
Learning the Unix
Operating System

,Title.27339 Page 1 Friday, January 4, 2002 4:48 PM

,Title.27339 Page 2 Friday, January 4, 2002 4:48 PM

Learning the Unix
Operating System

Fifth Edition

Jerry Peek, Grace Todino, and John Strang

Beijing • Cambridge • Farnham • Köln • Paris • Sebastopol • Taipei • Tokyo

,Title.27339 Page 3 Friday, January 4, 2002 4:48 PM

Learning the Unix Operating System, Fifth Edition

by Jerry Peek, Grace Todino, and John Strang

Copyright © 2002, 1998, 1993, 1987, 1986 O’Reilly & Associates, Inc. All rights
reserved. Printed in the United States of America.

Published by O’Reilly & Associates, Inc., 1005 Gravenstein Highway North,
Sebastopol, CA 95472.

Editor: Laurie Petrycki

Production Editor: Mary Brady

Cover Designer: Edie Freedman

Printing History:

1986: First Edition. Written by Grace Todino and John Strang.

1987: Second Edition. Revisions by Tim O’Reilly.

April 1989: Minor corrections.

August 1993: Third Edition. Additions and revisions by Jerry Peek.

June 1994: Minor corrections.

January 1998: Fourth Edition. Additions and revisions by Jerry Peek.

January 2002: Fifth Edition. Additions and revisions by Jerry Peek.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are
registered trademarks of O’Reilly & Associates, Inc. The association of the image of
a horned owl and the topic of learning Unix is a trademark of O’Reilly & Associates,
Inc. Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this book,
and O’Reilly & Associates, Inc. was aware of a trademark claim, the designations
have been printed in caps or initial caps. While every precaution has been taken in
the preparation of this book, the publisher assumes no responsibility for errors or
omissions, or for damages resulting from the use of the information contained
herein.

ISBN: 0-596-00261-0

[M] [11/01]

,Copyright.27216 Page iv Friday, January 4, 2002 4:48 PM

About the Author

Jerry Peek has used Unix since the early 1980s. He has consulted on Unix and VMS,
developed and taught Unix courses, been a staff writer for O’Reilly & Associates,
Inc., and worked as a programmer and system administrator.

Grace Todino (Gonguet) is now a “professional expatriate,” having lived in Oman,
Gabon, and Holland for the last 10 years. She currently resides in Sarawak (Malaysia)
with her geophysicist husband, Christophe, and their children, Gabriel, Raphael, and
Lucie. Grace was one of the original authors of the Nutshell Handbooks Managing

UUCP and Usenet and Using UUCP and Usenet. She now writes and edits travel arti-
cles for local publications.

John Strang is an Assistant Professor of Diagnostic Radiology at the University of
Rochester, Rochester, NY. His research interests are in CAT scan and MRI of the
body, as well as in computerization of radiologic images. He received his education
at MIT (BS and MS), Northwestern Medical School (MD), and UCLA and Stanford
(post-graduate medical training).

Colophon

Our look is the result of reader comments, our own experimentation, and feedback
from distribution channels. Distinctive covers complement our distinctive approach
to technical topics, breathing personality and life into potentially dry subjects.

The animal on the cover of Learning the Unix Operating System is a horned owl. The
horned owl is the most powerful of North American owls, measuring from 18 to 25
inches long. This nocturnal bird of prey feeds exclusively on animals—primarily rab-
bits, rodents, and birds, including other owls. It locates these animals by sound
rather than sight, since its night vision is little better than ours. To aid its hunting, an
owl has very soft feathers that muffle the sound of its motion, making it virtually
silent in flight. A tree-dwelling bird, it generally chooses to inhabit the old nests of
other large birds such as hawks and crows, rather than build its own nest.

Mary Brady was the production editor and copyeditor for Learning the Unix Operat-

ing System . Linley Dolby and Claire Cloutier provided quality control. Joe Wizda
wrote the index.

Edie Freedman designed the cover of this book, based on her own series design.The
cover image is a 19th-century engraving from the Dover Pictorial Archive. Emma
Colby produced the cover layout with QuarkXPress 4.1, using Adobe’s ITC Gara-
mond font.

David Futato designed the interior layout based on a series design by Nancy Priest.
The print version of this book was created by translating the DocBook XML markup
of its source files into a set of gtroff macros using a filter developed at O'Reilly &
Associates by Norman Walsh. Steve Talbott designed and wrote the underlying
macro set on the basis of the GNU troff –gs macros; Lenny Muellner adapted them
to XML and implemented the book design. The GNU groff text formatter Version
1.11.1 was used to generate PostScript output. The text and heading fonts are ITC

,Colophon.27089 Page 1 Friday, January 4, 2002 4:47 PM

Garamond Light and Garamond Book. The illustrations that appear in the book were
produced by Robert Romano and Jessamyn Read using Macromedia FreeHand 9 and
Adobe Photoshop 6.

Whenever possible, our books use a durable and flexible lay-flat binding.

,Colophon.27089 Page 2 Friday, January 4, 2002 4:47 PM

Ta ble of Contents

Preface .. vii

1. Getting Star ted .. 1
Working in the Unix Environment ... 1

Syntax of Unix Command Lines .. 11

Types of Commands ... 14

The Unresponsive Ter minal ... 14

2. Using Window Systems ... 17
Intr oduction to Windowing .. 18

Starting X ... 19

Running Programs .. 21

Working with a Mouse ... 26

Working with Windows .. 29

Other Window Manager Features .. 35

Unr esponsive Windows ... 37

Other X Window Programs .. 39

Quitting ... 40

3. Using Your Unix Account .. 42
The Unix Filesystem ... 42

Looking Inside Files with less .. 54

Pr otecting and Sharing Files .. 56

Graphical Filesystem Browsers .. 61

v

7 January 2002 13:15

vi Table of Contents

Completing File and Directory Names .. 62

Changing Your Password ... 62

Customizing Your Account .. 63

4. File Management ... 66
File and Directory Names .. 66

File and Directory Wildcards ... 67

Cr eating and Editing Files .. 69

Managing Your Files ... 74

Printing Files ... 81

5. Redirecting I/O ... 87
Standard Input and Standard Output .. 87

Pipes and Filters ... 92

6. Using the Internet and Other Networks 97
Remote Logins .. 97

Windows from Other Computers .. 100

Lynx, a Text-based Web Browser .. 101

Transferring Files .. 104

Electr onic Mail .. 108

Usenet News ... 118

Interactive Chat ... 123

7. Multitasking ... 130
Running a Command in the Background 131

Checking on a Process ... 132

Cancelling a Process ... 134

8. Where to Go from Here .. 136
Documentation ... 136

Shell Aliases and Functions ... 139

Pr ogramming .. 139

Using Unix on Non-Unix Systems ... 140

Glossar y .. 143

Index .. 149

7 January 2002 13:15

Preface

The Unix Family of Operating
Systems
An operating system (or “OS”) is a set of programs that controls a com-

puter. It contr ols both har dware (things you can touch, like keyboards,

scr eens, and disk drives) and softwar e (application programs that you run,

like a word processor).

Some computers have a single-user OS, which means that only one per-

son can use the computer at a time. Many older OSes (such as MS-DOS)

can also do only one job at a time. But almost any computer can do a lot

mor e if it has a multiuser, multitasking operating system such as Unix.

These powerful OSes let many people use the computer at the same time

and let each user run several jobs at once.

Unix was invented more than 30 years ago for scientific and professional

users who wanted a very powerful and flexible OS. It’s been significantly

developed since then. Because Unix was designed for experts, it can be a

bit overwhelming at first. But after you get the basics (from this book!)

you’ll start to appreciate some of the reasons to use Unix:

• It comes with a huge number of powerful application programs. You

can get many others for free on the Internet. (The GNU utilities,

available from the Free Software Foundation, are very popular.) You

can thus do much more at a much lower cost.

• Not only are the applications often free, but some Unix versions are

also free. Linux is a good example. Like the free applications, most

fr ee Unix versions are of excellent quality. They’r e maintained by

vii

7 January 2002 13:09

viii Preface

volunteer programmers who want a powerful OS and are frustrated

by the slow, bug-ridden OS development at some big software com-

panies.

• Unlike OSes such as Microsoft Windows and MacOS that are designed

for certain types of hardware, Unix runs on almost any kind, from tiny

embedded systems to giant supercomputers. After you read this

book, you’ll be ready to use many kinds of computers without learn-

ing a new OS for each one.

• In general, Unix (especially without a windowing system) is less

resource-intensive than other major operating systems. For instance,

Linux will run happily on an old system with a x386 micropr ocessor

and let multiple users share the same computer. (Don’t bother trying

to use the latest versions of Microsoft Windows on a system that’s

mor e than a few years old!) If you need a windowing system, Unix

lets you choose from modern featur e-rich inter faces as well as from

simple ones that need much less system power. Anyone with limited

resources — educational institutions, organizations in developing coun-

tries, and so on—can use Unix to do more with less.

• Much of the Internet’s development was done on Unix systems. Many

Inter net web sites and Internet service providers use Unix because it’s

so flexible and inexpensive. With powerful hardware, Unix really

shines.

Versions of Unix
Ther e ar e several versions of Unix. Until a few years ago, there wer e two

main versions: the line of Unix releases that started at AT&T (the latest is

System V Release 4), and another from the University of California at

Berkeley (the last version was 4.4BSD). Some past and present commer-

cial versions include SunOS, Solaris, SCO Unix, AIX, HP/UX, and ULTRIX.

Fr eely available versions include Linux, NetBSD, and FreeBSD (FreeBSD is

based on 4.4BSD-Lite).

Many Unix versions, including System V Release 4, merge earlier AT&T

releases with BSD features. The POSIX standard for Unix-like operating

systems defines a single interface to Unix. Although advanced features dif-

fer among systems, you should be able to use this introductory handbook

on any system.

When we write “Unix” in this book, we mean “Unix and its versions”

unless we specifically mention a particular version.

7 January 2002 13:09

Interfaces to Unix
Unix can be used as it originally was, on typewriter-like terminals, from a

shell prompt on a command line. (See the section “Examples,” later in this

chapter.) Most versions of Unix also work with window systems (some-

times called Graphical User Interfaces, or GUIs). These allow each user to

have a single screen with multiple windows—including “terminal” win-

dows that act like the original Unix interface. (Chapter 2 explains window

system basics.)

Although a window system lets you use Unix without typing text at a shell

pr ompt, we’ll spend most of our time on that traditional command-line

inter face to Unix. Why?

• Every Unix system has a command-line interface. If you know how

to use the command line, you’ll always be able to use the system.

• If you become a more-advanced Unix user, you’ll find that the com-

mand line is actually much more flexible than a windowing interface.

Unix programs are designed to use together from the command

line — as “building blocks”—in an almost infinite number of combina-

tions, to do an infinite number of tasks. No windowing system that

we’ve seen (yet!) has this tremendous power.

• You can launch and close windowing programs from the command

line, but windowing programs generally can’t affect a command line

or programs you run from one.

• Once you learn to use the command line, you can use those same

techniques to write scripts. These little (or big!) programs automate

jobs you’d have to do manually and repetitively with a window sys-

tem (unless you understand how to program a window system, which

is usually a much harder job). See the section “Programming” in

Chapter 8 for a brief introduction to scripting.

• In general, text-based interfaces are much easier than GUIs for sight-

and hearing-impaired users.

We aren’t saying that the command-line interface is right for every situa-

tion. For instance, using the Web — with its graphics and links—is usually

easier with a GUI web browser. But the command line is the fundamental

way to use Unix. Understanding it will let you work on any Unix system,

with or without windows.

Preface ix

7 January 2002 13:09

x Preface

What This Handbook Covers
This book teaches basic system utility commands to get you started with

Unix. Instead of overwhelming you with lots of details, we want you to be

comfortable in the Unix environment as soon as possible. So we cover a

command’s most useful features instead of describing all its options in

detail.

We also assume that your computer works properly; someone has started

it, knows the procedur e for turning the power off, and knows how to per-

for m system maintenance. In other words, we don’t cover Unix system

administration.

Unix users can choose between many differ ent user interfaces — shells and

window systems. Our examples show the bash shell and the GNOME and

KDE window environments. We’ve chosen them because they’re popular

and make good examples, not because we think they’re always “the best.”

If you do advanced work or set up Unix systems for other users, we rec-

ommend learning about a variety of shells and window systems and

choosing the best ones for your needs. The principles explained in this

book should help you use any Unix configuration.

What’s New in the Fifth Edition
Unix keeps evolving, and this book changes with it. Although most tips in

this book work on all Unix systems, old and new, there have been

changes since 1997 that justify a fifth edition. Over the years, readers have

asked us to include topics that couldn’t be covered in just a few para-

graphs — a text editor, for instance. We’ve decided to let this little book

gr ow just a bit by adding several-page overviews of popular Unix tools:

the Pico text editor, the Pine email program, the Lynx web browser, and

two interactive chat programs. Networking is much more common, so

we’ve added a new chapter about it. Our windowing examples show

newer window systems and you’ll find sections about command-line edit-

ing. There’s a new Glossary with definitions of common terms, and the

Index has also been expanded. Finally, we’ve made changes suggested by

our readers.

7 January 2002 13:09

Format
The following sections describe conventions used in this handbook.

Commands

We intr oduce each main concept first, and then break it into task-oriented

sections. Each section shows the best command to use for a task, explains

what it does, and shows the syntax (how to put the command line

together). The syntax is given like this:

rm filename

Commands appear in boldface type (in this example, rm). You should

type the command exactly as it appears in the example. The variable parts

(her e, filename) will appear in italic type; you must supply your own

value. To enter this command, you would type rm followed by a space

and the name of the file that you want to remove, then press the

RETURN key. (Your keyboard may have a key labeled ENTER or an

arr ow with a right-angle shaft instead of a RETURN key.) Thr oughout this

book, the term enter means to type a command and press RETURN to

run it.

Examples

Examples show what should happen as you enter a command. Some

examples assume that you’ve created certain files. If you haven’t, you may

not get the results shown.

We use typewriter-style characters for examples. Items you type to try the

example are boldface. System messages and responses are normal text.

Her e’s an example:

$ date

Tue Oct 9 13:39:24 MST 2001

$

The character “$” is the shell (system) prompt. To do this example, you

would type date and then press RETURN . The date command responds

“Tue Oct 9 13:39:24 MST 2001” and then retur ns you to the prompt.

Preface xi

7 January 2002 13:09

xii Preface

Text you see in examples may not be exactly what you see on your

scr een. Dif ferent Unix versions have commands with differ ent outputs.

Sometimes we edit screen samples to eliminate distracting text or make

them fit the page.

Problem Checklist

We’ve included a problem checklist in some sections. You may skip these

parts and go back to them if you have a problem.

Exer cises

Some sections have exercises to reinforce text you’ve read. Follow the

exercises, but don’t be afraid to experiment on your own.

Exercises have two columns. The lefthand column tells you what to do

and the righthand column tells you how to do it. For example, a line in

the section “Exercise: entering a few commands,” near the end of Chapter

1, shows the following:

Get today’s date Enter date

To follow the exercise, type in the word date on your keyboard and then

pr ess the RETURN key. The lefthand column tells you what will happen.

After you try the commands, you’ll have a better idea of the ones you

want to learn mor e about. You can then get more infor mation fr om a

source in the section “Documentation,” in Chapter 8.

Comments and Questions

Please address comments and questions concerning this book to the pub-

lisher:

O’Reilly & Associates, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)
(707) 829-0104 (fax)

7 January 2002 13:09

To ask technical questions or comment on the book, send email to:

bookquestions@or eilly.com

We have a web site for the book where examples, errata, and any plans

for future editions are listed. You can access this site at:

http://www.or eilly.com/catalog/lunix5/

For more infor mation about books, conferences, Resource Centers, and

the O’Reilly Network, see the O’Reilly web site at:

http://www.or eilly.com

If you write to us, please include information about your Unix environ-

ment and the computer you use. You’ll have our thanks, along with

thanks from future readers of this handbook.

Acknowledgments
H. Milton Peek reviewed the first draft of this edition. Jeff Kawski acted as

the technical editor. Chris Stone of O’Reilly & Associates, Inc. gave infor-

mation about Mac OS X and reviewed the section about it. And Tim,

thanks from Jerry for all your advice and support during my 12 years of

writing for O’Reilly.

Preface xiii

7 January 2002 13:09

7 January 2002 13:09

1
Getting Started

In this chapter:

• Working in the Unix
Environment

• Syntax of Unix
Command Lines

• Types of Commands

• The Unresponsive
Terminal

Befor e you can use Unix, a system staff person has to set up a Unix

account for you. The account is identified by your user name, which is

usually a single word or an abbreviation. Think of this account as your

of fice—it’s your place in the Unix environment. Other users may also be

at work on the same system. At many sites, there will be a whole network

of Unix computers. So in addition to knowing your username, you may

also need to know the hostname (name) of the computer that has your

account. Alternatively, your account may be shared between all computers

on the local network, and you may be able to log into any of them.

Once you’ve logged in to your account, you’ll interact with your system

by typing commands at a command line, to a program called a shell.

You’ll get acquainted with the shell, enter a few commands, and see how

to handle common problems. To finish your Unix session, you’ll log out.

Working in the Unix Environment
Each user communicates with the computer from a terminal. To get into

the Unix environment, you first connect to the Unix computer. (Your ter-

minal is probably already connected to a computer.* But Unix systems

also let you log into other computers across a network. In this case, log

into your local computer first, then use a remote login command to con-

nect to the remote computer. See the section “Remote Logins” in Chapter

6.)

* Some terminals can connect to many computers through a kind of switchboard called a
port contender or data switch. On these terminals, start by telling the port contender which
computer you want to connect to.

1

7 January 2002 13:10

2 Chapter 1: Getting Started

After connecting your terminal, if needed, you start a session by logging in

to your Unix account. To log in, you need your username and a passwor d.

Logging in does two things: it identifies which user is in a session, and it

tells the computer that you’re ready to start work. When you’ve finished,

log out—and, if necessary, disconnect from the Unix computer.

ˆM If someone else has your username and password, they
pr obably can log into your account and do anything you
can. They can read private information, corrupt or delete
important files, send email messages as if they came from
you, and more. If your computer is connected to a net-
work — the Inter net or a local network inside your organi-
zation — intruders may also be able to log in without sitting
at your keyboard! See the section “Remote Logins” in Chap-
ter 6 for one explanation of one way this can be done.

Anyone may be able to get your username — it’s usually
part of your email address, for instance. Your password is
what keeps others from logging in as you. Don’t leave your
password anywhere around your computer. Don’t give your
password to anyone who asks you for it unless you’re sur e
they’ll preserve your account security. Also don’t send your
password by email; it can be stored, unprotected, on other
systems and on backup tapes, where other people may find
it and then break into your account.

If you suspect that someone is using your account, ask sys-
tem staff for advice. If you can’t do that, setting a new pass-
word may help; see the section “Changing Your Password”
in Chapter 3.

Unix systems are case sensitive. Most usernames, commands, and file-

names use lowercase letters (though good passwords use a mixture of

lower- and uppercase letters). Before you log in, be sure your

CAPS LOCK key is off.

Connecting to the Unix Computer

If you see a message from the computer that looks something like this:

login:

you’r e pr obably connected! You can skip ahead to the section “Logging in

Nongraphically” and log in.

7 January 2002 13:10

Otherwise, if someone nearby uses the same kind of computer system you

do, the easiest way to find out if you’re connected is probably to ask for

help. (We can’t cover every user’s situation exactly. There are just too

many possibilities.)

If there’s no one to ask, look ahead at the section “Logging in Nongraphi-

cally,” later in this chapter, as well as the section “Starting X” in Chapter 2

and the section “Remote Logins” in Chapter 6. You may recognize your

situation.

If that doesn’t help, but your computer seems to be running an operating

system other than Unix (such as Microsoft Windows), check your menus

and icons for one with the name of the Unix computer you’re supposed

to connect to. You might also find a program named either telnet, eXceed,

ssh, VMware, procomm, qmodem, kermit, or minicom, or something relat-

ing to remote access.

Logg ing in Nongraphically

The process of making yourself known to the computer system and get-

ting to your Unix account is called logging in. If you’ve connected to the

Unix host from another operating system, you may have been logged into

Unix automatically; in this case, you should be able to run Unix programs,

as shown later in this chapter in the section “Shells in a Window System”

and the section “The Shell Prompt.” Otherwise, before you can start work,

you must connect your terminal or terminal window to the computer you

need (as in the previous section) and identify yourself to the Unix system.

Ther e ar e generally two ways to log in: graphically and nongraphically. If

your screen has a window or windows floating in it, something like Figure

2-2A, you probably need to log in graphically, as explained by “the sec-

tion “A. Ready to Run X (with a Graphical Login)” in Chapter 2.

Otherwise, to log in nongraphically, enter your username (usually your

name or initials) and your private password. The password does not

appear as you enter it.

When you have logged in successfully, you’ll get some system messages

and finally the shell prompt (where you can enter Unix commands). A

successful login to the system named nutshell could look like Example

1-1.

Working in the Unix Environment 3

7 January 2002 13:10

4 Chapter 1: Getting Started

Example 1-1. Nongraphical login

nutshell login: john

Password:

Last login: Mon Oct 8 14:34:51 EST 2001 from joe_pc

Sun Microsystems Inc. SunOS 5.7 Generic October 1998

------------- NOTICE TO ALL USERS -----------------

The hosts nutshell, mongo, and cruncher will be down

for maintenance from 6 to 9 PM tonight.

My opinions may have changed, but not the fact that I am right.

Tue Oct 9 12:24:48 MST 2001

$

In this example, the system messages include a maintenance notice, a

“fortune,” and the date. Although this example doesn’t show it, you may

be asked for your ter minal type, accounting or chargeback information,

and so on. The last line to appear is the Unix shell prompt. When you

reach this point, you’re logged in to your account and can use Unix com-

mands.

Instead of a shell prompt, you may get a menu of choices (“email,”

“news,” and so on). If one choice is something like “shell prompt” or

“command prompt,” select it. Then you’ll be able to follow descriptions

and examples in this book.

The messages you see at login time differ from system to system and day

to day. Shell prompts can also differ. Examples in this book use the cur-

rency sign $ as a prompt.

Let’s summarize logging in nongraphically, step by step:

1. If needed, connect your terminal or terminal window to the Unix sys-

tem.

2. Get a “login:” prompt.

3. Type in your username in lower case letters at the prompt. For exam-

ple, if your login name is “john,” type:

login: john

Pr ess the RETURN key.

The system should prompt you to enter your password. If passwords

ar en’t used on your system, you can skip the next step.

7 January 2002 13:10

4. If you were assigned a password, type it at the prompt. For security,

your password is not displayed as you type it:

Password:

Pr ess the RETURN key.

The system checks your account name and password, and if they’re cor-

rect, logs you in to your account.

Problem checklist

Nothing seemed to happen after I logged in.

Wait a minute, since the system may just be slow. If you still get

nothing, ask other users if they have the same problem.

The system says “login incorrect.”

If you have a choice of computer to log into (as we explained at the

start of this chapter in the section “Working in the Unix Environ-

ment”), check that you’re connected to the right computer. If you

have accounts on several computers, be sure you’r e using the correct

user name and password for this computer. Otherwise, try logging in

again, taking care to enter the username and password correctly. Be

sur e to type your username at the “login:” prompt and your password

at the “password:” prompt. Backspacing may not work while entering

either of these; if you make a mistake, use RETURN to get a new

“login:” prompt and try again. Also make sure to use the exact com-

bination of upper- and lowercase letters your password contains.

If you still fail after trying to log in a few more times, check with the

person who created your account to confirm your username and pass-

word.

All letters are in UPPERCASE and/or have backslashes (\) befor e them.

You probably entered your username in uppercase letters. Type exit

at the shell prompt and log in again.

The Unix Shell

Once you have a shell prompt, you’re working with a program called a

shell. The shell interprets command lines you enter, runs programs you

ask for, and generally coordinates what happens between you and the

Unix operating system. Common shells include Bourne (sh), Korn (ksh),

and C (csh) shells, as well as bash and tcsh.

Working in the Unix Environment 5

7 January 2002 13:10

6 Chapter 1: Getting Started

For a beginner, dif ferences between shells are slight. If you plan to work a

lot with Unix, though, you should learn mor e about your shell and its spe-

cial commands.*

Shells in a Window System

If you’re using a window system, as described in Chapter 2, get a shell by

opening a ter minal window—if you don’t already have a terminal win-

dow open or iconified (minimized) somewhere, that is. (Figure 2-1 shows

an example, but yours may look differ ent; the important thing is that the

window have a shell prompt in it.) Check your menus and icons for a

command with “terminal” or “term” in its name, or a picture of a blank

ter minal (like a TV screen) in its icon; one common program is xter m.

The Shell Prompt

When the system is ready to run a command, the shell outputs a pr ompt

to tell you that you can enter a command line.

Shell prompts usually end with $ or %. The prompt can be customized,

though, so your own shell prompt may be differ ent.

A prompt that ends with a hash mark (#) usually means that you’re logged

in as the superuser. The superuser doesn’t have the protections for stan-

dard users that are built into the Unix system. In this case, we recommend

that you stop work until you’ve found out how to access your personal

Unix account.†

Enter ing a Command Line

Entering a command line at the shell prompt tells the computer what to

do. Each command line includes the name of a Unix program. When you

pr ess RETURN , the shell interprets your command line and executes the

pr ogram.

* To find out which shell you’re using, run the commands echo $SHELL and ps $$. (See the
section “Entering a Command Line,” later in this chapter.) The answer, something like bash
or /bin/bash, is your shell’s name or pathname.

† This can happen if you’re using a window system that was started by the superuser when
the system was rebooted. Or maybe your prompt has been customized to end with # when
you aren’t the superuser.

7 January 2002 13:10

The first word that you type at a shell prompt is always a Unix command

(or program name). Like most things in Unix, program names are case

sensitive; if the program name is lowercase (and most are), you must type

it in lowercase. Some simple command lines have just one word, which is

the program name. For more infor mation, see the section “Syntax of Unix

Command Lines,” later in this chapter.

date

An example single-word command is date. Entering the command date

displays the current date and time:

$ date

Tue Oct 9 13:39:24 MST 2001

$

As you type a command line, the system simply collects your keyboard

input. Pressing the RETURN key tells the shell that you’ve finished enter-

ing text and that it can run the program.

who

Another simple command is who. It displays a list of each logged-on

user’s username, terminal number, and login time. Try it now, if you’d

like.

The who pr ogram can also tell you who is logged in at your terminal. The

command line is who am i. This command line consists of the command

(who, the program’s name) and arguments (am i). (Arguments are

explained in the section “Syntax of Unix Command Lines,” later in this

chapter.)

$ who am i

cactus!john tty23 Oct 6 08:26 (rose)

The response shown in this example says that:

• “I am” John (actually, my username is john).

• I’m logged on to the computer named “cactus.”

• I’m using terminal 23.

• I logged in at 8:26 on the morning of October 6.

• I started my login from another computer named “rose.”

Not all versions of who am i give the same information.

Working in the Unix Environment 7

7 January 2002 13:10

8 Chapter 1: Getting Started

Recalling Previous Commands

Moder n Unix shells remember command lines you’ve typed before. They

can even remember commands from previous login sessions. This handy

featur e can save you a lot of retyping common commands. As with many

things in Unix, though, there are several differ ent ways to do this; we

don’t have room to show and explain them all. You can get more infor ma-

tion from sources listed in the section “Documentation” in Chapter 8.

After you’ve typed and executed several command lines, try pressing the

up-arr ow key on your keyboard. If your shell is configured to understand

this, you should see the previous command line after your shell prompt,

just as you typed it before. Pressing the up-arrow again recalls the previ-

ous command line, and so on. Also, as you’d expect, the down-arrow key

will recall more recent command lines.

To execute one of these remember ed commands, just press the

RETURN key. (Your cursor doesn’t have to be at the end of the command

line.)

Once you’ve recalled a command line, you can also edit it. If you don’t

want to execute any remember ed commands, cancel the command line

with CTRL-C . Next, the section “Correcting a Command Line” explains

both of these.

Cor recting a Command Line

What if you make a mistake in a command line? Suppose you typed dare

instead of date and pressed the RETURN key befor e you realized your

mistake. The shell will give you an error message:

$ dare

dare: command not found

$

Don’t be too concerned about getting error messages. Sometimes you’ll

get an error even if it appears that you typed the command correctly. This

can be caused by typing control characters that are invisible on the

scr een. Once the prompt retur ns, reenter your command.

As we said earlier (in the section “Recalling Previous Commands”) most

moder n shells let you recall previous commands and edit command lines.

If you’ll do a lot of work at the shell prompt, it’s worth learning these

handy techniques. They take more time to learn than we can spend here,

7 January 2002 13:10

though — except to mention that, on those shells, the left-arrow and right-

arr ow keys may move your cursor along the command line to the point

wher e you want to make a change. Here, let’s concentrate on simple

methods that work with all shells.

If you see a mistake before you press RETURN , you can use the erase

character to erase and correct the mistake.

The erase character differs from system to system and from account to

account, and can be customized. The most common erase characters are:

• BACKSPACE

• DELETE , DEL , or RUBOUT

• CTRL-H

CTRL-H is called a contr ol character. To type a control character (for

example, CTRL-H), hold down the CTRL key, then press the letter “h.”

In the text, we will write control characters as CTRL-H , but in the exam-

ples, we will use the standard notation: ˆH. This is not the same as press-

ing the ˆ (car et) key, letting go, and then typing an H!

The key labeled DEL may be used as the interrupt character instead of

the erase character. (It’s labeled DELETE or RUBOUT on some termi-

nals.) This key is used to interrupt or cancel a command, and can be used

in many (but not all) cases when you want to quit what you’re doing.

Another character often programmed to do the same thing is CTRL-C .

Other common control characters are:

CTRL-U

Erases the whole input line; you can start over.

CTRL-S

Pauses output from a program that’s writing to the screen. This can

be confusing; we don’t recommend using CTRL-S , but want you to

be aware of it.

CTRL-Q

Restarts output after a pause by CTRL-S .

CTRL-D

Used to signal end-of-input for some programs (such as cat and mail,

explained in Chapter 1 and Chapter 6) and retur n you to a shell

pr ompt. If you type CTRL-D at a shell prompt, it may close your ter-

minal window or log you out of the Unix system.

Working in the Unix Environment 9

7 January 2002 13:10

10 Chapter 1: Getting Started

Find the erase and interrupt characters for your account and write them

her e:

_______ Backspace and erase a character

_______ Interrupt a program

Logg ing Out

To end a Unix session, you must log out. You should not end a session by

just turning off your terminal!

If you’re using a window system, first close open windows and then close

the window system; see the section “Quitting” in Chapter 2 for more infor-

mation. If you logged in graphically, that should end your login session.

But, if you logged in nongraphically before you started the window sys-

tem, closing the window system should take you back to a shell prompt

(wher e you originally typed xinit or star tx). In that case, use the following

steps to finish logging out.

If you aren’t currently using a window system, you can log out by enter-

ing the command exit at a shell prompt. (In many cases, the command

logout will also work.) Depending on your shell, you may also be able to

log out simply by typing CTRL-D .

What happens next depends on the place from which you’ve logged in: if

your terminal is connected directly to the computer, the “login:” prompt

should appear on the screen. Otherwise, if you were connected to a

remote computer, the shell prompt from your local computer should reap-

pear on your screen. (That is, you’re still logged in to your local com-

puter.) Repeat the process if you want to log out from the local computer.

After you’ve logged out, you can turn off your terminal or leave it on for

the next user. But, if the power switch for your terminal is the same as the

power switch for the whole Unix computer system, do not simply turn off

that power switch! Ask a local expert for help with shutting down your

Unix system safely.

Problem checklist

The first few times you use Unix, you aren’t likely to have the following

pr oblems. But you may encounter these problems later, as you do more

advanced work.

7 January 2002 13:10

You get another shell prompt or the shell says “logout: not login shell”

You’ve been using a subshell (a shell created by your original login

shell). To end each subshell, type exit (or just type CTRL-D) until

you’r e logged out.

The shell says “There are stopped jobs” or “There are running jobs.”

Many Unix systems have a feature called job control that lets you sus-

pend a program temporarily while it’s running or keep it running sep-

arately in the “background.” One or more programs you ran during

your session has not ended, but is stopped (paused) or in the back-

gr ound. Enter fg to bring each stopped job into the foregr ound, then

quit the program normally. (See Chapter 7 for more infor mation.)

Syntax of Unix Command Lines
Unix command lines can be simple, one-word entries such as the date

command. They can also be more complex; you may need to type more

than the command or program name.*

A Unix command may or may not have ar guments. An argument can be

an option or a filename. The general format for Unix command lines is:

command option(s) filename(s)

Ther e isn’t a single set of rules for writing Unix commands and arguments,

but you can use these general rules in most cases:

• Enter commands in lowercase.

• Options modify the way in which a command works. Options are

often single letters prefixed with a dash (-, also called “hyphen” or

“minus”) and set off by any number of spaces or tabs. Multiple

options in one command line can be set off individually (such as –a

–b). In some cases, you can combine them after a single dash (such

as –a b)—but most commands’ documentation doesn’t tell you

whether this will work; you’ll have to try it.

Some commands, including those on Linux systems, also have options

made from complete words or phrases and starting with two dashes,

like ––delete or ––confir m–delete. When you enter a command line,

you can use this option style, the single-letter options (which all start

with a single dash), or both.

* The command can be the name of a Unix program (such as date), or it can be a command
that’s built into the shell (such as exit). You probably don’t need to worry about this! You
can read more precise definitions of these terms and others in Glossary.

