A System V Guide to UNIX and XENIX

Trademarks

UNIX is a trademark of AT&T Bell Laboratories.

XENIX, MS-DOS, and PC-DOS are registered trademarks of Microsoft
Corporation.

PDP-7, PDP-11, VAX, VT52, and VT100 are trademarks of Digital
Equipment Corporation.

GE 645 is a trademark of General Electric Corporation.

Idris is a trademark of Whitesmith’s Ltd.

Cromix is a trademark of Cromemco, Inc.

PC/IX is a trademark of Interactive Systems, Inc.

CP/M is a registered trademark of Digital Research, Inc.

Ethernet is a trademark of Digital Equipment, Intel, and Xerox
Corporations.

IBM is a registered trademark of International Business Machines, Inc.
EBCDIC, BSC, SNA, SDLC, DOS, DOS/VS, DOS/VSE, OS, OS/MFT,
OS/MVT, MVS, VM,

CICS, TSO, IMS, and CMS are trademarks of International Business
Machines, Inc.

Teletype is a trademark of Teletype Corporation.

NEC and Spinwriter are trademarks of Nippon Electric Company.
COHERENT is a registered trademark of Mark Williams Company.
LSI, ADM-3, and ADM-3A are trademarks of Zentec Corporation.

HP and 2631 are trademarks of Hewlett-Packard.

Wyse 50 is a trademark of Wyse Technology, Inc.

Amdabhl is a registered trademark, UTS is a trademark of Amdahl
Corporation.

Douglas William Topham

A System V Guide to
UNIX and XENIX

With 61 Figures

&

Springer-Verlag
New York Berlin Heidelberg
London Paris Tokyo Hong Kong

Preface

As in preparing the earlier edition of this book, we’ve emphasized presenting
UNIX in basic terms for first-time users. Parts I-IV of the book (“Funda-
mentals,” “Text-Editing,” “Text-Processing,” and “Text-Formatting”) are
for most readers. If you're interested in just a brief introduction to UNIX,
see the short course at the end of this introduction.

For more experienced users, Parts V (“Shell Programming”), VI (“Sys-
tem Administration”), and VII (“Network Administration”) delve a little
more deeply into the system, and provide information that is either scat-
tered throughout many documents or unavailable. Part V begins with some
shortcuts that most readers can use, then covers programming techniques
in detail. Part VI presents the concepts that underly the internal operation
of UNIX, along with step-by-step procedures for operating and maintaining
a system.

ACKNOWLEDGEMENTS

I'd like to thank Hai Truong for contributing the chapters on shell program-
ming; Tom Leslie of AT&T and Brigid Fuller and Bill Brothers of the Santa,
Cruz Operation for help with new features; and Bill Potts, John Sovereign,
Chris Swartout, Jim Edele, Danesh Forouhari, Andrew Sharpe, Tom Leslie,
and Steve Robertson for reviewing certain key chapters for accuracy.

WHY You NEED A STEP-BY-STEP GUIDE

This book leads you step-by-step through the UNIX operating system. If
you are new to UNIX, you need a book like this. Using UNIX after using
one of the earlier operating systems for microcomputers is like using a
single-lens reflex camera after using a simple aim-and-shoot camera. There
are more features than you know what to do with, and it’s very difficult to
figure out where to begin.

Even though the reference manuals for UNIX seem to come in truckloads,
they often leave out essential information. You read page after page about
a feature you have to use, only to find that the basic facts you need have
been left out. The writers assume that you already know what the feature
is for and that you know how to use it. The result is text that is COIAK
(clear only if already known).

vi Preface

This book starts at the beginning and explains the basics step by step.
The fundamental facts are given to you, not assumed. The background
explanations and short, simple examples will help you learn UNIX and
XENIX quickly. While this approach is intended mainly for non-technical
people, many technical professionals have also profited from reading this
book. Any reader will finish this book well prepared to move on to more
complex topics.

ORGANIZATION OF THIS BOOK

The main text of this book is divided into six parts, each more or less inde-
pendent of the others. Within each part, the discussion begins with simpler
topics, then builds to more involved concepts in subsequent chapters. We
hope this makes it a little easier for you to select the material you need
and get the most out of this book.

I. Fundamentals. These chapters, intended for all readers, give you basic
instruction in using UNIX for the first time and finding out how it
works.

II. Text-Editing. These chapters show you how to use the vi and ex
programs to enter and edit text.

III. Text-Processing. These chapters show you how to perform searching,
sorting, and programming to process text and numbers.

IV. Text-Formatting. These chapters show you how to format and other-
wise process text files, usually in preparation for printing.

V. Shell Programming. These chapters, intended for more experienced
users, explain some short-cuts and provide you with the tools for
designing your own procedures and customizing your UNIX system.

VI. System Administration. These chapters, also intended for experienced
users, describe some of the inner workings of UNIX and show you
procedures for taking care of disks and tapes, backup and recovery,
startup and shutdown, terminals and printers, system security, and
system accounting.

VII. Network Administration. These chapters continue the discussion of
administration with an emphasis on networking applications, such as
communication and resource-sharing between different machines.

The appendices summarize information presented in the main text and
provide technical reference material. The glossary, which can be an educa-
tion in itself, explains the technical terms that you'll need to know.

We have done everything we can to ensure that each topic has been in-
troduced before being mentioned in connection with other topics. In nearly

Preface vii

every instance we were able to do this. However, because of the way con-
cepts are interrelated in UNIX, we faced many “chicken or egg” dilemmas
in arranging the topics. As a result, there are a handful of instances where
a topic is mentioned shortly before being described in full.

As a general rule, each section of the book is more technical than the
previous one, and each section becomes more detailed as you progress from
the beginning of the section to the end. Part I is for everyone; Parts II-IV
are for those who will be working with text; Parts V-VII are mainly for
those who will be modifying the operation of UNIX or maintaining a UNIX
system.

SHORTER COURSE

Feel free to turn directly to the parts of the book that are of greatest interest
to you. You can use it just for an introduction to UNIX, or you can delve
into it and learn how to produce formatted documentation, program the
shell, and perform administrative functions. To become quickly familiar
with UNIX without wading into technical details, you can start out with
the following chapters:

Introduction to UNIX
Getting Started with UNIX
The UNIX File System
Using UNIX Commands
Communication in UNIX
Introduction to Vi
Searching and Sorting
Introduction to mm

—
S WO U W~

Ju—y

Some readers may also wish to read the following chapters:
21 Introduction to the Bourne Shell

28 Basic Information (about System Administration)
37 Introduction to Networking

VERSIONS COVERED

This book covers UNIX System V, Releases 1, 2, and 3, along with the
corresponding releases of XENIX System V (XENIX 2.1 through 2.3). As
this book was going to press, the Santa Cruz Operation had just released
XENIX 2.3, and AT&T and the Santa Cruz Operation had just announced
anew combined UNIX and XENIX, known as UNIX System V /386, Release
3.2. If you have any of these versions of UNIX or XENIX, you should find
this book useful.

viii Preface

CORRECTIONS

The author and the publisher will appreciate receiving any suggestions and
corrections from readers.

Typographic Conventions

In this book, typewriter is used for names for directories and files, and bold
typewriter is used for commands. Slanted typewriter indicates what
you are to type at the keyboard. Here are examples:

fusr/lib Directory name
/unix File name
date Command name
$ who User entry

Ttalic is used for descriptions of information that you are to enter. When
you see italic, type what is described, not the actual characters, as shown
in these examples:

name Type a name, not the letters n-a-m-e
type Enter a type, not the letters t-y-p-e

In some instances, italic is used to distinguish a command from informa-
tion to be used by the command. In this example, italic separates “won”
from the command name that precedes it:

CWuwon The command is €W, while “won” is a word to be
used by the command

Some names are printed partly bold typewriter and partly italic. These
names are part literal, part descriptive. Here is an example:

LCK.name Here, LCK is a literal name, while name indicates
a name that you are to enter

Braces are used to indicate a list of items from which you must choose
one. Here is an example from Chapter 34 that displays three choices
(-m model, -e printer, and =i custom):

-m model
lp lpadmin -p printer -v device { -€ printer
-l custom

Brackets are used to indicate optional items, either a single item or a list
of items. The following example from Chapter 36 shows several optional
items, some belonging to a list, others by themselves:

Preface ix

-a
$ sar [-} [-o file] t [n]

-

In this example, three optional items are displayed in a list (-a, -b, and
-C), while two other optional items are displayed by themselves (-0 file and
n). The only two things required here are S@r and ¢; everything else is
optional. Note also that sar is a command name, which you are to enter
literally, while ¢ is a generic name, which in this instance represents a length
of time in seconds.

About the Author

Douglas Topham grew up in Los Angeles in the San Fernando
Valley, received his B.S. and A.M. degrees from Stanford Uni-
versity. After teaching math courses at the high school and col-
lege levels, he wrote a set of programs to provide live displays for
ABC’s “Password” show. Later he wrote the WordStar Train-
ing Guide and designed the screen displays for WordStar 3.0.
He is now a consultant in the San Francisco Bay area. Other
works by the author include UNIX and XENIX: A Step-by-Step
Guide, Using WordStar, WordStar in a Flash, and Introduction
to WordPerfect.

Limits of Liability and Disclaimer of Warranty

The author and publisher of this book have used their best efforts in prepar-
ing this book and the programs contained in it. These efforts include the
development, research, and testing of the theories and programs to de-
termine their effectiveness. The authors and publisher make no warranty
of any kind, expressed or implied, with regard to these programs or the
documentation contained in this book. The author and publisher shall not
be liable in any event for incidental or consequential damages in connec-
tion with, or arising out of, the furnishing, performance, or use of these
programs.

Contents

Preface

Fundamentals

Introduction to UNIX

1.1 Operating systems,
1.2 UNIXoperation.
1.3 UNIXandstandards

Getting Started with UNIX

2.1 Preliminary set-up procedures
2.2 Logging in and loggingout
2.3 Entering a command line
24 Processcontrol
2.5 Using the calculators
26 Otheraids.
2.7 Summary e e

The UNIX File System

3.1 Whatisafilesystem?
3.2 A structured filesystem
3.3 Working with directories
3.4 Working withfiles
3.5 File and directory permissions
3.6 Summary e

Using UNIX Commands

4.1 Constructing a command line
4.2 Redirection of input and output
4.3 Pipelines.
4.4 Displaying text on thescreen
4.5 More on working with files
46 Usingoprinters i
4.7 Summary e e e e e

xiv

CONTENTS

5 Communication in UNIX

5.1
5.2
5.3
5.4

Communicating with other users
Communicating outside your system
Some basics of communication
Summary

II Text Editing

6 Introduction to vi
6.1 Background
6.2 Typingaletter
6.3 Making changes to the letter
6.4 Ending thesession
6.5 Summary

7 Making Some Changes
7.1 Beginning anew session
7.2 Moving the cursor
7.3 Usingmarkers.
7.4 Controlling the screen display
75 Addingnewtext,
7.6 Summary e

8 Changing and Deleting Text
81 Changingtext.,
8.2 Deletingtext
83 Shiftingtext. L
8.4 Ending thesession
85 Summary

9 Finding and Replacing Text
9.1 Beginning anew session
9.2 Searchingonaline
9.3 Searchinginafile.
9.4 Making replacements L.
9.5 Making substitutionso o000
9.6 Shiftingtext.
9.7 Summary e

10 Moving and Copying within a File
10.1 Exiting Vi
10.2 Moving text withinafile.
10.3 Copying text withinafile

10.4 Summary

63
63
69
74
80

CONTENTS XV

11 Working with More Than One File 163
11.1 Editing anotherfile 163
11.2 Moving text between files 165
11.3 Copying text to another file 168
114 Invoking Vi L 171
11.5 Summary 175

12 Customizing Vi 177
12.1 Summary 188

IIT Text Processing 191

13 Searching and Sorting 193
13.1 Using options to modify the output 202
13.2 Summary 205

14 Programming with awk 207
14.1 Introduction 207
14.2 Using the awk program 211
14.3 Search patterns 215
14.4 Action statements 218
14.5 Error messageso i e i e 222
14.6 Summary 222

15 Programming with C 225
15.1 Staying in an editingsession 225
15.2 Executing a C program 226
15.3 Summary 233

IV Text-Formatting 237

16 Introduction to mm 239
16.1 Introduction to formatting 239
16.2 Forming paragraphs 242
16.3 Forming lists 242
16.4 Displaying text 246
16.5 Emphasizing and de-emphasizing text 248
16.6 Other features 249
16.7 Summary 252

17 Formatting with mm 255
17.1 Keeping lines of text together 255
17.2 Using footnotes 256

17.3 Using headings, 257

xvi CONTENTS

174 Pagelayout
17.5 Initiating formatting
17.6 Summary e

18 Formatting with nroff and troff
18.1 Initiating formatting
18.2 Setting up pages
18.3 Formatting linesof text
184 Summary e

19 Formatting with troff
19.1 Printing and typesetting
19.2 Introductiontotroff
19.3 Working with troff, ..
194 Summary

20 More on Formatting
20.1 Using double-column format
20.2 Formatting tables.
20.3 Formatting equations e
20.4 Defining your own requests
20.5 Modifying formatting options
20.6 Summary

V Shell Programming

21 Introduction to the Bourne Shell
21.1 Introductory example
21.2 Controlling the environment
21.3 Setting variables
21.4 Commands and arguments
21.5 Standard input, output, and diagnostics
21.6 Redirection of input and output
21.7 SUMMArY v i e e e e e e e e

22 Bourne Shell Processes
22.1 Shell functions
22.2 Background commands L.
22.3 Connecting processes v v v v e
22.4 Giving directives to the shell
22.5 SUmMMAryo e e e e e

CONTENTS xvii

23 Bourne Shell Variables 349
23.1 Shell procedures 349
23.2 Shell variables 351
23.3 Command substitution 356
23.4 Conditional substitution of variables 359
23.5 Positional parameters 360
23.6 Reserved variables, 363
23.7 Summary e e e 364

24 Bourne Shell Program Control 367
24.1 Constructing loops oL 367
24.2 The conditional statement 373
24.3 Other programming techniques 380
244 SUMMATY e e 383

25 Introduction to the C Shell 385
25.1 Initialization fileso L., 385
25.2 Explanations of individual items 386
25.3 Reinvoking previous commands 388
25.4 Selecting individual arguments 390
25.5 Modifying a command line. 391
25.6 Summary e 398

26 C Shell Variables 401
26.1 Assigning a string variable 401
26.2 Variablesasarrays 402
26.3 Assigning numeric variables 404
26.4 Setting elements of a numericarray 407
26.5 Variables reserved by the Cshell 408
26.6 Summary e 413

27 C Shell Procedures 415
27.1 Executing a file as a shell procedure 415
27.2 Forming conditional statements 416
273 Forming loops 418
27.4 Other programming techniques 424
27.5 Built-in commands L. 427
27.6 Summary 427

VI System Administration 431

xviii CONTENTS

28 Basic Information
28.1 The system administrator
28.2 Time-sharing concepts
28.3 Disks and filesystems
284 SUmMMAry

29 File Systems
29.1 The structure of a filesystem
29.2 Checking filesystems
29.3 Summary

30 Disks and Tapes
30.1 Devices and filetypes
30.2 Adding and removing devices
30.3 Backupandrecovery
30.4 Summary

31 Disk Maintenance
31.1 Providing diskspace
31.2 Programs that run automatically
31.3 System efficiency
31.4 Summary

32 Startup and Shutdown
32.1 Starting up a UNIX system
32.2 Multi-usermode
32.3 Shutting down a UNIX system
32.4 Summary

33 Terminals
33.1 Identifying your terminal
33.2 Thesttycommand
33.3 Describing a terminal forvi
33.4 Designing anentry
33.5 Examplesofentries.
33.6 Summary

34 Printers
34.1 Printer basics
34.2 Features forusers
34.3 Features for system administrators
34.4 Summary

CONTENTS

35 System Security
35.1 Information about users and groups
35.2 Restricted accounts oL
35.3 Setting special filemodes
35.4 More on permissions
35.5 Maintaining security
35.6 Summary

36 System Accounting
36.1 Process accounting
36.2 System activity accounting
36.3 Summary

VII Network Administration

37 Introduction to Networking
37.1 Connecting computer systems
37.2 Some basics of networking L.
37.3 System V, Release 3,
37.4 Summary

38 Communication Before Release 3
38.1 Hardware requirements foruucp
38.2 Software setup foruuep L.
38.3 Control and maintenance ofuuep
38.4 Trouble-shootinguuep
38.5 Direct networking (XENIX only)
38.6 Summary

39 Communication After Release 3
39.1 Hardware requirements foruuep
39.2 Software setup foruuep
39.3 Control and maintenance of uuep
39.4 Trouble-shootinguucp
39.5 Summary

40 Basic Resource Sharing
40.1 Sharing resources,
40.2 Setup procedures
40.3 Advertising resources
40.4 Mounting resources o
405 Summary e

Xix

XX CONTENTS

41 Remote File Sharing Maintenance
41.1 Introduction.
41.2 Remote file sharing mode

41.3 Maintaining domains
41.4 Maintaining hosts oL oL oL
41.5 Monitoring remote file sharing

41.6 Adjusting performance
41.7 Summary

42 Remote File Sharing Security
42.1 Introduction.
42.2 Specifying mapping
42.3 Procedures for mapping by name
42.4 Summary

Appendices

A Summary of Basic Commands and Symbols

A.1 Basic commands for starting out
A.2 Working with directories and files

A.3 Searching: forming regular expressions

A4 Setting basic features.
A.5 Working with processes
A.6 Processing information
A7 Communicating

B Summary of ed
B.1 Commands
B.2 Special characters for searching .

C Summary of vi and ex Commands
C.1 Moving the cursor
C.2 Adding new text
C.3 Changing text.
C.4 Shifting text.
C.5 Deleting text
C.6 Searching and Replacing
C.7 Invoking the editor
C.8 Exiting the editor
C.9 Moving or copying text

D Summary of vi Options
D.1 Toggled options
D.2 Numbered options
D.3 String-valued options

607
607
607
609
612
615
618
620

621
621
623
628
630

CONTENTS xxi

E Summary of Processing Commands 653
E.1 Searching withgrep 653
E.2 Sortingwithsort 654
E.3 Programming withawk 654

F Summary of Formatting Requests 657

G Summary of Formatting Options 661
G.1 Modifyingmm 661
G.2 Modifyingnroff. 664

H Summary of the Bourne Shell 667
H.1 Shell variables. 667
H.2 Standard input, output, and diagnostics 667
H.3 Background commands. 667
H.4 Connecting processes« . .o v v 667
H.5 Giving directives to theshell 668
H.6 Shell procedures 668
H.7 Constructing loops 669
H.8 The conditional statement 670
H.9 Other shell programming techniques 671

I Summary of the C Shell 673
I.1 Initialization files 673
1.2 Reinvoking previous commands 673
1.3 Selecting individual arguments 673
1.4 Modifying a command line. 674
1.5 Assigning an alias to a command string 674
1.6 Thelogoutfile 674
1.7 Assigning string values 674
I.8 Manipulating variables that contain numeric values 675
1.9 Variables reserved by the C shell 676
1.10 File-checking 676
1.11 Forming conditional statements 677
.12 Formingloops 677
1.13 Other programming techniques 677
1.14 Built-in commands 677

J Summary of System Administration 679
J.1 Basic commandsand files 679
J2 Filesystems o 679
J3 Devices 680
J.4 Disk maintenance oL 681
J.5 Startup and shutdown, .. 683
J.6 Terminals and printers 683

xxil CONTENTS

J.6 Terminals and printers
J.7 Systemsecurity
J.8 System accounting L.

K Network Administration
K.1 Communication before Release 3
K.2 Communication after Release 3

L termcap and terminfo
L.1 Terminal features
L.2 Cursor movement and scrolling
L3 Screenediting
L.4 Functions activated by special keys
L.5 Video attributes
L.6 Control directives

M UNIX versus XENIX
M.1 Description of XENIX
M.2 Differences between UNIX and XENIX
M.3 Features of System V, Release 3.

N Character codes

Index

Part 1

Fundamentals

1 Introduction to UNIX 3
2 Getting Started with UNIX 11
3 The UNIX File System 25
4 Using UNIX Commands 43
5 Communication in UNIX 63

In Part I you will learn some basic facts about UNIX. You will also learn
how to begin working with UNIX, how to use its file system to organize
your work, how to execute UNIX commands to perform daily tasks, and
how to communicate with other UNIX users on either your own system or
another system. Finally, you will learn about the basics of communication.

1
Introduction to UNIX

1.1 Operating systems

OPERATING SYSTEMS IN GENERAL

The main reason people use computers is to run application software,
such as word processing, data base, spreadsheet, and accounting programs.
An operating system provides programmers with a common environment
within which to develop software for users. An operating system provides
programmers with a simpler target to aim at than a computer system. The
more computer systems the operating system runs on, the more computer
systems the programmer can reach with software.

An operating system also provides users with a common environment
within which to run their applications. The operating system furnishes cer-
tain utility programs that support the user and the applications. It can also
offer a “friendly face” in the form of a simplified graphical representation
on the screen. Finally, a more sophisticated operating system may provide
additional conveniences: a way of allowing more than one person to use the
computer at the same time (time-sharing), some means of communication
between these different users, a way of allowing different programs to run
at the same time (multi-tasking), tools for entering and processing text,
programming tools to ease the task of software development, and various
security measures.

THE UNIX SYSTEM

Now that you have some general notion of what an operating system is,
what distinguishes UNIX from other operating systems? Here are some of
the most prominent features:

e Structured file system with multiple levels

e Ability to allow many users to work from the same computer at the
same time (multi-user)

e Ability to allow any of the users active on the computer to run more
than one program at a time (this is called multi-tasking)

4 UNIX operation

e Mechanisms that allow one program to pass its results directly to
another program, making it unnecessary to use extra storage space

A scheme that allows any user to redirect the results of a program
from one peripheral device to another (for example, from the video
monitor to a disk drive)

A built-in command interpreter and language (known as the shell)

e A structured language called C for systems programming

Extensive tools for writing and developing programs in C and other
programming languages

Extensive tools for entering, changing, and processing written text
and formatting it for printing

Extensive tools for connecting computer systems (UNIX and non-

UNIX)

Practically limitless “modifiability”

1.2 UNIX operation

Whenever you run an application program under UNIX, three programs
work together. The program that interacts directly with the computer is
called the kernel. As an everyday user of UNIX, you will seldom be aware of
the kernel’s presence. You will be more aware of the program that interprets
what you type at your keyboard and arranges for other programs to run—
the shell. Strictly speaking, the shell is just another program. However,
because the shell plays such an important role in interacting with users, it
is customary to depict the shell as a middle layer between the kernel and
applications, as shown in Figure 1.1.

THE KERNEL

You use an operating system by sitting at a keyboard in front of a screen
and typing a command to perform a function. For example, you may enter
a command that says to the operating system, “Let me begin an editing
session” or “Let me print the text in this file.” When you make such a
request through a utility program, you cause a process to be activated.

The request is fulfilled when the process calls on the kernel to carry
it out. The kernel, as its name implies, is the central core of the UNIX
operating system. The kernel’s routines schedule processes, route data to
and from peripheral devices, manage memory resources, and maintain files
in file systems.

1. Introduction to UNIX 5

FIGURE 1.1. The different parts of UNIX.

application

the
computer

kernel

programs

The utility programs that you use every day (and that you probably
identify with UNIX) are not actually part of the operating system. These
programs, which are described throughout this book, pass requests to the
kernel through system calls, which are not discussed in this book.

Because the kernel interacts directly with the hardware, it is different
for each computer. Since the kernel is only about 10 percent of the entire
UNIX system, it is relatively easy to produce a new version of UNIX for a
different machine. (A program that can be run on a variety of machines is
said to be portable. Portability is discussed later in this chapter.)

THE SHELL

It is the shell that greets you when you begin a session with UNIX, and it
is the shell that accepts instructions from you and carries them out. The
shell is UNIX’s command interpreter, a program that runs as a software
layer over the kernel. The shell presents you with a prompt on the screen,
followed by a cursor, like this:

$

When you type a command after this prompt, the shell begins a UNIX
process. This process may be a simple routine to display today’s date and
time on the screen, or it may be a sophisticated text-editing system (the
shell itself is also a process). You activate any process, large or small,

6 UNIX operation

by typing a command and letting the shell take care of carrying it out.
If anything goes wrong while you are invoking the process, the shell will
display an error message on your screen. Once a process has completed,
the shell returns to display another prompt on your screen, indicating that
it is ready for your next command.

Actually, there is more than one shell available for UNIX. First, there
is the shell developed for UNIX Version 7 at Bell Telephone Laboratories
by Stephen R. Bourne (known as the Bourne shell). Then there is another
version of the shell that was developed at the University of California by
William N. Joy in the late 1970s (known as the C shell). Finally, in the
past few years, a third shell has been developed by David Korn (known as
the Korn shell). The Korn shell combines the best features of the Bourne
shell and the C shell.

APPLICATION PROGRAMS

Because of the increasing popularity of UNIX, the list of application pro-
grams available is growing every day. There are word processing programs,
spreadsheet programs, data base management programs, compilers for BA-
SIC, FORTRAN, COBOL, C, and other programming languages, and as-
semblers. Many of the most popular programs for microcomputers are being
rewritten in C, so that they can be offered to users of UNIX. In addition,
sophisticated applications are being moved from mainframes and minicom-
puters down to microcomputers running UNIX.

Before long, it will be possible to run most of the programs that became
popular under CP/M, MS-DOS, and PC-DOS, while at the same time
enjoying the versatility and power of UNIX. Until a year or so ago, mi-
crocomputers simply could not provide the extensive computing resources
required by UNIX. They could not match the large amounts of internal
memory and the fast, large-capacity disks of the minicomputers. But with
recent technical advances in both areas, microcomputers have quickly be-
come powerful enough to assume the rigors of running UNIX.

C AND PORTABILITY

UNIX was originally written for the DEC PDP-7 minicomputer. Later it
was modified to run on other minicomputers, and then finally on micro-
computers. It is this portability that has contributed to the popularity of
UNIX. One reason for the portability of UNIX is that most of it is written
in the C language. Many of the early programs for microcomputers were
written in low-level assembly language, close to machine code, to obtain
maximum performance. Later on, applications programs were written in
high-level languages like BASIC and Pascal to achieve portability. C is a
sort of middle-level language, combining the high performance of a low-
level language with the portability and ease of use of a high-level language.

1. Introduction to UNIX 7

UNIX was the first major operating system that was not written primarily
in assembly language.

Originally associated closely with UNIX and part of the development of
UNIX, C has recently become recognized as a useful product in its own
right. Over a dozen versions of C are being sold to microcomputer owners.

1.3 UNIX and standards

Now that you've had a brief introduction to UNIX, we’'ll discuss a few other

operating systems that are widely used today, and show how some of them
resemble UNIX.

MICROCOMPUTER OPERATING SYSTEMS

When microcomputers became popular in the late 1970s, the operating sys-
tem that was most widely used was called CP/M (control program/monitor).
Originally designed for Intel’s 8080 microprocessor, later versions of CP/M
were designed to work with Intel’s derivative 8085 and Zilog's derivative
Z80. Others also widely used were Apple’s DOS and Tandy/Radio Shack’s
TRS-DOS. All of these operating systems were severely limited in storage
space, or memory.

