
A System V Guide to UNIX and XENIX

Trademarks

UNIX is a trademark of AT &T Bell Laboratories.
XENIX, MS-DOS, and PC-DOS are registered trademarks of Microsoft
Corporation.
PDP-7, PDP-ll, VAX, VT52, and VT100 are trademarks of Digital
Equipment Corporation.
GE 645 is a trademark of General Electric Corporation.
Idris is a trademark of Whitesmith's Ltd.
Cromix is a trademark of Cromemco, Inc.
PC /IX is a trademark of Interactive Systems, Inc.
CP /M is a registered trademark of Digital Research, Inc.
Ethernet is a trademark of Digital Equipment, Intel, and Xerox
Corporations.
IBM is a registered trademark of International Business Machines, Inc.
EBCDIC, BSC, SNA, SDLC, DOS, DOS/VS, DOS/VSE, OS, OS/MFT,
OS/MVT, MVS, VM,
CICS, TSO, IMS, and CMS are trademarks of International Business
Machines, Inc.
Teletype is a trademark of Teletype Corporation.
NEC and Spinwriter are trademarks of Nippon Electric Company.
COHERENT is a registered trademark of Mark Williams Company.
LSI, ADM-3, and ADM-3A are trademarks of Zentee Corporation.
HP and 2631 are trademarks of Hewlett-Packard.
Wyse 50 is a trademark of Wyse Technology, Inc.
Amdahl is a registered trademark, UTS is a trademark of Amdahl
Corporation.

Douglas William Topharn

A System V Guide to
UNIX and XENIX

With 61 Figures

Springer-Verlag
New York Berlin Heidelberg
London Paris Tokyo Hong Kong

Library of Congress Cataloging-in-Publication Data
Topham. Douglas W. 1942-

A system V guide to UNIX and XENIXIDouglas William Topham.
p. em.

ISBN 0-387-9702 1-5 (alk. paper)
I. UNIX System V (Computer operating system) 2. XENIX (Computer

operating system) L Title.
QA76.76.063T667 1990
005.4'3-<le20 90-32803

Printcd on acid-fra: paper.

CI 1990 Springer-Verlag Ncw York Inc.
All rights reserYed. This work may 001 be translatcd or copied in wllole or in part witOOuttlle wrillen
permission of tlle publisher (Springer-Verlag New York, Inc., 175 Fifth AYenuc, New York. NY 10010.
USA), C.lcept for brief C.lcerp!s in eonnection with reviews or scholarly analysis. Use in connection
with any form of information storage and retrieval. electronic adaptation. computer software, or by
similar or dissimilar methodology oow koown or hcreafter dcvcloped is forbidden.
Thc use of general dcscriptivc names, trade names, trademarks. ete .. in this publication. even if the
former are 001 especially identifled, is 001 to be laken a~ a sign that such names, as uoderstood by
tlle Tradc Marks and Merchaodise Marks Acl , may accordingly be used fra:ly by anyone.

POOtocomposed cop)' prepared using laTeX.

9 8 7 6 5 4 32 1

ISBN-13: 978-0-387·97021·9
DOI : 10.1007_978-1-4612-3246-9

c·ISBN·13: 978· 1-4612-3246-9

Preface

As in preparing the earlier edition of this book, we've emphasized presenting
UNIX in basic terms for first-time users. Parts I-IV of the book ("Funda­
mentals," "Text-Editing," "Text-Processing," and "Text-Formatting") are
for most readers. If you're interested in just abrief introduction to UNIX,
see the short course at the end of this introduction.

For more experienced users, Parts V ("Shell Programming"), VI ("Sys­
tem Administration"), and VII ("Network Administration") delve a little
more deeply into the system, and provide information that is either scat­
tered throughout many documents or unavailable. Part V begins with some
shortcuts that most readers can use, then covers programming techniques
in detail. Part VI presents the concepts that underly the internaIoperation
of UNIX, along with step-by-step procedures for operating and maintaining
a system.

ACKNOWLEDGEMENTS

I'd like to thank Hai Truong for contributing the chapters on shell program­
ming; Tom Leslie of AT &T and Brigid Fuller and Bill Brothers of the Santa
Cruz Operation for help with new features; and Bill Potts, John Sovereign,
Chris Swartout, Jim Edele, Danesh Forouhari, Andrew Sharpe, Tom Leslie,
and Steve Robertson for reviewing certain key chapters for accuracy.

WHY You NEED A STEP-By-STEP GUIDE

This book leads you step-by-step through the UNIX operating system. If
you are new to UNIX, you need a book like this. Using UNIX after using
one of the earlier operating systems for microcomputers is like using a
single-Iens reflex camera after using a simple aim-and-shoot camera. There
are more features than you know what to do with, and it's very difficult to
figure out where to begin.

Even though the reference manuals for UNIX seem to come in truckloads,
they often leave out essential information. You read page after page about
a feature you have to use, only to find that the basic facts you need have
been left out. The writers assurne that you already know what the feature
is for and that you know how to use it. The result is text that is COIAK
(clear only if already known).

vi Preface

This book starts at the beginning and explains the basics step by step.
The fundamental facts are given to you, not assumed. The background
explanations and short, simple examples will help you leam UNIX and
XENIX quickly. While this approach is intended mainly for non-technical
people, many technical professionals have also profited from reading this
book. Any reader will finish this book well prepared to move on to more
complex topics.

ORGANIZATION OF THIS BOOK

The main text of this book is divided into six parts, each more or less inde­
pendent of the others. Within each part, the discussion begins with simpler
topics, then builds to more involved concepts in subsequent chapters. We
hope this makes it a little easier for you to select the material you need
and get the most out of this book.

I. Fundamentals. These chapters, intended for all readers, give you basic
instruction in using UNIX for the first time and finding out how it
works.

II. Text-Editing. These chapters show you how to use the vi and ex
programs to enter and edit text.

III. Text-Processing. These chapters show you how to perform searching,
sorting, and programming to process text and numbers.

IV. Text-Formatting. These chapters show you how to format and other­
wise process text files, usually in preparation for printing.

V. Shell Programming. These chapters, intended for more experienced
users, explain some short-cuts and provide you with the tools for
designing your own procedures and customizing your UNIX system.

VI. System Administration. These chapters, also intended for experienced
users, describe so me of the inner workings of UNIX and show you
procedures for taking care of disks and tapes, backup and recovery,
startup and shutdown, terminals and printers, system security, and
system accounting.

VII. Network Administration. These chapters continue the discussion of
administration with an emphasis on networking applications, such as
communication and resource-sharing between different machines.

The appendices summarize information presented in the main text and
provide technical reference material. The glossary, which can be an educa­
tion in itself, explains the technical terms that you'll need to know.

We have done everything we can to ensure that each topic has been in­
troduced before being mentioned in connection with other topics. In nearly

Preface vü

every instance we were able to do this. However, because of the way con­
cepts are interrelated in UNIX, we faced many "chicken or egg" dilemmas
in arranging the topics. As a result, there are a handful of instances where
a topic is mentioned shortly before being described in full.

As a general rule, each section of the book is more technical than the
previous one, and each section becomes more detailed as you progress from
the beginning of the section to the end. Part I is for everyone; Parts lI-IV
are for those who will be working with text; Parts V-VII are mainly for
those who will be modifying the operation of UNIX or maintaining a UNIX
system.

SHORTER COURSE

Feel free to turn directly to the parts of the book that are of greatest interest
to you. You can use it just for an introduction to UNIX, or you can delve
into it and learn how to produce formatted documentation, program the
shell, and perform administrative functions. To become quickly familiar
with UNIX without wading into technical details, you can start out with
the following chapters:

1 Introduction to UNIX
2 Getting Started with UNIX
3 The UNIX File System
4 Using UNIX Commands
5 Communication in UNIX
6 Introduction to vi

13 Searching and Sorting
16 Introduction to mm

Some readers mayaIso wish to read the following chapters:
21 Introduction to the Bourne Shell
28 Basic Information (ab out System Administration)
37 Introduction to Networking

VERSIONS COVERED

This book covers UNIX System V, Releases 1, 2, and 3, along with the
corresponding releases of XENIX System V (XENIX 2.1 through 2.3). As
this book was going to press, the Santa Cruz Operation had just released
XENIX 2.3, and AT&T and the Santa Cruz Operation had just announced
a new combined UNIX and XENIX, known as UNIX System V /386, Release
3.2. If you have any of these versions of UNIX or XENIX, you should find
this book useful.

viii Preface

CORRECTIONS

The author and the publisher will appreciate receiving any suggestions and
corrections from readers.

Typographie Conventions

In this book, typewriter is used for names for directories and files, and bold
typewriter is used for commands. Slanted typewriter indicates what
you are to type at the keyboard. Here are examples:

/usr/lib
/unix
date
$ who

Directory name
File name
Command name
User entry

Italie is used for descriptions of information that you are to enter. When
you see italic, type what is described, not the actual characters, as shown
in these examples:

name
type

Type a name, not the letters n-a-m-e
Enter a type, not the letters t-y-p-e

In some instances, italic is used to distinguish a command from informa­
tion to be used by the command. In this example, italic separates "won"
from the command name that precedes it:

CWwon The command is CW, while "won" is a word to be
used by the command

Some names are printed partly bold typewriter and partly italic. These
names are part literal, part descriptive. Here is an example:

LCK.name Here, LCK is a literal name, while name indicates
a name that you are to enter

Braces are used to indicate a list of items from which you must choose
one. Here is an example from Chapter 34 that displays three choices
(-m model, -e printer, and -i eustom):

Ip Ipadmin -p printer -v device {:: p~~~:~}
-I custom

Brackets are used to indicate optional items, either a single item or a list
of items. The following example from Chapter 36 shows several optional
items, some belonging to a list, others by themselves:

Preface ix

$ ur [::] {-o fiJ'} t {n}

In this example, three optional items are displayed in a list (-a, -b, and
-C), while two other optional items are displayed by themselves (-0 file and
n). The only two things required here are sar and t; everything else is
optional. Note also that sar is a command name, which you are to enter
literally, while t is a generic name, which in this instance represents a length
of time in seconds.

About the Author

Douglas Topham grew up in Los Angeles in the San Fernando
Valley, received his B.S. and A.M. degrees from Stanford Uni­
versity. After teaching math courses at the high school and col­
lege levels, he wrote a set of programs to provide live displays for
ABC's "Password" show. Later he wrote the WordStar Train­
ing Guide and designed the screen displays for WordStar 3.0.
He is now a consultant in the San Francisco Bay area. Other
works by the author include UNIX and XENIX: A Step-by-Step
Guide, Using WordStar, WordStar in a Flash, and Introduction
to WordPerfect.

Limits of Liability and Disclaimer of Warranty

The author and publisher of this book have used their best efforts in prepar­
ing this book and the programs contained in it. These efforts include the
development, research, and testing of the theories and pro grams to de­
termine their effectiveness. The authors and publisher make no warranty
of any kind, expressed or implied, with regard to these programs or the
documentation contained in this book. The author and publisher shall not
be liable in any event for incidental or consequential damages in connec­
tion with, or arising out of, the furnishing, performance, or use of these
programs.

Contents

Preface v

I Fundamentals 1

1 Introduction to UNIX 3
1.1 Operating systems 3
1.2 UNIX operation. . . 4
1.3 UNIX and standards 7

2 Getting Started with UNIX 11
2.1 Preliminary set-up procedures . 11
2.2 Logging in and logging out 12
2.3 Entering a command line 16
2.4 Process control 17
2.5 U sing the calculators . 19
2.6 Other aids. 22
2.7 Summary · 23

3 The UNIX File System 25
3.1 What is a file system? 25
3.2 A structured file system 25
3.3 Working with directories . 29
3.4 Working with files 32
3.5 File and directory permissions . 37
3.6 Summary · 41

4 U sing UNIX Commands 43
4.1 Constructing a command line 43
4.2 Redirection of input and output . 44
4.3 Pipelines 46
4.4 Displaying text on the screen 48
4.5 More on working with files. 50
4.6 Using printers. 58
4.7 Summary · 60

XIV CONTENTS

5 Communication in UNIX
5.1 Communicating with other users
5.2 Communicating outside your system
5.3 Some basics of communication
5.4 Summary

11 Text Editing

6 Introduction to vi
6.1 Background
6.2 Typing a letter
6.3 Making changes to the letter
6.4 Ending the session
6.5 Summary

7 Making Some Changes
7.1 Beginning a new session
7.2 Moving the cursor .. .
7.3 Using markers
7.4 Controlling the screen display
7.5 Adding new text
7.6 Summary

8 Changing and Deleting Text
8.1 Changing text.
8.2 Deleting text ...
8.3 Shifting text. . . .
8.4 Ending the session
8.5 Summary

9 Finding and Replacing Text
9.1 Beginning a new session
9.2 Searching on a li ne ..
9.3 Searching in a file ...
9.4 Making replacements .
9.5 Making substitutions .
9.6 Shifting text.
9.7 Summary

10 Moving and Copying within a File
10.1 Exiting vi
10.2 Moving text within a file.
10.3 Copying text within a file
10.4 Summary

63
63
69
74
80

83

85
85
86
93
97
98

101
101
102
106
107
109
113

115
115
122
128
129
130

133
133
134
136
138
140
143
144

147
147
147
155
161

CONTENTS xv

11 Working with More Than One File 163
11.1 Editing another file 163
11.2 Moving text between files . 165
11.3 Copying text to another file 168
11.4 Invoking vi 171
11.5 Summary 175

12 Customizing vi
12.1 Summary .

III Text Processing

13 Searching and Sorting
13.1 Using options to modify the output.
13.2 Summary

14 Programming with awk
14.1 Introduction
14.2 Using the awk program
14.3 Search patterns ..
14.4 Action statements
14.5 Error messages
14.6 Summary

15 Programming with C
15.1 Staying in an editing session.
15.2 Executing a C program
15.3 Summary

IV Text-Formatting

16 Introduction to mm
16.1 Introduction to formatting .
16.2 Forming paragraphs
16.3 Forming lists
16.4 Displaying text
16.5 Emphasizing and de-emphasizing text
16.6 Other features
16.7 Summary

17 Formatting with mm
17.1 Keeping lines Qf text together
17.2 Using footnotes
17.3 Using headings

177
188

191

193
202
205

207
207
211
215
218
222
222

225
225
226
233

237

239
239
242
242
246
248
249
252

255
255
256
257

xvi CONTENTS

17.4 Page layout
17.5 Initiating formatting
17.6 Summary

18 Formatting with nroff and troff
18.1 Initiating formatting ..
18.2 Setting up pages
18.3 Formatting lines of text
18.4 Summary

19 Formatting with troff
19.1 Printing and typesetting .
19.2 Introduction to troff
19.3 Working with troff
19.4 Summary

20 More on Formatting
20.1 Using double-column format.
20.2 Formatting tables.
20.3 Formatting equations.
20.4 Defining your own requests .
20.5 Modifying formatting options
20.6 Summary

V Shell Programming

21 Introduction to the Bourne Shell
21.1 Introductory example
21.2 Controlling the environment.
21.3 Setting variables
21.4 Commands and arguments ..
21.5 Standard input, output, and diagnostics
21.6 Redirection of input and output.
21.7 Summary

22 Bourne Shell Processes
22.1 Shell functions
22.2 Background commands.
22.3 Connecting processes ..
22.4 Giving directives to the shell
22.5 Summary

260
263
266

269
269
272
277
280

283
283
286
287
292

295
295
297
303
307
310
312

315

317
317
319
320
324
327
328
330

333
333
334
340
343
346

23 Bourne Shell Variables
23.1 Shell procedures ...
23.2 Shell variables.
23.3 Command substitution .
23.4 Conditional substitution of variables
23.5 Positional parameters
23.6 Reserved variables
23.7 Summary

24 Bourne Shell Program Control
24.1 Constructing loops
24.2 The conditional statement . . .
24.3 Other programming techniques
24.4 Summary

25 Introduction to the C Shell
25.1 Initialization files
25.2 Explanations of individual items
25.3 Reinvoking previous commands
25.4 Selecting individual arguments
25.5 Modifying a command line .
25.6 Summary

26 C Shell Variables
26.1 Assigning astring variable.
26.2 Variables as arrays
26.3 Assigning numeric variables
26.4 Setting elements of a numeric array .
26.5 Variables reserved by the C shell
26.6 Summary

27 C Shell Procedures
27.1 Executing a file as a shell procedure
27.2 Forming conditional statements
27.3 Forming loops
27.4 Other programming techniques
27.5 Built-in commands
27.6 Summary

VI System Administration

CONTENTS xvii

349
349
351
356
359
360
363
364

367
367
373
380
383

385
385
386
388
390
391
398

401
401
402
404
407
408
413

415
415
416
418
424
427
427

431

xviii CONTENTS

28 Basic Information
28.1 The system administrator
28.2 Time-sharing concepts
28.3 Disks and file systems
28.4 Summary

29 File Systems
29.1 The structure of a file system
29.2 Checking file systems.
29.3 Summary

30 Disks and Tapes
30.1 Devices and file types
30.2 Adding and removing devices
30.3 Backup and recovery
30.4 Summary . . .

31 Disk Maintenance
31.1 Providing disk space
31.2 Programs that run automatically
31.3 System efficiency
31.4 Summary

32 Startup and Shutdown
32.1 Starting up a UNIX system
32.2 Multi-user mode
32.3 Shutting down a UNIX system
32.4 Summary

33 Terminals
33.1 Identifying your terminal
33.2 The stty command
33.3 Describing a terminal for vi
33.4 Designing an entry .
33.5 Examples of entries .
33.6 Summary

34 Printers
34.1 Printer basics
34.2 Features for users
34.3 Features for system administrators
34.4 Summary

433
433
436
438
442

445
445
451
458

459
459
463
466
472

475
475
482
484
487

489
489
495
499
501

503
503
505
507
509
511
513

515
515
519
520
526

35 System Security
35.1 Information about users and groups
35.2 Restricted accounts
35.3 Setting special file modes
35.4 More on permissions
35.5 Maintaining security
35.6 Summary

36 System Accounting
36.1 Process accounting
36.2 System activity accounting
36.3 Summary

VII Network Administration

37 Introduction to Networking
37.1 Connecting computer systems.
37.2 Some basics of networking .
37.3 System -y, Release 3
37.4 Summary

38 Communication Before Release 3
38.1 Hardware requirements for uucp
38.2 Software setup for uucp
38.3 Control and maintenance of uucp
38.4 Trouble-shooting uucp
38.5 Direct networking (XENIX only)
38.6 Summary

39 Communication After Release 3
39.1 Hardware requirements for uucp
39.2 Software setup for uucp
39.3 Control and maintenanee of uucp
39.4 Trouble-shooting uucp .
39.5 Summary

40 Basic Resource Sharing
40.1 Sharing resourees ...
40.2 Setup procedures . . .
40.3 Advertising resourees .
40.4 Mounting resources .
40.5 Summary

CONTENTS xix

527
527
531
534
536
538
538

541
541
542
549

551

553
553
555
560
561

563
563
564
569
571
572
573

575
575
577
584
589
591

593
593
596
599
602
605

xx CONTENTS

41 Remote File Sharing Maintenance
41.1 Introduction.
41.2 Remote file sharing mode
41.3 Maintaining domains . . .
41.4 Maintaining hosts.
41.5 Monitoring remote file sharing
41.6 Adjusting performance .
41.7 Summary

42 Remote File Sharing Security
42.1 Introduction
42.2 Specifying mapping
42.3 Procedures for mapping by name
42.4 Summary

Appendices

A Summary of Basic Commands and Symbols
A.1 Basic commands for starting out ...
A.2 Working with directories and files . . .
A.3 Searching: forming regular expressions
A.4 Setting basic features. .
A.5 Working with processes
A.6 Processing information .
A.7 Communicating.

B Summary of ed
B.1 Commands
B.2 Special characters for searching

C Summary of vi and ex Commands
C.1 Moving the cursor
C.2 Adding new text
C.3 Changing text.
C.4 Shifting text ...
C.5 Deleting text ..
C.6 Searching and Replacing .
C.7 Invoking the editor .. .
C.8 Exiting the editor
C.9 Moving or copying text

D Summary of vi Options
D.1 Toggled options
D.2 Numbered options ..
D.3 String-valued options.

607
607
607
609
612
615
618
620

621
621
623
628
630

631

633
633
633
634
634
635
635
635

637
637
639

641
641
642
642
643
643
643
644
644
644

647
647
650
651

CONTENTS XXI

E Summary of Processing Commands 653
E.1 Searching with grep . . 653
E.2 Sorting with sort 654
E.3 Programming with awk 654

F Summary of Formatting Requests 657

G Summary of Formatting Options 661
G.1 Modifying mm 661
G.2 Modifying nroff. 664

H Summary of the Bourne Shell 667
H.1 Shell variables. 667
H.2 Standard input, output, and diagnostics 667
H.3 Background commands. . . . 667
H.4 Connecting processes 667
H.5 Giving directives to the shell 668
H.6 Shell procedures 668
H.7 Constructing loops 669
H.8 The conditional statement . . 670
H.9 Other shell programming techniques 671

I Summary of the C Shell 673
I.1 Initialization files 673
I.2 Reinvoking previous commands 673
I.3 Selecting individual arguments 673
1.4 Modifying a command line. . . 674
1.5 Assigning an alias to a command string 674
L6 The logout file 674
I. 7 Assigning string values 674
I.8 Manipulating variables that contain numeric values . 675
I.9 Variables reserved by the C shell 676
I.10 File-checking 676
L11 Forming conditional statements 677
I.12 Forming loops 677
I.13 Other programming techniques 677
I.14 Built-in commands 677

J Summary of System Administration 679
J.1 Basic commands and files 679
J.2 File systems. . . . 679
J.3 Devices 680
J.4 Disk maintenance. . . 681
J.5 Startup and shutdown 683
J.6 Terminals and printers 683

xxii CONTENTS

J.6 Terminals and printers
J.7 System security . .
J.8 System accounting ..

K Network Administration
K.1 Communication before Release 3
K.2 Communication after Release 3

L termcap and terminfo
L.1 Terminal features
L.2 Cursor movement and scrolling
L.3 Screen editing
L.4 Functions activated by special keys
L.5 Video attributes .
L.6 Control directives . .

M UNIX versus XENIX
M.1 Description of XENIX
M.2 Differences between UNIX and XENIX .
M.3 Features of System V, Release 3 .

N Character codes
N.1 The control characters
N.2 The extended control characters

Index

683
685
686

689
689
691

697
697
698
699
700
700
701

703
703
704
707

709
710
712

725

Part I

Fundamentals

1 Introduction to UNIX 3

2 Getting Started with UNIX 11

3 The UNIX File System 25

4 Using UNIX Commands 43

5 Communication in UNIX 63

In Part I you willlearn some basic facts about UNIX. You will also learn
how to begin working with UNIX, how to use its file system to organize
your work, how to execute UNIX commands to perform daily tasks, and
how to communicate with other UNIX users on either your own system or
another system. Finally, you willlearn about the basics of communication.

1

Introduction to UNIX

1.1 Operating systems

OPERATING SYSTEMS IN GENERAL

The main reason people use computers is to run application software,
such as word processing, data base, spreadsheet, and accounting programs.
An operating system provides programmers with a common environment
within which to develop software for users. An operating system provides
programmers with a simpler target to aim at than a computer system. The
more computer systems the operating system runs on, the more computer
systems the programmer can reach with software.

An operating system also provides users with a common environment
within which to run their applications. The operating system furnishes cer­
tain utility programs that support the user and the applications. It can also
offer a "friendly face" in the form of a simplified graphical representation
on the screen. Finally, a more sophisticated operating system may provide
additional conveniences: a way of allowing more than one person to use the
computer at the same time (time-sharing), some means of communication
between these different users, a way of allowing different programs to run
at the same time (multi-tasking) , tools for entering and processing text,
programming tools to ease the task of software development, and various
security measures.

THE UNIX SYSTEM

Now that you have some general notion of what an operating system is,
what distinguishes UNIX from other operating systems? Here are some of
the most prominent features:

• Structured file system with multiple levels

• Ability to allow many users to work from the same computer at the
same time (multi-user)

• Ability to allow any of the users active on the computer to run more
than one program at a time (this is called multi-tasking)

4 UNIX operation

• Mechanisms that allow one program to pass its results directly to
another program, making it unnecessary to use extra storage space

• A scheme that allows any user to redirect the results of a program
from one peripheral device to another (for example, from the video
monitor to a disk drive)

• A built-in command interpreter and language (known as the shell)

• A structured language called C for systems programming

• Extensive tools for writing and developing programs in C and other
programming languages

• Extensive tools for entering, changing, and processing written text
and formatting it for printing

• Extensive tools for connecting computer systems (UNIX and non­
UNIX)

• Practically limitless "modifiability"

1.2 UNIX operation

Whenever you run an application program under UNIX, three programs
work together. The program that interacts directly with the computer is
called the kernel. As an everyday user of UNIX, you will seldom be aware of
the kernel's presence. You will be more aware of the program that interprets
what you type at your keyboard and arranges for other programs to run­
the shell. Strictly speaking, the shell is just another program. However,
because the shell plays such an important role in interacting with users, it
is customary to depict the shell as amiddie layer between the kernel and
applications, as shown in Figure 1.1.

THE KERNEL

You use an operating system by sitting at a keyboard in front of a screen
and typing a command to perform a function. For example, you may enter
a command that says to the operating system, "Let me begin an editing
session" or "Let me print the text in this file." When you make such a
re quest through a utility program, you cause a process to be activated.

The request is fulfilled when the proeess ealls on the kernel to earry
it out. The kernei, as its name implies, is the central core of the UNIX
operating system. The kernel's routines schedule processes, route data to
and from peripheral devices, manage memory resourees, and maintain files
in file systems.

1. Introduction to UNIX 5

FIGURE 1.1. The different parts of UNIX.

The utility programs that you use every day (and that you probably
identify with UNIX) are not actually part of the operating system. These
programs, which are described throughout this book, pass requests to the
kernel through system caUs, which are not discussed in this book.

Because the kernel interacts directly with the hardware, it is different
for each computer. Since the kernel is only about 10 percent of the entire
UNIX system, it is relatively easy to produce a new version of UNIX for a
different machine. (A program that can be run on a variety of machines is
said to be portable. Portability is discussed later in this chapter.)

THE SHELL

It is the shell that greets you when you begin a session with UNIX, and it
is the shell that accepts instructions from you and carries them out. The
shell is UNIX's command interpreter, a program that runs as a software
layer over the kerne!. The shell presents you with a prompt on the screen,
followed by a cursor, like this:

$

When you type a command after this prompt, the shell begins a UNIX
process. This process may be a simple routine to display today's date and
time on the screen, or it may be a sophisticated text-editing system (the
shell itself is also a process). You activate any process, large or smalI,

6 UNIX operation

by typing a command and letting the shell take care of carrying it out.
If anything goes wrong while you are invoking the process, the shell will
display an error message on your screen. Once a process has completed,
the shell returns to display another prompt on your screen, indicating that
it is ready for your next command.

Actually, there is more than one shell available for UNIX. First, there
is the shell developed for UNIX Version 7 at Bell Telephone Laboratories
by Stephen R. Bourne (known as the Bourne shell). Then there is another
version of the shell that was developed at the University of California by
William N. Joy in the late 1970s (known as the C shell). Finally, in the
past few years, a third shell has been developed by David Korn (known as
the Korn shell). The Korn shell combines the best features of the Bourne
shell and the C shell.

ApPLICATION PROGRAMS

Because of the increasing popularity of UNIX, the list of application pro­
grams available is growing every day. There are word processing programs,
spreadsheet programs, data base management programs, compilers for BA­
SIC, FORTRAN, COBOL, C, and other programming languages, and as­
semblers. Many of the most popular programs for microcomputers are being
rewritten in C, so that they can be offered to users of UNIX. In addition,
sophisticated applications are being moved from mainframes and minicom­
puters down to microcomputers running UNIX.

Before long, it will be possible to run most of the programs that became
popular under CP IM, MS-DOS, and PC-DOS, while at the same time
enjoying the versatility and power of UNIX. Until a year or so ago, mi­
crocomputers simply could not provide the extensive computing resources
required by UNIX. They could not match the large amounts of internal
memory and the fast, large-capacity disks of the minicomputers. But with
recent technical advances in both areas, microcomputers have quickly be­
come powerful enough to assurne the rigors of running UNIX.

C AND PORTABILITY

UNIX was originally written for the DEC PDP-7 minicomputer. Later it
was modified to run on other minicomputers, and then finally on micro­
computers. It is this portability that has contributed to the popularity of
UNIX. One reason for the portability of UNIX is that most of it is written
in the C language. Many of the early programs for microcomputers were
written in low-Ievel assembly language, elose to machine code, to obtain
maximum performance. Later on, applications programs were written in
high-level languages like BASIC and Pascal to achieve port ability. C is a
sort of middle-level language, combining the high performance of a low­
levellanguage with the portability and ease of use of a high-levellanguage.

1. Introduction to UNIX 7

UNIX was the first major operating system that was not written primarily
in assembly language.

Originally associated closely with UNIX and part of the development of
UNIX, C has recently become recognized as a useful product in its own
right. Over a dozen versions of C are being sold to microcomputer owners.

1.3 UNIX and standards

Now that you've had abrief introduction to UNIX, we'll discuss a few other
operating systems that are widely used today, and show how some of them
resemble UNIX.

MICROCOMPUTER OPERATING SYSTEMS

When microcomputers became popular in the late 1970s, the operating sys­
tem that was most widely used was called CP IM (control program/monitor).
Originally designed for Intel's 8080 microprocessor, later versions of CP /M
were designed to work with Intel's derivative 8085 and Zilog's derivative
Z80. Others also widely used were Apple's DOS and Tandy /Radio Shack's
TRS-DOS. All of these operating systems were severely limited in storage
space, or memory.

When IBM introdueed its Personal Computer late in 1981, it also an­
nounced a new operating system, called PC-DOS (MS-DOS for non-IBM
systems). The first version of PC-DOS was practically identical to CP /M,
but it was designed for one of Intel's suceessors to the 8080, known as the
8088. The 8088, like its more powerful brother, the 8086, allowed much
more memory than the 8080, 8085, and Z80. Recent versions of PC-DOS
have been incorporating more and more UNIX features, such as subdirec­
tories and redirection. Future versions will probably resemble UNIX even
more strongly.

As the 1990s approach, nearly every operating system widely used on
microcomputers is feeling the influence of the graphical interfaces first de­
veloped in the 1970s at XEROX's Palo Alto Research Center (PARC).
These interfaces employ screen ieons to represent computer functions and
files, along with mouse operation. (A mouse is a hand-held device that
you can move around on the top of your desk to make selections from the
screen.) These concepts have been embodied in Apple's Macintosh operat­
ing system, IBM's new OS/2 (the suecessor to PC-DOS), and some of the
newest releases of UNIX.

8 UNIX and standards

VERSIONS OF UNIX

For the past few years, there have been two major variations of UNIX:
the Berkeley System Distribution (BSD) from the University of Califor­
nia and System V from AT&T (see Figure 1.2). The Berkeley versions,
with their emphasis on technical innovation, appeal more to institutions
engaged in education, research, and engineering. The AT&T versions, with
their emphasis on resource sharing, appeal more to business. One of the
main hybrids was XENIX, the version that was developed by Microsoft and
marketed by the Santa Cruz Operation for microcomputers.

Various efforts are currently under way to unify the vers ions into a sin­
gle UNIX product. AT&T and Microsoft have already announced a new
combined UNIX/XENIX product for 386 machines, called UNIX System
V /386, Release 3.2. Early in 1988, AT &T and Sun Microsystem began work
on a new version featuring a graphical interface called Open Look and con­
formance with the Institute of Electrical and Electronic Engineers (IEEE)
portable operating system environment standard (POSIX). In response,
IBM, Digital Equipment Corporation (DEC), Hewlett-Packard, and oth­
ers formed the Open Software Foundation (OSF) to support a competing
standard UNIX version.

UNIX SYSTEM V

System V has been offered in various releases: Release 1.0 (1983), Release
2.0 (1984), Release 2.1 (1985), Release 3.0 (1986), Release 3.1 (1987), and
Release 3.2 (1989). (The joint Sun/ AT &T product will be known as Re­
lease 4.) The main features of Release 3, which relate to networking sys­
tems, sharing files, and system efficiency, are described later in this book.
Part VII, "Network Administration," provides an introduction to Release
3 features and offers a discussion of Remote File Sharing for system ad­
ministrators; and Appendix M, "UNIX versus XENIX," summarizes the
features of System V, Release 3.

To give programmers a standard environment for developing software
for UNIX systems running on computers of any size, AT&T now offers a
two-volume System V Interface Definition. Copies of these and other UNIX
documents are available from

AT&T Customer Information Center (CIC)
P.O. Box 19901
Indianapolis, Indiana 46219

(800) 432-6600 (U.S.A.)
(800) 255-1242 (Canada)
(317) 352-8557 (elsewhere)

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1. Introduction to UNIX 9

FIGURE 1.2. The versions of UNIX and XENIX.

AT&T UNIX

Nameless
PDP-7
system

I
Version 1

I
Version 2

(B Language)

I
Version 3

(C Language)

I
Version 5

I
Version 6

I
Version 7

Berkeley UNIX

I
BSD

I
~ ~4.1BSD

XENIX ~

System III

XENIX 111----1 4.2BSD

System V
Release 1

Release 2

~XENJX V

System V
Release 3

I
System V/386
Release 3.2

(UNIX and XENIX)

4.3BSD

10 UNIX and standards

UNIX DOCUMENTATION AND THIS BOOK

This book concentrates on general purpose programs, text-editing and for­
matting, one area of program development (shell programming), and ad­
ministration and maintenance. There is also some basic information on
configuring your terminal. C programming and software development are
vast subjects, and are beyond the scope of this book. After reading this
book, however, you should be well prepared to go on to books that cover
these other areas.

For a comprehensive treatment of UNIX commands, you have to turn to
one of the detailed reference works, such as the UNIX User's Manual from
Bell Telephone Laboratories. This is now organized into separate volumes
that cover specific areas, such as Program Development, Text Processing,
and System Administration.

In printed form, a complete set costs about two hundred dollars. However,
at many installations, a copy of the manual is included with UNIX on disko
Whenever we reach the limits of the scope of this book, we refer to this
manual-by whatever name it may be known at your installation. Bell
Telephone Laboratories is now called AT&T Bell Laboratories, and the
manual is now called the UNIX User's Manual.

For quick reference, you can buy a compact 50-page command summary
for under ten dollars from

Specialized Systems Consultants
P.O. Box 7, Northgate Station
Seattle, WA 98125-0007
(206) FOR-UNIX

A System Publications
or P.O. Box 8681

Trenton, N J 08650

2

Getting Started with UNIX

In this chapter you williearn these basic things about UNIX:

• Preliminary set-up procedures

• Logging in and logging out

• Editing a command li ne

• Running processes (commands)

• Using the calculators

• Aids to learning

2.1 Preliminary set-up procedures

If you have been using a single-user operating system like CP IM, MS-DOS,
or PC-DOS, then you are accustomed to simply turning on the computer,
possibly entering the date and time, and going to work. However, with a
multi-user system like UNIX, a number of different people can gain access
to the computer at any given time from a number of different terminals.
So before you can begin using UNIX, you have to make sure that UNIX
recognizes you as a user on the system and that it can communicate with
the terminal you are using.

IDENTIFYING YOURSELF TO UNIX

You will be able to use UNIX only after your name has been added to
a list of users. If you are working in a company or an institution, there
is probably a system administrator designated to take care of new users.
If so, this administrator will assign you an identifier, a password, and a
terminal. The identifier assigned to you (also known as an account name,
login name, or user name) will probably be either one of your names or
your initials. The password is designed to prevent anyone else from using
the system under your name. In most cases, the terminal will provide you
with a keyboard for entering information and a video screen for receiving
information back from the system.

12 Preliminary set-up procedures

IDENTIFYING YOUR TERMINAL

If you have aversion of UNIX that has been customized for your machine,
then you probably won't have to do anything to identify your terminal. If
not, you may have to make sure that the various settings for your terminal
are compatible with the settings for your computer. Otherwise, your termi­
nal and computer won't be able to communicate with each other. It's like
making sure that you and another person both speak the same language
before you begin a conversation.

Basically, you have to make sure that the terminal and computer are
both sending information to each other at the same speed, that both are
using the same convention for sending and receiving, that both are using
the same scheme to check for errors, and that both interpret special char­
acters the same way. To find out whether they have been set correctly, just
log in and see what happens. If you see double characters on the screen
(or no characters), random characters (also known as "garbage"), or no
response to the (RETURN) key (Return or Enter), the settings for your
terminal may be incorrect--get help from your system administrator. If you
don't have any problems, the settings are fine. Later on, after you become
more familiar with UNIX, you can learn to use a command called stty (set
teletype) to make adjustments (see Chapter 33).

2.2 Logging in and logging out

LOGGING IN

Once you have an identifier, a password, and a working terminal, you are
ready to log in. Logging in is what gives you access to the UNIX operating
system. Let's go through the basic procedures (which may vary from one
system to another) shown here.

1. Establish connection between the computer and your terminal.

o This is the part that can vary the most. For your system, it
may mean dialing a telephone number, flipping a switch on your
terminal, or typing something at the keyboard. Find out from
your system administrator exactly wh at is required.

o Once you have taken the necessary action, UNIX will first make
itself known to you by a short, simple message in the upper
left-hand corner of your screen like this:

login: _

2. Identify yourself.

2. Getting Started with UNIX 13

o In the space after the "login" prompt, type your system identifier
(or user name) and press (RETURN).

o UNIX will probably respond by asking for your password:

login: robin
Password:

3. Enter your secret password.

o In the space after the "Password" prompt, type your password
(which will not appear on the screen) and press (RETURN).

o After a brief pause, you will see something like this:

login: robin
Password:

Last login: Tue Jan 15 08:17:26 on tty03

*
*
* We1come to UNI X System V January 1990

*

*
*
*

*

$

Congratulations! You have just successfully logged in. The dollar sign
($), percent sign (%), or other symbol in front of the cursor is called the
UNIX shell prompt. Later in the book, we'll explain why it has that name.
We'll also show you how you can change it to something else. For now you
can think of the UNIX sheIl prompt as similar to the prompt you see on
the screen when you use CP IM, MS-DOS, or PC-DOS (A». It teIls you
that UNIX is ready for you to type a command and go to work.

A system administrator can log in as a super-user to perform special
tasks that require extraordinary privileges. Such a user will have a special
prompt that looks like apound sign (#).

TYPING COMMANDS

Just to verify that you have actually gained access to UNIX, try a few
simple UNIX commands.

1. Let 's begin with the command that tells you the day of the week, the
date, and the time of day.

o Type date and press (RETURN).

o UNIX will respond with a display like this:

14 Logging in and logging out

$ date
Mon Jan 17 09:02:37 EST 1990
$

2. Next, let's find out who is logged in right now.

o Type who and press (RETURN).

o UNIX will respond with a display like this:

$ who
janis tty03 Jan 17 08:12
a1ex tty05 Jan 17 08:39
jk1 tty07 Jan 16 21:16
robin tty12 Jan 17 09:02
guapo tty16 Jan 17 08:57
$

Each line of this display gives a user's identifier (like "j ani s"), a ter­
minal number (like "tty03"), and the date and time the user logged in
(like "Jan 17 08: 12"). When UNIX was developed in the late 1960's, it
was common to use a Teletype® hardcopy display (printing) device as a
terminal. This is why UNIX says "tty" (from tele type) to me an "terminal."

3. Finally, let's type a command that UNIX doesn't know and see what
happens.

o Type whyand press (RETURN).

o UNIX will respond with a message like this:

$ why
why: Command not found.
$

LOGGING OUT

When the time comes to end a session with UNIX, you can't just turn off
your terminal. You have to log out. If you don't log out, UNIX will still
consider you logged in, even though your terminal is disconnected.

For most systems, all you have to do is to type Control-D (hold the
(CTRL) key down with one finger and press D with another). Since Control­
D often means end-of-file or end-of-transmission to UNIX, there may be
times when you will have to type Control-D several times to log yourself
out. Some systems may require that you also press other keys. If you are
using the C shell and the variable called "ignoreeof" is set, you have to
type 10gout and press (RETURN). (You can also use exit in either shell.)

2. Getting Started with UNIX 15

$

login:

[Press Control-D-nothing displayed]

When you have successfully logged out, the "login" prompt reappears on
the screen. It isn't that UNIX doesn't like to see a user log out; it's just
that UNIX doesn't have anything else to say. At this point you can either
log in again or stay logged out. Since we have some more things to do, let's
log back in and go on to the next section.

CHANGING YOUR PASSWORD

Since your password gives you some measure of security under UNIX, you
may want to change it from time to time. Changing it will make it more diffi­
cult for others to log in under your system name. For practice, try changing
your password right now. Just type passwd and press (RETURN):

$ passwd
Changing password for robin
Old password: _

Type your current password in the space provided (you won't see it on
the screen). Next, UNIX will ask you to type your new password (up to
eight characters), then type the new password a second time to confirm it:

$ passwd
Changing password for robin
Old password:
New password:
Retype new password:
$

To make your password difficult for anyone to guess, you can mix upper
and lower case letters with numbers and other characters. The more un­
usual (and longer) you make it, the harder it will be for another user to
stumble ac ross it by trial and error. It's usually best to avoid things like
your nickname, your license plate number, your social security number, or
your cat's name. Here are so me examples of good passwords:

eASy-2.C
WheN?NoW
wHy_NoT?
New*4(U)

16 Logging in and logging out

2.3 Entering a command line

Earlier in this chapter you used two simple commands, date and who. To
carry out any action under UNIX, you have to execute a command (type a
command line and press (RETURN»). In the case of the date command,
the four letters date make up the entire command line. In the case of the
who command, the three letters who make up an entire command line.

Although these two command lines required nothing more than the name
of the command, many other commands require additional information
about the command's options and any files to be processed by the com­
mand. Such information, if required, follows the command's name on the
command line. For example, the who command can be executed by itself
to list the users currently logged in. But there is also another form of the
command:

$ who am i
robin tty05 Jan 17 09:02
$

If you should forget your system identifier or if you have to log in under
more than one identifier, you can use this form of the command to find
out which identifier you are currently logged in under. The extra words
added to the command (am i) form an argument to the command, which
modifies the way the command works.

Until you press (RETURN), it's still possible to make changes to a
command line. The rest of this section discusses ways to make such changes.

ERASING A CHARACTER (CTRL-H)

To erase a single character on the command line, use # (number sign) or
(CTRL-H) (hold down the (CTRU key with one finger and press H with
another). On some keyboards, there may be a key called (BACKSPACE)
that performs this function. Here is how a typical correction might look in
steps:

[Extra 0 typed at the end of who]

[Type #, (CTRL-H), or (BACKSPACE)]

Now you can press the (RETURN) key to have the command line exe­
cuted.

ERASING AN ENTIRE COMMAND LINE @

To erase the entire command li ne and start all over, use the at-sign (@)
in UNIX or (CTRL-U) in XENIX. Again, there may be a different key

2. Getting Started with UNIX 17

for this function on your system. Assuming it's @, here is another typical
correction:

$ fate

$ fate
date_

[You typed fate instead of date]

[
Press @ to erase the line. In most cases, you won'tj
actually see the line erasedj the cursor will simply
drop down to the next li ne

[Retype the line]

Now press the (RETURN) key to have the command line executed. In
this simple example, pressing the @ key to erase the line instead of pressing
(CTRL-H) four times to erase four characters separately saved you only
three keystrokes. However, on a long command line, it would save you many
more keystrokes.

RESTORING THE PROMPT

Sometimes, after you have started a process, the process hangs and the
UNIX shell prompt ($) does not return to the screen. If this happens,
press (DEL) to terminate the process and restore the prompt:

$ ",bo
[Press (DEL)-nothing will be displayed]

$

2.4 Process control

Once you have typed a command line correctly, there are several things
you can do to control the resulting process: you can run the process in the
background, request a list of processes currently running, abort a process,
or halt screen output from a process.

RUNNING A PROCESS IN THE BACKGROUND &

Once you execute a command, the shell usually waits for the process to
complete, then displays another shell prompt. This is called foreground
processing. Unless you instruct UNIX otherwise, any process that you ini­
tiate will run in the foreground by default. That is, the process will tie
up your terminal while it is running, making it impossible for you to do
anything else with UNIX until the process is complete.

By instructing UNIX to run a process in the background, you can free
your terminal and proceed to another task immediately. To run a process
in the background, type an ampersand (&) at the end of the command li ne

18 Process control

before pressing (RETURN). (The & is (SHIFT) 7 on most keyboards.)
Background processing is usually most suitable for commands that take
a long time to execute. For example, to suspend processing. for an hour
(sleep 3600), type this:

$ sleep 3600 &

2167
$

UNIX will respond by displaying a process identification number (pm)
and then reissuing another shell prompt. With the program running in the
background and the shell prompt on the screen, you are now free to enter
another command line (which may be another background process), without
having to wait for the execution of longtime to be completed. While back­
ground processing is convenient for certain tasks, there are disadvantages
to consider:

• A background process can't accept standard input.

• Any output from a background process to your screen will disrupt
whatever you are typing at that moment.

• You have less control over a background process than you have over
a foreground process .

• If you try to initiate too many background processes at once, you
may run the risk of overloading your system.

FINDING OUT WHAT PROCESSES ARE RUNNING ps

If you are running processes in the background, there is another UNIX
command to find out which ones are still running at a particular moment
and which have been completed. The ps (process status) command lists all
processes currently running, displaying for each process its assigned process
identification number (PID), the terminal on which it was initiated (TTY),
the amount of time it has been running (TIME), and something to indicate
the command line used to initiate it (COMMAND), as in this example:

$ ps
PID TTY TIME COMMAND

1905 12 1: 16 -sh
2132 12 2:18 ed
2167 12 4:02 -sh
2218 12 0:58 ps

$ -

2. Getting Started with UNIX 19

ABORTING A PROCESS
eDEL)
kill

Sometimes it may be necessary to terminate a process before it has been
completed. To abort a foreground process, press the CDEL) key (or
C CTRL-C »). To abort a background process, use the kill command. Type
kill, followed by the PID for the process you are terminating. For example,
to abort the execution of sleep 3600 described above, you could use

$ kill 2167
2167: terminated [UNIX responds with a message]
$

As long as you know the PID's, you can abort more than one process
with a single command line:

$ kill 2132 2167
2132 2167: terminated
$

Some systems allow you to issue a kill to terminate alt pro ces ses initiated
from your terminal. However, since such a command can also log you out
of the system, it's usually best not to try it-at least not now.

HALTING SCREEN OUTPUT (CTRL-S)

At times you will find that a screen display is scrolling up the screen faster
than you can read it. To halt the scrolling temporarily, press (CTRL-S)
to make the display pause. Then, after you've had a chance to read the
display, you can press (CTRL-Q) to resurne scrolling.

2.5 U sing the calculators

UNIX provides a calculator (and a preprocessor for that calculator) that
you can use right at your terminal.

U SING THE DESK CALCULATOR dc

Use the dc command to call up a simple interactive desk calculator. Here
is a typical session with dc, with comments to the right of each line:

$ da

3

4

+

CaU up the desk calculator
Enter 3
Enter 4

Perform addition

20 Using the ealculators

p Display the result

7
3+p

10
4*p

40
2/p

20
5-p

15
q

$

Add 3 and display the result

Multiply by 4 and display the result

Divide by 2 and display the result

Subtraet 5 and display the result

Exit the desk ealculator

Other features include number bases, scaling, functions, subscripts, and
logical contro\. For further details, see the UNIX User's Manual.

USING THE HIGH-PRECISION CALCULATOR bc

UNIX offers another calculator called bc that allows unlimited precision,
conversion of numbers from one base to another, a range of 0-99 places
after the decimal point, variables, functions, arrays, and comments. Here
is a typical session with bc:

$ bc

14 + 23

37
34 - 53
-19
8 * 9
72
72 / 12

6
sqrt (81)

9
scale = 10

z = sqrt (15)

z

3.8729833462

Call up the high-preeision ealculator

Add two numbers together-no equal sign

Subtraet a larger number from a sm aller

Multiply two numbers together

Divide a number by another-even quotient

Take the square root of a number-exaet root

Request ten plaees after the deeimal point

Assign a value to the variable z

Request the value of z (to ten plaees)

define s (a, b) { Define a funetion ealled s

}

auto c
c=a+b

return (c)

x = sqrt(53)

y sqrt (31)

with automatie variable c

that adds two arguments a and band

returns the sum as the value of the funetion

ended with a closing braee

Assign the square root of 53 to variable x

Assign the square root of 31 to variable y

s (x, y)

12.8478742520
quit

$

2. Getting Started with UNIX 21

Compute the sum of x and y

Leave bc and return to the UNIX shell

For those with a little more background in programming and mathemat­
ics, here are a few additional features of be:

$ bc

obase 16

65536

10000
ibase = 8

377

FF
ibase =A

obase =A

define f (n)

auto i,j

{

Call up the calculator again

Change the output base to hexadecimal

Convert 65,536 from decimal to hexadecimal

Change the input base to octal

Convert 377 from octal to hexadecimal

Change the input base back to decimal

Change the output base back to decimal

Define function f (the factorial function)

with automatic variables i and j

j = 1 with j initially set to 1 and i stepped

for (i=l; i<=n; i++) \ from 1 to n in increments of 1

j = j * i assigning j the product of itself by i

return (j) and returning j as the value of the function

} ending the function with a closing bracket

f (20) Request the value of 20 factorial (20!)
2432902008176640000
quit

$

Leave bc and return to the UNIX shell prompt

Note the continued line in the factorial function. This li ne was broken,
using a backslash (\), only to save space. On YOur own system you would
probably type the entire for statement on a single line. But as this example
shows, you always have the option in UNIX of splitting a long line of input.

By entering be -I at the command line instead of be, you can also invoke
a mathematicallibrary, which includes sine (s), eosine (c), arctangent (a),
exponential (e), naturallogarithm (1), and Bessel (j (n, x)) functions. By
entering be file(s) instead of be, you can have be read statements from
one or more files before accepting keyboard input. This allows you to store
longer functions in files instead of having to type them over again every
time you want to use them.

DISPLA YING THE CALENDAR

Another kind of calculator called eal allows you to display any month or
year from 1-9999 A.D. For example, he re is a calendar for 1987:

22 Using the calculators

$ cal 1987

Jan
S M Tu W Th F S

2 3
5 7 9 10

11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30 31

Apr
S M Tu W Th F S

123 4
5 7 8 10 11

12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30

Jul
S M Tu W Th F S

1 2 3 4
5 6 8 9 10 11

12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31

Oct
S M Tu W Th F S

123
8 9 10

11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30 31

1987

Feb
S M Tu W Th

2 3 4 5
10 11 12

F S
6 7

13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28

May
S M Tu W Th F S

1 2
3 7 8

10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30
31

Aug
S M Tu W Th F S

2 3
9 10 11 12 13 14 15

16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 31

Nov
S M Tu W Th F S

2 3 5 6 7
10 11 12 13 14

15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30

Mar
S M Tu W Th F S

2 3 4 5 6
9 10 11 12 13 14

15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31

Jun
S M Tu W Th F S

1 2 3 4 5 6
8 9 10 11 12 13

14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30

S M Tu
1

6 8

Sep
W Th F S
234 5
9 10 11 12

13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30

Dec
S M Tu W Th F S

1 2 3 4
9 10 11 12

13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30 31

To display one month, type the corresponding number (1-12) between
cal and the year. For example, here is a calendar for January 1987:

$ cal 1 1987
January 1987

S M Tu W Th F S
123

4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30 31
$

2.6 Other aids

ON-LINE MANUAL man

If this feature is available on your system, you can execute the man com­
mand to displaya section of the UNIX User's Manual. Type man, then

2. Getting Started with UNIX 23

the name of a UNIX command. This will give you a description of the com­
mand and all of its options. For example, to see the section on who, you
could use

$ man ... ho

VISUAL SRELL (XENIX ONLY) vsh

For XENIX users, the visual shell offers aseries of screen displays to help
you get started with the basic features of the system quickly and easily. To
see the first display, type vsh and press (RETURN). Then the following
prompt will appear at the lower left-hand corner of the screen:

COMMAND: Copy Delete Edit Help Mail Name
Options Print Quit Run View Window

Select option or type command letter

Use the left and right arrow keys (+-- and -+) to select a file; use the space
bar, (TAB) key, or the first letter of the command to select a command;
then press (RETURN) twice to execute the command using the file that
you selected.

2.7 Summary

In this chapter you learned some basic things about UNIX: preliminary
set-up procedures, logging in and logging out, and running processes.

PRELIMINARY SET-UP PROCEDURES

Before you can begin using UNIX, you have to have an identifier, a pass­
word, and a terminal, which will be assigned to you by the system admin­
istrator for your system.

LOGGING IN AND LOGGING OUT

To log in to a UNIX system, establish connection with the computer, type
your identifier, and type your password. To log out, type (CTRL-D) (pos­
sibly more than once) or type logout and press (RETURN). To change
your password, use the passwd command.

EDITING A COMMAND LINE

To begin a process under UNIX, type a command li ne and press (RETURN).
The command line may contain either just the command by itself or the

24 Summary

command plus modifiers. To erase a single character on a command line,
use C CTRL-H) (or possibly CBACKSPACE »). To erase an entire command
line and start over again, use the at-sign (@) for UNIX or C CTRL-U) for
XENIX. To restore the shell prompt after running a process, press C DEU
(or (CTRL-C »).

PROCESS CONTROL

To run a process in the background, type an ampersand (&) at the end
of the command line. To find out what processes are running on UNIX at
a particular moment, use the ps (process status) command. The system
will respond with a list of processes that shows the process identification
number, the terminal on which it was initiated, the amount of time it has
been running, and the command li ne itself.

To abort a process running in the foreground, use the (DEL) key. To
abort a process running in the background, use the kill command, along
with the process identification number. To halt a rapidly moving screen
display, press (CTRL-s); to resume scrolling, press (CTRL-Q).

U SING THE CALCULATORS

To use the desk calculator, enter the dc command and enter "computa­
tionallines," with operations following the operands. Use the q command
to exit. To use the high-precision calculator, enter the bc command and
enter statements. Use quit to exit. To display any year 1-9999 A.D., use
the cal command followed by the year; to displaya month, type a number
1-12 between cal and the year.

OTHER AIDS

To displaya section of the UNIX User's Manual at your terminal, execute
the man command. Type man, followed by the name of the command you
wish described, then press (RETURN). XENIX users can begin using the
system quickly via screen displays and prompts with the aid of the visual
shell. Type vsh and press (RETURN) to begin. A full-screen display will
help you select a command and file to work with.

3

The UNIX File System

3.1 What is a file system?

If you have used any kind of library, then you are already familiar with
the concept of a filing system. A library offers you books kept on shelves,
together with a directory that you can use to locate a particular book. In a
library, the directory is called a card catalogue. Usually placed in an open
area that is easy to find, the card catalogue gives you the location of each
book in the library, together with brief information about the book.

Every operating system has a file system that resembles a library's fil­
ing system. In an operating system, the items stored are files, not books.
Computer files can store text, data, graphics information, programs, and
also directories to catalogue the other files. Each item in a typical direc­
tory provides a file's name, location, size, type, and possibly information
ab out the file's accessibility to users. (In UNIX, only the file's name is in
the directory itself; the rest of the information is kept somewhere else. But
this introductory chapter is not the place to discuss that.)

If you have been using one of the common operating systems for micro­
computers, then you may have been using an unstructured file system. In
an unstructured file system, there is one large directory to catalogue files,
with all files named in this one directory. With no structure to relate the
files in any particular way, the directory simply lists the files directly.

3.2 A structured file system

In the UNIX file system, there are many directories, not just one. Fur­
thermore, there is a clearly defined structure that places some directories
within other directories and that may place different kinds of files in differ­
ent directories. As a user of a UNIX system, you have your own personal
directory, whose name is identical to the identifier that you type when
you log in. Your directory, like other directories, may contain both files
and other directories, allowing you to store related files together. Before
we begin to discuss specific directories and files, there is one more point
to consider: UNIX regards peripheral devices like terminals, printers, and

26 A structured file system

disk drives as files. The procedure for accessing one of these devices is the
same as the procedure for accessing any other file in the system.

A directory caIled usr contains the directories of aIl users of the UNIX
system. (On very large systems, there may be several user directories, with
names like usr1 , usr2, or some other variation.) Your directory is known as
your home directory. This is the directory that the system administrator
assigns to you, the directory in which you begin working whenever you log
in. Within this directory, you can create as many subdirectories as you need
to organize your work. You can create one directory for your text files, one
directory for your program files, one directory for your messages, and so
on. Some of the other directories on a typical UNIX system are as foIlows:

• bin-contains the system's binary files, also known as executable ob­
ject code files (most commands reside here)

• dev-contains the files representing the system's devices (terminals,
printers, disk drives, and so on)

• tmp-contains the system's temporary storage files

• etc-contains misceIlaneous files that are primarily used for system
administration

These five major directories aIl belong to a primal directory caIled the
root directory (or simply the root), forming the main branches of a tree.
It is customary to depict this tree upside down, with the root at the top
and the branches pointing downward. Part of a simple UNIX file system is
shown in Figure 3.1, with horne directories for users Dan, Robin, and Ann.

UNIX, then, has a structured file system that contains three kinds of
files: directories, which store the names of other files (including other di­
rectories); ordinary files, which store text, source programs, and object
code; and special files, which correspond to peripheral devices. In the rest
of this chapter, we'Il discuss how directories and files are named, how to use
pattern-matching characters to select files, how to work with files, how to
work with directories, and how to grant or deny access to your directories
and files.

N AMING DIRECTORIES AND FILES

The root directory is identified by a single character: slash (/). To name one
of the major directories directly under root, type a slash (I) to represent
root, foIlowed by the directory's own name, as in /USr. The slash in front
of usr teIls you that usr is a subdirectory of root. Referring to Figure 3.1,
here is how you would identify root and the major directories:

/ root directory

3. The UNIX File System 27

FIGURE 3.1. Part of a typical UNIX file system.

root

bin ete usr dev tmp

dan robin ann

text eprogs letters projeet.a projeet.b projeet.e

/usr user directory
/bin binary directory
/dev device directory
/etc misceUaneous directory
/tmp temporary directory

To identify one of the user home directories, type another slash after
/usr, foUowed by the account name, as in /usr/dan and /usr/ann. In each
case here, the first slash refers to the root, while the second indicates that
dan and ann are subdirectories of usr. (In UNIX terminology, usr is the
parent directory, while dan and ann are subdirectories.)

To identify the subdirectories under dan and ann, we continue with the
same conventions. We can identify Dan's text directory as /usr/dan/text
and Ann's project.a directory as /usr/ann/project.a. Referring again to Fig­
ure 3.1, here is how you would identify aU their directories:

/usr/dan/text
/usr/dan/c_progs
/usr/dan/letters

/usr/ann/project.a
/usr/ann/project.b
/usr/ann/project.c

Now suppose Dan has three C programs caUed enter.c, files.c, and proc.c
and Ann has three files under project.b caUed intro, search, and restore.
Then we could depict these files as shown in Figure 3.2.

To identify these six files, you could give their fuU pathnames:

/usr/dan/c_progs/enter.c
/usr/dan/c_progs/files.c
/usr/dan/c_progs/proc.c

/usr/ann/project.b/intro
/usr/ann/project.b/search
/usr/ann/project.b/restore

28 A structured file system

FIGURE 3.2. User files in a UNIX file system.

dan ann

text c progs letters project.a project.b project.c

enter.C files.c proc.c intro search restore

Ann (and other users) would have to use the names in the left-hand
column to refer to Dan's files; Dan (and other users) would have to use the
names in the right-hand column to refer to Ann's files. However, when Dan
and Ann refer to their own files in their own directories, they can use these
shorter names (partial pathnames):

c_progs/enter.c
c_progs/files.c
c_progs/proc.c

project.b/intro
project. b/search
project.b/restore

Later in this chapter, we'll you show how to move around the file system
from one directory to another (change directories). If Dan should move from
his own horne directory to Ann's, then he could use the shorter names that
Ann uses when she is working from her own horne directory; if Ann should
move from her own horne directory to Dan's, then she could use the shorter
names that Dan uses when he is working from his own home directory.

Furthermore, if Dan should move from his home directory to his own
subdirectory c_progs and Ann should move from her horne directory to
her own subdirectory project.b, then they can use even shorter names for
their files:

enter.c intro
files.c search
proc.c restore

RULES FOR NAMING AND ACCESSING FILES

The rules for naming and accessing files (including directories) are closely
related to the structure of the UNIX file system:

• The root directory is identified by a slash (/) .

• A simple filename can be any combination of 1-14 characters other
than slashes (I), asterisks (*), question marks (?), quotation marks ("
or '), square brackets ([or j), or control characters.

3. The UNIX File System 29

• A pathname is a sequence of directory names, possibly followed by a
simple filename, with each pair of names separated by a slash (/).

To avoid misinterpretation, the safest characters to use for simple file­
names are letters of the alphabet, numbers, periods (.), hyphens (-), and
underlines (_). Note: In UNIX, upper and lower case letters are not the
same (e.g., newfile is not the same as NEWFILE).

The directory permanently assigned to you is called your home directory;
this is the directory to which you log on. Any directory to which you may
move after logging on (including your home directory) will be called your
current directory, or working directory, for as long as you remain in that
directory. The directory in which your current directory resides at any
moment is called your parent directory. UNIX provides shorthand symbols
to indicate your current directory (.) and your parent directory (..).

If a pathname used to access a file begins with a slash (I), then the
search for the file begins at the root directory. Such a pathname is called
an absolute pathname (or Jull pathname), since it always begins with the
root directory. If a pathname begins with a simple filename, then the search
for the file begins at your current directory. Such a pathname is called a
relative pathname, since the file is accessed with respect to your current
directory.

Later in this chapter we'll discuss procedures for giving other users per­
mission to access to your directories and files. It goes without saying that
you can access only those directories and files for which you have permis­
sion.

3.3 Working with directories

This section shows you how to work with UNIX directories using six com­
mon commands.

DISPLAYING THE CONTENTS OF A DIRECTORY Is

To sort and display the names of all the directories and files that reside in
your current directory, use the Is command, as illustrated here:

$ 18
file.l
file.2
letters
memos
specs
$

30 Working with directories

This doesn't show which names refer to files and which refer to directo­
ries. However, there is another form of this command that you can use to
distinguish files from directories (and also to displayalot of other infor­
mation). Just add the -I ("hyphen el" or "minus el") option to get a more
detailed long listing, as shown here:

$ ls -1
total 501
-rw-r----- 1 robin 108 Apr 5 14:33 file .1
-rw-r----- 1 robin 123 Apr 9 09:17 file.2
drwx--x--- 2 robin 301 Mar 27 08:04 letters
drwx--x--- 1 robin 87 Mar 15 13:42 memos
drwx--x--- 2 robin 428 Mar 11 15:31 specs
$

We'll discuss this listing in greater detail in the next section. Here is a quick
summary of the information given for each file or directory:

• Type of file: ordinary (-) or directory (d)

• Permissions, discussed in the next section

• Number of links in the file system to other users

• Owner, or creator, of the file

• Size of the file in bytes (characters)

• Date and time of last modification of the file

• Name of the file

CHAN GING YOUR WORKING DIRECTORY cd

To change your working directory (that is, to move to another directory),
use the cd (change directory) command, as in

$ cd lusrlharo1d
$

If you have been given access, you can now operate within Harold's horne
directory. To return to your horne directory from any other directory, use
the cd command without a name following, as shown here:

$ cd
$

3. The UNIX File System 31

DETERMINING YOUR WORKING DIRECTORY pwd
To find out the name of your current working directory at any moment,
use the pwd (print working directory) command, as in

$ pwd
/usr/robin
$

CREATING A NEW DIRECTORY mkdir
To create a new subdirectory within your current working directory, use
the mkdir (make directory) command, as in

$ mkdir messages
$

This command will create a new subdirectory called messages. In setting
up your horne directory, try to find the right balance between too few
subdirectories and too many. With too few, you fail to take advantage of
the structure of the UNIX file system; with too many, you create a maze for
yourself. Somewhere between five and fifteen main subdirectories is usually
optimal, but there may be exceptions.

REMOVING AN EXISTING DIRECTORY rmdir
To remove an existing directory from your working directory, move to the
target directory, delete all its files, move back to the parent directory, and
then use the rmdir (remove directory) command. For example, suppose
you would like to delete a directory called useless. You could follow the
procedure illustrated here:

$ cd /usr/useless [Move to directory useless]

$ pwd [Make sure you are in the right directory]
/usr/useless
$ rm -i * [Delete all files in useless]
letter: ?
introd: ?
memo 3: ?
$ cd ..
$ rmdir useless

$

[Move to the parent directory]
[Delete directory useless--now empty]
[The directory and its files are gone]

If you try to remove a directory that is not empty, you will see a warning
displayed. On many systems you may be able to use one of the following
shorter methods instead of the above:

32 Working with directories

$ rm /usr/useless/*
$ rmdir /usr/useless

$

[Delete all files in directory useless]
[Delete directory useless]

$ rm -r /usr/useless
$

[Delete files in useless, then delete directory]
useless itself

RENAMING A DIRECTORY mv

To change the name of a directory, use the mv (move) command. For
example, to change the name of a directory from old.name to new.name,
use this command:

$ mv old.name new.name
$

3.4 Working with files

Whether you are composing letters, performing calculations, or writing
programs, you spend much of your time on a computer dealing with files.
It's always helpful to know how to display, combine, copy, and otherwise
manipulate files. In this section we discuss such ways of working with UNIX
files.

DISPLAYING THE CONTENTS OF A FILE cat
To display the contents of any file , use the cat (concatenate) command.
The cat command simply displays the contents of a file (or several files)
on the screen, as in this example:

$ cat file.3
This is a very short file
that contains two lines.
$

COMBINING FILES

$ cat file.l file.2
This is file.l
This is file.2
$

cat

Another function of the cat command is to combine, or concatenate, files
with the result usually stored in another file. In this example

$ cat file.l file.2 > file.3
$

the contents of files file.1 and file.2 are concatenated and stored as a single
file called file.3. In using the cat command, avoid storing the result of a

3. The UNIX File System 33

concatenation in one of the original files, since this will cause the original
file to be overwritten. For example, in the command

$ cat :file.1 :file. 2 > :file. 1 [No good-don't do this!]
$

file.1 simply becomes file.2, which is not at all the intended result.

RENAMING A FILE mv
You can use the mv (move) command either to rename a file or to move it
from one directory to another. To change the name of a file, enter a pair of
commands like this:

$ cat new.name
cat: cannot open new.name
$ mv old.name new.name
$

The mv command will change the file's name from old.name to new.name
(you can then no longer access old.file). The cat command is used to make
sure that new.name isn't al ready the name of another file. If it is, that file
will be replaced and lost.

MOVING A FILE mv
To move a file (or several files) from one directory to another (without
changing their names), give the name of the new directory last on the
command line, as in

$ mv :file.3 :file. 4 text
$

This command, executed from the parent directory, will move file.3 and
file.4 from your current directory to a subdirectory called text. You can
verify this with the Is command:

$ ls text
file.3
file.4
$

You can also rename a file during a move by using a partial pathname.
For example, to move file.3 to subdirectory text and rename it entries, you
could use this:

$ mv :file.3 text/entries
$

34 Working with files

COPYING A FILE cp
To make a duplicate copy of a file, use the cp (copy) command illustrated
here:

$ cp file.one FILE.OHE
$

This command will make a copy of file.one called FILE.ONE, so that the
same file is now accessible by either name. (A reminder to users of other
operating systems: In UNIX, file.one and FILE.ONE are different names.)

To copy a file (or several files) from one directory to another, use the Cp
command from the directory that contains the files, as shown here:

$ cp letter-a letter-b letter-c correspondence
$

This command will copy letter-a, letter-b, and letter-c from the current
directory to a subdirectory called correspondence.

You can also rename a file as you copy it. For example, to copy letter-c
to correspondence and rename it Itr.04-16-85, you could use this:

$ cp letter-c correspondence/ltr.04-16-85
$

DELETING A FILE rm
To delete a file (or several files), use the rm (remove) command, as shown
here:

$ r.m intro.l intro.2 intro.3
$

This form of the command will delete the files intro.1, intro.2, and intro.3
from the current directory immediately. If you would like to confirm before
proceeding to delete the files, add the -i (interactive) option:

$ r.m -i intro.l intro.2 intro.3
intro.l: ?
intro.2: ?
intro.3: ?
$

This is a convenience worth the extra moment it takes to confirm the
deletion. Once the files have been deleted, you can't recover them~unless
(1) another user has a link to these files or (2) they have been saved on a
back-up tape.

3. The UNIX File System 35

LINKING A FILE In

In UNIX, a given file may be known by more than one name. Furthermore,
the different names by which the same file is known may be used by different
users in different directories. Each name by which a file is known is called
a link to the file. Any changes that any user makes to the file will be in
effect for each name by which the file may be known.

For example, if Dan should execute the following In (link) command from
his subdirectory letters, then he will be able to access the file intro from his
own subdirectory letters, using the same name (intro):

$ cd letters
$ ln /usr/ann/project.b/intro intro
$

If Dan prefers another name for the file, he can give the preferred name
in the In command line. In the following example, Dan makes the same
link as in the previous example, but this time the file will become known
as discover to Dan (see Figure 3.3):

$ ln /usr/ann/project.b/intro discover
$ -

It is not possible to link a directory to another directory or to link a file
in a different file system. To remove a link, use the rm command.

FIGURE 3.3. Linking file intro.

dan ann

text project.b project.c

enter.C search restore

MATCHING A CHARACTER ?
If you ever have to move, copy, or delete a large number of files, you can
save time and keystrokes by using one of the UNIX wild card characters
für matching filenames. There are three varieties, and they generally have
the same meanings throughout UNIX.

36 Working with files

To match any single character in a filename, you can use a question mark
(?) in the desired position in the filename. For example, to delete existing
files intro.1, intro.2, and intro.3, as in the example above, you could use a
command like this:

$ rm intro.?
$

If these are the only existing files with names that begin with intro. and end
with a single character, then this command is equivalent to the command
shown in the preceding section, "Deleting a File," p. 34).

If letter-a, letter-b, and letter-c are the only existing files with names
that begin with letter- and end with a single character, you can use the
command

$ cp letter-? correspondence
$

to copyall three of them to directory correspondence.
In each example above, we have spoken of "existing files." You can never

use a wild card character, such as "? ," to refer to a file that does not yet
exist.

MATCHING SPECIFIC CHARACTERS []
To narrow the selection process to a specific set of characters and then
match one of these characters in a filename, enelose the desired characters
within square brackets in the appropriate position in the filename. For
example, suppose you have files in your working directory with these names:

writer.O writer.3
writer.1 writerA
writer.2 writer.5

writer.6
writer.7
writer.8

writer.9
writer.10
writer.11

To delete writer.5, writer.7, and writer.9, you could use the following com­
mand:

$ rm writer.[579]
$

The three numbers inside the brackets let you select the three files desired.
You can also give a range of letters or numbers in brackets. For exam­

pIe, to delete writer.1, writer.2, writer.3, and writerA, you could use this
command:

$ rm writer.[l-4]
$

3. The UNIX File System 37

MATCHING ANY NUMBER OF CHARACTERS *
To match any number of characters in a filename, you can use the asterisk
(*) in the desired position in the filename. (To match the entire name, use
the asterisk alone.) For example, suppose you have the following files in
your working directory:

info.a
info.b

info.ab info.abc
info.23 info.new

info.test
info.old

Then you could change to the parent directory and use the following com­
mand to move all of these files from directory obsolete to a subdirectory
called information.

$ mv obsolete/info. * information
$

To use another example, suppose you have four C programs in subdirec­
tory text:

enter.memo
F_327.c

files.dept wide_col.c news.ltr
CLfile.text new_compare.c geLnumber.c

You could use a command like this to copy all of the files that end in .c to
a subdirectory called C_programs:

$ cp text/*.c C-programs
$

Be very careful when you use the asterisk (*), especially in a rm com­
mand. If you don't type the command exactly right, you may delete files
unintentionally.

3.5 File and directory permissions

As noted in Chapter 2, UNIX allows you to access other directories and
files in the system, but only if you have permission from the owners of
those directories and files. This section deals with the UNIX system of
permissions, which apply to individual owners, groups of users, and other
users.

DETERMINING PERMISSIONS Is -I

To determine the permissions associated with a given file or directory, use
the 18 -I command described in the previous section. The permissions are
indicated by the nine characters that follow the first character:

38 File and directory permissions

$ 18 -1
total 501
-rw-r----- 1 robin 108 Apr 5 14:33 file .1
-rw-r----- 1 robin 123 Apr 9 09:17 file.2
drwxr-x--- 1 robin 87 Mar 15 13:42 memos
drwxr-xr-- 2 robin 301 Mar 27 08:04 letters
drw-rw-rw- 1 robin 216 Mar 3 11: 56 proposals
drw-r--r-- 2 robin 428 Mar 11 15:31 specs

The first character, as noted before, indicates the type of file:

ordinary file
d directory

The remaining ni ne characters represent three sets of three characters:
one set for the individual user, one for the user's working group (if any),
and one for all other users. If we take the display in the example and spread
out the characters to show the groupings, we get something like this:

Type User Group Others
- (file) r w - r file.l
- (file) r w - r file.2
- (file) r w x r - x memos
- (file) r w - r - x r - - letters
d (directory) r w - r w - r w - proposals
d (directory) r w - r r specs

In each of these three groups of characters, there is one permission for
reading, one for writing, and one for executing. Reading, writing, and exe­
cuting have different meanings for ordinary files and directories:

For an ordinary file, permissions are defined as follows:

• read permission means you may look at the contents of the file

• write permission me ans you may change the contents of the file

• execute permission means you may type the name of the file m a
command line as if the file were a UNIX command.

For a directory, permissions are defined as follows:

• read permission means you may see the names of the files m the
directory

• write permission means you may add files to and remove files from
the directory

• execute permission means you may change to the directory, search
the directory, and copy files from it

3. The UNIX File System 39

The characters used to represent these permissions are as follows:

r read permission
x execute permission

w write permission
permission denied

Putting this all together, here are the ni ne characters for directory memos
in the display above:

Owner Group Others File
rwx r-x memos

This shows that the owner of memos has permission to read (r), write (w),
and execute (x); members of the owner's group have permission to read (r)
and execute (x), but not to write (-); and all other users are denied access
of any kind (- - -).

Here are the nine characters for file.1:

Owner Group Others File
r w - r - - file.1

This shows that the owner of file.1 has permission to read (r) and write (w),
but not to execute (-); members of the file's working group have permission
only to read (r), but not to write (-) or execute (-); and all other users
are denied access of any kind (- - -).

CHANGING PERMISSIONS chmod
You can make changes to permissions by entering a chmod (change [access]
mode) command. The chmod command allows the owner of the file to add
to (+) or remove from (-) existing permissions. It also allows the owner
to clear existing permissions and assign all permissions from scratch; this
is known as assigning permissions absolutely (=). The chmod command
affects any of the three types of access for any of the three categories of
UNIX users, using one-Ietter symbols in the following order (left to right):

U owner (user)
add permission to read + r

9 File's group
remove permission w to write

0 all others
all (default) = absolute permission X to execute a

For example, suppose you wanted to grant perm iss ion to write for mem­
bers of your working group and perm iss ion to read and write for all other
UNIX users for file.1. You could use these expressions in a chmod com­
mand:

g+w,
o+rw

Add permission (+) to write (w) to your working group (g);
and add permission (+) to read (r) and write (w) to all other
users (0)

40 File and directory permissions

Then, using the 15 -I eommand to display before and after, you eould ineor­
porate these express ions into a chmod eommand, as shown in the following
sequenee. Note: You must type the eommand line for chmod exaetly as
shown, with a eomma between g+w and o+rw and no spaees surrounding
the eomma.

$ ls -1 file.1
-rw-r----- 1 robin 108 Apr 5 14:33 file .1
$ chmod g+w,o+rw file.1
$ ls -1 file.1
-rw-rw-rw- 1 robin 108 Apr 5 14:33 fi1e.1
$

To remove permissions eurrently in effeet, simply use a minus sign (-) in
plaee of a plus sign (+), and then form a chmod eommand in the same
way. For example, suppose you wanted to remove permission to write for
members of your working group and permission to read and write for all
other UNIX users for file.1 (that is, revoke the permissions granted in the
previous example). You eould use these expressions in a chmod eommand:
g-w Remove permission (-) to write (w) to your working group (g) o-rw
Remove permission (-) to read (r) and write (w) to all other users (0)

Then, using the 15 -I eommand to display before and after, you eould
ineorporate these expressions into a chmod eommand, as shown in the
following sequenee:

$ ls -1 file.1
-rw-rw-rw- 1 robin 108 Apr 5 14:33 file .1
$ chmod g-w,o-rw file.1
$ ls -1 file.1
-rw-r----- 1 robin 108 Apr 5 14:33 file.1
$

To clear permlsslOns eurrently in effect and assign permlsslOns from
serateh, use an equal sign (=) to form the chmod eommand. The eom­
mand in the following example aehieves the same result as the one in the
previous example:

$ ls -1 file. 1
-rw-rw-rw- 1 robin 108 Apr 5 14:33 file. 1
$ chmod u=rw,g=r file.1
$ ls -1 file. 1
-rw-r----- 1 robin 108 Apr 5 14:33 file.1
$

Caution: It's possible for you to loek yourself out of one of your own
files with chmod. Be eareful when you type it.

3. The UNIX File System 41

3.6 Summary

After abrief introduction to file systems, this chapter discusses the struc­
ture of the UNIX file system, followed by basic procedures for working with
files, directories, and permissions. A computer file system may be compared
to the filing system used in a library, where the card catalogue roughly cor­
responds to a directoryand the books roughly correspond to files. In UNIX,
a directory is also a file itself.

UNIX has a structured file system, with a primal directory called root
at the top and at least five major directories branching out from the root
directory. Five major directories are usr (user), bin (binary), dev (devices),
tmp (temporary), and ete (miscellaneous). Each UNIX user has a home
directory in the usr directory (or in a user directory with another name).
The name for this horne directory is the same as the identifier with which
the user logs on. The user may create as many subdirectories in his or her
horne directory as necessary.

The full pathname of every file begins with root (I), then includes the
name of the major directory, followed by a subordinate directory, and so on,
down to the name of the file itself. The slash (I), the symbol that represents
the root directory, is also used to separate directory names and the simple
filename from each other. A simple filename consists of 1-14 characters
other than the following (and control characters): / * ? " , [1

After you log in to your horne directory, you can then move from one
directory to another, provided you have permission. Any directory from
which you are operating at a particular moment is known as your working
directory, or current directory. While a Jull pathname can be given frorn
any directory, you can also use a relative pathname-a pathname relative
to your current directory.

WORKING WITH DIRECTORIES

To display a sorted list of the names of all directories and files in your
current directory, use the 18 command (with -I for more details). To change
your working directory (that is, to move from one directory to another),
use the cd command, followed by the name of the new directory (no name
for your horne directory). To find out the name of your current working
directory, use the pwd command.

To create a new subdirectory within your working directory, use the
mkdir command. To remove an existing directory from your working di­
rectory, move to the target directory, delete all its files, move back to your
working directory, and then use the rmdir command. (You mayaiso be able
to use rmdir -r.) To change the name of a directory, use the mv command
with the new name last.

42 Summary

WORKING WITH FILES

To display the contents of a file, use either cat or more. To combine, or
concatenate, files, use the cat command with redirection of output to the
target file (». To rename a file, use the mv command, the old name, then
the new name. (Any existing file with the new name will be lost.) To move
a file (or files) from one directory to another, use the mv command, the
name(s) of the file(s), then the pathname of the new directory.

To make a copy of a file within the same directory, use the Cp command,
the old name, and the new name. To copy a file (or files) from one directory
to another, use the cp command, the name(s) of the file(s), and the name
of the directory. To delete a file (or files), use the rm command, followed
by the name(s) of the file(s). To link a file (that is, to attach a file to a
different directory), use the In command, giving the full pathname of the
file being linked and optionally giving the file a different name for use in
its new directory.

To match any single character in a filename, use a question mark (?)
in the desired position. To match one of a set of characters in a filename,
enclose the characters within square brackets ([l) at the desired location
in the string. To match any number of characters in a filename, use an
asterisk (*) in the desired position.

FILE AND DIRECTORY PERMISSIONS

To determine permissions associated with a file or directory, use the 18 ·1
command. The first character indicates whether the entry is an ordinary file
(-) or a directory (d). The next nine characters indicate whether permission
to read (r), write (w), or execute (x) has been granted to the owner, the
file's working group, or other users.

To change existing permissions for a directory or file, use the chmod
command, either adding (+) or removing (.) permission to read (r), write
(w), or execute (x) for the owner (u), the file's group (g), all other users (0),
or all users (a). To clear existing permissions and assign all permissions from
scratch, use chmod with the symbol for assigning permissions absolutely
(=).

4

U sing UNIX Commands

Now that you are familiar with the UNIX file system, you are ready to leam
more about UNIX commands. This chapter begins with a general discus­
si on of command lines; then covers methods of interacting between UNIX
processes; and concludes with descriptions of commands for displaying text
on the screen, processing text files, and using lineprinters.

4.1 Constructing a command line

COMMAND LINES IN GENERAL

In general, a command consists of three parts, although not every command
requires all three parts:

name of command options name(s) of file(s)
There isn't much to say ab out the command's name, except that most

UNIX commands have short names. Command options are usually desig­
nated by a hyphen (or minus sign), followed by a single letter (also called
a switch). Sometimes you can type more than one letter after a single mi­
nus sign (to indicate multiple options); sometimes you cannot. In a few
instances, command options are designated by plus signs instead of minus
signs. Many commands allow one or more input files to be named. (Output
files are generally, but not always, designated by an output option switch
like -0. Another method of designating an output file will be discussed
later in this chapter.) The various options and filenames that follow the
command are referred to, collectively, as arguments.

AN EXAMPLE

As an example, consider the 15 (list contents of directory) command, dis­
cussed in Chapter 3, "The UNIX File System." The UNIX Progmmmer's
Manual (or UNIX User's Manual) shows 21 possible options for this com­
mand, as follows (spread out here with headings added for easier reading):

Name
15

Command Options
[-RadCxmlnogrtucpFbqi5f 1

File(s)
[name ...

44 Constructing a command li ne

The name of the command is Is (list). There are 22 different options-
21 switches plus no switch-you can use: -I (long format), -t (time of last
modification), -a (all entries), -s (give size), -d (name only for directories),
-r (reverse order), and so on (some of the others are unsuitable for this
discussion). The brackets (which are not to be typed on a command line)
indicate that all option switches are optional, never required. The compres­
sion of the 21 letters into a single word indicates that more than one letter
can be typed after a single minus sign. (Don't bother trying to learn how to
pronounce "RadCxmlnogrtucpFbqisf.") In the case of this command, some
options turn off other options. Finally, the word name, followed by ellipses,
indicates that you can type at least one directory name after the options.

Given this information, here are a few of the command lines that can be
constructed with the Is command:

$ ls

$ ls -1 ..

$ ls -als /usr/paul

$ ls -a fete /bin

List the contents of the current directory

List the contents of the parent directory (long
listing)
List an entries (long listing), giving file sizes,
of the contents of fusrfpaul

List an entries in fete, then an entries in fbin

We won't go into all 21 of the options in detail here. However, here
are a few more of interest: -e (multi-column, sorted down); -x (multi­
column, sorted across); -t (sort by time of last modification); -u (sort by
time oflast access); -F (mark directories with /, executable files with *); -p
(mark directories with /); -R (list subdirectories recursively); -q (replace
nongraphic characters with ?).

4.2 Redirection of input and output

The entire operation of a computer can be summed up in three phases:

• Input-the user supplies a computer pro gram with information to
process

• Processing-the computer program performs a set of functions on the
information received from the user

• Output-the computer program returns the results of processing to
the user

Although most of this takes place electronically, the basic procedure is
similar to stepping up to a window in a bank to make a deposit. You hand

4. Using UNIX Commands 45

the teller an endorsed check with a deposit slip (input); the teller makes
arecord of the deposit and stamps a receipt (processing); then the teller
hands you the stamped receipt to keep for your records (output).

When you deal with your computer through UNIX, it is common for
you to submit input via your terminal's keyboard and to receive output
via your terminal's video screen. In fact, UNIX regards your keyboard as
its standard input and your screen as its standard output. For example,
UNIX will ordinarily assurne that the command date will be typed at your
keyboard and that the information requested by date (date, day of the
week, hour, minute, and second) is be be displayed on your screen.

However, with most UNIX commands, you can at any time instruct
UNIX to redirect the input or output of a command. For example, you
can have UNIX receive input from a file instead of from the keyboard. Or
you can have UNIX send output to a line printer instead of to the screen.
(Keep in mind that UNIX regards peripheral devices like line printers as
files.) The symbols used in a command line to request redirection are the
less than sign «) and the greater than sign (» ((SHIFT) comma and
(SHIFT) period, respectively, on most keyboards). You can think of these
symbols as arrowheads pointing in the direction of the flow of information.

REDIRECTION OF INPUT

As an example, UNIX has a mail command that takes the text that you
supply as input and places it in the directory of each user you name after
mail in a command line. One way to send a letter to Mary, John, Sandy,
and Paul would be to type the following after the UNIX shell prompt and
then type the letter at your keyboard:

$ mail mary john sandy paul

Suppose you use the screeen editor vi (Part II) to write your letter and
then store the text in a file named letter_5. You could then send this letter
to these same users on your UNIX system using themail command with
redirection of input. Then, to send your letter to Mary, John, Sandy, and
Paul, you could type the following after the UNIX shell prompt and press
(RETURN):

$ mail mary john sandy paul < letter_S

The direction oft he arrowhead tells you that letter_5 is the input file, which
is taking the place of your keyboard.

46 Redirection of input and output

REDIRECTION OF OUTPUT

Just as you can use the input symbol «) to redirect input, you can also
use the output symbol (» to redirect output. For example, the command
line

$ ls

will list all the files in your directory on your screen. UNIX also allows you
to modify the command line

$ ls > files

to redirect the output of Is from your screen to a file named files. If files
does not exist when you issue the Is command, it will be created by the
shell; if files does already exist, its contents will be overwritten.

A common use of redirection of output is the joining together, or con­
catenation of several files, using the UNIX cat command. To concatenate
files file_ 1, file_2, and file_3 and store the resulting text in another file
called append, type the following after the UNIX shell prompt and press
(RETURN):

Then, to concatenate three more files and add the resulting text to ap­
pend, rat her than overwrite it, use another redirection symbol (»). For
example, to concatenate file_4, file_5, and file_6 and add the resulting
text to append, type the following after the UNIX shell prompt and press
(RETURN):

If the file doesn't exist, > >, like >, causes the shell to create a new
file; but if the file already exists, > > always adds to the end of it, never
overwriting it.

4.3 Pipelines

As noted in the previous section, UNIX regards the keyboard as the stan­
dard input and the video screen as the standard output for most commands
being executed, or processes. In addition to redirection, there is another
way to alter the standard way of dealing with input and output: UNIX
can connect two pro ces ses with a pipe (or pipeline), so that the output of
one process becomes the input for another. The symbol for a pipe is the

4. Using UNIX Commands 47

vertical bar (I), which is usually placed in different locations on different
keyboards.

Without pipes, if you wanted to use the output of one process as the
input for another, you would have to go through a roundabout procedure.
For example, suppose you had three small text files called parLd, parLe,
and parLf. You would like to keep the files separate in UNIX, but when
you print them on the lineprinter, you would like to see all the text on one
page, rather than spread over three different pages. To accomplish this,
first concatenate the files and store them in a fourth file:

Then use this new file as input for the Ip command, which sends text to
the lineprinter:

$ lp temp _ file

Finally, use the rm (remove) command to delete the temporary file that
you used to store the combined files:

With a pipeline, you can connect cat and Ip directly, eliminating the
need for an intermediate file, like this:

$ cat part_d part_e part_f I lp

The pipe symbol (I) tells UNIX to take the output from cat, which oth­
erwise would have gone either to a file or to the screen, and use it as the
input for Ip. This will accomplish the desired result with one command
li ne instead of three: UNIX will concatenate the three files and send the
resulting text to the lineprinter to be printed.

Commands that appear in pipe statements may include all the usual
options and file designations. For example, the pr (print) command displays
text on the screen. (The reason that it's called print instead of display is
that the original terminals for UNIX were printing Teletype machines, not
video display terminals.) In its modified form, the command pr ·4 displays
text in four columns.

You can also set up multiple pipelines. For example, to have your files
printed in three columns on a lineprinter, rat her than displayed on the
screen (assuming you have more than 150 files in your directory), you could
enter a command like this:

$ 18 I pr -3 I lp

48 Pipelines

In this command line, Is provides the list of files, pr -3 formats the list in
three columns, and Ip prints the formatted list on the lineprinter.

Having at your disposal all the commands of UNIX, plus the pipeline
feature to connect them in various ways, is like sitting on the floor in front
of a box of tinker toys. You can construct all kinds of clever new commands
out of the existing commands. The combinations are endless. Here are a few
more examples, usingjust a handful of commands: the who command to list
all users currently logged on the system, the sort command to alphabetize
lines of text, the Is command to list your files, and the WC (word count)
command to count the number of lines, words, and characters in a file.

Purpose
To see a list of users in alphabetical order

Command Line
$ who I sort
$ who I wc
$ ls I wc

To see how many users are currently logged on
To see how many files are in your directory

Note that, because of the way different commands work, many conceiv­
able pipeline combinations are not possible to construct. For example, nei­
ther who nor Is could ever be on the receiving end of a pipe; these processes
gather their information from within the system, never from external in­
put. On the other hand, neither sort, WC, nor Ip could ever be on the
originating end of a pipe; these processes must receive input to be able to
function.

4.4 Displaying text on the screen

In Chapter 3 you learned that you can use the cat (concatenate) command
to display text on your screen. In this section you will learn more about
cat, and also learn about commands that you can also use to display text:
more, PQ, head, and tail.

ENTERING TEXT INTO A FILE cat
Using the concept of redirecting output, you can use the cat command to
perform simple text entry. All you have to do is redirect the output of cat
from the screen to a file. Then type the text, pressing (CTRL-D) after the
last line to indicate to cat that you have no more to type. In the following
example, we enter the text shown into a file called enter:

$ aat > enter
Here is a short message
to show what we aan do
with the aat aommand.

[Press (CTRL-D)-nothing will be displayed]
$

4. Using UNIX Commands 49

Now we can use cat without redirection to display the text we have just
entered:

$ aat enter
Here is a short message
to show what we can do
with the cat command.
$

If you are using a microcomputer with communications software as a
terminal to a UNIX system, you can also use the cat command in the way
just shown to capture text and store it on one of your own disk files. (This
is also called downloading data.) Just start the capture feature in your
communications program, log into UNIX, and execute a cat command like
the one just shown to display text on the screen.

To send text from your microcomputer to UNIX (that is, to upload it),
log into UNIX, move to the desired directory, and type a cat command li ne
that will redirect output to the desired file, like this:

$ aat > miaro.text

Then use the feature in your communications software that sends out the
contents of a disk file, which should also be displayed on your screen. After
all text has been sent, type (CTRL-D) to tell cat that you have no more
text.

When you upload text to UNIX in this way, you may end up with un­
desired double-spacing. If this happens, don't worry. There's a C program
presented in Chapter 15, "Programming with C," that can help you. With
a slight modification, this program will remove the unwanted blank lines
for you. (The slight modification is to change max from 2 to 1 in line 5.)

DISPLAYING TEXT A SeREEN AT A TIME
pg
more

Variations of the cat command, pg in UNIX and more in XENIX, also
display text on your screen, but instead of letting the text race past you,
pause after each screenful, displaying something like this on the bottom
line:

--More-- (6%)

Now you have the following four choices:

• Press the (RETURN) key to display one more li ne

• Press the space bar to see the next screenful

50 Displaying text on the screen

• Type Itext to search for text

• Press the (DEO key to exit.

DISPLAYING PART OF A FILE
head
tail

A pair of commands, head (XENIX) and tail (UNIX and XENIX), allow
you to display the beginning (or end) of a file. Unless you request other­
wise, the amount displayed will be ten lines. However, you can also request
another amount; with tail only, you can request an amount in characters
(C), lines (I), or blocks (b). (A block in System V is 1,024 characters.) For
example, to see only the last 17 characters of enter, you could use this:

$ tail -17c enter
the eat eommand.
$

4.5 More on working with files

DETERMINING THE TYPE OF A FILE file
Sometimes we lose track of our files. We look at the directory and ask
ourselves, "What's enter? When did I create a file called enter?" Most
UNIX systems have a command called file that determines (or at least
tries to determine) the general type of a file, which may give you some
information ab out it very quickly. Here are three brief examples:

$ file enter
enter: English text

$ -

$ file ch.set_6
eh. set 6: aseii text
$

$ file FOCUS
FOCUS: eommands text

$ -

This is not an enormous amount of information about your file (and it
isn't always correct), but it's astart.

4. Using UNIX Commands 51

SORTING A FILE sort
Sorting allows you to put lines of text in order. It is probably the most
common form of text processing. For example, suppose you have used cat
to enter two files named fruits and animals with the contents shown:

$ eat > fruits
bananas
oranges
app1es
eherries
paars
(CTRL-D)
$

$ eat > animals
horses
eats
dogs
birds
1izards

C"-:C=T=R=L--D"""')
$

To sort these files and display the results, use the sort command:

$ sort fruits
app1es
bananas
eherries
oranges
pears
$

$ sort animals
birds
eats
dogs
horses
1izards
$

As mentioned earlier, you can also sort the list of system users and display
it on the screen this way:

$ who I sort
dave ttyll Feb 2 15:56
elaine tty04 Feb 3 09:58
manny tty07 Feb 3 08:05

$ -

The sort command will be described in detail in Chapter 13, "Searching
and Sorting."

DEALING WITH REPEATED LINES uniq
Let's take an extremely simple example of a common task that is often
necessary after you've sorted a list of items. Suppose that, for some strange
reason, you decide to keep a list of the different animals that show up in
your yard over aperiod of time. Of course, you keep this list in a file on
your UNIX system.

At the end of one eventful day, you rush to your terminal and add the
following to your animals file:

$ eat »animals [Remember, two symbols (> » to add text]
birds
raeeoons
dogs
birds

52 More on working with files

cats
[Press (CTRL-D)-nothing will be displayed]

$

Now comes the moment you've been waiting for: it's time to sort yoUf
list. Use the sort command, and get the list on the left. If you don't want
all those repeated items, you can pipe YOUf list to a command called uniq
to get the new list on the right.

$ sort animals
birds
birds
birds
cats
cats
dogs
dogs
horses
lizards
raccoons
$

$ sort animals I uniq
birds
cats
dogs
horses
lizards
raccoons
$

As you can see, the uniq command in its plainest form condenses a sorted
list by listing each item only once, no matter how many times it appears
in the original list. (You could also use sort -U.)

The uniq command also has several options, one of which is to precede
each item in the final list with the number of times it appeared in the
original list (-e). Here is an example of uniq with the -e option:

$ sort animals I uniq -c
3 birds
2 cats
2 dogs
1 horses
1 lizards
1 raccoons

$

PREPARING TEXT FOR PROCESSING prep

If you have a file with ordinary text in sentences and paragraphs and you
would like to study the individual words in the file, you may be able to use
the XENIX prep command to list each word in aseparate line. Here is an
example, using a new file called words:

$ cat > words
The more you study, the more you learn.

(CTRL-D)
$ prep words
the
more

you
study
the
more
you
learn
$

4. Using UNIX Commands 53

You could also sort this list and use uniq to determine how many times
each word occurs in the file. First place each word on aseparate line with
prep; sort the list with sort; then get a count by word using uniq using
the -c (count) option:

$ prep words sort I uniq -c
1 learn
2 more
1 study
2 the
2 you
$

COUNTING LINES, WORDS, AND CHARACTERS IN A FILE WC

Sometimes you need to have a few statistics on a file. If you're writing
a program, you may want to know how many lines of code you have. If
you're writing an article, you may want to know how many words you've
written. The wc (word count) command tells you how many lines, words,
and characters there are in a file (in that order). Words are assumed to
be separated by either punctuation marks, spaces, tabs, or newlines. To
obtain a complete count for enter, euter the following:

$ wc enter
3 15 69 enter

$

If you would rather have one of the three numbers given by itself, you
can use one of these options with the wc command:

-I (lines only)
-w (words only)
-c (character only)

Here are examples of commands to obtain each of the separate counts:

$ wc -1 enter
3 enter [There are 3 lines in enter]

$ wc -w enter
15 enter [There are 15 words in enter]

$ wc -c enter

54 More on working with files

69 enter [There are 69 character in enter]
$

SEARCHING FOR A PATTERN IN A FILE grep

To find a key word or phrase in a file, you can use the grep command. In
UNIX, any sequence of characters that you are looking for is called either a
search pattern or a regular expression. (If you're curious about such things,
grep is an acronym for "globally find regular express ions and print" -more
or less. They didn't like gfreap, so they called it grep. Now you know.)
For example, to display alllines in enter that contained the letters cat,
you could use a command like this:

$ grep cat enter
with the cat command.

$

[There was only one line.]

If you wanted to find out who was logged in on terminal tty15, you could
use a command like this:

$ who
manny
$

grep ttyl5
tty15 Feb 3 10:05

This command illustrates piping the result from a command to another
instance of the same command. The grep command will be discussed in
greater detail in Chapter 13, "Searching and Sorting."

FINDING MISSPELLED WORDS speil

With the UNIX speil command, you can check spelling by comparing words
in a file against entries in a large on-line dictionary. For example, suppose
you have a file named lines that contains the following text:

$ cat > lines
Now is the tyme for all good men to
come to the ade of there country.

[CCTRL-D)]
$

To check this file, use this command line:

$ spell lines
tyme
ade
$

4. Using UNIX Commands 55

Note that "there" isn't listed, even though it's incorrect. The speil pro­
gram can determine whether a word is misspelled, but it can't determine
whether or not the word is used correctly.

With speil -v, you can also list words that may be derived from words
listed in the dictionary, such as carefully (from careful), people' s
(from people), listening (from listen), and so on.

COMPARING FILES LINE BY LINE diff

There are many times when you find yourself with one copy of a file and
also a modified version in the same directory. "Which one is which? Are
they the same?" you ask yourself. One UNIX command that can help you
is diff. To show how it works, let's create a simple file called wildlife.1, then
modify it to create a second file called wildlife.2:

$ cat > wildlife.l
1 antelope

$ cat > wildlife.2
1 antelope

2 bear
3 coyote
4 deer
5 elk
(CTRL-D)

2 buffalo
3 coyote
4 elk
5 fox
(CTRL-D)

Comparing these two files with diff, we get the output shown below,
which indicates how the second file differs from the first:

$ diff wildlife.l wildlife.2
2c2 [Line 2 has been changed:
< 2 be ar

> 2 buffalo

4,5c4,5

< 4 deer

< 5 elk

> 4 elk

> 5 fox

$

• The first file «) contains 2 bear.

• The second file (» contains 2 buffalo.]

[Lines 4 and 5 have been changed:

• Line 4 of the first file is 4 deer.

• Line 5 of the first file is 5 e 1 k.

• Line 4 of the second file is 4 elk.

• Line 5 of the second file is 5 fox.]

The diff program uses c to indicate a change, d to indicate adeletion,
and a to indicate an addition, along with < to indicate a line in the first
file and > to indicate a line in the second file. The hyphens (-) are inserted
when a line from the first file is compared with a line from the second.

The diff command also has several options, such as ignoring blank spaces
in the two files (-b) and providing a list of the ed commands required to
change the first file to the second (-e). But we'll have to move on now to
another command for comparing files.

56 More on working with files

DISPLAYING LINES COMMON TO TWO FILES comm
To obtain a different view of the differences between two files, you can use
the comm (common) command. This command displays three columns on
the screen, one for lines unique to the first file, a second for lines unique to
the second, and a third for lines common to the two files. Here is how the
output for comm would look for wildlife.1 and wildlife.2:

$ COJlllll wildlife.1 wildlife.2
1 antelope [Common to both files]

2 bear [First file only]
2 buffalo [Second file only]

3 coyote [Common to both files]
4 deer [First file only]

4 elk [Second file only]
5 elk [First file only]

5 fox [Second file only]
$

As you can see, the three columns give you a graphie display that is easy
to read. (If you look closely, though, you see that comm made amistake:
it first listed elk as being unique to wildlife.2, then as being unique to
wildlife.1.) The comm command also allows you to suppress a column (or
a pair of columns), using -1 to suppress the first column, -2 to suppress
the second column, -3 to suppress the third column, and combinations like
-13 to suppress the first and third columns. Here is how you could select
lines common to both files (third column) and store them in a file called
cemmen:

$ COJlllll -12 wildlife.l wildlife.2 > cOJlllllon

$ cat cOJlllllon

1 antelope

3 coyote

$

[Common to both files]

[Common to both files]

[We missed elk again]

The option -12 in the above example told comm to suppress the first
and second columns (that is, to output only the third column).

For comparison of program files, you mayaiso be interested in the cmp
command, which compares two files chamcter by chamcter (byte by byte).

TRANSLATING CHARACTERS tr
There may be times when you will want to change certain characters every
place they occur in a file. For ex am pie , suppose you have used numbers to
indicate the steps of a procedure you have written. Then you decide (or

4. Using UNIX Commands 57

possibly you receive arequest) to use letters of the alphabet instead. With
the tr command, you can make the change fairly easily. Here's a file:

$ cat > five.steps
1. Turn on the machine.
2. Start the program.
3. Request the P option.
4. End the program .
5. Turn off the machine.

[CCTRL-D)]
$

To make the translation described, type the command (tr), aspace, the
set of characters to be translated, another space, then the set of characters
into which to translate the original characters (in the order desired), using
redirection to accept the input from five.steps:

$ tr 12345 abcde < five.steps
a. Turn on the machine.
b. Start the program.
c. Request the P option.
d. End the program.
e. Turn off the machine.
$

This tr command translated 1 into a, 2 into b, 3 into c, and so on. You
can also use range notation to enter the command this way to accomplish
the same thing:

$ tr 1-5 a-e < five.steps
a. Turn on the machine.
b. Start the program.
c. Request the P option.
d. End the program.
e. Turn off the machine.
$

For larger sets of characters, place the ranges within pairs of brackets
(and then place the brackets within double quotation marks to keep them
from being interpreted as members of the sets of characters), as shown here:

$ tr "[a-z]" "[A-Z] " < five. steps
1. TURN ON THE MACHINE.
2. START THE PROGRAM.
3. REQUEST THE P OPTION.
4. END THE PROGRAM.
5. TURN OFF THE MACHINE.
$

58 More on working with files

We can also use the tr command to delete characters by including the
-d (delete) option. For example, we could use the following command to
delete the step numbers:

$ tr -d 12345 < five.steps
Turn on the machine.
Start the program.
Request the P option.
End the program.
Turn off the machine.

$

On the other hand, if we wanted to delete the explanations and just
leave the step numbers, we could also include the -c (complement) option
to delete everything except the numbers:

$ tr -cd 12345 < five.steps
12345$

The reason that the numbers (and the prompt) appear together on the
same line is that the characters that separate lines from each other (called
newlines in UNIX) have been deleted along with the visible characters.
Here's a similar command line. See if you can explain what is happening
here:

12345$ tr -cd "[A-Z}" < five.steps
TSRPET$

In the two examples above, the two options c and d were placed together
behind the same minus sign. In UNIX, this is referred to as bundling op­
tions. Some UNIX commands allow bundling of options, some do not.