Syntax of Unix Command Lines 11

7 January 2002 13:10

12 Chapter 1: Getting Started

• The argument filename is the name of a file that you want to use.

Most Unix programs also accept multiple filenames, separated by

spaces. If you don’t enter a filename correctly, you may get a

response such as “filename: no such file or directory” or “filename:

cannot open.”

Some commands, such as telnet and who (shown earlier in this chap-

ter), have arguments that aren’t filenames.

• You must type spaces between commands, options, and filenames.

• Options come before filenames.

In a few cases, an option has another argument associated with it;

type this special argument just after its option. Most options don’t

work this way, but you should know about them. The sor t command

is an example of this: you can tell sor t to write the sorted text to a

filename given after its –o option. In the following example, sor t

reads the file sortme (given as an argument), and writes to the file

sorted (given after the –o option):

$ sort -o sorted -n sortme

We also used the –n option in that example. But –n is a more stan-

dard option; it has nothing to do with the final argument sortme on

that command line. So, we also could have written the command line

this way:

$ sort -n -o sorted sortme

Another example is the mail –s option, shown in the section “Sending

Mail from a Shell Prompt” of Chapter 6. Don’t be too concerned

about these special cases, though. If a command needs an option like

this, its documentation will say so.

• Command lines can have other special characters, some of which we

see later in this book. They also can have several separate com-

mands. For instance, you can write two or more commands on the

same command line, each separated by a semicolon (;). Commands

enter ed this way are executed one after another by the shell.

Unix has a lot of commands! Don’t try to memorize all of them. In fact,

you’ll probably need to know just a few commands and their options. As

time goes on, you’ll learn these commands and the best way to use them

for your job. We cover some useful Unix commands in later chapters. This

book’s quick refer ence card has quick reminders.

7 January 2002 13:10

Let’s look at a sample Unix command. The ls pr ogram displays a list of

files. You can use it with or without options and arguments. If you enter:

$ ls

you’ll see a list of filenames. But if you enter:

$ ls -l

ther e’ll be an entire line of information for each file. The –l option (a dash

and a lowercase letter “L”) changes the normal ls output to a long format.

You can also get information about a particular file by using its name as

the second argument. For example, to find out about a file called chap1,

enter:

$ ls -l chap1

Many Unix commands have more than one option. For instance, ls has the

–a (all) option for listing hidden files. You can use multiple options in

either of these ways:

$ ls -a -l

$ ls -al

You must type one space between the command name and the dash that

intr oduces the options. If you enter ls–al, the shell will say “ls–al: com-

mand not found.”

Exer cise: enter ing a few commands

The best way to get used to Unix is to enter some commands. To run a

command, type the command and then press the RETURN key. Remem-

ber that almost all Unix commands are typed in lowercase.

Get today’s date. Enter date

List logged-in users. Enter who

Obtain more infor mation about users. Enter who -u or finger or w

Find out who is at your terminal. Enter who am i

Enter two commands in the same line. Enter who am i;date

Mistype a command. Enter woh

In this session, you’ve tried several simple commands and seen the results

on the screen.

Syntax of Unix Command Lines 13

7 January 2002 13:10

14 Chapter 1: Getting Started

Types of Commands
When you use a program, you’ll want to know how to control it. How can

you tell it what job you want done? Do you give instructions before the

pr ogram starts, or after it’s started? There are thr ee general ways to give

commands on a Unix system, three differ ent kinds of programs. It’s good

to be aware of them.

1. Some Unix programs work only with a window system. For instance,

when you type netscape at a shell prompt (or click a button or

choose the command from a menu), the Netscape web browser starts.

It opens one or more windows on your screen. The pr ogram has its

own way to receive your commands—thr ough menus and buttons on

its windows, for instance.

2. You’ve also seen (previously, in the section “Syntax of Unix Command

Lines”) Unix commands that you enter at a shell prompt. These pr o-

grams work in a window system (from a terminal window) or from

any terminal. Control those programs from the Unix command line—

that is, by typing options and arguments from a shell prompt before

you start the program running. After you start the program, wait for it

to finish; you generally don’t interact with it.

3. Some Unix programs that work in terminals have commands of their

own. (If you’d like some examples, see the section “Looking Inside

Files with less” in Chapter 3 and the section “The Pico Text Editor” in

Chapter 4.) These programs may accept options and arguments on

their command line. But, once you start the program, it prints its own

pr ompt and/or menus and it understands its own commands; it takes

instructions from your keyboard, which weren’t given on its command

line.

For instance, if you enter pine at a shell prompt, you’ll see a new

pr ompt fr om the pine pr ogram. Enter Pine commands to handle

email messages. When you enter the special command q to quit the

pine pr ogram, pine will stop prompting you. Then you’ll get another

shell prompt, where you can enter other Unix commands.

The Unresponsive Ter minal
During your Unix session (while you’re logged in), your terminal may not

respond when you type a command, or the display on your screen may

stop at an unusual place. That’s called a “hung” or “frozen” terminal or

session.

7 January 2002 13:10

(Note that most of the techniques in this section apply to terminal win-

dows in a window system, but not to nonterminal windows such as a web

br owser. In Chapter 2, the section “Unresponsive Windows” should help

with windows in general.)

A session can hang for several reasons. For instance, the connection

between your terminal and the computer can get too busy; your terminal

has to wait its turn. (Other users or computers probably share the same

connection.) In that case, your session starts by itself in a few moments.

You should not try to “un-hang” the session by entering extra commands

because those commands will all take effect after the connection resumes.

If the system doesn’t respond for quite a while (how long that is depends

on your individual situation; ask other users about their experiences), the

following solutions usually work. Try the following steps in the order

shown until the system responds:

1. Press the RETURN key once.

You may have typed text at a prompt (for example, a command line

at a shell prompt) but haven’t yet pressed RETURN to say that you’re

done typing and your text should be interpreted.

2. If you can type commands, but nothing happens when you press

RETURN , try pressing LINEFEED or typing CTRL-J . If this works,

your terminal needs resetting to fix the RETURN key. Some systems

have a reset command that you can run by typing CTRL-J reset

CTRL-J . If this doesn’t work, you may need to log out and log back

in or turn your terminal off and on again. (But, before you turn off

your terminal, read the notes earlier and later in this chapter about

tur ning of f the power.)

3. If your shell has job control (see Chapter 7), type CTRL-Z .

This suspends a program that may be running and gives you another

shell prompt. Now you can enter the jobs command to find the pro-

gram’s name, then restart the program with fg or terminate it with kill.

4. Use your interrupt key (found earlier in this chapter in the section

“Corr ecting a Command Line”—typically DELETE or CTRL-C).

This interrupts a program that may be running. (Unless a program is

run in the background, as described in the section “Running a Com-

mand in the Background” in Chapter 7, the shell waits for it to finish

befor e giving a new prompt. A long-running program may thus

appear to hang the terminal.) If this doesn’t work the first time, try it

once more; doing it more than twice usually won’t help.

The Unresponsive Ter minal 15

7 January 2002 13:10

16 Chapter 1: Getting Started

5. Type CTRL-Q .

If output has been stopped with CTRL-S , this will restart it. (Note

that some systems will automatically issue CTRL-S if they need to

pause output; this character may not have been typed from the key-

board.)

6. Check that the NO SCROLL key (if you have one) is not locked or

toggled on.

This key stops the screen display from scrolling upward. If your key-

board has a NO SCROLL key that can be toggled on and off by press-

ing it over and over, keep track of how many times you’ve pressed it

as you try to free yourself. If it doesn’t seem to help, be sure you’ve

pr essed it an even number of times; this leaves the key in the same

state it was when you started.

7. Check the physical connection from the terminal to the system.

8. Type CTRL-D once at the beginning of a new line.

Some programs (such as mail) expect text from the user. A pr ogram

may be waiting for an end-of-input character from you to tell it that

you’ve finished entering text. Typing CTRL-D may cause you to log

out, so you should try this only as a last resort.

9. If you’r e using a window system, close (terminate) the window you’re

using and open a new one. See the section “Unresponsive Windows”

in Chapter 2.

Otherwise, turn your terminal off, wait ten seconds or so, then turn it

on again. This may also log you out, but it may not; your old login

session could still be running. You can check for old processes and

ter minate them (as explained in Chapter 7 in the section “Checking on

a Process” and in the section “Cancelling a Process”) — although this

isn’t an easy thing for a beginner to do, so you might want help.

7 January 2002 13:10

2
Using Window

Systems

In this chapter:

• Introduction to
Windowing

• Star ting X

• Running Prog rams

• Working with a
Mouse

• Working with
Windows

• Other Window
Manager Features

• Unresponsive
Windows

• Other X Window
Prog rams

• Quitting

All versions of Unix work with alphanumeric terminals that handle a sin-

gle session in a single screen, such as those described in Chapter 1. On

most modern Unix versions, you can also use a window system. A window

system is software that lets a single screen handle many sessions at once.*

Window systems use a mouse or another device (such as a trackball) to

move a pointer acr oss the screen. The pointer can be used to select and

move parts of the screen, copy and paste text, work with menus of com-

mands, and more. If you’ve used a Macintosh or Microsoft Windows,

among others, you’ve used a window system. Figure 2-1 shows a typical

scr een with windows.

This chapter introduces the X Window System, which is called X for short,

the most common Unix window system. This introduction should also

help you use window systems other than X.

* If you’re using a PC operating system, such as Linux or NetBSD, your system probably also
supports virtual consoles. See the Glossary for a definition and more infor mation.

17

7 January 2002 13:11

18 Chapter 2: Using Window Systems

Introduction to Windowing
Like Unix, X is very flexible. The appearance of windows, the way menus

and icons work, as well as other features, are contr olled by a program

called the window manager. Ther e ar e many differ ent window managers;

some have many features and “eye candy,” while others are simple and

have just basic features. A window manager can make your desktop look

a lot like a Macintosh or Microsoft Windows system, or it can look com-

pletely differ ent. Your system may also have an optional desktop environ-

ment that provides even more featur es, such as support for “drag and

dr op” (for example, printing a file by dragging its icon onto a printer

icon). Two popular desktop environments are GNOME and KDE. In this

chapter, we show GNOME with the Sawfish window manager, as well as

KDE with the kwm window manager. Details of other window managers,

including how they make your screen look, are somewhat differ ent—but

this chapter should help you use them, too.

Desktop
Icons

Control
Window

Browser
Window

Terminal
Window

Menu
Icon

Program Icons

Pager
(for Virtual Desktops)

Window Control Buttons

Image
Window

Figur e 2-1. An X scr een with KDE and kwm

7 January 2002 13:11

Star ting X
Ther e ar e several ways to start X and its window manager. This section

explains a few common ways. Figure 2-2 shows some steps along a few

dif ferent paths to starting X. (The large “X” on the figures is the mouse

pointer, or cursor, that you may see on your screen.) If your screen is like

any of the following, refer to the section noted. If none fits your situation,

skim through the next three sections or ask another X user for help.

• Figur e 2-2A, xdm (or another program, such as gdm or kdm) is run-

ning and waiting for you to log in graphically. Start reading at Section

A.

• Figur e 2-2B has a standard Unix login session; the X Window System

is not running. Start reading at Section B.

• Figur e 2-2C shows X running, but a window manager probably isn’t.

(You can tell because the window doesn’t have a frame ar ound it:

ther e’s no titlebar or border.) Read Section C.

• Figur e 2-2D shows the window with a frame (titlebar and border), so

X and the window manager (in this example, mwm) are running.

You’r e ready to go! Skip ahead to the section “Running Programs.”

A. Ready to Run X (with a Graphical Login)

Some terminals, like the one whose screen is shown in Figure 2-2A, are

ready to use X. Your terminal has probably been set up to use one of the

X display managers called xdm, gdm, kdm, or others; these log you in to

your account and usually also start the window manager.

When you start, there’s a single window in the middle of the screen that

has two prompts like “login:” and “password:”. The cursor sits to the right

of the “login:” line. To log in, type your username (login name) and press

RETURN , then do the same for your password. The login window disap-

pears.

If a screen something like Figure 2-1 or Figure 2-2D appears, you’re ready

to use X. You can skip ahead to “the section “Running Programs.”

If you get a screen such as Figure 2-2C (a single window with no title and

no border), read Section C. Or, if you get a blank screen, press and

release your mouse buttons one by one, slowly, to see if a menu pops up.

Star ting X 19

7 January 2002 13:11

20 Chapter 2: Using Window Systems

login: john
Password:

$ xinit

xterm

$

$

Login:

Password:

X Window System

A B

C D

Figur e 2-2. Four scenarios that may occur while starting X

B. Starting X from a Standard Unix Session

If your terminal shows something like Figure 2-2B, with a standard Unix

“login:” prompt (not in a separate window; the display fills the whole

scr een, making it look like a terminal), X isn’t running. Log in (as the sec-

tion “Logging in Nongraphically” in Chapter 1 explains) and get a shell

pr ompt (such as $ or %). Next, you need to start X. Try this command first:

$ startx

If that doesn’t seem to work (after waiting a minute or so; X can be slow

to start), try the command xinit instead. If all goes well, your screen

spr outs at least one window. If the window looks like Figure 2-2C, with-

out a titlebar or border from a window manager, read Section C. Other-

wise, your window manager is running, so skip ahead to the section

“Running Programs.”

7 January 2002 13:11

Problem checklist

No windows open. I get the message “Fatal server error: No screens found.”

Your terminal may not be able to run X. Try another terminal or ask a

local expert.

C. Starting the Window Manager

Once you have a window open with a shell prompt in it (usually $ or %),

you can start the window manager program. If a window manager isn’t

running, windows won’t have frames (with titles, control boxes, and so

on). Also, if you move the pointer outside any window (to the desktop)

and press the mouse buttons, menus won’t appear unless the window

manager is running. If you have to start the window manager by hand,

your account probably hasn’t been set up correctly. To make your life eas-

ier, get help from an X-pert and fix your account!

If you need to start the window manager by hand, move your pointer into

the terminal window. At the shell prompt, type the name of your window

manager, followed by an ampersand (&). If you don’t know your window

manager’s name, try the following names, one by one, until one works

(i.e., doesn’t give you a “command not found” error): gnome-session,

star tkde, wmaker, after step, fvwm2, fvwm, or twm. For example:

$ fvwm &

[1] 12345

$

In a few moments, the window should have a frame. (For more about

starting programs, see the section “Ter minal Windows,” later in this chap-

ter.)

Running Prog rams
A window manager can open windows of its own. But the main use of a

window manager is to manage windows opened by other programs. We

mention a few window programs here; the section “Other X Window Pro-

grams,” near the end of this chapter, has more.

Running Prog rams 21

7 January 2002 13:11

22 Chapter 2: Using Window Systems

One of the most important X features is that windows can come either

fr om pr ograms running on your local computer, or over a network from

pr ograms running on remote computers. The remote computers can run

Unix or another operating system. So, if your favorite program from

another operating system doesn’t run under Unix but has an X interface,

you may be able to run that program on its native OS and display its win-

dows with X on your Unix computer. (Check your program’s documenta-

tion; see the section “Documentation” in Chapter 8.) Researchers can run

graphical data analysis programs on supercomputers in other parts of the

country and see the results in their offices. There’s much more than we

can explain here. We cover the basics here and in Chapter 6 in the section

“Windows from Other Computers,” which also has a figure showing how

this works. If you’ll do a lot of work with X, you may want a detailed ref-

er ence that explains X and your window manager.

Setting Focus

Of all the windows on your screen, only one window receives the

keystr okes you type. This window is usually highlighted in some way. For

instance, the titlebar of the window that receives your input may be blue

instead of the default grey color. In X jargon, choosing the window you

type to is called “setting the input focus.” Most window managers can be

configur ed to set the focus in one of the following ways:

• Move the mouse pointer into a window and click a mouse button

(usually the first button; see the section “Working with a Mouse,” later

in this chapter). In some systems, you may need to click on the title-

bar at the top of the window.

• Simply move the pointer inside a window.

Your window manager may be configured to give the input focus auto-

matically to any new windows that pop up.

Terminal Windows

One of the most important windows is a ter minal window. A ter minal

window has a Unix session inside with a shell prompt, just like a minia-

tur e alphanumeric terminal. You can have several terminal windows run-

ning at the same time, each doing something differ ent. To enter a Unix

command or answer a prompt in a window, set the focus there and type.

Pr ograms in other windows will keep running; if they need input from

you, they’ll wait just as they would on a standard terminal.

7 January 2002 13:11

Quite a few programs make terminal windows. One of the best-known

pr ograms is xter m. Others include GNOME Ter minal and konsole. All per-

for m the same basic job: they allow you to interact with Unix from a shell

pr ompt.

Figur e 2-2D and Figure 2-4 show a single terminal window with a shell

pr ompt ($). If you enter a Unix command (such as date) at the prompt, it

runs just as it would on a terminal that isn’t under the X Window System.

You can also start other X-based window programs (sometimes called X

clients) by entering the program’s name at a shell prompt in any terminal

window. Although you can start new programs (such as terminal win-

dows, xcalc, and so on) from any open terminal window on your com-

puter, we recommend starting them all from the first terminal window that

you open. If you do that, and if your shell has job control (see Chapter 7),

it’s easy to find and control all the other programs and their windows.

Her e’s an example. To start the calculator called xcalc, enter this com-

mand from a terminal window:

$ xcalc &

[1] 12345

$

The shell will put the process in the background — so you get another

shell prompt right away—and will print a process ID (PID) number, such

as 12345. (Chapter 7 has more infor mation on this subject.) If you forget

to add the ampersand (&) at the end of the line, then kill (terminate) the

xcalc pr ogram fr om the terminal window where you started it by typing

your interrupt character (such as CTRL-C). You should get another shell

pr ompt, wher e you can re-enter the xcalc command correctly.

The new window may be placed and get the focus automatically. Or, the

window (or an outline of it) may “float” above the screen, following the

pointer, until you point somewhere and click the first mouse button to

place the window.

You can also start a new terminal window from an existing one. Just enter

the program’s name and an ampersand (for example, xter m &) at the shell

pr ompt. Don’t forget the ampersand.

The same method will start other X programs. (Later in this chapter, the

section “Other X Window Programs” lists some standard X programs.)

Running Prog rams 23

7 January 2002 13:11

24 Chapter 2: Using Window Systems

Window Manager Menus

Your window manager probably has one or more menus, buttons, and

dialogs of its own. These let you control the way the window manager

works, overall. They may also launch programs, open the help system,

and do other useful things that don’t apply to all programs and windows

that are curr ently open (things you can’t do with an individual program’s

own menus, that is). For instance, a window manager menu might let you

set how many rows of program launching buttons are in the panel or the

color of the frame around each window.

Dif ferent window managers have differ ent ways to do these things. To

find the menus on your window manager, read its documentation or

experiment a bit. You might also find that pressing differ ent mouse but-

tons will open differ ent menus. You may need to hold down the button to

keep a menu visible. Move your mouse pointer around to places shown in

the following, then try your mouse buttons:

• The desktop (outside any of your open windows)

• An icon with a logo—for example, the KDE gear with a K over it or

the GNOME footprint

• A blank part of some standard feature of your desktop—for instance,

an empty part of the panel

• Any little feature that doesn’t seem to apply to a particular program

(that isn’t a program icon and doesn’t have the title of a program or

open window)—for instance, the small triangle to the right of the

pager shown in Figure 2-1

You probably can add commands to some menus, or more icons to a

gr oup of program-launching icons. You might add window manager oper-

ations or commands to open other windows. For example, a “New Win-

dow” menu item can open a new terminal window for you. A “Calculator”

item could start xcalc. Dif ferent window managers have differ ent ways to

do this. Check your documentation. To add a command, you’ll need to

specify either the program name (such as xter m or mozilla) or the abso-

lute pathname of its executable file (such as /usr/X11R6/bin/xter m). The

absolute pathname varies system-to-system; you might find it using the

command which or type fr om a shell prompt, like this:

$ type xterm

xterm is /usr/X11R6/bin/xterm

$ which xterm

/usr/X11R6/bin/xterm

7 January 2002 13:11

Exer cise: explor ing your window system

Change to your home directory. Enter cd.

Open two terminal windows. Enter the program name and an amper-
sand (such as xterm &) twice, or select
that item twice on a window manager
menu.

Practice setting focus on both new win-
dows and entering Unix commands in
each.

Click on a window and/or move the
pointer there. Enter who am i, etc.

Start a clock from one terminal window. Enter xclock & or oclock &.

Start a calculator from one window and
try it.

Enter xcalc &.

Change the working directory (see the
section “Changing Your Working Direc-
tory” in Chapter 3) in only one ter minal
window.

Enter cd /bin.

Check the working directory in both ter-
minal windows.

Enter pwd in both windows.

Terminate xcalc. Set the focus on the xcalc, and either
type your interrupt character (such as
CTRL-C) or click the close-box (often
an X in the top-right corner of the win-
dow frame).

Problem checklist

When I try to start a window program, I see “connection refused by server”

or “client is not authorized to connect to server.”

You may need to run a command like xhost or xauth. These com-

mands have security implications that we can’t cover adequately in

this little book, though, so please check with your system staff.

When I try to start a window program, I see “Error: Can’t open display.”

Your DISPLAY envir onment variable may not be set correctly or you

may need to use the –display option. Ask for help or check X Win-

dow System documentation.

Why are the columns of text in my terminal window jagged?

• Some programs, such as ls –l and who, expect your display to use

a fixed-width font, where every character is the same width. If

your set your terminal window to a variable-width font, the

columns won’t line up correctly. We recommend fixed-width

fonts, such as Courier, for terminal windows.

Running Prog rams 25

7 January 2002 13:11

26 Chapter 2: Using Window Systems

• Your terminal mode may be incorrect. (This can happen if a pro-

gram fails or is interrupted.) From a shell prompt, use the reset

command, as explained in the section “The Unresponsive Ter mi-

nal” in Chapter 1.

Working with a Mouse
Let’s look at basics of using a mouse or other pointing device. We assume

that your mouse has three buttons, as mice on Unix systems usually do.

(If your mouse has two buttons, you may be able to simulate the missing

middle button by pressing both of the other buttons at once. Your X sys-

tem may need to be reconfigur ed to work this way, though.) When we

say “the first button,” we mean the leftmost button for right-handed users,

or the rightmost button for left-handed users. (Under X, a mouse can be

set for either left-handed or right-handed users, so the button you use to

click on and drag is the button under your index finger.)

Pointer Shape

As you move the mouse pointer* fr om the desktop on to other windows

or menus, the shape of the pointer changes. For instance, on some win-

dow systems, while the pointer is over the desktop, it’s shaped like a big

X. The pointer may change to an hourglass shape to tell you to wait.

When you resize a window, the pointer could change to a cross with

arr ows.

Using a Mouse with xterm Windows

One advantage terminal windows have over plain (nonwindowing) termi-

nals is you can copy and paste text within an xter m window or between

xter m windows.

Although this section is specifically about xter m windows,
most tips here also apply to other kinds of terminal win-
dows. Check your documentation or just try these and see!

* The correct word for this symbol is cursor. But xter m and some other windows also have
separate cursors to show where text will be entered. To avoid confusion, we use the word
“pointer” for the cursor that moves all across the screen under control of the mouse.

7 January 2002 13:11

To get started, move the pointer inside an xter m window and be sure it

has the focus (if your window manager doesn’t do that automatically).

Notice that the pointer changes to an “I-beam” shape as you move it into

the window. We discuss this I-beam pointer later in this section. There’s

also a block cursor (which is shown in all terminal windows in this chap-

ter — and labeled at Figure 2-4.) The block cursor is the window’s inser-

tion point, wher e text goes when you type on the keyboard. The block

cursor doesn’t follow the mouse.

If your window doesn’t have some previously completed command lines,

as in Figure 2-3, type command lines at a couple of prompts; this gives

you text to copy. (The mail command, shown in Figure 2-3 and explained

in Chapter 6, is a good example, but you can use any command line that

you want to rerun from another window.)

The I-beam pointer selects text for copying. Let’s try it. Point to the first

character of a command line (not the prompt) and click the first mouse

button. Next, move the pointer to the end of the text you want to select

and click the third button. The text between the first and third clicks

should be highlighted; your xter m window should look something like

Figur e 2-3. (Problems? If you select the wrong text, you can undo the

selection by clicking the first button anywhere in the window. If you acci-

dentally click the second button, this may paste some random text at the

block cursor; in that case, you can erase the pasted text with your

backspace key.)

Another way to select text is by pointing to the first character you want to

copy, then holding down the first mouse button while you drag the

pointer across the text. By the time you release the mouse button, the

whole area of text should be highlighted.

The instant you highlight text (as you did a moment ago), the text is also

automatically copied, so you can paste it somewhere else. (In an original

xter m window, there’s no menu with a “Copy” command on it. In most X

window programs — the original X programs, at least—highlighting text

copies it automatically.)

You can paste text in the window you copied it from or in another win-

dow. Let’s choose another open terminal window. With the block cursor

at a shell prompt, click the middle mouse button anywher e in the win-

dow. (You don’t have to click at the block cursor!) The selected text will

be inserted (pasted) into the window at the block cursor, just as if you

had typed it in. Press RETURN to run the command; otherwise,

backspace over it to get back to the prompt.

Working with a Mouse 27

7 January 2002 13:11

28 Chapter 2: Using Window Systems

You can also select text in a window just by clicking. Point to a word and

double-click the first button; the word should be highlighted. Next, let’s

select an entire line. Point to any character on a line (a space is OK too)

and triple-click the first button to highlight the whole line.

You can select and copy any text, not just command lines. With the mail

command, for instance, you can copy a line from the body of the email

message.

$ mail alison@sunspot.unmre.edu virginia@ora.com

Subject: Research progress report

dsafkjl;aslfjsafd ds;fanv ;dsvnasd;f

fmadslkfnjadsf;laskndfg;asjfa;oeisrjawerdsafkjl

;aslfjsafd ds;fanv ;dsvnasd;f

fmadslkfnjadsf;laskndfg;asjfa;oeisrjawer

$ date

Thu Nov 8 17:24:51 EST 2001

$

xterm

Figur e 2-3. Copying a command line

The same copying and pasting works between xter m windows and

between many other (but not all) windows that handle text. Before you

paste text into an xter m window, always be sure the block cursor is at the

place you want to insert the newly pasted text!

Problem checklist

When I try to paste text into a terminal window, it doesn’t appear where I

want it.

One common mistake is clicking the mouse at a particular point in the

ter minal window and expecting the text to be pasted there. In most

ter minal-based Unix applications, you need to move the insertion

point (typically, a block-shaped cursor) using keyboard commands or

the arrow keys. Befor e you paste, be sure that the insertion point is

at the place you want it.

I’ve copied text from one window, but it won’t appear when I paste it.

Unfortunately, there are several possible causes, including the follow-

ing list:

7 January 2002 13:11

• Be sur e you’r e pr essing the second (middle) mouse button to

paste. If you have a two-button mouse, pressing both buttons (to

act like the missing middle button) can be tough: it takes precise

timing.

• Some things can erase the clipboard where your text was

copied — for instance, opening certain kinds of new windows.

Try copying the text again, then pasting it right away.

• The window system actually has many clipboards, and some pro-

grams don’t check all clipboards to find your copied text. You

may be able to paste the text into another window (such as a

window-based text editor), then copy the text again and paste it

wher e you want it.

• Some programs will let you highlight text, but the text actually

isn’t copied and/or pasted unless you use the “Copy” and/or

“Paste” commands on the program’s menu.

Can you save some or all of the text you want to copy into a tempo-

rary file? If so, you may be able to open that file in another type of

window (such as a text editor), then copy from that new window.

Also try using a text editor to put just the text you want into the tem-

porary file, then read that file into the program where you originally

wanted to paste the text.

Working with Windows
A window manager program helps you control windows. Various window

managers do the same kinds of things, with some variation. Let’s start by

looking at Figure 2-4, which shows a typical window under KDE and

kwm.

The edges of the window can be used to resize the window. The top of

every window has a titlebar that includes the window title as well as three

buttons.

Using the Titlebar

The titlebar is the top of a window; it has the window’s title, and, usually,

some buttons or other features. See Figure 2-4.

The three buttons at the top right corner have boxes inside them.

Working with Windows 29

7 January 2002 13:11

30 Chapter 2: Using Window Systems

Titlebar

Window Menu
Button

Title Area
Minimize
Button

Close
Button

Maximize
Button

Scroll Bar

Block Cursor (Insertion Point)Shell Prompt

Pin (to make the window appear on all desktops)

Figur e 2-4. A window under KDE and kwm

• Click the button with the small square to mimimize the window

(make the window as small as possible); this is also called “hiding”

the window. With some window manager configurations, a mini-

mized window turns into an icon; on others, the window may have a

title button in a list of window buttons at the bottom of a window (or

elsewher e). No matter how your window manager treats a minimized

window, though, the important point here is that minimizing puts

unneeded windows out of the way without quitting the program

inside them; it also keeps you from accidentally typing into a window.

You can restor e (“show”) a minimized (“hidden”) window by clicking

on its icon, its button on the panel at the bottom of the screen, or in

several other ways—again, depending on your window manager.

• Maximizing a window makes it as big as the program will allow,

often as big as the screen. One way to do this—which is differ ent in

dif ferent window managers, of course—is to click the button on the

window frame that has a large square.

Maximizing windows that have graphical applications in them—such

as a web browser — works just fine. But it can be a bad idea to maxi-

mize terminal windows (and give them more than 80 characters per

7 January 2002 13:11

line), especially if there’s a program running in that window. See the

note in the section “Resizing Windows,” later in this chapter.

• Clicking the box with a big “X” kills a window. In some window

managers, clicking with the third mouse button is a more emphatic

kill. (Later in this chapter, the section “Unresponsive Windows”

describes this in more detail.)

It’s not always a good idea to click the “X” box on a win-
dow frame—especially on a terminal window with a pro-
gram running inside. Although it may seem to work
(because the window closes), the programs running inside
the window may not have time to finish their work and exit
gracefully.

It’s safer to use the program’s own “exit” command. For
instance, if you’re running the Pico editor in a terminal win-
dow, use its CTRL-X command. If you have a shell prompt,
type exit or press CTRL-D ; if the program has a menu or
button with which to quit, use it. If there’s no other choice,
though, you’re probably safe to click the “X” box on the
frame.

The left button opens the window menu; this is explained in “the section

“The Window Menu” later in this chapter.

Moving Windows and Icons

To move a window, start by pointing to the titlebar. Hold down the first

mouse button and drag to the new location—then let go of the button.

Resizing Windows

If you have the pointer inside a window and then move the pointer to an

edge, the pointer will probably change to another shape—an arr ow, for

example. If you point to a corner, you may be able to resize both sides

that meet at the corner. To resize when you have the arrow pointer, press

and hold (typically) the first button, then drag the window border until

the window size is what you want and release the button. If you don’t get

quite the size you want, just do it again.

Working with Windows 31

7 January 2002 13:11

32 Chapter 2: Using Window Systems

If you’re using a terminal window (such as xter m), and a
pr ogram is already running in that window (not just a shell
pr ompt), note that resizing the window may confuse the
pr ograms curr ently running in it! It’s best to set the terminal
window size befor e you run a program.

Also, remember that standard terminals are 80 characters
wide. If you’re editing text in a window with a width that
isn’t 80 characters, it can cause trouble later when the file is
viewed on a standard terminal.

Stacking Windows

You can have many windows open at once. To get some or all out of the

way, minimize them. Sometimes, though, you’ll want several overlapping

windows on your screen:

• You could log onto the Internet, go to your favorite news website and

open ten windows, each with an article you want to read. Then log

of f the Internet (to free your phone line) and read each window. In

that case, it might be easiest to have the ten windows in a stack, and

close each window after you’re done — instead of minimizing all win-

dows at the start and restoring them, one by one, as you read them.

• You might need several windows visible at the same time—for

instance, reading email messages in one window while you edit a pre-

sentation in another window, with a web browser open to a company

infor mation page in a third window. You may not need to shrink

windows to keep them from overlapping. Instead, windows can

partly overlap, covering areas of other windows that you don’t need

to see.

In X, a window doesn’t always need to be on top of the stack to get

the input focus (so you can type into it). If you’ve configured your

window manager so the window with the mouse pointer over it gets

the focus automatically (without clicking on the window), you can

type in a window without raising it to the top of the stack. This is a

handy feature of most X window managers.

To bring a window to the top, you can generally either click on its title

bar with the first mouse button or use the window manager’s “raise win-

dow” command. That “raise window” command is usually either on the

window menu (see the following section), on a window manager menu

(choose “raise window,” then click on the window you want to raise), or

7 January 2002 13:11

it might be found by clicking on the window frame with the third mouse

button. In the same way, your window manager probably has a “lower

window” command that moves a window behind the windows it overlaps.

The Window Menu

Many window managers let you control each window by its own window

menu. Ther e ar e lots of ways to get a window menu. Here are two: click

on the menu button at the top left corner of a frame (as in Figure 2-4, for

KDE and the kwm window manager), or click on an icon (for the mwm

window manager). Figure 2-5 shows a window menu from the Sawfish

window manager. When the menu pops up, you can point to an item and

click it.

Let’s look at some of the Sawfish window menu operations:

• The Minimize and Maximize operations are explained in “Using the

Titlebar,” earlier in this chapter.

• Close ter minates the window and the program in it. Use this as a last

resort. If the program has a separate menu or quit command (for

example, entering exit at a shell prompt in a terminal window), use it

instead of Close. (See “Quitting,” later in this chapter, for an explana-

tion.)

• Send window to lets you move a window to another virtual desktop.

When you point to this item, a submenu appears with a list of desk-

tops where the window can be moved.