When IBM introduced its Personal Computer late in 1981, it also an-
nounced a new operating system, called PC-DOS (MS-DOS for non-IBM
systems). The first version of PC-DOS was practically identical to CP/M,
but it was designed for one of Intel’s successors to the 8080, known as the
8088. The 8088, like its more powerful brother, the 8086, allowed much
more memory than the 8080, 8085, and Z80. Recent versions of PC-DOS
have been incorporating more and more UNIX features, such as subdirec-
tories and redirection. Future versions will probably resemble UNIX even
more strongly.

As the 1990s approach, nearly every operating system widely used on
microcomputers is feeling the influence of the graphical interfaces first de-
veloped in the 1970s at XEROX’s Palo Alto Research Center (PARC).
These interfaces employ screen icons to represent computer functions and
files, along with mouse operation. (A mouse is a hand-held device that
you can move around on the top of your desk to make selections from the
screen.) These concepts have been embodied in Apple’s Macintosh operat-
ing system, IBM’s new OS/2 (the successor to PC-DOS), and some of the
newest releases of UNIX.

8 UNIX and standards

VERSIONS OF UNIX

For the past few years, there have been two major variations of UNIX:
the Berkeley System Distribution (BSD) from the University of Califor-
nia and System V from AT&T (see Figure 1.2). The Berkeley versions,
with their emphasis on technical innovation, appeal more to institutions
engaged in education, research, and engineering. The AT&T versions, with
their emphasis on resource sharing, appeal more to business. One of the
main hybrids was XENIX, the version that was developed by Microsoft and
marketed by the Santa Cruz Operation for microcomputers.

Various efforts are currently under way to unify the versions into a sin-
gle UNIX product. AT&T and Microsoft have already announced a new
combined UNIX/XENIX product for 386 machines, called UNIX System
V /386, Release 3.2. Early in 1988, AT&T and Sun Microsystem began work
on a new version featuring a graphical interface called Open Look and con-
formance with the Institute of Electrical and Electronic Engineers (IEEE)
portable operating system environment standard (POSIX). In response,
IBM, Digital Equipment Corporation (DEC), Hewlett-Packard, and oth-
ers formed the Open Software Foundation (OSF) to support a competing
standard UNIX version.

UNIX SySTEM V

System V has been offered in various releases: Release 1.0 (1983), Release
2.0 (1984), Release 2.1 (1985), Release 3.0 (1986), Release 3.1 (1987), and
Release 3.2 (1989). (The joint Sun/AT&T product will be known as Re-
lease 4.) The main features of Release 3, which relate to networking sys-
tems, sharing files, and system efficiency, are described later in this book.
Part VII, “Network Administration,” provides an introduction to Release
3 features and offers a discussion of Remote File Sharing for system ad-
ministrators; and Appendix M, “UNIX versus XENIX,” summarizes the
features of System V, Release 3.

To give programmers a standard environment for developing software
for UNIX systems running on computers of any size, AT&T now offers a
two-volume System V Interface Definition. Copies of these and other UNIX
documents are available from

AT&T Customer Information Center (CIC) (800) 432-6600 (U.S.A.)
P.O. Box 19901 (800) 255-1242 (Canada)
Indianapolis, Indiana 46219 (317) 352-8557 (elsewhere)

1. Introduction to UNIX 9

FIGURE 1.2. The versions of UNIX and XENIX.

AT&T UNIX

1969 Nameless
PDP-7
1970 system

1971 Version 1

1972 Version 2
(B Language)

1973 Version 3
(C Language)

1974 I
1975 Version 5 Berkeley UNIX
1976 Version 6
1977 Version 7
1978 BSD
1979
4.1BSD
1980 XENIX
1981 System III
1982 XENIX ITII 4.,2BSD
1983 System V
Release 1
1984 Release 2
1985 XENIX V
1986 System V 4.3BSD
Release 3
1987
1988 System V/386

Release 3.2
(UNIX and XENIX)

10 UNIX and standards

UNIX DOCUMENTATION AND THIS BOOK

This book concentrates on general purpose programs, text-editing and for-
matting, one area of program development (shell programming), and ad-
ministration and maintenance. There is also some basic information on
configuring your terminal. C programming and software development are
vast subjects, and are beyond the scope of this book. After reading this
book, however, you should be well prepared to go on to books that cover
these other areas.

For a comprehensive treatment of UNIX commands, you have to turn to
one of the detailed reference works, such as the UNIX User’s Manual from
Bell Telephone Laboratories. This is now organized into separate volumes
that cover specific areas, such as Program Development, Text Processing,
and System Administration.

In printed form, a complete set costs about two hundred dollars. However,
at many installations, a copy of the manual is included with UNIX on disk.
Whenever we reach the limits of the scope of this book, we refer to this
manual—by whatever name it may be known at your installation. Bell
Telephone Laboratories is now called AT&T Bell Laboratories, and the
manual is now called the UNIX User’s Manual.

For quick reference, you can buy a compact 50-page command summary
for under ten dollars from

Specialized Systems Consultants
P.O. Box 7, Northgate Station
Seattle, WA 98125-0007

(206) FOR-UNIX

A System Publications
P.O. Box 8681
Trenton, NJ 08650

2
Getting Started with UNIX

In this chapter you will learn these basic things about UNIX:
e Preliminary set-up procedures

e Logging in and logging out

Editing a command line

¢ Running processes (commands)

Using the calculators

Aids to learning

2.1 Preliminary set-up procedures

If you have been using a single-user operating system like CP/M, MS-DOS,
or PC-DOS, then you are accustomed to simply turning on the computer,
possibly entering the date and time, and going to work. However, with a
multi-user system like UNIX, a number of different people can gain access
to the computer at any given time from a number of different terminals.
So before you can begin using UNIX, you have to make sure that UNIX
recognizes you as a user on the system and that it can communicate with
the terminal you are using.

IDENTIFYING YOURSELF TO UNIX

You will be able to use UNIX only after your name has been added to
a list of users. If you are working in a company or an institution, there
is probably a system administrator designated to take care of new users.
If so, this administrator will assign you an identifier, a password, and a
terminal. The identifier assigned to you (also known as an account name,
login name, or user name) will probably be either one of your names or
your initials. The password is designed to prevent anyone else from using
the system under your name. In most cases, the terminal will provide you
with a keyboard for entering information and a video screen for receiving
information back from the system.

12 Preliminary set-up procedures

IDENTIFYING YOUR TERMINAL

If you have a version of UNIX that has been customized for your machine,
then you probably won’t have to do anything to identify your terminal. If
not, you may have to make sure that the various settings for your terminal
are compatible with the settings for your computer. Otherwise, your termi-
nal and computer won’t be able to communicate with each other. It’s like
making sure that you and another person both speak the same language
before you begin a conversation.

Basically, you have to make sure that the terminal and computer are
both sending information to each other at the same speed, that both are
using the same convention for sending and receiving, that both are using
the same scheme to check for errors, and that both interpret special char-
acters the same way. To find out whether they have been set correctly, just
log in and see what happens. If you see double characters on the screen
(or no characters), random characters (also known as “garbage”), or no
response to the key (Return or Enter), the settings for your
terminal may be incorrect—get help from your system administrator. If you
don’t have any problems, the settings are fine. Later on, after you become
more familiar with UNIX, you can learn to use a command called stty (set
teletype) to make adjustments (see Chapter 33).

2.2 Logging in and logging out

LOGGING IN

Once you have an identifier, a password, and a working terminal, you are
ready to log in. Logging in is what gives you access to the UNIX operating
system. Let’s go through the basic procedures (which may vary from one
system to another) shown here.

1. Establish connection between the computer and your terminal.

O This is the part that can vary the most. For your system, it
may mean dialing a telephone number, flipping a switch on your
terminal, or typing something at the keyboard. Find out from
your system administrator exactly what is required.

O Once you have taken the necessary action, UNIX will first make
itself known to you by a short, simple message in the upper
left-hand corner of your screen like this:

login: _

2. Identify yourself.

2. Getting Started with UNIX 13

O Inthe space after the “login” prompt, type your system identifier
(or user name) and press (RETURN).

O UNIX will probably respond by asking for your password:
login: robin

Password: _

3. Enter your secret password.

O In the space after the “Password” prompt, type your password
(which will not appear on the screen) and press (RETURN).

O After a brief pause, you will see something like this:

login: robin
Password:

Last login: Tue Jan 15 08:17:26 on tty03

x ok ok ok ok ok ok ok Kk Kk Kk Kk Kk Kk Kk Kk kx Kk X Kk K Kk *

Welcome to U N I X System V January 1990

L I
X % o %

* k kK kK Kk kK Kk kX Kk Kk kx Kk kx * *x *k *x *k *x * *x * %

Congratulations! You have just successfully logged in. The dollar sign
($), percent sign (%), or other symbol in front of the cursor is called the
UNIX shell prompt. Later in the book, we’ll explain why it has that name.
We'll also show you how you can change it to something else. For now you
can think of the UNIX shell prompt as similar to the prompt you see on
the screen when you use CP/M, MS-DOS, or PC-DOS (a>). It tells you
that UNIX is ready for you to type a command and go to work.

A system administrator can log in as a super-user to perform special
tasks that require extraordinary privileges. Such a user will have a special
prompt that looks like a pound sign (#).

TYPING COMMANDS

Just to verify that you have actually gained access to UNIX, try a few
simple UNIX commands.

1. Let’s begin with the command that tells you the day of the week, the
date, and the time of day.

O Type date and press (RETURN).
O UNIX will respond with a display like this:

14 Logging in and logging out

$ date
Mon Jan 17 09:02:37 EST 1990
$

2. Next, let’s find out who is logged in right now.

O Type who and press (RETURN).
O UNIX will respond with a display like this:

$ who

janis tty03 Jan 17 08:12
alex tty05 Jan 17 08:39
jkl1 tty07 Jan 16 21:16
robin ttyl2 Jan 17 09:02
guapo ttyle Jan 17 08:57
$

Each line of this display gives a user’s identifier (like “janis”), a ter-
minal number (like “tty03”), and the date and time the user logged in
(like “Jan 17 08:12"). When UNIX was developed in the late 1960’s, it
was common to use a Teletype® hardcopy display (printing) device as a
terminal. This is why UNIX says “tty” (from teletype) to mean “terminal.”

3. Finally, let’s type a command that UNIX doesn’t know and see what
happens.

O Type why and press (RETURN).
O UNIX will respond with a message like this:

$ why
why: Command not found.

$

LOGGING OUT

When the time comes to end a session with UNIX, you can’t just turn off
your terminal. You have to log out. If you don’t log out, UNIX will still
consider you logged in, even though your terminal is disconnected.

For most systems, all you have to do is to type Control-D (hold the
key down with one finger and press D with another). Since Control-
D often means end-of-file or end-of-transmission to UNIX, there may be
times when you will have to type Control-D several times to log yourself
out. Some systems may require that you also press other keys. If you are
using the C shell and the variable called “ignoreeof”’ is set, you have to
type logout and press (RETURN). (You can also use eXit in either shell.)

2. Getting Started with UNIX 15

$ [Press Control-D—nothing displayed]
login: _

When you have successfully logged out, the “login” prompt reappears on
the screen. It isn’t that UNIX doesn’t like to see a user log out; it’s just
that UNIX doesn’t have anything else to say. At this point you can either
log in again or stay logged out. Since we have some more things to do, let’s
log back in and go on to the next section.

CHANGING YOUR PASSWORD

Since your password gives you some measure of security under UNIX, you
may want to change it from time to time. Changing it will make it more diffi-
cult for others to log in under your system name. For practice, try changing
your password right now. Just type passwd and press (RETURN):

$ passwd
Changing password for robin
0ld password: _

Type your current password in the space provided (you won’t see it on
the screen). Next, UNIX will ask you to type your new password (up to
eight characters), then type the new password a second time to confirm it:

$ passwd

Changing password for robin
0ld password:

New password:

Retype new password:

$

To make your password difficult for anyone to guess, you can mix upper
and lower case letters with numbers and other characters. The more un-
usual (and longer) you make it, the harder it will be for another user to
stumble across it by trial and error. It’s usually best to avoid things like
your nickname, your license plate number, your social security number, or
your cat’s name. Here are some examples of good passwords:

eASy-2.C
WheN?NoW
wHy.NoT?
New*4 (U)

16 Logging in and logging out
2.3 Entering a command line

Earlier in this chapter you used two simple commands, date and who. To
carry out any action under UNIX, you have to execute a command (type a
command line and press) In the case of the date command,
the four letters date make up the entire command line. In the case of the
who command, the three letters WhO make up an entire command line.

Although these two command lines required nothing more than the name
of the command, many other commands require additional information
about the command’s options and any files to be processed by the com-
mand. Such information, if required, follows the command’s name on the
command line. For example, the who command can be executed by itself
to list the users currently logged in. But there is also another form of the
command:

$ who am i
robin tty05 Jan 17 09:02
$

If you should forget your system identifier or if you have to log in under
more than one identifier, you can use this form of the command to find
out which identifier you are currently logged in under. The extra words
added to the command (am i) form an argument to the command, which
modifies the way the command works.

Until you press , it’s still possible to make changes to a

command line. The rest of this section discusses ways to make such changes.

ERASING A CHARACTER CTRL-H

To erase a single character on the command line, use # (number sign) or
(CTRL-B) (hold down the key with one finger and press H with
another). On some keyboards, there may be a key called
that performs this function. Here is how a typical correction might look in
steps:

$ whoo_ [Extra o typed at the end of who]
$ who_ [Type #, (CTRL-H), or (BACKSPACE))

Now you can press the (RETURN) key to have the command line exe-
cuted.

ERASING AN ENTIRE COMMAND LINE ©oa

To erase the entire command line and start all over, use the at-sign (@)
in UNIX or (CTRL-U) in XENIX. Again, there may be a different key

2. Getting Started with UNIX 17

for this function on your system. Assuming it’s @, here is another typical
correction:

$ fate_ [You typed fate instead of date]
S fate Press @ to erase the line. In most cases, you won't

actually see the line erased; the cursor will simply
drop down to the next line

$ fate
date_ [Retype the line]

Now press the key to have the command line executed. In
this simple example, pressing the @ key to erase the line instead of pressing
four times to erase four characters separately saved you only
three keystrokes. However, on a long command line, it would save you many
more keystrokes.

RESTORING THE PROMPT DEL

Sometimes, after you have started a process, the process hangs and the
UNIX shell prompt ($) does not return to the screen. If this happens,
press to terminate the process and restore the prompt:

$ who
- [Press (DEL)—nothing will be displayed]
$

2.4 Process control

Once you have typed a command line correctly, there are several things
you can do to control the resulting process: you can run the process in the
background, request a list of processes currently running, abort a process,
or halt screen output from a process.

RUNNING A PROCESS IN THE BACKGROUND &

Once you execute a command, the shell usually waits for the process to
complete, then displays another shell prompt. This is called foreground
processing. Unless you instruct UNIX otherwise, any process that you ini-
tiate will run in the foreground by default. That is, the process will tie
up your terminal while it is running, making it impossible for you to do
anything else with UNIX until the process is complete.

By instructing UNIX to run a process in the background, you can free
your terminal and proceed to another task immediately. To run a process
in the background, type an ampersand (&) at the end of the command line

18 Process control

before pressing (RETURN). (The & is 7 on most keyboards.)
Background processing is usually most suitable for commands that take
a long time to execute. For example, to suspend processing. for an hour
(sleep 3600), type this:

$ sleep 3600 &
2167
$

UNIX will respond by displaying a process identification number (PID)
and then reissuing another shell prompt. With the program running in the
background and the shell prompt on the screen, you are now free to enter
another command line (which may be another background process), without
having to wait for the execution of longtime to be completed. While back-
ground processing is convenient for certain tasks, there are disadvantages
to consider:

e A background process can’t accept standard input.

e Any output from a background process to your screen will disrupt
whatever you are typing at that moment.

e You have less control over a background process than you have over
a foreground process .

o If you try to initiate too many background processes at once, you
may run the risk of overloading your system.

FINDING OUT WHAT PROCESSES ARE RUNNING ps

If you are running processes in the background, there is another UNIX
command to find out which ones are still running at a particular moment
and which have been completed. The ps (process status) command lists all
processes currently running, displaying for each process its assigned process
identification number (PID), the terminal on which it was initiated (TTY),
the amount of time it has been running (TIME), and something to indicate
the command line used to initiate it (COMMAND), as in this example:

$ ps
PID TTY TIME COMMAND
1905 12 1:16 -sh
2132 12 2:18 ed
2167 12 4:02 ~-sh
2218 12 0:58 ps
$

2. Getting Started with UNIX 19

DEL
kill

Sometimes it may be necessary to terminate a process before it has been
completed. To abort a foreground process, press the (DEL) key (or
). To abort a background process, use the Kill command. Type
kill, followed by the PID for the process you are terminating. For example,
to abort the execution of sleep 3600 described above, you could use

ABORTING A PROCESS

S kill 2167
2167: terminated [UNIX responds with a message]
$

As long as you know the PID’s, you can abort more than one process
with a single command line:

$ kill 2132 2167
2132 2167: terminated
$

Some systems allow you to issue a Kill to terminate all processes initiated
from your terminal. However, since such a command can also log you out
of the system, it’s usually best not to try it—at least not now.

HALTING SCREEN OUTPUT CTRL-s

At times you will find that a screen display is scrolling up the screen faster
than you can read it. To halt the scrolling temporarily, press
to make the display pause. Then, after you've had a chance to read the
display, you can press (CTRL-Q) to resume scrolling.

2.5 Using the calculators

UNIX provides a calculator (and a preprocessor for that calculator) that
you can use right at your terminal.

USING THE DESK CALCULATOR dc

Use the de command to call up a simple interactive desk calculator. Here
is a typical session with d¢, with comments to the right of each line:

$ de Call up the desk calculator
3 Enter 3
4 Enter 4

+ Perform addition

20 Using the calculators

P Display the result

7

3+p Add 3 and display the result

10

4*p Multiply by 4 and display the result
40

2/p Divide by 2 and display the result
20

5-p Subtract 5 and display the result
15

q Exit the desk calculator

$

Other features include number bases, scaling, functions, subscripts, and
logical control. For further details, see the UNIX User’s Manual.

USING THE HIGH-PRECISION CALCULATOR bc

UNIX offers another calculator called be that allows unlimited precision,
conversion of numbers from one base to another, a range of 0-99 places
after the decimal point, variables, functions, arrays, and comments. Here
is a typical session with be:

$ be Call up the high-precision calculator

14 + 23 Add two numbers together—no equal sign
37

34 - 53 Subtract a larger number from a smaller
-19

8 *9 Multiply two numbers together

72

72 / 12 Divide a number by another—even quotient
6

sqrt (81) Take the square root of a number—exact root
9

scale = 10 Request ten places after the decimal point
z = sqrt (15) Assign a value to the variable z

z Request the value of z (to ten places)

3.8729833462
define s(a,b) { Define a function called s

auto ¢ with automatic variable ¢

c=a+b that adds two arguments a and b and

return(c) returns the sum as the value of the function
} ended with a closing brace
x = sqrt(53) Assign the square root of 53 to variable x
y = sqgrt(31) Assign the square root of 31 to variable y

2. Getting Started with UNIX 21

s(x,y) Compute the sum of x and y
12.8478742520

quit Leave bc and return to the UNIX shell
$

For those with a little more background in programming and mathemat-
ics, here are a few additional features of bc:

$ bc Call up the calculator again
obase = 16 Change the output base to hexadecimal
65536 Convert 65,536 from decimal to hexadecimal
10000
ibase = 8 Change the input base to octal
377 Convert 377 from octal to hexadecimal
FF
ibase = A Change the input base back to decimal
obase = A Change the output base back to decimal
define f(n) { Define function £ (the factorial function)
auto i, j with automatic variables i and 3
j=1 with 7 initially set to 1 and i stepped
for(i=1;i<=n;i++) \ from 1 to n in increments of 1

j =3 * i assigning j the product of itself by i

return(j) and returning j as the value of the function
} ending the function with a closing bracket
£(20) Request the value of 20 factorial (20!)
2432902008176640000
quit Leave bc and return to the UNIX shell prompt
$

Note the continued line in the factorial function. This line was broken,
using a backslash (\), only to save space. On your own system you would
probably type the entire for statement on a single line. But as this example
shows, you always have the option in UNIX of splitting a long line of input.

By entering be -I at the command line instead of b€, you can also invoke
a mathematical library, which includes sine (s), cosine (c), arctangent (a),
exponential (e), natural logarithm (1), and Bessel (j (n, x)) functions. By
entering be file(s) instead of b€, you can have b€ read statements from
one or more files before accepting keyboard input. This allows you to store
longer functions in files instead of having to type them over again every
time you want to use them.

DISPLAYING THE CALENDAR

Another kind of calculator called cal allows you to display any month or
year from 1-9999 A.D. For example, here is a calendar for 1987:

22 Using the calculators

$ cal 1987
1987

Jan Feb Mar
S MTu WTh F S S MTu WTh F S S MTu WTh F S
1 2 3 1 2 3 4 5 6 7 1 2 3 4 5 6 17
4 5 6 7 8 910 8 9 10 11 12 13 14 8 910 11 12 13 14
11 12 13 14 15 16 17 15 16 17 18 19 20 21 15 16 17 18 19 20 21
18 19 20 21 22 23 24 22 23 24 25 26 27 28 22 23 24 25 26 27 28

25 26 27 28 29 30 31 29 30 31

Apr May Jun
S MTu WTh F S S MTu WTh F S S MTu WTh F S
1 2 3 4 1 2 1 2 3 4 5 ¢
5 6 7 8 91011 3 4 5 6 7 8 9 7 8 910 11 12 13

12 13 14 15 16 17 18 10 11 12 13 14 15 16 14 15 16 17 18 19 20
19 20 21 22 23 24 25 17 18 19 20 21 22 23 21 22 23 24 25 26 27
26 27 28 29 30 24 25 26 27 28 29 30 28 29 30
31
Jul Aug Sep
S MTu WTh F S S MTu WTh F S S MTu WTh F S
1

@
<))
~
@

5 6 7 8 910 11 2 3 4 5 6 7 9 10 11 12
12 13 14 15 16 17 18 9 10 11 12 13 14 15 13 14 15 16 17 18 19
19 20 21 22 23 24 25 16 17 18 19 20 21 22 20 21 22 23 24 25 26

26 27 28 29 30 31 23 24 25 26 27 28 29 27 28 29 30
30 31
Oct Nov Dec
S MTu WTh F S S MTu WTh F S S MTu WTh F S
1 2 3 1 2 3 4 5 6 7 1 2 3 4 5

4 5 6 7 8 910 8 9 10 11 12 13 14 6 7 8 910 11 12
11 12 13 14 15 16 17 15 16 17 18 19 20 21 13 14 15 16 17 18 19
18 19 20 21 22 23 24 22 23 24 25 26 27 28 20 21 22 23 24 25 26
25 26 27 28 29 30 31 29 30 27 28 29 30 31

To display one month, type the corresponding number (1-12) between
cal and the year. For example, here is a calendar for January 1987:

$ cal 1 1987
January 1987
S MTu WTh F S
1 2 3
4 5 6 7 8 910
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30 31
$

2.6 Other aids

ON-LINE MANUAL man

If this feature is available on your system, you can execute the man com-
mand to display a section of the UNIX User’s Manual. Type man, then

2. Getting Started with UNIX 23

the name of a UNIX command. This will give you a description of the com-
mand and all of its options. For example, to see the section on who, you
could use

$ man who

VisuaL SHELL (XENIX ONLY) vsh

For XENIX users, the visual shell offers a series of screen displays to help
you get started with the basic features of the system quickly and easily. To
see the first display, type vsh and press (RETURN). Then the following

prompt will appear at the lower left-hand corner of the screen:

COMMAND: Copy Delete Edit Help Mail Name
Options Print Quit Run View Window
Select option or type command letter

Use the left and right arrow keys (— and —) to select a file; use the space
bar, CTAB) key, or the first letter of the command to select a command;
then press (RETURN) twice to execute the command using the file that
you selected.

2.7 Summary

In this chapter you learned some basic things about UNIX: preliminary
set-up procedures, logging in and logging out, and running processes.

PRELIMINARY SET-UP PROCEDURES

Before you can begin using UNIX, you have to have an identifier, a pass-
word, and a terminal, which will be assigned to you by the system admin-
istrator for your system.

LOGGING IN AND LOGGING OUT

To log in to a UNIX system, establish connection with the computer, type
your identifier, and type your password. To log out, type (pos-
sibly more than once) or type logout and press (RETURN). To change
your password, use the passwd command.

EDITING A COMMAND LINE

To begin a process under UNIX, type a command line and press (RETURN).
The command line may contain either just the command by itself or the

24 Summary

command plus modifiers. To erase a single character on a command line,
use (or possibly (BACKSPACED). To erase an entire command
line and start over again, use the at-sign (@) for UNIX or for
XENIX. To restore the shell prompt after running a process, press
(or (CTRL-O)).

PROCESS CONTROL

To run a process in the background, type an ampersand (&) at the end
of the command line. To find out what processes are running on UNIX at
a particular moment, use the ps (process status) command. The system
will respond with a list of processes that shows the process identification
number, the terminal on which it was initiated, the amount of time it has
been running, and the command line itself.

To abort a process running in the foreground, use the key. To
abort a process running in the background, use the Kill command, along
with the process identification number. To halt a rapidly moving screen

display, press (CTRL-S); to resume scrolling, press (CTRL-Q).

USING THE CALCULATORS

To use the desk calculator, enter the d¢ command and enter “computa-
tional lines,” with operations following the operands. Use the command
to exit. To use the high-precision calculator, enter the b€ command and
enter statements. Use quit to exit. To display any year 1-9999 A.D., use
the cal command followed by the year; to display a month, type a number
1-12 between cal and the year.

OTHER AIDS

To display a section of the UNIX User’s Manual at your terminal, execute
the man command. Type man, followed by the name of the command you
wish described, then press (RETURN). XENIX users can begin using the
system quickly via screen displays and prompts with the aid of the visual
shell. Type vsh and press to begin. A full-screen display will
help you select a command and file to work with.

3
The UNIX File System

3.1 What is a file system?

If you have used any kind of library, then you are already familiar with
the concept of a filing system. A library offers you books kept on shelves,
together with a directory that you can use to locate a particular book. In a
library, the directory is called a card catalogue. Usually placed in an open
area that is easy to find, the card catalogue gives you the location of each
book in the library, together with brief information about the book.

Every operating system has a file system that resembles a library’s fil-
ing system. In an operating system, the items stored are files, not books.
Computer files can store text, data, graphics information, programs, and
also directories to catalogue the other files. Each item in a typical direc-
tory provides a file's name, location, size, type, and possibly information
about the file’s accessibility to users. (In UNIX, only the file’s name is in
the directory itself; the rest of the information is kept somewhere else. But
this introductory chapter is not the place to discuss that.)

If you have been using one of the common operating systems for micro-
computers, then you may have been using an unstructured file system. In
an unstructured file system, there is one large directory to catalogue files,
with all files named in this one directory. With no structure to relate the
files in any particular way, the directory simply lists the files directly.

3.2 A structured file system

In the UNIX file system, there are many directories, not just one. Fur-
thermore, there is a clearly defined structure that places some directories
within other directories and that may place different kinds of files in differ-
ent directories. As a user of a UNIX system, you have your own personal
directory, whose name is identical to the identifier that you type when
you log in. Your directory, like other directories, may contain both files
and other directories, allowing you to store related files together. Before
we begin to discuss specific directories and files, there is one more point
to consider: UNIX regards peripheral devices like terminals, printers, and

26 A structured file system

disk drives as files. The procedure for accessing one of these devices is the
same as the procedure for accessing any other file in the system.