4.6 U sing printers

You can use the UNIX command Ip to print the contents of a file on the
system lineprinter. (ActuaIly, the file is placed in a queue, and, depending
on system demand for printing, won't necessarily be printed immediately.)
For example, to print the contents of a file called section_4, you could use

$ lp section_ 4
request id is mx80-217 (1 file)
$

The message from Ip teIls you that this is the 217th request for printing
on printer mx80. If you decide for some reason to cancel printing, you can
use the job number after a cancel command, like this:

4. Using UNIX Commands 59

$ cancel mxBO-217
$

VARIATIONS OF THE COMMAND Ip
Using some of the techniques you learned earlier in this chapter, you can
do more than just print one file on the lineprinter. You can also print a
series of files like this:

$ lp section_l section_2 section 3
request id is lx1000-346 (3 files)
$

By piping text from pr to Ip, you can take advantage of some the for­
matting options of pr before starting to print. For example, to paginate
text and arrange it in two columns before printing, you could use

$ pr -2 text_5 I lp
request id is fx86e-297 (standard input)
$

Using two pipes, one from sort to pr and another from pr to Ip, you could
sort and paginate lines of text in a file before printing:

$ sort data_15 I pr I lp
request id is lx1000-408 (standard input)
$

OPTIONS FOR THE COMMAND Ip
Two of the options available for the Ip command can be helpful. The -c
(copy) option makes a copy of the text to be printed, as a precaution against
loss of the text in the queue like this:

$ lp -c section 5
request id is mx80-329 (1 file)
$

The -m (mail) option reports to you by mail when your printing job has
completed like this:

$ lp -m section 5
request id is lxlOOO-453 (1 file)
$

60 U sing printers

FINDING OUT WHAT IS QUEUED FOR PRINTING Ipstat

In a multi-user system like UNIX, everyone has to share the system's
lineprinter. So allY time you initiate the Ip command to print a file, Ip
places the name of the file in a queue. It's just like waiting in line at
a bank. The names of the files move through the queue as the files are
printed; then they are removed one by one as each file leaves the queue.

The queue is kept in a UNIX directory, whose name is often /usr/spool/lpd.
To find out which files are currently in the queue for printing, all you have
to do is to display the contents of this directory on your screen, using the
Ipstat (line printer statistics) command:

$ Ipstat
total 28
mx80-217 robin 17462 Apr 6 09:09 on mx80
lx1000-346 robin 3685 Apr 6 09:12
fx86e-297 robin 8931 Apr 6 09:13
lx1000-408 robin 2366 Apr 6 09:17
mx80-329 robin 6328 Apr 6 09:19
lx1000-453 robin 23697 Apr 6 09:21
$

4.7 Summary

In this chapter you have learned about command lines, redirection and
pipelines, and commands for displaying text, working with files, and using
lineprinters. To begin a process under UNIX, type a command line and
press (RETURN). The command may contain either just the command by
itself or the command plus modifiers.

REDIRECTION AND PIPELINES

Unless you instruct UNIX otherwise, UNIX regards your keyboard as its
standard input and your video screen as its standard output. But you can
redirect either input or output elsewhere. To have a UNIX command take
its input from a file, instead of from your keyboard, use the less than sign
(<) in front of the name of the file.

To have a UNIX command send its output to a file, instead of to your
video screen, use the greater than sign (» in front of the name of the
file. If the file does not exist, it will be created; if it does exist, it will be
overwritten. To append the contents of the output file, rather than overwrite
the contents of the file, use a pair of greater than signs (> » in front of the
name of the file.

4. Using UNIX Commands 61

To connect two processes, so that the output of one becomes the input
of the other, use the vertical bar (I) between the names of the commands
(with or without surrounding spaces).

DISPLAYING TEXT ON THE SCREEN

You can use the eat command for entering text into a file, downloading to
your microcomputer, or uploading to UNIX. You can use pg (UNIX) or
more (XENIX) to display text one screenful at a time, head (XENIX) to
display only the opening lines of the text, or tail (UNIX and XENIX) to
display only the closing lines.

MORE ON WORKING WITH FILES

To determine the type of text in a file, you can use the file command.
To sort a file by lines, use the sort command, followed by the name of
the file. As with many other commands, the results of the sort command
can also be redirected to a new file. In addition, sort can receive its input
from the standard input (the keyboard) or another command via a pipe.
To eliminate repeated lines in a sorted list, use the uniq command. One
option of this command (-e) also gives you an item count.

To have each word of text in a file placed on aseparate li ne for further
processing, use the prep command (XENIX only). To obtain the total
number of lines, words, and characters in a file, use the we command either
by itself to display all three statistics or with one of three options (-I, -w,
-e) to display one. (Combinations such as -lw and -we are also allowed.)

To search for a pattern in a file, use the grep command, followed by the
pattern and then the name of the file. You can also pipe input from another
command (in which case the filename becomes unnecessary). To see a list
of misspelled words in a file, use the speil command, followed by the name
of the file.

To compare the contents of two files li ne by line, use the diff command.
(There is also a pro gram called diff3 that compares three files at a time
and another called emp that compares two files character by character.)
To determine which lines are common and which are unique to each of two
files, use the eomm (common) command. To translate one set of characters
into another set, use the tr command. You can also use this command to
delete characters.

U SING LINEPRINTERS

To have a file sent to the system's lineprinter to be printed, use the Ip
command, followed by the name of the file(s). You can also use pipes with
Ip to format the output before printing it. The -e (copy) option informs
Ip to make a copy before printing; the -m (mail) option informs Ip to

62 Summary

notify you by mail when printing has completed. To find out which files
have been queued for printing on the lineprinter, use the Ipstat command.
To cancel a printing request, use the cancel command with the printing
request number.

5

Communication in UNIX

In this chapter you will learn how to communicate within and outside of
UNIX. We'll start by communicating with other users on your own system,
then discuss communicating with other UNIX systems.

5.1 Communicating with other users

To allow various forms of communication between users on the same sys­
tem, UNIX provides three facilities: electronic mail, an automatie reminder
service, and direct messages.

SENDING MAlL mail
To send electronic mail to any user on your UNIX system, use the mail
command. Just type mail, aspace, the other user's identifier, and press
(RETURN). For example, to send a message to Janice, you could use

$ mail janice

After typing what you want to say, press (CTRL-D) to wnclude your
message. You can also address a message to several different users at the
same time. Here is an example:

$ mail ralph laura peter sara

There will be a meeting at 2:00 pm today to review
the design oE the Rattlesnake. Bring the speciEications
you received Erom Engineering last week.
(CTRL-D)

$ -

Each recipient will be notified of the existence of this message when he
or she logs on.

64 Communicating with other users

RECElVlNG MAlL mail

If another user has sent mail to you, the system will store it in a file with
your login name in directory /usr/mail, and the next time you log on you
will see the following message:

You have mail

This is known as the "You have mail" message. To find out what has
arrived, type themail command without any arguments. The system will
display the most recent message on the screen, give you a quest ion mark
prompt (?), and wait for you to indicate what you want to do with the
message.

$ mail
From paul Tue Jan 23 09:24:17 1989
Yes, I got your message. Let's meet
for lunch. What time can you make it?
?

You now have the option of saving or deleting this message, going on the
next next message, or returni~g to the shell prompt. Suppose you decide
to return to the shell prompt a~d reply to this message. Here are the steps:

? q
$ mail paul
We should be able to leave at 11:30
(CTRL-D)
$

If, on the other hand, you wanted to save this message in another file
(lunch), you could type this instead:

? s lunch
From gina Tue Jan 23 09:13:42 1989
I need to see you sometime today.
Let me know when you're free.
?

When you saved the first message, the system automatically displayed
(printed) the next one. As long as you stay in themail session, the system
will continue to display additional messages. At any time, you can type one
of the following to perform the action indicated:

* (or ?)
(RETURN)
p
d

List all themail commands
Display the next message
Redisplay (print) the current message
Delete the current message

5. Communication in UNIX 65

m user Forward the current message to user
S [file] Save the current message (with he ader) in file (file mbox

in the current directory if you omit file)
w [file] Save the current message (without header) in file (same

default)
! command
X

Execute command without leaving mail
Exit mail, leaving all messages intact

q Quit mail, leaving only unexamined messages intact

One way to set up areminder system is to use themail command to
send messages to yourself. Here is an example:

$ mail robin
Avoid falling asleep when Wally starts talking about his
pet frog, avoid unnecessary shouting, and avoid loud,
senseless arguments.
(CTRL-D)
$

To view mail in a file other than /usr/mail/robin, use the -f option with
the name of the alternate file, like this:

$ mail -f lunch
From paul Tue Jan 23 09:24:17 1989
Yes, I got your message. Let's meet
for lunch. What time can you make it?
?

To reverse the order in which messages are displayed (first received is
first displayed), use the -r option:

$ mail -r
From will Tue Jan 23 08:31:25 1989
I hope you still have the used VeR
for sa1e. l'd like to take a look.
?

SENDING MAlL mailx
If your installation has the mailx command, a more sophisticated tool for
handling mail, you can use it instead of mail. The basic operation is about
the same, but there are many more options available in mailx. For example,
to send a message to several people, you could type this:

$ mailx ralph laura peter sara
Subject: _

66 Communicating with other users

If your system is so configured, you will now see a "Subject" prompt.
Type a subject heading, then press (RETURN). Then the rest will be the
actual message (up to the final (CTRL-D »).

$ mailx ralph laura peter sara
Subject: Rattlesnake Design
There will be a meeting at 2:00 pm today to review
the design of the Rattlesnake. Bring the specifications
lOU received from Engineering last week.

CTRL-D)
$

Unlikemail.mailx allows you to interrupt entry of your message with
an CESrD to perform other functions. For example, if you suddenly think
of other people who should be receiving the message (say Len and Jane),
you can add their names to the recipient list by typing this:

-t len jane

Each escape command consists of a tilde (~), followed by another char­
acter (in this case, t). Here are some of the other commands you can use:

-1
-r file
-W file
-5 subject
-t users
-C users
-h

-p
-m messages
-f messages
-, command
-I command
-q

List all the escape commands
Read text into your message from another file
Write your message to another file
Set the subject heading
Add users to the "To" list
Add users to the "Copy" list
Prompt yourself for "To" list, subject heading, and
"Copy" list

Invoke the visual editor (described in Part 11) to modify
your message
Print (display) the current message
Read in other messages, indented to the first tab stop
Read in other messages, without indentation
Run a UNIX command without leaving mailx
Pipe the message through a UNIX command
Quit; save message in file dead.letter in your horne di­
rectory
Exit without saving the message

RECEIVING MAlL mailx
To review mail sent to you, type mailx without any names. Unlike mail,
mailx will displayasummary of themail that has been sent to you, with a
one-line entry for each individual message (called a header) and apointer

5. Communication in UNIX 67

(» to the current message. The first letter indicates whether the message
is new (N), read (R), or unread (U). Again, the system gives you a quest ion
mark prompt for your response, as shown here:

$ mailx
"/usr/mail/robin": 3 messages 2 new 1 unread

U 1 will Tue Jan 23 08:31 2/69 veR for sale
2/62 N 2 gi na Tue Jan 23 09:13

>N 3 paul Tue Jan 23 09:24 2/72 Lunch today
?

The choices for mailx are similar to those for mail. The command list
shows the command names spelled out, but you need only enter the first
letter. By default, msglist in the list that follows is simply the current mes­
sage. But you can redefine msglist to specify messages by number, sender,
subject, or type. Here are some of the commands:

?
list
type [msglist]
next
top [msglist]
from [msglist]
header
z [-]
save [msglist] file
delete [msglist]
undelete [msglist]
preserve [msglist]
Reply [msglist]
reply [msglist]

edit [msglist]
cd [directory]
! command
quit
xit

List all the commands with explanations
List all the commands without explanations
Display the message(s)
Display the next message
Display the first five lines of messages
Display header(s) for message(s)
Display active message headers
Display the next [or last] page of headers
Save (append) the message(s) to file
Delete the message(s)
Restore deleted message(s)
Preserve message(s) in mbox
Reply to the sender(s) of the message(s)
Reply to the sender(s) of the message(s) and also
to other recipients
Edit message(s)
Change to directory (horne if none named)
Execute UNIX command
Quit (preserving only unread messages in mbox)
Exit (preserving all messages in mbox)

The mailx command also allows you to view mail in a file other than
/usr/mail/robin, using the same -f option:

$ mailx -f lunch Read mai! in file /usr/robin/lunch

$ mailx -f Read mai! in file /usr/robin/mbox

68 Communicating with other users

AUTOMATIC REMINDER SERVICE calendar

Another way to remind yourself of events is to use the automatie rem inder
service that UNIX provides with the calendar eommand. Every day or so,
UNIX uses the calendar eommand to examine each user's horne directory
for a file named calendar, whose contents may look something like this:

Mar 21
Apr 17
Apr 28
May 3

P1anning meeting at 9:30 in conference room
Jennifer's wedding in Hendersonvi1le
Awards dinner at the Blackjack Inn
Presidential primary

Other forms of dates, such as March 21 and 3/21, are also allowed. The
calendar eommand extracts from this file each line that eontains either
today's date or tomorrow's date and mails it to you. You ean also eall up
the calendar manually like this:

$ calendar

UNIX will search your horne directory for a file named calendar to look for
any pertinent items to display.

WRITING DIRECTLY TO A USER write
The write eommand allows you to send a message direetly to another user's
terminal, where it will immediately appear on the screen. Here is an exam­
pIe of initiation of a write eommand, which is similar to sending mail:

$ write paul
How are you doing on your project? 0

[C CTRL-D)-not displayed on the screen]
$

Here is what Paul will see on his sereen immediately after this eommand
line is initiated:

Message from robin (tty07) [Tue Nov 10 15:21:59] ...
How are you doing on your project? 0

<EOT>

At this point, Paul can respond with a write command of his own, and
begin a terminal-to-terminal dialogue:

$ wri te robin
It's about two-thirds completed. How'about yours? 0

[C CTRL-D)-not displayed on the screen]
$

5. Communication in UNIX 69

To avoid confusion during a dialogue (that is, wondering ifthe other party
is about to say more), you can set up a simple protocol to let the other
party know when you have completed your current message. For example,
each user could type 0 for over at the end of each message and 00 for over
and out at the conclusion of the dialogue.

If you're the kind of fun-loving person who can't resist pulling pranks
on other users, then write is one command you'll want to add to your
repertoire immediately. Unfortunately, howeyer, there is also a command
called mesg that allows people who are less fun-loving to shut out write
messages. All they have to do is to add the n (no) option, and the fun is
over:

$ mesg n
$

To allow write messages again, add the y (yes) option, and you're back
in business:

$ mesg y
$

Finally, to find out whether write messages are allowed or prohibited on
your terminal at a given moment, type mesg without an argument:

${~esieS}
lS no
error

$

[Three responses possible]

5.2 Communicating outside your system

UNIX aUows you to communicate with someone outside your UNIX sys­
tem with two different commands: cu (call up) and uucp (UNIX-to-UNIX
copy). We'll take them one at a time.

CALLING OUTSIDE YOUR UNIX SYSTEM cu
The cu (caU up) command aUows you to dial a telephone number and call
up one of the following:

• another UNIX system

• a terminal

• a non-UNIX system

70 Communicating outside your system

Once a connection is established, you can carry on an interactive conver­
sation (as with write on your own system) and possibly transfer files back
and forth. If the telephone number of the other system is 345-6000 and
both sides are set up to communicate at a speed of 1200 bit/s, depending
on the type of connection, you could type something like this:

$ cu 3456000 -s 1200

With connection established, you will probably see a login message:

login: _

You can now log into the other system as you would into your own.
Having logged in, you can use CU to send a file called message to the
other side with a command like this:

~<message

If you are connected to another UNIX system, the stty (set teletype
[terminal]) command on both systems specifies the same characters for
emse and kill, and the cat command is active on both systems, another
way to send message to the other side is to type a command like this:

~%put message

If you are connected to another UNIX system, the echo and tee commands
are active on both systems, and directory permissions allow it, you can copy
a file on the other to your working directory with a command like this:

-%take reply

To conclude your conversation, type the following:

UNIX-To-UNIX COPYING uucp
In Chapter 3, "The UNIX File System," you learned about the cp (copy)
command that you can use to make a copy of a file either in your work­
ing directory or in another directory. There is a similar command called
uucp (UNIX-to-UNIX copy) that you can use to copy a file to or from
another UNIX system. For example, if two XENIX microcomputers called
ucb/catlfish and ucb/moon/dog both belong to a common network, then a
user can execute a command like this from ucb/cat/fish:

5. Communication in UNIX 71

$ uucp latest ucb/moon/dog!/usr/robin/news
$

This command will take the contents of a file called /usr/leslie/latest on
ucb/cat/fish (assuming that /usr/leslie is the current directory) and make
a copy called /usr/robin/news on ueb/moon/dog. An exclamation point (!)
separates the name of the microcomputer from the name of the file. Other­
wise, uucp is quite similar to cp. Note that if you're using the C shell, you
have to type a backslash (\) in front of each exclamation point, as shown
here:

% uucp latest ucb/moon/dog\!/usr/robin/news
%

If you don't know the exact name of the recipient's horne directory,
you can use a tilde (-) in front of the recipient's user name to have
uucp search for the directory, as shown in another example typical of
XENIX usage. With UNIX, it's more customary to use a public directory
(/usr/spool/uueppublie) .

$ uucp latest ucb/moon/dog!~robin/news
$

To have UUCp mai! the originator a message after the copy has been
made, include the -m option in the command line, as shown here:

$ uucp -m latest ucb/moon/dog!~robin/news
$

To have uucp also mail the recipient a message after the copy has been
made, add the -n option (with the recipient's user name appended), as
shown here:

$ uucp -m -nrobin latest ucb/moon/dog!~robin/news
$

In the following example, a user logged into ueb/moon/dog transfers all
files whose names end in the suffix .e to a directory named /usr/leslie on
ueb/eatlfish. (Since source programs in the C language have names like
list.e, post.e, enter.e, and so on, this user is sending all the C programs in
the user's working directory.)

$ uucp *.c ucb/cat/fish!/usr/leslie
$

72 Communicating outside your system

Since the user who executed this command was logged into ueb/moon/dog
when the command was executed, it wasn't necessary for the user to type
ucb/moon/ dog!. However, ueb/moon/dog!*.e also would have been cor­
rect in place of *.e.

Actually, UUCp is just one of a family of UNIX commands. Another
member of the family is uux (UNIX-to-UNIX execute), which can be used
to execute commands on another computer in the network. For example,
suppose the system administrator has set up files to allow the Ip command
to execute. Then to format the contents of a file called raw.text and then
have it printed on ueb/moon/dog's printer, you could execute a command
like this from another computer in the network:

$ pr -2 raw.text I uux - ucb/moon/dog!lp
$

Except for the uux command, the hyphen, the name of the other com­
puter, and the exclamation point (uux - ucb/moon/dog!), this command
is quite similar to a command for performing the same function on your
own system.

Although it is quite simple to execute commands like these once a net­
work has already been set up, the task of setting up the original network is
much more complex. This is discussed for Part VII. For now, at least you
are now aware of these programs and some of their possible uses. Note that
the UUCp network, with over 3,000 sites, is tied into other networks, such
as ARPANET, and allows transfers to Ethernet installations.

Note that the rules for naming nodes on a network are similar to the rules
for naming files in a file system. Unless your recipient's node is "below"
yours in the network, you must use the recipient's full address.

ENCRYPTING INFORMATION crypt
Hyou have sensitive information that you would like to keep secret, you may
want to consider encrypting certain files with the UNIX crypt command. In
general, an encryption program takes the original text that you provide (the
cleartext) , transforms it with a sequence of characters (the key or password) ,
and produces an encrypted version of the original (the cyphertext). You will
have to remember the key (or write it down on a slip of paper) to be able
to retrieve the cleartext at a later time.

ENCRYPTING A FILE

First we need a file that contains text. Let's use the cat command to enter
the following. (I know, you're going to say that this text has already been
encrypted.)

$ cat > remark

5. Communication in UNIX 73

"I would not like
other than to say

[Four tabs]

to make a value judgment on that
that I have no comment. "

---Alexander Haig

[C CTRL-D) to terminate text]
$

Now use the crypt command to perform the actual encryption, to which
UNIX will respond immediately with arequest for the key. We'll use con­
volution.

$ crypt < remark > remark.crypt
Enter key: convolution [You won't see the key on the screen]

Redirection is used on this command line for both input and output. The
crypt command takes its input from the file you just typed (remark), then
sends its output to a file called remark.crypt.

The next logical step is to remove the original file (remark); otherwise,
it doesn't make much sense to have it encrypted:

$ rm remark
$

Don't let curiosity get the better of you by taking a peek at remark.crypt.
You'll just cause trouble for your terminal, which will probably beep and
go blank trying to read the various things in the file.

VIEWING THE CLEARTEXT

To view the cleartext on the screen at a later time, use the crypt command
again with the same key:

$ crypt < remark.crypt
Enter key: convolution [The key won't appear on the screen]
"1 would not like to make a value judgment on that
other than to say that 1 have no comment."

---Alexander Haig
$

PRINTING THE CLEARTEXT

To print the cleartext on the system's lineprinter at a later time, use the
crypt command with the same key, sending the output through pr to Ip
via pipelines:

$ crypt < remark.crypt I pr I Ip
Enter key: convolution [The key won't appear on the screen]
$

74 Communicating outside your system

COMMENTS ON ENCRYPTING FILES

The security of an encrypted file depends to a large degree on the invul­
nerability of the key that you select. For our simple example here, we have
not really made a very good choice. If you really want your encrypted files
to be secure, you should select a complex string of characters that cannot
be readily determined. As in composing a good password, you can use your
imagination to produce something easy to remember, like these:

Why_4GET:it?

U2:canIB,lst!

It goes without saying, but we'll say it anyway: If you're concerned about
your encrypted files, don't store your key anywhere on the UNIX system.
Either memorize it or write it on an unmarked slip of paper.

Both of the major UNIX text editors (ed and vi) have features for han­
dling encrypted files.

5.3 Some basics of communication

If you drive a car, it's very difficult to avoid terms like disc brakes, rack­
and-pinion steering, turbo-charger, and so on. Likewise, as so on as you start
using a computer, you are confronted with new terms. For many people,
the most perplexing terms seem to be related to communication. For those
interested, here are a few basic concepts.

UNITS OF INFORMATION

The smallest amount of information that a computer handles is a binary
digit (or bit), which can be one of two things: 1 or 0, in the language of
the software engineers who write programs; high or low, in the language of
the hardware engineers who design the machinery. Eight bits form a byte,
which is the unit by which information is usually stored in a computer. A
byte corresponds to one character (of text, of data, or of program code).

Inside the computer, information is sent in groups of bits, depending
on the machine's design capacity. For most microcomputers, information
is sent in groups of 8, 16, or 32 bits at a time. Outside the computer,
information may be sent either in groups of bits (parallel transmission) or
one bit at a time (serial transmission).

COMMUNICATING WITH LOCAL DEVICES

Every computer spends a considerable percentage of its time sending mes­
sages back and forth to various pieces of equipment. From the computer's

5. Communication in UNIX 75

point of view, the disk drives, printers, and terminals connected to it are
external, or peripheral, devices. There must be something to connect them,
and there must be a common method for exchanging messages.

Any device in the same building can usually be connected to a computer
with a cable (either parallel or serial). To make things a little easier for
everyone, most computers and peripher al devices have plugs for widely
accepted types of cable connectors. One type of serial connector commonly
used is called an RS-232C connector. The RS stands for "recommended
standard," and 232C is the designator that some committee came up with.
Your printer, terminal, and modems may all be attached with these cable
connectors.

A newer RS-422/423 standard is beginning to overtake RS-232C in se­
rial transmission as we approach the late 1980s. RS-422/423 offers more
connectors (37 instead of 25) and better control.

COMMUNICATING WITH REMOTE DEVICES

A computer can also be connected with another computer or a terminal
at another location. However, since most people don't have miles of cables
lying around (and since the cable wouldn't be able to carry signals far
enough anyway), something else has to be used. That something is the vast
network of cables used to handle telephone service.

There's one slight problem, however. Computers and telephones don't use
the same kind of signals. Computers use digital signals, while telephones
use analog signals. To see what this means, compare a watch with number
displays to a watch with moving hands. The watch with number displays
uses digital signals to tell us the time; the watch with moving hands uses
analog signals.

We have a solution to the the problem of differences between computers
and telephones: an electronic device that converts digital signals to analog
(modulator) and also converts analog signals back to digital (demodulator).
This modulator/demodulator is usually called a modem for short (or a
da ta set). According to some predictions, around the beginning of the 21st
century, a large part of the telephone system will have been converted to
digital operation, and modems will be obsolete.

COMPATIBILITY

Whether a cable or a telephone is used to connect them, a computer and
another device must be in agreement about a number of things before they
can start sending messages back and forth to each other: they have to
be sending and receiving by the same timing method, at the same speed,
with the same protocol, in the same duplex mode, and in the same co ding
system. Let's briefly consider each of these.

76 Some basics of communication

TIMING METHOD

One problem a computer must solve when it sends information back and
forth is how to determine where a character (or byte) in transit begins
and ends. One solution, usually used by larger computers, is to have both
sides send messages back and forth to synchronize the transmission, and
then release a continuous stream of information. This is called synchronous
communication.

Another method, usually used by small computers and printers, is to
bracket each individual byte between a pair of bits (a start bit and a stop
bit). This method, used where characters are usually sent sporadically and
at irregular intervals, is called asynchronous (or start-stop) communication.

Another term used here relates to error-checking during transmission. An
extra bit is often added to the character, start, and stop bits (the parity
bit). The object is to make the total number of bits either even (even parity)
or odd (odd parity).

DATA RATE

Data rate (often referred to as baud rate) is the speed at which a computer
sends or receives information. This speed is measured in bits per second
(bit/s), and is sometimes classed as slow (110, 150, 300, or 600 bit/s),
medium (1200, 1800, 2400, 3600, or 4800 bit/s), or high speed (9600 and
19,200 bit/s). A data rate of 2400 is typical for today's microcomputers.

PROTOCOL

Communication requires a set of rules to determine which side is sup­
posed to send information and when. On larger computers, such a set of
rules is called a protocol (or line discipline) , and is based on synchronous
transmission. Such protocols are classed as either byte-synchronous or bit­
synchronous. One byte-synchronous protocol, IBM's BSC (binary
synchronous communication), uses timing signals from the sending and
receiving sides to synchronize groups of characters being transmitted. One
bit-synchronous protocol, IBM's SDLC (synchronous data link control),
relies on standard data formats for synchronization.

On smaller, asynchronous computers, the term handshaking is usually
used instead of protocol. One of the most common handshaking methods
is called XON/XOFF. By this method, the sending side continues to send
information until a temporary storage area (or buffer) on the receiving side
approaches capacity. The recipient sends an XOFF signal to the sen ding
side to halt transmission momentarily. Then, when the recipient's buffer
gets low, it sends an XON signal to the sending side asking for more.

System V, Release 3 implements features that standardize communica­
tion to and from a UNIX system. Consequently, programs like cu and

5. Communication in UNIX 77

uucp, which operate between networked UNIX systems, are now indepen­
dent of protocols and communication media. Beginning with Release 3,
applications, protocols, and media are separated from each other in differ­
ent layers. This makes it possible for UNIX systems to be connected to a
larger number of other systems, both UNIX and non-UNIX. It also makes
it possible for users to access files outside their own UNIX system. For more
information, see Part VII and Appendix M, "UNIX versus XENIX".

DUPLEX MODE

The directional capability of the line connecting two commmunicating par­
ties can be classified as follows:

simplex transmission is possible in one direction only (similar to
a one-way street)

half-duplex the two sides may take turns sending to each other, but
that transmission may take place in only one direction at
a time (similar to astreet that is one-way south in the
mornings and one-way north in the afternoons)

full-duplex transmission may take place in both directions at the
same time (similar to a two-way street)

In discussing terminals, duplex mode raises another issue: What happens
to the characters you type at the keyboard? There are only two choices for
a terminal: Process the characters locally at the terminal or send them to
the host computer for processing. When a terminal processes only, it is
said to be in block mode; when it transmits to the host only, it is said to
be in Jull-duplex mode. When it does both, it is said to be in half-duplex
mode; when it does neither, it is said to be locked. On the UNIX system,
communication with terminals is typically carried out in Juli-duplex mode.

CODING SYSTEM

The final topic relates to the way information is coded by a computer. You
may have learned Morse code at some time. If so, you know that it is a cod­
ing system that assigns one code for each letter of the alphabet. The entire
operation of a computer and its related devices (including communication
between them) is carried out through codes. Every letter of the alphabet,
every number, and every instruction is known to a computer by a code.

Large computers use IBM's EBCDIC (extended binary-coded decimal
interchange code), an 8-bit system with a total of 256 codes. Smaller com­
puters use ASCII (American Standard Code for Information Interchange),
a 7-bit system with a total of 128 codes. The entire co ding system includes
all the display characters found on a typewriter-style keyboard (letters,

78 Some basics of communication

numbers, and symbols), plus a collection of control characters (see "Char­
acter Codes," Appendix N). Here is how a typical ASCII code looks when
we represent it in binary digits (bits):

1101001

Since this isn't very easy to read, people usually represent numbers like
this in a different number system. Our decimal system (base 10) is a little
difficult to translate to binary (base 2), so it's customary to use either octal
(base 8) or hexadecimal (base 16) to represent ASCII codes. Here's how all
four systems look side-by-side for the letter i.

Binary
1101001

Octal
151

Hexadecimal
69

Decimal
105

Symbol
i

The five columns above show five different ways to interpret the same
character. If you type i at your keyboard, the computer sees only 1101001
transmitted, although we could write this code in any of the number sys­
tems shown.

THE ASCII TABLE

Individual characters like i are customarily arranged in four columns of 32
characters each (as in Table N.1). So far we have focused on one character
(i). To gain a little more perspective, let 's look at a complete row of ASCII
characters from a table-the row that contains i. We'll assurne that this
is a four-column ASCII table.

HT 011 051 I 111 i 151

Here we see four entries, each followed by its octal representation:

HT
)

I

i

(horizontal tab)
(right parenthesis)
(uppercase I)
(lowercase i)

octal code 011
octal code 051
octal code 111
octal code 151

(commonly known as (TAB))

Note the following ab out this arrangement of characters:

• Upper case land lower case i are listed side-by-side on the same row

• I, i, and) are display eharaeters (characters that appear on the
screen when you type them)

• HT ((TAB)) is a eantral eharaeter (a character that causes action).

To relate this discussion to your keyboard, note two more things about
the arrangement of these characters in the ASCII table:

5. Communication in UNIX 79

• Pressing the key labeled I alone pro duces lower case i

• Pressing land the C SHIFT) key together pro duces upper case I

• Pressing land the CCTRL) key together pro duces HT (CTAB)),
which causes the cursor to move ac ross the screen to the next tab
stop

HT (TAB)) is called a contral character because it causes an action that
controls the way your terminal works. You could say that it's also called by
this name because it's the code that results when you press the (CTRL)
key and the I key at the same time. Pressing (CTRL) and i together
(sometimes referred to as pressing (CTRL- I)) is equivalent to pressing the
(TAB) key.

To view the ASCII table on the UNIX system, you can display the con­
tents of the file /usr/pub/ascii with the cat command, like this:

$ cat /usr/pub/ascii

Unfortunately, the display will be sideways, with the control characters at
the top of the table and the display characters on the bottom. The display
will show 16 rows of eight characters each. It is more common to show an
ASCII table with control characters on the left and display characters on
the right, as shown in Table N.l.

CONTROL CHARACTERS AND DISPLAY CHARACTERS

Let 's conclude this chapter with a few more words about control characters
and display characters. Suppose you see this text file displayed on your
screen:

Odd no.: 7
Even no.: 8

Now here's a quest ion: Assuming that you pressed the (TAB) key before
typing 7 and 8 and you pressed the (RETURN) key at the end of each
line, how many characters are there in this file?

• If you are completely new to computers, you will probably say 17.

• If you know a little about computers, you may say 19.

• The correct answer is 23. What?

Explanation: There are only 17 visible characters. But there are also
two blank spaces (which bring the total to 19), and there are four control
characters, two TAB characters and two newline characters (which bring
the total to 23). The TAB character, also known as (CTRL-I), is HT

80 Sorne basics of cornrnunication

(hexadecimal code 9); the newline character, also known as (CTRL-J), is
NL (hex code A).

This is how this file looks to UNIX (using hexadecimal representation):

4F 64 64 20 6E 6F 2E 3A 9 37 A 45 76 65
6E 20 6E 6F 2E 3A 9 38 A

Translated into recognizable symbols:

0 d d [sp] n 0 HT 7 NL E v e
n [sp] n 0 HT 8 NL

From our point of view, display characters appear on the screen and
control characters do not. But to UNIX they are all just characters. It's
something like the characters who bring you a television show. There are
the characters you see on your screen (the actors) and the others you never
see (those who take care of the cameras, costumes, make-up, props, and so
on).

5.4 Summary

In this chapter you have learned about communication: first communicat­
ing with other users on your own system, then communicating with other
UNIX systems. The chapter closes with abrief description of communica­
tion concepts.

COMMUNICATING WITH OTHER USERS

To send electronic mail to another user on your system, use themail com­
mand, followed by the desired user identifier(s). Type your message, then
type (CTRL-D) by itself (or aperiod followed immediately by (RETURN))
on the line following the last line of your message. If another user has sent
you a message via electronic mail, you will see the message "You have mail"
the next time you log on. To find out exactly what you have received, use
themail command by itself, then press (RETURN) to look at each indi­
vidual message. You can also type d to delete the current message or p to
repeat it.

The mailx command is similar to mail, but includes a wider variety of
options for sending and receiving mail.

To remind yourself of something, you can either mai I an electronic mes­
sage to yourself with mail or post messages after dates in a special reminder
file called calendar, which will be automatically checked by the system. To
send a message directly to another user's terminal, use the write command

5. Communication in UNIX 81

followed by your message starting on the next line and then (CTRL-D) to
exit the write command.

COMMUNICATING OUTSIDE YOUR SYSTEM

To dial up another UNIX system, a terminal, or a non-UNIX system, use
the cu (call UNIX) command, including the telephone number of the other
party and the speed at which both of you are sending data to each other.
Once you have established a connection, you can type messages to each
other at the keyboard and send files back and forth.

To copy files from one UNIX system in a network to another, use the
uucp (UNIX-to-UNIX copy) command, including the names of the two
UNIX systems with the filename(s). To execute UNIX commands on an­
other system in the network, use the uux (UNIX-to-UNIX execute) com­
mand, receiving the commands via a pipeline. All of this assumes, of course,
that someone has already set up such a network in which to use these com­
mands.

To encrypt a file , use the crypt command with a key, redirecting input
from the original file and redirecting output to the encrypted file. To view
(or print) the original text at a later time, use the crypt command again
with the same key, redirecting input from the encrypted file. To ensure the
security of your encrypted files, select a long, complex key, and don't store
it anywhere in the UNIX system.

BASICS OF COMMUNICATION

Computers communicate with other computers and other equipment through
wires (sometimes with the help of modems), using one of several timing
methods, speeds, protocols, and duplex modes. Micromputers communicate
(both internally and externally) with ASCII codes, which include control
characters and display characters.

FüR FURTHER READING

If you would like to learn more about communications, refer to the follow­
ing:

Friend, George E., John L. Fike, H. Charles Baker, and John C. Bellamy,
Understanding Data Communications, Dallas: Texas Instruments, 1984.

Part 11

Text Editing

6 Introduction to vi 85

7 Making Some Changes 101

8 Changing and Deleting Text 115

9 Finding and Replacing Text 133

10 Moving and Copying within a File 147

11 Working with More Than One File 163

12 Customizing vi 177

In Part II you will learn how to enter and edit text with vi and ex,
which will allow you use all of your screen as a work area. These programs
are more convenient, but also slower, than the line editor ed. After an
introduction to the features, you williearn how to change and delete text,
how to find and replace text, how to move and copy text from one place in
a file to another, how to move and copy text from one file to another, how
to mark certain lines in a file for easy access, how to modify vi operating
options, and how to use abbreviations and key definitions. Note that under
UNIX, formatting is separate from editing. Formatting text for printing is
discussed in Part IV.

6

Introduction to vi

6.1 Background

TEXT AND COMPUTERS

As you can see by looking at the Table of Contents, three of the seven parts
of this book relate to text. One of the main uses of computers is to work
with text: enter it into a file, process it, format it, or print it on paper. You
are working with text every time you write a memo, a letter, a computer
program, an article, or a book.

The programs that help you work with text are becoming more and
more sophisticated every year, making the use of computers more and more
convenient. Twenty years ago, the program that allowed you to enter and
modify text (a text editor) was separate from the program that let you
control the appearance of the text on a printed page (a text formatter).
In the early 1970s, Wang and others began to introduce a new kind of
program that combined these separate functions in a single program (a
ward processing program). Word processing programs played a significant
role in promoting the popularity of personal computers.

In the 1980s, we are witnessing the start of a major revolution in the
publishing industry as new programs venture beyond basic editing and
formatting to laying out pages, merging text and graphics, and designing
books. We are also seeing more programs that handle related tasks, such
as checking for correct spelling, grammar, and style.

TEXT-EDITING AND UNIX

The first text editor for UNIX was a fairly primitive program called ed that
was line oriented. Then, around 1976, an enhanced version of ed called ex
was developed at the University of California by William Joy and others. A
major feature of ex is that it can be run in a visual mode called vi (vee-eye,
the visual interpreter). Most people prefer vi over ed because of its ease of
use, and so me even prefer vi over word processing programs because of its
many useful features. (For those who may prefer to use ed, see Appendix B,
"Summary of ed Commands").

Since vi uses the entire screen, like most popular word processing pro­
grams, you will find it vcry convenient. However, you can't just invoke the

86 Background

program and start using it, as you can with ed. You first have to make
sure that UNIX has detailed information about your terminal. (This corre­
sponds to the installation procedure for some word-processing programs).

To determine whether or not your UNIX system has been prepared for
your terminal, proceed to the next section and try invoking vi. If the correct
display appears on your screen as described, you can complete the rest of
this chapter right now. However, if the display is distorted or doesn 't appear
at all , turn to Chapter 33, "Terminals and Printers", for the information
you will need. Then return to this chapter and continue.

6.2 Typing a letter

Once someone has identified your terminal to the UNIX shell, as described
in Appendix L, "Summary of termcap and terminfo" , you can call up vi
and start typing a letter.

STARTING WITH A NEW DIRECTORY

As you learned earlier, one way to take full advantage of the UNIX file
system is to organize your horne directory into subdirectories for different
kinds of files. Let's start this chapter by creating a new subdirectory in
your horne directory to contain your vi files, then. move to this directory
for the exercises in this chapter.

1. Create a new subdirectory:

o Create a directory called text with the mkdir command:

$ m1cdir text
$

o The directory has been created, but you are still in your horne
directory.

2. Move from your horne directory to text:

o Move to subdirectory text with the cd command:

$ cd text
$

o Now text is your working directory. Any files you create will be
stored in this directory.

3. CaU up the visual editor vi:

6. Introduction to vi 87

o After the UNIX shell prompt, type vi letter and press
(RETURN):

$ vi letter

o After a few moments, the sereen will clear and the following
display will appear:

"letter" [New file]

The number of lines that appear in the display window varies from ter­
minal to terminal.

TVPING THE FIRST DRAFT

With vi running and a file named, you are ready to start entering the text
of your letter:

1. Seleet appending:

o Type a (without (RETURN)) to append text in text entry
mode.

o The a will not appear on the sereen, but onee you have typed
it, you ean begin entering text.

2. Type a few lines of text:

o Type the following, pressing (RETURN) at the end of eaeh line:

Dear Mr. Fenton: (RETURN)
(RETURN)
I came to your office straight
the tennis courts.
enough time to take a shower
the interview. (RETURN)
(ESC)

88 Typing a letter

D The text will appear on the screen as you type it, with each new
line replacing one of the tildes in the left-hand column.

3. Return to vi command mode:

D Press the (ESC) (Escape) key to leave text entry mode.

D The screen display will not change, but you will return to vi
command mode, from which you can enter more commands.

4. Try the repeat command:

D Type aperiod (.) (without (RETURN») to repeat the insertion.

D Now the screen will look like this:

Dear Mr. Fenton:

I came to your office straight from
the tennis courts. There wasn't
enough time to take a shower before
the interview.

Dear Mr. Fenton:

I came to your office straight from
the tennis courts. There wasn't
enough time to take a shower before
the interview.

Once you typed the period (.), vi repeated the insertion of five lines of
text (including two blank lines)-beginning at the cursor's location on the
screen. The unused lines below the text still begin with tildes.

5. Try the undo command:

D Type u to undo the insertion.

D The screen will again look like this again:

Dear Mr. Fenton:

I came to your office straight from
the tennis courts. There wasn't
enough time to take a shower be fore
the interview.

6. Introduction to vi 89

o Type u again to restore the insertion.

o Type u once more to remove the insertion.

You can use the undo command to recover from an error. It will undo
the results of the most recent change performed, no matter how extensive.
Note that when used twice in succession, the U command undoes the action
of the previous undo command.

6. Write the text to the file:

o Now type :wand press (RETURN) to write this text to letter.

o First you will see : w at the bottom of the screen; then you will
see this display on the status line:

"letter" [New file] 7 lines, 141 characters

A colon (:) always means a temporary change to ex command mode, from
which you can use an ex command-in this case, the w (write) command.

INSERTING THE DATE

Now we'll begin adding things to the letter, starting with the date. To do
this, we'll have to move the cursor to the top of the screen and make room
for another li ne of text.

1. Move the cursor to the top of the screen:

o Hold down the (SHIFT) key and type capital H (not h) to move
the cursor to the upper left-hand corner of the screen.

o The display should look like this:

Qear Mr. Fenton:

I came to your office straight from
the tennis courts. There wasn't
enough time to take a shower before
the interview.

2. Open a new line above:

o Type capital 0 (not 0) to open a new line above the first line.

o Now there will be a blank line above the first line, with the
cursor resting at the left margin.

3. Type the date:

90 Typing a letter

o Type the date as shown on the blank line and press (RETURN).

o Now the display should look like this:

March 17, 1987

Dear Mr. Fenton:

I came to your office straight from
the tennis courts. There wasn't
enough time to take a shower be fore
the interview.

4. Return to vi command mode:

o Press the CESC) key to leave "line-opening" in text entry mode.

o You have to do this every time you finish typing new text. Oth­
erwise, vi will interpret your next keystroke as another character
of text instead of a command.

INSERTING A NEW PARAGRAPH

Having inserted the date and selected vi command mode again, you are now
ready to insert a new paragraph. This involves moving the cursor down and
selecting insert mode.

1. Move the cursor down:

o Type j (unshifted) twice to move the cursor down to the blank
line after the salutation.

o If your terminal has arrow keys (and your termcap entry per­
mits), you can use the down arrow key (1) instead of j.

2. Prepare to insert a new paragraph:

o Type i to select inserting in text entry mode.
o You won't see i on the screen and the display won't change:

March 17, 1987

Dear Mr. Fenton:

I came to your office straight from
the tennis courts. There wasn't
enough time to take a shower before
the interview.

6. Introduction to vi 91

3. Insert a new paragraph:

o Press (RETURN) to leave a blank line after the salutation, type
the following, press (RETURN) after each line, then CESID at
the end:

I'm sorry you
interview on Friday. I was
ra~s~ng my ar.ms to give tbe
victory signal. (RETURN)
CESID

o Your display should look like this:

March 17, 1987

Dear Mr. Fenton:

I'm sorry you fainted during my
interview on Friday. I was
raising my arms to give the
victory signal.

I came to your office straight from
the tennis courts. There wasn't
enough time to take a shower be fore
the interview.

4. Return to vi command mode:

o Press the CES:Q) key to leave text entry mode.

D Always return to vi command mode after completing text entry.

5. Repeat the paragraph:

D Type aperiod (.) to repeat the paragraph you just typed.

D Your display will look like this:

March 17, 1987

Dear Mr. Fenton:

I'm sorry you fainted during my
interview on Friday. I was
raising my arms to give the
victory signal.

I' m sorry you fainted during my
interview on Friday. I was

92 Typing a letter

raising my arms to give the
victory signal.

I came to your office straight from
the tennis courts. There wasn't
enough time to take a shower be fore
the interview.

6. Now delete the second copy of the first paragraph:

o Type u (not u) to undo the last command.

o The repeated paragraph will now disappear.

ADDING A CLOSING

This letter needs a closing. This involves moving the cursor down and
adding more text.

1. Move the cursor to the last li ne of the display:

o Type capital L (not 1) to move the cursor to the blank line
below the second paragraph.

o The cursor should now be in the lower left-hand corner of the
display window.

2. Select appending in text entry mode again:

o Type a to append more text.

o Nothing will happen, but vi is now ready to receive more text.

3. Type the closing:

o Type the following, pressing (RETURN) after each li ne of text:

(RETURN)
I hope you will give very careful
consideration to my qualifications.
(RETURN)
Bob ("Ace") Sanders (RETURN)

o Your display should look like this:

March 17, 1987

Dear Mr. Fenton:

6. Introduction to vi 93

1'm sorry you fainted during my
interview on Friday. 1 was
raising my arms to give the
victory signal.

1 came to your office straight from
the tennis courts. There wasn't
enough time to take a shower before
the interview.

1 hope you will give very careful
consideration to my qualifications.

Bob ("Ace") Sanders

4. Return to vi command mode:

o Press the (ESC) key to leave text entry mode.

o Always return to vi command mode after completing entry of
text.

5. Write the text to the file:

o Type: wand press (RETURN) to write this text to letter.

o You will see : w. then this display at the bottom of the screen:

"letter" 19 lines, 363 characters

6.3 Making changes to the letter

Now that we have a complete letter, let's make some changes to it. This
will help us try various features of vi.

CHANGING THE DATE

Let's start with the date at the top of the letter. We'll start by moving the
cursor, then make a change.

1. Move the cursor up to the first line:

o Hold down the (SHIFT) key and type H to move the cursor to
the top of the display.

94 Making changes to the letter

o The cursor should now be positioned over the M in March.

2. Change March to September:

o Type cw to change a word. The display will look like this:

!:1arc$ 17, 1987

o Immediately type September and press CESC).

o The first line should now look like this:

Septembe~ 17, 1987

The c (change) command can be used either alone or in conjunction with
another character (in this case, W for word). The character that follows c
specifies exactly how much text is to be changed. You'lllearn how to use
C and other commands with characters like W in the chapters that follow.

CHANGING A NAME

Next we'll change the name on the salutation line. This involves moving
the cursor into position and making a double change.

1. Move the cursor to the start of the name on the salutation line:

o Type a slash (I) to request a search, followed immediately by
Mr. At the bottom of the screen, you will see

/Mr_

o Now press C RETURN) to begin the search.

o The cursor will jump to the M in Mr. on the third line.

2. Change Mr. Fenton to Mrs. Benson:

o Type 2cfi to change two words. The li ne will look like this:

Dear !:1r. Fenton$

o Type Mrs. Benson: immediately after 2cfi, then press the
CESC) key.

o The salutation line will now look like this:

Dear Mrs. Benson:

6. Introduction to vi 95

RUNNING A UNIX COMMAND

Sometimes you work so hard at your terminal that you lose track of the
time. However, vi lets you take a look at the clock (using the date com­
mand) without having to interrupt your editing session. You can also run
any other UNIX command from vi.

1. Find out what time it is:

o Type: !date and press (RETURN) to find out the date and
time.

o You should see a display like this appear:

: !date
[No write since last changel

Mon Apr 3 13:52:27 PST 1987
[Hit return to continuel_

o As the prompt says, press (RETURN) to return to vi.

2. Find out who else is on the system:

o Type: !who and press (RETURN) to obtain a list of active
users.

o You should see a display like this appear:

: !who
john tty07 Apr 3 08:43
janice tty16 Apr 3 09:17
billy tty03 Apr 3 08:24
[Hit return to continuel_

You can type any shell command in this way. The main thing to remem­
ber is that you can run any UNIX command from within vi by preceding
the command li ne by the two characters :1. The colon gives you ex; the
exclamation mark gives you the shell. (For an extensive session with the
shell, you can also use :sh, execute your commands, then type (CTRL-D)
to return to vi.)

GETTING INFORMATION

Before making any more changes, let's ask vi for some information.

1. Move to a specific line:

o Type 9G to have the cursor "go to line 9."

o N ow hold down the (CTRL) key and press G (unshifted)to ask
vi for status information.

96 Making changes to the letter

o You will see a display like this at the bottom of the screen:

"letter" [Modified] line 9 of 19 --47%--

This line teIls you the name of your file (Iener), the line number where
the cursor is resting (9), the total number of lines (19), how far the
cursor is from the beginning of the file (4 7 % of the file), and whether
you have made changes to the file ([Modified]) that haven't been
written.

2. Move to the first and last lines:

o Type L to move the cursor to the last line on the screen, and
type (CTRL-G) again. At the bottom of the screen you will see

"letter" [Modified] line 19 of 19 --100%--

o N ow type H to move back to the first line and type (CTRL-G)
a third time. At the bottom of the screen you will see

"letter" [Modified] line 1 of 19 --5%--

Each time you type (CTRL-G), vi gives you status information based on
the cursor's location in the text.

DELETING WORDS

Now we'Il delete a couple of words just to show you how different vi com­
mands have many things in common.

1. Move the cursor to ve ry in the twelfth line:

o Type Ivery and press (RETURN).

o Now the cursor is resting on the v in very careful.

2. Delete the words very careful:

o Type d2fi to delete these two words.

o the line should look like this:

I hope you will give_

3. Undo the deletion:

o Let's restore the original wording by typing u.

o Now the wording is back the way it was before:

I hope you will give ~ery careful
consideration to my qualifications.

6. Introduction to vi 97

CAPITALIZING WORDS

Before concluding this brief sampling of vi commands, let's try one more
thing: capitalizing a word. Any word will do; let's pick interview in line
13. Since the cursor is currently resting on line 15, this involves a backwards
search (unless you have selected the "wrapscan" feature-see Appendix D,
"Summary of vi Options").

1. Move the cursor into position:

o Type ?interviewand press (RETURN) to move the cursor
up to line 13.

o The cursor should now be resting on the first i of interview.

2. Capitalize the word:

o Type the tilde () to make the change.

o Line 13 should now look like this:

the Interview.

o Since it doesn't make any sense to have this word capitalized,
restore it by typing the undo command u.

6.4 Ending the session

Now it's time to write the updated text to disk file letter and return to the
UNIX shell.

1. Write the text to file letter:

o Type: wand press (RETURN) to write to the file.

o You will see a display like this at the bottom of the screen:

"letter" [Modified] 19 lines, 363 characters

2. End this session with vi:

o Type: q and press (RETURN) to end the session.

o The following display will appear, indicating that you have left
vi and returned to the UNIX shell:

:q
$

98 Ending the session

Note that vi also allows you to combine the write and quit commands
into a single command, like this:

:wq or :x or ZZ

$ - $ - $

6.5 Summary

In this chapter you learned a number of common vi procedures, such as
beginning a session, entering text, inserting new text, making changes, and
ending a session. Before you can use vi, you have to make sure that someone
has placed an entry for your terminal in /etc/termcap (or /usr/lib/terminfo)
and that you have assigned one of the names for your terminal to the shell
variable TERM and exported TERM to the environment. If necessary, see
Chapter 33, "Terminals and Printers," for details.

Start vi by typing vi, aspace, and the name of a file. For a new file, the
screen will be cleared, the cursor will move to the upper left-hand corner of
the screen, and vi command mode will be in effect. For an existing file, its
contents will be displayed on the screen. To enter text, type a (append), i
(insert), or one of several other letters without pressing (RETURN), enter
the text, then press (ESC) to return to vi command mode. Two of the
most useful commands in vi are the repeat command (.), which repeats
the most recent command, and the undo command (u), which undoes the
most recent change performed.

To open a new blank li ne for inserting new text, use either the 0 command
(to open below) or the 0 command (to open above the current line). Enter
the text, then press (ESC) to return to vi command mode. To insert new
text, use either i (to insert in front of the cursor) or I (to begin inserting in
the first column of the current line). Enter the text, then press CESQ) to
return to vi command mode.

To change a word, move the cursor to the first letter of the word, then
type cwor cW(change word), followed by the new word (without aspace)
and (ESC). To change two words, use 2cw or 2cW. To search for astring,
type either / (to search forward) or ? (to search backward), followed im­
mediately by the desired string, and press (RETURN).

To execute a UNIX command without having to end your session with
vi, type :! , followed immediately by the name of the command, and press
(RETURN). (Use :sh to spawn a subshell.) To determine your relative
position in the text, press (CTRL-G) to see a display.

To delete a word, move the cursor to the first letter of the word, then
type dw or dW (delete word). To delete two words, use d2w or d2W; to
delete three, use d3w or d3W. To change a lower case letter to upper case
or an upper case letter to lower case, position the cursor over the letter

6. Introduction to vi 99

in vi command mode and type the tilde (). Non-alphabetic characters are
not affected.

To end a session with vi, type : w to write the text to the file, then type
: q to end the session (quit) and return to the UNIX shell. You can also
combine these two in a single command.

FIGURE 6.1. The modes at a glance.

~--~~ ~ -.~--~
~ vi Text

Command Entry
Mode Mode

ex
Command

Mode
(Automatie)

Shell
Command

Mode

7

Making Some Changes

Now that you've had a chance to sample some of the most common features
of vi, let's examine some of those features in more detail. In this chapter
we'Ulook at ways to insert, change, and delete text. Let's start by beginning
a new session and getting acquainted with the various ways of moving the
cursor around the display window.

7.1 Beginning a new session

Things may have changed a little since you completed the previous chapter
on vi. If so, here are a few words ab out returning to vi with the same file
you were working with in that chapter:

1. If necessary, move from your horne directory to text:

o Use the cd (change directory) command like this:

$ cd text
$

o Use the pwd (print working directory) command to verify:

$ pwd
lusr/robin/text
$

2. CaU up vi with the same file (letter):

o At the sheU prompt, type vi letter and press (RETURN)

$ vi letter

o After a few moments, the screen will clear, and the text of your
letter will appear, with the cursor on the first line.

2eptember 17, 1987

Dear Mrs. Benson:

102 Moving the cursor

1'm sorry you fainted during my
interview on Friday. 1 was
raising my arms to give the
victory signal.

1 came to your office straight from
the tennis courts. There wasn't
enough time to take a shower be fore
the interview.

1 hope you will give very careful
consideration to my qualifications.

Bob ("Ace") Sanders

"letter" 19 lines, 363 characters

7.2 Moving the cursor

To use vi effectively, you must first leam how to move the cursor from one
location to another. This will not only enable you to move the cursor to
where you need it; it will also help you see how vi works. Many functions
in vi begin working at the position of the cursor. In this section, you will
leam how to use certain characters to position the cursor on the screen.
Later in this chapter you will leam to use many of these same characters
with vi's operators to perform a variety of functions.

MOVING A CHARACTER AT A TIME

Your keyboard may have a separate cursor pad with arrow keys like this:
If so, then you may want to use these keys to move the cursor one space
at a time. If not, you will have to use the keys h, j, k, and 1. Some people
prefer to use these keys, even when arrow keys are available, like this:

Press the character down key (1 or j) five times to move the cursor to the
fifth line (I' m sorry ...). Now try all four keys to become familiar with
them. When you are finished practicing, leave the cursor at the beginning
of the fifth line.

Yet another set of keys, which will work for any version of vi, is the
following (don't worry--the space bar won't erase your text):

Le1t

•

~
~

LeI!

7. Making Some Changes 103

FIGURE 7.1. The cursor arrow keys.

FIGURE 7.2. The new cursor motion keys.

Down Up Right

I t
FIGURE 7.3. The old cursor motion keys.

t;;l •.• ~

Down Up Right , t

104 Moving the cursor

MOVING A WORD AT A TIME

You also have keys for moving the cursor
either forward (w) or back (b) one entire
word at a time. Press w about ten times to
move forward; press b a few times to move
back again. As you can see, motion continues
from the end of one line to the beginning of
the next, and vice versa. When capitalized
(shifted) , these two keys perform nearly the
same functions. However, Wand B disregard
punctuation. If you use either w or b, the
cursor will stop on punctuation marks. Two related commands, e and E,
move the cursor to the last character of a word rat her than the first.

Note that you can type a multiplier in front of the letter to multiply the
number of jumps, as in 2w, 3b, and so on. Try commands like these also.

MOVING A SENTEN CE AT A TIME

The left and right parenthesis keys (shifted
9 and 0) provide cursor motion to either the
beginning (() or the end (») of the current
sentence. (Note that vi expects aperiod, fol­
lowed by two spaces-or a blank line- to mark the end of a sentence.) Try
these two keys a few times.

Once again, you can use multipliers: 3 (, 4) , and so on.

MOVING A PARAGRAPH AT A TIME

The left and right brace keys provide cur­
sor motion to either the beginning ({) or the
end (}) of the current paragraph. (Ordinar­
ily, vi regards blank lines as separators of
paragraphs. However, if you are writing programs in C, you can change the
separators to braces, which delimit blocks of code. For details, see Chap­
ter 12, "Customizing vi.") Try these two keys a few times. Again, you can
also use multipliers: 3 {, 5}, and so on.

MOVING TO EITHER END OF A LINE

You have a pair of keys for moving the cursor
either to the beginning ("') or the end ($) of
the current li ne .(the same two symbols used
by ed) . The character (0) is similar to It
also moves the cursor to the beginning of the line. However, 0 always moves

7. Making Same Changes 105

the cursor all the way to the left-hand margin, whereas " moves the cursor
only to the first visible character. Try a few jumps with these keys.

FIGURE 7.4. Basic cursor motion.

{
Xxx xxxx xxx xx Uxxx xxx xxxxxx xx xxxxx

xxx xxx xxx. (xx x xx xxx x xxxxxxx xxxxx
"xxxxxxx xxx bx liXXXX Wxx xxxx.)xxxxx xxxx$
xx xxxxx xxxxxxxx. X xxx xxx xx xxxx xxx.
}

Yyy yyyy yyy yyyyy yyyy yyyy. Yyyyy yyy
yyyyyyy yyy yyyyyy yyy yyyyy.

MOVING TO THE TOP AND BOTTOM OF THE SCREEN

The Hand L keys allow you to move the
cursor either to the top (H) ar the bottom (L)
of the screen. You can remember the letters
as home and lower left. Try your hand with
these keys a few times.

MOVING TO THE MIDDLE OF THE SCREEN

The M key allows you to move the cursor to the middle (M)
of the screen. M, of course, stands far middle. Try this one
in conjunction with the Hand L commands.

MOVING TO A GIVEN LINE

The letter G (Go to) provides cursor motion ~ G

:;::~~:J~c :lr~t~o~~:~~~i~~r~;i:~~~: !W
you to the second line; 5G would take you to the fifth line; and so on.
One limitation of this key is that you usually have to know the number of
the desired line. (If you would like to have vi display line numbers on the
screen, there is a way to do this. For details, see Chapter 12, "Customizing
vi.")

Note that Galone design at es the last line of the file and that (CTRL-G)
answers the question, "What is the number of the current line?" Try all
these different variations.

106 Moving the cursor

MOVING TO THE MATCHING BRACKET

If the cursor is currently resting on any of the general brack­
eting symbols, namely

() parentheses
[] square brackets
{} braces

matching symbol. To see how this command works, move ~m % ::

you can use the percent sign (%) to move the cursor to the L;J
!~~e~~:~~t t:i~~e%l~: tl~~ep~~e~;~e;~~lt::;r:~~~: ,il~,,)~d i·, ,::'

A NOTE ON CURSOR MOTION KEYS

You must be in vi command mode to use any of the cursor motion keys
just described. (Press CESQ) to return to vi command mode. If you hear
a beep, your terminal is already in this mode.) None of the cursor motion
keys will work after you have entered one of the text insertion modes. The
five cursor motion commands just discussed are illustrated in Figure 7.5.

FIGURE 7.5. More cursor motion.

Highest li ne H -

Middle line M_

Lowest line L -

3G Third line

7.3 U sing markers

MARKING A PLACE

You can set a place marker anywhere in the
work area with the m command. Just move
the cursor to the desired location and type
m, followed by any lower case letter of the
alphabet. The letter then becomes the name of the place marker.

7. Making Some Changes 107

MOVING TO A MARKER

Once a place marker has been set in the work

the cursor to the marker with either of the :i: , :
area with the m command, you can move LJ'

two types of single quotation mark. Type l ::
the back quotation mark (or grave accent) f~, ;~ :
" followed by the letter name of the mark,

to move the cursor to the exact Iocation of LJ
the mark. Type an ordinary quotation mark ii:i , :

" followed by the letter, to move the cursor ::li
to the beginning of the line that contains the ?~. :::
mark.

Move to
a

Move to
b

FIGURE 7.6. Using markers.

'a

.ma

.mb

'b '--_______ --...;

7.4 Controlling the screen display

SCROLLING

Set marker a
at the period

Set marker b
at the period

You have a pair of keys that produce either
a scroll up (C CTRL-u ») or ascroll down
(C CTRL-D »). If the cursor is in the upper
half of the screen, ascroll up may push the
cursor down; if the cursor is in the lower half
of the screen, ascroll down may push the
cursor up.

'CIT~ . . .";,.
:::

To practice scrolling, move the cursor to any
line in the letter. Now you can try
C CTRL-u) and and C CTRL-0).

Scrolling is illustrated in Figure 7.7.

108 Controlling the screen display

FIGURE 7.7. Scrolling up and down.

CTRL-D

•
d33da3da3dda

bbbbbbbbbbbb
',',-, ',',-,-,'

Serail Down

PAGING

aaaaaaaaaaaa
bbobbbbbbbob
ccccccccccccc

dddddddddddd
eeeeeeeeeeeeee
fff f fffffffff

999999999·

Original Sereen

vi also provides one key for paging back
(C CTRL-B ») and one for paging forward
(C CTRL-F »). ("Paging" means advancing the
text one screenful at a time.) Later on, when
you are working with long documents, you
will find these features very handy.
After practicing with these keys, you can
re-move the extra blank lines by abandon­
ing the text (: q!) then starting again (vi
letter). Paging is illustrated in Figure 7.8.

CTRL-U

dddddddcidddd
eeeeeeeeeeeeee
fffffffffffff
qqqgqqqqq. ..

Serail Up

FIGURE 7.8. Paging up and down.

Page Baek
(CTRL-B) ..

A A A A A A A A

B B B B B B

B B B

C C C

B B B C

C C C 0

C C C C

D D ..
Page Forward

(CTRL-F)

C

D

7. Making Some Changes 109

REPOSITIONING THE CURRENT LINE

You have a command that you can use to
re-position the current line in the display
window-z, the "zero screen" command. To
place the current line at the top of the screen,
type Z and press (RETURN); to place the
current line in the middle of the screen, type
Z • ; to place the current li ne at the bottom of
the screen, type Z-.

This command also has several variations: If
you type a line number in front of z, that
li ne will be placed at the top of the screen; if
you type a number after z, your display win­
dow will be reduced (or increased) to that
many lines. For example, type 15z to place
line 15 at the top of the screen. Type z12
to reduce your display window to 12 lines.
Repositioning the current line is illustrated in Figure 7.9.

FIGURE 7.9. Repositioning the current line.

z RETURN Place the line at the top

z. Place the line at the middle

z- Place the line at the bottom

CLEARING SYSTEM MESSAGES

You have a command for clearing system
messages from your screen: (CTRL-L). This
will clear messages from, but leave the text
in your work area unchanged.

7.5 Adding new text

As you saw in Chapter 6, you have three choices when you want to add
new text in vi without altering existing text:

• You can append text after existing text.

110 Adding new text

• You can insert text in front of existing text .

• You can open up space for a new line of text.

In this chapter we'll explore each of these in greater detail.

ApPENDING TEXT
a
A

To append text after existing text on the screen, you can use one of two
commands: One that lets you add the new text immediately after the cursor
(a) or one that lets you add the next text at the end of the current line (A).
Let 's take a look at each of them, using the first line of the first paragraph
(line 5) of letter.

1. Move the cursor into position:

o In vi command mode, type SG to place the cursor on li ne 5.

o Type 4E to move the cursor across the line to fainted.

o The line should now look like this:

I'm sorry you fainteg during my

2. Append away (with a preceding space) after fainted:

o In vi command mode, type a to append text after the cursor.

o Type away and press (ESC) to return to vi command mode.

3. Append first (with a preceding space) to the end of the line:

o In vi command mode, type A to append text at the end of the
line.

o Type first and press CESQ) to return to vi command mode.
o Now the line should look like this:

I'm sorry you fainted away during my first

As you can see from these examples, vi commands have one meaning in
lower case (a) and another in upper case (A). See Figure 7.10.

INSERTING TEXT

To insert text in front of existing text on the screen, you can use one of
two commands: One that lets you add the new text immediately before the
cursor (i) or one that lets you add the new text at the beginning of the
current line (I). (If the text is indented, you will want to use 01.) Let's take
a look at i and 1 using line 7 of letter.

7. Making Some Changes 111

FIGURE 7.10. Appending text.

Result 01 a xxx Original screen Result 01 A xxx

ce eeeee xxx ecce ce ecece ecce ce ceeee ecce xxx

1. Move the cursor into position:

o In vi command mode, type /the to move the cursor to the on
line 7.

o The line should now look like this:

raising my arms to give lhe

2. Insert you (with a trailing space) in front of the:

o In vi command mode, type i to insert text before the cursor.

o Type you and press (ESC) to return to vi command mode.

3. Insert just to the beginning of the line:

o In vi command mode, type I to insert text at the beginning of
the line.

o Type just (with a trailing space) and press (ESC) to return
to vi command mode.

4. Capitalize the v in victory:

o Type 8G to move the cursor to the v in victory.

o Type to change the v to a V, so that the line looks like this:

Victory signal.

o Type u to undo the capitalization.

Once again, i and I are two different commands (see Figure 7.11).

QpENING A NEW LINE
o
o

You can open space for a new line either above the current line (0) or below
the eurrent line (0). Onee again, we'll try one example of each, one near
the beginning of the letter and one near the end.

112 Adding new text

FIGURE 7.11. Inserting text.

Result of ixxx Original sereen Result of Ixxx

ce ccccc xxx ecce ce ccccc ecce xxx c'C 'c

1. Move the cursor into position:

o Type G then k to move the cursor to the last line of text.

o The cursor will be at the beginning of the li ne (but it doesn't re­
ally matter where on the li ne the cursor is for these commands):

gob ("Ace") Sanders

2. Add Sincerely, and three blank lines above.

o Type 0 to open a new line above the current line.

o Type Sincerely" press (RETURN) three times, and press
(ESC) to return to vi command mode, so that the closing lines
look like this:

I hope you will give very careful
consideration to my qualifications.

Sincerely,

Bob ("Ace") Sanders

3. Add a name and address on new lines below the date:

o Type lG to move the cursor to the first li ne (the date).

o Type 0 to open a new li ne below the current line.

o Type the three lines shown (each followed by (RETURN») and
press c::ESrD to return to vi command mode, so that the lines
look like this:

7. Making Some Changes 113

September 17, 1987

Agatha R. Benson
Vice President
Fifth National Bank

Dear Mrs. Benson:

This session will be continued in Chapter 8, "Changing and Deleting
Text" (see Figure 7.12).

FIGURE 7.12. Opening a new line.

Result of Oxxx Original screen Result of oxxx

xxx
~~ ""'""·"rr
~ - ecce ce ccccc ecce ce ccccc ecce

xxx

7.6 Summary

In this chapter you learned how to move the cursor and add new text.

MOVING THE CURSOR

Moving aspace at a time--You can move the cursor one space at
a time with a choice of 1) arrow keys on a cursor pad, 2) typewriter keys,
or 3) control keys.

+-- i i (2) h j k 1
(3) +-- --+

(3) AH AN ApA
1

space
1 --+

an ~ ~
L.ft ~ '-\> R.oght .. • t •

~ ~
~§ p Sp.u

L,' ~ '-\> R.oght

• • t ..

114 Summary

Moving Back Ahead
Word(s) b w

Sb Sw
B W
SB SW

Line "
First 1G
Line n nG
Last G

Sentence (s) (

5 (5)

Paragraph(s) { }
S{ S}

Screen Top: H

Middle: M

Bottom: L

Matching
Bracket % 9,

0

CONTROLLING THE SeREEN DISPLAY

Scrolling
Up:
Down:

(CTRL-u) ("U)

(CTRL-D) ("D)
Placing current line

Top: z (rrR""E'ffiT"'U"'R"'N""')
Middle: z.
Bottom: z-

Clearing messages
C0C;';;TcrrR"'L~_ L=--)

ADDING NEW TEXT

Appending text
After cursor:

Inserting text
a

Paging
Back:
Forward:

At end of line:

To end
e
Se
E
SE

$

(CTRL-B) ("B)
(CTRL-F) ("F)

A

Before cursor: i At beginning of line: I

Opening a new line
Below current line: 0 Above current line: 0

8

Changing and Deleting Text

In Chapter 7 you learned how to move the cursor and adjust the display
in vi. You then learned how to add new text. In this chapter you williearn
how to change and delete text. These two functions are very similar in vi.

8.1 Changing text

So far, we have only added new text to existing text. We can also make
changes to existing text, using the cursor motion characters in conjunction
with the change command (c) to produce a number of variations. Later in
this section we'll talk about shifting text in either direction.

CHAN GING A WORD
cw
cW

The change command (c) can be used by itself to change a single letter.
But we'll save another command for that, and go on to the next possibility:
changing a word. To show how this works, let 's move to the first line of the
second paragraph.

1. Move the cursor into position:

o In vi command mode, type /I'm and press (RETURN).

o The cursor should now be be over the I in line 9:

l'm sorry you fainted away during my first

2. Change I' m to I am:

o In vi command mode, type cfi to change a word.

o A dollar sign will appear in place of the m:

1'$ sorry you fainted away during my first

o Type I am and press CESTI) to return to vi command mode.

o The line should now look like this:

116 Changing text

I am sorry you fainted away during rny first

We used cW in this exercise instead of cw because I' m has an apostrophe
in the middle of it. With CW, this would have happened:

I am'rn sorry you fainted away during rny first

CURSOR MOTION AND vi COMMANDS

The previous example looks very simple, but let's review what happened
anyway. The example illustrates some things that you will be seeing again
and again in vi. You may recall from Chapter 7 that W by itself makes the
cursor jump to the next word (ignoring punctuation), like this:

I'rn sorry you fainted away during rny first
W

I'rn ~orry you fainted away during rny first

When you combine W with c, you are telling vi to change (c) the text
(not counting the blank space) that W would make the cursor jump over:

Change text from here
1
I'rn sorry you fainted away during rny first

cW

I'rn ~orry you fainted away during rny first
f
to here.

In the examples that follow, we'll be using different characters, but the
rule is always the same: the change starts where the cursor is now and stops
just before the place where the cursor would land after a jump.

CHANGING MORE THAN ONE WORD
CnW

CnW

Changing more than one word is similar to changing one word. The only
difference is that you place a number in front of W to tell vi how many
words to change. Let's use the same li ne of text to illustrate this.

1. Move the cursor into position:

o In vi command mode, type 3w to advance the cursor to the f
in fainted

o The line should now look like this:

I arn sorry you 1ainted away during rny first

8. Changing and Deleting Text 117

2. Change fainted away to passed out:

D Type c2w to change two words.

D You will see a dollar sign appear in front of during:

I am sorry you fainted awa$ during my first

D Type passed out and press (ESC) to return to vi command
mode.

D The line should now look like this:

I am sorry you passed ou~ during my first

As you can see, the rule for cursor motion applied here: the change started
at the cursor's original position and stopped before the d in during (which
is where 2w by itself would have moved the cursor).

CHANGING TO THE BEGINNING OF THE LINE

To change text from somewhere in the middle of a line to the beginning
of the line, use C followed by ft, the command to move the cursor to the
beginning of a line. To illustrate this, we'll use the third line of the first
paragraph.

1. Move the cursor into position:

D In vi command mode, type /straight and press (RETURN).

D The cursor will now be on the s in straight:

I came to your office ~traight from

2. Change the first five words to I had to rush:

D Type cft to request a change from the beginning of the line to
the cursor's current position:

I came to your office$straight from

D Immediately type I had to rush (with aspace following rush)
immediately after cft and press CESID to return to vi command
mode.

D The line should now look like this:

I had to rush_straight from

118 Chan ging text

CHANGING TO THE END OF THE LlNE e$
To change text from anywhere in a line to the end of the line, use e followed
by $, the command to move the cursor to the end of a line. To illustrate
this, we'll use the third line of the same paragraph.

1. Move the cursor into position:

o In vi command mode, type /take and press (RETURN).

o Now the cursor will be on the t in take:

enough time to take a shower before

2. Change take a shower before to several words:

o Type e$ to request a change from the cursor's position to the
end of the line:

enough time to take a shower before$

o Type get ready for immediately after e$ and press (ESC)
to return to vi command mode.

o The line should now look like this:

enough time to get ready fo~

CHANGING AN ENTIRE LlNE ee
One of the rules of vi for most commands is this: To make a command
apply to an entire line, type the command twice in succession. Using this
rule, the command to change an entire line is ee. To illustrate this, we'll
use the last line.

1. Move the cursor into position:

o In vi command mode, type /Bob and press (RETURN).

o The cursor will now be on the capital B in Bob:

~ob ("Ace") Sanders

2. Change Bob ("Ace") Sanders to Robert G. Sanders IIr:

o Type ee to request a change to the entire line. (The li ne will
vanish.)

o Type Robert G. Sanders III immediately after ee and press
(ESC) to return to vi command mode.

8. Changing and Deleting Text 119

D The line should now look like this:

Robert G. Sanders 111

After all these changes, the entire letter should look like this:

September 17, 1987

Agatha R. Benson
Vice President
Fifth National Bank

Dear Mrs. Benson:

I am sorry you passed out during my first
interview on Friday. I was
just raising my arms to give you the
victory signal.

I had to rush straight from
the tennis courts. There wasn't
enough time to get ready for
the interview.

I hope you will give very careful
consideration to my qualifications.

Sincerely,

Robert G. Sanders 111

CHANGING TO THE BEGINNING OF THE SENTENCE c(

Changing text from anywhere in a sentence to the beginning is just like
changing to the beginning of a line, described above. The only difference
is that you use c(instead of cO or CA. To illustrate this, let's use the first
line of the first paragraph (r am sorry ...).

1. Move the cursor into position:

D In vi command mode, type ?during and press (RETURN).

D Now the cursor will be on the d in during:

I am sorry you passed out guring my first

120 Changing text

2. Change the first half of the sentence:

o Type c(to request a change from the beginning of the li ne to
the cursor's position:

1 am sorry you passed out during my first

o Immediately type I'm sorry you Eainted (with aspace
following) and press (ESC) to return to vi command mode.

o The line should look now like this:

I'm sorry you fainted_during my first

3. Undo the change:

o Type U (undo) to restore the sentence.

o The sentence should now look like this again:

I am sorry you passed out$during my first

CHAN GING TO THE END OF THE SENTEN CE c)

Changing text from anywhere in a sentence to the end is just like changing
to the end of a line, described above. The only difference is that you use c)
instead of c$. To illustrate this, let's use the same sentence.

1. Change the second half of the sentence:

o Advance the cursor to the d in during with 6W.
o With the cursor resting on the d in during, type c) to request

a change from the cursor's position to the end of the sentence:
I am sorry you passed out!. was

o Immediately type at the end oE (RETURN) last Fri­
day' s interview. and press (ESC) to return to vi command
mode.

o The sentence should now look like this:

I am sorry you passed out at the end of
last Friday's interview. I was

2. Undo the change:

o Type U to restore the sentence.

o The sentence should now look like this again:

I am sorry you passed out during my first
interview on Friday. I was

8. Changing and Deleting Text 121

CHANGING TO THE BEGINNING OF THE PARAGRAPH C{
Changing text from anywhere in a paragraph to the beginning is just like
changing to the beginning of a line. The only difIerence is that you use C{
instead of c(. To illustrate this, let's use the same paragraph.

1. Move the cursor into position:

o In vi command mode, type II was and press (RETURN).

o The cursor will now be on the I in I was:

I am sorry you passed out during my first
interview on Friday. 1 was

2. Change the first part of the paragraph:

o Type c{ to request a change from the beginning of the paragraph
to the cursor's position:

1 was

o Press (RETURN) and type I' m sorry you fainted dur­
ing last (RETURN) Friday' s interview. You see,
(with aspace following) and press (ESC) to return to vi com­
mand mode.

o Now the paragraph should look like this:

I'm sorry you fainted during last
Friday's interview. You see,_I was

CHANGING TO THE END OF THE PARAGRAPH c}

Changing text from anywhere in a paragraph to the end is just like changing
to the end of a line, described above. The only difference is that you use
c} instead of c$. To illustrate this, let 's use the same line.

1. Change the last part of the paragraph:

o Advance the cursor to the I in I was,

o Type c} to request a change from the cursor's position to the
end of the paragraph (the text will vanish from the screen):

Friday's interview. You see, _

o Immediately complete the paragraph as shown, then press (ESC)
to return to vi command mode.

122 Changing text

Friday' s interview. You see, my arms (RETURN)
just went up into a spontaneous (RETURN)
victory sign. ~

2. Undo the change:

o Type u to restore the paragraph.

o It should now look like this again:

[riday's interview. You see, I was
just raising my arms to give you the
victory signal.

8.2 Deleting text

To delete text, use the cursor motion characters in conjunction with the
delete command (d) to produce variations like those for changing text.
Since we'H be making a lot of deletions, we'H have to undo most of them
with the U (undo) command; otherwise, we'H run out of text to delete.

DELETING A CHARACTER x
The command for deleting a single character (x) doesn't foHow the pattern
for deleting other segments of text. To delete a character, move the cursor
to the character and type X (not d).

DELETING MORE THAN ONE CHARACTER nx
To delete more than one character (say two characters), place a multiplier
(2) in front of the X command. Let's try this now.

1. Move the cursor into position:

o In vi command mode, type ?al. and press (RETURN).

o Now the cursor will be on the a in signal:

victory sign.äl.

2. Change signal to sign by deleting two characters:

o Type 2x to make the deletion, so that the line looks like this:

victory sign.:..

8. Changing and Deleting Text

DELETING A WORD (OR WORDS)

123

dw
dW

To delete a word, move the cursor to the first letter of the word and type
dw. This works just like CW, except that you don't have to enter any
replacement text with dw. Let's try deleting several words in the text.

1. Move the cursor into position:

o Type /give very and press (RETURN).

o The cursor will drop down to the g in gi ve in the third para­
graph:

I hope you will ~ive very careful

2. Delete one word:

o Type dw to delete gi ve:

o The line should now look like this:

I hope you will ~ery careful

o Restore the word with U:

I hope you will ~ive very careful

3. Delete several words:

o Type 3dw (or d3w) to delete give very careful:

o The line should now look like this:

I hope you will _

o Restore the words with U:

I hope you will ~ive very careful

If the word (or words) you are deleting are next to punctuation or
contain punctuation (isn' t, won' t, $5.67), use W instead of w).
Here's an example:

4. Move the cursor up to the first paragraph:

o Type ?I'm and press (RETURN).

o The cursor will move up to the I in I' m:

124 Deleting text

l'm sorry you fainted during last

5. Delete two words along with punctuation:

o Type 2dW (or d2W), so that the line looks like this:

~ou fainted during last

o Undo the deletion with U:

l'm sorry you fainted during last

To delete part of a word, move the cursor to the first letter to be deleted
and follow the same procedure. For example, to delete ment from estab­
lishment, move the cursor to the m and type dw.

DELETING TO THE BEGINNING OF A LINE

To delete text from anywhere in a line to the beginning of the line, use
dA, which is analogous to CA. Move the cursor to the first character to be
retained and type dA. All text on the line to the left of the cursor will be
deleted. Type 4W to advance the cursor to the d in during and type dA
on the current line. All text to the left of the cursor will vanish:

guring last

Undo this deletion with U:

I'm sorry you fainted guring last

DELETING TO THE END OF A LINE d$

To delete text from anywhere in a line to the end of the line, use d$, which
is analogous to C$. Move the cursor to the first character to be deleted and
type d$. All text on the line to the right of the cursor will be deleted. Let's
try this.

1. Move the cursor down to the third paragraph:

o Type /straight and press (RETURN).

o The cursor will land on the s in straight:

I had to rush ~traight from

2. Delete the rest of the li ne to the right:

8. Changing and Deleting Text 125

o Type d$ to make the deletion, so that the line looks like this:

I had to rush_

o Undo the deletion with U:

I had to rush 2traight from

DELETING AN ENTIRE LINE dd
To delete an entire line, use the double rule (dd). Move the cursor to any
location on the line and press dd. For this example, leave the cursor where
it is and type dd. The line will vanish, leaving the cursor on the following
li ne like this:

victory sign.

the tennis courts. There wasn't

To restore the deleted line, use U:

I had to rush straight from
the tennis courts. There wasn't

You can precede the command with a multiplier to delete more than one
line. For example, to delete three lines of text (the current li ne and the
next two) , type 3dd. Let's try that now. Three lines will vanish and the
screen will look like this:

victory sign.

the interview.

Restore the missing text with U:

I had to rush straight from
the tennis courts. There wasn't
enough time to get ready for
the interview.

DELETING TO THE BEGINNING OF A SENTENCE d(

To delete text from anywhere in a sentence to the beginning of the sentence,
use d(, which is analogous to c(. Move the cursor to the first character to
be retained and type d(. All text in the sentence that precedes the cursor
will be deleted. Let's try this.

126 Deleting text

1. Drop the cursor down a few lines:

o Type /get and press (RETURN).

o The cursor will land on the g in get ready:

the tennis courts. There wasn't
enough time to get ready for
the interview.

2. Delete the first part of the sentence:

o Type d(to delete all words in front of the cursor.

o The display should now look like this:

the tennis courts. get ready for
the interview.

o Restore the deleted words with U:

the tennis courts. There wasn't
enough time to get ready for
the interview.

DELETING TO THE END OF A SENTENCE d)

To delete text from anywhere in a sentence to the end of the sentence, use
d), which is analogous to c). Move the cursor to the first character to be
deleted and type d). All text in the sentence that follows the cursor will be
deleted.

1. Leave the cursor where it is now:

the tennis courts. There wasn't
enough time to get ready for
the interview.

2. Delete the last part of the sentence:

o Type d) to delete all words that follow the cursor.

o The display should now look like this:

the tennis courts. There wasn't
enough time to_

o Restore the deleted words with U:

8. Changing and Deleting Text 127

the tennis courts. There wasn't
enough time to get ready for
the interview.

To delete an entire sentence, simply move the cursor to the beginning of
the sentence and type d). To delete several sentences, include a multiplier
and follow the same procedure.

DELETING TO THE BEGINNING OF A PARAGRAPH d{

To delete text from anywhere in a paragraph to the beginning of the para­
graph, use d{, which is analogous to c{. Move the cursor to the first char­
acter to be retained and type d{. All text in the paragraph that precedes
the cursor will be deleted. Without moving the cursor, try this from your
present location in the first paragraph. After you type d{, the display will
look like this:

victory sign.
get ready for
the interview.

Restore the missing words with U:

victory sign.

-I had to rush straight from
the tennis courts. There wasn't
enough time to get ready for
the interview.

DELETING TO THE END OF A PARAGRAPH d}

To delete text from anywhere in a paragraph to the end of the paragraph,
use d}, which is analogous to c}. Move the cursor to the first character to
be deleted and type d}. All text in the paragraph that follows the cursor
will be deleted. Let's move the cursor and try this.

1. Move the cursor into position:

o Type ?rusb and press (RETURN) to move the cursor up.

o The cursor will land on the r in rush:

I had to ~ush straight from
the tennis courts. There wasn't
enough time to get ready for
the interview.

128 Deleting text

2. Delete the rest of the paragraph:

o Type d} to delete the rest of the paragraph:

I had to_

o Now restore the paragraph with U:

I had to ~ush straight from
the tennis courts. There wasn't
enough time to get ready for
the interview.

To delete an entire paragraph, simply move the cursor to the beginning
of the paragraph and type d}. To delete several paragraphs, include a
multiplier and follow the same procedure.

8.3 Shifting text

SHIFTING A LINE
«
»

If you ever need to push text to a different location on a line, vi provides
one command for shifting a line to the left « <) and one for shifting to the
right (> >). J ust move the cursor to the desired li ne and type either < < or
». (The exact amount of the shift will be eight spaces by default. How­
ever, you can change this amount by changing the shift-width variable-see
Chapter 12, "Customizing vi.") To see how shifting works, we'll use the line
with the date.

1. Move the cursor into position:

o In vi command mode, type ?17 and press (RETURN).

o The cursor will now be on 17:

September 17, 1987

2. Shift the date back and forth ac ross the line:

o Type > >, then the period (.) a few times to push the date to
the right.

~eptember 17, 1987

o Type < <, then the period (.) to push the date back to the
left-hand margin.

~eptember 17, 1987

8. Changing and Deleting Text

SHIFTING MORE TRAN ONE LINE

129

n«
n»

To shift more than one line, use a multiplier in front of < < or > >. To see
how this works, we'll indent lines 3, 4, and 5.

1. Move the cursor into position:

o In vi command mode, type IR. and press (RETURN).

o Now the cursor will be on the R in R. :

Agatha B. Benson
Vice President
Fifth National Bank

2. Shift the three lines back and forth ac ross the line:

o Type 3> > then the period (.) several times to push the lines
across the screen:

Agatha B. Benson
Vice President
Fifth National Bank

o Now type 3< < then the period (.) to push the lines back to the
left-hand margin:

Agatha B. Benson
Vice President
Fifth National Bank

8.4 Ending the seSSIOn

Now it's time to write the updated text to letter and return to the UNIX
shell.

1. Write the text to file letter:

o Type:W and press (RETURN) to write to the file.

o You will see a display like this at the bottom of the screen:

"letter" [Modified] 27 lines, 442 characters

2. End this session with vi:

o Type:q and press (RETURN) to end the session.

130 Ending the session

o The shell prompt will now appear, indicating that you have left
vi:

$ -

Note that vi also allows you to combine the write and quit commands
into a single command, like this:

:wq
$
"letter" 27 lines, 442 characters

8.5 Summary

In this chapter you learned how to change and delete text. You also learned
how to shift lines of text. (Each command for changing or deleting text
shown here must be terminated with CES:Q).)

CHAN GING TEXT

Original text Command Resulting Text
Word(s) ~an't start CWwon won,:.t start

~an't start cWcannot cannot~tart

~an/t start c2Wwon' t begin won't beg in_

Line(s) This 18 it. cOThat Thatis it.
This 1s it. c$was fine. This was fine ...
This i s it. CCThat was all. That was all ...

This ~as all 2CCThere will There will
we had. be more. be more ...

Paragraph At the end ef C{When they When they left ...
the day he left . left, we left, tee.
Se lie left, teo.

At the end of C}everyone At the end of
the day he left . left. the day he left.
So lie left, too. So everyone

left ...

8. Changing and Deleting Text 131

DELETING TEXT

Word(s)

Line(s)

Original text
.l:an't start
.!<.an't start
.!<.an't start

This 1s it.
This 1s it.
This 1s it.

Command
dw
dW
d2W

dO
d$
dd

This ~as all 2dd
we had.

Paragraph At the end of
the day he left.
So ~e left, too.

d{

At the end of d}
the day he left.
So ~e left, too.

SHIFTING TEXT

Original text Command
One Line At the ~nd of »

the day he left.
So we left, too.

Two Lines At the ~nd of 2»
the day he left.
So we left, too.

Resulting Text
.:..t start
ll.tart

1s it.
This

~e left, too.

At the end of
the day he left.
So

Resulting Text
At the end of
the day he left.
So we left, too.

At the end of
the day he left.
So we left, too.

9

Finding and Replacing Text

In Chapter 8 you learned different ways to change or delete text with vi.
In this chapter, you will learn various ways to search for text and rnake
replacernents.

9.1 Beginning a new session

Here is another brief rerninder about how to get started with this session
of vi: If necessary, rnove from your horne directory to text, then start an
editing session with the same file (letter):

$ cd text
$ pwd
lusr/robin/text
$ vi letter

Now you should see something like this:

§eptember 17, 1987

Agatha R. Benson
Vice President
Fifth National Bank

Dear Mrs. Benson:

I'm sorry you fainted during last
Friday's interview. You see, I was
just raising my arms to give you the
victory sign.

I had to rush straight from
the tennis courts. There wasn't
enough time to get ready for
the interview.

I hope you will give very careful
consideration to my qualifications.

Sincerely,

134 Beginning a new session

Robert G. Sanders 111

"letter" 27 lines, 442 characters

9.2 Searching on a line

There are two vi commands that allow you to search in either direction for
a character on the current line and make changes.

SEARCHING TO THE RIGHT fx

To search from left to right for a single character on the current line, use
the Ex command (where x represents the character you are looking for).
Then, if you need to continue searching for the same character, you can
use one of two commands to repeat:

; to repeat the search in the same direction
to repeat the search in the opposite direction

SEARCHING TO THE LEFT Fx
To search from right to left for a single character on the current line, use
the Fx command (where x represents the character you are looking for).
Again, if yüu need tü cüntinue searching für the same character, you can
use one of two commands to repeat:

; to repeat the search in the same direction
to repeat the search in the opposite direction

MOVING TO A CHARACTER
T
t

To move the cursor to a character on the current line, use the T command
to move to the left or the t command to move to the right. Just position the
cursor on the line, type Tx or tx (where x is the character you are looking
for), and the cursor will jump to the space next to the first occurrence of
the character.

9. Finding and Replacing Text 135

SEARCH AND CHANGE ct

By preceding the search command t with the change command c, you can
change a single character on the current li ne very quickly. For example, sup­
pose you need to change Dear Mrs. Benson in the salutation to Hello

Mrs. Benson.

1. Move the cursor into position:

o Move the cursor to the salutation line (7G or /Dear),

o The cursor will move to the D in Dear:

Qear Mrs. Benson:

2. Change Dear to Hello:

o Type ctMHello (change text from Dear to M to Hello), and
press (ESC).

o Now the line should look like this:

Hello_Mrs. Benson:

o Type u to restore the line:

Qear Mrs. Benson:

SEARCH AND DELETE dt
Similarly, you can precede t with the delete command d to delete text.
For example, suppose you need to change Dear Mrs. Benson to Mrs.

Benson. Since the cursor is already on the same line, just type dtM (delete
an text from here to the first M to the right) and press (ESID. Now the
line should look like this:

J:::!r. Benson:

Restore the line with u.

SEARCH TO THE LEFT

In both the examples above we were searching to the right (t). By using
T instead we could also search to the left. In a search to the left, we could
use commands like cTMMrs. (change an text to the first M to the left to
Mr s.) and dTr (delete an text to the first r to the left). Try each of these
commands; then undo the results in each case with u.

136 Searching on a line

9.3 Searching in a file

To help you search for astring anywhere in the work area, vi provides a
pair of commands analogous to fand F: one for searching forward and one
for searching backwards in the editing buffer.

SEARCHING FORWARD jstring

To search forward for a word in a file, type /string and press (RETURN).
If you need to continue searching for the word, you can use one of two keys:

n Repeat the search in the same direction (forward)
N Repeat the search in the opposite direction (backwards)

As an example, suppose you need to search for you in the letter.

1. Move the cursor into position:

D Position the cursor at the beginning of the file (lG).

D The first line should look like this:

~eptember 17, 1986

2. Begin the search:

D Type /you and press (RETURN).

D The cursor will jump to the y in you in li ne 9:

I'm sorry ~ou fainted during last

3. Continue the search:

D Type n to continue the search forward.

D The cursor will jump to the you in line 11:

just raising my arms to give ~ou the

4. Continue the search again:

D Type n again.

D The cursor will move to you in line 19:

I hope ~ou will give very carefu1

You can type n again to continue searching forward or N to search back
toward the beginning of the letter. If you don't want the cursor to stop at
your, yourself, or other words that contain you, leave aspace after the
u when you begin the search, like this: /you .

9. Finding and Replacing Text 137

SEARCHING BACKWARD ?string

To search backwards for a word in a file, type ?string and press (RETURN).
Again, if you need to continue searching for the word, use one of these two
keys:

n Repeat the search in the same direction (backwards)
N Repeat the search in the opposite direction (forward)

For example, suppose you need to search for you from the end of the
letter.

1. Move the cursor into position:

o Position the cursor at the end of the file (G).

o The line should look like this:

Robert G. Sanders 111

2. Begin the search:

o Type ?you and press (RETURN) to begin searching in reverse.

o The cursor will jump to the y in you in line 19:

I hope ~ou will give very careful

3. Continue the search:

o Type n to continue searching in reverse.

o The cursor will jump to the you in line 11:

just raising my arms to give ~ou the

4. Continue the search again:

o Type n again to continue searching in reverse.

o The cursor will move to your in line 9:

I'm sorry ~ou fainted during last

Type n again to continue searching backwards or N to search forward.
Again, if you don't want the cursor to stop at your, yourself, or other
words that contain you, leave aspace after you when you begin the search,
like this: ?you . Since all searches wrap from one end of the editing buffer
to the other, the two commands (Istring and ?string) are practically equiv­
alent.

138 Searching in a file

9.4 Making replacements

Each time the cursor stops during a search, you can replace text (or append
or insert text, for that matter). Since appending and inserting text have
already been discussed in detail, we'll concentrate on replacements here. To
replace text in a file, vi offers the following basic commands (in addition to
the change command discussed in the previous chapter): one that replaces
a single character with another, one that replaces a sequence of characters
one at a time, one that replaces a single character with more than one, and
one that replaces an entire line.

REPLACING ONE CHARACTER WITH ANOTHER r
To replace one character with another, vi provides a simple command~r.
Move the cursor to the character, type r, and then type the new character.
For example, suppose you want to change the date from September 17
to September 27.

1. Move the cursor into position:

o Type? 1 7 to move the cursor to the 17.

o Now the line should look like this:

September 17, 1986

2. Make the change:

o Type r2 without (RETURN) or c:ESill to change 1 to 2.

o Now the line should look like this:

September 21, 1986

REPLACING CHARACTERS ONE AT A TIME R

To replace several consecutive characters one at a time, use the R command.
Move the cursor to the first of the characters, type R, and then type the
new characters, followed by (RETURN). For example, suppose you want
to change the date from September 27 to August 27.

1. Move the cursor into position:

o Type b to move the cursor tothe S in September.

o Now the line should look like this:

~eptember 27, 1986

9. Finding and Replacing Text 139

2. Make the change:

o Type R, then August without aspace, followed by CESill, to
type August over September (Augustber).

o After you type dw to delete be r, the line should look like this:

August 27, 1986

Caution: If the replacement text is shorter than the text being replaced,
there will be leftover characters; if the replacement text is longer than the
text being replaced, you will type beyond the original text over other text.

REPLACING ONE CHARACTER WITH SEVERAL s
To replace one character with any number of characters, vi provides the
s command. Move the cursor to the character, type s, and then type the
new characters. For example, suppose you wanted to change the name on
the next line from Benson to Bertson.

1. Move the cursor into position:

o Type Inson to advance the cursor to the first n in Benson.

o The line should look like this:

Dear Mrs. Benson:

2. Make the change:

o Type srt, followed by CESQ), to change n to rt.

o Now the line should look like this:

Dear Mrs. Bertson:

REPLACING AN ENTIRE LINE s
To replace an entire line of text, use the S command (which is equivalent
to ce). Move the cursor to any location on the line, type S, and then type
the new line (or lines), followed by (RETURN). For example, suppose you
want to change Vice President to Senior Manager.

1. Move the cursor into position:

o Type IVice to move the cursor to the line.

o The line should look like this:

:Lice President

140 Making replacements

2. Make the change:

o Type S to re quest a change to the line (which will vanish).

o Without leaving aspace, type Senior Manager, followed by
(ESC), to type the new line.

o The new li ne should look like this:

Senior Manage!.

ENDING THE SESSION

Now it's time to abandon this text and return to the shell. Type :q! and
press (RETURN) to abandon the text and quit vi.

9.5 Making substitutions

The ex editor has a substitution command called s that allows you to
replace one string with another.

STARTING A NEW SESSION WITH vi

First we'll enter a program called metric.c in your text directory; then we
can make changes later with vi. First, let's start a new editing session:

$ vi metric. c
$

N ow type a to append and type the following:

/* Convert gallons to liters */
main ()
{

int low, high, step;
float gals, ltrs;

low = 10; high = 20; step = 2;

printf ("%4s \t %6s \n\n", "gals", "liters");

gals = low;
while (gals <= high)
{

ltrs = (gals * 3.785);
printf("%4.0f \t %6.2f\n", gals, ltrs);
gals += step;

9. Finding and Replacing Text 141

CHANGING SOME SETTINGS

Since this is a program, not a letter, let's makes some changes to the basic
settings in vi. To make it simple, we'll change only two of these:

The option that produces line-numbering number (nu)
shift-width (sw) The option that determines how far across the screen

lines will be shifted by the shift commands « and
»

1. Turn on line numbering:

o Type :set nu and press (RETURN).

o Before you press (RETURN), you will see: set nu at the bot­
tom of the screen.

o After you press (RETURN), you will see li ne numbers appear
at the lefthand margins, with the text indented.

2. Set the shift-width to 5:

o Type: set sw=5 and press (RETURN).

o Before you press (RETURN), you will see: set sw=5 at the
bottom of the screen.

o The width for all shifts will be changed from 8 (the default) to
5.

At this point you have vi active with file metric.c and you have li ne­
numbering turned on and option shift-width set to five columns.
Now you are ready to begin trying out some substitutions.

MAKING SUBSTITUTIONS :s
One reason for selecting this file to make substitutions is that it contains
so many repetitions of the same words. For example, the variable gals
occurs seven different times in this short program. You could probably make
seven replacements manually without much bother, but the substitution
command (s) makes these changes automatically. In a long program, this
would be an enormous convenience.

1. Change gals to gallons:

o Type: 1, $s to re quest a substitution for all lines in the file
(line 1 to the last li ne ($)).

o Without leaving aspace, type /gals/gallons/g to request a
substitution of gallons in place of gal for all occurrences on
each li ne (g).

142 Making substitutions

o If the display at the bottom of the screen looks like this, press
(RETURN) to begin the substitution:

:l,$s/gals/gallons/g

o If you see mistakes, back up the cursor and correct them before
you press (RETURN).

2. Change ltrs to liters:

o Type: 1, $s to request a substitution for all lines in the file
(line 1 to the last line ($)).

o Without leaving aspace, type /ltrs/liters/g to request a
substitution of 1 i t e r s in place of 1 t r s for all occurrences on
each line (g).

o If the display at the bot tom of the screen looks like this, press
(RETURN) to begin the substitution:

:l,$s/ltrs/liters/g

o If you see mistakes, back up the cursor and correct them before
you press (RETURN).

If you ever enter a substitution command incorrectly and then press
(RETURN) by accident, you can always undo the results with the u
(undo) command.

3. Look at the results on the screen:

1
2
3

/* Convert gallons to liters
main ()
{

4 int low, high, step;
5 float gallons, liters;
6

*/

7 low = 10; high = 20; step = 2
8
9 printf ("%4s \t %6s \n\n", "gallons", "liters");

10
11 gallons = low;
12 while (gallons <= high)
13 {
14 liters = (gallons * 3.785);
15 printf("%4.0f \t %6.2f\n", gallons, liters);
16 gallons += step;
17
18

9. Finding and Replacing Text 143

3 substitutions on 3 lines

The substitution command uses many of the conventions for searching
that are used throughout UNIX. Here are a few words about using s in vi:

• The s command always begins with a colon (:) to escape to ex,
followed by a range of line numbers.

• The line numbers may be actual integers, search strings, or symbols,
as illustrated here:

:1,20
: 15, /place/
: 5, .
: . , $
: . -20, ?end?

: ?WPP?, $-2

Line 1 to line 20
Line 15 to the first line that contains place
Line 5 to the current line
The current li ne to the last line of the file
Twenty lines ahead of the current line to the
first line that contains end
The first line that contains WPP (above the cur­
rent line) to two lines before the last line of the
file

• Use slashes to search forward and question marks to search back­
wards.

• Use the g command at the end of the command li ne to substitute all
occurrences in each line, rat her than just the first occurrence.

9.6 Shifting text

SHIFTING LINES
«
»

Try the new setting for shiftwidth by moving to various lines and typing
< < or > >. Each shift will be five columns now instead of eight.

SHIFTING PARAGRAPHS
<}
>}

Try shifting paragraphs (in this case, groups of lines separated by blank
lines) with the <} and >} operators.

1. Shift lines 4 and 5:

o Type 4G to move the cursor to line 4.

144 Shifting text

D Type>} to shift the two lines (a paragraph to vi) to the right:

int low, high, step;
float gallons, liters;

D Type <} to shift the lines back again:

int low, high, step;
float gallons, liters;

2. Shift lines 11-17:

D Type 11 G to move the cursor to line 11.

D Type>} to shift the lines to the right:

gallons = low;
while (gallons <= high)
{

liters = (gallons * 3.785);
printf("%4.0f \t %6.2f\n", gallons, liters);
gallons += step;

D Type <} to shift the lines back again:

gallons = low;
while (gallons <= high)
{

liters = (gallons * 3.785);
printf("%4.0f \t %6.2f\n", gallons, liters);
gallons += step;

YOll can also shift sentences with vi. The commands to llse are <) and
». Now end this session with vi by typing :wq and pressing (RETURN).

9.7 Summary

In this chapter YOll learned how to search for text, how to make replace­
ments, and how to shift text.

SEARCHING ON A LINE

Fx Search left fx Search right
T x Move 1eft to x tx Move right to x

9. Finding and Replacing Text 145

SEARCHING FOR ASTRING

/string
?string

Searching forward
Searching backward

MAKING REPLACEMENTS

r Replacing one character with another
R Replacing any number of characters
s Replacing one character with any number of characters
S Replacing an entire line

MAKING SUBSTITUTIONS

:line n,line Ns/old string/new string/g
:line n,line Ns?old string?new string?g

SHIFTING TEXT

Shift Left
«
n«
<}

Text
Line
n Lines
Paragraph

(Search forward)
(Search backward)

Shift Right
»
n»
>}

10

Moving and Copying within a
File

[n Chapter 9 you learned how to search for text and make replacements.
[n this chapter you willlearn how to move and copy text within a file. But
first, here are a few words about ways to exit from vi.

10.1 Exiting vi

So far you have used only the w (write) and q (quit) commands to exit a
vi file. This includes the combined command wq (write and quit):

: wq (RETURN)

CONDITIONAL WRITING

To perform a write before quitting only if you have made changes (that is,
to request a conditional write, you can use : x (RETURN) or

zz

ABANDONING A FILE

To abandon a file (and not save any changes you might have made to it),
use the forced quit, like this:

:q! (RETURN)

10.2 Moving text within a file

In Chapter 8 you learned how to use the change (c) and delete (d) com­
mands, which operate in similar ways. In this chapter you willlearn two
new commands called yank (y) and put (p or P). You willlearn that delete
and yank are also similar, and that you can use either one of them with
put to make text disappear, reappear, or multiply.

148 Moving text within a file

If you think of yourself as a magician and the words, sentences, and
paragraphs you work with as handkerchiefs, rabbits, and assistants, then
you won't have any trouble seeing how delete, yank, and put work. Using
delete is like putting a rabbit into a hat and then showing the audience
an empty hat. Using yank is like putting a handkerchief into your pocket
while still keeping another in your hand. Using delete and put in succession
is like having your assistant step into a wooden box, and then reappear at
the other end of the stage. Using yank and put in succession is like having
your assistant step into a wooden box, and then emerge from one box while
a twin emerges from another.

CREATING A NEW FILE

Before discussing how to move text from one location to another, let's
create a new file in directory text called wall. Use vi to edit a file named
wall:

$ vi wall

Type a and enter the following text (leaving a blank space and pressing
(RETURN) at the end of each line, and pressing (ESC) at the conclusion
of the text):

Request Eor Wall

Beijing (Peking) . The Mayor oE West Berlin
stood yesterday on top oE the Great Wall
oE China next to Deng Xiaoping, leader
oE the nation oE one billion people.

Begun during the Ch'in dynasty (about
the time Rome Eought the Eirst Punic
War), the wall was not completed until
the ~ng dynasty (about the time the
MayElower arrived at Plymouth Rock).