• Stacking opens a submenu that lets you control this window’s position

in a stack of windows.

• Histor y opens a submenu that tells the window manager how to han-

dle this particular type of window in the future. For example, the

window menu in Figure 2-5 happens to be on a GNOME Ter minal

window. If you have the GNOME Ter minal window at a particular

spot near the lower-left corner of the desktop, and you choose the

Remember position entry on this submenu, then the next GNOME

Terminal window you open will open at the same place on the desk-

top. (Once a window has opened in this particular spot, you can

always move it somewhere else.) The Forget saved state entry tells

the window manager to forget all of the History settings you’ve made

for this type of window.

Working with Windows 33

7 January 2002 13:11

34 Chapter 2: Using Window Systems

Title bar

Window Menu
Button

Figur e 2-5. A Sawfish window menu

On the mwm menu (not shown here), a keyboar d shortcut follows each

command. Other window managers may have keyboard shortcuts but not

list them on the menu (they could be listed on a configuration menu

somewher e else). With a shortcut, you don’t have to use the mouse to

choose commands; you can handle window operations without taking

your hands off the keyboard. For example, next to the Minimize entry is

the shortcut hint “Alt+F9”, which means that you can minimize this win-

dow without a mouse by holding down the ALT (or META) key and

pr essing the F9 key. Holding the SHIFT key and pressing the ESC key

brings up an mwm window menu (and takes it away). If your keyboard

doesn’t have all of those keys, the menu can probably be customized to

use others. Other window managers may have differ ent keyboard short-

cuts — or none at all.

Exer cise

If you don’t have two terminal windows open from the previous exercise,

please start by opening them.

7 January 2002 13:11

Copy and paste part of a command line. Type who am i;date and press
RETURN in one terminal window.
Highlight the who am i, set focus to the
other terminal window, paste the com-
mand there, and run it.

Move a window. Grab and drag the window by its title-
bar.

Iconify a window from the titlebar. Use the Mimimize button.

Restor e (de-iconify) the window. Find the window’s Restore command.

Other Window Manager Features
Your window manager and/or desktop environment may have some other

handy features. Let’s look at two. Explore these after you’ve learned more

basic operations; they can be real timesavers!

Panel

A panel is a thin bar across the top or bottom of the screen. If you have a

panel, it probably has icons you can click to launch a program. It also

may have a row of buttons, one for each window that’s either open or

minimized (or both); you can use these buttons to open a minimized win-

dow or raise an open window to the top of a stack. If you move the

mouse pointer over an object without clicking, a “tool tip” box may

appear with more infor mation about it. You also can try clicking on these

and/or holding down your mouse buttons (try each mouse button, in

tur n) to see what they might do.

Pagers and Vir tual Desktops

Sophisticated window managers can manage multiple desktops on the

same physical screen. A pager lets you choose between these virtual desk-

tops. Each virtual desktop is like the desktop you see when you open the

window system—but you can open differ ent windows on each virtual

desktop. It’s kind of like having two or more separate physical terminals

stacked on top of each other, as well as side-to-side, on your desk—each

with its own desktop displayed, all driven from the same keyboard and

mouse. All virtual desktops appear on the same screen, but only one is

visible at a time. If you’re using GNOME or KDE, you may have four vir-

tual desktops available automatically, though that number can be

changed.

Other Window Manager Features 35

7 January 2002 13:11

36 Chapter 2: Using Window Systems

Think of these desktops arranged in a grid, as Figure 2-6 shows. You can

refer to the desktops by saying “the desktop above” or “the desktop to the

right”; they may also be numbered. The window manager has commands

to let you move a window from one desktop to another (see the section

“The Window Menu,” earlier in this chapter). You also may be able to use

the mouse to drag a window “off the edge” of one desktop and onto the

next.

Active Desktop

Figur e 2-6. Four virtual desktops, one screen

If you’re working on three projects, for instance, each project can have its

own desktop, where you can put all the windows for that project. The

pager lets you choose which desktop you want to see. If your window

manager has a panel, each virtual desktop probably has its own panel.

7 January 2002 13:11

Some icons or windows may appear on all desktops; others may appear

on just one desktop. For instance, if your system has a console window

wher e you can monitor system log messages, you might want to see that

window from every desktop. (Under the Enlightenment window manager,

for instance, this is called making a window “stick” to all desktops. On

KDE, clicking the push-pin icon near the top left corner of a window

frame does the same thing.) But another window—such as a text editor

on which you’re writing a report about a particular project — should be

open only on the desktop where you need it.

By the way, many window-based programs — such as web browsers — can

open multiple windows. It’s usually more efficient to start the program

just once, and put its windows on the desktops where you need them,

instead of starting a new instance of the program on every desktop. For

example, instead of clicking the Netscape icon to start the browser pro-

gram running on every desktop, click that icon on one desktop and use

Netscape’s “New Window” command to open multiple windows. You then

move each new Netscape window to the desktop where you want it. (In

case you need to clear all of the windows from one desktop, though,

remember to use Netscape’s “Close Window” command instead of its

“Quit Netscape” command! Quitting Netscape in this situation would

remove all of its windows from all of the desktops.)

Unresponsive Windows
While your window system is running, windows may seem to stop

responding to commands or mouse clicks. Some or all of the window

contents — but not necessarily the window frame itself—may go partly or

completely blank. In this case, either a window or the entire window sys-

tem may be “frozen” or “hung.”

The best thing to do in a situation like this is to wait a little while. If the

window is showing something from a network, such as a web browser

showing a web page from the Internet — or, especially, if the window is

fr om another computer across the network—the cause may be a network

delay. If you can wait a minute or two (without pressing extra keys or

clicking the mouse around; just wait!) and nothing happens, then it’s time

to take action. Here are some things to try at that point:

1. Try to find out whether just one window is frozen, or if all windows

(and the entire window system) are frozen.

Unresponsive Windows 37

7 January 2002 13:11

38 Chapter 2: Using Window Systems

If you have other windows open, try to use them. For instance, if a

text editor is open, try to add a word to the text or use a command

fr om one of its menus. If other windows seem to work normally, you

can guess that the problem is only in the one window (or family of

windows, from one program) that seems frozen.

If you don’t have other windows open, try to open a new window

fr om the window manager’s menu, icons, panel, etc. Try to minimize

and maximize that window, move it around the screen, and so on. If

this seems to work normally, the trouble is probably in the original

fr ozen window. But, if nothing seems to work, the whole window

system may be frozen.

2. Next, handle the frozen window or windows:

• If just one window is frozen, you’ll probably need to kill it. Click

the first mouse button on the “close” box in the window’s title

bar; this box is often an X symbol. In many Unix window man-

agers, clicking that box sends a “close” signal to the window, and

it may do the trick. If it doesn’t work, click the third mouse but-

ton on that box; in some cases, this will send a “destroy” signal to

the window. (All this depends on the window manager you’re

using!) If several windows are frozen, try these techniques on

each window.

If the windows go away, there’s still a chance their Unix pro-

cesses (the running programs) haven’t gone away. Or, if the win-

dows don’t go away, then there probably ar e Unix processes left

over. So it’s best to check for and kill any leftover processes. In

Chapter 7, the section “Cancelling a Process” explains how.

• If the whole window system is frozen, the computer “underneath”

it is probably still running well. Start by trying to close the win-

dow system normally from its main menu, with whatever com-

mand you normally use. If the whole window system is frozen,

that probably won’t work.

The next step is to try to kill your entire X Window System server.

You can do this by holding down three keyboard keys at once:

CTRL ALT BACKSPACE . If you started the window system

7 January 2002 13:11

fr om a graphical login, you should see another login box; you can

log in again. Or, if you started the window system nongraphi-

cally, you should see a shell prompt on your screen; you can

repeat the same command (xinit or star tx, for instance) that you

used to start the window system before.

If you can’t close the window system that way, the last resort is to

check for and kill the window system’s processes. If you’r e using

a PC operating system such as Linux or NetBSD, try holding down

the three keys CTRL ALT F6 ; if you’re lucky, you should get a

virtual console with a nongraphical “login:” prompt where you

can log in and get a shell prompt. Otherwise, you’ll probably

have to do a remote login from someone else’s computer to

yours — and get a shell prompt that way. Once you have a shell

pr ompt, read the directions in the section “Cancelling a Process,”

in Chapter 7; look for processes with names similar to your win-

dow manager (such as gnome-session for GNOME).

If you killed windows, or the whole window system—and you were

doing work in any of those windows—any changes you made to a file (in

a text editor, for instance) may have been lost. It’s best to reopen the win-

dow, or the whole window system, and check for damage while whatever

happened is still fresh in your mind.

Other X Window Programs
Following are a few standard X window programs that your system may

have:

• xbif f: tells you when new electronic mail comes in

• xclipboard: helps with copying and pasting text

• xma g: magnifies parts of the screen

• xman: browses Unix manual (refer ence) pages

For more infor mation on those programs and the many other standard X

pr ograms, see a refer ence file or book. There’s a list of the X programs

that come with XFree86™ — and, in general, with other X Releases too—at

(as of this printing) http://www.xfr ee86.org/curr ent/manindex1.html.

Other X Window Programs 39

7 January 2002 13:11

40 Chapter 2: Using Window Systems

Quitting
Like almost everything in X, the way to quit X is configurable. The key to

shutting down X is to know which of your programs (your windows or

window manager) is the contr olling pr ogram. When the controlling pro-

gram quits, any leftover X programs are killed immediately. The control-

ling program is usually either the window manager or the single terminal

window that started your X session.

Find the controlling program for your X session and write it down:

_____________________________ Program to quit last

If your controlling program is a terminal window, we suggest leaving that

window minimized from just after you’ve logged in until you’ve shut

down all the other X programs. That way, you won’t end your X session

accidentally by closing that terminal window too soon.

No matter what your controlling program is, closing it sooner than last

means the other windows will be killed quickly and automatically. There’s

a chance, though, that programs running in those killed windows—espe-

cially if they’re ter minal windows — won’t be killed, and will keep run-

ning, disconnected from your login session. So it’s best to close the

contr olling pr ogram window last.

To quit the window manager, select the “Exit” or “Quit” command on its

main menu.

Her e ar e the steps to shut down X:

1. Quit all noncontrolling programs (all programs other than the control-

ling program). If any windows are running programs that have their

own “quit” commands, it’s a good idea to use those special commands

to quit. For example, if you’re running a text editor in a terminal win-

dow, use the editor’s “quit” command, then close the terminal win-

dow by entering exit at the shell prompt. (Most ter minal windows

will close when their shell program exits. If yours doesn’t do this,

though, you’ll need to finish by using the terminal window’s own

“close” command.)

Using the program’s own “quit” command gives the program time to

clean up and shut down gracefully. On the other hand, the Close

item on a menu from the window manager can interrupt and kill a

pr ogram befor e it’s ready. If, however, a program doesn’t have its

own “quit” command, use Close on the window menu.

7 January 2002 13:11

If any minimized windows are running programs that have their own

“quit” commands, restor e those windows and use the “quit” com-

mand.

2. Quit the controlling program.

After X shuts down, you may get a Unix shell prompt. If you do, you

can log out by entering exit. If you simply get another login box

fr om xdm (as in Figure 2-2A), you’re done.

Quitting 41

7 January 2002 13:11

3
Using Your
Unix Account

In this chapter:

• The Unix Filesystem

• Looking Inside Files
with less

• Protecting and
Shar ing Files

• Graphical Filesystem
Browser s

• Completing File and
Director y Names

• Chang ing Your
Password

• Customizing Your
Account

Once you log in, you can use the many facilities that Unix provides. As an

authorized system user, you have an account that gives you:

• A place in the Unix filesystem where you can store your files.

• A user name that identifies you, lets you control access to your files,

and is an address for your email.

• An envir onment you can customize.

The Unix Filesystem
A file is the unit of storage in Unix, as in most other systems. A file can

hold anything: text (a report you’re writing, a to-do list), a program, digi-

tally encoded pictures or sound, and so on. All of those are just sequences

of raw data until they’re interpr eted by the right program.

In Unix, files are organized into directories. A dir ectory is actually a spe-

cial kind of file where the system stores information about other files. You

can think of a directory as a place, so that files are said to be contained in

dir ectories and you are said to work inside a dir ectory. (If you’ve used a

Macintosh or Microsoft Windows computer, a Unix directory is similar to a

folder.)

This section introduces the Unix filesystem. Later sections in this chapter

show how you can look in files and protect them. Chapter 4 has more

infor mation.

42

7 January 2002 13:12

Your Home Director y

When you log in to Unix, you’re placed in a directory called your home

dir ectory. This directory, a unique place in the Unix filesystem, contains

the files you use almost every time you log in. In your home directory,

you can make your own files. As you’ll see in a minute, you can also store

your own directories within your home directory. Like folders in a file

cabinet, this is a good way to organize your files.

Your Working Director y

Your working directory (also called your current directory) is the directory

you’r e curr ently working in. Every time you log in, your home directory is

your working directory. You may change to another directory, in which

case the directory you move to becomes your working directory.

Unless you tell Unix otherwise, all commands that you enter apply to the

files in your working directory. In the same way, when you create files,

they’r e cr eated in your working directory unless you specify another direc-

tory. For instance, if you type the command pico repor t, the Pico editor is

started on a file named report in your working directory. But if you type a

command such as pico /home/joan/repor t, a report file is edited in a dif-

fer ent dir ectory—without changing your working directory. You’ll learn

mor e about this when we cover pathnames later in this chapter.

If you have more than one terminal window open, or you’re logged in on

several terminals at the same time, each session has its own working

dir ectory. Changing the working directory in one session doesn’t affect

others.

The Director y Tr ee

All directories on a Unix system are organized into a hierarchical structure

that you can imagine as a family tree. The parent directory of the tree (the

dir ectory that contains all other directories) is known as the root directory

and is written as a forward slash (/).

The root contains several directories. Figure 3-1 shows a visual repr esenta-

tion of the top of a Unix filesystem tree: the root directory and some

dir ectories under the root.

The Unix Filesystem 43

7 January 2002 13:12

44 Chapter 3: Using Your Unix Account

Root Directory
/

bin etc users tmp usr

john carol

work playwork

Figur e 3-1. Example of a directory tree

bin, etc, users, tmp, and usr ar e some of the subdir ectories (child directo-

ries) of the root directory. These subdirectories are fairly standard directo-

ries; they usually contain specific kinds of system files. For instance, bin

contains many Unix programs. Not all systems have a directory named

users. It may be called u or home, and/or it may be located in some other

part of the filesystem.

In our example, the parent directory of users (one level above) is the root

dir ectory. It has two subdirectories (one level below), john and car ol. On

a Unix system, each directory has only one parent directory, but it may

have one or more subdir ectories.* A subdir ectory (such as car ol) can have

its own subdirectories (such as work and play), up to a limitless depth for

practical purposes.

To specify a file or directory location, write its pathname. A pathname is

like the address of the directory or file in the Unix filesystem. We look at

pathnames in a moment.

On a basic Unix system, all files in the filesystem are stor ed on disks con-

nected to your computer. It isn’t always easy to use the files on someone

else’s computer or for someone on another computer to use your files.

Your system may have an easier way: a networked filesystem. Networked

* On most Unix systems, the root directory, at the top of the tree, is its own par ent. Some
systems have another directory above the root.

7 January 2002 13:12

filesystems make a remote computer’s files appear as if they’re part of

your computer’s directory tree. For instance, a computer in Los Angeles

might have a directory named boston with some of the directory tree from

a company’s computer in Boston. Or individual users’ home directories

may come from various computers, but all be available on your computer

as if they were local files. The system staff can help you understand and

configur e your computer’s filesystems to make your work easier.

Absolute Pathnames

As you saw earlier, the Unix filesystem organizes its files and directories in

an inverted tree structure with the root directory at the top. An absolute

pathname tells you the path of directories you must travel to get from the

root to the directory or file you want. In a pathname, put slashes (/)

between the directory names.

For example, /users/john is an absolute pathname. It locates one (only

one!) directory. Here’s how:

• The root is the first “/”

• The directory users (a subdirectory of root)

• The directory john (a subdirectory of users)

Be sure that you do not type spaces anywhere in the pathname. Figure

3-2 shows this structure.

/

bin etc users tmp usr

john carol

work playwork

/users/john

Root Directory

/

users

john

Figur e 3-2. Absolute path of directory john

In Figure 3-2, you’ll see that the directory john has a subdirectory named

work. Its absolute pathname is /users/john/work.

The Unix Filesystem 45

7 January 2002 13:12

46 Chapter 3: Using Your Unix Account

The root is always indicated by the slash (/) at the start of the pathname.

In other words, an absolute pathname always starts with a slash.

Relative Pathnames

You can also locate a file or directory with a relative pathname. A relative

pathname gives the location relative to your working directory.

Unless you use an absolute pathname (starting with a slash), Unix

assumes that you’re using a relative pathname. Like absolute pathnames,

relative pathnames can go through more than one directory level by nam-

ing the directories along the path.

For example, if you’re curr ently in the users dir ectory (see Figure 3-2), the

relative pathname to the car ol dir ectory below is simply car ol. The rela-

tive pathname to the play dir ectory below that is car ol/play.

Notice that neither pathname in the previous paragraph starts with a slash.

That’s what makes them relative pathnames! Relative pathnames start at

the working directory, not the root directory. In other words, a relative

pathname never starts with a slash.

Pathname puzzle

Her e’s a short but important question. The previous example explains the

relative pathname car ol/play. What do you think Unix would say about

the pathname /car ol/play ? (Look again at Figure 3-2.)

Unix would say “No such file or directory.” Why? (Please think about that

befor e you read more. It’s very important and it’s one of the most com-

mon beginner’s mistakes.) Here’s the answer. Because it starts with a

slash, the pathname /car ol/play is an absolute pathname that starts from

the root. It says to look in the root directory for a subdirectory named

car ol. But there is no subdir ectory named car ol one level directly below

the root, so the pathname is wrong. The only absolute pathname to the

play dir ectory is /users/car ol/play.

Relative pathnames up

You can go up the tree with the shorthand “..” (dot dot) for the parent

dir ectory. As you saw earlier, you can also go down the tree by using sub-

dir ectory names. In either case (up or down), separate each level by a

slash (/).

7 January 2002 13:12

Figur e 3-3 shows part of Figure 3-1. If your working directory in the figure

is work, then there are two pathnames for the play subdir ectory of car ol.

You alr eady know how to write the absolute pathname, /users/car ol/play.

You can also go up one level (with “..”) to car ol, then go down the tree to

play. Figur e 3-3 illustrates this.

work play

carol (..)

Figur e 3-3. Relative pathname from work to play

The relative pathname would be .. /play. It would be wrong to give the

relative address as car ol/play. Using car ol/play would say that car ol is a

subdir ectory of your working directory instead of what it is in this case—

the parent directory.

Absolute and relative pathnames are totally interchangeable. Unix pro-

grams simply follow whatever path you specify to wherever it leads. If

you use an absolute pathname, the path starts from the root. If you use a

relative pathname, the path starts from your working directory. Choose

whichever is easier at the moment.

Chang ing Your Working Director y

Once you know the absolute or relative pathname of a directory where

you’d like to work, you can move up and down the Unix directory tree to

reach it.

pwd

ˆM To find which directory you’re curr ently in, use pwd (print working

dir ectory). The pwd command takes no arguments.

The Unix Filesystem 47

7 January 2002 13:12

48 Chapter 3: Using Your Unix Account

$ pwd

/users/john

$

pwd prints the absolute pathname of your working directory.

cd

You can change your working directory to any directory (including

another user’s directory — if you have permission) with the cd (change

dir ectory) command.

The cd command has the form:

cd pathname

The argument is an absolute or a relative pathname (whichever is easier)

for the directory you want to change to:

$ cd /users/carol

$ pwd

/users/carol

$ cd work

$ pwd

/users/carol/work

$

Her e’s a timesaver: the command cd, with no arguments,
takes you to your home directory from wherever you are in
the filesystem.

Note that you can only change to another directory. You cannot cd to a

filename. If you try, your shell (in this example, bash) gives you an error

message:

$ cd /etc/passwd

bash: /etc/passwd: Not a directory

$

/etc/passwd is a file with information about users’ accounts.

Files in the Director y Tr ee

A dir ectory can hold subdirectories. And, of course, a directory can hold

files. Figure 3-4 is a close-up of the filesystem around john’s home direc-

tory. The four files are shown along with the work subdir ectory.

7 January 2002 13:12

.exrc .profile work ch1 ch2

john

users
ch1

work

- File

- Directory

Figur e 3-4. Files in the directory tree

Pathnames to files are made the same way as pathnames to directories. As

with directories, files’ pathnames can be absolute (starting from the root

dir ectory) or relative (starting from the working directory). For example, if

your working directory is users, the relative pathname to the work dir ec-

tory below would be john/work. The relative pathname to the ch1 file

would be john/ch1.

Unix filesystems can hold things that aren’t directories or files, such as

symbolic links, FIFOs, and sockets (they have pathnames, too). You may

see some of them as you explore the filesystem. We don’t cover those

advanced topics in this little book.

Listing Files with ls

To use the cd command, you must decide which entries in a directory are

subdir ectories and which are files. The ls command lists entries in the

dir ectory tr ee and can also show you which is which.

> When you enter the ls command, you’ll get a listing of the files and sub-

dir ectories contained in your working directory. The syntax is:

ls option(s) directory-and-filename(s)

If you’ve just logged in for the first time, entering ls without any argu-

ments may seem to do nothing. This isn’t surprising because you haven’t

The Unix Filesystem 49

7 January 2002 13:12

50 Chapter 3: Using Your Unix Account

made any files in your working directory. If you have no files, nothing is

displayed; you’ll simply get a new shell prompt:

$ ls

$

But if you’ve already made some files or directories in your account, those

names are displayed. The output depends on what’s in your directory.

The screen should look something like this:

$ ls

ch1 ch10 ch2 ch3 intro

$

(Some systems display filenames in a single column. If yours does, you

can make a multicolumn display with the –C [uppercase “C”] option or the

–x option.) ls has a lot of options that change the information and display

for mat.

The –a option (for all) is guaranteed to show you some more files, as in

the following example showing a directory like the one in Figure 3-4:

$ ls -a

. .exrc ch1 ch2 intro

.. .profile ch10 ch3

$

When you use ls -a, you’ll always see at least two entries with the names

“.” (dot) and “..” (dot dot). As mentioned earlier, .. is always the relative

pathname to the parent directory. A single . always stands for its working

dir ectory; this is useful with commands like cp (see the section “Copying

Files” in Chapter 4). There may also be other files, such as .pr ofile or

.exr c. Any entry whose name begins with a dot is hidden—it’s listed only

if you use ls -a.

To get more infor mation about each item that ls lists, add the –l option.

(That’s a lowercase “L” for “long.”) This option can be used alone, or in

combination with –a, as shown in Figure 3-5.

The long format provides the following information about each item:

Total n

n amount of storage used by everything in this directory. (This is

measur ed in blocks. On many systems, but not all, a full block holds

1024 bytes. A block can also be partly full.)

7 January 2002 13:12

512

1024

136

833

31273

0

$ ls -al

total 94

drwxr-xr-x

drwxr-xr-x

-rw-r--r--

-rw-r--r--

-rw-rw-rw-

-rw-rw-rw-

2 john

4 bin

1 john

1 john

1 john

1 john

doc

bin

doc

doc

doc

doc

.

..

.exrc

.profile

ch1

ch2

Jul

Jul

Jul

Jul

Jul

Jul

10

8

8

8

10

10

22:25

11:48

14:46

14:51

22:25

21:57

Type

Access
Modes

of
Links

Owner

Group

Size
(in bytes)

Name

Modification
Date and Time

Figur e 3-5. Output fr om ls -al

Type

Tells whether the item is a directory (d) or a plain file (-). (There are

other less common types that we don’t explain here.)

Access modes

Specifies three types of users (yourself, your group, all others) who

ar e allowed to read (r), write (w), or execute (x) your files. We’ll say

mor e about this in a moment.

Links

The number of files or directories linked to this one. (This isn’t the

same sort of link as in a web page. We don’t discuss filesystem links

in this little book.)

Owner

The user who created or owns this file or directory.

Gr oup

The group that owns the file or directory. (If your version of Unix

doesn’t show this column, add the –g option to see it.)

Size (in bytes)

The size of the file or directory. (A dir ectory is actually a special type

of file. Her e, the “size” of a directory is of the directory file itself, not

of all the files in that directory.)

The Unix Filesystem 51

7 January 2002 13:12

52 Chapter 3: Using Your Unix Account

Modification date

When the file was last modified, or the directory contents last changed

(when something in the directory was added, renamed, or removed).

If an entry was modified more than six months ago, ls shows the year

instead of the time.

Name

The name of the file or directory.

Notice especially the columns that list the owner and group of the files,

and the access modes (also called permissions). The person who creates a

file is its owner; if you’ve created any files (or system staff did it for you),

this column should show your username. You also belong to a group, set

by the person who created your account. Files you create are either

marked with the name of your group, or in some cases, the group that

owns the directory.

The per missions show who can read, write, or execute the file or direc-

tory; we explain what that means in a moment. The permissions have ten

characters. The first character shows the file type (d for directory or - for a

plain file). The other characters come in groups of three. The first group,

characters 2–4, show the permissions for the file’s owner, which is your-

self if you created the file. The second group, characters 5–7, show per-

missions for other members of the file’s group. The third group, characters

8–10, show permissions for all other users.

For example, the permissions for .pr ofile ar e -rw-r- -r- -, so it’s a plain

file. The owner, john, has both read and write permissions. Other users

who belong to the file’s group doc, as well as all other users of the sys-

tem, can only read the file; they don’t have write permission, so they can’t

change what’s in the file. No one has execute (x) per mission, which

should only be used for executable files (files that hold programs).

In the case of directories, x means the permission to access the direc-

tory — for example, to run a command that reads a file there or to use a

subdir ectory. Notice that the two directories shown in the example are

executable (accessible) by john, by users in the doc gr oup, and by every-

one else on the system. A directory with w (write) permission allows delet-

ing, renaming, or adding files within the directory. Read (r) per mission

allows listing the directory with ls.

You can use the chmod command to change the permissions of your files

and directories. See the section “Protecting and Sharing Files,” later in this

chapter.

7 January 2002 13:12

If you need to know only which files are dir ectories and which are exe-

cutable files, you can use the –F option.

If you give the pathname to a directory, ls lists the directory but it does

not change your working directory. The pwd command in the following

example shows this:

$ ls -F /users/andy

calendar goals ideas/

ch2 guide/ testpgm*

$ pwd

/etc

$

ls -F puts a / (slash) at the end of each directory name. (The directory

name doesn’t really have a slash in it; that’s just the shortcut ls –F uses to

identify a directory.) In our example, guide and ideas ar e dir ectories. You

can verify this by using ls –l and noting the “d” in the first field of the out-

put. Files with an execute status (x), such as programs, are marked with

an * (asterisk). The file testpgm is an executable file. Files that aren’t

marked are not executable.

ls –R (“r ecursive”) lists a directory and all its subdirectories. This can make

a very long list—especially when you list a directory near the root! (Pip-

ing the output of ls to a pager program solves this problem. There’s an

example in the section “Piping to a Pager” in Chapter 1.) You can com-

bine other options with –R: for instance, ls –RF marks each directory and

file type.

On Linux and other systems with the GNU version of ls, you may be able

to see names in color. For instance, directories could be green and pro-

gram files could be yellow. Like almost everything on Unix, of course, this

is configurable. The details are mor e than we can cover in an introductory

book. Try typing ls ––color and see what happens. (It’s time for our famil-

iar mantra: check your documentation. See Chapter 8—especially the man

command for reading a command’s online manual page.)

Exer cise: explor ing the filesystem

You’r e now equipped to explore the filesystem with cd, ls, and pwd. Take

a tour of the directory system, hopping one or many levels at a time, with

a mixtur e of cd and pwd commands.

The Unix Filesystem 53

7 January 2002 13:12

54 Chapter 3: Using Your Unix Account

Go to your home directory. Enter cd

Find your working directory. Enter pwd

Change to new working directory with its
absolute pathname.

Enter cd /etc

List files in new working directory. Enter ls

Change directory to root and list it in one
step. (Use the command separator, a
semicolon.)

Enter cd /; ls

Find your working directory. Enter pwd

Change to a subdirectory; use its relative
pathname.

Enter cd usr

Find your working directory. Enter pwd

Change to a subdirectory. Enter cd bin

Find your working directory. Enter pwd

Give a wrong pathname. Enter cd xqk

List files in another directory. Enter ls /bin

Find your working directory (notice that ls
didn’t change it).

Enter pwd

Retur n to your home directory. Enter cd

Looking Inside Files with less
By now, you’re probably tired of looking at files from the outside. It’s

kind of like going to a bookstore and looking at the covers, but never get-

ting to read a word. Let’s look at a program for reading files.

If you want to “read” a long file on the screen, your system may have the

less command to display one “page” (a terminal filled from top to bottom)

of text at a time.

If you don’t have less, you’ll probably have similar programs named more

or pg. (In fact, the name less is a play on the name of more, which came

first.) The syntax is:

less option(s) file(s)

less lets you move forward or backward in the files by any number of

pages or lines; you can also move back and forth between two or more

files specified on the command line. When you invoke less, the first

“page” of the file appears. A prompt appears at the bottom of the terminal

(or terminal window), as in the following example:

7 January 2002 13:12

$ less ch03

A file is the unit of storage in Unix, as in most other systems.

A file can hold anything: text (a report you’re writing,

.

.

.

:

The basic less pr ompt is just a colon (:)—although, for the first screenful,

less displays the file’s name as a prompt. The cursor sits to the right of this

pr ompt as a signal for you to enter a less command to tell less what to do.

Like almost everything about less, the prompt can be customized. For

example, using the less –M option on the less command line makes the

pr ompt show the filename and your position in the file. (If you want this

to happen every time you use less, you can set the LESS environment vari-

able to M (without a dash) in your shell setup file. See the section “Cus-

tomizing Your Account,” later in this chapter.)

You can set or unset most options temporarily from the less pr ompt. For

instance, if you have the short less pr ompt (a colon), you can enter –M

while less is running. less responds “Long prompt (press RETURN),” and

for the rest of the session, less pr ompts with the filename, line number,

and percentage of the file viewed.

To display the less commands and options available on your system, press

“h” (for “help”) while less is running. Table 3-1 lists some simple (but still

quite useful) commands.

Table 3-1. Useful less commands

Command Descr iption Command Descr iption

SPACE Display next page. v v

RETURN Display next line. CTRL-L Redisplay current page.

nf Move forward n lines. Help.

Move backward one

page.

:n Go to next file on

command line.

nb Move backward n lines. :p Go back to previous file

on command line.

/wor d Search forward for wor d. q Quit less.

?wor d Search backward for

wor d.

Looking Inside Files with less 55

7 January 2002 13:12

56 Chapter 3: Using Your Unix Account

Protecting and Sharing Files
Unix makes it easy for users to share files and directories. For instance,

everyone in a group can read documents stored in one of their manager’s

dir ectories without needing to make their own copies—if the manager has

allowed access. There might be no need to fill peoples’ email inboxes

with file attachments if everyone can access those files directly through

the Unix filesystem.

Her e’s a brief introduction to file security and sharing. Networked systems

with multiple users, such as Unix, have complex security issues that take

tens or hundreds of pages to explain. If you have critical security needs or

you just want more infor mation, talk to your system staff or see an up-to-

date book on Unix security.

Note that the system’s superuser (the system administrator
and possibly other users) can do anything to any file at any
time, no matter what its permissions are. So, access permis-
sions won’t keep your private information safe from every-

one—although let’s hope that you can trust your system
staf f!

Your system staff should also keep backup copies of users’
files. These backup copies may be readable by anyone
who has physical access to them. That is, anyone who can
take the backup out of a cabinet (or wherever) and mount
it on a computer system may be able to read the file
copies. The same is true for files stored on floppy disks and
any other removable media. (Once you take a file off of a
Unix system, that system can’t control access to it any-
mor e.)

Director y Access Per missions

A dir ectory’s access permissions help to control access to the files and

subdir ectories in that directory:

• If a dir ectory has read permission, a user can run ls to see what’s in

the directory and use wildcards to match files in it.

• A dir ectory that has write permission allows users to add, rename, and

delete files in the directory.

7 January 2002 13:12

• To access a directory — that is, to read or write the files in the direc-

tory or to run the files if they’re programs — a user needs execute per-

mission on that directory. Note that to access a directory, a user must

also have execute permission to all of its parent directories, all the

way up to the root!

File Access Per missions

The access permissions on a file control what can be done to the file’s

contents. The access permissions on the dir ectory wher e the file is kept

contr ol whether the file can be renamed or removed. (If this seems con-

fusing, think of it this way: the directory is actually a list of files. Adding,

renaming, or removing a file changes the contents of the directory. If the

dir ectory isn’t writable, you can’t change that list.)

Read permission controls whether you can read a file’s contents. Write

per mission lets you change a file’s contents. A file shouldn’t have execute

per mission unless it’s a program.

Setting Per missions with chmod

Once you know what permissions a file or directory needs—and if you’re

the owner (listed in the third column of ls –l output) — you can change the

per missions with the chmod pr ogram.

Ther e ar e two ways to change permissions: by specifying the permissions

to add or delete, or by specifying the exact permissions.* For instance, if a

dir ectory’s per missions ar e almost correct, but you also need to make it

writable by its group, tell chmod to add group-write permission. But if

you need to make more than one change to the permissions — for

instance, you want to add read and execute permission, but delete write

per mission—it’s easier to set all permissions explicitly instead of changing

them one-by-one. The syntax is:

chmod per missions file(s)

Let’s start with the rules; we see examples next. The per missions argument

has three parts, which you must give in order with no space between.