A directory called usr contains the directories of all users of the UNIX
system. (On very large systems, there may be several user directories, with
names like usr1, usr2, or some other variation.) Your directory is known as
your home directory. This is the directory that the system administrator
assigns to you, the directory in which you begin working whenever you log
in. Within this directory, you can create as many subdirectories as you need
to organize your work. You can create one directory for your text files, one
directory for your program files, one directory for your messages, and so
on. Some of the other directories on a typical UNIX system are as follows:

e bin—contains the system’s binary files, also known as executable ob-
ject code files (most commands reside here)

e dev—contains the files representing the system’s devices (terminals,
printers, disk drives, and so on)

e tmp—contains the system’s temporary storage files

e etc—contains miscellaneous files that are primarily used for system
administration

These five major directories all belong to a primal directory called the
root directory (or simply the root), forming the main branches of a tree.
It is customary to depict this tree upside down, with the root at the top
and the branches pointing downward. Part of a simple UNIX file system is
shown in Figure 3.1, with home directories for users Dan, Robin, and Ann.

UNIX, then, has a structured file system that contains three kinds of
files: directories, which store the names of other files (including other di-
rectories); ordinary files, which store text, source programs, and object
code; and special files, which correspond to peripheral devices. In the rest
of this chapter, we’ll discuss how directories and files are named, how to use
pattern-matching characters to select files, how to work with files, how to

work with directories, and how to grant or deny access to your directories
and files.

NAMING DIRECTORIES AND FILES

The root directory is identified by a single character: slash (/). To name one
of the major directories directly under root, type a slash (/) to represent
root, followed by the directory’s own name, as in /usr. The slash in front
of usr tells you that usr is a subdirectory of root. Referring to Figure 3.1,
here is how you would identify root and the major directories:

/ root directory

3. The UNIX File System 27

FIGURE 3.1. Part of a typical UNIX file system.

root

bin etc usr dev tmp

dan robin ann

text C progs letters project.a project.b project.c

fusr user directory

/bin binary directory

/dev device directory

/etc miscellaneous directory
/tmp temporary directory

To identify one of the user home directories, type another slash after
{usr, followed by the account name, as in /usr/dan and /usr/ann. In each
case here, the first slash refers to the root, while the second indicates that
dan and ann are subdirectories of usr. (In UNIX terminology, usr is the
parent directory, while dan and ann are subdirectories.)

To identify the subdirectories under dan and ann, we continue with the
same conventions. We can identify Dan’s text directory as /usr/dan/text
and Ann’s project.a directory as /ust/ann/project.a. Referring again to Fig-
ure 3.1, here is how you would identify all their directories:

/usr/dan/text fusr/ann/project.a
/usr/dan/c_progs /usr/ann/project.b
fusr/dan/letters /usr/ann/project.c

Now suppose Dan has three C programs called enter.c, files.c, and proc.c
and Ann has three files under project.b called intro, search, and restore.
Then we could depict these files as shown in Figure 3.2.

To identify these six files, you could give their full pathnames:

/usr/dan/c_progs/enter.c /usr/ann/project.b/intro
/usr/dan/c_progs/files.c /usr/ann/project.b/search
/usr/dan/c.progs/proc.c /usr/ann/project.b/restore

28 A structured file system

FIGURE 3.2. User files in a UNIX file system.

dan ann

text C progs letters project.a project.b project.c
enter.c files.c proc.c intro search restore

Ann (and other users) would have to use the names in the left-hand
column to refer to Dan’s files; Dan (and other users) would have to use the
names in the right-hand column to refer to Ann’s files. However, when Dan
and Ann refer to their own files in their own directories, they can use these
shorter names (partial pathnames):

c-progs/enter.c project.b/intro
c-progs/files.c project.b/search
c-progs/proc.c project.b/restore

Later in this chapter, we’ll you show how to move around the file system
from one directory to another (change directories). If Dan should move from
his own home directory to Ann’s, then he could use the shorter names that
Ann uses when she is working from her own home directory; if Ann should
move from her own home directory to Dan’s, then she could use the shorter
names that Dan uses when he is working from his own home directory.

Furthermore, if Dan should move from his home directory to his own
subdirectory c-progs and Ann should move from her home directory to
her own subdirectory project.b, then they can use even shorter names for

their files:
enter.c intro

files.c search
proc.c restore

RULES FOR NAMING AND ACCESSING FILES

The rules for naming and accessing files (including directories) are closely
related to the structure of the UNIX file system:

e The root directory is identified by a slash (/).

e A simple filename can be any combination of 1-14 characters other
than slashes (/), asterisks (*), question marks (?), quotation marks (”
or '), square brackets ([or]), or control characters.

3. The UNIX File System 29

e A pathname is a sequence of directory names, possibly followed by a
simple filename, with each pair of names separated by a slash (/).

To avoid misinterpretation, the safest characters to use for simple file-
names are letters of the alphabet, numbers, periods (.), hyphens (-), and
underlines (~). Note: In UNIX, upper and lower case letters are not the
same (e.g., newfile is not the same as NEWFILE).

The directory permanently assigned to you is called your home directory;
this is the directory to which you log on. Any directory to which you may
move after logging on (including your home directory) will be called your
current directory, or working directory, for as long as you remain in that
directory. The directory in which your current directory resides at any
moment is called your parent directory. UNIX provides shorthand symbols
to indicate your current directory (.) and your parent directory (..).

If a pathname used to access a file begins with a slash (/), then the
search for the file begins at the root directory. Such a pathname is called
an absolute pathname (or full pathname), since it always begins with the
root directory. If a pathname begins with a simple filename, then the search
for the file begins at your current directory. Such a pathname is called a
relative pathname, since the file is accessed with respect to your current
directory.

Later in this chapter we’ll discuss procedures for giving other users per-
mission to access to your directories and files. It goes without saying that
you can access only those directories and files for which you have permis-
sion.

3.3 Working with directories

This section shows you how to work with UNIX directories using six com-
mon commands.

DISPLAYING THE CONTENTS OF A DIRECTORY Is

To sort and display the names of all the directories and files that reside in
your current directory, use the I$ command, as illustrated here:

$ 1s
file.l
file.2
letters
memos
specs

$

30 Working with directories

This doesn’t show which names refer to files and which refer to directo-
ries. However, there is another form of this command that you can use to
distinguish files from directories (and also to display a lot of other infor-
mation). Just add the - (“hyphen el” or “minus el”) option to get a more
detailed long listing, as shown here:

$ 1s -1

total 501

-rw-r----- 1 robin 108 Apr 5 14:33 file.l
~rWw-r—----- 1 robin 123 Apr 9 09:17 file.2
drwx--x--- 2 robin 301 Mar 27 08:04 letters
drwx--x--- 1 robin 87 Mar 15 13:42 memos
drwx--x--- 2 robin 428 Mar 11 15:31 specs

$

We’ll discuss this listing in greater detail in the next section. Here is a quick
summary of the information given for each file or directory:

e Type of file: ordinary (-) or directory (d)

e Permissions, discussed in the next section

Number of links in the file system to other users

e Owner, or creator, of the file

Size of the file in bytes (characters)

Date and time of last modification of the file

Name of the file

CHANGING YOUR WORKING DIRECTORY cd

To change your working directory (that is, to move to another directory),
use the ¢d (change directory) command, as in

$ ed /usr/harold
$

If you have been given access, you can now operate within Harold’s home
directory. To return to your home directory from any other directory, use
the ¢d command without a name following, as shown here:

$ ed
$

3. The UNIX File System 31

DETERMINING YOUR WORKING DIRECTORY de

To find out the name of your current working directory at any moment,
use the pwd (print working directory) command, as in

$ pwd
/usr/robin

$

CREATING A NEW DIRECTORY mkdir

To create a new subdirectory within your current working directory, use
the mkdir (make directory) command, as in

$ mkdir messages
$

This command will create a new subdirectory called messages. In setting
up your home directory, try to find the right balance between too few
subdirectories and too many. With too few, you fail to take advantage of
the structure of the UNIX file system; with too many, you create a maze for
yourself. Somewhere between five and fifteen main subdirectories is usually
optimal, but there may be exceptions.

REMOVING AN EXISTING DIRECTORY rmdir

To remove an existing directory from your working directory, move to the
target directory, delete all its files, move back to the parent directory, and
then use the rmdir (remove directory) command. For example, suppose
you would like to delete a directory called useless. You could follow the
procedure illustrated here:

$ cd /usr/useless [Move to directory useless]

$ pwd [Make sure you are in the right directory|
/usr/useless

$ rm -i * [Delete all files in useless]

letter:

introd:

memo 3: ?

$ ed .. [Move to the parent directory]

$ rmdir useless [Delete directory useless—now empty]

$ _ [The directory and its files are gone]

If you try to remove a directory that is not empty, you will see a warning
displayed. On many systems you may be able to use one of the following
shorter methods instead of the above:

32 Working with directories

$ rm /usr/useless/* [Delete all files in directory useless]
$ rmdir /usr/useless |[Delete directory useless]
S _
$ rm -r /usr/useless Delete files in useless, then delete directory
s _ useless itself
RENAMING A DIRECTORY mv

To change the name of a directory, use the mv (move) command. For
example, to change the name of a directory from old.name to new.name,
use this command:

$ mv old.name new.name

5

3.4 Working with files

Whether you are composing letters, performing calculations, or writing
programs, you spend much of your time on a computer dealing with files.
It’s always helpful to know how to display, combine, copy, and otherwise
manipulate files. In this section we discuss such ways of working with UNIX
files.

DISPLAYING THE CONTENTS OF A FILE cat

To display the contents of any file, use the cat (concatenate) command.
The cat command simply displays the contents of a file (or several files)
on the screen, as in this example:

$ cat file.3 $ cat file.1l file.2

This is a very short file This is file.1l

that contains two lines. This is file.2

S _ $ _

COMBINING FILES cat

Another function of the cat command is to combine, or concatenate, files
with the result usually stored in another file. In this example

$ cat file.l file.2 > file.3
$

the contents of files file.1 and file.2 are concatenated and stored as a single
file called file.3. In using the cat command, avoid storing the result of a

3. The UNIX File System 33

concatenation in one of the original files, since this will cause the original
file to be overwritten. For example, in the command

$ cat file.1l file.2 > file.l [No good—don’t do this!]
$

file.1 simply becomes file.2, which is not at all the intended result.

RENAMING A FILE mv

You can use the mv (move) command either to rename a file or to move it
from one directory to another. To change the name of a file, enter a pair of
commands like this:

$ cat new.name
cat: cannot open new.name
$ mv old.name new.name

$

The mv command will change the file’s name from old.name to new.name
(you can then no longer access old.file). The cat command is used to make
sure that new.name isn’t already the name of another file. If it is, that file
will be replaced and lost.

MOVING A FILE mv

To move a file (or several files) from one directory to another (without
changing their names), give the name of the new directory last on the
command line, as in

$ mv file.3 file.4 text
$

This command, executed from the parent directory, will move file.3 and
file.4 from your current directory to a subdirectory called text. You can
verify this with the Is command:

$ 1ls text
file.3
file.4

$

You can also rename a file during a move by using a partial pathname.
For example, to move file.3 to subdirectory text and rename it entries, you
could use this:

$ mv file.3 text/entries
$

34 Working with files

COPYING A FILE cp

To make a duplicate copy of a file, use the €p (copy) command illustrated
here:

$ cp file.one FILE.ONE
$

This command will make a copy of file.one called FILE.ONE, so that the
same file is now accessible by either name. (A reminder to users of other
operating systems: In UNIX, file.one and FILE.ONE are different names.)
To copy a file (or several files) from one directory to another, use the cp
command from the directory that contains the files, as shown here:

$ cp letter-a letter-b letter-c correspondence
$

This command will copy letter-a, letter-b, and letter-c from the current
directory to a subdirectory called correspondence.

You can also rename a file as you copy it. For example, to copy letter-c
to correspondence and rename it Itr.04-16-85, you could use this:

$ cp letter-c correspondence/ltr.04-16-85
$

DELETING A FILE rm

To delete a file (or several files), use the rm (remove) command, as shown
here:

S rm intro.l intro.2 intro.3
$

This form of the command will delete the files intro.1, intro.2, and intro.3
from the current directory immediately. If you would like to confirm before
proceeding to delete the files, add the -i (interactive) option:

S rm -i intro.1 intro.2 intro.3
intro.l: ?
intro.2: ?
intro.3: ?

$

This is a convenience worth the extra moment it takes to confirm the
deletion. Once the files have been deleted, you can’t recover them—unless
(1) another user has a link to these files or (2) they have been saved on a
back-up tape.

3. The UNIX File System 35

LINKING A FILE In

In UNIX, a given file may be known by more than one name. Furthermore,
the different names by which the same file is known may be used by different
users in different directories. Each name by which a file is known is called
a link to the file. Any changes that any user makes to the file will be in
effect for each name by which the file may be known.

For example, if Dan should execute the following In (link) command from
his subdirectory letters, then he will be able to access the file intro from his
own subdirectory letters, using the same name (intro):

$ cd letters
$ ln /usr/ann/project.b/intro intro
$

If Dan prefers another name for the file, he can give the preferred name
in the In command line. In the following example, Dan makes the same
link as in the previous example, but this time the file will become known
as discover to Dan (see Figure 3.3):

$ 1ln /usr/ann/project.b/intro discover
$

It is not possible to link a directory to another directory or to link a file
in a different file system. To remove a link, use the rm command.

FIGURE 3.3. Linking file intro.

dan ann
text C prog ett\neet .a project.b project.c
enter.c files.c proc.c intro search restore
MATCHING A CHARACTER ?

If you ever have to move, copy, or delete a large number of files, you can
save time and keystrokes by using one of the UNIX wild card characters
for matching filenames. There are three varieties, and they generally have
the same meanings throughout UNIX.

36 Working with files

To match any single character in a filename, you can use a question mark
(?) in the desired position in the filename. For example, to delete existing
files intro.1, intro.2, and intr0.3, as in the example above, you could use a
command like this:

$ rm intro.?

$

If these are the only existing files with names that begin with intro. and end
with a single character, then this command is equivalent to the command
shown in the preceding section, “Deleting a File,” p. 34).

If letter-a, letter-b, and letter-c are the only existing files with names
that begin with letter- and end with a single character, you can use the
command

$ cp letter-? correspondence
$

to copy- all three of them to directory correspondence.

In each example above, we have spoken of “existing files.” You can never
use a wild card character, such as “?,” to refer to a file that does not yet
exist.

MATCHING SPECIFIC CHARACTERS [1

To narrow the selection process to a specific set of characters and then
match one of these characters in a filename, enclose the desired characters
within square brackets in the appropriate position in the filename. For
example, suppose you have files in your working directory with these names:

writer.0 writer.3 writer.6 writer.9
writer.1 writer.4 writer.7 writer.10
writer.2 writer.5 writer.8 writer.11

To delete writer.5, writer.7, and writer.9, you could use the following com-
mand:

$ rm writer. [579]
$

The three numbers inside the brackets let you select the three files desired.

You can also give a range of letters or numbers in brackets. For exam-
ple, to delete writer.1, writer.2, writer.3, and writer.4, you could use this
command:

S rm writer.[1-4]
$

3. The UNIX File System 37

MATCHING ANY NUMBER OF CHARACTERS *

To match any number of characters in a filename, you can use the asterisk
(*) in the desired position in the filename. (To match the entire name, use
the asterisk alone.) For example, suppose you have the following files in
your working directory:

info.a info.ab info.abc info.test
info.b info.23 info.new info.old

Then you could change to the parent directory and use the following com-
mand to move all of these files from directory obsolete to a subdirectory
called information.

$ mv obsolete/info.* information
$

To use another example, suppose you have four C programs in subdirec-
tory text:

entermemo files.dept wide_col.c news.Itr
F_327.c a_file.text new_compare.c get_number.c

You could use a command like this to copy all of the files that end in .C to
a subdirectory called C_programs:

$ cp text/*.c C_programs
$

Be very careful when you use the asterisk (*), especially in a rm com-
mand. If you don’t type the command exactly right, you may delete files
unintentionally.

3.5 File and directory permissions

As noted in Chapter 2, UNIX allows you to access other directories and
files in the system, but only if you have permission from the owners of
those directories and files. This section deals with the UNIX system of
permissions, which apply to individual owners, groups of users, and other
users.

DETERMINING PERMISSIONS Is -l

To determine the permissions associated with a given file or directory, use
the Is -l command described in the previous section. The permissions are
indicated by the nine characters that follow the first character:

38 File and directory permissions

$ 1s -1

total 501

~YW-r--—-- 1 robin 108 Apr 5 14:33 file.l
—Yw-r----- 1 robin 123 Apr 9 09:17 file.2
drwxr-x--- 1 robin 87 Mar 15 13:42 memos
drwxr-xr-- 2 robin 301 Mar 27 08:04 letters
drw-rw-rw- 1 robin 216 Mar 3 11:56 proposals
drw-r~-r-- 2 robin 428 Mar 11 15:31 specs

The first character, as noted before, indicates the type of file:

- ordinary file
d directory

The remaining nine characters represent three sets of three characters:
one set for the individual user, one for the user’s working group (if any),
and one for all other users. If we take the display in the example and spread
out the characters to show the groupings, we get something like this:

Type User Group Others

- (file) rw- r-- =--- file.l

- (file) rw- r-- - -- file.2

- (file) rwsx r - x - - - Nemos

- (file) rw- r-x r - - letters
d (directory) r w - r w - r w - proposals
d (directory) r w - r - - r - - specs

In each of these three groups of characters, there is one permission for
reading, one for writing, and one for executing. Reading, writing, and eze-
cuting have different meanings for ordinary files and directories:

For an ordinary file, permissions are defined as follows:

e read permission means you may look at the contents of the file
e write permission means you may change the contents of the file

e execute permission means you may type the name of the file in a
command line as if the file were a UNIX command.

For a directory, permissions are defined as follows:

e read permission means you may see the names of the files in the
directory

e write permission means you may add files to and remove files from
the directory

e erecute permission means you may change to the directory, search
the directory, and copy files from it

3. The UNIX File System 39

The characters used to represent these permissions are as follows:

r read permission w write permission
x execute permission - permission denied

Putting this all together, here are the nine characters for directory memos
in the display above:

Owner Group Others File
r w X r - x - - - memos

This shows that the owner of memos has permission to read (r), write (w),
and execute (x); members of the owner’s group have permission to read (r)
and execute (x), but not to write (-); and all other users are denied access
of any kind (- - -).

Here are the nine characters for file.1:

Owner Group Others File
rw- r-- =---fie1

This shows that the owner of file.1 has permission to read (r) and write (w),
but not to execute (-); members of the file’s working group have permission
only to read (r), but not to write (-) or execute (-); and all other users
are denied access of any kind (- - -).

CHANGING PERMISSIONS chmod

You can make changes to permissions by entering a chmod (change [access]
mode) command. The chmod command allows the owner of the file to add
to (+) or remove from (=) existing permissions. It also allows the owner
to clear existing permissions and assign all permissions from scratch; this
is known as assigning permissions absolutely (=). The chmod command
affects any of the three types of access for any of the three categories of
UNIX users, using one-letter symbols in the following order (left to right):

owner (user)

u o s + add permission r toread
g File’s group .. .
= remove permission W to write
0 all athers = absolute permission X to execute
a all (default) = p

For example, suppose you wanted to grant permission to write for mem-
bers of your working group and permission to read and write for all other
UNIX users for file.1. You could use these expressions in a chmod com-
mand:

g+W, Add permission (+) to write (W) to your working group (g);
o+rw and add permission (+) to read (r) and write (W) to all other
users (0)

40 File and directory permissions

Then, using the Is | command to display before and after, you could incor-
porate these expressions into a chmod command, as shown in the following
sequence. Note: You must type the command line for chmod exactly as
shown, with a comma between g+W and 0+r'w and no spaces surrounding
the comma.

$ 1s -1 file.1

—rTW-r-—---- 1 robin 108 Apr 5 14:33 file.l
$ chmod g+w,o+rw file.1l

$ 1s -1 file.1

-rw-rw-rw- 1 robin 108 Apr 5 14:33 file.l
$

To remove permissions currently in effect, simply use a minus sign (-) in
place of a plus sign (+), and then form a chmod command in the same
way. For example, suppose you wanted to remove permission to write for
members of your working group and permission to read and write for all
other UNIX users for file.1 (that is, revoke the permissions granted in the
previous example). You could use these expressions in a chmod command:
g-W Remove permission (-) to write (W) to your working group (g) o-rw
Remove permission (=) to read (r) and write (W) to all other users (0)

Then, using the Is =l command to display before and after, you could
incorporate these expressions into a chmod command, as shown in the
following sequence:

$ 1s -1 file.l

-rw-rw-rw- 1 robin 108 Apr 5 14:33 file.l
$ chmod g-w,o-rw file.l

$ 1s -1 file.1

~rW-r—---- 1 robin 108 Apr 5 14:33 file.l
$

To clear permissions currently in effect and assign permissions from
scratch, use an equal sign (=) to form the chmod command. The com-
mand in the following example achieves the same result as the one in the
previous example:

$ 1s -1 file.1

-rw-rw-rw- 1 robin 108 Apr 5 14:33 file.l
$ chmod u=rw,g=r file.l

$ 1s -1 file.1l

—“rw-r----- 1 robin 108 Apr 5 14:33 file.l
$

Caution: It’s possible for you to lock yourself out of one of your own
files with chmod. Be careful when you type it.

3. The UNIX File System 41
3.6 Summary

After a brief introduction to file systems, this chapter discusses the struc-
ture of the UNIX file system, followed by basic procedures for working with
files, directories, and permissions. A computer file system may be compared
to the filing system used in a library, where the card catalogue roughly cor-
responds to a directory and the books roughly correspond to files. In UNIX,
a directory is also a file itself.

UNIX has a structured file system, with a primal directory called root
at the top and at least five major directories branching out from the root
directory. Five major directories are usr (user), bin (binary), dev (devices),
tmp (temporary), and etc (miscellaneous). Each UNIX user has a home
directory in the usr directory (or in a user directory with another name).
The name for this home directory is the same as the identifier with which
the user logs on. The user may create as many subdirectories in his or her
home directory as necessary.

The full pathname of every file begins with root (/), then includes the
name of the major directory, followed by a subordinate directory, and so on,
down to the name of the file itself. The slash (/), the symbol that represents
the root directory, is also used to separate directory names and the simple
filename from each other. A simple filename consists of 1-14 characters
other than the following (and control characters): / * 2 "™ 7 []

After you log in to your home directory, you can then move from one
directory to another, provided you have permission. Any directory from
which you are operating at a particular moment is known as your working
directory, or current directory. While a full pathname can be given from
any directory, you can also use a relative pathname—a pathname relative
to your current directory.

WORKING WITH DIRECTORIES

To display a sorted list of the names of all directories and files in your
current directory, use the IS command (with =l for more details). To change
your working directory (that is, to move from one directory to another),
use the cd command, followed by the name of the new directory (no name
for your home directory). To find out the name of your current working
directory, use the pwd command.

To create a new subdirectory within your working directory, use the
mkdir command. To remove an existing directory from your working di-
rectory, move to the target directory, delete all its files, move back to your
working directory, and then use the rmdir command. (You may also be able
to use rmdir -r.) To change the name of a directory, use the mv command
with the new name last.

42 Summary

WORKING WITH FILES

To display the contents of a file, use either cat or more. To combine, or
concatenate, files, use the cat command with redirection of output to the
target file (>). To rename a file, use the mv command, the old name, then
the new name. (Any existing file with the new name will be lost.) To move
a file (or files) from one directory to another, use the mv command, the
name(s) of the file(s), then the pathname of the new directory.

To make a copy of a file within the same directory, use the ¢p command,
the old name, and the new name. To copy a file (or files) from one directory
to another, use the ¢p command, the name(s) of the file(s), and the name
of the directory. To delete a file (or files), use the rm command, followed
by the name(s) of the file(s). To link a file (that is, to attach a file to a
different directory), use the In command, giving the full pathname of the
file being linked and optionally giving the file a different name for use in
its new directory.

To match any single character in a filename, use a question mark (?)
in the desired position. To match one of a set of characters in a filename,
enclose the characters within square brackets ([1) at the desired location
in the string. To match any number of characters in a filename, use an
asterisk (*) in the desired position.

FILE AND DIRECTORY PERMISSIONS

To determine permissions associated with a file or directory, use the Is |
command. The first character indicates whether the entry is an ordinary file
(=) or adirectory (d). The next nine characters indicate whether permission
to read (r), write (w), or execute (x) has been granted to the owner, the
file’s working group, or other users.

To change existing permissions for a directory or file, use the chmod
command, either adding (+) or removing (=) permission to read (r), write
(W), or execute (X) for the owner (u), the file’s group (@), all other users (0),
or all users (@). To clear existing permissions and assign all permissions from
scratch, use chmod with the symbol for assigning permissions absolutely

(=).

4
Using UNIX Commands

Now that you are familiar with the UNIX file system, you are ready to learn
more about UNIX commands. This chapter begins with a general discus-
sion of command lines; then covers methods of interacting between UNIX
processes; and concludes with descriptions of commands for displaying text
on the screen, processing text files, and using lineprinters.

4.1 Constructing a command line

COMMAND LINES IN GENERAL

In general, a command consists of three parts, although not every command
requires all three parts:
name of command options name(s) of file(s)

There isn’t much to say about the command’s name, except that most
UNIX commands have short names. Command options are usually desig-
nated by a hyphen (or minus sign), followed by a single letter (also called
a switch). Sometimes you can type more than one letter after a single mi-
nus sign (to indicate multiple options); sometimes you cannot. In a few
instances, command options are designated by plus signs instead of minus
signs. Many commands allow one or more input files to be named. (Output
files are generally, but not always, designated by an output option switch
like =0. Another method of designating an output file will be discussed
later in this chapter.) The various options and filenames that follow the
command are referred to, collectively, as arguments.

AN EXAMPLE

As an example, consider the IS (list contents of directory) command, dis-
cussed in Chapter 3, “The UNIX File System.” The UNIX Programmer’s
Manual (or UNIX User’s Manual) shows 21 possible options for this com-
mand, as follows (spread out here with headings added for easier reading):

Name Command Options File(s)
Is [-RadCxminogrtucpFbqisf | [name ...]

44 Constructing a command line

The name of the command is Is (list). There are 22 different options—
21 switches plus no switch—you can use: -l (long format), -t (time of last
modification), -a (all entries), -8 (give size), -d (name only for directories),
-r (reverse order), and so on (some of the others are unsuitable for this
discussion). The brackets (which are not to be typed on a command line)
indicate that all option switches are optional, never required. The compres-
sion of the 21 letters into a single word indicates that more than one letter
can be typed after a single minus sign. (Don’t bother trying to learn how to
pronounce “RadCxmlnogrtucpFbqisf.”) In the case of this command, some
options turn off other options. Finally, the word name, followed by ellipses,
indicates that you can type at least one directory name after the options.

Given this information, here are a few of the command lines that can be
constructed with the Is command:

$ 1s List the contents of the current directory

$ 1s -1 .. List the contents of the parent directory (long
listing)

$ 1s -als /usr/paul List all entries (long listing), giving file sizes,

of the contents of /usr/paul

$ 1s -a /etc /bin List all entries in /etc, then all entries in /bin

We won’t go into all 21 of the options in detail here. However, here
are a few more of interest: =C (multi-column, sorted down); =X (multi-
column, sorted across); -t (sort by time of last modification); -u (sort by
time of last access); -F (mark directories with /, executable files with *); -p
(mark directories with /); =R (list subdirectories recursively); -q (replace
nongraphic characters with ?).