Some 25 Eeet high, 15 to 30 Eeet wide at
the base, and 12 Eeet wide at the top,
the wall is over 1,500 miles (2,400 km)
long, greater than the distance between
New York and Dallas.

The purpose oE the wall was to protect
China against invaders Erom the north.
The mayor told his host, "This wall was
here to keep people out. We have a
wall that is there to keep people in. "
(ESC)

[Blank line]

[Blank line]

[Blank li ne]

[Blank line]

10. Moving and Copying within a File 149

Now write the text to file wall (:w). You will see this message at the
bottom of the screen:

"wall" [New file] 25 lines, 746 characters

TRANSPOSING CHARACTERS xp
To move text from one Iocation to another, you can make it disappear from
one Iocation (with delete), then reappear in another (with put).

After writing to wall, move the cursor to the 0 in P lymouth on line
12 (?outh twice). Now, with the cursor resting on the 0, type xp (no
(RETURN) is necessary). The word will now be spelled Plymuoth-the
o and the u have been switched. This is the simplest kind of move.

Now type h (cursor left), followed by xp again, to undo the switch, and
try it again. Here's what happens in slow motion:

1. The cursor is on the 0 (keep your eye on the cursor):

Mayflower arrived at PlymQuth Rock) .

2. Now delete the 0 with the X command:

Mayflower arrived at Plym~th Rock) .

3. Then put the 0 back with the p command:

Mayflower arrived at PlymuQth Rock) .

4. Undo the change by typing U (not u)-U is for the entire line.

Did you keep your eye on the cursor? As so on as the 0 vanishes, the
cursor moves forward to the u. Since the p command always puts the text
ahead of the cursor, the 0 ends up on the other side of the u. (Remember,
the command to delete a single character is X, not d.)

MOVING WORDS dw and p
Moving words is like moving characters. The main difference is that the
command to delete a word is dw (or dW), not X. We plan to move the
cursor to two words, delete the words, then move to the new Iocation and
put the words there. As an example, let's move Bei j ing (Peking) from
li ne 3 to line 18.

150 Moving text within a file

1. Move the cursor into position:

o Type ?Bei and press (RETURN) to move the cursor to Be i -
jingo

o The display should now look like this:

~eijing (Peking) . The Mayor of West Berlin
stood yesterday on top of the Great Wall
of China next to Deng Xiaoping, leader
of the nation of one billion people.

2. Delete the two words at their current location:

o Type d2W to delete Beijing (Peking) .

o The line should now look like this:

_ The Mayor of West Berlin

3. Move the cursor to the new location:

o Type /Dal and press (RETURN) to move the cursor to Dal­
las in line 18.

o The line should now look like this:

New York and Qallas.

4. Put the word at the new location:

o Type capital P (not p) to put Beijing (Peking) in front of
Dallas.

o The paragraph should now look like this:

Some 25 feet high, 15 to 30 feet wide at
the base, and 12 feet wide at the top,
the wall is over 1,500 miles (2,400 km)
long, greater than the distance between
New York and Beijing (Peking) . _DalIas.

In this example, you used a capital P instead of p because capital P puts
text befare the cursor (abave the current line in a line operation). Use p
when you want to put text after the cursor (or belaw the current line).

10. Moving and Copying within a File 151

MOVING A SENTENCE
d) and P
d) and p

Moving a sentenee is like moving a word. The main differenee is that we
use d) to delete a sentenee, not dw. We plan to move the eursor to the
beginning of a sentenee, delete the sentenee, then move to the new loeation
and put the sentenee there. As an example, let's move the first sentenee of
the last paragraph to the end of the paragraph.

1. Move the eursor into position:

o Type /The and press (RETURN) to move the eursor to The
purpose.

o The display should now look like this:

Ihe purpose of the wall was to protect
China against invaders from the north.
The mayor told his host, "This wall was
here to keep people out. We have a
wall that is there to keep people in."

2. Delete the sentenee at its eurrent loeation:

o Type d) to delete the entire sentenee.

o The paragraph should now look like this:

Ihe mayor told his host, "This wall was
here to keep people out. We have a
wall that is there to keep people in."

3. Move the eursor to the new Ioeation:

o Type L to move to the blank li ne at the end.

o The sereen should now look like this:

wall that is there to keep people in."

4. Put the sentenee at the new loeation:

o Type lowerease p to put the first sentenee after the seeond.

o The paragraph should now look like this:

The mayor told his host, "This wall was
here to keep people out. We have a
wall that is there to keep people in."

Ihe purpose of the wall was to protect
China against invaders from the north.

152 Moving text within a file

MOVING A PARAGRAPH
d} and P
d} and p

Moving a paragraph is like moving a sentence. The main difference is that
the command to delete a paragraph is d}, not d). We plan to move the
cursor to the start of a paragraph, delete the paragraph, then move to the
new location and put the paragraph there. As an example, let's move the
second paragraph to where the third paragraph is now (switch paragraphs).

1. Move the cursor into position:

o Type 4{ to move the cursor to the start of the second paragraph.

o The display should now look like this:

of China next to Deng Xiaoping, leader
of the nation of one billion people.

Begun during the Ch'in dynasty (about
the time Rome fought the first Punic

2. Delete the paragraph at its current location:

o Type d} to delete the entire second paragraph.

o The display should now look like this:

of China next to Deng Xiaoping, leader
of the nation of one billion people.

Some 25 feet high, 15 to 30 feet wide at
the base, and 12 feet wide at the top,

3. Move the cursor to the new location:

o Type} to advance the cursor to the beginning of the next para­
graph.

o The display should now look like this:

long, greater than the distance between
New York and Dallas.

The mayor told his host, "This wall was
here to keep people out. We have a

4. Put the paragraph at the new location:

o Type capital P to put the second paragraph above the fourth.

o The display should now look like this (with moves highlighted):

10. Moving and Copying within a File 153

Request for Wall

The Mayor of West Berlin
stood yesterday on top of the Great Wall
of China next to Deng Xiaoping, leader
of the nation of one billion people.

Some 25 feet high, 15 to 30 feet wide at
the base, and 12 feet wide at the top,
the wall is over 1,500 miles (2,400 km)
long, greater than the distance between
New York and Beijing (Peking) . Dallas.

Begun during the Ch'in dynasty (about
the time Rome fought the first Punic
War), the wall was not completed until
the Ming dynasty (about the time the
Mayflower arrived at Plymouth Rock) .

The mayor told his host, "This wall was
here to keep people out. We have a
wall that is there to keep people in."

The purpose of the wall was to protect
China against invaders from the north.

MOVING LINES
dd and P
dd and p

Moving a li ne is like moving a word. The main difference is that to delete
a line we use dd, not dw. We plan to move the cursor to a line, delete
two lines, then move to the new location and put the lines there. As an
example, let's move the headline (and the blank line below it) to the space
between the first and second paragraphs.

1. Move the cursor into position:

o Type 1G and press (RETURN) to move the cursor to the head­
line.

o The display should now look like this:

Bequest for Wall

The Mayor of West Berlin
stood yesterday on top of the Great Wall
of China next to Deng Xiaoping, leader
of the nation of one billion people.

2. Delete the lines at their current location:

154 Moving text within a file

D Type 2dd to delete the two lines.

D The display should now look like this:

Ihe Mayor of West Berlin
stood yesterday on top of the Great Wall
of China next to Deng Xiaoping, leader
of the nation of one billion people.

3. Move the eursor to the new loeation:

D Type /Some to move the eursor to Same in the next paragraph.

D The paragraph should look like this:

~ome 25 feet high, 15 to 30 feet wide at
the base, and 12 feet wide at the top,
the wall is over 1,500 miles (2,400 km)
long, greater than the distance between
New York and Beijing (Peking) Dallas.

4. Put the line at the new loeation:

D Type eapital P to put the headline above the eurrent line.

D The sereen should now look like this:

of China next to Deng Xiaoping, leader
of the nation of one billion people.

Request for Wall

Some 25 feet high, 15 to 30 feet wide at
the base, and 12 feet wide at the top,

ÜTHER POSSIBLE MOVES

In the examples you just tried, you moved one entire item (eharacter, word,
sentenee, paragraph, or line) from one loeation to another. However, it is
also possible to move part of an item (assuming the eursor is somewhere
in the middle of it), or several items. Here are some suggestions:

db The left-hand side of a word
d(The beginning of a sentenee
d{ The beginning of a paragraph
dA The left-hand side of a line

dw The right-hand side of a word
d) The ending of a sentenee
d} The ending of a paragraph

10. Moving and Copying within a File 155

d$ The right-hand side of a line

x3 Three characters
d3w Three words
d3} Three senten ces
d3} Three paragraphs
3dd Three lines

P Before the cursor (or above the line)
p After the cursor (or below the line)

ABANDONING THE FILE

Before going on to copying text within the editing buffer, let's abandon the
changes we've made to the text in our work area. Then we can start all
over again with wall. Type :q! and press (RETURN) to abandon the work
area.

10.3 Copying text within a file

Copying text from one location to another with vi is similar to moving
text. The only difference is that you use the yank command (y) instead of
the delete command (d). Yanking leaves a copy of the text in its original
location. Everything else is ab out the same. Let's begin by starting a new
session:

$ vi wall

COPYING A WORD
yw and P
yw and p

We'll dispense with the subject of copying a character, and move right on to
copying a word. Copying a word is like moving a word. The main difference
is that you will yank the word, rather than delete it. We plan to move the
cursor to a word, yank the word, then move to the new location and put
the word there. As an example, let's copy Great from line 4 to several
other places.

1. Move the cursor into position:

o Type /Great and press (RETURN) to move the cursor to
Great.

o The display should now look like this:

Beijing (Peking) . The Mayor of West Berlin

156 Copying text within a file

stood yesterday on top of the §reat Wall
of China next to Deng Xiaoping, leader
of the nation of one billion people.

2. Yank the word at its eurrent loeation:

o Type yw to yank Great.

o The line should now look like this (the same):

stood yesterday on top of the §reat Wall

3. Move the eursor to a new loeation:

o Type /wall and press (RETURN) to move the eursor to wall
in line 8.

o The line should now look like this:

War), the llall was not completed until

4. Put the word at the new loeation:

o Type eapital P to put Great in front of wall.

o The li ne should now look like this:

War), the Great_wall was not completed until

Typing n twiee, then repeating step 4 (that's n n P), insert eopies of
Great in front of the other three oeeurrenees of wall. After you have
done this, the fourth paragraph should look like this:

The purpose of the Great wall was to protect
China against invaders from the north.
The mayor told his host, "This wall was
he re to keep people out. We have a
wall_that is there to keep people in."

COPYING A SENTEN CE
y) and P
y) and p

Copying a sentenee is like eopying a word. The main differenee is that the
eommand to yank a sentenee is V), not yw. We plan to move the eursor
to the beginning of a sentence, yank the sentenee, then move to the new
loeation and put the sentenee there. As an example, let's eopy the first
sentenee of the last paragraph to the end of the paragraph.

1. Move the eursor into position:

10. Moving and Copying within a File 157

o Type ?The p and press (RETURN) to move the cursor to the
beginning of the last paragraph.

o The display should now look like this:

Ihe purpose of the Great wall was to protect
China against invaders from the north.
The mayor told his host, "This wall was
here to keep people out. We have a
wall that is there to keep people in."

2. Yank the sentence at its current location:

o Type y) to yank the entire sentence.

o The paragraph should look the same:

Ihe purpose of the Great wall was to protect
China against invaders from the north.
The mayor told his host, "This wall was
here to keep people out. We have a
wall that is there to keep people in."

3. Move the cursor to the new location:

o Type G to move the cursor to the blank line below the para­
graph.

o The display should now look like this:

here to keep people out. We have a
wall that is there to keep people in."

4. Put the sentence at the new location:

o Type p to put the sentence.

o The paragraph should now look like this:

Ihe purpose of the Great wall was to protect
China against invaders from the north.
The mayor told his host, "This wall was
here to keep people out. We have a
wall that is there to keep people in."

Ihe purpose of the Great wall was to protect
China against invaders from the north.

158 Copying text within a file

COPYING A PARAGRAPH
y} and P
y} and p

Copying a paragraph is like eopying a sentenee. The main differenee is that
we use y} to yank a paragraph, not y). We plan to move the eursor to the
start of a paragraph, yank the paragraph, then move to the new loeation
and put the paragraph there. As an example, let's make a eopy of the third
paragraph after the seeond.

1. Move the eursor to the beginning of the third paragraph by typing
3{. This is how the display should look now:

the Ming dynasty (about the time the
Mayflower arrived at Plymouth Rock) .

Some 25 feet high, 15 to 30 feet wide at
the base, and 12 feet wide at the top,

1. Yank the paragraph at its eurrent loeation:

o Type y} to yank the entire third paragraph.

o The display should look the same:

the Ming dynasty (about the time the
Mayflower arrived at Plymouth Rock) .

Some 25 feet high, 15 to 30 feet wide at
the base, and 12 feet wide at the top,

2. Move the eursor to the new loeation:

o Type { to move the eursor to the beginning of the previous
paragraph.

o The display should now look like this:

of China next to Deng Xiaoping, leader
of the nation of one billion people.

Begun during the Ch'in dynasty (about
the time Rome fought the first Punic

3. Put the paragraph at the new loeation:

o Type eapital P to put the third paragraph above the seeond.

o The display should now look like this (eopies highlighted):

10. Moving and Copying within a File 159

Request for Wall

Beijing (Peking) . The Mayor of West Berlin
stood yesterday on top of the Great Wall
of China next to Deng Xiaoping, leader
of the nation of one billion people.

Some 25 feet high, 15 to 30 feet wide at
the base, and 12 feet wide at the top,
the Great wall is over 1,500 miles (2,400 km)
long, greater than the distance between
New York and Dallas.

Begun during the Ch'in dynasty (about
the time Rome fought the first Punic
War), the Great wall was not completed until
the Ming dynasty (about the time the
Mayflower arrived at Plymouth Rock) .

Some 25 feet high, 15 to 30 feet wide at
the base, and 12 feet wide at the top,
the Great wall is over 1,500 miles (2,400 km)
long, greater than the distance between
New York and Dallas.

The purpose of the Great wall was to protect
China against invaders from the north.
The mayor told his host, "This wall was
here to keep people out. We have a
wall that is there to keep people in."

The purpose of the Great wall was to protect
China against invaders from the north.

COPYING A LINE
yy and P
yy and p

Copying a line is like all the other copies. This time we use yy to yank a
line. We plan to move the cursor to a line, yank the line, then move to the
new location and put the line there. As an example, let's copy the headline
(and the blank line below it) to several other places.

1. Move the cursor into position:

o Type ?Request and press (RETURN) to move the cursor to
Request in the headline.

o The display should now look like this:

Bequest for Wall

Beijing (Peking) . The Mayor of West Berlin

160 Copying text within a file

stood yesterday on top of the Great Wall

2. Yank the two lines at their eurrent loeation:

D Type 2yy to yank the two lines.

D The display should look the same:

Bequest for Wall

Beijing (Peking) . The Mayor of West Berlin
stood yesterday on top of the Great Wall

3. Move the eursor to the new loeation:

D Type /Begun and press (RETURN) to move to the beginning
of the next paragraph.

D The sereen should look like this:

of China next to Deng Xiaoping, leader
of the nation of one billion people.

~egun during the Ch'in dynasty (about
the time Rome fought the first Punic

4. Put the li ne at the new Ioeation:

D Type a eapital P to put the lines above the eurrent line.

D The sereen should now look like this:

long, greater than the distance between
New York and Dallas.

Bequest for Wall

Begun during the Ch'in dynasty (about
the time Rome fought the first Punic

OTHER POSSIBLE COPIES

In the examples you just tried, you eopied one entire item (word, sentenee,
paragraph, or line) from one loeation to another. However, you ean also
eopy part of an item (assuming the eursor is somewhere in the middle of
it), or several items. Here are some suggestions:

yb The left-hand side of a word
y(The beginning of a sentence
y{ The beginning of a paragraph

10. Moving and Copying within a File 161

f The left-hand side of a line

yw The right-hand side of a word
y) The ending of a sentence
y} The ending of a paragraph
y$ The right-hand side of a line

y3w Three words
y3) Three sentences
y3} Three paragraphs
3yy Three lines

P Before the cursor (or above the line)
p After the cursor (or below the line)

ABANDONING THE FILE

Before leaving this chapter, let's abandon the text in our work area. Then
we can start all over again with the original version of wall in the next
chapter. Type :q!(RETURN) to abandon the work area.

10.4 Summary

In this chapter you learned different ways to exit vi, along with methods
for moving and copying text within a file.

EXITING vi

To write the text in the work area to a file and end the session, type
:wqCRETURN). To write the text only ifthere have been changes and quit,
type :x(RETURN) or ZZ. To abandon the text in the work area (thereby
retaining the text previously stored in the file), type :q !(RETURN).

MOVING TEXT WITHIN A FILE

In general, the procedure for moving (or copying) text from one location
to another in the same file is to delete (or yank) the text from its current
location, then put the text into the new location. A special case of moving

162 Summary

is transposing two characters. To transpose two adjacent characters, move
the cursor to the first character and type xp.

Text Delete Yank

Word(s) {dW d5W yW y5W
dw d5w yw y5w

Sentence(s) { d(d3(y(y3(
d) d3) y) y3)

dO 4dO yO 4yO
Line(s) dd 4dd yy 4yy

d$ 4d$ y$ 4y$

Paragraph (s)
d{ d2{ y{ y2{
d} d2} y} y2}

Put
In front of the cursor or above the current line P

After the cursor or below the current line p

11

Working with
More Than One File

In Chapter 10 you learned how to move and eopy text from one loeation
in a file to another. In this ehapter you will learn how to move and eopy
text from one file to another, whieh involves editing a seeond file without
leaving vi. You will also learn how to tag a file and how to begin an editing
session with various options.

11.1 Editing another file

In vi, as in ed, it is possible to begin editing a new file without having to
leave your editor and return to the shell. There are several eommands you
ean use, depending on how you want to save your eurrent file.

SAVE AND EDIT :e
If you have already saved your eurrent file (:w), you ean begin editing
another file without leaving vi using the :e (edit) eommand. The sequenee
is as follows:

:w old file (RETURN) Save the old file
:e new file (RETURN) Begin editing a new file

ABANDON AND EDIT :e!

If you don't want to save your eurrent file, you ean begin editing another
file immediately with the :e! (edit!) eommand. The sequenee is as folIows:

:e! new file (RETURN) Abandon the old file and begin editing a new file

AUTO-EDIT :n
If you want to have your eurrent file saved automatieally whenever you
begin work on another file, you have to have the auto-write option set with
the :set eommand (as deseribed in Chapter 12, Customizing vi). Onee that

164 Editing another file

has been done, you can then use the :n command to begin editing a new
file. The sequence is as follows:

:n new file (RETURN) Begin editing a new file (the old file is automati­
cally saved)

There's another variation of the :n command that you can use during
an editing session with more than one file. Suppose you have invoked vi by
naming three files to be edited, like this:

$ vi file.l file.2 file. 3

This editing session will begin with file.1 . At the conclusion of your work
with file. 1 , you can type :n by itself without a filename. If you have the
auto-write feature set, the text in the editing buffer will automatically be
written to file.1 and file.2 will be read into the editing buffer. After you're
finished with file.2, type :n again to write to file.2 and call in file.3. Let's
try this feature right now.

1. Prepare for auto-editing:

D Begin an editing session with three different files:

$ vi letter metric.c wall
3 files to edit
"letter" 27 lines, 442 characters

D When the text of letter appears on the screen, set auto-write
mode:

:set aw

2. Perform auto-editing:

D Without making any changes to letter, proceed to the next file
(metric.c) :

:n
"metric.c" 18 lines, 331 characters

D Without making any changes to metric.c, proceed to the next
file (wall):

:n
"wall" 25 lines, 746 characters

11. Working with More Than One File 165

3. End this short session:
:q!

So here you have a very handy eeliting tool that allows you to call up a
number of files at the same time and move from one to another. If you try
to move a thirel time in this example, you will see this: No more files
to edit.

11.2 Moving text between files

Moving text from one file to another is similar to moving text within a file.
There are only two differences:

• You must leave the text in atem porary storage area (a buffeT) with
a one-Ietter name

• You have to call up the new file without leaving vi, using one of the
commands you learneel earlier in this chapter:

:e file (RETURN)
:e! file (RETURN)
:n file (RETURN)

Edit after save (the save is required)
Abandon text and eelit
Edit with automatie save

BEGINNING A NEW SESSION

Before moving any text, let's begin a new session of vi with wall. Type vi
wall anel press (RETURN):

$ vi wall

MOVING A SENTEN CE
"xd) and "XP
"xd) and "Xp

Moving a sentence to another file is like moving a sentence within a file.
We plan to move the cursor to a sentence, delete the sentence to a buffeT,
then move to the location in the new file and put the sentence there jrom
the same buffeT. As an example, let's move a sentence from wall to the end
of letter.

1. Move the cursor into position:

o Type /The and press (RETURN) to move the cursor to The.

o The display should now look like this:

Beijing (Peking) . Ihe Mayor of West Berlin
stood yesterday on top of the Great Wall

166 Moving text between files

of China next to Deng Xiaoping, leader
of the nation of one billion people.

2. Delete the sentence at its current location:

o Type "ad) to delete the entire second sentence to buffer a.

o The paragraph should look like this:

Beijing (Peking) .

Begun during the Ch'in dynasty (about

3. CaU up letter and move the cursor to the new location:

o Type :n! letter and press (RETURN) to save wall automatically
and bring in letter for editing.

o When the text appears on the screen, type G to move the cursor
to the end of the file.

o The display should look like this:

Robert G. Sanders 111

4. Put the sentence at the new location from buffer a:

o Type "ap to take the sentence from buffer a and put it after the
end of the letter.

o The display should now look like this:

Robert G. Sanders 111
Ihe Mayor of West Berlin

stood yesterday on top of the Great Wall
of China next to Deng Xiaoping, leader
of the nation of one billion people.

[No blank]
li ne here

MOVING A PARAGRAPH
"xd} and "XP
"xd} and "Xp

Moving a paragraph to another file is like moving a sentence. This time
we use d} to delete a paragraph, not d). We plan to move the cursor to
the start of a paragraph, delete the paragraph to a buffer, then move to
the new location and put the paragraph there from the same buffer. As an
example, let's move a paragraph from letter to wall.

1. Move the cursor into position:

11. Working with More Than One File 167

D Type? I' m to rnove the cursor to the beginning of the first
paragraph of letter.

D Type k to rnove the cursor up to the previous blank line.

D The display should now look like this:

I'm sorry you fainted during last
Friday's interview. You see, I was
just raising my arms to give you the
victory sign.

2. Delete the paragraph frorn here and place it in buffer b.

D Type "bd} to delete the entire second paragraph to buffer b.

D The display should look like this:

Dear Mr. Benson:

I had to rush straight from
the tennis courts. There wasn't

3. Begin editing wall and rnove the cursor to the new location:

D Type :e! wall to abandon the text frorn letter and bring in wall.

D When the text appears, type /Some to advance the cursor to
the beginning of the third paragraph.

D Type k to rnove the cursor up to the previous blank line.

D The display should look like this:

the Ming dynasty (about the time the
Mayflower arrived at Plymouth Rock) .

Some 25 feet high, 15 to 30 feet wide at
the base, and 12 feet wide at the top,

4. Put the paragraph at the new location frorn buffer b:

D Type "bP to put the paragraph above the current line.

D The display should now look like this:

the Ming dynasty (about the time the
Mayflower arrived at Plymouth Rock) .

l'm sorry you fainted during last
Friday's interview. You see, I was
just raising my arms to give you the

168 Moving text between files

victory sign.

Some 25 feet high, 15 to 30 feet wide at
the base, and 12 feet wide at the top,

ABANDONING THE TEXT

Before going on to copying text to another file, let's abandon the text in
our work area. Then we can start all over again with letter and wall. Type
:q! to abandon the work area, then type

$ vi wall (RETURN)

to begin a new session with the original text.

11.3 Copying text to another file

Copying text from one file to another in vi is similar to moving text. The
only difference is that you use the "yank" command (y) instead of the
delete command (d).

COPYING A SENTENCE
"xy) and "XP
"xy) and "Xp

Copying a sentence is like moving a sentence. We plan to move the cursor to
a sentence, "yank" the sentence to a buffer, then move to the new location
and put the sentence there fram the same buffer. As an example, let's copy
a sentence from wall to letter.

1. Move the cursor into position:

D Move the cursor to the T in The Mayor:

/'I'he MayCRETURN)

D The display should now look like this:

Beijing (Peking) . Ihe Mayor of West Berlin
stood yesterday on top of the Great Wall
of China next to Deng Xiaoping, leader
of the nation of one billion people.

2. Yank the sentence at its current location into buffer c.

D Type "cy) to "yank" the entire second sentence.

11. Working with More Than One File 169

o The paragraph should look the same:

Beijing (Peking) . Ihe Mayor of West Berlin
stood yesterday on top of the Great Wall
of China next to Deng Xiaoping, leader
of the nation of one billion people.

3. Begin editing letter and move the cursor to the new location:

o Type :e! letter and press (RETURN) to abandon wall and call
upletter.

o When the display appears, type /Sincere and press (RETURN)
to move the cursor to the line that says, Sincerely,.

o The display should look like this:

I hope you will give very careful
consideration to my qualifications.

l2.incerely,

4. Put the sentence at the new location from buffer c.

o Type "cP to put the sentence above the current line.

o The display should now look like this:

I hope you will give very careful
consideration to my qualifications.

Ihe Mayor of West Berlin
stood yesterday on top of the Great Wall
of China next to Deng Xiaoping, leader
of the nation of one billion people.Sincerely

COPYING A PARAGRAPH
"xy} and "XP
"xy} and "Xp

Copying a paragraph is like moving a sentence. We plan to move the cursor
to the start of a paragraph, "yank" the paragraph to a buffer, then move
to the new location and "put" the paragraph there from the same buffer.
As an example, let's copy a paragraph from letter to wall.

1. Move the cursor into position:

o Type 2{ to move the cursor to the beginning of the previous
paragraph.

o The display should now look like this:

170 Copying text to another file

I hope you will give very careful
consideration to my qualifications.

The Mayor of West Berlin
stood yesterday on top of the Great Wall
of China next to Denq Xiaopinq, leader
of the nation of one billion people. Sincerely

2. Yank the paragraph at its current location to buffer d:

o Type "dy} to yank the entire second paragraph to buffer d.

o The display should look like this (the same):

I hope you will give very careful
consideration to my qualifications.

The Mayor of West Berlin
stood yesterday on top of the Great Wall
of China next to Deng Xiaoping, leader
of the nation of one billion people. Sincerely

3. CaU up wall and move the cursor to the new location:

o Type :e! wall to abandon the text from letter and bring in wall.
o Type /The p to advance the cursor to the beginning of the last

paragraph, then type k to move the cursor up to the blank line.

o The display should look like this:

long, greater than the distance between
New York and Dallas.

The purpose of the wall was to protect
China against invaders from the north.

4. Put the paragraph at the new location from buffer d:

o Type "dP to put the paragraph above the current line from
buffer d.

o The display should now look like this:

long, greater than the distance between
New York and Dallas.

I hope you will qive very careful
consideration to my qualifications.

The purpose of the wall was to protect
China against invaders from the north.

11. Working with More Than One File 171

ABANDONING THE TEXT

Before leaving this discussion of copying text, let's abandon the text in our
work area. Then we can start all over again with the original version of
wall in the next chapter. Type :q! to abandon the work area.

11.4 Invoking vi

So far you have always invoked vi with the simplest form of the command
line, which places the cursor at the beginning of the file with no options:

$ vi letter

However, there are a number of options available when you begin an editing
session.

SPECIFYING A STARTING LINE +line
To begin with, you can specify the line number on which you wish to begin
editing. Simply type a plus sign followed by the desired line number after
vi. To see how this works (assuming you are in directory text), try calling
up metric.c with the cursor positioned at the beginning of the main routine
of the program (line 14). Here is the command:

$ vi +14 metric.c

The opening display should look like this:

gallons = low;
while (gallons <= high)
{

liters = (gallons * 3.785);
printf("%4.0f \t %6.2f\n", gallons, liters);
gallons += step;

"metric.c" 18 lines, 331 characters

A simple variation of this is to use a search pattern in place of an actual
number. To see how this works, type :q and press (RETURN) to leave vi,
then re-enter the file at the first line that contains float:

$ vi +/float/ me~l'i~dln also type +/float here]

172 Invoking vi

The opening display should look like this:

/* Convert gallons to liters */
main ()
{

int low, high, incr;
iloat gallons, liters;

low = 10; high = 20; step = 2;

printf (%4s \t %6s \n\n; "gals", "liters");

"metric.c" 18 lines, 331 characters

Another variation is to use a plus sign by itself to position the cursor on
the last line of the file. (This would be handy if you wanted to add new
text to the end.) To see how this works, type :q and press (RETURN) to
leave vi, then re-enter the file on the last line:

$ vi + metric. c

The opening display should look like this:

gallons = low;
while (gallons <= high)
{

liters = (gallons * 3.785);
printf ("%4. Of \t %6. 2f\n", gallons, liters);
gallons += step;

1

"metric.c" 18 lines, 331 characters

Now you can type :q and press (RETURN) again to leave vi and return
to the UNIX shell prompt.

SELECTING AN OPTION -option

While a plus sign intro duces a starting line number, a minus sign indicates
one of four possible options for invoking vi. Each option is selected by
typing a single letter after the minus sign:

11. Working with More Than One File 173

-r Recover the file-Use this option after a system or program crash
(UNIX or vi) to retrieve the most recently-saved version of the file.
H you omit the filename, the names of the files that can be recovered
will be printed. (Note that a system or program crash is usuaUy not
catastrophic. You just have to get things restarted.)

-R Read-only-Use this option to edit a file in read-only mode, meaning
that the file can be viewed, but not modified.

-t Locate Tag-Use this option to caU up the file that contains the tag
named and begin editing at the location of the tag's definition. (This
option will be explained in the section that follows.)

-x Decrypted Read-Use this option to view the cleartext of an en­
crypted file. (The file itself is not actually decrypted; see also "En­
crypting Information" in Chapter 5.)

Here are a few examples to illustrate the use of these options:

$ vi -r letter
$ vi -R metric.c
$ vi -t tag

$ vi -x remark.crypt

Recover letter after a crash.
Edit metric.c as if were a read-only file.
Begin editing the file that contains the tag
named, and position the cursor at its location.
Edit an encrypted file named remark.crypt.

USING TAGS FOR TEXT FILES

You just learned how to have vi open a file and move the cursor immediately
to a specified line (see the section, "Specifying a Starting Line," above). A
tag is an extension of this same concept. vi allows you to set aside a file
that contains a list of starting points (or tags) for a text file that you are
working with. The name of the file that contains the tags must be tags; no
other name can be used.

For ex am pIe , suppose you are using wall so extensively that you would
like to be able to retrieve the file very quickly. And suppose you would
like to be able to mark the beginning of each paragraph, so that you could
begin editing at any one of those lines right away. Here is how you could
do this:

1. Set up your tags in a separate tags file:

o Create a new file called tags:

$ vi tags

o Press a to re quest text entry mode and enter the following four
lines, with columns set at tab stops:

174 Invoking vi

par.! wall 3
par. 2 wall ICh'inl
par.3 wall 14
I'ar.4
CESC)

wall Ipurposel

o Now store the text and return to the UNIX shell prompt with
:wq:

:wq
"tags" [New file] 5 lines, 68 characters
$

Each line in a tag file contains three things, separated by tabs: Name of
the tag Name of the file Location of the tag

The location of the tag is indicated by either a line number or a search
command, as described above under "Specifying a Starting Line." In a tag
file, however, no plus sign is used in front of the information. Two of the
entries above contain line numbers and two contain search commands. For
the third entry, par.3 (paragraph 3) is the name of the tag, wall is the name
of the file that contains the tag, and 14 indicates the loeation of the tag
(line 14, the line number of the beginning of the third paragraph).

2. Use this new tag file to start a new editing session:

o Use the -t option in a vi command to start editing right at the
beginning of the third paragraph (tag p 3):

$ vi -t par. 3 [VOll don't even need the name of the file]

o File wall will be displayed, with the cursor at the first line of the
third paragraph:

the Ming dynasty (about the time the
Mayflower arrived at Plymouth Rock) .

20me 25 feet high, 15 to 30 feet wide at
the base, and 12 feet wide at the top,

You aren't restricted to using tags when beginning an editing session;
you can also use tags in the middle of editing another file. Just use the
:tag command from vi command mode, indicating the name of the tag. For
example, suppose you are in the middle of a session with letter. If you have
stored the text since your most recent changes, you can type a command
like this in vi eommand mode:

:tag par.3

11. Working with More Than One File 175

One final note: In our example above, we used only tags from a single file.
However, your tags file can contain entries for many different files, provided
that you have them in alphabeticalorder. (The sort command will take
care of this for you.) Since line numbers can change with revisions, it is
best to use a search command to indicate the location of a tag.

USING TAGS IN PROGRAMS

For programs written in C, FORTRAN, or Pascal, you can use the ctags
program to create a tag file automatically. The ctags program will insert
one entry for each function in your program. For example, suppose you
wanted a tag file for a program called list.c, which contained three functions:
mainO; split(x); and unite(y).

If you execute the command line

$ ctags list.c
$

the ctags program will create a three-line tags file called tags, which you
can then look at with cat:

$ cat tags
Mlist list.c
split
unite
$

list.c
list.c

?"main()$?
?"split(x)$?
?"unite (y) $?

The first tag name used by ctags will always be the name of the source
file (with M added in front of the name and .c deleted from the end). To
avoid tagging a comment line that names one of the functions, ctags selects
only those function names that appear on separate lines by themselves.

Caution: The ctags program will wipe out your current tags file, over­
writing it with its own entries.

Since the ctags program tags only functions and since it doesn't spare
your current tags, it has serious flaws. Use it only if you can tolerate its
quirks and limitations.

11.5 Summary

In this chapter you learned how to begin editing a different file without
leaving vi. You also learned two different methods for moving (or copy­
ing) text from one file to another. Finally, you learned about the options
available when you begin a new editing session, and tried using tags.

176 Summary

EDITING ANOTHER FILE

To save the text from your current file before calling up another, use :w
to write to the old file, :e to read the new one. To abandon the text from
your current file and begin editing another immediately, use :e!. To have
your current file saved automaticaUy before you caU up another, first make
sure you have the auto-write option set. Then use :n.

MOVING OR COPYING TEXT TO ANOTHER FILE

In general, the procedure for moving (or copying) text from one file to
another is to delete (or "yank") the text from its current location into a
buffer, then "put" the text from the same buffer into the new location.

Text

Sentences(s)

Paragraph(s)

Delete to Buffer x
"xd("xd3(
"xd) "xd3)
"xd{ "xd3{
"xd} "xd3}

Yank to Buffer x
"xy("xy3(
"xy) "xy3)
"xy{ "xy3{
"xy} "xy3}

Put from Buffer x
In front of the cursor or above the current line "xP

After the cursor or below the current line "xp

OPTIONS FOR BEGINNING A NEW EDITING SESSION

To specify a starting line when you begin a session with vi, type vi, aspace,
a plus sign, a line number, another space, and the name of the file. The line
number may be any of the foUowing: a number, a search string, a blank
space.

To select one of four special options when you begin a session with vi,
type vi, aspace, a minus sign, a letter, another space, and the name of the
file. The options are -r (recover the file), -R (read-only), -t (locate the tag),
and -x (decrypted read).

You can set up a tag file to list starting-points for an editing session with
vi, then begin editing at one of these points by using either the -t option
in a vi command li ne or the tag command during an editing session in
progress.

12

Customizing vi

In the previous chapters you learned how to use vi in its standard operating
modes. In this chapter you will learn how to modify the options of vi to
change its many user-definable features. You will also learn how to use
abbreviations and define keys.

SETTING OPTIONS set
In Chapter 9 you used the : set command to set two of vi's options, line­
numbering and shift-width:

:set nu
:set sw=5

Set line-numbering.
Set shift-width to 5 columns.

You may already have noticed a few things about these options. First of
all, most have abbreviations, such as nu (for number) and sw (for shift­
width). The majority of options are set as toggles, which means that the
feature is either on (nu) or off (nonu). The other options require specific
assigned values, wh ich may be either numbers or strings of characters.

In this chapter we'll discuss only a few of the most commonly-used op­
tions. For a complete list of all the options for vi, see Appendix D, "Sum­
mary of vi Options," where they are described in detail by type: toggled,
number-valued, and string-valued.

MAKING TEMPORARY CHANGES

To set an option for the duration of an editing session, all you have to do
is to type a : set command in vi command mode and press (RETURN).
The option you set will be in effect only until you exit vi and return to the
UNIX shell. This is the best way to try out the different settings. Here are
three examples of commands:

:set aw

:set report=3

Set auto-wri te (force automatie write before
calling up a new file or executing a UNIX shell
command).
Set report to 3 (request a message after any
operation involving at least three repetitions, such
as three liues deleted, three lines appended, and
so on-but no message for fewer than three).

178 12. Customizing vi

:set wm=6 Set your wrap margin to 6.

CHAN GING THE WIDTH OF EACH SHIFT

To see what happens when you change the setting of an option, let's use a
file to do some experimenting.

1. Begin a new session with a new file:

o At the UNIX shell prompt, type vi custom and press (RETURN)
to begin a new session with file custom.

o Type a and enter the following lines, with a (RETURN) at the
end of each line (and CESI:D at the end to return to vi command
mode):

Settings ror vi

Bere are a rew lines or text
to demonstrate how we can
change the way the editor
works. (ESC)

2. Try shifting text with the current setting:

o Type ?Here to move the cursor up to the H in Here, then type
» to shift the sentence to the right:

Settings for vi

Here are a few lines of text
to demonstrate how we can
change the way the editor
works.

o As you can see, each shift moves the text eight columns to the
right.

3. Change the shift-width option:

o Type: set_ sw? (with a quest ion mark) and press (RETURN)
to check the current value of shift-width:

:set sw?

o You will see the response on the status line at the bottom of
the screen, telling you that each shift will currently move eight
columns:

12. Customizing vi 179

shiftwidth=8

o Type: set_ sw=5 to change the value to 5:

:set sw=S

o Type< (to shift the sentence back to the left.

Settings for vi

Here are a few lines of text
to demonstrate how we can
change the way the editor
works.

As you can see, each shift moves the text five columns now, instead of
eight. 'Iry a few more shifts, then restore the text to its original appearance.

WRAPPING WORDS NEAR THE MARGIN

Another option changes vi's handling of words that are entered as the
cursor approaches the right-hand margin of the screen. With the standard
default setting, if you type a word into the margin, it just keeps going right
past the edge of the screen. (Your terminal, not vi, may wrap the words to
the beginning of the next line.) With the wrap-margin option, however,
you can have vi wrap a word to the next line-a common feature of word
processing systems. Just set it to any positive number.

1. 'Iry entering some text with the standard default setting:

o Move the cursor to the end of the last line (L, then $).

o Type a and press (RETURN) twice to append text, then type
the following, without pressing (RETURN) at the end of the
line:
We're going to type a very long line of text to see what happens
dose to the side of the screen.

o Type CESW at the end to return to vi command mode.

The word side should be split at the edge of the screen (assuming you
have an 80-column screen), like this: s/ide. But this is the work of your
terminal, not of vi.

2. Change the wrap-margin option:

o Type :set MD? (with a question mark) and press (RETURN)
to check the current setting of wrap-margin:

180 12. Customizing vi

:set wm? (RETURN)

o You will see the response at the bottom of the screen, telling
you that there is no wrapping of words:

wrapmargin=O

o Type: set_ wm=l 0 and press (RETURN) to change the value
to 10:

: set wm=10 (RETURN)

3. Now enter the same text to try out the new setting:

o With the cursor still at the end of the last line, type a, press
C RETURN), then type the following-again without pressing
(RETURN) at the end of the line:

This time we're going to type a very long line of text to see what
happens elose to the side of the screen.

o Type CESC) at the end to return to vi command mode.

Because you had wrap-margin set to 10, vi wraps the word happens
to the next line (assuming you have an 80-column screen). The 10 teIls vi
to wrap any word that comes within ten columns of the right-hand side of
the screen.

MAKING OTHER CHANGES

You may want to change a few more options to suit the kind of work you
plan to be doing. Here are a few of the most commonly used:

:set ai

:set list

:set nu

Set auto-indent (CRETURN) moves the cursor to
the next line, but at the same indentation as for the
previous li ne).
Set 1 ist (shows tab stop and new line symbols on the
screen, as is customary with the ed list command).
Set n umbe r (displays line numbers).

To see a list of the current values for all vi options, use this command:

:set all

to produce a display like this (see Appendix D, "Summary of vi Options,"
for details):

noautoindent
autoprint
noautowrite
nobeautify
direetory=/tmp
noedeompatible
noerrorbells
hardtabs=8
noignoreease
nolisp
nolist
magie
mesg
nonumber
open
nooptimize
paragraphs=IPLPPPQPP LIpplpipbp
prompt
noreadonly
redraw
[Hit return to eontinuel_

MAKING CHANGES PERMANENT

12. Customizing vi 181

remap
report=5
seroll=l1
seetions=NHSHH HUnhsh
shell=/bin/sh
shiftwidth=5
noshowmateh
nslowopen
tabstop=8
taglength=O
tags=tags /usr/lib/tags
term=adm3
noterse
timeout
ttytype=adm3
warn
window=23
wrapsean
wrapmargin=10
nowriteany

Onee you've deeided whieh options you would like to have in effeet every
time you use vi, you ean store the eommands that set them in a special

file. This file, ealled .exrc (ex read eommand), is read at the beginning of
every vi session. For example, suppose you would like to have automatie
indentation, automatie writing, and word wrapping six eolumns from the

side of the sereen. End this session with vi, go to your horne direetory,
ereate a file named .exrc, and enter the following lines (without colons):

set autoindent

set autowrite
set wrapmargin=6

or
set ai
set aw

set wm=6

or set ai aw wm=6
Save the text (: wq) and return to text (cd text). The next time you

begin a new session with vi, these options will take effeet automatieally.
You won't have to type any : set eommands.

ASSIGNING ABBREVIATIONS ab
If you ever have to type a long name or other string repeatedly, it is eon­
venient to have a way to enter a shortened form of it quiekly. The vi editor
provides a eommand that allows you to assign a long string to a shorter
abbreviation. Then, onee you've made the assignment, any time you type
the abbreviation, vi will replaee it with the longer text.

182 12. Customizing vi

MAKING TEMPORARY ASSIGNMENTS

To have an abbreviation assigned for the duration of the current session,
type the command : ab, aspace, the abbreviation, another space, the fuH,
unabbreviated string, and then press (RETURN)For example, using file
custom again, here's the procedure:

1. CaU up vi (if necessary) and move to the end of the work area:

D If vi is not active, type vi + custom to begin a new session
with custom with the cursor at the end of the file.

D If vi is active and the text of custom is already on the screen,
type L to move the cursor to the end of the text.

2. Assign three abbreviations:

D Type : ab xen XENIX operating system and press
(RETURN) to assign XENIX operating system to xen.

D Type : ab unx UNIX operating system and press
(RETURN) to assign UNIX operating system to unx.

D Type : ab btl Bell Telephone Laboratories and
press (RETURN) to assign Bell Telephone Laboratories
to btl.

3. Type a sentence using the three abbreviations:

D Type a and enter the foUowing sentence, foUowed by CESQ):

The xen .,as deri ved from the
unx, .,hieh ortgina)ed at
btl in 1969. ESC

D This is how the text should now look on the screen:

The XENIX operating system was derived from the
UNIX operating system, which originated at
Bell Telephone Laboratories in 1969.

This brief example should convince you of the value of this feature (often
referred to in the word-processing industry as a glossary feature).

MAKING ASSIGNMENTS PERMANENT

Any abbreviations that you plan to use frequently can be added to your
.exrc file, along with your set commands. For example, to have the three
abbreviations you just tried available to you every time you use vi, include
them in .exrc. like this:

12. Customizing vi 183

set autoindent
set autowrite
set wrapmargin=6
ab xen XENIX operating system
ab unx UNIX operating system
ab btl Bell Telephone Laboratories

In these examples, we've deliberately used three-character abbreviations.
You can use shorter abbreviations if you want to, but you run the risk of
typing your abbreviation as part of another word, thereby substituting in
the longer text by accident. For example, suppose we had selected un as
our second abbreviation. Then, if we attempted to type run, we would get
rUNIX operating system instead.

DEFINING KEYS map
There's another kind of abbreviation you can perform with vi. It involves
assigning a sequence of commands (or keystrokes) to a key on your keyboard
(sometimes referred to as mapping). Once you 've made such an assignment,
then you can press that key to invoke the commands. This is another time­
saving device that can mean pressing one key instead of a dozen. However,
there is one slight catch to it: you have to select a key that you don't plan
to use for any other purpose. Otherwise, you could trigger your command
sequence unexpectedly. Your best bets are either the function keys or one
of the following: K V g q v k ; _ = (which are not used by vi).

MAKING A TEMPORARY ASSIGNMENT

To set up a mapping for the duration of an editing session, all you have to
do is type a :map command in vi command mode and press (RETURN).
The mapping will remain in effect only until you end the editing session.

The first thing you have to do is to find a key that doesn't have another
function already assigned to it. To do this, just press a key in vi command
mode. If your terminal beeps, then the key is unassigned. For example, try
the asterisk (*). There's a beep, so it's available.

Now that we have an available key, we need a useful command sequence
to assign to it. Suppose we want to be able to indent an entire paragraph
to the next tab stop with one keystroke (*), assuming that we begin with
the cursor somewhere in that paragraph. Let's go through the commands
we'd have to enter to accomplish this manually:

1. Move the cursor to the beginning of the paragraph {

2. Indent the entire paragraph to the next tab stop >}

With an available key and a sequence of commands to assign to it, we're
ready to construct our command (with the characters spread out for easier

184 12. Customizing vi

viewing) as shown in Figure 12.1: Here's how you actually type it (with

FIGURE 12.1. A simple mapping command.

r This is the name I Step 1 : Move the cursor to the
01 the command t beginning 01 the paragraph

:map • } >(

L Th" " Ihe key to wh',h L Siep " lodeo! Ihe pa".
we are assigning the graph to the next
sequence 01 commands shift-width

spaces around * only):

:map * {>} (RETURN)

Now, with the key assigned, you are ready to try it out. So let's bring in
a file you've worked with before.

1. Store the text of custom and start editing with wall:

o Type: w to store the text in custom.

o Type:e +/China/ wall and press (RETURN) to call up
wall with the cursor in the middle of the first paragraph.

o The display should now look like this:

Beijing (Peking) . The Mayor of West Berlin stood yesterday on
top of the Great Wall Qf China next to Deng Xiao-ping, leader
of the nation of one billion people.

2. Try out your new key:

o Type * to invoke the sequence of commands.

o You should see the cursor move to the B in Beijing and the
entire paragraph shift to the right.

MAKING ANOTHER TEMPORARY ASSIGNMENT

That was a simple sequence of commands-just three keystrokes and two
commands. Let's try another example that's a little more involved. This
time, we'll pick a key (=), and assign to it the sequence that will insert the
following two words in front of the current sentence:

Note this:

This is how you would accomplish this manually:

1. Move the cursor to the beginning of the sentence (

12. Customizing vi 185

2. Request an insertion i

3. Type the text to be inserted Note this:

4. Terminate insertion of text (ESC)

This is similar to the previous example, but it involves more keystrokes
and one additional problem: How do we let vi know that we've typed an
CESID key at the end of the text? (If we just press the (ESC) key, vi will
read that as End of text entry.) vi provides a command to take care of
this, as you'll see in amoment. Now that we have a key available (=) and
a sequence of commands, we're ready to construct a command (with the
characters spread out again for clarity):

FIGURE 12.2. A more involved mapping command.

I Thls is the name of the command (:map)

t r This is the key to which we are assigning the commands

:map = (li "Chi' ce:, 4 ::,c""
Step 3: Type the text

Step 2: Request an insertion

Step 1: Move to the beginning of the sentence

Here's how you actually type it (without spaces):

:map = (iNote this: A[(RETURN)

To enter CESID as a text character, first type (CTRL-v), then CESID.
When you do this, you will see" [appear on the screen. (CTRL-v) is
what you type in vi any time you want to enter a control character as
a text character. For example, to enter (RETURN) as a character (as in
terminating an ex eommand), type (CTRL-v), then press the (RETURN)
key. On the sereen you will see "M. (If you'd like to know why " [represents
(ESC) and "M represents (RETURN), see "The ASCII Table," page 709,
in Appendix N.)

With the = key assigned to a eommand sequenee, you are now ready to
try the key out.

1. Find a suitable loeation to start from:

D Move the eursor near the start of the last paragraph (lChina).

D The display should look like this:

186 12. Customizing vi

The purpose of the wall was to protect
~hina against invaders from the north.
The mayor told his host, "This wall was
here to keep people out. We have a
wall that is there to keep people in."

2. Try out your new key:

D Type = to invoke the sequence of commands.

D You should see the cursor move to the T in The purpose and
the text inserted:

Note this:_The purpose of the wall was to protect
China against invaders from the north.
The mayor told his host, "This wall was
he re to keep people out. We have a
wall that is there to keep people in."

MAKING STILL ANOTHER TEMPORARY ASSIGNMENT

Now you've assigned two sequences, one very simple and one a little more
involved. Let's try one more sequence just for practice. This time, we'll
pick a key (+), and assign to it the sequence that will append the following
closing to the end of a letter:

[Leave one blank line]
(TAB) Sincerely,

[Leave three blank linesJ

CIAB) Jane R. Embry
CIAB) Correspondent

The following shows how you would accomplish this manually:

l. Request an opening below 0
2. Leave one blank line (RETURN)
3. Move to the tab stop (TAB)
4. Type the text Sincerely yours,
5. Leave three blank lines (RETURN)(RETURN)

(RETURN)(RETURN)
6. Move to the tab stop (TAB)
7. Type the text Jane R. Embry
8. Move to the next line (RETURN)
9. Move to the tab stop (TAB)
10. Type the text Correspondent
1l. Terminate insertion of text ~

12. Customizing vi 187

This sequenee requires nearly fifty keystrokes, but we're going to reduee
all that typing to just one keystroke. To aeeomplish this, reeall from Chap­
ter 5, "Communieation in UNIX," that (TAB) is (CTRL-I) (AI) and
(RETURN) is (CTRL-M) (AM). Onee again, we have a key available (+)
and a sequenee of keystrokes, so we're ready to eontstruet a one-keystroke
eommand (shown with the eharacters spread out for clarity in Figure 12.3).

FIGURE 12.3. A much more involved mapping command. r This is the name of the command (:map)

t This is the key to wh ich we are assigning the commands

:map + 0 'V'M 'V'I Sincerely yours, 'V'M

L Step 1: Open, space, tab across, and type the first line

VM VM VM VI Jane R. Embry VM

L Step 2: Space down, tab across, and type the next li ne

'V'I Correspondent 'V'[

l Step 3: Tab across and type the last line

Here's how you actually type it (on one line without spaees):

:map + oAVAMAVAISincerely yours,AVAMAVAMAVAMAVAM
AVAIJane R. EmbryAVAMAVAICorrespondentAVA[(r.R~E~T~U~R~N~)

and this is how it will look on the sereen:

:map + oAM Sincerely yours,AMAMAMAM
Jane R. EmbryAMAICorrespondent A[

With the + key assigned to a eommand sequenee, you are now ready to
try the key out.

1. Find a suitable loeation to start from:

o Move the eursor to the last line of main text (Iwall that).

o The display should look like this:

The purpose of the wall was to protect
China against invaders from the north.
The mayor told his host, "This wall was
here to keep people out. We have a
~all that is there to keep people in."

2. Try out your new key:

o Type + to invoke the sequenee of eommands.

188 12. Customizing vi

D You should see the cursor move below the text and insert the
closing:

The purpose of the wall was to protect
China against invaders from the north.
The mayor told his host, "This wall was
here to keep people out. We have a
wall that is there to keep people in."

Sincerely,

Jane R. Embry
Correspondent_

MAKING ASSIGNMENTS PERMANENT

Once again, any abbreviations you plan to use all the time can be added
to your .exrc file, along with your set and ab commands. For example,
to have the two key assignments you just tried available to you every time
you use vi, just include them in .exrc (without colons, of course):

set autoindent
set autowrite
set wrapmargin=6
ab xen XENIX operating system
ab unx UNIX operating system
ab btl Bell Telephone Laboratories
map * {>}
map = (iNote this: A[
map + oAMAISincerely yours,AMAMAMAM\
AIJane R. EmbryAMAICorrespondent A[

Now the *, =, and + keys will have these command sequences assigned
to them every time you begin a new session with vi.

12.1 Summary

In this chapter you learned how to change vi's options, how to abbreviate
a long segment of text, and how to assign a sequence of commands to a
key on the keyboard.

MAKING TEMPORARY CHANGES

To set a vi option for the duration of the current session, use the set
command. as shown here:

12. Customizing vi 189

:set report=3

To assign a longer segment of text to an abbreviation far the duration
of the current session, use the ab command, as shown here:

:ab unx UNIX operating system

To assign a sequence of commands to a key on the keyboard for the
duration of the current session, use the map command, as shown here:

:map = (iNote this: Al

MAKING PERMANENT CHANGES

To activate any of these modifications in vi each time you begin a new ses­
sion, place these commands in the file .exrc (without colons), as illustrated
here:

set report=3
ab unx UNIX operating system
map @ (iNote this: A[

FüR FURTHER READING

If you'd like to read more about the visual editor, refer to

Hansen, August, vi: the UNIX Screen Editor, New York: Brady, 1986.
Sonnenschein, Dan, A Guide to vi: Visual Editing on the UNIX System,

Engelwood Cliffs, NJ: Prentice-Hall, 1987.

Part III

Text Processing

13 Searching and Sorting 193

14 Programming with awk 207

15 Programming with C 225

In Part II, you learned how to enter and edit text with vi and ex. In
Part III, you will learn how to process text with a variety of UNIX tools.
You will begin by learning how to search for text with the grep command,
then how to sort lines of text with the sort command. Then you willlearn
how to write simple programs to perform custom changes on text with the
awk command and the C language.

13

Searching and Sorting

Now that you have learned how to create and edit text files, we can consider
in detail processing text already stored in a file. In this chapter we'll discuss
the UNIX programs that allow you to search for text in a file and sort lines
of text. In Chapters 14, "Programming with awk," and 15, "Programming
with C," we'll discuss the languages that allow you to program text output.

SEARCHING FOR TEXT grep
You are already familiar with the search facilities that are built into the
UNIX text editors vi and ex. These same search facilities have also been
incorporated into another UNIX command called grep (globally find and
replace regular expressions and print), to which you were briefly introduced
in Part 1. The acronym doesn't quite match, but the enhanced search fea­
tures of grep will help you match text with ease.

To get some practice in searching with grep, let's create three new files
called dawson.farms, jenkins.farms, and parker.farms. These names rep­
resent three suppliers for a maker of juices, jams, jellies, and canned fruit
called "Fruit-of-the-Tree." Each file contains a short list of the fruits sup­
plied and the prices. Let's move to subdirectory text and create these files,
using the (TAB) key to position the prices, quality codes, and identifiers.
In the examples that follow, we are using vi to enter the text. In each in­
stance, type a to enter the text, press (ESC) to stop, type : w to write the
text to a file, then : q to return to the shell prompt.

$ vi dawson.farms
Bing cherries 0.51 5 D

[P''''' (TAB) 1
Concord grapes 0.48 4 D twice af-
D' Anjou pears 0.13 3 D ter "cherries"
Comice pears 0.15 4 D CESC)

$ vi jenkins.farms
Concord grapes 0.51 5 J

[Leave a blank line]
Bartlett pears 0.12 3 J

[Leave a blank line]
Navel oranges 0.26 4 J CESC)

194 13. Searching and Sorting

$ vi parker.farms
Bing cherries
Thompson grapes
Valencia oranges

0.48
0.35
0.29

CONDUCTING SIMPLE SEARCHES

4 P
5 P
5 P CESC)

With three new files in text containing information about various fruits, we
can now begin making some simple searches with grep. In each instance,
grep will output every line that contains the string we are looking for.

1. Does Parker supply grapes?

o Check file parker.farms for grapes:

$ grep grapes parker.farms
Thompson grapes 0.35 5 P
$

DAnswer: Yes, Parker supplies Thompson grapes.

2. Does Dawson supply oranges?

o Check file dawson.farms for oranges:

$ grep oranges dawson.farms
$

DAnswer: No. (There was no output.)

3. Does Jenkins supply Bartlett pears?

o Check file jenkins.farms for Bartlett pears:

$ grep "Bartlett pears" jenkins.farms
Bartlett pears 0.12 3 J
$

DAnswer: Yes, Jenkins supplies Bartlett pears.
Because we were searching far two words separated by aspace,
quotation marks were required for this search.

4. Who supplies Bing cherries?

o Check all three files for Bing cherries:

$ grap "Bing cherries" *farms
dawson.farms: Bing cherries
parker.farms: Bing cherries

$ -

0.51
0.48

5
4

D
P

13. Searching and Sorting 195

DAnswer: Dawson and Parker.

We used the wild-card symbol (*) here to abbreviate dawson.farms jenk­
ins.farms parker.farms. This example illustrates one of the enhanced fea­
tures of grep: its ability to search several different files for a given string.
As the output shows, grep supplies the name of each file that contains the
string.

USING AIDS IN SEARCHING

Like other UNIX programs that provide searching, grep allows you to use
the special characters, or metacharacters, that make it easier to match
patterns. The expressions formed from these characters are called regular
expressions (the re in grep). Here is a quick review of these characters:

Beginning of line
Any single character
Any enc10sed character

$ End of line
* Repeat any number of times
\ Turn off special meaning

Here are some examples of regular express ions formed from these char­
acters, with a few strings they would match if used in a grep command
line:

Regular Expression
"" 3 ."

Some of the Strings Matched
30 3a 3+ 3) (at beginning of a line)
too t36 tl T t+5 (at end of a line)
Farm farm

"t .. $"
"[Ff] arm"
"\$[0-9]\. [0-9] [0-9]"
"[abc]\[i\]"

$4.67 $8.32 $1.99 $3.71
a[i] b[i] c[i]

"A$" (A blank line)

Here are a couple of simple searches with regular expressions:

1. Does Dawson supply D'Anjou pears?

o Check file dawson.farms for D'Anjou pears:

$ grep "D.Anjou pears" dawson. farms
D'Anjou pears 0.13 3 D

$ -

DAnswer: Yes, Dawson supplies D'Anjou pears.

Aperiod was used in the search string because an apostrophe
(,) would have been interpreted as a single quotation mark (,),
and an error would have resulted. (Both are the same on the
keyboard.)

2. Are anyone's prices over $0.50?

196 13. Searching and Sorting

TABLE 13.1. Options für grep
Option Effect
-b Precede each matched line with a block number.
-c Show how many times the string was found, but not the text.
-1 Ignore case during comparisons.
-1 Show the name(s) of the file(s) in which the string was found,

but not the text.
-n Show li ne numbers along with the text.
-s Suppress any file error messages that may arise during

processing.
-v Invert (match those lines in which the string was not found).

o Check an three files for an amounts over $0.50:

$ grep "[O-9} \. [5-9} [O-9}" *farms
dawson.farms:Bing cherries
jenkins.farms:Concord grapes

0.51
0.51

$

5
5

D

J

DAnswer: Dawson's bing cherries and Jenkins' Concord grapes.

U SING OPTIONS TO MODIFY THE OUTPUT

The grep command has many options that you can use to vary the output,
as shown in Table 13.1.

You can use more than one of these options in a single grep command,
but you can't bundle them (combine more than one behind a single minus
sign). Here are some examples of grep commands with these options:

1. How many varieties of pear does each farm supply?

o Check an three files für pear, but show counts ünly:

$ grep -c pear *farms
dawson.farms: 2
jenkins.farms: 1
parker.farms: 0
$

DAnswer: Dawson supplies two varieties, Jenkins supplies one,
and Parker dües not supply any.

2. Which farms supply Thompson grapes?

o Check all three files für Thompson grapes, and show line num­
bers:

13. Searching and Sorting 197

$ grep -n "Thompson grapes" *farms
parker.farms:2:Thompson grapes 0.35 5 p

$

DAnswer: Parker only, line 2.

SENDING THE OUTPUT TO A FILE

As with most UNIX programs, you can redirect the output of grep to a
file instead of just displaying the results on the screen. Use the redirection
symbol (». Here are two examples, both employing the -v (invert) option
to delete lines of text. In both examples, the plan is to make a temporary
copy of the file, then do the processing from the temporary copy back to
the original file (see Figure 13.1).

Original
File

FIGURE 13.1. Processing from a temporary file.

Make a

-cp --+

copy

Temporary
File

,
Eliminate

_ grep

blank lines

Original
File

1. Clear all the blank lines out of jenkins.farms:

o Make a temporary copy of jenkins.farms:

$ cp jenkins.farms jenkins.temp
$

o Eliminate all blank lines (that is, send only non-blank lines from
the temporary file to jenkins.farms):

$ grep -v ""$" jenkins . temp > jenkins . farms
$

The file jenkins.farms will be overwritten by the output from
this grep command. (Clearing blank lines this way can be handy.)

2. Update your records to show that Dawson has dropped all varieties
of pear:

o Make a temporary copy of dawson.farms:

198 13. Searching and Sorting

$ cp dawson.rarms dawson.temp
$

o Eliminate allIines that refer to pears (that is, send only non-pear
lines from the temporary file to dawson.farms):

0

$ grep -v pear dawson.temp > dawson.rarms
$

Verify the update:

$ cat dawson.rarms
Bing cherries 0.51 5 D

Concord grapes 0.48 4 D

$

USING RELATED SEARCH PROGRAMS
fgrep
egrep

Here are two programs in the grep family that you may be interested in:

• fgrep (fast grep)-a scaled down version of grep that allows all the
options, but no metacharacters for constructing regular expressions

• egrep (extended grep)-an enhanced version of grep that allows
you to search for repeated strings and alternate strings

Both of these programs (fgrep and egrep) allow you to search for an
expression that begins with a hyphen, and both allows reading from a file.
In addition, fgrep allows you to re quest exact matches of entire lines. The
enhancements to these to pro grams are shown in Table 13.2.

TABLE 13.2. Additional Options for fgrep and egrep
fgrep Option Effect
-e string
-f file
-x

Match astring that begins with a hyphen
Read strings from file
Match only entire lines

egrep option
-e expr

Effect
Match an expression that begins with a hyphen
Read express ions from file -f file

To summarize what each program can match during a search:

fgrep
grep
egrep

Literal strings only
Patterns (strings and regular express ions)
Compound expressions

13. Searching and Sorting 199

Here are some examples of fgrep and egrep searches:

1. Does Jenkins supply Bartlett pears?

D Check file jenkins.farms for Bartlett pears:

$ fgrep "Bartlett pears" jenkins . farms
Bart1ett pears 0.12 3 J
$

DAnswer: Yes, Jenkins supplies Bartlett pears.

This is identical to an earlier example, with fgrep substituted
for grep. With fgrep, it should run a little faster.

2. Who supplies either Concord grapes or Thompson grapes?

D Check all three files for either Concord grapes or Thompson:

$ egrep " (Concordl Thompson) grapes"
dawson.farms: Concord grapes
jenkins.farms: Concord grapes
parker.farms: Thompson grapes

$ -

*farms
0.48
0.51
0.35

4
5
5

D
J
P

DAnswer: Dawson and Jenkins supply Concord grapes, while Parker
supplies Thompson.

SEARCHING FROM A FILE

The following example shows how you could store strings or expressions
in aseparate file , then have the search program read from the file before
beginning the search for matches. This technique can be used with either
fgrep or egrep. Here we use fgrep.

1. Store strings in a file:

D Enter pears and oranges into a file called juicy:

$ cat > juicy
pears
oranges
(CTRL-D)
$

D This example is absurd, of course. You would never use a sepa­
rate file to store just two items; but you would to store twenty­
five items.

2. Who supplies pears and oranges?

200 13. Searching and Sorting

o Check all three files for either pears or oranges:

$ rgrep -r juicy *rarms
jenkins.farms: Bartlett pears
jenkins.farms: Navel oranges
parker.farms: Valencia oranges
$

0.12
0.26
0.29

3
4
5

J
J
p

DAnswer: Jenkins supplies pears and oranges, while Parker sup­
plies only oranges.

SORTING FILES sort
You had abrief introduction to the sort command in Chapter 4, "Using
UNIX Commands." Now we'll discuss it in greater detail. The sort com­
mand arranges the lines of a file in either alphabeticalor numericalorder,
depending on whether the lines contain strings or numbers. As you will
leam in this chapter, you can focus sort on specific strings within each line
of a file. We'll use the three farms files to illustrate this. But before we
start, let's add a few more lines of text to dawson.farms:

$ cat » dawson.rarms
Navel oranges
Kadota rigs
Valencia oranges
Smyrna rigs
(CTRL-D)
$

Selecting a Field (or Fields)

0.26 3 D
0.42 4 D
0.28 5 D
0.48 4 D

If we take a look at dawson.farms after displaying its contents with a cat
command, we see four columns of text: a list of varieties of fruits, a list of
prices, and an identifier. However, sort sees the contents as Jive columns
(or Jields) of text, as shown below the display:

$ cat dawson. rarms
Bing cherries 0.51 5 D
Concord grapes 0.48 4 D
Navel oranges 0.26 3 D
Kadota figs 0.42 4 D
Valencia oranges 0.28 5 D
Smyrna figs 0.48 4 D
$

13. Searching and Sorting 201

Field 1 Field 2 Field 3 Field 4 Field 5
Bing cherries 0.51 5 D
Concord grapes 0.48 5 D
Navel oranges 0.26 3 D
Kadota figs 0.42 4 D
Valencia oranges 0.28 5 D
Smyrna figs 0.48 4 D
Variety Type Price Quality Farm

Unless we specify otherwise, sort views spaces and tabs as field sepa­
rators, marking boundaries between different fields. So, from the point of
view of sort, field 1 is variety, field 2 is generic type, field 3 is price, field 4
is quality code, and field 5 is farm code. If we issue a simple sort command
without specifying any fields or options, we get this ordering (alphabetical,
fields 1-4):

$ sort dawson. farms
Bing cherries 0.51 5 D

Concord grapes 0.48 4 D

Kadota figs 0.42 4 D

Navel oranges 0.26 3 D

Smyrna figs 0.48 4 D

Valencia oranges 0.28 5 D

$

Onee we see how sort views fields, we ean indieate to sort whieh field
(or sequenee of fields) we wish to have sorted, using numbers to represent
the different fields:

• A plus sign (+) in front of a number means "begin sorting after this
field."

• A minus sign (-) means "stop sorting after this field."

U sing these conventions, we ean use the notation + 1 - 2 to mean, "Begin
sorting after field 1 and stop sorting after field 2" (that is, sort field 2 only).
Let's try this (see Figure 13.2):

$ sort +1 -2 dawson. farms
Bing cherries 0.51 5 D

Kadota figs 0.42 4 D

Smyrna figs 0.48 4 D

Concord grapes 0.48 4 D

Navel oranges 0.26 3 D

Valencia oranges 0.28 5 D

$

202 Using options to modify the output

FIGURE 13.2. Sorting field 2only.

$ Bart +1 -2 dawBon.farmB
Bing cherries 0.51 5 D
Kadota figs 0.42 4 D
Smyrna figs 0.48 4 D
Concord grapes 0.48 4 D
Navel oranges 0.26 3 D
Valencia oranges 0.28 5 D
$

Field 1 Field 2 Field 3 Field 4 Field

Bing cherries 0.51 5 D
Kadota figs 0.42 4 D
Smyrna figs 0.48 5 D
Concord grapes 0.48 4 D
Navel oranges 0.26 3 D
Valencia oranges 0.28 5 D

+1 -2

Begin sorting Stop sorting after field
after field 1 (don't inc1ude fields 3-5
(start with field 2) in this sort)

In this example, we are sorting only one field. But, as we'll see in a
moment, it's possible to sort one field, then another, and so on, to create
secondary sorting. Here is the notation required to include various fields in
a sort:

Notation field notation fields notation fields
+0 -1 1 +0 -2 1, 2 +0 -3 1-3
+1 -2 2 +1 -3 2, 3 +1 -4 2-4
+2 -3 3 +2 -4 3, 4 +2 -5 3-5

13.1 Using options to modify the output

The sort command has a number of options that you can include in the
command line to modify sort's output, as shown in Table 13.3.

Note that you can use more than one option in a given sort command
line, and that options can be bundled. The most logical candidates for field
separator are colon (:) and vertical bar (I). If you decide to use a vertical
bar, remember that it must be escaped with a backslash (typed as \ 1).

Let 's illustrate the use of some of these options by sorting on price (high­
est price first). To do this correctly, we need to use the n (numeric) and r
(reverse) options. We could enter the command line this way:

5

2

13. Searching and Sorting 203

TABLE 13.3. Options for sort
Option
-b

Effect
Ignore leading blanks (spaces and tabs) when comparing

fields-useful if items in a field vary in length.
-n

-M
-r
-f

-d
-i
-u

-m

-c

Sort a numeric field (allow for optional blanks, minus
signs, zeroes, or decimal points)-this option includes
-b automatically.

Sort a field that contains months (JAN, FEB, ... , DEC)
Sort in reverse order (Z-A, z-a, 9-0)
Fold uppercase letters onto lowercase (for example, treat

CASE, Case, and case as identical when sorting).
Sort in dictionary order.
Ignore non-printing characters when sorting.
Sort uniquely (if lines are identical, discard all but the

first).
Merge several files: the files are already sorted; just merge

them.

-t x
Make sure the input file has already been sorted.
Make x (any character) the field separator.

-y k
-z n
-0 file

Set aside k kilobytes of memory for this sort.
Allow no more than n characters per line of input.
Place the output in file-the same as > file.

$ sort -nr +2 dawson.farms
Bing cherries 0.51 5 D

Smyrna figs 0.48 4 D [Dawson fruits in order o~
Concord grapes 0.48 4 D price (highest price first)
Kadota figs 0.42 4 D

Valencia oranges 0.28 5 D
Nave1 oranges 0.26 3 D

$ -

If we type it this way, it means that n and r apply to alt fields to be sorted.
Since we are sorting on just one field, it doesn't make any difference in this
example. But if we sort one field after another, as in the example that
follows, we have to bundle n and r with the price field indicator. n and r
will then apply only to that one field.

$ sort +2nr -3 +0 -2 dawson.farms
Bing cherries 0.51 5 D [Daw&>n fruit, in o,d" by 1
Concord grapes 0.48 4 D price (alphabeticalorder
Smyrna figs 0.48 4 D under identical prices)
Kadota figs 0.42 4 D
Valencia oranges 0.28 5 D
Navel oranges 0.26 3 D

$ -

204 Using options to modify the output

Comparing this example to the previous one, you will notice one slight
difference: Concord grapes moved ahead of Srnyrna figs on the list
(Concord before Srnyrna). Figures 13.3 and 13.4 show what happened on
each pass.

FIGURE 13.3. First pass: sorting fields 1 and 2.

Field 1 Field 2 Field 3 Field 4 Field
Bing cherries 0.51 5 D

Concord grapes 0.48 4 D

Kadota figs 0.42 4 D

Navel oranges 0.26 3 D

Smyrna figs o .48 5 D

Valencia oranges 0.28 5 D

+0 -2
Begin sorting Stop sorting after field
after field 0 (don't include fields 3-5
(start with in this sort)
field 1)

FIGURE 13.4. Second pass: sorting field 3.

Field 1 Field 2 Field 3 Field 4 Field 5

Bing cherries 0.51 5 D

Concord grapes 0.48 4 D

Smyrna figs 0.48 5 D

Kadota figs 0.42 4 D

Valencia oranges 0.28 5 D

Navel oranges 0.26 3 D

+2 -3

Begin sorting after Stop sorting after
field 2 (start with field 3 (don't in-
field 3) clude fields 4 and

5 in this sort)

SENDING THE OUTPUT TO A FILE

As with most UNIX programs, you can redirect the output of sort to a
file , instead of just displaying the results on the screen. You can use either
the redirection symbol (» or the -0 option interchangeably. Here are two
ex am pIes , both involving sorting multiple files:

1. Store a list from all three suppliers sorted by generic type in fruit.sort:

5

2

13. Searching and Sorting 205

oPerform the sort:

0

$ sort +1 -2 *far.ms > fruit.sort
$

Display the results:

$ cat fruit.sort
Bing cherries 0.48 4
Bing cherries 0.51 5
Kadota figs 0.42 4
Smyrna figs 0.48 4

Concord grapes 0.48 4
Concord grapes 0.51 5
Thompson grapes 0.35 5
Navel oranges 0.26 3
Nave1 oranges 0.26 4
Valencia oranges 0.28 5
Valencia oranges 0.29 5
Bart1ett pears 0.12 3
$

P
D

D

D ['hit' horn aIl] D suppliers in alpha-
J betical order by
P generic type
D

J
D

P
J

2. Store a list from all three suppliers sorted by price in priee.sort:

oPerform the sort:

0

$ sort -0 price.sort +2nr -3 +1 -2 *far.ms
$

$ cst price.sort
Bing cherries 0.51 5 D
Concord grapes 0.51 5 J
Bing cherries 0.48 4 P
Smyrna figs 0.48 4 D

Concord grapes 0.48 4 D ["Ult' fmrn aIl]
Kadota figs 0.42 4 D suppl~ers in order
Thompson grapes 0.35 5 P by pnce
Valencia oranges 0.29 5 P
Valencia oranges 0.28 5 D

Nave1 oranges 0.26 3 D

Nave1 oranges 0.26 4 J
$

In this file (priee.sort), we have all fruit listed in order of price
(highest price first).

13.2 Summary

In this chapter you learned how to search for text with grep and sort files
with sort.

206 Summary

SEARCHING FOR TEXT

To conduct a simple search for astring in a file (or files), type grep, aspace,
the string, another space, and the name(s) of the file (s) in a command line
and press (RETURN). Rather thanjust type a literal string, you can form
a regular expression with UNIX metacharacters: 1\ $. * [1 \

By including an option (or combination of options) in the command line,
you can modify the output of grep to show how many times the string was
found, to show the name(s) of the file(s) in which the string was found,
to show line numbers, to match either upper case or lower case, to invert
the search, and so on. To send the output to a file , redirect the standard
output with > and a filename.

For faster searches with only fixed literal strings, use fgrep; for enhanced
searching with provisions for finding repeated strings and alternate strings,
use egrep in place of grep.

SORTING FILES

To perform a simple sort of entire lines of text, type sort, aspace, and the
name(s) ofthe file(s) to be sorted in a command line and press (RETURN).
To perform sorting on a particular field (or fields), use the plus and minus
options with field numbers.

By including an option (or combination of options) in the command
line, you can modify the operation of sort to ignore leading blanks, sort a
numeric field, sort in reverse order, fold upper case onto lower case, sort
uniquely, merge files, designate a jield separator, redirect the output, and
so on.

14

Programming with awk

14.1 Introduction

The awk program, which processes files that contain either text or numeri­
cal data, allows you to rearrange fields, perform arithmetic operations, and
retrieve lines selectively, using programming statements that resemble those
used in C. You can use it to set up a spreadsheet in UNIX or to generate
reports from files already stored in the system. (The name awk is derived
from the names of its originators: Aho, W einberger, and K ernighan.)

A full command line for awk contains four parts: the name of the com­
mand, an optional pattern statement, an optional action statement, and the
name(s) of the file(s). The pattern statement is used to select lines from a
file; the action statement, which must be enclosed within braces, is used to
decide what to do with the lines selected. A general awk command line is
shown in Figure 14.1.

FIGURE 14.1. A general awk command line. r the name 01 the command r what to do with the lines

$ awk pattern action I file(s)

L L the lile(s) to be processed

wh ich lines to select

Once again, we'll be using the three files in our farms series.

THE DEFAULTS

You may omit either the pattern statement or the action statement, but not
both. If you omit the pattern statement, awk will select by default every
line in the file named. For example, in the absence of a pattern statement,
awk will print (display) every line of jenki ns. farms unchanged:

208 Introduction

$ awk '{ print }' jenkins.farms
Concord grapes
Bartlett pears
Navel oranges
$

0.51
0.12
0.26

5
3
4

[No pattern statement]
J
J
J

If you omit the action statement, awk will copy each selected line to the
standard output by default. For example, in the absence of an action state­
ment, awk will copy each li ne selected to the standard output unchanged:

$ awk '/orange/ I jenkins.farms
Navel oranges 0.26 4
$

[No action statement]
J

If there's even the remotest possibility that your pattern and action state­
ments may contain special characters, enclose them within single quotes.

REFERRING TO FIELDS

Like sort, awk is oriented to fields, and offers a simple method for referring
to fields by name. Just type a dollar sign ($) in front of a number to refer
to a field. By this convention, $1 means field 1, $2 means field 2, $3 me ans
field 3, and so on, as shown in Figure 14.2. The notation $ 0 has a special
meaning: all fields (the entire record).

FIGURE 14.2. Naming fields in awk.

Field 1 Field 2

Concord grapes

$1 $2

Field 3

0.51

$3

Field 4

5

$4

Field 5
,)

$5

Using these conventions, we can display fields selectively by naming or
not naming them in the action statement. For example, to display only
prices, we could use this:

$ awk '{ print $3 }' jenkins.farms
0.51
0.12
0.26
$

We can also switch fields 1 and 2 (and then place field 3 at a tab stop):

$ awk I { print $2 ", " $1 ,,(TAB)" $3 } I jenkins . farms
grapes, Concord 0.51
pears, Bartlett 0.12
oranges, Navel 0.26

14. Programming with awk 209

$

The action statement requests the following: Print field 2 (generic type
of fruit), a comma and aspace, field 1 (variety of fruit), a (TAB), and
then field 3 (price). (When you press the (TAB) key, the cursor will, of
course, advance to the next tab stop on the screen, leaving a gap in your
command. Do not become alarmed when this happens.) That's all there is
to it; we have switched fields 1 and 2.

PLACING STATEMENTS IN A FILE

In the examples above, the command lines were fairly short, but often the
command line becomes too long to fit on a single line. One way to get
around this (and to avoid repetitious typing) is to place your statements in
a separate file, then activate this file in the awk command line with the -f
option. Here's an easier way to type the command line for switching fields
1 and 2:

1. Place the action statements (without the single quotes) in a file:

o Enter the text with cat:

$ aat > sw
(print $2 ", "$1 "(TAB)" $3)

[C CTRL-D) to terminate input]
$

o Now SW contains the pattern (empty) and action statements,
and we won't have to type them again on the command line.

2. Name this file when you execute awk:

o Use the -f option to have awk read the pattern and action state­
ments stored in SW:

$ awk -f sw jenkins.farms
grapes, Concord 0.51
pears, Bartlett 0.12
oranges, Nave1 0.26
$

o This command li ne is equivalent to the command li ne in the
previous example (under "Referring to Fields").

Any time you have to run the same statements repeatedly, placing them
in a file is much easier than having to type them all over again for each
command line.

210 Introduction

PLACING THE ENTIRE COMMAND LINE IN A FILE

In the example above, we placed only the action statement in another file.
By using several more features of UNIX, we can also place the entire awk
command line in another file:

1. Place the command line (including the single quotes) in a file:

o Enter the text with eat, using dawson.farms this time:

$ cat > sw.dawson
awk ' { print $2 ", " $1 ,,(TAB)" $3}' dawson. farms

[C CTRL-D) to terminate input]
$

o Now sw.dawson contains the entire command line.

2. Make this file executable:

o Use the ehmod command from the shell prompt:

$ chmod u+x sW.dawson
$

o Now sw.dawson has become a UNIX command.

3. Try using the command:

o Type sw. dawson as a command after the shell prompt (because
of its length, the line for "oranges, Valencia" won't be aligned
with the other lines):

$ sw.dawson
cherries, Bing 0.51
grapes, Concord 0.48
oranges, Navel 0.26
figs, Kadota 0.42
oranges, Valencia 0.29
figs, Smyrna 0.48

$ -

o This command line is similar to the command line in the previ­
ous example, but restricted to only one file.

The disadvantage of sw.dawson is that is works only for one file (daw­
son.farms). However, we can fix that by using the shell variable $l-which
is unrelated to the awk variable $1. (Shell variables are introduced and ex­
plained in detail in Part V.)

4. Place another command line (including the single quotes) in a file:

14. Programming with awk 211

o Enter the text with cat, using $1 this time:

$ cat > switcb
awk' (print $2 ", "$1 "C TAB)" $3}' $1

[C CTRL-D) to terminate input]
$

o Now switch contains the entire command line, including a shell
variable ($1) to allow you to type any filename.

5. Make this file executable:

o Use the chmod command from the shell prompt:

$ cbmod u+x switcb
$

o Now switch has become a UNIX command.

6. Try using the command:

o Type switch as a command with parker.farms as its argument
after the shell prompt:

$ switcb parker.far.ms
cherries, Bing 0.48
grapes, Thompson 0.35
oranges, Valencia 0.29
$

o This command line is similar to the command line in the previ­
ous example (under "Placing Statements in a File"), but more
general.

The shell variable $1 leaves the filename open, so that you can type
it as an argument after the command name (awk). For more about this
shell variable, see the section entitled "Positional Parameters," page 360,
in Chapter 23, "Bourne Shell Variables."

14.2 Using the awk program

To sum up what you've learned so far, the awk program allows you to
work with lines of text (records) by selecting lines matched in a pattern
statement, then processing those lines from a programming script given
in an action statement. Based largely on the C language, awk allows re­
served variables, user-defined variables, a variety of pattern-matching con­
structions (such as regular expressions, relational operators, ranges, and
compound expressions), and a number of programming features (such as

212 Using the awk program

built-in functions, arrays, and program control statements). We'll discuss
these now, beginning with built-in variables.

BUILT-IN VARIABLES

The awk program views the input file as a sequence of re cords (lines of
text), each divided into fields, as shown in Figure 14.3. Associated with
these entities are a number of built-in variables, some of which you have
already become acquainted with.

FIGURE 14.3. Records and fields.

Field 1 Field 2 Field 3 Field n

Record 1 $: $2 $3 $rl

Record 2 $1 S2 $3 $n

Record 3 $1 $2 $3 $n

Record m 51 $2 S3 Sr:

Referring to Figure 14.3, each record contains n fields, each separated
from other re cords by a field separator (symbolized as I). The entire file,
in turn, contains m records, each separated from other records by arecord
separator (symbolized as /). The built-in variables that describe all this
are shown in Table 14.1, with the symbols used in Figure 14.3 for easy
identification.

TABLE 14.1. Built-In Variables Used by awk

Variable Description Default Symbol

$1-$n Individual fields None $1-$n

NF N umber of fields in arecord None n
FS Input field separator Space or tab +
OFS Output field separator Space None

$0 The entire current record None $0
NR Number of the current record None None

RS Input re cord separator Newline

ORS Output re cord separator Newline None

FILENAME Name of the current input file None None

You can change any of the variables with default values in an awk pro­
gram with an assignment statement like this: FS = ":". (You can also
change the field separator by including the -F option on an awk command
line, like this: -F:.)

14. Programming with awk 213

SEPARATING FIELDS

If you type a comma between field names in an action statement, awk will
use OFS (by default aspace) to separate them in the output; if you type
only aspace between them, awk will concatenate the fields in the output:

print $4, $5 } [Separate fields 4 and 5 with aspace when printing]

{ print $4 $5 } [Concatenate fields 4 and 5 when printing]

To place a field at a tab stop, type the (TAB) between double quotes in
front of the field name (this willleave a gap between the double quotes).

PRINTING

In this chapter, we use mainly the simple print statement. But awk also
allows custom formatting via the printf statement, which is identical
to the printf statement used in the C language. Whereas the print
statement simply prints each line "as is," the printf statement gives you
more control over the appearance of each printed line of text. The general
format of a printf statement is shown in Figure 14.4.

FIGURE 14.4. A general printf statement.

~th,n,meOf!_h_e_s_ta_t_em __ en_t __________ __

! r th, fi,'d(<) to be print,d

$ printf ("format code(s)", field(s))

L how the fields should be arranged

Format codes for control characters begin with backslashes, such as \ t
to represent a tab and \n to represent a newline. Format codes for fields
begin with percent signs; each code includes a number to indicate the width
of the field in columns and a letter to indicate the general type of field. For
ex am pie , % 8 s represents a field 8 columns wide that contains astring.

Numeric fields for decimals must also indicate how many columns must
be reserved for the digits that follow the decimal point. This is done by
typing a decimal point and a second number after the number that indicates
the total width of the field. For example, % 6 . 2 f represents a numeric field
6 columns wide, with 2 columns rcscrved for digits that follow the decimal

point, that contains a floating-point (non-integral numeric) field.

214 Using the awk program

Fields other than floating-point are understood to be right-justified.
Floating-point fields are justified on the decimal point. To make a field
left-justified, you can type a hyphen (or minus sign) immediately after the
percent symbol.

The fields specified in format code(s) (between the quotation marks) must
match the fields named in field(s). In other words, there must be one field
specifier preceding the comma for each field name following the comma.
The field specifier before the comma provides formatting information for
its corresponding field. For example, you could use the following statement
to produce the results shown:

$ awk '(printf("%8s\t%8s\t%6.2f\n", $1, $2 $3)}' \
> parker.farms

Bing cherries 0.51
Thompson grapes 0.51
Valencia oranges 0.51

In this example, the first % 8 8 matches $1 (the first field) , the second
%88 matches $2 (the second field), and %6.2 matches $3 (the third field).
Fields are generally separated by tabs, and each line is generally followed
by a newline.

The general format for each individual field format indicator is

%[-][F.[D]]T

where - means left-justification, Fis the field width, D is the number of
decimal places, and T indicates the type of field:

8 String
d Decimal
f Floating point

In the following example, each entire record ($ 0) is interpreted as being
the "second field" (even though each re cord actually contains five fields).
This "second field" is preceded by the number of the current record (NR)
and followed by the number of fields in each record (NF). This example
illustrates how you can use awk's built-in variables, as weIl as a creative
way of defining a "field."

$ awk '{ printf (" %3d \t %25s \t %3d \n ", NR, $0, NF) }'
> jenkins.farms

1
2
3

Concord grapes
Bartlett pears

Navel oranges

0.51
0.12
0.26

5
3
4

J
J
J

5
5
5

Other field types for those who may be interested are as follows:

14. Programming with awk 215

c Single character
u Unsigned decimal
o Octal (base 8 numeric)
x Hexadecimal (base 16 numeric)
e Exponential (scientific notation)
g Shorter of floating point (f) or exponential (e)

14.3 Search patterns

In awk pattern statements you can use all of the search facilities of grep,
plus a few borrowed from other UNIX programs. These include pre- and
post-processing, regular express ions , arithmetic and relational operators,
ranges, and compound statements.

INITIAL AND END PROCESSING

A special BEGIN statement allows you to perform any pre-processing re­
quired before reading the first record from the input file. Another state­
ment, called END, allows you to perform any post-processing required after
the last record has been read. Typically, BEGIN is used to initialize any
variables, if necessary, and END is used to produce summary information.
Here is a very simple example, with comments on the right:

BEGIN FS = ":"} # Use a colon as a field separator
other statements }

END print NR} # Print the total number of records

REGULAR EXPRESSIONS

Once again, awk uses all the search facilities of grep, including regular
expressions, relational operators, ranges, and compound statements. To
summarize from Chapter 13, grep allows you to use special characters, or
metachamcters, match patterns. The expressions formed from these char­
acters are called regular expressions. Here is a quick review of these char­
acters:

Beginning of line
Any single character
Any enclosed character

$ End of line
* Repeat any number of times
\ Turn off special meaning

216 Search patterns

Here are some examples of regular express ions formed from these char­
aeters, with a few strings they would match if used in an awk statement:

Regular Expression
""3."
"t .. $"
"[Ff)arm"
"\$ [0-9) \. [0-9) [0-9)"
"[abc)\[i\)"
111\$"

Some of the Strings Matched
30 3a 3+ 3) (at beginning of a line)
too t36 t-T t+5 (at end of a li ne)
Farm farm
$4.67 $8.32 $1.99 $3.71
a[i] b[i] c[i]
(A blank line)

To match an expression with a particular field, awk uses tilde for match
(~) and exclamation-tilde for no-match (! ~). Here are two examples:

$5 - /[Ff]ox/

$1 r t999$/

Select any record that contains either "Fox" or "fox"
in field 5.

Select any record other than one that contains "999"
and not hing else.

ARITHMETIC AND RELATIONAL OPERATORS

You can use any of the arithmetic operators found in the C language:

+ Add * Multiply
Subtract / Divide

% Take remainder

You can also use the relational operators to perform comparisons:

<
<=

Less than
Less than or equal to
Equal to

>
>=
!=

Greater than
Greater than or equal to
Not equal to

You can also use the assignment operators to work with variables:

++ Increment the variable
+= Add and assign

Decrement the variable
-= Subtraet and assign

*= Multipy and assign /= Divide and assign
%= Take remainder and assign

Here are a few examples of using these operators in pattern-searching:

$5 >$4 + 40

NF % 2 == 1
$1 >= "x"

Select arecord if field 5 is larger than field 4 by at least
40
Select odd-numbered fields
Select any record that begins with x, y, or z

14. Programming with awk 217

As another example, let's have awk go through each line (or record) of
each of the farms files and display those that show a price higher than 0.50.
Since this one is so simple, we won't bother with a separate file (Which
fruits from all suppliers cost more than 0.50?):

$ awk '$3 > 0.50 { print $O}' *farms
cherries, Bing 0.51 D
grapes, Concord 0.51 J
$

So there it is-a list of all the fruits that cost more than 0.50. The pat­
tern statement ($ 3 > O. 50) selects these lines, and the action statement
(print $0) displays them. By the way, you could save the output lines
in a file by just adding a redirection statement (> exp.fruits) to the end of
the command line before executing it.

SETTING RANGES

By entering two search patterns, separated by a comma, you can set a
range of lines for awk to select. Here are some examples:

NR==11,NR==15
rOOO$/,r999$/

Select records 11, 12, 13, 14, and 15.
Select all records between, and including, the record
that contains only "000" and the record that con­
tains only "999".

FORMING COMPOUND STATEMENTS

By using the following logical operators, you can form compound search
patterns for selecting lines:

11 OR
&& AND

NOT

Here are some examples:

$3 == "10" && $4 <"0"

$1 <"b" && $1 != "ace"

Select any re cord for which field 3 is equal
to 10 and field 4 begins with A, B, or C
Select any re cord that begins with a, as
long as it doesn't contain "ace"

Here is another example, using the farms files (Which fruits that have a
quality code of 5 begin with A, B, or C?):

$ awk '$4="5"
Bing cherries
Concord grapes
$

&& $1< "D" { print $0 }' *farms
0.51 5 D
0.51 5 J

218 Action statements

Here is yet another example (Which grapes cost between 0.31 and 0.35
inclusive?):

$ cat > grapes.35
$1 N Igrapesl && $3 >= 0.31 && $3 <= 0.35 (print $Oj

[C CTRL-D) to terminate input 1
$

$ awk -f grapes. 35 *farms
grapes, Thompson 0.35 5 p

$

14.4 Action statements

When constructing action statements, you can use built-in functions, your
own variables, arrays, and program control statements. We'll discuss each
of these now briefly.

USING BUILT-IN FUNCTIONS

Your statements can include the built-in functions shown in Table 14.2.

ASSIGNING YOUR OWN VARIABLES

You can make assignments to any variables you wish to use, without pre­
vious declaration or initialization (awk automatically initializes all user­
defined variables to the null string). All user-defined variables can be freely
converted between floating-point numeric and string. Here are some exam­
pIes:

x=5
y = "quite"
z = "3" + "4"
Y = "quite" + 0
x = 5""

Assign 5 to x, making x floating point
Assign qui te to y, making y astring variable
Assign 7 to z, making z floating point
Add zero to y, converting y to floating point
Concatenate a null string to x, converting x to a
string variable

Field variables, as well as user-defined variables, can be reassigned new
values at will, regardless what their previous contents may have been.

USING ARRAYS

As when using C, you are allowed to use arrays, which in awk require
neither declaration nor initialization. You can use either numeric or string
variables as indices in an awk array. In the following example, we place

14. Programming with awk 219

TABLE 14.2. Built-In Functions Used by awk

Function

length [.f i]

spllt(string, arraY[,fs])

substr(string,p[, max])

index(STRING,string)

Description

Without an argument, returns the length of the cur­

re nt record; with an argument, returns the length

of the field named as an argument

Split string string into n fields, place them in sep-

arate array elements array[l}, array[2}, ... , ar­
ray[n}, and return the number of elements n. If

the optional field separator fs is omitted, then the
value of FS becomes the default

Returns the number of elements in the substring of

string that begins at position p and contains no
more than max characters

Returns the position in STRING where string be­

gins (or 0 if string doesn't occur)

sprintf(jormat,exl,ex2,"') Returns the value of the expressions named in

sqrt(n)

log(n)
exp(n)
int(n)

printf format statement format
Returns the square root of n
Returns the natural logarithm of n
Returns the value of e to the power n
Returns the truncated integral value of n

field 1 of arecord into an array named name and field 2 into an array
named value, using the current record number as the index for each array:

{ name [NR] = $1; value[NR] = $2 }

Here is an example from the farms series (What is the generic type and
price of each item produced on Jenkins' farms?):

$ aat array
{ type [NR] = $2; price[NR] = $3 }

END { for (i=l; i<=NR; i++)
print type [i] "(TAB)" price [i]

$ awk -f array jenkins.farms
grapes 0.51
pears
oranges
$

0.12
0.26

If you would like to split astring into individual characters, placing the
characters into an array for subsequent reference, you can use the split
function, shown here:

{ n = split(arctic,alpha)

220 Action statements

This statement sets n to 6 and produces the following array:

alpha[l] = a
alpha[2] = r
alpha[3] = c

alpha [4] t
alpha[S] i
alpha[6] = c

USING PROGRAM CONTROL STATEMENTS

awk allows you to use the program control statements of the C language
(such as if ... else, while, and for). It also allows you to use the direc­
tives shown in Table 14.3.

TABLE 14.3. Directives Used by awk

Directive Action

next Proceed to the next record and begin looking for a match

continue Proceed to the next iteration of the current loop

break Exit from the current while or for loop immediately

exit Proceed as if the last record had just been read

You can also use the for statement, which allows you to perform a se­
quence of steps under the control of a "counter." For each number provided
by the counter, one step is carried; then the counter goes to the next num­
ber for another setp; and so on. It is customary, but not mandatory, to use
the letters i, j, k, and I as counters. The general form of a for statement
is shown in Figure 14.5.

FIGURE 14.5. A general for statement.

~ th, "me of th, ,"",m,nt

t r---------when to stop the counter

$ for (start; stop; increment)

1 - t ---------- how to increment the counter

start the counter counting

In the following example, the counter (i) starts at 1; the counter stops
at 9 (or continues counting as long as it's less than or equal to 9); and the
counter is incremented by 2 for each step in the procedure:

14. Programming with awk 221

for (i=l; i<=9; i+=2)

Here is a more involved example, in which the for statement is used to
print fields 1, 3, and 5 of each record in a file. (Note how the field numbers
have been offset from the counter i to select the correct fields.)

for (i=5; i<=NF; i+=5)
printf(" %3.Ou \t %12s \t %6.2f \n ",$(i-4),$(i-2),$i)

You can also use another form of the statement for arrays; this form
allows you to step through each element in the array. For example, suppose
we'd like to know the average price of each generic type of fruit sold by any
of oUf three farms. We could do something like this:

1. Place the action statements (without the single quotes) in a file:

D This time, call the file av.price:

$ cat > av.price
{ price[$2] += $3 ; n[$2]++ }

END { ror (type in price)

$

print type, "C TAB)", price [type] In [type] }
[C CTRL-D) to terminate input]

D Now the pattern and action statements are m a file named
av.price.

2. Name this file with the -f option when you execute awk:

$ awk -r av.price *rarms
oranges 0.275
cherries 0.495
figs 0.45
pears
grapes
$

0.12
0.446667

222 Action statements

You could also do something similar with the quality code:

$ cat av.quality
{ quality[$2] += $4 ; n[$2]++ }

END {for (type in quality)
print type, "(TAB)", quality [type] / n [type])

$ awk -f av.quality *far.ms
oranges 4.0
cherries 4.5
figs 4.0
pears 3.0
grapes 4.666667
$

MORE EXAMPLES

This concludes our discussion of awk programming, which allows you to do
a lot of sophisticated processing with direct, straightforward statements.

14.5 Error messages

If you enter a statement incorrectly, awk will terminate your program and
display an error message. For example, suppose you accidently omit the
symbol to increment the variable in av.price (++), like this:

$ cat av.price
{ price[$2] += $3 ; n[$2]

END {for (type in price)
print type, "eTAB)", price[type] / n[type] }

$

When you attempt to use av.price in a awk command line, you will see
something like this:

$ awk -f av.price *farms
awk: syntax error near line 3
awk: bailing out near line 3

$ -

The remedy is to insert the missing plus signs after n [$2] and re-enter
the command line.

14.6 Summary

In this chapter vou learned how to process text with awk.

14. Programming with awk 223

INTRODUCTION

An awk command line consists of the name of the command (awk), aspace,
an optional pattern statement, aspace, an optional action statement, and
the name(s) of the file(s). The default pattern statement is, "Select every
line in the file;" the default action statement is, "Copy each li ne selected to
the standard output." To refer to fields in an awk command, use a dollar
sign and a number typed together (for example, $3 to indicate field 3).

Like many other UNIX commands, awk allows you to place your state­
ments in a separate file, then activate them from a command line. With
awk, use -f and the name of the file to activate pattern and action state­
ments only. To place an entire command line in a file, enter the statements,
store the file , make it executable with chmod, then type the name as a
UNIX command.

USING THE awk PROGRAM

Here is some general information about the awk program as a whole. Built­
in variables allow you to identify fields and records, the number of fields
in arecord, the number of the current record, field and record separators,
and the name of the current file. You can reassign any variable that has a
default value.

You have the option of either separating or concatenating two fields
when sending them to the output. You have the option of using either the
ordinary print statement 01' the custom printf statement. The printf
statement allows you to specify a page format with great precision.

SEARCH PATTERNS

Whenever you construct a pattern statement, you have available to you
pre- and post-processing statements, regular expressions, arithmetic and
relational operators, ranges, and compound statements.

You can use BEGIN as a pattern statement to provide for any initial­
ization to be performed before reading the first record; you can use END

to provide for any final processing to be performed after reading the last
record.

You can use any of the search facilities of grep to match strings (be­
ginning and end of line, wild card, repeat, and character sets), along with
symbols to indicate either match or no match. You can use c's arithmetic,
relational, and assignment operators to construct pattern statements. You
can set a range of lines to be selected by typing two search patterns, sep­
arated by a comma. You can use logical operators to construct compound
search statements.

224 Summary

ACTION STATEMENTS

Whenever you write an action statement, you have available to you awk's
built-in functions, built-in and user-defined variables, arrays, and program
control statements.

You can use awk's own functions for returning length of arecord, field,
or string; the number of elements in astring or substring; position of a
substring in astring; the value of the expressions given in a printf state­
ment; and also square root, naturallogarithm, exponentiation, and integer
value of a number.

You can either use the built-in variables provided by awk or assign your
own. You can use your own variables without prior declaration or initializa­
tion, and then convert them freely between numeric and string types (string
is the default). You can also use arrays, again without prior declaration or
initialization, and you can use either numbers or strings as indices.

You can use various program control statements to proceed to the next
record, proceed to the next iteration of the current loop, exit from the
current loop, or proceed to the END statement (if present).

15

Programming with C

In this chapter we'll take a brief look at the C language. We won't describe
the features of the language in any detail, but simply show how to com­
pile and run a program in UNIX. (Actually, you'll find more information
about C in Chapter 14, "Programming with awk," than you'll find in this
chapter.) This chapter is really for people who are mainly interested in how
to generate C programs in a UNIX environment. For detailed information
about the language itself, see the list of books at the end of the chapter.

In this chapter it is assumed that you are using vi to enter text. We'll
begin with a discussion of executing UNIX commands without leaving vi.
Since C pro duces programs, you may need to run some of them while you
are editing.

15.1 Staying in an editing session

Suppose you're in the middle of an editing session with vi and you need to
execute a UNIX command. For example, you may want to run date to find
out what time it is or you may want to run WC to check the length of a
file. Ordinarily, you would have to end your editing session, run the UNIX
command from the shell prompt, then return to your editing session. UNIX
has a feature that allows you to escape temporarily without having to end
your editing session: just precede the UNIX command with a colon and an
exclamation mark (:!). The command will be handed over to the shell to
be executed, and you won't have to leave vi. This is known as escaping to
the shell.

CHECKING THE TIME

For example, suppose you're in the middle of an editing session and you'd
like to check the time. Let's try this:

1. Start an editing session with a new file:

o Start vi with spaces:

$ vi spaces

226 Staying in an editing session

o Type the text with blank lines between:

This is line 1

[Two blank linesJ
This is line 2

[Three blank linesJ

This is line 3

2. Now check the time:

o Type a colon and an exclamation mark (:!) in front of the date
command:

:!date
Tue Mar 23 11:36:43 PST 1987

o Now you can resume editing (or execute another UNIX com­
mand).

CHECKING THE LENGTH OF A FILE

As another example, you could use an escape (:!) to determine the length
of a file. Continuing the steps just given above, use the wc (word count)
command to display the statistics on wall:

: !wc wall
24 138 1002 wall

This teIls you that wall contains 24 lines, 138 words, and 1002 characters.

15.2 Executing a C program

COMPILING AS AN EXAMPLE

In the previous section you learned how to execute a UNIX command with­
out leaving vi. In this section we'Il combine that concept with a very brief
discussion of C programming. We'Il enter a C program and then compile
the program. This book is not about C programming, so we will use only
simple C programs in this chapter. The main point of this chapter is not

15. Programming with C 227

how to write a C program, but how to execute a UNIX command during an
editing session with vi. Some of the UNIX commands we'll be using here
will be the C compiler ce, chmod, Is, and sort.

STARTING WITH A NEW DIRECTORY

Once again, let's start this chapter by creating a new subdirectory in your
horne directory to contain your C programs, then move to this directory
for the exercises in this chapter.

1. Create a new directory:

o From your horne directory, create a directory called c-progs
with the mkdir command:

$ mlcdir cJrogs
$

o The directory has been created, but you are still in your horne
directory.

2. Move from your horne directory to c-progs:

o Move to subdirectory c-progs with the cd command:

$ cd C Jrogs
$

o c-progs is now your working directory.

ENTERING THE FIRST PROGRAM

In this section you will use vi to enter a short C program, compile the
program, make corrections with vi, compile again, and then run the pro­
gram. To run the C compiler ce during an editing session, precede the
command with a colon and an exclamation point (: !). Once compilation
is completed, another exclamation point will appear and control will return
to vi.

The C program you copy from directory text will convert gallons to liters
for six specified amounts (10, 12, 14, 16, 18, and 20 gallons). You can also
make adjustments in the variables to convert other amounts. Before you
begin step 1, make sure you are still in subdirectory c-progs. If you aren't
sure, use the pwd command to find out the name of your working directory.

ENTERING THE PROGRAM

You now have a directory for storing your two C programs.

228 Executing a C program

1. Copy the first program from directory text to this directory:

$ cp .. /text/metric.c

2. Start a new editing session:

o Type vi and the name of the file and press (RETURN) to start:

0

$ vi metric. c

Display the file on the screen:

1
2
3
4
5
6
7
8
9

10
11
12
13
14

15
16
l7
18

/* Convert gallons to liters */
main ()
{

int low, high, step;
float gallons, liters;

low = 10; high = 20; step = 2;

printf("%4s \t %6s \n\n" , "gals", "liters");

gallons = low;
while (gallons <= high)
{

liters = (gals * 3.785) [Error on this line]
printf("%4.0f \t %6.2f\n", gals, ltrs);
gallons += step;

"metric.c" [New file] 18 lines, 378 characters

3. Compile the program without leaving vi:

o Type: ! ce metric. c and press (RETURN)

: !cc metric. c

o The C compiler will respond with these messages:

!cc metric.c
"metric.c", line 15: syntax error
"metric.c", line 15: illegal character: 134 (octal)
"metric.c", line 15: cannot recover from earlier
errors: goodbye!