* Early versions of chmod can’t add or delete particular permissions. Instead, you have to
give an exact permission as three digits between 0 and 7. If you need to use chmod that
way, please see a more detailed Unix refer ence.

Protecting and Sharing Files 57

7 January 2002 13:12

58 Chapter 3: Using Your Unix Account

1. The category of permission you want to change. Ther e ar e thr ee: the

owner’s permission (which chmod calls “user,” abbreviated u), the

gr oup’s per mission (g), or others’ permission (o). To change more

than one category, string the letters together, such as go for “group

and others,” or simply use a to mean “all” (same as ugo).

2. Whether you want to add (+) the permission, delete (-) it, or specify it

exactly (=).

3. What per missions you want to affect: read (r), write (w), or execute

(x). To change more than one permission, string the letters

together — for example, rw for “read and write.”

Some examples should make this clearer! In the following command lines,

you can replace dir name or filename with the pathname (absolute or rela-

tive) of the directory or file. An easy way to change permissions on the

working directory is by using its relative pathname, . (dot), as in “chmod

a–w .”. You can combine two permission changes in the same chmod

command by separating them with a comma (,), as shown in the final

example.

• To protect a file from accidental editing, delete everyone’s write per-

mission with the command “chmod a–w filename”. On the other

hand, if you own an unwritable file that you want to edit, but you

don’t want to change other peoples’ write permissions, you can add

“user” (owner) write permission with “chmod u+w filename”.

• To keep yourself from accidentally removing files (or adding or

renaming files) in an important directory of yours, delete your own

write permission with the command “chmod u–w dir name”. If other

users have that permission, too, you could delete everyone’s write

per mission with “chmod a–w dir name”.

• If you want you and your group to be able to read and write all the

files in your working directory — but those files have various permis-

sions now, so adding and deleting the permissions individually would

be a pain—this is a good place to use the = operator to set the exact

per missions you want. Use the filename wildcard *, which means

“everything in this directory” (explained in the section “File and Direc-

tory Wildcards” of Chapter 4) and type: “chmod ug=rw *”.

If your working directory had any subdirectories, though, that com-

mand would be wrong because it takes away execute permission

fr om the subdirectories, so the subdirectories couldn’t be accessed

7 January 2002 13:12

anymor e. In that case, you could try a more specific wildcard. Or,

instead of a wildcard, you can simply list the filenames you want to

change, separated by spaces, as in “chmod ug=rw afile bfile cfile”.

• To protect the files in a directory and all its subdirectories from every-

one else on your system, but still keep the access permissions you

have there, you could use “chmod go–rwx dir name” in order to

delete all “group” and “others” permission to read, write, and execute.

A simpler way is to use the command “chmod go= dir name” to set

“gr oup” and “others” permission to exactly nothing.

• You want full access to a directory. Other people on the system

should be able to see what’s in the directory — and read or edit the

files if the file permissions allow it—but not rename, remove, or add

files. To do that, give yourself all permissions, but give “group” and

“others” only read and execute permission. Use the command

“chmod u=rwx,go=rx dir name”.

After you change permissions, it’s a good idea to check your work at first

with “ls –l filename” or “ls –ld dir name”.

More Protection Under Linux

Most Linux systems have a program named chattr that gives you more

choices on file and directory protection. chattr is being developed, and

your version may not have all the features that it will have in later Linux

versions. For instance, chattr can make a Linux file append-only (so it

can’t be overwritten, only added to), compr essed (to save disk space auto-

matically), immutable (so it can’t be changed at all), undeletable, and

mor e. Check your online documentation (type man chattr—see Chapter

8).

Problem checklist

I get the message “chmod: Not owner.”

Only the owner of a file or directory — or the superuser—can set its

per missions. Use ls –l to find the owner, or ask a system staff person

to change the permissions.

A file is writable, but my program says it can’t be written.

First, check the file permissions with ls –l and be sure you’r e in the

category (user, group, or others) that has write permission.

Protecting and Sharing Files 59

7 January 2002 13:12

60 Chapter 3: Using Your Unix Account

The problem may also be in the permissions of the file’s dir ectory.

Some programs need permission to write more files into the same

dir ectory (for example, temporary files), or to rename files (for

instance, making a file into a backup) while editing. If it’s safe to add

write permission to the directory (if other files in the directory don’t

need protection from removal or renaming) try that. Otherwise, copy

the file to a writable directory (with cp), edit it there, then copy it

back to the original directory.

Chang ing Group and Owner

Gr oup ownership lets a certain group of users have access to a file or

dir ectory. You might need to let a differ ent gr oup have access. The chgrp

pr ogram sets the group owner of a file or directory. You can set the group

to any of the groups you belong to. (The system staff contr ol the list of

gr oups you’r e in.) On most versions of Unix, the gr oups pr ogram lists

your groups.

For example, if you’re an instructor creating a directory named csc303 for

students in a course, the directory’s original group owner might be fac-

ulty. You’d like the students, all of whom are in the group named

csstudnt, to access the directory; members of other groups should have no

access. Use commands such as these:*

$ groups

faculty csstudnt wheel research

$ mkdir csc303

$ ls -ld csc303

drwxr-xr-x 2 roberts faculty 4096 Aug 25 13:35 csc303

$ chgrp csstudnt csc303

$ chmod o= csc303

$ ls -ld csc303

drwxr-x--- 2 roberts csstudnt 4096 Aug 25 13:35 csc303

The chown pr ogram changes the owner of a file or directory. On most

Unix systems, only the superuser can use chown.†

* Many Unix systems also let you set a directory’s group ownership so that any files you
later create in that directory will be owned by the same group as the directory. Try the com-
mand “chmod g+s dir name”. If this works, the permissions listing from ls –ld should show
an s in place of the second x, such as drwxr–s–––.

† If you have permission to read another user’s file, you can make a copy of it (with cp; see
the section “Copying Files” in Chapter 4). You’ll own the copy.

7 January 2002 13:12

Graphical Filesystem Browser s
Most Unix window systems give you a graphical way to do some of the

things you can do with files from the command line. A filesystem browser,

such as the GNOME File Manager or KDE’s Konqueror, lets you see a

graphical repr esentation of the filesystem and do a limited number of

operations on it. Figure 3-6 shows the GNOME filesystem browser. The

left pane has a directory tree. The right pane shows the contents of the

dir ectory that’s selected (open) in the left pane; here, this is the directory

/home/mpeek. The titlebar shows the pathname of the selected directory.

Figur e 3-6. GNOME filesystem browser

A filesystem browser can be handy for seeing what’s in the filesystem.

Unfortunately, because a filesystem browser takes you away from the shell

you’r e using for other work, it can limit what you’re able to do with Unix.

(You’ll see additional information about why this is true when we cover

mor e advanced features such as input-output redir ection in Chapter 1.) We

recommend learning about your filesystem browser but also learning what

you can do at the more power ful Unix command line.

Graphical Filesystem Browser s 61

7 January 2002 13:12

62 Chapter 3: Using Your Unix Account

Completing File and Director y
Names
Most Unix shells can complete a partly typed file or directory name for

you. Differ ent shells have differ ent methods. In many shells, you type the

first few letters of the name, then press TAB . If the shell can find just one

way to finish the name, it will; your cursor will move to the end of the

new name, where you can type more or press RETURN to run the com-

mand. (You also can edit or erase the completed name.)

What happens if more than one file or directory name matches what

you’ve typed so far? Again, that depends on the shell you’re using. The

cursor will probably stay where it is, and the terminal may beep. At this

point, the easiest answer could be to type more characters of the name (to

make the name unique) and press TAB again to complete the rest of the

name. You may also be able to get a list of all possible completions; after

the first beep, try pressing TAB again (or CTRL-D , depending on your

shell) and you may see a list of all names starting with the characters

you’ve typed so far. Her e’s an example from the bash shell:

$ cp /etc/paTAB (beep)TAB

pam.d paper.config passwd passwd- passwd.OLD

$ cp /etc/pa

At this point, I could type another character or two—an s, for example—

and then press TAB once mor e to make /etc/passwd.

Chang ing Your Password
On most Unix systems, everyone knows (or can find) your username.

When you log in, how does the system decide that you really own your

account and aren’t an intruder trying to break in? Unix uses your pass-

word. If anyone knows both your username and password, they can use

your account—including sending email that looks as if you wrote it.* So

you should keep your password a secret! Never write it down and leave it

anywher e near your terminal.

If you think that someone knows your password, you should probably

change it right away—although, if you suspect a computer “cracker” (or

* Unfortunately, it’s easy to forge email, without using your computer account at all, so that
no one but an expert can tell it was forged.

7 January 2002 13:12

“hacker”) is using your account to break into your system, ask your sys-

tem administrator for advice first, if possible! You should also change your

password periodically; every few months is recommended.

A password should be easy for you to remember but hard for other peo-

ple (or password-guessing programs!) to guess. Your system should have

guidelines for secure passwords. If it doesn’t, here are some suggestions.

A password should be between six and eight characters long. It should

not be a word in any language, your phone number, your address, or

anything anyone else might know or guess that you’d use as a password.

It’s best to mix upper- and lowercase letters, punctuation, and numbers.

To change your password, you’ll probably use either the passwd or

yppasswd pr ogram fr om a shell prompt. After you enter the command, it

pr ompts you to enter your password (“old password”). If the password is

corr ect, it asks you to enter your new password—twice, to be sure ther e

is no typing mistake. For security, neither the old nor new passwords

appear as you type them.

On some systems, your password change won’t take effect for some time.

The change may requir e between a few minutes to a day.

Customizing Your Account
As we saw earlier, your home directory may have a hidden file called

.pr ofile. If it doesn’t, there’ll probably be one or more files named .login,

.cshr c, .tcshr c, .bashr c, .bash_ profile, or .bash_login. These files are shell

setup files, and are the key to customizing your account. Shell setup files

contain commands that are automatically executed when a new shell

starts — especially when you log in.

Let’s take a look at these files. Go to your home directory, then use less to

display the file. Your .pr ofile might look something like this:

PATH=’/bin:/usr/bin:/usr/local/bin:’

LESS=’eMq’

export PATH LESS

/usr/games/fortune

date

umask 002

A .login file could look like this:

set path = (/bin /usr/bin /usr/local/bin .)

setenv LESS ’eMq’

/usr/games/fortune

date

umask 002

Customizing Your Account 63

7 January 2002 13:12

64 Chapter 3: Using Your Unix Account

As you can see, these sample setup files contain commands to print a “for-

tune” and the date—just what happened earlier when we logged in! (/usr/

games/fortune is a useless but entertaining program that prints a randomly

selected saying from its collection. fortune isn’t available on all systems.)

But what are these other commands?

• The line with PATH= or set path = tells the shell which directories to

search for Unix programs. This saves you the trouble of typing the

complete pathname for each program you run. (Notice that /usr/

games isn’t part of the path, so we had to use the absolute pathname

to get our daily dose of wisdom from the fortune pr ogram.) The

export PATH is needed in the .pr ofile, but not in .login.*

• The line with LESS= or setenv LESS tells the less pr ogram which

options you want to set every time you use it. This saves you the

tr ouble of typing the options on every less command line. The export

LESS line is needed in the .pr ofile, but not in .login.

• The umask command sets the default file permissions assigned to all

files you create. Briefly, a value of 022 sets the permissions

rw-r- -r- - (r ead-write by owner, but read-only by everyone else), and

002 produces rw-rw-r- - (r ead-write by owner and group, but read-

only by everyone else). If this file is a program or a directory, both

umask settings also give execute (x) per mission to all users. For more

infor mation, see one of the sources in the section “Documentation” of

Chapter 8.

You can change these files with a text editor, such as pico –w (see the

section “The Pico Text Editor” in Chapter 4). Don’t use a word processor

that breaks long lines or puts special nontext codes into the file. Any

changes you make to those files will take effect the next time you log in

(or, in some cases, when you start a new shell—such as opening a new

ter minal window in your window system). Unfortunately, it’s not always

easy to know which shell setup file you should change.† And an editing

mistake in your shell setup file can keep you from logging in to your

account! We suggest that beginners get help from experienced users—and

not make changes to these files at all if you’re about to do some critical

work with your account, unless there’s some reason you have to make the

changes immediately.

* Some shells that read the .pr ofile let you set a variable’s value on the same line as the
expor t command, but not all do. Our two-step method for setting PATH works in all cases.

† Some files are read by login shells, and others by nonlogin shells. Some are read by sub-
shells; others aren’t. Some ter minal windows open login shells; others don’t.

7 January 2002 13:12

You can execute any of these programs from the command line, as well.

In this case, the changes are in effect only until you close that window or

log out. If your shell prompt has a $ character in it, you’ll probably use

the syntax shown earlier in the .pr ofile; if your shell prompt has a % or >

instead, the syntax in the .login is probably right.

For example, to change the default options for less so it will clear the ter-

minal screen before it shows each new page of text, you’ll want to add

the –c option to the LESS environment variable. The command you’d type

at a shell prompt would look something like this:

$ LESS=’eMqc’

$ export LESS

or like this:

% setenv LESS ’eMqc’

(If you don’t want some of the less options we’ve shown, you could leave

those letters out.) Unix has many other configuration commands to learn

about; the sources listed in the section “Documentation” of Chapter 8 can

help.

Just as you can execute the setup commands from the command line, the

converse is true: any command that you can execute from the command

line can be executed automatically when you log in by placing it in your

setup file. (Running interactive commands such as pine fr om your setup

file isn’t a good idea, though.)

Customizing Your Account 65

7 January 2002 13:12

4
File Management

In this chapter:

• File and Director y
Names

• File and Director y
Wildcards

• Creating and Editing
Files

• Manag ing Your Files

• Printing Files

Chapter 3 introduced the Unix filesystem. This chapter explains how to

name, edit, copy, move, find, and print files.

File and Director y Names
As Chapter 3 explains, both files and directories are identified by their

names. A directory is really just a special kind of file, so the rules for nam-

ing directories are the same as the rules for naming files.

Filenames may contain any character except /, which is reserved as the

separator between files and directories in a pathname. Filenames are usu-

ally made of upper- and lowercase letters, numbers, “.” (dots), and “_”

(underscor es). Other characters (including spaces) are legal in a filename,

but they can be hard to use because the shell gives them special mean-

ings. So we recommend using only letters, numbers, dots, and underscore

characters. You can also use “–” (dashes), as long as they aren’t the first

character of a filename, which can make a program think the filename is

an option.

If you have a file with a space in its name, the shell will be confused if

you type its name on the command line. That’s because the shell breaks

command lines into separate arguments at the spaces.

To tell the shell not to break an argument at spaces, put quote marks (")

ar ound the argument. For example, the rm pr ogram, cover ed later in this

chapter, removes files.

66

7 January 2002 13:13

To remove a file named a confusing name, the first rm command, which

follows, doesn’t work; the second one does:

$ ls -l

total 2

-rw-r--r-- 1 jpeek users 0 Oct 23 11:23 a confusing name

-rw-r--r-- 1 jpeek users 1674 Oct 23 11:23 ch01

$ rm a confusing name

rm: a: no such file or directory

rm: confusing: no such file or directory

rm: name: no such file or directory

$ rm "a confusing name"

$

Unlike some operating systems, Unix doesn’t requir e a dot (.) in a file-

name; in fact, you can use as many as you want. For instance, the file-

names pizza and this.is.a.mess ar e both legal.

Some Unix systems limit filenames to 14 characters. Most newer systems

allow much longer filenames.

A filename must be unique inside its directory, but other directories may

have files with the same names. For example, you may have the files

called chap1 and chap2 in the directory /users/car ol/work and also have

files with the same names in /users/car ol/play.

File and Director y Wildcards
When you have a number of files named in series (for example, chap1 to

chap12) or filenames with common characters (such as aegis, aeon, and

aerie), you can use wildcar ds to specify many files at once. These special

characters are * (asterisk), ? (question mark), and [] (squar e brackets).

When used in a file or directory name given as an argument on a com-

mand line, the following is true:

* An asterisk stands for any number of characters in a filename. For

example, ae* would match aegis, aerie, aeon, etc. if those files were

in the same directory. You can use this to save typing for a single

filename (for example, al* for alphabet.txt) or to choose many files at

once (as in ae*). A * by itself matches all file and subdirectory names

in a directory.

? A question mark stands for any single character (so h?p matches hop

and hip, but not help).

File and Director y Wildcards 67

7 January 2002 13:13

68 Chapter 4: File Management

[] Squar e brackets can surround a choice of single characters (i.e., one

digit or one letter) you’d like to match. For example, [Cc]hapter

would match either Chapter or chapter, but [ch]apter would match

either capter or hapter. Use a hyphen (–) to separate a range of con-

secutive characters. For example, chap[1–3] would match chap1,

chap2, or chap3.

The following examples show the use of wildcards. The first command

lists all the entries in a directory, and the rest use wildcards to list just

some of the entries. The last one is a little tricky; it matches files whose

names contain two (or more) a ’s.

$ ls

chap10 chap2 chap5 cold

chap1a.old chap3.old chap6 haha

chap1b chap4 chap7 oldjunk

$ ls chap?

chap2 chap5 chap7

chap4 chap6

$ ls chap[5-7]

chap5 chap6 chap7

$ ls chap[5-9]

chap5 chap6 chap7

$ ls chap??

chap10 chap1b

$ ls *old

chap1a.old chap3.old cold

$ ls *a*a*

chap1a.old haha

Wildcards are useful for more than listing files. Most Unix programs accept

mor e than one filename, and you can use wildcards to name multiple files

on the command line. For example, the less pr ogram displays a file on the

scr een. Let’s say you want to display files chap3.old and chap1a.old.

Instead of specifying these files individually, you could enter the com-

mand as:

$ less *.old

This is equivalent to “less chap1a.old chap3.old”.

Wildcards match directory names, too. You can use them anywhere in a

pathname — absolute or relative — though you still need to separate direc-

tory levels with slashes (/). For example, let’s say you have subdirectories

named Jan, Feb, Mar, and so on. Each has a file named summary. You

could read all the summary files by typing “less */summary”. That’s almost

7 January 2002 13:13

equivalent to “less Jan/summar y Feb/summar y . . . ” but there’s one impor-

tant differ ence: the names will be alphabetized, so Apr/summary would

be first in the list.

Creating and Editing Files
One easy way to create a file is with a Unix feature called input/output

redir ection, as Chapter 1 explains. This sends the output of a program

dir ectly to a file, to make a new file or add to an existing one.

You’ll usually create and edit a plain-text file with a text editor pr ogram.

Text editors are somewhat differ ent than wor d pr ocessors.

Te xt Editor s and Word Processor s

A text editor lets you add, change, and rearrange text easily. Two common

Unix editors are vi (pr onounced “vee-eye”) and emacs (“ee-macs”). Pico

(“pea-co”) is a simple editor that has been added to many Unix systems.

Since there are several editor programs, you can choose one you’re com-

fortable with. vi is probably the best choice because almost all Unix sys-

tems have it, but emacs is also widely available. If you’ll be doing simple

editing only, pico is a great choice. Although pico is much less powerful

than emacs or vi, it’s also a lot easier to learn.

None of those editors has the same features as popular word processing

softwar e on personal computers. vi and emacs ar e sophisticated,

extr emely flexible editors for all kinds of plain text files: programs, email

messages, and so on.

By “plain text,” we mean a file with only letters, numbers, and punctua-

tion characters in it. Unix systems use plain text files in many places: redi-

rected input and output of Unix programs (Chapter 1), as shell setup files

(see the section “Customizing Your Account” in Chapter 3), for shell

scripts (shown in the section “Programming” of Chapter 8), for system

configuration, and more. Text editors edit these files. When you use a

word processor, though, although the screen may look as if the file is only

plain text, the file probably also has hidden codes (nontext characters) in

it. That’s often true even if you tell the word processor to “Save as plain

text.” One easy way to check for nontext characters in a file is by reading

the file with less; look for characters in reversed colors, codes like <36>,

and so on.

If you need to do word processing — making documents, envelopes, and

so on—most Unix systems also support easy-to-use word processors such

Creating and Editing Files 69

7 January 2002 13:13

70 Chapter 4: File Management

as WordPer fect and StarOffice (which are compatible, more or less, with

Micr osoft word processors). Ask your system staff what’s available or can

be installed.

The Pico Text Editor

The Pico editor, from the University of Washington, is easy to use. If you

send email with Pine, you already know how to use Pico; it’s Pine’s mes-

sage editor. Like Pine, Pico is still evolving; if you use an older version

than we did here (Version 3.7), yours may have some differ ent featur es.

Start Pico by typing its name; the argument is the filename you want to

cr eate or edit. If you’re editing a Unix shell setup file or shell script, you’ll

also want the –w option; it tells Pico not to break (“wrap”) lines at the

right margin, but only when you press the RETURN key. If a line is

longer than the right margin, like the line starting with PATH= in Figure 4-1,

pico –w marks the right end with a dollar sign ($). When you move the

cursor over the dollar sign, the next 80 characters of that one line are dis-

played. For instance, to edit my .pr ofile setup file, I cd to my home direc-

tory and enter:

$ pico -w .profile

My terminal fills with a copy of the file (and, because the file is short,

some blank lines too), as shown in Figure 4-1.

UW PICO(tm) 3.7 File: .profile

PATH=’/bin:/usr/bin:/opt/bin:/usr/local/bin:/users/jpeek/bin:/users/$

LESS=’eMq’

export PATH LESS

/usr/games/fortune

date

umask 002

[Read 6 lines]

ˆG Get Help ˆO WriteOut ˆR Read File ˆY Prev Pg ˆK Cut Text

ˆX Exit ˆJ Justify ˆW Where is ˆV Next Pg ˆU UnCut Text

Figur e 4-1. Pico display while editing

7 January 2002 13:13

The bottom two rows of the window list some Pico commands. For exam-

ple, CTRL-J justifies the paragraph you’re editing, making the lines fit

neatly between the margins. For a complete list of commands, use

CTRL-G , the “Get Help” command.

Pico tour

Let’s take a tour through Pico. In this example, you’ll make a new file with

wrapped lines. So (unlike what you’d do when editing a system setup file)

we won’t use the –w option. You can call the file anything you want, but

it’s best to use only letters and numbers in the filename. For instance, to

make a file named sample, enter the command pico sample. Let’s start our

tour now.

1. Your screen should look something like the previous example, but the

middle of the screen should be blank, ready for you to enter text.

2. Enter some lines of text. Make some lines too short (press

RETURN before the line gets to the right margin). Make others too

long; watch how Pico wraps long lines. If you’re using a window sys-

tem and you have another terminal window open with some text in it,

you can also use your mouse to copy text from another window and

paste it into the Pico window. (Chapter 2 includes the section “Using

a Mouse with xterm Windows,” which has instructions for copying

and pasting between xter m windows.) To get a lot of text quickly,

paste the same text more than once.

3. Let’s practice moving around the file. Pico works on all terminals,

with or without a mouse, so it will probably ignore your mouse if you

try to use it to move the cursor. Instead, use the keyboard to move

the cursor. If your keyboard has arrow keys, they’ll probably move

the cursor. Otherwise, try the cursor-moving commands listed in the

help page, such as CTRL-F to move forward a character, CTRL-E to

move to the end of a line, and CTRL-A to go to the start of a line. If

your PAGE UP and PAGE DOWN keys don’t work, use CTRL-Y and

CTRL-V , respectively.

Pico’s search or “where is” command, CTRL-W , can help you find a

word quickly. It’s handy even on a short file, where it can be quicker

to type CTRL-W and a word than to use the cursor-moving com-

mands. The search command is also a good example of the way that

pico can change its display momentarily. Let’s try it. Type CTRL-W ;

you should see a display like Figure 4-2.

Creating and Editing Files 71

7 January 2002 13:13

72 Chapter 4: File Management

UW PICO(tm) 3.7 File: Sample Modified

This is a test file

If you’re using a window system, and you have

another terminal window open with some text in it, you can also

use your mouse to copy text from another window and paste it

into the Pico window.

If you’re using a window system, and

you have another terminal window open with some text in it,

you can also use your mouse to copy text from another window

and paste it into the Pico window.

Search :

ˆG Get Help ˆY FirstLine ˆT LineNumber ˆO End of Par

ˆC Cancel ˆV LastLine ˆW Start of P

Figur e 4-2. Pico display while searching

Notice that the command list at the bottom of the display has changed

since you started Pico (Figure 4-1). The cursor sits after the word

“Search:”. You can type a word or characters to search for, then press

RETURN to do the search. You also can do any other command

listed, such as CTRL-T to go to a particular line number. Type

CTRL-G to get a help display. Notice that if you type CTRL-W while

the search command is active, it doesn’t start another search; it goes

to the start of the current paragraph. After a search finishes, you can

type CTRL-W again, then press RETURN to repeat the search.

4. If your text isn’t in paragraphs separated by blank lines, break some

of it into paragraphs. Put your cursor at the place you want to break

the text and press RETURN twice (once to break the line, another to

make a blank line).

Now justify one paragraph. Put the cursor somewhere in it and press

CTRL-J . Now the paragraph’s lines should flow and fit neatly

between the margins.

5. Because pico doesn’t use a mouse, cutting/copying and pasting text

works differ ently than it does with mouse-based editors you might

have used before. Please choose some text to copy or cut, then

paste.

The first step is to select the text to cut or copy. Move the cursor to

the first character, then press CTRL-ˆ (contr ol followed by the caret

key, ˆ).

7 January 2002 13:13

Move the cursor to the last character you want and press CTRL-K .

That cuts the text. Pico will “remember” the text you cut and let you

paste it back as many times as you want until you cut some other text

(or until you quit your pico session).

If you only wanted to copy the text, not to cut it, you can paste the

text back where you cut it. Pr ess CTRL-U to ‘‘uncut’’ — that is,

paste — the text at current cursor position.

Or, if you wanted to move the text somewhere else, move the cursor

to that spot and press CTRL-U ther e.

6. As with any text editor, it’s a good idea to save your work from pico

every few minutes. That way, if something goes wrong on the com-

puter or network, you’ll only lose the work since the last time you

saved it. (Pico saves interrupted work in a file named pico.save or

filename.save, wher e filename is the name of the file you were edit-

ing. But I like to save by hand when I know that the file is in a good

state.)

Try writing out your work with CTRL-O . The bottom of the display

will look like Figure 4-3. The cursor sits after the name of the file

you’r e editing.

This part confuses some pico beginners. If you want to save the file

with the same name it had as you started, just press RETURN ; that’s

all! You can also choose a dif ferent filename.

One way to use a differ ent filename is to edit the filename in place.

For instance, if you want to call the backup copy sample1, simply

pr ess the 1 key to add a 1 to the end of the filename before you press

RETURN to save it.

You can backspace over the name and type a new one. Or move to

the start or middle of the name by using the arrow keys, CTRL-B and

CTRL-F , then add or delete characters in the name. As an example,

you could edit the filename to be an absolute pathname such as

/home/car ol/backups/sample.

If you choose CTRL-T , “To Files,” you’ll go to a file browser where

you can look through a list of your files and directories. You also can

type part of an existing filename and use filename completion (see

the section “Completing File and Directory Names” in Chapter 3). By

default, filename completion assumes that you started Pico from your

home directory — even if you didn’t. (You can change this with the

use-curr ent-dir pr efer ence setting for Pine—which also affects Pico.

See the section “Configuring Pine” in Chapter 6.)

Creating and Editing Files 73

7 January 2002 13:13

74 Chapter 4: File Management

7. Make one or two more small edits. Then exit with CTRL-X . Pico

pr ompts you to save the file; see the explanation of CTRL-O earlier.

File Name to write : sample

ˆG Get Help ˆY To Files

ˆC Cancel TAB Complete

Figur e 4-3. Bottom of Pico display while saving work

Manag ing Your Files
The tree structure of the Unix filesystem makes it easy to organize your

files. After you make and edit some files, you may want to copy or move

files from one directory to another, or rename files to distinguish differ ent

versions of a file. You may want to create new directories each time you

start a differ ent pr oject.

A dir ectory tr ee can get cluttered with old files you don’t need. If you

don’t need a file or a directory, delete it to free storage space on the disk.

The following sections explain how to make and remove directories and

files.

Creating Director ies with mkdir

It’s handy to group related files in the same directory. If you were writing

a spy novel, you probably wouldn’t want your intriguing files mixed with

restaurant listings. You could create two directories: one for all the chap-

ters in your novel (spy, for example), and another for restaurants

(boston.dine).

To create a new directory, use the mkdir pr ogram. The syntax is:

mkdir dir name(s)

dir name is the name of the new directory. To make several directories,

put a space between each directory name. To continue our example, you

would enter:

$ mkdir spy boston.dine

Copying Files

If you’re about to edit a file, you may want to save a copy first. That

makes it easy to get back the original version.

7 January 2002 13:13

cp

The cp pr ogram can put a copy of a file into the same directory or into

another directory. cp doesn’t affect the original file, so it’s a good way to

keep an identical backup of a file.

To copy a file, use the command:

cp old new

wher e old is a pathname to the original file and new is the pathname you

want for the copy. For example, to copy the /etc/passwd file into a file

called passwor d in your working directory, you would enter:

$ cp /etc/passwd password

$

You can also use the form:

cp old olddir

This puts a copy of the original file old into an existing directory olddir.

The copy will have the same filename as the original.

If there’s already a file with the same name as the copy, cp replaces the

old file with your new copy. This is handy when you want to replace an

old copy with a newer version, but it can cause trouble if you accidentally

overwrite a copy you wanted to keep. To be safe, use ls to list the direc-

tory before you make a copy there. Also, many versions of cp have an –i

(interactive) option that asks you before overwriting an existing file.

You can copy more than one file at a time to a single directory by listing

the pathname of each file you want copied, with the destination directory

at the end of the command line. You can use relative or absolute path-

names (see “the section “The Unix Filesystem” in Chapter 3) as well as

simple filenames. For example, let’s say your working directory is /users/

car ol (fr om the filesystem diagram in Figure 3-1). To copy three files

called ch1, ch2, and ch3 fr om /users/john to a subdirectory called work

(that’s /users/car ol/work), enter:

$ cp ../john/ch1 ../john/ch2 ../john/ch3 work

Or, you could use wildcards and let the shell find all the appropriate files.

This time, let’s add the –i option for safety:

$ cp -i ../john/ch[1-3] work

cp: overwrite work/ch2? n

Manag ing Your Files 75

7 January 2002 13:13

76 Chapter 4: File Management

Ther e is already a file named ch2 in the work dir ectory. When cp asks,

answer n to prevent copying ch2. Answering y would overwrite the old

ch2.

As you saw in the section “Relative pathnames up” in Chapter 3, the short-

hand form . puts the copy in the working directory, and .. puts it in the

par ent dir ectory. For example, the following puts the copies into the

working directory:

$ cp ../john/ch[1-3] .

cp can also copy entire dir ectory tr ees. Use the option –R, for “recursive.”

Ther e ar e two arguments after the option: the pathname of the top-level

dir ectory you want to copy from, and the pathname of the place where

you want the top level of the copy to be. As an example, let’s say that a

new employee, Asha, has joined John and Carol. She needs a copy of

John’s work dir ectory in her own home directory. See the filesystem dia-

gram in Figure 3-1. Her home directory is /users/asha. If Asha’s own work

dir ectory doesn’t exist yet (important!), she could type the following com-

mands:

$ cd /users

$ cp -R john/work asha/work

Or, from her home directory, she could have typed “cp –R ../john/work

work”. Either way, she’d now have a new subdirectory /users/asha/work

with a copy of all files and subdirectories from /users/john/work.

If you give cp –R the wrong pathnames, it can copy a
dir ectory tr ee into itself—running forever until your filesys-
tem fills up!

If the copy seems to be taking a long time, stop cp with
CTRL-Z , then explore the filesystem (ls –RF is handy for
this). If all’s okay, you can resume the copying by putting
the cp job in the background (with bg) so it can finish its
slow work. Otherwise, kill cp and do some cleanup—
pr obably with rm –r, which we mention in the section
“r mdir” later in this chapter. (See the section “Running a
Command in the Background” and the section “Cancelling
a Process” in Chapter 7.)

7 January 2002 13:13

Problem checklist

The system says something like “cp: cannot copy file to itself.”

If the copy is in the same directory as the original, the filenames must

be differ ent.

The system says something like “cp: filename: no such file or directory.”

The system can’t find the file you want to copy. Check for a typing

mistake. If a file isn’t in the working directory, be sure to use its path-

name.

The system says something like “cp: permission denied.”

You may not have permission to copy a file created by someone else

or copy it into a directory that does not belong to you. Use ls –l to

find the owner and the permissions for the file, or ls –ld to check the

dir ectory. If you feel that you should be able to copy a file, ask the

file’s owner or a system staff person to change its access modes.

Copying files across a network

The cp pr ogram works on whatever computer you’re logged onto. But,

unless your computer has a networked filesystem (see the section “The

Dir ectory Tr ee” in Chapter 3), you can’t copy files to other computers with

cp. To do this, see the section “Transferring Files” in Chapter 6.

Renaming and Moving Files with mv

To rename a file, use mv (move). The mv pr ogram can also move a file

fr om one directory to another.

The mv command has the same syntax as the cp command:

mv old new

old is the old name of the file and new is the new name. mv will write

over existing files, which is handy for updating old versions of a file. If

you don’t want to overwrite an old file, be sure that the new name is

unique. If your cp has an –i option for safety, your mv pr obably has one

too.

$ mv chap1 intro

$

The previous example changed the file named chap1 to intr o. If you list

your files with ls, you will see that the filename chap1 has disappeared.

