four ordinary files.
The ordinary files have their names shown, padded out with null characters
(echoed as \\0). The leading two bytes are pointers to further information
about the files. For the last two files in the directory, the pointers have
been reset to nulls, to show that the files have been removed and no in-
formation can be obtained about them any more.
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Printing Services

To print a file, the output of cat may be redirected to the line printer. But
cat is rarely used in practice because it is not quite clever enough. Being
a simple copying program, cat merely echoes the exact file content to its
standard output, so attempting to copy a file to the printer special file,
say /dev/1p0, entails the risk that some other user or system process
might do likewise. The accepted way to do printing is therefore to use
the line printer spooler process, which does more than just print: it queues
files for printing so no interference can occur. This process is started up
automatically when the system is started. The command

$ 1lp printfile

places printfile into the queue for printing when its turn comes and
responds immediately by giving the user the print request identifying
number. Printing will begin immediately if the printer is not busy, later if
it has other work to do first. The user need not stay logged in to wait for
the print job. The spooler and printer processes belong to the system;
whether the owner of printfile is logged in at printing time is irrelevant.

Impatient or curious users can ask about the progress of their print
jobs at any time, referring to them by their request numbers. So long as
the printing has not yet been completed, print jobs may be cancelled.
Cancelled requests are simply deleted from the queue if not yet started;
if printing has begun, further transmission of data to the printer is stopped.
Many modern printers, however, will keep on printing for a little while
because they keep several lines (or several pages) of text in a local buffer
memory within the printer. Although Unix can stop transmission of any
more data, it cannot take back the characters already sent to the printer.
Enquiries and cancellations use the commands lIpstat and cancel. Their
use is illustrated by the following:

$ lp wrongfile
request id is Lprt0-106 (1 file)
$ lp rightfile
request id is Lprt0-107 (1 file)

$ lpstat
Lprt0-106 peter 51923 Jun 12 10:27 on LprtoO
Lprt0o-107 peter 796717 Jun 12 10:27

$ cancel Lprt0-106
request “Lprt0-106" cancelled
$

After placing two printing requests, the user realizes the first was erro-
neous. A status enquiry with Ipstat shows two requests queued for peter,
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with the first already started printing on device Lprt0. The cancel com-
mand removes it from the queue and from the printer; how many pages
will be printed despite cancellation depends on the printer speed, system
response time, and the user’s own dexterity.

When several users have printing requests pending, quite some time
may elapse before any given request can be carried out. Repeated status
inquiries are both irksome and distracting. Rather than to ask for status
at frequent intervals, the Ip command can be embellished with the -w
option,

$ 1p -w printfile

The print spooler will then write a message on the user’s terminal when
the job has finished; if the user has logged out in the meantime, it will
send mail instead. If terminal messages are not desired, then -m will send
mail in any case.

The printing request queue maintained by the spooler is effectively a
directory of files maintained by the spooler for its own use. A file to be
printed is not copied; instead, a link is established to the queue by a mech-
anism like the In command. This means the files named in a print request
must be ordinary files, otherwise the strict tree structure rule of Unix
directories will be violated. All files in directory /usr/bloggs can be
printed by requesting /usr /bloggs/* but not merely the directory name.
Furthermore, what will be printed is the file content at the time the printing
request is honored, not the file as it was when the request was placed. If
there is any likelihood the file might be altered or removed before the
printing task is completed, the -c¢ option should be specified with Ip. A
temporary copy of the file will then be made immediately and any future
changes in the file will not appear in the printed version.

Numerous Unix installations use an alternative command lpr for
queueing print requests. This is an older version than Ip and poorer in its
range of options. For most ordinary purposes, however, the two differ in
convenience features only; thus, Ipr will send mail but will not write to
the user’s terminal.

Like cat, the lp and lpr programs do no text processing of any Kind;
they deliver a faithful image of their inputs to another place and time. For
example, they know nothing about page lengths or page breaks. To obtain
tidy file listings, it is usually more convenient to use pr, which breaks up
large files neatly into numbered and dated pages. The output of pr is sent
to its standard output device, so that pr is normally used in a pipeline to
feed Ip. Because pr knows how to print in two or more columns and is
willing to truncate rather than fold long lines, it is particularly convenient
for program listings written in assembler language or other languages (C
included!) which tend to large numbers of short text lines.
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File Sorting

One very comprehensive and flexible sorting program, called sort, is
standard equipment in all Unix systems. sort expects input organized as
lines of moderate length and sorts these lines into sequential order. The
lines are not required to contain anything in particular, so sort can be
applied to text files, numeric data, or even to nonprintable files containing
anything at all. In its simplest form, one invokes sort by

$ sort inputfile > outputfile

and inputfile ends up sorted. Order is determined by the standard
ASCII collating sequence, so that alphabetic characters are sorted into
alphabetic order and numerics into ascending order. (A table of ASCII
character codes appears in the Appendix). The ASCII character set in-
cludes not only the alphabetics and numerals, but punctuation marks and
special characters, so these will be sorted too.