15. Programming with C 229

MAKING CORRECTIONS

Your job is to correct the error reported by the C compiler, recompile the
program, and try running it. Although there are three error messages this
time, there is only one error (a missing semicolon).

1. Return to vi to correct the error:

D Display the line with the error:

liters = (gallons * 3.785)

D Add the missing semicolon and display the corrected line:

liters = (gallons * 3.785);

D Save the correction:

:w metric.c
"metric.c" 18 1ines, 379 characters

This time, instead of allowing ce to send the output to the standard
output file a.out, we're going to redirect the output to another file.

2. Recompile the program without leaving vi:

D Use the -0 option to redirect the output to a file named metric
and press (RETURN):

:!cc -0 metric metric.c

D The C compiler will res pond with another exclamation point,
which tells you that the program has compiled successfully.

3. Now you are ready to run the program:

D Type: !metric and press (RETURN):

: !metric
gals liters

10 37.85
12 45.42
14 52.99
16 60.56
18 68.13
20 65.70

D The program works. Type q and press (RETURN) tu leave vi.

230 Executing a C program

MODIFYING THE PROGRAM

As mentioned earlier, you can modify metric.c to obtain different results.
One way to do this is to change the initializations on lines 7, 8, and 9.
For example, by changing low to 11, high to 25, and iner to 1, you can
obtain conversions for 11, 12, 13, ... , 25 gallons:

low = 11; high = 25; step = 1;

ENTERING ANOTHER C PROGRAM

1. Start a new editing session with vi:

D Start an editing session with a new file called compact.c:

$ vi compact. c

D Enter and save the following program (but not the li ne numbers).

1 / * Remove newlines * /[Descriptive comment line]

2 #include <stdio. h> [This is the standard 1/0 file for Cl
3 main () [Start of program]

4 [Start of first block]
5

6

7

8

9

10

11

12

13

14

15 }

int e, n=O, max=2,· [D 1] ec are c as an integer; declare n as an
integer and set it to zero; declare max
also and set it to 2

while ((e=getehar() != EOF)

if (e==' \n')

n++;

else

n=O;

if (n<=max)

putehar(e);

[Read a character; stop if it's an end-of-]
file character CD)

[Start of second block]

[Is the character newline?]

[If so, add to the counter]

[If not, ...

reset the counter to zero]

[Are there fewer than two newlines?]

[If so, output this character]

[End of second block]

[End of first block]
CESC) :w [Don't type : q; stay in vi]
"eompaet.e" [New file] 15 lines, 192 eharaeters

Before proceeding, we should include a short discussion of this program.
It takes characters from the keyboard and counts the number of consecutive
newlines encountered. Any time there are at least two, the program ignores
all but the first two and goes on to the next character, thereby compacting

15. Programming with C 231

the file. Line 6, as you have entered it, contains an error: a right parenthesis
is missing. Because of this, error messages will result when the program is
compiled, and these error messages will provide a few usefullessons. You
will get a chance to correct the error in line 6 shortly.

2. Compile the program without leaving vi:

o Use the temporary exit symbol (:!) in front of ce to have ce
compile compact.c:

: ! ce compact. c

o The C compiler ce will res pond with a message like this:

"compact.c", line 7: syntax error
"compact.c", line 15: syntax error

Error messages resulted on lines 7 and 15 when ce attempted to compile
compact.c. Because of the missing parenthesis back on line 6, ce has run
into trouble on lines 7 and 15, and compilation of compact.c is unsuccessful.
The solution is to add the missing parenthesis and try ce again.

MAKING CORRECTIONS TO THE PROGRAM

Now that you have entered the program and attempted a first compilation,
you are ready to correct the error reported by the compiler and try a second
compilation:

1. Return to your editing session and add the missing parenthesis:

o Display line 6:

while ((c=getchar() != EOF)

o Add the missing parenthesis and display the corrected line:

while ((c=getchar()l != EOF)

o Store the corrected text:

:"
"compact.c" 15 lines, 193 characters

2. Recompile the program without leaving vi:

o Use the temporary escape (:!) in front uf ce again:

232 Executing a C program

:!cc -0 compact compact.c

o After CC has run, vi will respond with another exclamation
point:

! ce -0 compact compact. c [Place the output in compact]

This time the compilation is successful; there are no error messages.
Again, unless you specify another file, CC places the output of any compi­
lation in a file named a.out. This is the standard output for CC. However,
we have directed output to compact by using the -0 option with CC.

RUNNING THE PROGRAM

With compact.c successfully compiled, you are now ready to run the pro­
gram. Note that compact is an executable file, which means that all you
have to do to run your program is type a. out after the UNIX shell prompt.
However, since you are still in an editing session with vi, you won't see the
shell prompt this time.

1. Run the program:

o Copy file spaces from text to c-progs:

:!cp .. /text/spaces spaces

o Use the temporary escape symbol (: !) again to run compact:

:!compact < spaces

o The output will appear on the screen:

This is line 1

This is line 2

This is line 3
[Conclusion of the program's output]

This program illustrates one method for eliminating extra blank lines
from a file.

2. End the editing session by typing : q.

15. Programming with C 233

OTHER PROGRAMMING LANGUAGES

Although C and UNIX have been closely related from the beginning, some
of the other languages popular with microcomputers, such as FORTRAN
and Pascal, have also hecome available with UNIX. The standard FOR­
TRAN compiler, called f77, compiles source programs in files that end
in .f. One widely-used Pascal compiler from the University of California,
called pe, compiles source programs in files that end in .p. An assembler
(ee again) assembles source programs in files that end in .S.

Both compilers and the assembler, like C, place the executable program
produced by compilation in a.out if no other output file is named. All three
compilers (C, FORTRAN, and Pascal) and the assembler have an -0 option
that allows you to direct the output to another file.

Finally, there is another language closely associated with UNIX that is
covered later in this book. You have been dealing with the UNIX shell
alm ost since you started reading this book. The shell is the command pro­
cessor that takes each command you enter, makes sure that UNIX executes
it for you, and then returns the results to you. However, the shell also offers
a language that you can use to write pro grams called shell procedures, or
shell scripts, which you can write to carry out simple tasks or to design a
new UNIX interface. This aspect of the shell is discussed in Part V, "Shell
Programming. "

For some jobs you may prefer using shell procedures because they don't
require compilation and storing an extra file. For other jobs you may prefer
using C programs because they can handle character-processing better. For
still other jobs you may prefer to use FORTRAN, Pascal, or some other
language available on your system.

15.3 Summary

In this chapter you have learned how to execute UNIX commands without
leaving vi. As examples of executing UNIX commands, you entered, com­
piled, corrected, recompiled, and ran two C programs. To interrupt editing
with vi to execute another UNIX command, type a colon and an exclama­
tion point (: !), the name of the command, and press (RETURN). After
the other UNIX command has been executed, you will be able to return to
vi, which will remain in the same state unchanged.

To produce a C program ready to run, you have to follow these steps:

1. Call up vi (or another text editor), enter the code, and store it in a
file (which must have a .e suffix).

2. Use the ee compiler, sending the object code either to the standard
output file a.out or to a file of your choice:

234 Summary

3. Since you are still in vi, you can easily make corrections to any errors
reported by ee using the s (substitution) command.

4. To run your program, just type the name of the output file produced
byee.

FORTRAN is a standard language, while Pascal and other languages
are also available on many UNIX systems. The FORTRAN compiler (f77)
compiles source code stored in files that end in .tj one Pascal compiler (pe)
compiles source code stored in files that end in .pj the assembler (ee again)
assembles source code stored in files that end in .5. All of these, like C,
allow you to direct output to another file with the -0 option.

FüR FURTHER READING

In this chapter you worked briefly with C, the language in which most of
UNIX is written. If you would like to know more about C, you will need
another book. It won't be possible to say much more about C in this book,
so here are a few titles:

Hancock, Les and Morris Krieger, The C Primer, New York: McGraw-Hill,
1986. This contains thorough, comprehensive coverage of all aspects
of C programming from basic to intermediate.

Kelley, Al and Ira Pohl, A Book on C, Menlo Park, CA: BenjaminjCummings,
1984. Designed as a college-level textbook at the University of Califor­
nia, Santa Cruz, this book covers all aspects of C programming thor­
oughly. It includes many examples, diagrams, tables, and exercises.
However, the reader is assumed to be familiar with some college-level
mathematics.

Kernighan, Brian W. and Rob Pike, The UNIX Progmmming Environment,
Englewood Cliffs, NJ: Prentice-Hall, 1984. This book, which seems
to be intended for experienced users of UNIX and C, covers a lot of
ground: the file system, the shell, filters, developing a variety of utility
programs with the shell, C programming, and document preparation.
This provides good reference material on many topics.

Kernighan, Brian W. and Dennis M. Ritchie, The C Programming Lan­
guage, Englewood Cliffs, NJ: Prentice-Hall, 1978. This book provides
excellent material, possibly the best there is, for experienced C pro­
grammers, but is practically incomprehensible to beginners. Start
with one of the other books before trying this one.

Kochan, Stephen G., Progmmming in C, Hasbrouck Heights, NJ: Hayden
Book Company, Inc., 1983. Over-all this is one of the best books on
C for beginners. It develops most topics from the ground up, and
uses only a moderate amount of high school-Ievel mathematics. How­
ever, there are some inconsistencies: some elementary concepts are

15. Programming with C 235

discussed extensively, while more difficult concepts are passed over
quickly.

Plum, Thomas, Learning to Program in C, Cardiff, NJ: Plum Hall, 1983.
This is the first in aseries of books on C programming from Plum
Hall. While it's more expensive than other books mentioned, it is
oversized, contains a blackjack program and includes quick reference
cards.

Purdum, Jack, C Programming Guide, Indianapolis, IN: Que Corporation,
1983. Also aimed at beginners, this book covers a wide range of topics,
though not always in depth. There is very little mathematics for the
reader to contend with.

Swartz, Ray, Doing Business with C, Englewood Cliffs, NJ: Prentice-Hall,
1988. This book starts with simple programs, and builds them step­
by-step into larger programs with all the necessary safeguards.

Swartz, Ray, Introduction to C Programming (videotape and workbook),
Santa Cruz, CA: Berkeley jDecisions, 1986. The first videotape (two
diskettes) takes three and a half hours to play, and comes with a
workbook. The instructor assurnes some programming experience, but
develops each new topic very carefully. The course provides an excel­
lent discussion of pointers and arrays, an area where many beginners
stumble. A second videotape continues with intermediate topics, such
as structures and unions.

Wortman, Leon A. and Thomas O. Sidebottom, The C Programming Tutor,
New York: Brady, 1984. This book is divided into two parts: tutorial
and sam pie programs. The tutorial covers the language briefly, then
seven programs handle a variety of text-processing and administrative
tasks for software developers.

Part IV

Text-Formatting

16 Introduction to mm 239

17 Formatting with mm 255

18 Formatting with nroff and troff 269

19 Formatting with troff 283

20 More on Formatting 295

In Part 11 you learned how to perform text-editing with vi and ex. In
Part IVyou willlearn how to format text. (Onee again, reeall that in UNIX,
formatting is eompletely separate from entering text.) Formatting in UNIX
involves using the nroff and troff tools - nroff for daisy-wheel printers,
troff for laser printers and phototypesetters.

16

Introduction to mm

16.1 Introd uction to formatting

THE UNIX FORMATTING TOOLS

As mentioned earlier, text editing and text formatting are two separate
processes in UNIX. You enter text into a file with one of the editors (ed
or vi), then you use another program to format the text for printing. New
word processing programs, which combine editing and farmatting as two
different functions of a single program, are becoming available for UNIX
every month.

There are two main formatting programs in UNIX, along with some aux­
iliary programs and pre-processors. The main formatting programs, both
derived from an earlier "runoff" program from MIT, are called nroff ("en­
roff," new runoff) and troff ("tee-roff," typesetting runoff). These two pro­
grams have many similarities, but the main difference is that nroff is in­
tended far ordinary printers, while troff is intended for laser printers and
typesetting equipment. Therefare, troff has to handle fant changes and
proportional spacing.

Ta aid beginners in using nroff and to provide standard sets of formats,
people have designed various pre-defined formatting tools called macro
packages. (The term "macro" here refers to larger requests that have been
constructed from sm aller primitive requests- "micros" if you will.) Same
of the most well-known are called ms, me, and mm.

In addition, there are several pre-processors that handle specialized types
of text: tbl for tables, and eqn and neqn far mathematical express ions ,
among others. Finally, there are utilities: checkeq to check usage in eqn
and neqn and deroff to remave all formatting requests (nroff, troff, tbl,
eqn, or neqn) from a file, among others. In this chapter we'll focus on
mm, which supereedes ms in System V. Throughout Part IV, references
to nroff actually refer to both nroff and troff.

AN EXAMPLE OF FORMATTING

The mm macro package offers you a wide selection of pre-defined features
for text formatting that you can activate and deactivate by placing embed­
ded commands (or requests) in your file.

240 Introduction to formatting

1. Prepare an input text file for formatting:

o Move to subdirectory text and start an editing session with a file
called pfl.deal.

o Insert the embedded requests (but not the descriptions in brack­
ets), and type this letter as shown here. We'll shorten the page
length to make the output more compact .

. pl 33

.SA 1

.P 0

Dear Mr. Madison:
.P 1

[Page length = 33 lines]

[Justify the right margin]

[Left-justified paragraph]

[Indented paragraph]
The pur,pose oE this letter is to conEirm Honday's
agreement. Tupelo gets "Porkchop" Peterson, you
get "Earthquake" Emerson, and we get "Rotunda"
Robinson. Here are the players' names, heights,
weights, and new teams:
.DS I N [Start of display]

6' 5" 273
6' 3" 287
5'9" 178

Rochester
Des Hoines
Tupelo

Emerson, Ezekiel R.
Robinson, Charles F.
Peterson, Paul N.
.DE

.P 1
[End of display]

[Indented paragraph]
You will be getting one oE the Einest players in
the People's Football League .
. DS C N [Centered display]
Your Friend and ~ne, Bill
. DE [End of display]

o Store the text and return to the UNIX shell prompt.

2. Format the text on your screen with nroff:

o Type an nroff command that includes the -em option:

$ nroEE -cm pEI. deal I pg

or

$ nun pEI. deal I pg

- 1 -

Dear Mr. Madison:

The purpose of this letter is to confirm
Monday's agreement. Tupelo gets "Porkchop"
Peterson, you get "Earthquake" Emerson, and we get
"Rotunda" Robinson. Here are the players' names,

16. Introduction to mm 241

heights, weights, and new teams:

Emerson, Ezekiel R.
Robinson, Charles F.
Peterson, Paul N.

6'5"
6'3"
5' 9"

273
287
178

Rochester
Des Moines
Tupelo

You will be getting one of the finest players
in the People's Football League.

Your Friend and Mine, Bill

o The words of each paragraph have been joined together, the
right margin has been justified (aligned), the tabular material
have been indented, and the closing has been centered.

USING THE mm MACRO PACKAGE

In formatting this letter, which gives you abrief introduction to nroff and
mm, you used one nroff command:

. pI 33 Set the page length to 33 lines (without this and the more com­
mand, the letter would sail off the top of the screen before you
got a chance to look at it).

and six mm requests:

.SA 1

.PO

.P 1

.DSIN

.DSCN

.DE

Right-justified text
Left-justified paragraph
Indented paragraph
Start of display (text is indented, but otherwise left alone)
Start of display (centered, but otherwise left alone)
End of display

Each embedded mm command (or request) consists of aperiod (or dot)
in column 1 followed by one or two capitalletters (this conveniently distin­
guishes them from nroff commands, which are lower case). For example,
the mm request for a paragraph is .P (with or without a digit following).
By placing (or embedding) this request directly above lines of text, you can
have those !ines formatted into a paragraph.

Some embedded requests also require additional information. For exam­
pie, the start of display request .DS may be used either by itself or with
one or more characters added (in the example above, we added C N to get
• OS C N for centering without filling).

In the sections that follow, we'll describe these and other formatting
requests in greater detail. To save space, we'll use miniature examples,
showing the input text in the left and the printed result on the right. Full­
sized examples work the same way-they just take up more room.

242 Introduction to formatting

16.2 Forming paragraphs

BLOCK PARAGRAPH .P
To form a block paragraph, with alllines left-justified, precede the first line
with the . P request:

Input Output

.P
bbbbbbbbbbbbbbbbbbbbbbbbbbbb bbbbbbbbbbbbbbbbbbbbbbbb
bbbbbbbbbbbb bbbbbbbbbbbbbbbbbbbbbb
bbbbbbbbbbbbbbbbbbbbbbb bbbbbbbbbbbbbbbbbbbbbbb
bbbbbbbbbbbbbbbb. bbbbbbbbbbbbb.

In the event that the default may have been changed from block to
indented paragraphs in nroff, use . P 0 to guarantee block paragraphs .

INDENTED PARAGRAPH . P 1

To make the first line indented five spaces, precede the first line with the
. P 1 request.

Input Output

.P 1
iiiiiiiiiiiiiiiiiiiiiiiiiiiii iiiiiiiiiiiiiiiiiii
iiiiiiiiiiii iiiiiiiiiiiiiiiiiiiiii
iiiiiiiiiiiiiiiiiiiiiii iiiiiiiiiiiiiiiiiiiiiii
iiiiiiiiiiiiiiii. iiiiiiiiiiiii.

16.3 Forming lists

In mm a sequence of related items indented by the same amount is called
a list. Each item in the list is preceded by a number, letter, bullet, hyphen,
or word(s), as shown in this example:

• French

• German

• Italian

Here you see three names (French, German, Italian) presented as a list
of items, each double-spaced and preceded by abullet (.). With mm you
can produce a list like this by embedding the following requests into the
text:

16. Introduction to mm 243

.BL

.LI
French

.LI
German

.LI
Italian

.LE

[Begin a buHet list]

[The first item is French]

[The second item is German]

[The third item is Italian]
[This is the end of the list]

In this simple example, we used one-word items in the list; but the items
in many lists will be entire paragraphs. In the sections that foHow we'H
discuss the different kinds of lists you can request in mm.

SIMPLE LISTS

.Bl

.Dl

.Ml

As shown in the example above, you can form abullet list by using the . BL

request:

Input
.P 1
iiiiiiiiiiiiiiiiiiiiiiii
iiiiiiiiiiiii :
.BL
.LI
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaa
.LI
bbbbbbbbbbbbbbbbbbbbbbb
bbbbbb
.LE

Output

iiiiiiiiiiiiiiiiiii
iiiiiiiiiiiiiiii:

+ aaaaaaaaaaaaaaaa
aaaaaaaaaaaa

+ bbbbbbbbbbbbbbbbb
bbbbbbbbbbb

You can form a dash list by using the . DL request. The result is the same
as a buHet list, except that a hyphen is used in place of a buHet to precede
each item:

Input

.P 1
iiiiiiiiiiiiiiiiiiiiiiii
iiiiiiiiiiiii :
.DL
.LI
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaa
.LI
bbbbbbbbbbbbbbbbbbbbbbb
bbbbbb
.LE

Output

iiiiiiiiiiiiiiiiiii
iiiiiiiiiiiiiiii:

- aaaaaaaaaaaaaaaa
aaaaaaaaaaaaa

- bbbbbbbbbbbbbbbb
bbbbbbbb

244 Forming lists

You ean form a mark list by using the . ML request, followed by one or
more eharacters to preeede eaeh item. In the following example, an asterisk
(*) is used:

Input

.P 1
iiiiiiiiiiiiiiiiiiiiiiii
iiiiiiiiiiiii :
.ML *
.LI
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaa
.LI
bbbbbbbbbbbbbbbbbbbbbbb
bbbbbb
.LE

REFERENCE LISTS

Output

iiiiiiiiiiiiiiiiiii
iiiiiiiiiiiiiiii:

* aaaaaaaaaaaaaaaa
aaaaaaaaaaaaa

* bbbbbbbbbbbbbbb
bbbbbbbbbbbb

.RL

To form a reference list, as is eustomary at the end of a book to indieate
soure es for quotations, use the . RL request. The items will be numbered
automatieally for you, with the numbers plaeed between braekets:

Input

.P 1
iiiiiiiiiiiiiiiiiiiiiiii
iiiiiiiiiiiii :
.RL
.LI
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaa
.LI
bbbbbbbbbbbbbbbbbbbbbbb
bbbbbb
.LE

VARIABLE-ITEM LISTS

Output

iiiiiiiiiiiiiiiiiii
iiiiiiiiiiiiiiii:

[1] aaaaaaaaaaaaaaaa
aaaaaaaaaaaaa

[2] bbbbbbbbbbbbbbb
bbbbbbbbbbbb

.VL

To form a variable-item list for aseries of definitions or explanations, use
the . VL request. You must provide a number after. VL to indieate how
mueh spaee mm should leave between the eurrent left margin and the start
of text for eaeh item in the list. In the following example, we leave ten
eolumns:

Input

.P 1
iiiiiiiiiiiiiiiiiiiiiiii
iiiiiiiiiiiii:

Output

iiiiiiiiiiiiiiiiiii
iiiiiiiiiiiiiiii:

16. Introduction to mm 245

.VL 10

.LI catt1e
cccccccccccccccccccccc
ccccccc
.LI hogs
hhhhhhhhhhhhhhhhhhhhhhh
hhhhhhhhhhhh
.LE

AUTOMATICALLY-NUMBERED LISTS

catt1e ccccccccccccc
ecceecceecce

hogs hhhhhhhhhhh
hhhhhhhhhhhhh
hhhhhh

.AL
To form an automatically-numbered list (or alphabetic list) for an outline,
use the . VL request. If you don't type anything after. AL, mm will number
the list with Arabic numbers. As you can see in the following example, the
result is nearly the same as a reference list:

Input

.P 1
iiiiiiiiiiiiiiiiiiiiiiii
iiiiiiiiiiiii:
.AL
.LI
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaa
.LI
bbbbbbbbbbbbbbbbbbbbbbb
bbbbbb
.LE

Output

iiiiiiiiiiiiiiiiiii
iiiiiiiiiiiiiiii:

1. aaaaaaaaaaaaaaaa
aaaaaaaaaaaaa

2. bbbbbbbbbbbbbbb
bbbbbbbbbbbb

By typing one of the following characters after . AL you can instruct mm
to use either letters of the alphabet or Roman numerals:

A Uppercase letters
a Lowercase letters

I Uppercase Roman numerals
Lowercase Roman numerals

Here is an example with uppercase letters:

Input

.P 1
pppppppppppppppppppppppp
ppppppppppppp:
.AL A
.LI
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaa
.LI
bbbbbbbbbbbbbbbbbbbbbbb
bbbbbb
.LE

Output

ppppppppppppppppppp
pppppppppppppppp:

A. aaaaaaaaaaaaaaaa
aaaaaaaaaaaaa

B. bbbbbbbbbbbbbbb
bbbbbbbbbbbb

Here is an example with lowercase Roman numberals:

246 Forming lists

Input Output

.P 1
rrrrrrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrr:
.AL i
.LI
aaaaaaaaaaaaaaaaaaaaaa
aaaaaaa
.LI
bbbbbbbbbbbbbbbbbbbbbbb
bbbbbb
.LE

rrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrr:

i. aaaaaaaaaaaaaaaa
aaaaaaaaaaaaa

ii. bbbbbbbbbbbbbbb
bbbbbbbbbbbb

To produce an outline, keep in mind that automatie numbering remains
in effect for a given level until mm encounters a . LE request. Here is an
example:

Input

.AL A [Start of "ABC" list]

. LI
xxxxxxxxxx
· AL 1 [Start of "123" list]
.LI
aaaaaaaaaaaaaaaaaaaaaaaaa
.LI
bbbbbbbbbbbbbbbbbbbbbbbb
· AL a [Start of "abc" list]
.LI
rnrnmm:mmrnrnrn
. LI
nnnnnnnnnnnnnnnnnn
• LE [End of "abc" list]
.LI
cccccccccccccccccccccccccc
• LE [End of "123" list]
.LI
yyyyyyyyy
.LI
zzzzzzzzzzzzzz
• LE [End of "ABC" list]

16.4 Displaying text

STATIC DISPLAY

Output

A . xxx xxx xxx

l. aaaaaaaaaaaaaaaaaa
aaaaaaaa

2. bbbbbbbbbbbbbbbbbbb
bbbbbbb

a. mrnmmrnmmrnrnmr

b . nnnnnnnnnnnnnnnn

3. cccccccccccccccccc
ccccccc

B. yyyyyyyyy

c. zzzzzzzzzzzz

.os

.OE
To display text (that is, to have it set apart from ordinary text), precede
the first line with the . DS request and follow the last line with the . DE

request. The result will be a static display, whieh will appear either on the

16. Introduction to mm 247

current page (if space permits) or on the following page. A little later we'll
discuss another type of display.

INDENTED DISPLAY .OS I

Although a display can be left left-justified with ordinary text by using the
• OS request by itself, it often helps to make the display stand apart. In the
following display, we indent the text five spaces by adding the I (indent)
option to the . OS request:

Input

.P 1
sssssssssssssssssssssss
ssssssssssss
ssssssssssssssssssssssss .
. DS I
dddddddddddddddddd,
dddddddddddddddd.
dddddddddddddddddd,
dddddddddddddd .
. DE

DOUBLE-INDENTED DISPLAY

Output

sssssssssssssssssss
ssssssssssssssssssssssss
sssssssssssss.

dddddddddddddddddd,
dddddddddddddddd.
dddddddddddddddddd,
dddddddddddddd.

.OS I F n
To have a block of text indented from both margins, add the I (indent)
option, the F (fill) option, and a number to indicate the indentation from
the right margin, as in this example:

Input

.P 1
sssssssssssssssssssssss
ssssssssssss
ssssssssssssssssssssssss.
. DS I F 5
dddddddddddddddddd
dddddddddddddddd
dddddddddddddddddd
dddddddddddddd.
. DE

BLOCKED DISPLAY

Output

sssssssssssssssssss
ssssssssssssssssssssssss
sssssssssssss .

dddddddddddddd
ddddddddddddddd
ddddddddddddd
dddddddddddddd
dddddddddd .

.OSCB

Another style is to center the text, with left-justification. To have text
indented and left-justified, but centered when displayed, add the CB (center
block) option to the . OS request:

248 Displaying text

Input Output

.P 1
sssssssssssssssssssssssssss
ssssssssssss
sssssssssssssssssssss .
. DS CB
dddddddddddddddddd,
dddddddddddddddd.
dddddddddddddddddd,
dddddddddddddd.
. DE

sssssssssssssssssss
ssssssssssssssssssssssss
sssssssssssss.

dddddddddddddddddd,
dddddddddddddddd.
dddddddddddddddddd,
dddddddddddddd .

CENTERED DISPLAY .osc
Sometimes it's attractive to show a group of lines centered horizontally, as
in a title or a beautiful verse. To have each individualline of text centered
when displayed, add the Coption to the . OS request.

Input

.P
sssssssssssssssssssssssss
ssssssssssss
sssssssssssssssssss .
. DS C
dddddddddddddddddddd,
dddddddddddddddd.
dddddddddddddddddd,
dddddddddddd .
. DE

Output

sssssssssssssssssss
ssssssssssssssssssssssss
sssssssssssss.

dddddddddddddddddddd,
dddddddddddddddd.

dddddddddddddddddd,
dddddddddddd.

16.5 Emphasizing and de-emphasizing text

EMPHASIZING TEXT

.I

.B

.R
If you would like to emphasize text in a paragraph, you can underscore
it by inserting the . I (italic) request. One way to do this is to place .I
on aseparate line, followed by the text to be emphasized. (Since mm will
underscore only one word here, we must type an underscore character be­
tween the two words to make them appear like one to mm.) Although this
may appear to break up the paragraph, mm will fill the paragraph without
interruption.

16. Introduction to mm 249

Input Output

.P 1
Now we are coming to the Now we are coming
. I most important to the most important
item of the agenda. item of the agenda.

Another way to accomplish about the same thing is to bracket the text
between one . I (italic) and one . R (roman) request on separate lines. With
this method, any number of words can be underscored. Once again, mm
will reconstruct the paragraph for you.

Input

.P 1
Now we are coming to the
. I
most important
.R
item of the agenda.

Output

Now we are coming
to the most important
item of the agenda.

The . B (bold) request works just like . I, as shown in these examples:

Input

.P 1
Now we are coming to the
.B most
urgent item on the agenda .

. P 1
Now we are coming to the
.B
most urgent
.R
item on the agenda.

DE-EMPHASIZING TEXT

Output

Now we are coming
to the most urgent
item on the agenda.

Now we are coming
to the most urgent
item on the agenda.

The best way to de-emphasize text in your document is to leave it out. No
formatting request is required.

16.6 Other features

ENTERING ACCENT MARKS

You can enter any of seven accent marks for text in languages other than
English by using a three-character string. These are illustrated in the ex­
ample that follows:

250 Other features

Input Output

.P 1
Franc;::oise a dit, Franc*,oise a dit, "J'ai

vu un des arbres ce matin.
Voila*' la fore*At
la*'-bas."

"J'ai vu un des arbres ce
matin. Voila la foret
la-bas."

.P 1
"Queremos escuchar las
canciones de los
pa*'jaros por la
man*-ana," dijo Javier.
. P 1

"Queremos escuchar
las canciones de los
päjaros por la mafiana,"
dijo Javier .

"U*;brigens," sagte Erik, "Übrigens," sagte
"die Vo*:gel erfreuen Erik, "die Vögel erfreuen
sich an einer scho*:nen sich an einer schönen
Aussicht auf den Wald." Aussicht auf den Wald."

Here is a summary of the accent marks available in mm:

Grave accent
Acute ac cent
Circumfiex accent
Tilde

JUSTIFYING TEXT

\ * , Cedilla \ * ,
\ *' Umlaut for uppercase \ * ;
\ * A Umlaut for lowercase \ * :
*-

.SA 1

.SAO

Ordinarily, mm does not justify the right margin when printing text. To
produce justification, use this request:

Input

.SA 1
jjjjjjjjjjjjjjjjjj
jjjjjjjjjjjjjjjjjjjjj

Output

jjjjjjjjjjjjjjjjjjjj
jjjjjjjjjjjjjjjjjjjj

jjjjjjjj. jjjjjjjjjj.
To turn justification off again, use the following:

Input

.SA 0
uuuuuuuuuuuuuuuuuu
uuuuuuuuuuuuuuuuuuuuu
uuuuuuuu.

SKIPPING LINES

Output

uuuuuuuuuuuuuuuuu
uuuuuuuuuuuuuuuuuuuu
uuuuuuuu.

.SP n

To leave a blank lines on a page, use the . SP request, followed by the
number of blank lines desired, as shown here:

Input
rrrrrrrrrrrrrrrrrrrr
rrrrrrrrrrrr .
. SP 5
sssssssssssssssssssss
sssssssss.

CHANGING POINT SIZE

16. Introduction to mm 251

Output
rrrrrrrrrrrrrrrrr
rrrrrrrrrr.

ssssssssssssssssssss
sssssss.

The size of printed characters is measured in small units called points. Since
each point is 1/72 of an inch, 72 points equal one inch, 36 points equal half
an inch, 18 points a quarter of an inch, 9 points an eighth of an inch, and so
on. The size of any given typeface is measured from the top of an uppercase
letter to the bottom of a lowercase p.

The vertical spacing between lines of text is the distance, measured in
points, from bottom of one line to the bottom of the next. For the sake of
legibility, vertical spacing is generally about 20% larger than the point size
of the typeface. (The difference between the vertical spacing and the point
size is called the leading. This term relates to the practice of placing lead
spacers between lines of hand-set cold type.)

The default for troff is to print lO-point characters with 12-point vertical
spacing between lines. When you're formatting mm requests with troff, you
can change the point size and the vertical spacing with the . S request. This
request accepts either one or two arguments, allowing you to change point
size or vertical spacing or both at the same time. In the following example,
we'll increase the point size and vertical spacing for the title, then restore
them for the main text.

Input

.DS C

.S 18 22

The Final Test
.S -4 -5
By James Houston
.DS E
.S D
.P
The forces of change are at
work in society, bringing
people face to face with new

Output

The Final Test
By J ames Houston

The forces of change are at work
in society, bringing people face
to face with new concepts and
different challenges.

As illustrated in the example above, you can use relative numeric values
(+2, -3), absolute numeric values (14, 9), or alphabetic values (see below).
The alphabet values allow you to make changes more easily and quickly.

252 Other features

If you enter . S by itself, without any arguments, it me ans to restore the
previous settings. Here are the alphabetic values:

P Previous settings (same as no argument)
ODefault settings
C Current settings

16.7 Summary

In this chapter you learned how to format text with the nroff command,
focusing primarily on the mm macro package.

INTRODUCTION TO FORMATTING

The main formatting programs in UNIX are nroff (for printing) and troff
(for typesetting). These are accompanied by macro packages (which provide
standard, predefined formatting requests) and preprocessors (which handle
specialized types of text). Macro packages, such as ms, me, and mm, are
activated via option switches in an nroff command string. Preprocessors,
such as tbl (for tables), eqn and neqn (for mathematical expressions), are
activated by separate commands that send text to nroff via a pipeline.

To use the mm macro package, place embedded requests in the text to be
formatted, then execute an nroff command that includes the -em option
and the name of the file to be formatted. To obtain printed results, send
the text to the Ip print spooler via a pipeline.

FORMING PARAGRAPHS AND LISTS

• Paragraphs-The mm embedded requests for forming paragraphs are
as follows. No terminator is required.

Block paragraph . P 0
Indented paragraph . P 1

16. Introduction to mm 253

• Lists-The mm embedded requests for forming lists are as follows.
Precede each list with one request, begin each item in the list with
• LI, then terminate the list with another request (. LE).

BuHet list
Dash list
Marked list
Reference list

Auto-numbered list

Variable-item list

DISPLAYING TEXT

.BL

.DL

.ML mark

.RL

(1) 123 (default)
(A)ABC

.AL { a } abc
(I) IHIII
(i) IlIlll

.VL n

(. LE)

(. LE)

(. LE)

(. LE)

(. LE)

(. LE)

The . DS request allows you to display text in various formats. Precede the
text to be displayed with one request, and terminate it with another (. DE).

Standard Display
Indented Display
Blocked Display
Centered Display

.DS

.DS I

.DS CB

.DS C

(. DE)

(. DE)

(. DE)

(. DE)

EMPHASIZING AND DE-EMPHASIZING TEXT

The mm . land . B requests produce underscoring and bold for emphasis;
use the . R (roman) request to terminate underscoring and bold:

Underscoring
Bold
De-emphasis

ENTERING AC CENT MARKS

. I (. R)

.B (. R)
(None required)

You can use the following strings to enter accent marks for languages other
than English:

Grave accent \ * , Cedilla \ * ,
Acute ac cent *' Umlaut for uppercase *i
Circumflex accent */\ Umlaut for lowercase *:
Tilde *~

JUSTIFYING THE RIGHT MARGIN

The mm . SA request allows you to turn justification on and off:

254 Summary

Justifying . SA 1 (. SA 0)

SKIPPING LINES

The . SP n request instructs mm to leave n blank lines before printing the
next line of text.

CHAN GING THE POINT SIZE

The . S request allows you to change the point size and the vertical spacing
on the same line.

17

Formatting with mm

In this chapter we'll continue our discussion of formatting with mm, focus­
ing on features that relate to entire pages of text.

17.1 Keeping lines of text together

STATIC DISPLAY
.OS
.OE

If mm doesn't have room for a static display on the current page, it will
move the entire display to the following page. In the following example
we have a paragraph that is five lines long, but there are only three lines
available for it at the bottom of page 7. So mm moves the entire paragraph
to page 8, leaving a gap at the bottom of page 7.

Input
bbbbbbbbbbbbbbbbbbbbbb
bbbbbb.
. DS
sssssssssssssssssssssssss
ssssssssssss
sssssssssssssssssss.
ssssssssssssssss
sssssssssssssssssssss
ssssssssssss .
. DE

FLOATING DISPLAY

Output
bbbbbbbbbbbbbbbbbbbbbbbb
bbbbbbbbbbb .

sssssssssssssssssss
ssssssssssssssssssssssss
sssssssssssss. ssssssss
ssssssssssssssssssssssss
sssssssssssssssssss.

.OF

.OE
A static display performs a valuable service, but some people object to the
blank space it sometimes leaves at the bottom of a page. One way to avoid
this is to use a floating display. The block of text is still moved intact to the
following page, as with a standard "keep." However, nroff will use the text
that follows the block to fill the blank lines at the bottom of the previous
page, as in this example:

7

8

256 Keeping lines of text together

Input Output

.P 1
ssssssssssssssssss
sssssssss
ssssssss
ssss .
. DF I N 5
qqqqqqqqqqqqq
qqqqqqqqqqq
qqqqqqqqqqqqqqqqqqqqq.
.DE
.P 0
bbbbbbbbbbbbbbbbbbbbbbbbb
bbbbbbbbbbbbbbbbbbb
bbbbbbbbbbbbbbbbbbbbbbb
bbbbbbbbbbbbbbbbbbbb.

sssssssssssssssssss
sssssssssssssssssssssss.

bbbbbbbbbbbbbbbbbbbbbbbb
bbbbbbbbbbbbbbbbbbbbbbbb

qqqqqqqqqqqqqq
qqqqqqqqqqqqqq
qqqqqqqqqqq.

bbbbbbbbbbbbbbbbbbbbbbbb
bbbbbbbbbbbb.

7

8

Since page 7 doesn't have room for the three lines of the quotation, the
quotation is moved to page 8, leaving two blank lines on page 7. Two lines of
the block paragraph are then moved ahead of the quotation to the bottom
of page 7. With two lines of the block paragraph moved to page 7, this
leaves two more lines to follow the quotation on page 8.

17.2 Using footnotes

SETTING UP A FOOTNOTE
.FS
.FE

If you're typing a document that requires foot not es , nraff and mm can
save you a lot of work. All you have to do is type the footnote right after
the location of the reference to it (surrounded by the footnote requests
. FS and . FE), and mm will take care of making room for the note at the
bottom of the page, and will also print aseparator between the foot note
and the last line of main text. Here is an example:

Input

.P 1
"I have a dream."*
.FS *
* Dr. Martin Luther King
.FE
. P 1
In a public address given
yesterday in Washington, D.C.,
the Rev. Dr. Martin Luther. ..

Output

"I have a dream."*

In a public address
given yesterday in Wash­
ington, D.C., the Rev .
Martin Luther King told

* Dr. Martin Luther King

17. Formatting with mm 257

U SING NUMBERS WITH FOOTNOTES

If you are planning to refer to your footnotes by number, you ean request
numbers in plaee of asterisks by using the \ *F (automatie-numbering)
request instead of an asterisk. Here is an example of automatie numbering:

Input

.P 1
sssssssssssssss

sssssss.*F
.FS
fffffffffffffffffff
.FE
SSSSSSSSSSSSSSSSSSS

sssssssssss
sssssssssssss.*F
. FS
ggggggggggggggggggg
.FE
.P 1
sssssssssssssssssssss
sssssssssssss

Output

sssssssssssssssssss
7 sss. sssssssssssssssss

ssssssssssssssssssssssss

sssssssssssss.8

SSSSSSSSSSSSSSSSSSS

ssssssssssssssssssssssss
sssssssssss .

7. fffffffffff
fffffff.

8. ggggggggggg
sssssssssssssssssss. ggggggg.

For nroff, the default format for eaeh foot note is as follows: no hyphen­
ation within the footnote, no adjustment of text, indentation of footnote
text, right justification of the numbers, and one blank line separating one
footnote from another.

CONTROLLING THE FORMAT .FD
If you'd like to use a format other than the nroff default, you can add the
• FD request, followed by a number code from 0 to 11, to produce one of
the twelve options shown in Table 17.1.

17.3 Using headings

In this seetion you will learn how to use both unnumbered and numbered
seetion headings.

UNNUMBERED HEADINGS .HU

To produce a plain, unnumbered heading of less than one fullline, preeede it
with the . HU (heading unnumbered) command, which by default produees
a seeond-order heading.

258 U sing headings

TABLE 17.1. Formatting Options for Footnotes

Code Hyphenate? Adjust?

0 No Yes

Yes Yes

2 No No

3 Yes No

4 No Yes

5 Yes Yes

6 No No

7 Yes No

8 No Yes

9 Yes Yes

10 No No

11 Yes No

Input
.HU "Introduction"

iiiiiiiiiiiiiiiiiiiiiiiii
iiiiiiiiiiii
.HU "Background"
bbbbbbbbbbbbbbbbbbbbb
bbbbbbbbbbbb .
. HU "Basic Facts"
fffffffffffffffffffffffff

NUMBERED HEADINGS

Indent Justify
the text? the number

Yes Left

Yes Left

Yes Left

Yes Left

No Left

No Left

No Left

No Left

Yes Right
Yes Right
Yes Right (nroff default)
Yes Right

Output
Introduction

iiiiiiiiiiiiiiiiiiiiiiii
iiiiiiiiiiiii.

Background

bbbbbbbbbbbbbbbbbbbbbbb
bbbbbbbb.

Basic Facts

fffffffffffffffffffffff.

.H
Numbered headings work like unnumbered headings, except that each head­
ing is preceded by a level number. When you use the . H (numbered head­
ing) request, leave aspace after . Hand type a number to indicate the level
of subordination (up to seven levels again). You can leave it up to mm to
assign the next available number at any given level, and mm can generate
a table of contents from your headings automatically, as shown in the next
section.

Input

.H 1 "THE MAIN THING"
This is a description of
the main thing.
. H 2 "Where to Start"

Output

1. THE HAIN THING

This is a description of
the main thing .

This section teIls you
where to start .

. H 2 "When to Start"
This section helps you
decide when to start.
. H 3 "The Best Time"
In this subsection you
will learn the best time .
. H 3 "The Worst Time"
In this subsection you
will learn the worst time.
.H 1 "THE NEXT THING"
This is a description of
the next thing.

17. Formatting with mm 259

1.1 Where to Start

This section teIls you
where to start .

1.2 When to Start

This section helps you
decide when to start.

1.2.1 The Best Time In
this subsection you will learn
the best time.

1.2.2 The Worst Time In
this subsection you will learn
the best time.

2. THE HEXT THING

This is a description of
the next thing.

To summarize, the default formats for first-, second-, and third-order are
as follows:

Level 1

Level 2

Level 3-7

-Two blank lines above, one blank line below, allletters
capitalized and bold
-One blank line above and below, initial letters capital­
ized, all letters hold
-One blank line above, two spaces following (run-in style),
with underscoring

PRODUCING A TABLE OF CONTENTS .TC
To produce a table of contents, place a . TC request near the end of the
document, following all text. Then mm will use all first- and second-order
headings for the entries, and print "CONTENTS" near the top of the page.
Given the numbered headings above (assuming page 1), . TC would produce
this:

CONTENTS

THE MAIN THING 1
Where to Start 1
When to Start 1
THE NEXT THING 1

260 Page layout

17.4 Page layout

STANDARD LAYOUT

Ordinarily, nroff lays out a page as shown in Figure 17.1. In the standard
mm page layout, printing appears in a 6 by 9 inch area on each 8-1/2 by
11 inch page, with the page number centered at the top between hyphens.
The 6 by 9 inch area includes

• Six inches of text ac ross (65 columns)

• Nine inches of text down (54 lines) (66 total lines per page)

CHANGING THE DATE .ND
If you want to change the date, place the . ND (new date) request near the
beginning of the text file, typing the desired date after. ND, as shown here:

.ND September 15, 1986

To print the date with mm, you can use the DT (date) string, which is
indicated in an mm request by the notation \ \ \ \ * (DT.

This section discusses how you can change the standard page layout .

CHAN GING THE HEADER

. PH

.EH

.OH
The header, an extra block above the body of text aCthe top of the page,
usually remains fixed throughout the document. In mm, you are allowed
two lines for every page, using the . PH (page header) request. You are also
allowed one line for even-numbered pages, using . EH (even-page header)
and one for odd-numbered pages, using .OH (odd-page header). You can
place text in any of three locations on these lines: the left, the middle, or
the right. (By default, the page number occupies the middle position on
every page.)

To add text to the header, use one of these requests, using apostrophes
to indicate placement of the text, as shown here:

.PH ", 1eft' center' right' 11 [Specify a header für all pages]

.EH '" 1eft' center' right' 11 [Specify a header für even pages]

.OH "'left' center' right' 11 [Specify a header für üdd pages]

For example, you could use this request to place the heading that follows
on every page (omitting the page number in the middle):

Lell
margin

17. Formatting with mm 261

FIGURE 17.1. Standard mm page layout.

Top margin

- pp-

55 lines 01 lexl
(each 65 columns across)

Bottom margin

Rigrt
margin

262 Page layout

.PH "'Draft Copy"Revision 3'"

Draft Copy Revision 3

To p1ace today's date at the top of every page, centered (as shown be1ow),
you cou1d use the following request:

.PH ""\ \ \ * (DT''''

September 15, 1986

CHAN GING THE FOOTER

.PF

.EF

.OF
The footer is an extra 1ine be10w the body of text at the bottom of the
page. As with the header, you can p1ace your own message in any of three
locations on this 1ine: the 1eft, the midd1e, or the right.

You have three requests for footers ana1ogous to the three for headers:

.PF "'left'center'right'"

.EF "'left'center'right'"

.OF "'left'center'right'"

[Specify a footer for all pages]

[Specify a footer for even pages]

[Specify a footer for odd pages]

For examp1e, you cou1d use this request to alternate the following two
footers on even and odd pages, respective1y:

.EF "'Confidential"Internal Use Only'"

.OF ""Project 432""

Confidential

Project 432

Internal Use Only

To p1ace the date at the bottom of every page, centered (as shown be1ow),
you cou1d use the following request:

. PF ''''\ \ \ \ * (DT'''' [Not hing left, date center, not hing right, all pages]

September 15, 1986

17. Formatting with mm 263

MOVING THE PAGE NUMBER \\\\nP

Although nroff places the page number in the middle of the header by
default, you are free to place it somewhere else and in a different format.
To change the position ofthe page number, you can use the P register, which
is indicated in an mm request by the notation \ \ \ \nP. For example, to
place the page number in the header next to the outer margin (the left side
for even-numbered pages, the right side for odd-numbered pages), preceded
by the word Page, you could use the following pair of requests:

.EH "'Page \\\\nP"'"

.OH ""'Page \\\\nP'"
[Page number left, nothing center or right]

[Not hing left or center, page number right]

To produce the same result at the bottom of the page, you could use the
following pair of requests:

.EF "'Page \\\\nP"'"

.OF ""'Page \\\\nP'"
[Page number left, nothing center or right]

[Not hing left or center, page number right]

SKIPPING PAGES
.SK
.OP

To have mm skip to the top of the next page, leaving the bottom of the
current page blank, use this:

.SK [Skip to the top of the next page]

To have mm skip to the top of the next odd-numbered page, leaving blank
space on at least one page, use this:

.OP [Skip to the top of the next odd-numbered page)

If the current page number is even, .OP is equivalent to . SK; if it is odd,
.OP will leave the following even-numbered page blank. It is a common
practice to begin new sections or chapters on an odd-numbered (front)
page.

17.5 Initiating formatting

One advantage of using mm in System V is that it offers simplified com­
mand lines to initiate formatting. We'll summarize mm options and ways
of invoking them here, even though some of the features are described in
Chapter 19, "More on Formatting." For example, the standard nroff com­
mand li ne for initiating formatting on a file called sec.5 that contained
tables and equations, using a plain printer, would look like this:

264 Initiating formatting

$ tbl sec.S I neqn /usr/pub/eqnchar - \
> I nroff -Tlp -cm I col I lp

You could accomplish the same thing with this mm command line:

$ mm -t -e -c sec.S I lp

THE OPTIONS FOR mm

Here are the options available for mm:

Option
-E
-t

-e

-c

-T

Function
Print with equal spacing (equivalent to nroff -e)
Process tabular material with the tbl preprocessor, which is

described in Chapter 19 (-t must precede -e when both
are used, and may require -C, depending on the printer)

Process equations with the neqn preprocessor, which is de-
scribed in Chapter 19 (-e must follow -t when both are
used, and may require -C, depending on the printer)

Process double-column text, tables, or equations for printers
that are not capable of reverse paper motion, using the col
postprocessor, which is described in Chapter 19 but still
allowed)

Name the printer that will receive the text by appending
characters from the partial list that folIows:

-Tlp Ordinary line printer without reverse paper motion or
partial line motions

-Tx EBCDIC line printer
-T37 Teletype Model 37
-T40/4 Teletype Model 40/4 (-C included)
-T43 Teletype Model 43 (-C included)
-T300 DASI 300
-T450 DASI 450 (the default)
-T2631 Hewlett-Packard 2631 (-C included)
-Thp Hewlett-Packard 264x (-C included)
-T382 DTC-382
-T4000a Trendata 4000a

THE DEFAULT AND ALTERNATIVES

The default selection for mm, in the absence of an explicit -T option, is the
DASI 450, which has the following characteristics:

• Pitch-lO characters per inch (pica)-use -12 to request elite

• Lines per inch-6

17. Formatting with mm 265

• Offset for left margin-O.75 inch-use -rO to change

• Line length-60 characters (6 inches)-use -rW to change

In other words, either of the following command lines imply that the
printer receiving the text will have these characteristics:

$ mm sec.5 or $ mm -T450 sec.5

If your printer requires it, you can change the pitch, the offset, and
the line length within the command li ne by adding options. For example,
suppose your printer uses 12 characters per inch (elite), and you would like
to change the line length to 79 characters, with an offset of 12 characters.
Then you could enter a command line like this:

$ mm -12 -rW79 -r012 sec.5

MORE EXAMPLES

Here are more examples of mm command lines:

$ mm -12 -T1p [Print on a plain line printer at 12 characters]
per inch (elite)

$ mm -E -T2631 [Print with even spacing on a Hewlett-]
Packard 2631

$ mm -t -c -T4000a [Print text that includes tables on a Tren-]
data 4000a--C required

$ mm -t -e -T43 [Peint text that indud", both tahl", andj
equations on a Teletype Model 43-c not
required

The general format of an mm command line for text that does or does
not include tables and equations is summarized in Figure 17.2.

FIGURE 17.2. General formats for mm command lines.

No Equations
No Tables $ mm [options] file{s)
Tables $ mm -t [options*] file{s)

Equations
No Tables $ mm -e [options*] file (s)
Tables $ mm -t -e [options*] file(s)

* -c may be required, depending on the printer.

266 Initiating formatting

17.6 Summary

In this chapter you learned more about formatting with mm.

FORMATTING TEXT

The mm embedded requests for keeping lines of text together are as folIows.
Precede the text with one request, and follow it with another (. OE) .

Standard display
Floating display

. OS (.OE)
,OF (. OE)

The mm embedded commands for printing footnotes at the bottom of
the page are as folIows. Precede the text of the footnote with the . FS
command, and follow it with the . FE command.

Setting Up a Footnote . FS (, FE)

Using auto-numbering \ *F

The mm embedded commands for printing headings of order n are as
folIows. Headings do not require terminators.

Unnumbered headings . HU n
Numbered headings . H n

To produce a table of contents, place the following mm request at the
end of the document, after all main text:

Table of contents . TC

PAGE LAYOUT

The standard page layout for mm is a printing area of 6 by 9 inches on an
8-1/2 by 11 inch page, with the page number centered at the top of the
page. Using the requests that follow, you can make some changes in the
layout.

Change the date

Change the header

Change the footer

Place the page number
Place the date
Skip to the next page
Skip to the next page

.NO

{
,PH "'left,center,right'"}
.EH "'left'center'right'"
.OH "'left'center'right'"

{
,PF "'left,center,right'"}
.EF "'left'center'right'"
.OF "'left'center'right'"

\\ \\nP
\\ * (DT
, SK (absolute)
.oP (odd-numbered)

17. Formatting with mm 267

INITIATING FORMATTING

To preview formatting on your screen, simply type a comand line with
the name of the command (mm), aspace, and the name of the file to be
formatted. Include the -c option if the text contains double columns, tables,
or equations; pipe the output to pg (UNIX) or more (XENIX) to allow
a pause with each screenful of text. For printed results, pipe the output
to the Ip print spooler, selecting a printer type if necessary. Here are the
options for mm:

-E Equal spacing -12 Pica output
-t Tables -y No compact
-e Equations -Tname Name the printer
-c Columns

18

Formatting with nroff and troff

In the first two chapters of Part IV, you learned how to use the nroff
program to format text, with a major emphasis on the mm macro processor.
In this chapter we'll explore different ways to initiate formatting and a few
basic nroff requests (which are also troff requests).

18.1 Initiating formatting

In this section we'lllook at some of the different ways you can begin for­
matting, along with some of the options available to you when you format.

EXECUTING AN nroff COMMAND LINE

In Chapter 16, to get a quick introduction to formatting, we used only the
simplest form of the nroff command, which sends its output to your screen
to be previewed. For nroff alone, such a command would look like this:

$ nroff text

For processing with the mm macro package, the command would look like
this:

$ nroff -cm text
$

or $ mm text
$

To have the formatted text printed on a line printer, send the output of
nroff to the Ip print spooler via a pipeline:

$ nroff text I Ip
$

If you prefer to have this done in the background, add the background
processing symbol & to the end of the command line. The UNIX kernel will
then assign a process identifier to the job, like this:

$ nroff text I Ip &
1763
$

270 Initiating formatting

If you have a very large file split into smaller files (possibly with the split
command), you can take advantage of the pattern-recognition features of
UNIX and have nroff process the smaller files consecutively:

$ nroff jumbo. [a-d] IIp
$

SPECIFYING A MACRO PACKAGE

As mentioned above, you can include the mm macro package by using the
-mm option in an nroff command line:

$ nroff -cm text
$

or $ mm text
$

While nroff will accept the -mm option to invoke mm, the -em option
is preferable. It selects a compact version if it's available, defaults to the
ordinary version if not.

Actually, mm is just one of a number of macro packages that may be
stored in a directory called /usr/lib/tmac. The fuH pathname of the file that
contains mm is /usr/lib/tmac/tmac.s. Here is a summary of some names of
macro packages and pathnames of the files that contain them:

Name Option Full Pathname of File
ms -ms /usr /lib/tmac/tmac.s
mm -mm /usr/lib/tmac/tmac.m
me -me /usr /lib/tmac/tmac.e

REQUESTING A STARTING PAGE NU MB ER -np
If you have printed the first fifteen pages of a document with nroff, you
may want to continue printing at the next page. To begin formatting at a
given page of your document (say 16), you can include an option like -n16
in your nroff command line:

$ nroff -n16 text I Ip [Start printing on page 16]

$

REQUESTING SPECIFIC PAGES -ap

To format only one page of your document (say 7), you can include an
option like -07 in your nroff command line:

$ nroff -07 text I Ip [Print page 70nIyJ
$

18. Formatting with nroff and troff 271

You can also command more than one page at a time, using either com­
mas to list individual page numbers or hyphens to indicate ranges of page
numbers:

$ nroff -03,9,18 text I Ip [Print pages 3, 9, and 18]
$

$ nroff -011-13,22 text I Ip [Print pages 11 through 13, then 22]
$

$ nroff -0-5 text I Ip [Print pages 1 through 5]
$

$ nroff -014- text I Ip [print from page 14 to the end of]
$ the document

PAUSING BETWEEN PAGES -Sn

If you are printing on stationery or other paper that has to be fed into the
printer one sheet at a time, you can have nroff pause between pages with
the -s (stop) option:

$ nroff -s text I Ip
$

[Stop printing after each page]

If necessary, you can also type a number after -s to have nroff stop after
a given number of pages. For example, to have nroff stop after every third
page, you can use this:

$ nroff -s3 text I Ip [Stop printing every third page]
$

SPECIFYING A PRINTER -Tname

The average printer can handle only the most routine printing tasks. It
takes a special printer to perform such things as subscripts, superscripts,
reverse paper motion, overstriking, and so on. If you have such a printer
on your system, you can make this known to nroff with the -T (type)
option. If you don't make this known, the special printing functions won't
be performed. For example, if your system has a NEC 5520 Spinwriter, you
could use this:

$ nroff -T5520 text I Ip

$

[Print on a NEC 5520 Spinwriter]

Since a printer like this can also handle micro-spacing, you could also
include the -e (even) option to command equal spacing of words on a line
(also called proportional spacing):

272 Initiating formatting

$ nroff -e -T5520 text I Ip [Print with equal spacing on a NEC]
$ 5520 Spinwriter

Here is a partial list of printers that can be named in a -T option:

-T Name
37
lp

Full Name
Teletype Corporation Model 37 (default)
Ordinary line printer

tn300
300

GE TermiN et 300 (or a terminal lacking half-line capability)
DASI300

300S
450
5510
5520

DASI300S
DASI450
NEC 5510 Spinwriter
NEC 5520 Spinwriter

18.2 Setting up pages

The basic, atomic instructions used by nroff are called requests. In this
section we'll take a brief look at the requests that allow you to control the
overall appearance of each page of text. As discussed in Chapter 19, "More
on Formatting," you can use these micro requests to construct your own
custom macro requests.

SETTING THE LENGTH OF THE PAGE .pl
The .pl (page length) request sets the length of each page you are printing
on in lines (where each line is 1/6 of an inch high). Ey default, the page
length is 66 lines, or 11 inches (see Figure 18.1). If you are printing on
envelopes or something else that is not 8-1/2 by 11, you will have to reduce
the value of .pl. For example, suppose you are printing on envelopes that
are 4 inches high. You will then have to use this:

.pl 24 [Set the page length to 24 lines]

You can use either an absolute value (as in the example above) or a
relative value, like this:

.pl -12 [Reduce the page length by 12 lines]

In this case, the new value of .pl is understood to be relative to its
previous value. To restore the value to the default (66), simply use .pl by
itself, without any number:

.pl [Restore the page length to 66 lines]

18. Formatting with nroff and troff 273

FIGURE 18.1. Standard nroff page layout.

Top margin

I Header

4 LL (Une length) --
PO

(Page
offset)

PL (Page length)

I Footer

Bottom margin

SETTING THE OFFSET FROM THE EDGE .po
The .pO (page offset) command sets the distance from the left-hand edge of
the paper to the first column of printing in character columns, where each

274 Setting up pages

character is 1/10 of an inch wide. By default, the page offset is 0 (right
on the edge), which you will probably never want to use (see Figure 18.1).
A macro package like mm usually sets .pO to about 10, which just about
centers the text between the two edges of the paper when the line length
is set to 60. To set .po to 8, use this:

.po 8 [Set the page offset to 8 characters]

You can use either an absolute value (as in the example above) or a
relative value, like this:

.po -2 [Reduce the page offset by 2 characters]

In this case, the new value of .pl is understood to be relative to its
previous value. To restore the value before your last change to .po, simply
use .po by itself, without any number:

.po [Restore the page offset to its previous value]

SETTING THE LENGTH OF THE LINE .11
The .11 (line length) command sets the length of each line in character
columns (where each character is 1/10 of an inch wide). By default, the
line length is 65 characters, or 6.5 inches (see Figure 18.1). (In mm, the
default is 60 characters.) If you are printing on wide computer paper or
something else that is not 8-1/2 by 11, you will have to increase or reduce
the value of .11. For example, suppose you are printing on wide computer
paper that is 15 inches wide. You will then have to use this:

.11 132 [Set the line length to 132 characters)

You can use either an absolute value (as in the example above) or a
relative value, like this:

.11 +12 [Increase the line length by 12 characters]

In this case, the new value of.1I is understood to be relative to its previous
value. To restore the value to the default (65), simply use .11 by itself,
without any number:

.11 [Restore the line length to 65 characters]

18. Formatting with nroff and troff

INDENTING TEXT

275

.in n

.ti n

The .in (indentation) request, followed by an optional number, sets the
indentation of text with respeet to the eurrent left margin. Use a positive
number to indent to the right; use a negative number to indent to the left.
If you don't include a number, indentation reverts to its previous loeation.
Here are some examples.

Input
dddddddddddddddddd
ddddddddd .
. in +5
eeeeeeeeeeeeeeeeeee.
.in -3
ffffffffffffffffff
ffffff.
. in
gggggggggggg.

Output
dddddddddddddddddd
dddddd.

eeeeeeeeeeeee
eeeeeee.

fffffffffffffffff
ffffff .
ggggggggggg .

The .ti (temporary indentation) request, followed by a required number,
is usually used to provide indentation for a single paragraph. Here is an
example:

Input
hhhhhhhhhhhhhhhhhhh
hhhhhhhhhh.
.ti +5
iiiiiiiiiiiiiiiiiiii
iiiiiii.

jjjjjjjjjjjjjjjjjjjj
jjjjjjjjjjjj.

Output
hhhhhhhhhhhhhhhhhhh
hhhhhhh.

iiiiiiiiiiiiii
iiiiiiiiiiiii.

jjjjjjjjjjjjjjjjjjjj
jjjjjjjjj.

The .ti request ean also be eombined with the .11 (line length) request to
indent a paragraph on both sides, as shown here:

Input Output
kkkkkkkkkkkkkkkkkkkkk kkkkkkkkkkkkkkkkkkk
kkkkkkkkkkk. kkkkkkkkkk .
. ti +5 1111111111
.11 -5 111111111.
111111111111111111111. mmmmrrmmmmmrrru
. 11 +5 rnmmmrnmrnrnmrn.

CHANGING THE PAGE NUMBER .pn
Whenever nroff starts formatting a new file, it sets its page number register
to 1, and then inerements this register for eaeh page printed. Ordinarily, you
would not want to disrupt this seheme. However, suppose you have a larger
file broken into two smaller files ealled section_ 1.a and section_ 1.b, where
section_ 1.b is a continuation of section_ 1 .a. If section_ 1.a is 26 pages
long, then you would want to have this near the beginning of section_ 1.b:

276 Setting up pages

.pn 27 [Set the page number to 27]

As with the previous commands, you can also use a relative value. For
example, to increase the page number by two, you could use this:

.pn +2 [Increase the page number by 2]

If you use .pn by itself, without any number following, nroff will ignore
the request:

.pn [Ignored by nroff]

FORCING A PAGE BREAK .bp
Ordinarily it won't make any difference to you where nroff ends one page
and starts another. But there will be times when you want to be sure that
a particular item appears only at the top of a new page. To force a page
break at such a point, you can use the .bp (break page) command. For
example, if you had a major heading in your document, you could precede
it with this:

.bp [Start a new page here]

This guarantees that nroff will print the heading at the top of a new
page, no matter how much text appears on the previous page. You can also
force a new page number. For example, to start a new page called page 21,
you could use this:

.bp 21 [Start a new page and call it "page 21"]

You can also use a relative number. For example, suppose the current
page is page 15 and you want to make sure that the next page begins on
page 17 (the front of a two-sided sheet). You could then use this:

.bp +2 [Start a new page and increase the page number by 2]

KEEPING LINES OF TEXT TOGETHER .ne

Continuing the reasoning from the previous request (.bp), you may have a
block of text that you never want to be split. In other words, if it will all
fit together on the current page, fine; but if it won't, then you want it all
moved to the next page. The .ne (need) request, with a number following,
allows you to keep a certain number of lines together on the same page. For
example, suppose you have a heading followed by five lines of text (a total
of seven lines). To ensure that these seven lines never become separated by
a page break, precede the heading with this:

.ne 7 [Keep the next seven lines together on one page1

18. Formatting with nroff and troff 277

18.3 Formatting lines of text

In the previous section we discussed briefly the nroff requests that allow
you to set up the overall format of entire pages. In this section we'll cover
the requests that relate to individuallines of text.

FILLING LINES
.fi
.nf

With titles, lines of poetry, and certain lists of items, it's desirable to print
each line exactly as it is entered, open spaces and all. However, with para­
graphs, you usually want the open space at the end of a li ne filled in with
text from the following line, like this:

Input
xxxxxxxxxxxxx
xxxxxxx
xxxxxxxxxxx.

Output
xxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxx.

This is called filling. To ensure that filling takes place, precede text with
this:

.Ei [Fill the text that folIows]

To turn off this feature, use the following:

.nE [Do not fill the text that folIows]

ADJUSTING LINES
.ad
.na

Positioning lines of text on the page is called adjusting text. The nroff
request for doing this is .ad, which must be followed by a one-letter code
that indicates how you want the lines adjusted (flush left, flush right, flush
left and right, or centered):

Input

1111111111111111
1111111111111111111
1111111 .
. ad r
rrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrrrr
rrrrrrr .
. ad b
bbbbbbbbbbbbbbbb
bbbbbbbbbbbbbbbbbbb
bbbbbbbb.

Output

.ad I
11111111111111111111
11111111111111111
11111111.

rrrrrrrrrrrrrrrrr
rrrrrrrrrrrrrrrr

rrrrrrrrr.

bbbbbbbbbbbbbbbbbbbb
bbbbbbbbbbbbbbbbbbbb
bbbbbbbb.

278 Formatting lines of text

.ad c
cccccccccccccccc
ccccccccccccccccccc
ecceecce.

ecce ecce ecce ecce
cccccccccccccccccccc

ecceecce.
Flush left and right is often referred to as justified text, which can also

be specified by the following request:

Input

nnnnnnnnnnnnnnnn
nnnnnnnnnnnnnnnnnnn
nnnnnnnn.

Output

.ad n
nnnnnnnnnnnnnnnnnnnn
nnnnnnnnnnnnnnnnnnnn
nnnnnnnn.

In other words, .ad b (both) and .ad n (normal) are identical. To turn
off adjusting of text, use this:

.na [No adjustment]

HYPHENATING WORDS
.hy
.nh

You can have nroff automatically hyphenate words near the right margin
by placing the following request near the beginning of your document:

Input Output

.hy
This resulted in a This resulted in a pro-
proliferation of requests... liferation of requests

To turn off hyphenation again, use this:

Input

.nh
This resulted in a
proliferation of requests ...

BREAKING A LINE

Output

This resulted in a
proliferation of
requests for. ..

.br

To break in the middle of a line and begin a new line, enter the .br (break)
request at the desired location, as shown here:

Input Output

xxxxxxxxx xxxxxxxxx
.br yyyy.
yyyy.

Without the .br request, the two lines would have become a single line:

xxxxxxxxx xxxxxxxxxyyyy.
yyyy.

18. Formatting with nroff and troff 279

SETTING LINE SPACING .Is n

You can request double-, triple-, or any other spacing with the .Is request,
followed by a number, as shown below. If you type it without a number,
nroff reverts to the previous spacing.

Input

.152 Double
aaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaa .
.15
bbbbbbbbbbbbbbbbbbbbbbbbb
bbbbbbbbbbbbbbbbbbbb.

SPACING VERTICALLY

Output

aaaaaaaaaaaaaaaaaaaa

aaaaaaaaaaaaaaaaaa

aaaaaaaaaaaa.

bbbbbbbbbbbbbbbbbbbbbbb
bbbbbbbbbbbbbbbb.

.sp n

Sometimes you need to have a segment of text printed either above or below
the current line. The .Sp (space) request, followed by a positive number,
allows you to place text lower than the current line, as shown here:

Input

wwwwwwwwwwwwwwwwww
.sp 2
xxxxxxxx.

CENTERING LINES

Output

wwwwwwwwwwwwwwwww

xxxxxxx.

.ce n

This centering request, which is similar to .ad c, allows you to center a
given number of lines, as shown here:

Input

.ce2
tttttttttttttttttttt
tttttttt
uuuuuuuuuuuuuuuuuuuuu
uuuuuuuuuu.

UNDERLINING TEXT

Output

tttttttttttttttttt
tttttttt

uuuuuuuuuuuuuuuuuuuu
uuuuuuuuu.

.ul n

.cl n

The request for ordinary underlining (.ul) places an underscore under each
visible character, but leaves blank spaces blank, like this:

280 Formatting lines of text

Input Output

.ul
This is how to underline This is how to underline -----
text. text.

Another request (.cl) provides for continuous underlining, including spaces
between words, like this:

.cl
This is how to underline
text.

This is how to underline
text.

PRODUCING SUPERSCRIPTS AND SUBSCRIPTS
\u
\d

To produce superscripts and subscripts, you can use one request to cause
printing one-half line up (\u) and one to cause printing one-half line down
(\d). Here are some examples:

Input

.152
The atmosphere of Venus
contains sulphuric acid
(H\d2\u SO\d4\u) .

18.4 Summary

Output

The atmosphere of Venus

contains sulphuric acid

In this chapter you learned to initiate formatting with nroff and to use
some basic nroff requests.

INITIATING FORMATTING

To preview formatting on your screen, simply type a command line with
the name of the command (nroff), aspace, and the name of the file to
be formatted. For printed results, send the output of nroff to the Ip print
spooler via a pipeline. To use the mm macro package, include the -mm
option between nroff and the name of the file. This package is stored (with
other macro packages) in /usr/lib/tmac/tmac.s. Other options:

-np
-Op
-Sn

-Tname

Starting page number
Specific pages
Pausing between pages
Specifying a printer

18. Formatting with nroff and troff 281

FORMATTING ENTIRE PAGES

.pl Page length

.pO Page offset

.11 Line length

.in n Indent by n

.ti n Temporary indentation

.pn Set the page number

.bp Page break

.ne Need (lines together)

FORMATTING LINES OF TEXT

.fi

.nf

.ad {~
bn

.na

.hyn

.nh

.br

.15 n

.cen

.ul

.cu
\%
\u
\d

Turn on filling
No filling

{

flush left

Ad' flush right
Just both (flush left and right)

normal (flush left and right)

No adjustment

Hyphenation
No hyphenation
Break to a new line
Line spacing n
Center next n lines
Underline
Continuous underline
Page number
Superscript
Subscript

19

Formatting with troff

Chapter 18 covered the features common to both nroff and troff. This
chapter covers those features that are unique to troff, which is used to
drive laser printers and phototypesetters. Before describing these features
themselves, we'll begin with some background information.

19.1 Printing and typesetting

THE TRADITIONAL METHODS

Around 1436 Johann Gutenberg revolutionized the process of producing
books when he invented movable type. His invention replaced hand lettering
and illustrating with a new technology based on the use of pieces of metal
type. Typesetters selected characters one at a time from wooden cases and
inserted them into metal frames. When a line of type approached the side of
the frame, the typesetter either hyphenated the final word or inserted extra
spacers between the existing words until the line filled the space available.

From our point of view, the distinguishing characteristic of these pieces
of type was that the width of each letter varied according to the forma­
tion of the letter. For example, i and j were very thin, while m and w
were very wide. In this century, this tradition has been maintained with
the introduction of phototypesetting machines. Although these machines
have replaced individual pieces of metal type with photographic techniques,
different letters have continued to occupy different widths on the page.

TYPEWRITERS AND THE EARLY COMPUTERS

About a century ago, the invention of the typewriter took printing on a
detour from traditional printing. Because of its mechanicallimitations, the
typewriter has required all characters to occupy identical widths on the
page. On a typewriter, the hammer that contains i is the same width
as the hammer that contains w. In addition, most typewriters produce
similar-looking characters~characters that have a common "typewriter"
appearance. The result is printed text that is much less attractive than
typeset text.

284 Printing and typesetting

This detour from true printing technology continued into the early decades
of the computer age. Until the mid-1980s, printers that were connected to
computers (whether they were line printers, daisy-wheel character printers,
or dot-matrix character printers) produced results that resembled typewrit­
ten output. Characters were of uniform width and appearance. In addition,
these limitations extended to the video display screens. On the screen and
on the printed page, the rule was uniform width and uniform appearance.

This began to change in the 1980s with the introduction of two technical
innovations: the graphical video display and the laser printer. Graphical
video displays transformed the screen from a collection of character cells to
a blank canvas, on which shapes of any description could be drawn. Laser
printers similarly transformed the printed page. For the first time since the
introduction of computers, it was possible to print characters that varied in
height, width, and appearance. These two devices have restored the meth­
ods of traditional printing, uniting Gutenberg's methods with computer
technology.

LASER PRINTERS AND troff

The daisy-wheel printers that were widely used in the 1970s and early 1980s
have been rapidly superseded by laser printers. Besides being faster and
quieter, laser printers have a number of advantages over their predecessors,
which are intertwined with current computer technology. The two main
advantages are their ability to print text and graphics on the same page
and their ability to print text in more than one size and appearance on the
same page.

While the daisy-wheel printer was modeled after the typewriter, the laser
printer is modeled after the phototypesetting machine. Like a full-scale
typesetter, the laser printer allows you to print headlines, titles, and para­
graph headings larger than body text. The main difference between a laser
printer and a true types etter is that the typesetter offers higher resolution
and a larger selection of character designs to choose from. A typical laser
printer today offers resolution of 300 dots per inch (dpi), while a typesetter
offers 1200-2400 dpi.

The following examples contrast the output of a daisy-wheel printer
driven by nroff and a laser printer driven by troff:

nroff Output troff Output
This is an example of printing This is an example of printing
with constant spacing, where an with proportional spacing, where
i and a ware the same width. an i is much narrower than a w.

TYPEFACES AND FONTS

A typeface is a family of characters designed to share a common appear­
ance. Two of the most popular typefaces in use include Times Roman and

19. Formatting with troff 285

Helvetica. Times Roman is an example of a seriJ typeface, in which each
letter includes small decorations called serifs. The body text of this book
is set in Times Roman; you can see the serifs at the top and bottom of the
letter 1. Helvetica is an example of a sans-seriJ typeface, which does not
use serifs. Each typeface includes a variety of sizes, measured in points, as
weIl as bold and italic versions. (The "plain" version of a typeface, whether
serif or sans-serif, is known as roman-with a lowercase r.)

A specific size and style of a given typeface is called a fant. For instance
18-point Times Roman bold and 12-point Helvetica italic are examples of
fonts. A phototypesetter tyjücally provides four fonts for each typeface in
a given size: roman, italic, bold, and special. The special font contains the
Greek alphabet, plus a variety of mathematical and logical symbols. The
four fonts look like this:

Times Roman

ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz

Times Italic

ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdejghijklmnopqrstuvwxyz

Times Bold

ABCDEFGHUKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz

Special

a.ßy8E~l1etKA/lV~01tPCl"tu<l>x"'(j)
ABrilEZH8IKAMNSOnpI:TY<I>X'I'Q

LASER PRINTER FONTS

In a phototypesetter, fonts are often stored on a wheel-usually four to a
wheel. In a computer system, fonts are stored in memory in files. It may
be computer memory or printer memory. We'll discuss two types of laser
printers to elaborate a little.

The most popular laser printers used today belong to the Hewlett-Packard
Laserjet series. The LaserJet can access fonts that are stored in any of three
different places:

• in the LaserJet's internal storage

• in a cartridge inserted into the Laserjet

• in a compntpT flIp that can hp rlownloarled to the LaserJet

286 Printing and typesetting

The internal fonts include 12-point Courier roman and bold, which look
like typewriter output, and 8.5 Helvetica, which is too small to serve any
useful purpose. You can supplement these with font cartridges sold by
Hewlett-Packard and downloadable fonts, which you can buy from other
vendors.

Another popular laser printer is the Apple LaserWriter. The LaserWriter
has many of the same features of the LaserJet, plus one major feature not
found on the Laserjet: Adobe PostScript. PostScript is an example of a
page description language, which provides a common printer interface for a
variety of different laser printers and phototypesetters. The primary advan­
tage of PostScript is that you can send the same text to a PostScript laser
printer and a PostScript typesetter without having to make any changes.
(Usually, you have to insert extensive co ding into a file before you can send
it to a typesetting machine.)

19.2 Introduction to troff

troff AND ditroff

The troff formatter was originally designed to drive a single typesetter, the
Wang CI AlT. Since then, a number of printer drivers, or post-processors,
have been developed to allow you to direct output to other machines. In
addition, AT&T has developed an enhanced version oftroff, which is known
as device-independent troff, or ditroff. As its name implies, ditroff can
drive a number of different printers.

So far, ditroff has reached only a limited number of users because it
isn't part of the standard System V package. Instead, it comes separately
with the Documenter's Workbench. Also, system administrators sometimes
change the name of the program to troff. If you aren't sure whether you
have troff or ditroff, take a look at directory /usr/lib/font. If you see noth­
ing but fonts in the directory (with names like ftR, ftl, ftB, ftS), then you
have troff; if you also find the names of subdirectories for device drivers
(with names like devlj for Laserjet or devps for PostScript), then you have
ditroff.

EXECUTING A COMMAND LINE

With either formatter, you have to pipe text files through a post-processor
en route to a laser printer. Here are typical command lines for sending text
(in a file called text) to a laser printer:

$ troff -t text I laserjet I Ip

19. Formatting with troff 287

This troff command line includes a -t Hag to indicate that the output is
going to the standard output, instead of to a Wang CI AlT, and a post­
processor called laserjet.

$ ditroff -Tlj text I devlj I lp

This ditroff command line includes a -T Hag to identify the output device
and the name of a post-processor (devlj).

All the command line options described in Chapter 18, "Formatting with
nroff," can also be used with troff and ditroff.

19.3 Working with troff

To accommodate laser printers and typesetting machines, troff offers all
the features of nroff, plus these additional capabilities:

• changing point size

• changing spacing

• selecting fonts

• printing special characters

We'll discuss these capabilities in the paragraphs that follow.

CHAN GING POINT SIZE .ps n
The original troff allows the following 15 point sizes from 6 to 36: 6, 7, 8,
9, 10, 11, 12, 14, 16, 18, 20, 22, 24, 28, and 36. The point sizes supported
by ditroff depend on the printer being used. In either case, the default is
10 points. To change the size, use the .ps request, followed by the desired
point size, as shown here:

Input

This is normal lO-point text.
. ps 9
This is smaller 9-point text .
. ps
This is normal text again.

Output

This is normal 10-point text.
This is sm aller 9-point text .
This is normal text again.

Without an argument, .pS teIls troff to revert to the size before the most
recent change (that is, two sizes back). If you select a point size that is not
available, troff will use the nearest available value instead. The .ps request
also allows relative changes, as shown below (the results are identical to
those in the previous example above).

288 Working with troff

Input Output

This is normal 10-point text.
. ps -1
This is smaller 9-point text .
. ps +1
This is normal text again.

This is normal10-point text.
This is sm aller 9-point text .
This is normal text again.

To make changes within a line, you can use the \5 escape sequence. It
works the same way as the .pS request, except that you use zero (0) to
revert to the previous size. Here is an example, in which we use relative
numbers to reduce the word UNIX by one point:

Input Output

The \s-lUNIX\sO system is good. The UNIX system is good.

CHANGING VERTICAL SPACING .vs n

Whenever you change point size, it's desirable to change the vertical spacing
between lines with it. Otherwise, the lines will be printed either too elose
together or too far apart. As pointed out in Chapter 16, "Introduction to
mm," vertical spacing should be ab out 20% larger than point size. Here is
an example of increasing point size and vertical spacing together:

Input Output

This is normal 10-point text. This is normal10-point text .
. ps 12 This is 12-point text .
. vs 14
This is 12-point text .
. ps
This is normal text again.

This is normal text again.

CHAN GING HORIZONTAL SPACING
.SS n

.es! n

Horizontal spacing is usually specified in ems (where one em is the width of
the letter m in the current font. The default amount of space between words
of unjustified troff output is one-third em. (For justified text, the default
space becomes the minimum space between words.) If you need to change
this for any reason, you can use the .55 (spacing size) request to increase
or decrease the word spacing in 1/36 ems. In the following example, we
increase the word spacing to 2/3 em (24/36), then restore it to the default
1/3 em (no argument).

Input

This is normal word spacing.
. ss 24

Output

This is normal word spacing .
This is twice as wide.

19. Formatting with troff 289

This is twiee as wide . This is baek to normal again.
. ss
This is baek to normal again.

For certain types of output, such as tables of numbers or symbols, it's
important to maintain vertical alignment of columns. Another troff request,
.es (constant spacing), allows you to achieve this result. Like .55, the .es
request also uses a numeric argument that is measured in 1/36 ems; in
addition, it also requires a font code. The font code identifies the font;
the numeric argument indicates the constant width to be allocated to each
character. Again, .es without a numeric argument means to revert to the
previous character spacing.

Input

Here is a small matrix:
.br
.es R 36
A B C D E
. br
F G H I J
.br
K L M N 0
.br
.es R
Now we return to text again.

SELECTING FONTS

Output

Here is a small matrix:
ABC D E
F G H I J
K L M N 0
Now we return to text again .

.ft n

Fonts for the Wang CI AlT typesetter were mounted on a rotating wheel,
each in aseparate numbered quadrant, or font position, on the wheel. By
convention, the roman font occupied the first quadrant (font position 1),
with the other fonts as shown below. Consequently, the original troff allows
you to use only four fonts at a time.

Font Position Font Letter Code
1 Roman R
2 Italic I
3 Bold B
4 Special S

Unless otherwise instructed, troff prints text in roman. To select another
font, you can use the .ft request with either a literal or a numeric argument.
Here is an example of switching to bold and then back to roman again, using
literal arguments:

Input

This is roman text.
. ft B

Output

This is roman text. This is bold
text. This is roman again .

290 Working with troff

This is bold text .
. ft R
This is roman again.

The following example is equivalent to the previous example:

Input

This is roman text.
. ft 3
This is bold text .
. ft P
This is roman again.

Output

This is roman text. This is bold
text. This is roman again .

To change to fonts within a line, you can use the \ fescape sequence, as
shown in the following example:

Input Output

This is a \fBbold\fP word. This is a bold word. This is an
This is an \fIitalic\fP word. italic word.

The following example is equivalent to the previous example:

Input Output

This is a \f3bold\fl word. This is a bold word. This is an
This is an \f2italic\fl word. italic word.

With ditroff, you have an unlimited number of fonts available. Suppose
there are ten fonts-the Times Roman fonts (plus bold italic), three Hel­
vetica fonts, and two constant width fonts-arranged as shown here:

Font Position Font Letter Code
1 Times roman R
2 Times italic I
3 Times bold B
4 Times bold italic BI
5 Helvetica roman H
6 Helvetica italic HI
7 Helvetica bold HB
8 Constant width roman CW
9 Constant width bold CB
10 Special S

With ditroff, .ft and \f are the same. However, if you're specifying a font
with a two-letter code after \f, you must precede the code with (. Here is
an example of changing Helvetica fonts with the .ft request:

Input

This is roman text.
. ft HB
This is bold text .
. ft H

Output

This is roman text. This is bold
text. This is roman again .

19. Formatting with troff 291

This is roman again.
The following example is equivalent to the previous example:

Input

This is roman text.
. ft 7
This is bold text .
. ft P
This is roman again.

Output

This is roman text. This is bold
text. This is roman again .

Here is an example of changing Helvetica fonts with the \ fescape se-
quence:

Input Output

This is a \f(HBbold\fP word. This is a bold word. This is an
This is an \f (HIitalic\fP word. italie word.

The following example is equivalent to the previous example:

Input Output

This is a \f7bold\fl word. This is a bold word. This is an
This is an \f6italic\f1 word. italie word.

CHANGING FONT POSITIONS .fp n f
If it should every become necessary to change typefaces (say from Times
Roman to Helvetica), you can assign font positions manually with the .fp
(font position) request, as shown here:

1 Assign Helvetica roman to font position 1
2 H Assign Helvetica italic to font position 2
3 H Assign Helvetica bold to font position 3

As long as you keep the new fonts in the same order (roman, italic, bold),
you can now print your files in Helvetica without changing any codes as
long as you use numeric codes after .ft requests and \ fescape sequences.
Then Times italic will become Helvetica italic, and so on.

PRINTING SPECIAL CHARACTERS

Many of the special characters provided in troff fonts, such as the degree
symbol, can't be typed with a single keystroke. However, you can enter
these characters using escape sequences of the form \(xx, as shown in Tables
19.1 and 19.2.

292 Working with troff

TABLE 19.1. Special Character Codes

Character Name Escape Sequence

• BuHet \ (bu
0 Square \(sq

Em dash \(em

Baseline rule \(ru

Underline \(ul

© Copyright symbol \(co

® Registered symbol \(rg

§ Seetion symbol \(sc

t Dagger \(dg

:I Double dagger \(dd

Up arrow \(ua

Down arrow \(da

Left arrow \«-

Right arrow \(->

1/4 One quarter \ (14

1/2 One half \ (12
3/4 Three quarters \ (34

rt Cent symbol \(ct

Degree symbol \(de

± Plus or minus symbol \(+-

X Multiplication symbol \ (mu

-;- Division symbol \(di

vi Square root symbol \(sq

2: Greater than or equal to \(>~

=I- Not equal to \ (!~

:S Less than or equal to \«~

fi fi ligature \(fi

fI fI ligature \ (fl

ff ff ligature \(ff

ffi ffi ligature \ (Fi

IR IR ligature \ (Fl

19.4 Summary

In this chapter you learned how to execute a troff command line and how
to use the formatting features that are unique to troff.

19. Formatting with troff 293

TABLE 19.2. Greek Letter Codes

Letter Name Sequence Letter Name Sequence

Q alpha \(*a A ALPHA \(*A

ß beta \(*b B BETA \(*B , gamma \(*g r GAMMA \(*G

8 delta \(*d ~ DELTA \(*D

epsilon \(*e E EPSILON \(*E

(zeta \(*z Z ZETA \(*Z

'Tl eta \(*y E ETA \(*Y

e theta \(*h e THETA \(*H
iota \(*i IOTA \(*I

K kappa \(*k K KAPPA \(*K
.\ lambda \(*1 A LAMBDA \(*L

fL mu \(*m M MU \(*M
v nu \(*n N NU \(*N

~ xi \(*c - XI \(*C
0 omicron \(*0 0 OMICRON \(*0

"Ir pi \(*p TI PI \(*P

p rho \(*r R RHO \(*R
(J sigma \(*s E SIGMA \(*S

\(ts
T tau \ (*t T TAU \(*T
v upsilon \(*\1 Y UPSILON \(*U
q, phi \(*f <I> PHI \(*F

X chi \(*x X CHI \(*X

1/! psi \(*q lJI PSI \(*Q
w omega \(*w n OMEGA \(*W

PRINTING AND TYPESETTING

This chapter opened with some background information on typesetting,
laser printers, typefaces, fonts, troff and device-independent troff (ditroff).

WORKING WITH troff

The following requests and escape sequences allow you to make the adjust­
ments indicated:

.pS n
\fn
.VS n
.55 n
.CSfn
.ft n
\fn
.fp n f

Change the point size

Change the vertical spacing
Change the word spacing
Change to constant character spacing
Select a font

Change font positions

294 Summary

With escape sequences of the form \ (xx you can enter a number of special
characters and symbols not found on your keyboard.

20

More on Formatting

In the first four chapters of Part IV, you learned how to use mm, nroff, and
troff to format text. In this chapter, we'll discuss methods for producing
double-column printing, tables, equations, your own macro requests, and
custom modifications to the formatting programs.

20.1 Using double-column format

SETTING UP THE TEXT .2C

If you would like to see your text in narrower columns, you can have mm
print your document in double-column format with the .2C command. Then
use the .1 C command to revert to single-column format.

Input

.2C

.P
2222222222222222222
2222222222222222
22222222222222222222222.
. 1C

Output

222222222
222222222
222222222

2222222222
2222222222
2222222 .

.P 11111111111111111111111
111111111111111111111111 11111111111111111111111
11111111111111111111111111111. 1111111111.

PREPARING THE OUTPUT FOR YOUR PRINTER col

Ordinarily, a printer will be able to print a document in more than one
column only if the printer is capable of reversing the motion of the paper.
Since most printers do not have this capability, you usually have to pipe
the text from nroff to a filter progmm called CO! (columns) and then on to
!p. The CO! program rearranges the text in such a way that the printer is
not required to reverse the motion of the paper. (This also applies to text
that you plan to preview on your screen.)

Whenever you use CO!, it is a good idea to specify the type of printer to
which you are sending the text. You can do this by including the -T (type)
option with the nroff command. For example, to specify a line printer,

296 Using double-column format

type -T, followed by Ip (line printer), or -Tlp on the command line. For
example, to print a file called story in double-column format, you could use
this:

$ nrorr -cm -Tlp story I col I lp

or

$ mm -c -Tlp story I lp

You must also use col whenever you use either the box or allbox option
with tbl (see later in this chapter).

A TWO-COLUMN EXAMPLE

To see an example of two-column printing very quickly, make a copy of file
wall called wa11.2C, then begin an editing session with wal1.2C and add the
six formatting requests shown below. Now the first seven lines of the text
will look like this:

.pl 33

.DS C
Request ror Wall
.DE
.2C
.P 1

Beijing (Peking) . The Mayor of West Berlin

With these formatting requests in place (plus .P 1 on the blank line above
each of the other three paragraphs), execute the following command line:

$ mm wall I col

- 1 -

Request for Wall

Beijing (Peking) . The
Mayor of West Berlin stood
yesterday on top of the
Great Wall of China next to
Deng Xiao-ping, leader of
the nation of one billion
people.

Begun during the Ch'in
dynasty (about the time Rome
fought the first Punic War),
the wall was not completed
until the Ming dynasty
(about the time the
Mayflower arrived at
Plymouth Rock) .

Some 25 feet high, 15
to 30 feet wide at the base,
and 12 feet wide at the top,
the wall is over 1,500 miles
(2,400 km) long, greater
than the distance between
New York and Dallas.

The purpose of the wall
was to protect China against
invaders from the north. The
mayor told his host, "This
wall was here to keep people
out. We have a wall that is
there to keep people in.'1

20. More on Formatting 297

HANDLING FOOTNOTES AND DISPLAYS

If you plan to intersperse double-column text with either footnotes or dis­
plays (or both), you can use the .WC (wide column) request to specify how
the footnotes or displays are to be formatted. Here are the options for the
.WC request:

WF Wide footnotes (margin to margin)

- WF Footnotes follow column width of text (default)

FF First footnote determines style for all footnotes

- FF Footnotes follow WF or -WF (default)

.WC WO Wide displays (margin to margin)

-wo Displays follow column width of text (default)

FB Each floating display causes a break (default)

- FB Floating displays do not cause breaks

N Default mode (pg -WF -FF -WD FB)

For example, to specify narrow footnotes and displays and to cause an
nreff break for each floating display with double-column text, you could
use this request:

.wc N

To specify wide footnotes and displays with double-column text and to
cause an nreff break for each floating display, you could use this request:

.wc WF -FF WD FB

Note that the term display includes tables and equations, which are de­
scribed later in this chapter.

20.2 Formatting tables

INTRODUCTORY EXAMPLE

To get a quick glimpse at the basic features of the tbl preprocessor for
producing tables, let's format the letter we used in Chapter 16 once more.

298 Formatting tables

This time we'll use tbl instead of mm to format the tabular material.
This means replacing the two display commands (.OS and .OE) with table
commands (.TS and .TE) and adding a few more commands to improve
the appearance of the text.

1. Prepare the text for formatting again:

• Start another editing session with pfl.deal.

• Change .OS to .TS (line 8) and .OE to .TE (line 12), then add
the five extra lines shown below and insert the colons, leaving
the rest of the text unchanged:

.TS

center ;
c c c c

1 n n 1 .

Name Height Weight Team

.sp 1

Emerson, Ezekie1 R.
Robinson, Charles F.
Peterson, Pau1 N.
.TE

[Start of table]

[Center the table]

[Center each heading]

[Allow fOUf columns*]

[These are the headings, separated]
by tabs

[Leave aspace after the headings]
6' 5" 273 Rochester
6' 3" 287 Des Moines
5' 9" 178 Tupelo
[End of table]

[* Columns 1 and 4: left-justified;]
columns 2 and 3: numeric

• Store the text and return to the UNIX shell prompt.

2. Format the text on your screen with mm:

• Type a command line that invokes the tbl preprocessor:

$ mm -t pfl.dea1 I more

or

$ tbl pf1.deal I nroff -cm I more

20. More on Formatting 299

- 1 -

Dear Mr. Madison:

The
Monday's
Peterson,
we get
players'
teams:

purpose of this letter is to confirm
agreement. Tupelo gets "Porkchop"

you get "Earthquake" Emerson, and
"Rotunda" Robinson. Here are the
names, heights, weights, and new

Name Height Weight Team

Emerson, Ezekiel R. 6'5"
Robinson, Charles F. 6'3"
Peterson, Paul N. 5'9"

273 Rochester
287 Des Moines
178 Tupelo

You
players

will be getting one of the finest
in the People's Football League.

Your Friend and Mine, Bill

• This time tbl has taken over the task of formatting the tabular
material in the middle of the letter, with the results shown.

USING THE tbl PREPROCESSOR tbl
In the previous example, you used one nroff dot command (.Sp 1), two tbl
requests (. TS and . TE), and a number of symbols that describe the desired
appearance of the table. Here is an instant replay of the commands and
symbols you just used in the example:

. TS Start of table
center Center the entire table between the side margins

; End of layout for the entire table; start of layout for individual
lines

c c C C Center each of four headings over their columns (there could also
be two, three, or a larger number of headings)

1 n n 1 Position the columns of information as indicated (in this case,
left-justified, numeric, numeric, left-justified)

.sp 1

End of layout of individual lines; start of information to appear
in the table
[Column headings within the table, separated by tabs]

Leave one space (blank line) between the headings and the
columns below (nroff command)
[Actual contents of the table entered here, separated by tabs]

300 Formatting tables

. TE End of table

SURROUNDING THE TABLE WITH LINES box
Another feature of tbl is the ability to surround a table with lines. to do
this, all you have to do is add box to the second line:

.TS

box center ;
c c c c

[Start of table]

1 n n 1

[Box and center the table]
[Center each heading]
[Allow four columns*]

Name Height Weight Team
[These are the headings, separated by]
tabs

.sp 1 [Leave aspace after the headings]
Emerson, Ezekiel R.
Roginson, Charles F.
Peterson, Paul N.
.TE

6' 5" 273 Ne" Rochester
6' 3" 287 Des Moines
5' 9" 178 Tupelo

[End of table]

Now you can execute another command line, with the results shown:

$ mm -t prl.deal I col I more

- 1 -

Dear Mr. Madison:

The purpose of this letter is to confirm
Monday's agreement. Tupelo gets "Porkchop"
Peterson, you get "Earthquake" Emerson. and
we get "Rotunda" Robinson. Here are the
players' names, heights, weights, and new
teams:

Name

Emerson,
Robinson,
Peterson,

You
players

Height Weight Team

Ezekiel R. 6'5" 273 Rochester
Charles F. 6'3" 287 Des Moines
Paul N. 5' 9" 178 Tupelo

will be getting one of the finest
in the People's Football League.

Your Friend and Mine, Bill

20. More on Formatting 301

If you would like to surround not only the table as a whole but also each
individual item with lines, use allbox instead of box on the second line:

.TS [Start of table]
allbox center ; [Box all and center the table]

[Center each heading] c c c c

1 n n 1 [Allow four columns*]
Name Height Weight Team

[These are the headings, separated by]
tabs

.sp 1 [Leave aspace after the headings]
Emerson, Ezekiel R.
Roginson, Charles F.
Peterson, Paul N.
.TE

6' 5" 273 Ne" Rochester
6'3" 287 Des Hoines
5' 9" 178 Tupelo

[End of table]

Now you can execute the command line again, with the results shown:

$ mm -t pfl.deal I col I more

- 1 -

Dear Mr. Madison:

The purpose of this letter is to confirm
Monday's agreement. Tupelo gets "Porkchop"
Peterson, you get "Earthquake" Emerson, and
we get "Rotunda" Robinson. Here are the
players' names, heights, weights, and new
teams:

1 Name IHeight IWeightl Team 1

1---------------------1-------1------1-----------1
1 Emerson, Ezekiel R. 1 6'5" 1 273 1 Rochester 1
1---------------------1-------1------1-----------1
1 Robinson, Charles F. 1 6'3" 1 287 1 Des Moinesl
1---------------------1-------1------1-----------1
1 Peterson, Paul N. 1 5' 9" 1 178 1 Tupelo 1

You
players

will be getting one of the finest
in the People's Football League.

Your Friend and Mine, Bill

The allbox option has at least three drawbacks: 1) it draws too many
lines; 2) it draws the lines too tightly around the individual items; and 3)
it has a tendency to misalign the si des of the table.

302 Formatting tables

USING BLOCKS IN A TABLE

Another useful feature of tbl is the ability to include a block of text within
a table, as you would do in presenting definitions or descriptions. (You can
use this feature with or without surrounding lines, of course). All you have
to do is type the item to be defined or described, press the (TAB) key,
then bracket each block like this:

Item (TAB) T\{
Type your block of text between a pair
of braces, each preceded by a capital T.
T\}

The following is an example in a complete table:

1. Begin a session with vi:

• Start with a file called programs:

$ vi programs

• Type a and enter the following text:

.TS

center;
c s

c c

1 lw(4i).

Formatting Programs

[Start of table]

[Center the table on the page]

[Center and span the title across an]
columns

[Center each heading over its COI-]
umn

[
Display each column flush left; al-j
low four inches for the column on
the right (the description column)

[Title]
.sp 2
Program Description [Column headings]
.sp

tbl T{
Use this preprocessor to produce tabular material
in a variety of formats, with or without
surrounding lines.
T}
.sp
neqn (TAB) T}
Use this nroff preprocessor to produce mathematical
equations either on a single line or with vertical
spacing.
T}
. TE CES:ill

20. More on Formatting 303

2. Execute an mm command line:

$ mm -t programs I more

Program

tbl

neqn

- 1 -

Formatting Programs

Description

Use this preprocessor to produce tabular
material in a variety of formats, with
or without surrounding line.

Use this nroff preprocessor to produce
mathematical equations either on a
single line or with vertical spacing.

3. If you prefer surrounding lines, you can insert box in front of center
on the second line, then execute another mm command line:

$ mm -t programs I col I more

Program

tbl

neqn

- 1 -

Formatting Programs

Description

Use this preprocessor to produce tabular
material in a variety of formats, with
or without surrounding line.

I
I
I
I
I
I
I
I
I

Use this nroff preprocessor to produce I
mathematical equations either on a I
single line or with vertical spacing. I

The problem here is that tbl surrounds the title as wen as the table itself,
which makes the whole thing look a little odd.

20.3 Formatting equations

Subject to the limitations of your printer, you can produce equations of
considerable complexity with the neqn preprocessor. (The laser printer
and typesetting version for troff is called eqn, which is also capable of
producing mathematical symbols and Greek letters.)

304 Formatting equations

INTRODUCTORY EXAMPLE

The following example shows you what is possible with neqn:

1. Begin an editing session with vi:

o Start with a new document called math:

$ vi math

o Type a to append, then enter the following:

.P
Here is an equation that contains a fraction:
. EQ [Start of equation]
a - b over a + b c - d over c + d
. EN [End of equation]

.P
This equation includes an exponent:
.EQ I
Y ax sup 2 + b
.EN

.P
This equation contains three subscripts:
.EQ I
a sub 2 x + b sub 2 y A = A c sub 2
.EN

.P
This equation contains radicals:
.EQ L
sqrt ab ~ = ~ sqrt a sqrt b
.EN

o Store the text (: w) and return to the shell prompt (: q).

2. Format the text on your screen with nroff:

$ mm -e math I col I more
or

$ neqn math I nroff -cm I col I more

Here is an equation that contains a fraction:

a-b
a+b

c-d
c+d

This equation includes an exponent:

y = ax2 + b

20. More on Formatting 305

This equation contains three subscripts:

a2X + b2y = C2

This equation contains radicals:

vIab = falb

USING THE neqn PREPROCESSOR neqn
Without getting too involved, these examples illustrate many of the most
commonly used mathematical express ions (fractions, exponents, subscripts,
and radicals). Here is a quick summary of the words used in the examples:

.EQ Start of equation (centered)

.EQI

.EQL

over

sup

sub

sqrt

Start of equation (indented)

Start of equation (flush left)

Form a fraction, using the preceding expression as the numer­
ator and the following expression as the denominator

Make the expression that follows an exponent

Make the expression that follows a subscript

Place the expression that follows inside a radical

Leave an extra half space

Leave an extra full space

.EN End of equation

BRACKETING EXPRESSIONS

To clarify ambiguity, bracket express ions with braces. For example, consider
the following two expressions, one with braces and one without. The results
on the right show the different ways they are interpreted:

a sup x + y

a sup {x + y}

The second expression clearly indicates that the exponent is X + y, not
just x. (To have braces printed as braces, surround them with double
quotes.)

306 Formatting equations

DEFINING EXPRESSIONS

You can define an expression with the define statement, then recall the
definition in subsequent equations. For example, the following sequence
shows how you could use X to represent a much longer expression:

.EQ
define X '{a sup 2 - b sup 2} over {a sup 2 + b sup 2}'
f (x) X

.EN

With the definition in place, neqn will substitute the longer expression
for X in the equation that follows. Note that the expression that provides
the definition must be typed between single quotes. You can also use this
feature to redefine keywords. For example, suppose you prefer to type **
instead of sup to begin exponents. Then you could enter a sequence like
this:

.EQ
define ** 'sup'
a ** 2 + b ** 2
.EN

c ** 2

ALIGNING EQUATIONS

If you have aseries of related equations, you can line up all the equal signs
on the same column, provided that (1) the first equation not be shorter than
the others and (2) aH equations be either flush left or indented. Use mark
to locate the column in the first equation; then use lineup in subsequent
equations, as shown here:

Input

.EQ I

Y + a sup 2 + 2ab + b sup 2 mark ~ x
.EN

.EQ I
y + (a + b) sup 2 lineup ~ x

.EN

.EQ I
Y lineup ~ x - (a + b) sup 2
.EN

OTHER FEATURES

Output

y + a 2 + 2ab + b ~ x

y + (a + b)2 ~ x

y = x -

The eqn preprocessor is used with troff for laser printers and phototype­
setters. It can handle all the features of neqn, as weH as limits, summation
and integral signs, vectors, matrices, taH brackets, and a variety of dia­
critical marks. If you use any of these things, refer to the UNIX User's
Manual.

20. More on Formatting 307

20.4 Defining your own requests

Although mm gives you a lot of flexibility in formatting text, there may
be times when you will want to custom-design some formatting requests
of your own. You can type adefinition for your request, then enter that
request just the way you would enter a standard request. Before discussing
definitions, let's go over the units of measure available in nroff and troff.

UNITS OF MEASURE

The nroff formatter has aresolution of 240 dots per inch. So the basic unit
of measure for nroff is 1/240 of an inch, denoted U. Ftom this basic unit, all
other units are derived. When entering nroff requests, you are allowed to
specify distances on the page either in common units (centimeters, inches)
or printer's units (points, ens, ems, picas). See Table 20.1.

TABLE 20.1. Units of Measure in nroff and troff

Abbre- nroff Distance troff Distance

Unit viation (Basic Units) (if Different)

Basic unit u

Vertical line space v v Current line spacing

Point (1/72 inch) p 6

en n C Width of letter n

em m C Width of letter m

Pica (1/6 inch) P 40

Centimeter c 94.5

Inch 240

C is either 20 (1/12 inch) or 24 (1/10 inch), depending on the output
device; v is the height of each line, usually 1/6 inch. In nroff, m and n are
equivalent, and indicate one character column (C). Using this information,
you could use expressions like the following in nroff and troff requests:

4c Four centimeters 2i
9p Nine points 3P
2m Two ems 2n

DEFINING A SIMPLE MACRO

Two inches
Three picas
Two ens

To define your own macro request, begin near the top of the file with the .de
request, followed by a one- or two-character name. Then type the lines of
the definition, ended by a pair of dots on aseparate line. To avoid confusion
with nroff requests, it's usually best to use capitals letters and avoid names

308 Defining your own requests

already used by mm or nroff. Finally, you can use \" to enter comments.
Here's an example:

.de PA \" Define a macro called .PA to begin a
\" new paragraph

.sp \" Leave a blank line above the paragraph

.ti +5m \" Indent 5 ems (columns) for this par.
\" This is the end of the definition

With this definition near the beginning of your document (before any
text), you can start using .PA in your document as arequest. When you
enter .PA above a paragraph, nroff willleave a blank and indent 5 columns
before printing the text. To nroff, .PA is just as valid as the mm .P request.
Note that there is no dot in front of "PA" in the definition itself.