Manag ing Your Files 77

7 January 2002 13:13

78 Chapter 4: File Management

The mv command can also move a file from one directory to another. As

with the cp command, if you want to keep the same filename, you only

need to give mv the name of the destination directory.

Finding Files

If your account has lots of files, organizing them into subdirectories can

help you find the files later. Sometimes you may not remember which

subdir ectory has a file. The find pr ogram can search for files in many

ways; we’ll look at two.

Change to your home directory so find will start its search there. Then

car efully enter one of the following two find commands. (The syntax is

strange and ugly—but find does the job!)

$ cd

$ find . -type f -name "chap*" -print

./chap2

./old/chap10b

$ find . -type f -mtime -2 -print

./work/to_do

The first command looked in your working directory (.) and all its subdi-

rectories for files (–type f) whose names start with chap. (find understands

wildcards in filenames. Be sure to put quotes around any filename pattern

with a wildcard in it, as we did in the example.) The second command

looked for all files that have been created or modified in the last two days

(–mtime –2). The relative pathnames that find finds start with a dot (./),

the name of the working directory, which you can ignore.

Linux systems, and some others, have the GNU locate pr ogram. If it’s

been set up and maintained on your system, you can use locate to search

part or all of a filesystem for a file with a certain name. For instance, if

you’r e looking for a file named alpha-test, alphatest, or something like

that, try this:

$ locate alpha

/users/alan/alpha3

/usr/local/projects/mega/alphatest

You’ll get the absolute pathnames of files and directories with alpha in

their names. (If you get a lot of output, add a pipe to less—see the sec-

tion “Piping to a Pager” in Chapter 1.) locate may or may not list pro-

tected, private files; its listings usually also aren’t completely up to date.

To lear n much more about find and locate, read your online documenta-

tion (see Chapter 8) or read the chapter about them in Unix Power Tools

(O’Reilly).

7 January 2002 13:13

Removing Files and Director ies

You may have finished work on a file or directory and see no need to

keep it, or the contents may be obsolete. Periodically removing unwanted

files and directories frees storage space.

rm

The rm pr ogram removes files. The syntax is simple:

rm filename(s)

rm removes the named files, as the following example shows:

$ ls

chap10 chap2 chap5 cold

chap1a.old chap3.old chap6 haha

chap1b chap4 chap7 oldjunk

$ rm *.old chap10

$ ls

chap1b chap4 chap6 cold oldjunk

chap2 chap5 chap7 haha

$ rm c*

$ ls

haha oldjunk

$

When you use wildcards with rm, be sur e you’r e deleting the right files! If

you accidentally remove a file you need, you can’t recover it unless you

have a copy in another directory or in the system backups.

Do not enter rm * car elessly. It deletes all the files in your
working directory.

Her e’s another easy mistake to make: you want to enter a
command such as rm c* (r emove all filenames starting with
“c”) but instead enter rm c * (r emove the file named c and
all files!).

It’s good practice to list the files with ls befor e you remove
them. Or, if you use rm’s –i (interactive) option, rm asks
you whether you want to remove each file.

rmdir

Just as you can create new directories, you can remove them with the

rmdir pr ogram. As a precaution, rmdir won’t let you delete directories that

Manag ing Your Files 79

7 January 2002 13:13

80 Chapter 4: File Management

contain any files or subdirectories; the directory must first be empty. (The

rm –r command removes a directory and everything in it. It can be dan-

ger ous for beginners, though.)

The syntax is:

rmdir dir name(s)

If a directory you try to remove does contain files, you get a message like

“r mdir: dir name not empty”.

To delete a directory that contains some files:

1. Enter “cd dir name” to get into the directory you want to delete.

2. Enter “rm *” to remove all files in that directory.

3. Enter “cd ..” to go to the parent directory.

4. Enter “rmdir dir name” to remove the unwanted directory.

Problem checklist

I still get the message “dirname not empty” even after I’ve deleted all the

files.

Use ls –a to check that there are no hidden files (names that start with

a period) other than . and .. (the working directory and its parent).

The following command is good for cleaning up hidden files (which

ar en’t matched by a simple wildcard like *):

$ rm .[a-zA-Z] .??*

Files on Other Operating Systems

Chapter 6 includes the section “Transferring Files,” which explains ways to

transfer files across a network—possibly to nonUnix operating systems.

Your system may also be able to run operating systems other than Unix.

For instance, many Linux systems can also run Microsoft Windows. If

yours does, you can probably use those files from your Linux account

without needing to boot and run Windows.

If the Windows filesystem is mounted with your other filesystems, you’ll

be able to use its files by typing a Unix-like pathname. For instance, from

our PC under Linux, we can access the Windows file

C:\WORD\REPOR T.DOC thr ough the pathname /winc/wor d/report.doc.

7 January 2002 13:13

Your Linux (or other) system may also have the MTOOLS utilities. These

give you Windows-like (actually, DOS-like) programs that interoperate

with the Unix-like system. For example, we can put a Windows floppy

disk in the A: drive and then copy a file named summary.txt into our cur-

rent directory (.) by entering:

$ mcopy a:summary.txt .

Copying summary.txt

$

The mcop y –t option translates the end-of-line characters in plain-text files

fr om the Windows format to the Unix format or vice versa. In general,

don’t use –t unless you’re sur e that you need to translate end-of-line char-

acters. A local expert should be able to tell you about translation, whether

other filesystems are mounted or can be mounted, whether you have utili-

ties like MTOOLS, and how to use them.

Pr inting Files
Befor e you print a file on a Unix system, you may want to refor mat it to

adjust the margins, highlight some words, and so on. Most files can also

be printed without refor matting, but the raw printout may not look quite

as nice.

Many versions of Unix include two powerful text formatters, nrof f and

trof f. (Ther e ar e also versions called gnrof f and gr off.) They are much too

complex to describe here. Before we cover printing itself, let’s look at a

simple formatting program called pr.

pr

The pr pr ogram does minor formatting of files on the terminal screen or

for a printer. For example, if you have a long list of names in a file, you

can format it onscreen into two or more columns.

The syntax is:

pr option(s) filename(s)

pr changes the format of the file only on the screen or on the printed

copy; it doesn’t modify the original file. Table 4-1 lists some pr options.

Pr inting Files 81

7 January 2002 13:13

82 Chapter 4: File Management

Table 4-1. Some pr options

Option Descr iption

–k Pr oduces k columns of output.

–d Double-spaces the output (not on all pr versions).

–h “header” Takes the next item as a report header.

–t Eliminates printing of header and top/bottom margins.

Other options allow you to specify the width of columns, set the page

length, etc.

Befor e using pr, her e ar e the contents of a sample file named food:

$ cat food

Sweet Tooth

Bangkok Wok

Mandalay

Afghani Cuisine

Isle of Java

Big Apple Deli

Sushi and Sashimi

Tio Pepe’s Peppers

.

.

.

Let’s use pr options to make a two-column report with the header

“Restaurants”:

$ pr -2 -h "Restaurants" food

Oct 6 9:58 2001 Restaurants Page 1

Sweet Tooth Isle of Java

Bangkok Wok Big Apple Deli

Mandalay Sushi and Sashimi

Afghani Cuisine Tio Pepe’s Peppers

.

.

.

$

The text is output in two-column pages. The top of each page has the

date and time, header (or name of the file, if header is not supplied), and

page number. To send this output to the printer instead of the terminal

scr een, cr eate a pipe to the printer program — usually lp or lpr. The fol-

lowing section describes lp and lpr; Chapter 1 covers pipes.

7 January 2002 13:13

lp and lpr

The command lp or lpr prints a file (onto paper as opposed to the

scr een). Some systems have lp; others have lpr. The syntax is:

lp option(s) filename(s)

lpr option(s) filename(s)

Printers on Unix systems are usually shared by a group of users. After you

enter the command to print a file, the shell prompt retur ns to the screen

and you can enter another command. However, seeing the prompt doesn’t

mean that your file has been printed. Your file has been added to the

printer queue to be printed in turn.

Your system administrator has probably set up a default printer at your

site. To print a file named bills on the default printer, use the lp or lpr

command, as in this example:

$ lp bills

request id is laserp-525 (1 file)

$

lp shows an ID that you can use to cancel the print job or check its status.

If you need ID numbers for lpr jobs, use the lpq pr ogram (see the section

“lpstat and lpq” later in this chapter). The file bills will be sent to a printer

called laserp. The ID number of the request is “laserp-525.”

lp and lpr have several options. Table 4-2 lists three of them.

Table 4-2. Some lp and lpr options

Option

lp lpr Descr iption

–dprinter –Pprinter Use given printer name if there is mor e than one printer

at your site. The printer names are assigned by the

system administrator.

–n# –# Print # copies of the file.

–m –m Notify sender by email when printing is done.

Windowing applications like StarOffice typically run lp or lpr for you,

“behind the scenes.” They may have a printer configuration menu entry

wher e you can specify any lp or lpr options you want to use on every

print job.

If lp and lpr don’t work at your site, ask other users for the printer com-

mand. You’ll also need the printer locations, so you know where to get

your output.

Pr inting Files 83

7 January 2002 13:13

84 Chapter 4: File Management

Problem checklist

My printout hasn’t come out.

See whether the printer is printing now. If it is, other users may have

made a request to the same printer ahead of you and your file should

be printed in turn. The following section explains how to check the

print requests.

If no file is printing, check the printer’s paper supply, physical con-

nections, and power switch. The printer may also be hung (stalled).

If it is, ask other users or system staff people for advice.

My printout is garbled or doesn’t look anything like the file did on my ter-

minal.

The printer may not be configured to print the kind of file you’re

printing. For instance, a file in PostScript format will look fine when

you use a PostScript viewer on your terminal, but look like gibberish

when you try to print it. If the printer doesn’t understand PostScript,

ask your system administrator to install a printer driver that handles

PostScript.

You may be trying to print a file directly (with lp or lpr) that should

be printed from its own application. For instance, if you have a

StarOf fice file named report.sdw, you should open that file from a

StarOf fice window and use the Print command on the StarOffice File

menu.

Viewing the Printer Queue

If you want to find out how many files or “requests” for output are ahead

of yours in the printer queue, use the program named lpstat (for lp) or lpq

(for lpr). The cancel pr ogram lets you terminate a printing request made

by lp; lpr m cancels jobs from lpr.

If you have a graphical application such as StarOffice that does its printing

with lp or lpr, you should be able to use these commands to check and

cancel those print jobs.

lpstat and lpq

The lpstat pr ogram shows what’s in the printer queue: request IDs, own-

ers, file sizes, when the jobs were sent for printing, and the status of the

7 January 2002 13:13

requests. Use lpstat –o if you want to see all output requests rather than

just your own. Requests are shown in the order they’ll be printed:

$ lpstat -o

laserp-573 john 128865 Oct 6 11:27 on laserp

laserp-574 grace 82744 Oct 6 11:28

laserp-575 john 23347 Oct 6 11:35

$

The first entry shows that the request “laserp-573” is currently printing on

laserp. The exact format and amount of information given about the

printer queue may differ from system to system. If the printer queue is

empty, lpstat says “No entries” or simply gives you back the shell prompt.

lpq gives slightly differ ent infor mation than lpstat –o:

$ lpq

laserp is ready and printing

Rank Owner Job Files Total Size

active john 573 report.ps 128865 bytes

1st grace 574 ch03.ps ch04.ps 82744 bytes

2nd john 575 standard input 23347 bytes

$

The first line displays the printer status. If the printer is disabled or out of

paper, you may see differ ent messages on this first line. The “active” job,

the one being printed, is listed first. The “Job” number is like the lpstat

request ID. To specify another printer, add the –P option (Table 4-2).

cancel and lprm

cancel ter minates a printing request from the lp pr ogram. lpr m ter minates

lpr requests. You can specify either the ID of the request (displayed by lp

or lpq) or the name of the printer.

If you don’t have the request ID, get it from lpstat or lpq. Then use cancel

or lpr m. Specifying the request ID cancels the request, even if it is cur-

rently printing:

$ cancel laserp-575

request "laserp-575" cancelled

To cancel whatever request is currently printing, regardless of its ID, sim-

ply enter cancel and the printer name:

$ cancel laserp

request "laserp-573" cancelled

Pr inting Files 85

7 January 2002 13:13

86 Chapter 4: File Management

The lpr m pr ogram will cancel the active job if it belongs to you. Other-

wise, you can give job numbers as arguments, or use a dash (-) to remove

all of your jobs:

$ lprm 575

dfA575diamond dequeued

cfA575diamond dequeued

lpr m tells you the actual filenames removed from the printer queue

(which you probably don’t need).

Exer cise: manipulating files

In this exercise, you’ll create, rename, and delete files. First you’ll need to

find out if your site has one or more printers and the appropriate com-

mand to use for printing.

Go to home directory. Enter cd

Copy distant file to work-
ing directory.

Enter cp /etc/passwd myfile

Cr eate new directory. Enter mkdir temp

List working directory. Enter ls -F

Move file to new directory. Enter mv myfile temp

Change working directory. Enter cd temp

Copy file to working direc-
tory.

Enter cp myfile myfile.two

Print the file. Enter your printer command and the filename (if
the file is long, you may want to edit it first—with
Pico, for instance)

List filenames with wild-
card.

Enter ls -l myfile*

Remove files. Enter rm myfile*

Go up to parent directory. Enter cd ..

Remove directory. Enter rmdir temp

Verify that directory was
removed.

Enter ls -F

7 January 2002 13:13

5
Redirecting I/O

In this chapter:

• Standard Input and
Standard Output

• Pipes and Filter s

Many Unix programs read input (such as a file) and write output. In this

chapter, we discuss Unix programs that handle their input and output in a

standard way. This lets them work with each other.

This chapter generally doesn’t apply to full-screen programs, such as the

Pico editor, that take control of your whole terminal window. (The pager

pr ograms, less, more, and pg, do work together in this way.) It also

doesn’t apply to graphical programs, such as StarOffice or Netscape, that

open their own windows on your screen.

Standard Input and Standard
Output
What happens if you don’t give a filename argument on a command line?

Most programs will take their input from your keyboard instead (after you

pr ess the first RETURN to start the program running, that is). Your termi-

nal keyboard is the program’s standar d input.

As a program runs, the results are usually displayed on your terminal

scr een. The terminal screen is the program’s standar d output.

So, by default, each of these programs takes its input from the standard

input and sends the results to the standard output.

These two default cases of input/output (I/O) can be varied. This is called

I/O redir ection.

If a program doesn’t normally read from files, but reads from its standard

input, you can give a filename by using the < (less-than symbol) operator.

87

7 January 2002 13:13

88 Chapter 5: Redirecting I/O

For example, the mail pr ogram (see the section “Sending Mail from a Shell

Pr ompt” in Chapter 6) normally reads the message to send from your key-

board. Here’s how to use the input redir ection operator to mail the con-

tents of the file to_do to bigboss@corp.xyz:

$ mail bigboss@corp.xyz < to_do
$

If a program writes to its standard output, which is normally the screen,

you can make it write to a file instead by using the greater-than symbol

(>) operator. The pipe operator (|) sends the standard output of one pro-

gram to the standard input of another program. Input/output redir ection is

one of the most powerful and flexible Unix features, We’ll take a closer

look at it soon.

Putting Text in a File

Instead of always letting a program’s output come to the screen, you can

redir ect output into a file. This is useful when you’d like to save program

output or when you put files together to make a bigger file.

cat

cat, which is short for “concatenate,” reads files and outputs their contents

one after another, without stopping.

To display files on the standard output (your screen), use:

cat file(s)

For example, let’s display the contents of the file /etc/passwd. This system

file describes users’ accounts. (Your system may have a more complete list

somewher e else.)

$ cat /etc/passwd
root:x&k8KP30f;(:0:0:Root:/:
daemon:*:1:1:Admin:/:

.

.

.
john::128:50:John Doe:/usr/john:/bin/sh
$

You cannot go back to view the previous screens, as you can when you

use a pager program such as less (unless you’re using a terminal window

with a scrollbar, that is). cat is mainly used with redir ection, as we’ll see in

a moment.

7 January 2002 13:13

By the way: if you enter cat without a filename, it tries to read from the

keyboard (as we mention earlier). You can get out by pressing

RETURN followed by a single CTRL-D .

The > operator

When you add “> filename” to the end of a command line, the program’s

output is diverted from the standard output to the named file. The > sym-

bol is called the output redir ection operator.

When you use the > operator, be car eful not to accidentally
overwrite a file’s contents. Your system may let you redir ect
output to an existing file. If so, the old file will be deleted
(or, in Unix lingo, “clobbered”). Be careful not to overwrite
a much needed file!

Many shells can protect you from this risk. In the C shell,
use the command set noclobber. The Korn shell and bash

command is set –o noclobber. Enter the command at a shell
pr ompt or put it in your shell’s startup file. After that, the
shell does not allow you to redir ect onto an existing file
and overwrite its contents.

This doesn’t protect against overwriting by Unix programs
such as cp; it works only with the > redir ection operator.
For more protection, you can set Unix file access permis-
sions.

For example, let’s use cat with this operator. The file contents that you’d

nor mally see on the screen (from the standard output) are diverted into

another file, which we’ll then read using cat (without any redir ection!):

$ cat /etc/passwd > password
$ cat password
root:x&k8KP30f;(:0:0:Root:/:
daemon:*:1:1:Admin:/:

.

.

.
john::128:50:John Doe:/usr/john:/bin/sh
$

An earlier example (in the section “cat”) showed how cat /etc/passwd dis-

plays the file /etc/passwd on the screen. The example here adds the >

Standard Input and Standard Output 89

7 January 2002 13:13

90 Chapter 5: Redirecting I/O

operator; so the output of cat goes to a file called passwor d in the work-

ing directory. Displaying the file passwor d shows that its contents are the

same as the file /etc/passwd (the effect is the same as the copy command

cp /etc/passwd password).

You can use the > redir ection operator with any program that sends text

to its standard output—not just with cat. For example:

$ who > users
$ date > today
$ ls
password today users ...

We’ve sent the output of who to a file called users and the output of date

to the file named today. Listing the directory shows the two new files.

Let’s look at the output from the who and date pr ograms by reading these

two files with cat:

$ cat users
tim tty1 Aug 12 07:30
john tty4 Aug 12 08:26
$ cat today
Tue Aug 12 08:36:09 EDT 2001
$

You can also use the cat pr ogram and the > operator to make a small text

file. We told you earlier to type CTRL-D if you accidentally enter cat with-

out a filename. This is because the cat pr ogram alone takes whatever you

type on the keyboard as input. Thus, the command:

cat > filename

takes input from the keyboard and redir ects it to a file. Try the following

example:

$ cat > to_do
Finish report by noon
Lunch with Xannie
Swim at 5:30
ˆD
$

cat takes the text that you typed as input (in this example, the three lines

that begin with Finish, Lunch, and Swim), and the > operator redir ects it to

a file called to_do. Type CTRL-D once, on a new line by itself, to signal

the end of the text. You should get a shell prompt.

7 January 2002 13:13

You can also create a bigger file from smaller files with the cat command

and the > operator. The form:

cat file1 file2 > newfile

cr eates a file newfile, consisting of file1 followed by file2.

$ cat today to_do > diary
$ cat diary
Tue Aug 12 08:36:09 EDT 2001
Finish report by noon
Lunch with Xannie
Swim at 5:30
$

You can’t use redir ection to add a file to itself, along with
other files. For example, you might hope that the following
command would merge today’s to-do list with tomorrow’s.
This won’t work!

$ cat to_do to_do.tomorrow > to_do.tomorrow
cat: to_do.tomorrow: input file is output file

cat war ns you, but it’s actually already too late. When you
redir ect a program’s output to a file, Unix empties (clob-
bers) the file befor e the program starts running. The right
way to do this is by using a temporary file (as you’ll see in
a later example) or simply by using a text editor program.

The >> operator

You can add more text to the end of an existing file, instead of replacing

its contents, by using the >> (append redir ection) operator. Use it as you

would the > (output redir ection) operator. So:

cat file2 >> file1

appends the contents of file2 to the end of file1. For an example, let’s

append the contents of the file users, and also the current date and time,

to the file diary. Then we display the file:

$ cat users >> diary
$ date >> diary
$ cat diary
Tue Aug 12 08:36:09 EDT 2001

Standard Input and Standard Output 91

7 January 2002 13:13

92 Chapter 5: Redirecting I/O

Finish report by noon
Lunch with Xannie
Swim at 5:30
tim tty1 Aug 12 07:30
john tty4 Aug 12 08:26
Tue Aug 12 09:07:24 EDT 2001
$

Unix doesn’t have a redir ection operator that adds text to the beginning of

a file. You can do this by storing the new text in a temporary file, then by

using a text editor program to read the temporary file into the start of the

file you want to edit. You also can do the job with a temporary file and

redir ection. Maybe you’d like each day’s entry to go at the beginning of

your diary file. Simply rename diary to something like temp. Make a new

diary file with today’s entries, then append temp (with its old contents) to

the new diary. For example:*

$ mv diary temp
$ date > diary
$ cat users >> diary
$ cat temp >> diary
$ rm temp

Pipes and Filter s
We’ve seen how to redir ect input from a file and output to a file. You can

also connect two pr ograms together so that the output from one program

becomes the input of the next program. Two or more programs connected

in this way form a pipe. To make a pipe, put a vertical bar (|) on the com-

mand line between two commands. When a pipe is set up between two

commands, the standard output of the command to the left of the pipe

symbol becomes the standard input of the command to the right of the

pipe symbol. Any two commands can form a pipe as long as the first pro-

gram writes to standard output and the second program reads from stan-

dard input.

When a program takes its input from another program, perfor ms some

operation on that input, and writes the result to the standard output

(which may be piped to yet another program), it is referr ed to as a filter.

A common use of filters is to modify output. Just as a common filter culls

unwanted items, Unix filters can restructur e output.

* This example could be shortened by combining the two cat commands into one, giving
both filenames as arguments to a single cat command. That wouldn’t work, though, if you
wer e making a real diary with a command other than cat users.

7 January 2002 13:13

Most Unix programs can be used to form pipes. Some programs that are

commonly used as filters are described in the next sections. Note that

these programs aren’t used only as filters or parts of pipes. They’re also

useful on their own.

grep

The gr ep pr ogram searches a file or files for lines that have a certain pat-

ter n. The syntax is:

gr ep "patter n" file(s)

The name “grep” derives from the ed (a Unix line editor) command g/re/

p, which means “globally search for a regular expr ession and print all lines

containing it.” A regular expression is either some plain text (a word, for

example) and/or special characters used for pattern matching. When you

lear n mor e about regular expressions, you can use them to specify com-

plex patterns of text.

The simplest use of gr ep is to look for a pattern consisting of a single

word. It can be used in a pipe so that only those lines of the input files

containing a given string are sent to the standard output. But let’s start

with an example reading from files: searching all files in the working

dir ectory for a word—say, Unix. We’ll use the wildcard * to quickly give

gr ep all filenames in the directory.

$ grep "Unix" *
ch01:Unix is a flexible and powerful operating system
ch01:When the Unix designers started work, little did
ch05:What can we do with Unix?
$

When gr ep searches multiple files, it shows the filename where it finds

each matching line of text. Alternatively, if you don’t give gr ep a filename

to read, it reads its standard input; that’s the way all filter programs work:

$ ls -l | grep "Aug"
-rw-rw-rw- 1 john doc 11008 Aug 6 14:10 ch02
-rw-rw-rw- 1 john doc 8515 Aug 6 15:30 ch07
-rw-rw-r-- 1 john doc 2488 Aug 15 10:51 intro
-rw-rw-r-- 1 carol doc 1605 Aug 23 07:35 macros
$

First, the example runs ls –l to list your directory. The standard output of

ls –l is piped to gr ep, which only outputs lines that contain the string Aug

(that is, files that were last modified in August). Because the standard out-

put of gr ep isn’t redir ected, those lines go to the terminal screen.

Pipes and Filter s 93

7 January 2002 13:13

94 Chapter 5: Redirecting I/O

gr ep options let you modify the search. Table 1-1 lists some of the

options.

Table 5-1. Some grep options

Option Descr iption

–v Print all lines that do not match pattern.

-n Print the matched line and its line number.

–l Print only the names of files with matching lines (lowercase letter “L”).

-c Print only the count of matching lines.

-i Match either upper- or lowercase.

Next, let’s use a regular expression that tells gr ep to find lines with car ol,

followed by zero or mor e other characters (abbreviated in a regular

expr ession as “.*”),* then followed by Aug:

$ ls -l | grep "carol.*Aug"
-rw-rw-r-- 1 carol doc 1605 Aug 23 07:35 macros
$

For more about regular expressions, see the refer ences in the section

“Documentation” (Chapter 8).

sor t

The sor t pr ogram arranges lines of text alphabetically or numerically. The

following example sorts the lines in the food file (from the section “Print-

ing Files” in Chapter 4) alphabetically. sor t doesn’t modify the file itself; it

reads the file and writes the sorted text to the standard output.

$ sort food
Afghani Cuisine
Bangkok Wok
Big Apple Deli
Isle of Java
Mandalay
Sushi and Sashimi
Sweet Tooth
Tio Pepe’s Peppers

* Note that the regular expression for “zero or mor e characters,” “.*”, is differ ent than the
corr esponding filename wildcard “*”. See the section “File and Directory Wildcards” in Chap-
ter 4. We can’t cover regular expressions in enough depth here to explain the differ ence—
though more-detailed books do. As a rule of thumb, remember that the first argument to
gr ep is a regular expression; other arguments, if any, are filenames that can use wildcards.

7 January 2002 13:13

By default, sor t arranges lines of text alphabetically. Many options control

the sorting, and Table 1-2 lists some of them.

Table 5-2. Some sort options

Option Descr iption

–n Sort numerically (example: 10 sorts after 2), ignore blanks and tabs.

–r Reverse the sorting order.

–f Sort upper- and lowercase together.

+x Ignor e first x fields when sorting.

Mor e than two commands may be linked up into a pipe. Taking a previ-

ous pipe example using gr ep, we can further sort the files modified in

August by order of size. The following pipe uses the commands ls, gr ep,

and sor t:

$ ls -l | grep "Aug" | sort +4n
-rw-rw-r-- 1 carol doc 1605 Aug 23 07:35 macros
-rw-rw-r-- 1 john doc 2488 Aug 15 10:51 intro
-rw-rw-rw- 1 john doc 8515 Aug 6 15:30 ch07
-rw-rw-rw- 1 john doc 11008 Aug 6 14:10 ch02
$

This pipe sorts all files in your directory modified in August by order of

size, and prints them to the terminal screen. The sor t option +4n skips

four fields (fields are separated by blanks), then sorts the lines in numeric

order. So, the output of ls, filter ed by gr ep, is sorted by the file size (this is

the fifth column, starting with 1605). Both gr ep and sor t ar e used here as

filters to modify the output of the ls -l command. If you wanted to email

this listing to someone, you could add a final pipe to the mail pr ogram. Or

you could print the listing by piping the sor t output to your printer com-

mand (either lp or lpr).

Piping to a Pager

The less pr ogram, which you saw in the section “Looking Inside Files with

less” in Chapter 3, can also be used as a filter. A long output normally zips

by you on the screen, but if you run text through less, the display stops

after each screenful of text.

Let’s assume that you have a long directory listing. (If you want to try this

example and need a directory with lots of files, use cd first to change to a

Pipes and Filter s 95

7 January 2002 13:13

96 Chapter 5: Redirecting I/O

system directory such as /bin or /usr/bin.) To make it easier to read the

sorted listing, pipe the output through less:

$ ls -l | grep "Aug" | sort +4n | less
-rw-rw-r-- 1 carol doc 1605 Aug 23 07:35 macros
-rw-rw-r-- 1 john doc 2488 Aug 15 10:51 intro
-rw-rw-rw- 1 john doc 8515 Aug 6 15:30 ch07
-rw-rw-r-- 1 john doc 14827 Aug 9 12:40 ch03

.

.

.
-rw-rw-rw- 1 john doc 16867 Aug 6 15:56 ch05
:

less reads a screenful of text from the pipe (consisting of lines sorted by

order of file size), then prints a colon (:) prompt. At the prompt, you can

type a less command to move through the sorted text. less reads more text

fr om the pipe and shows it to you, as well as saves a copy of what it has

read, so you can go backwards to rer ead pr evious text if you want to.

(The simpler pager programs more and pg generally can’t back up while

reading from a pipe.) When you’re done seeing the sorted text, the q

command quits less.

Exer cise: redirecting input/output

In the following exercises you redir ect output, create a simple pipe, and

use filters to modify output.

Redir ect output to a file. Enter who > users

Email that file to yourself. (Replace
user name with your own user-
name.)

Enter mail username < users

Sort output of a program. Enter who sort

Append sorted output to a file. Enter who sort >> users

Display output to screen. Enter less users (or more users or pg users)

Display long output to screen. Enter ls -l /bin less (or more or pg)

For mat and print a file with pr. Enter pr users lp or pr users lpr

7 January 2002 13:13

6
Using the

Inter net and
Other Networks

In this chapter:

• Remote Logins

• Windows from Other
Computer s

• Lynx, a Text-based
Web Browser

• Transfer r ing Files

• Electronic Mail

• Usenet News

• Interactive Chat

A network lets computers communicate with each other, sharing files,

email, and much more. Unix systems have been networked for more than

25 years.

This chapter introduces Unix networking: running programs on other

computers, copying files between computers, browsing the World Wide

Web, sending and receiving email messages, reading and posting mes-

sages to Usenet “Net news” discussions, and “chatting” interactively with

other users on your local computer or worldwide.

Remote Logins
The computer you log in to may not be the computer you need to use.

For instance, you might have a workstation on your desk but need to do

some work on the main computer in another building. Or you might be a

pr ofessor doing research with a computer at another university. Your Unix

system can connect to another computer to let you work as if you were

sitting at that computer. This section describes how to connect to another

computer from a local terminal. If you need to use a graphical (nontermi-

nal) program, the section “Windows from Other Computers,” next,

explains.

To log into a remote computer using a terminal, first log in to your local

computer (as explained in the section “Logging in Nongraphically” in

Chapter 1, or in the section “A. Ready to Run X (with a Graphical Login)”

in Chapter 2). Then, in a terminal or terminal window on your local com-

puter, start a program that connects to the remote computer. Some typical

97

7 January 2002 13:14

98 Chapter 6: Using the Internet and Other Networks

pr ograms for connecting over a computer network are telnet, ssh (“secur e

shell”), rsh, (“r emote shell”) or rlog in (“r emote login”). Programs such as

cu and tip connect through telephone lines using a modem. In any case,

when you log off the remote computer, the remote login program quits

and you get another shell prompt from your local computer.

Figur e 6-1 shows how remote login programs such as telnet work. In a

local login, you interact directly with the shell program running on your

local system. In a remote login, you run a remote-access program on your

local system; that program lets you interact with a shell program on the

remote system.

shell

Local login

telnet

Remote login

shell

1. Do a local login.
2. Make connection to remote compter, log in there.

Network

Figur e 6-1. Local login, remote login

The syntax for most remote login programs is:

pr ogram-name remote-hostname

For example, when Dr. Nelson wants to connect to the remote computer

named biolab.medu.edu, she’d first make a local login to her computer

named fuzzy. Next, she’d use the telnet pr ogram to reach the remote

computer. Her session would look something like this:

7 January 2002 13:14

login: jennifer
Password:

NOTICE to all second-floor MDs: meeting in room 304 at 4 PM.

fuzzy$ telnet biolab.medu.edu

Medical University Biology Laboratory

biolab.medu.edu login: jdnelson
Password:

biolab$

.

.

.

biolab$ exit
Connection closed by foreign host.

fuzzy$

Her accounts have shell prompts that include the hostname. This reminds

her when she’s logged in remotely. If you use more than one system but

don’t have the hostname in your prompt, see the section “Documentation”

in Chapter 8 to find out how to add it.

When you’re logged on to a remote system, keep in mind
that the commands you type will take effect on the remote
system, not your local one! For instance, if you use lpr or lp

to print a file, the printer it comes out of may be very far
away.

The programs rsh (also called rlog in) and ssh generally don’t give you a

“login:” prompt. These programs assume that your remote username is the

same as your local username. If they’re dif ferent, give your remote user-

name on the command line of the remote login program, as shown in the

next example.

You may be able to log in without typing your remote password or

passphrase.* Otherwise, you’ll be prompted after entering the command

line.

* In ssh, you can run an agent pr ogram, such as ssh-a gent, that asks for your passphrase
once, and then handles authentication every time you run ssh or scp afterward. For rsh and
rcp, you can either store your remote password in a file named .r hosts in your local home
dir ectory, or the remote system can list your local computer in a file named hosts.equiv that’s
set up by the system administrator.

Remote Logins 99

7 January 2002 13:14

100 Chapter 6: Using the Internet and Other Networks

Following are four sample ssh and rsh command lines. (You may need to

substitute rlog in for rsh.) The first pair show the way to log in to the

remote system, biolab.medu.edu, when your username is the same on

both the local and remote systems. The second pair show how to log in if

your remote username is differ ent (in this case, jdnelson); note that your

version of ssh and rsh may support both syntaxes shown:

$ ssh biolab.medu.edu
$ rsh biolab.medu.edu
$ ssh jdnelson@biolab.medu.edu
$ rsh -l jdnelson biolab.medu.edu

About Security

Today’s Internet, and other public networks, have users (called crackers;

also erroneously called hackers) who try to break into computers and

snoop on other network users. Most remote login programs (and file

transfer programs, which we cover later in this chapter) were designed 20

years ago or more, when networks were friendly places with cooperative

users. Those programs (many versions of telnet and rsh, for instance)

make a cracker’s job easy. They transmit your data across the network in a

way that allows crackers to read it—and they either send your password

along, visible to the crackers, or they expect computers to allow access

without passwords.