Sorting can be carried out according to a fabulous variety of criteria.
First, characters may be sorted in different ways. It is possible to force
“‘dictionary’’ sorting, i.e., to ignore all characters except alphabetics, nu-
merals, and blanks. It is possible also to ignore the distinction between
upper and lower case. White space (blanks and tab characters) can be
ignored if desired. Duplicated lines can be eliminated and lines can be
sorted into reversed as well as natural order. These possibilities are ex-
ercised through options specified in the sort command. For example,

$ sort -ubdfr inputfile > outputfile

will dictionary sort (d option) inputfile in reverse (r) order, ignoring
blanks and tabs (b) while eliminating other than unique lines (u); upper
and lower case will be considered equivalent (f option).

Sorting can be carried out using only parts of a line. In general, sort
considers a line to be made up of a set of fields. A field is a string of
characters, with a minimum width of one character. Fields are considered
to be demarcated by a separator character, which is normally the blank
but can be altered to be <character> by the -t<character> option. sort
can be instructed to skip one or more fields at the start of a line and to
ignore all fields following some subsequent one. For example,

$ sort +2 -4 inputfile > outputfile
will begin sorting (+) after field 2 (i.e., with the third field) and will ignore

(-) everything after the fourth field; in other words, only the third and
fourth fields will be considered. Here is an immediate application:
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$ 1s -o annrept | sort +3 -4

total 174

-TW-r--r--
-TWXT -XT -X
-TW-r--r--
-TW-r--r--
-TW-r--r--
-TW-r--r--
-TW-r--T--

N e

peter
peter
peter
peter
peter
peter
peter

68
749
AN

3891
14833
29980
37156

May
Jun
Jun
Jun
Jun
May
Jun

4
12
10
12
10
13
10

10:
09:
09:
09:
09:
12:
09:

19
16
05
14
45
40
14
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tcont
savscrp
umacros
appdx
front
chapti
chapt2

Sorting is keyed to the fourth column only; in other words, the directory
listing is sorted by file size.

Even within a field, initial characters can be ignored to refine sorting
still further. For example, in

$ 1s -o annrept | sort +0.3 -0.4

-rw-r--r--
-rw-r--r--
-rw-r--r--
-TW-Tr--Tr--
-rw-r--r--
-TW-Tr--T--
total 1440

“ITWXT -XIT-X

1

N o

peter
peter
peter
peter
peter
peter

peter

68
N
3891
14833
38624
29980

May
Jun
Jun
Jun
Jun
May

10
12
10
12
13

10:
09:
09:
09:
12:
12:

tcont
umacros
appdx
front
chapt2
chapt1

19
05
14
45
45
40

749 Jun 12 09:16 savscrp

the sort command says: ‘‘skip zero full fields and three characters of the
next, also skip everything after the fourth character; sort on what lies
between’’. In other words, the sorting is done on the fourth character in
the first field. This example also shows why so few Unix utilities produce
output with titles, header lines, or the like: unless filtered out beforehand,
the header line ends up sorted with the rest.

Sorting can be carried out on a set of key fields, not merely a single
one. Furthermore, each key field can have a string of options attached.

For example,

$ 1s -o annrept | sort -n +6 -7 -M +5 -6

total 174

-TW-T--T--
-rw-r--r--
-rw-r--r--
-rw-r--r--
-rw-r--r--
-rw-r--r--

“TWXT -XIr-X

[ S S G SFO EVRY R

peter
peter
peter
peter
peter
peter
peter

68
29980
777
14833
37156
3891
749

May
May
Jun
Jun
Jun
Jun
Jun

4 10:19 tcont

13
10
10
10
12
12

12:
09:
09:
09:
09:
09:

40
05
45
14
14
16

chapti
umacros
front
chapt2
appdx
savscrp
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sorts by date: numeric sorting on field 6 first, sorting by month names
(M option) on field 5 thereafter. Very complicated sorting procedures can
be designed in this way.

The sort command can be employed to merge files if the -m option is
specified. Together with the -u (‘‘unique’’, i.e., eliminate duplications)
option, it can be used for tasks such as merging mailing lists, indeed for
updating them, since the entry retained is always the one first encountered.
As the sorting options become more and more complicated, sort clearly
ceases to have value as an interactive command at the terminal and be-
comes an important tool for writing shell scripts.

Comparing Files

Two distinct commands are available for comparing two files, diff and
cmp. Interactive terminal users probably find diff to be the more useful
because its output is richer and easy to read. The output of cmp is numeric
and better suited to machine processing, so cmp finds ready application
in the writing of shell scripts.

diff compares two files on a line-by-line basis, looking forward and
backward in an attempt to spot where the common ground lies. It keeps
two line counters, one for each file, and tells the user how the lines cor-
respond. The correspondence is expressed in algorithmic terms, that is,
diff tells the user what should be done to turn one file into the other. The
command

$ diff filel file2

will produce instructions on how to modify filel so as to make it identical
to file2. The modifications are presented as two sets of line counter
readings and a single-character instruction, which may be a (add), d (de-
lete), or ¢ (change).Each one <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>