DEFINING A PAIR OF MACROS

Many of the mm macros occur in pairs, such as .OS and .OE, which are
used to begin and end a display. You can define your macros this way, too.
Here's an example:

Start of Verse

.de vs \" Define a macro called .vs to display
\" lines of verse

.sp \" Leave a blank line be fore first line

.nf \" Turn off filling of text

.in +O.2i \" Indent 1/5 inch from the left margin

.11 -O.2i \" Indent 1/5 inch from the right margin
\" End of the definition of macro .vs

End of Verse

.de VE \" Define a macro called .VE to end .vs

.sp \" Leave a blank line after the last line

.fi \" Restore filling of text

.in -O.2i \" Restore the previous left margin

.11 +O.2i \" Restore the previous right margin
\" End of the definition of macro .VE

With these definitions placed near the beginning of your document, you
could then use this pair of macros to produce results like the following:

Input

.P
This is what is written
in the book:
.VS
When they saw the star,

Output

This is what is written in
the book:

When they saw the star,

20. More on Formatting 309

they rejoiced with
exceeding great joy .
. VE

they rejoiced with
exceeding great joy.

.P
These are the words
that are recorded.

These are the words that are
recorded.

HANDLING PAGE TRANSITIONS .wh
There is no mechanism built into nroff or troff to handle the top or bottom
of a page. You have to provide for these manually, using one macro to take
care of the top of the page, one to take care of the bot tom, and a pair of
.wh (where) requests to activate them.

The .wh request, which indicates where a given macro is to be executed
on each page, is said to set a trap. Each .wh request provides a vertical
distance in any suitable units and the name of a macro. On .wh's scale,
zero is the top of the page, positive numbers are measured from the top,
and negative numbers are measured from the bottom. Here is an example
of a pair of .wh requests:

.wh 0 HE

.wh -li FO
\" Activate macro HE at the top of each page
\" Activate macro FO one inch from the bot-

tom of each page

The two macros, in this example named HE (header) and FO (footer),
can be as simple or as elaborate as you choose to make them. Here is a pair
of simple definitions for HE and FO that do no more than leave one inch
at the top and bottom of each page:

.de HE \" Define a macro called .HE for the top
\" of each page

.sp li \" Leave one inch of blank space at the
\" top of the page
\" End of the definition of macro .HE

.de FO \" Define a macro called .FO for the
\" bottom of each page

.bp \" Break to a new page
\" End of the definition of macro .FO

Another pair of macros is given below.

INSERTING HEADER AND FOOTER TEXT .tl

To enter text into a header or footer, you can use the .tl (title line) request,
which allows you to place something in the left, center, and right position.
Here is the general form of the .tl request:

310 Defining your own requests

.tl 'left'center'right'

You can either enter or omit text for any of the three positions, depending
on where you want the text to appear on the page. Within a .tl request, you
can use a single percent symbol (%) to represent the current page number.
Here are examples of title lines in nroff and troff:

.tl 'Company Use"Confidential'

.tl "%"

The first will print "Company Use" On the left and "Confiderttial" on the
right. The second will print the current page number in the center. Now
we'll use these title lines in our header and footer macros:

.de HE \" Define a macro called .HE for the top
\" of each page

.sp 2 \" Leave two lines of blank space above
\" the header

.tl 'Company Use"Confidential'

.sp 3 \" Leave three lines of blank space below
the header

\" End of the definition of macro .HE

.de FO \" Define a macro called .FO for the
\" bot tom of each page

.sp 3 \" Leave three lines of blank space above
\" the footer

.tl "%"

.bp \" Break to a new page
\" End of the definition of macro .FO

20.5 Modifying formatting options

The mm macro package is designed to offer you a complete formatting
tool that is ready to use. However, if its preset choices don't meet your
requirements, you can alter the operation of mm by changing its number
registers and strings. For example, paragraph indentation is five spaces by
default; if you would like ten spaces instead, you can change the appropriate
number register (Pi) with a .nr request like this:

.nr Pi 10 [Change paragraph indentation to ten spaces]

In Appendix G, "Summary of Formatting Options," you will find most of
the number registers and strings available to you, listed in approximately
the order in which the topics were discussed in Part IV. The default setting
is shown in italic, with alternate settings shown in a few cases.

20. More on Formatting 311

MODIFYING NUMBER REGISTERS

You have three nroff requests for dealing with number registers: .nr (num­
ber register), .af (assign format), and .rr (remove register). Use .nr to assign
a value to a number register. For example, to set the mm number register
Pi (paragraph indentation) to ten spaces, enter

.nr Pi 10 [Set mm paragraph indentation to ten spaces]

To specify the numbering sequence for a number register, use .af. For
example, to use upper case letters to number mm figures, enter

.af Fg A [Use upper case letters to nu mb er mm figures]

The options for .af are shown here:

1 P1ain arabic: 0, 1, 2, 3, ... (default)
001 Zero arabic: 000, 001, 002, 003, ...

.af
i Lower case roman: 0, i, ii, iii, ... NR
I Upper 0, I, 11, 111, ... case roman:
a Lower case a1phabetic: 0, a, b, c, .. .
A Upper case a1phabetic: 0, A, B, e, ...

To remove a number register, thereby allowing more internal memory
space for existing number registers, use the .rr request. For example, to
remove the mm exhibit counter, enter this:

.nr Ex [Remove the mm exhibit counter]

To name a number register in nroff, precede its name with \n (single­
letter name) or \n((two-letter name). For example, to name mm's table
counter in nroff, type \n (Ee.

To name a number register in mm, you must use extra escape characters
(\). For example, here is how to name two strings in mm:

*W

*(DT

[Name the width of the page in mm]
[Name the date in mm]

MODIFYING STRINGS

To assign a value to astring, use the .ds (define string) request. Since the
nroff strings shown in this appendix are all predefined, this request can be
used only for mm strings. For example, to change the bullet character to
an asterisk, enter this:

.ds BU ,.. [Change the buHet character to an asterisk]

To change the heading for the list of figures from LIST OF FIGURES
to Illustrations. enter this:

312 Modifying formatting options

.ds Lf Illustrations [Use this heading for mm's list of figures]

Tü name astring in nroff, precede its name with \ * (single-letter name)
ür \ *((twü-letter name). Für example, tü name the mm füütnüte numberer
in nroff, type \ *F; but to name the mm indent list, type \ *(Ci.

To name astring in mm, you must use extra escape characters (\). For
example, here is how to name the two strings just mentioned above in mm:

*F

*(Ci
[N ame the footnote number in mm]
[Name the indent list in mm]

ADDITIONAL INFORMATION

For furt her information on modifying the operation of the formatting pro­
grams, refer to Appendix G, "Summary of Formatting Options," which
lists most of the number registers and strings used by mm and nroff.

20.6 Summary

In this chapter you learned techniques for printing in double-column format
with mm, formatting tables with tbl, formatting equations with neqn, and
defining your own macro requests.

USING DOUBLE-COLUMN FORMAT

To print text in two columns side by side, precede the text with .2C. Then
execute a command line like one of these:

$ mm -c -Tlp file I lp
$ nroff -cm -Tlp file I col I lp

To specify formatting for footnotes and displays, including tables and equa­
tions, use the .WC request.

FORMATTING TABLES

To format a table, place .T8 above the headings and information and .TE
below, with the appropriate descriptions typed between .T8 and the body
of the table. Then execute a command like one of these:

$ mm -t -c -Tlp I lp
$ tbl file I nroff -cm I col I lp

20. More on Formatting 313

FORMATTING EQUATIONS

To format an equation, place .EQ above the mathematical expressions and
.EN below. Then execute a command like one of these:

$ mm -e -c -Tlp I lp
$ neqn /usr/pub/eqnchar file I nroff -cm I col I lp

WRITING MACROS

To write a custom macro request, begin the definition with .de (followed by
the name of the macro), type the nroff requests that perform the desired
functions (using \" for comments), then end the definition with .. on a line
by itself. Now you can begin using the macro in your document.

ADDING READERS AND FOOTERS

To include headers and footers to a document, you must have a macro for
the header, a macro for the footer, and a pair of .wh (where) requests to
activate them. The macros can contain .tI (title line) requests to place text
left, center, or right on the page, with apostrophes separating them. Use a
percent symbol (%) for the page number in a title line.

MODIFYING THE FORMATTING PROGRAMS

To change the value of one of the mm or nroff number registers, use the
.nr request; to change the value of one of the mm strings, use the .ds
request. Number registers and strings are listed in Appendix G, "Summary
of Formatting Options."

FOR FURTRER READING

If you'd like to study UNIX text-formatting in greater depth, refer to the
following:

Bims, Peter; Patrick Brown, and John C. C. Muster, UNIX for People,
Englewood Cliffs, NJ: Prentice Hall, 1985

Dougherty, Dale and O'Reilly, Tim, UNIX Text Processing, Indianapolis,
IN: Hayden Books, 1987

Krieger, Morris, Word Processing on the UNIX System, New York: McGraw­
Hill, 1985

Roddy, Kevin P., UNIX NROFF /TROFF: A User's Guide, New York:
Holt, Rhinehart, Winston, 1987

Emerson, Sandra L., and Karen Paulsell, troff Typesetting for UNIX Sys­
tems, Englewood Cliffs, NJ: Prentice-Hall, 1987

314 Summary

Üssanna, Joseph F., Nroff/Trojj User's Manual, Murray Hill, NJ: Bell Lab­
oratories, 1976

Part V

Shell Programming

21 Introduction t6 the Bourne Shell 317

22 Bourne Shell Processes 333

23 Bourne Shell Variables 349

24 Bourne Shell Pro gram Control 367

25 Introduction to the C Shell 385

26 C Shell Variables 401

27 C Shell Procedures 415

In Part V, you willleam some short-cuts for using UNIX, and you will
leam how to use the UNIX shell as a programming language. Most System
V installations actually include two shells, the Boume shell and the C shell.
The Boume shell, which is the original UNIX shell, is the faster of the twÖ;
the C shell, a later contribution from Berkeley (and not officially part of
System V), is the more versatile. The C shell offers a feature that allows
you to recall a previous command line, modify it, then execute it again.
Borrowing from the C language, the C shell also offers string and numeric
arrays, with access to individual elements. Historically, the Boume shell, the
C shell, and the C language all have their roots in ALGOL, which accounts
for the many similarities that all three share. A newer development, the
Kom shell, combines many of the best features of both the Boume shell
and the C shell, and may supersede them some time in the next few years.
(While a few of the sample programs presented in Part V can be put to
use in a working environment, the main purpose of these programs is to
illustrate features of the shell.)

21

Introduction to the Bourne
Shell

21.1 Introductory example

MAKlNG A COMMAND EASlER TO USE

People who are new to UNIX often complain that many of the commands
have cryptic names and are difficult to use. For example, to change the
name of a file in your current directory from past to future, you have to
enter the following command line:

$ mv past future

$ -

One problem with this is that the name mv suggests "move" not "re­
name." Another problem is remembering which comes first, the old name
or the new name. For a new UNIX user, it would be better to have a
command called rename that leads the user through the process with an
interactive dialogue, like this:

$ rename
Old name: past
New name: future
File past is now called future
$

WRlTlNG A SRELL PROGRAM

Shell programming allows you to do this. By writing a simple six-line shell
pmgmm (also known as a shell script or a shell file), you can create a new
command called rename that works just like this. All you need is one
command to place prompts on the screen (echo), a command to receive
input from the user (read), and the UNIX command that will carry out the
user's request (mv), as shown here as the contents of a file called rename:

$ cat rename
echo HOld name: \c" [Display prompt-no li ne feed]

318 Introductory example

read old

echo "New name: \c"

read new

mv $old $new

[Assign response to variable old]
[Display prompt-no line feed]
[Assign response to variable new]
[Rename, using the names entered]

echo "File $old is now called $new \n"
[Inform the user]

$

SHELL PROGRAMMING FEATURES

This simple example illustrates a few of the things you can do with a shell
program:

• Display prompts on the screen.

• Receive input from the user.

• Assign strings to variables.

• Use assigned variables in UNIX commands.

In addition, there are a number of other things you can also do with a
shell program, which you williearn in Part V:

• Redirect input and output.

• Connect pro ces ses with pipelines.

• Execute commands conditionally.

• Assign numbers to variables.

• Perform arithmetic on numeric variables.

• Substitute variables conditionally.

• Manipulate a command's arguments.

• Construct programming loops.

• Test files, compare strings, and compare quantities.

• Perform multi-way branching.

• Handle system interrupts.

21. Introduction to the Boume Shell 319

ALLOWING EXECUTION

One final note before beginning these topics: To make the file rename an
executable command, you have to grant read and execute permission to all
users with a command like this:

$ chmod +rx rename
$

[Add read and execute permision for everyone]

21.2 Controlling the environment

Until now you have known the UNIX shell as the command interpreter. As
the command interpreter, the shell, which itself is not part of the operat­
ing system, provides an interface between you and the kernel by executing
commands entered at the terminal. As you have just seen from the intro­
ductory example, the shell also serves as a programming language, which
allows you to control and reshape the user interface. We'll begin our dis­
cussion of shell programming with those variables that control the user's
working environment.

TRE SRELL START-UP FILE . profile

Your horne directory probably contains a file that provides the shell with
default values for initialization. This file, which must be called .profile,
contains information used by the shell to set up your working environment,
such as your terminal type, the prompts that will appear on your screen,
the names of the UNIX directories that contain the commands you use, the
name of the file that contains your electronic mail, the protection that a
new file will receive when created, and settings for your terminal.

Whenever you log in, if your horne directory has a file named .profile,
the shell will execute this file before issuing you a prompt. If there is no
.profile file , the shell will use its own default values for variables. Here are
the contents of a typical .profile file:

PATH~!bin:!usr!bin:$HOME!bin:: .
MAlL~!usr!spool!mail!'basename $HOME'
TERM~vtlOO

PS1=' % '
PS2~'> '
umask 022
: set tty
stty erase I'AH'I -tabs
stty erO ffO
export HOME MAlL PATH TERM

[Set the command search path]
[Set your mai! box's path name]
[Set the terminal type]
[Set the primary prompt]
[Set the secondary prompt]
[Set file creation mask]

[

Set information about your terminal:]
(CTRL-H) to erase; replace tabs with
spaces when printing; no delay for car­
riage return or form feed; export four
shell variables-see below

320 Controlling the environment

SRELL VARIABLES

A system administrator typically creates .profile when adding a new user's
account to the system, and in the process defines variables such as HOME,
MAlL, PATH, TERM, PS1, and PS2. However, you can edit .profile with
a text editor and redefine any of these variables as needed. You will find a
summary of the variables in Tables 21.1 and 21.2, with detailed descriptions
following.

21.3

TABLE 21.1. Shell variables

Variable Description

HOME Login Directory-The login program initializes HOME to the

MAlL

PATH

TERM

name of the directory that becomes your current directory

after you log in. Then any time you execute the cd command

without an argument, the shell automatically returns you to

this directary.

Mail File-When this variable is defined. it teils the shell the

name of the file that serves as your mail file.

Command File Search Path·-This variable is used by the shell

to search through a sequence of directories far a command

whenevcr you supply a partial pathname. PATH is assigned by

entering a list of filenames, separated by colons. Its default

value is

: /bin : /usr/bin

wh ich means, "First look in /bin in your current directory,

then look in /usr/bin."

Terminal Type _ .. U se this variable to assign the type of termi­

nal you are using (required by any program that employs a

full-screen interface).

Setting variables

HOME DIRECTORY HOME

Generally, the HOME variable should not be changed. However, in some
instances after login, you may want to reinitialize it so you that you can
operate from a given working directory without retyping a long pathname,
as shown here:

$ HOME=/usr/jim/project/planning/report
$

Recall that the cd command without arguments returns you to your horne
directory (the value of variable HOME). So if you set HOME as shown in

21. Introduction to the Bourne Shell 321

Variable

PSI

PS2

IFS

TZ

TABLE 21.2. Variables Unique to the Bourne Shell

Description

Primary Prompt-Use this variable to assign the prompt to

be used by the shell when it is ready to accept input.

Secondary Prompt-Use this variable to assign the prompt to

be used by a subshell to receive additional input.

Internal Field Separator-Use this variable to assign a char­
acter (in addition to (SPACE) and (TAB») to be used for

separating fields from each other.

Time Zone--This variable, mainly far the benefit of the sys­

tem administrator, indicates the geographie time zone of the

computer installation.

LOGNAME Login Name~This variable identifies the user currently run-

ning the shell.

the previous example, this will have the same effect as if you had typed
this:

$ cd /usr/jim/project/planning/report
$

TERMIN AL TYPE TERM

Set the terminal variable TERM to obtain the proper display on your termi­
nal. The value assigned to TERM must be one of the terminal names given
in either /etc/termcap or /etc/terminfo. You can set the TERM, PATH, and
MAlL variables the same way you set the prompts, as shown here:

$ PATH=:/bin:/usr/bin:$HOME/bin
$ TERM=vtlOO
$ MAIL=/usr/spool/mail/'basename $HOME'
$

THE PRIMARY PROMPT PS1

When the shell is ready to accept a command from your terminal, it issues
a prompt. The dollar sign ($) is the default prompt. You can make your
own prompt by changing the value of the PS1 variable. This would be
handy if you are accustomed to using several UNIX systems from the same
terminal. Here's an example:

$ PS1='V: '
v,

[Set the primary prompt to v: ~with aspace]
[This is YOllr new primary prompt]

322 Setting variables

Note the spaee that follows V:. This separates the prompt from your
eommand line. From now on until you sign off from the system or reassign
the value of PS1, your primary prompt will be V: instead of the dollar
sign ($). For the sake of clarity, we will use the dollar sign as the primary
prompt throughout this ehapter.

THE SECONDARY PROMPT PS2
The PS2 variable is used by the shell to inform you that it expeets furt her
input. The default value for PS2 is the greater than sign (». Here is an
example:

$ (
> cd Ibin
> 18 -1
>)
$

The shell interprets (as the eommand grouping symbol. Then the shell
ereates a subshell, whieh issues the > prompt to indieate that it is reading
and will not exeeute any eommands until you inform the shell that you
finished your entry by typing). If you aeeidentally press the wrong key and
get the seeondary prompt, the (DEL) key will get you out, and you will
see the primary prompt again. The above example is used to illustrate one
of the eases when the shell issues its seeondary prompt PS2. Command
grouping is diseussed in greater detail in Chapter 22, "Boume Shell Pro­
eesses." You ean change the secondary prompt the same way you change
the primary prompt:

$ PS2='+ '
$

[Set the secondary prompt to +]

Your shell secondary prompt now is set to +

INTERNAL FIELD SEPARATOR IFS

You may recall from Chapter 14, "Programming with awk," that the awk
program allows you to set your own field separator (in addition to (SPACE)
and (TAB»). The Boume shell also allows this. The following example
allows you to use a vertieal bar (I) to separate fields:

$ IFS=I
$

Onee you've issued this command, the following two eommand lines are
now identical:

21. Introduction to the Boume Shell 323

$ cp file 1 file 2 store

TIME ZONE TZ

With this variable you can assign the three-letter name of your time zone,
the number of hours by which your time zone differs from Greenwich Mean
Time (GMT), and (optionally) the three-letter name ofyour daylight saving
time zone. The following command could be used to set TZ for the states
along the Pacific Coast of the United States:

$ TZ=PSTSPDT

$ -

This sets the standard time to PS T (Pacific Standard Time), the time
differential to 8 hours, and daylight saving time to POT (Pacific Daylight
Time).

EXPORTING SRELL VARIABLES

As shown earlier in this chapter, the TERM, PATH, MAlL, PS1, and PS2
variables, along with the stty command are defined in .profile, making it
unnecessary for you to have to set them every time you log in. Normally,
these variables should be exported, so that any child processes can inherit
them. (Child processes will be explained later in this chapter.)

Should the exported variable be modified in a child process, these new
values will take effect within this child process only, and the previous value
will be automatically restored when the child process returns to its parent
process. Place the export command at the end of your .profile file, as shown
earlier in this chapter. You can ask the shell to display all the exported
variables by typing export, as in this example:

$ export
MAlL HOME PATH TERM

$ -

You can also ask the shell to display the values of shell variables with
the echo command (echo is explained in Chapter 23, "Bourne Shell Vari­
ables"):

$ echo $HOME
/usr/joe/workdir
$

324 Setting variables

21.4 Commands and arguments

As the command interpreter, the shell reads command lines entered at your
terminal or from a file, interprets the first word as the command name, and
any remaining words as arguments. Then, using the command name, the
shell searches for the command file, invokes it, and passes all pertinent
arguments to it. Arguments that have special meaning to the shell (such
as &, I, », >, $, *) will not be passed to the command program, but will
be retained for interpretation by the shell itself. These special symbols,
called metacharacters, are discussed later in this chapter. Let 's examine
the following example:

$ mv file.l file.2 6i

$

The shell seaches for a command file named mv, invokes mv, passes file.1
and file.2 to mv as arguments, but retains & for its own use, interpreting &

as arequest for execution of this command line as a background process.
(Background processes are explained in detail later in this section.) Some
commands require only one argument, some require more (as in the previ­
ous example), and some do not require any arguments, as in this example:

$ pwd
/usr/jim/zebra

$ -

The pwd (print working directory) command displays the full pathname
of your current directory. (Refer to the UNIX User's Manual for details
about each command.) At any rate, even the simplest command requires
at least one character, as in the case of the Is command, which lists all
filenames in the current directory.

How THE SHELL INVOKES COMMANDS

When you log into UNIX, you are assigned a copy of the shell as the new
parent process. This allows you to use all the resources of the operating
system for which you have permission. From this parent shell process, the
shell invokes a command file by creating a new duplicate shell process called
a child process. The parent shell process then waits for this child process
to complete its execution, provided that the command file is actually a
compiled program. On the other hand, if the command file is a shell proce­
dure, the shell will simply read the file and invoke the commands inside it.
(Shell procedures are described in Chapter 23, "Boume Shell Processes.")
Figure 21.1 shows the relationship between parent and child processes.

The act of creating a duplicate process is called jorking, and the child
process is also called a forked process. A child process can fork to create

21. Introduction to the Boume Shell 325

another new proeess, thereby beeoming a parent shell proeess of its own
ehild, while its parent proeess beeomes a gmndparent.

FIGURE 21.1. An example of forking.

r input Use
(ter

You en
minal)
ter pwd

User shell lorks
a child process

~

/

/

User shell
(parent)

11

t

Forked process
pwd

11

How THE SHELL FINDS COMMANDS

~

Upon completion 01 the
child process, return
to the parent process

If you know the exact loeation of the eommand file, you can invoke it by
giving the full pathname. If you do this, the shell will not search anywhere
else to find it. For example, suppose there is a command named greeting
in direetory /usr/jim/print that displays this message WELCOME TO UNIX.

You can then identify the location of this command to the shell explicitly:

$ /usr/jim/print/greeting
WELCOME TO UNIX
$

If you don't provide the shell with a full pathname, the shell will use
either the value of the PATH variable defined in your .profile file or its own
default value to perform a search for the command. As explained earlier in
this chapter, PATH may be set with colons (:) separating the directories
to be searched, like this:

$ PATH=/bin:/usr/bin::$HOME/bin:

If PATH in your .profile file is set like this, the shell will first attempt
to locate greeting in the /bin directory. If the shell doesn't find greeting
there, it will next search through /usr/bin. If the shell doesn't find greeting
there, it will try your eurrent directory (the extra colon). Finally, if the shell
doesn't find greeting in your eurrent directory, it will try the subdirectory
of your horne direetory ($HOME) ealled /bin.

326 Commands and arguments

For example, if you want to find out who is currently logged on the
system, and you are logged in as Jim, type

$ who
jim
$

In this case, the shell found who in directory /bin. By rearranging the
names listed after the PATH variable, you can have the shell search from
your current directory first by placing the : right after the equal sign:

$ PATH=:$HOME/bin:/bin:/usr/bin

With this arrangement, you can keep private copies of public commands
or custom commands in your directory, even if your commands have the
same names as public commands. It is best to keep all of your commands
in one directory, so that you don't have to memorize many search paths
when you want to invoke one of them. UNIX users usually keep private
commands in their /bin (binary) subdirectory.

The name /bin is used because most files in this directory are object
files, stored in binary form. The major bin directory (lbin) contains system
commands, while the /usr/bin directory contains user utility commands.
Any user can usually use commands in either of these directories. If your
PATH is set as shown in the example above, the shell will first search in
your current directory, then your subdirectory bin before searching through
another bin.

When setting the PATH variable, be careful ab out the order in which you
arrange the directories. If you aren't careful about this, you will cause the
system to waste valuable time making inefficient and unnecessary searches.
For example, consider a PATH setting like this:

$ PATH=:/usr/diag/bin:$HOME/bin:/usr/bin:/bin:

Every time you enter a command residing in /bin, the shell is forced to go
through these six steps before it can find and execute the command:

(Your current directory)
/usr/diag/bin
/usr/$HOME/bin
/usr/bin
/bin

If your most frequently used commands reside in /bin and luser/bin, you
place an unnecessary burden on the system unless you rearrange the setting
for PATH more efficiently, as in this example:

21. Introduction to the Boume Shell 327

$ PATH=/bin:/usr/bin::$HaME/bin:/usr/diag/bin:

Now the shell will search for commands in the following order, and the shell
can locate your commands faster:

/bin
/usr/bin
(Your current directory)
$HOME/bin
/usr/diag/bin

21.5 Standard input, output, and diagnostics

Whenever a command begins execution, three files are opened, each asso­
ciated with a number called a file descriptor.

• Standard input (file descriptor 0) from terminal or argument file

• Standard output (file descriptor 1) to terminal or file

• Standard diagnostic output (file descriptor 2) to terminal or file

In each case, the terminal is the default standard input or output. For
example, suppose there is a file named message in your current directory
that contains WELCOME TO UNIX. When you type

$ aat message
WELCOME TO UNIX
$

the cat command reads from its standard input (that is, the contents of
file message), then prints out the contents to its standard output (that is,
your terminal).

Any diagnostic output of cat is also directed to your terminal. If the file
message is not in your current directory or you da not have read permission
for message, an error message will be written to cat's diagnostic output
(that is, your terminal), as in this example:

$ aat message
cat: can't open message

$ -

Furtherrnare, If you don't provide a file argument for cat, cat will read
what you type as its input, and then display the output on your screen:

328 Standard input, output, and diagnostics

$ cat
this is a test (RETURN)

(CTRL-D)

this is a test

$

[cat takes this input ...]

[end of input]

[then displays this output on the]
screen

You can also use the cat command to enter text into a file by directing
its output to a file:

$ cat > text. file
I am using cat to
This is the second line of the file.
(CTRL-D)
$

Now you have a file called textfile, whose contents become whatever you
type at the keyboard. (Then (CTRL-D) terminates the text.)

21.6 Redirection of input and output

In the previous section you learned about standard input and output. There
will be times when you may want to change the input or output of a
command to something other than its standard input or output. You can
do this with redirection, using one of these symbols:

<file
>file
»file

Redirect command input from file
Redirect command output to file
Append command output to file

REDIRECTION OF INPUT

The default standard input of themail command is what you type at your
terminal. You can send an existing file instead of keystrokes as your message
with themail commandbyredirectingtheinputfromthatfile.asin

$ mail jim < letter
$

Now themail command will read file letter as its input and send it to Jim.

REDIRECTION OF OUTPUT

If you have perm iss ion to write to a device or a file, you can use one of
them as the output for any command that sends its output to the standard
output, as in this example:

$ cat message > file 1
$

21. Introduction to the Boume Shell 329

In this example, the cat command reads the contents of file message, and
writes its output to file_ 1. If file_ 1 does not exist, it will be created by the
shell; if file_ 1 already exists, its contents will be overwritten. If you do not
have permission to write to file_ 1 , you will see a message like this:

$ cat message> file_1
cat: can't create file 1
$

You can also use cat to send a file to the printer, as in this example:

$ cat message > /dev/lp
$ -

Or you may want to send your file to another output port, as in this ex­
ample:

$ cat message > /dev/tty05
$

In a shell procedure, you may need to create a empty file. You can do so
with the redirection symbol, as shown in this example:

$ > empty. file [Create a file called empty.file]
$

REDIRECTION OF OUTPUT WITH FILE DESCRIPTORS

You can direct standard output or diagnostic output to different files or
devices by adding the appropriate file descriptors, as in this example:

$ cat message 1>& file. out 2>& file.error
$

The contents of file message will go to file.out, while any error message
that may arise will be sent to file.error. You may want to redirect both
standard output and standard error output to the same file in this way:

$ cat message l>&file.all 2>&1
$

You can append to the end of a file without overwriting its contents by
using the double greater than symbol (») to add to the end of the file:

330 Redirection of input and output

$ cat message> file.both
$ cat greeting » file.both
$

Now file.both eontains aB the contents of file message plus aB the contents
of file greeting.

A NOTE ON REDIRECTION

Only standard input and output of a eommand ean be redireeted. For ex­
ample, the date eommand always eonsults the system, then displays the
eurrent date and time on your sereen (that is, its input is not standard,
and therefore it eannot be redireeted). As another example, the output of
the Ip eommand is always direeted to the printer port (that is, its output
is not standard, and therefore it eannot be redirected). If you are not eer­
tain about a partieular eommand, eonsult the UNIX User Manual before
attempting to redireet its input or output.

21.7 Summary

In this ehapter you learned some basic things about the Bourne shell. This
included diseussions of the shell start-up file (.profile); sheB variables; eom­
mands and arguments; standard input, output, and diagnosties; and redi­
reet ion of input and output.

INTRODUCTION

This ehapter begins with a diseussion of the Bourne sheB as a program­
ming language. The shell start-up file (.profile), whieh resides in your horne
direetory, is exeeuted immediately after you log in. Its contents provide
UNIX information about your terminal and sets your primary prompt, see­
ondary prompt, eommand seareh path, the path name of your mail box,
file ereation mode, and various things that relate to the operation of your
terminal.

Here are the shell variables eommonly defined in .profile:

Bourne and C Shells
Login direetory
Mail file

HOME
MAlL
PATH
TERM
LOG NAME

Command file seareh path
Terminal type
Login name

Bourne Shell Only
PS1 Primary prompt
PS2 Seeondary prompt
IFS Internal field separator
TZ Time zone

To obtain the value of a variable, preeede its name with a dollar sign.

21. Introduction to the Boume Shell 331

SETTING SHELL VARIABLES

You can execute a command line after the UNIX shell prompt to set the
value of any shell variable. This has the same effect as placing the same
line in .profile. The process of extending the settings of shell variables to all
child processes executed at your terminal is called exporting the variables.
This is accomplished with the export command.

COMMANDS AND ARGUMENTS

A command line to be processed by the shell must contain a command
name, and may contain arguments and special symbols called metacharac­
ters that provide the shell with special instructions.

Whenever you log into UNIX, you are assigned a copy of the shell as
the new parent process. When the shell invokes a compiled program, the
shell creates a new process called a child process to execute the program.
This is called forking, and the child process is also referred to as a forked
process. When the shell executes a shell procedure, it simply reads the file
and invokes the commands found in the file.

If you do not provide the shell with a full pathname, the shell will use
the value of the PATH variable to search for the command. The value of
PATH is a list of pathnames where commands may be found.

STANDARD INPUT, OUTPUT, AND DIAGNOSTICS

Whenever the shell begins to execute a command, the shell opens three
files, each associated with a number called a file descriptor:

Standard input (0)
Standard output (1)
Standard diagnostic output (2)

You can use redirection to change input or output, using one of these
symbols:

< Redirect command input from a file
> Redirect command output to a file
> > Append command output to a file

To redirect selected command output, precede the redirection symbol with
a file descriptor. Redirection is not possible with every UNIX command.
Some cannot accept input and some do not produce output. Redirection is
possible only with standard input or standard output.

22

Bourne Shell Processes

In the previous chapter, you leamed about some basic things in the Boume
shell: the start-up file (.profile); shell variables; command lines; standard
input, output, and diagnostics; and redirection of input and output. In
this chapter you will leam about shell functions, background commands,
connecting processes, and giving directives to the shell.

22.1 Shell functions

At the beginning of Chapter 21 you leamed a simple shell pro gram named
rename, which gave you a way to rename a file using screen prompts.
In System V, Release 2.0 and later versions of UNIX, you can use a shell
junction to accomplish much the same result-but with better performance.
Because the shell stores a function in main memory instead of in a disk file,
executes a function without spawning a new shell, and performs parsing for
a function in advance, it can execute a function fast er than it can a shell
script. One function can call another, but not itself.

COMMAND LINE EXECUTION

The simplest way to execute a function is to enter it and invoke it directly
from the command line. To convert our example from Chapter 21 into
a function, we could type the function itself, followed immediately by an
invocation of the function, as follows:

$ rename () [Cal! the function rename]
{ [U se an opening brace to begin]
echo "Old name: \c"
read old
echo "New name: \ c"
read new
mv $old $new
echo "File $old is now called $new \n"
} [Use a closing brace to end]

$ rename

Old name: past
New name: future

[Invoke the function here]

334 Shell functions

File past is now called future
$

The procedure is similar to the one you followed in Chapter 21, with two
differences: this time you didn't have to enter the statements into a file and
(since there was no file) you didn't have to make the file executable.

LOGIN FILE DECLARATION

To make a function available to you each time you log in, you can place it
in your login file (.profile) with your other initialization statements. Once
you've done this, the function is ready to invoke as soon as you log in.

$ cat .profile
TERM=wyse50
stty erase "ftH" -tabs
export TERM

$

{
echo "Old name: \c"
read old
echo "New name: \ c"
read new
mv $old $new
echo "File $old is now called $new \n"
}

22.2 Background commands

To make it possible to run more than one process at your terminal, add
an ampersand (&) after the last argument of your command string. This
allows you to proceed immediately to another command without having to
wait for the first one to be completed. For example:

$ cc program.c &
308
$

calls up the C compiler to compile the source code in file program.c in the
background. The shell initiates this process, then the kernel assigns it a
process number (308 in this example). The number of processes that you
can have running at the same time is li mi ted by the system. If you exceed
this limit, a warning message will be sent to your terminal. The larger the
number of processes running at any given time (foreground or background),
the slower the system is able to respond.

Executing a command as a background process does not alter the com­
mand's inputs and outputs. So if the standard input of the background

22. Bourne Shell Processes 335

process is from your terminal, this input may be disrupted by anything
you type for the current foreground process; if the standard output of the
background process is to your terminal, this output will disturb the display
of the current foreground process. To avoid this, it is best to redirect the
input and output of background processes. To change the standard output
of the background process, use the nohup (no hangup) command, as in
this example:

$ nohup cmp filel file2 &
320
Sending output to 'nohup.out'
$

The output of the cmp command will be sent to nohup.out. If nohup.out
does not exist, it will be created by the shell; if it does exist, output will be
appended to the end of nohup.out. If nohup.out in your current directory
doesn't have write permission, the shell will direct output to nohup.out in
your horne directory ($HOME/nohup.out).

The nohup command makes your process immune to hangup and quit
signals that could be caused by hanging up on a dial-up line. For this
reason, nohup is best for keeping a background process running after you
log out from a dial-up line.

BACKGROUND PROCESSES ps
At some point you may want to know if your background processes have
completed (or failed). To view the status of background processes, use
the ps (process status) command. The ps command displays information
about active processes, with several different options. When pS is executed
without any options, pS displays only active processes associated with the
current terminal, as shown in this example:

$ ce screen.c &
283
$ ps

PID
283
037
290

$

TTY
02
02
02

TIME COMMAND
0:02 ce screen.c
0: 11 -sh
0:01 -ps

The number assigned to your background process (283) appears in the
first display line under the heading PI D (process identifier), indicating that
the background process you just invoked has started. The TTY column
displays your current log-in port. The TIME column displays the cumulative
execution time for the process. And, finally, in the COMMAND column you
see displayed the commands currently in process. (Here, -sh represents

336 Background commands

the shell.) If you don't find your background process number on the list, it
may be completed already.

When invoked with the a option, ps displays information on all active
pro ces ses on the system, as shown in this example:

$ ps -a
PID TTY TIME COMMAND

36 sysc 0: 07 -sh
386 02 0:02 -ps -a

37 02 0:12 -sh
$

As you can see, your current port (02) has only two processes, ps -a
and -sh, while the system console (sysc) is idle (-sh).

To obtain a more detailed display of all active processes, include the I
option, as shown here:

$ ps -al
F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME COMD
1 S 0 36 1 0 28 20 67 16 Sa20 sysc 0:07 -sh
1 S 203 37 0 30 20 49 16 6fd4 00 0:13 -sh
1 S o 367 0 28 20 9b 16 193e 01 0:01 - 2
1 S o 368 0 28 20 80 16 1970 02 0:01 - 2
1 S 203 283 37 0 30 20 96 44 703a 00 0:01 ce screen.c
1 R 12 421 37 117 59 20 66 28 00 0:08 ps -al
$

This gives you detailed information on system processes. In the para­
graphs that follow, we discuss only those items that are within the scope
of this book. (For other items, refer to the UNIX User's Manual.)

1. The F column displays the processes frag:

01 indicates that the process is in core.
02 indicates that this is the system process.
04 indicates that the process is locked in core.
10 indicates that the process is being swapped.
20 indicates that the process is being traced by another process.

2. The S column displays the state of the process:

S indicates that the process is sleeping.
R indicates that the process is running.
W means that the process is waiting for another process to finish.

3. The UID column displays the user ID. Your user ID is displayed for all
processes invoked at your terminal. In some systems, the user name
is displayed instead.

4. The pp 10 column displays the process ID of the parent process. As
you can see, process ID 37 is the parent of processes 283 and 421.

22. Boume Shell Processes 337

5. The PRI column displays the priority of the process based on the
value at NICE. A higher number means a lower priority.

6. The NI column, as mentioned above, displays the value that is used
to compute the priority of process. You can increase this value by
using the nice command, explained in the next section.

7. The sz (SIZE) column displays the number of blocks used by the
core image of the current process

8. The WCHAN column, which is related to the F column, displays the
event for which the process is sleeping, as indicated by the S flag in
the F column. WCHAN is blank if the process is active.

9. The TIME column displays the cumulative execution time of the pro­
cess.

PRIORITY OF PROCESSES nice

UNIX is a multi-user, multi-tasking system. That is, more than one user
can be logged at a given moment and each user can invoke more than one
process at a time. Since computer time must be shared among the processes
that are active, any process that has a higher priority will receive more
computer time. When processes are first invoked, they all begin with the
same priority level. However, since this implies that each process receives
equal attention from the system's main processor, it can often me an slower
operation for the system as a whole. To avoid this, you can use the nice
command to assign less important processes a lower scheduling priority.
Here is an example:

$ nice ce screen.c &
212
$ ps -al
F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME COMD
1 S 203 30 1 0 30 20 2044 16 6f4c sysc 0:09 sh
1 S 0 31 1 0 28 20 3549 16 190c 00 0:01 - 2
1 S 203 212 30 50 30 30 4d65 44 6ff6 sysc 0:01 ce screen.c
1 R 12 217 30 161 62 20 518e 28 sysc 0:09 ps -al
$

In the absence of an argument, nice increases the priority number of the
process by 10 (which decreases its priority). That is why you see 30 in the
third display line under NICE (the line for cc screen. c, with process ID
212). If you prefer a number other than 10, you can provide any number in
the range of 1 to 19 as an argument to the nice command. For example, to
increase the priority number for cc program. c by 12, use this command
line:

$ nice -12 ce program.c &
$

338 Background commands

This sets the NICE value to 32 (20 + 12). Only the super-user can assign
to a process a lower nice value than 20 (resulting in a higher priority for
the process), since the nice command allows the super-user to use negative
arguments, as shown in this example:

niee --10 ce sereen.e &
285

This assigns to process 285 a priority number of 10 (a higher priority).

TERMINATING BACKGROUND PROCESSES kill

If you should ever have to terminate a background process (and you know
its process ID), use the kill command, followed by the process ID as an
argument. As you have learned, the shell displays the process ID at the
time you invoke the background process. If you should forget the number,
use the ps command to display it. Suppose you have a background process
whose PID is 283 and you want to terminate it. You can execute this:

$ kill 283
$

You can then use the PS command to verify that process 283 is no longer
displayed. If it still appears, then it hasn't stopped running. To make sure
that a process is terminated, use the 9 option, as shown here:

$ kill -9 283
$

The kill signal generated by kill -9 cannot be caught or ignored by the
process indicated. If you use kill with the 9 option and the argument is
either 0 or your login process number, you will log yourself off the system.
U nless you have super-user status, you can kill only processes associated
with your terminal.

U SING JOB CONTROL shl

The shl (shelllayer) command of Release 2.0 allows you to execute up to
seven different processes at the same, with more control than you would
have with background execution alone. Each process is executed in a sep­
arate shell, which is called a layer. During session with the shl command,
you can create, name, list, and delete layers. While severallayers are active,
you can switch from to another, making the new layer the current layer,
where you can enter and initiate commands. To begin a job control session,
execute the shl command; to end a session, enter quit. (or q).

22. Bourne Shell Processes 339

Here is a simple example of a job control session:

$ shl
»>

»> help
block name [name ...]

create [name]

delete name [name ...]

help or ?

layers [-1] [name]

quit

toggle

resume [name)

unblock name [name ...]

»> c compile
compile

compile ce get.c

compile (CTRL-Z)

compile »> c format
format

format JIIID text
format (CTRL-Z)

format »> b format
»> c edit
edit

edit vi memo

edit (CTRL-z)

edit »> layers
compile
format
edit
»>

[Begin the session]

[ThiS is the prompt of the shell layer man-]
ager

[First we'll display the commands available]

[Block output display of the layer(s) named]

[Create a new layer called name]
[Delete the layer(s) named]

[Display this list of commands]

[Display information about the layer(s)]
named

[End this session with the shell layer man-]
ager

[Switch to the previous layer]

[Make the layer named the current layer]

[Restore output display of the layer(s)]
named

[Create (c) a new layer called compile]
[The name of a layer is also its prompt]

[Begin compiling a C source program called]
get.e

[Press (CTRL-z) to return to the shelllayer]
manager

[Create (c) a second layer called format]

[Again, the name of a layer is also its prompt]

[Begin formatting a file called text]

[Press (CTRL-z) to return to the shelllayer]
manager

[Keep formatting output off the screen]

[Create (c) a third layer called edlt]

[Once again, the name of a layer is also itS]
prompt

[Begin editing a file called memo]

[Press (CTRL-Z) to return to the shelllayer]
manager

[Display information about active layers]

[The shelllayer manager prompt returns]

340 Background commands

»> d edit

»>

»> d compi1e format

»> quit

$

[Delete the layer for editing (edit)]

[Wait for the other two processes to complete]
[Delete the other two layers]

[End the session with the shelllayer manager]
[The ordinary shell prompt returns]

This sampie session, somewhat oversimplified, illustrates some of the
things you can do with the shl command: create new shell layers, give
them names, and let them run simultaneously, display information about
the active layers, block output display, switch layers, delete layers, and end
the session. Here are a few additional notes:

1. You can abbreviate the commands, usually to one letter.

2. You can type more than one name after several commands (block,
unblock, layers, and delete).

3. You can type (CTRL-z) to return to the shelllayer manager.

4. If you don't give names to your layers, the shell layer manager will
call them (1), (2), (3), and so on; you can then refer to them
simplyas 1, 2, 3, and so on.

5. For additional information about layers, type -1 after the layers
command, like this: 1ayers -1 (or 1 -1).

22.3 Connecting processes

One of the advantages of using UNIX is that you have so many different
ways of connecting processes. In this section, you will learn three of these
methods.

PIPELINES

A pipeline is a device that allows you to connect two processes by using
the output of one as the input of another. The symbol that represents a
pipeline on a command line is the vertical bar (I). For example, to count
the number of files in the current directory, use this:

$ 1s -1 I wc -1
255
$

The Is -I command lists (in long format) the names of all the files in
the current directory, each on aseparate line. wc -I will count the number
of lines in the output of Is -I, with the result displayed (255). The shell

22. Boume Shell Processes 341

will invoke the pipe function to connect the two commands as pictured in
Figure 22.1

FIGURE 22.1. A pipeline.

output input
15 -I. ----.. wc-I

standard ()) standard

~----------------~
pipeline

The output of the Is -I command becomes the input of the wc command,
which is the same as if you typed the following string of commands:

$ ls -1 > tempfi1e; wc -1 < tempfi1e; rm tempfi1e
255
$

The advantage of using a pipe is that the temporary file tempfile becomes
unnecessary. You can also connect more than two commands with pipes,
as shown here:

$ ls -1 I grep intro I 1p
$

This sequence of piped commands sends the filenames that match the pat­
tern intro to the printer.

A pipeline can connect only the standard output of the command on the
left to the standard input of the command on the right. Just as it would
make no sense to try to connect the closed ends of two lead pipes, it would
make no sense to try to connect a process with no standard output to a
process with no standard input. Some commands, such as mail and Ip, do
not use standard input or output the way other commands do. If you tried
to use Ip on the left-hand side of a pipeline, there would be no output to
pipe.

FILTER PROGRAMS

Most UNIX commands read from the standard input, and then process
data before sending it out to the standard output. These commands, such
as grep, sort, speil, and diff, are called filter programs (or just filters). As
an example of a filter, the grep command searches an input file for lines
matching a pattern, as illustrated in this example:

$ ls -1 I grep intro I 1p
$

342 Connecting processes

Here grep takes the output of Is ·1 and selects only strings containing
intro to be printed on the lineprinter. In this sense grep filters out strings
of text, allowing some through and inhibiting others, like a mechanical or
chemical filter. In UNIX, a command is a filter if it is free to accept its
input via a pipe from another command and send its output via a pipe
to another command. A command likemail can't be thought of as a filter
because it cannot send its text anywhere except directly to the standard
output. Two other commands that cannot be thought of as filters are Is
and kill.

TEES

The tee command allows you to view data as it is being written to a file.
If you type,

$ ls -1 I tee dfi1e
$

all the filenames in the current directory will be written to dfile and also
displayed on screen, as illustrated in Figure 22.2.

FIGURE 22.2. A tee.

Is -I --+--+---,.. -----+-. dfile

L...-_____ -+-..... terminal

Since the data is also sent to the terminal (standard output), you can
use a pipeline to process this output, as shown here (see Figure 22.3).

$ ls -1 I tee dfi1e I wc -1
$

22. Boume Shell Processes 343

FIGURE 22.3. A tee with a pipe.

15 -I --+--+--+ tee -----+-. dfile

pipe ---+-_ wc-/

22.4 Giving directives to the shell

COMMAND GROUPING

Grouping a list of commands within parentheses causes the shell to create
a subshell to read and execute the enclosed commands. This subshell has
the ability to run the enclosed command without affecting the values of
variables in the current shell. This feature allows the user, for instance, to
slip into another directory, run a few commands, and then be automatically
returned to the current working directory. Assuming that your current
directory is your horne directory, you can execute this command line:

$ (cd lusrljameslman.spec; nohup nroff docl I lp &)
$

which is equivalent to

$ cd lusrljameslman.spec; nohup nroff docl I lp &
$ cd $HOME

$

Parentheses can appear anywhere on the command line. If the shell ex­
pects a right parenthesis but doesn't find it at the end of a command line,
the shell will prompt with its secondary prompt (PS2) to let you know
that it expects furt her input from you.

Grouping a list of commands within braces causes the shell to read and
execute the enclosed commands, which produces the combined output. This
method allows you to use the output of several commands as the input to
another command, as in this example:

$ { nroff -cm textl; nroff -cm text2; } I col I lp
$

344 Giving directives to the shell

By using braces to enclose the commands in this way, you can let the
shell queue the printing jobs for you, instead of having to wait for the first
one to complete, then starting the second manually.

Unlike parentheses, braces must be separated from the commands they
enclose. The exit status of a set of commands grouped by either parentheses
or braces is the exit status of the last command executed from the set.

CONDITIONAL EXECUTION

The shell provides a mechanism that allows you to invoke a command list
in order with conditional execution. The command list is a sequence of one
or more commands separated by semicolons (;), as in this example:

$ ls -1; who
-rw-r--r-- 1 john 27832 Jan 12 16:09 fi1e1
-rwxr-xr-x 1 john 5358 Jan 15 14:16 file2
-rwxr-xr-x 1 john 13993 Feb 16 14:04 file3
john tty20 Feb 16 11: 34
$

The shell first invokes the Is -I command; then, when that has been com­
pleted, it invokes the who command.

You can have the shell perform additional execution by connecting two
commands by either the AND-IF (&&) or the OR-IF (I I) symbol. The
format of an OR-IF statement is as follows:

$ commandl 11 command2
$

The shell invokes commandl and examines its exit status. If commandl
fails, its exit status will be non-zero and the shell will invoke command2.
Here is an example:

$ mkdir sampIe [Create directory sam pie]
$ rmdir sample > /dev/null " echo Failed

[Remove directory sam pie]
$ rmdir sampIe > /dev/null " echo Fai1ed

[Remove directory sampie]
Failed
$

The second command li ne yields no message because the command to re­
move the directory (rmdir sampie) is successful. However, the third com­
mand li ne does produce a message. Since the directory has already been
removed as a result of the second command line, the shell executes echo
failure when rmdir sampie fails (cannot be executed).

The format of an AND-IF statement is

$ commandl && command2
$

22. Baume Shell Processes 345

This will cause command2 to be invoked only if the execution of commandl
succeeds. Here is an example:

or

$ test -f .profile && cp .profile backup
$

$ [-f .profile] && cp .profile backup
$

The command test -f .profile (or [-f .profile]) checks to determine
whether file .profile exists in the current directory. (The test command is
described in detail in Chapter 24, "Boume Shell Program Control.") If you
execute the above command line from your horne directory where .profile
is located, the shell will create a copy of it called backup. If you invoke
the command line from one of your subdirectories (which doesn't contain
.profile), nothing will happen.

PATTERN MATCHING

The shell provides a means for generating its own list of filenames, based
on a pattem-matching expression given as an argument. Such regular ex­
pressions were introduced in Chapter 13, "Searching and Sorting." For
example,

$ 18 -1 *. c

will cause the shell to generate a list of filenames that end in .c to be used
as arguments in this command (that is, to be listed). Pattem-matching
characters like * are sometimes called metachamcters, which are listed here:

*
?
[]

Match any string of any length
Match any single character
Match any of the characters enclosed

Since the following metacharacters and other characters have special
meanings to the shell, they should never be used in a name for any file
or directory:

< > » * ? &

346 Giving directives to the shell

If you do attempt to use such characters, you may mislead the shell to
interpret them rather than read them as arguments. For example, suppose
you have a file named files1. If you try to change its name to file?1, this is
what will happen:

$ mv filesl file?l
mv: files1 and files1 are identica1
$ -

Why? Since ? is a metacharacter, it will match any single character. Now
try to change the above file to a different new name:

$ mv filesl file&l
148
1: Command not found.

$ -

As you can see, the shell interprets the ampersand (&) in its special meaning
to invoke a background process to change the name files1 to file , then
reports that it can't find the 1 (one) command. (Having interpreted & as
arequest for a background process, the shell now thinks that the 1 that
follows is another command.)

22.5 Summary

In this chapter you learned about Bourne shell processes, with discus­
sions of shell functions; background commands; connecting processes with
pipelines, filters, and tees; command grouping; conditional execution; and
pattern matching.

SHELL FUNCTIONS

You can execute a sequence of shell commands more quickly from a shell
function than from a shell script. You have the option of either typing the
function and its invocation directly on the command line or entering the
function into your login file (.profile) and making it available at all times.

BACKGROUND COMMANDS

The shell makes it possible for you to run more than one process at your
terminal. If you add an ampersand (&) at the end of a command line,
the shell will execute the command line as a background process, thereby
allowing you to proceed immediately to another command without having
to wait for the first to be completed. The shell will display the process
identijication number, which you can use to monitor the process. To make

22. Boume Shell Processes 347

the process immune from hangup and quit signals, begin a command line
with the nohup (no hangup) command.

Use the ps (process status) command to monitor background processes.
If you execute ps without any arguments, the display will give four columns
of information with these headings:

PID
TTY
TIME
COMMAND

Process identifier
Terminal number
Cumulative execution time
Name of command

When you add the -I argument to pS, you obtain ten additional columns,
some of which are beyond the scope of this chapter. One of the columns
displayed by ps is called NI (NICE), which indicates the priority level of
each process. You can decrease the priority of a process by beginning the
command line with the nice command. To terminate a background process,
use the kill command followed by the process identifier.

To be able to run up to seven background processes with some control
over each, use the shl command to begin a session with the shelllayer man­
ager. This allows you to create new shells (layers), monitor them, switch
layers, and delete layers.

CONNECTING PROCESSES

Here are three ways to connect processes:

1. A pipeline allows you to connect the standard output of one process
to the standard input of another. The symbol for a pipeline is the
vertical bar (I).

2. Some UNIX commands read from the standard input, and then select
some of it to be sent to the standard output. These commands (like
grep, sort, speil, and diff) are called filter programs (or filters). They
often receive their input through a pipeline.

3. The tee command, which allows you to view data as it is being written
to a file, is used in conjunction with a pipeline.

GIVING DIRECTIVES TO THE SHELL

Grouping a list of commands within parentheses will cause the shell to
create a subshell to read and execute the enclosed commands. With this
scheme, you can move to another directory, run some commands, and then
have the shell return you to your current directory. Grouping a list of
commands within braces will simply cause the shell to read and execute the
enclosed commands. With this scheme, you can use the output of several
commands as the input to another command.

348 Summary

A command list is a sequence of commands separated by semicolons
(;). You can invoke a command list with conditional execution. An OR­
IF construction (I I) teIls the shell to invoke the second command only if
the first fails. An AND-IF construction (&&) teIls the shell to invoke the
second command only if the first succeeds.

The shell can use one of the following metacharacters to match patterns
when selecting a filename:

*
?
[]

Match any string of any length
Match any single character
Match any of the characters enclosed

23

Bourne Shell Variables

In the first two chapters of Part V, you reviewed how the Bourne shell in­
terprets commands entered from your terminal. We begin this chapter with
a discussion of shell procedures and then go on to command substitution.

23.1 Shell proced ures

A shell file (also known as a shell procedure or a shell script) is a file
that contains one or more shell commands to be executed in sequence
whenever the file is named as a command. This allows you to create your
own commands. For example, here is a shell script that counts the number
of characters in a file in the current directory. Here is how you use ed to
create a file. (You could also use vi here instead of ed.)

$ ed counter
?counter
a
1s I wc -c

w
11
q
$ -

[List filenames and pipe them to the we -e command]

Now you have a simple command file called counter that can be invoked
with the sh (shell) command, which reads the contents of its argument file
counter, and then executes these commands:

$ sh counter
20 [Character count of counter]

$ -

At this point you have a file that contains a single command line, but
you still can't execute it directly. The next step is to change the execution
mode of the file with the chmod (change mode) command (see Chapter 3,
"The UNIX File System"):

$ chmod u+x counter
$

[Make file counter executable]

350 Shell procedures

Now, to invoke counter as a command in its own right, you no longer
need to use the sh command. Just type counter, the way you would type
the name of any standard UNIX command.

The last step is to move counter into your bin directory, where most of
your private commands should reside and add $HOME/bin to the value
of your variable PATH. If you skip this step, you will be able to ex­
ecute counter only when you are in the same directory with it. Oth­
erwise, you must give the full pathname: lusr/john/newcomd/counter or
$HOME/bin/counter.

PRELIMINARY COMMANDS

Before going on to the section on shell variables, let's discuss two commands
that you'll be using as examples in that section and the sections that follow:
echo and read.

DISPLAYING TEXT ON THE SCREEN echo

The echo command takes its argument string, which is terminated by a
newline (\n), and writes it to the standard output (your terminal). The
echo command is used mostly by the shell script to display messages on
the screen, as in this example:

$ echo "This is a message \n"
This is a message
$

To suppress the newline, use \c instead of \n. This allows you to append
one string to another without a line break between them, as in this example:

$ echo "This is a message \c"
This is a messageS _

Note the position of the prompt ($) at the end of the message instead of on
the next line. The \c character is used often in shell programs to prompt
for input from the user. For example, assurne that there is a shell file called
getkey that contains the following two lines:

$ cat getkey
echo "Press any key, then RETURN to continue: \c"
read inkey
$

To create such a file, follow the steps given in the preceding section, "Shell
Procedures," page 000. Once you have created the file, you can invoke it
as a UNIX command:

23. Bourne Shell Variables 351

$ getkey
Press any key, then RETURN to continue: _

The program is now waiting for your input at the keyboard. Any keystrokes
you enter will be displayed at the cursor loeation. As so on as you press
(RETURN), the program will exit and the prompt will reappear on the
next line-the read command expects the (RETURN) key as end of the
input string.

RECEIVING INPUT FROM THE USER read

The read command takes one line from the standard input and assigns
the first word to the first name, the second word to the seeond name, and
so on, with any leftover words assigned to the last name. If there is only
one name, as in this simple example, read assigns the entire input to this
name.

In the file getkey, the read command assigns your keyboard input as the
value of the variable inkey. If you want to see this input displayed after
you've typed it, add another echo command to the end of the getkey file,
like this:

$ cat getkey
echo "Press any key, then RETURN to continue: \c"
read inkey
echo $inkey

$

[Now add this lirre]

Now when you invoke the getkey program (assuming that you enter
KEYBOARD and then press (RETURN) after the prompt), you will see
this:

$ getkey
Press any key, then RETURN to corrtinue:

[You type KEYBOARD here]
KEYBOARD [This time getkey echo es it here]
$

You will see the echo and read commands used more in she11 files in the
next chapter. For now, you are ready to learn about she11 variables.

23.2 Shell variables

A she11 variable, which can be assigned either by the she11 itself or by auser,
provides the she11 with basic information. You learned ab out several she11
variables in Chapter 21, Introduction to the Bourne She11." The she11 usu­
a11y assigns such variables default settings, whieh a user can then reassign

352 Shell variables

for different applications. The name of the variable can be any sequence of
letters, digits, and underscores, but must always begin with either a letter
or an underscore. U se an equal sign (=) with no spaces on either side to
assign a value to a shell variable. Additional rules and restrietions will be
discussed later in this chapter.

ASSIGNING VARIABLES

The following example shows the value STRING being assigned to the vari­
able called VARIABLE:

$ VARIABLE=STRING

To retrieve the value of the variable, precede the variable name with a
dollar sign ($). The echo command provides a simple way to examine the
value of variable:

$ echo $VARIABLE \n
STRING
$

You can assign more than one variable in an assignment statement, as
shown in the example below. Note the spaces between assignments:

$ a=T b=H c=I d=S [Assign more than one variable in astatement]

$ echo abcd \n [Retrieve the values of the variables assigned]
THIS
$

In the following example, variable b is assigned the value of variable a,
so that variables a and b have the same value:

$ a=123

$ b=$a

[Assign 123 to variable a]
[Assign variable b the value of variable a]

$ echo $a $b \n [Echo both values, separated by aspace]

123 123 [The values of a and bare displayed]
$

You can combine the two statements above into a single, more compli­
cated statement to obtain the same result:

$ z=$y y=123 [Set z equal to the value ofvariable y (123)]

$ echo $z $y \n [Echo both values, with aspace between them]

123 123 [Both values are displayed]

$

23. Boume Shell Variables 353

Since the shell assigns variables from right to left (not from left to right),
you have to be careful in constructing multiple assignment statements, as
in the example above. In the ex am pie that follows, the shell assigns z the
previous value of y (123), not the new value abc, as the user expects:

$ y=abc z=$y [The shell assigns 123, not abc, to z]
$ echo $z \n
123 [Now the shell echo es 123 as the value of z]
$ echo $y \n
abc [The shell echo es 123 as the value of y, though]
$

Variable assignments are used often in shell procedures. However, you
can still benefit from these assignments during ordinary interactive use of
the shell. For example, you can use variables in place of lengthy command
names, arguments, and filenames, thereby avoiding a lot of unnecessary
typing. Here, the shell assigns a long pathname to HERE:

$ HERE=/usr/james/selection/car/camaro

Now you can type

$ cd $HERE

and obtain the same result as if you had typed

$ cd /usr/james/selection/car/camaro

In the following example we'll use a variable to hold a long command line
with many options: nroff -h -rT450 -mm file. Let's assign a variable form
to this command string (single quotation marks are required here because
of the spaces between the individual arguments):

$ form='nroff -h -rTl -T450 -mm'

So now, instead of typing the entire command every time you want to
use it, you only have to type something like this:

$ $form file 15

which is equivalent to

$ nroff -h -rTl -T450 -mm file 15

354 Shell variables

U SING QUOTATION MARKS

So far we have discussed simple variable assignments, without spaces, tabs,
semicolons, and newlines. Any time one of these appears in the assigned
value string, you have to enclose this assigned value (right-hand side) of
the statement in single quotes (,) as shown in the following example:

$ string='This has both; it has a semicolon and aspace'
$ echo $string \n
This has both; it has a semicolon and aspace

$ -

If you do not enclose the assigned value above in single quotes, an error
message will appear on the screen.

However, if you want to include a variable subtitution within an assigned
value string, you must use double quotation marks (" "). This will force
the shell to sc an and substitute the values of the enclosed variables:

$ 8=space M=semicolon
$ string=" This includes both; it has a $8 and a $M "
$ echo $string \n
This includes both; it has aspace and a semicolon
$

Besides, the three special characters ($, " ,,) will retain their special
meaning when enclosed within double quotes, while the shell will take them
literally when they are enclosed within single quotes, like this:

$ string=' This string has three: $8, Ir, , ,
$ echo $string \n
This string has three: $S, "[No'substitutions are made 1
$

EVALUATING A COMMAND STRING eval
You can force the shell to rescan the string using the eval command. The
eval command rescans the command arguments either to perform com­
mands or to substitute variables as specified. Here is an example:

$ a=1234

$ b='$a'

$ eval echo $a $b

1234 1234
$ echo $a $b \n
1234 $a
$

[Assign a the value 1234]

[Assign b the value of variable a]
[Force the shell to rescan and substitute $b]

[Echo without evaluation]

The advantage of having the shell rescan your command line is that you
can have all substitutions made before execution, as shown in here:

23. Boume Shell Variables 355

$ speed='stty 9600' [Assign variable speed the value stty 9600]

$ port=' > /dev/ttyOl' [Assign variable port the value in quotes]
$ eval $speed $port [Evaluate both variables]
stty 9600 > /dev/ttyOl
$

The eval command makes the above statement appear to the shell as if
you had typed this:

$ stty 9600 > /dev/ttyOl

Of course, you could also set the whole command string in one variable, as
explained earlier, without the eval command, but eval gives you a little
more flexibility when you need it.

DISTINGUISHING A VARIABLE'S NAME

As you have already seen, the value that is assigned to a variable can be
the value of another variable. You can also use a variable to help define
itself, as shown here:

$ word=character [Variable word is assigned the value character]

$ word=meta$word [Variable word is used in its own definition]
$ echo $word \n
metacharacter
$

If you try to append extra characters to the end of a variable's name, as
shown here:

$ far=tele
$ tv=$farvision
$ echo $tv \n
$

the shell will assign a null string to tv since it can't find a variable called
farvision. The solution to this problem is to enclose the variable's name
within braces, as shown here:

$ tv={$far}vision
$ echo $tv \n
television

$ -

For those variables that you may want to be automatically initialized
every time you log in, you can have them set in your .profile file.

356 Shell variables

23.3 Command substitution

The shell allows you to assign the results of an invoked command string as
the value of a variable, by enclosing this command string in grave accents
('command string'), as illustrated in this example:

$ fnames= 'ls' [Assign fnames the results of the Is command]
$

This will force the shell to invoke the Is command, assigning the result
as the value of the variable fnames. Assurne that there are four files in the
current directory called file_ 1, file_2, file_3, file_4. Now, using the echo
command to display the value of fnames, you will see the result as follows:

$ echo $fnames \n
file 1 file 2 file 3 file 4
$

You can use command substitution only with commands that have stan­
dard output. Since the Ip command gives no standard output, avoid doing
this:

$ VAL= 'lp file l'

$

[Not recommended]

The output of Ip file_1 is sent to the printer, and the shell assigns a null
value to the variable VAL.

Command substitutions are often useful in shell files, as in the following
example:

$ CURRENT= 'pwd '
$ cd lusrldennislplanlgoal

$

$ cd $CURRENT

[Get the current directory]

[Move to a different directory]

[Do something in that directory]

[Return to the previous directory]

The variable CURRENT is used to hold the pathname of the current direc­
tory while the program goes to a different directory to perform some task.
The last statement allows you to return to the previous directory without
having to remember its name.

23. Boume Shell Variables 357

EVALUATING ARITHMETIC EXPRESSIONS expr

The expr command takes its arguments as an expression (logical or arith­
metic). The result of this expression is sent to the standard output. These
arithmetic operators can be used with the expr command:

+ addition
subtraction
multiplication

/ division
% remainder

Because the expr command treats each operator or value as aseparate
argument, you have to separate operators and values with spaces. To pre­
vent metacharacters like the following from being interpreted by the shell
itself

* & ?

you have to escape them (release them from their special meanings) either
by by enclosing them within single quotes ('*') or double quotes (" *")
or by preceding them with backslashes (\). In the fourth example below,
the asterisk (*), which could be interpreted by the shell as a wild card
character, is escaped with single quotes.

$ a=2

$ a='expr $a + 7'

$ b='expr $a / 3'

$ c='expr $a - 1

$ d='expr $c % 5'

' *, $b'

[Initialize 8 with value 2]

[Add 7 to the value of a and assign to 8]

[~ivide 8 by 3 (9 / 3 = 3) and assign to]

[MultiPly 8-1 by b (8 x 3 = 24) and assign]
to C

[Divide C by 5 (24 % 5) and assign the]
remainder to d

$ e= 'expr $d - $b' [~ubtract b from d (4 - 3) and assign to]

The result is assigned to variable e. Let's check all the values:

$ echo $a $b $c $d $e \n
9 3 24 4 1
$

COMPARING STRINGS expr
The expr command also allows you to compare strings with its matching
operator (:). The output is the number of characters in the two strings
that match. An output of zero (0) indicates failure of the comparison. Here
is an example:

358 Command substitution

$ R='expr 'abcdefg'

$ echo $R \n
4
$

'abcd' ,
[Match the two strings and as-]
sign to R

[Recall the matching number R]

The string comparator of the expr command uses the same scheme used
by ed. That is, the second string is compared against the first string, start­
ing with the first character. Because of this, even one non-matching char­
acter in the second string will cause a failure, resulting in an output of zero
(0), as illustrated in the three examples below:

$ R='expr 'abcdefg' : 'abce' ,
$ T='expr 'abcdefg' : 'bcde"
$ V='expr 'abcd' : 'abcdefg"
$ echo $R $T $V \n
000

$

[Missing d in the second string]

[Missing a in the second string]

[Second string is longer than the]
first

[All three comparisons fail]

You could perform the same string comparison using variables, as in this
example:

$ C='expr $M $N'

By taking advantage of the string-comparison property of the expr com­
mand and the character matching that the shell provides, we can also use
astring comparison to determine the length of astring. Let's assign to
variable A a character string, then count the number of characters in this
string:

$ A=' This is an experiment' [Assign astring to variable A]

Since variable A is a character string with spaces in it, A must be enclosed
in double quotes in the following example; otherwise, the statement will
produce a syntax error. The second argument is enclosed in single quotes
to preserve the special meaning of the asterisk (*) to the shell:

$ count= 'expr "$A"
$ echo $count \n
21

, . *' , [N ote the asterisk (*) on the right]

[This retrieves the value of count]
[String length]

Another feature of the expr command is the ability to extract only a
portion of a character string, as in

$ B='expr "$A" : ' ... \(.*\)"

23. Baume Shell Variables 359

The five dots in front of the backslash (\) represent the five characters to
be skipped (induding the space), starting at the beginning of the string.
Now, echoing variable B, we have

$ echo $B \n
is an experiment [The first five characters have been omitted]
$

The expr command checks statements for errors before processing. Here
are some possible errors:

1. A syntax error will occur any time an operator or operand is missing
or illegal.

2. A "non-numeric argument" message will be displayed any time you
try to use an arithmetic operation on a character or string.

23.4 Conditional substitution of variables

You can test a variable to determine whether or not it has been assigned
a value. Then, if it has, you can either use this value in an expression or
replace the value with another. This is known as conditional substitution.
The shell provides four variations of conditional substitution, using four
symbols to indicate comparison (-, =, +, ?):

USE VALUE OR SWITCH ${ var-other}
If var has been assigned a value, use this valuej otherwise, use string other
instead, leaving var unassigned. In the example that follows, we ass urne
that variable VAL is not set, with the result shown:

$ echo ${VAL-123} \n

123

[Test whether VAL has been set]

[Since it has not, string 123 is used]

Here is a similar example with a variable used instead of an actual string
on the right as the replacement:

$ SUB=456 \n [Assign 456 to SUB]
$ echo ${VAL-$SUB} [Again we assume that VAL is unset]
456 [So SUB's value is used instead]

USE VALUE OR ASSIGN OTHER ${ vq,r=other}
If var has been assigned a value, use this value; otherwise, assign the value
other to var before using var, as shown in the following examples:

360 Conditional substitution of variables

$ echo ${VAL=xyz} \n

xyz

$ echo $VAL \n

xyz

SWITCH OR USE NULL

[VAL has no assigned value]

[So xyz becomes the value of VAL]

[Instead of remaining unassigned, VAL]
now has the value xyz

${ var+other}

If var has been assigned a value, use the value of other. If var is not set,
use a null string as its value, leaving var unassigned.

$ THIS=145
$ THAT=abc

$ echo ${THIS+$THAT} \n

abc

$ echo $THIS
123

$

USE VALUE OR ABORT

[Assign 145 to THIS]
[Assign abc to THAT]
[perform the test]

[The value of THAT appears]

[THIS retains its value]

${ var? empty }

If var has an assigned value, use this value; otherwise, display the mes­
sage var: empty and abort the proeedure. Onee again, assurne that VAR is
unassigned:

$ error='Not set--abort'
$ echo ${VAR?$error} \n
VAR: Not set--abort
$

The default for a missing message on the right side of the quest ion mark is
a standard message:

$ echo ${VAR?} \n
VAR: parameter not set
$

23.5 Positional parameters

The shell itself sets positional parameters to identify the positions of items
(or arguments) on the eommand line. Arguments must be separated by
spaees so that the shell ean distinguish them from eaeh other. The shell
identifies items on a eommand li ne with numbers beginning with zero. The
first item (the name of a shell proeedure) is always denoted by $0; then

23. Boume Shell Variables 361

the first argument is denoted by $1, the second by $2, and so on up to $9,
as illustrated here:

$0 $1 $2 $9

$ diff file1 file2 ... file9

ASSIGNING POSITIONAL PARAMETERS

[positional parameter]

[command line]

set
Before going furt her into the positional parameter, let's consider the set
command as it relates to positional parameters. The set command is often
used to assign a positional parameter to an argument string as in

$ set arg1 arg2 arg3 arg4 arg5 arg6 arg7 arg8 arg9
$

This set command forces the shell to assign the first positional parameter
$1 to arg1, the second $2 to arg2, the third to arg3, and so on. You can
verify these assigments by echoing them back:

$ echo $1 $3 $4 $2 $4 $5 $6 $7 $8 $9 \n
arg1 arg2 arg3 arg4 arg5 arg6 arg7 arg8 arg9
$

ACCESSING SPECIFIC ARGUMENTS

When the set command is used with command substitution, each element
of the output of the command substitution is assigned a positional param­
eter. In the following example, the date command is enclosed within grave
accent marks (' ') to form a command substitution:

$ set 'date'
$ -

The output of the date command becomes a sequence of arguments for the
set command, and no output will show on your screen. However, if you
invoke the date command by itself, you should see this:

$ date
Wed Feb 15 21:49:20 1984
$

After you invoke set 'date', each item in this string is assigned a positional
parameter $1, $2, $3, $4, $5, as explained in the next section. If you are
interested in the time only, select it this way:

362 Positional parameters

$ echo $4 \n
21:49:20
$

You can also rearrange these items in a different format:

$ echo 'DATE: $1 $2 $3 $5 TIME: $4 \n'
DATE: Wed Feb 15 1984 TIME: 21:49:20
$

ACCESSING MORE POSITIONAL PARAMETERS shift

To process command-line options, use the shift command, which shifts each
argument one position to the left. After the shift command, the argument
at positional parameter $4 is moved to position $3, $3 is moved to position
$2, $2 is moved to position $1, and $1 is discarded (the command name in
position $0 remains unchanged, however). Here is an example:

$ echo $1 $2 $3 $4 $5 $6 $7 $8 $9 \n
arg1 arg2 arg3 arg4 arg5 arg6 arg7 arg8 arg9
$ shift [Shift arguments to the left]

$ echo $1 $2 $3 $4 $5 $6 $7 $8 $9 \n
arg2 arg3 arg4 arg5 arg6 arg7 arg8 arg9 arg10

$ -

After this shift, arg2 is in the first position and arg10 is at the end.

MATCHING ARGUMENTS WITH A WILDCARD

The shell also provides the asterisk (*) as a wild card to match any posi­
tional parameter. You can access all positional parameters by typing

$ echo $* \n
arg2 arg3 arg4 arg5 arg6 arg7 arg8 arg9 arg10 argll

$ -

This echo command line and the one used in the example above are not
exactly the same. The previous echo command displayed nine positions;
this one displayed up to the last current positional parameter.

PASSING ARGUMENTS TO A COMMAND

The shell always assigns arguments to positional parameters before passing
them to an invoked command. For example, suppose you have an executable
command file named odd_even, which contains echo $1 $3 $5 $2 $4 $6.
If you invoke odd_even with six arguments, this is what happens:

23. Boume Shell Variables 363

$ odd_even one two tbree four five six
one three five two four six
$

As you can see, the echoed line reflects the order set by the odd_even file.

23.6 Reserved variables

The special variables listed here are set by the shell itself, rather than by
the user:

Number of Arguments~The number of positional parameters (not
counting $0) that have been used to record arguments. For exam­
pIe, let's see how many arguments were saved by the shell as the
result of the set command in this example:

$ set 'date'
$ ecbo $# \n
5 [Five positional parameters have been set]
$

? Return Code~ The exit status code returned to the shell from the
last executed command. In general, successful execution of the
command returns a zero; any other execution returns a non-zero
value.

$ ecbo $? \n
o [Exit status of the echo command: successful]
$

$ Process Identijication Number of the Current Process~Since this
number is unique, it is sometimes used as a temporary filename,
as in this example:

$ tempfile=file$$

$ sort filel -0 $tempfile

$ mv $tempfile filel

[Set tempfile variable]
[Output to variable tempfile]

Process Identijication Number of the Background Process Most Re­
cently Invoked~ This number remains in effect even after the pro­
cess has been completed.

$ ecbo $! \n
243 [The most recently invoked background process]

Status of Shell Flags~ 1,'his variable identifies all current shell flags
that can be turned on or off by the set command. To examine the
current settings of shell flags, type

364 Reserved variables

$ echo $- \n
s [The 5 flag is on; all others are off]
$

These variables can be set only by the shell. If you attempt to assign
them any value, an error message will be displayed, as shown here:

$ #=256

#=256: Command not found.

$

23.7 Summary

[You try to set variable # manually]
[This is what happens]

In this chapter, you learned about shell procedures and shell variables.
You learned ab out assigning shell variables, using quotation marks, nam­
ing variables, command substitution, conditional substitution, positional
parameters, and pre-defined variables.

To create a shell procedure, enter the desired shell commands in a file and
make the file executable with the chmod command. The echo command
takes its argument string and writes it to the standard output (displays it
on your screen). The read command takes standard input and assigns it
to a variable (or to several variables).

SHELL VARIABLES

Shell variables, like other variables used in programming, can be assigned
values. To retrieve this value, use the echo command, preceding the vari­
able's name with a dollar sign ($). You can use shell variables to spare
yourself extra typing.

To allow astring to contain spaces, tabs, semicolons, and newlines (but
not to allow substitution of variables), use single quotation marks (, ,).
To allow astring to contain spaces, tabs, semicolons, and newlines, along
with substitution of variables, use double quotation marks (" ").

The eval command works like the echo command, except that eval
can take an entire command line, evaluate variables, and substitute their
assigned values. To distinguish a variable's name from other characters,
enclose the name in braces.

COMMAND SUBSTITUTION

To assign to a variable the standard output of an invoked command string,
enclose the command string in grave accents.

23. Baume Shell Variables 365

To evaluate arithmetic express ions , use the expr command, along with
the symbols for addition (+), subtraction (-), multiplication (*), divi­
sion(l), and remainder (%). To compare two strings, use the expr com­
mand with a comparator (:). The result will be the number of matching
characters in the two strings. You can use string comparison to determine
the length of astring (compare the string to . *) or to extract a portion of
the string (use one dot for each character to be deleted, then enclose . * in
substring brackets \(and \)).

CONDITIONAL SUBSTITUTION OF VARIABLES

To test a variable to determine whether or not it has been assigned a value
and then base your next action on the result of the text, use one of the
following four types of expressions:

${ var-other }

${ var=other}

${ var+other }

${ var?empty}

If var has a value, use it; if not, use other and leave
var unassigned.
If var has a value, use it; if not, assign the value of
other to var.
If var has a value, use the value of other instead; if
not, use a null string and leave var unassigned.
If var has a value, use it; if not, display the message
var: empty and abort the process.

POSITIONAL PARAMETERS

The shell sets positional parameters to keep track of a command and its
arguments on a command line, using $0 for the command, $1 for the first
argument, $2 for the second, and so on. To assign values to positional
parameters, use the set command.

To select a specific argument, use the set command with a positional pa­
rameter. To access arguments numbered higher than 9, use the shift com­
mand. To match any positional parameter, use the shell wild card symbol
(*) after the dollar sign. You can rearrange the order of the arguments by
placing the positional parameters in the desired order, then executing the
command.

366 Summary

RESERVED SHELL VARIABLES

The following special variables can be set only by the shell, but can be
accessed by the user:

N umber of arguments in a command line
? Return code for the command
$ Pln of the current process

Pln of the most recent background process
Status of shell fiags

24

Bourne Shell Program Control

Within a shell file (also known as a shell procedure or shell script), the shell
acts as a programming language. Like other languages, the shell provides
features like these:

• Flow control commands (if ... then ... else, while, for, and so on)

• Interrupt handling (trap), variable setting, and parameter passing
(refer to Chapter 23, "Boume Shell Variables")

• Calls to other commands or shell procedures as subroutines

Because a shell procedure is written in a high-level language, it is easy
to modify. Also, a shell procedure doesn't need to be compiled. Since there
is no object file to recreate, it is easier to maintain your shell program.

The shell also provides devices for debugging a shell procedure. These
allow you to watch each step of your program execute, with errors displayed
whenever the shell finds illegal expressions.

In this chapter, you will leam about flow-control commands, interrupt
handling, and many other features of shell programming. Early examples
will be very simple, with more involved examples shown later.

24.1 Constructing loops

In any kind of programming, it is common to have a segment of a program
executed repeatedly, usually with a few changes made just before each
repeated execution. Such a segment is called a program loop. This section
deals with the different ways you can construct a loop when programming
the UNIX shell. Before going into looping itself, let's take a look at the
true and false commands, which we'll use to simplify our discussions of
the looping commands.

THE true AND false COMMANDS
true
false

When any UNIX command completes execution, it passes a value to its
parent process (the calling program) to inform the parent of the outcome.

368 Constructing loops

This value, called the exit status of the command, is a small integer. A value
of zero is agreed to mean true (the command ran successfully); a value
other than zero, to mean false (the command did not run successfully).
Furthermore, since there are any number of values that can mean false, the
particular value often explains why the process failed.

To allow you to force one exit status or the other, the sheH provides you
with a pair of commands called true and false. The true command returns
an exit status of true; the false command returns an exit status of false.
In a moment we'H use these commands to show clearly how some of the
commands used to form loops (while and until) work. For right now, let's
look at the true and false commands themselves:

$ true;A=$?

$ false; B=$?

$ echo $A $B
o 1

$

[Obtain the exit status of the true command 1

[Obtain the exit status of the false command]

[The status of each is displayed]

LOOPING WHILE TRUE while

The while command sets up a loop that continues to be executed as long
as the while command detects a true condition, as shown here:

while command list
do [execute commands

between do and donel
done

The while command examines the exit value of the command list, which
can be either a single command or a group of commands. Then, based
on this return-value, takes appropriate action: if a zero is returned, all
commands between do and done are executed. This process is repeated
until the while command detects a non-zero return-status (or a break
command is executed). In the example below, the while command nevers
see a non-zero value. Since the output of the true command is always zero,
this pro gram will loop forever!

while true
do echo TH1S 1S AN ENDLESS LOOP
done

To stop this program, press the (DEL) key.

LOOPING WHILE FALSE until
The format of the until command and its command execution processes are
the same as for the while command, except that the looping condition is

24. Boume Shell Program Control 369

a non-zero-exit value (false). The following program gives the same result
as the one that uses the while command in the section above:

until false
do echo THIS IS AN ENDLESS LOOP
done

The (DEL) key stops this program the same way it stops the while loop.
The done statement closes the loop.

NESTED LOOPS

It is possible to place one program loop inside another, producing a number
of repetitions of the inner loop with each single repetition of the outer loop.
This arrangement is called a nested loop, and is illustrated in this example:

$ aat loop
out=l
in=3
until out='expr $out - l' -----------------+
do echo outer $out

while in='expr $in - l' ---+
do echo inner $in Inside loop
done ---+

done -----------------+
$

Outside loop

Since the variable out has been initialized to 1, the expression $out . 1
decreases the value of out to zero (0), which gives the until statement a
return value of false. This causes the do statement of the outside loop to
be executed.

Since the variable in has been initialized to 3, the inside loop will be
executed twice-until the expression $in . 1 reduces the value of in to zero
(0), which ends the inside loop, and return program control to the outside
loop.

This time the expression $out • 1 at the top of the outside loop reduces
the value of out to·1, a non-zero value that ends the outside loop (and the
program). If you execute loop, this is what you will see:

$ loop
outer loop 0
inner loop 2
inner loop 1
$

370 Constructing loops

BREAKING OUT OF A LOOP break
The break command allows you to exit from an enclosing loop involving
one of the commands already discussed (while and until) , as well as two
commands to be discussed later in this chapter (for and ease). To break
from more than one loop level, you must specify the number of levels to
break. If you execute the program on the left below, you will see the re­
sult displayed on the right. Without break, the innermost loop (loop 3)
would keep repeating indefinitely. But break forces execution back out to
the middle loop (loop 2), so that loops 2 and 3 alternate single turns at ex­
ecuting. (This example illustrates how the eeho command comes in handy
when you want to trace the execution of a program.)

$ cat multiloop
while true --------------------+
do echo LOOP 1 I

until false ----------+ I
do echo LOOP 2

while true --+
do echo LOOP 3 I

break I
--+

I I
I I
I loop 2

loop 3 I
I I done

done
done

----------+ I
--------------------+

$ multiloop
LOOP 1
LOOP 2
LOOP 3
LOOP 2

loop 1 LOOP 3
LOOP 2
LOOP 3
LOOP 2
LOOP 3

The shell procedure's syntax requires that for every while, for, or until
loop command, there must be a matching done statement to terminate it.
After the LOOP 3 message is displayed, the innermost loop is broken by
the break command, and the until loop is again executed. This process
will repeat endlessly, displaying LOOP 2 and LOOP 3 alternately.

Replacing break by break 2 will force the program back to the outermost
loop (loop 1), with LOOP 1, LOOP 2, and LOOP 3 messages displayed
alternately:

$ cat multiloop
while true ---------------------+
do echo LOOP 1

until false ---------+
do echo LOOP 2

while true ---+
do echo LOOP 3

break 2
---+

loop 2
loop 3

I done
done

done
---------+

---------------------+

$ multiloop
LOOP 1
LOOP 2
LOOP 3
LOOP 1

loop 1 LOOP 2
LOOP 3
LOOP 1
LOOP 2
LOOP 3

A break 3 statement would cause the program to exit all three loops
and the program to be terminated.

24. Boume Shell Program Control 371

$ cat multiloop
while true ---------------------+
do echo LOOP 1 I

until false -----------+ I
do echo LOOP 2 I

while true ---+ I loop 1
do echo LOOP 3 loop 2

break 3 loop 3 I
done ---+ I I

done -----------+ I
done ---------------------+

$ multiloop
LOOP 1
LOOP 2
LOOP 3
$

RESUMING EXECUTION OF A LOOP continue
The continue command resumes program execution at the enclosing tor or
while loop, the closest enclosing loop being the default when the command
is invoked alone. If the level number is explicitly given, the enclosing tor or
while loop at the level specified is where the program resumes execution,
as illustrated here:

while true
do command list 3

until false

----------------------------+

----------------+
I

I
I
I do command list 2

while true -----+ I I Level 3
do command list 1

continue $level
done -----+

Level 1
I Level

I
----------------+

2
I
I
I done

done ----------------------------+

If variable level's value is 2, the untilloop will be executed. If the value
of level is 3 the outside while loop will be executed. If level is not set (or
set to 1), the program will remain in the innermost while loop.

EXITING A LOOP exit
The break and continue commands allow your program to leave its current
loop. The exit command, however, allows your program to abort the entire
procedure, not just the current loop. The exit command allows you to stop
processing in the event of an error. When invoked by itself, exit returns an
exit status of zero (true) to its parent program. In the following example,
main is the parent program, which calls procedure subpro. By using the
name of the procedure as a Boolean variable, this program actually reHes on
the exit status of the procedure to govern the conditional statement. Then,
based on the exit status returned, main will display one of two messages.

$ cat main

372 Constructing loops

if subpro

fi

then echo ' Exit status is zero '
else echo ' Exit status is non-zero

$ cat subpro
HERE='pwd'
status=O

exit $status
$

In procedure subpro, variable status is initialized to a value of zero (0),
which causes the message "Exit status is zero" to be displayed. If the value
of status were non-zero, the message "Exit status is non-zero" would be
displayed.

LOOPING ON A VARIABLE for

The for command sets up a conditionalloop using the following format:

f 0 r variable in list
do [execute command(s)

between do and donel
done

The for command assigns the next word in the list as a new value of
variable, then examines this new value. If the variable has a valid value,
commands between the do and done statements are executed; if the vari­
able has a null value (indicating that there are no more words left in the
list), the command following the done statement is executed. Here is an
example:

$ cat example
list='wordl word2 word3 word4'
for VAL in $list

do echo $VAL
done

echo 'END OF LIST'
$

$ example
wordl
word2
word3
word4
END OF LIST
$

When this shell program is invoked, wordl is assigned to variable VAL
first. Then the for command examines the value of VAL. Since VAL has a
valid value (wordl), echo $VAL is executed. The program resumes execu­
tion at for, this time the next argument (word2) is assigned to VAL, and
the process is repeated. The for loop continues through two more iterations
(one for word3 and one for word4). Then, in the next iteration after the
last argument (word4), VAL assumes a null value, indicating that the end

24. Bourne Shell Program Control 373

of the list has been reached. At this point, the for loop is broken, and the
program by-passes the do ... done list and executes echo 'END OF LIST'.

In the shell procedure that follows, variable VAL assumes the procedure's
arguments, which are passed by the shell as its value:

$ cat rebounce
for VAL
do echo $VAL
done
$

$ rebounce one two three
one
two
three
$

The rebounce program is invoked with three arguments, which are
passed in the positional variables and assigned one by one as values of
variable VAL each time the for command is executed. If the rebounce
program is invoked with the asterisk (*) as its argument, the result is that
the names of files in the current directory are passed in the positional vari­
ables to the rebounce program. The two shell procedures below produce
the same results, as explained below:

$ cat rebounce.l
set 'ls'
for VAL

$

do echo $VAL
done

$ cat rebounce.2
for VAL in *

$

do echo $VAL
done

In the example on the left (rebounce.1), the set command assigns posi­
tional parameters to the elements of the output of the Is command, which
form the list of filenames and directory names in the current directory. In
the example on the right (rebounce.2), the shell matches the names of
files and directories of the current directory, then assigns them one by one
to variable VAL.

24.2 The conditional statement

The general format of the if command in its simplest form is as follows:

i fexpression
then command list

fi

The if command evaluates the return-value of the expression that follows
and then takes action: if the return-value is zero (true), the commands
between then and fi are executed; if the return value is non-zero (false),
the command following fi is executed. Here is a simple example:

374 The conditional statement

$ cst check
if true

fi
$

then echo 'TRUE VALUE'

$ check
TRUE VALUE
$

The true command passes a zero value to if, which causes the echo com­
mand to be invoked. As an experiment, modify the program by replacing
true with false, then invoke the program again.

$ cat check
if false

then echo 'TRUE VALUE'
fi

$ -

$ check
$

No message is displayed this time. Because false exits with a non-zero
value, the echo command is skipped.

AN ALTERNATE PATH else

The else statement goes with the if command to provide an alternate
execution path for the program when a condition doesn't satisfy the if
command. The command format is as follows:

i fexpression

fi

then command-list 1
else command-list 2

If the return value of expression is zero (true), the commands between
then and else are executed. If the return value is non-zero (false), com­
mands between the else and fi statements are invoked. Here is an example

$ cst match
if a='expr "information" : "$1"'

fi
$

then echo " $a characters matched "
else echo 'No character matched'

The expression 'expr "information" : "$1 '" compares the argument
string $1 with the string information. If the expression's return sta­
tus is zero (indicating that there are some matches between two strings),
the statement between then and else is executed. Otherwise, the state­
ment between else and fi is executed and then the program exits. Let's
invoke program match with arguments and see the results:

$ match info
4 characters matched
$ match format

24. Boume Shell Program Control 375

No character matched
$

COMBINING else AND if elif
The elif statement is a combination of the else and if statements, allowing
the shell program with nested if commands to be written in a shorter form.
For example, here is a program checkname that attempts to match the
argument being passed with strings Mark, John, and Dennis. Here is the
program's contents:

$ cat checkname
if expr "$1" : "Mark" > /dev/null
then echo Matching word is Mark
else if expr "$1" : "John" > /dev/null

then echo Matching word is John

fi
$

else if expr "$1" : "Dennis" > /dev/null
then echo Matching ward is Dennis
else echo * * * No match * * *
fi

fi

This program can be rewritten with the elif statement as folIows:

$ cat new file
if expr "$1" :

elif

elif

then echo
expr
then
expr
then

"$1"
echo
"$1"
echo

"Mark" > /dev/null
Matching ward is Mark
"John" > /dev/null
Matching ward is John
"Dennis" > /dev/null
Matching ward is Dennis

else echo * * * No match * * *
fi
$

Note that with elif only one fi statement is required. The output of the
expr command is redirected to /dev/null, which can be considered as a
dumping site for the unwanted output.

TESTING FILES, QUANTITIES, AND STRINGS
test
[]

The test command is used in conjunction with commands such as while,
if, and until. These commands evaluate the test command and take action
based on the return-value of the test command. The arguments of the test

376 The conditional statement

command form an expression, which is evaluated. If the result is true, the
shell returns a value of zero; if the result is false, the shell returns a non-zero
value. The test command may be used to evaluate any of the following:
files; quantities; strings.

In versions of UNIX earlier than System V, the word test is used in front
of the expression to be evaluated; beginning with System V, the expression
is surrounded by a pair of brackets.

TESTING FILES

You can evaluate files in any of five ways:

-r

-w
- f filename]
-d
-5

File exists and can be read
File exists and can be written to
File exists and is not a directory
File exists and is a directory
File is not empty-its size is non-zero

If you are concerned about maintaining port ability with scripts written
in earlier versions of UNIX, use the word test instead of brackets (for
example, test -f name). This construction is still supported by System V.

In the example below, you can see that if commands are nested and that
test commands are used to check an argument file's status.

$ cat copyall
num=O

if [-d $HOME/$l 1

then

else mkdir $HOME/$l

fi
for eachone in *

[Set the number of unreadable files to]
zero

[Check for the existence of the direc-]
tory

[If the directory exists, do not hing]

[If it doesn't exist, create it in your]
horne directory

[Check filenames in the current direc-]
tory

do i f [- f $eachone [Is this a file?]

then if [-r $eachone [If so, is it readable?]

then cp $eachone $HOME/ $1 [If so, copy it to the directory typed]
else num='expr $num + l'
fi

fi
done

[
ütherwise, add 1 to the total numberj
of unreadable files in the current di­
rectory

echo "$num non-accessible files"

$ -

This program (copyall) allows you to copy each accessible, non-directory
ordinary file from your current directory to a directory named by you in
your horne directory. For example, if you invoke copyall with the cornrnand
line

24. Boume Shell Program Control 377

$ copyall newdir

the program will copy each readable file in your current directory to subdi­
rectory newdir in your ho me directory. If newdir doesn't yet exist, it will
be created. If it does exist, then each file in your current directory is checked
(first for an ordinary file, then for being readable). If it is both (that is, if
it is a readable file), it will be copied to newdir; if is a non-readable file,
copyall increment the total of unreadable files (num) by one. After all files
have been checked, copyall will display the number of unreadable files.

COMPARING QUANTITIES

You have a different set of expressions to check the relationship between
two numbers:

Is A equal to B? A=B?
-eq

Is A not equal to B? A i= B? -ne
Is A greater than or equal to B? A? B?

[A
-ge

1 B Is A less than or equal to B? A "5, B?
-le

Is A greater than B? A > B?
-gt

Is A less than B? A < B?
-lt

Once again, in each case, the shell returns a zero if the statement is true;
a non-zero if it is false.

The following shell program tests the size of all files in the current di­
rectory, then displays the names of all files that contain at least 10,000
words:

$ cat bigfiles
count=lOOOO
for i in *

done
$

do size='wc -c < Si'
if $size -ge $count

then echo "Si size: $size"
fi

This is how the program works: first variable count is set to 10,000. The
for command checks for the existence of the next file in the current directory
before assigning it to variable i: if there are no more files, the program will
exit; otherwise, the next file is selected. The expression size='wc -c <Si' is
a command substitution, which counts the number of characters in the file
currently assigned to i. The value of the variable size is then tested against
the value of count. The expression $size -ge $count will be true only if
$size is greater than or equal to 10,000. If so, the name of the file will be
displayed on the screen, along with its length (echO "$i size: $siZe").

378 The conditional statement

In some cases, the program may want to check arguments before pro­
cessing, as in this example:

if [$# -eq 2 1
then echo PROCESSING
elif [$# -lt 2 1

then echo 'missing second filename'
else echo 'too many arguments'

fi

The expression $# -eq 2 will be true only if the shell passes exactly two
arguments to this program. The expression $# -tt 2 will be true only if the
number of arguments is less than two.

COMPARING STRINGS

Expressions that are used to test strings of characters are as follows:

[-n string]
[-z string]

[string_l = string_ 2]
[string_l != string_ 2]

The string exists
The string doesn't exist

The two strings are the same
The two strings are not the same

This example checks the existence of the second argument, which is
passed by the shell to this program:

if [-n "$2" 1
then echo PROCESSING
else echo 'missing second filename'

fi

Note that variable $2 must be enclosed in double quotes so that the test
command will recognize it as a character string. The following expression
also checks the existence of the second argument string:

if ["$2" 1

Let's assign two variables for comparing strings in an example:

Y=' abcd'
X=abcd

As you may recall from Chapter 21, "Introduction to the Boume Shell,"
whenever astring of characters is enclosed in double quotes, special char­
acters retain their meanings and spaces are treated as characters. If you
don't enclose the string in quotes, spaces will be omitted from its string.
That is why the following program finds strings X and Y to be the same:

24. Bourne Shell Program Control 379

if [$Y = $X 1
then echo 'they are the same'
else echo 'they are different'
fi

However, when variables X and Y are enclosed in double quotes, [will
recognize the spaces in string Y, and the following program will find strings
X and Y to be different:

if ["$Y" = "$X"
then echo 'they are the same'
else echo 'they are different'
fi

If variables X and Y are enclosed in single quotes, the dollar sign ($)
loses its meaning as a special character. Therefore, in the following state­
ment, test compares the two-character strings $Y and $X, rather than the
assigned values of the strings $Y and $X:

['$Y' = '$X' 1

Note the following points about string comparisons:

1. You must surround an equal sign (=) or a not-equal sign (! =) with
spaces.

2. The two symbols in the not-equal sign (! =) must not be separated
from each other.

3. The expressions -z and !-n are equivalent.

COMPOUND TESTING

The primitives described above can be combined with the not, and, and
or operators to obtain more flexible flow-control in shell programming:

Unary not operator inverts the truth-value of an expression.
-0 Binary or operator returns true if either of the surrounding state­

ments is true.
-a Binary and operator returns true only if both of the surrounding

statements are true.

In the following example, the not operator inverts a true value (zero) to
a false value (non-zero):

if [! true 1

380 The conditional statement

which provides the same result as the following expression:

if [false 1

Therefore, the following expression is true if string $2 exists:

if ["$2" 1

The expression below is true if string $2 doesn't exist:

if [! "$2" 1

The and and or operators can also be used to test several express ions in
a single test statement, like this:

$ aat rw. file
if [-f $1 -a -r $1 -0 -w $1 1

fi

$ -

then echo "File $1 is accessible"
elif [-d $1 1

then echo "$1 is a directory"
else echo "File $1 is not accessible"

The message "file $1 is accessible" is displayed only if the argument file
($1) is anormal file that is either readable or writable. The expression
[-d $1] will be true if the argument file is a directory.

24.3 Other programming techniques

MULTI-WAY BRANCHING case
The ease command provides multi-way branching for a shell program. The
general format is as follows, with esae (ease spelled backwards as the final
delimiter) :

case < string> in

esac

Sll < command list> ;;
S2) < command list> "

Sn) < command list> "

The ease command compares the pattern string to each pattern SI,
S2, . .. , Sn. If it finds a match, it will execute the list of commands that

24. Boume Shell Program Control 381

follows the matching pattern, with execution ending at the double semi­
colon (; ;). Program syntax requires a double semicolon at the end of each
command list and esac at the end of the entire ca se command. Here is
an example:

echo -n 'Please enter your selection (a, b, c, or d)
read entry
case $entry in

Ala) echo 'Average' ;;
BI b) echo 'Better' ;;
Clc) echo 'Conditional' "
Dld) echo 'Definite' "
*) echo 'Please type A, B, C, or D' "

esac

The read command accepts input from your keyboard, then assigns this
input to variable entry. The read command stops reading when you press
the (RETURN) key. If you type A (or a), then case will execute

echo 'Average'

by displaying Average on the screen. If you type B (or b), ca se will
display Bet t er, and so on. The asterisk (*) (used here to indicate any
other entry) must be placed at the end of the list. Otherwise, ca se will not
be able to select one of the valid entries (A, B, C, or D).

PERFORMING TERMINAL CONTROL tput
Suppose you are using an ADM-3A terminal and the following entry has
been compiled and stored in terminfo/a/adm3a (see Chapter 33, "Terminals
and Printers," for details):

adm3al3allsi adm3a,
lines#24, cols#80, am,
cup=\E=\%pl \%' '\%+\%c\%p2\%' '\%+\%c,
cr=AM, home=AA, bel=AG, clear=AZ$<l>,
cubl=AH, cudl=AJ, ind=AJ, cuul=AK, cufl=AL,

A System V command called tput allows you to activate most of the
terminal functions named in this entry. You can either type tput on a
command line or insert it into a shell script. As an example, since the
function for clearing the screen and homing the cursor (clear) has been
defined for your terminal in terminfo, you can enter the following command
line at any time to clear your screen and horne the cursor:

$ tput clear

382 Other programming techniques

Since the functions for turning high intensity on (smso) and off (rsmo)
have been defined, you can include the following lines in a shell script to
displayamessage in high intensity and then return the display to normal
intensity:

tput smso
echo "You have entered the correct value"

tput rmso

You can use the tput command to activate only functions included in
the terminfo entry for the terminal you are using at the time.

INTERRUPT- HANDLING trap
Interrupt signals are generated by various abnormal events. While the shell
handles most of these signals itself, it passes the following signals to the
shell procedure that is active at the time the interrupt takes place:

• Signal I-Generated by a hangup

• Signal 2-Generated by the (DEL) key

• Signal 9-Generated by kill -9 pppp (kill interrupt)

• Signal 15-Generated by the kill command itself with no option (soft­
ware termination interrupt)

The shell procedure may choose to catch or ignore one of these signals
(except the kill signal). If your program does not catch interrupt signals,
upon receiving one of those interrupts, the shell will terminate the shell
procedure currently invoked. Sometimes, this might cause inconvenience,
such as leaving some temporary files that were created by this shell pro ce­
dure. To avoid this inconvenience, use the trap command to catch interrupt
signals, like this:

trap , command 'list' signals

The command list must be enclosed in quotes. If there is more than
one command, individual commands must be separated by semicolons (;).
More than one signal can be specified (separated by spaces). Here is an
example:

$ cat zap_temp
trap 'rm tempi exit' 1 2 15

for i in $HOME/zfile/*
do

[interrupt handling]

if expr "$i" "$HOME/zfile/za" > /dev/null
then cat $i » temp

24. Baume Shell Program Control 383

fi
done

if [-f temp
then nroff -50 temp > newfile
rm temp

fi
$

In this program, whenever one of the three interrupts 1, 2, or 15 occurs,
the shell removes file temp before exiting from the program.

DEBUGGING A SHELL PROCEDURE

As mentioned earlier in this chapter, the shell allows you to monitor your
shell program so that you can see where your mistakes are. To monitor a
shell program, add one of these two options to the the sh command when
you invoke it:

-x Execution option: To see commands and arguments as they are
executed.

-v Verbose option: To display input lines while they are being read.

For example, to debug the shell procedure track, type this:

$ sh -x track

You can also bundle the options, as shown here:

$ sh -vx track

24.4 Summary

In this chapter you learned about the true, false, and exit commands, and
the commands for looping (while, until, break, continue, and for); the
commands used to form a conditional statement (if, then, else, and elif);
the command used to test files, strings, and quantities (test, along with a
number of comparators and operators); and a few other tools for writing
shell procedures (the ca se command, the trap command, and the options
-x and -v for monitoring a shell procedure being executed).

A loop is a segment of a program that executes repeatedly until it is
stopped by some indication that a condition has been met. The true com­
mand always returns an exit status of true; the false command always
returns an exit status of false. Use the while command to continue exe­
cuting a loop as long as the exit status is true; use the until command
to continue executing as long as the exit status is false. When one loop is
placed inside another, the loops are said to be nested.

384 Summary

To terminate execution of an inner loop and return to an outer loop, use
the break command, giving an optional nesting level number if desired.
To continue execution at an enclosing for or while loop, use the eontinue
command, giving an optional nesting level number if desired. To abort the
entire procedure, use the exit command. To construct a loop on a set of
assigned values to a given variable, use the for loop construction. The if
command allows you to set up a number of branching options in a shell
procedure.

TESTING FILES, STRINGS, AND QUANTITIES

You can use the test command (in System V denoted by brackets) with
one of five different options to determine whether a file can be read from
or written to, whether it is a directory, or whether it is empty. You can
also use the test command with one of six two-letter options to compare
two quantities (equal, not equal, and so on). In addition, you can use the
test command to determine whether a single string exists or whether two
strings are the same or not. Finally, you can form compound tests with
symbols for and (-a), or (-0), and not (!).

OTHER PROGRAMMING TECHNIQUES

You can form a multi-way branching list with the ease command, using
pairs of semicolons to terminate individual command lists and the esae
command to terminate the entire list.

You can use the tput command to activate terminal functions that have
been defined for your terminal in the terminal information database ter­
minfo. You can use the trap command to handle various system interrupts.
Two sh command options allow you to display commands and arguments
as they are being executed (-x) or display input lines while they are being
read (-v).

25

Introduction to the C Shell

In Chapters 21 to 24, you leamed about the Baume shell (the original
shell developed by Stephen R. Boume at Bell Laboratories) and the sh
command, which is used to invoke Boume shell procedures. In this chapter
we'll talk about a newer shell called the C shell. The C shell, developed by
William N. Joy at the University of Califomia, is one of the major Berkeley
enhancements to UNIX.