SSH is differ ent; it was designed with security in mind. If anything you do

over a network (like the Internet) is at all confidential, you really should

find SSH programs and learn how to use them. SSH isn’t just for Unix sys-

tems! There are SSH programs that let you log in and transfer files

between Microsoft Windows machines, between Windows and Unix, and

mor e. A good place to get all the details and recommendations for pro-

grams is the book SSH: The Secure Shell, by Daniel J. Barrett and Richard

Silver man (O’Reilly).

Windows from Other Computers
In the section “Remote Logins,” you saw how to open a terminal session

acr oss a network. The X Window System lets you ask a remote computer

to open any kind of X window (not just a plain terminal) on your local

system. This is hard or impossible to do with remote login programs such

as telnet. It’s also insecure over a public network such as the Internet.

7 January 2002 13:14

The ssh pr ogram, when you use it together with an SSH agent pr ogram,

can open remote windows securely and fairly easily, and without needing

to log into the remote computer first. This is called X forwar ding.

Please show this section to your system or network admin-
istrator and ask for advice. Although SSH is secure, X for-
warding can be resource-intensive, and the first-time setup
can take some work. (Also, this concept may be new to
your administrator, or he may just want to be aware of
what you’re doing.)

For example, let’s say Dr. Nelson has a graphical data-analysis program

named datavis on the remote biolab.medu.edu computer. She needs to

run it from her local fuzzy computer. She could type a command like the

following, and (if the first-time setup has been done) a datavis window

will open on her local system. The connection will be encrypted for secu-

rity, so no one else can see her data or anything she does to it:

fuzzy$ ssh jdnelson@biolab.medu.edu datavis

Figur e 6-2 shows how this works when the xter m pr ogram runs on your

local computer versus when ssh coordinates access to the remote datavis

pr ogram.

Lynx, a Text-based Web Browser
In a window system, you can choose from lots of graphical web browsers:

Netscape, Opera, KDE’s Konqueror, the browser in StarOffice, and more.

If you have a window system, try the various Unix browsers to find one

you like. Those browsers don’t work without a window system, though.

They also can be slow—especially with flashy, graphics-laden web pages

on a slow network.

The Lynx web browser (originally from the University of Kansas, and

available on many Unix systems) is differ ent, and has tradeoffs you should

know about. It works in terminals (where graphical browsers can’t) as

well as in terminal windows. Lynx indicates where graphics occur in a

page layout; you won’t see the graphics, but the bits of text that Lynx uses

in their place can clutter the screen. Still, because it doesn’t have to down-

load or display those graphics, Lynx is fast, especially over a dialup

modem or busy network connection. Sites with complex multicolumn lay-

outs can be hard to follow with Lynx; a good rule is to just page through

Lynx, a Text-based Web Browser 101

7 January 2002 13:14

102 Chapter 6: Using the Internet and Other Networks

xterm

$

datavis

xterm

Local window

Monitor
Computer

ssh

Remote window

Monitor
Local computer

datavis

Remote computer

Network

Figur e 6-2. Local window, remote window

the screens, looking for the link you want and ignoring the rest. Forms

and drop-down lists are a challenge at first—but Lynx always gives you

helpful hints for forms and lists, as well as other web page elements, in

the third line from the bottom of the screen. With those warts (and oth-

ers), though, once you get a feel for Lynx you may find yourself choosing

to use it—even on a graphical system. Let’s take a quick tour.

The Lynx command line syntax is:

lynx "location"

For example, to visit the O’Reilly home page, enter lynx

“http://www.oreilly.com” or simply lynx “www.oreilly.com”. (It’s safest to

put quotes around the location because many URLs have special charac-

ters that the shell might interpret otherwise.) Figure 6-3 shows a part of

the home page.

To move around the Web, Lynx uses your keyboard’s arrow keys, space

bar, and a set of single-letter commands. The third line from the bottom of

a Lynx screen gives you a hint of what you might want to do at the

moment. In Figure 6-3, for instance, “press space for next page” means

you can see the next screenful of this web page by pressing the space bar

(at the bottom edge of your keyboard). Lynx doesn’t use a scroll bar;

instead, use the space bar to go forward in a page, and use the b

7 January 2002 13:14

command to move back to the previous screenful of the same web page.

The bottom two lines of the screen remind you of common commands,

and the help system (which you get by typing h) has the rest.

www.oreilly.com -- Welcome to O’Reilly & Associates (p8 of 14)

Essential SNMP --This guide for network and system administrators

introduces SNMP, an Internet-standard protocol for managing

hosts on an IP network. The book’s primary focus is on

network administration. Essential SNMP covers all versions

through SNMPv3, and it also explores commercial and open source

packages, including OpenView, SNMPc, and MRTG. Sample Chapter 2,
A Closer Look at SNMP, is available online.

Dreamweaver 4: The Missing Manual is a complete user’s guide

to Macromedia Dreamweaver. This Missing Manual also

shows how to customize Dreamweaver with libraries, templates,

shortcuts, and extensions. Sample Chapter 17, Libraries and
Templates, is available online in PDF format.

-- press space for next page --
Up and Down keys move. Right follows a link; Left goes back.

H)elp O)ptions P)rint G)o Q)uit /=search [delete]=history list

Figur e 6-3. Lynx display

The links (which you would click on if you were using a graphical web

br owser) ar e highlighted. One of those links is the curr ently selected link,

which you can think of as the link where your cursor sits. On a

monochr ome ter minal, links are boldfaced and the selected link (in Figure

6-3, that’s the first “Essential SNMP”) is in reverse video. Emphasized text

is also boldfaced on monochrome terminals, but you won’t be able to

select it as you move through the links on the page. On a color terminal,

links are blue, the selected link is red, and emphasized text is pink.

When you first view a screen, the link nearest the top is selected. Figure

6-4 shows what you can do at a selected link. To select a later link (farther

down the page), press the down-arrow key. The up-arrow key selects the

pr evious link (farther up the page). Once you’ve selected a link you want

to visit, press the right-arrow key to follow that link; the new page

appears. Go back to the previous page by pressing the left-arrow key

(fr om any selected link; it doesn’t matter which one).

Although Lynx can’t display graphics in a terminal (no pr ogram can!), it

will let you download links that point to graphical files—such as the last

link in Figure 6-3, for instance, Then you can use other Unix programs —

such as gimp or xv (for graphics), and acroread (for PDF documents)—to

view or print those files.

Lynx, a Text-based Web Browser 103

7 January 2002 13:14

104 Chapter 6: Using the Internet and Other Networks

Jump to previous
link on current

web page

Jump to next
link on current

web page

Follow this link
“backward” to

the previous page

Follow this link
“forward” to a

new page

Figur e 6-4. Lynx link navigation with the arrow keys

Ther e’s much more to Lynx; type H for an overview. Lynx command-line

options let you configure almost everything. For a list of options, type

man lynx (see the section “Documentation” in Chapter 8) or use:

$ lynx -help | less

Tr ansfer r ing Files
You may need to copy files between computers. For instance, you can put

a backup copy of an important file you’re editing onto an account at a

computer in another building, or another city. Dr. Nelson could put a

copy of a data file from her local computer onto a central computer,

wher e her colleagues can access it. Or you might want to download 20

files from an FTP server, but not want to go through the tedious process

of clicking on them one-by-one in a web browser window. If you need to

do this sort of thing often, your system administrator may be able to set

up a networked filesystem connection; then you’ll be able to use local

pr ograms such as cp and mv. But Unix systems also have command-line

tools for transferring files between computers. These often do it more

quickly than working with graphical tools does. We explor e them later in

this section.

scp and rcp

Your system may have an scp (secur e copy) or rcp (r emote copy) pro-

gram for copying files between two computers. In general, you must have

accounts on both computers to use these. The syntax of scp and rcp ar e

like cp, but also let you add the remote hostname to the start of a file or

dir ectory pathname. The syntax of each argument is:

7 January 2002 13:14

hostname :pathname

hostname : is needed only for remote files. You can copy from a remote

computer to the local computer, from the local computer to a remote

computer, or between two remote computers.

The scp pr ogram is much more secur e than rcp, so we suggest using scp

to transfer private files over insecure networks such as the Internet. For

privacy, scp encrypts the file and your passphrase.

For example, let’s copy the files named report.may and report.june fr om

your home directory on the computer named giraf fe and put the copies

into your working directory (.) on the machine you’re logged in to now.

If you haven’t set up the SSH agent that lets you use scp without typing

your passphrase, scp will ask you:

$ scp giraffe:report.may giraffe:report.june .
Enter passphrase for RSA key ’jpeek@home’:

To use wildcards in the remote filenames, put quotation marks ("name")

ar ound each remote name.* You can use absolute or relative pathnames; if

you use relative pathnames, they start from your home directory on the

remote system. For example, to copy all files from your food/lunch subdi-

rectory on your giraf fe account into your working directory (.) on the

local account, enter:

$ scp "giraffe:food/lunch/*" .

Unlike cp, most versions of scp and rcp don’t have an –i safety option. If

the files you’re copying already exist on the destination system (in the

pr evious example, that’s your local machine), those files are overwritten.

If your system has rcp, your system administrator may not want you to

use it for system security reasons. Another program, ftp, is mor e flexible

and secure than rcp (but much less secur e than scp).

FTP

FTP, file transfer protocol, is a standard way to transfer files between two

computers. The Unix ftp pr ogram does FTP transfers from the command

line.† (Your system may have a friendlier version of ftp named ncftp.

Some graphical filesystem browsers can also handle FTP transfers. But we

* Quotes tell the local shell not to interpret special characters, such as wildcards, in the file-
name. The wildcards are passed, unquoted, to the remote shell, which interprets them ther e.

† Micr osoft Windows, and some other operating systems, have a version of ftp that you can
use from a command prompt. It works just like the Unix version.

Tr ansfer r ing Files 105

7 January 2002 13:14

106 Chapter 6: Using the Internet and Other Networks

cover the standard ftp pr ogram her e.) Both computers must be connected

by a network (such as the Internet), but they don’t need to run Unix.

To start FTP, identify yourself to the remote computer by giving the user-

name and password for your account on that remote system. Unfortu-

nately, sending your username and password over a public network

means that snoopers may see them—and use them to log into your

account on that system.

A special kind of FTP, anonymous FTP, happens if you log into the

remote server with the username anonymous. The password is your email

addr ess, like alex@foo.co.uk. (The password usually isn’t requir ed; it’s a

courtesy to the remote server.) Anonymous FTP lets anyone log into a

remote system and download publicly-accessible files to their local sys-

tems.

Command-line ftp

To start the standard Unix ftp pr ogram, pr ovide the remote computer’s

hostname:

ftp hostname

ftp pr ompts for your username and password on the remote computer.

This is something like a remote login (see the section “Remote Logins,”

earlier in this chapter), but ftp doesn’t start your usual shell. Instead, ftp

prints its own prompt and uses a special set of commands for transferring

files. Table 6-1 lists the most important ftp commands.

Table 6-1. Some ftp commands

Command Descr iption

put filename Copies the file filename fr om your local computer to the

remote computer. If you give a second argument, the remote

copy will have that name.

mput filenames Copies the named files (you can use wildcards) from local to

remote.

get filename Copies the file filename fr om the remote computer to your

local computer. If you give a second argument, the local copy

will have that name.

mget filenames Copies the named files (you can use wildcards) from remote to

local.

7 January 2002 13:14

Table 6-1. Some ftp commands (continued)

Command Descr iption

prompt A “toggle” command that turns prompting on or off during

transfers with the mget and mput commands. By default, mget

and mput will prompt you “mget filename ?” or “mput

filename ?” before transferring each file; you answer y or n each

time. Typing prompt once, from an “ftp>” prompt, stops the

pr ompting: all files will be transferred without question until

the end of the ftp session. Or, if prompting is off, typing

prompt at an “ftp>” prompt resumes prompting.

cd pathname Changes the working directory on the remote machine to

pathname (ftp typically starts at your home directory on the

remote machine).

lcd pathname Changes ftp’s working directory on the local machine to

pathname. (ftp’s first local working directory is the same

working directory from which you started the program.) Note

that the ftp lcd command changes only ftp’s working directory.

After you quit ftp, your shell’s working directory will not have

changed.

dir Lists the remote directory (like ls –l).

binar y Tells ftp to copy the following file(s) without translation. This

pr eserves pictur es, sound, or other data.

ascii Transfers plain text files, translating data if needed. For

instance, during transfers between a Microsoft Windows system

(which adds CTRL-M to the end of each line of text) and a Unix

system (which doesn’t), an ascii-mode transfer removes or adds

those characters as needed.

quit Ends the ftp session and takes you back to a shell prompt.

Her e’s an example. Carol uses ftp to copy the file todo fr om her work sub-

dir ectory on her account on the remote computer rhino:

$ ls
afile ch2 somefile

$ ftp rhino
Connected to rhino.zoo.edu.

Name (rhino:carol): csmith
Password:

ftp> cd work
ftp> dir
total 3

-rw-r--r-- 1 csmith mgmt 47 Feb 5 2001 for.ed

-rw-r--r-- 1 csmith mgmt 264 Oct 11 12:18 message

-rw-r--r-- 1 csmith mgmt 724 Nov 20 14:53 todo

ftp> get todo

Tr ansfer r ing Files 107

7 January 2002 13:14

108 Chapter 6: Using the Internet and Other Networks

ftp> quit
$ ls
afile ch2 somefile todo

We’ve explored the most basic ftp commands here. Entering help at an

ftp> pr ompt gives a list of all commands; entering help followed by an ftp

command name gives a one-line summary of that command.

FTP with a web browser

If you need a file from a remote site, and you don’t need all the control

that you get with the ftp pr ogram, you can use a web browser to down-

load files using anonymous FTP. To do that, make a URL (location) with

this syntax:

ftp://hostname/pathname

For instance, ftp://somecorp.za/pub/r eports/2001.pdf specifies the file

2001.pdf fr om the directory /pub/r eports on the host somecorp.za. In most

cases, you can also start with just the first part of the URL—such as

ftp://somecorp.za—and browse your way through the FTP directory tree

to find what you want. If your web browser doesn’t prompt you to save a

file, use its “Save” menu command.

An even faster way to download a file is with the handy Lynx web

br owser. Its –dump option sends a page to the standard output, where

you can redir ect it to a file or pipe it to another program (see Chapter 5).

For example, to save the report in a file named report.pdf, enter:

$ lynx -dump "ftp://somecorp.za/pub/reports/2001.pdf" > report.pdf

Electronic Mail
You may see a notice that says “You have mail” when you first log in to

your system, or later, befor e a shell prompt. Someone has sent you a mes-

sage or document by electr onic mail (email). With email, you can com-

pose a message at your terminal and send it to another user or list of

users. You also can read any messages that others may have sent to you.

Ther e ar e a lot of email programs for Unix. If you’ll use email often, we

recommend that you start with whatever program other people in your

gr oup use.

We start with a brief section on addressing email. Next, you’ll see how to

send mail from a shell prompt with Berkeley mail. Then we introduce

sending and reading mail with Pine, a popular menu-driven program that

works without a window system. If you’d like to try a graphical program

7 January 2002 13:14

(which we won’t discuss here), many web browsers have an email win-

dow. All programs’ basic principles are the same though, and they all can

send and receive messages from each other.*

Addressing an Email Message

Most addresses have this syntax:

user name@hostname

user name is the person’s username, like jerry, and hostname is either the

name of his computer or a central domain name for his entire organiza-

tion, like or eilly.com. On many Unix systems, if the recipient reads email

on the same computer you do, you may omit the @hostname. (An easy

way to get a copy of a message you send is to add your username to the

list of addressees.)

Sending Mail from a Shell Prompt

Most Unix systems have a fairly simple program from Berkeley Unix called

Mail (with an uppercase “M”), mailx, or just mail. If you enter just the pro-

gram name at a shell prompt, you can read your email, but its terse inter-

face isn’t very friendly. If you enter the program name, followed by

addr esses as arguments, you can send an email message. This is handy for

sending a quick message from your keyboard. But it’s best used with redi-

rection (explained in Chapter 5) to email the output of a program or the

contents of a file.

To send mail, give the address of each person you want to send a mes-

sage to, such as one of the following:

Mail addr ess1 addr ess2 . . .

mailx addr ess1 addr ess2 . . .

mail addr ess1 addr ess2 . . .

* Micr osoft Windows users have an unfortunate habit of sending email “attachments” made
with a Windows-specific program like Microsoft Word. On Unix systems, you can read these
messages using popular word processing programs such as StarOffice, but it can be a pain.
You might ask Windows users to send plain text messages, which everyone can read without
special software.

Electronic Mail 109

7 January 2002 13:14

110 Chapter 6: Using the Internet and Other Networks

It’s best to use simple addresses such as user name@host-

name on the command line. More complex addresses —
with peoples’ names or special characters such as < and
>—can cause trouble unless you know how to deal with
them.

After you enter mail and the addresses, if you’re sending a message from

the keyboard, in most cases the program (depending on how it’s set up)

pr ompts you for the subject of the message. Many versions of the program

also accept a subject as a command-line argument after the –s option; be

sur e to put quote marks around the subject! Here are two examples of

redir ection: first sending the restaurant list you made in an earlier exam-

ple, then sorting the list before you send it:

$ mail -s "My favorite restaurants" jerry@oreilly.com < food
$ sort food | mail -s "My favorite restaurants" jerry@oreilly.com

If you’ve redir ected the standard input from a pipe or file, as in these two

examples, your message will be delivered. Otherwise, mail will wait for

you to enter the message body. Type in your message, line by line, press-

ing RETURN after every line. When you’ve finished entering text, type

CTRL-D (just once!) at the start of a new line. You should get the shell

pr ompt at this point, though it might take a few seconds.

$ mail alicja@moxco.chi.il.us
Subject: My Chicago trip
Alicja, I will be able to attend your meeting.
Please send me the agenda. Thanks.

Jerry
ˆD
$

If you change your mind before you type CTRL-D , you can cancel a

message (while you’re still entering text) with your interrupt character (see

the section “Correcting a Command Line” in Chapter 1). The cancelled

message may be placed in a file called dead.letter in your home directory.

To see other commands you can use while sending mail, enter ˜? (tilde

question mark) at the start of a line of your message, then press

RETURN . To redisplay your message after using ˜?, enter ˜p at the start

of a line.

You can’t cancel a message after you type CTRL-D (unless you’r e a sys-

tem administrator and you’re lucky to catch the message in time). So, if

7 January 2002 13:14

you change your mind about Alicja’s meeting, you’ll need to send her

another message.

Please try the previous examples, substituting your address for the sample

addr esses shown. Once you’ve found the correct program name and the

email address you can use to send a message to yourself, write them

down. You’ll probably find this is a very useful way to send yourself little

reminder messages, the contents of files, and the outputs of programs:

___________ Name of email program that sends from a shell prompt

_________________________ My email address

Reading Email with Pine

Pine, from the University of Washington, is a popular program for reading

and sending email from a terminal. It works completely from your key-

board; you don’t need a mouse. Pine isn’t a standard part of all Unix sys-

tems; if you don’t have it, you can use other email programs. If you read

this introduction but don’t have Pine, ask your system staff to download

and install it. Like most Unix software, Pine is free.

Start Pine by entering its name at a shell prompt. It also accepts options

and arguments on its command line; to find out more, enter pine –h

(“help”). If new email is waiting for you, but you want to experiment with

Pine without taking chances, the –o (lowercase letter “O”) option makes

your inbox folder read-only; you won’t be able to change the messages in

it until you quit Pine and restart without the –o. Figur e 6-5 shows the

starting display, the main menu.

The highlighted line, which is the default command, gives a list of your

email folders.* You can choose the highlighted command by pressing

RETURN , pr essing the greater-than sign > , or typing the letter next to it

(her e, l, a lowercase L ; you don’t need to type the commands in upper-

case). But since you probably haven’t used Pine before, the only interest-

ing folder is the inbox, which is the folder where your new messages wait

for you to read them.

* Recent versions of Pine also let you read Usenet newsgroups. The L command takes you
to another display where you choose the source of the folders, then you see the list of fold-
ers from that source. See the section “Usenet News,” later in this chapter.

Electronic Mail 111

7 January 2002 13:14

112 Chapter 6: Using the Internet and Other Networks

PINE 4.33 MAIN MENU Folder: INBOX 2 Messages

? HELP - Get help using Pine

C COMPOSE MESSAGE - Compose and send/post a message

I MESSAGE INDEX - View messages in current folder

L FOLDER LIST - Select a folder OR news group to view

A ADDRESS BOOK - Update address book

S SETUP - Configure Pine Options

Q QUIT - Leave the Pine program

Copyright 1989-2001.

PINE is a trademark of the University of Washington.

[Folder "INBOX" opened with 2 messages]

? Help P To Files R RelNotes

O OTHER CMDS > [ListFldrs] N NextCmd K KBlock

Figur e 6-5. Pine main menu

The bottom of the display in Figure 6-5 shows that there are two messages

waiting. Let’s go directly to the inbox by pressing I (or by highlighting

that line in the menu and pressing RETURN) to read the new mail. Fig-

ur e 6-6 has the message index for Alicja’s inbox.

PINE 4.33 MESSAGE INDEX Folder: INBOX Msg 1 of 2

+ 1 May 22 bigboss@moxco (529) In your spare time
N 2 Oct 9 Jerry Peek (362) My Chicago trip

? Help < FldrList P PrevMsg - PrevPage D Delete R Reply

O OTHER CMDS > [ViewMsg] N NextMsg Spc NextPage U Undelete F Forward

Figur e 6-6. Pine message index

The main part of the window is a list of the messages in the folder, one

message per line. If a line starts with N, like the second message does, it’s

7 January 2002 13:14

a new message that hasn’t been read before. (The first message has been

sitting in the inbox for some time now . . .) Next on each line is the mes-

sage number; messages in a folder are number ed 1, 2, and so on. That’s

followed by the date the message was sent, who sent it, the number of

characters in the message (size), and finally the message subject.

At the bottom of the display is Pine’s reminder list of commands. When

you aren’t sure what to do, this is a good place to look. If you don’t see

what you want here, pressing O (the letter “o”; lowercase is fine) shows

you more choices. For more infor mation, ? gives detailed help.

Let’s skip this first message and read the next one, number 2. The down-

arr ow key or the N key moves the highlight bar over that message. As

usual, you can get the default action—the one shown in brackets at the

bottom of the display (here, [ViewMsg])—by pressing RETURN or > .

The message from Jerry will appear.

Just as > took us forward in Pine, the < key generally takes you back to

wher e you came from — in this case, the message index. You can type

R to reply to this message, F to forward it (send it on to someone else),

D to mark it for deletion, and TAB to go to the next message without

deleting this one.

When you mark a message for deletion, it stays in the folder message

index, marked with a D at the left side of its line, until you quit Pine. Type

Q to quit. First Pine asks if you really want to quit. If you’ve marked mes-

sages for deletion, Pine asks if you want to expunge (“r eally delete”) them.

Answering Y her e actually deletes the message.

Ther e’s much more to Pine than we can cover here. For instance, it lets

you organize mail in multiple folders, print, pipe (output) messages to

Unix programs, search for messages, and more. Recent versions of Pine

can access mail folders on other computers using IMAP; this lets you use

Pine (and other email programs) on many computers, but keep one main

set of mail folders on a central computer.

Sending Email with Pine

If you’re sending a quick message from a shell prompt, you may want to

use the method shown in the section “Sending Mail from a Shell Prompt”

earlier in this chapter. For a more interactive way to send email, try Pine.

We’ll take a quick tour.

If you’ve already started Pine, you can compose a message from many of

its displays by typing C . (Though, as always, not every Pine command is

Electronic Mail 113

7 January 2002 13:14

114 Chapter 6: Using the Internet and Other Networks

available at every display.) You can also start from the main menu. Or, at

a shell prompt, you can go straight into message composition by typing

“pine addr1 addr2 ”, where each addr is an email address like

jerry@or eilly.com. In that case, after you’ve sent the mail message, Pine

quits and leaves you at another shell prompt.

When you compose a message, Pine puts you in a window called the

composer. (You’ll also go into the composer if you use the Reply or For-

ward commands while you’re reading another mail message.) The com-

poser is a lot like the Pico editor, but the first few lines are special

because they’re the message header—the “To:”, “Cc:” (courtesy copy),

“Attchmnt:” (attached file), and “Subject:” lines. Figure 6-7 shows an exam-

ple, already filled in.

PINE 4.33 COMPOSE MESSAGE Folder: <CLOSED> No Msgs

To : jpeek@jpeek.com,

eddie@moxco.chi.il.us

Cc :

Attchmnt:

Subject : Thoroughly trivial experimentation

----- Message Text -----
In the interest of furthering the educational objectives and

enlightenment of the person whose identity shall be revealed

momentarily, the current electronic communication has been

rendered. May I obtain a response?

John

P.S. Yow!!

ˆG Get Help ˆX Send ˆR Read File ˆK Cut Text ˆO Postpone

ˆC Cancel ˆJ Justify ˆW Where is ˆU UnCut Text ˆT To Spell

Figur e 6-7. Pine composer

As you fill in the header, the composer works differ ently than when

you’r e in the message text (body of the message). The list of commands at

the bottom of the window is a bit differ ent in those cases, too. For

instance, while you edit the header, you can attach a file to the end of the

message with the “Attach” command, which is CTRL-J . However, when

you edit the body, you can read a file into the place you’re curr ently edit-

ing (as opposed to attaching it) with the CTRL-R “Read File” command.

But the main differ ence between editing the body and the header is the

way you enter addresses.

7 January 2002 13:14

If you have more than one address on the same line, separate them with

commas (,). Pine will rearrange the addresses so there’s just one on each

line, as shown in Figure 6-7.

Ther e ar e several ways to give the composer the addresses where the

message should be sent:

• Type the full email address, like jpeek@jpeek.com.

• If you’r e sending email to someone who uses the same computer you

do, type their username. Pine will fill in @hostname as soon as you

move the cursor to the next line.

• Type a nickname from the address book. (See “the section “Pine

addr ess book,” later in this chapter.)

Move up and down between the header lines with CTRL-N and CTRL-P ,

or with the up-arrow and down-arrow keys, just as you would in Pico.

When you move into the message body (under the “Message Text” line),

type any text you want. Paragraphs are usually separated with single

blank lines.

If you put a file in your home directory named .signatur e

(the name starts with a dot, “.”), the composer automati-
cally adds its contents to the end of every message you
compose. (Some other Unix email programs work the same
way.) You can make this file with a text editor like Pico, or
fr om the Pine setup menu (see the section “Configuring
Pine,” later in this chapter). It’s good Internet etiquette to
keep this file short—no mor e than four or five lines, if pos-
sible.

You can use familiar Pico commands such as CTRL-J to justify a para-

graph and CTRL-T to check your spelling. When you’re done,

CTRL-X (“exit”) leaves the composer, asking first if you want to send the

message you just wrote. Or CTRL-C cancels the message, though you’ll be

asked if you’re sur e. If you need to quit, but don’t want to send or cancel,

the CTRL-O command postpones your message; then, the next time you

try to start the composer, Pine asks whether you want to continue the

postponed composition.

Electronic Mail 115

7 January 2002 13:14

116 Chapter 6: Using the Internet and Other Networks

Pine address book

The Pine addr ess book can hold peoples’ names and addresses, as well as

a nickname for each person. When you compose a message, enter peo-

ples’ nicknames in the message header; Pine replaces that with the full

name and address.*

You can enter information by hand from the main menu by choosing

A (“addr ess book”), then adding new entries and editing old ones. Also,

as you read email messages that you’ve received, the T (“take address”)

command makes new address book entries for that message’s addressees.

Figur e 6-8 shows the address book entry form. Edit each line as you

would in the composer, then use CTRL-X to save the entry. The “Fcc” line

gives the name of an optional Pine folder; when you send a message to

this address book entry, Pine puts a copy in this folder. (If you leave “Fcc”

blank, Pine uses the sent-mail folder.) All lines except nickname and

addr ess ar e optional.

Nickname : Jerry

Fullname : Jerry Peek

Fcc : authors

Comment : Writes books about Unix and the Internet

Addresses : jpeek@jpeek.com

Figur e 6-8. Pine addr ess book entry

Once you’ve saved that address book entry, if you go into the composer

and type the nickname Jerry, her e’s the header you get automatically:

To : Jerry Peek <jpeek@jpeek.com>

Cc :

Fcc : authors

Attchmnt:

Subject :

Configur ing Pine

The Pine main menu (shown in Figure 6-5) has a Setup entry for configur-

ing Pine. We assume that your system staff has configured important

options, like your printer command, and we look at a few other settings

you might want to change.

* Recent versions of Pine also let you store your address book on a central server, in order
for you to access it, from whatever other computer you’re using at the moment, via IMAP.

7 January 2002 13:14

After you enter S (the “Setup” command), you can choose what kind of

setup you want to do. From the setup screen, you can get to the option

configuration area with C (the “Config” command).

The configuration screen has page after page of options. You can page

thr ough them with the space bar (to move forward one page), the - key

(back one page), the N key (to move forward to the next entry), and the

P key (back to the previous entry). If you know the name of an option

you want to change, you can search for it with W (the “Whereis” com-

mand).

When you highlight an option, the menu of commands at the bottom of

the screen will show you what can do with that particular option. A good

choice, while you’re exploring, is the ? (“Help”) command, to find out

about the option you’ve highlighted. There are several kinds of options:

• Options with variable values: names of files, hostnames of computers,

and so on. For example, the personal-name option sets the name

used in the “From:” header field of mail messages you send. The

setup entry looks like this:

personal-name = <No Value Set: using "Robert L. Stevenson">

“No Value Set” can mean that Pine is using the default from the sys-

tem-wide settings, as it is here. If this user wants his email to come

fr om “Bob Stevenson,” he could use the C (“Change Val”) command

to set that name.

• Options that set prefer ences for various parts of Pine. For instance,

the enable-sigdashes option in the “Composer Prefer ences” section

puts two dashes and a space on the line before your default signature.

The option line looks like this:

[X] enable-sigdashes

The “X” means that this prefer ence is set, or “on.” If you want to turn

this option off, use the X (“Set/Unset”) command to toggle the set-

ting.

• For a few options, you can choose one of many possible settings.

The option appears as a series of lines. For instance, the first few

lines of the saved-msg-name-rule option look like this:

saved-msg-name-rule =

Set Rule Values

--- ----------------------

(*) by-from

() by-nick-of-from

Electronic Mail 117

7 January 2002 13:14

118 Chapter 6: Using the Internet and Other Networks

() by-nick-of-from-then-from

() by-fcc-of-from

() by-fcc-of-from-then-from

The “*” means that the saved-msg-name-rule option is currently set to

by-fr om. (Messages will be saved to a folder named for the person

who sent the message.) If you wanted to choose a differ ent setting —

for instance, by-fcc-of-fr om—you’d move the highlight to that line

and use the * (“Select”) command to choose that setting.

These settings are trickier than the others, but the built-in help com-

mand ? explains each choice in detail. Start by highlighting the

option name (here, saved-msg-name-rule) and reading its help file.

Then look through the settings’ names, highlight one you might want,

and read its help file to see if it’s right for you.

When you exit the setup screen with the E command, Pine asks you to

confir m whether you want to save any option changes you made. Answer

N if you were just experimenting or aren’t sure.

Exer cise: sending and reading mail

You can practice sending and reading mail in this exercise:

List logged-in users. Enter who

Choose a user you know, else choose
yourself; send a short message to that
person using mail or your favorite email
pr ogram.

Enter mail username or pine username

or . . .

Read the message or messages you got. Enter pine or start your favorite email
pr ogram; use its “read message” com-
mands.

Reply to one of the messages. (It’s okay
to reply to a message from yourself.)

Pr ess R in pine or use your email pro-
gram’s “reply” command. Send the
completed reply.

Forward one of the messages. (It’s okay
to forward a message to yourself.)

Pr ess F in pine or use your email pro-
gram’s “forward” command. Add a
sentence or two of explanation above
the forwarded message. Send the
completed message.

Usenet News
Usenet, also called “Net News,” has thousands of worldwide discussion

gr oups. Each discussion is carried on as a series of messages in its own

newsgr oup. A newsgr oup is named for the kind of discussion that hap-

pens there. Each message is a lot like an email message. But, instead of

being sent to a list of email addresses, a newsgroup message is sent to all

7 January 2002 13:14

the computers that subscribe to that particular newsgroup — and any user

with access to that computer can read and reply to the message.

Because Usenet is a public forum, you’ll find a variety of
people with a variety of opinions—some impolite, rude, or
worse. Although most users are friendly and helpful, a few
people seem to cause most of the problems. Until you’re
accustomed to Usenet, be aware that you may be offended.

To read Usenet groups, you’ll need a newsr eader pr ogram, also called a

news client. Many email programs can read news, too. You can use any

newsr eader; the principles of all are about the same. Some of the more

popular Unix newsreaders are slr n, nn, and tr n. We show how to read

news with Pine Version 4.33.* If you haven’t used Pine before, please read

the section “Reading Email with Pine,” earlier in this chapter.

If your system’s copy of Pine has been set up to read Usenet messages,

when you choose the L key (“folder list”) from the main menu, you’ll get

a Collection List screen like Figure 6-9. A collection is a group of folders.

A collection can be email folders from your local computer, email folders

fr om other computers, or Usenet newsgroup folders. Figure 6-9 shows two

collections: Mail and News on news/nntp. The News collection is selected

(highlighted).