4.2 Redirection of input and output

The entire operation of a computer can be summed up in three phases:

¢ Input—the user supplies a computer program with information to
process

o Processing—the computer program performs a set of functions on the
information received from the user

e Output—the computer program returns the results of processing to
the user

Although most of this takes place electronically, the basic procedure is
similar to stepping up to a window in a bank to make a deposit. You hand

4. Using UNIX Commands 45

the teller an endorsed check with a deposit slip (input); the teller makes
a record of the deposit and stamps a receipt (processing); then the teller
hands you the stamped receipt to keep for your records (output).

When you deal with your computer through UNIX, it is common for
you to submit input via your terminal’s keyboard and to receive output
via your terminal’s video screen. In fact, UNIX regards your keyboard as
its standard input and your screen as its standard output. For example,
UNIX will ordinarily assume that the command date will be typed at your
keyboard and that the information requested by date (date, day of the
week, hour, minute, and second) is be be displayed on your screen.

However, with most UNIX commands, you can at any time instruct
UNIX to redirect the input or output of a command. For example, you
can have UNIX receive input from a file instead of from the keyboard. Or
you can have UNIX send output to a line printer instead of to the screen.
(Keep in mind that UNIX regards peripheral devices like line printers as
files.) The symbols used in a command line to request redirection are the
less than sign (<) and the greater than sign (>) ((SHIED) comma and
period, respectively, on most keyboards). You can think of these

symbols as arrowheads pointing in the direction of the flow of information.

REDIRECTION OF INPUT

As an example, UNIX has a mail command that takes the text that you
supply as input and places it in the directory of each user you name after
mail in a command line. One way to send a letter to Mary, John, Sandy,
and Paul would be to type the following after the UNIX shell prompt and
then type the letter at your keyboard:

$ mail mary john sandy paul

Suppose you use the screeen editor vi (Part II) to write your letter and
then store the text in a file named letter_5. You could then send this letter
to these same users on your UNIX system using the mail command with
redirection of input. Then, to send your letter to Mary, John, Sandy, and

Paul, you could type the following after the UNIX shell prompt and press
RETURN):

$ mail mary john sandy paul < letter 5

The direction of the arrowhead tells you that letter_5 is the input file, which
is taking the place of your keyboard.

46 Redirection of input and output

REDIRECTION OF OUTPUT

Just as you can use the input symbol (<) to redirect input, you can also
use the output symbol (>) to redirect output. For example, the command
line

$ 1s

will list all the files in your directory on your screen. UNIX also allows you
to modify the command line

$ 1s > files

to redirect the output of Is from your screen to a file named files. If files
does not exist when you issue the I$ command, it will be created by the
shell; if files does already exist, its contents will be overwritten.

A common use of redirection of output is the joining together, or con-
catenation of several files, using the UNIX cat command. To concatenate
files file_1, file_2, and file_3 and store the resulting text in another file
called append, type the following after the UNIX shell prompt and press
RETURND:

$ cat file 1 file 2 file 3 > append

Then, to concatenate three more files and add the resulting text to ap-
pend, rather than overwrite it, use another redirection symbol (>>). For
example, to concatenate file_4, file_5, and file_6 and add the resulting
text to append, type the following after the UNIX shell prompt and press
(RETURND:

$ cat file 4 file 5 file 6 >> append

If the file doesn’t exist, >>, like >, causes the shell to create a new
file; but if the file already exists, >> always adds to the end of it, never
overwriting it.

4.3 Pipelines

As noted in the previous section, UNIX regards the keyboard as the stan-
dard input and the video screen as the standard output for most commands
being executed, or processes. In addition to redirection, there is another
way to alter the standard way of dealing with input and output: UNIX
can connect two processes with a pipe (or pipeline), so that the output of
one process becomes the input for another. The symbol for a pipe is the

4. Using UNIX Commands 47

vertical bar (|), which is usually placed in different locations on different
keyboards.

Without pipes, if you wanted to use the output of one process as the
input for another, you would have to go through a roundabout procedure.
For example, suppose you had three small text files called part-d, part-e,
and part_f. You would like to keep the files separate in UNIX, but when
you print them on the lineprinter, you would like to see all the text on one
page, rather than spread over three different pages. To accomplish this,
first concatenate the files and store them in a fourth file:

$ cat part d part e part £ > temp file

Then use this new file as input for the Ip command, which sends text to
the lineprinter:

$ lp temp file

Finally, use the rm (remove) command to delete the temporary file that
you used to store the combined files:

S rm temp file

With a pipeline, you can connect cat and Ip directly, eliminating the
need for an intermediate file, like this:

$ cat part _d part e part f | lp

The pipe symbol (|) tells UNIX to take the output from cat, which oth-
erwise would have gone either to a file or to the screen, and use it as the
input for Ip. This will accomplish the desired result with one command
line instead of three: UNIX will concatenate the three files and send the
resulting text to the lineprinter to be printed.

Commands that appear in pipe statements may include all the usual
options and file designations. For example, the pr (print) command displays
text on the screen. (The reason that it’s called print instead of display is
that the original terminals for UNIX were printing Teletype machines, not
video display terminals.) In its modified form, the command pr -4 displays
text in four columns.

You can also set up multiple pipelines. For example, to have your files
printed in three columns on a lineprinter, rather than displayed on the
screen (assuming you have more than 150 files in your directory), you could
enter a command like this:

$1s | pr -3/ 1p

48 Pipelines

In this command line, Is provides the list of files, pr -3 formats the list in
three columns, and Ip prints the formatted list on the lineprinter.

Having at your disposal all the commands of UNIX, plus the pipeline
feature to connect them in various ways, is like sitting on the floor in front
of a box of tinker toys. You can construct all kinds of clever new commands
out of the existing commands. The combinations are endless. Here are a few
more examples, using just a handful of commands: the who command to list
all users currently logged on the system, the sort command to alphabetize
lines of text, the Is command to list your files, and the w¢ (word count)
command to count the number of lines, words, and characters in a file.

Command Line Purpose

$ who | sort To see a list of users in alphabetical order

$ who | wc To see how many users are currently logged on
$ 1s | we To see how many files are in your directory

Note that, because of the way different commands work, many conceiv-
able pipeline combinations are not possible to construct. For example, nei-
ther who nor Is could ever be on the receiving end of a pipe; these processes
gather their information from within the system, never from external in-
put. On the other hand, neither sort, w¢, nor Ip could ever be on the
originating end of a pipe; these processes must receive input to be able to
function.

4.4 Displaying text on the screen

In Chapter 3 you learned that you can use the cat (concatenate) command
to display text on your screen. In this section you will learn more about
cat, and also learn about commands that you can also use to display text:
more, pg, head, and tail.

ENTERING TEXT INTO A FILE cat

Using the concept of redirecting output, you can use the cat command to
perform simple text entry. All you have to do is redirect the output of cat
from the screen to a file. Then type the text, pressing after the
last line to indicate to cat that you have no more to type. In the following
example, we enter the text shown into a file called enter:

S cat > enter

Here is a short message
to show what we can do
with the cat command.

[Press (CTRL-D)—nothing will be displayed]

4. Using UNIX Commands 49

Now we can use cat without redirection to display the text we have just
entered:

$ cat enter

Here is a short message
to show what we can do
with the cat command.

$

If you are using a microcomputer with communications software as a
terminal to a UNIX system, you can also use the cat command in the way
just shown to capture text and store it on one of your own disk files. (This
is also called downloading data.) Just start the capture feature in your
communications program, log into UNIX, and execute a cat command like
the one just shown to display text on the screen.

To send text from your microcomputer to UNIX (that is, to upload it),
log into UNIX, move to the desired directory, and type a ¢at command line
that will redirect output to the desired file, like this:

S cat > micro.text

Then use the feature in your communications software that sends out the
contents of a disk file, which should also be displayed on your screen. After

all text has been sent, type (CTRL-D) to tell cat that you have no more
text.

When you upload text to UNIX in this way, you may end up with un-
desired double-spacing. If this happens, don’t worry. There’s a C program
presented in Chapter 15, “Programming with C,” that can help you. With
a slight modification, this program will remove the unwanted blank lines
for you. (The slight modification is to change max from 2 to 1 in line 5.)

DISPLAYING TEXT A SCREEN AT A TIME P9
more

Variations of the cat command, pg in UNIX and more in XENIX, also
display text on your screen, but instead of letting the text race past you,
pause after each screenful, displaying something like this on the bottom
line:

--More-—- (6%)

Now you have the following four choices:

¢ Press the (RETURN) key to display one more line

e Press the space bar to see the next screenful

50 Displaying text on the screen

o Type /text to search for text
o Press the key to exit.

head
tail

A pair of commands, head (XENIX) and tail (UNIX and XENIX), allow
you to display the beginning (or end) of a file. Unless you request other-
wise, the amount displayed will be ten lines. However, you can also request
another amount; with tail only, you can request an amount in characters
(€), lines (I), or blocks (b). (A block in System V is 1,024 characters.) For
example, to see only the last 17 characters of enter, you could use this:

DISPLAYING PART OF A FILE

$ tail -17¢ enter
the cat command.

$

4.5 More on working with files

DETERMINING THE TYPE OF A FILE file

Sometimes we lose track of our files. We look at the directory and ask
ourselves, “What’s enter? When did I create a file called enter?” Most
UNIX systems have a command called file that determines (or at least
tries to determine) the general type of a file, which may give you some
information about it very quickly. Here are three brief examples:

$ file enter
enter: English text

$

$ file ch.set_6
ch.set 6: ascii text

$

$ file FOCUS
FOCUS: commands text
$

This is not an enormous amount of information about your file (and it
isn’t always correct), but it’s a start.

4. Using UNIX Commands 51

SORTING A FILE sort

Sorting allows you to put lines of text in order. It is probably the most
common form of text processing. For example, suppose you have used cat
to enter two files named fruits and animals with the contents shown:

$ cat > fruits S cat > animals

bananas horses
oranges cats
apples dogs
cherries birds
pears lizards

R

$ _ S -
To sort these files and display the results, use the sort command:

$ sort fruits $ sort animals

apples birds
bananas cats
cherries dogs
oranges horses
pears lizards
$ $

As mentioned earlier, you can also sort the list of system users and display
it on the screen this way:

$ who | sort

dave ttyll Feb 2 15:56
elaine tty04 Feb 3 09:58
manny tty07 Feb 3 08:05
$

The sort command will be described in detail in Chapter 13, “Searching
and Sorting.”

DEALING WITH REPEATED LINES uniq

Let’s take an extremely simple example of a common task that is often
necessary after you've sorted a list of items. Suppose that, for some strange
reason, you decide to keep a list of the different animals that show up in
your yard over a period of time. Of course, you keep this list in a file on
your UNIX system.

At the end of one eventful day, you rush to your terminal and add the
following to your animals file:

$ cat >> animals [Remember, two symbols (>>) to add text]
birds

raccoons

dogs

birds

52 More on working with files

cats

[Press (CTRL-D)—nothing will be displayed]
$

Now comes the moment you've been waiting for: it’s time to sort your
list. Use the sort command, and get the list on the left. If you don’t want
all those repeated items, you can pipe your list to a command called uniq
to get the new list on the right.

S sort animals

birds

birds $ sort animals | unig
birds birds
cats cats
cats dogs
dogs horses
dogs lizards
horses raccoons
lizards $ _
raccoons

$

As you can see, the unigq command in its plainest form condenses a sorted
list by listing each item only once, no matter how many times it appears
in the original list. (You could also use sort -u.) _

The uniq command also has several options, one of which is to precede
each item in the final list with the number of times it appeared in the
original list (-¢). Here is an example of uniq with the -¢ option:

$ sort animals | uniq -c
3 birds

cats

dogs

horses

lizards

raccoons

AR S

PREPARING TEXT FOR PROCESSING prep

If you have a file with ordinary text in sentences and paragraphs and you
would like to study the individual words in the file, you may be able to use
the XENIX prep command to list each word in a separate line. Here is an
example, using a new file called words:

$ cat > words

The more you study, the more you learn.
$ prep words

the

more

4. Using UNIX Commands 53

you
study
the
more
you
learn
$

You could also sort this list and use uniq to determine how many times
each word occurs in the file. First place each word on a separate line with

prep; sort the list with sort; then get a count by word using uniq using
the =€ (count) option:

prep words | sort | uniqg -c¢
learn

more

study

the

you

NN PN

COUNTING LINES, WORDS, AND CHARACTERS IN A FILE WC

Sometimes you need to have a few statistics on a file. If you're writing
a program, you may want to know how many lines of code you have. If
you're writing an article, you may want to know how many words you've
written. The we (word count) command tells you how many lines, words,
and characters there are in a file (in that order). Words are assumed to

be separated by either punctuation marks, spaces, tabs, or newlines. To
obtain a complete count for enter, enter the following;:

$ wc enter
3 15 69 enter
$

If you would rather have one of the three numbers given by itself, you
can use one of these options with the WC command:

-l (lines only)
W (words only)
-c (character only)

Here are examples of commands to obtain each of the separate counts:

$ we -1 enter

3 enter [There are 3 lines in enter]
$ we -w enter
15 enter [There are 15 words in enter]

$ we -c enter

54 More on working with files

69 enter [There are 69 character in enter]

SEARCHING FOR A PATTERN IN A FILE grep

To find a key word or phrase in a file, you can use the grep command. In
UNIX, any sequence of characters that you are looking for is called either a
search pattern or a regular expression. (If you're curious about such things,
grep is an acronym for “globally find regular expressions and print”—more
or less. They didn’t like gfreap, so they called it grep. Now you know.)
For example, to display all lines in enter that contained the letters cat,
you could use a command like this:

$ grep cat enter
with the cat command. [There was only one line.|

$

If you wanted to find out who was logged in on terminal tty15, you could
use a command like this:

$ who | grep ttyl5
manny ttylb Feb 3 10:05
$

This command illustrates piping the result from a command to another
instance of the same command. The grep command will be discussed in
greater detail in Chapter 13, “Searching and Sorting.”

FINDING MISSPELLED WORDS spell

With the UNIX spell command, you can check spelling by comparing words
in a file against entries in a large on-line dictionary. For example, suppose
you have a file named lines that contains the following text:

$ cat > lines
Now is the tyme for all good men to
come to the ade of there country.

[((CTRL-D)]
5

To check this file, use this command line:

$ spell lines
tyme

ade

$

4. Using UNIX Commands 55

Note that “there” isn’t listed, even though it’s incorrect. The spell pro-
gram can determine whether a word is misspelled, but it can’t determine
whether or not the word is used correctly.

With spell -v, you can also list words that may be derived from words
listed in the dictionary, such as carefully (from careful), people’s
(from people), listening (from listen), and so on.

COMPARING FILES LINE BY LINE diff

There are many times when you find yourself with one copy of a file and
also a modified version in the same directory. “Which one is which? Are
they the same?” you ask yourself. One UNIX command that can help you
is diff. To show how it works, let’s create a simple file called wildlife.1, then
modify it to create a second file called wildiife.2:

$ cat > wildlife.l $ cat > wildlife.2
1 antelope 1 antelope

2 bear 2 buffalo

3 coyote 3 coyote

4 deer 4 elk

5 elk 5 fox

Comparing these two files with diff, we get the output shown below,
which indicates how the second file differs from the first:

$ diff wildlife.l wildlife.2

2c2 [Line 2 has been changed:

< 2 bear e The first file (<) contains 2 bear.

> 2 buffalo o The second file (>) contains 2 buffalo.]
4,5c4,5 [Lines 4 and 5 have been changed:

< 4 deer o Line 4 of the first file is 4 deer.

< 5 elk e Line 5 of the first file is 5 elk.

> 4 elk o Line 4 of the second file is 4 elk.

> 5 fox o Line 5 of the second file is 5 fox.]

$

The diff program uses ¢ to indicate a change, d to indicate a deletion,
and a to indicate an addition, along with < to indicate a line in the first
file and > to indicate a line in the second file. The hyphens (—) are inserted
when a line from the first file is compared with a line from the second.

The diff command also has several options, such as ignoring blank spaces
in the two files (-b) and providing a list of the ed commands required to
change the first file to the second (-e). But we’ll have to move on now to
another command for comparing files.

56 More on working with files

DISPLAYING LINES COMMON TO TWO FILES comm

To obtain a different view of the differences between two files, you can use
the comm (common) command. This command displays three columns on
the screen, one for lines unique to the first file, a second for lines unique to
the second, and a third for lines common to the two files. Here is how the
output for comm would look for wildlife.1 and wildlife.2:

S comm wildlife.l wildlife.2
1 antelope [Common to both files]
2 bear [First file only]
2 buffalo [
[

3 coyote

Second file only]
Common to both files]
4 deer [First file only]

4 elk [Second file only]
5 elk [First file only]

5 fox [Second file only]
$

As you can see, the three columns give you a graphic display that is easy
to read. (If you look closely, though, you see that comm made a mistake:
it first listed elk as being unique to wildlife.2, then as being unique to
wildlife.1.) The comm command also allows you to suppress a column (or
a pair of columns), using =1 to suppress the first column, -2 to suppress
the second column, -3 to suppress the third column, and combinations like
~13 to suppress the first and third columns. Here is how you could select
lines common to both files (third column) and store them in a file called
common:

$ comm -12 wildlife.l wildlife.2 > common

$ cat common

1 antelope [Common to both files]

3 coyote [Common to both files]
[We missed elk again]

$

The option -12 in the above example told comm to suppress the first
and second columns (that is, to output only the third column).

For comparison of program files, you may also be interested in the cmp
command, which compares two files character by character (byte by byte).

TRANSLATING CHARACTERS tr

There may be times when you will want to change certain characters every
place they occur in a file. For example, suppose you have used numbers to
indicate the steps of a procedure you have written. Then you decide (or

4. Using UNIX Commands 57

possibly you receive a request) to use letters of the alphabet instead. With
the tr command, you can make the change fairly easily. Here's a file:

$ cat > five.steps

1. Turn on the machine.
2. Start the program.

3. Request the P option.
4. End the program.

5. Turn off the machine.

[((CTRL-D)]
$

To make the translation described, type the command (tr), a space, the
set of characters to be translated, another space, then the set of characters
into which to translate the original characters (in the order desired), using
redirection to accept the input from five.steps:

$ tr 12345 abcde < five.steps
a. Turn on the machine.

b. Start the program.

c. Request the P option.

d. End the program.

e. Turn off the machine.

$

This tr command translated 1 into a, 2 into b, 3 into c, and so on. You
can also use range notation to enter the command this way to accomplish
the same thing:

tr 1-5 a-e < five.steps
Turn on the machine.
Start the program.
Request the P option.
End the program.

. Turn off the machine.

“r® Q00w W»

For larger sets of characters, place the ranges within pairs of brackets
(and then place the brackets within double quotation marks to keep them
from being interpreted as members of the sets of characters), as shown here:

$ tr "[a-z]" "[A-Z]" < five.steps
1. TURN ON THE MACHINE.

2. START THE PROGRAM.

3. REQUEST THE P OPTION.

4. END THE PROGRAM.

5. TURN OFF THE MACHINE.

$

58 More on working with files

We can also use the tr command to delete characters by including the
-d (delete) option. For example, we could use the following command to
delete the step numbers:

$ tr -d 12345 < five.steps
. Turn on the machine.

. Start the program.

. Request the P option.

. End the program.

. Turn off the machine.

$

On the other hand, if we wanted to delete the explanations and just
leave the step numbers, we could also include the -€ (complement) option
to delete everything ezcept the numbers:

$ tr -cd 12345 < five.steps
12345% _

The reason that the numbers (and the prompt) appear together on the
same line is that the characters that separate lines from each other (called
newlines in UNIX) have been deleted along with the visible characters.
Here’s a similar command line. See if you can explain what is happening
here:

12345$ tr -cd "[A-Z]" < five.steps
TSRPETS _

In the two examples above, the two options € and d were placed together
behind the same minus sign. In UNIX, this is referred to as bundling op-
tions. Some UNIX commands allow bundling of options, some do not.

4.6 Using printers

You can use the UNIX command Ip to print the contents of a file on the
system lineprinter. (Actually, the file is placed in a queue, and, depending
on system demand for printing, won'’t necessarily be printed immediately.)
For example, to print the contents of a file called section_4, you could use

$ lp section 4
request id is mx80-217 (1 file)
$

The message from Ip tells you that this is the 217th request for printing
on printer mx80. If you decide for some reason to cancel printing, you can
use the job number after a cancel command, like this:

4. Using UNIX Commands 59

$ cancel mx80-217
$

VARIATIONS OF THE COMMAND Ip

Using some of the techniques you learned earlier in this chapter, you can
do more than just print one file on the lineprinter. You can also print a
series of files like this:

$ lp section 1 section 2 section 3

request id is 1x1000-346 (3 files)
$

By piping text from pr to Ip, you can take advantage of some the for-
matting options of pr before starting to print. For example, to paginate
text and arrange it in two columns before printing, you could use

$ pr -2 text 5 | 1p
request id is £fx86e-297 (standard input)
$

Using two pipes, one from sort to pr and another from pr to Ip, you could
sort and paginate lines of text in a file before printing:

$ sort data 15 | pr | 1p
request id is 1x1000-408 (standard input)
$

OPTIONS FOR THE COMMAND Ip

Two of the options available for the Ip command can be helpful. The -¢
(copy) option makes a copy of the text to be printed, as a precaution against
loss of the text in the queue like this:

$ 1lp -c section 5
request id is mx80-329 (1 file)
$

The -m (mail) option reports to you by mail when your printing job has
completed like this:

$ lp -m section 5
request id is 1x1000-453 (1 file)
$

60 Using printers

FINDING OUT WHAT IS QUEUED FOR PRINTING Ipstat

In a multi-user system like UNIX, everyone has to share the system’s
lineprinter. So any time you initiate the Ip command to print a file, Ip
places the name of the file in a queue. It’s just like waiting in line at
a bank. The names of the files move through the queue as the files are
printed; then they are removed one by one as each file leaves the queue.

The queue is kept in a UNIX directory, whose name is often /usr/spool/lpd.
To find out which files are currently in the queue for printing, all you have
to do is to display the contents of this directory on your screen, using the
Ipstat (line printer statistics) command:

$ lpstat

total 28

mx80-217 robin 17462 Apr 6 09:09 on mx80
1x1000-346 robin 3685 Apr 6 09:12
fx86e-297 robin 8931 Apr 6 09:13
1x1000-408 robin 2366 Apr 6 09:17
mx80-329 robin 6328 Apr 6 09:19
1x1000-453 robin 23697 Apr 6 09:21

$

4.7 Summary

In this chapter you have learned about command lines, redirection and
pipelines, and commands for displaying text, working with files, and using
lineprinters. To begin a process under UNIX, type a command line and
press (RETURN). The command may contain either just the command by
itself or the command plus modifiers.

REDIRECTION AND PIPELINES

Unless you instruct UNIX otherwise, UNIX regards your keyboard as its
standard input and your video screen as its standard output. But you can
redirect either input or output elsewhere. To have a UNIX command take
its input from a file, instead of from your keyboard, use the less than sign
(<) in front of the name of the file.

To have a UNIX command send its output to a file, instead of to your
video screen, use the greater than sign (>) in front of the name of the
file. If the file does not exist, it will be created; if it does exist, it will be
overwritten. To append the contents of the output file, rather than overwrite
the contents of the file, use a pair of greater than signs (>>) in front of the
name of the file.

4. Using UNIX Commands 61

To connect two processes, so that the output of one becomes the input
of the other, use the vertical bar (|) between the names of the commands
(with or without surrounding spaces).

DISPLAYING TEXT ON THE SCREEN

You can use the cat command for entering text into a file, downloading to
your microcomputer, or uploading to UNIX. You can use pg (UNIX) or
more (XENIX) to display text one screenful at a time, head (XENIX) to
display only the opening lines of the text, or tail (UNIX and XENIX) to
display only the closing lines.

MORE ON WORKING WITH FILES

To determine the type of text in a file, you can use the file command.
To sort a file by lines, use the sort command, followed by the name of
the file. As with many other commands, the results of the sort command
can also be redirected to a new file. In addition, Sort can receive its input
from the standard input (the keyboard) or another command via a pipe.
To eliminate repeated lines in a sorted list, use the uniq command. One
option of this command (-€) also gives you an item count.

To have each word of text in a file placed on a separate line for further
processing, use the prep command (XENIX only). To obtain the total
number of lines, words, and characters in a file, use the W€ command either
by itself to display all three statistics or with one of three options (-l, -w,
-C) to display one. (Combinations such as -Iw and -w¢ are also allowed.)

To search for a pattern in a file, use the grep command, followed by the
pattern and then the name of the file. You can also pipe input from another
command (in which case the filename becomes unnecessary). To see a list
of misspelled words in a file, use the spell command, followed by the name
of the file.

To compare the contents of two files line by line, use the diff command.
(There is also a program called diff3 that compares three files at a time
and another called cmp that compares two files character by character.)
To determine which lines are common and which are unique to each of two
files, use the comm (common) command. To translate one set of characters
into another set, use the tr command. You can also use this command to
delete characters.

USING LINEPRINTERS

To have a file sent to the system’s lineprinter to be printed, use the Ip
command, followed by the name of the file(s). You can also use pipes with
Ip to format the output before printing it. The -C (copy) option informs
Ip to make a copy before printing; the -m (mail) option informs Ip to

62 Summary

notify you by mail when printing has completed. To find out which files
have been queued for printing on the lineprinter, use the Ipstat command.
To cancel a printing request, use the cancel command with the printing
request number.

5

Communication in UNIX

In this chapter you will learn how to communicate within and outside of
UNIX. We'll start by communicating with other users on your own system,
then discuss communicating with other UNIX systems.

5.1 Communicating with other users

To allow various forms of communication between users on the same sys-
tem, UNIX provides three facilities: electronic mail, an automatic reminder
service, and direct messages.

SENDING MAIL mail

To send electronic mail to any user on your UNIX system, use the mail

command. Just type mail, a space, the other user’s identifier, and press
RETURN). For example, to send a message to Janice, you could use

$ mail janice

After typing what you want to say, press (CTRL-D) to conclude your
message. You can also address a message to several different users at the
same time. Here is an example:

$ mail ralph laura peter sara

There will be a meeting at 2:00 pm today to review

the design of the Rattlesnake. Bring the specifications
you received from Engineering last week.

$

Each recipient will be notified of the existence of this message when he
or she logs on.

64 Communicating with other users

RECEIVING MAIL mail

If another user has sent mail to you, the system will store it in a file with
your login name in directory /usr/mail, and the next time you log on you
will see the following message:

You have mail

This is known as the “You have mail” message. To find out what has
arrived, type the mail command without any arguments. The system will
display the most recent message on the screen, give you a question mark
prompt (?), and wait for you to indicate what you want to do with the
message.

$ mail
From paul Tue Jan 23 09:24:17 1989
Yes, I got your message. Let’s meet

for lunch. What time can you make it?
el

You now have the option of saving or deleting this message, going on the
next next message, or returning to the shell prompt. Suppose you decide
to return to the shell prompt and reply to this message. Here are the steps:

?q

$ mail paul

We should be able to leave at 11:30
CTRL-D

$

If, on the other hand, you wanted to save this message in another file
(lunch), you could type this instead:

? s lunch
From gina Tue Jan 23 09:13:42 1989
I need to see you sometime today.