Officially, System V supports only the Boume Shell. However, many
System V installations also support the C shell. If yours is one of them,
you can use the csh to invoke C shell procedures. Unless you are already in
the C shell, you should ask the system administrator for your UNIX system
to set up your account so that the C shell is your login shell. To do this,
the administrator must change an item inside a file called /etc/passwd.
Somewhere in this file, there will be a li ne with your login name; the last
item of this line must be changed from from /bin/sh to /bin/csh.

25.1 Initialization files

To make the C shell work properly with your terminal, you must have
two files in your horne directory: .Iogin .cshrc

These two files will be executed by the C shell every time you log into
the system (.cshrc first). These files will now be explained in detail.

TRE C SRELL READ COMMAND FILE .cshrc

The .cshrc file is executed whenever a new C shell is created-when you
first log into the system or when you invoke aCshell procedure. For this
reason, this file contains mostly variables that can be reinitialized for the
newly created shell. Here is a typical .cshrc file:

set prompt = "<\!> "
set history 11
alias h history
alias cdl cd '\!*; 1 I more'
alias eh cd /usr/robin/book/\!
alias ch8 cd /usr/robin/book/chap8
alias ch9 cd /usr/robin/book/chap9

386 Initialization files

alias
alias

ehIG
ehll

cd /usr/robin/book/ehapIG
cd /usr/robin/book/ehapll

These lines will be explained in detail in the sections that follow.

THE LOGIN FILE Jogin
The only time the .Iogin file is executed by the C shell is when you log into
the system. Therefore, this file should contain only those commands that
need to be executed one time only (such as the ones for setup, command
search path, and terminal type). Here is a typical .Iogin file with the lines
spread apart to leave room for explanations:

stty ffG erG -tabs erase "AH"

This line is to set up your tty line: no delay after a formfeed or carriage
return, replace tabs with spaces, use (CTRL-H) to erase.

set path=(/test/bin /bin /usr/bin $HOME/bin .)

This line is to set up the command search path. In this case, the shell
will search (in this order) /testlbin, /bin, /usr/bin, and subdirectory
/bin of your horne directory for commands.

setenv TERM vt52

This line sets the terminal variable TERM. In this case, your terminal
will be known by the system as a VT50, with all of the
characteristics described under vt 5 0 in /etc/termcap (or
/etc/termi nfo/v) .

echo "today is 'date'"

This line displays the date each time you login.

The set environment command (setenv) is explained in Chapter 26, "C
Shell Variables," in the section on "Variables as Arrays," page 402.

25.2 Explanations of individual items

SETTING YOUR OWN PROMPT prompt
The C shell, like the Bourne shell, allows you to set the prompt that appears
for each command line. However, the C shell allows adynamie prompt,
which changes for each new command line. You can create line-numbering

25. Introduction to the C Shell 387

in your prompts by using the line number of the command line, known as
the event, and indicated by an exclamation point (!). This is what has been
done in the sampIe .cshrc file above, which calls for displaying the current
event within a pair of angle brackets: < >. (You have to type a backslash
in front of the exclamation mark (!) to prevent it from being interpreted
as an event specifier by the shell.) Then, with your prompt set this way,
this is how your prompt will look immediately after you log in:

<1>

This event number is incremented each time you execute another com­
mand, thereby counting your command lines for you. If you do not assign
anything to the variable prompt, the C shell will assign apercent sign (%)
by default.

SETTING THE NUMBER OF EVENTS TO BE SAVED history

On the second line of the sam pIe .cshrc file you find this entry:

set history = 11

This assigns a value of 11 to the variable history. This number determines
the number of events to be saved for later reference (that is, the size of
the history list). Thus, the C shell keeps on this list the command lines of
the last 11 events, which can be recalled at your request. You can set the
variable history to any number, as long as it does not exceed the limit for
your system (typically 25). You can change the setting of history at any
time with the set command:

<2> set history = 5
<3>

After this, until variable history is reassigned again, it will record only
the last five events. You can also invoke history as a command to display
a history list, as illustrated here:

<10> bistory

<11>

5 cd book/XENIX
6 ls-1
7 cp chapter23 /usr/dennis/backup
8 vi chapter23
9 ls /usr/dennis/backup

The five most recent commands are shown after their event numbers.
These event numbers can now be used to reinvoke command lines in the

388 Explanations of individual items

history list. Furthermore, by using the history substitution eommand (ex­
plained in the next seetion), you ean modify a reeent eommand before
exeeuting it.

25.3 Reinvoking previous commands

Being able to reinvoke the past event means that you don't have to retype
the whole eommand string, whieh may be very long and involved. To rein­
voke the past event, eonstruct a redo eommand by typing an exclamation
mark (!), followed by a referenee to an event. The exclamation mark tells
the C shell to look for the eommand line on the history list. There are four
ways to refer to an event:

• Double exclamation marks (the previous event)

• The aetual event number

• A relative event number

• A eommand name

REINVOKING THE MOST RECENT EVENT ! !
The quiekest way to reinvoke the most reeent event is to type double ex­
clamation marks (! !) as the eurrent eommand. (Sinee you entered history
as event number 10 in the previous seetion, the next event number will be
11.) After you enter the two exclamation marks, the shell will first display
the eommand string being replayed, then the results, as shown here:

<11> !!
history [The previous event: nu mb er 10]

<12>

6 ls-l
7 cp chapter23 /usr/dennis/backup
8 vi chapter23
9 ls /usr/dennis/backup

10 history

REINVOKING AN EVENT BY NUMBER !n
In the following example, you reinvoke an event by typing its number. Let's
invoke the eommand identified as event number 9:

<12> !9

ls /usr/dennis/backup

micro.back

changes.back

entry.back

files.back

[Reinvoke event number 9]
[Event nu mb er 9 is recalled: Is]
[Results of the Is command]

25. Introduction to the C Shell 389

<13>

REINVOKING AN EVENT RELATIVE TO THE CURRENT EVENT!-i

In ed and vi you used relative line numbers (for example, .-5 me ans five
lines back from the current line). The concept is exactly the same with the
C shell (1-5 means five events back from the current event). Here are two
examples with relative event numbers:

<13> !-6
cp chapter 23 /usr/dennis/backup
<14> !-3
history

8

<15>

9
10
11
12
13

vi chapter23
ls /usr/dennis/backup
history
history
ls /usr/dennis/backup
cp chapter 23 /usr/dennis/backup

REINVOKING AN EVENT WITH A SEARCH STRING !string
You can also type a search string after the exclamation mark, indicating
that the C shell is to search for a matching command line. If the C shell
finds a match, the event is reinvoked; if it doesn't, the message "string:
Event not found" will appear on your screen. Here are two examples:

<15> !1
ls /usr/dennis/baekup
miero.back entry.back
ehanges.back files.back
<16> !s
s: Event not found

Since Is begins with I, the reexecution command !I resulted in a successful
match (event number 12), so the C shell displayed the results. The next
attempt (!s) failed because no command string started with s. However,
the C shell provides a way to search for a match anywhere on the command
line. Type a question mark after the exclamation point, as shown here:

<17> !?s
ls /usr/dennis/backup
micro.back entry.back
changes.back fi1es.back
<18>

390 Reinvoking previous commands

The quest ion mark tells the C shell to look for a match with s anywhere
on the command line.

25.4 Selecting individual arguments

Like the Boume shell, the C shell splits every input line into words at
blanks and tabs, assigning each word a number. Again, the command name
is numbered zero, then the first word following is numbered one, the second
word two, and so on. For example, the following command li ne contains a
command (word 0), a first argument -I (word 1), and a second argument
/usr/dennis/backup (word 2):

ls -1 /usr/dennis/backup

The C shell's numbering scheme allows you to select a specific word
on a command line. Simply append a colon, followed by a number, to
a reinvocation command (a command that begins with an exclamation
point). In the following example, we first set up a command (event number
18), then select word 1 from this command line (event number 19):

<18> echo word-1 word-2 word-3 word-4 word-5 word-6
word-1 word-2 word-3 word-4 word-5 word-6

Now we select the second word from the input line of event 18:

<19> echo !18:1
echo word-1

word-1
[The C shell first displays the command]
[then it displays the results of the command]

SELECTING THE FIRST ARGUMENT

Another way to obtain the same result is by replacing 1 with a caret C),
as shown here:

<20> echo !18:"
echo word-1
word-1

SELECTING THE LAST ARGUMENT $
The dollar sign ($) can be used to address the last word of a command
line, as shown here:

<21> echo !18:$
echo word-6

25. Introduction to the C Shell 391

word-6

SELECTING A RANGE OF ARGUMENTS n-m

To address a range of words, use the hyphen, as shown in this example:

<22> echo !18:2-5
echo word-2 word-3 word-4 word-5
word-2 word-3 word4 word-5

SELECTING ALL ARGUMENTS *
To address every word of an input except zero (that is, to select every
argument of the command, but not the command name itself), use an
asterisk (*) to make a wild card selection, as shown here:

<23> echo !18:*
echo word-2 word-3 word-4 word-5 word-5 word-6
word-1 word-2 word-3 word-4 word-5 word-6

OMITTING THE COLON WITH SYMBOLS

Whenever you use a caret (,,), dollar sign ($), or asterisk (*) in place of
an explicit word designator, you can omit the colon (:) between the event
number and the word designator. For example, here is another way to type
events 20, 21, and 23:

<20> echo !18'"
echo word-1
word-1
<21> echo !18$
echo word-6
word-6
<23> echo !18*
echo word-2 word-3 word-4 word-5 word-5 word-6
word-1 word-2 word-3 word-4 word-5 word-6

25.5 Modifying a command li ne

The C shell allows you to reinvoke an event in the history list (a command
line) with modifications, which can spare you a lot of extra typing. To
modify an event, type a modifier after the colon (:) in place of a word
number. You can substitute one string for another, repeat astring, remove

392 Modifying a command line

prefixes and suffixes, preview an event, or protect an event from furt her
changes.

REPLACING A CHARACTER STRING s
Use the substitute modifier S the way you have used the S command with
ed and vi to replace one character string with another. As an example,
let's reinvoke event 23, then make a substitution:

<24> !23
echo word-l word-2 word-3 word-4 word-5 word-6
word-l word-2 word-3 word-4 word-5 word-6

Now we'll use the substitute modifier s/wIW to substitute W for w (first
occurrence only):

<25> !!:s/w/W
echo Word-l word-2 word-3 word-4 word-5 word-6
Word-l word-2 word-3 word-4 word-5 word-6

As with the S (substitute) command in ed, only the first occurrence of w

in word -1 is affected. To convert all occurrences of w to W, use the global
modifier g, as shown here:

<26> !23:gs/w/W
echo Word-l Word-2 Word-3 Word-4 Word-5 Word-6
Word-l Word-2 Word-3 Word-4 Word-5 Word-6

You can modify on1y a se1ected ward by including its number. The fo1-
lowing command afIects only the second word:

<27> echo !23:2:s/word/WORD
echo WORD-2
WORD-2

If you attempt to modify a non-applicable word of astring (such as
ward-9, in this example), a "Modifier fails" message will be displayed.

REPEATING THE PREVIOUS SUBSTITUTION &

The & modifier allows you to repeat the last substitution without having
to retype the entire command. Suppose that event 25 was just invoked:

<25> !!:s/w/W
echo Word-l word-2 word-3 word-4 word-5 word-6
Word-l word-2 word-3 word-4 word-5 word-6

25. Introduction to the C Shell 393

We could use the & modifier for the next event:

<26> !25:&
echo Word-1 Word-2 word-3 word-4 word-S word-6
Word-1 Word-2 word-3 word-4 word-S word-6

The & modifier affects only Word-2 this time.

REMOVING THE LAST NAME FROM A PATHNAME h
Use the h modifier to remove the last name in a pathname. For example,
let's create a pathname:

<28> echo /usr/dennis/backup.new
/usr/dennis/backup.new

Then we can use the h (head) modifier to remove backup.new from the
pathname, like this:

<29> !!: h
echo /usr/dennis
/usr/dennis

REMOVING THE SUFFIX FROM A PATHNAME r
Use the r modifier to remove the suffix (in the form of .sss) from astring.
Let's use the r modifier to remove . new from the pathname in event 28:

<30> !28:r
echo /usr/dennis/backup
/usr/dennis/backup

REMOVING THE PREFIX FROM A PATHNAME t

Use the t (tail) modifier to remove the prefix from a pathname. Let's use
the t modifier on the pathname in event 28:

<31> !28:t
echo backup.new
backup.new

PREVIEWING A COMMAND LINE p
To displaya command line without executing it, use the p (print) modifier
to preview it. For example, let's display the command string of event 28:

394 Modifying a command line

<32> !28:p
echo /usr/dennis/backup.new
<33>

PREVENTING FURTHER MODIFICATION q
Use the q modifier to quote a command line (that is, to protect it from
further modification). After you execute event 33, any attempt to modify
either event (28 or 33) will result in an error message ("modifier failed"):

<33> !28:q
echo /usr/dennis/backup.new
/usr/dennis/backup.new

ALIASED COMMANDS alias
As explained earlier in this chapter, the C shell splits command input into
words. Each of these words is checked for a match against the C shell's
alias list, which provides a list of abbreviated commands, called aliased
commands. If the C shell finds a match, it substitutes the full command
line for the aliased command; if the C shell does not find a match, no
substitution takes place. (You may recall that seven of the nine lines placed
in the file .cshrc at the beginning of this chapter were intended for the "alias
list.")

CREATING A CUSTOM COMMAND

The alias list allows you to create either a new name for an existing or your
own new command, which consists of a compound command string. For
example, you can create a new d command to replace the pwd command,
so that when you type d (RETURN), the result will be the same as if you
had typed pwd (RETURN). Here's how to do this:

<34> alias d pwd
<35> d [Invoke the new d command]
/usr/book/XENIX.l

Note that creating a new command name does not prevent you from
continuing to use the old name. You can now use either d or pwd.

REMOVING AN ALIASED COMMAND unalias
If you want to remove the d command above from the alias list, use the
unalias command, as shown here:

<36> unalias d

25. Introduction to the C Shell 395

<37> d
d: command not found

STORING ALIASED COMMANDS

The most common use of the alias command is to allow you to type short­
hand commands to replace frequently-used and excessively long commands.
To preserve your aliased commands from one session to another, it's most
convenient to store your own alias list in your .cshrc file, which is read
every time a new subshell is created.

You can also use alias as a command to display your alias list, as shown
here:

<38> alias
alias ch8 cd /usr/robin/book/chapter8
alias ch9 cd /usr/robin/book/chapter9
alias chiO cd /usr/robin/book/chapteriO
aias chl1 cd /usr/robin/book/chapterii

INVOKING AN ALIASED COMMAND

Once you have eh8, eh9, eh10, and eh11 stored in your alias list, you can
invoke them as your own private commands. For example, you can now
invoke eh10 to move to the directory called /usr/robin/booklchap10. Let's
try it:

<39> chlO
<40> pwd
/usr/robin/book/chapteriO

MAKING A DYNAMIC SELECTION

You can set up a variable command that allows real-time selection at the
time of invocation, like this:

alias eh cd /usr/robin/book/\!*

The aliased command eh allows you to pass an argument to be used
as apart of the change directory (cd) command. The exclamation mark
and asterisk must be quoted to prevent them from being interpreted by
the shell. However, they are still passed to the alias. Let's invoke eh with
arguments:

<39> eh ehapterlO
<40> pwd

396 Modifying a command line

/usr/robin/book/chapter10
<41> eh chapter9
<42> pwd
/usr/robin/book/chapter9

COMBINING COMMANDS

You can combine more than one command into one aliased command, as
shown here:

alias cdl cd '\!*; Is -1 I more'

Because this command list contains spaces, an asterisk, and a pipeline
symbol, it must be enclosed within single quotes (,). The exclamation mark
(!) must be quoted (preceded by a backslash) to prevent the C shell from
interpreting it and passing it to the alias. When invoked, cdl changes to the
directory that you type after cdl as an argument; then all the files in this
directory are piped to the more command to be displayed on the screen.
By using more (or pg), instead of cat, you can control the display of a
large directory like fete, as illustrated here:

<43> cdl /etc
total 398
-rwx------ 1 bin 1346 Sep 4 1982 aceton
-rwxr-x--- 1 bin 157 Apr 28 1981 asktime
-rw-r--r-- 1 bin 21 Dec 19 15:40 checklist

-rwx--x--x 1 bin 5404 Feb 24 04:45 mount
--More-- (23%)

At this point, the display stops until you press the space bar.

RECURSIVE SUBSTITUTIONS

You can alias commands recursively to as many levels as you like. If you do
this, the C shell will substitute the aliased command over and over again
until it reaches the last one in the list:

<44> alias com.1 com.2
<45> alias com.2 com.3
<46> alias com.3 echo last command
<47> com.1 [Invoke com.1 command.]
last command

Suppose you changed the alias procedure of event <46> so that com.3
is aliased to com.1. Then, if you invoke com.1, you will see how the C
shell deals with this, as follows:

25. Introduction to the C Shell 397

<46> alias com.3 com.1
<47> com.1
Alias loop. [error message]

The C she11 can detect that this is a infinite loop, and it wams you with
an error message.

THE LOGOUT FILE .logout

You can arrange for a custom logout to occur each time you sign off by
placing commands in a special file ca11ed .Iogout. These commands may
be standard UNIX commands or custom commands that you have set up
with a she11 procedure. The commands may simply place a message on the
screen, or they may remove all the temporary files that you have created
during your session with UNIX. The file must reside in your horne directory,
not a subdirectory. Here is an example of a .Iogout file already created:

<48> cat .logout
echo You are leaving the system
echo Goodbye \!

ÜRDINARY LOGOUT

With these two commands in your .Iogout file, pressing (CTRL-D) to log
out not only allows you to exit from the system, but also to display abrief
message on the screen:

<49> [YOll press (CTRL-D)]
<49> You are leaving the system

Goodbye

EXPLICIT LOGOUT

You may reca11 that (CTRL-D) serves several functions in UNIX~one
being a signal to log out, another being the end-of-file code. If a command
that reads keyboard input is designed to exit upon receiving and end-of-file
code (EOF), it will terminate the process. Occasiona11y, this results in an
accidental logoff. To prevent this kind of mistake, the C she11 provides a
mechanism that disables (CTRL-D) as the signal to log out and forces you
to type logout instead. The mechanism is the variable ca11ed ignoreeof
(ignore end-of-file). Just type set ignoreeof to enable logout.

<49> set ignoreeof

<50>

Use "logout" to logout.
<50> logout

[Set variable ignoreeof]
[YOll press (CTRL-D)]

398 Modifying a command line

25.6 Summary

This chapter intro duces the C shell, an enhanced version of the Boume
shell. You leamed about the two files frequently used with the C shell
(.cshrc and .Iogin), setting your own prompt, reinvoking previous com­
mands, selecting individual arguments, modifying a command line, abbre­
viating a command string, and setting up a logout file (.Iogout).

INITIALIZATION FILES

The .Iogin file contains commands that are to be executed every time you
log in, identifying your terminal, modifying your default command search
path, and possibly providing a login message. The .cshrc file contains com­
mands that are to be executed whenever a new C shell is created, and may
be used to set your prompt, set the number of events to be saved, and set
new names for command strings.

Use the prompt variable to set your own prompt, using either words
or symbols. Use the history variable to set the number of command lines
(events) to be saved for future reference.

REINVOKING PREVIOUS COMMANDS

To reinvoke the most recent event, type! !. To reinvoke any previous event,
type an exclamation point, then the number, as in ! 17. To reinvoke an
event a certain number of command lines from the current line, type an
exclamation point, a minus sign, and the number, as in ! -4. To reinvoke
an event in the history list that begins with a certain string of characters,
type an exclamation point, then the characters, as in ! Is. To allow a match
anywhere in the event, type a quest ion mark between the exclamation mark
and the string, as in ! ?s.

SELECTING INDIVIDUAL ARGUMENTS

To select an individual argument in a command string, add a colon and
the number of the argument to the end of a reinvocation command, as in
echo ! 18: 4. To select the first argument, type one of the following alter­
nate commands: echo ! 18: 1, echo ! 18: ", echo ! 18". To select the
last argument, type a command like the following: echo ! 18: $ (or echo
! 18$). To select arguments from a range of numbers, type a command like
this: echo ! 18: 2-5. To select all arguments, use the wild card symbol
(*), as in echo !18:* (or echo !18*).

25. Introduction to the C Shell 399

MODIFYING A COMMAND LINE

To replace one character string with another, use the substitute modifier
s, as in this example: !!:s/wIW (replace w with W). To repeat the previous
substitution, use the repeat modifier &, as in !25:&. To remove the last
name in a pathname, use the head modifier h, as in !!:h. To remove the
prefix from a pathname, use the tail modifier t, as in !28:t. To remove the
suffix from a pathname, use the remove modifier r, as in !28:r.

To displaya command line (event) without executing it, use the preview
modifier p, as in !28:p. To protect a command line (event) from furt her
modification, use the quote modifier q, as in !28:q.

ALIASED COMMANDS

To create an abbreviated name for a longer command, assign the longer
command to the shorter one with the alias command. To remove an alias
already assigned, use the unalias command. To store an alias permanently,
place it in your .cshrc file along with other aliases, thereby forming an alias
list. To view this list, type alias as a command. To invoke an alias in your
alias list, simply type the alias form as a command. To allow arguments to
be passed with an aliased command, use an exclamation point followed by
a wild card character (*), both preceded by a backslash. The C shell allows
you to combine more than one command into a single aliased command.

THE LOGOUT FILE

The C shell allows you to set up a logout file to run commands at the time
you sign off the system. These commands can either perform housekeeping
tasks or just displayamessage. To force you to logout by typing logout
instead of (CTRL-D), include the command set ignoreeof in your .Iogin
file.

26

C Shell Variables

26.1 Assigning astring variable

The method for assigning a variable in the C shell is somewhat different
from the method in the Boume shell. In the following example, the string
table is assigned as a value of variable VAL:

<1> set VAL = table

In the C shell, the set command is required, and the equal sign (=) must
be surrounded by spaces in many UNIX systems. As in the Boume, type a
dollar sign ($) and variable name to recall the assigned value. Thus, $VAL
will yield the value of variable VAL:

< 2 > echo $VAL
tab1e
<3>

If a value to be assigned to a variable contains spaces, it must be enclosed
within single quotes, double quotes, or parentheses, as shown here:

<3> set varl = , $VAL A B'
<4> set var2 = "$VAL A B"
<5> set var3 = ($VAL A B)
<6>

Each pair of symbols-' ,
meaning, as summarized here:

" " , () -will have a slightly different

• Single quotes-Metacharacters are interpreted literally.

• Double quotes-Metacharacters retain their special meaning.

• Parentheses-Metacharacters retain their special meaning, and the
characters enclosed form an array (discussed in the next section).

The following echo commands illustrate these differences:

402 Assigning astring variable

<6> echo $varl
$VAL A B
<7> echo $varl
table A B
<8> echo $varl
table A B

<9> echo $varl[2]
Subscript out of range

<10> echo $varl[2]
Subscript out of range

<11> echo $varl{2]
A

DISPLAYING ASSIGNED VALUES set
By typing the set command by itself, you can displaya listing of declared
variables and their assigned values, as illustrated here:

<12> set
argv ()
bk /usr/book/
history 23
horne /usr/robin
path (/test/bin /bin /usr/bin /usr/robin/bin .)
prompt <!>
shell /bin/csh
status 0
unmask 022
<13>

REMOVING A VARIABLE unset
The C shell keeps a list of aB declared variables. To remove a variable from
the list, use the unset command, as shown here:

<13> unset bk

<14> set

()

[Remove variable bk from the list 1
[Display the variable list]

argv
istory
horne
path
prompt
shell
status

23
/usr/robin
(/test/bin /bin /usr/bin /usr/robin/bin .)
<!>
/bin/csh
o

unmask 22

<15>
[Variable bk is no longer in the list]

26.2 Variables as arrays

Improving on the Boume shell, the C shell treats any string value of a vari­
able as an array-provided that the string value is enclosed in parentheses.
This means that, even though the entire string shares a common name, you

26. C Shell Variables 403

ean aeeess individual words in the string. In the example that follows, the
variable path is the name of an array whose value is a eommand seareh
path. As in the C language, eaeh item of an array ean be addressed indi­
vidually by pointer: the first item is refered to as path[1], the seeond one
is path[2], the third one is path[3] , and so on. In the following example,
we reeall the third item:

<15> echo $path [Recall all values of variable path]
/test/bin /bin /usr/bin /usr/robin/bin
<16> echo $path[3] [Recallitem3]
/usr/bin
<17>

[Third item in the search path]

Sinee eaeh item oeeupies a numbered position in the array, you ean over­
write any item in a declared string variable. Type the set eommand and
the array name, followed by the number enclosed in square brakets []. In
the following example, the first loeation of array path is overwritten with
the string /usr/joeJbin (this beeomes the first name in the path):

<17> set path[l] = /usr/joe/bin
<18> echo $path
/usr/joe/bin /bin /usr/bin /usr/robin/bin
<19>

DECLARING AN ARRAY

You must declare an array before you ean use it. To declare an array,
specify the array's name and size in a dummy set eommand. The C shell
will reserve the number of locations that you have requested. You ean then
initialize the array with an aetual string. In the example shown here, seven
positions of array temp are set aside with null strings:

<19> set temp = (" " " " " "") [Seven pairs of single quotes]
<20>

ASSIGNING POSITIONS

Onee the positions in the array have been reserved, you ean use temp as
a storage loeation, to which strings ean be written and from whieh strings
ean be read. Let's fill some of these loeations with aetual strings:

<20> set temp[l] = one
<21> set temp[3] = three
<22> echo $te.mp
one three
<23>

404 Variables as arrays

You can also assign the value of an element in one array to an element
in another, as shown here:

<23> set temp[2} = $path[l}
<24> echo $temp
one /usr/joe/bin three
<25>

You can also retrieve any of these strings and assign them to another
variable, as shown here:

<25> set VALl = $temp[l}
< 26> echo $VALl
one
<27>

DETERMINING WHETHER A VARIABLE HAS BEEN DECLARED?

Special reserved variables are used to obtain information about assigned
variables. The special variable ? is zero (false) if a variable is undeclared
and one (true) is it has been declared, as shown here:

<27> echo $?temp

1

<28>

[Test variable temp]
[True: the variable has been dec1ared]

DETERMINING THE SIZE OF AN ARRA Y #
Use special variable # to determine the size of a variable (array). Let's
check the size of array temp:

<28> echo $#temp [Test array temp]
7

<29>

[Array temp has seven positions]

26.3 Assigning numeric variables

Just as the set command is used to assign string values to variables, the
@ command is used to assign numeric values to variables, as shown here:

<29> @ VAL = 3
<30>

If you attempt to assign a non-numeric value to a variable with @, a
syntax error message will be displayed, like this:

<30> @ VAL = abc
@: Expression syntax
<31>

26. C Shell Variables 405

To list all declared numeric variables, use the @ command alone, just as
you did with the set command:

<31> @

val 3
nurn 5
integer 12
<32>

PERFORMING ARITHMETIC

Unlike the set command, the @ command can be used to perform arith­
metic and logical testing, like the expr command of the Boume shell. You
can use @ with the following arithmetic operators:

+ addition
subtraction

* multiplication
division

% remaind

Here are some examples:

<32> @ A = 2 + 4
<33> @ 8 = $A - 3

<34> @ M = $A * $8

<35> @ R = $M % 4

<36> @ D = $M / 4

<37> echo $A $8 $M $R $D
6 3 18 2 4
<38>

[Add 2 and 4 and assign the surn to A]

[Subtract 3 from A and assign the differ-]
ence to S

[MultiPly A by Sand assign the product]
to M

[Divide M by 4 and assign the rernainder]
to R

[givide M by 4 and assign the quotient to]

[Display all five results]

INCREASING THE VALUE OF A VARIABLE
++
+=n

Use the ++ operator to increase the value of a variable by one:

<38> @ D++

<39> echo $D
[Increase the value of D by one 1

406 Assigning numeric variables

5
<40>

You ean add any numeric value to an variable with the += operator. For
example, suppose variable R has a value of 2. The following example shows
how you eould add 5 to R:

<40> @ R += 5

<41> echo $R
7
<42>

[Add 5 to the value of R]

DECREASING THE VALUE OF A VARIABLE

Use the - operator to deerease the value of a variable by one:

<42> @ D-­

<43> echo $D
4
<44>

[Decrease the value of D by one]

-=n

You ean subtraet any numerie value from an variable with the -= opera­
tor. For example, using variable D with a value of 4, the following example
shows how you eould subtraet 3 from D:

<44> @ D -= 3

<45> echo $D
1
<46>

[Subtract 3 from the value of D]

OBTAINING THE ONE'S COMPLEMENT OF A VARIABLE

Use the tilde (~) to obtain the one's complement of the value of a variable
(the opposite sign minus one), as illustrated here:

<46> R =- $R

<47> echo $R
-8

<48>

LOGICAL TESTING

[Assign to R its own one's complement]

[This is the one's complement of 7 (-7 - 1)]

Logical tests work in the C shelllike the test eommand in the Boume shell
to yield true (1) or false (0) as the exit-status of a test:

A<B
A>B
A<= B

True if A is less than B
True if A is greater than B
True if A is less or equal to B

26. C Shell Variables 407

A>=B
A== B
A !=B

True if A is greater or equal to B
True if A is equal to B
True if A is not equal to

Here is an example of a sequence of logical tests:

<48> @ A = 10; @ B = 15 [Assign values to variables A and B]
<49> @ C = ($A <= $B) [Test whether A is less than or equal to B]
<50> echo $C [Display the result]
1

<51>
[True: 10 is less than or equal to 15]

The expression right of the equal sign must be enclosed in parentheses
to prevent the shell from interpreting the less than sign «). You can also
construct more complex statements, as shown here:

<51> @ K = ($A + $B > $A *
<52> echo $K
o
<53>

$B) [1s the surn greater than the prod-]
uct?

[False: 25 is not greater than 150]

As you can see, the return status of the expression of event 52 is a zero,
which indicates that the expression is false.

26.4 Setting elements of a numeric array

Arrays were discussed earlier in this chapter in connection with string vari­
ables. Like the set command, the @ command can also be used with point­
ers to select individual elements of a numeric array. Here is an example:

<53> @ scale = (1 2 3 4 5 6 7 B 9)
<54> @ scale[3] = 100 [Assign a value to the nurneric array]
<55> echo $scale
1 2 100 4 5 6 7 8 9
<56>

PERFORMING AR1THMETIC

The @ command allows you to perform arithmetic on an element of an
array. In the following example, the values of positions 3 and 5 are added
together, then the sum is stored in location 8:

<56> @ scale[B] = $scale[3] + $scale[5]
<57> echo $scale
1 2 100 4 5 6 7 105 9
<58>

408 Setting elements of a numeric array

PERFORMING LOGICAL TESTS

You can also perform logical tests within a numeric array. Here, a logical
test is performed on the values of positions 3 and 8 of array scale, with
the logical result stored in position 9:

<58> @ scale[9} = ($scale[3) > $scale[B})
<59> echo $scale
1 2 100 4 5 6 7 105 0 [False: 100 is not greater than 105]

<60>

Position 9 becomes 0, indicating false. Once again, the expression to the
right of the equal sign in event 58 is enclosed in parentheses to prevent the
greater than sign (» from being interpreted by the shell.

26.5 Variables reserved by the C shell

The C shell uses the variables named in this section to record information
and pass it to a child process. Some of the special variables are set by the
C shell, and some can be changed by the user.

ARGUMENT NUMBER n $argv[n]

The shell uses this variable to pass arguments to the C shell procedure in
the same way that the Boume shell passes positional parameters to the
shell script. Therefore, $argv[O] is the name of the program being invoked,
$argv[1] is the first argument, and so on. For example, suppose there is a
C shell procedure reflect with the following contents:

<60> cat reflect
[# indicates that this is aCshell procedure]
echo $argv[O] $argv[l] $argv[2] $argv[3]
set argv[3] = NEW
echo $argv[3]
<61>

Let's invoke reflect:

< 61 > reflect one two three [Invoke the program with three argu-]
ments

reflect one two three

NEW

<62>

[The command line just typed is echoed]
[NEW replaces three as the third item]

The C shell passes the positional parameters to reflect, and you can
change any argument except the echo command argv[O]. However, you
can still use $1, $2, ... , $9 in place of $argv[1], $argv[2], . .. , $argv[9).

26. C Shell Variables 409

NUMBER OF ARGUMENTS $#argv

The C she11 uses this variable to store the number of arguments in the
command just invoked. Let's change the reflect program so that it looks
like this:

<62> cat reflect

echo $argv[l] $argv[2]
echo $#argv

[A C shell procedure]
$argv[3]

[Add this new line]
<63> reflect one two three
one two three

3

<64>

[Only the arguments are echoed now]

[Number of arguments]

The expression argv[*] refers to a11 of the positional parameters.

SEARCH PATH $cdpath

When you type the cd command with an argument as the target directory,
the cd command uses the value of cdpath as the search path to search from
the current directory for that target directory. If the subdirectory is found,
this becomes your working directory. For example, suppose your current
working directory is /usr/book and cdpath is set this way:

<64> set cdpath = $homelbooklXENIXlchapter21
<65>

and you type this:

<65> cd chapter21
<66> pwd [Verify your current directory]
lusr/book/XENIX/chapter21
<67>

If cdpath is not set or the search fails, a message is displayed:

<67> cd XENIX
cd: No such file or directory
<68>

The message appears because XENIX is not a subdirectory ofyour current
directory (in fact, your current directory is a subdirectory of XENIX).

CHILD PROCESS NUMBER $child

This variable carries the process number of a child process, which is forked
in the background. The C 8he11 unsets this variable when the chilo process
terminate8.

410 Variables reserved by the C shell

ECHO A COMMAND $echo

If this variable is set, any command you enter will be echoed (displayed on
the screen) before being executed. This variable works like the -x option of
the sh command (Boume shell).

<68> set ecbo

<69> pwd
[Declare variable echo]

[You then type this]
pwd

/usr/book/XENIX
<70>

[Your command is echoed before being executed]

You can use the unset command to remove the effects of echo.

LENGTH OF THE HISTORY LIST $history

This variable was explained in Chapter 25, "Introduction to the C Shell."
You can set $hisfory to the size of the history list.

HOME DIRECTORY $home

This variable, the same as the $HOME variable of the Boume shell, can
be abbreviated with a tilde (-). Its value is the pathname of your horne
directory, which is set by the shell. Here is an example:

<70> cp /usr/jobn/stats -/saving
<71>

This command causes file stats in directory /usr/john to be copied to
directory $home/saving.

IGNORE END-OF-FILE CHARACTER $ignoreeof
Ordinarily, (CTRL-D) (or ~D) is defined as the end-of-file (EOF) character.
Ifthis variable is set, the shell will ignore the end-of-file character from your
keyboard. This prevents you from being accidentally logged off. Then you
can exit with the log out command (for a more detailed explanation, see
the section "Explicit Logout," page 397, in Chapter 25, "Introduction to
the C Shell").

PREVENT OVERWRITING $noclobber

When this variable is set, the C shell prevents you from overwriting a file
as the result of redirection of output. For example, suppose file tempfile
resides in your current directory, and you type this:

<71> set noclobber [Declare variable]

26. C Shell Variables 411

<72> ecbo I HRITE THIS LINE > tempfile

tempfile: File exists

<73>

[Redirection of output]

[Overwriting is not allowed]

Once noclobber has been set, the shell also will not create a new file
when you append text to a nonexistent file, as shown below:

<73> echo I ADD NEW LINE » newfile
newfile: No such file or dirctory
<74>

REMOVE SPECIAL MEANINGS AUTOMATICALLY $noglob

When this variable is set, filename expansions such as *, ?, and ~ are
treated as normal characters, allowing you to use them literally. Here is an
example:

<74> echo *
file.l file. 2 file. 3 tempfile [Files in this directory]

<75> set noglob [Set variable noglob]
<76> echo *
*
<77>

[The asterisk is now treated as an]
ordinary character

In event 74, the asterisk (*) is interpreted by the shell as a wild card
character, allowing all filenames in the current directory to be displayed.
The variable noglob is set in event 75 so that the shell treats the asterisk
the same as any other character, as shown in event 76.

REMOVE SPECIAL MEANINGS IF NO MATCH $nonomatch
When this variable is set, the C shell first attempts to find a matching file
with one of the filename expansion characters such as *, ?, and ~. If the
shell finds a match, it passes that name to the calling programi if it cannot
find a match, it passes the argument with the special character treated
literally. If $nonomatch is not declared and the C shell fails to find a
match, the C shell will display an error, as illustrated here:

<77> echo tempfile?
echo: No match
<78> set nonomatch

<79> ecbo tempfile?

tempfile?
<80>

[Set variable nonomatch]

[The echo command interprets the ques-]
tion mark literally

412 Variables reserved by the C shell

SEARCH PATH $path

The C shell uses the value of this variable as the eommand seareh path, as­
signing to it the default value lusr/bin Ibin. Therefore, you ean exeeute only
files that reside in the eurrent directory. This variable is explained in detail
in Chapters 21, "Introduetion to the Boume Shell" and 25, "Introduction
to the C Shell."

PROMPT SYMBOL $prornpt

The value of this variable is your prompt symbol. If you don't set prompt,
the C shell will set % as the default value. This variable is explained in
greater detail in Chapter 25, "Introduetion to the C Shell."

PATHNAME OF THE SHELL $shell
The value of this variable is the pathname of the shell. The variable shell
refiects whatever is set in the file letc/passwd, as shown here:

<80> echo $shell
/bin/csh
<81>

The Ibin/csh response indieates that you are using the C shell.

EXIT STATUS OF THE LAST COMMAND $status
The value of this variable is the exit status retumed by the eommand most
recently invoked.

TIME TO EXECUTE A COMMAND Stirne
When this variable is set, the shell displays the number of seconds to exe­
eute the most reeent eommand (user time, system time, real time, and the
pereentage of real time spent on user time and system time eombined):

<81> set time
<82> pwd
/usr/XENIX/book/chapter21
O.lu 0.4s 0:02 24%
<83>

The numbers shown indieate user time (0 . 1), system time (0 . 4), and
real time in seconds (0 : 02) required to proeess the pwd eommand, along
with the pereentage ofreal time spent on user time and system time ((0.1 +
0.4)/2).

26. C Shell Variables 413

TERMIN AL TYPE $TERM

This variable, which is set with the setenv command, indicates the type
of terminal you are using. You must set this variable before you can use vi,
more, or one of several other programs.

PROCESS IDENTIFICATION NUMBER $$

The value of this variable is the process identification number of the current
process (discussed in greater detail in Chapter 21, "Introduction to the
Boume Shell").

COMPLETE MESSAGES $verbose

This variable works like the -v option of the Boume shell when invoked with
the sh command. When verbose is set, your commands will be echoed
when read by the C shell.

PERMANENT SETTINGS

If you want any of these variables set to a value of your choice every time
you log in, place them in your .cshrc file, which is executed each time you
log into the system and each time a new process is created.

26.6 Summary

In this chapter you leamed about assigning values to string and numeric
variables, working with variables as arrays, performing arithmetic and log­
ical operations, and special C shell variables.

ASSIGNING STRING VALUES

Use the set command to assign astring value to a variable. After the string
value has been assigned, call the variable preceded by a dollar sign. Use the
set command by itself by display all declared variables and their assigned
values. Use the unset command to undeclare a variable.

The C shell treats the value of a variable as an array whenever the as­
signed value is enclosed in parentheses. This allows you to access individual
elements of the array. Use null strings within single quotes to declare an
array. Once declared, an array can be filled one position at a time.

Use a quest ion mark between the dollar sign and the name of a variable
in an echo command to determine whether or not a variable has been
declared. The response will be either yes (1) or no (0). U se apound sign

414 Summary

(#) between the dollar sign and the name of a variable in an echo command
to obtain the number of elements in an array.

ASSIGNING NUMERIC VALUES

Use the @ instead of the set command to assign a numeric value to a
variable. After the string value has been assigned, call the variable preceded
by a dollar sign. Use the @ command by itself to display all declared
numeric variables and their assigned values.

Use the operators +, -, *, /, and % to perform arithmetic with numeric
variables. Use the ++ and +=n operators with the @ command to increase
the value of a variable by one (or by n). Use the - and -=n operators to
decrease the value of a variable by one (or by n). U se the - operator to
obtain the one's complement of a variable.

Use the operators <, >, <=, >=, !=, and == with the @ command to
perform logical test. The response will be either true (1) or false (0). Use an
array selector in square brackets with the @ command to assign a numeric
value to an individual element in an array. You can use the @ command
to perform either arithmetic or logical tests on individual elements of an
array.

VARIABLES RESERVED BY THE C SHELL

Nineteen variables are reserved for use by the C shell (see Appendix I,
"Summary of the C Shell"). You can set some of these reserved variables
in your .cshrc file, which is executed each time you log on and each time a
new process is created.

27

C Shell Procedures

27.1 Executing a file as a shell procedure

When used as a programming language, the C shell provides mechanisms
similar to those used in the Boume shell, but these mechanisms require
slightly different program syntax. A file can be invoked as aCshell proce­
dure in one of two ways:

• Make the file executable .

• Execute the csh command with the file's name as an argument.

MAKING A FILE EXECUTABLE

Whenever you make a file executable with chmod, it becomes a command
file. This means that you can execute it as anormal command within the
directory where this file resides. Before executing a shell file, the C shell
checks for apound sign (#) as the first non-blank character. If this symbol
is missing, the file will automatically be executed in the Boume shell by
default (see the example in the next section).

EXECUTING THE csh COMMAND

Invoking the csh command with the name of the desired file as an argument
is the surest way to have this file executed by the C shell, as shown here:

<1> csh Eilename

Like the Boume shell, the C shell passes the filename as the value of argv[O]
and any following words as argv[1], argv[2], and so on.

FILE CHECKING

The C shell has a method for checking files similar to the test statement
of the Boume shell. However, the format of the expressions, which may be
used in if, for each, and while statements, is different. Each expression

416 Executing a file as a shell procedure

returns a status of either true (1) or false (0), depending on what is being
tested:

-e
-z
-f
-d
-0

-r
-w
-x

file name

true if the file exists
true if the size of the file is zero
true if the file is an ordinary file
true if the file is a directory
true if the user owns the file
true if the file is readable
true if the file is writable
true if the file is executable

27.2 Forming conditional statements

THE SIMPLE CONDITIONAL STATEMENT if
Like the if statement of the Bourne shell, the if statement of the C shell
evaluates the status of the expression. If it is true, the shell executes the
statement that folIows; if it is false, the shell skips the statement that
folIows. Here is an example:

<2> cat checkfile.l
This program checks for existence of the argument file
if -e $argv[l] echo "File $argv[l] exists"

The pound sign (#) is mandatory; without it, the C shell cannot execute
this file. As shown in the example, the line that begins with the pound sign
mayaIso contain comments, which will be ignored by the C shell.

The if statement evaluates the expression -e $argv[1], which tests for
the existence of an argument file. If an argument file exists, the shell will
execute the statement

echo "File $argv[l] exists"

The message is enclosed in double quotes to preserve the special meaning
of the dollar sign ($). A syntax error will result if the statement that
follows the logical test is complex (that is, contains a pipeline or a group
of statements).

THE THREE-WAY CONDITIONAL STATEMENT if ... then ... else
This statement works just like the if ... then ... else statement used in the
Bourne shell. This allows an alternative logical path for the program, based
on the status returned from the expression that follows if. Here is an ex­
ample:

27. C Shell Procedures 417

<3> cat checkEile.2
This is a modified version of checkfile.l
if -e $argv[l] then

echo "File $argv[l] exists"
else

echo "File $argv[l] not found"
endif

If the expression that follows the if statement is true (1), the command
list between the if and else statements is executed; if it is false (0), the
command list between the else and endif statements is executed. Notice
that endif is used to elose the if. .. then . .. else statement. If endif is miss­
ing, a syntax error will be displayed. In the example below, file checkfile.2
invokes itself and passes itself as its own argument:

<4> checkEile.2 checkEile.2
File checkfile.2 exists

AN ADDITIONAL ALTERNATIVE else if
The else if statement provides additional alternative logical paths for a C
shell program. This statement works the same way as the elif statement of
the Bourne shell. Here is an example:

<5> cat checktype
This program checks the file-type of the argument file

if -f $arg[l] then

echo "$argv[l] is an ordinary file"
else if -d $argv[l] then

echo "$argv[l] is a directory"
else

echo "$argv[l] is not found"
endif

The expression -f $argv[1] tests whether or not the first argument names
an ordinary file. If it does not, the shell evaluates the expression that follows
else if (-d $argv[1]) to determine w hether or not the first argument names
a directory. If it does not, the shell executes the command list between the
else and endif statements. If any of the expressions is true, then the shell
will execute the command list that follows immediately.

You can have more than one else if statement in aCshell procedure.
The else statement is optional, and only one endif is needed to elose the if
control structure, no matter how many logical paths are given. Let's invoke
checktype with checkfile.2 as its argument:

<6> checktype checkEile.2

418 Forming conditional statements

checkfile.2 is a normal file

27.3 Forming loops

THE BRANCHING STATEMENT

The format of the branching statement goto is

goto label

goto

The goto statement causes the C shell to search for a line within the file
that contains label: (with a colon following), then transfers program control
to this line. Here is an example:

<7> cat list. files
This program lists the files in a directory

if -d $argv[l] then

echo "$argv[l] is a directory"
goto list
else if -f $argv[l] then

echo "$argv[l] is an ordinary file"
else

echo "$argv[l] not found"
endif
list:

echo "Contents of $argv[l]:"
ls $argv[l]
exit

In this program, if the expression that follows the if statement is true
(the argument is a directory), the shell executes the goto list statement:
the C shell will search for the line that starts with the label list:, then
executes the commands that follow. In this case, the shell will displayalist
of all filenames in the directory named by $argv[1]. For example, directory
backup is a subdirectory that contains four files: file1.bk, file2.bk, file3.bk,
and file4.bk. Let's invoke list.files with backup as its argument:

<8> list.files backup
backup is a directory
Contents of backup:
filel.bk file2.bk file3.bk file4.bk

27. C Shell Procedures 419

THE LOOP CONTROL STATEMENT foreach
The foreach statement controls the loop structure, performing a function
similar to the for statement of the Boume shell. The format of the foreach
is as follows:

foreach variable (wordlist)
command(s)

end

The value of variable is initialized to the first member of wordlist on the
first iteration, then to the next member on each subsequent iteration. If the
value of variable is not null, the shell executes the command list between the
foreach statement and the end statement. Then the process is repeated
until variable has a null value, indicating that there are no more words in
wordlist to be assigned. In the example that follows, the shell copies each
item in buffer2 to buffer1 one at a time without changing its order:

<9> cat cp buff
Copy data from buffer2 to bufferl

set bufferl (" " ") [Initialize buffer1]
set buffer2 (A B C D E F) [Initialize buffer2]
set pointer 1 [Initialize the pointer]

foreach data ($buffer2) [Read a word of buffer2]

set bufferl[$pointer] $data [Write a word to buffer1]
@ pointer++ [Increment the pointer]

end

echo "bufferl $bufferl" [DiSPlay the name then the]
echo "buffer2 $buffer2" contents of each buffer
exit

As explained in the previous chapter, before an array can be used, it must
be declared with the desired number of elements. In this case, buffer1 and
buffer2 are declared with six elements each. In the first iteration of the
foreach loop, the value of variable data is initialized to the first element
of array buffer2, which is A.

Since variable pointer has been initialized to be 1, the statement
buffer1 [$pointer] means buffer1 [1]. Therefore, $data is written to buffer[1]
on the first iteration. At the end of the loop, the statement @ pointer++ in­
creases the value of pointer by one. So in the second iteration, buffer1 [$pointer]
becomes buffer1 [2]; in the third iteration, it becomes buffer1 [3]; and so
on.

After processing character F (Le., transferring it from buffer2[6] to
buffer1[6], foreach finds no more characters left in buffer 2. So when

420 Forming loops

foreach attempts a seventh loop, assigment of the next character to data
fails, and the loop terminates. This is what you will see on the screen when
you invoke cp_buff, as shown here:

<10> cp_buff
buffer1 ABC D E F
buffer2 ABC D E F

LOOPING WHILE TRUE while

The while statement evaluates the the expression that follows it in paren­
theses. If the status of the expression is true, the shell executes the command­
list between the expression and the end statement. If its status is false, the
shell halts execution of the while loop. The syntax of the while loop is

while (expression)
command(s)

end

In this example, the while loop is used to fill the buffer (which has been
declared as an array) with numbers:

<11> cat fillup
Fi11 an array with numbers in ascending order

set buffer = (0 0 0 0 0)

set pointer = 1

set count = $#buffer

while ($count)

set buffer[$pointer]

@ pointer++

@ count---

end

echo $buffer

[Initialize butter with zero es]
[Initialize pointer at 1]
[Set count to the buffer length (5)]

[Test whether to begin an iteration]
$pointer

[Write a number into buffer]
[Increment pointer by one]
[Decrement count by one]

[Display the contents of the array]

The key to this loop is the value of $count, which is initialized to the
number of elements in buffer (5), then decremented by one at the end of
each loop. The while statement ends the loop when the value of count
becomes zero, meaning that there are no more numbers left.

During the first iteration, since $count is not a zero, the shell executes
the statements in the loop: the shell assigns to the first element of buffer
the value of the pointer (1) (set buffer[$pointer] = $pointer be comes set
buffer[1] = 1), the pointer is increased to 2 by the statement @ pOinter++,
and the count is decreased to 4 by the statement @ count-.

27. C Shell Procedures 421

During the second iteration, the shell assigns 2 to buffer[2], the pointer
goes up to 3, and the count drops to 3; during the third iteration, the shell
assigns 3 to buffer[3], the pointer goes up to 4, and the count drops to
2; and so on until the fifth iteration. Here is a diagram that summarizes
what happens during each iteration (with "before" and "after" values for
the pointer and the count):

Iteration Value at the Start Value Assigned Value at the End
Number Pointer Count to the Array Pointer Count

1 1 5 buffer[l] = 1 2 4
2 2 4 buffer[2] = 2 3 3
3 3 3 buffer[3] = 3 4 2
4 4 2 buffer[4] = 4 5 1
5 5 1 buffer[5] = 5 6 0

At the end of the fifth iteration, the count becomes zero, indicating that
there are no more numbers left. When the while statement attempts to
begin a sixth iteration, it discovers a zero in the statement while ($count),
and the loop ends. This is wh at you will see on the screen when you invoke
fillup:

<12> fillup
1 2 3 4 5

BREAKING OUT OF A LOOP break
The break statement of the C shell is similar to the break statement of
the Boume shell. In the C shell, the statement breaks to the nearest while
or foreach loop. This example will help you with file management:

<13> cat backup
Copy files from current
if -d #home/backup then

goto COPY:

else

mkdir $home/backup

endif
COPY:
set total = 'ls'

foreach file ($total)

if ($#argv == 1) then

directory to "$home/backup"
[Does directory backup exist?]

[If so, go to COPY]

[If not, ...

create such a directory]

[List all the files in total]

[Test whether to begin another]

[rs there an argument after backup?]

if ($#argv[l] == $file) [Ifso and ifit matches the current file,]
break then stop here

else
cp $file $home/backup [If not, then copy this file ...
echo ' $file copied' and displayamessage]

endif

422 Forming loops

end
echo ,* Backup completed *,

This procedure lets you back up all the files in the current directory to a
directory in your horne directory called backup-with one added feature.
If you include a file name as an argument, backup will copy up to, but
not including, the file named. For example, suppose your current directory
contains these files:

apple
banana
coconut

date
fruit
grape

kiwi
lemon
melon

orange
peach
pe ar

If you invoke backup without an argument, all 12 files will be copied to
backup. If you type one of these filenames after backup, then only those
files in the directory that precede the file named will be copied, as shown
here:

<14> backup Eruit
apple copied
banana copied
coconut copied
date copied

* Backup completed *
<15>

CONTINUING A LOOP continue
This statement directs program control to the nearest while or foreach
loop. Here is a program that takes an argument and selects even numbers:

<15> cat select
Select only even numbers from arguments entered

if ($#argv == 0) then

echo "Numeric arguments required"

exit

if ($#argv > 10) then

echo "Only ten numbers allowed"

exit

endif
set output = (0 0 0 0 0 0 0 0 0 0)

set count = 1

foreach number ($argv)

[Are there no arguments?]

[If so, displayamessage

and terminate the pro gram]

[Are there more than ten ar-]
guments?

[If so, displayamessage

and terminate the program]

[Initialize output with ten ze-]
roes

[Begin the counter at one]

[Set number to the next ar-]
gument

if ($number % 2) continue

set output [$count] = $number

@ count++
end
echo "Even numbers: $output"

27. C Shell Procedures 423

[Test the argument for odd or]
even

[
If it is even, store it in out"]
put and increase the counter
by one

[Display the even numbers]
stored

You activate this program by typing select, followed by a sequence of no
more than ten whole numbers. The first seven lines of statements take care
of incorrect invocations of the command (no numbers typed after select
or too many numbers). Then two variables are initialized (the array that
will hold the numbers selected and the counter).

Finally, the main procedure begins the foreach statement, which begins
by assigning the first number typed to the variable number. The if state­
ment on the next line is the key to this program. It uses the remainder
operator (%) to determine whether or not the number is even:

1. If the number is even, the remainder that results from dividing by 2
will be zero (indicating false), the continue statement will be ignored,
the number will be assigned to output on the next line, and the
counter will be increased by one for the next iteration. The counter
serves as apointer to the next location in output-in wh ich the
number is to be stored.

2. If the number is odd, the remainder will be 1 (indicating true), and
the shell will execute the continue statement, which acts like a goto
statement, returning execution to the foreach statement. This means
that the number will not be assigned to output and the counter will
not be increased.

3. If the argument isn't a number, the shell will display an error message.

Finally, after all arguments have been processed, the resulting value of
output is displayed. Here is what you will see displayed on the screen:

<16> select
Numeric arguments required

<17> select 3 4 5 11 161722 31 46 63
Even numbers: 4 16 22 46 0 0 0 0 0 0

EXITING FROM A LOOP exit

This statement works exactly like the exit statement of the Bourne shell: it
forces a program to abort and return to the parent process. You can pass
an exit status as an argument of the exit statement to the parent process.
See Chapter 24, "Bourne Shell Program Control," for a detailed dCBcriptioll

of this statement.

424 Forming loops

27.4 Other programming techniques

MULTI-WAY BRANCHING switch

The switeh statement, which is similar to the ease statement of the
Bourne shell, provides multi-way branching. End each switeh statement
with breaksw, which is analogous to the double semicolon (;;) of the
Bourne shell. Program control will then break from the switeh statement
and resume at the endsw statement. The format of the switeh statement
is as follows:

switch (string)
case pattern1:

command(s)
breaksw
case pattern2:

command(s)
breaksw
default: [optional]

command(s)
breaksw
endsw

The switeh statement passes string to each ease to match the pat­
tern. After executing the command list of the ease selected, the breaksw
statement directs program control to the statement that follows the endsw
statement. Without the breaksw statement for each ease, the program
will continue to execute the next ease, even though there is no match. If
no match is found, the command list following the default statement is
executed. Here is an example:

<18> cat matchfile.l
This program matches one of two files

if ($#argv == 0) then

echo "No argument is declared"
exit

endif
switch ($argv[l])

case FILE1:
echo" You have selected FILE1"

breaksw
case FILE2:

echo "You have selected FILE2"
breaksw
default:

echo "You must select either FILE1 or FILE2"
breaksw [optional]

endsw

27. C Shell Procedures 425

The if statement is to test for the existence of an argument to be passed
by the C shell before going to the switeh structure (optional). If you leave
out the if statement to test the existence of argv[1] as required, the switeh
statement will refuse to go on, and the program will terminate with a vague
message from the C shell.

If the above program is invoked with an argument, The switeh structure
will try to match this argument with string FILE1 or FILE2. If there is
no match, the default is invoked; this procedure includes error-checking
to guarantee correct usage. The last breaksw is optional. Although it is
not required, it is good practice to have it there. If you omit it, program
control will go to the endsw statement anyway. (The breaksw statement
will also direct program control to the endsw statement.) Here you see
matehfile.1 invoked three different ways, the first two incorrect:

Invoke matehfile.1 without an argument:

<19> matahfile.l
No argument is declared

Invoke matehfile.1 with argument unknown

<20> matahfile.l unkown
You must select either FILEl or FILE2

Invoke matehfile.1 with argument FILE2:

<21> matahfile.l FILE2
You have selected FILE2

Since the switeh structure also accepts metacharacters such as *, ?, and
so on, as expansion characters, we can change default to become another
ease with the statement ease *~without changing program performance:

<22> aat matahfile.2
This program matches one of two files

if ($#argv == 0) then

echo "No argument is declared"
exit

endif

switch ($argv[l])
case FILE1:

echo" User seclects FILE1"
breaksw
case FILE2:

echo "User selects FILE2"
breaksw
case *: [Change]

426 Other programming techniques

echo "You must select either FILE1 or FILE2"
endsw

SHIFTING ARGUMENTS shift
This statement is the same as the shift statement of the Boume shell. It
shifts each element of argv to the left one position, and discards argv1].
If the value of argv does not have at least one word, then the C shell
regards argv as an unset variable, and displays an error message. Here is
an example:

<23> cat moveleft
Shift arguments to the left
foreach words ($argv[*])

shift
echo $argv

end

Let's invoke moveleft with three arguments (1, 2, 3):

<24> moveleft 1 2 3
2 3

3

<25>

[Argument 1 is discarded]
[Argument 2 is discarded]
[Argument 3 is discarded]

INTERRUPT-HANDLING onintr
At times you may want to terminate aCshell program while it is running
by pressing the eDEL) key. However, you also want to remove all of the
temporary files that were created by this program at the time it termi­
nates. You can do so with the onintr statement. This is the format of the
statement:

onintr label

When an interrupt occurs, the C shell clears the interrupt and passes
control to the onintr statement, which executes the line that starts with
label:~as if you had given a goto statement. Here is an example:

<25> cat print.for.mat

if ($#arv == 0) then [Does the file exist?]

echo " Missing input file"
exit 0
else if -d $argv [1] then [Is the file a directory?]

echo" $argv[l] is a directory"
exit

27. C Shell Procedures 427

endif
onintr cleanup [Interrupt control]

pr $argv[l] > $home/bin/tempfile
cp $home/bin/tempfile $arg[l]

cleanup: [Interrupt-handling routine]
if -f $home/bin/tempfile

rm $home/bin/tempfile
exit

If you press the CDEL) key whHe this program is running, onintr will
transfer program flow to the line labeled cleanup. This interrupt handling
routine checks for the existence of tempfile in your bin directory. and re­
moves it before exiting.

27.5 Built-in commands

GENERAL DESCRIPTION

The C shell includes buHt-in commands, to which the C shell can pass
control without using a search path or creating a new process. One of these
commands is described below. For a complete list of buHt-in commands,
see Appendix I, "Summary of the C Shell."

EXECUTING A COMMAND

This buHt-in command executes the command argument in the current
shell without returning to the calling program. Here is an example:

% cat example
Check the directory
if -d $argv[l] then

%

cd $argv[l]
exec pwd
echo 'This line is never displayed'

In this program, the last line will never be executed because the exec
command after executing the pwd command will exit to the C shell and
never return to program example.

27.6 Summary

In this chapter you learned about executing a file as a shell procedure; the
statements for forming conditional structures (If, then, else, and else If);
the statements for forming loops (goto, foreach, while, break, contlnue,

428 Summary

and exit); and a few other tools for writing C shell procedures (switeh,
shift, and onintr).

EXECUTING A FILE AS A SHELL PROCEDURE

To make a file executable by the C shell, you must place apound sign (#)
at the beginning of the first line, then use the change mode command with
u+x. To execute any file as aCshell procedure, use the esh command,
followed by the filename. The C shell uses express ions to test files and
directories in if, foreaeh, and while statements the way the Bourne shell
uses test to performs similar tests.

FORMING CONDITIONAL STATEMENTS

You can use the if statement by itself to carry out a simple test. For more
involved tests, you can use the if . .. then . .. else construction. You can use
the else if statement to add an additional set of alternatives.

FORMING LOOPS

Use the goto statement to force the C shell to branch to a labeled line. Use
the foreaeh statement in the C shell as you would use the for statement
in the Bourne shell. Use the while statement to form a loop, and sustain
execution of the loop as long as the expression being tested indicates true.

Use the break statement in the C shell much the way you would use
the break statement in the Bourne shell. Use the eontinue statement to
direct pro gram control to the nearest while or foreaeh loop. Use the exit
statement in the C shell as you would use the exit statement in the Boume
shell.

OTHER PROGRAMMING TECHNIQUES

U se the switeh statement as you would use the ease statement in the
Bourne shell to perform multiple branching, based on pattern-matching,
terminating each alternative with breaksw (instead of ;;). Use the shift
statement in the C shell as you would use it in the Bourne shell. Use the
onintr statement in the C shell to perform clean-up in the event that the
procedure is interrupted before completing execution. It will then act like
a goto statement.

FOR FURTHER READING

If you'd like additional information about shell programming, refer to the
following:

27. C Shell Procedures 429

Kochan, Stephen G. and Patrick H. Wood, UNIX Shell Programming, Has­
brouck Heights, NJ: Hayden Book Company, 1985

Anderson, Gail and Paul, The UNIX C Shell, Englewood Cliffs, NJ: Prentice­
Hall, 1986

Part VI

System Administration

28 Basic Information 433

29 File Systems 445

30 Disks and Tapes 459

31 Disk Maintenance 475

32 Startup and Shutdown 489

33 Terminals 503

34 Printers 515

35 System Security 527

36 System Accounting 541

In Part VI, you williearn a little about what goes on internally in UNIX.
You will also learn the commands and procedures for providing disk space
for users, checking for errors, formatting disks, performing backup and re­
covery, starting the system up, shutting the system down, adjusting termi­
nals and printers, taking care of security measures, and monitoring system
activity and performance. The exact procedures may vary from one system
to another.

28

Basic Information

28.1 The system administrator

FUNCTIONS

When many people are using a single computer system at the same time,
there must be orderly procedures for dealing with administrative details.
On larger systems, there is usually a system administrator who is respon­
sible for these tasks. However, if there is no administrator for your system
(or if you have a sm aller system), you may have to take over. The person
in charge of system administration always has to take care of these things:

1. Maintaining file systems-This includes keeping file systems free of
errors.

2. Taking care oi devices-This includes mounting and unmounting
tapes, installing terminals and printers, backing up user files, and
(if necessary) reconstructing the system after a failure.

3. Maintaining disk space-This includes making sure that users have
enough disk space to work with.

4. Operating the system-This includes starting the system up, format­
ting disks, shutting the system down, handling terminals, and so on.

5. Maintaining security-This involves protecting the system and indi­
vidual user files from unauthorized use and possible damage.

Some administrators mayaiso have to assurne these additional, more
complex tasks:

6. Maintaining accounting-This includes monitoring usage by user to
aid security, to evaluate performance, or to implement a billing sys­
tem.

7. Setting up communication-This involves connecting communication
lines and setting up the software to allow communication between
different UNIX systems. (See Part VII.)

434 The system administrator

A SPECIAL STATUS

To make it easier for a system administrator to get the job done with­
out having to worry about access permissions, the system administrator is
allowed to perform certain critical tasks as a super-user. The super-user
has unlimited access to everything in the UNIX system, no matter what
permissions have been granted or denied to other users.

However, because of this unlimited access, the super-user can also cause
enormous damage to a UNIX system. One mistyped command can demolish
an entire file system with one press of the (RETURN) key. For this reason,
only one person should be allowed to have super-user status. And even then,
this person should log in as an ordinary user most of the time, and assurne
super-user status only when necessary for system maintenance.

A SPECIAL PROMPT

There are two ways to log in as a super-user, depending on whether or
not you are already logged in as an ordinary user. If you are not currently
logged into the system, type the following, then the required password:

login: root
Password:

If you are currently logged into the system, type the following, then the
required password:

$ su
Password:

In either case, you will be presented a special prompt to remind you of
your super-user status (#). Many, but not all of the tasks performed by the
system administrator require super-user status.

A SPECIAL DIRECTORY fete

The directory in which most administrative files, directories, and commands
reside is called /etc. Having the commands here keeps them separate from
ordinary commands, which reside in /bin and /usr/bin. This reduces the
possibility that an ordinary user may damage the system by accident.

In this book, we'll use full pathnames for commands in most instances to
avoid confusion about which commands are administrative and which are
not. However, if you you'd like to use the shorter names (fsek instead of
/etc/fsck, eron instead of /etc/cron, and so on), just add /etc to the front
of your command pathname list.

28. Basic Information 435

The procedure for the Boume shell is to include the following lines in
root's shell start-up file .profile, which will be executed if you log in as
root:

PATH=/etc:/bin:/usr/bin:$HOME/bin:
export PATH

The procedure for the C shell is to include the following line in root's
shell start-up file .Iogin:

set path =(/etc /bin /usr/bin $HOME/bin .)

Another way for you to distinguish administrative commands from or­
dinary commands in this book is to look at the prompt that precedes the
command (# means administrative, $ or % means ordinary).

COMMUNICATING WITH USERS

Besides using themail command, there are three ways a system adminis­
trator can send messages to users:

• Use the message of the day.

• Use a news item.

• Use the wall (write-all) command.

The file /ete/motd contains the message of the day, which the system
administrator can arrange to have displayed on the screen as each user logs
in. This file can be used for any announcement the system administrator
may want to make to all users. For example, suppose you want each user to
see this message at login: "System shutdown at 6:00 pm today (Thesday)."
You can do this by changing to the fete directory, editing the file motd,
changing the current message of the day to the new one, and storing the
file.

To get abrief announcement to users, use the news command. To reach
users who are currently logged in, use the write-all command (wall).

Users can send messages back to the system administrator by directing
mai! to root, like this:

$ mail root < problem

PLAN FOR PART VI

It might appear that now is the time to begin describing how to start up
the UNIX system. However, that procedure involves using many different

436 The system administrator

administrative commands, which in turn require that you know something
about what goes on inside UNIX. Therefore, in keeping with the rest of this
book, we've chosen to lay the groundwork one step at a time, which means
saving start-up procedures for a later chapter. Starting up the system will
be much clearer to you if you first become familiar with the individual
subprocedures.

28.2 Time-sharing concepts

MEMORY AND DISKS

A program can only be executed from within a computer's memory. The
most efficient way for a computer to operate is to have all the programs that
it will ever execute available in memory at all times. However, with UNIX,
this is out of the question; there are just too many programs, and memory
is too expensive. Of the hundreds of UNIX programs that exist, only about
two or three dozen of them will fit into the memory of a computer with
today's technology.

The solution is to store the programs on disk, which is much less expen­
sive than memory, then read them into memory when they are needed. This
is slower than keeping them in memory, but it allows UNIX to function.

TIME-SHARING

UNIX is a multi-user, multi-tasking time-sharing system:

• multi-user-many users can operate it at the same time.

• multi-tasking-each user can execute several commands at the same
time.

• time-sharing-it accommodates multiple users and tasks by sharing
its processing time with all of them, dividing it into small intervals.

By allocating to each process by turns a tiny interval of time, rat her
than completing one process before starting the next, UNIX can create the
illusion that each user has exclusive access to the system. This rotation of
processes is an example of multiplexing memory space.

As each process begins execution, the system attempts to find space for
it in memory. Then to each process, the system allocates a pre-determined
time slice. If there is insufficient space left in memory to accommodate a
new process, the system can make room for it by copying one of the existing
processes to a special disk area called the swap area.

For example, suppose various users enter the following commands from
their terminals: date, who, be, vi, nroff, sort ps. Then, at consecutive

28. Basic Information 437

time intervals, memory allocation may change as shown in Figure 28.1
(shading indicates unused memory).

FIGURE 28.1. Time-sharing with various processes.

ps ps

VI VI Ij
bc bc sort

who who
nroU nroU nroU nrofl

date date date

kernel kernel kernel kernel kernel kernel kernel kernel

Figure 28.1 shows how various processes occupy memory together, com­
ing and going at various time intervals. It also shows how these pro ces ses
may overlap one another in time. As each new command is executed, the
system finds space for another process in memory, while continuing to ro­
tate processes through its time-sharing scheme.

SWAPPING

In most of the eight snapshots of memory shown in Figure 28.1 there is some
unused memory. What happens if all memory is occupied (as in the seventh
snapshot) and the system receives more processes? It copies processes to
and from the swap area, an action that is known as swapping. Under a
swapping scheme, entire processes are swapped back and forth between
disk and memory.

Swapping is more efficient than executing one process at a time or ex­
ecuting processes in partitions of fixed sizes. However, it requires a great
deal of reading to and writing from disko This is one reason why UNIX
requires high-capacity, high-speed disks to run effectively.

PAGING

Just as swapping is more efficient than earlier methods of disk management,
an additional refinement results in an even more efficient method. Instead
of swapping entire processes, why not swap only fixed segments of code
called pages? This refined method of swapping is called paging (or demand
paging). Statistical studies show that the optimal size of a page is one or
two kilobytes. A paging diagram would look similar to Figure 28.1, with
one difference: only one page of each process would be in memory at any

438 Disks and file systems

given moment. The remaining pages of the process would reside in the swap
area, available upon demand.

SYNCHRONIZATION

While swapping or paging is taking place, information in various user files
becomes altered in memory. However, there is nearly always a certain in­
terval between the time the information is altered and the time the disk
file is updated to reflect the alterations. During this interval, there is a dis­
crepancy between the original file and the copy of the file being processed
in memory. In other words, the two are not synchronized. If apower failure
should halt the system while it is in this state, there will be flaws in the
system the next time you start it. You can issue a command, called sync,
that forces all information in memory to be written to disko Specific uses
for this command are discussed in later chapters.

28.3 Disks and file systems

In the chapters that follow, you willlearn about disks and file systems in
detail. Before getting into these detailed discussions, you may want some
background information.

FORMATTING DISKS

A new disk that comes from the manufacturer is simply a blank magnetie
medium, whieh is unusable in a computer system. To make the disk usable,
you have to install the disk and run a program that organizes the blank
surface into locations that can be accessed by a program. This process is
called jormatting, and the result is a jormatted disko

A formatted diskette contains narrow concentric rings of read/write space
called tracks. Each track is divided into a fixed number of addressable
areas called sectors. A program can then locate information on the disk by
identifying tracks and sectors by number.

On larger drives with multiple heads and multiple disk platters, each
set of tracks that are vertically aligned is called a cylinder (named for the
geometrie shape formed by the tracks). For example, if a drive has six heads
facing the six surfaces of three platters, with 100 tracks on each platter,
there will be exactly 100 cylinders, each formed from six vertically aligned
tracks (see Figure 28.2).

On a three-platter disk drive with six surfaces, one surface would be
used for servo control information, requiring only a read head. Since each
of the other surfaces would have read/write heads, the drive would have
five tracks per cylinder. Since the tracks are vertically aligned, it is possible
to change tracks without changing the position of the read/write heads.

28. Basic Information 439

FIGURE 28.2. Cylinders, tracks, and sectors on a disko

Five read/write heads

,
"I::::L __

J' J-

=0-,
D-

'0-
1

--- I
One servo

control head

D
Spindie

INTERLEAVING

Three
platters Cylinder

If the sectors of a cylinder are numbered consecutively, they may be too
dose together for the read/write head to read or write in a single pass.
Extra passes will be required, and this will slow down the entire system.
To remedy this, you can offset the numbering, allowing the read/write head
to read or write every other sector (or every third sector, or every fourth).
This kind of numbering scheme is called interleaving (see Figure 28.3).

FIGURE 28.3. Interleaving sectors.

No interleaving 2 to 1 interleaving 4 to 1 interleaving

For each disk controller and drive, there is an optimal interleave factor.
If you set interleaving too low, disk operations will be seriously degraded;
if you set interleaving too high, disk operations will be slowed, but not
nearly as drastically. The statistics in the following table, gathered from an

440 Disks and file systems

actual 30-megabyte disk, illustrate the differences in disk performance for
different interleave factors.

Disk Revolutions
Interleave Required to Transfer Data Transfer Rate

Factor a Single Track (Bytes per Second)
lto 1 26 30,706
2 to 1 26 30,706
3 to 1 26 30,706
4 to 1 26 30,706
5 to 1 5 159,744 Optimum
6 to 1 6 133,120
7 to 1 7 114,088
8 to 1 8 99,840

PLACEMENT OF FILES

Files that are written to a newly formatted disk can usually be placed on
the disk fairly neatly in contiguous sectors. However, as files are edited,
changed, and rewritten to the disk over time, the arrangement can become
very disorderly. It's like filling part of a page with writing, and then going
back to add more words to a sentence. There's no room left around the
sentence itself, so you write the addition in an open space and draw an
arrow pointing from the sentence to the added text.

This is what happens on the surface of a disko As the space begins to
fill up and files are enlarged, files become more and more fragmented, with
fragments scattered around the disko What keeps each file intact from the
point of view of the user is a set of pointers (like your handwritten arrows)
that show where all the fragments are located (see Figure 28.4).

FILE SYSTEMS

The logical structure that keeps track of the location of files and directories
(which are also files) is a file system. In Chapter 29, "File Systems," you
williearn in detail how a file system is organized. For now, let's see how
file systems and disks are related in general terms. In the simplest case,
one file system may occupy an entire disko However, it is more likely that
each disk will contain two or more file systems.

Each UNIX system is a collection of file systems. However, because these
file systems are woven into a seamless whole, there is no need to refer
to individual disk drives, as there is in MS-DOS. Each physical device
(disk) contains at least one logical device (file system). But once the file
system is incorporated into the over-all system (mounted), the disk becomes
transparent.

28. Basic Information 441

FIGURE 28.4. Files and pointers.

Consecutive sectors of a
file (here labeled A, B, C,
and D) may be scattered
around the surface of the
disk

A disk that contains more than one file system is said to be partitioned.
For example, suppose a disk with 100 cylinders is to be divided into two
equal parts to contain two file systems. Then the first file system will occupy
cylinders 0-49 and the second will occupy cylinders 50-99.

THE SWAP AREA

Although the swap area is not a file system, it can also occupy either an
entire disk or one parition of a disko This explains why it is sometimes
called the swap disk (or partition). As of System V, Release 3, the swap
area contains pages of programs, rather than entire programs.

XENIX AIDS custom
XENIX provides aseries of menus for assisting the system administrator in
preparing disk drives and installing the system. In particular, the XENIX
custom command allows you to install or remove portions of the system
with the aid of prompts. Screen displays tell you how much free space is
left on the disk, and how much space is occupied by each feature currently
installed.

442 Disks and file systems

28.4 Summary

In this chapter, you learned about the system administrator's responsibil­
ities and tools, the concept of time-sharing, and some basic facts relating
to disks and file systems.

THE SYSTEM ADMINISTRATOR

The system administrator (or the person who is handling system admin­
istration) takes care of disk maintenance, system operation, backup and
recovery, and security, and possibly system accounting and communica­
tion. This person has super-user status, a special prompt (#-), and a special
directory called /etc.

A system administrator can communicate with users with the message
of the day (stored in /etc/motd), a news item (either the news command
or the /usr/news directory), or the wall (write all) command. Users can
communicate with the system administrator by sending mail to root.

TIME-SHARING

The commands for a computer system are stored on disk, from which they
are copied into memory to be executed. In a time-sharing system, no one
command is processed to completion in one continuous period of time;
instead, many commands are rotated through execution in small time in­
tervals. To make this possible, UNIX reserves a special area of disk space,
called the swap area, for shufHing command files in and out of memory.
The swap area stands apart from the rest of the UNIX system, in that it
does not belong to any file system. (In System V, Release 3, paging replaces
swapping.)

DISKS AND FILE SYSTEMS

Disks, which are the storage areas for the UNIX system, must be format­
ted before they can be used. Formatting organizes a disk into cylinders
and sectors (with vertically aligned tracks on a multi-disk system forming
a cylinder). The operating system can then place files on the disk in ad­
dressable locations. Offsetting the numbering of sectors to prevent delays
is called interleaving.

A collection of files and directories, along with the information for keep­
ing track of them, is called a file system. Each file system can occupy either
an entire disk or one segment of a disk called a partition. The swap area
likewise can occupy either an entire disk or one partition. (Beginning with
System V, Release 3, the swap area contains pages of programs, rather than
entire programs.)

28. Basic Information 443

FURTHER READING

To learn about memory management in greater detail, refer to

Tanenbaum, Andrew S., Operating Systems: Design and Implementation,
Englewood Cliffs, NJ: Prentice-Hall, 1987.

Bach, Maurice J., The Design of the UNIX Operating System, Englewood
Cliffs, NJ: Prentice-Hall, 1986.

Corner, Douglas, Operating System Design: the XINU Approach, Engle­
wood Cliffs, NJ: Prentice-Hall, 1984.

29

File Systems

In Chapter 28, "Basic Information," you learned a few things about the
system administrator, time-sharing, file systems, and disks. Now you will
learn more about file systems: how they are structured and how to keep
them free of errors. You may wish to skip the technical details and proceed
directly to "Checking File Systems," page 451.

29.1 The structure of a file system

FILE SYSTEMS IN GENERAL

UNIX inGludes within itself information about the location of each existing
file, as well as information about unused space for new files. The system
handles disk allocation for all users, assigning locations automatically, re­
trieving copies of any files required by users, and returning unused space
to a free pool. The information used to manage files, along with the files
themselves, constitutes a file system. Each UNIX system has at least one
file system; most have many files systems. The basic unit of a file system
is the block. (In earlier versions, each block was 512 bytes long; in System
V, each block is 1,024 bytes long.)

SYSTEM V FILE SYSTEMS

Each System V file system consists of a super-block, which stores infor­
mation about the file system as a whole and keeps track of records called
i-nodes; i-nodes, which contain information about files (including where
they are located); and actual files themselves. In Figure 29.1 you see a file
system with n total blocks, k - 1 i-nodes, and n - k data blocks.

The open block (block 0) is usually used to hold a bootstrap program,
but has no meaning to UNIX, which begins at block 1.

The super block (block 1) contains information about the file system as a
whole (see Appendix J, "Summary of System Administration," for details).
i-nodes (blocks 2 through k) are records that contain information about
directories and files. There is one i-node for each directory and one i-node
for each ordinary file. Each i-node contains information ab out a single file
(see Appendix J for detail~). The relationship bctwecn i-nodes, directories,
and files is shown in Figure 28.2.

446 The structure of a file system

FIGURE 29.1. Structure of a file system.

block 0

block 1

block 2

block k

block k+ 1

block n

Open Block

Super-Block

List 01 i-nodes

Data Blocks:
Files and
Indirect
Blocks

Data blocks (blocks k + 1 through n) fill the rest of the file system, and
ean form one of three things: a directory, a file, or an indirect list (which is
explained below).

FIGURE 29.2. Directories, files, and i-nodes.

- ,. Text file

text I 41659

l 41659 f--

38712 c- U Text file

exit I 25097

l 25097

Direclory i-Node Direclory File i-Node

SYSTEM V I-NODES

As shown in Figure 29.2, one direetory i-node provides the loeation of a
directory, whieh eontains the loeations of many file i-nodes, eaeh of which
points to the loeation of eaeh block of a partieular file. For a small file (up

29. File Systems 447

to 10 blocks, or 10,240 bytes), the i-node points directly to every block in
the file, using the first 10 of its own 13 addresses (1,024 X 10 = 10,240).

But as soon as a file grows to 10,241 bytes and beyond, a system of indi­
reet pointers go es into effect. The eleventh address of an i-node, if needed,
points, not directly to a block in the file, but to another data block, which
in turn points to the next 256 bytes of the file. This will accommodate up
to 266 blocks (or 272,384 bytes).

If a file should outgrow the capacity of the i-node's own pointers and of
the indirect block, then the next level of indirection goes into effect. The
twelfth address of an i-node points to one block, which then points to 256
blocks, each of which points to one block in the file. This will accommodate
up to 65,802 blocks (67,381,248 bytes).

Finally, if triple-indirection is required and the i-node go es to its thir­
teenth address, an individual file can grow (theoretically) to a maximum
size of 16,843,018 blocks (17,247,250,432 bytes). See Figures 29.3 to 29.6.
To summarize:

1. The first 10 addresses point directly to the first 10 blocks of the file.

2. The eleventh address (ifrequired) points to a block that contains the
addresses of the next 256 blocks of the file (single indirection).

3. The twelfth address (ifrequired) points to as many as 256 blocks, each
block pointing to another 256 blocks of the file (double indirection).

4. The thirteenth address (if required) points to as many as 256 blocks,
each block pointing to another 256 blocks, with each of them pointing
to 256 blocks of the file (triple indirection).

FIGURE 29.3. Direct addressing.

Address Blocks
1 == 1
2 == 2
3 -~==> 3
4 == 4 10 blocks
5 == 5 addressed
6 == 6 (1,024x10
7 == 7 bytes)
8 =} 8
9 ~ 9
10 == 10

DATA BLOCKS

Referring back to Figure 29.1, all data blocks in a file system that follow
the i-nodes (blocks k + 1 through n) can be described as containing one of
the following:

448 The structure of a file system

FIGURE 29.4. Single indirect addressing.

Address Blocks

1
2 256 blocks

11 -} addressed
255 (1,024 x 256
256 bytes)

FIGURE 29.5. Double indirect addressing.

2 =256 blocks 256 x 256

12 =
1 =256 blocks }

: = total blocks (1,024 x 256x 256 bytes)
255=256 blocks addressed
256=256 blocks

FIGURE 29.6. Tripie indirect addressing.

= 256 blocks ={ 256 blocks

256 blocks
256 x 256 x 256

13 = ={

256 blocks blocks addressed

256 blocks (1,024 x 256 x 256
=} 256 blocks

x 256 bytes)

={ 256 blocks

256 blocks
256 => 256 blocks

• Files

• Pointers to files (that is, they are indirect blocks)

• N either files nor pointers to files (that is, they are free)

• Pointers to unused blocks (members of the free-block list)

To summarize, then, most data blocks are either used for files or not
used for files. The file system identifies used blocks and maintains a list to
keep track of unused data blocks. Blocks used for files, already described,
are allocated to particular i-nodes (and possibly some indirect blocks for
long files); the list of unused blocks is called the free list.

Any time you create a new file, the file system does the following:

1. Sets aside data blocks to hold the file.

2. Adds pointers to those blocks to the "in-use" list (the i-nodes).

3. Removes pointers to those blocks from the free list.

29. File Systems 449

For example, suppose you have just completed a short editing session with
vi and you type : w to write the text to a new file called letter in directory
/usr/robin/text. Assuming that only one data block will be required for the
text, here is what happens (see Figure 29.7):

1. The system finds the next available data block in the free list.

2. The system assigns the block to an i-node by creating a directory
that contains the filename (letter) and i-node number.

3. The system removes the pointer to the block from the free list.

FIGDRE 29.7. Writing to a block.

List of j-Nodes Data Blocks Free List

..
..
..

• dcidddddddddd

• eeeeeeeeeeee

Before

19307 • aaaaaaaaaaaa

..

..
• dddddcidddddd

• eeeeeeeeeeee

After

AN EXAMPLE

The next time you request to read file letter with vi, you set in motion
another sequence of events (see Figure 29.8):

1. The system finds the name letter in directory text, along with the
associated i-node number.

2. The system finds the i-node, and reads information about permis­
sions, the starting location, and the length of the file letter.

3. With this information, the system can locate the file and read it to
the standard output.

450 The structure of a file system

FIGDRE 29.8. Reading from a block.

Directory text List of i-Nodes Data Blocks

19307 ~ aaaaaaaaaaaa

letter 19307 ~ dddddddddddd

• eeeeeeeeeeee

To simplify this example, we assumed that you made this request from
within directory text. If you had made the request from another directory,
then the system would have had to begin by finding the i-node of directory
text, which is also a file.

Let's continue this discussion, starting in directory text. Here is abrief
sequence of commands, with comments about what happens when each one
is executed.

$ cp letter Itr.bak

The system creates a copy of the text in another block, removes the pointer
to the block from the free list, places a new name (Itr.bak) in directory text,
and activates a new i-node to point to the block.

$ mv letter interview

This time the system merely places a new name (interview) in directory
text, and links it to the same i-node, without changing the i-node or the
text itself.

$ cd .. [Move to directory /usr/robin 1

The system finds the parent directory and makes it your current directory.

$ ln textlltr.bak LETTER

The system places a new name (LETTER) in the parent directory robin,
and links it to the same i-node, without changing the i-node or the text
itself. There is now one link to this i-node in directory text and one in
directory robin.

$ rm LETTER

29. File Systems 451

The system removes a name (LETTER) from the parent directory robin,
without changing the i-node or the text itself. There is now only one link
to this i-node (in directory text).

$ cd text

The system finds directory text and makes it your current directory.

$ rm ltr.bak

The system removes a name (Itr.bak) from the directory text, thereby re­
moving the last link to this file. The block that contained the file is detached
from the i-node and associated with the free list again.

Of course, the file interview still exists with the same text, but it has a
different i-node.

29.2 Checking file systems

Earlier in this chapter, you learned about the structure of a UNIX file sys­
tem. In this section you will use leam how to keep file systems in order with
the aid of a program called fsck (file system check). But before discussing
fsck itself, let 's consider why you need this program.

AN ANALOGY

Maintaining a file system is something like keeping a checking account in
balance. In both cases, the key is to make sure that the numbers come
out evenly, without any discrepancies. With a checking account, you have
a total balance, individual checks written against the balance, and records
of the checks written. As long as your records, the bank's records, and the
checks themselves are in agreement, everything is fine.

However, any time there is a disagreement, you have to find the error
that produced the disagreement and correct it. (This describes very briefly
the function of the fsck command.) In the case of your checking account,
an error can come about if you accidently write one amount on acheck and
another amount in your record book. An error can arise if the bank clerk
transcribes the amount (or your account number) incorrectly.

But no matter what causes the error, the result will be a discrepancy
between your actual balance and the balance shown in your records. If the
error goes undetected, you run the risk of overdrawing your account.

452 Checking file systems

ORDER IN A FILE SYSTEM

In a file system, you have a "balance" (the total number of blocks), from
which you "draw" any time you allocate some of those blocks to a file. In
our diagrams here we'll show the blocks next to each other in a row. This
may happen on a disk also, but it is more likely that the blocks in which
a file is stored will be scattered all over the disk-like the papers on your
desk.

As long as the file system's re cords remain accurate, this is no problem.
When you call up the file for editing, the file system locates all the blocks,
wherever they may be, and presents them to you very neatly on your screen.
You are never aware how chaotic the arrangement may be on your disko
Once again, to review from the previous section, the file system's records
consist of one list of pointers to blocks allocated to your files (i-nodes and
indirect blocks for large files) and another list of pointers to blocks not
allocated to your files (free-block list, or free list). Figure 29.9 shows part
of a file system where everything is in order.

FIGURE 29.9. An errorless file system.

List of i-Nodes Data Blocks Free List

..

..

..
~ dddddddddddd

• eeeeeeeeeeee

Everything is in order in Figure 29.9 because each i-node points (with
a number) to a different block and each member of the free list points
(with a number) to a different block. Each block is accounted for as either
allocated to a file or unallocated (free), with no conflicts or discrepancies.
(On disk, unallocated blocks are not blank; this is just a convenient way of
representing free blocks symbolically.)

ERRORS IN A FILE SYSTEM

There are various ways errors can arise in a file system. An electrical power
surge or momentary loss of power can produce errors. You can introduce
errors into a file system by shutting down or starting up UNIX incorrectly.
A file system that contains errors is said to be corrupted, or damaged.
Correcting errors is referred to as cleaning, or repairing, the file system.

Because of the way files are interrelated in a file system's structure,
errors that are undetected tend to spread and multiply, resulting in the
loss of more and more files until the entire file system becomes completely

29. File Systems 453

unusable. Yet some of the original errors appear quite harmless, as you can
see in Figure 29.10.

FIGURE 29.10. File systems with duplicate blocks.

List of i-Nodes Oata Blocks Free List

..

..

..
dddddddddddd

eeeeeeeeeeee

Two i-nodes

..

..

~ dddddddddddd ..
~ eeeeeeeeeeee

One i-node and one member 01 the Iree list

In the upper half of Figure 29.10, two different i-nodes are both pointing
to the same block (that is, both contain the same i-number). This causes
two problems: 1) a block that appears to be in two different files at the
same time and 2) another block that is now unaccounted for. A possible
remedy could be to discard the block.

In the lower half of Figure 29.10, a block is the subject of the attention of
both an i-node and a member of the free list at the same time. This makes
the block appear to the file system to be both allocated and unallocated
at the same time.

It's easy to see how this can cause problems. On the next write to disk,
the system may view this block as unallocated and allocate it to another
file; then on a subsequent read, the system may view the same block as
part of the original file. The result will be foreign data in the file being
read. Again, a possible remedy could be to discard the block.

Another kind of error arises when the block-addressing scheme gets dis­
rupted, as shown in Figure 29.11. Here, the lower i-node is supposed to be
pointing to the lower block, but the block address is incorrect. Any time
an i-node's block address has become altered, engineers have a technical
term, chosen after careful consideration, to describe the block: bad.

Other errors include discrepancies between the number of blocks allo­
cated to a file and the number found in the i-node, discrepancies between

454 Checking file systems

FIGURE 29.11. A file system with a bad block.

List of i-Nodes Data Blocks Free List

..

..

..
• dddddddddddd

eeeeeeeeeeee

the number of actual links to a file and the number shown in the i-node,
discrepancies between the actual number of i-nodes and the number shown
in the super-block, and dead-end i-nodes that do not point to blocks even
though they are referred to in directories (known as unallocated i-nodes).

Naturally, the closer an error is to the top of the file system, the greater
its potential for doing harm. An error in the root directory is much more
dangerous than an error far down in a user's subdirectories.

FINDING NO ERRORS fsck

In Chapter 32, "Startup and Shutdown," you willlearn how to start up a
UNIX system, which involves making a transition from single-user mode
to multi-user mode and mounting file systems. The fsck pro gram should
be executed in single-user mode on unmounted file systems. If the program
encounters no errors, it runs in five phases, as shown here. If you don't
name a file system, fsck checks the file systems named in the default list
/etc/checklist.

/etc/Esck
/dev/dsk
File System: usr Volume: d01
** Phase 1 - Check Blocks and Sizes
** Phase 2 - Check Pathnames
** Phase 3 - Check Connectivity
** Phase 4 - Check Reference Counts
** Phase 5 - Check Free List
596 files 3987 blocks 12.4 3 free

FINDING ERRORS fsck

If the program encounters errors during phase 1, it proceeds to a phase 1B;
if it finds errors during phase 5, it proceeds to a phase 6, not phase 5B.
(No one ever said that UNIX was noted for consistency.) Any time there is
an error, fsck asks you if you want it corrected (y or n):

29. File Systems 455

y You want fsck to attempt to correct the error (and run the risk of
losing data).

n You want fsck to continue checking for additional errors (without
correcting this one).

In addition, the command may have two options (-y and -n) to provide
for automatie yes or no to all quest ions about correcting errors. A safe way
to proceed with fsck is to use the -n on the first run to find out the extent
of any damage to the file system, then respond with y on subsequent runs.

** Phase 1 - Check Blocks and Sizes
Check each i-node to determine whether duplicate
or bad blocks exist and to locate possible discrep­
ancies in the sizes of files and directories. If there is
at least one duplicate, then proceed to Phase IB.

** Phase IB - Rescan for More Dups
Go back and find out if there are more duplicates.

** Phase 2 - Check Pathnames
Check each directory that points to one of the faulty
i-nodes, if any, encountered in Phase l.

** Phase 3 - Check Connectivity
Check for unreferenced directories (parent's i-node
doesn't exist). Ifyou reply y to correction here, fsck
will place any directory (or directories) named in
the /Iost+found directory for later retrieval.

** Phase 4 - Check Reference Counts
Check the link counts from Phases 2 and 3, and
report on any unreferenced files or directories, in­
correct link counts, duplicate and bad blocks, and
incorrect i-node counts.

** Phase 5 - Check Free List
Check the free-block list, and report any duplicate
or bad blocks in the list, incorrect totals, and un­
used blocks not shown in the list. If fsck finds any
errors, proceed to Phase 6.

** Phase 6 - Salvage Free List
Correct any errors encountered during Phase 5.

Conclusion At the end ofarun, fsck will display the first ofthe
following messages, and possibly one of the other
two in addition:

nnnn files bbbbbb blocks ff free
***** FILE SYSTEM WAS MODIFIED *****
***** BOOT UNIX (NO SYNC!) *****

If you see the third message, boot UNIX as ex­
plained in Chapter 32, "Startup and Shutdown,"

456 Checking file systems

SAVING FILES

but without running the sync program (which is
ordinarily mandatory). If the error occurs in root,
fsck may reboot the system automatically (check
the manual for your system).

Suppose you've just run fsck with the ·n (automatie no) option, with the
prompt shown here appearing in one of the messages:

/etc/fsck -n

** Phase 4 - Check Reference Counts
UNREF FILE 1=2157 OWNER=robin MODE=000755
SIZE=1286 MTIME=Jan 23 09:47 1987
CLEAR? n

After fsck has completed its run, it may be possible to save the file ,
provided that the damage is not too great. Here is the procedure:

1. Find out the name ofthe file (fsck doesn't use names, only numbers):

D Identify the file by naming the i-node and file system in an
ncheck command:

/etc/ncheck -i 2157 /dev/dsk/cOdOs3
exam

D The file is called exam. (If you execute ncheck without options,
it will list all files in all file systems, along with their associated
i-numbers.)

2. Find out if the text is still intelligible:

D Move to the directory and examine the contents of the file:

cd /usr/robin/admin
cat exam I more
Sometimes we need to examine what
we are accomplishing to determine

D The text appears to be intact.

3. Copy the file to a safe place:

29. File Systems 457

o Copying to another direetory on a different file system would be
the easiest alternative:

cp exam /tmp/haven

o Arehiving to tape might be the surest method (see Chapter 30,
"Disks and Tapes"):

find . -name exam -exec cpio /dev/rmt/mtl

4. With the file safely eopied, clear the damaged i-node:

o Start fsck again (without the -n option):

/etc/fsck

DAnswer yes to the "CLEAR" prompt this time:

UNREF FILE 1=2157 OWNER=robin MODE=000755
SIZE=1286 MTIME=Jan 23 09:47 1987
CLEAR? Y

***** FILE SYSTEM WAS MODIFIED *****

SAVING A DIRECTORY

Saving a direetory is a little easier, since fsck makes the backup eopy for
you. Suppose onee again that you've started fsck and that the prompt
shown below appears during eheeking:

/etc/fsck

** Phase 4 - Check Reference Counts
UNREF DIR 1=4323 OWNER=robin MODE=000751
SIZE=3888 MTIME=Mar 30 15:08 1987
RECONNECT: y

1. After fsck has run, loeate the unrefereneed direetory:

o Display the eontents of /Iost+found:

cd /lost+found
ls -li

4323 2 drwxr-x--x 11 robin enter 3888 Dec 16 09:03 004323

458 Checking file systems

D Your directory memos shows up there.

2. Recover your directory:

mv 004323 /usr/robin/admin/memos
cd

29.3 Summary

In this chapter you learned about file systems: how they are structured and
how to keep them free of errors.

THE STRUCTURE OF A FILE SYSTEM

A System V file system consists of a super-block (block 1), which contains
information about the file system as a whole; i-nodes (blocks 2 through
k), which contain information about files (including directories); and da ta
blocks (blocks k -1 through n), which are blocks for directories, files, indi­
rect lists, and the free list.

MAINTAINING THE INTEGRITY OF THE FILE SYSTEM

To keep the file system free of errors, you have the fsck program to check
a file system for errors, with the option of making corrections on the spot.
By merely perusing through errors on the first pass, backing up the files
that are affected, then asking for corrections on the following pass, you can
salvage files and directories that have been damaged.

FURTHER READING

To learn more about the internal workings of UNIX, refer to

Tanenbaum, Andrew S., Operating Systems: Design and Implementation,
Englewood Cliffs, NJ: Prentice-Hall, 1987.

Bach, Maurice J., The Design of the UNIX Operating System, Englewood
Cliffs, NJ: Prentice-Hall, 1986.

Corner, Douglas, Operating System Design: the XINU Approach, Engle­
wood Cliffs, NJ: Prentice-Hall, 1984.

30

Disks and Tapes

In the previous chapter, you leamed about the structure and care of file
systems. In this chapter you leam about disks and tapes, which may contain
file systems.

30.1 Devices and file types

U ntil now we have discussed only ordinary files and directory files (or di­
rectories). But UNIX also allows three other file types, known as special
files. Before describing these, let's discuss devices, which will provide a little
background.

UNIX DEVICES

UNIX, like other operating systems, is designed to handle processing for
various peripheral devices, such as disk drives, magnetic tape drives, ter­
minals, printers, and modems. As a piece of hardware, each of these is
represented within UNIX as a file, but disks and tapes mayaiso contain
file systems, which will be explained later in this chapter.

Each device is described by its type (major device number), as well as by
a sequence number (minor device number). For example terminal number 7
(tty07) might have a major device numer of 4 (local terminal) and a minor
device number of 7. Line printer number 3 might have a major device
number of 6 (line printer) and a minor device number of 3. The major
device numbers for an installation might be assigned like this (this varies
widely from one installation to another):

0 Hard disk (block device) 5 Outside terminal
1 Magnetic tape (block device) 6 Line printer
2 [Not used] 7 Character printer
3 [Not used] 8 Raw disk (character device)
4 Local terminal 9 Raw tape (character device)

The mass storage devices (disk and tape drives) process data in blocks,
and so are called block devices. The devices intended for human inter ac­
tion (terminals, printers, and modems) process one character at a time,

460 Devices and file types

and so are called character devices. The file that represents a device must
correspond in type to the device itself, as described in the next section.

DEVICE SPECIAL FILES

UNIX has a directory called /dev that is reserved for the files, known as
special files, that represent hardware devices. In System V, Release 1 and
earlier versions of UNIX, all device special files reside in /dev proper; how­
ever, in System V, Release 2 /dev has fOUf subdirectories set aside for mass
storage devices:

• /dev/dsk-for hard disk drives to be treated as block devices.

• /dev/rdsk-for hard disk drives to be treated as character devices.

• /dev/mt-for magnetic tape drives to be treated as block devices.

• /dev/rmt-for magnetic tape drives to be treated as character devices.

The r in the two directory names stands for raw device, a device that
performs direct input and output without grouping data in blocks. The
absence of r in the other two names indicates block device, a device that
sends and receives data only in blocks. Therefore, it is necessary to have
two entries in /dev for each disk and tape: one as a block device and one
as a character device (or raw device).

FILE TYPES

As you have seen, UNIX views devices connected to the system as files
(actually, special files). Two of the special file types are associated with
devices: block special files and character special files.

There is also a third special file type that is associated with fifa (first-in,
first-out) files (also known as named pipes). Briefly, these are unrestricted
pipes that are used in system programming.

To summarize, then, there are five file types allowed in UNIX:

• Ordinary files (text, data, and programs)

• Directory files (names of other files)

• Block special files (mass storage devices)

• Character special files (asynchronous devices)

• fifo special files (named pipes)

File types b (block special) and c (character special) are found only in
directory /dev.

30. Disks and Tapes 461

UPDATE ON LISTING A DIRECTORY Is
Now that you've learned a little ab out the structure of file systems and all
the file types allowed in UNIX, this may be a good time to discuss some
features of the Is command that were not mentioned in Chapter 3, "The
UNIX File System." First of all , a long listing (Is -I) always includes a
one-character file type (as weIl as permissions, the number of links, size
in bytes, and time of last modification). Here are the characters used to
identify file types:

ordinary files
d directory files
b block special files
c character special files
p fifo special files

There are additional options that you can bundle with the -I option to
obtain information useful in system administration:

-8 Show all entries (including those that begin with aperiod)
-i Display i-numbers
-s Display sizes in blocks (including indirect blocks)

Here are some examples of Is command lines that include these options,
either by themselves or in combinations:

1. Display all files in the current directory:

0 Bundle -I (long) with -8 (all):

$ 13 -la

total 7
drwxr-xr-x 6 robin users 112 Jan 7 23:03
drwxr-xr-x 18 bin bin 288 Dec 16 15:54
-rw-r--r-- 1 robin users 336 Dec 15 18:52 .profile
drsxr-xr-x 2 robin users 48 Dec 15 19 :27 admin
drwxr-xr-x 2 robin users 128 Jan 8 23:01 c.progs
drwxr-xr-x 2 robin users 64 Jan 8 22:45 test
drwxr-xr-x 2 robin users 48 Jan 7 23:06 text

o Included here are the directory's link to itself (.), its link to its
parent directory (..), and initialization file for the shell (.profile).
These appear only when you use -8.

2. Include i-numbers in the directory display:

o Bundle -I (long) with -i (i-numbers):

$ 13 -li
total 4

2398 drwxr-xr-x 2 robin users 48
2399 drwxr-xr-x 2 robin users 128
2400 drwxr-xr-x 2 robin users 64
2401 drwxr-xr-x 2 robin users 48

$

Dec 15 19:27 admin
Jan 8 23:01 c.progs
Jan 8 22: 45 test
Jan 7 23:06 text

462 Devices and file types

o Each line now begins with an i-number, which is associated with
the file name on the right.

3. Include block sizes in the directory display:

o Bundle -I (long) with -s (sizes in blocks):

$ 1s -als
total 4

1 drwxr-xr-x 2 robin users 48 Dec 15 19:27 admin
drwxr-xr-x 2 robin users 128 Jan 8 23:01 c.progs
drwxr-xr-x 2 robin users 64 Jan 22:45 test
drwxr-xr-x robin users 48 Jan 7 23:06 text

4. Display all files with block sizes for root:

o Bundle -I (long) with -8 (all) and -s (block size):

$ ls -als /
total 779

1 drwxr-xr-x 12 root root 400 Jan 2 09:42
1 drwxr-xr-x 12 root root 400 Jan 2 10:36
6 drwxr-xr-x bin bin 2592 Oct 18 15:18 bin

drwxr-xr-x root root 1824 Nov 27 19:53 dev
drwxr-xr-x 3 root root 1840 Jan 7 05:29 etc
drwxr-xr-x bin bin 304 Jan 3 17: 00 lib
drwxr-xr-x 2 bin bin 32 May 15 1985 lost+found
drwxr-xr-x 2 root rOüt 32 May 15 1985 rnnt

1 drwxrwxrwx rüot rüot 64 Jan 7 23:05 trnp
6 drwxr-xr-x 2 bin bin 2656 Oct 16 10:56 usr

0 This time all files are shown, and block sizes are included.

5. Display the contents of the /dev directory:

0 This will require only the -I option:

$ ls -1 /dev
tütal 10
crw--w--w- 2 rüot design 0, 0 Feb 12:00 console
crw--w--w- 2 rüot design 0, 0 Feb 12:00 syscon
brw------- rüot raot 0, 0 Jan 12 19:34 dsk
brw-rw-rw- raot rüot 1, 0 Jun 23 1986 rnt
cr--r----- sys sys 3, Aug 23 1986 rnern
cr--r----- sys sys 3, Apr 2 1986 kmern
crw--w---- lp daernon 6, Jan 11 15:21 lp
crw--w--w- rüot design 5, Mar 22 10:42 ttyOO
crw--w--w- raot design 5, 1 Apr 11 11: 21 tty01
crw--w--w- rüot rüot 5, 2 Oct 19 12:37 tty02
crw--w--w- rüüt design 5, 3 Nüv 20 l3: 24 tty03
crw------- root rüot 8, Sep 5 1986 rdsk
crw-rw-rw- root rOüt 9, 0 Apr 24 15:43 rrnt
crw-rw-r-- raot rüüt 10, Dec 23 1986 errar
crw------- rüüt rüüt 16, Mar 17 1986 init

0 Major and minor device numbers replace the number of bytes.

Here are some other Is options of interest to system administrators:

30. Disks and Tapes 463

-n Same as -I, but replace file name with owner and group IDs
-t Sort by time of last modification of the file
-te Sort by time of last modification of the i-node
-Ie List by time of last modification of the i-node
-tu Sort by time of last access
-lu List by time of last access

30.2 Adding and removing devices

Adding a device to the UNIX system begins with a command that simply
identifies the device. For disks (and occasionally for tapes), the next step
is to execute aseries of commands that will add a UNIX file system.