PINE 4.33 COLLECTION LIST Folder: INBOX No Messages

Mail

Local folders in mail/

News on news/nntp
News groups on news/nntp

? Help < Main Menu P PrevCltn - PrevPage

O OTHER CMDS > [View Cltn] N NextCltn Spc NextPage W WhereIs

Figur e 6-9. Pine collection list screen

* Much older versions of Pine can’t show newsgroups. Choose another newsreader or
upgrade to the newest Pine.

Usenet News 119

7 January 2002 13:14

120 Chapter 6: Using the Internet and Other Networks

If your copy of Pine is recent enough to read Usenet, but doesn’t seem to

do it, check the configuration settings, as described in the section “Config-

uring Pine,” earlier in this chapter. The collectionList settings can set up a

collection of folders for news. You may also need to set the nntp-server

hostname to the computer which serves news articles; your system staff

should be able to tell you the right hostname.

When you press ENTER or > to view that collection, you’ll get a list of

newsgr oup folders that’s probably huge. Usenet has something for every-

one! The Pine D command will delete a newsgroup from your list; it

won’t appear anymore unless you use the A command to add it back.

(Pine also has some advanced features, like “zooming” to a list of folders

that you’ve defined. See the Pine help system for details.) Figure 6-10

shows a list of some newsgroups.

PINE 4.33 FOLDER LIST Folder: INBOX No Messages

News groups on news/nntp

--

alt.3d

alt.activism

alt.activism.d

alt.activism.death-penalty

alt.adoption

alt.alien.visitors

alt.alt

alt.amateur-comp

alt.amazon-women.admirers

alt.amiga.demos

alt.angst

alt.animals.badgers

alt.animals.bears
alt.animals.dolphins

alt.animals.felines

? Help < ExitSubscb P PrevFldr - PrevPage L List Mode

S [Subscribe] N NextFldr Spc NextPage W WhereIs

Figur e 6-10. Pine newsgr oup collection list screen

Newsgr oup names are in a hierarchy, with names of the levels separated

by dots (.):

• The main hierarchies include comp (for discussions about computers);

organization, city, regional and national groups (such as ne for New

England, uk for the United Kingdom, and so on); misc

7 January 2002 13:14

(“miscellaneous”); and so on. The alt (“alter native”) hierarchy is for

almost anything that doesn’t fit in the others.

• All the top levels have subcategories, or second-level categories. For

instance, the alt category has subcategories alt.3d, alt.activism,

alt.adoption, and so on, as you can see in Figure 6-10.

• A second-level category may have third-level categories. For instance,

the category alt.animals is divided into alt.animals.badgers, alt.ani-

mals.bears, and so on.

When you first start to read Usenet, it’s a good idea to
spend a couple of hours exploring what’s available and
what you’re inter ested in — and deleting unwanted news-
gr oups fr om your list. The time you spend at first will pay
you back later, by letting you go straight to the newsgroups
in which you’re inter ested.

People all over the world frequent particular newsgroups. Just as mail

folders have email messages, newsgroups have news articles (individual

messages posted by someone). These messages expir e after a period of

time. (That’s part of why a lot of newsgroups appear empty.) Let’s look

into a newsgroup. Go to the newsgroup news.announce.newusers; scr oll

thr ough the folder list by pressing the space bar, or if in a hurry, use the

W (“wher eis”) command and enter the newsgroup name. Once you’ve

selected the name from the collection list, press ENTER or > to view it.

You’ll see a list of messages in the group, as in Figure 6-11.

PINE 4.33 MESSAGE INDEX news.announce.newusers Msg 1 of 4

1 Jul 15 David Alex La (49,945) FAQ: How to find people’s E-mail

2 Aug 13 *.answers mod (19,102) Introduction to the *.answers ne

3 Aug 14 Chris Lewis (32,675) How to become a Usenet site

4 Aug 15 news.announce (2,591) Welcome to newsgroups and Usenet

[News group "news.announce.newusers" opened with 4 messages]

? Help < FldrList P PrevMsg - PrevPage D Delete

O OTHER CMDS > [ViewMsg] N NextMsg Spc NextPage U Undelete

Figur e 6-11. Pine newsgr oup message index screen

Usenet News 121

7 January 2002 13:14

122 Chapter 6: Using the Internet and Other Networks

Read Usenet messages just as you read email messages; for example,

select a message from the message index and press ENTER or > to view

it. It stays in the index until it’s deleted or expires. Deleting messages

you’ve read or don’t want to see makes it easier to find new messages that

come in later. To keep a message, save a copy to a Pine mail folder with

the S (“save”) command, email a copy to other users with the F (“for-

ward”) command, or save a copy to a file with the E (“export”) com-

mand.

Remember that people worldwide will see your message
and have your email address. If your message is insulting,
long and rambling, includes a lot of the original message
unnecessarily, or just makes people unhappy, you’re likely
to get a lot of email about it. Many newsgroups have peri-
odic FAQ (“frequently asked questions”) postings that give
mor e infor mation about the group and answer common
questions. We suggest that you not post messages to news-
gr oups until you’ve read Usenet for a while, have learned
what style is acceptable, and have seen enough of the dis-
cussion in a particular group to know whether your ques-
tion or comment has been discussed recently.

Also, remember that spammers (people who send “junk
email” with advertising and worse) will be able to see the
email address on your Usenet posting. For that reason,
many people set a differ ent email address in the “From:”
field when posting Usenet messages. If your Internet
pr ovider gives you multiple email addresses, you could
choose one just for your Usenet postings. (Readers may
want to reply to your message by email, though, so con-
sider using an email address that you do read occasionally.
You also can include your “real” address in the body of the
article, possibly disguised to fool spammers who search
Usenet articles for email addresses.)

If there’s a message you want to reply to, the Pine R command starts a

reply. After asking whether to include a copy of the original message in

your reply, Pine asks you: “Follow-up to news group(s), Reply via email

to author or Both?” If you want all who read this newsgroup to see your

reply, choose F to follow up; your reply, including your name and email

addr ess, is posted for everyone to see. If your message is just for the

author — for instance, a question or a comment—replying by email with

R is the better choice.

7 January 2002 13:14

You can post a new message to a newsgroup with the C (“compose”)

command. If you’re viewing a news folder, Pine asks if you want to com-

pose a message to that newsgroup. (If you answer N (“no”), Pine creates

a regular email message.)

Her e’s one more tip: to read expired messages or search through years of

archives, web sites like Google Groups (http://gr oups.google.com/) allow

this.

Interactive Chat
Need a quick answer from another user without sending an email mes-

sage and waiting for his reply? Want to have a conversation with your

Inter net-connected friend in Chile but don’t have money for an interna-

tional phone call? An interactive chat program lets you type text to

another user and see her reply moments later. Chatting, or “instant mes-

saging,” has become popular recently. Widely known chat programs are

available for Unix; as of this writing, those include Jabber and AOL Instant

Messenger. Other programs have been available on Unix systems for

years. We look at two of these: talk and IRC.

talk

The talk pr ogram is simple to use. Give the username (and, optionally, the

hostname) of the person you want to chat with. Then talk will try to notify

that person as well as show how to use talk to complete the connection

with you. Both of your terminal windows will be split into two sections,

one for the text you type and the other for the text you get from the other

person. You can type messages back and forth until one of you uses

CTRL-C to br eak the session.

One advantage of talk is its simplicity; if each of you has a terminal win-

dow open, either of you can run the program at any time; if the other per-

son is logged in, he is notified that you want to chat and told how to

complete the connection. If both people want to use talk on the same

computer — even if one of them is logged in remotely (see the section

“Remote Logins,” earlier)—it should work well. Unfortunately, there are

several talk versions that don’t work with each other. So, the first time you

try to chat with someone on another host, which might have another talk

version (or other problems), it can take planning. Use an email message

or phone call to alert them that you’ll try talking soon, then experiment to

be sure that both of you have compatible talk systems. After that, you’re

all set.

Interactive Chat 123

7 January 2002 13:14

124 Chapter 6: Using the Internet and Other Networks

Her e’s the syntax:

talk user name@hostname

If the other user is logged onto the same computer as you, omit the

@hostname. After you run that command, your screen clears with a line of

dashes across the middle. The top half shows text you type and informa-

tional messages about the connection. The bottom half shows what the

other user types.

For example, if your username is juan, you’r e logged onto the computer

sandya.unm.edu, and you want to talk to the user ana at the computer

cielo.cl, you would type “talk ana@cielo.cl”. If the connection works, your

scr een clears and you’ll see something like Figure 6-12.

[No connection yet]

[Waiting for your party to respond]

[Waiting for your party to respond]

[Connection established]

Hi, Ana! Need any help with your exam?

--

Figur e 6-12. A successful talk connection

The message [Waiting for your party to respond] means that your talk pr o-

gram has found ana’s system and is waiting for her to respond. Ana’s ter-

minal bell should ring and she should see a message like this in one of

her terminal windows:

Message from Talk_Daemon@sandya.unm.edu at 18:57 ...

talk: connection requested by juan@sandya.unm.edu.

talk: respond with: talk juan@sandya.unm.edu

If she answers by typing talk juan@sandya.unm.edu, the connection should

be completed, and her screen should clear and look like Juan’s. What she

types appears on the top half of her screen and the bottom half of Juan’s,

and vice versa. It’s not always easy to know when the other person has

finished typing; one convention is to type o (for “over”) when you want a

response; type oo (for “over and out”) when you’re finished. The

7 January 2002 13:14

conversation goes on until one person types CTRL-C to actually break the

connection.

Unfortunately, because there are several versions of talk, and because

other things can go wrong, you may see other messages from the talk pr o-

gram. One common message is [Checking for invitation on caller’s

machine], which usually means that you won’t be able to connect. If this

happens, it’s possible that one system has other versions of the talk pr o-

gram that will work with the particular system you’re trying to connect

to — try the ntalk pr ogram, for instance. It might also be easier to use a

mor e flexible chat system, such as IRC.

IRC

IRC (Internet Relay Chat) is a long-established system for chatting with

other users worldwide. IRC is fairly complex, with some rules you need to

understand before using it. We give a brief introduction here; for more

details, see http://www.ir chelp.org.

Introducing IRC

Unlike the talk pr ogram, IRC programs let you talk with multiple users on

multiple channels. Channels have names, usually starting with “#”, such as

#football. (You might hope that a channel name would tell you what sort

of discussions happen there, but you’d often be wrong!) Many channels

ar e shar ed between multiple servers on an IRC net, or network; you con-

nect your IRC program to a nearby server, which spreads your channel to

other servers around the net. Some channel names start with “&”; these

channels are local to their server, and not shared around the net. Finally,

you can meet a user from a channel and have a private conversation, a

“DCC chat,” that doesn’t go through servers.

Each user on a channel has a nick, or nickname, which is up to 9 charac-

ters long. It’s a good idea to choose a unique nick. Even when you do, if

someone else with the same nick joins a channel before you do, you must

choose another nick.

Two kinds of users are in contr ol of each channel. Ops, or channel opera-

tors, choose which other users can join a channel (by “banning” some

users from joining) and which users have to leave (by “kicking off” those

users). If a channel is empty, the first user to join it is automatically the

channel op. (As you can imagine, this system means that some ops can be

arbitrary or unhelpful. If an op treats you badly, though, you can just go

join another of the thousands of IRC channels.) IRC ops, on the other

Interactive Chat 125

7 January 2002 13:14

126 Chapter 6: Using the Internet and Other Networks

hand, are technical people in charge of the servers themselves; they don’t

get involved with “people issues.”

IRC not only lets you chat; it lets you share files with other users. This can

be helpful, but it also can be dangerous; see the War ning later in this sec-

tion.

Ther e ar e many IRC programs, or “clients,” for differ ent operating systems.

They all work with each other, though some have more featur es. The best

known Unix program is ircII, which you run by typing irc. Another well-

liked program, based on ircII, is bitchx; get it from http://www.bitchx.or g.

Many programs can be modified by using scripts or bots; ther e ar e thou-

sands of these floating around IRC. But we advise you to use only well-

known programs, and to avoid scripts and bots, unless you know that

they’r e safe.

IRC started long before graphical programs were popular. IRC programs

use commands that start with a slash (/), such as /join #football or /whois

Ste vieNix. Some IRC programs have buttons and menus that run com-

mands without typing, but you’ll probably find that learning the most

common commands is easy—and makes chatting faster, overall, than

using a mouse.

IRC can be a wide open security hole if you don’t use it
car efully. If you type the wrong command or use an inse-
cur e pr ogram or script, any user can take over your
account, delete all of your files, and more. Be careful!

IRC programs can be corrupted; scripts and bots can easily
do damage. Even if you think that one is widely known
and safe, it can contain a few lines of dangerous “trojan
horse” code added by an unscrupulous user. Also, never
type a command that another IRC user suggests unless
you’r e sur e you know what it does; /load and /dcc get can
be especially dangerous.

Finally, you should know that IRC users can get information about you

with the /whois nick command, where nick is your current nick. They’ll

see your real name unless you set the IRCNAME environment variable to

another name (and log into your system again to make the change take

ef fect). This is explained in the section “Customizing Your Account,” in

Chapter 3. (By the way, use /whois with your nick to find out what other

people can see about you.)

7 January 2002 13:14

A sample IRC session

When you type irc, your terminal screen splits into two parts. The top part

shows what’s happening on the server and the channel; the bottom part (a

single line) is where you type commands and text. In between the two

parts is a status line with the time of day, your nick, and other informa-

tion. Some terminals can’t do what irc wants them to; if you get an error

message about this, try the command irc –d to use “dumb mode” instead.

A good ircII command to start with is /help, which provides a list of other

commands. The commands /help intro and /help newuser give introduc-

tions. For help with a particular command, give its name—such as /help

ser ver for help with the /ser ver command. When you’re done with help,

you’ll get a “Help?” prompt; you can type another help topic name, or

simply press RETURN to leave the help system. Another common com-

mand is /motd, the “message of the day,” which often explains the

server’s policies.

You can type your nick on the irc command line. Your IRC program

should have a default server. You can change servers with the /ser ver

command; you’d do this if your server is full (you get the message “con-

nection timed out,” “connection refused,” etc.). If your default IRC server

is down or busy, you can also give a server hostname on the irc com-

mand line, after your nick.

In the following examples, we show the text you type (from the bottom

line of the screen) in boldface, followed by the responses you might see

(fr om the top of the screen) in unbolded text.

$ irc sstjohn us.undernet.org
*** Connecting to port 6667 of server us.undernet.org

...

*** Closing Link: sstjohn by austin.tx.us.undernet.org (Sorry, your

+connection class is full - try again later or try another server)

*** Connecting to port 6667 of server us.undernet.org

...

*** Welcome to the Internet Relay Network sstjohn (from

+Arlington.VA.US.Undernet.Org)

...

*** on 1 ca 1(4) ft 10(10)

/motd
*** The message of the day was last changed: 27/7/2001

*** on 1 ca 1(4) ft 10(10)

*** - Arlington.VA.US.Undernet.Org Message of the Day -

*** - 27/7/2001 20:39

...

*** - SERVER POLICIES:

Interactive Chat 127

7 January 2002 13:14

128 Chapter 6: Using the Internet and Other Networks

...

/help newuser
*** Help on newuser

...

*** Hit any key for more, ’q’ to quit ***

...

Help? RETURN

/whois sstjohn
*** sstjohn is ˜jpeek@kumquat.jpeek.com (Steve St. John)

*** on irc via server *.undernet.org (The Undernet Underworld)

*** sstjohn has been idle 1 minutes

Messages from the server start with ***. Long lines are broken and con-

tinue on following lines that start with +. After connecting to the server, I

used /whois with my nick to find what information other users could see

about me. The Undernet servers have thousands of channels open, so I

started by searching for channels with “help” in their names; you can use

wildcards, such as *help*, to do this:

/list *help*
*** Channel Users Topic

*** #helpmania 2 A yellow light, an open door, hello neighbor,

+there’s room for more. English

*** #underneth 14 -= UndernetHelp =- Ask your color free questions

+& wait for it to be answered. (undernethelp@fivemile.org)

*** #mIRCHelp 14 Welcome to Undernet’s mIRC Help Channel! Beginners

+welcome :-)

*** #irc_help 48 Welcome to #irc_help. We do not assist in

+questions/channels regarding warez, mp3, porn, fserve, etc.

...list goes on and on...

/list *mp3*
...list of groups discussing/sharing MP3 files...

I want to see what’s happening, so I join the biggest help channel:

#ir c_help, which has 48 users now:

/join #irc_help
*** sstjohn (jpeek@kumquat.jpeek.com) has joined channel #irc_help

*** Topic for #irc_help: Welcome to #irc_help. We do not assist in

+questions/channels regarding warez, mp3, porn, fserve, etc.

*** Users on #irc_help: sstjohn ChuckieCheese Dodgerl GooberZ

+Kinger MotorMouth @theDRJoker MrBean SweetPea LavaBoy GrandapaJoe

...

Some names in the list of users, like @Darkmind, start with @; these users

ar e ops. Let’s watch some more of the action. After a couple of users leave

7 January 2002 13:14

the channel, a new user MsTiger joins and asks for help. Each time a user

types a line of text that isn’t a command, it’s sent to everyone else on the

channel, preceded by that user’s nick, like <MsTiger>:

*** ChuckieCheese has left channel #irc_help

*** GooberZ has left channel #irc_help

*** HelloWorld (˜hw@foo.edu) has joined channel #irc_help

*** MsTiger (˜tiger@zz.ro) has joined channel #irc_help

<MsTiger> help me

<MsTiger> please

<Kinger> MsTiger what can we help you with ?

<MsTiger> my channel is not op

<Kinger> LavaBoy tell MsTiger about no opers

<LavaBoy> MsTiger, *shrug*

<GrandapaJoe> MsTiger Sorry, but there are currently NO IRC Operators

+available to help you with your channels. Please be patient and wait

+for an Operator to join.

*** MsTiger has left channel #irc_help

The channel has gotten quiet, so I jump in with a question:

Hello all. When I joined, I had a problem
...

Any suggestions??
*** Thor (dfdddd@194.999.231.00) has joined channel #irc_help

<[Wizard]> Can you help me plz

<LavaBoy> Try typing !help in the channel, [MORTAL].

/leave
*** sstjohn has left channel #irc_help

/quit
$

No one had an answer, so I left the channel after a few minutes of wait-

ing. Other channels might be a lot livelier, and might have had someone

willing to chat about my question, but I left the irc pr ogram by typing

/quit. Then I got another shell prompt.

Interactive Chat 129

7 January 2002 13:14

7
Multitasking

In this chapter:

• Running a
Command in the
Backg round

• Checking on a
Process

• Cancelling a Process

Unix can do many jobs at once, dividing the processor’s time between the

tasks so quickly that it looks as if everything is running at the same time.

This is called multitasking.

With a window system, you can have many applications running at the

same time, with many windows open. But most Unix systems also let you

run more than one program inside the same terminal. This is called job

contr ol. It gives some of the benefits of window systems to users who

don’t have windows. But, even if you’re using a window system, you may

want to use job control to do several things inside the same terminal win-

dow. For instance, you may prefer to do most of your work from one ter-

minal window, instead of covering your desktop with multiple windows.

Why else would you want job control? Suppose you’re running a program

that will take a long time to process. On a single-task operating system

such as MS-DOS, you would enter the command and wait for the system

pr ompt to retur n, telling you that you could enter a new command. In

Unix, however, you can enter new commands in the “foregr ound” while

one or more programs are still running in the “background.”

When you enter a command as a background process, the shell prompt

reappears immediately so that you can enter a new command. The origi-

nal program will still run in the background, but you can use the system

to do other things during that time. Depending on your system and your

shell, you may even be able to log off and let the background process run

to completion.

130

7 January 2002 13:14

Running a Command
in the Background
Running a program as a background process is most often done to free a

ter minal when you know the program will take a long time to run. It’s

used whenever you want to launch a new window program from an exist-

ing terminal window—so that you can keep working in the existing termi-

nal, as well as in the new window.

To run a program in the background, add the “&” character at the end of

the command line before you press the RETURN key. The shell then

assigns and displays a process ID number for the program:

$ sort bigfile > bigfile.sort &

[1] 29890

$

(Sorting is a good example because it can take a while to sort huge files,

so users often do it in the background.)

The process ID (PID) for this program is 29890. The PID is useful when

you want to check the status of a background process, or if you need to,

cancel it. You don’t need to remember the PID, because there are Unix

commands (explained in later sections of this chapter) to check on the

pr ocesses you have running. Some shells write a status line to your screen

when the background process finishes.

Her e’s another example. If you’re using a terminal window, and you’d like

to open another terminal window, you can probably click a button or

choose a menu item to do that. But, if you occasionally want to specify

command-line options for that new window, it’s much easier to type the

options on a command line in an existing window. (Most menus and but-

tons don’t give you the flexibility to choose options each time you open a

new window.) For instance, by default, an xter m window saves 64 lines

of your previous work in its “scrollback buffer.” If you’ll be doing a lot of

work that you’ll want to review with the scrollbar, you might want to

open a new window with a 2000-line scrollback buffer. You could enter

the following command in an existing xter m window:

$ xterm -sl 2000 &

[1] 19283

A new xter m window should pop open—wher e you’ll be able to scroll

almost forever.

Running a Command in the Background 131

7 January 2002 13:14

132 Chapter 7: Multitasking

In the C shell, you can put an entire sequence of commands separated by

semicolons (;) into the background by putting an ampersand at the end of

the entire command line. In other shells, enclose the command sequence

in parentheses before adding the ampersand. For instance, you might

want to sort a file, then print it after sor t finishes. The syntax that works

on all shells is:

(command1; command2) &

The examples above work on all shells. On many systems, the shells have

the feature we mentioned earlier called job control. You can use the sus-

pend character (usually CTRL-Z) to suspend a program running in the

for eground. The program pauses and you get a new shell prompt. You

can then do anything else you like, including putting the suspended pro-

gram into the background using the bg command. The fg command brings

a suspended or background process to the foregr ound.

For example, you might start sor t running on a big file, and, after a

minute, want to send email. Stop sor t, then put it in the background. The

shell prints a message, then another shell prompt. Send mail while sor t

runs.

$ sort hugefile1 hugefile2 > sorted

...time goes by...

CTRL-Z Stopped

$ bg

[1] sort hugefile1 hugefile2 > sorted &

$ mail eduardo@nacional.cl

...

Checking on a Process
If a background process takes too long, or you change your mind and

want to stop a process, you can check the status of the process and even

cancel it.

ps

When you enter the command ps, you can see how long a process has

been running, the process ID of the background process and the terminal

fr om which it was run. The tty pr ogram shows the name of the terminal

wher e it’s running; this is especially helpful when you’re using a window

system or you’re logged into multiple terminals. Example 7-1 shows this in

mor e detail.

7 January 2002 13:14

Example 7-1. Output of ps and tty programs

$ ps

PID TTY TIME CMD

27285 pts/3 0:01 csh

27285 pts/3 0:01 ps

29771 pts/2 0:00 csh

29792 pts/2 0:54 sort

$ tty

/dev/pts/3

In its basic form, ps lists the following:

Pr ocess ID (PID)

A unique number assigned by Unix to the process.

Terminal name (TTY)

The Unix name for the terminal from which the process was started.

Run time (TIME)

The amount of computer time (in minutes and seconds) that the pro-

cess has used.

Command (CMD)

The name of the process.

In a window system, each terminal window has its own terminal name.

Example 7-1 shows processes running on two terminals: pts/3 and pts/2.

Some versions of ps list only the processes on the same terminal where

you run ps; other versions list processes on all terminals where you’r e

logged in. If you have more than one terminal window open, but all the

entries in the TTY column show the same terminal name, try typing either

“ps x” or “ps -u user name”, where user name is your username. If you

need to find out the name of a particular terminal, run the tty pr ogram

fr om a shell prompt in that window, as shown in Example 7-1.

While using a window system, you may see quite a few processes you

don’t recognize; they’re probably helping the window manager do its job.

You may also see the names of any other programs running in the back-

gr ound and the name of your shell’s process (sh, csh, and so

on) — although dif ferent versions of ps may show fewer processes by

default. ps may or may not list its own process.

You should be aware that there are two types of programs on Unix sys-

tems: directly executable programs and interpreted programs. Directly

executable programs are written in a programming language such as C or

Pascal and stored in a file that the system can read directly. Interpreted

pr ograms, such as shell scripts and Perl scripts, are sequences of

Checking on a Process 133

7 January 2002 13:14

134 Chapter 7: Multitasking

commands that are read by an interpreter program. If you execute an

interpr eted pr ogram, you will see an additional command (such as perl,

sh, or csh) in the ps listing, as well as any Unix commands that the inter-

pr eter is executing now.

Shells with job control have a command called jobs which lists back-

gr ound pr ocesses started from that shell. As mentioned earlier, ther e ar e

commands to change the foregr ound/backgr ound status of jobs. There are

other job control commands as well. See the refer ences in the section

“Documentation” in Chapter 8.

Cancelling a Process
You may decide that you shouldn’t have put a process in the background.

Or you decide that the process is taking too long to execute. You can can-

cel a background process if you know its process ID.

kill

The kill command aborts a process. The command’s format is:

kill PID(s)

kill ter minates the designated process IDs (shown under the PID heading

in the ps listing). If you do not know the process ID, do a ps first to dis-

play the status of your processes.

In the following example, the “sleep n” command simply causes a process

to “go to sleep” for n number of seconds. We enter two commands, sleep

and who, on the same line, as a background process.

$ (sleep 60; who)&

[1] 21087

$ ps

PID TTY TIME COMMAND

20055 4 0:10 sh

21087 4 0:01 sh

21088 4 0:00 sleep

21089 4 0:02 ps

$ kill 21088

[1]+ Terminated sleep 60

$ tom tty2 Aug 30 11:27

grace tty4 Aug 30 12:24

tim tty5 Aug 30 07:52

dale tty7 Aug 30 14:34

We decided that 60 seconds was too long to wait for the output of who.

The ps listing showed that sleep had the process ID number 21088, so we

7 January 2002 13:14

used this PID to kill the sleep pr ocess. You should see a message like “ter-

minated” or “killed”; if you don’t, use another ps command to be sure the

pr ocess has been killed.

The who pr ogram is executed immediately, since it is no longer waiting

on sleep; it lists the users logged into the system.

Problem checklist

The process didn’t die when I told it to.

Some processes can be hard to kill. If a normal kill of these processes

is not working, enter “kill -9 PID”. This is a sure kill and can destroy

almost anything, including the shell that is interpreting it.

In addition, if you’ve run an interpreted program (such as a shell

script), you may not be able to kill all dependent processes by killing

the interpreter process that got it all started; you may need to kill

them individually. However, killing a process that is feeding data into

a pipe generally kills any processes receiving that data.

Cancelling a Process 135

7 January 2002 13:14

8
Where to Go
from Here

In this chapter:

• Documentation

• Shell Aliases and
Functions

• Programming

• Using Unix on Non-
Unix Systems

Now that you’re almost to the end of this guide, let’s look at some ways to

continue learning about Unix. Documentation is an obvious choice, but it

isn’t always in obvious places. You can save time by taking advantage of

other shell features — aliases, functions, and scripts—that let you shorten a

repetitive job and “let the computer do the dirty work.”

We’ll close by seeing how you can use Unix commands on non-Unix sys-

tems.

Documentation
You might want to know the options to the programs we’ve introduced —

and get more infor mation about them and the many other Unix programs.

You’r e now ready to consult your system’s documentation and other

resources.

The man Command

Dif ferent versions of Unix have adapted Unix documentation in differ ent

ways. Almost all Unix systems have documentation derived from a manual

originally called the Unix Programmer’s Manual. The manual has num-

ber ed sections; each section is a collection of manual pages, often called

“manpages”; each program has its own manpage. Section 1 has manpages

for general Unix programs such as who and ls.

Many Unix installations have individual manual pages stored on the com-

puter; users can read them online. If your system has online manpages,

and you want to know the correct syntax for entering a command or the

136

7 January 2002 13:14

particular features of a program, enter the command man and the name of

the command. The syntax is:

man command

For example, if you want to find information about the program mail,

which allows you to send messages to other users, enter:

$ man mail

.

.

$

The output of man may be filtered through a pager like less automatically.

If it isn’t, just pipe the output of man to less (or more or pg).

After you enter the command, the screen fills with text. Press SPACE or

RETURN to read more, and q to quit.

Some systems also have a command called apropos or man –k to help you

locate a command if you have an idea of what it does but are not sure of

its correct name. Enter apropos followed by a descriptive word; you’ll get

a list of commands that might help.

Problem checklist

man says there is no manual entry for the command.

Some commands—cd and jobs, for example—aren’t separate Unix

pr ograms; they’r e part of the shell. On some Unix systems, you’ll find

documentation for those commands in the manual page for the shell.

(To find the shell’s name, see the section “The Unix Shell” in Chapter

1.)

If the program isn’t a standard part of your Unix system—that is, your

system staff added the program to your system—ther e may not be a

manual page, or you may have to configure the man pr ogram to find

the local manpage files.

The info Command

Linux systems, as well as some others, have a program called info. It

serves the same purpose as man: to document system programs. The info

output is in a differ ent for mat, though. The syntax to start info is:

info command

For example, if you want to find information about the program find,

which searches for files, enter info find. After you enter the command,

pr ess SPACE to read more or “q” to quit.

Documentation 137

7 January 2002 13:14

138 Chapter 8: Where to Go from Here

Documentation via the Internet

The Internet changes so quickly that any list of online Unix documenta-

tion we’d give you would soon be out of date. Still, the Internet is a great

place to find out about Unix systems. Remember that there are many dif-

fer ent versions of Unix—so some documentation you find may not be

completely right for you. Also, some information you’ll find may be far

too technical for your needs (many computer professionals use and dis-

cuss Unix). But don’t be discouraged! Once you’ve found a site with the

general kind of information you need, you can probably come back later

for more.

Many Unix command names are plain English words, which can make

searching hard. If you’re looking for collections of Unix information, try

searching for the Unix program named gr ep. As this book went to press,

one especially Unix-friendly search engine was Google, at

http://www.google.com.

Her e ar e some other places to try:

• Ma gazines, both in print and online-only, have Unix tutorials and links

to more infor mation. Many are written for beginners.

• Publisher s, like O’Reilly & Associates, Inc. (http://www.or eilly.com),

have areas of their websites that feature Unix and have articles written

by their books’ authors. They may also have books online (such as

the O’Reilly Safari service) available for a small monthly fee—which is

a good way to learn a lot quickly without needing to buy a paper

copy of a huge book, most of which you may not need.

• Vendor s’ sites like Red Hat (http://www.r edhat.com), and Unix-related

organizations like the Free Software Foundation (http://www.fsf.or g),

usually have documentation and support files online, where you can

search for what you need.

• Univer sities often use Unix-like systems and will have online docu-

mentation. You’ll probably have better luck at the Computer Services

division (which services the whole campus) than at the Computer Sci-

ence department (which may be more technical).

Books

Bookstor es, both traditional and online, are full of computer books. The

books are written for a wide variety of needs and backgrounds. Unfortu-

nately, many books are rushed to press, written by authors with minimal

Unix experience, full of errors. Before you buy a book, read through parts

7 January 2002 13:14

of it. Does the style (brief or lots of detail, chatty and friendly or organized

as a refer ence) fit your needs? Search the Internet for reviews; online

bookstor es may have readers’ comments on file.

Shell Aliases and Functions
If you type command names that are hard for you to remember, or com-

mand lines that seem too long, you’ll want to learn about shell aliases and

shell functions. These shell features let you abbreviate commands, com-

mand lines, and long series of commands. In most cases, you can replace

them with a single word or a word and a few arguments. For example,

one of the long pipelines the section “Pipes and Filters” (Chapter 5) could

be replaced by an alias or function named (for instance) “aug.” When you

type aug at a shell prompt, the shell would list files modified in August,

sorted by size.

Making an alias or function is almost as simple as typing in the command

line or lines that you want to run. References in the section “Documenta-

tion,” earlier in this chapter, have more infor mation. Shell aliases and func-

tions are actually a simple case of shell programming.

Prog ramming
We mention earlier that the shell is the system’s command interpreter. It

reads each command line you enter at your terminal and perfor ms the

operation that you call for. Your shell is chosen when your account is set

up.

The shell is just an ordinary program that can be called by a Unix com-

mand. However, it contains some features (such as variables, control struc-

tur es, and so on) that make it similar to a programming language. You can

save a series of shell commands in a file, called a shell script, to accom-

plish specialized functions.

Pr ogramming the shell should be attempted only when you are reason-

ably confident of your ability to use Unix commands. Unix is quite a pow-

er ful tool and its capabilities become more appar ent when you try your

hand at shell programming.

Take time to learn the basics. Then, when you’re faced with a new task,

take time to browse through refer ences to find programs or options that

will help you get the job done more easily. Once you’ve done that, learn

how to build shell scripts so that you never have to type a complicated

command sequence more than once.

Prog ramming 139

7 January 2002 13:14

140 Chapter 8: Where to Go from Here

You might also want to learn Perl. Like the shell, Perl interprets script files

full of commands. But Perl has a steeper learning curve than the shell.

Also, since you’ve already learned a fair amount about the shell and Unix

commands by reading this book, you’re almost ready to start writing shell

scripts now; on the other hand, Perl will take longer to learn. But if you

have sophisticated needs, learning Perl is another way to use even more

of the power of your Unix system.

Using Unix on Non-Unix Systems
Once you get comfortable working quickly at the Unix command line,

you may miss that power and flexibility when you use another system like

Micr osoft Windows. You can get programs — both commercial and freely

available — that let you use a Unix-like shell prompt and Unix utilities

(gr ep, sor t, and so on) from within other operating systems. You’ll also

find that an increasing number of systems are built on top of the stable

Unix or a Unix-like operating system. Two of the latest examples are Mac

OS X on the Macintosh and a variety of machines with Linux embedded

inside.