Let me know when you’re free.
2

When you saved the first message, the system automatically displayed
(printed) the next one. As long as you stay in the mail session, the system
will continue to display additional messages. At any time, you can type one
of the following to perform the action indicated:

*(or?) List all the mail commands
RETURN Display the next message
o] Redisplay (print) the current message

d Delete the current message

5. Communication in UNIX 65

m user Forward the current message to user

s [file] Save the current message (with header) in file (file mbox
in the current directory if you omit file)

w [file] Save the current message (without header) in file (same
default)

! command Execute command without leaving mail

X Exit mail, leaving all messages intact

q Quit mail, leaving only unexamined messages intact

One way to set up a reminder system is to use the mail command to
send messages to yourself. Here is an example:

$ mail robin

Avoid falling asleep when Wally starts talking about his
pet frog, avoid unnecessary shouting, and avoid loud,
senseless arguments.

(CTRL-D)

$

To view mail in a file other than /usr/mail/robin, use the -f option with
the name of the alternate file, like this:

$ mail -f lunch

From paul Tue Jan 23 09:24:17 1989
Yes, I got your message. Let’s meet
for lunch. What time can you make it?
?

To reverse the order in which messages are displayed (first received is
first displayed), use the -r option:

$ mail -r
From will Tue Jan 23 08:31:25 1989
I hope you still have the used VCR

for sale. I’d like to take a look.
?

SENDING MAIL mailx

If your installation has the mailx command, a more sophisticated tool for
handling mail, you can use it instead of mail. The basic operation is about
the same, but there are many more options available in mailx. For example,
to send a message to several people, you could type this:

$ mailx ralph laura peter sara
Subject: _

66 Communicating with other users

If your system is so configured, you will now see a “Subject” prompt.
Type a subject heading, then press (RETURN). Then the rest will be the
actual message (up to the final (CTRL-D)).

$ mailx ralph laura peter sara

Subject: Rattlesnake Design

There will be a meeting at 2:00 pm today to review

the design of the Rattlesnake. Bring the specifications

ou received from Engineering last week.
$

Unlike mail, mailx allows you to interrupt entry of your message with
an to perform other functions. For example, if you suddenly think
of other people who should be receiving the message (say Len and Jane),
you can add their names to the recipient list by typing this:

~t len jane

Each escape command consists of a tilde (~), followed by another char-
acter (in this case, t). Here are some of the other commands you can use:

? List all the escape commands

°r file Read text into your message from another file

“w file Write your message to another file

s subject Set the subject heading

t users Add users to the “To” list

“C users Add users to the “Copy” list

“h Prompt yourself for “To” list, subject heading, and
“Copy” list

v Invoke the visual editor (described in Part IT) to modify
your message

p Print (display) the current message

“m messages Read in other messages, indented to the first tab stop

“f messages Read in other messages, without indentation

"1 command Run a UNIX command without leaving mailx
| command Pipe the message through a UNIX command

q Quit; save message in file dead.letter in your home di-
rectory
b Exit without saving the message
RECEIVING MAIL mailx

To review mail sent to you, type mailx without any names. Unlike mail,
mailx will display a summary of the mail that has been sent to you, with a
one-line entry for each individual message (called a header) and a pointer

5. Communication in UNIX 67

(>) to the current message. The first letter indicates whether the message
is new (N), read (R), or unread (U). Again, the system gives you a question
mark prompt for your response, as shown here:

$ mailx

"/usr/mail/robin": 3 messages 2 new 1 unread

U 1 will Tue Jan 23 08:31 2/69 VCR for sale
N 2 gina Tue Jan 23 09:13 2/62

>N 3 paul Tue Jan 23 09:24 2/72 Lunch today

?

The choices for mailx are similar to those for mail. The command list
shows the command names spelled out, but you need only enter the first
letter. By default, msglist in the list that follows is simply the current mes-
sage. But you can redefine msglist to specify messages by number, sender,
subject, or type. Here are some of the commands:

?

list

type [msglist]
next

top [msglist]

from [msglist]
header

z[]

save [msglist] file
delete [msglist]
undelete [msglist]
preserve [msglist]
Reply [msglist]
reply [msglist]

edit [msglist]
cd [directory]
! command
quit

xit

List all the commands with explanations

List all the commands without explanations
Display the message(s)

Display the next message

Display the first five lines of messages

Display header(s) for message(s)

Display active message headers

Display the next [or last] page of headers

Save (append) the message(s) to file

Delete the message(s)

Restore deleted message(s)

Preserve message(s) in mbox

Reply to the sender(s) of the message(s)

Reply to the sender(s) of the message(s) and also
to other recipients

Edit message(s)

Change to directory (home if none named)
Execute UNIX command

Quit (preserving only unread messages in mbox)
Exit (preserving all messages in mbox)

The mailx command also allows you to view mail in a file other than
/usr/mail/robin, using the same -f option:

$ mailx -f lunch Read mail in file /usr/robin/lunch

$ mailx -f

Read mail in file /usr/robin/mbox

68 Communicating with other users

AUTOMATIC REMINDER SERVICE calendar

Another way to remind yourself of events is to use the automatic reminder
service that UNIX provides with the calendar command. Every day or so,
UNIX uses the calendar command to examine each user’s home directory
for a file named calendar, whose contents may look something like this:

Mar 21 Planning meeting at 9:30 in conference room
Apr 17 Jennifer’s wedding in Hendersonville

Apr 28 Awards dinner at the Blackjack Inn

May 3 Presidential primary

Other forms of dates, such as March 21 and 3/21, are also allowed. The
calendar command extracts from this file each line that contains either
today’s date or tomorrow’s date and mails it to you. You can also call up
the calendar manually like this:

$ calendar

UNIX will search your home directory for a file named calendar to look for
any pertinent items to display.

WRITING DIRECTLY TO A USER write

The write command allows you to send a message directly to another user’s
terminal, where it will immediately appear on the screen. Here is an exam-
ple of initiation of a write command, which is similar to sending mail:

$ write paul
How are you doing on your project? o

[CCTRL-D)—not displayed on the screen]
$

Here is what Paul will see on his screen immediately after this command
line is initiated:
Message from robin (tty07) [Tue Nov 10 15:21:59]...

How are you doing on your proiject? o
<EOT>

At this point, Paul can respond with a writé command of his own, and
begin a terminal-to-terminal dialogue:

$ write robin

It’s about two-thirds completed. How about yours? o
[C(CTRL-D)—not displayed on the screen]

$

5. Communication in UNIX 69

To avoid confusion during a dialogue (that is, wondering if the other party
is about to say more), you can set up a simple protocol to let the other
party know when you have completed your current message. For example,
each user could type o for over at the end of each message and oo for over
and out at the conclusion of the dialogue.

If you're the kind of fun-loving person who can’t resist pulling pranks
on other users, then write is one command you’ll want to add to your
repertoire immediately. Unfortunately, however, there is also a command
called mesg that allows people who are less fun-loving to shut out write
messages. All they have to do is to add the n (no) option, and the fun is
over:

$ mesg n

$

To allow write messages again, add the y (yes) option, and you’re back
in business:

$ mesg y
$

Finally, to find out whether write messages are allowed or prohibited on
your terminal at a given moment, type mesg without an argument:

$ mesg

is yes
is no [Three responses possible]
error

$

5.2 Communicating outside your system

UNIX allows you to communicate with someone outside your UNIX sys-
tem with two different commands: eu (call up) and uucp (UNIX-to-UNIX
copy). We'll take them one at a time.

CALLING OUTSIDE YOUR UNIX SYSTEM cu

The eu (call up) command allows you to dial a telephone number and call
up one of the following:

e another UNIX system
e 3 terminal

e a non-UNIX system

70 Communicating outside your system

Once a connection is established, you can carry on an interactive conver-
sation (as with write on your own system) and possibly transfer files back
and forth. If the telephone number of the other system is 345-6000 and
both sides are set up to communicate at a speed of 1200 bit/s, depending
on the type of connection, you could type something like this:

$ cu 3456000 -s 1200

With connection established, you will probably see a login message:

login: _

You can now log into the other system as you would into your own.
Having logged in, you can use €U to send a file called message to the
other side with a command like this:

~<message

If you are connected to another UNIX system, the stty (set teletype
[terminal]) command on both systems specifies the same characters for
erase and kill, and the cat command is active on both systems, another
way to send message to the other side is to type a command like this:

~%put message

If you are connected to another UNIX system, the echo and tee commands
are active on both systems, and directory permissions allow it, you can copy
a file on the other to your working directory with a command like this:

“%take reply

To conclude your conversation, type the following:

UNIX-T10o-UNIX COPYING uucp

In Chapter 3, “The UNIX File System,” you learned about the €p (copy)
command that you can use to make a copy of a file either in your work-
ing directory or in another directory. There is a similar command called
uucp (UNIX-to-UNIX copy) that you can use to copy a file to or from
another UNIX system. For example, if two XENIX microcomputers called
ucb/cat/fish and ucb/moon/dog both belong to a common network, then a
user can execute a command like this from ucb/cat/fish:

5. Communication in UNIX 71

$ uucp latest ucb/moon/dog!/usr/robin/news
$

This command will take the contents of a file called /usr/leslie/latest on
ucb/cat /fish (assuming that /usr/leslie is the current directory) and make
a copy called /usr/robin/news on ucb/moon/dog. An exclamation point (!)
separates the name of the microcomputer from the name of the file. Other-
wise, UUCP is quite similar to CP. Note that if you're using the C shell, you
have to type a backslash (\) in front of each exclamation point, as shown
here:

o°

uucp latest ucb/moon/dog\!/usr/robin/news

o

If you don’t know the exact name of the recipient’s home directory,
you can use a tilde (~) in front of the recipient’s user name to have
uucp search for the directory, as shown in another example typical of
XENIX usage. With UNIX, it’s more customary to use a public directory
(/usr/spool/uucppublic).

$ uucp latest ucb/moon/dog!~robin/news
$

To have uucp mail the originator a message after the copy has been
made, include the -m option in the command line, as shown here:

S uucp -m latest ucb/moon/dog!~robin/news
$

To have uuep also mail the recipient a message after the copy has been
made, add the -n option (with the recipient’s user name appended), as
shown here:

$ uucp -m -nrobin latest ucb/moon/dog!~robin/news

$

In the following example, a user logged into ucb/moon/dog transfers all
files whose names end in the suffix .C to a directory named /usr/leslie on
ucb/cat/fish. (Since source programs in the C language have names like
list.c, post.c, enter.c, and so on, this user is sending all the C programs in
the user’s working directory.)

$ uucp *.c ucb/cat/fish!/usr/leslie
$

72 Communicating outside your system

Since the user who executed this command was logged into ucb/moon/dog
when the command was executed, it wasn’t necessary for the user to type
ucb/moon/dog!. However, ucb/moon/dog!*.c also would have been cor-
rect in place of *.c.

Actually, uucp is just one of a family of UNIX commands. Another
member of the family is uux (UNIX-to-UNIX execute), which can be used
to execute commands on another computer in the network. For example,
suppose the system administrator has set up files to allow the Ip command
to execute. Then to format the contents of a file called raw.text and then
have it printed on ucb/moon/dog’s printer, you could execute a command
like this from another computer in the network:

$ pr -2 raw.text | uux - ucb/moon/dog!lp
$

Except for the uux command, the hyphen, the name of the other com-
puter, and the exclamation point (uux - ucb/moon/dog!), this command
is quite similar to a command for performing the same function on your
own system.

Although it is quite simple to execute commands like these once a net-
work has already been set up, the task of setting up the original network is
much more complex. This is discussed for Part VII. For now, at least you
are now aware of these programs and some of their possible uses. Note that
the uucp network, with over 3,000 sites, is tied into other networks, such
as ARPANET, and allows transfers to Ethernet installations.

Note that the rules for naming nodes on a network are similar to the rules
for naming files in a file system. Unless your recipient’s node is “below”
yours in the network, you must use the recipient’s full address.

ENCRYPTING INFORMATION crypt

If you have sensitive information that you would like to keep secret, you may
want to consider encrypting certain files with the UNIX crypt command. In
general, an encryption program takes the original text that you provide (the
cleartext), transforms it with a sequence of characters (the key or password),
and produces an encrypted version of the original (the cyphertezt). You will
have to remember the key (or write it down on a slip of paper) to be able
to retrieve the cleartext at a later time.

ENCRYPTING A FILE

First we need a file that contains text. Let’s use the cat command to enter
the following. (I know, you're going to say that this text has already been
encrypted.)

$ cat > remark

5. Communication in UNIX 73

"I would not like to make a value judgment on that
other than to say that I have no comment.”
[Four tabs] ---Alexander Haig

[(CTRL-D) to terminate text]
$

Now use the crypt command to perform the actual encryption, to which
UNIX will respond immediately with a request for the key. We’ll use con-
volution.

$ crypt < remark > remark.crypt
Enter key: convolution [You won't see the key on the screen]

Redirection is used on this command line for both input and output. The
crypt command takes its input from the file you just typed (remark), then
sends its output to a file called remark.crypt.

The next logical step is to remove the original file (remark); otherwise,
it doesn’t make much sense to have it encrypted:

$ rm remark
$

Don't let curiosity get the better of you by taking a peek at remark.crypt.
You'll just cause trouble for your terminal, which will probably beep and
go blank trying to read the various things in the file.

VIEWING THE CLEARTEXT

To view the cleartext on the screen at a later time, use the crypt command
again with the same key:

$ crypt < remark.crypt

Enter key: convolution [The key won’t appear on the screen]

"I would not like to make a value judgment on that

other than to say that I have no comment."
~--Alexander Haig

$

PRINTING THE CLEARTEXT

To print the cleartext on the system’s lineprinter at a later time, use the
crypt command with the same key, sending the output through pr to Ip
via pipelines:

$ crypt < remark.crypt | pr | 1lp
Enter key: convolution [The key won't appear on the screen]

$

74 Communicating outside your system

COMMENTS ON ENCRYPTING FILES

The security of an encrypted file depends to a large degree on the invul-
nerability of the key that you select. For our simple example here, we have
not really made a very good choice. If you really want your encrypted files
to be secure, you should select a complex string of characters that cannot
be readily determined. As in composing a good password, you can use your
imagination to produce something easy to remember, like these:

Why 4GET:it?

U2:can|B,1lst!

It goes without saying, but we’ll say it anyway: If you're concerned about
your encrypted files, don’t store your key anywhere on the UNIX system.
Either memorize it or write it on an unmarked slip of paper.

Both of the major UNIX text editors (ed and vi) have features for han-
dling encrypted files.

5.3 Some basics of communication

If you drive a car, it’s very difficult to avoid terms like disc brakes, rack-
and-pinion steering, turbo-charger, and so on. Likewise, as soon as you start
using a computer, you are confronted with new terms. For many people,
the most perplexing terms seem to be related to communication. For those
interested, here are a few basic concepts.

UNITS OF INFORMATION

The smallest amount of information that a computer handles is a binary
digit (or bit), which can be one of two things: 1 or 0, in the language of
the software engineers who write programs; high or low, in the language of
the hardware engineers who design the machinery. Eight bits form a byte,
which is the unit by which information is usually stored in a computer. A
byte corresponds to one character (of text, of data, or of program code).

Inside the computer, information is sent in groups of bits, depending
on the machine’s design capacity. For most microcomputers, information
is sent in groups of 8, 16, or 32 bits at a time. Outside the computer,
information may be sent either in groups of bits (parallel transmission) or
one bit at a time (serial transmission).

COMMUNICATING WITH LOCAL DEVICES

Every computer spends a considerable percentage of its time sending mes-
sages back and forth to various pieces of equipment. From the computer’s

5. Communication in UNIX 75

point of view, the disk drives, printers, and terminals connected to it are
external, or peripheral, devices. There must be something to connect them,
and there must be a common method for exchanging messages.

Any device in the same building can usually be connected to a computer
with a cable (either parallel or serial). To make things a little easier for
everyone, most computers and peripheral devices have plugs for widely
accepted types of cable connectors. One type of serial connector commonly
used is called an RS-232C connector. The RS stands for “recommended
standard,” and 232C is the designator that some committee came up with.
Your printer, terminal, and modems may all be attached with these cable
connectors.

A newer RS-422/428 standard is beginning to overtake RS-232C in se-
rial transmission as we approach the late 1980s. RS-422/423 offers more
connectors (37 instead of 25) and better control.

COMMUNICATING WITH REMOTE DEVICES

A computer can also be connected with another computer or a terminal
at another location. However, since most people don’t have miles of cables
lying around (and since the cable wouldn’t be able to carry signals far
enough anyway), something else has to be used. That something is the vast
network of cables used to handle telephone service.

There’s one slight problem, however. Computers and telephones don’t use
the same kind of signals. Computers use digital signals, while telephones
use analog signals. To see what this means, compare a watch with number
displays to a watch with moving hands. The watch with number displays
uses digital signals to tell us the time; the watch with moving hands uses
analog signals.

We have a solution to the the problem of differences between computers
and telephones: an electronic device that converts digital signals to analog
(modulator) and also converts analog signals back to digital (demodulator).
This modulator/demodulator is usually called a modem for short (or a
data set). According to some predictions, around the beginning of the 21st
century, a large part of the telephone system will have been converted to
digital operation, and modems will be obsolete.

COMPATIBILITY

Whether a cable or a telephone is used to connect them, a computer and
another device must be in agreement about a number of things before they
can start sending messages back and forth to each other: they have to
be sending and receiving by the same timing method, at the same speed,
with the same protocol, in the same duplex mode, and in the same coding
system. Let’s briefly consider each of these.

76 Some basics of communication

TIMING METHOD

One problem a computer must solve when it sends information back and
forth is how to determine where a character (or byte) in transit begins
and ends. One solution, usually used by larger computers, is to have both
sides send messages back and forth to synchronize the transmission, and
then release a continuous stream of information. This is called synchronous
communication.

Another method, usually used by small computers and printers, is to
bracket each individual byte between a pair of bits (a start bit and a stop
bit). This method, used where characters are usually sent sporadically and
at irregular intervals, is called asynchronous (or start-stop) communication.

Another term used here relates to error-checking during transmission. An
extra bit is often added to the character, start, and stop bits (the parity
bit). The object is to make the total number of bits either even (even parity)
or odd (odd parity).

DATA RATE

Data rate (often referred to as baud rate) is the speed at which a computer
sends or receives information. This speed is measured in bits per second
(bit/s), and is sometimes classed as slow (110, 150, 300, or 600 bit/s),
medium (1200, 1800, 2400, 3600, or 4800 bit/s), or high speed (9600 and
19,200 bit/s). A data rate of 2400 is typical for today’s microcomputers.

ProTOCOL

Communication requires a set of rules to determine which side is sup-
posed to send information and when. On larger computers, such a set of
rules is called a protocol (or line discipline), and is based on synchronous
transmission. Such protocols are classed as either byte-synchronous or bit-
synchronous. One byte-synchronous protocol, IBM’s BSC (binary
synchronous communication), uses timing signals from the sending and
receiving sides to synchronize groups of characters being transmitted. One
bit-synchronous protocol, IBM’s SDLC (synchronous data link control),
relies on standard data formats for synchronization.

On smaller, asynchronous computers, the term handshaking is usually
used instead of protocol. One of the most common handshaking methods
is called XON/XOFF. By this method, the sending side continues to send
information until a temporary storage area (or buffer) on the receiving side
approaches capacity. The recipient sends an XOFF signal to the sending
side to halt transmission momentarily. Then, when the recipient’s buffer
gets low, it sends an XON signal to the sending side asking for more.

System V, Release 3 implements features that standardize communica-
tion to and from a UNIX system. Consequently, programs like cu and

5. Communication in UNIX 77

uucp, which operate between networked UNIX systems, are now indepen-
dent of protocols and communication media. Beginning with Release 3,
applications, protocols, and media are separated from each other in differ-
ent layers. This makes it possible for UNIX systems to be connected to a
larger number of other systems, both UNIX and non-UNIX. It also makes
it possible for users to access files outside their own UNIX system. For more
information, see Part VII and Appendix M, “UNIX versus XENIX”.

DUPLEX MODE

The directional capability of the line connecting two commmunicating par-
ties can be classified as follows:

simplex transmission is possible in one direction only (similar to
a one-way street)

half-duplez the two sides may take turns sending to each other, but
that transmission may take place in only one direction at
a time (similar to a street that is one-way south in the
mornings and one-way north in the afternoons)

full-duplex transmission may take place in both directions at the
same time (similar to a two-way street)

In discussing terminals, duplex mode raises another issue: What happens
to the characters you type at the keyboard? There are only two choices for
a terminal: Process the characters locally at the terminal or send them to
the host computer for processing. When a terminal processes only, it is
said to be in block mode; when it transmits to the host only, it is said to
be in full-duplex mode. When it does both, it is said to be in half-duplex
mode; when it does neither, it is said to be locked. On the UNIX system,
communication with terminals is typically carried out in full-duplexr mode.

CODING SYSTEM

The final topic relates to the way information is coded by a computer. You
may have learned Morse code at some time. If so, you know that it is a cod-
ing system that assigns one code for each letter of the alphabet. The entire
operation of a computer and its related devices (including communication
between them) is carried out through codes. Every letter of the alphabet,
every number, and every instruction is known to a computer by a code.
Large computers use IBM’s EBCDIC (extended binary-coded decimal
interchange code), an 8-bit system with a total of 256 codes. Smaller com-
puters use ASCII (American Standard Code for Information Interchange),
a 7-bit system with a total of 128 codes. The entire coding system includes
all the display characters found on a typewriter-style keyboard (letters,

78 Some basics of communication

numbers, and symbols), plus a collection of control characters (see “Char-
acter Codes,” Appendix N). Here is how a typical ASCII code looks when
we represent it in binary digits (bits):

1101001

Since this isn’t very easy to read, people usually represent numbers like
this in a different number system. Our decimal system (base 10) is a little
difficult to translate to binary (base 2), so it’s customary to use either octal
(base 8) or hexadecimal (base 16) to represent ASCII codes. Here’s how all
four systems look side-by-side for the letter i.

Binary Octal Hexadecimal Decimal Symbol
1101001 151 69 105 i

The five columns above show five different ways to interpret the same
character. If you type i at your keyboard, the computer sees only 1101001
transmitted, although we could write this code in any of the number sys-
tems shown.

THE ASCII TABLE

Individual characters like 1 are customarily arranged in four columns of 32
characters each (as in Table N.1). So far we have focused on one character
(1). To gain a little more perspective, let’s look at a complete row of ASCII
characters from a table—the row that contains i. We’ll assume that this
is a four-column ASCII table.

HT 011) 051 I 111 i 151

Here we see four entries, each followed by its octal representation:

HT (horizontal tab) octal code 011 (commonly known as (TAB))
) (right parenthesis) octal code 051
I (uppercase I) octal code 111
i (lowercase i) octal code 151

Note the following about this arrangement of characters:
e Upper case I and lower case i are listed side-by-side on the same row

e I, i, and) are display characters (characters that appear on the
screen when you type them)

e HT ((TAB)) is a control character (a character that causes action).

To relate this discussion to your keyboard, note two more things about
the arrangement of these characters in the ASCII table:

5. Communication in UNIX 79

o Pressing the key labeled I alone produces lower case i
e Pressing I and the (SHIFT) key together produces upper case I
e Pressing T and the (CTRL) key together produces HT ((TAB)),

which causes the cursor to move across the screen to the next tab
stop

HT ((TAB) is called a control character because it causes an action that
controls the way your terminal works. You could say that it’s also called by
this name because it’s the code that results when you press the
key and the I key at the same time. Pressing and i together
(sometimes referred to as pressing (CTRL-1)) is equivalent to pressing the
key.

To view the ASCII table on the UNIX system, you can display the con-
tents of the file /usr/pub/ascii with the cat command, like this:

$ cat /usr/pub/ascii

Unfortunately, the display will be sideways, with the control characters at
the top of the table and the display characters on the bottom. The display
will show 16 rows of eight characters each. It is more common to show an
ASCII table with control characters on the left and display characters on
the right, as shown in Table N.1.

CONTROL CHARACTERS AND DISPLAY CHARACTERS

Let’s conclude this chapter with a few more words about control characters
and display characters. Suppose you see this text file displayed on your
screen:

0dd no.: 7
Even no.: 8

Now here’s a question: Assuming that you pressed the CTAB) key before
typing 7 and 8 and you pressed the (RETURN) key at the end of each
line, how many characters are there in this file?

e If you are completely new to computers, you will probably say 17.
o If you know a little about computers, you may say 19.
e The correct answer is 23. What?

Explanation: There are only 17 wisible characters. But there are also
two blank spaces (which bring the total to 19), and there are four control

characters, two TAB characters and two newline characters (which bring
the total to 23). The TAB character, also known as (CTRL-1), is HT

80 Some basics of communication

(hexadecimal code 9); the newline character, also known as (CTRL-J), is
NL (hex code A).
This is how this file looks to UNIX (using hexadecimal representation):

4F 64 64 20 6E 6F 2E 3A 9 37 A 45 76 65
6E 20 6E 6F 2E 3A 9 38 A

Translated into recognizable symbols:

o] d d [sp] n o) . : HT 7 NL E v e
n [sp] n o) . : HT 8 NL

From our point of view, display characters appear on the screen and
control characters do not. But to UNIX they are all just characters. It’s
something like the characters who bring you a television show. There are
the characters you see on your screen (the actors) and the others you never
see (those who take care of the cameras, costumes, make-up, props, and so
on).

5.4 Summary

In this chapter you have learned about communication: first communicat-
ing with other users on your own system, then communicating with other
UNIX systems. The chapter closes with a brief description of communica-
tion concepts.

COMMUNICATING WITH OTHER USERS

To send electronic mail to another user on your system, use the mail com-
mand, followed by the desired user identifier(s). Type your message, then
type by itself (or a period followed immediately by (RETURN))
on the line following the last line of your message. If another user has sent
you a message via electronic mail, you will see the message “You have mail”
the next time you log on. To find out exactly what you have received, use
the mail command by itself, then press to look at each indi-
vidual message. You can also type d to delete the current message or p to
repeat it.

The mailx command is similar to mail, but includes a wider variety of
options for sending and receiving mail.

To remind yourself of something, you can either mail an electronic mes-
sage to yourself with mail or post messages after dates in a special reminder
file called calendar, which will be automatically checked by the system. To
send a message directly to another user’s terminal, use the write command

5. Communication in UNIX 81

followed by your message starting on the next line and then (CTRL-D) to
exit the write command.

COMMUNICATING OUTSIDE YOUR SYSTEM

To dial up another UNIX system, a terminal, or a non-UNIX system, use
the eu (call UNIX) command, including the telephone number of the other
party and the speed at which both of you are sending data to each other.
Once you have established a connection, you can type messages to each
other at the keyboard and send files back and forth.

To copy files from one UNIX system in a network to another, use the
uucp (UNIX-to-UNIX copy) command, including the names of the two
UNIX systems with the filename(s). To execute UNIX commands on an-
other system in the network, use the uux (UNIX-to-UNIX execute) com-
mand, receiving the commands via a pipeline. All of this assumes, of course,
that someone has already set up such a network in which to use these com-
mands.

To encrypt a file, use the crypt command with a key, redirecting input
from the original file and redirecting output to the encrypted file. To view
(or print) the original text at a later time, use the crypt command again
with the same key, redirecting input from the encrypted file. To ensure the
security of your encrypted files, select a long, complex key, and don’t store
it anywhere in the UNIX system.