CREATING A DEVICE FILE mknod
The first step in adding any device to UNIX is to create a device file in / dev
that will identify the device. The command for doing this, called mknod
(make node), requires a filename, a file type, and major and minor device
numbers. (Remember, major and minor device numbers vary from system
to system.) Here are a few examples:

/etc/mknod /dev/ttyOB c 4 B

Create a file for terminal number 8, defining it as a character device.

/etc/mknod /dev/mt/O b 1 0
/etc/mknod /dev/rmt/O c 9 0

Create two files for magnetic tape drive 0, one that defines it as a block
device and one that defines it as a character device.

/etc/mknod /dev/dsk/cOdOs6 b 0 6
/etc/mknod /dev/rdsk/cOdOs6 c B 6

Create two files for a hard disk drive designated as controller 0, disk 0, slice
(partition) 6: one that defines it as a block device and one that defines it
as a character device.

For terminals, printers, and modems, this is all that is required at this
point (see Chapters 33, "Terminals" and 34, "Printers," for information
about setting features). But for disk and tape drives, there are further
optional steps you can also take.

464 Adding and removing devices

FORMATTING THE DISK

The next step in adding a disk drive to the UNIX system is to format the
disk, using a special utility program. This will mark the disk's sectors in a
prearranged format for reading and writing. The name of the program and
the procedure for running it will vary from one installation to another. For­
matting isn't usually necessary for tape drives, since they store information
sequentially.

CREATING A FILE SYSTEM mkfs

After formatting, the next step is to create a file system, using the mkfs
command. In its ordinary form, the mkfs command requires the name of
the device and the number of blocks desired. The name of the device is the
name used for the mknod command. By default, the system will assign
a number of i-nodes equal to 25% of the number of blocks. Here are two
examples:

/etc/mkfs /dev/rmt/O 16000

Create a file system for magnetic tape drive 0 with 16,000 blocks (4,000
i-nodes implied).

/etc/mkfs /dev/dsk/cOdOs6 40000

Create a file system for the disk drive designated controller 0, disk 0, slice
(partition) 6 with 40,000 blocks (10,000 i-nodes implied).

With four blocks per i-node, this means an average of 4 kbytes (4 blocks)
per file. If you expect to use either a larger number of small files or a smaller
number of large files, you can provide for this by appending another number
to represent the desired number of i-nodes, using a colon as aseparator.
Here are two examples:

/etc/mkfs /dev/rmtO 16000:12000

Create a file system for magnetic tape drive 0 with 16,000 blocks and 12,000
i-no des (three times as many sm aller files allowed).

/etc/mkfs /dev/dsk/cOdOs6 40000:2000

Create a file system for the disk drive with 40,000 blocks and 2,000 i-nodes
(one-fifth as many larger files allowed).

30. Disks and Tapes 465

The maximum number of blocks allowed for a file system will vary from
one installation to another.

CREATING A LABEL labelit

To create a label for ease of identification, use the labelit command to
write one to a newly created file system. If you choose to execute this
command, you will have to provide the name of the file system, a six­
character file system identifier, and a six-character volume identifier. Here
are two examples:

/ete/labelit /dev/rmt/O tapeOO vol003

Create a label for magnetic tape drive 0 with tapeOO and vol003 as the
file system and volume identifiers.

/ete/labelit /dev/dsk/eOdOs6 diskOl vol002

Create a label for the hard disk drive designated controller 0, disk 0, slice
6 with disk01 and vol002 as the file system and volume identifiers.

To display identifiers already created, execute the labelit command, fol­
lowed by the name of the file system, without identifiers.

MOUNTING A FILE SYSTEM mount

The final step in adding a disk or tape drive to the UNIX system is to mount
it with the mount command, which allows you to select the location of this
file system. (The name of the file system will be added to a list in a file
called /etc/mounttab.) If a device is write-protected, you must use the -r
(read only) option at the end of the command line; otherwise, errors will
result. Here are two examples:

mkdir /usr/tapeOO
fete/mount /dev/rmt/O /usr/tapeOO -r

Mount magnetic tape drive 0 as /usr/tapeOO (write-protected).

mkdir /usr/disk12
fete/mount /dev/dsk/eOdOs6 /usr/disk12

Mount hard the disk drive as /usr/disk12.

466 Adding and removing devices

To display file systems already mounted, execute mount alone. To mount
a file system on another UNIX system using the Remote File Sharing fea­
ture of Release 3, use the -d option, as described in Chapter 40, "Introduc­
tion to Resource Sharing."

UNMOUNTING A FILE SYSTEM umount
To undo what you have done with the mount command, you can use the
umount (unmount) command (spelled u-m-o-u-n-t without an n). As long
as the file system is inactive, you can execute umount to make the file
system inaccessible to users. Here are two examples, one to unmount a
magnetic tape drive and one to unmount a hard disk drive:

/etc/umount /dev/rmt/O

/etc/umount /dev/dsk/cOdls2

You can also unmount a file system on another UNIX system using the
Remote File Sharing feature of Release 3. See Chapter 40 for details.

Caution: To avoid damage to a file system, always connect the device
before mounting it and disconnect the device after unmounting it. Here is
the correct sequence:

connect

mount

use

unmount

disconnect

THE SWAP AREA /dev/swap
The swap area, described in Chapter 28, "Basic Information," is not a file
system, and therefore cannot be mounted or unmounted. However, it is
often identified in the UNIX system as /dev/swap.

30.3 Backup and recovery

Backing up files is even more important with UNIX than it is with a single­
user operating system. If something goes wrong, then a backup copy of the
system can mean returning to work in a few hours, instead of spending

30. Disks and Tapes 467

a week trying to reconstruct a damaged system. We'll be discussing two
programs in this chapter: tar (tape archive) and cpiO (copy 1/0). The
XENIX command sysadmin, not discussed here, permits system backup
via screen menus.

THE TAPE ARCHIVE PROGRAM tar
Use the tar program to copy files or directories to tape, diskette, or some
other storage device. To invoke tar, insert the tape cartridge (or diskette),
and type a command like this:

$ tar key[options] [ftle(s)]

The key allows you to select one of five functions; the options allows
you to modify the basic function selected. The five functions that you can
select by key are shown in Table 30.1. Note that tar is one of the few
UNIX commands that uses arguments without leading hyphens. In each
description, tape means tape (or diskette).

TABLE 30.1. The Functions of tar

Key Function

C Create.~Create a new tape and write the files named to this new tape,

overwriting any existing files.

Write.~Write the files named to the end of an existing tape, leaving any

existing files in place.

U Update.~Add to an existing tape any files that eit\ler do not al ready

exist or have been since modified.
Table 0/ contents.~Display the name of each file named as it occurs on

tape; if no files are named, display the names of all files on the tape.
X Extract.~Read from an existing tape each file named; if no files are

named, read all files on the tape.

OPTIONS

The tar command has the following options:

f File-Use the name that follows as the name of the archive in
place of the system's default; use a hyphen instead of a name to
indicate the standard input.

b Block-Use the number that follows as a blocking factor (1-20)
for writing to tape on a raw device (default: 1); not required
for reading from tape; inappropriate for updating a tape or for
creating a disk file.

v Verbose-Display the name of each file being copied.

468 Backup and recovery

Links-Display messages if tar is unable to figure out all the
links to the files being copied.

m Modification time-Replace the modification time in the i-node
with the current time.

W Confirm-Ask for confirmation (y) before copying.
0-7 Drive-Override the default drive number with the number given

here (0-7).

USING TAPE

Tape is used to back up very large amounts of data. Although it may be
used in multi-user mode, it is best to access tape in single-user mode. This
is because reading or writing tape will tend to have priority over almost all
other activity on the system.

If you are using a streaming tape cartridge, there are a few other points
to note. When you first insert a cartridge into the tape drive, the tape may
begin retensioning (streaming to the end of the reel and then back to the
beginning again). If so, wait until this is completed before trying to access
the tape with a UNIX command.

BACKING UP A FILE

To back up a file (or group of files) to tape (or other medium), overwriting
anything already on the medium, move to the directory that contains the
files and use tar with the C key:

cd directory
tar cvE /dev/mt/3 file{s}

BACKING UP A DIRECTORY

[Move to the desired directory]

[COpy the file(s) named to IdeV/mtl3]
in verbose mode

To back up an entire directory to tape (or other medium), overwriting
anything already on the medium, move to the desired directory and use tar
with C and the name of the directory:

cd /usr/robin/admin

tar cvE /dev/mt/3 .
[Move to the desired directory]

I Copy all files in the directory to]
Udev/mtl3

Note that we use . to name the current directory; "* would name all the
visible files in the current directory, but would miss dot files such as .Iogin.

RESTORING A FILE

To restore a file (or group of files) from tape (or other medium), move to
the target directory and use tar with the X key:

30. Disks and Tapes 469

cd /usr/robin/admin

tar xvf /dev/mt/3 file(s)
[Move to the desired directory]

rCopy the file(s) named from]
Udev/mV3 in verbose mode

If the file (s) already exist in the directory, it (or they) will be overwritten
by the file(s) extracted from tape.

RESTORING A DIRECTORY

To restore an entire directory from tape (or other medium), move to the
desired directory and use tar with the X option:

cd /usr/robin/admin

tar xvf /dev/mt/3

THE COPY 1/0 PROGRAM

[Move to the desired directory]

[Copy all files on the tape to the directory]

cpio
Like tar, the cpio program also has keys to determine which function to
perform, along with options to modify the basic function. The functions
that you can select are summarized in Table 30.2.

TABLE 30.2. The Functions of cpio

Key Function

-0 Output-Concatenate the files named in the standard input, add a

header, and copy the single resulting file to the standard output.

-i Input-Using patterns entered on the command line, extract from the

standard input, which must be the output of a previous cpio -0 com­

mand, any files rnatched.

-p Pass-~Copy the ordinary files narned in the standard input to the direc-

tory narned on the cornmand line.

OPTIONS

The cpio command has the following options, which are bundled with the
key on the command line: All Keys

c Compatible

r Rename

Write the he ader in ASCII code so that
any ASCII-compatible machine can read
it.
Prompt for a new name for each file be­
fore copying: if you type a name, use it;
if you just press (RETURN), don't copy
the file.

470 Backup and recovery

t Table of contents

v Verbose

u Unconditional

a Access time
m Modification time

Display the names of the files, but don't
copy them.
Display the name of each file while copy­
ing it; vt provides additional information.
Overwrite newer files with older versions
with the same names.
Reset the access time of each file copied.
Retain the original modification time of
each ordinary file copied.

Restricted to Certain Keys

B Block Write to a raw magnetic tape device in blocks
of 5,120 bytes (-i and -0 keys only).

d Directory Create directories when needed while copying
ordinary files (-i and -p keys only).

1 Link Link files instead of copying them (-p key only).
f Reverse Copy all files that do not match the patterns

given (-i key only).

COPYING FILES OUT -0

The general form of the cpio command for copying out (writing to disk or
tape) is as follows:

$ cpio -o[crtvuamBdf]

The most likely candidates to supply input to this command are the
commands that produce lists of filenames, such as 15 and find (which is
discussed in detail in the next chapter). For example, the following sequence
could be used to copy all the files in directory /usr/robin/admin/sched to
tape /dev/rmV3, with blocking:

$ pwd
/usr/robin/admin/sched
$ ls I cpio -oB > /dev/rmt/3
5 blocks
$

The command just used writes only ordinary files, excluding directories.
If you want directories included, you can use the find command (described
in detail in Chapter 31, "Disk Maintenance"). In the following example,
we copy all the files in directory /usr/robin/admin to tape /dev/rmV3, with
blocking:

$ cd /
$ find /usr/robin/admin -print I cpio -oB > /dev/rmt/3

30. Disks and Tapes 471

12 blocks
$

The following sequence performs a function similar to that performed by
the previous command line, but with pathnames relative to /usr/robin/admin:

$ pwd
/usr/robin/admin
$ find . -cpio /dev/rmt/3
$

The following command line is equivalent to the first in this subsection,
except that it also requests a list of files being copied:

$ cd /
$ find /usr/robin/admin -print I cpio -ovB > /dev/rmt/3
/usr/robin/admin/sched/part.a
/usr/robin/admin/sched/part.b
/usr/robin/admin/sched
/usr/robin/admin/memos/3-15.87
/usr/robin/admin/memos/4-21.87
/usr/robin/admin/memos
12 blocks
$

COPYING FILES IN -i

The general form of the cpio command for copying in (reading from disk
or tape) is as follows:

$ cpio -i [crtvuamB} patterns

This form of the command is used to read files that have previously been
written to tape or disk with cpio -0, described above. For example, the
following sequence could be used to copy all the files from the tape mounted
as /dev/rmt/3 back to /usr/robin/admin/sched, with blocking retained:

$ pwd
/usr/robin/admin/sched
$ cpio -iB < /dev/rmt/3
$

The following sequence is similar, except that it reads files from disk,
instead of from tape. Since blocking is used only when writing to tape, the
B option has been omitted this time.

472 Backup and recovery

$ pwd
/usr/robin/admin/sched
$ cpio -i < /dev/rdsk/cOdls2
$

PASSING FILES -p
The general form of the cpio command for passing files (writing files to a
directory) is as follows:

$ cpio -p[crtvuamd1] directory

This form of the command is similar to cpio -0. The difference is that
this form copies the files into a directory, rather than to a backup medium.
For example, the following sequence could be used to copy all the files in
directory /usr/robin/admin/sched to directory /usr/paul/reports:

$ pwd
/usr/robin/admin/sched
$ ls I cpio -p /usr/pau1/reports
5 blocks
$

In the following example, we copy all the files in directory /usr/robin/admin
to directory /usr/paul/reports:

$ pwd
/usr/robin/admin
$ find . I cpio -p /usr/pau1/reports
$

30.4 Summary

In this chapter you learned ab out devices and file types, additional features
of the Is command for listing a directory, making a device file, mounting
and unmounting file systems, and backup and recovery.

DEVICES AND FILE TYPES

Peripheral equipment that can be attached to the computer system on
which UNIX is running includes mass storage devices that process data in
blocks (hard disk and magnetic tape drives) and asynchronous devices that
process data one character at a time (terminals, printers, and modems).

30. Disks and Tapes 473

The files that represent these devices within the UNIX system (calIed spe­
cial files) must correspond in type to their respective devices (block or
character) .

Special files are stored in the device directory /dev, where they are iden­
tified by generic type (major device number) and sequence (minor device
number). In System V, Release 2, /dev reserves fOUf subdirectories for the
special files that represent disk drives (/dev/dsk and /dev/rdsk) and tape
drives (/dev/mt and /dev/rmt).

The UNIX command for listing a directory (Is) has options that allow
you to display hidden files that begin with periods, i-numbers, and block
sizes, along with owner and group IDs (UID and GID) and various sorting
schemes.

MAKING A DEVICE FILE

To identify a hardware device, use the mknod command, giving the file
name and type, along with the major and minor device numbers.

MOUNTING AND UNMOUNTING FILE SYSTEMS

To add devices to, and remove them from, the UNIX system, (that is,
to mount and unmount file systems), you have the following pro grams
available to you:

mkfs
labelit
mount

umount

Make a file system.
Label a file system.
Add a file system to UNIX and designate a specific location
for it within the UNIX hierarchy.
Remove a file system from UNIX.

BACKUP AND RECOVERY

To copy files and directories to and from tape or disk, you can use one of
the following commands:

tar Copy to and from tape or disk, with a variety of options.
cpio Copy to and from tape or disk, with the added options of file

selection and copying into a directory.

31

Disk Maintenance

In Chapter 29 you learned about file systems: how they are structured and
how to keep them free of errors. Then in Chapter 30 you learned how to
work with disks and tapes. In this chapter you how to use a number of
programs and procedures that relate to disk maintenance.

31.1 Providing disk space

As long as there are plenty of free blocks available, users won't run out
of space on the disko The commands for determining disk space on a file
system are shown in Table 31.1, with descriptions following.

TABLE 31.1. Commands for Checking Disk Space

Command Description

df Disk Free-Display the number of free blocks available.
du Disk Usage-Display the number of blocks used by each file.

find Find a File-Find a file and take some action.

FREE OR ALLOCATED BLOCKS df

The df (disk free) command can be executed by any user. When entered
without an option, df displays the number of free blocks and the number of
free i-no des available in the file system specified. If no file system is named,
df displays the free space in all mounted file systems:

$ df
/dev/rmt/mt1 (/tmp) : 11320 blocks 1574 i-nodes
/dev/rdsk/hd2 (/usr/src) : 32904 blocks 4127 i-nodes
/dev/rdsk/hd1 (/usr) : 112654 blocks 1825 i-nodex
$

Use df with the -f option to display the number of free blocks only
(omitting the number of free i-nodes).

476 Providing disk space

$ df -i
/dev/rmt/mtl
/dev/rdsk/hd2
/dev/rdsk/hd1
$

(/tmp) :
(/usr/src) :
(/usr) :

11320 blocks
32904 blocks

112654 blocks

U se df with the -t option to display the total number of free blocks and
i-nodes, along with the number of allocated blocks and i-nodes.

$ df -t
/dev/rmt/mt1 (/tmp) : 11320 blocks 1574 i-nodes

total: 19158 blocks 2367 i-nodes
/dev/rdsk/hd2 (/usr/src) : 32904 blocks 4127 i-nodes

total: 48070 blocks 5239 i-nodes
/dev/rdsk/hd1 (/usr) : 112654 blocks 1825 i-nodex

total: 144534 blocks 6848 i-nodes
$

DISPLAYING DISK USAGE du

The du (disk usage) command, which can be executed by any user, pro­
vides information about the amount of disk space used in directories and
subdirectories. The command has three options, as shown here:

$ du {:;} nam,r.,)
Summary report-total nu mb er of blocks used

All report-blocks used by ordinary files also
Error report-troublesome files

When used without an option, du gives the number of blocks that are
used by each directory beginning with the current directory (or the direc­
tory named), including each subdirectory. In the following example, the
last line gives a cumulative total for the entire directory:

$ du /usr/robin
6 /usr/robin/c.progs/cobra
8 /usr/robin/c.progs/display
16 /usr/robin/c.progs
6 /usr/robin/admin/sched
6 /usr/robin/admin/memos
14 /usr/robin/admin
34 /usr/robin [The -5 option displays this line only]
$

If you would like to see an expanded display, with a line for each individ­
ual file, include the -a option (see Figure 31.1). If you omit the directory's
name, du will use the current directory.

$ du -8 /usr/robin
2 /usr/robin/.cshrc

31. Disk Maintenance 477

2 /usr/robin/c.progs/cobra/mod10.c
2 /usr/robin/c.progs/cobra/mod20.c
6 /usr/robin/c.progs/cobra
2 /usr/robin/c.progs/display/init
2 /usr/robin/c.progs/display/term
8 /usr/robin/c.progs/display
16 /usr/robin/c.progs
2 /usr/robin/admin/sched/part.a
2 /usr/robin/admin/sched/part.b
6 /usr/robin/admin/sched
2 /usr/robin/admin/memos/3-15.87
2 /usr/robin/admin/memos/4-21.87
6 /usr/robin/admin/memos
14 /usr/robin/admin
34 /usr/robin
$

FIGURE 31.1. Robin's horne directory.

robin

admin

sched memos cobra

1\ 1\ 1\

c.progs

part.a part.b 3-15.87 4-21.87 mod10.c mod20.c

display

1\
init term

To find out about directories and files that cannot be accessed, include
the -r (error report) option. There will be no block totals, but the system
will report on troublesome files.

$ du -r
Unable to open ./text/message
$

FINDING FILES find

The find command, which is available to all users, but is especially valuable
to the system administrator, is similar to awk. You could say that find

478 Providing disk space

allows you to do with entire files about what awk allows you to do with
lines in a file. Even the syntax is similar, in that both commands specify
criteria for finding a match, followed by statements for taking action. One
difference, however, is that pathnames come second on a find command
line, whereas file names come last on an awk command line. A general
command line for find is shown in Figure 31.2 (compare with Figure 14.1,
page 207).

FIGURE 31.2. A general find command line. I the name of the eommand

~ r whieh files to seleet

$ find path(s) criteria action(s) L L whatlo do w;lh Ih, m'I'1
the direetory (or directories) to be searched

Here's a very simple example: Find and display the full pathnames of
all files in directory /usr that are called secret. We'll use the -name option
to search on the name and the -print option to obtain a display, as shown
here:

$ find lusr -name secret -print
/usr/ann/secret
/usr/bill/secret
/usr/jean/secret
$

CRITERIA OPTIONS

The string-valued options available to form search criteria on a find com­
mand line are as folIows:

-name file
f
d

-type b
c
p

-user name
-group name
-perm pppp

-newer file

Find file(s) named file
ordinary file
directory

Find file (s) of type block device
character device
named pipe

Find file(s) owned by user name
Find file(s) that belong to group name
Find file(s) with octal permission code pppp (see

Chapter 34, "System Security")
Find file(s) modified more recently than file file

31. Disk Maintenance 479

Here is a ridiculous, contrived example of a command line that uses all
of these options:

$ find / -name '*.c' -type f -user kate -group pro
-perm 0644 -newer /usr/robin/admin/tech -print
/usr/robin/c.progs/table.c
/usr/robin/c.progs/metric.c
/usr/robin/c.progs/convert.c
$

Find in any directory in the system and display any SOUfce file (s) for any
C program(s) that belong to user kate, in group pro, with permission 0 f ± 4
(rw-r-r-), modified more recently than file /usr/robin/admin/tech.

The numeric options available to form search criteria on a find command
line are as follows:

-size {r}
-links gl}

{
more than b blOCkS}

Find file(s) with exactly b blocks
fewer than b blocks

{
more than llinkS}

Find file(s) with exactly llinks
fewer than llinks

{ :~!:e} {~d}
-atime -d

{
changed} {more than d days aga }

Find file(s) modified exactly d days aga
accessed fewer than d days aga

Here is an example of a command line that uses all of these options:

$ find /tmp -size +25 -links 3 -mtime -4 -print
/tmp/special/enter
/tmp/display/format
/tmp/team/schedule
$

Find in directory /tmp and display any file(s) with more than 25 blocks,
exactly three links, last modified fewer than than fOUf days ago.

Search criteria can be logically combined and grouped in much the same
way search patterns for grep or awk can be. Here are the conventions:

Grouping:
AND:
OR:
NOT:

\(option-l option-2 option-3\) (1 and 2 before 3)
option-l option-2 option-3 (as in the examples above)
\(option-l -0 option-2\) option-3 (1 or 2)
\(option-l option-2\) \! option-3 (not 3)
\! \(option-l option-2 option-3\) (not 1 and 2)

Here is an example that illustrates the use of logical grouping:

480 Providing disk space

$ find. \! \(-user bill -0 -newer /admin/enter \) \
> -ctime +5 -print
/usr/paul/misc/trial
$

Find in the current directory and display any file(s) that meet these
criteria: they neither belong to bill nor have been modified more recently
than /admin/enter and they were changed more than five days ago.

ACTION STATEMENTS

There are five action statements you can use in a find command line:

-print
-exec command

-ok command

-depth

-cpio device

Display the pathname of each file matched.
Execute command on each file matched uncondi­
tionally.
Execute command on each file matched (with con­
firmation) .
Used before -cpio, copy the entries of a directory,
then the directory itself~useful if you don't have
read permission for the directory
Copy to device each file matched, using cpio format.

The -exec and -ok options are identical, except that -ok asks for a
confirmation (y for yes) before proceeding to execute the UNIX command.
With either option, if the UNIX command ordinarily requires a filename
for an argument, then you must type a pair of empty braces, followed by
an escaped semicolon, after the name of the command. The find command
will use the empty braces as a place-holder for the name(s) of the file(s) to
be processed.

EXAMPLES OF USING find

As you can see, you can use the find command as both a way of displaying
information and also a tool for taking action. In the examples that follow
we'll illustrate both functions of find, starting with a procedure for files
that are undesirable. If you've used UNIX for any length of time, you've
seen messages like the following appear from time to time:

Co re dumped

Then, if you looked around your directory, you found a large file called
core. For someone who is debugging the system, this can be a useful tool
(a copy of a process in memory at the moment when an error occurred);
but for most users, it 's just a large file taking up valuable disk space (and

31. Disk Maintenance 481

often going unnoticed). As system administrator, it is your task to carry
out a search and destroy mission against core files:

1. Find the locations of the core files:

o First use -print to display all of them:

$ find / -name core -print
/usr/ann/c.progs/core
/usr/bill/text/core
/usr/bill/devel/core
/usr/carol/misc/core
/usr/dan/C.progs/core
$

o Chances are that you'll find quite a few of them. At this point,
you may want to talk to the users about the files before pro­
ceeding to eliminate them.

2. Get rid of the core files:

o Now use rm to remove those that have lingered around for more
than five days:

$ find / -name core -atime +5 -ok rm {} \;
<rm /usr/ann/c.progs/core> ? y
<rm /usr/bill/text/core> ? y
<rm /usr/dan/C.progs/core> ? y
$

D We used -ok to allow confirrnation, but the best way is to use
-exee and execute this automatically with eron (see later in
this chapter).

3. Look for files containing source code for C programs that have been
idle for some time:

o We'll start again by using -print to locate files that haven't been
modified for ninety days, and send the list to the printer in the
background (quoting *.c to allow the shell to pass it to find):

$ find /usr -name '*.c' -mtime +90 -print I lp &
Printing request R-1257
$

o The list will probably be longer than you imagined.

4. Archive these C files to tape:

482 Providing disk space

o U se a command line similar to the one used above, with -exee
epia in place of -print:

$ find lusr -name '*.c' -mtime +90 \
> -exec cpio Idevlrmt/mtl
$

o Now all the files in your printed list have been archived to tape.
You may want to give copies of the list to all the users affected.

31.2 Programs that run automatically

To allow you to perform certain tasks at regular fixed intervals, UNIX offers
a type of program, called a daemon process (or daemon), that runs by itself
automatically in the background. All you have to do is start the process
once, and it takes over without any further human interaction.

UPDATING THE DISK update
This process updates the disk every thirty seconds; all you have to do is
execute the following command line once to get it started:

fete/update &

WRITING YOUR OWN SCRIPT eron

Another command, called eran, allows you to design your own set of peri­
odic tasks and specify the exact times for having them carried out. Using
eran is fairly similar to programming a VeR (video cassette recorder) to
record television programs at different times of the day.

Briefly, the procedure is to enter lines into a file called /usr/lib/crontab.
(As of System V, Release 2.0, there is a directory called /usr/lib/cron, where
an ordinary user may store an individual file-provided that the user is
named in another file called /usr/lib/cron/cron.allow On some systems, this
directory may be called /usr/spool/cron).

Each line entry, which handles one task, contains five fields for designat­
ing the time (minute, hour, day of month, month, and day of week) , along
with a sixth field for entering the UNIX commands needed to perform the
task. Use the wild card character (*) in a time field to indicate all (every
minute, every hour, every day, or every month).

31. Disk Maintenance 483

The values allowed for the five time fields are shown here. Hours are
based on a 24-hour clock (1:00 A.M. is 0100, 1:00 P.M. is 1300); the day­
of-week field uses a numbering scheme (0 = Sunday, 1 = Monday, ... ,6 =
Saturday); all other fields are self-explanatory.

Minute
0-59

Hour
0-23

Day of Month
1-31

Month
1-12

Day ofWeek
0-6

You can use either blank spaces or tabs to separate fields, with the
number-sign character (#) for any eomments. Here's an example of a line
entry, which displays a message on your sereen (terminal 7) every weekday
morning at 8:15:

15 8 * * 1-5 echo "Good morning, Robin\!" > /dev/tty07

Onee you've set up /usr/lib/crontab and started eron, eron then reads a
copy of the file every minute of the day, seven days a week, and performs
any tasks requested for that minute. Here's the eommand li ne for starting
eron:

/ete/eron

Here's abrief example, with a few of the things that you'd probably
want to include. As you ean see from the times, this is a eonvenient way to
sehedule tasks for the wee hours of the morning when the system is idle.

$ cat /usr/lib/crontab
#mm hh day mo dwk Command

o 2 * *
5 2 * * 2,4

10 2 * * 3

find !tmp !usr!tmp -atime +3 -exec rm {} \;
find! -name core -atime +5 -exec rm {} \;
find ! -type d -size +5 -print I Ip

o 8 1 * echo "Monthly report 'l 1 mail robin
$

Explanations:

o 2 * * find !tmp !usr!tmp -atime +3 -exec rm {} \;

Every night at 2:00 A.M., remove all temporary files that haven't been
accessed for at least three days.

5 2 * * 2,4 find / -name core -atime +5 -exec rm {} \;

Every Thesday and Thursday night at 2:05 A.M., remove from all direc­
tories all core files that haven't been aeeessed for at least five days.

10 2 * * 3 find / -type d -size +5 -print I Ip

Every Wednesday night at 2:10 A.M., print a list of all directories that
oeeupy more than 5 kbytes of spaee.

484 Programs that run automatically

o 8 1 * echo "Monthly report'I I mail robin

On the first day of every month at 8:00 A.M., mail yourself areminder
to submit a monthly report.

STARTING THE PROCESSES AUTOMATICALLY

In our descriptions of update and eron above, we used command lines to
start the pro ces ses manually. However, you can also start them automat­
ically if you prefer. To do this, simply include them in the UNIX initial­
ization file fete/re. Any command lines found in this file are automatically
executed whenever you start up UNIX.

31.3 System efficiency

If you have to partition drives into separate file systems, partition each disk
identically. This allows you to replace one disk with another if you have
replaceable disks.

Try to keep the number of users evenly distributed among the various
drives in your system. If disk usage becomes unbalanced, move user direc­
tories from one disk to another to even out the usage.

Use the name of each user's login directory (given by the shell variable
HOME), rather than rely heavily on pathnames. If a working group has an
elaborate file system structure, set aside a shell variable to make it easy to
refer to the name of the file system.

MOVING DIRECTORIES

If you have to move user directories to rearrange the file system, use find
and epio. The following sequence of commands will move, via magnetic
tape, directories john and marsha from file system skimpy to file system
generous:

1. Save the old files:

o Move to directory skimpy:

cd /skimpy

o Write john and marsha to tape:

find john marsha -cpio /dev/rmtO

2. Set up the new directories:

o Move to directory generous:

cd / generous

o Create new directories:

mkdir john marsha

o Change the ownerships:

chown john john
chown marsha marsha

3. Save the old files:

cpio -idmB </dev/rmt/O

4. Remove the original files:

o Return to skimpy:

cd /skimpy

o Remove the old directories:

rm -rr john marsha

3l. Disk Maintenance 485

To make sure the new directories are all right, change the login directories
for john and marsha in the /etc/passwd file. Whenever you move users in
this way, be sure to keep users with common interests in the same file
system (in case they have linked files). Also, be sure to move groups of
users with linked files with a single cpio command; otherwise, you will
unlink and duplicate the linked files.

KEEPING DIRECTORY FILES SMALL

Directories larger than 10 kbytes are inefficient because of the indirection
required. You can use the following command to locate oversized directories.
(Better yet, have cron run it automatically.)

486 System efficiency

find / -type d -size +10 -print

Merely removing files from a directory will not make the directory itself
smaller, since UNIX files never contract naturally. However, you can use
the following sequence of commands to compact a directory (lusr/mail):

1. Backup the old directory:

o Copy temporarily to /usr/tmail:

mv /usr/mail /usr/tmail

o Re-create a new /usr/mail:

mkdir /usr/mail

o Grant all permissions:

chmod a+rwx /usr/mail

2. Set up the new directory:

o Move to the temporary directory:

cd /usr/tmail

o Copy the old to the new:

find . -print I cpio -pIm .. /mail

3. Remove the temporary directory:

o Move to the parent directory:

cd

o Remove the temporary directory

rm -rf tmail

31. Disk Maintenance 487

FILES AND DIRECTORIES TRAT GROW

The following files and directories accumulate information constantly. They
must be watched, and the excess clutter thrown out regularly. You can have
the eron program do this automatically if you like.

/usr/adm/wtmp
/usr/adm/paeet
/usr/lib/spellhist
/usr/lib/eronlog
/usr/spool
/usr/news
/usr/mail
/usr/tmp, /tmp

31.4 Summary

Login information
Process accounting
Misspellings found by speil
Log of commands executed by eron
Spooling directories
News items
Messages
Tem porary files

In this chapter you learned about providing disk space, using daemon pro­
cesses, and contributing to system efficiency.

PROVIDING DISK SPACE

To make sure that users have enough disk space to work with, you have
the following programs available to you:

df Display the number of free blocks available.
du Display the number of blocks used by each file.
find Find a file by size, date, owner, or date of last access.

U SING DAEMON PROCESSES

Daemons are processes that run automatically in the background. The up­
date process updates the disk every thirty seconds. The eron process exe­
cutes commands placed in a file called /usr/lib/erontab. You can either start
a daemon manually or place it in fete/re to have it started automatically
whenever the system goes multi-user (explained in Chapter 32, "Startup
and Shutdown").

CONTRIBUTING TO SYSTEM EFFICIENCY

A system administrator can help to make the system run efficiently by mov­
ing directories from one file system to another, keeping directory files from
growing too large, monitoring files and directories that have a tendency to
grow daily, and running time-consuming processes after hours.

32

Startup and Shutdown

This chapter discusses the procedures for starting up a UNIX system and
shutting it down, drawing on what you've learned in the previous four
chapters.

32.1 Starting up a UNIX system

DIS CLAIM ER

Throughout this book we've tried to explain how commands work. But
UNIX systems differ from from one site to another, and we can never be
sure what will work at any given site and what will not. This is even more
so when it comes to procedures for starting up a UNIX system, which
depend on the design of the hardware. In this chapter we present a typical
procedure and hope that it comes fairly elose to resembling the procedure
at your installation.

TURNING ON THE POWER

The first step in starting up your UNIX system is to turn on the power
switch. It mayaIso be necessary to turn on your terminals and printers
separately. At many installations, the equipment is left on twenty-four hours
a day, seven days a week. If so, you will have to turn on the power only
the first time you use the system. Turning on the power may activate a
set of diagnostic programs to determine whether your system's hardware is
functioning properly. In any event, your system is now ready for the next
step, which is called booting.

BOOTING THE SYSTEM

Booting the system is the act of copying the kernel from disk, where it is
stored, to the computer's memory, where it can operate. The term booting
(or bootstrap loading)-not unique to UNIX-comes from the expression,
"pulling yourself up by the bootstraps." One small segment of code is first
loaded into memory; then this segment calls in a larger module, which
performs the actual transfer of data.

490 Starting up a UNIX system

Some systems boot themselves automatically when you turn on the
power; others do not. If yours does not, then you will have to go to the
console and do something manually (press (RETURN), type boot, or some­
thing else).

The console is the terminal that serves as the primary device for inter­
acting with the system. In earlier version of UNIX, the console was always
the terminal that was next to, or on top of, the computer. But System V
allows you to use any terminal as the console (called the virtual console,
/dev/syscon) .

After you boot the system (or it boots itself), you may see a prompt
(ot several prompts) asking you to press other keys or provide other infor­
mation. Press whatever keys and provide whatever information the system
asks for. At this point, the system is running in single-user mode, which
means that rüüt (I) is the only file system known to UNIX. Always per­
form system maintenance functions in single-user mode (also known as
maintenance mode).

SETTING THE CLOCK

Once booting has been accomplished, the system will ask you to enter the
date, which you must type in a standard format. If it is now 9:24 A.M. on
April 16, 1987, you can enter the date and time as shown below. (If the
year hasn't changed since the last boot, you can omit it from the command
line.)

date 0416092487
Mon Apr 16 09:24:01 PST 1987

Once you've started the dock, you can display the date and time either
in the standard format (date alone) or in a format of your own choosing.
To format the date and time, begin your format with a plus sign (+) and
endose it within single quotation marks, like this:

date '+Today is %w, %h %d, 19%y. %tIt's now %r'
Today is Mon, Apr 16, 1987. It's now 09:25:42 AM

For complete information about formatting, refer to date (1) in the
UNIX User's Manual. Records for dock-settings, as well as for all logins,
are kept in a System V login file called /etc/wtmp. (For XENIX and earlier
versions of UNIX, the file is called /usr/adm/wtmp.)

32. Startup and Shutdown 491

CHECKING THE FILE SYSTEMS fsck
The last thing you need to do before leaving single-user mode is to check
your file systems with the fsck (file system check) command. If you have
not included fsck in your initialization script (described below), here is the
command command line, with the output that you will see if no errors are
found. (This program was described in some detail in Chapter 29, "File
Systems").

/etc/fsck
** Phase 1 - Check Blocks
** Phase 2 - Check Pathnames
** Phase 3 - Check Connectivity
** Phase 4 - Check Reference Counts
** Phase 5 - Check Free List
596 files 3987 blocks 1243 free

LOGGING IN

After you enter the date and check the file systems, type the following to
enter multi-user mode:

init 2

The system may now prompt you to press (CTRL-D) to enter multi-user
mode and log in. If you have special tasks to perform, you could log in as
root at this point (left); otherwise, simply log in as an ordinary user (right):

login: root
Password:

INITIALIZATING THE SYSTEM

$

login: robin
Password:

Any time the system changes states, such as when it enters multi-user
mode, the shell may run an initialization script that is stored in a file called
fete/re. (This depends on what the initialization command calls for-see
"The Initialization Command (Release 3.0)," page 496.) You can place in
this file any shell commands you wish to have executed before the system
begins multi-user mode. A very simple fete/re script might contain the
following basic commands:

eat let eire
PATH=/bin:/usr/bin

cat dev/null > letc/utmp

rUser commands are in /bin and]
Uusr/bin

[Empty the record of lOgged-in]
users

492 Starting up a UNIX system

/ete/fsek [Check the file systems for errors]

fete/mount /dev/dsk/dOs2 /usr [Mount the user directory /usr]
rm -f /usr/tmp/* [~emove temporary space directo-]

nes
rm -f /tmp/* [Remo~e more temporary space di-]

rectorles
fete/update

/ete/eron
[Start the update process]

[Start the eron process]

Actually, in System V, the single file fete/re has been split into three
separate files, as follows:

File
/ete/bre
/ete/beheekre
fete/re

Function
Restore the mount table file /ete/mnttab.
Set the date and check the file systems with fsek.
Mount file systems; start the accounting processes

and daemons; back up the super-user and eran
logs; remove all temporary files; start the Ip (or
Ipr) scheduler.

These three files are invoked directly in the /ete/inittab file (described later
in this chapter). In the remainder of this subsection, we'll discuss each of
these files in detail, using sampIe scripts with comments interspersed:

1. Examine the boot read command file /ete/bre:

cat /etc/brc
This file restores the mount table file /ete/mnttab
if

[-r /ete/mnttab 1
then

rm -f /etc/mnttab
fi
Put root into mnttab
/ete/devnm / I /etc/setmnt

2. Examine the boot check run command file /ete/beheekre:

cat /etc/bcheckrc
This file will set the system eloek and eheek the file
systems. You can run this file from any terminal
(see comments below) .

trap "" 2

32. Startup and Shutdown 493

Set and export the time zone

TZ=PSTBPDT
export TZ

***** Check date

while :
do

echo
read
if
then

else

"Is the date 'date'
reply

["$reply" = y]

break

correct? (y or n) \c"

echo "Enter the correct date (mmddhhmmyy): \c"
read reply
date "$reply"

fi
done

***** Check the file system if necessary:

while :
do

echo "Check the file systems? (y or n) \c"
read reply

case "$reply" in
Y I y) "
Nln) break "
*) echo "Type either y or n. Try again."

continue ;;
esac
trap "echo Interrupt" 2

/etc/fsck

trap "" 2
break

done

Finally, displayamessage with the date included:
echo "System booted on \c"; date

2. Examine the main run command file fete/re:

eat fete/re
This file will set the date, mount file systems,
remove accounting files, back up the super-user and
cron logs, start the daemons, and remove

494 Starting up a UNIX system

temporary files

Set the time zone and command paths here:
TZ=PST8PDT
export TZ PATH

This script is executed when going to
multi-user (2) state:

set 'who -r'
if [$7 = 2 J

then
/etc/mount /dev/dsk/üs2 /usr

remove temporary files
rm -f /tmp/* /usr/tmp/*
rm -f /usr/spool/uucp/LCK*
echo Temporary files removed

discard accounting information
rm -f /usr/adm/acct/nite/lock*
echo Old accounting files deleted

back up the super-user and cron logs
mv /usr/adm/sulog /usr/adm/OLDsulog
mv lusr/lib/cron/log /usr/lib/cron/OLDlog
echo Super-user and cron logs backed up

Set up the login file
if [! -f /etc/wtmp J

then

fi

fi

> /etc/wtmp
chmod 644 /etc/wtmp
chgrp adm /etc/wtmp
chown adm letc/wtmp

start the daemon processes
/etc/cron
echo cron started
/usr/lib/errdemon
echo errdemon started

start process accounting
/bin/su - adm -c lusr/lib/acct/startup
echo Process accounting started

32. Startup and Shutdown 495

32.2 Multi-user mode

Multi-user mode is the usual working mode for UNIX, the mode in which
all the system's devices and file systems are ready for operation. Let's take
a look at what happens when a user logs in.

LOGGING IN

Before a user can log into a UNIX system in multi-user mode, a chain of
events must take place. First, during the transition to multi-user mode,
the init process reads a file called letc/inittab to determine which terminal
lines are active. For each active line it forks a different getty process.

The getty process reads a file called lete/gettydefs to obtain information
about the terminal, then displays the login: prompt (or whatever is set in
ete/gettydefs) at its terminal and waits for someone to enter a user name.
As so on as someone does this, the getty process invokes another process
called login and passes the user name to login.

The login process looks up the user's name in a file called lete/passwd to
find the user's password. Hit finds one, it displays the Password: prompt,
and waits for the user's response. H the password is incorrect, login displays
a message and returns to getty; if the password is correct, login refers to
/ete/passwd again to determine the user's group, horne directory, and login
program (usually one of the shells). Finally, login invokes the login shell,
which then takes over.

H the login shell is the Bourne shell, it begins by running a program
called /ete/profile to perform any opening tasks set up for all terminals
following login. For example, /ete/profile displays the message of the day,
which is stored in a file called /ete/motd. The system administrator can
modify fete/profile to include any shell script desired for the installation. H
the shell script called .profile exists in the user's horne directory, the Bourne
shell then executes it and displays the shell prompt.

If the login program is the C shell, it begins by executing either a system
eshre file (not common) or a shell script called .eshre, which must exist
in the user's horne directory. The .eshre script provides the C shell with
any secondary prompt the user may have selected, a history setting, and
any aliases defined by the user. Next the C shell executes a .Iogin script,
which must also exist in the user's horne directory. This script provides the
primary shell prompt (% by default), terminal settings, a command search
path, and possibly a message.

496 Multi-user mode

Here is a brief summary of the login processes:

Screen Display

login: _
Password:

Process
init
getty
login

Files Consulted
/ete/inittab
/ete/gettydefs
/ete/passwd

$ (default)
% _ (default)

sh
csh

/ete/profile, $HOME/.profile
$HOME/.cshre, $HOME/.login

THE INITIALIZATION COMMAND (RELEASE 3.0) init

This section describes UNIX and XENIX System V, Release 3.0; for earlier
versions of XENIX, see the section that follows. The init command estab­
lishes the modes, or levels, at which the UNIX system may run (primarily
single-user and multi-user modes). It does this through a table stored in a
file called /ete/inittab (initialization table). This table contains a set of line
entries that describe all the processes to be activated at each level (or in
each mode). For example, consider this line entry:

05:2:respawn:/etc/getty tty05

If we spread out the individual fields and add headings, we see this:

Identifier Level Action Process

05 2 respawn /etc/getty tty05

This tells init, "Any time the system enters level 2 (multi-user mode), see
if getty is running for terminal 5. If it isn't, respawn it (refork it) now." So
when you enter init 2, this line entry is activated. Here is an entire sampIe
table:

$ cat letclinittab
is:s:initdefault:
bt:2:bootwait:rrn -f /etc/rnnttab > /dev/console
bl:2:bootwait:/etc/bcheckrc > /dev/console 2>&1
wt:2:bootwait:/etc/wtmpclean > /dev/console
bc:2:bootwait:/etc/brc > /dev/console
rc:2:wait:/etc/rc l>/dev/console 2>&1
pf: :powerfail:/etc/powerfail l>/dev/console 2>&1
ka:s:sysinit:killall
co:23:respawn:/etc/getty console console
00:23:respawn:/etc/getty ttyOO 9600
01:23:respawn:/etc/getty tty01 9600
02:2:respawn:/etc/getty tty02 1200
03:23:off:/etc/getty tty03 9600
$

Here are descriptions of the fields:

avoid dups
boot log
wtrnpclean
boot run
run commands
powerfail
killall on shutdown

Identifier Oue or two unique characters to idcntify the line entry.

Level

Action

Process

32. Startup and Shutdown 497

The number(s) (1-6) that indicate the level(s) at which
the specified action is to take place. For multiple levels,
type the numbers consecutively (for example, 23 for levels
2 and 3) or use a hyphen (for example, 1-6 for levels 1-
6). You can also use s to indicate single-user mode. An
empty field is equivalent to 1- 6. As of System V, Release
3.0, run level 3 is defined as Remote File Sharing mode
(see Chapter 39, "RFS Maintenance," for details).
A word from the following list to describe what to do when
init is executed at this level:

initdejault-Enter this level by default after booting
(no process).
sysinit-Run this process before interacting with the
system console.
bootwait-Run this process whenever the system
enters a numeric run level after booting; wait for the
process to complete.
wait-Wait for the process to complete.
powerjail-Run this process after apower failure.
respawn-Start the process, then rest art it each time
it completes.
off-Don't do anything (terminate the process if it's
running).

A UNIX command li ne to be executed, subject to any
restrictions specified by the action.

TERMINAL PROCESSES (RELEASE 3.0)

If you need to activate or deactivate a terminal while the system is running
in multi-user mode, there's an easy procedure for starting or stopping the
associated terminal process. Just call up the /etc/inittab file with a text
editor and change the action field from off to respawn (to activate a
terminal) or from respawn to off (to de-activate a terminal). The change
will take effect as so on as you execute the following:

init q

The q argument retains the current level of init, but starts processes
for any lines in /etc/inittab that have been modified. If the getty process
for this terminal is still active, you may have to terminate it with the kill
command.

498 Multi-user mode

THE INITIALIZATION COMMAND (BEFORE RELEASE 3.0) init
The init command under versions of XENIX V before Release 3.0 reads
a file called /etc/ttys (instead of /etc/inittab). The file used by XENIX also
contains a set of line entries; however, the format is different. For example,
consider this line entry:

13tty05

If we spread out the individual fields and add headings, we see this:

Enable/Disable
1

Line Speed
3

Terminal ID
tty05

This teIls lnit that terminal is currently enabled (1) for a line speed of
either 300 or 1200 bit/s (3). Here is an entire sampie table:

$ aat /eta/ttys
14console
13ttyOO
13ttyOl
13tty02
13tty03
14tty04
14tty05
03tty06
03tty07
$

Here are descriptions of the fields:

Enable/Disable One digit to indicate whether the terminal line is
enabled (1) or disabled (0)

Line speed One digit to indicate the line speed and type of
connection, according to the following table:

32. Startup and Shutdown 499

Digit Line Speed Notes
0 110,150,300,1200 Variable speed for a

line used for more
than one terminal.

110 Teletype Model 33 or
35

1 150 Teletype Model 37
2 9600 On-line terminal
3 300,1200 Terminal with a Bell

212 modem
4 300 On-line terminal such

as the DECWriter
L836

5 300,1200 Terminal with a Bell
103 modem

Terminal 10 The name of the terminal

TERMINAL PROCESSES (XENIX BEFORE RELEASE 3.0)

If you need to activate or deactivate a terminal while the system is running
in multi-user mode, there's an easy procedure for starting or stopping the
associated terminal process. Just call up the /etc/ttys file with a text editor
and change the Enable/Oisable field from 0 to 1 (to activate a terminal)
or from 1 to 0 (to deactivate a terminal). The change will take effect the
next time the terminal is logged on (or off).

32.3 Shutting down a UNIX system

Many UNIX systems continue running around the dock. However, it may
be necessary to shut down the system occasionally for one reason or an­
other. For such cases, System V provides a shell script in a file called
/etc/shutdown that will shut down your system properly.

All you have to do is enter the following:

/etc/shutdown

This shell script will perform the following functions automatically:

1. Check the identity of the user issuing the command.

2. Check to see whether anyone else is still using the system.

3. Warn all users of the impending shutdown with wall (write all).

500 Shutting down a UNIX system

4. Stop proeess aeeounting, daemons, and the lp spooler.

5. Conclude an unfinished disk activity with the sync eommand.

6. Unmount an mounted deviees with the umount eommand.

7. Return the system to single-user mode with init Sj an proeesses will
be killed with the killall eommand in /etc/shutdown.

Onee shutdown has run , you can then turn the power off:

1. Turn off the printer(s).

2. Turn off the terminals.

3. Turn off the main computer.

Here is a sample shutdown script, with comments interspersed:

$ cat letclshutdown
This script will shut the system down

Update the disks:
sync

Set the eommand path names:
PATH=:/ete:/bin:/usr/bin; export PATH

Cheek the name of the user who exeeuted /etc/shutdown:
if ["'telinit q 2>&1'" I
then eeho "$0: you must be root to use shutdown"

exit 1
fi

Set the graee period and display shutdown on eonsole:
graee=${1-60}
echo "\nSHUTDOWN PROGRAM\n"
date; eeho "\n"

Change to direetory root, see if anyone else is still
logged in; if so, warn the other users of the impending
shutdown:
ed /
users="'who I wc -1'"
if [$users -gt 1 I
then echo "Do you want to send your own message? (y or n): \c"

read reply
if ["$reply" = "y'I 1
then echo "Type your message, followed by CTRL-D: \n"

su adm -e fete/wall
else su adm -e fete/wall « !

fi

System maintenance is about to begin. Please log off now.
All proeesses will be killed in $graee seeonds.

sleep $graee
fi

Issue the final warning before proceeding with the aetual shutdown:
fete/wall « !
The system is now being shut down!
All proeesses will be killed.

32. Startup and Shutdown 501

sleep

Proceed with the actual shutdown:
echo "Do you want to continue with shutdown? (y or n): \c"
read reply
if ["$reply" = "y"
then

empty the contents of the console buffer
cat Idev/console > Idev/null

stop process accounting
lusr/lib/acct/shutacct
echo "Process accounting stopped"

stop error logging
letc/errstop
echo "Error logging stopped"

stop the lp spooler
lusr /lib/lpshut
echo "lp spooler stopped"

update all disk activity for the last time
synci sync; sync

return to single-user mode
init s

if the system is now in single-user mode,
exit immediately
if ["$3" = "sn
then exit 1
fi

if the system is still in multi-user mode, idle it
until the transition to single-user mode is complete

sleep 10000

If you decide not to proceed with the shutdown, the
following message will appear on the console:
else

echo "Für help, call your system administrator."
fi

This concludes our discussion of the shutdown script /etc/shutdown.

32.4 Summary

In this chapter you learned how to start up and UNIX system and how to
shut it down.

STARTING Up A UNIX SYSTEM

Starting up a UNIX system involves turning on the power, booting the
system (to enter single-user mode), entering the date, checking the file

502 Summary

systems, logging in (in multi-user mode), and letting UNIX run the initial­
ization script.

SHUTTING DOWN A UNIX SYSTEM

Shutting down a UNIX system involves notifying an users, killing an pro­
cesses, unmounting an file systems, backing up the day's activities, possibly
protecting your disks from damage, and turning off the power.

33

Terminals

In this chapter you will learn how to adjust the operation of terminals for
various purposes.

33.1 Identifying your terminal

Default settings for each terminal are placed in the /etc/gettydefs file. How­
ever, it is possible for any user to modify settings. The tool that UNIX
provides for adjusting and viewing your terminal's settings is the stty (set
terminal) command. Few people in the 1980s still use printing Teletype ma­
chines for terminals, but the term has stuck from the early days of UNIX,
like bubblegum on the sole of your tennis shoes. If you type stty and press
(RETURN) after the UNIX shell prompt, you will probably see something
like this on the screen:

$ stty
speed 1200 baud; -parity
erase = ~h; kill = ~d;
brkint -inpek iernl onler tab3
echo -echoe echok
$

TERMINAL DESCRIPTION

The four lines following the stty command contain information that de­
scribe the present settings of your terminal. Here are explanations of the
items on the first two lines:

speed 1200 baud

-parity

The speed, data rate, transmission rate, or baud
rate is currently 1200 bit/s (bits per second). The
rates possible are 50, 75, 110, 134, 150, 200, 300,
600, 1200, 1800, 2400, 4800, 9600, 19200, and
38400. You must select the one that matches the
rate for your computer.
Disable parity detection (error checking) and set
the character size to eight binary digits (or bits).

504 Identifying your terminal

erase = ~h The character for backspacing over, and erasing,
a character that you have just typed is Control­
H (or 'h for short). Hold the (CTRL) with one
finger and press H with another to enter this char­
acter. You can change this if you wish.
The character for erasing an entire command line
and starting over is Control-D (or "d). You can
change this to another character if you wish.

CHANGING THE SETTINGS

To change the settings for your terminal, simply type the stty again, adding
as many options as necessary. For example, to change the data rate to 9600,
the erase character to (CTRL-G), the kill character to (CTRL-A), and en­
able parity detection, you could enter this command and press (RETURN):

$ stty 9600 char erase Ag char kill Aa parity
$

This merely informs the system of the changes. The terminal's actual
data rate, of course, must match what you set here (9600). This involves
making a change in either a set of DIP switches or a screen menu. To see
the new settings displayed on the screen, type stty by itself and press
(RETURN):

$ stty
speed 9600 baud; parity
erase = "g; kill = "a;
brkint -inpek iernl onler tab3
echo -echoe eehok
$

Now you see the new settings: 9600 bit/s, (CTRL-G) to erase a character,
(CTRL-A) to discard an input line, and parity detection enabled. While
these are the most common settings for a terminal, the stty command also
allows over 60 others. But they all work just like the examples you have
seen here.

Among these sixty options are six preset terminal selections for specific
terminals. If you're using one of the terminals that most people use today,
like the VT100, the Wyse 50, or the TeleVideo 950, you can forget it. But
if you happen to be using one of the following "classics" from years ago,
you're in luck:

tty33
tty37
vt05

(Teletype Model 33)
(Teletype Model 37)
(DEC VT05)

tn300
ti700
tek

(General Electric TermiNet 300)
(Texas Instruments 700)
(Tektronix 4014)

33. Terminals 505

If you are using one of these terminals, just type its abbreviation after
the stty command and press (RETURN). UNIX will then make all the
settings for you.

33.2 The stty command

The general format of the stty command for displaying options and existing
settings is

$ stty [-a} [-g}

-a Display all options
-g

Display settings in argument format

The general format for changing the settings is shown here, with descrip­
tions of the most common options following:

$ stty [options}

GENERAL SETTINGS

These settings control the overall operation of the terminal:

CSn Set character size to n bits (5-8)
line I Set line discipline to I (0-127)
char c Set char to c, where char is (with default value at right):

erase Erase preceding #
character

kill Delete entire line @

swtch Switch to shell control SUB, or (CTRL-z)
layer

eof Generate an end-of-file EOT, or (CTRL-D)
intr Generate DEL, or Rubout

an interrupt signal to
terminate processes

quit Generate a quit signal to FS, or (CTRL-I)
create a core image file

rate Set the data rate to rate (110, 300, 600, 1200, 1800, 2400,
4800, 9600, 19200, 38400)

506 The stty command

sane Reset all modes to values that make sense for a majority of
terminals (character size 7, enable and generate parity, even
parity, enable modem control, and so on)

term Set mo des for one of the default terminals (tty33, tty37, vt05,
tn300, ti700, tek)

ek Set erase to # and kill to @

o (zero) Hang up the phone line now

raw Enable raw data -raw Disable raw data (cooked)
tabs Preserve tabs -tabs Convert tabs to spaces
lease Allow lower case (-LCASE) -lease Allow upper case (LCASE)
LCASE Allow upper case (-lease) -LCASE Allow lower case (-lease)
nl No (RETURN) at end of -ni Allow (RETURN) at end 0

line line
parenb Enable parity detection -parenb Disable parity detection
parodd Select odd parity -parodd Select even parity
parity Enable parenb; set cs to 7 -parity Disable parenb; set cs to 8
evenp Enable parenb; set cs to 7 -evenp Disable parenb; set cs to 8
oddp Enable parenb; set cs to 7 -oddp Disable parenb; set cs to 8
eread Enable receiver -eread Disable receiver
eloeal Disable modem control -eloeal Enable modem control
estopb Select two stops bits -estopb Select one stop bit
hupel Hang up on last elose -hupel Do not hang up on last elos~
hup Hang up on last elose -hup Do not hang up on last elos~
loblk Block output from another -Ioblk Do not block output fron

shelllayer another shell layer

With raw output, the system accepts exactly what you type literally,
ineluding any editing keystrokes such as backspace characters; with cooked
output, the system accepts the edited result of what you type, allowing
you to insert or delete characters on the command line before pressing
(RETURN). For example, suppose a user accidently types Ipr instead
of Ip and then presses (BACKSPACE) to erase the r before pressing
(RETURN). Here are the two character strings that will be transmitted
to the system in each mode:

1 P r (CTRL-H) Raw output
1 p Cooked output

OTHER SETTINGS

There are about forty more options for stty, which concern various ways
of handling parity, newline characters, tabs, line-feeds, backspaces, delays,
fill characters, echoing, and so on. For details, refer to the stty command
in Section 1 of the UNIX User's Manual.

33. Terminals 507

33.3 Describing a terminal for vi

PRELIMINARY SETUP PROCEDURES

In vers ions of UNIX derived from Berkeley, the administrative directory
fete contains a file called termeap (terminal capability). This file contains
abbreviated descriptions of all the terminals capable of running on your
UNIX system. In System V, there is a different arrangement: a directory
called fusrflibfterminfo contains separate files with terminal information.
The termeap descriptions are similar, but not identical, to the terminfo
descriptions. (For an extensive list, see Appendix L, "Summary of termeap
and terminfo").

Each description provides alternate names for a given terminal, the size
of its screen, whether or not it supports basic functions like backspacing
and automargins, and the codes required to clear the screen, horne the
cursor, move the cursor in different directions, and so on. A description
may contain only one line for a simple terminal or over thirty lines for a
sophisticated terminal.

SAMPLE ENTRY FOR termcap
For example, to describe the Lear Siegier ADM-3 terminal, feteftermeap
will contain an entry that looks something like this:

Names for terminal

131adm3131lsi adm3:bs:am:li#24:co#80:cl=AZ
I I
Capabilities of terminal

This one-line entry (with descriptions added here) gives four alternate
names for the terminal (separated by vertical bars):

13 (eI three) adm3 3 lsi adm3

It also gives five basic capabilities of the terminal (separated by colons):

bs
am
1i#24
co#80
cl=~Z

Backspacing (ability to move the cursor back and erase)
Automargins (wrapping from the edge of the screen)
Twenty-four lines of display
Eighty columns per line
Clearing (erasing the screen) with (CTRL-z)

508 Describing a terminal for vi

SAMPLE ENTRY FOR terminfo

For the same terminal, /usr/lib/terminfo/a/adm3 contains arecord compiled
from an entry that looks like this (with additional features on the second
line):

Names for terminal
I
l31adm3131lsi adm3,cubl=AH,am,lines#24,cols#80,clear=AZ,

cudl=AJ,ind=AJ,cr=AM,bel=AG
I
+----- Capabilities of terminal-----+

There are three differences between this entry and the one described
above for termcap: 1) the abbreviations are different; 2) terminfo uses com­
mas to separate features instead of colons; 3) the terminfo entry has to be
compiled instead of inserted directly. Note that cubl="H here is the same
as bs for termcap. The four additional terminfo features are as follows:

cud1=~J

ind=~J

cr=~M

bel=~G

Cursor down is (CTRL-J)
Index is (CTRL-J)
Carriage return is (CTRL-M)
Bell (beep) is (CTRL-G)

DESCRIPTION ALREADY ENTERED

If /etc/termcap or /usr/lib/terminfo already contains an entry for your ter­
minal, all you have to do is identify your terminal to the UNIX shell. This
involves setting the shell variable TERM (terminal). For example, if you are
using a Lear SiegIer ADM-3, all you have to do is select one of the alternate
names and assign it to the shell variable TERM:

Bourne Shell C Shell

$ TERM=adm3; export TERM % setenv TERM adm3

Alternately, use ed or vi to call up a file in your horne directory called
either .profile (Bourne shell) or .Iogin (C shell) and place this statement on
a line by itself in that file. Then the UNIX shell will automatically treat
your terminal as a Lear SiegIer ADM-3 every time you log in.

No DESCRIPTION ENTERED

If /etc/termcap or /usr/lib/terminfo does not contain an entry for your ter­
minal, then (sigh) you will have to add an entry yourself. The sigh has
been added because, with certain exotic terminals, this task can sometimes
get very involved. In rare instances, it has even been known to result in
"wailing and gnashing of teeth." If it becomes necessary for you to write

33. Terminals 509

your own terminal description, read the sections that follow. As soon as
you have done that (and assigned your terminal), you are ready to start
using vi.

SUMMARY OF SETUP

Before you can even think about using vi, you have to make sure that two
things have been done:

1. Someone has placed an entry in the file letc/termcap or the directory
lusr/lib/terminfo that describes your terminal.

2. You have assigned the terminal described in letc/termcap or
lusr/lib/terminfo to the shell variable TERM (either at the command
line or in your directory's login file) and also exported this variable.

33.4 Designing an entry

Suppose you check letc/termcap or lusr/lib/terminfo on your system and find
that there is no entry for your terminal. Now what do you do? If you're
really adventuresome, you can write one yourself. Otherwise, you can ask
someone else for help. You may find that letc/termcap is a read-only file on
your system. If so, you will have to act as system administrator to allow
yourself temporary write permission to write your entry to the file. In the
meantime, you can set up your own little private termcap file while you
are developing your entry for the main file. (You can also continue to use
your private file , which may actually be faster and more efficient.)

SETTING UP A PRIVATE FILE

Let's say you decide to call your one-entry file lusr/robin/termcap. Begin an
editing session with this file and enter the information for your terminal.
How does the shell know that your entry is there instead of in the main
public file? The ans wer is simple: you tell the shell. You have to name to
the shell the file that contains the description of your terminal-unless the
description is in letc/termcap (or lusr/lib/terminfo). You also have to inform
the shell of the name of the description itself (wherever it may be located).

Here are the commands to type at your terminal (assuming your terminal
entry is called newterm):

Bourne Shell C Shell
$ TERMCAP=/usr/robin/termcap % setenv TERMCAP ~/termcap
$ export TERMCAP
$ TERM=newterm % setenv TERM newterm
$ export TERM

or

510 Designing an entry

$ TERMINFO=/usr/robin/terminfo % setenv TERMINFO -/terminfo
$ export TERMINFO
$ TERM=newterm % setenv TERM newterm
$ export TERM

In this pair of examples, you are placing a description called newterm
in a file called termcap (or terminfo). In the C shell, the setenv command
includes assigning the shell variable and exporting it in a single command.

Typing these commands on the command line like this allows the assign­
ments to remain in effect only for the duration of your current session with
UNIX. As so on as you log off, the assignments are lost. If you would like
the assignments to go into effect every time you log in, you can place them
in your login file (.profile in the Boume shell, .Iogin in the C shell). Just
add the command statements shown above to this file, and they will be
activated automatically.

CONSTRUCTING THE ENTRY

The easiest way to construct a new entry is to look at the existing entries,
find one for a terminal that is similar to yours, make a copy of it, and
modify the copy. If none is similar to yours, then you will have to construct
it yourself from scratch. Here are some basic pointers.

The process of actually describing your terminal in a termcap or ter­
minfo entry involves looking at the terminal manual and finding the codes
that operate your terminal. Then you find the name of the appropriate
termcap or terminfo variable and type an assignment statement, separated
from other assignment statements by either colons (termcap) or commas
(terminfo).

For example, suppose your terminal manual tells you that the code that
clears your terminal's display to the end of the line is (CTRL-N). Looking
under termcap (or terminfo) in Section 5 of the UNIX Programmer's Man­
ual, you find that the name of the variable that describes this action is ce
for termcap (e 1 for terminfo). So you type this:

termcap terminfo

ce="N el="N

Suppose your terminal's code to clear to the end of the screen is (CTRL-O).
Since termcap's variable is called cd (ed in terminfo), you add another as­
signment to your "string of beads" :

termcap terminfo

ce="N:cd="O el="N, ed="O
For control characters like these, type the caret symbol (,,), followed by

the character. To type an escape sequence (such as (ESC)L), use capital
E preceded by a backslash to represent the CEill:D character: \EL. For

33. Terminals 511

example, suppose your terminal's code to insert a character is CES:Q)P.
Using either termcap's variable (ic) or terminfo's (ichI), you add another
feature:

termcap terminfo

33.5 Examples of entries

The ADM-3A Terminal termcap
This is the actual entry as you enter it into the file:

laladm3al3allsi adm3a:\
:li#24:co#80:am:bs:cm=\E=%+ %+ :ho=~~:\

:ma=~K~P:nd=~L:up=~K:cl=l~Z:cm=\E=%+ %+ :\
:MP=~Z:MR=~Z:sg#l:so=[:se=J :EG#l:ES=#:\
:EE=#:ME=~G:BS=~U:CL=~V:CR=~B:RK=~L:UK=~K:\

:LK=~H:DK=~J:HM=\036:

terminfo/a/adm3a
This is the source entry, which must be compiled with a pro gram
called tic to produce a coded entry. You then place the coded
entry in the database.

adm3al3allsi adm3a,
lines#24, cols#80, am,
cup=\E=%pl%' '%+%c%p2%' '%+%c,
cr=~M, home=~~, bel=~G, clear=~Z$<l>,

cubl=~H, cudl=~J, ind=~J,

cuul=~K, cufl=~L,

adm3a+13a+llsi adm3aplusllsi adm3a+,
use=adm3a, kcubl=~H, kcudl=~J,

kcuul=~K, kcufl=~L,

ADDITIONAL INFORMATION

This is about all we can say about the process of constructing an entry for
termcap or terminfo. For a more detailed discussion, see the series of excel­
lent articles by Bill Tuthill in the first three issues of UNIX/WORLD.[l]

The second article gives actual termcap entries for the Tele Video 925
and Heath/Zenith 29. The third article gives entries for TRS-80, TRS-80
II, Apple II, Apple IIe, Heath/Zenith 89, Osborne 1, IBM pe with Kermit
communications package (VT52 emulation), along with the Freedom, Micro
Decision I, and Ann Arbor Ambassador. You mayaiso be interested in
Reading and Writing Termcap Entries by John Strang.[2]

512 Examples of entries

Although terminfo is considered to be the "official" terminal database
for System V, many systems are still using termcap. Both termcap and
terminfo allow entries for printers as weIl as terminals. The rules for typing
the entries are the same.

Note that XE NIX also contains a file called /etc/ttytype that relates ter­
minal types in termcap or terminfo to terminal ports in /etc/ttys. Each li ne
in /etc/ttytype contains a termcap (or terminfo) name, aspace, and the
name of the corresponding terminal port.

[1] Tht hill , William, UNIX/WORLD, vol. 1, no. 1, pp. 59-61, Jan/Feb
1984; vol. 1, no. 2, pp. 53-56, Mari Apr 1984); vol. 1, no. 3, pp. 53-
56, May I Jun 1984 (UNIX/WORLD, 444 Castro Street, Suite 1220,
Mountain View, CA 94041, (415) 940-1500).

[2] Strang, John, Reading and Writing Termcap Entries, Newton, MA:
O'Reilly & Associates ($7.50).

SETTING TABS tabs

In the absence of any explicit instruction otherwise, UNIX sets the tab stops
on your terminal to every eight column (1, 9, 17, 25, ...). For terminals
with hardware tabs that can be controlled from the computer, you can
set the tab stops on your terminal for special purpose applications. The
command that permits this is called tabs, and has the following general
format:

$ tabs [tabs] [+m n] [-T type]

The tabs option can be selected from the following list. Column 1 always
means the leftmost column, even if the terminal's columns are numbered
from O. If tabs is omitted, the standard columns (-8) are used by default.

-a IBM S/370 assembler (first format):
1, 10, 16, 36, 72

-a2 IBM 8/370 assembler (second format):
1, 10, 16, 40, 72

-c COBOL (normal format):
1, 8, 12, 16, 20, 55

-c2 COBOL (compact format):
1, 6, 10, 14, 49

-c3 COBOL (expanded compact format):
1, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50, 54, 58, 62, 67

-f FORTRAN:
1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61

-p PL/I:
1, 10, 55

33. Terminals 513

-s SNOBOL:
1, 10, 55

-u UNIVAC 1100 assembler:
1, 12, 20, 44

Three other types of entries are also allowed for tabs:

-n

-5

-8

-0

a,b, ...

file

Every nth column. Here are several examples:

Every fifth column:
1, 6, 11, 16, 21, 26, 31, 36, 41, 46, 51, 56, 61, 66, 71, 76
Every eighth column (the default, required for the nroff -h
option):
1, 9, 17, 25, 33, 41, 49, 57, 65, 73

No tabs

Arbitrary tab stops selected by the user (up to a maximum
of 40)
Tabs to be read from the first line of the file named

The next option allows you to select a left margin for some terminals:

+m5
+m10
+mO

Offset the margin n columns from the left side. Here are some
examples:

Offset the left margin to column 6
Offset the margin to column 11 (same as +m with n omitted)
Do not offset the margin (normal for most terminals)

Finally, you have an option for identifying the type of terminal:

-T type Select terminal type as listed in the directory /usr/lib/term. If
you omit this option, tabs will use the value of $TERM.

33.6 Summary

In this chapter you learned how to set the basic operational features of a
terminal, how to describe a terminal for vi, and how to set the tab stops
on a terminal.

SETTING A TERMINAL'S FEATURES

The stty command allows you to set parity, stop bits, upper and lower case,
and many other features. Six terminals that are rarely used by anyone today
have pre-set selections: Teletype Model 33, Teletype Model 37, DEC VT05,
General Electric TermiNet 300, Texas Instruments 700, and Tektronix 4014.

514 Summary

DESCRIBING A TERMINAL FOR vi

Descriptions of terminal and printers are kept in one of two places:

/etc/termcap
/usr/lib/terminfo/*

Still supported by System V (one file)
Standard for System V (a directory of files)

The individual descriptions of features in terminfo are based largely on the
names given in the ANSI X3.64 terminal specification of 1979, and are
therefore different from the original descriptions used in termcap. Except
for the difference in field separators (colons for termcap, commas for ter­
minfo), abbreviations, and compilation for terminfo, the two systems are
very similar. (See Appendix L, "Summary of termcap and terminfo").

SETTING TABS

If your terminal has hardware tabs that can be controlled from the com­
puter, you can set the tab stops on your terminal with the tabs command,
which has a number of preset options for various programming languages
like COBOL, FORTRAN, and different assemblers.

34

Printers

With the advent of System V, the print spooler command has changed
from Ipr (lineprinter) to Ip. This simple spelling change doesn't even hint
how radically the UNIX print spooler has changed internally. While Ipr
supported only one system printer, Ip supports a number of printers and
allows you to group them together as classes by type.

For example, your system could have four dot-matrix printers, three
daisy-wheel printers, and two laser printers. Then you could group your
nine printers into three classes: dot matrix, daisy wheel, and laser. This
would allow users to send text to a type of printer, rather than to a spe­
eific printer. The print spooler could then select a printer of the type you
selected, routing your job to a printer that isn't currently busy.

This arrangement gives users and administrators considerable flexibil­
ity, but it also requires a new suite of UNIX commands, adding to the
complexity of the printing process. Before describing the commands them­
selves, let's take a brief look at the procedure for connecting a printer to a
computer and the spooling process.

34.1 Printer basics

CONNECTING A PRINTER

A printer can be connected to a computer using either aserial connection
or a parallel connection. If the printer has a parallel connector, you just
plug in the two ends of the cable and the job is done.

If the printer has aserial connector, the job may be quite a bit more
involved. Most serial cables mied today are RS-232C cables. However, unlike
parallel cables, serial cables do not conform to any fixed configuration.

RS-232C SERIAL CONNECTION

While RS-232C cables may contain as many as 25 individual wires, with
metallic pins at each end, different printers require different combinations
of the 25 allowable wires and 50 allowable pins. The result is that the
RS-232C standard is anything but standard.

516 Printer basics

Nevertheless, here's an attempt at explaining the basics of RS-232C serial
connections. One thing RS-232C cables usually have in common is the size
and shape of their connector plugs. The 25-pin version has 25 numbered
pins, as shown in Figure 34.1.

FIGURE 34.1. 25 pin configuration

00000 0 0 0 0 0 0
13 12 11 10 9 8 7 6 5 4 3 2

25 24 23 22 21 20 19 18 17 16 15 14
000000000 0 0 0

Pin 1 at one end may be connected to pin 1 at the other end, pin 2 to
pin 2, pin 3 to pin 3, and so on; but not necessarily. A given pin on one
side may be connected to a pin with another number on the other side.

Before discussing pin assignments, let's review a basic concept that de­
termines the direction of the flow of information. Some years ago, before
RS-232C became a general-purpose definition, its primary purpose was to
connect a terminal to a modem. The terminal was referred to as data ter­
minal equipment (DTE), while the modem was referred to as data commu­
nications equipment (DCE). In a nutshell, anything designated DTE sends
on pin 2 and receives on pin 3, while anything designated DCE sends on
pin 3 and receives on pin 2.

Today, computers and printers also use RS-232C connectors, but there
is, unfortunately, no consensus as to how they should be designated. If a
given computer is configured as DCE and a given printer is configured as
DTE, it may be possible to connect the two machines with as few as three
wires (and six pins), as shown in Table 34.1.

TABLE 34.1. RS-232C connection of opposites

Computer (DCE) Printer (DTE)

Pin Function Pin Function

2 Receive data 2 Transmit data

3 Transmit data 3 Receive data

7 Signal ground 7 Signal ground

In this example, it's possible to use "straight-through" wiring. In other
words, since pin 2 is receiving on the computer side and transmitting on the
printer side, it's possible to connect the computer's pin 2 to the printer's
pin 2. Likewise, you can connect pin 3 to pin 3 to allow data to flow the
other way.

34. Printers 517

On the other hand, if both machines are configured as DCE, you will
have to cross pins 2 and 3 to achieve connection, as shown in Table 34.2.

TABLE 34.2. RS-232C connection of like machines

Computer (DCE) Printer (DCE)

Pin Function Pin Function

2 Receive data 2 Receive data

3 Transmit data 3 Transmit data

7 Signal ground 7 Signal ground

In this example, since both machines are DCE, pins 2 and 3 have to
be cross-connected (the computer's pin 2 to the printer's pin 3 and the
printer's pin 2 to the computer's pin 3).

While three wires may be sufficient for many connections, machines often
use other signals as weH: data set ready (incoming), data terminal ready
(outgoing), clear to send (incoming), ready to send (outgoing), and data
carrier detect (outgoing)~abbreviated DSR, DTR, CTS, RTS, and DCD.
The pins commonly used to carry these signals are shown in Table 34.3.

TABLE 34.3. The Most Common RS-232C Signal Assign-
ments

Direction

Pin Name Abbreviation DTE DCE

Frame Ground FG N/A N/A

2 Transmit/Receive Data TD/RD Out In

3 Receive/Transmit Data RD/TD In Out

4 Request to Send RTS Out In

5 Clear to Send CTS In Out

6 Data Set Ready DSR In Out

7 Signal Ground SG N/A N/A

8 Data Carrier Detect DCD In Out

20 Data Terminal Ready DTR In Out

22 Ring Indicator RI In Out

Unfortunately, there is no agreement on whether or not these additional
signals are required for any particular machine. There is also no agreement
on whether these various signals should be aHowed to change freely or held
at pre-determined voltages. FinaHy, there is no agreement on the functional
purpose of any given signal.

Because of these inconsistencies, a system administrator may have to
read manuals, experiment with wires, and do some detective work to fig­
ure out how the pim; on one machinc should bc connected to the pins on

another.

518 Printer basics

Once the basic wiring has been established, you have to make sure that
both serial ports are set up for the same data rate, the same number of
bits per data word, the same number of stop bits per data word, and the
same parity scheme. A printer also has to be set up to interpret new lines
and tabs correctly. You can take care of many of these details using the
stty command, described in the previous chapter~provided that the actual
switch settings agree with the stty settings.

PRINT SPOOLING

Like many UNIX tasks, printing requests do not cause text to be sent
directly from user's directories to the destination devices. Instead, the print
spooler places a copy of the file to be printed in a directory designated as
the print spooling area. This copy of the file remains in the directory until
the printer selected (or a printer of the dass selected) becomes available.
When the printer becomes available, a daemon (Ipsched) sends the text
from the directory (lusr/spool/lp) to the appropriate device file (ldev/lp).

A SAMPLE SYSTEM

To illustrate the lineprinter spooling system, let's assurne that your system
has the nine printers mentioned at the beginning of this chapter. Suppose
you have four dot-matrix printers (all made by Epson), three daisy-wheel
printers (all made by NEC), and two laser printers (both made by Hewlett­
Packard). The members of a dass of printers do not have to share a com­
mon brand name. But since they do in this example, we'll use the brand
names to identify the dassesj then we'll use the model names to identify
the individual printers.

Class: epson (dot matrix)
Printer 1: lx800
Printer 2: fx86e
Printer 3: ex1000
Printer 4: lq2500

Class: nec (daisy w heel)
Printer 1: sw3500
Printer 2: sw5500
Printer 3: sw7700

Class: hp (laser)
Printer 1: ljet1
Printer 2: ljet2

34. Printers 519

34.2 Features for users

An ordinary user can direct printed output either directly to one of the ni ne
individual printers or to one of the three dasses. If a user does not name
a particular printer or dass (and the system administrator has designated
adefault printer), the text will be routed to the default printer. Here are
some examples, with and without the ·d (destination) flag:

Example 1. Direct the printed output to a particular printer (in this
instance, the Epson FX-86e).

$ Ip -dfx86e eh.5
request-id is fx86e-3107 (1 file)

$ -

Example 2. Direct the printed output to a dass of printers (in this
instance, the Epson dot-matrix printers). Note that the system's response
indicates the name of the next available printer in this dass.

$ Ip -depson eh.1 eh.2 eh.3
request-id is lx800-3124 (3 files)
$

Example 3: Direct the printed output to the default printer (in this
instance, the Epson EX-1000). Again, the system provides the name of the
printer implied in the Ip command.

$ Ip eh. 4 eh. 5
request-id is exl000-3129 (2 files)
$

Now suppose that, after issuing the Ip command in example 1, you realize
that you gave the wrong filename. To remove the file from the print queue,
you can enter the cancel command, using the request-id provided by the
system after you originally requested printing. Then you can enter another
Ip command with the correct filename:

$ eaneel fx86e-3107
request "fx86e-3107" cancelled
$ Ip -dfx86e eh.6
request-id is fx86e-3138
$

Finally, to check the status of your printing requests, you can enter the
Ipstat command:

520 Features for users

$ Ipstat
total 28
mx80-217 robin 17462 Apr 6 09:09 on mx80
lx1000-346 robin 3685 Apr 6 09:12
fx86e-297 robin 8931 Apr 6 09:13
lx1000-408 robin 2366 Apr 6 09:17
mx80-329 robin 6328 Apr 6 09:19
lx1000-453 robin 23697 Apr 6 09:21

$ -

34.3 Features for system administrators

The commands for system administrators are stored in directory /usr/lib. To
use these commands, you must be logged in as the lineprinter administrator
(Ip), with horne directory /usr/spool/lp. To avoid having to type the fuH
pathname of each command, it's also desirable to indude /usr/lib in Ip's
default execution path.

The commands provided for administrators make it possible to set up
and configure the entire spooling system, start and stop the spooling sys­
tem, suspend and release printing jobs at different stages of the system,
and obtain detailed status information. Let's begin with the commands for
allowing and disallowing output intended for a specific printer or dass.

SUSPENDING PRINTING

If one of your printers is malfunctioning, you can prevent users from queue­
ing jobs for that printer without disrupting the flow of text to any of the
other printers. For example, if you have to repair your LX-800, you can
turn it off and issue the following command:

lp reject lxBOO
destination "lx800" now rejecting requests
lp

Now you are free to work on the printer, and the system will reject any
requests that name this printer. After the printer is working again, you can
issue the following command to allow queueing again:

lp accept lxBOO
destination "lx800" now accepting requests
lp

On the other hand, if this same printer simply has a paper jam or runs
out of paper or needs a new ribbon, you can defer printing (but leave jobs
queued for the printer) by issuing the following command:

34. Printers 521

Ip disable lx800
printer "lx800" now disabled
Ip _

Now you can unjam the paper, add new paper, or replace the ribbon
while jobs queued for this printer remain suspended in the queue. With the
problem fixed, you can issue the following command to res urne operation:

Ip enable lx800
printer "lx800" now enabled
Ip _

TURNING THE PRINT SPOOLER ON AND OFF Ipsched
The commands that turn the entire print spooling system on and off are
lpsched (on) and Ipshut (off). It is customary to place Ipshed in the rc
file to start the print spooler with the UNIX system. When the spooler is
running (and the spooler daemon is active), a lock file called SCHEDLOCK
is created in /usr/spool/lp. The purpose of this file is to prevent the print
spooler from being accidently initiated after it's already running.

CONFIGURING THE SPOOLING SYSTEM Ipadmin
Before starting the spooling system, you have to make each printer known
to the UNIX system and associated with a logical device-that is, with
a printer interface program stored in directory /usr/spool/lp/interface. The
printer interface program can be either adefault program provided by the
UNIX system (called a model) or a custom program written in the form
of a shell script.

The command that you use to associate the hardware (the printer)
with the software (the printer interface program) is Ipadmin (actually,
usr/lib/lpadmin). You can also use this program to identify the type of
device and to designate adefault printer for the system, which will be dis­
cussed in amoment. You have to turn off the print spooler with Ipshut
before you can use this command.

The Ipadmin command associates a device (-v) with a printer (-p) and
assigns a printer interface program in one of three ways, using the following
syntax:

{
-m mOdel}

Ip lpadmin -p printer -v device -~ printer
-I custom

Here, printer is a unique name of 1-14 alphanumeric characters, including
underscores and device is the pathname of a hard-wired printer, a login

522 Features for system administrators

terminal, or another file that can be written by Ip. When making this
assignment, you must also designate a printer interface program, which
you can do in one of three ways, as indicated by the following examples:

1. Designate a printer interface program (mandatory):

o Select it from a list of model interfaces provided with Ip (here
we select a plain model called dumb):

Ip /usr/lib/lpadmin -pmx80 -v/dev/tty26 -mdumb

o Use the same interface already selected for an existing printer
(here we choose fx86e for a subsequent printer):

Ip /usr/lib/lpadmin -pfx86e -v/dev/tty27 -emx80

o Use a custom program written by the system administrator (here
we use a program called prc):

Ip /usr/lib/lpadmin -plq2500 -v/dev/tty28 -iprc

When assigning a printer name to a device, you also have the option
of indicating that the printer is either hard-wired or a login terminal, in
addition to the option of adding it to a dass. Here are three examples:

2. Identify the printer furt her (optional):

o Indicate that the printer's device is hard-wired:

Ip /usr/lib/lpadmin -psw3500 -v/dev/tty21 -h

o Indicate that the printer's device is a login terminal:

Ip /usr/lib/lpadmin -psw5500 -v/dev/tty22 -I

o Add the printer to dass hp:

Ip /usr/lib/lpadmin -pljet1 -v/dev/tty31 -chp

You can also use the Ipadmin command to remove a printer from a dass,
designate adefault dass, or remove either a printer or a dass of printers.
Here are some examples:

3. Use the Ipadmin command in other ways:

o Remove printer Ijet2 from dass hp:

Ip /usrllib/lpadmin -pljet2 -v/dev/tty32 -rhp

34. Printers 523

o Designate exlOOO as the default printer:

Ip /usr/lib/lpadmin -dex1000

o Remove printer mx80, then remove dass epson:

Ip /usr/lib/lpadmin -xmx80
Ip /usr/lib/lpadmin -xepson

After you have run the Ipadmin program, run accept, enable, and
Ipsched before attempting to use the print spooler. Then log out as Ip.

SYSTEM INFORMATION

This seetion, which is keyed to the previous section, tells you where informa­
tion about your printers is stored by the system. First, each time you attach
a printer with Ipadmin, the system creates a file in /usr/spool/lp/member
that contains the name of the device file. For example, for the MX-80
printer, there will be a file called /usr/spool/lp/member/mx80 that contains
the entry /dev/tty26.

Each time you create a printer dass with Ipadmin, the system stores a file
in /usr/spool/lp/member, with additional details in /usr/spool/lp/class. For
example, for dass epson, there will be a file called /usr/spool/lp/class/epson
that contains the following four entries:

/dev/tty26
/dev/tty27
/dev/tty28
/dev/tty29

The system stores its default interface programs in /usr/spool/lp/model.
The original location of a custom interface program can be any suitable
directory in the system. However, the system copies all active interface
programs (default or custom) to /usr/spool/lp/interface.

Each time a user requests printing, the system stores a copy of the file (s)
to be printed in a subdirectory of /usr/spool/lp/request. For example, sup­
pose you request printing of your weekly report on the MX-80. Then a copy
of your report will be held temporarily in /usr/spoolilp/requestlmx80 until
the MX-80 is available.

At the same time, the sequence number ofthe request (say mx80-2361)
is stored in a file called /usr/spool/lp/seqfile. In addition, a log entry (se­
quence number, user identifier, device name, date, and time) is placed in a
file called /usr/spool/lp/log. (The log file for the most recent UNIX run is
called /usr/spool/lp/oldfile). If there is adefault printer, its name is stored
in /usr/spool/lp/default.

524 Features for system administrators

We'll conc1ude this section with two more files. An output queue for the
spooling system is kept in a file called /usr/spool/lp/outputq, while status
information is stored in another called /usr/spool/lp/output.

CHECKING STATUS Ipstat

The system administrator can obtain much more information ab out the
printer spooler than an ordinary user by including the -t Rag. The system
will show dates, times, and information about the configuration of the
system. Here is an example:

Ipstat -t
scheduler is running
system default destination: ex1000
members of class epson:

mx80
fx86e
ex1000
lq2500

device for mx800: /dev/tty26
device for fx86e: /dev/tty27
device for ex1000: /dev/tty28
device for lq2500: /dev/tty29

mx80 accepting requests since Mar 21 09:36
fx86e accepting requests since Mar 25 11:08
ex1000 accepting requests since Apr 2 14:42
lq2500 accepting requests since Apr 11 08:57

printer fx86e is idle. enabled since Sep 15 09:12
printer lq2500 is idle. enabled since Jul 19 13:17

PRINTER INTERFACE PROGRAMS

Each printer in the spooling system must have a printer interface program
to carry out the actual printing. The system provides a set of shell scripts to
be used as model interfaces in directory /usr/spool/lp/model. (You can use
a shell script, a C program, or some other kind of program as an interface
program.)

A simple example of a shell script is given below. In reading this script,
note that the data li ne that is passed to the interface program contains at

34. Printers 525

least seven fields, which contain information derived from the Ip command
line:

$0 The name of the interface program (including the subdirectory of
/usr/spool/lp and the program name), such as interface/prc

$1 The sequence number of the printing job, such as mx 80 - 2137
$2 The identifier of the user who entered the Ip command, such as

robin
$3 An optional title for the print request such as Week1y Report
$4 Optional number of copies to be printed (entered with the ·n

option of the I command), such as 2
$5 Additional options, such as C (copy) or m (mail)
$6 File(s) to be printed, using fuH path name(s), such as

/usr/robin/reports/weekly

Here is the sheH script:

cat /usr/spool/lp/interface/prc

Simple lp(l) interface

invoked by Ipsched(IM) as
interface/printer request user [title] [copies] \

[options] file(s)

echo form feed
echo "\014\c"

banner user name
banner "$2"
echo
echo "Request id: $1 Pri.nter: 'basename $0 '\n"
date
echo "\n"

banner title, if given
if [-n "$3"]
then

banner $3
fi
copies=$4
echo "\014\c"
shift; shift; shift; shift; shift
files="$*"
i=1
while
do

$1 -le $copies]

for file in $files
do

done

cat "$file" 2>&1
echo "\014\c"

526 Features for system administrators

düne
exit 0

i = 'expr $1 + l'

34.4 Summary

In this chapter you learned how to use the Ip spooling system.

FEATURES FOR USERS

The new spooler system includes three new commands for all users: Ip to
queue a file for printing, Ipstat to display printing status, and cancel to
cancel printing either by request or by printer.

FEATURES FOR SYSTEM ADMINISTRATORS

The system includes these new commands for system administrators: ac­
cept and reject to accept and reject requests to a printer, Ipmove to re­
route requests from one printer to another, enable and disable to enable
and disable routing of requests to a printer, Ipsched to start the print­
ing scheduler, Ipshut to stop it, Ipstat to display status, and Ipadmin to
configure the system.

To set up a spooling system for an installation, a system administra­
tor has to configure the system and make sure each printer has a printer
interface program.

35

System Security

In this chapter, you will learn how to account for authorized users and
reduce (or prevent) unauthorized use of your UNIX system.

35.1 Information about users and groups

USERS AND GROUPS

Each user authorized to use UNIX receives an identifier and a password.
Logging in gives a user access to the system via the user's home directory.
However, UNIX includes a system of protections for all directories and files.
An ordinary user is not allowed to access directories and files outside that
user's own directory unless the necessary perm iss ions have been given.

To allow sharing of directories and files among users working on a com­
mon project, you can form a working group under UNIX. Then you can
allow access within the group to common files, while withholding it from
other users.

Each user is described in a single line entry in a password file called
/etc/passwd; each group may be described on a line entry in a group file
called /etc/group. These two files are described below.

UNIX allows three levels of access permission: to the individual user,
to the user's group, and to all other users. Since this has been covered in
Chapter 3, "The UNIX File System," it will not be repeated here.

INFORMATION ABOUT USERS

The identifier and password of each new user have to be entered in a file
called /etc/passwd, which can be modified only by a super-user, and con­
tains the following seven information fields for each user:

• Identifier

• Encrypted password

• Numerical user identifier

• Numerical group identifier

528 Information about users and groups

• Any comments

• Home directory

• Default shell or dedicated program

Here are a few lines from a typical /etc/passwd file:

root:/H4Gq15HCW7uk:O:50:Super User:/:
daemon:x:l:50::/:
cron:x:l:50::/:
sys:qu.vOrOz90Hlc:2:50:/sys:
bin:Ob3cNIVqpk2A:3:50: :/bin:
robin:MWxG240.118fM:lO:50:Rob Russell:/usr/robin:/bin/sh:

Taking a doser look at the sixth entry (robin), you can see the different
fields, separated by colons, broken down as follows:

robin
MWxG240.118fM

10
50
Rob Russell
/usr/robin
/bin/sh

Login name
Encrypted password
U nique user identifier, associated with each file
Unique group identifier, associated with each file
Additional identification (optional)
Home directory
Login program: the Boume shell

Note that XENIX also has a file called /etc/defaultlpasswd that specifies
the minimum and maximum number of weeks a user must wait before
changing passwords (MINWEEKS and MAXWEEKS) and the minimum
number of characters allowed in a password (PASSLENGTH).

INFORMATION ABOUT GROUPS

The name and password of each group is entered in a file called /etc/group,
which contains the following fOUf information fields for each user:

• Name of the group

• Encrypted password

• Numerical group identifier

• Members of the group, separated by commas

Here are a few lines from a typical /etc/group file:

root:/H4Gq15HCW7uk:l:root,daemon
sys:qu.vOrOz90Hlc:2:bin,sys
secret:XyWK31p.723sP:IO:robin,stan,robert,willy,tom
special:LuGf7e5.0bRfY:50:henry,janice,paul,dan,lisa

35. System Security 529

Taking a doser look at the third entry (secret), you can see the different
fields, separated by colons, broken down as follows:

secret
XyWK31p.723sP
10

rübin, stan, ...

Name of the group
Encrypted password
N umerical group identifier, associated with each
file
Users who belong to this group

ADDING A NEW USER

To add a new user to the system, you have to enter a single-line entry into
/etc/passwd like the one you just looked at. You also have to provide a new
directory and set up an initialization file. Here are the steps:

1. Enter a line for the user in the password file:

D Log in as super-user:

login: root
Password:

D Begin an editing session with vi at the end of /etc/passwd:

vi + /etc/passwd

D Type a line entry for the new user:

a
pat::20:50:Pat Wyman:/usr/pat:/bin/sh

(Boume shell)
pat::20:50:Pat Wyman:/usr/pat:/bin/csh

(C shell)

D End the editing session with vi and return to the shell:

:wq

2. Provide a new directory for the user:

D Create a new horne directory for the user:

mkdir /usr/pat

D Change the name of the owner from rüüt to pat:

530 Information about users and groups

chown pat /usr/pat

o Change the owner's group number to 50:

chgrp 50 /usr/pat

3. Set up the user's initialization file in the user's own directory:

o Log into the user's new directory:

login pat
Password:

$ -

o Begin an editing session with vi using one of two files, depending
on which shell will be assigned to the new user:

$ vi + . profile
$ vi + .login

(Bourne shell)
(C shell)

o Type lines to set and identify the user's terminal:

a
stty erase ,Ah' kill 'AU'
TERH--vtlOO

o Type lines to specify the user's pathnames for mail and for com­
mands:

MAIL=/usr/mail/pat
PATH=:/bin:/usr/bin:/usr/pat/bin:

(mail)
(commands)

o In the Bourne shell, export the variables just assigned:

(E~C) TERM, MAIL, PATH

o End the editing session and return to the shell:

:wq
$

The new user can easily create a password with the passwd command.
Note that in XENIX, you can accomplish all of this with one simple com­
mand, which presents a sequence of prompts to guide you through the
process:

mJcuser

35. System Security 531

REMOVING A USER

If a user leaves the system, you can write the user's files to tape, and then
remove the user's directory:

1. Back up the user's files:

o Change to the root directory:

cd /

o Write all files owned by this user to tape:

find -user pat -exec tar cv {} ;

2. Remove the user's directory and login entries:

o Remove the user's directory:

rm -fr /usr/pat

o Remove the user's line entry in letc/passwd

o Remove the user's name from the line entry in letc/group

Again, XENIX allows you to remove a user with a single command, which
prompts you for the user's login name:

rmuser

35.2 Restricted accounts

So far we have discussed only ordinary user accounts. In this section we'll
talk about accounts with restricted purposes.

ONE-COMMAND ACCOUNTS

For an ordinary user, the login program is the shell. In the last field of
the user's entry in letc/passwd the system administrator typically enters
either Ibin/sh (Boume shell) or Ibin/csh (C shell). However, it's possible to
enter the pathname of any program here. You can use this to advantage to
create accounts that serve no purpose other than to execute one command.

For example, suppose you'd like to be able to find out quickly which users
are active on the system. You could enter a line like this in letc/passwd:

532 Restricted accounts

who:uYe,7op!wq:20:1:Sys Admin:/:/bin/who

Then you could type wbo on any terminal and find out quickly. The system
would execute this one command, and not hing more. As so on as the display
of users appeared, you would be logged out again. Here are some more
examples:

sync: :20:1:Admin(0000) :/:/bin/sync
tty: :53:2:tty(0000) :/:/bin/tty
1p:3iGv&ncW:71:2:1p(0000) :/usr/spoo1/1p:/usr/bin/1p

If your company has developed an application program to run under
UNIX, this is one way to make your program the only program that appears
when your customers log into UNIX.

THE RESTRICTED SHELL rsh

By following the same kind of procedure, you can set up an account that
presents the user with a restricted shell. This shell restricts the user to a
selected set of UNIX commands and one directory, and prohibits redirection
of output. Here's a typical entry in /etc/passwd, showing /usr/small as the
login directory and /bin/rsh as the login program:

tiny: :120:120: :/usr/small:/bin/rsh

By modifying the user's .profile or .Iogin start-up file, the system admin­
istrator can select the the commands permitted. Here's a typical example
of a .Iogin file:

PATH=/usr/little/bin:$HOME/bin
SHELL=/bin/rsh
export PATH SHELL

The user is now confined to one directory (lusr/small), and allowed to
execute only the commands in /usr/little/bin, which the system administra­
tor can copy from /bin and /usr/bin. The restricted directory /usr/little/bin
may contain only half a dozen UNIX commands or many more, depending
on what the system administrator decides to copy into it.

CHANGING PERMISSIONS chmod

ANOTHER WAY TO INDICATE PERMISSIONS

In Chapter 3, "The UNIX File System," you learned how to change per­
missions for files and directories with the chmod (change mode) command
using this kind of symbolic notation:

$ chmod u+x,o-w new.file
$

35. System Security 533

This command would add execute permission for the user and remove write
permission for others (beside the user and the user's group). While you may
prefer to use this notation, which is clear and simple, you should at least
be aware of a numeric notation that can also be used.

Here is how the numeric notation works: Each of the nine permissions is
assigned a binary value, depending on whether the permission is granted
(1) or denied (0), so that the nine-character string translates into a nine­
digit binary number. Here is an example:

Owner Group Others
r w- r - - r - - [Permission string]
110 100 100 [Binary equivalent]

6 4 4 [Octal equivalent]

As you can see here, each r, w, or x translates into a 1 (indicating
permission granted), while each - translates into a 0 (indicating permission
denied). So now we have a binary number (110 100 100) that is equivalent
to the permission string (rw- r- r-). This binary number, in turn, can
be read in octal notation as a number in base 8 (644).

CONVERTING TO OCTAL NOTATION

In case you're a little rusty on octal numbers, here's a quick refresher. Each
group of three binary digits translated into one octal digit, always following
the same pattern:

Binary Octal Binary Octal
000 0 100 4
00 1 1 101 5
o 1 0 2 110 6
011 3 111 7

One easy way to remember this is to think of the numerical value of each
of the three digits of the binary number. Reading from left to right, the
values are 4, 2, and 1. Simply adding the value für each 1 digit gives the
desired octal value. Here's an example:

r w [Symbolic perm iss ion string]
1 1 0 [Binaryequivalent]
4 2 1 [Value of each binary digit]
~----~~----~~~--

4 + 2 + 0 = 6 [Octal equivalent]

534 Restrieted aeeounts

CHANGING PERMISSIONS WITH NUMBERS

What all this means is that the following two commands are equivalent:

$ chmod u+rw,g+r,o+r text.file
$

$ chmod 644 text. file
$

Here are some of the more common sets of permissions for files and
directories translated into their numerical equivalents:

Files

r-- r-- r--

100 100 100

rw- r-- r--

110 100 100

Directories

rwx r-x r-x

111 101 101

rwx rwx rwx

111 111 111

444

644

755

777

[Read permission for everyone]

[Read and write for user, read for everyone else]

[Read, write, and exeeute for user; read and exe-]
eute for everyone else

[Read, write, and exeeute far everyone]

35.3 Setting special file müdes

In addition to the ordinary nine modes for files and directories, there are
three special modes, which can be set only by the super-user and which
apply only to exeeutable files. Using binary notation, eaeh mode is repre­
sented by one of three extra binary digits (or bits) plaeed in front of the
ordinary nine digits, as shown here:

1
o
o

o
1
o

o 0 0
o 0 0
1 0 0

SET USER ID BIT

o 0
o 0
o 0

o
o
o

o 0
o 0
o 0

o
o
o

o [Set user ID bit: mode 4000]
o [Set group ID bit: mode 2000]
o [Sticky-bit: mode 1000]

Mode 4000

This mode permits a user to execute programs which the user could not
otherwise exeeute. It does this by allowing the user to borrow the user ID
of the file's owner when executing the process. In other words, it changes

35. System Security 535

the effective user identifier for the process from that of the user executing
the process to that of the file's owner. When this mode is set, any user can
execute a file that could otherwise be executed only by the super-user­
which represents a security risk for the system. Here is a command to set
the user ID bit and grant read, write, and execute permission to the user,
with read and execute for everyone else:

chmod 4755 track

SET GROUP ID BIT Mode 2000

This mode is analogous to Mode 4000 (Set User ID Bit), but applies to
groups instead of users. This command would set the group ID bit and
grant all permissions to the user and the group, but only read permission
to others:

chmod 2774 enter

STICKY BIT Mode 1000

This mode, which allows programs that are in constant demand to run more
quickly, reserves swap-space for the file, regardless whether or not the file
is actually being executed at the moment. You could say that having this
mode set is something like having a downtown parking space held for you
every day of the week, even when you stay horne. This command would set
the sticky bit and grant all perm iss ions to the user and the user's group,
with read and write to others:

chmod 1776 independ

536 Setting special file müdes

35.4 More on permissions

SUMMARY OF chmod PERMISSIONS

Here is a summary of the notation used by chmod to indicate permissions:

Octal Code Meaning Symbolic
4000 Set user ID (UID) on execution u+s
2000 Set group ID (GID) on execution g+s
1000 Set the sticky bit (super-user) uH

0400 Allow read by owner u+r
0200 Allow write by owner u+w
0100 Allow execute by owner* u+x

0040 Allow read by group g+r
0020 Allow write by group g+w
0010 Allow execute by group* g+x

0004 Allow read by others o+r
0002 Allow write by others o+w
0001 Allow execute by others* o+x

* Execute a file or search a directory.
Here is the general syntax for a symbolic chmod command line:

Comments on symbolic notation:

1. The default for users is a (all), which is equivalent to ugo.

2. The absolute symbol (=) grants the permission explicitly shown, but
removes all others; use it alone to remove all permissions.

3. Only the owner of a file (or the super-user) can change the file's
permissions or set the user ID (UID).

4. Only a member of a group (or the super-user) can set the group ID
(GID).

5. Only the super-user can set the sticky bit.

35. System Security 537

SETTING DEFAULT PERMISSIONS umask
It is possible for the system administrator to establish default permissions
for all files created by any user within the UNIX system. To do this, all you
have to do is to place a command called umask (user file creation mask)
in /ete/profile, using an octal code as an argument. The thing to be aware
of is that the codes used with umask have the opposite effect of the codes
used by chmod. In other words, while chmod grants permissions, umask
denies permissions.

For example, here are two parallel commands:

chmod 444 text Grant permission to read to the owner, the group,
and others

umask 444 Deny permission to read to the owner, the group,
and others (that is, grant only permission to exe­
cute)

This takes a little getting used to. Here are a few more examples:

umask 001
umask 031

umask 066

umask 067

umask 077

Deny perm iss ion to execute to others
Deny permission to write or execute to the group and
deny permission to execute to others
Deny permission to read or write to anyone except the
owner
Deny permission to read or write to the group and deny
all permissions to others
Deny all permissions to anyone except the owner

Here is a summary of the codes for denying permissions with umask:

Octal Code
0400
0200
0100
0040
0020
0010

0004
0002
0001

Meaning
Deny read by owner
Deny write by owner
Deny execute by owner

Deny read by group
Deny write by group
Deny execute by group

Deny read by others
Deny write by others
Deny execute by others

Note that umask merely establishes default permissions for newly cre­
ated files. Any user is free to change these with chmod, and any user can
override the umask setting in /ete/profile by placing another umask com­
mand in .profile (Bourne shell) or .Iogin (C shell). Here is where umask
can be placed:

538 More on permissions

/etc/profile
.profile
. Iogin

Establish default permissions for all users
Establish default permissions for one user (Boume shell)
Establish default permissions for one user (C shell) .

35.5 Maintaining security

Computer systems have a way of attracting people the way honey attracts
bears. Most of the people who invite themselves into computer systems are
just curious, but, unfortunately, a few are destructive. The basic strategy
of an individual who seeks to do harm is two-fold: First, find a way to get
into a system and then, having entered, perform the desired mischief.