Unix, Microsoft Windows, and the Macintosh all use differ-
ent conventions for the way that they mark the end of a
line of text. If you transfer text files between these systems,
you’ll probably need to convert them. (The command-line
FTP client does this automatically if you set its ascii transfer
mode.) And if you have an executable program file that
runs on one system, it won’t run on the others—unless it’s
written in Java or it’s a script pr ogram fr om a language such
as the shell or Perl.

Under Microsoft Windows

Cygwin, from http://www.cygwin.com, is a package of Unix-like software

development utilities that runs under Microsoft Windows NT, 98, and 95

(and probably others, as Microsoft Windows evolves). Although it’s aimed

at software developers, it also has a lot of the standard Unix utilities. You

can use Cygwin from its bash shell (a Unix-like shell) or from the standard

Windows command shell.

The MKS Toolkit, from http://www.mks.com, is a commercial package of

Unix-like utilities that runs under Microsoft Windows. MKS Toolkit has

7 January 2002 13:14

been on the market, and been updated constantly, since the time of MS-

DOS in the 1980s.

With a little hunting, you’ll find versions of other Unix programs for Win-

dows systems. Three of these are the Pine email program, the Lynx

br owser, and vim, a version of the vi text editor.

Mac OS X

The latest version of the Macintosh operating system (as of this writing) is

Mac OS X, a Unix-based system. The OS X window system, Aqua, inter-

acts with the operating system much as the X Window System you’ve seen

in this book. (In fact, you now can use X on the Mac!)

If you want to use a Unix-like terminal under OS X, you can open Ter mi-

nal. It’s a regular double-clickable application found in /Applications/Utili-

ties. Navigate to it using the Finder, launch it, and you’ll get a terminal

window like the ones shown in this book.

Once you open Ter minal, you can use standard Unix utilities on your Mac

files, on files you create with those utilities, or on files you transfer over a

network. File pathnames are separated by slashes (/), just as on Unix, but

be sure to put quotes around Mac filenames that don’t follow our file

naming rules (see the section “File and Directory Names” in Chapter 4).

Unlike Unix and Windows, some Macintosh files have two forks: the

resource and data forks. If you copy a Mac file, watch out—the cp utility

won’t copy both forks! Instead, you’ll need to install and run CpMac (fr om

the Developer Tools CD that comes with OS X; then you can simply run

/De veloper/Tools/CpMac).

Using Unix on Non-Unix Systems 141

7 January 2002 13:14

Glossar y

alphanumeric
Characters: letters (alpha) and numbers (numeric), including punctuation
characters (such as _ and ?).

click
Depr ess and quickly release a mouse button; double- and triple-click imply
depr essing and releasing a mouse button two or three times, respectively,
within a short period. You’ll usually click with the first mouse button (which
is the left mouse button for righthanded users—or the opposite if your mouse
has been configured for a lefthanded user). See also point.

clipboar d
A temporary storage area for X Window System programs, used for transfer-
ring text (“copying” and “pasting” text) between programs.

command
A command is an instruction that you can give to a program running on the
Unix system. For instance, you can type a program’s name and arguments on
a command line, at a shell prompt; this command asks the shell to run that
pr ogram. (The shell is a program itself; see shell.) Once a program starts run-
ning, it may accept commands of its own. For example, a text editor has com-
mands for deleting and adding text to the file it’s editing.

The terms command and pr ogram ar e used almost interchangeably, probably
because the program name is typed first on a command line (at a shell
pr ompt). Shells have some built-in commands that don’t start a separate pro-
gram running; one of these is cd, which changes the shell’s working directory.

cracker
A malicious person who tries to break into computer systems (usually via a
network), disrupt computers and networks, steal secrets (like passwords and
cr edit card numbers), and other antisocial behavior.

143

7 January 2002 13:14

144 Glossary

Popular media often call these people hackers. But, to most computer pro-
grammers, a hacker is someone who enjoys computing and programming,
and may be an expert at some area of it. (For instance, a Perl hacker is some-
one who’s good at programming in the Perl language.)

desktop
The part of a display that’s “behind” (not enclosed within) the windows,
icons, and other items on the display. Also called the root window.

dir ectory
A list of files and/or other directories. A directory is actually a special kind of
file that has names and locations of other files and directories. See also work-
ing directory.

display
One meaning of display is to make something visible, as in “the command
displays its result.” In the X Window System, a display is the viewable area
output by the X display server. Usually this is a single terminal screen, but X
can be configured to use multiple screens as part of the same display.

Multiscr een X displays aren’t common, though, and sentences like “the result
is displayed on the display” are clumsy. To avoid confusion, we use the term
scr een for the visual output of your computer—whether it’s an alphanumeric
ter minal or a graphical workstation. See also scr een.

drag
As in drag an object, i.e., a window or an icon, means to point to the object
and then depress and hold down (usually) the first mouse button while mov-
ing the pointer to a new location, where the mouse button is released.

Some Unix desktop environments support “drag and drop,” which means
dragging one object and dropping it over another object. For example, to
print a file, you could drag the file’s icon and drop it onto a printer icon.

Fr ee Softwar e Foundation (FSF)
An organization formed in 1985 that works for the right of computer users to
study, copy, modify, and redistribute computer programs. The FSF also dis-
tributes free software. See http://www.fsf.or g/; see also GNU.

GNOME
A project to develop a free desktop environment (a window system and
mor e) for free operating systems. See http://www.gnome.or g/; see also KDE.

GNU
A project, started in 1984, to develop a completely free Unix-like operating
system: the GNU system. GNU stands for “GNU’s Not Unix”; it is pronounced
“guh-NEW.” See also Fr ee Softwar e Foundation.

7 January 2002 13:14

KDE
A desktop environment (a window system and more), as well as a family of
application programs, for Unix-like workstations. See http://www.kde.or g/; see
also GNOME.

mouse pointer
The graphic symbol that appears on the output display and moves under the
contr ol of the mouse, trackball, or keyboard input to the window system.

In the X Window System, the pointer is actually called a cursor. But we use
the term “pointer” in this book to distinguish the cursor under control of the
mouse from other cursors that you’ll sometimes see (such as the “I-beam” cur-
sor in an xter m window).

multitasking
An operating system that can run more than one program at a time is said to
be a multitasking OS. The programs don’t actually all run simultaneously: the
OS can divide the computer’s time between the differ ent pr ograms, very
rapidly, so that they all appear to run at the same time. The system can still
be overloaded, and run slowly, if too many programs are trying to run at
once.

Unix has always been multitasking. MS-DOS (an early Microsoft OS) was not.

pathname
The location of a file or directory in a Unix filesystem: a series of names sepa-
rated by slash (/) characters. Pathnames can be absolute (starting with a slash
character, which means they begin at the filesystem’s root directory) or rela-
tive (not starting with a slash, which means the pathname starts from the cur-
rent working directory). See also the section “The Unix Filesystem” in Chapter
3.

point
As in “point a mouse,” means to position the mouse pointer at a specified
place or location within a window or other part of a window system display.
See also click, drag.

pr ogram
A set of instructions to the computer, written by a programmer, and stored in
a file. The program is executed when you type its name as the first word on a
command line, at a shell prompt — or when you choose the program from a
menu or icon in a window system. Unix runs a program as a pr ocess, which
you can suspend or terminate using job control, an interrupt key, or the kill
command.

root (user and directory)
Unix systems have an account named root, also called the “superuser,” that
has no protections or restrictions. System administrators and staff use this
account to make changes to the system’s configuration and operation.

Glossar y 145

7 January 2002 13:14

146 Glossary

A Unix filesystem is like an upside-down tree with a branching structure of
dir ectories inside directories. The first directory, where the filesystem starts, is
called the root directory. Figur e 3-1 is a filesystem diagram showing the root
dir ectory and a small part of a filesystem.

scr een
The area of a terminal (usually glass or plastic) that shows computer output.
See also display and ter minal.

session
When two programs, or two users running programs, communicate across a
network, they typically start the communication by doing a certain thing—for
instance, by logging in. The communication continues until it’s completed (or,
possibly, aborted before it completes) — for instance, by logging out. The
entir e pr ocess, fr om start to completion, is called a session.

shell
A program that runs other programs. There are several differ ent kinds of
shells, each with its own command-line syntax; some of the most common
ar e bash, tcsh and ksh. All shells do the same basic job: reading commands
that you type interactively at a shell prompt, or reading commands noninter-
actively from a program file called a shell script.

When you start using a terminal (by logging in) or a terminal window (by
starting a program such as xter m), a shell program begins to run and prints a
shell prompt. When you terminate that shell (by typing exit or CTRL-D at a
pr ompt), you’r e logged out from that terminal; a terminal window will close.

syntax
The rules for, or the format of, the characters you use to make a command or
other computer input. For example, the syntax of a Unix command line is
explained in the section “Syntax of Unix Command Lines” of Chapter 1.

ter minal
Computer hardware that provides a way to input data to, and display output
fr om, an operating system and programs running under it. Usually the input
hardwar e is a keyboard and the output is a glass or plastic screen. For the
purposes of this book, there are two types of screens or terminals, alphanu-
meric and graphical.

An alphanumeric terminal can only display text, can’t run a window system,
and usually doesn’t have a mouse or other pointing device.* An alphanumeric
ter minal displays alphanumeric characters—and possibly simple graphics
(lines, boxes and maybe a few special symbols). An alphanumeric terminal
can’t handle a window system and typically doesn’t have a mouse or other
pointing device; if the cursor can be moved around the screen, it’s probably
done with arrows or other keys on the keyboard. See also alphanumeric.

* Befor e the widespread use of glass terminals (when data transmission rates were slow) it
was common to use a teletype as both the input and output hardware. This is why Unix ter-
minals are often called ttys.

7 January 2002 13:14

A graphical terminal can usually run a window system—with arbitrary-sized
windows, images (photographs and other graphics), sound, etc. Graphical ter-
minals are typically bitmapped, which means that each pixel (dot of color) can
be individually controlled by the computer—as opposed to an alphanumeric
ter minal, wher e the terminal itself chooses which dots to turn on and off to
make letters, numbers, and other characters that the computer has told it to
cr eate.

ter minal window
A window, on a window system, made by a terminal emulation program such
as xter m, GNOME Ter minal, or konsole. It’s an interface like an alphanumeric
ter minal—with a shell prompt where you can type command lines from your
keyboard and can see any text that those programs output. In most cases, a
mouse or other pointing device is useless inside a terminal window—though
it works at the borders of the window (to minimize the window, move it, etc.)
just as on other windows.

titlebar
The part of the window border above a window. It shows the window’s title.
It also has buttons and/or menus that control characteristics of the window,
such as minimizing the window or lowering the window to the bottom of a
window stack. Figure 2-4 shows a titlebar.

virtual consoles
Virtual consoles, available on Linux and other PC operating systems, let you
access several differ ent fullscr een login sessions on the same screen, indepen-
dent of any window system. Just after a reboot, if you get a “login:” prompt
(as in Example 1-1), you’ll be using the first virtual console. To use other vir-
tual consoles, hold down the CTRL key and the left ALT key, then press one
of the function keys F1 (for the first console) through F6 (for the sixth). Each
of those function keys will bring up a separate login session. (Once you’ve
started the X Window System, CTRL - ALT - F7 may take you to the X dis-
play.) Use each virtual console for whatever you want—just remember to log
out of each when you’re done!

window
An area of an output display often smaller in size than the maximum size of
the display screen.

If a window manager program is running, a window usually will have a well-
defined border, a title, and other characteristics. The window manager lets
you move and resize a window as well.

working directory
When you give Unix a relative pathname to a file or subdirectory, the work-
ing directory is the starting point—the directory where that relative pathname
starts. Here are two examples:

If your working directory is /home/joe/food and you type the command less
recipes/fish, Unix opens the file /home/joe/food/r ecipes/fish. (Your working
dir ectory is still /home/joe/food.)

Glossar y 147

7 January 2002 13:14

148 Glossary

If you type the command “ls . .” from any working directory, you get a listing
of the files in your parent directory. That command uses the relative path-
name to the parent directory (. .). So if your working directory is /home/joe/
food, that command would list the parent directory /home/joe. Or, if your
working directory is /home/joe, that same command would list the parent
dir ectory /home.

Each process running on a Unix system has its own working directory, which
the program can change at any time. For instance, you can give the shell the
command cd to change its working directory.

x86 processor
Since the 1980s, the Intel Corporation has been building a family (series) of
micr opr ocessors (which are used in computer CPUs, Central Processing Units)
whose model numbers end in the number 86. The first was the 8086; then
came the 80286 (the 80186 wasn’t as widely used); next was the very popular
80386; and so on. Many operating systems run only on a certain family of
micr opr ocessors. Micr osoft Windows, for instance, is primarily designed for
the x86 family; recent versions won’t work on a processor earlier than the
80586. Unix-like operating systems run on many differ ent micr opr ocessor fam-
ilies, but the x86 is one of the most popular—especially for Linux, which
works well with an 80386.

xter m pr ogram
A program that runs under the X Window System. It makes a terminal win-
dow (called an xterm window) in which a Unix login session runs.

7 January 2002 13:14

Index

Symbols

& (ampersand)
backgr ound pr ocesses and, 131
IRC, using, 125
starting the window manager

and, 21
< (input redir ection operator), 87
> and >> (output redir ection

operator), 88-91
* (asterisk)

executable files and, 53
wildcards, 58, 67, 79

| (pipe) for I/O redir ection, 88
[] (bracket), as wildcards, 68
ˆ (car et), cutting or copying text in

pico, 72
: (colon) as a less prompt, 55
- (hyphen) for command options, 11
$ (dollar sign), as shell prompt, 4, 6,

21
. (dot)

dir ectory shortcuts, 46, 50, 76
in filenames, 66

= (equal sign) operator, 58
(hash mark)

using IRC, 125
as shell prompt, 6

We’d like to hear your suggestions for improving our indexes. Send email to
index@or eilly.com.

% (percent sign), as shell prompt, 21
; (semicolon)

backgr ound commands,
running, 132

command lines and, 12
/ (slash)

IRC, using, 126
ls command and, 53
pathnames and, 45-47
root directories and, 43, 46

? (question mark), as a wildcard, 67
?word command (less), 55

A

-a (all) option, (ls), 50
absolute pathnames, 45, 46
access modes (permissions), 51, 57
accounts (Unix), 1-11, 42-65

customizing, 63-65
addr ess book (Pine), 116
aliases (shell), 139
alphanumeric terminals, 17
ampersand (&)

backgr ound pr ocesses and, 131
IRC, using, 125

149

7 January 2002 13:15

150 Index

ampersand (&) (continued)
starting the window manager

and, 21
appending text to files, 91
apr opos pr ogram, 137
arguments for command lines, 11
ascii command (FTP), 107
asterisk (*)

executable files and, 53
wildcards, 58, 67, 79

B

b command, (less), 55
backgr ound pr ocessing, 130-135

cancelling processes, 134
checking on processes, 132-134

BACKSPACE key, 9
bash shell, 5
bg command, 132
bin directory, 44
binary command (FTP), 107
block cursors, 27
blocks, measuring total n, (ls -l), 50
Bour ne (sh) shell, 5
bracket ([]) as wildcards, 68
br owsers, using graphical

filesystems, 61

C

C (csh) shell, 5
-c grep option, 94
calculator programs for X, 23
cancel program, 85
cancelling

backgr ound pr ocesses, 134
for eground processes, 130
print jobs, 85

car et (ˆ), cutting or copying text in
pico, 72

case-sensitivity of Unix systems, 2
cat program, 88-91
cd (change directory) command, 48

FTP, 107
channel operators (Ops), 125
chat (interactive), 123-125
chattr program (Linux), 59
chgrp program, 60
child directories (subdirectories), 44

chmod command, 52, 57-60
chown program, 60
clients, X Window System, 23
clobbering files, 89
Close (Sawfish window menu), 33
collections in Pine, 119
colon (:) as a less prompt, 55
command prompt, 4
command-line FTP, 106-108
commands

entering a line, 6
FTP, 106
menus and icons, 24
recalling previous, 8
shell aliases for, 139
syntax of, 11-13
types of, 14

Config command, 117
connecting to Unix systems, 2, 97-100
contr ol characters, 9

CTRL-C, 15
CTRL-D, 16, 90
CTRL-H, 9
CTRL-J, 15
CTRL-Q, 16
CTRL-S, 16
CTRL-Z, 15, 132

contr olling pr ograms, quitting X, 40
copying

files, 74-77, 81
remotely, 104-108

xter m windows and, 26
cp program, 60, 75
crackers, 100

changing passwords and, 62
csh (C) shell, 5
CTRL-L command (less), 55
cu program, 97
curr ent dir ectories, 43
curr ently selected links, (Lynx), 103
cursors, 26
customizing

accounts, 63-65
pr ogramming the shell, 139, 140

Cygwin software, 140

7 January 2002 13:15

D

dash (-) for command options, 11
date and time

date program and, 7, 90
pr ocess execution time, 132

DEL, DELETE keys, 9
deleting files and directories, 79, 80
desktop environments, 18
desktops (virtual), 35-37
dir command (FTP), 107
dir ectly executable programs, 133
dir ectories, 42

.. shortcuts, 46, 50, 76
changing, 47
cr eating, 74
curr ent, 43
deleting, 79, 80
files, completing, 62
hierarchy of trees, 43, 48
home, 43
listing, 49-54
names of, 66-69
pathnames, 44-47
per missions, 52, 56

umask command and, 64
working, 43

DISPLAY envir onment variable, 25
display managers, 19
documentation on Unix, 136
dollar sign ($), as shell prompt, 4, 6,

21
dot (.)

dir ectory shortcuts, 46, 50, 76
in filenames, 66

E

emacs text editor, 69
email (electronic mail), 108-118

command output, sending, 95
files, sending, 132
Pine program and, 111-118

Enlightenment window manager, 37
envir onment variables, setting, 63-65
envir onments

desktop, 18
Unix, 1-11

equal sign (=) operator, 58
erase character, 9

erasing files and directories, 79
err ors on command line, 8
etc directory, 44
eXceed, 3
executable files, 53
execute (x) permission, 51, 58
exit command, 10, 31
Exit (window manager), 40
exiting

Unix session, 10
X Window System, 40

F

fg command, 11, 132
File Transfer Protocol (FTP), 105-108
filenames, 66

changing, 77, 78
option commands and, 12
replacing with pathnames, 58
starting with dot (.), 66
wildcards for, 67

files, 42, 67-74
appending text to, 91
copying, 74-77, 81, 104-108

acr oss a network, 77
cr eating and editing, 69-74
deleting, 79, 80
dir ectory names and, 62
dir ectory tr ees and, 48
finding/searching for, 78
hidden, 50
infor mation about, 50-53
inserting text in, 88-91
less command, using, 54, 55
Linux protection for, 59
listing, 49-54
managing, 74-81
moving, 77, 78
overwriting by mistake, 89
pathnames, 44-47
per missions, 52, 57

umask command and, 64
printing, 81-86
reading, 81, 88, 95
remote, 80, 81

copying, 104-108
renaming, 77, 78

Index 151

7 January 2002 13:15

152 Index

files (continued)
searching within, 93, 94
sharing, 56-60
sorting lines in, 94

filesystem, 42-54
graphical browsers, 61
networked, 44

filters, 92-96
find program, 78
finding

files, 78
text in files, 93, 94

N

nf command, 55

F

finger program, 13
flags, 11
focus, setting, 22
for eground, 130-135
Forget saved state (Sawfish window

menu), 33
fortune program, 64
fr ozen

ter minals, 14-16
windows, 37

FTP (File Transfer Protocol), 105-108
functions for shell aliases, 139

G

g (gr oup) per mission, 58
gdm display manager, 19
get command (FTP), 106
glossary, 143-147
GNOME desktop environment, 18, 23,

33
graphical filesystem browsers

and, 61
virtual desktops and, 35

graphical filesystem browsers, 61
graphical (windows)

logging in, 3, 19
gr ep pr ogram, 93, 94
gr oup (g) permission, 58
gr oups pr ogram, 60

H

h (help) command, (less), 55
hackers, 100

changing passwords and, 62
hash mark (#)

using IRC, 125
as shell prompt, 6

help and resources
info program, 137
less program, 55
man program (less), 136
Unix documentation, 136

help (h) command, 55
hidden files, 50
hierarchies (directory trees), 43, 48
History (Sawfish window menu), 33
home directory, 43
hostnames

for accounts, 1
mailing to, 109

hung
ter minals, 14-16
windows, 37

hyphen (-) for command options, 11

I

-i grep option, 94
I-beam pointer, 27
icons, 24

iconifying windows, 29
moving, 31
virtual desktops and, 37

index (message) screens for
newsgr oups, 122

info program, 137
input focus, setting, 22
input redir ection operator (<), 87
input/output redir ection, 87-96

cr eating files, 69
Inter net, 32, 97-129
Inter net Relay Chat (IRC), 125-129
interpr eted pr ograms, 133
interrupt characters, 9, 15
I/O (input/output) redir ection, 87-96

cr eating files, 69
IRC (Internet Relay Chat), 125-129

7 January 2002 13:15

J

job control, 130-135
stopped jobs, 11
suspending jobs, 15

jobs command, 134

K

KDE desktop environment, 18
graphical filesystem browsers

and, 61
kdm display manager, 19
ker mit pr ogram, 3
keyboard shortcuts, 34
kill command, 31, 134
Konquer or

file system browser, 61
web browser, 101

Kor n (ksh) shell, 5

L

-l option (ls), 94
lcd command (FTP), 107
LESS environment variable, 55, 64
less program, S, 95

wildcards and, 68
LINEFEED character, 15
links

in long formats, 51
in text-based browsers, 103

Linux
dir ectory pr otection, 59
info program, 137
MTOOLS utilities, 81

listing files/directories, 49-54
locate program, 78
logging in

graphically, 19
nongraphically, 3-5
pr ompt for, 2
remotely, 97-100

logging out, 10
.login file, 63
logout command, 10
lowercase letters, when logging in, 4
lp program, 83, 84
lpq program, 83, 85
lpr program, 83, 84
lpr m pr ogram, 85

lpstat program, 84
ls program, 13, 49-54

rm command and, 79
Lynx web browsers, 101-104

M

Macintosh computers, 140
mail (electronic), 108-118
mail program, 109
man program, 136
maximizing windows, 29

Sawfish window menu, 33
mcopy program, 81
menus

commands, 24
Sawfish windows, 33
window manager, 24
window menu, 33-35

message index screens for
newsgr oups, 122

metacharacters, 67
mget command (FTP), 106
Micr osoft Windows, 140

accessing with Unix, 80, 81
minicom program, 3
minimizing windows, 29

Sawfish window menu, 33
mkdir program, 74
modification date in long formats, 52
mor e pr ogram, 54
mouse, 26-29

window systems, using, 17
xter m, using on, 26-29

moving
between directories, 48
files, 77, 78
windows and icons, 31

mput command (FTP), 106
MTOOLS utilities, 81
multitasking, 130-135
mv program, 77, 78
mwm menu, 34

Index 153

7 January 2002 13:15

154 Index

N

:n command (less), 55
-n grep option, 94
name in long formats, 52
naming files and directories, 66

wildcards for, 67-69
Net News, 118
netscape program, 14
Netscape web browsers, 14, 101
networked filesystem, 44
networks, copying files across, 104,

105
newsr eader pr ogram, 119
NO SCROLL key, 16
noclobber variable, 89
nongraphical login, 3
not command, 53
ntalk program, 125

O

o (other) permission, 58
Opera web browsers, 101
operating system, definition of, vii
Ops (channel operators), 125
options for command lines, 11
other (o) permission, 58
output redir ection operator (> and

>>), 88-91
output/input redir ecting, 87-96
overwriting files, 89
owner in long formats (ls), 51

P

:p command (less), 55
pagers, choosing between virtual

desktops, 35-37
panels for window managers, 35
par ent dir ectories, using ..

shortcuts, 46, 50, 76
passwd program, 63
passwords, 2

changing, 63
logging on with, 4
security of, 62

pasting in xterm windows, 26
PA TH envir onment variable, 64
pathnames, 44-47

absolute, 45, 46

relative, 46, 47
percent sign (%), as shell prompt, 21
per missions, 52

dir ectory, 56
under Linux, 59
umask command and, 64

pg program, 54
Pico text editor, 69-74
PID (process ID) numbers, 23, 131
Pine program, 111-119

addr ess book, 116
configuring, 116
email, sending, 113-116

pipe (|) for I/O redir ection, 88, 92-96
pointers, 17

mouse, working with, 26
pr program, 81
print working directory (pwd)

command, 47
printers, 81
printing files, 81-86

cancelling jobs, 85
job queue for, 83, 84

pr ocess ID (PID) numbers, 23, 131
pr ocesses, backgr ound, 130-135

cancelling, 134
checking on processes, 132-134

pr ocomm pr ogram, 3
.pr ofile file, 63
pr ogramming the shell, 139, 140
pr ograms

cancelling execution of, 9, 134
dir ectly executable vs.

interpr eted, 133
redir ecting output of, 88, 92-96
running in background, 130-134
X, running with, 22-25

pr ompt (command/shell), 4
FTP, 107

ps program, 132-134
put command (FTP), 106
pwd (print working directory)

command, 47

7 January 2002 13:15

Q

q command (less), 55
qmodem program, 3
question mark (?), as a wildcard, 67
queue (printers), 83, 84
quit command (FTP), 107
quitting X Window System, 40

R

r (read) permission, 51, 58
rcp program, 104
reading files, 54, 55
redir ecting input/output, 87-96
regular expression, 93
relative pathnames, 46
Remember position (Sawfish window

menu), 33
remote files, 80, 81

copying, 104-108
remote logins, 97
removing files and directories, 79
resizing windows, 31
RETURN command, (less), 55
rlogin program, 97, 99
rm program, 79
rmdir program, 79
root directory, 43
rsh program, 97, 99
RUBOUT key, 9

S

Sawfish window menus, 33
scp program, 104
scr olling, tur ning of f, 16
searching

files, 78
within files, 93, 94

security, 2
of passwords, 62

semicolon (;)
backgr ound commands,

running, 132
command lines and, 12

Send window to (Sawfish window
menu), 33

session, unresponsive (hung), 14-16,
37

Setup command (Pine), 117

sh (Bourne) shell, 5
sharing files, 56-60
shells, 1

aliases, 139
pr ogramming shell scripts, 139, 140
pr ompt, 4, 6

sending mail from, 109-118
setup files, 63
Unix, 5
Window systems, 6

shortcuts, keyboard, 34
single-user operating systems, vii
size in long formats (ls), 51
slash (/)

IRC, using, 126
ls command and, 53
pathnames and, 45-47
root directories and, 43, 46

sort command, 94
-o option, 12

SSH connections, 100
ssh program, 3, 97, 99
Stacking (Sawfish window menu), 33
stacking windows, 32
standard input/output, 87
stopped jobs, 11
subdir ectories (child directories), 44
superusers, logging in as, 6
suspend character, 132
suspending jobs, 15
syntax of command lines, 11-13

T

TAB key, completing file and directory
names, 62

talk program, 123
tcsh shell, 5
telnet program, 3, 97
ter minal types, 4
ter minal windows, 1, 22

multitasking in, 130
pr ocesses, checking, 132-134
shells, using in a Windows system, 6
unr esponsive (hung), 14-16

text
appending to files, 91
editors for, 69

Index 155

7 January 2002 13:15

156 Index

text (continued)
handling in xterm windows, 27
inserting into files, 88-91
printing format, 81-86
searching files for, 93, 94
sorting lines of, 94

text based web browsers, 101
text editors, 69-74
time (see date and time)
tip program, 97
titlebar, window, 29
tmp directory, 44
total n in long formats (ls), 50
tr ees (dir ectories), 43, 48
tr oubleshooting

backgr ound pr ocessing, 135
command line, 8
copying and pasting, 28
copying files, 77
deleting files and directories, 80
hung (unresponsive) terminal, 14-16
hung (unresponsive) window, 37
logging in, 5
logging out, 10
man program, 137
overwriting files by mistake, 89
printing, 84
X root menu, 25

tty program, 132
type in long formats (ls), 51

U

u (user) permission, 58
umask command, 64
Unix

accessing other platforms, 80, 81
accounts, 1-11, 42-65
documentation on, 136
envir onment, 1-11
pr ograms, running, 21-25
shells, 5
starting X from, 20
ter minal windows for, 22
versions of, viii

up-arr ow key, recalling previous
commands, 8

Usenet news, 118-123
user (u) permission, 58

user names, 1
mailing to, 109

users
access modes (permissions), 51
dir ectories, 44
who program for, 7, 90

V

v command (less), 55
versions, Unix, viii
vertical bar (|) for I/O redir ection, 88,

92-96
vi text editor, 69
virtual consoles, 17
virtual desktops, 35-37
VMwar e, 3

W

-w option, starting pico, 70
w program, 13
w (write) permission, 51, 58
web browsers, 37

Lynx, 101-104
Wher eis command (Pine), 117
who am i command, 7
who command, 7
who program, 90

options and, 12
wildcards, 58, 67
window managers, 18

featur es of, 35-37
menus, 24, 33-35
quitting X, 40
starting, 21
virtual desktops and, 35-37
working with, 29-35

window systems, 17-41
focus in, 22
graphical, logging in, 19
mouse, working with, 26-29

windows
focus, 22
iconifying/maximizing, 29
menus for, 33-35
moving, 31
other computers and, 100
resizing, 31

7 January 2002 13:15

windows (continued)
Sawfish menus, 33
stacking, 32
titlebar, 29
unr esponsive (hung), 37
working with, 29-35
X (see X Window System), 17

Windows system
shells for, 6

/word command (less), 55
word processors, 69-74

vs. text editors, 69
working directory, 43, 47

X

x (execute) permission, 51, 58
X forwarding, 101
X Window System, 17, 100

clients, 23
getting input focus, 22
manager menus, 24
mouse, working with, 26-29
pr ograms, running on, 21-25, 39
quitting, 40
starting, 19-21
xdm display manager, 19

xauth command, 25
xcalc program, 23
xdm display manager, 19
xhost command, 25
xinit command, 20
xter m windows, 6, 23

copying and pasting in, 27
mouse, working with, 26-29
multitasking, 131
pico, using, 71
resizing, 31

Y

yppasswd program, 63

Index 157

7 January 2002 13:15

	Title
	Copyright
	About the Author
	Table of Contents
	Preface
	The Unix Family of Operating Systems
	Versions of Unix
	Interfaces to Unix
	What This Handbook Covers
	What’s New in the Fifth Edition
	Format
	Commands
	Examples
	Problem Checklist
	Exercises
	Comments and Questions

	Acknowledgments

	1. Getting Started
	Working in the Unix Environment
	Connecting to the Unix Computer
	Logging in Nongraphically
	The Unix Shell
	Shells in a Window System
	The Shell Prompt
	Entering a Command Line
	Recalling Previous Commands
	Correcting a Command Line
	Logging Out

	Syntax of Unix Command Lines
	Types of Commands
	The Unresponsive Terminal

	2. Using Window Systems
	Introduction to Windowing
	Starting X
	A. Ready to Run X (with a Graphical Login)
	B. Starting X from a Standard Unix Session
	C. Starting the Window Manager

	Running Programs
	Setting Focus
	Terminal Windows
	Window Manager Menus

	Working with a Mouse
	Pointer Shape
	Using a Mouse with xterm Windows

	Working with Windows
	Using the Titlebar
	Moving Windows and Icons
	Resizing Windows
	Stacking Windows
	The Window Menu

	Other Window Manager Features
	Panel
	Pagers and Virtual Desktops

	Unresponsive Windows
	Other X Window Programs
	Quitting

	3. Using Your Unix Account
	The Unix Filesystem
	Your Home Directory
	Your Working Directory
	The Directory Tree
	Absolute Pathnames
	Relative Pathnames
	Changing Your Working Directory
	Files in the Directory Tree
	Listing Files with ls

	Looking Inside Files with less
	Protecting and Sharing Files
	Directory Access Permissions
	File Access Permissions
	Setting Permissions with chmod
	More Protection Under Linux
	Changing Group and Owner

	Graphical Filesystem Browsers
	Completing File and Directory Names
	Changing Your Password
	Customizing Your Account

	4. File Management
	File and Directory Names
	File and Directory Wildcards
	Creating and Editing Files
	Text Editors and Word Processors
	The Pico Text Editor

	Managing Your Files
	Creating Directories with mkdir
	Copying Files
	Renaming and Moving Files with mv
	Finding Files
	Removing Files and Directories
	Files on Other Operating Systems

	Printing Files
	pr
	lp and lpr
	Viewing the Printer Queue

	5. Redirecting I/O
	Standard Input and Standard Output
	Putting Text in a File

	Pipes and Filters
	grep
	sort
	Piping to a Pager

	6. Using the Internet and Other Networks
	Remote Logins
	About Security

	Windows from Other Computers
	Lynx, a Text-based Web Browser
	Transferring Files
	scp and rcp
	FTP

	Electronic Mail
	Addressing an Email Message
	Sending Mail from a Shell Prompt
	Reading Email with Pine
	Sending Email with Pine
	Configuring Pine

	Usenet News
	Interactive Chat
	talk
	IRC

	7. Multitasking
	Running a Command in the Background
	Checking on a Process
	ps

	Cancelling a Process
	kill

	8. Where to Go from Here
	Documentation
	The man Command
	The info Command
	Documentation via the Internet
	Books

	Shell Aliases and Functions
	Programming
	Using Unix on Non-Unix Systems
	Under Microsoft Windows
	Mac OS X

	Glossary
	Index