BASICS OF COMMUNICATION

Computers communicate with other computers and other equipment through
wires (sometimes with the help of modems), using one of several timing
methods, speeds, protocols, and duplex modes. Micromputers communicate
(both internally and externally) with ASCII codes, which include control
characters and display characters.

FOR FURTHER READING

If you would like to learn more about communications, refer to the follow-
ing:

Friend, George E., John L. Fike, H. Charles Baker, and John C. Bellamy,
Understanding Data Communications, Dallas: Texas Instruments, 1984.

Part 11

Text Editing

6 Introduction to vi

7 Making Some Changes

8 Changing and Deleting Text

9 Finding and Replacing Text

10 Moving and Copying within a File
11 Working with More Than One File

12 Customizing vi

85

101

115

133

147

163

177

In Part II you will learn how to enter and edit text with vi and ex,
which will allow you use all of your screen as a work area. These programs
are more convenient, but also slower, than the line editor ed. After an
introduction to the features, you will learn how to change and delete text,
how to find and replace text, how to move and copy text from one place in
a file to another, how to move and copy text from one file to another, how
to mark certain lines in a file for easy access, how to modify vi operating
options, and how to use abbreviations and key definitions. Note that under
UNIX, formatting is separate from editing. Formatting text for printing is

discussed in Part IV.

6

Introduction to vi

6.1 Background

TEXT AND COMPUTERS

As you can see by looking at the Table of Contents, three of the seven parts
of this book relate to text. One of the main uses of computers is to work
with text: enter it into a file, process it, format it, or print it on paper. You
are working with text every time you write a memo, a letter, a computer
program, an article, or a book.

The programs that help you work with text are becoming more and
more sophisticated every year, making the use of computers more and more
convenient. Twenty years ago, the program that allowed you to enter and
modify text (a text editor) was separate from the program that let you
control the appearance of the text on a printed page (a text formatter).
In the early 1970s, Wang and others began to introduce a new kind of
program that combined these separate functions in a single program (a
word processing program). Word processing programs played a significant
role in promoting the popularity of personal computers.

In the 1980s, we are witnessing the start of a major revolution in the
publishing industry as new programs venture beyond basic editing and
formatting to laying out pages, merging text and graphics, and designing
books. We are also seeing more programs that handle related tasks, such
as checking for correct spelling, grammar, and style.

TEXT-EDITING AND UNIX

The first text editor for UNIX was a fairly primitive program called ed that
was line oriented. Then, around 1976, an enhanced version of ed called ex
was developed at the University of California by William Joy and others. A
major feature of €X is that it can be run in a visual mode called Vi (vee-eye,
the visual interpreter). Most people prefer Vi over ed because of its ease of
use, and some even prefer Vi over word processing programs because of its
many useful features. (For those who may prefer to use ed, see Appendix B,
“Summary of ed Commands”).

Since Vi uses the entire screen, like most popular word processing pro-
grams, you will find it very convenient. However, you can’t just invoke the

86 Background

program and start using it, as you can with ed. You first have to make
sure that UNIX has detailed information about your terminal. (This corre-
sponds to the installation procedure for some word-processing programs).

To determine whether or not your UNIX system has been prepared for
your terminal, proceed to the next section and try invoking vi. If the correct
display appears on your screen as described, you can complete the rest of
this chapter right now. However, if the display is distorted or doesn’t appear
at all, turn to Chapter 33, “Terminals and Printers”, for the information
you will need. Then return to this chapter and continue.

6.2 Typing a letter

Once someone has identified your terminal to the UNIX shell, as described
in Appendix L, “Summary of termcap and terminfo”, you can call up vi
and start typing a letter.

STARTING WITH A NEW DIRECTORY

As you learned earlier, one way to take full advantage of the UNIX file
system is to organize your home directory into subdirectories for different
kinds of files. Let’s start this chapter by creating a new subdirectory in
your home directory to contain your Vi files, then. move to this directory
for the exercises in this chapter.

1. Create a new subdirectory:

O Create a directory called text with the mkdir command:

$ mkdir text
$

O The directory has been created, but you are still in your home
directory.
2. Move from your home directory to text:

O Move to subdirectory text with the ¢d command:

$ od text
$

O Now text is your working directory. Any files you create will be
stored in this directory.

3. Call up the visual editor vi:

6. Introduction to vi 87

After the UNIX shell prompt, type vi letter and press
RETURN):

$ vi letter

After a few moments, the screen will clear and the following
display will appear:

"letter" [New file]

The number of lines that appear in the display window varies from ter-
minal to terminal.

TYPING THE FIRST DRAFT

With vi running and a file named, you are ready to start entering the text
of your letter:

1. Select appending:

a

O

Type a (without (RETURN)) to append text in text entry

mode.

The a will not appear on the screen, but once you have typed
it, you can begin entering text.

2. Type a few lines of text:

O

Type the following, pressing (RETURN) at the end of each line:

Dear Mr. Fenton:
I came to your office straight from
the tennis courts. There wasn’t
enough time to take a shower before

the interview. (RETURN

RETURN

88 Typing a letter

a

The text will appear on the screen as you type it, with each new
line replacing one of the tildes in the left-hand column.

3. Return to vi command mode:

a
a

Press the (Escape) key to leave text entry mode.

The screen display will not change, but you will return to vi
command mode, from which you can enter more commands.

4. Try the repeat command:

a
a

Type a period (.) (without (RETURN)) to repeat the insertion.

Now the screen will look like this:

Dear Mr. Fenton:

I came to your office straight from
the tennis courts. There wasn’t
enough time to take a shower before
the interview.

Dear Mr. Fenton:

I came to your office straight from
the tennis courts. There wasn’t
enough time to take a shower before
the interview.

Once you typed the period (.), vi repeated the insertion of five lines of
text (including two blank lines)—beginning at the cursor’s location on the
screen. The unused lines below the text still begin with tildes.

5. Try the undo command:

a
a

Type u to undo the insertion.

The screen will again look like this again:

Dear Mr. Fenton:

I came to your office straight from
the tennis courts. There wasn’t
enough time to take a shower before
the interview.

O
O

6. Introduction to Vi 89

Type u again to restore the insertion.

Type u once more to remove the insertion.

You can use the undo command to recover from an error. It will undo
the results of the most recent change performed, no matter how extensive.
Note that when used twice in succession, the U command undoes the action
of the previous undo command.

6. Write the text to the file:

O
a

Now type :w and press to write this text to letter.

First you will see :w at the bottom of the screen; then you will
see this display on the status line:

"letter" [New file] 7 lines, 141 characters

A colon (:) always means a temporary change to ex command mode, from
which you can use an €x command—in this case, the W (write) command.

INSERTING THE DATE

Now we’ll begin adding things to the letter, starting with the date. To do
this, we’ll have to move the cursor to the top of the screen and make room
for another line of text.

1. Move the cursor to the top of the screen:

O

O

Hold down the (SHIFT) key and type capital H (not h) to move
the cursor to the upper left-hand corner of the screen.

The display should look like this:

Dear Mr. Fenton:

I came to your office straight from
the tennis courts. There wasn’t
enough time to take a shower before
the interview.

2. Open a new line above:

O
O

Type capital O (not 0) to open a new line above the first line.

Now there will be a blank line above the first line, with the
cursor resting at the left margin.

3. Type the date:

90 Typing a letter

a
a

Type the date as shown on the blank line and press (RETURN).
Now the display should look like this:

March 17, 1987
Bear Mr. Fenton:

I came to your office straight from
the tennis courts. There wasn’t
enough time to take a shower before
the interview.

4. Return to vi command mode:

Press the key to leave “line-opening” in text entry mode.

You have to do this every time you finish typing new text. Oth-
erwise, Vi will interpret your next keystroke as another character
of text instead of a command.

INSERTING A NEW PARAGRAPH

Having inserted the date and selected vi command mode again, you are now
ready to insert a new paragraph. This involves moving the cursor down and
selecting insert mode.

1. Move the cursor down:

O

O

Type j (unshifted) twice to move the cursor down to the blank
line after the salutation.

If your terminal has arrow keys (and your termcap entry per-
mits), you can use the down arrow key (|) instead of j.

2. Prepare to insert a new paragraph:

a
a

Type i to select inserting in text entry mode.
You won't see i on the screen and the display won’t change:
March 17, 1987

Dear Mr. Fenton:

I came to your office straight from
the tennis courts. There wasn’t
enough time to take a shower before
the interview.

6. Introduction to vi 91

3. Insert a new paragraph:

a

Press to leave a blank line after the salutation, type
the following, press after each line, then at
the end:

I’'m sorry you fainted during m
interview on Friday. I was (R

raising my arms to give the
victory signal. (RETURN

RETURN

Your display should look like this:

March 17, 1987
Dear Mr. Fenton:

I'm sorry you fainted during my
interview on Friday. I was

raising my arms to give the

victory signal.

I came to your office straight from
the tennis courts. There wasn’t
enough time to take a shower before
the interview.

4. Return to vi command mode:

O
O

Press the key to leave text entry mode.

Always return to vi command mode after completing text entry.

5. Repeat the paragraph:

O
a

Type a period (.) to repeat the paragraph you just typed.
Your display will look like this:

March 17, 1987
Dear Mr. Fenton:

I'm sorry you fainted during my
interview on Friday. I was
raising my arms to give the
victory signal.

I'm sorry you fainted during my
interview on Friday. I was

92 Typing a letter

raising my arms to give the

victory signal.

I came to your office straight from
the tennis courts. There wasn’t
enough time to take a shower before
the interview.

6. Now delete the second copy of the first paragraph:

O
O

Type u (not U) to undo the last command.

The repeated paragraph will now disappear.

ADDING A CLOSING

This letter needs a closing. This involves moving the cursor down and
adding more text.

1. Move the cursor to the last line of the display:

a

Type capital L (not 1) to move the cursor to the blank line
below the second paragraph.

The cursor should now be in the lower left-hand corner of the
display window.

2. Select appending in text entry mode again:

0
O

Type a to append more text.

Nothing will happen, but vi is now ready to receive more text.

3. Type the closing:

O

Type the following, pressing (RETURN) after each line of text:

I hope you will give very careful
consideration to my qualifications.
Bob ("Ace"”) Sanders (RETURN)

Your display should look like this:

March 17, 1987

Dear Mr. Fenton:

6. Introduction to vi 93

I'm sorry you fainted during my
interview on Friday. I was
raising my arms to give the
victory signal.

I came to your office straight from
the tennis courts. There wasn’t
enough time to take a shower before
the interview.

I hope you will give very careful
consideration to my qualifications.

Bob ("Ace") Sanders

4. Return to vi command mode:

O Press the key to leave text entry mode.

O Always return to vi command mode after completing entry of
text.

5. Write the text to the file:

O Type :wand press (RETURN) to write this text to letter.
O You will see :w, then this display at the bottom of the screen:

"letter" 19 lines, 363 characters

6.3 Making changes to the letter

Now that we have a complete letter, let’'s make some changes to it. This
will help us try various features of vi.

CHANGING THE DATE

Let’s start with the date at the top of the letter. We'll start by moving the
cursor, then make a change.

1. Move the cursor up to the first line:

O Hold down the (SHIFT) key and type H to move the cursor to
the top of the display.

9 Making changes to the letter

O The cursor should now be positioned over the M in March.
2. Change March to September:

O Type ew to change a word. The display will look like this:

Marc$ 17, 1987

O Immediately type September and press (ESC).
O The first line should now look like this:

September 17, 1987

The ¢ (change) command can be used either alone or in conjunction with
another character (in this case, W for word). The character that follows ¢
specifies exactly how much text is to be changed. You'll learn how to use
€ and other commands with characters like W in the chapters that follow.

CHANGING A NAME

Next we’ll change the name on the salutation line. This involves moving
the cursor into position and making a double change.

1. Move the cursor to the start of the name on the salutation line:

O Type a slash (/) to request a search, followed immediately by
Mr. At the bottom of the screen, you will see

/Mr_

O Now press (RETURN) to begin the search.
O The cursor will jump to the M in Mr. on the third line.

2. Change Mr. Fenton to Mrs. Benson:

O Type 2cW to change two words. The line will look like this:

Dear Mr. Fenton$

O Type Mrs. Benson: immediately after 2cW, then press the
key.

O The salutation line will now look like this:

Dear Mrs. Benson:_

6. Introduction to Vi 95

RUNNING A UNIX COMMAND

Sometimes you work so hard at your terminal that you lose track of the
time. However, Vi lets you take a look at the clock (using the date com-
mand) without having to interrupt your editing session. You can also run
any other UNIX command from Vi.

1. Find out what time it is:

O Type :!date and press (RETURN) to find out the date and

time.

O You should see a display like this appear:

:ldate

[No write since last change]
Mon Apr 3 13:52:27 PST 1987
[Hit return to continue]_

O As the prompt says, press (RETURN) to return to vi.

2. Find out who else is on the system:

O Type :!who and press (RETURN) to obtain a list of active

users.

O You should see a display like this appear:

: !who

john tty07 Apr 3 08:43
janice ttylé Apr 3 09:17
billy tty03 Apr 3 08:24
[Hit return to continue]_

You can type any shell command in this way. The main thing to remem-
ber is that you can run any UNIX command from within vi by preceding
the command line by the two characters :!. The colon gives you ex; the
exclamation mark gives you the shell. (For an extensive session with the
shell, you can also use :Sh, execute your commands, then type
to return to Vi.)

GETTING INFORMATION

Before making any more changes, let’s ask Vi for some information.
1. Move to a specific line:

O Type 96 to have the cursor “go to line 9.”

O Now hold down the (CTRL) key and press G (unshifted)to ask
vi for status information.

96 Making changes to the letter

O You will see a display like this at the bottom of the screen:
"letter" [Modified] line 9 of 19 --47%--

This line tells you the name of your file (letter), the line number where
the cursor is resting (9), the total number of lines (19), how far the
cursor is from the beginning of the file (47% of the file), and whether
you have made changes to the file ([Modified]) that haven’t been
written.

2. Move to the first and last lines:

O Type L to move the cursor to the last line on the screen, and
type (CTRL-G) again. At the bottom of the screen you will see

"letter" [Modified] line 19 of 19 --100%--

O Now type H to move back to the first line and type (CTRL-G
a third time. At the bottom of the screen you will see

"letter" [Modified] line 1 of 19 --5%--

Each time you type (CTRL-G), Vi gives you status information based on

the cursor’s location in the text.

DELETING WORDS

Now we’ll delete a couple of words just to show you how different vi com-
mands have many things in common.

1. Move the cursor to very in the twelfth line:

O Type /very and press (RETURN).

O Now the cursor is resting on the v in very careful.
2. Delete the words very careful:

O Type d2W to delete these two words.
O the line should look like this:

I hope you will give_

3. Undo the deletion:
O Let’s restore the original wording by typing u.
O Now the wording is back the way it was before:

I hope you will give yery careful
consideration to my qualifications.

6. Introduction to vi 97

CAPITALIZING WORDS

Before concluding this brief sampling of Vi commands, let’s try one more
thing: capitalizing a word. Any word will do; let’s pick interview in line
13. Since the cursor is currently resting on line 15, this involves a backwards
search (unless you have selected the “wrapscan” feature—see Appendix D,
“Summary of vi Options”).

1. Move the cursor into position:

O Type ?interview and press to move the cursor
up to line 13.

O The cursor should now be resting on the first 1 of interview.
2. Capitalize the word:

O Type the tilde () to make the change.
O Line 13 should now look like this:

the Interview.

O Since it doesn’t make any sense to have this word capitalized,
restore it by typing the undo command u.

6.4 Ending the session
Now it’s time to write the updated text to disk file letter and return to the
UNIX shell.

1. Write the text to file letter:

O Type :wand press (RETURN) to write to the file.
O You will see a display like this at the bottom of the screen:

"letter" [Modified] 19 lines, 363 characters

2. End this session with vi:

O Type :qand press to end the session.

O The following display will appear, indicating that you have left
Vi and returned to the UNIX shell:

+q
$

98 Ending the session

Note that Vi also allows you to combine the write and quit commands
into a single command, like this:

H e} or :x or 2727

$ $ $

6.5 Summary

In this chapter you learned a number of common Vi procedures, such as
beginning a session, entering text, inserting new text, making changes, and
ending a session. Before you can use Vi, you have to make sure that someone
has placed an entry for your terminal in /etc/termcap (or /usr/lib/terminfo)
and that you have assigned one of the names for your terminal to the shell
variable TERM and exported TERM to the environment. If necessary, see
Chapter 33, “Terminals and Printers,” for details.

Start vi by typing Vi, a space, and the name of a file. For a new file, the
screen will be cleared, the cursor will move to the upper left-hand corner of
the screen, and vi command mode will be in effect. For an existing file, its
contents will be displayed on the screen. To enter text, type a (append), i
(insert), or one of several other letters without pressing (RETURN), enter
the text, then press to return to vi command mode. Two of the
most useful commands in Vi are the repeat command (.), which repeats
the most recent command, and the undo command (u), which undoes the
most recent change performed.

To open a new blank line for inserting new text, use either the 0 command
(to open below) or the O command (to open above the current line). Enter
the text, then press (ESC) to return to vi command mode. To insert new
text, use either i (to insert in front of the cursor) or | (to begin inserting in
the first column of the current line). Enter the text, then press (ESC) to
return to vi command mode.

To change a word, move the cursor to the first letter of the word, then
type ew or cW (change word), followed by the new word (without a space)
and (ESO). To change two words, use 2cw or 2¢W. To search for a string,
type either / (to search forward) or ? (to search backward), followed im-
mediately by the desired string, and press (RETURND.

To execute a UNIX command without having to end your session with
Vi, type : !, followed immediately by the name of the command, and press
(RETURN). (Use :sh to spawn a subshell.) To determine your relative
position in the text, press to see a display.

To delete a word, move the cursor to the first letter of the word, then
type dw or dW (delete word). To delete two words, use d2w or d2W. to
delete three, use d3w or d3W. To change a lower case letter to upper case
or an upper case letter to lower case, position the cursor over the letter

6. Introduction to vi 99

in vi command mode and type the tilde (). Non-alphabetic characters are
not affected.

To end a session with Vi, type :w to write the text to the file, then type
:q to end the session (quit) and return to the UNIX shell. You can also
combine these two in a single command.

FIGURE 6.1. The modes at a glance.

i © a
_ 0
C r S
vi Text
Command Entry
Mode Mode
¥ I
ex Shell
Command Command
Mode Mode
>, (Automatic) —

7

Making Some Changes

Now that you’ve had a chance to sample some of the most common features
of vi, let’s examine some of those features in more detail. In this chapter
we’ll look at ways to insert, change, and delete text. Let’s start by beginning
a new session and getting acquainted with the various ways of moving the
cursor around the display window.

7.1 DBeginning a new session

Things may have changed a little since you completed the previous chapter
on Vi. If so, here are a few words about returning to Vi with the same file
you were working with in that chapter:

1. If necessary, move from your home directory to text:

O Use the ed (change directory) command like this:

S cd text
$

O Use the pwd (print working directory) command to verify:
$ pwd

/usr/robin/text

$

2. Call up Vi with the same file (letter):
O At the shell prompt, type vi letter and press RETURN):

$ vi letter

O After a few moments, the screen will clear, and the text of your
letter will appear, with the cursor on the first line.

September 17, 1987

Dear Mrs. Benson:

102 Moving the cursor

I'm sorry you fainted during my
interview on Friday. I was
raising my arms to give the
victory signal.

I came to your office straight from
the tennis courts. There wasn’t
enough time to take a shower before
the interview.

I hope you will give very careful
consideration to my qualifications.

Bob ("Ace") Sanders

"letter" 19 lines, 363 characters

7.2 Moving the cursor

To use vi effectively, you must first learn how to move the cursor from one
location to another. This will not only enable you to move the cursor to
where you need it; it will also help you see how vi works. Many functions
in vi begin working at the position of the cursor. In this section, you will
learn how to use certain characters to position the cursor on the screen.
Later in this chapter you will learn to use many of these same characters
with vi’s operators to perform a variety of functions.

MOVING A CHARACTER AT A TIME

Your keyboard may have a separate cursor pad with arrow keys like this:
If so, then you may want to use these keys to move the cursor one space
at a time. If not, you will have to use the keys h, j, k, and 1. Some people
prefer to use these keys, even when arrow keys are available, like this:

Press the character down key (| or j) five times to move the cursor to the
fifth line (I’m sorry...). Now try all four keys to become familiar with
them. When you are finished practicing, leave the cursor at the beginning
of the fifth line.

Yet another set of keys, which will work for any version of vi, is the
following (don’t worry—the space bar won’t erase your text):

7. Making Some Changes 103

FIGURE 7.1. The cursor arrow keys.

FIGURE 7.2. The new cursor motion keys.

FIGURE 7.3. The old cursor motion keys.

104 Moving the cursor

MOVING A WORD AT A TIME

You also have keys for moving the cursor

either forward (w) or back (b) one entire

word at a time. Press w about ten times to

move forward; press b a few times to move

back again. As you can see, motion continues

from the end of one line to the beginning of

the next, and vice versa. When capitalized

(shifted), these two keys perform nearly the

same functions. However, W and B disregard

punctuation. If you use either w or b, the

cursor will stop on punctuation marks. Two related commands, e and E,

move the cursor to the last character of a word rather than the first.
Note that you can type a multiplier in front of the letter to multiply the

number of jumps, as in 2w, 3b, and so on. Try commands like these also.

MOVING A SENTENCE AT A TIME

The left and right parenthesis keys (shifted
9 and 0) provide cursor motion to either the
beginning (() or the end ()) of the current
sentence. (Note that Vi expects a period, fol-
lowed by two spaces—or a blank line—to mark the end of a sentence.) Try
these two keys a few times.

Once again, you can use multipliers: 3 (, 4), and so on.

end (}) of the current paragraph. (Ordinar- .l

ily, vi regards blank lines as separators of aﬁ&
paragraphs. However, if you are writing programs in C, you can change the
separators to braces, which delimit blocks of code. For details, see Chap-
ter 12, “Customizing Vi.”) Try these two keys a few times. Again, you can
also use multipliers: 3{, 5}, and so on.

MOVING A PARAGRAPH AT A TIME

The left and right brace keys provide cur-
sor motion to either the beginning ({) or the

MOVING TO EITHER END OF A LINE

You have a pair of keys for moving the cursor
either to the beginning (*) or the end ($) of
the current line (the same two symbols used
by ed). The character (0) is similar to ~. It
also moves the cursor to the beginning of the line. However, 0 always moves

7. Making Some Changes 105

the cursor all the way to the left-hand margin, whereas * moves the cursor
only to the first visible character. Try a few jumps with these keys.

FIGURE 7.4. Basic cursor motion.

{

XXX XXXX XXX XX UXXX XXX XXXXXX XX XXXXX
KXKXXX XXX. (XXXXX XXX X XXXXXXX XXXXX
"XXXREKK XXX DX xxxxx Wxx Xxxx.)Xxxxx xxxx$
XX XXXXX XXXXXXXX. X XXX XXXXX XXXX XXX.

}
YYYy YYYY YYY YYYYY YYYY YYYY. YYYYY YVY
YYYYYYY YYY YYYYYY YYY YYYYY.

MOVING TO THE TOP AND BOTTOM OF THE SCREEN

The H and L keys allow you to move the
cursor either to the top (H) or the bottom (L)
of the screen. You can remember the letters
as home and lower left. Try your hand with
these keys a few times.

MOVING TO THE MIDDLE OF THE SCREEN

The M key allows you to move the cursor to the middle (M)
of the screen. M, of course, stands for middle. Try this one
in conjunction with the H and L commands.

MOVING TO A GIVEN LINE

The letter G (Go to) provides cursor motion
to any line in the editing buffer, regardless
whether the line is currently displayed on the
screen. By this convention, 26 would take
you to the second line; 5G would take you to the fifth line; and so on.
One limitation of this key is that you usually have to know the number of
the desired line. (If you would like to have vi display line numbers on the
screen, there is a way to do this. For details, see Chapter 12, “Customizing
vi.*)

Note that G alone designates the last line of the file and that
answers the question, “What is the number of the current line?” Try all
these different variations.

106 Moving the cursor

MOVING TO THE MATCHING BRACKET

If the cursor is currently resting on any of the general brack-
eting symbols, namely

() parentheses
[1 square brackets
{ } braces

you can use the percent sign (%) to move the cursor to the
matching symbol. To see how this command works, move
the cursor to the last line of text (I, then cursor up), and
experiment with % on the parenthetical expression “Ace”).

A NOTE ON CURSOR MOTION KEYS

You must be in vi command mode to use any of the cursor motion keys
just described. (Press to return to vi command mode. If you hear
a beep, your terminal is already in this mode.) None of the cursor motion
keys will work after you have entered one of the text insertion modes. The
five cursor motion commands just discussed are illustrated in Figure 7.5.

FIGURE 7.5. More cursor motion.

Highest line H —
Middle line M —
Lowest line L -
3G Thirdline (% %)

7.3 Using markers

MARKING A PLACE

You can set a place marker anywhere in the
work area with the m command. Just move
the cursor to the desired location and type
m, followed by any lower case letter of the
alphabet. The letter then becomes the name of the place marker.

7. Making Some Changes

MOVING TO A MARKER

Once a place marker has been set in the work
area with the M command, you can move
the cursor to the marker with either of the
two types of single quotation mark. Type
the back quotation mark (or grave accent)
', followed by the letter name of the mark,
to move the cursor to the exact location of
the mark. Type an ordinary quotation mark
7, followed by the letter, to move the cursor
to the beginning of the line that contains the
mark.

FIGURE 7.6. Using markers.

Move to ‘a ™
a
.ma
.mb
Move to
b AN y,

7.4 Controlling the screen display

SCROLLING

You have a pair of keys that produce either
a scroll up ((CTRL-D) or a scroll down
((CCTRL-D)). If the cursor is in the upper
half of the screen, a scroll up may push the
cursor down; if the cursor is in the lower half
of the screen, a scroll down may push the
cursor up.
To practice scrolling, move the cursor to any
line in the letter. Now you can try
and and (CTRL-D).

Scrolling is illustrated in Figure 7.7.

Set marker a
at the period

Set marker b
at the period

107

108 Controlling the screen display

FIGURE 7.7. Scrolling up and down.

CTRL-D CTRL-U
aaaaaaaaaaaa dddddddddddd
bbbbbbbbbbbb ceeeeceeeceeceeece
' ccceceececcecece fEffEffffffeet
dddddddddddd 9999999¢d-
aaaaaaaaaaaa ceeeececeeceecee ‘
bbbbbbbbbbbb TEFEFEFELEFqS
cccecccoceccecee 999999999 .
Scroll Down QOriginal Screen Scroll Up

PAGING

Vi also provides one key for paging back
((CCTRL-B)) and one for paging forward
((CTRL-B)). (“Paging” means advancing the
text one screenful at a time.) Later on, when
you are working with long documents, you
will find these features very handy.

After practicing with these keys, you can
re-move the extra blank lines by abandon-
ing the text (:q!) then starting again (vi
letter). Paging is illustrated in Figure 7.8.

FIGURE 7.8. Paging up and down.

Page Back
(CTRL-B)

\ 4

AAAAAAAA B B B B B BJ|J|]C C C C C C

Page Forward
(CTRL-F)

7. Making Some Changes 109

REPOSITIONING THE CURRENT LINE

You have a command that you can use to
re-position the current line in the display
window—2, the “zero screen” command. To
place the current line at the top of the screen,
type z and press (RETURN); to place the
current line in the middle of the screen, type
z.; to place the current line at the bottom of
the screen, type z-.

This command also has several variations: If
you type a line number in front of z, that
line will be placed at the top of the screen; if
you type a number after z, your display win-
dow will be reduced (or increased) to that
many lines. For example, type 15z to place
line 15 at the top of the screen. Type 212
to reduce your display window to 12 lines.
Repositioning the current line is illustrated in Figure 7.9.

FIGURE 7.9. Repositioning the current line.

s N
z RETURN Place the line at the top
Z. Place the line at the middle
zZ- Place the line at the bottom

_ y,

CLEARING SYSTEM MESSAGES

You have a command for clearing system
messages from your screen: (CTRL-L). This
will clear messages from, but leave the text
in your work area unchanged.

7.5 Adding new text

As you saw in Chapter 6, you have three choices when you want to add
new text in vi without altering existing text:

e You can append text after existing text.

110 Adding new text

e You can insert text in front of existing text.

¢ You can open up space for a new line of text.

In this chapter we’ll explore each of these in greater detail.

a
A

To append text after existing text on the screen, you can use one of two
commands: One that lets you add the new text immediately after the cursor
(@) or one that lets you add the next text at the end of the current line (A).
Let’s take a look at each of them, using the first line of the first paragraph
(line 5) of letter.

APPENDING TEXT

1. Move the cursor into position:

O In vi command mode, type 5G to place the cursor on line 5.
O Type 4E to move the cursor across the line to fainted.
O The line should now look like this:

I’'m sorry you fainted during my

2. Append away (with a preceding space) after fainted:

O In vi command mode, type a to append text after the cursor.
0O Type away and press to return to vi command mode.

3. Append first (with a preceding space) to the end of the line:

O In vi command mode, type A to append text at the end of the
line.

O Type first and press to return to vi command mode.

O Now the line should look like this:

I'm sorry you fainted away during my first

As you can see from these examples, Vi commands have one meaning in
lower case (@) and another in upper case (A). See Figure 7.10.

i
|
To insert text in front of existing text on the screen, you can use one of
two commands: One that lets you add the new text immediately before the
cursor (i) or one that lets you add the new text at the beginning of the

current line (). (If the text is indented, you will want to use 0l.) Let’s take
a look at i and I using line 7 of letter.

INSERTING TEXT

7. Making Some Changes 111

FIGURE 7.10. Appending text.

Result of a xxx Original screen Result of A xxx

CC CCCCC XXX cccc CC ccccce cccce CC CCCCC CcCcCC XXX

1. Move the cursor into position:

O In vi command mode, type /the to move the cursor to the on
line 7.

O The line should now look like this:

raising my arms to give the

2. Insert you (with a trailing space) in front of the:

O In vi command mode, type i to insert text before the cursor.

O Type you and press (ESC) to return to vi command mode.
3. Insert just to the beginning of the line:

O In vi command mode, type I to insert text at the beginning of
the line.

O Type just (with a trailing space) and press to return

to vt command mode.
4. Capitalize the v in victory:

O Type 8G to move the cursor to the v in victory.

O Type to change the v to a V, so that the line looks like this:

Victory signal.

0O Type uto undo the capitalization.

Once again, i and | are two different commands (see Figure 7.11).

o)

OPENING A NEW LINE o

You can open space for a new line either above the current line (O) or below
the current line (0). Once again, we’ll try one example of each, one near
the beginning of the letter and one near the end.

112

Adding new text

FIGURE 7.11. Inserting text.

Result of ixxx Original screen Result of Ixxx

CC CCCCC XXX cccc CC ccccecce occecece XXX CC cCccoo culco

1. Move the cursor into position:

Type G then k to move the cursor to the last line of text.

The cursor will be at the beginning of the line (but it doesn’t re-
ally matter where on the line the cursor is for these commands):

Bob ("Ace") Sanders

2. Add Sincerely, and three blank lines above.

Type O to open a new line above the current line.

Type Sincerely,, press three times, and press
to return to vi command mode, so that the closing lines
look like this:

I hope you will give very careful
consideration to my qualifications.

Sincerely,

Eob ("Ace") Sanders

3. Add a name and address on new lines below the date:

o
a
O

Type 1G to move the cursor to the first line (the date).
Type o to open a new line below the current line.

Type the three lines shown (each followed by (RETURN)) and
press to return to vi command mode, so that the lines
look like this:

7. Making Some Changes 113

September 17, 1987
Agatha R. Benson
Vice President

Fifth National Bank

Dear Mrs. Benson:

This session will be continued in Chapter 8, “Changing and Deleting
Text” (see Figure 7.12).

FIGURE 7.12. Opening a new line.

Result of 0xxx Original screen Result of oxxx
XXX
TT CCZCC CCCC CC CCccc cccce CC CcCcccc cccce
XXX

7.6 Summary
In this chapter you learned how to move the cursor and add new text.

MOVING THE CURSOR

Moving a space at a time—You can move the cursor one space at
a time with a choice of 1) arrow keys on a cursor pad, 2) typewriter keys,
or 3) control keys.

(3) — —

114 Summary

Moving Back Ahead To end
Word(s) b W e
5b 5w Se
B W E
5B 5W 5E
Line ~ S
First 1G
Line n nG
Last G
Sentence(s) ()
5¢(5)
Paragraph(s) { }
5{ 5}
Screen Top: H
Middle: M
Bottom: L
Matching
Bracket % %
CONTROLLING THE SCREEN DISPLAY
Scrolling Paging
Up: (~U) Back: (CTRL-B) ("B)
Down: (*D) Forward: (*F)
Placing current line
Top: z
Middle: z.
Bottom: z-
Clearing messages
ADDING NEW TEXT
Appending text
After cursor: a At end of line: A
Inserting text
Before cursor: i At beginning of line: I
Opening a new line
Below current line: o Above current line: 0

8

Changing and Deleting Text

In Chapter 7 you learned how to move the cursor and adjust the display
in Vi. You then learned how to add new text. In this chapter you will learn
how to change and delete text. These two functions are very similar in Vvi.

8.1 Changing text

So far, we have only added new text to existing text. We can also make
changes to existing text, using the cursor motion characters in conjunction
with the change command (€) to produce a number of variations. Later in
this section we’ll talk about shifting text in either direction.

cwW
cwW

The change command (€) can be used by itself to change a single letter.
But we’ll save another command for that, and go on to the next possibility:
changing a word. To show how this works, let’s move to the first line of the
second paragraph.

CHANGING A WORD

1. Move the cursor into position:

O In Vi command mode, type /I’m and press (RETURN).

O The cursor should now be be over the I in line 9:

I’'m sorry you fainted away during my first

2. Change I'mto I am:

O In vi command mode, type cW to change a word.

O A dollar sign will appear in place of the m:

I'$ sorry you fainted away during my first

O Type I amand press to return to Vi command mode.
O The line should now look like this:

116 Changing text

I am sorry you fainted away during my first

We used €W in this exercise instead of CW because I’ m has an apostrophe
in the middle of it. With cw, this would have happened:

I am’m sorry you fainted away during my first

CURSOR MOTION AND Vi COMMANDS

The previous example looks very simple, but let’s review what happened
anyway. The example illustrates some things that you will be seeing again
and again in Vi. You may recall from Chapter 7 that W by itself makes the
cursor jump to the next word (ignoring punctuation), like this:

I'm sorry you fainted away during my first
W

I'm sorry you fainted away during my first

When you combine W with €, you are telling Vi to change (€) the text
(not counting the blank space) that W would make the cursor jump over:

Change text from here

|

I'm sorry you fainted away during my first
cW

I'm sorry you fainted away during my first
to here.

In the examples that follow, we’ll be using different characters, but the
rule is always the same: the change starts where the cursor is now and stops
just before the place where the cursor would land after a jump.

Cnw
cnW

Changing more than one word is similar to changing one word. The only
difference is that you place a number in front of W to tell vi how many
words to change. Let’s use the same line of text to illustrate this.

CHANGING MORE THAN ONE WORD

1. Move the cursor into position:

O In vi command mode, type 3W to advance the cursor to the f
in fainted

O The line should now look like this:

I am sorry you fainted away during my first

8. Changing and Deleting Text 117

2. Change fainted away to passed out:
O Type €2w to change two words.
O You will see a dollar sign appear in front of during:

I am sorry you fainted awa$ during my first

O Type passed out and press to return to Vi command
mode.

O The line should now look like this:

I am sorry you passed out during my first

As you can see, the rule for cursor motion applied here: the change started
at the cursor’s original position and stopped before the d in during (which
is where 2w by itself would have moved the cursor).

A

CHANGING TO THE BEGINNING OF THE LINE Cc

To change text from somewhere in the middle of a line to the beginning
of the line, use € followed by ", the command to move the cursor to the
beginning of a line. To illustrate this, we’ll use the third line of the first
paragraph.

1. Move the cursor into position:

O In vi command mode, type /straight and press (RETURN).

O The cursor will now be on the s in straight:

I came to your office gtraight from

2. Change the first five words to T had to rush:

O Type € to request a change from the beginning of the line to
the cursor’s current position:

I came to your office$straight from

O Immediately type I had to rush (with a space following rush)
immediately after ¢” and press to return to vi command
mode.

O The line should now look like this:

I had to rush_straight from

118 Changing text

CHANGING TO THE END OF THE LINE c$

To change text from anywhere in a line to the end of the line, use ¢ followed
by $, the command to move the cursor to the end of a line. To illustrate
this, we'll use the third line of the same paragraph.

1. Move the cursor into position:
O In vi command mode, type /take and press (RETURN).
O Now the cursor will be on the t in take:

enough time to take a shower before

2. Change take a shower before to several words:

O Type €$ to request a change from the cursor’s position to the
end of the line:

enough time to take a shower before$

O Type get ready for immediately after €$ and press
to return to Vi command mode.

O The line should now look like this:

enough time to get ready for

CHANGING AN ENTIRE LINE cc

One of the rules of Vi for most commands is this: To make a command
apply to an entire line, type the command twice in succession. Using this
rule, the command to change an entire line is ¢€. To illustrate this, we’ll
use the last line.

1. Move the cursor into position:
O In Vi command mode, type /Bob and press (RETURN).
O The cursor will now be on the capital B in Bob:

Bob ("Ace") Sanders

2. Change Bob ("Ace") Sanders to Robert G. Sanders III:
O Type €C to request a change to the entire line. (The line will
vanish.)

O TypeRobert G. Sanders IIIimmediately after c¢ and press
to return to Vi command mode.

8. Changing and Deleting Text 119

0O The line should now look like this:

Robert G. Sanders IIL

After all these changes, the entire letter should look like this:

September 17, 1987

Agatha R. Benson
Vice President
Fifth National Bank

Dear Mrs. Benson:

I am sorry you passed out during my first
interview on Friday. I was

just raising my arms to give you the
victory signal.

I had to rush straight from

the tennis courts. There wasn’t
enough time to get ready for

the interview.

I hope you will give very careful
consideration to my qualifications.

Sincerely,

Robert G. Sanders III

CHANGING TO THE BEGINNING OF THE SENTENCE c(

Changing text from anywhere in a sentence to the beginning is just like
changing to the beginning of a line, described above. The only difference
is that you use ¢(instead of €0 or ¢". To illustrate this, let’s use the first
line of the first paragraph (I am sorry...).

1. Move the cursor into position:

0O In vi command mode, type ?during and press (RETURN).

O Now the cursor will be on the d in during:

I am sorry you passed out during my first

120

Changing text

2. Change the first half of the sentence:

a

Type ¢(to request a change from the beginning of the line to
the cursor’s position:

I am sorry you passed out during my first

Immediately type I'm sorry you fainted (with a space
following) and press to return to Vi command mode.

The line should look now like this:

I'm sorry you fainted_during my first

3. Undo the change:

O Type U (undo) to restore the sentence.
O The sentence should now look like this again:
I am sorry you passed out$during my first
CHANGING TO THE END OF THE SENTENCE c)

Changing text from anywhere in a sentence to the end is just like changing
to the end of a line, described above. The only difference is that you use €)
instead of €$. To illustrate this, let’s use the same sentence.

1. Change the second half of the sentence:

O
O

Advance the cursor to the d in during with 6W.

With the cursor resting on the d in during, type €) to request
a change from the cursor’s position to the end of the sentence:
I am sorry you passed out I was

Immediately type at the end of last Fri-

day’s interview. and press to return to Vi command
mode.

The sentence should now look like this:

I am sorry you passed out at the end of
last Friday’s interview. I was

2. Undo the change:

O
O

Type U to restore the sentence.

The sentence should now look like this again:

I am sorry you passed out during my first
interview on Friday. I was

8. Changing and Deleting Text 121

CHANGING TO THE BEGINNING OF THE PARAGRAPH C{

Changing text from anywhere in a paragraph to the beginning is just like
changing to the beginning of a line. The only difference is that you use ¢{
instead of ¢(. To illustrate this, let’s use the same paragraph.

1. Move the cursor into position:

O
O

In vi command mode, type /I was and press (RETURND.

The cursor will now be on the T in I was:

I am sorry you passed out during my first
interview on Friday. 1 was

2. Change the first part of the paragraph:

O Type ¢{ torequest a change from the beginning of the paragraph
to the cursor’s position:
1 was

O Press(RETURN) and type I’m sorry you fainted dur-
ing last (RETURN) Friday’s interview. You see,
(with a space following) and press (ESC) to return to Vi com-
mand mode.

O Now the paragraph should look like this:
I'm sorry you fainted during last
Friday’s interview. You see,_I was

CHANGING TO THE END OF THE PARAGRAPH c}

Changing text from anywhere in a paragraph to the end is just like changing
to the end of a line, described above. The only difference is that you use
¢} instead of €$. To illustrate this, let’s use the same line.

1. Change the last part of the paragraph:

O
0

Advance the cursor to the I in I was,

Type €} to request a change from the cursor’s position to the
end of the paragraph (the text will vanish from the screen):

Friday’s interview. You see, _

Immediately complete the paragraph as shown, then press
to return to Vi command mode.

122 Changing text

Friday’s interview. You see, my
just went up into a spontaneous (RETURN

victory sign.

2. Undo the change:
O Type U to restore the paragraph.
O It should now look like this again:
Friday’s interview. You see, I was

just raising my arms to give you the
victory signal.

8.2 Deleting text

To delete text, use the cursor motion characters in conjunction with the
delete command (d) to produce variations like those for changing text.
Since we’ll be making a lot of deletions, we’ll have to undo most of them
with the U (undo) command; otherwise, we’ll run out of text to delete.

DELETING A CHARACTER X

The command for deleting a single character (X) doesn’t follow the pattern
for deleting other segments of text. To delete a character, move the cursor
to the character and type X (not d).

DELETING MORE THAN ONE CHARACTER nx

To delete more than one character (say two characters), place a multiplier
(2) in front of the X command. Let’s try this now.

1. Move the cursor into position:

O In Vi command mode, type ?al. and press (RETURN).

O Now the cursor will be on the a in signal:

victory signal.

2. Change signal to sign by deleting two characters:
O Type 2X to make the deletion, so that the line looks like this:

victory sign.

8. Changing and Deleting Text 123

dw
dw

To delete a word, move the cursor to the first letter of the word and type
dw. This works just like CW, except that you don’t have to enter any
replacement text with dw. Let’s try deleting several words in the text.

DELETING A WORD (OR WORDS)

1. Move the cursor into position:

O Type /give very and press (RETURN).

O The cursor will drop down to the g in give in the third para-
graph:

I hope you will give very careful

2. Delete one word:

O Type dw to delete give:
O The line should now look like this:

I hope you will very careful

O Restore the word with u:

I hope you will give very careful

3. Delete several words:

O Type 3dw (or d3w) to delete give very careful:
O The line should now look like this:

I hope you will _

O Restore the words with u:

I hope you will give very careful

If the word (or words) you are deleting are next to punctuation or
contain punctuation (isn’t, won’t, $5.67), use W instead of W).
Here’s an example:

4. Move the cursor up to the first paragraph:
O Type ?I'mand press (RETURN).

0O The cursor will move up to the I in I'm:

124 Deleting text

I’'m sorry you fainted during last

5. Delete two words along with punctuation:

O Type 2dW (or d2W), so that the line looks like this:

you fainted during last

O Undo the deletion with u:

I'm sorry you fainted during last

To delete part of a word, move the cursor to the first letter to be deleted
and follow the same procedure. For example, to delete ment from estab-
lishment, move the cursor to the m and type dw.

DELETING TO THE BEGINNING OF A LINE d

To delete text from anywhere in a line to the beginning of the line, use
d”, which is analogous to ¢". Move the cursor to the first character to be

retained and type d”. All text on the line to the left of the cursor will be
deleted. Type 4W to advance the cursor to the d in during and type d”
on the current line. All text to the left of the cursor will vanish:

during last

Undo this deletion with u:

I'm sorry you fainted during last

DELETING TO THE END OF A LINE d$

To delete text from anywhere in a line to the end of the line, use d$, which
is analogous to €$. Move the cursor to the first character to be deleted and
type d$. All text on the line to the right of the cursor will be deleted. Let’s
try this.

1. Move the cursor down to the third paragraph:
O Type /straight and press (RETURN).

O The cursor will land on the s in straight:

I had to rush gstraight from

2. Delete the rest of the line to the right:

8. Changing and Deleting Text 125

O Type d$ to make the deletion, so that the line looks like this:

I had to rush_

O Undo the deletion with u:

I had to rush straight from

DELETING AN ENTIRE LINE dd

To delete an entire line, use the double rule (dd). Move the cursor to any
location on the line and press dd. For this example, leave the cursor where
it is and type dd. The line will vanish, leaving the cursor on the following
line like this:

victory sign.

the tennis courts. There wasn’t

To restore the deleted line, use U:

I had to rush straight from
the tennis courts. There wasn’t

You can precede the command with a multiplier to delete more than one
line. For example, to delete three lines of text (the current line and the
next two), type 3dd. Let’s try that now. Three lines will vanish and the
screen will look like this:

victory sign.

the interview.

Restore the missing text with u:

I had to rush straight from

the tennis courts. There wasn’t
enough time to get ready for

the interview.

DELETING TO THE BEGINNING OF A SENTENCE d(

To delete text from anywhere in a sentence to the beginning of the sentence,
use d(, which is analogous to ¢(. Move the cursor to the first character to
be retained and type d(. All text in the sentence that precedes the cursor
will be deleted. Let’s try this.

126 Deleting text

1. Drop the cursor down a few lines:
O Type /get and press (RETURN).
O The cursor will land on the g in get ready:

the tennis courts. There wasn’t
enough time to get ready for
the interview.

2. Delete the first part of the sentence:
O Type d(to delete all words in front of the cursor.
O The display should now look like this:

the tennis courts. get ready for
the interview.

O Restore the deleted words with u:

the tennis courts. There wasn’t
enough time to get ready for
the interview.

DELETING TO THE END OF A SENTENCE d)

To delete text from anywhere in a sentence to the end of the sentence, use
d), which is analogous to €). Move the cursor to the first character to be

deleted and type d). All text in the sentence that follows the cursor will be
deleted.

1. Leave the cursor where it is now:

the tennis courts. There wasn’t
enough time to get ready for
the interview.

2. Delete the last part of the sentence:

O Type d) to delete all words that follow the cursor.
O The display should now look like this:

the tennis courts. There wasn’t
enough time to_

O Restore the deleted words with u:

8. Changing and Deleting Text 127

the tennis courts. There wasn’t
enough time to get ready for
the interview.

To delete an entire sentence, simply move the cursor to the beginning of
the sentence and type d). To delete several sentences, include a multiplier
and follow the same procedure.

DELETING TO THE BEGINNING OF A PARAGRAPH d{

To delete text from anywhere in a paragraph to the beginning of the para-
graph, use d{, which is analogous to ¢{. Move the cursor to the first char-
acter to be retained and type d{. All text in the paragraph that precedes
the cursor will be deleted. Without moving the cursor, try this from your
present location in the first paragraph. After you type d{, the display will
look like this:

victory sign.
get ready for
the interview.

Restore the missing words with u:
victory sign.

I had to rush straight from

the tennis courts. There wasn’t
enough time to get ready for

the interview.

DELETING TO THE END OF A PARAGRAPH d}

To delete text from anywhere in a paragraph to the end of the paragraph,
use d}, which is analogous to €¢}. Move the cursor to the first character to
be deleted and type d}. All text in the paragraph that follows the cursor
will be deleted. Let’s move the cursor and try this.

1. Move the cursor into position:
O Type ?rush and press (RETURN) to move the cursor up.
O The cursor will land on the r in rush:

I had to rush straight from

the tennis courts. There wasn’t
enough time to get ready for

the interview.

128 Deleting text

2. Delete the rest of the paragraph:

O Type d} to delete the rest of the paragraph:
I had to_

O Now restore the paragraph with u:

I had to xush straight from

the tennis courts. There wasn’t
enough time to get ready for
the interview.

To delete an entire paragraph, simply move the cursor to the beginning
of the paragraph and type d}. To delete several paragraphs, include a
multiplier and follow the same procedure.

8.3 Shifting text

<<
>>

SHIFTING A LINE

If you ever need to push text to a different location on a line, vi provides
one command for shifting a line to the left (<<) and one for shifting to the
right (>>). Just move the cursor to the desired line and type either << or
>>. (The exact amount of the shift will be eight spaces by default. How-
ever, you can change this amount by changing the shift-width variable—see
Chapter 12, “Customizing Vi.”) To see how shifting works, we’ll use the line
with the date.

1. Move the cursor into position:
O In vi command mode, type 217 and press (RETURN).
O The cursor will now be on 17:

September 17, 1987

2. Shift the date back and forth across the line:

O Type >>, then the period (.) a few times to push the date to
the right.

September 17, 1987

O Type <<, then the period (.) to push the date back to the
left-hand margin.

September 17, 1987

8. Changing and Deleting Text 129

n<<
n>>

SHIFTING MORE THAN ONE LINE

To shift more than one line, use a multiplier in front of << or >>. To see
how this works, we’ll indent lines 3, 4, and 5.

1. Move the cursor into position:
O In vi command mode, type /R. and press (RETURN).
O Now the cursor will be on the R in R.:

Agatha R. Benson
Vice President
Fifth National Bank

2. Shift the three lines back and forth across the line:

O Type 3>> then the period (.) several times to push the lines
across the screen:

Agatha R. Benson
Vice President
Fifth National Bank

O Now type 3<< then the period (.) to push the lines back to the
left-hand margin:

Agatha R. Benson
Vice President
Fifth National Bank

8.4 Ending the session

Now it’s time to write the updated text to letter and return to the UNIX
shell.

1. Write the text to file letter:

O Type :w and press (RETURN) to write to the file.
O You will see a display like this at the bottom of the screen:

"letter" [Modified] 27 lines, 442 characters

2. End this session with Vi:

0O Type :q and press to end the session.

130 Ending the session

O The shell prompt will now appear, indicating that you have left

vi:
$

Note that vi also allows you to combine the write and quit commands
into a single command, like this:

Twq
$

"lgtter" 27 lines, 442 characters

8.5 Summary

In this chapter you learned how to change and delete text. You also learned
how to shift lines of text. (Each command for changing or deleting text

shown here must be terminated with (ESC).)

CHANGING TEXT

Word(s)

Line(s)

Paragraph

Original text

can’t start

can’t start

can’t start

This is it.

This is it.

This is it.

This was all
we had.

At the end of

the day he left.
So we left, too.

At the end of

the day he left.
So we left, too.

Command
CwWwon
cWcannot
c2Wvon’t begin

¢0That
c$was fine.

CCThat was all.

2cCThere will
be more.

c¢{When they
left,

C}everyone
left.

Resulting Text
won't start
cannotstart
won’t begin_
Thatis it.

This was fine_
That was all_

There will
be more_

When they left,
we left, too.

At the end of
the day he left.
So everyone
left,

DELETING TEXT

Word(s)

Line(s)

Paragraph

SHIFTING TEXT

One Line

Two Lines

Original text
can’t start
can’t start
gan't start
This is it.
This is it.
This is it.
This was all
we had.

At the end of
the day he left.
So we left, too.

At the end of
the day he left.
So we left, too.

Original text

At the gnd of
the day he left.
So we left, too.

At the end of
the day he left.
So we left, too.

8. Changing and Deleting Text

Command
dw

dw

d2w

do0
ds
dd
2dd

d{

d}

Command
>>

2>>

Resulting Text
It start
start

is it.

This _

we left, too.

At the end of
the day he left.
So

Resulting Text
At the end of
the day he left.
So we left, too.

At the end of
the day he left.
So we left, too.

131

9

Finding and Replacing Text

In Chapter 8 you learned different ways to change or delete text with vi.

In this chapter, you will learn various ways to search for text and make
replacements.

9.1 Beginning a new session

Here is another brief reminder about how to get started with this session
of vi: If necessary, move from your home directory to text, then start an
editing session with the same file (letter):

$ ed text

$ pwd
/usr/robin/text
$ vi letter

Now you should see something like this:

September 17, 1987

Agatha R. Benson
Vice President
Fifth National Bank

Dear Mrs. Benson:

I'm sorry you fainted during last
Friday’s interview. You see, I was
just raising my arms to give you the
victory sign.

I had to rush straight from

the tennis courts. There wasn’t
enough time to get ready for

the interview.

I hope you will give very careful
consideration to my qualifications.

Sincerely,

134 Beginning a new session

Robert G. Sanders III

"letter" 27 lines, 442 characters

9.2 Searching on a line

There are two Vi commands that allow you to search in either direction for
a character on the current line and make changes.

SEARCHING TO THE RIGHT fz

To search from left to right for a single character on the current line, use
the fr command (where z represents the character you are looking for).
Then, if you need to continue searching for the same character, you can
use one of two commands to repeat:

; torepeat the search in the same direction
, torepeat the search in the opposite direction

SEARCHING TO THE LEFT Fz

To search from right to left for a single character on the current line, use
the Fr command (where represents the character you are looking for).
Again, if you need to continue searching for the same character, you can
use one of two commands to repeat:

; torepeat the search in the same direction
, to repeat the search in the opposite direction

T
t

To move the cursor to a character on the current line, use the T command
to move to the left or the £ command to move to the right. Just position the
cursor on the line, type Tz or tz (where z is the character you are looking
for), and the cursor will jump to the space next to the first occurrence of
the character.

MOVING TO A CHARACTER

9. Finding and Replacing Text 135

SEARCH AND CHANGE ct

By preceding the search command ¢t with the change command e, you can
change a single character on the current line very quickly. For example, sup-

pose you need to change Dear Mrs. Benson in the salutation to Hello
Mrs. Benson.

1. Move the cursor into position:
O Move the cursor to the salutation line (76 or /Dear),
O The cursor will move to the D in Dear:

Dear Mrs. Benson:

2. Change Dear to Hello:

O Type ctMHello (change text from Dear to M to Hello), and
press (ESO.

O Now the line should look like this:

Hello_Mrs. Benson:

O Type u to restore the line:

Dear Mrs. Benson:

SEARCH AND DELETE dt

Similarly, you can precede t with the delete command d to delete text.
For example, suppose you need to change Dear Mrs. Benson to Mrs.
Benson. Since the cursor is already on the same line, just type dtM (delete

all text from here to the first M to the right) and press (ESC). Now the
line should look like this:

Mr. Benson:
Restore the line with u.

SEARCH TO THE LEFT

In both the examples above we were searching to the right (t). By using
T instead we could also search to the left. In a search to the left, we could
use commands like cTMMrs. (change all text to the first M to the left to
Mrs.) and dTr (delete all text to the first r to the left). Try each of these
commands; then undo the results in each case with u.

136 Searching on a line

9.3 Searching in a file

To help you search for a string anywhere in the work area, vi provides a
pair of commands analogous to £ and F: one for searching forward and one
for searching backwards in the editing buffer.

SEARCHING FORWARD /string
To search forward for a word in a file, type /string and press (RETURND.

If you need to continue searching for the word, you can use one of two keys:

n Repeat the search in the same direction (forward)
N Repeat the search in the opposite direction (backwards)

As an example, suppose you need to search for you in the letter.

1. Move the cursor into position:

O Position the cursor at the beginning of the file (1G).
O The first line should look like this:

September 17, 1986

2. Begin the search:
O Type /you and press (RETURN).
O The cursor will jump to the y in you in line 9:

I'm sorry you fainted during last

3. Continue the search:
O Type n to continue the search forward.
O The cursor will jump to the you in line 11:

just raising my arms to give you the

4. Continue the search again:
O Type n again.
O The cursor will move to you in line 19:

I hope you will give very careful

You can type n again to continue searching forward or N to search back
toward the beginning of the letter. If you don’t want the cursor to stop at
your, yourself, or other words that contain you, leave a space after the
u when you begin the search, like this: /you .

9. Finding and Replacing Text 137

SEARCHING BACKWARD ?string

To search backwards for a word in a file, type ?string and press RETURN).
Again, if you need to continue searching for the word, use one of these two
keys:

n Repeat the search in the same direction (backwards)
N Repeat the search in the opposite direction (forward)

For example, suppose you need to search for you from the end of the
letter.

1. Move the cursor into position:

O Position the cursor at the end of the file (G).
O The line should look like this:

Robert G. Sanders III

2. Begin the search:
O Type ?you and press (RETURN) to begin searching in reverse.
O The cursor will jump to the y in you in line 19:

I hope you will give very careful

3. Continue the search:

O Type n to continue searching in reverse.

O The cursor will jump to the you in line 11:

just raising my arms to give you the

4. Continue the search again:

O Type n again to continue searching in reverse.

O The cursor will move to your in line 9:

I'm sorry you fainted during last

Type n again to continue searching backwards or N to search forward.
Again, if you don’t want the cursor to stop at your, yourself, or other
words that contain you, leave a space after you when you begin the search,
like this: ?you . Since all searches wrap from one end of the editing buffer
to the other, the two commands (/string and ?string) are practically equiv-
alent.

138 Searching in a file
9.4 Making replacements

Each time the cursor stops during a search, you can replace text (or append
or insert text, for that matter). Since appending and inserting text have
already been discussed in detail, we’ll concentrate on replacements here. To
replace text in a file, vi offers the following basic commands (in addition to
the change command discussed in the previous chapter): one that replaces
a single character with another, one that replaces a sequence of characters
one at a time, one that replaces a single character with more than one, and
one that replaces an entire line.

REPLACING ONE CHARACTER WITH ANOTHER r

To replace one character with another, vi provides a simple command—rz.
Move the cursor to the character, type r, and then type the new character.
For example, suppose you want to change the date from September 17
to September 27.

1. Move the cursor into position:

O Type ?17 to move the cursor to the 17.
O Now the line should look like this:

September 17, 1986

2. Make the change:

O Type £2 without (RETURN) or (ESC) to change 1 to 2.
O Now the line should look like this:

September 27, 1986

REPLACING CHARACTERS ONE AT A TIME R

To replace several consecutive characters one at a time, use the R command.
Move the cursor to the first of the characters, type R, and then type the
new characters, followed by (RETURN). For example, suppose you want
to change the date from September 27 to August 27.

1. Move the cursor into position:

O Type b to move the cursor to the S in September.
O Now the line should look like this:

September 27, 1986

9. Finding and Replacing Text 139

2. Make the change:

O Type R, then August without a space, followed by (ESC), to
type August over September (Augustber).
O After you type dw to delete ber, the line should look like this:

August 27, 1986

Caution: If the replacement text is shorter than the text being replaced,
there will be leftover characters; if the replacement text is longer than the
text being replaced, you will type beyond the original text over other text.

REPLACING ONE CHARACTER WITH SEVERAL S

To replace one character with any number of characters, Vi provides the
s command. Move the cursor to the character, type s, and then type the
new characters. For example, suppose you wanted to change the name on
the next line from Benson to Bertson.

1. Move the cursor into position:

O Type /nson to advance the cursor to the first n in Benson.
O The line should look like this:

Dear Mrs. Bepnson:

2. Make the change:

O Type srt, followed by (ESO), to change n to rt.
O Now the line should look like this:

Dear Mrs. Bertson:

REPLACING AN ENTIRE LINE S

To replace an entire line of text, use the § command (which is equivalent
to ec). Move the cursor to any location on the line, type S, and then type

the new line (or lines), followed by (RETURN). For example, suppose you
want to change Vice President to Senior Manager.

1. Move the cursor into position:

O Type /Vice to move the cursor to the line.
O The line should look like this:

Vice President

140 Making replacements

2. Make the change:

0O Type S to request a change to the line (which will vanish).

O Without leaving a space, type Senior Manager, followed by
(ESO), to type the new line.
O The new line should look like this:

Senior Managexr

ENDING THE SESSION

Now it’s time to abandon this text and return to the shell. Type :q! and
press (RETURN) to abandon the text and quit vi.

9.5 Making substitutions

The ex editor has a substitution command called s that allows you to
replace one string with another.

STARTING A NEW SESSION WITH Vi

First we’ll enter a program called metric.c in your text directory; then we
can make changes later with Vi. First, let’s start a new editing session:

$ vi metric.c

$

Now type a to append and type the following:

/* Convert gallons to liters */
main ()
{

int low, high, step;

float gals, ltrs;

low = 10; high = 20; step = 2;
printf ("%4s \t %6s \n\n", "gals", "liters"):;

gals = low;

while (gals <= high)

{
ltrs = (gals * 3.785);
printf ("%4.0f \t %6.2f\n", gals, 1ltrs);
gals += step;

9. Finding and Replacing Text 141

CHANGING SOME SETTINGS

Since this is a program, not a letter, let’s makes some changes to the basic
settings in vi. To make it simple, we’ll change only two of these:

number (nu) The option that produces line-numbering

shift-width (sw) The option that determines how far across the screen
lines will be shifted by the shift commands << and
>>

1. Turn on line numbering:

O Type :set nuand press (RETURN).
O Before you press (RETURND, you will see : set nu at the bot-

tom of the screen.

O After you press (RETURN), you will see line numbers appear
at the lefthand margins, with the text indented.

2. Set the shift-width to 5:

O Type :set sw=5 and press (RETURN).

O Before you press (RETURN), you will see :set sw=5 at the
bottom of the screen.

O The width for all shifts will be changed from 8 (the default) to
9.

At this point you have Vi active with file metric.c and you have line-
numbering turned on and option shift-width set to five columns.
Now you are ready to begin trying out some substitutions.

MAKING SUBSTITUTIONS 'S

One reason for selecting this file to make substitutions is that it contains
so many repetitions of the same words. For example, the variable gals
occurs seven different times in this short program. You could probably make
seven replacements manually without much bother, but the substitution
command (s) makes these changes automatically. In a long program, this
would be an enormous convenience.

1. Change gals to gallons:

O Type :1,$s to request a substitution for all lines in the file
(line 1 to the last line ($)).

O Without leaving a space, type /gals/gallons/g to request a
substitution of gallons in place of gal for all occurrences on
each line (g).

142 Making substitutions

O If the display at the bottom of the screen looks like this, press
RETURN) to begin the substitution:

:1,$s/gals/gallons/g

O If you see mistakes, back up the cursor and correct them before

you press (RETURN).
2. Change 1trs to liters:
O Type :1,8s to request a substitution for all lines in the file

(line 1 to the last line ($)).

O Without leaving a space, type /ltrs/liters/g to request a
substitution of 1iters in place of 1trs for all occurrences on
each line (g).

O If the display at the bottom of the screen looks like this, press
RETURN) to begin the substitution:

:1,8s/1trs/liters/g

O If you see mistakes, back up the cursor and correct them before

you press (RETURND.

If you ever enter a substitution command incorrectly and then press
by accident, you can always undo the results with the u

(undo) command.

3. Look at the results on the screen:

1 /* Convert gallons to liters */

2 main ()

3 {

4 int low, high, step;

5 float gallons, liters;

6

7 low = 10; high = 20; step = 2

8

9 printf ("%$4s \t %6s \n\n", "gallons", "liters");
10

11 gallons = low;

12 while (gallons <= high)

13 {
14 liters = (gallons * 3.785);
15 printf ("%$4.0f \t %6.2f\n", gallons, liters);
16 gallons += step;
17 }

[y
[ee)
—

14

14

9. Finding and Replacing Text 143

3 substitutions on 3 lines

The substitution command uses many of the conventions for searching
that are used throughout UNIX. Here are a few words about using s in Vi:

e The s command always begins with a colon (:) to escape to €x,
followed by a range of line numbers.

e The line numbers may be actual integers, search strings, or symbols,
as illustrated here:

:1,20 Line 1 to line 20

:15, /place/ Line 15 to the first line that contains place
:5,. Line 5 to the current line

0,8 The current line to the last line of the file

:.-20, ?end? Twenty lines ahead of the current line to the
first line that contains end
:?WPP?,8-2 The first line that contains WPP (above the cur-

rent line) to two lines before the last line of the
file

o Use slashes to search forward and question marks to search back-
wards.

e Use the g command at the end of the command line to substitute all
occurrences in each line, rather than just the first occurrence.

9.6 Shifting text

<<
>>

SHIFTING LINES

Try the new setting for shiftwidth by moving to various lines and typing
<< or >>. Each shift will be five columns now instead of eight.

<}
SHIFTING PARAGRAPHS

>}
Try shifting paragraphs (in this case, groups of lines separated by blank
lines) with the <} and >} operators.

1. Shift lines 4 and 5:

O Type 4G to move the cursor to line 4.

144 Shifting text

| O Type >} to shift the two lines (a paragraph to Vi) to the right:

int low, high, step;
float gallons, liters;

O Type <} to shift the lines back again:

int low, high, step;
float gallons, liters;

2. Shift lines 11-17:

O Type 11G to move the cursor to line 11.
O Type >} to shift the lines to the right:

gallons = low;

while (gallons <= high)

{
liters = (gallons * 3.785);
printf("%4.0f \t %6.2f\n", gallons, liters);
gallons += step;

O Type <} to shift the lines back again:

gallons = low;

while (gallons <= high)

{
liters = (gallons * 3.785);
printf ("%4.0f \t %6.2f\n", gallons, liters);
gallons += step;

You can also shift sentences with vi. The commands to use are <) and
>). Now end this session with vi by typing :wq and pressing (RETURN).

9.7 Summary

In this chapter you learned how to search for text, how to make replace-
ments, and how to shift text.
SEARCHING ON A LINE

Fz Search left fr Search right
Tz Move left to = tz Move right to z

9. Finding and Replacing Text

SEARCHING FOR A STRING

Istring Searching forward
?string Searching backward

MAKING REPLACEMENTS

Replacing one character with another

Replacing any number of characters

Replacing one character with any number of characters
Replacing an entire line

(72 B «

MAKING SUBSTITUTIONS

:line nyline N'S/old string/new stringlg (Search forward)
:line nyline NS?old string?new string?g (Search backward)

SHIFTING TEXT

Shift Left Text Shift Right
<< Line >>
n<< n Lines n>>

<} Paragraph >}

145

10

Moving and Copying within a
File

[n Chapter 9 you learned how to search for text and make replacements.
[n this chapter you will learn how to move and copy text within a file. But
first, here are a few words about ways to exit from Vi.

10.1 Exiting vi

So far you have used only the w (write) and (quit) commands to exit a
vi file. This includes the combined command wq (write and quit):

swq

CONDITIONAL WRITING

To perform a write before quitting only if you have made changes (that is,

to request a conditional write, you can use :x or
2Z

ABANDONING A FILE

To abandon a file (and not save any changes you might have made to it),
use the forced quit, like this:

:q! (RETURN)

10.2 Moving text within a file

In Chapter 8 you learned how to use the change (€¢) and delete (d) com-
mands, which operate in similar ways. In this chapter you will learn two
new commands called yank (y) and put (p or P). You will learn that delete
and yank are also similar, and that you can use either one of them with
put to make text disappear, reappear, or multiply.

148 Moving text within a file

If you think of yourself as a magician and the words, sentences, and
paragraphs you work with as handkerchiefs, rabbits, and assistants, then
you won’t have any trouble seeing how delete, yank, and put work. Using
delete is like putting a rabbit into a hat and then showing the audience
an empty hat. Using yank is like putting a handkerchief into your pocket
while still keeping another in your hand. Using delete and put in succession
is like having your assistant step into a wooden box, and then reappear at
the other end of the stage. Using yank and put in succession is like having
your assistant step into a wooden box, and then emerge from one box while
a twin emerges from another.

CREATING A NEW FILE

Before discussing how to move text from one location to another, let’s
create a new file in directory text called wall. Use vi to edit a file named
wall:

S vi wall

Type a and enter the following text (leaving a blank space and pressing

RETURN) at the end of each line, and pressing (ESC) at the conclusion
of the text):

Request for Wall
[Blank line]
Beijing (Peking). The Mayor of West Berlin
stood yesterday on top of the Great Wall
of China next to Deng Xiaoping, leader
of the nation of one billion people.
[Blank line]
Begun during the Ch’in dynasty (about
the time Rome fought the first Punic
War), the wall was not completed until
the Ming dynasty (about the time the
Mayflower arrived at Plymouth Rock).
[Blank line]
Some 25 feet high, 15 to 30 feet wide at
the base, and 12 feet wide at the top,
the wall is over 1,500 miles (2,400 km)
long, greater than the distance between
New York and Dallas.
[Blank line]
The purpose of the wall was to protect
China against invaders from the north.
The mayor told his host, "This wall was
here to keep people out. We have a
wall that is there to keep people in."

10. Moving and Copying within a File 149

Now write the text to file wall (:w). You will see this message at the
bottom of the screen:

"wall” [New file] 25 lines, 746 characters

TRANSPOSING CHARACTERS Xp

To move text from one location to another, you can make it disappear from
one location (with delete), then reappear in another (with put).

After writing to wall, move the cursor to the o in Plymouth on line
12 (?outh twice). Now, with the cursor resting on the o, type Xp (no
is necessary). The word will now be spelled P1ymuoth—the
o and the u have been switched. This is the simplest kind of move.

Now type h (cursor left), followed by Xp again, to undo the switch, and
try it again. Here’s what happens in slow motion:

1. The cursor is on the o (keep your eye on the cursor):

Mayflower arrived at Plymguth Rock).

2. Now delete the o with the X commmand:

Mayflower arrived at Plymuth Rock).

3. Then put the o back with the p command:

Mayflower arrived at Plymugth Rock).

4. Undo the change by typing U (not u)—U is for the entire line.

Did you keep your eye on the cursor? As soon as the o vanishes, the
cursor moves forward to the u. Since the p command always puts the text
ahead of the cursor, the o ends up on the other side of the u. (Remember,
the command to delete a single character is X, not d.)

MOVING WORDS dw and p

Moving words is like moving characters. The main difference is that the
command to delete a word is dw (or dW), not X. We plan to move the
cursor to two words, delete the words, then move to the new location and

put the words there. As an example, let’s move Beijing (Peking) from
line 3 to line 18.

150 Moving text within a file

1. Move the cursor into position:

O Type ?Bei and press (RETURN) to move the cursor to Bei-
jing.
O The display should now look like this:

Beijing (Peking). The Mayor of West Berlin
stood yesterday on top of the Great Wall

of China next to Deng Xiaoping, leader

of the nation of one billion people.

2. Delete the two words at their current location:

O Type d2W to delete Beijing (Peking).
O The line should now look like this:

_ The Mayor of West Berlin

3. Move the cursor to the new location:

O Type /Dal and press (RETURN) to move the cursor to Dal-
las in line 18.

O The line should now look like this:

New York and Dallas.

4. Put the word at the new location:

O Type capital P (not p) to put Beijing (Peking) in front of
Dallas.

O The paragraph should now look like this:

Some 25 feet high, 15 to 30 feet wide at
the base, and 12 feet wide at the top,

the wall is over 1,500 miles (2,400 km)
long, greater than the distance between
New York and Beijing (Peking). _Dallas.

In this example, you used a capital P instead of p because capital P puts
text before the cursor (above the current line in a line operation). Use p
when you want to put text after the cursor (or below the current line).

10. Moving and Copying within a File 151

d) and P
d) and p

Moving a sentence is like moving a word. The main difference is that we
use d) to delete a sentence, not dw. We plan to move the cursor to the
beginning of a sentence, delete the sentence, then move to the new location
and put the sentence there. As an example, let’s move the first sentence of
the last paragraph to the end of the paragraph.

MOVING A SENTENCE

1. Move the cursor into position:
O Type /The and press (RETURN) to move the cursor to The
purpose.

O The display should now look like this:

The purpose of the wall was to protect
China against invaders from the north.
The mayor told his host, "This wall was
here to keep people ocut. We have a
wall that is there to keep people in."

2. Delete the sentence at its current location:
O Type d) to delete the entire sentence.
O The paragraph should now look like this:

The mayor told his host, "This wall was
here to keep people out. We have a
wall that is there to keep people in."

3. Move the cursor to the new location:
O Type L to move to the blank line at the end.
O The screen should now look like this:

wall that is there to keep people in."

4. Put the sentence at the new location:

O Type lowercase p to put the first sentence after the second.
O The paragraph should now look like this:
The mayor told his host, "This wall was

here to keep people out. We have a
wall that is there to keep people in."

The purpose of the wall was to protect
China against invaders from the north.

152

Moving text within a file

MOVING A PARAGRAPH

1. Move the cursor into position:

O
a

Type 4{ to move the cursor to the start of the second paragraph.

The display should now look like this:

of China next to Deng Xiaoping, leader
of the nation of one billion people.

Eegun during the Ch’in dynasty (about
the time Rome fought the first Punic

2. Delete the paragraph at its current location:

Type d} to delete the entire second paragraph.
The display should now look like this:

of China next to Deng Xiaoping, leader
of the nation of one billion people.

gome 25 feet high, 15 to 30 feet wide at
the base, and 12 feet wide at the top,

3. Move the cursor to the new location:

O

O

Type } to advance the cursor to the beginning of the next para-

graph.
The display should now look like this:

long, greater than the distance between
New York and Dallas.

Ehe mayor told his host, "This wall was
here to keep people out. We have a

4. Put the paragraph at the new location:

a
o

Type capital P to put the second paragraph above the fourth.
The display should now look like this (with moves highlighted):

d} and P
d} and p

Moving a paragraph is like moving a sentence. The main difference is that
the command to delete a paragraph is d}, not d). We plan to move the
cursor to the start of a paragraph, delete the paragraph, then move to the
new location and put the paragraph there. As an example, let’s move the
second paragraph to where the third paragraph is now (switch paragraphs).

MOVING LINES

10. Moving and Copying within a File

Request for Wall

The Mayor of West Berlin

stood yesterday on top of the Great Wall
of China next to Deng Xiaoping, leader
of the nation of one billion people.

Some 25 feet high, 15 to 30 feet wide at
the base, and 12 feet wide at the top,
the wall is over 1,500 miles (2,400 km)
long, greater than the distance between
New York and Beijing (Peking). Dallas.

Bequn during the Ch’in dynasty (about
the time Rome fought the first Punic
War), the wall was not completed until
the Ming dynasty (about the time the
Mayflower arrived at Plymouth Rock) .

The mayor told his host, "This wall was
here to keep people out. We have a
wall that is there to keep people in."

The purpose of the wall was to protect
China against invaders from the north.

153

dd and P

dd and p

Moving a line is like moving a word. The main difference is that to delete
a line we use dd, not dw. We plan to move the cursor to a line, delete
two lines, then move to the new location and put the lines there. As an
example, let’s move the headline (and the blank line below it) to the space
between the first and second paragraphs.

1. Move the cursor into position:

Type 1G and press (RETURN) to move the cursor to the head-

O

O

line.

The display should now look like this:

Request for Wall

The Mayor of West Berlin

stood yesterday on top of the Great Wall
of China next to Deng Xiaoping, leader
of the nation of one billion people.

2. Delete the lines at their current location:

154 Moving text within a file

O Type 2dd to delete the two lines.
O The display should now look like this:

The Mayor of West Berlin

stood yesterday on top of the Great Wall
of China next to Deng Xiaoping, leader
of the nation of one billion people.

3. Move the cursor to the new location:

O Type /Some to move the cursor to Some in the next paragraph.
O The paragraph should look like this:

Some 25 feet high, 15 to 30 feet wide at
the base, and 12 feet wide at the top,
the wall is over 1,500 miles (2,400 km)
long, greater than the distance between
New York and Beijing (Peking) Dallas.

4. Put the line at the new location:

O Type capital P to put the headline above the current line.
O The screen should now look like this:

of China next to Deng Xiaoping, leader
of the nation of one billion people.

Request for Wall

Some 25 feet high, 15 to 30 feet wide at
the base, and 12 feet wide at the top,

OTHER POSSIBLE MOVES

In the examples you just tried, you moved one entire item (character, word,
sentence, paragraph, or line) from one location to another. However, it is
also possible to move part of an item (assuming the cursor is somewhere
in the middle of it), or several items. Here are some suggestions:

db The left-hand side of a word
d(The beginning of a sentence
d{ The beginning of a paragraph
d The left-hand side of a line

dw The right-hand side of a word
d) The ending of a sentence
d} The ending of a paragraph

10. Moving and Copying within a File 155

d$ The right-hand side of a line

x3 Three characters
d3w Three words
d3) Three sentences

d3} Three paragraphs
3dd Three lines

P Before the cursor (or above the line)
P After the cursor (or below the line)

ABANDONING THE FILE

Before going on to copying text within the editing buffer, let’s abandon the
changes we’ve made to the text in our work area. Then we can start all
over again with wall. Type :q! and press to abandon the work

area.

10.3 Copying text within a file

Copying text from one location to another with vi is similar to moving
text. The only difference is that you use the yank command (y) instead of
the delete command (d). Yanking leaves a copy of the text in its original
location. Everything else is about the same. Let’s begin by starting a new
session:

$ vi wall

yw and P
yw and p

We’ll dispense with the subject of copying a character, and move right on to
copying a word. Copying a word is like moving a word. The main difference
is that you will yank the word, rather than delete it. We plan to move the
cursor to a word, yank the word, then move to the new location and put
the word there. As an example, let’s copy Great from line 4 to several
other places.

COPYING A WORD

1. Move the cursor into position:

O Type /Great and press to move the cursor to
Great.
O The display should now look like this:

Beijing (Peking). The Mayor of West Berlin

156 Copying text within a file

stood yesterday on top of the Great Wall
of China next to Deng Xiaoping, leader
of the nation of one billion people.

2. Yank the word at its current location:

O Type yW to yank Great.
O The line should now look like this (the same):

stood yesterday on top of the Great Wall

3. Move the cursor to a new location:

O Type /wall and press (RETURN) to move the cursor to wall
in line 8.

O The line should now look like this:

War), the wall was not completed until

4. Put the word at the new location:

O Type capital P to put Great in front of wall.
O The line should now look like this:

War), the Great_wall was not completed until

Typing N twice, then repeating step 4 (that’s n n P), insert copies of
Great in front of the other three occurrences of wall. After you have
done this, the fourth paragraph should look like this:

The purpose of the Great wall was to protect
China against invaders from the north.

The mayor told his host, "This wall was

here to keep people out. We have a
wall_that is there to keep people in."

y) and P
y) and p

Copying a sentence is like copying a word. The main difference is that the
command to yank a sentence is y), not yw. We plan to move the cursor
to the beginning of a sentence, yank the sentence, then move to the new
location and put the sentence there. As an example, let’s copy the first
sentence of the last paragraph to the end of the paragraph.

COPYING A SENTENCE

1. Move the cursor into position:

10. Moving and Copying within a File 157

O Type ?The p and press (RETURN) to move the cursor to the
beginning of the last paragraph.

O The display should now look like this:

The purpose of the Great wall was to protect
China against invaders from the north.

The mayor told his host, "This wall was

here to keep people out. We have a

wall that i1s there to keep people in."

2. Yank the sentence at its current location:

O Type Y) to yank the entire sentence.
O The paragraph should look the same:

The purpose of the Great wall was to protect
China against invaders from the north.

The mayor told his host, "This wall was

here to keep people out. We have a

wall that is there to keep people in."

3. Move the cursor to the new location:

O Type G to move the cursor to the blank line below the para-
graph.

O The display should now look like this:

here to keep people out. We have a
wall that is there to keep people in."

4. Put the sentence at the new location:

O Type p to put the sentence.
O The paragraph should now look like this:

The purpose of the Great wall was to protect
China against invaders from the north.

The mayor told his host, "This wall was

here to keep people out. We have a

wall that is there to keep people in."

The purpose of the Great wall was to protect
China against invaders from the north.

158 Copying text within a file

y} and P
y} and p

Copying a paragraph is like copying a sentence. The main difference is that
we use Y} to yank a paragraph, not y). We plan to move the cursor to the
start of a paragraph, yank the paragraph, then move to the new location
and put the paragraph there. As an example, let’s make a copy of the third
paragraph after the second.

COPYING A PARAGRAPH

1. Move the cursor to the beginning of the third paragraph by typing
3{. This is how the display should look now:

the Ming dynasty (about the time the
Mayflower arrived at Plymouth Rock).

gome 25 feet high, 15 to 30 feet wide at
the base, and 12 feet wide at the top,

1. Yank the paragraph at its current location:
O Type Y} to yank the entire third paragraph.
O The display should look the same:

the Ming dynasty (about the time the
Mayflower arrived at Plymouth Rock).

Eome 25 feet high, 15 to 30 feet wide at
the base, and 12 feet wide at the top,
2. Move the cursor to the new location:

O Type { to move the cursor to the beginning of the previous
paragraph.

O The display should now look like this:

of China next to Deng Xiaoping, leader
of the nation of one billion people.

Eegun during the Ch’in dynasty (about
the time Rome fought the first Punic
3. Put the paragraph at the new location:

O Type capital P to put the third paragraph above the second.
O The display should now look like this (copies highlighted):

COPYING A LINE

10. Moving and Copying within a File

Request for Wall

Beijing (Peking). The Mayor of West Berlin
stood yesterday on top of the Great Wall

of China next to Deng Xiaoping, leader

of the nation of one billion people.

Some 25 feet high, 15 to 30 feet wide at

the base, and 12 feet wide at the top,

the Great wall is over 1,500 miles (2,400 km)
long, greater than the distance between

New York and Dallas.

Begun during the Ch’in dynasty (about

the time Rome fought the first Punic

War), the Great wall was not completed until
the Ming dynasty (about the time the
Mayflower arrived at Plymouth Rock).

Some 25 feet high, 15 to 30 feet wide at

the base, and 12 feet wide at the top,

the Great wall is over 1,500 miles (2,400 km)
long, greater than the distance between

New York and Dallas.

The purpose of the Great wall was to protect
China against invaders from the north.

The mayor told his host, "This wall was

here to keep people out. We have a

wall that is there to keep people in."

The purpose of the Great wall was to protect
China against invaders from the north.

159

yy and P

yy and p

Copying a line is like all the other copies. This time we use Yy to yank a
line. We plan to move the cursor to a line, yank the line, then <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>