To counter these efforts, a system administrator must also have a two-fold
strategy:

• Try to keep unauthorized users out of the system .

• Try to prevent any who do enter from obtaining fuH access to the
system.

Your first line of defense is effective use of passwords. Make sure every
authorized user has a password. Having user accounts without passwords
is like leaving a window or door open in your house. Anyone so inclined
now has an easy way to get inside.

If unauthorized users still manage to enter your system, you must do
whatever you can to keep them from obtaining super-user status. Allow only
one user to log in as the super-user, and change the super-user's password
from time to time. The safeguards built into UNIX are not absolutely
fool-proof, but the relative security they provide is much better than no
protection at all.

Plans for counteracting specific strategies, such as the Trojan Horse, can
be found in the reference named at the end of the chapter.

35.6 Summary

In this chapter you leamed about adding and removing users, setting up
restricted accounts, changing permissions, setting default permissions for
new files, and monitoring system activity.

INFORMATION ABOUT USERS AND GROUPS

Information about users is kept in a file called /etc/passwd (the pass­
word file), and provides the user's identifier, password, user and group ID
numbers, comments, horne directory, and default shell. Information about
groups is kept in a file called letc/passwd (the group file), and provides the

35. System Security 539

name of the group, the password, the group number, and the identifiers of
members of the group.

To add a new user, add a new one-line entry for the user in /ete/passwd,
create a new horne directory for the user, change ownership of the directory
to the user, log into the directory, and set up .profile in the user's new
directory. (In XENIX, this can all be done with the mkuser command.)
To remove auser, copy the user's files to tape, then remove the user's
directory. (In XENIX, this can be done with rmuser.)

By making the appropriate entries in the /ete/passwd file , you can set
up either a one-command account or a restricted shell account. Entries for
these things appear in the file right along with the entries for ordinary
users.

PERMISSIONS

The chmod (change mode) command can be used with either symbolic
strings (rw- r- r-) or equivalent octal (644) notation. Three special modes,
which apply only to executable files, are set user ID bit (mode 4000), set
group ID bit (mode 2000), and the sticky-bit (mode 1000).

The umask command, placed in letelprofile, sets the default permissions
for all files created by all users, using octal codes that deny permissions.
Individual users can override the umask placed in /ete/profile by placing
their own umask commands in either .profile (Boume shell) or .Iogin (C
shell).

FURTHER READING

For furt her reading on the subject of security in much greater detail, refer
to the following. They contain many shell scripts for protecting your system
from intruders.

Kochan, Stephen G. and Patrick H. Wood, UNIX System Security, Has­
brouck Heights, NJ: Hayden Book Company, 1985

Rieken, Bill and Webb, Jim, Adventures in UNIX System Administration,
Santa Clara, CA: .sh eonsulting ine., 1988

36

System Accounting

In this chapter you will learn how to set up and operate the process­
accounting programs and how to monitor system activity. These will help
you maintain security and measure the performance of your system to per­
mit fine-tuning. They mayaIso allow you to implement monthly billing of
users.

36.1 Process accounting

RECORD-KEEPING

Each UNIX system performs a considerable amount of record-keeping auto­
matically. For example, the file lusr/adm/pacct contains one record for every
process completed by the kernel. A file called letc/wtmp contains records
of date changes, reboots, shutdowns, and individual terminal connections.
There are commands you can use to take advantage of this record-keeping
and obtain detailed information ab out what is going on inside your system.

ALL PROCESSES RUN TODAY acctcom

For example, the acctcom (accounting command) provides you with a
log of all system activity for a given day. It will tell you every command
executed, showing the user's name, terminal, start and end time, real and
CPU time, and the average amount of memory occupied. Here's part of a
sam pIe listing:

$ acctcom
COMMAND START END REAL CPU MEAN
NAME USER TTYNAME TIME TIME (SECS) (SECS) SIZE (K)
#accton root 04:00:18 04:00:18 0.02 0.02 1.17
csh bill tty03 05:29:08 05:29:08 0.02 0.02 0.93
stty bill tty03 05:29:09 05:29:09 0.02 0.03 1. 05
pwd bill tty03 05:29:08 05:29:09 1. 00 0.18 4.12
sh bill tty03 05:29:08 05:29:09 1. 00 0.08 5.26
who bill tty03 05:29:10 05:29:10 0.02 0.12 0.18
passwd bill tty03 05:29:19 05:29:51 32.00 2.17 18.57
echo root console 06:00:04 06:00:04 0.02 0.02 0.24
awk bill tty03 06:02:52 06:04:02 70.00 12.05 10.65
eron root 09:50:02 09:50:02 0.02 0.02 0.19
drnesg raot 09:50:02 09:50:03 1. 00 0.47 3.27
sh root 09:50:02 09:50:03 1. 00 0.05 2.98
awk beth tty08 09:55:22 09:57:26 124.00 14.70 8.69

542 System activity accounting

A quest ion mark (? /) indicates a process initiated internally, such as
eron. Note how much more time the two awk commands took than any of
the others. An inordinate amount of execution time for a command could
be the first clue leading to the detection of unauthorized activity. However,
commands like awk and nroff, which perform numerical operations, can
be slow on systems that lack hardware floating-point assist.

36.2 System activity accounting

So far in this chapter, we've taken a look at process accounting, which gives
us information about system usage in terms of terminals, commands, and
users. To probe into the inner workings of the system and measure inter­
nal performance, UNIX offers a set of commands that report on system
activity. To optimize the performance of your system, you may want to
use these to obtain statistics about activity of the CPU, terminals, disk
and tape drives, buffers, system calls, swapping, file-access, queueing, mes­
sages, and semaphores. The commands we'll be discussing in this section
are summarized in Table 36.1.

TABLE 36.1. Programs for Monitoring System Activity

Command Function

timex Time a command and also provide information about system about sys-

tem activity and process accounting.
sar Report on system activity in tabular format and save the information in

a file.

sag Report on system activity in graphical format (histogram).

sadp Check disk activity every second for a given period of time, then pro-

vide information about usage and seek distances in either tabular or

graphical format.

TIMING A COMMAND timex

The timex command is an enhanced version of time, which works like a
stopwatch for UNIX commands. When used without any options, timex is
identical to time, as shown in this example:

$ timex ed file
?file
a
This is a new file to test some things out.

36. System Accounting 543

Here is the second line of this new file.

w
86
q

real 24.98
user 0.00
sys 0.28

$

Here, timex gives the time required for this brief editing session in three
forms: real (24.98 seconds), user (0.00), and system (0.28). However, timex
also has three options and six suboptions available:

[Number of characters and blocks transferred]
command [Show process activity-see sub options below]

[Show all system activity during execution]

Process activity:

-pr Display user time divided by (system time + user time)
-pt Separate user time from system ePD time
-ph Display ePD time divided by elapsed time
-pm Display mean core size
-pk Display Kcore-minutes
-pf Display the forkjexec flag and exit status of the command

Here are a few examples of using timex with these options, in each case
measuring abrief formatting process:

1. Time the mm command and display the number of characters trans­
ferred, along with the number of blocks read and written:

$ timex -0 mm file

real
user
sys

- 1 -

This is a new file to test same things out. Here is
the second line of this new file.

6.38
1. 26
2.46

544 System activity accounting

CHARS TRNSFD
BLOCKS READ

$

498480
93

2. Time the mm command and display the me an core size:

timex -pm mm file

- 1 -

This is a new file to test some things out. Here is the
second line of this new file.

real 5.80
user 1.18
sys 2.60

START AFT: Wed Feb 5 09:17:26 1988
END BEFOR: Wed Feb 5 09:l7:31 1988
COMMAND START END REAL CPU CHARS BLOCKS
NAME USER TTYNAME TIME TIME (SECS) (SECS) TRNSFD READ
mesg robin tty07 09:17:26 09:l7:26 0.02 0.22 28680 2
mesg robin tty07 09:17:26 09:17:26 0.02 0.22 28672
col robin tty07 09:l7:27 09:l7:31 4.00 0.13 380
nroff robin tty07 09:l7:27 09:l7:31 4.00 2.38 410112 61
mesg robin tty07 09:l7:31 09:17:31 0.02 0.22 28672 3
sh robin tty07 09:17:26 09:17:31 5.00 0.45 1964
$

SYSTEM ACTIVITY REPORT

MEAN
SIZE(K)

0.00
0.00
0.00

34.80
0.00
0.00

sar
sag

To generate reports of system activity in tabular form and save the results
in a file, use the sar (system activity report) command. The simplest way
to use sar is to give the command with a single time interval in seconds.
The command will report user time, system time, and idle time, as shown
here for a one-second interval (09:20:57-09:20:58):

$ sar 1

colus colossus 2.5 Col/2000

09:20:57
09:20:58

$

%usr
1

%sys
15

05/16/87

%idle
83

If you specify more than one time interval, sar will also display averages.
In the following example, we request three intervals of two seconds each:

$ sar 2 3

colus colossus 2.5 Col/2000

09:21:11 %usr %sys
09:21:13 0 5
09:21:15 3 20
09:21:17 2 9

Average 2 11

$

36. System Accounting 545

05/16/87

%idle
95
77
89

87

If you would like sar to save the samples in a file , add the -0 option in
front of the time options, as shown here for the previous example:

$ sar -0 samples 2 3
$

Here is the general form of the sar command for sampling current system
activity and possibly saving the samples in a file:

-A
-8

-b
-e
-d

$ sar -m [-0

-q
-u
-v
-w
-y

file] t [n]

[All system activity]

[File access]

[Buffers]

[System calls]

[Block devices]

[Messages and semaphores]

[Queues]

[CPU usage-the default]

[Text, processes, i-nodes, and files]

[Swapping and switching]

[Terminal devices]

Time is specified as follows:

t The length of each sample in seconds
n The number of samples to take (default: 1)

Here are some examples using options:

1. Sam pIe terminal activity in five two-second intervals:

$ sar -y 2 5

co1us co1ossus 2.5 Co1/2000 05/16/87

09:25:01 rawch/s canch/s outch/s rcvin/s xrntin/s rndrnin/s
09:25:03 1.3 0.0 47.5 0.0 2.7 0.0

546 System activity accounting

09:25:05 0.9 0.0 32.3 0.0 1.4 0.0
09:25:07 3.2 0.0 30.7 0.0 3.7 0.0
09:25:10 1.8 0.0 28.4 0.0 2.3 0.0
09:25:12 0.9 0.0 46.3 0.0 1.8 0.0

Average 1.6 0.0 37.1 0.0 2.4 0.0

The abbreviations used have the following meanings:

rawch
canch
outch

rcvin
xmtin
mdmin

N umber of characters in the raw queue
Number of characters in the canonical queue
Number of characters in the output queue

Number of hardware interrupts from the receiver
Number of hardware interrupts from the transmitter
Number of hardware interrupts from the modem

2. Sam pIe file access in fOUf one-second intervals:

$ sar -a 1 4

colus colossus 2.5 Col/2000 05/16/87

09:22:27 iget/s narnei/s dirbk/s
09:22:28 2 1 1
09:22:29 2 2 1
09:22:30 4 3 2
09:22:31 4 2 0

Average 3 2 1

$

The abbreviations used have the following meanings:

iget

namei

dirbk

Number of times the system located the i-node entry of
a file
Number of times the system searched the file system
for a path
Number of times the system read directory blocks in a
search

Once you've directed sampie output to a file with the -0 option, you
can then extract the sampies with a subsequent sar command using the -f
option, as shown in here:

$ sar -f samples

$

36. System Accounting 547

The general form of the sar command for extracting samples from a
file is as follows (the data options, which were shown above, will not be
repeated here):

$ sar [options} [-s start} [-e end} [-i sec} [-f file}

The abbreviations have the following meanings:

options
start
end
sec
file

The options listed above
Starting time
Ending time
Time interval in seconds (default: interval in the file)
The file from which to extract the samples

If you prefer to display the sample information in graphical format (his­
togram), use sag instead of sar.

DISK ACTIVITY REPORT sadp
You can run similar samples on disk activity with sadp. This command
samples disk usage and seek distances every second for a given interval,
then displays the results in either tabular or graphical format. Here is the
general form of the sadp command:

$ sadp [=~] [-d device[- drive}} s [n}

The options are as follows:

-t Use tabular format-the default
-h Use histogram format
-d Device (and optional drive number)
s Length of each sample in seconds
n Number of times to repeat sampling

Here are some examples:

1. Report on disk activity for a one-second interval in tabular format:

$ sadp -t 1

CYLINDER ACCESS PROFILE

disk-1:
Cylinders
0-7
8 - 15

Transfers
25
2

24 - 31 4
32 - 39 1

548 System activity accounting

40 - 47 1

Sampled 1/0 33, Actual 1/0 = 386
Percentage of 1/0 sampled = 8.55

SEEK DISTANCE PROFILE

disk-1:
Seek Distance Seeks

0 19
1 - 8 1
9 - 16 2

25 - 32 3
Total Seeks 25

2. Report on disk activity for a one-second interval in histogram format:

$ sadp -h 1

CYLINDER ACCESS HISTOGRAM
[Histogram not shown here]

COLLECTING INFORMATION ON SYSTEM ACTIVITY

It is generally desirable to collect information on system activity, even if
you don't intend to produce reports regularly. Then the information will
be there if you need it. The procedure for setting this up involves making
sure the system activities counters rest art from zero whenever the system
is restarted and making sure that eron runs the data collection routines.
Here is the procedure in detail:

1. Provide for automatie starting:

o Move to directory fetc:

cd fete

o Make sure that fetc/re contains a start-up command in the area
for changing to multi-user mode:

Ibin/su - adm -c "/usr/lib/sa/sadcl lusr/adm/sa/sa'date +%d'"

2. Provide for regular execution of the data collection commands:

o Move to directory fusrflib:

36. System Accounting 549

cd /usr/lib

o Begin an editing session with erontab:

vi + crontab

o Add the following three lines to take care of daily processing:

o * * *
o 18-7 * *
o 8-17 * *

0,6
1-5
1-5

/usr /lib/ sa/ sa1
/usr/lib/sa/sa1
/usr/1ib/sa/sa1 1200 3

Here is abrief description of the commands involved:

1. sade, which starts every time your system changes to multi-user
mode, reads system counters from /dev/kmem and writes them to
a file called /usr/adm/sa/sadd, where dd represents the day of the
month.

2. sa1, which is executed by eron at different intervals, depending on
the time of day, invokes sade to write system counters.

This shell script may be invoked with a sampling interval in seconds
and a number of iterations as arguments. For example, sa1 1200
3 gives a sampling interval of 20 minutes (1200 seconds) and three
iterations.

In the crontab lines shown above, sa1 is called hourly on weekends
and during off hours on weekdays (6:00 p.m. to 7:00 a.m.), but is
called every twenty minutes during normal business ho urs (8:00 a.m.
to 5:00 p.m.).

3. sa2, which is executed manually instead of by eron, invokes sar to
use the daily data file /usr/adm/sa/sadd to generate a daily report
in /usr/adm/sa/sardd. The shell script sa2 also deletes all data and
report files after one week (seven days).

36.3 Summary

In this chapter you learned how to set up and operate both the process
accounting and system accounting packages. The process accounting pack­
age, which gives you information about processes executed on your system,
includes this command:

aeeteom List every process executed today

The system accounting package, which gives you information about in­
ternal activities, includes these commands:

550 Summary

timex
sar

sag
sadp

Time a UNIX command and give system information
Generate system activity reports in tabular format, with the
option of saving the information in a file
Generate system activity reports in graphical format
Generate disk activity reports in either tabular or graphical
format

To collect system activity data, you have to use fete/re to start sadp
when the system starts and use /usr/lib/erontab to have sadc invoked at
regular intervals.

Part VII

N etwork Administration

37 Introduction to Networking 553

38 Communication Before Release 3 563

39 Communication After Release 3 575

40 Basic Resource Sharing 593

41 Remote File Sharing Maintenance 607

42 Remote File Sharing Security 621
In Part VII you will learn how to set up and operate the UUCp system,

which allows you to communicate with other UNIX systems and become
part of a world-wide UNIX network. Although other communication pro­
grams are available for UNIX, UUcp is the most widely used because it's
a standard part of every UNIX installation. Because of changes in UUCp,
there will be one discussion for vers ions before Release 3 (Chapter 38) and
one for versions after Release 3 (Chapter 39). (The rewritten version of
UUCp, part of the new Basic Networking Utilities, is often called Honey­
DanBer after its authors Pet er Honeyman, David A. Nowitz, and Brian E.
Redman.)

You will also learn how to set up, maintain, and operate the Remote
File Sharing (RFS) system, the major feature of Release 3, which allows
different UNIX systems to share resources with each other.

While AT&T has been promoting its RFS, Sun Microsystems has been
promoting a competing Network File System (NFS). At the time this book
was going to press, there was a great deal of discussion about the future
of networking under UNIX. NFS has gained an early lead in the race, but
some observers see RFS as the eventuallong-term winner.

37

Introduction to Networking

Before describing uucp and the Remote File Sharing (RFS) system, we'll
take a look at the underlying hardware and software that allow these ap­
plications to operate. Application programs like uucp and RFS rest on a
number of layers of equipment, materials, and other programs.

37.1 Connecting computer systems

Before you can transfer files from one computer to another (or from a
computer to a printer), you have to set up some kind of connection between
them. This connection allows one of the two machines to transmit text
to the other and also allows control information to pass back and forth
between the machines. The connection may be in the form of a cable that
connects the machines directly, a telephone line that connects them via
AT&T's telephone network, or a network of computer systems (possibly a
local area network).

DIRECT CONNECTION

Two computers in the same room are usually connected with serial cables
through their respective serial ports. Near the beginning of Chapter 34,
"Printers," we discussed serial connection via RS-232C interface. Connect­
ing two computers is about the same as connecting a computer to a printer.
If the serial port on one computer is configured as DCE and the serial port
on another is configured as DTE, you may be able to connect them with
straight-through wiring, as shown in Table 37.1.

TABLE 37.1. RS-232C connection of opposites

Computer A (DCE) Computer B (DTE)

Pin Function Pin Function

2 Receive data 2 Transmit data

3 Transmit data 3 Receive data

7 Signal ground 7 Signal ground

554 Connecting computer systems

On the other hand, if both computers are configured as DCE (or DTE),
you may have to cross pins 2 and 3 to accommodate data flow in each
direction, as shown in Table 37.2).

TABLE 37.2. RS-232C connection of like machines

Computer (DCE) Printer (DCE)
Pin Function Pin Function

2 Receive data 2 Receive data

3 Transmit data 3 Transmit data

7 Signal ground 7 Signal ground

In this example, since both machines are DCE, pins 2 and 3 have to be
cross-connected (A's pin 2 to B's pin 3 and B's pin 2 to A's pin 3). Aserial
cable that is cross-connected in this way is sometimes called a null modem.

As pointed out in Chapter 34, whether you are connecting printers or
computers, you may have to do some detective work to figure out how the
pins on one machine should be connected to the pins on another.

Once the basic wiring has been established, you have to make sure that
böth serial ports are set up for the same data rate, the same number of
bits per data word, the same number of stop bits per data word, and the
same parity scherne.

TELEPHONE LINES

If two computers are equipped with modems, they can dial each other and
send information back and forth over the telephone lines. The modems are
required to modulate the information (convert it from numbers to pitches)
before transmission and demodulate it (convert the pitches back to num­
bers) after reception. If you are using an external modem, you must connect
the computer to the modem as described in Chapter 34. Also, before you
can begin dialing from either side, you have to make sure that both modems
agree in data rate, bits per word, stops bits, and parity.

LOCAL AREA NETWORK

If a group of computers are all equipped with the circuit boards and con­
nectors required, they can be linked in a local area network (LAN), which
allows sharing of the resources connected to the network. The section that
follows describes networks in greater detail.

37. Introduction to Networking 555

37.2 Sorne basics of networking

Networks, which connect computers and other devices to allow sharing
of resources and information, play a large role in System V, Release 3.
We'll begin with the hardware (physical link and data link), then cover
the software (communication protocol and application protocol). As in any
computer application, the hardware provides a foundation, over which the
software is built like the structure of a building. As you will soon leam,
a networking building is one of several stories, each built upon the story
below it.

THE PHYSICAL LINK

A network begins with a physical link. The physical link, or medium, is
what provides the basic connection for a network. It is characterized by
the speed at which it can transfer data (data rate) as well as its capacity
(bandwidth). The greater the bandwidth, the more channels can be trans­
ferred simultaneously (or the more information can be conveyed over the
same number of channels). Bounded media involve wires or cables, while
unbounded media operate through the airwaves. The bounded media in use
today include twisted pair, coaxial, and fiber optic.

Twisted pair, which originated in telephone networks, consists of a pair
of copper wires wound around each other. Optimized for voice signals, it
provides speeds of about 2400 bit/s over circuit-switched lines or 4800 bit/s
over leased lines. The oldest and most developed medium, twisted pair is
best suited for low-speed devices like terminals.

Coaxial cable, which consists of an inner cop per wire, surrounded by an
insulator and copper mesh, surrounded by an outer shield, has been widely
used in cable television. This technology is supported by a variety of cou­
pIers, splitters, repeaters, taps, and controllers. With a typical bandwidth
of 300-400 MHz, this medium can support over fifty color TV channels or
thousands of voice or low-speed data channels. It can also support a single
channel at very high data rates (12 Mbit/s).

Fiber-optic cable, made of glass or plastic, is the newest and most ex­
pensive of the bounded media. This cable must be supported by devices to
convert electricity to light, then light back to electricity again. Its perfor­
mance is astonishing: it has a bandwidth up to 3.3 GHz (3.3 trillion Hz)
and a data rate up to 1 Gbit/s-with almost no interference. Around 2000
A.D. a fiber-optic Integrated Services Digital Network (ISDN) for voice,
data, and video will probably replace the present analog voice network in
businesses and hornes.

Very briefly, the unbounded media include radio and microwave, which
can be used in satellite communication, and infrared.

556 Some basics of networking

THE DATA LINK

The next layer in a network is the data link. The data link, which relies on
the physical link, is characterized by the method for transferring the data
(transmission method or signaling method), the configuration of the nodes
and lines in a network (network topology) , the method for establishing a
path (switching), and the method for allowing access to a network to mul­
tiple users (access method). Two transmission methods are the following:

• baseband-high-speed digital transmission on a single channel

• broadband-medium-speed digital, voice, or video transmission over
multiple channels

There are three configurations, called network topologies, for connecting
stations (see Figure 37.1):

• bus-stations connected along an open route

• ring-stations connected within a closed route

• star-secondary stations radiating from a central station

FIGURE 37.1. Network topologies.

Bus Ring Star

An actual network is likely to represent a combination of these configu­
rations, or a hybrid topology, as shown in Figure 37.2.

The method for establishing a path is called the switching method. Circuit­
switching, which involves selecting a physicallink and routing information
through it continuously for aperiod of time, is the method used in telephone
networks. This method is suitable for voice communication, but not for data
communication, which typically occurs in short bursts. A method more
suitable for computer systems is packet-switching, which employs groups of
data called packets (usually ab out 64-256 bytes long). Each packet contains
not only data, but also routing information.

37. Introduction to Networking 557

FIGURE 37.2. Hybrid topology.

Use of a single channel by many users is determined by where control of
allocation and access resides in the network, which user is allowed access
to the channel, and how much use of the channel the user is allowed. The
method for determining which user is allowed access to the channel is called
the access method. Some methods in use today are the following:

• jrequency division multiplexing (FDM)-allocating different frequen­
eies, within the available bandwidth, to each user

• time division multiplexing (TDM)-allocating time slices m quick
succession

• token-passing-a polling method that involves passing a token around
to each station on the network)

• Carrier Sense, Multiple Access with Collision Detection, or CSMA/
CD-allowing any user to bid for the line at any time, then resolving
contentions by allowing bidders to retry, after a randomly determined
short delay, until one succeeds

LOW-LEVEL PROTOCOLS

The third layer in a network is called a low-Ievel protocol. Network stan­
dards can be adopted either by an independent organization or a private
company. The independent organizations most widely recognized today are
the following:

• IEEE-Institute of Electrical and Electronic Engineers

• ANSI-American National Standards Institute

• ECMA-European Computer Manufacturers' Association

• ISG--International Standards Organization

• CCITT -Consultative Committee on International Telephony and
Telegraphy

558 Some basics of networking

Several hardware standards, or low-level protocols, which include a phys­
icallink and a data link, have been adopted for various applications:

• Ethernet (IEEE 802.3)-any medium; baseband or broadband; bus;
CSMAjCD (joint standard of Xerox, DEC, and Intel)

• Starlan (IEEE 802.3)-twisted-pair cable; baseband; bus and star;
CSMAjCD (AT&T standard)

• Token bus (IEEE 802.4 -coaxial cable; broadband; bus;
token-passing (General Motors standard)

• Token ring (IEEE 802.5)-twisted-pair or fiber-optic cable; base­
band; ring; token-passing (IBM standard for larger computers)

• PC Network-coaxial cable; broadband; bus; CSMAjCD (IBM stan­
dard for personal computers)

This completes our discussion of the hardware aspect of networking,
which includes a physical link (or medium) and a data link, with various
combinations of characteristics used in different low-level protocols. Now
we'll consider the software aspect of networking, high-level protocols, in­
cluding communication protocols and application protocols.

COMMUNICATION PROTOCOLS

With a low-level protocol in place, we have a foundation for the next
level, the communication protocol, which takes care of data-routing, error­
checking, process-connection, and formats. Here are six major protocols:

• SNA (System Network Architecture)-originally developed by IBM
for hierarchical networks; recently enhanced for peer-to-peer networks
with Advanced Program-to-Program Communications (APPC)

• DNA (Digital Network Architecture)-developed by Digital Equip­
ment Corporation for its DECnet

• XNS (Xerox Network Systems)-developed by Xerox Corporation

• TCP /IP (Transmission Control ProtocoljInternet Protocol)­
developed by the United States Department of Defense's Advanced
Research Projects Agency (ARPA) and later incorporated into 4.2BSD

• ISO/CCITT OSI (Open System Interconnection)-not yet fully de­
veloped, but supported by the U.S National Bureau of Standards and
ECMA

• ISO/CCITT X.25-used for public networks like Tymnet and Te­
lenet

37. Introduction to Networking 559

IBM's APPC, which relies on new physical unit and logical unit protocols
(PU 2.1 for transport (physical) level and LU 6.2 for upper session and
presentation levels), is eventually expected to replace IBM's 3270 protocols.

ApPLICATION PROTOCOLS

With a low-Ievel protocol and a high-level protocol in place, it's possible to
construct an application protocol at the highest level. Here are a few that
have been developed for three major communication protocols:

For SNA, IBM has developed DCA (Document Content Architecture) for
document formatting, DIA (Document Interchange Architecture) for doc­
ument distribution, and SNADS (SNA Distribution Services) for delayed
delivery services. Disoss (Distributed Office Support Systems) is an IBM
application for host access via DCA and DIA.

For TCP /IP, the Department of Defense has approved Telnet for terminal
access, FTP (File Transfer Protocol) for file transfer, and SMTP (Simple
Mail Transfer Protocol) for electronic mail. In addition, Sun Microsystems
has developed NFS (Network File System) to interconnect a variety of
UNIX and non-UNIX systems.

For ISO/OSI, these have been adopted: VTP (Virtual Terminal Proto­
col) for terminal access, FTAM (File Transfer Access Method) for file trans­
fer, MMFS (Multiple Message Forwarding System) for messaging, CCITT
X.400 (Message Handling Standard) for electronic mail, and RFS (Remote
File Sharing) for resource-sharing in System V, Release 3.

THE ISO REFERENCE MODEL

To summarize our discussion of networking concepts, let's take a look at
the ISO Open System Interconnection (OSI) reference model, which is used
to describe networks in terms of seven separate areas, or layers-the seven
layers we've just discussed. SNA and DNA were originally derived from
this model.

Layer ISO Name Function General Layer
1 Physical Provide medium Low-Ievel protocol
2 Data Link Connect stations

3 Network Route data
4 Transport Keep data intact High-level protocol
5 Session Connect processes
6 Presentation Provide data formats

7 Application Provide actual use User application

560 System V, Release 3

37.3 System V, Release 3

System V, Release 3 continues the process of opening UNIX to the rest of
the computing world. Before this version, most attempts to connect UNIX
to other systems resulted in an inconsistent assortment of unrelated pro­
grams, each relying on a different protocol and a different communication
medium. Release 3 now lays the groundwork for an ever-growing set of
networks by providing a structured character input/output system and a
standard, modular model for networking systems.

The first step was to adopt Dennis Ritchie's Stream Input/Output Sys­
tem (STREAMS) as the standard character input/output system for Sys­
tem V. The second step was to adopt the reference model of Open Systems
Interconnection (OSI) as the standard definition of protocol service inter­
faces for System V. The third step was to implement the OSI reference
model within STREAMS, using the principles of functional layering and
service interfaces.

Functional layering means separating a networking system into three
different functional areas (or generallayers): (1) application, (2) high-level
protocol, and (3) low-level protocol. Each layer interacts with the next
through a service interface, which provides a standard set of services to
each upper layer. In this way, the application is independent of the proto­
col, and the protocol is independent of the medium. The Transport Layer
Interface (TLI) provides protocol support to applications, while the Data
Link Layer Interface (DLLI) provides hardware support to protocols, as
shown in Figure 37.3.

FIGURE 37.3. Layers and interfaces.

Network Application

Transport Layer Interface

Transport Protocol

Data Link Layer Interface

Low-Level Protocol

Both CU and UUCp have been re-coded to conform to this scheme, and
therefore operate independently of any protocol or medium (Chapter 5,
"Communication"). A new feature of Release 3, Remote File Sharing (RFS)
has been designed from the start to conform to this scheme (Chapters 40,

37. Introduction to Networking 561

"Basic Resource Sharing," 41, "RFS Maintenance," and 42, "RFS Secu­
rity").

In a sense, System V now provides for networking systems what UNIX as
a whole provides for computer users. The UNIX shell provides the user with
a standard interface, which shields the user from the kernei; while the kernel
provides the shell with a standard interface, which shields the shell from
the computer hardware. The layering of the OSI Reference Model performs
similar functions. The Transport Layer Interface shields the application
from the protocol, while the Data Link Layer Interface shields the protocol
from the communication medium. For a summary of these and other new
features of Release 3, see Appendix M, "UNIX versus XENIX."

37.4 Summary

This chapter describes how computers may be connected to each and to
other machines and introduces networking.

CONNECTING COMPUTERS

Computers can be connected directly with cables, usually using RS-232C
serial cables. They can also be connected via the telephone network, pro­
vided that both computers are equipped with modems. Finally, if a group
of computers are equipped with the proper circuit boards and connectors,
they can be linked within a network.

BASICS OF NETWORKING

A network is constructed in layers, each resting on the one beneath, includ­
ing a medium (bounded or unbounded), a low-Ievel protocol, a high-level
protocol, and a user application. Many of the features of System V, Re­
lease 3 rely on the ISO / OSI reference model for networks. This version of
UNIX offers a standardized approach to networking applications by com­
bining STREAMS with the reference model of Open Systems Interconnec­
tion (OSI). One of the major features of Release 3, Remote File Sharing,
is based on this approach.

FOR FURTHER READING

If you would like to learn more ab out networking, refer to the following:

Friend, George E., John L. Fike, H. Charles Baker, and John C. Bel­
lamy, Understanding Data Communications, Dallas: Texas Instru­
ments, 1984.

562 Summary

Tanenbaum, Andrew S., Computer Networks, Engelwood Cliffs, NJ: Prentice­
Hall. 1981.

38

Communication Before
Release 3

38.1 Hardware requirements für uucp

To run uucp, you need a minimum of two UNIX systems and something
to connect them together. You will also have to update three files to make
sure your system is aware of the method of connection that you are using:

/etc/ininab
/usr/lib/uucp/L -devices
/usr/lib/uucp/L.sys

DIRECT CüNNECTION

If two systems are dose to each other, you can connect them directly with
a null modem (a serial cable with the send and receive pins crossed over).
This is also referred to as a hard-wired connection, and can be used for
systems up to several hundred feet apart, depending on the data rate used.

TELEPHONE LINES

To operate over ordinary telephone lines, you will probably have to use
an auto-dial modem. You can then operate the modem via any full-duplex
communieation line in the system, provided that the line has been disabled
for ordinary use. The modem you select must operate at the same speed at
whieh the modem on the other end of the line is operating (usually 1200
bit/s). For larger operations, you can install a special automatie call unit
(ACU), whieh takes the place of an integral modem.

DISABLING THE TERMINAL

If you've connected your modem through an ordinary terminal port, you'll
have to disable the getty process for that terminal in /etc/inittab. For ex­
ample, suppose you plan to attach your modem to tty02. When you look
at /etc/inittab, you'll see something like this:

564 Hardware requirements for uucp

02:2:respawn:/etc/getty tty02 1200

Use your editor (vi or ed) to change respawn in the third field to off.
Now no one can use this terminal for logging into your UNIX system, but
only for dialing out. This is how the entry should look after you modify it:

02:2:off:/etc/getty tty02 1200

INFORMING THE SYSTEM

Now that you have a modem attached to a terminal port (or possibly a
special dialing device) and you have the terminal port disabled, you have
to make this known to UUCp. To do this, you have to add one line entry
in the file /usr/lib/uucp/L-devices. The line entry must identify the type of
connection, the device name for the li ne being used, the associated ACU,
the data rate, and (optionally) a protocol name. Here are several examples:

DIR tty01 0 9600 Hard-wired device on tty01 at 9600 bit/s
Dial-up device on tty02 at 1200 bit/s
Hard-wired device using X.25 protocol

ACU tty02 tty02 1200
DIR x25.3 0 300 x

Here is the general format of a line in /usr/lib/uucp/L-devices:

type

where

type

line
call-unit

speed

protocol

line call-unit speed [protocolj

indicates whether the li ne is hard-wired (DIR) or operating
a dialing device (ACU).
is the name for the device that is given in /dev.
is 0 for hard-wired devices (DIR), the same as line for dialing
devices (ACU).
is the data rate (up to 9600 bit/s for DIR, usually 300 or
1200 for ACU).
(optional) is x if you are using X.25 protocol.

If you select X.25 protocol, then type must be DIR, call-unit is 0, and
speed is ignored.

38.2 Software setup for uucp

In this section we'll discuss the uucp programs required to operate the sys­
tem, along with the procedures for identifying your system in your password
file and identifying other systems for your system.

38. Communication Before Release 3 565

THE PROGRAMS

The programs required to run the system are stored in two directories:
one for the operational commands (/usr/bin) and one for the maintenance
commands and daemons (/usr/lib/uucp). Here is a summary of the modules:

uucp
uux
uustat
uuname
uulog

uucico

uuxqt

uuclean
uusub

/usr/bin

Command for transfering files
Command for remote execution of UNIX commands
Command for checking network status
Command for listing the names of systems in the network
Command for printing a log of uucp actions

/usr/lib/uucp

Daemon invoked by uucp or UUX to interact with other
systems
Daemon invoked by uux to execute UNIX commands re­
motely
Command for cleaning up the uucp spool directory
Command for creating and monitoring a subnetwork

There are also shell scripts that can be invoked to maintain the network
each week (uudemon.wk), each day (uudemon.day), and each hour (uude­
mon.hr). The entire package comes with each standard UNIX system, and
is usually installed along with the rest of the UNIX commands.

Once the system is installed, each uucp or UUX command places the
user's request in a queue and invokes the uucico daemon. The local uucico
calls the other system and performs any file transfer requested. The system
invokes a remote uucico to receive the file at the other end. When you
re quest remote execution of UNIX commands with uux, uucico transfers
a command file to the other system and invokes the uuxqt daemon to
execute the command file and return any output to your system.

THE FILES

The record-keeping files that result from operation of the system are stored
in the spool directories: /usr/spool/uucp). These files are used to store in­
formation about remote file transfers or command executions, lock devices,
hold temporary data. Here is a summary of the files:

C.sysnxxxx

/usr/spool/uucp

Work files are created in a spool directory whenever
file transfers or remote command executions have been
queued for a remote system. The suffixes are the name
of the remote system (sys), the priority of the work
(n), and sequence number (xxxx). Each file contains
the following:

566 Software setup far uucp

X.sysnxxxx

D. sysnxxxxyyy

LeK. name

TM.pid.ddd

• Full pathname of the file to be sent or requested

• Full pathname of the destination or filename

• User ID

• Options

• Name of associated data file in the spool direc­
tory (0.0 if uucp -c or uucp -p was given)

• Mode bits of the source file

• ID of remote user to be notified upon completion

Execute files are created in the spool directory before
remote command executions take place. The suffixes
are the name of the remote system (sys), the priority
of the work (n), and sequence number (xxxx). Each
file contains the following:

• Requestor's login ID and system name

• Name(s) of the files requested for execution

• Standard input for the command string

• System and filenames for standard output

• Command string

• Option lines for return status requests

Data files are created whenever the command li ne
specifies copying the source file to the spool direc­
tory. The suffixes are the name of the remote system
(sys), the priority of the work (n), sequence number
(xxxx), and sequence number extension (yyy). An ex­
tension is appended whenever there is more than one
data file (D) for a given work file (C).
Lock files, created in the /usr/spool/uucp directory for
each device being used, prevent more than one user
from accessing the same device at one time. The suffix
. name is the name of either a system or a device.
Temporary data files, created in /usr/spool/uucp when­
ever a file is received from another system, use the
name of the other system (name). The suffixes are
process ID (pid) and sequence number (ddd). The
cleanup program uuclean removes TM files automat­
ically.

THE DIRECTORIES

/usr/spool/uucp

LOGFILE
SYSLOG
ERRLOG
LeK.*

38. Communication Before Release 3 567

Directory of transaction log files
Directory of system log files
Directory of error log files
Directory of lock files

IDENTIFYING YOUR OWN SYSTEM

To allow users from other UNIX systems to log into yours, you have to set
up a user identifier called UUCp. Specify /usr/spool/uucppublic as the horne
directory and /usr/lib/uucp/uucico as the login shell. Then, after you've
entered this user line, use the passwd command to give uucp a password.
This is how the line in /etc/passwd should look before a password is given:

uuep::5:1:UUCP:/usr/spool/uueppublie:/usr/lib/uuep/uueieo

You also need an identifier for the uucp administrator, the owner of all
uucp spooled data files and programs. For this entry, make /usr/lib/uucp
the horne directory. With the standard name, here is how the line in
/etc/passwd should look before a password is given:

uuep: :5:1:UUCP:/usr/lib/uuep:

IDENTIFYING OTHER SYSTEMS

Now that you have your own system identified for remote users, you have
to identify other systems for your system. This involves finding out the
phone numbers, identifiers, passwords, data rates, and calling ho urs of the
other systems and entering them in a file called /usr/lib/uucp/L.sys. YOti

can enter more than one line for the same system; uucp will treat them as
alternates. Each line entry in this file has the following general format:

name

where

name
time

device
speed

time device speed phone login

is the name of the other system.
indicates when the system will accept calls, using these con­
ventions: Any (any day of the week); Wk (any week day); Su,
Mo, Tu, We, Th, Fr, Sa (days ofthe week); 0000-2400 (time
of day). You can also specify an optional minimum retry pe­
riod by typing a comma immediately after the time.
is the device name (ACU or hard-wired).
is the data rate for the other system (usually 300, 1200, or
9600).

568 Software setup for uucp

phone

login

is the phone number of the other system (or device for
hard-wired systems). You can enter either actual phone num­
bers or abbreviations that you have stored in a file called
/usr/lib/uucp/L -dialeades.
describes the login process on the other system, using aseries
of prompts and responses. You can use the following conven­
tions in a login sequence when required:

BREAK Send a BREAK character
BREAKn Send n BREAK characters (1-9)
EOT End-of-text
string--string

"" (null string)
\s
\d
\c
\N

"If string doesn't appear, send a
null and keep waiting for it."
No prompt expected
Send aspace character
Delay one second
Suppress newline at end of string
Send a null character

Here is an example of a line entry:

name time device speed phane lagin sequence

zebra Any ACU 1200 325-1000 lagin:--lagin: uucp ward: uusecret

Note that you can save space in the login sequence by abbreviating
prompts (forexample, in: for lagin:, ward: forpassward:)

If you choose to use mnemonic abbreviations instead of entire phone
numbers, you can assign them in /usr/lib/uucp/L-dialcodes. Here is an

example, followed by another line in /usr/lib/uucp/L.sys that invokes the
abbreviation: /usr/lib/uucp/L-dialcodes

haI 818-347-9000

/usr/lib/uucp/L.sys

gato Any2300-0800 ACU 1200 hal login:--login: uucp ward: cat

Here haI is an abbreviation for 818-347-9000, as specified above. Note
also the ho urs specified for incoming calls at this installation (11:00 pm
to 8:00 a.m.). You can request a file transfer to this system with UUCp

or remote execution with uux any time of the day, but uucico will look
up the time specified and defer the request until 11:00 p.m. Speaking of
uucico, let's go on to the subject of setting up the files that control and
maintain the system.

38. Communication Before Release 3 569

38.3 Control and maintenance of uucp

At this point you have the hardware and software in place and you've iden­
tified your system to others and other system to yours. Now we'll discuss
the things you have to do to control and maintain your UUcp system from
day to day.

PROVIDING FOR STARTUP FUNCTIONS

The UUCp system records one line entry for every request sub mit ted and ev­
ery request processed. This usually amounts to hundreds or even thousands
of lines per day. To keep this mountain of record-keeping from overwhelm­
ing you, it 's a good idea to get rid of lock files each time you start up UNIX.
The way to do this is to include these lines in your fete/re file:

rm -f /usr/spool/uucp/LCK*

This is shown in Chapter 32, "Startup and Shutdown," in the listing of
fete/re, page 491.

PROGRAMMING PERIODIC FUNCTIONS

It's essential to make sure that the system invokes the uucico daemon at
least hourly to process requests that have been queued. It's also important
to keep uuclean running at regular intervals to get rid of any requests
that have been around longer than 72 hours. This command will check the
uucp directory (lusr/spool/uuep) and delete any files (with certain filename
prefixes) beyond the time limit.

On systems with a lot of trafiic, just like the downtown areas of large
cities, you find a lot of congestion. The backlog of unprocessed files can
become overwhelming if you don't take address it regularly. You can let
two daemons, uudemon.hr and uudemon.day, take care of these two
tasks.

The following entry will exercise the connection to each system on the
network and collect statistics on trafiic for the past 24 hours (for details on
syntax, refer to Appendix J, "Summary of System Administration"):

o 8 * * * /bin/su - uucp -c /usr/lib/uucp/uusub -c all -u 24

CONTROLLING USER ACCESS

We'll conclude this section by discussing how you can control access to
your system by your own users and by users of other systems. This involves
setting up a file that describes user access (lusr/lib/uuep/USERFILE). This
file allows you to control user access by specifying

570 Control and maintenance of uucp

• Files that a user of your system can access

• Files that a user of another system can access

• The login name for another system

• Whether to call another system back to verify its legitimacy

Each line in this file is entered in the following format:

login,system [cl path [path] ...

where

login
system
c

is the login name for either a user or another system.
is the other machine's system name.
(if entered) indicates that your system must call the other
system back before any requests can be honored.

path is the prefix of a pathname allowed for system.

Omission of one of these removes all related restrictions. Here are some
examples, with and without restrictions:

al,max /usr/bin

bo,win c /usr/lib

tU,vaq /usr/bin

tu, /bin /usr/bin

root, /

I /usr/test

, /

This line permits a user from machine max
to log in with login name al and transfer
files that belong to /usr/bin.
This line permits a user from machine win to
log in with login name bo and transfer files
that belong to /usr/lib, but only after your
system first calls back to verify the identity
of the caller.
These two lines allow a user from any ma­
chine to
log in as tu. System vaq is restricted to files
in /usr/bin, but all others have access to files
in both /bin and /usr/bin.
These two lines allow root to transfer any
file
in your system, but restricts all others to files
in /usr/test.
This line removes all restrietions, allowing
any user from any system to transfer any
file in your system.

38. Communieation Before Release 3 571

38.4 Trouble-shooting uucp

Onee you have uucp installed, you may feel like breathing a big sigh of
relief. But don't breathe too deeply because your problems have just begun.
(Just kidding!) In this seetion we'll discuss a few of the most common
difficulties you may encounter.

DEFECTIVE EQUIPMENT

From time to time a faulty ACU or modem may hinder users on your
system from reaching other systems or accepting files. If so, entries in your
LOGFILE will make repeated references to the li ne in question. You can
then take the following measures to isolate the problem:

1. Try calling another system over the suspected line using CU.

2. See whether calling attempts by either uucp or cu have resulted in
lock files (files of the form /usr/spool/uucp/LCK).

3. Carry out hardware self-tests on the ACU or modem in question.

4. Make sure that you have set the correct options for the ACU or
modem.

5. If you have a special ACU interface, make sure that it's sending data
to its ACU.

6. Make sure you have the correct phone number for the other system.

7. Test the modem by having someone dial into system through it.

8. Make sure the cable is firmly connected and free of defects.

RUNNING OUT OF DISK SPACE

The traffic on your system may be flooding your spooling area with files. If
the area fills up completely, then your uucp system will come to astandstill
until additional space becomes available. Then it will become inundated by
another wave of requests. There are several ways you can deal with this
problem:

1. Set aside a larger file system to handle spooling.

2. Schedule your daemons more frequently (possibly every half hour
instead of every hour).

3. Set a shorter deadline for disposing of old files (possibly every 48
hours or even every 24 hours instead of 72 hours).

572 Trouble-shooting UUCp

LOSING CONTACT

Other systems may be changing their phone numbers, login sequences,
or passwords without telling you. Then your equipment will waste time
trying to call through to them. If you suspect this problem, you can begin
by examining the LOGFILE and ERRLOG entries associated with another
system. You can also check out the other system by invoking its uueieo
daemon from your system. Here's the procedure:

1. Queue a job on the other system (cougar):

D Execute the following command from your system:

$ uucp -r test. file cougar!-/phil

D This command will cause the other system to queue the job
without invoking uueieo to process the job.

2. Invoke the processing daemon for system cougar directly:

D Execute the following command from your system:

$ /usr/lib/uucp/uucico -rl -x4 -scougar

D This command line will start the daemon in master mode with
level 3 debugging.

Debugging levels 1-4 are suitable for ordinary users and part-time ad­
ministrators; higher levels require knowledge of the internal workings of
uueieo.

Some systems simply act as no des in the network without actively par­
ticipating. If such a system has any files intended for your system, you can
poIl the system with the uusub command. For example, suppose there is
a passive system calIed bambi. You can poIl bambi with a command like
the folIowing to initiate a calI:

$ /usr/lib/uucp/uusub -cbambi

This is useful in the uuep uudemon.hr eron job to poIl systems auto­
maticalIy.

38.5 Direct networking (XENIX only)

You can set up direct networking among as many as twenty-five XENIX
hosts over RS-232 serial ports with Micnet (pronounced Mike-net). You
can also configure Micnet with a uuep gateway for communications over

38. Communication Before Release 3 573

telephone lines. XENIX provides one command for setting up a Micnet
system via screen menus (netutiI), another for remote command execution
(remote), and a third for file transfer, or remote copy (rcp).

38.6 Summary

In this chapter you learned the procedures for setting up and operating the
UUCp system, which allows you to exchange files with other UNIX systems
and execute commands on those systems.

HARDWARE REQUIREMENTS FOR UUCp

The basic hardware requirements are two UNIX machines connected by ei­
ther a hard-wired connection or an auto-dial modem attached to a terminal
port. (Larger systems may employ a special ACU in place of a modem.)
You usually have to disable the terminal, if used, in /ete/inittab, then place
a li ne entry in /usr/lib/uuep/L-deviees that describes what you are using.

SOFTWARE SETUP FOR UUCp

The UUCp system includes nine basic modules, five in /usr/bin (UUCp, uux,
uustat, uuname, uulog) and four in /usr/lib/uuep (uucico, uuxqt, uu­
clean, uusub). It also includes three shell scripts for maintenance (uude­
mon.wk, uudemon.day, and uUdemon.hr). The two primary commands for
ordinary users are uucp (file transfer) and uux (remote execution). These
programs invoke two daemons, uucico (calling other systems) and uuqxt
(executing remote commands).

You have two tasks to perform here: 1) identifying your system to others
by placing a li ne entry in /ete/passwd (plus another entry for the admin­
istrator); 2) identifying other systems to yours by placing aseries of li ne
entries in /usr/lib/uuep/L.sys. Each line in this file must give the name of
the system, calling times, device name, speed, phone number, and login se­
quence. You can set up abbreviations for phone numbers in /usr/lib/uuep/L­
dialeodes if you like.

CONTROL AND MAINTENANCE OF UUCp

To keep your uucp system running smoothly, processing new jobs and
getting rid of old jobs regularly, you need to add lines to key files. Your
fete/re file should contain lines to remove lock files, log files, and system
logs; your erontab file should contain lines to invoke uucico and uclean
at least hourly.

To control user access to your system, you need to add lines to a file called
/usr/lib/uuep/USERFILE. Each li ne indicates which users and systems can

574 Summary

and cannot access which files; it can also require a callback to verify the
caller's identity.

TROUBLE-SHOOTING UUCp

This section concludes with a few suggestions for solving the problems of
defective equipment, running out of disk space, and losing contact with
other systems. You can test a faulty ACU or modem by trying to call
another system using cu instead of uucp. Then you can look for lock files,
perform self-testing, check the options, verify the phone number, dial into
the suspected modem, and examining the cable.

You can deal with the problem of running out of disk space by assigning
a larger file system to handle spooling, scheduling your daemons to run
more often, and getting rid of old files more frequently.

You can handle the problem of losing contact with other systems by
queueing a job on the system, then invoking uucico directly from your
system. For systems that do not actively participate in the network, you
can use the uusub command to poll them for files.

39

Communication
After Release 3

39.1 Hardware requirements for uucp

To run uucp, you need a minimum of two UNIX systems and something
to connect them together. You will also have to update three files to make
sure your system is aware of the method of connection:

/etc/inittab
/usr/lib/uucp/Devices
/usr/lib/uucp/Systems

DIRECT CONNECTION

If two systems are close to each other, you can connect them directly with
a null modem (a serial cable with the send and receive pins crossed over).
This is also referred to as a hard-wired connection, and can be used for
systems up to several hund red feet apart.

TELEPHONE LINES

To operate over ordinary telephone lines, you will probably have to use
an auto-dial modem. You can then operate the modem via any terminal
port in the system, provided that the terminal port has been disabled for
ordinary use. The modem you select must operate at the same speed at
which the modem on the other end of the li ne is operating (usually 1200
bit/s). For larger operations, you can install a special automatie call unit
(ACU), which takes the place of an integral modem.

LOCAL AREA NETWORK

The third possibility is to have your system linked to other systems in a
local area network (LAN). In this case, you will be able to send and receive
data to the other systems according to the protocol defined for the network.

576 Hardware requirements for uucp

DISABLING THE TERMINAL

If you've connected your modem through an ordinary terminal port, you
will have to disable the getty (or uugetty) process for that terminal in
/etc/inittab. For example, suppose you plan to attach your modem to tty02.
When you look at /etc/inittab, you'll see something like this:

02: 2: respawn: /etc/getty tty02 1200 [one-way connection]

or

02: 2: respawn: /etc/uugetty tty02 1200 [bidirectional connection]

Use your editor (vi or ed) to change respawn in the third field to off.
Now no one can use this terminal for logging into your UNIX system, but
only for dialing out. This is how the entry should look after you modify it:

02:2:off:/etc/getty tty02 1200 [one-way connection]

or

02:2:off:/etc/uugetty tty02 1200 [bidirectional connection]

INFORMING THE SYSTEM

With a modem or ACU attached to a terminal and the terminal disabled
if necessary, you have to make this known to uucp. To do this, you have
to add one line entry in the file /usr/lib/uucp/Devices. The line entry must
identify the type of connection, the device name for the line being used,
the device name of the 801 dialer (ACU only), the data rate (and possibly
a dialer code), and one or more dialer/token pairs. (Note that several fields
entered in Devices must match fields entered in the Dialers, Systems, or
Dialcodes files.) Here are several examples:

Oirect tty01 9600 direct

ACU tty02 - 1200 hayes

micom tty03 - 1200 micom \0

Hard-wired device on tty01
at 9600 bit/s
ACU on tty02 at 1200 bit/s,
Hayes modem
LAN switch on tty03 at 1200
bit/s

Starlan,e starlan - - TLIS \0 AT &T Starlan with e pro­
tocol

Here is the general format of a line in /usr/lib/uucp/Devices:

Type Line Line2 Class Dialer,Token [Dialer,Token]

where

Type

Line
Line2

Class

39. Communication After Release 3 577

indieates the type of line: direet eonneetion (Direct), auto­
matie ealling unit (ACU), or a system or loeal area network
(name of the system or LAN switeh).
is the deviee name for the line (port) that is given in /dev.
(used only for 80l-type dialers) is the device name for the 801
dialer (in this ease, line is the deviee name for the modem;
Line must be a plaee-holder (-) for non-80l dialers.
ean be one of three entries: the line speed alone, the line
speed preeeded by a one-Ietter code to distinguish between
classes of dialers, or Any to match the speed indieated in the
Systems file.

Dialer,Token [Dialer,Token]
ean be one of four entries, depending on the type of eonnee­
tion:

• direct for a direet eonneetion to a computer.

• The name of the modem (token is taken from the Sys­
tems file) for an automatie dialing modem (one pair
only).

• The name of a LAN switeh and a token (token may
be omitted here and entered in the Systems file) for
eonneetion to a loeal area network.

• Two dialer-token pairs for an automatie dialing modem
eonneeted to a switeh-one for the switeh and one for
the automatie dialing modem-with one of two eseape
sequenees allowed for tokens:

\ T to request translation using the Dialcodes file
\D not to request translation.

Any name(s) entered here must match the name in the Dialers file.

39.2 Software setup for uucp

In this seetion we'll diseuss the UUCp programs, files, and shell seripts
required to operate the system, along with the proeedures for identifying
your system in your password file and identifying other systems for your
system.

THE PROGRAMS

The programs required to run the system are stored in two direetories:
one for the operational eommands (lusr/bin) and one for the maintenanee
eommands and daemons (/usr/lib/uucp). Here is a summary of the modules:

578 Software setup for UUcp

eu
et
uuep
uuto

uupiek

uux
uustat
uuname
uname
uulog

/usr/bin

Command for calling another UNIX system
Command for calling a terminal (callback)
Command for transferring files
Command for sending files to /usr/spool/uucppublic/receive
(complete directories only)
Command for retrieving files from
/usr/spool/uucppublic/receive
Command for remote execution of UNIX commands
Command for checking network status
Command for listing the names of systems in the network
Command for reporting the uuep name of the local system
Command for printing a log of uuep actions

/usr/lib/uucp

uueieo Daemon invoked by uuep, uuto, or UUX to interact with
other systems (select the device for the link, establish
the link, perform login, check permissions, transfer data,
execute files, log the results, and notify the user by mall)

uuxqt Daemon invoked by shell script uudemon.hour, which
is started by eron, to execute commands remotely; such
commands must be of the form X.file in the spool direc­
tory

uusehed Daemon invoked by shell script uudemon.hour, which is
started by eron, to schedule work that has been queued
in the spool directory by starting uueico

uucleanup Command invoked by shell script uudemon.eleanup,
which is started by eron, to cleaning up the uuep spool
directory

Uutry Command for testing call-processing and debugging, in­
voking uueico to set up a link to any computer specified

uueheck Command for checking for the existence of uuep direc­
tories, programs, and files and checking the Permissions
file

Once the system is installed, each uuep or uux command places the
user's request in a queue and invokes the uueieo daemon. The local uueleo
calls the other system and performs any file transfer requested. The system
invokes a remote uueieo to receive the file at the other end. When you
request remote execution of UNIX commands with uux, uueico transfers
a command file to the other system. Then uudemon.hour invokes the
uuxqt daemon to execute the command file and return any output to your
system.

39. Communication After Release 3 579

THE FILES

The record-keeping files that result from operation of the system are stored
in the spool directories: /usr/spool/*). These files are used to store informa­
tion about remote file transfers or command executions, lock devices, hold
temporary data. Here is a summary of the files:

C.sysnxxxx

X.sysnxxxx

O. sysnxxxxyyy

/usr/spool

Work files are created in a spool directory whenever file
transfers or remote command executions have been queued
for a remote system. The suffixes are the name of the re­
mote system (sys), the priority of the work (n), and se­
quence number (xxxx). Each file contains the following:

• Full pathname of the file to be sent or requested

• Full pathname of the destination or file name

• User ID

• Options

• Name of associated data file in the spool directory
(0.0 if UUCp -c or UUCp -p was given)

• Mode bits of the source file

• ID of remote user to be notified upon completion

Execute files are created in the spool directory before
remote command executions take place. The suffixes are
the name of the remote system (sys), the priority of the
work (n), and sequence number (xxxx). Each file contains
the following:

• Requestor's login ID and system name

• Name(s) of the files requested for execution

• Standard input for the command string

• System and file names for standard output

• Command string

• Option lines for return status requests

Data files are created whenever the command line spec­
ifies copying the source file to the spool directory. The
suffixes are the name of the remote system (sys), the
priority of the work (n), sequence number (xxxx) , and
sequence number extension (yyy). An extension is ap­
pended whenever there is more than one data file (0) for
a given work file (C).

580 Software setup for uucp

LCK. name Lock files, created in the lusrlspool/locks directory for
each device being used, prevent more than one user from
accessing the same device at one time. The suffix . name
is the name of either a system or a device.

TM.pid.ddd Temporary data files, created in lusrlspool/uucp/name
whenever a file is received from another system, use the
name of the other system (name). The suffixes are pro­
cess ID (pid) and sequence number (ddd).
If the file transfer is aborted, the TM file will remain
in its original directory; if file transfer is completed, the
TM file will be moved to a directory specified by the
file that initiated transmission (C.sysnxxxx). The cleanup
program uucleanup removes TM files automatically.

IDENTIFYING YOUR OWN SYSTEM

To allow users from other UNIX systems to log into yours, you have to
provide them with a network name for your own system. Use uname to
find out what this name is; then give the name to system administrators
of other systems. Their users will have to use this name to log into your
system, but their requests will arrive at your system via user name nuucp.

To provide the login function for uucico, you have to set up a user
called nuucp. Specify lusrlspool/uucppublic as the horne directory and
lusr/lib/uucp/uucico as the login shell. Then, after you've entered this user
line, use the passwd command to give uucp a password. This is how the
line in letc/passwd should look:

nuucp:Wqv7b@pZas:5:1:UUCP:/usr/spool/uucppublic:/usr/lib/uucp/uucico

You also need an identifier for the UUCp administrator, the owner of all
uucp spooled data files and programs. For this entry, make lusr/lib/uucp
the horne directory. Here is how the li ne in letc/passwd should look:

uucp:Ty&u2*We;Ru:5:1:UUCP:/usr/lib/uucp:

IDENTIFYING OTHER SYSTEMS

Now that you have your own system identified for remote users, you have
to identify other systems for your system. This involves finding out the
phone numbers, identifiers, passwords, data rates, and calling hours of the
other systems and entering them in three files:

Dialers

lusr/lib/uucp

Character strings necessary to establish connection with
non-80l ACUs on other systems

Systems

Dialcodes

39. Communication After Release 3 581

Information (name of computer and device, hOUfS, tele­
phone number, login ID, and password) needed by uucico
and cu to establish a link to another system
Abbreviations that can by used in the telephone number
field of the Systems file

More detailed descriptions of these files follow. We'll begin with the Di­
alers file. Each li ne entry in this file has the following general format:

dialer

where

dialer

substitutions expect-send

is a dialer that matches the fifth (or seventh) field
in the Devices file.

substitutions is a set of translation pairs, usually used to trans­
late = into "wait for dialtone" and - into "pause."
is a sequence of characters to be received and sent
to establish connection.

expect-send

Here are some of the character strings distributed in the Dialers file:

direct
micom ""
develcon
hayes
ventel

'''' \ s \ c NAME? \ D \ r \ c GO
"" \pr\ps\c est:\007 \E\D\e \007

,-, \dAT\r\c OK\r \EATDT\T\r\c CONNECT
=&-% "" \r\p\r\c $ <K\T%%\r>\c ONLINE!

Explanations of the escape sequences are as follows:

\p Pause about 1/2 second
\d Delay about 2 seconds
\ T Dialcodes translation for phone number or

token
\0 No translation
\E Enable echo-checking
\ e Disable echo-checking
\ r Carriage return
\n Send newline
\c No carriage return or newline
\ K Insert a BREAK character
\ nnn Send octal number nnn

Other escape characters are listed under the discussion of the Systems
file. The entry for hayes in the Dialers file is executed as follows. First
translate the phone number, replacing either a = (wait for dialtone) or a -
(pause) with a comma (,). The rest is as follows:

582 Software setup for uucp

"n

\dAT\r\c
Wait for nothing.
Delay for 2 seconds, then send AT, followed by a
carriage return, followed by no newline or carriage
return.

OK\r
\EATDT\T\r\c

Wait for OK, followed by a carriage return.
Enable echo-checking, then send ATDT and trans­
lated phone number or token with Dialcodes, fol­
lowed by carriage return, followed by no carriage
return or newline.

CONNECT Wait for CONNECT.

The Systems file contains the information required by the uucico dae­
mon to establish a link to another system. You can enter more than one
li ne for the same system; uucico will treat them as alternate communica­
tions paths. Also, you can set up remote.unknown so that any computer
not named in Systems will be unable to log into your system. Finally, you
can use the System Administration menu (systemmgmt subcommand)
to manage Systems. Each line entry in this file has the following general
format:

Name Time Type Class Phone Login

where

Name is the node name of the other system
Time indicates when the system send accept calls to the other sys­

tem, using these conventions: Any (any day of the week); Wk
(any week day); Su, Mo, Tu, We, Th, Fr, Sa (days of the
week); 0000-2400 (time of day); Never (other system must
initiate the call); Any for sending calls upon receipt (any day,
any time).
You can also specify an optional minimum retry period by
typing a semicolon immediately after the time, followed by a
number to represent minutes.

Type is the device type to be used to establish the link (such as
ACU); this field must match the Name field of a li ne in the
Devices file; you can also add a protocol type here (for
example, ACU,e).

Class is either the data rate for the device alone (for example, 1200)
or the data rate preceded by a one-letter dass code (for ex­
ample, C1200) (or Any to allow any data rate).

Phone is the phone number (token) of the other system for auto­
matie dialers (LAN switches). You can enter either actual
phone numbers or abbreviations that you have stored in a
file cal1ed /usr/lib/uucp/L-dialcodes.

39. Communication After Release 3 583

Lagin describes the login sequence on the other system, using a
series of prompts and responses.

You can use the following conventions in a login sequence when required:

\p
\N

\s

\E
\r

Pause ab out 1/2 second \d
Send or expect a null \b

character
Send or expect aspace \ t

character
Enable echo-checking \ e
Send or expect a carriage \ \

return
\c Suppress newline at end of \K

string
BREAK Send or expect a BREAK \K

character
\ ddd Convert the octal number EOT

to a character

Here is an example of a line entry:

Name Time Type Class Phone Login

Delay ab out 2 seconds
Send or expect a

backspace
Send or expect a tab

Disable echo-checking
Send or expect backslash

Same as BREAK

Same as BREAK

Send or expect EOT new­
li ne twice

colt Any ACU 1200 LA5213 gin:-BREAK-gin: nuucp word: gallop

Note that you can save space in the login sequence by abbreviating
prompts (for example, gin: for lagin:, ward: for passward :)
. If you choose to use mnemonic abbreviations instead of entire phone

numbers, you can assign them in Dialcodes. Here is an example, followed
by another li ne in Systems that invokes the abbreviation:

/usr/lib/uucp/Dialcodes

haI 818-347-9000

/usr/lib/uucp/Systems

gato Any 2300-0800 ACU 1200 hal login:---login: nuucp word: cat

Here haI is an abbreviation for 818-347-9000, as specified above. Note
also the hours specified for incoming calls at this installation (11:00 p.m.
to 8:00 a.m.). You can request a file transfer to this system with UUCp or
remote execution with uux any time of the day, but uucico will look up
the time specified and defer the re quest until 11:00 pm. Speaking uucico,
let's go on to the subject of setting up the files that control and maintain
the system.

584 Software setup for UUcp

39.3 Control and maintenance of uucp

At this point you have the hardware and software in place and you've iden­
tified your system to others and other system to yours. Now we'll discuss
the things you have to do to control and maintain your UUcp system from
day to day.

PROVIDING FOR STARTUP FUNCTIONS

The UUCp system records one line entry for every request submitted and ev­
ery request processed. This usually amounts to hundreds or even thousands
of lines per day. To keep this mountain of record-keeping from overwhelm­
ing you, it's a good idea to get rid of any leftover lock files each time you
start up UNIX. The way to do this is to include this line in your fete/re
file (this is shown in Chapter 32, "Startup and Shutdown," in the listing
of /ete/re):

rm -f /usr/locks/*

PROGRAMMING PERIODIC FUNCTIONS

The shell scripts that schedule, process, and monitor jobs and remove old
files are stored in the /usr/lib/uuep directory. These scripts are started by
entries in the /usr/spool/eron/erontabs/root file. The scripts and the entries
that start them are summarized here:

uudemon.poll

uudemon.hour

uudemon.admin

/usr/lib/uuep

Checks the Poil file (lusr/lib/uuep/PolI) for sys­
tems scheduled to be polled. For each one it
finds, it places a work file (C) in directory
/uSr/spool/uucp/name, where name is the name
of the system.
CaUs the uusched program to search for and
schedule any work files (C) waiting for transfer
to another system; calls the uuxqt daemon to
search for and execute any execute files (X) that
have been transferred to your system for pro­
cessing.
Executes the uustat -p -q command, and sends
the status information to the uucp administra­
tive login: -q reports the status of all pending
work files (C), execute files (X), and data files
(D). -p prints information on processes listed in
the lock files (Jusr/spool/locks).

uudemon.cleanup

39. Communication After Release 3 585

Extracts log files for individual systems from
the log directory /usr/spool/uucp/.Log, merges
them, and appends them to the storage direc­
tory /usr/spool/uucp/.Old; removes execute files
(X) more than a day old and work files (C) and
data files (D) more than six days old; returns
undeliverablemail to senders; mails to the uucp
administrative login a summary of the day's sta­
tus information.

/usr/spool/cron/crontabs/root

1,30 * * * * "/usr/lib/uucp/uudemon.poll > /dev/null
11,41 * * "/usr/lib/uucp/uudemon.hour > /dev/null
48 8,12,16 * * * /bin/su uucp -c "/usr/lib/uucp/uudemon.admin" > /dev/null
45 23 * * * ulimit 5000; /bin/su uucp -c "/usr/lib/uucp/uudemon.cleanup"

> /dev/null 2>&1

CONTROLLING USER ACCESS

Now we'll discuss how you can control access to your system by your own
users and by users of other systems. This involves setting up a file that
describes user access (lusr/lib/uucp/Permissions). This file allows you to
control user access by specifying permissions for remote systems that relate
to login, file access, and command execution. Each line in this file is entered
in the following format:

option=value option=value option=value ...

Use spaces to delimit individual items on a line, a backslash (\) to con­
tinue to the next line, and apound sign (#) to enter a comment line. Blank
lines are ignored. You can enter items either for incoming calls (LOG­
NAME) or for outgoing calls (MACHINE). Login IDs used on incoming
calls must appear in one and only one LOGNAME entry. If you make an
outgoing call to a system not named in a MACHINE entry, the default
perm iss ions are as follows:

1. Local requests to send or receive data will be executed.

2. The incoming spool file will be your /usr/spool/uucppublic directory.

3. A remote system can send only default commands (such as rmail) to
your system to be executed.

The specific options, the permission issues they relate to, and where they
may be used (LOGNAME or MACHINE) are as follows:

REQUEST Can one system request files from another? Yes or
no (LOGl\AME or MACHINE)

586 Control and maintenance of uucp

SENDFILES

READ/NOREAD

WRITE/NOWRITE

CALLBACK

COMMANDS

VALIDATE

Can another system take work that your system
has queued for it after completion on your system?
Yes, no, or call (LOGNAME)
Which directories on one system can/ cannot be
read by another? (LOGNAME or MACHINE)
Which directories on one system can be written
to by another? (LOGNAME or MACHINE)
When another system calls, does your system have
to hang up and call back to confirm its identity?
Yes or no (LOGNAME)
Which commands is another system allowed to ex­
ecute on your system? (MACHINE)
Which remote systems are granted a login
ID / password combination to call your system?
(LOGNAME)

Here are some examples of entries with explanations:

LOGNAME=tiger:panther:cheetah REQUEST=yes SENDFILES=no

Any time one of the machines named logs into your system, it has per­
mission to request files from your system, but not to take output from
processes run on your system. (You can use SENDFILES=call to allow
sending of files only when your system initiates the call.)

MACHINE=daisy:rose:tulip \
READ=/usr/spool/uucppublic WRITE=/usr/spool/uucppublic

Any time your system logs into one of the systems named, read and
write permission are granted only for the uucp spool file (the default).
(You can use READ=/ WRITE=/ to allow read and write permission for all
directories.)

LOGNAME~tiger:panther:cheetah \
READ~!etc NOREAD~!etc!bin WRITE~!usr!spool!uucppublic:!usr!jungle

Any time one of the machines named logs into your system, it has permis­
sion to read any files in fete except those in fete/bin and it has permission
to write to the UUCp spool file and /usr/jungle.

LOGNAME=tiger:panther:cheetah \
CALLBACK=yes

Any time one of the machines named logs into your system, your system
hangs up and calls the system back to confirm its identity. Note that if two
systems use this option, neither can log into the other.

39. Communication After Release 3 587

MACHINE=daisy:rose:tulip \
COMMANDS=/usr/bin/news

Any time your system logs into one of the systems named, you grant to
that system permission to execute /usr/bin/news on your system. (Use this
option with great care.)

LOGNAME=bigcat VALIDATE=tiger:panther:cheetah

Any time one of the machines named logs into your system, it must log
in as bigcat. This offers protection only if this ID is kept secret.

MACHINE=daisy:rose:tulip REQUEST=yes READ=/ WRITE=/ \
COMMANDS=/usr/bin/news

LOGNAME=flower VALIDATE=daisy:rose:tulip READ=/ WRITE=/ \
REQUEST=yes SENDFILES=yes

This combination provides nearly unlimited read, write, and command
execution for the systems named. The only safety precautions here are the
COMMANDS option, which restriets the systems to news, and the VALIDATE

option, which requires a specific login ID of each of these systems when it
calIs your system.

REQUESTING POLLING

The Poil file alIows you to poIl other systems at regular intervals. Each line
in this file must have the name of a system, a (TAB) (not aspace), and
one or more times to attempt a calI. Here is the general format:

Name (TAB) hour [hour ... 1

For example, here is a line entry to provide for polling of system rabbit
at 8:00 A.M., 1:00 P.M., and 7:00 P.M.:

rabbit 8 13 19

The uudemon.poll script will set up a polling work file called C.file
in the spool directory. The uudemon.hour script will start the uusched
daemon every hour, which will perform the polIs at the hours indicated.

588 Control and maintenance of uucp

USING CUSTOM FILES

If you would like to have different Devices, Dialers, and Systems files for
different kinds of calls with cu and UUcp, you can identify them in the
Sysfiles file. Here is the general format of an entry in the file:

service=program(s) systems=file(s) dialers=file(s) devices=file(s)

where

progmm(s)
file(s)

is either cu or uucico (or both).
is one or more filenames to be consulted by the program
named.

For example, here is how you could maintain separate systems lists for
cu and uucico (in addition to the standard list):

service=cu systems=Systems:cu_Systems
service=uucico systems=Systems:uu Systems

Both programs will begin by searching /usr/lib/uucp/Systems. Then, if
the desired system is not found, cu will then search /usr/lib/uucp/cu_Systems,
while uucico will search /usr/lib/uucp/cu_Systems. You can print these
lists using either the uuname command (uucico) or uuname -c (cu).

SPECIFYING STREAMS MODULES

If your system uses a STREAMS-based transport provider that conforms
to the Transport Layer Interface (TL!) , you can specify the STREAMS
modules to be used for a particular TL! device in /usr/lib/uucp/Devconfig.
The general format is as follows:

service={ ~~CiCO} device=network push=module [:module ... 1

where

network is the name of a TL! network.
module is the name of a STREAMS module.

Use ed or vi to change the contents of Devconfig. For details, refer to
AT&T's STREAMS Prime~ and STREAMS Progmmmer's Guide2 .

1 STREAMS Primer, [location not given]: AT&T, 1986.
2STREAMS Programmer's Guide, [location not given]: AT&T, 1986.

39. Communication After Release 3 589

OTHER FILES

Other files that perform various functions are as follows:

1. Maxuuxqts defines the maximum number of uuxqt programs that
can run at the same time.

2. Maxuuscheds defines the maximum number of uusehed programs
that can run at the same time.

3. remote.unknown keeps track of login attempts from unknown sys­
tems, prohibiting connection and logging arecord of the attempts.

You can use ed or vi to make changes to these files.

WATCHING FILES THAT GROW

Here are two files that continue to grow while communications are active.
Feel free to delete them when they become too large:

/usr/adm/sulog (super-user commands)
/usr/lib/cron/log (eron activities)

39.4 Trouble-shooting uucp

Once you have uuep installed, you may feel like breathing a big sigh of
relief. But don't breathe too deeply because your problems have just begun.
(Just kidding!) In this section we'll discuss a few of the most common
difficulties you may have to deal with.

GETTING INFORMATION

To get a few simple facts about the network, you can use these commands:

uuname to list the systems that your system can call
uname to report the uuep name of your own system
uulog to display the log directories of certain host systems
uueheek -v to determine files, directories, and permissions for uuep

Other information can be found in the following directories:

/usr/spool/uucp/.Status/* status information on attempted com­
munication to other systems, stored in
files named after the systems

/usr/spool/uucp/.Admin/errors ASSERT error messages, which pro­
vide file name, sees ID, line number,
and text

Finally, make sure that your Systems file contains the correct phone
number, login, and password for each system entered.

590 Trouble-shooting uucp

DEFECTIVE EQUIPMENT

You can check for defective automatie call units (ACUs) or modems by
running one of the following programs:

1. uustat -q to give reasons for any failures detected

2. cu -d -Iline to call over a li ne and print areport on the results (no
autodialer)

3. cu -d -Iline phone number to call over a li ne and print areport on
the results (autodialer)

A line used by cu here must be defined in the Devices file as Direct.

LOSING CONTACT

If you are unable to re ach another system (say cougar), you can begin by
trying to make contact as folIows:

1. Try to make a connection:

o Execute the following command from your system:

lusr/lib/uucp/Uutry -r cougar

o This command will start the transfer daemon (uucico) with
debugging directed to /tmp/cougar.

o Send the output to your terminal, which you can halt by pressing
(BREAK).

If this doesn't work, you can also check out the other system by invoktng
its uucico daemon from your system. Here's the procedure:

2. Queue a job on the other system:

o Execute the following command from your system:

uucp -r test. file cougar!-/phil

o This command will cause the other system to queue the job
without invoking uucico to process the job.

3. Try to make connection again:

o Execute the following command from your system:

lusr/lib/uucp/Uutry -r cougar

o Save any output you receive to show to service personnel.

39. Communication After Release 3 591

39.5 Summary

In this chapter you learned the procedures for setting up and operating the
uucp system, which allows you to exchange files with other UNIX systems
and execute commands on those systems.

HARDWARE REQUIREMENTS FOR UUCp

The basic hardware requirements are at least two UNIX machines con­
nected by 1) a direct (hard-wired) connection; 2) an auto-dial modem at­
tached to a terminal; or 3) a local area network (LAN). (Larger systems
may employ an ACU in place of a modem.) You usually have to disable the
terminal in /ete/inittab, then place a line entry in /usr/lib/uuep/Oeviees.

SOFTWARE SETUP FOR UUCp

The UUCp system includes 15 basic modules, nine in /usr/bin (cu, ct,
uucp, uuto, uupick, uux, uustat, uuname, uname, uulog) and six in
/usr/lib/uuep (uucico, uuxqt, uusched, uucleanup, uutry, uucheck).
The two primary commands for ordinary users are uucp (file transfer)
and uux (remote execution). These programs invoke two daemons, uucico
(calling other systems) and uuqxt (executing remote commands).

There are five types of files used for record-keeping: work (C), execute
(X), data (0), lock (LCK), and temporary (TM) files. The shell scripts
uudemon.poll, uudemon.hour, uudemon.admin, and uudemon.cleanup
are started by cron to take care of day-to-day administrative functions.

You have two tasks to perform here: 1) identifying your system to others
by placing a li ne entry in letc/passwd (plus another entry for the admin­
istrator); 2) identifying other systems to yours by placing aseries of line
entries in /usr/lib/uuep/Oialers and /usr/lib/uuep/Systems. You can set up
abbreviations for phone numbers in /usr/lib/uuep/Oialeodes if you like.

CONTROL AND MAINTENANCE OF UUCp

To keep your uucp system running smoothly, processing new jobs and
getting rid of old jobs regularly, you need to add lines to key files. Your
fete/re file should contain lines to remove lock files; your uudemon.cleanup
file should take care of removing extra files.

To control user access to your system, you need to add lines to a file called
/usr/lib/uuep/Permissions. Each line indicates which users and systems can
and cannot access which files; it can also require a callback to verify the
caller's identity.

Here are a few more functions available: you can request polling of an­
other system with the /usr/lib/uuep/Poll file; you can specify STREAMS
modules to be used for a TL! device with /usr/lib/uuep/Oeveonfig; and you

592 Summary

can change the maximum number of uuxqt programs (Maxuuxqt s), the
maximum number of uusched programs (Maxuuscheds), or the method
of handling caUs from unknown systems (remote. unknown).

TROUBLE-SHOOTING UUCp

This section concludes with a few suggestions for problem-solving. You can
use uuname, uulog, and uucheck -v to obtain basic information about
your network, and you can find error messages in /usr/spool/uucp/.Status
and /usr/spool/uucp/.Admin/errors.

To check for defective equipment, you can run uustat -q, then cu -d,
then uustat -q again if necessary.

You can handle the problem of losing contact with other systems by
running Uutry, then queueing a job on the system and running Uutry
again.

40

Basic Resource Sharing

40.1 Sharing resources

AN EXAMPLE

Suppose you work in an office that is organized as follows:

• The databases that are used by everyone are stored on a mainframe,
which has two separate disk drives for backing up daily work.

• Text and graphics are handled by a minicomputer that is connected
to a laser printer and a plotter.

• Statistical work is handled by another minicomputer, which also re­
quires a laser printer and plotter.

• Each employee uses a personal computer for preparing reports, ac­
cessing information on the mainframe, and working with either text
and graphics or statistics.

For this office to operate as smoothly as possible, it will be necessary to
connect all these machines in a common network. This will allow employees
to access information on each of the larger machines and send information
back and forth to each other. It will also reduce the total amount of equip­
ment required for this office. For example, with the two minicomputers
linked, it won't be necessary for each to have its own laser printer and
plotter. The network could look like that shown in Figure 40.1.

UNIX now allows ordinary users to take full advantage of a network like
this without having to leam any new commands. To auser, it's as if the
entire network has become a single UNIX system. Note that the machines
do not necessarily have to be located near each other; as long as there is
a network in place, the machines can be located on different continents.
(If you'd like to review the basic concepts of networking, see Chapter 37,
"Introduction to Networking").

THE REMOTE FILE SHARING SYSTEM

System V, Release 3 intro duces the Remote File Sharing (RFS) system,
which allows users within a network of UNIX systems to access resources

594 Sharing resourees

FIGDRE 40.1. An offiee network.

~:~~[iJ---
Laser
Printer

Mainframe

I
Personal

computers

on other machines. With RFS, administrators of systems on the network
ean make known to others (advertise) which resourees are available to be
shared. Such resourees ean include files, directories, special files (devices),
and fifo files (named pipes). Then other administrators ean mount these
resourees on their own maehines (mount) as if they were loeal resourees.

As a system administrator offering resourees, you ean rest riet aeeess to
these resourees (and thereby maintain seeurity) in three different ways:

1. Decide which remote systems are allowed to eonneet to your system.

2. Deeide whieh remote systems are allowed to mount resourees.

3. Set up user and group permissions using an optional mapping seheme
that maps remote users and groups to loeal users and groups.

Likewise, administrators of other systems will be allowed to rest riet ae­
eess to their resourees by the same methods. The system administrator of
eaeh maehine will set up appropriate seeurity measures, and deeide whieh
resourees may and whieh resourees may not be shared with other machines.
(See Chapter 40, "RFS Seeurity," for details.)

Onee the seeurity issues have been resolved and file systems have been
mounted in this way, loeal users will be able to aeeess remote files as if they

40. Basie Resouree Sharing 595

were loeal files. RFS has been implemented in such a way that users are
not even aware that they are accessing remote files. Since special files can
be remotely mounted, networked UNIX systems can share common devices
like disk drives and laser printers.

THE CONCEPT OF RESOURCE SHARING

When UNIX systems are grouped together to share resources with eaeh
other, the group is called a domain and each individual system or machine
is called a host. To set up the RFS system initially, you have to assign to
eaeh domain at least one host (name server) to keep track of the names of
resources being shared.

After these and a few other details have been taken care of, any host can
make known the resourees that it is willing to share by advertising them­
mueh the same way someone might advertise an item for sale on a bulletin
board. Other hosts ean look at the list of resourees available (maintained
by the name server) and mount those they have permission to use.

Onee a resouree has been advertised by one host and mounted by another,
it beeomes available to users of the seeond maehine via a virtual circuit.
This is depieted in Figures 40.2, 40.3, and 40.4, whieh show two systems in
the same domain before and after sharing resourees, with the commands
required for sharing in the middle. In this example, a host called sales
shares resourees with another host ealled mrktg.

FIGURE 40.2. Two hosts before sharing.

Network
sales mrktg

usr dev dev usr

A~ ~ A
west east dsk rdsk mt rmt dsk rdsk mt rmt old new

A
paul ann

FIGURE 40.3. Commands required for sharing.

sales
adv STORE /dev/mt
Ildv SELL lu .. r/ell .. t

mrktg
mount -d STORE / dev /mt
mount -d SELL lu .. r/o~d

596 Sharing resourees

FIGURE 40.4. The Rosts after sharing.

Netwerk
sales mrktg

usr dev dev usr

A~~A
west east dsk rdsk mt rmt dsk rdsk mt rmt eid new

A·· .. ······ .. ·························A
paul ann paul ann

40.2 Setup procedures

PRELIMINARY INFORMATION

An RFS network is organized into domains. Every machine must belong to
a domain, a grouping that includes at least one machine and can include
all machines on a network. A machine that keeps track of the names of ma­
chines in a domain is called a domain name server. Each domain must have
one primary name server and may have optional secondary name servers
for backup. These are identified in a configuration file called rfmaster.

Each domain and each machine must have a name. One machine may
refer to another in the same domain by its machine name only (unqualified
name); to refer to a machine outside its own domain, a machine must name
both the domain and the machine (fully qualified name). This is similar to
the naming conventions for files and directories.

SETTING UP A DOMAIN

Once you've chosen which host(s) in the network you'd like to designate as
domain name server(s), installed all software (UNIX, RFS, and network),
and logged in on the primary name server as reot, you 're ready to begin
setting up your domain. This involves setting your system's node name,
setting up a network listener, setting your domain's name, identifying the
network, identifying the name servers, adding individual hosts, and starting
RFS:

1. Set your machine's node name:

D First see if your machine already has anode name by entering

uname -n

40. Basie Resüuree Sharing 597

D If not, give it anode name (say sales) byentering

uname -S sa1es

Your name can up up to 14 characters long, including upper or
lower case letters, digits, hyphens (-), and underscores (_).

2. Set up the network listener (AT&T Starlan network assumed):

D Initialize the files needed for the listener process by entering

n1sadmin -i star1an

D Report the status of the listener process on this machine:

n1sadmin -x
starlan ACTIVE

D Identify the network addresses of your system for the listener:

n1sadmin -1 sa1es.serve -t sa1es star1an

D Start the listener:

n1sadmin -s star1an

3. Set the domain name:

o Enter your domain name (say ace) by entering

dname -D ace

D The rules for domain name are the same as those for node name.

4. Identify the network:

D Identify the network (transport provider) to RFS by entering

dname -N star1an

D This names the device in /dev that will be used for the transport
provider.

5. Identify the domain name server(s) in the configuration file:

D Move to directory /usr/nserve and create a file called rfmaster
with a text editor like ed or vi.

598 Setup procedures

o Identify the primary name server for the domain (say mrktg),
any seeondary name server(s) desired (say eng), and then enter
the network address of eaeh server maehine named:

cst rfmaster
ace p

ace s

ace.mrktg a

ace.eng a

ace.mrktg

ace.eng

mrktg.serve

eng.serve

[Primary name server]
[Secondary name server]
[Network address of primary]
[Network address of secondary]

o For eaeh domain with whieh you intend to share resourees, you
must supply the same information (primary and seeondary name
servers and network addresses).

6. Add individual hosts:

o For eaeh host system that will belong to the domain, enter some­
thing like

rfsdmin -a ace.mrktg [Add mrktg to ace]
Enter password for mrktg:
Re-enter password for mrktg:

o The password will be stored in /usr/nserve/auth.i nfo/ace/passwd.

7. Start RFS:

o Start the Remote File Sharing system manually by entering

rfstart
rfstart: Please enter machine password:

o Enter the password for your host that you entered in Step 6.

Step 7 is usually performed automatieally by the init 3 eommand, whieh
initiates RFS, runs rfstart, advertises your maehine's resourees to others,
and mounts remote resourees on your maehine through aseries of shell
seripts. For details, see Chapter 39, RFS Maintenanee."

SETTING UP EACH HOST

The previous seetion deseribed the steps required to set up a domain from
the primary name server. To set up eaeh individual host in a domain, follow
the same steps exeept for Steps 5 and 6.

After you've eompleted these steps for eaeh host in the domain, you will
have the domain set up under the default seeurity measures for resouree
sharing-in addition to the usual UNIX seeurity measures. Any users from

40. Basie Resouree Sharing 599

other hosts who use resourees from your system will be mapped into a
special guest login with minimal aeeess to files and direetories that belong
to your users. If you would like to set up more stringent seeurity measures,
you have the option of restricting aeeess to eertain domains or hosts with
the mapping feature. For details, refer to Chapter 40, "RFS Seeurity."

Both the system that has resourees to share with others (the [file] server)
and the system that needs them (the client) must issue eommands that
name the resourees to be shared. The proeedures are deseribed in detail in
the remainder of this ehapter.

40.3 Advertising resources

A SIMPLE EXAMPLE

A server advertises the availability of resourees to other UNIX systems
on the network with a eommand ealled adv (advertise); then any dient
that has not been restricted ean mount them with a new option for the
mount eommand. In general, the adv eommand assigns a resouree name
to a direetory that you are willing to share and adds the resouree to a list
kept by the domain name server. For example, here is a eommand that
assigns the name CUSTOMERS to a directory ealled /usr/admin/cust.list:

adv CUSTOMERS /usr/admin/cust.list

Now this directory and all files and direetories under it in the file system
are listed as available for sharing. Resouree names, whieh are eustomarily
typed in all eapitals for ease of reeognition, may indude up to any 14
printable eharaeters other than slash (I), period (.), or blank spaee O. No
name may be repeated within a domain.

OPTIONS FOR adv
In addition, the adv eommand offers you three options: 1) making the
resouree read-only; 2) including a short deseription of the resouree; and 3)
restricting eertain domains or hosts from aeeessing the resouree. Here is
the general form of the adv eommand:

adv {-r} {-d "description"} resource pathname (client(s)}

where

-r

-d "description"

makes the resouree read-only (read/write is the de­
fault).
provides an optional 32-character description of the
resouree.

600 Advertising resüurees

resource

pathname
client(s)

is the name of the resouree that you ehoose (up to 14
eharacters)-typieally entered in upper ease letters
for ease of reading.
is the full pathname of a directory in your system.
is an optionallist of domains or hosts to whom you
wish to rest riet aeeess to the resouree.

EXAMPLES OF adv COMMANDS

Here are so me examples of adv eommands:

adv -r -d "March correspondence" LETTERS lusrlletterslmarch

Advertise loeal direetory /usr/letters/march read-only under the name
LETTERS, with the deseription "March eorrespondenee" .

adv -d "Z15 programs" PROGS lusrlbinlz15 anthony series.quotas mrktg

Advertise loeal direetory /usr/bin/z15 under the name PROGS, with the
deseription "Z15 programs" and restrietion to all systems in domain an­
thony, system quotas in domain series, and system mrktg in your own
domain. (To name a system in another domain, you must give a fully qual­
ified name of the form domain.host.)

U SING ALIASES FOR CLIENTS

You ean save time by grouping names in the Client(s) field under an alias;
then you ean enter the alias in plaee of the other names. Just open the file
ealled /etc/host.alias and enter eaeh alias in the format shown here:

alias name clientl client2 client3 ...

where name is the name of the alias and the dient names ean be names of
domain names, host names, or aliases previously defined. In the following
example

alias team series eng mrktg
alias chiefs century acctg
alias all chiefs team

team includes an systems in domain series, along with systems eng and
mrktg in your own domain; chiefs includes an systems in century, along
with system acctg in your own domain; and all includes an of the above.

40. Basie Resüuree Sharing 601

MODIFYING AN adv ENTRY

If you'd like to modify what you've already entered in a previous adv eom­
mand, use one of these forms, allowing you to change either the deseription
or the list of clients or both:

adv
adv

-m
-m

reSOU7'ce -d" description"
resource [-d "description"]

[client(s)]
client(s)

For example, you eould use this to change the deseription for LETTERS:

adv -m LETTERS -d "Letters Eor the month oE March"

ADVERTISING AUTOMATICALLY

If you'd like to have eertain adv eommands exeeuted automatieally, plaee
them in the file /etc/rstab. Then, whenever your system enters Remote File
Sharing mode (init 3), these adv eommands will be run.

DISPLA YING RESOURCES ADVERTISED BY YOUR SYSTEM

To display resourees on your system that have been advertised for sharing
with other systems, exeeute the adv eommand by itself, like this:

$ adv

LETTERS lusr/letters/march read-only "March correspondence" unrestricted

PROGS lusr/bin/z15 read/write "Z15 programs" anthony series.quotas mrktg

$

DISPLAYING RESOURCES ADVERTISED IN YOUR DOMAIN

To display all resourees in your domain that have been advertised for shar­
ing with other systems, exeeute the nsquery eommand:

nsquery
RESOURCE

LETTERS
PROGS

ACCESS

read-only
read/write

SERVER

ace.training
ace.training

DESCRIPTION

"March correspondence"
"Z15 programs"

For eaeh resouree available, nsquery provides the name of the resouree
(resource) , permissions (ACCESS), the server host (SERVER), and the
deseription of the resouree (DESCRIPTION). If you'd like to omit the
headings, you ean include the -h option. If you'd like to restrict the display
to a partieular domain or host, you ean include an optional name. Here is
the general form of the nsquery eommand:

602 Advertising resources

nsquery {-h} {name}

where name ean be in one of three forms:

domain.
domain.host
host

the name of a domain
the name of a host in a domain
the name of a host in your own domain

UNADVERTISING A RESOURCE

There are time when you may want to prevent additional users on other
systems from sharing a resouree that you have already advertised. For
example, you may want to return a shared resouree to loeal use, or you
may want to unmount a file system in whieh a shared resouree resides.
Then any system in the domain ean issue a eommand of the form

unadv resource

and the domain name server ean issue a eommand of the form

unadv domain. resource

Here are examples:

unadv LETTERS [Issued by any system in the domain]

unadv ace.LETTERS [Issued by the domain name server]

40.4 Mounting resources

Onee a resouree from one host has been advertised, a system administrator
from any other host with aeeess to the resouree ean make it available to the
users of that host by mounting it on that file system. Onee you've decided
on a mount point for the resouree in your own file system, use the mount
eommand with the -d option. If your host has permission, the resouree
will be added to your loeal mount table at the point that you've seleeted.
For example, suppose /usr/bin/zebra is an empty direetory. Then to mount
resüuree PROGS at /usr/bin/zebra, use this eümmand:

mount -d PROGS /usr/bin/zebra

40. Basie Resouree Sharing 603

READ-ONLY OPTION

You ean mount any resouree as read-only by including the -r option. If
a resouree has been advertised as read-only, however, you are required to
mount it as read-only also. For example, suppose you loeate a read-only
resouree in the nsquery list (say LETTERS):
nsquery
resource ACCESS SERVER DESCRIPTION

LETTERS
PROGS

read-only
read/write

ace. training
ace.training

"March correspondence"
"215 programs"

If you would like aeeess to LEDERS, you have no ehoice but to mount
is as read-only, like this:

mount -r -d LETTERS /usr/admin/corr

The general format of the eommand for mounting remote resourees is

mount [-r} -d resource mount'point

You ean mount a remote resouree on any mounL point in your UNIX sys­
tem, with the following exeeptions:

1. To avoid eovering up loeal information vital to the funetioning of
your own UNIX system, never use any of the following direetories as
mount points: /, /usr, /usr/net, /usr/nserve, /dev, fete.

2. To avoid eonflieting file names, never use the following: /usr/spool.

3. You ean aeeess a deviee's file system only if the server has mounted
the device loeally and advertised the device's mount point.

MOUNTING RESOURCES AUTOMATICALLY

You ean arrange to have remote resourees mounted automatieally by plae­
ing one line entry for eaeh resouree to be mounted in a file ealled /ete/fstab
(whieh also eontains lines for loeal mounting). Then your system will per­
form the mounts when it enters RFS mode (init 3). The following are the
lines you would enter to perform the two mounts deseribed above:

/ete/fstab

PROGS /usr/bin/zebra -d
LETTERS /usr/admin/corr -dr

The general format of a line in /ete/fstab for mounting a remote resouree
automatieally is

resource mount 'point - d [r J

604 Müunting resüurees

DISPLAYING RESOURCES MOUNTED ON YOUR SYSTEM

To display remote resourees that you have mounted on your own system,
exeeute the mount eommand by itself. You will see loeal and remote re­
sourees in the same display, with remote resourees identified by the word
remote immediately following the permission:

$ mount
/ on /dev/dsk/c1dOsO read/write on Fri Jan 18 08:43:17 1987
/usr on /dev/dsk/c1d1s0 read/write on Mon Jan 21 16:39:04 1987
/usr/bin/zebra on PROGS read/write/remote on Tue Mar 23 08:57:26 1987
/usr/admin/corr on LETTERS read only/remote on Wed Mar 24 15:04:33 1987
$

The general format of eaeh line of display is

directory on resource permission on date

DISPLAYING RESOURCES MOUNTED IN YOUR DOMAIN

To display all resourees on your system that have been mounted on üther
systems, exeeute the rmntstat eommand:

rmntstat
RESOURCE
CUSTOMERS
INVOICES
M TAPE
B DISK

PATHNAME
/usr/adm/cust
/usr/admin/inv
/dev/rmt/O
unknown

HOSTNAME
series.operations mrktg
pub_rel mrktg eng
field_s acctg
united field s

For eaeh resouree available, rmntstat provides the name of the resouree
(RESO UR CE) , the loeal pathname of the resouree (PATHNAME) , and
the name of eaeh host that has mounted the resouree (HOSTNAME). (The
pathname will be unknown any time you unmount a resouree that is still
in use by at least one other host. If you'd like to omit the headings, you ean
include the -h option. If you'd like to rest riet the display to a partieular
resouree, you ean include an optional name. Here is the general form of the
rmntstat eommand:

rmntstat [-h) [resource)

UNMOUNTING A RESOURCE

Unmounting a remote resouree is similar to unmounting a loeal one. The
only differenee is the -d option. For example, to unmount resouree LET­
TERS, exeeute the following sequenee of eommands:

40. Basie Resouree Sharing 605

fuser -u LETTERS [Report any proeesses using files in LETTERS]

umount -d LETTERS[Unmount resouree LEDERS]

The general forms of these eommands are as follows:

fuser [-ku} resouree
umount -d resource

where the -k option of fuser allows you to kill any process that has files
open in any direetory or subdirectory of the resouree.

FORCIBLY UNMOUNTING A RESOURCE

It may beeome urgent to unmount a loeal resouree that is being shared with
other systems. You may not have time to notify other system administra­
tors to unmount the resouree from their systems. In such an emergeney
situation, you ean forcibly unmount the resouree from other systems by
exeeuting the fumount eommand. (Then you ean proeeed to unmount it
from your own system with the ordinary umount eommand.)

fuser -u LETTERS [Report any proeesses using files in LEDERS]
fumount -w 30 LETTERS

[Foreibly unmount LEDERS in thirty seeonds]

The general forms of these eommands are as follows:

fuser [-ku} resource
fumount [-w sec} resource

where the -w option of fumount provides for a grace period (in seconds)
before proceeding with the foreible unmounts. If you include this option,
all users will see messages like these at their terminals:

resource is being removed from the system in ss seconds.
resouree has been disconnected from the system.

These messages are displayed by shell script rfuadmin, which is invoked
by the daemon rfudaemon when your host receives a fumount eommand
from the host that is foreing the unmount. (See "Recovery Procedures,"
page 000, in Chapter 39, "RFS Maintenance," for details.)

40.5 Summary

This chapter introduces the concepts and terminology of resource shar­
ing, describes the steps for setting up a domain and individual hosts, and
explains the proeedures for advertising and mounting resourees.

606 Summary

CONCEPTS AND TERMINOLOGY

System V, Release 3 allows different UNIX systems to share resourees (di­
reetories, files, deviees, and named pipes). A group of UNIX systems (also
referred to as machines or hosts) that are to share resourees is ealled a
domain. A host that keeps track of the names of re soure es being shared is
ealled a name server. A primary name server is required; secondary name
servers may be added for backup.

Making known the availability of a resouree for sharing is ealled adver­
tising. After one host advertises a resouree and another host mounts it, the
users of the seeond host may aeeess the resouree as if it were stored on
their own system, subjeet to various seeurity measures.

SETUP PROCEDURES

To set up a domain from the primary name server, set your host's node
name, the network listener, and the domain name; identify the network and
the domain name server(s); add individual hosts; and start the Remote File
Sharing system.

To set up an individual host, set your host's node name, set up the
network listener, set the domain name, identify the network, and start the
Remote File Sharing system.

ADVERTISING RESOURCES

To advertise a resouree on your host, use the adv eommand, giving a name
to the resouree and the pathname of the resouree. Options include read-only
proteetion, a deseription of the resouree, adding a list of clients to whom
you wish to rest riet aeeess, and modifying an entry. To have your adv
eommands exeeuted automatieally, plaee them in the file /etc/rstab. You
ean display resourees advertised by your host (adv without arguments) or
advertised in a domain (nsquery). Finally, you ean unadvertise a resouree
with the unadv eommand.

MOUNTING RESOURCES

To mount a resouree that has been advertised, use the mount -d eommand,
naming the resouree and giving it a mount-point (an empty direetory)
within your own system. You have the option of mounting the resouree as
read-only. To have your mount eommands exeeuted automatieally, plaee
them in the file /etc/fstab. You ean display resourees mounted on your
host (mount without arguments) or mounted in your domain (rmntstat).
Finally, you ean unmount a resouree with the umount eommand (fumount
for foreible unmounting).

41

Remote File Sharing
Maintenance

41.1 Introd uction

In Chapter 40, "Basic Resource Sharing," you learned what the Remote
File Sharing system is, how to set it up, and how to make it work. In
this chapter you willlearn the day-to-day tasks necessary to keep the RFS
system running smoothly. These include starting and stopping run level
3, maintaining domains, maintaining individual hosts, and monitoring and
adjusting performance:

1. Run level 3-starting and stopping

2. Maintaining domains-adding a new host, removing a host, resetting
the current name server, adding new domains, and recovering from
failures

3. Maintaining hosts-starting up and shutting down the RFS system

4. Monitoring-listing CPU time, number of system calls, processes,
data transferred, and disk space

5. Tuning-eight adjustable maximum and minimum values that affect
RFS performance

Most of the procedures that relate to the security of the Remote File
Sharing system will be described in Chapter 40, "RFS Security."

41.2 Remote file sharing mode

RUN LEVEL 3

In Chapter 32, "Startup and Shutdown," you learned ab out single-user
mode (run level 1) and multi-user mode (run level 2), initiated by the
init Sand init 2 commands. A new run level has been defined for Remote
File Sharing (run level 3). Whenever you enter run level 3 with the init 3
command, the system starts all processes in the /etc/inittab file that show

608 Remote file sharing mode

level 3. When you leave run level 3 with either shutdown or init 2, the
system will stop all level 3 processes.

If you would like to have Remote File Sharing started automatieally when
you boot your system, you ean change the run level for initdefault from 2
to 3, as shown here:

is:3:initdefault:

STARTING RUN LEVEL 3

Whenever you exeeute the init 3 eommand, the system exeeutes shell seript
/etc/rc3 and any other processes that show run level 3. Then /etc/rc3 ex­
eeutes all shell seripts in the run level 3 direetory /etc/rc3.d whose names
begin with S. This includes the RFS file S21 rfs and any other files that
you ehoose to plaee in /etc/rc3.d. The RFS file S21 rfs, whieh is linked to
/etc/init.d/rfs, performs the following tasks:

• Makes sure that a domain name has been set for your host

• Makes sure that the rfmaster file exists

• Exeeutes rfstart every sixty seeonds until RFS is started sueeessfully

• Exeeutes /etc/init.d/adv to advertise the resourees named in your
/etc/rstab file

• Exeeutes /etc/rmountall to mount the resourees named in your /etc/fstab
file

You ean add to the run level 3 directory /etc/rc3.d your own files to be
linked to custom shell seripts stored in /etc/init.d. Begin the name of the
/etc/rc3.d file with S (start), then include a two-digit sequence number, and
lastly include the name of the linked file in /etc/init.d. Here is the format,
with spaees added for ease of reading:

S nn name

For example, suppose you'd like to plaee shell seripts ealled advertise
and mounLnew in /etc/init.d. To make these the first and seeond seripts
exeeuted, use 01 and 02 as the sequenee numbers, use the shell start
option, and name the files as shown here:

/etc/rc3.d

SOladvertise
S02mount new

/etc/init.d

advertise
mount new

41. Remote File Sharing Maintenance 609

STOPPING RUN LEVEL 3

Whenever you leave Remote File Sharing mode by executing an init 0, init
1, or init 2 command, the system executes any processes that show run
level 0, 1, or 2. Then the system executes all shell scripts in the run level
o (/ete/reO.d), run level 1 (/ete/re1.d), or run level 2 (/ete/re2.d) directory
whose names begin with K. This includes the RFS file K65rfs and any other
files that you choose to place in /ete/re.O, /ete/re.1, or /ete/re.2. The RFS file
K65rfs, which is linked to /ete/init.d/rfs, runs umount, unadv, and rfstop
to stop Remote File Sharing mode.

You can add to one of the run level directories (say /etc/re2.d) your own
files to be linked to custom shell scripts stored in /ete/init.d. Begin the
name of the /etc/re2.d file with K (kill), then include a two-digit sequence
number, and lastly include the name of the linked file in /etc/init.d. Here is
the format, with spaces added for ease of reading:

K nn name

For example, suppose you'd like to place shell scripts called unadvertise
and unmount in /ete/init.d. To make these the first and second scripts exe­
cuted, use 01 and 02 as the sequence numbers, use the shell stop option,
and name the files as shown here:

/etc/rc2.d

KOlunadvertise
K02unmount

/etc/init.d

unadvertise
unmount

41.3 Maintaining domains

A typical domain contains a primary name server, possibly at least one
secondary name server, and other hosts without name server duties. The
responsibilities of a domain administrator include adding and removing
hosts, changing and reassigning name servers, and taking care of recovery
when one of the systems fails.

BASIC INFORMATION

Before getting into specific tasks, let's take a look at how you can obtain
basic information about a domain and its member hosts. The following four
files in directory /usr/nserve contain the information indicated:

domain
netspec

/usr/nserve

The name of each host's domain
The name of each host's RFS network

610 Maintaining domains

rfmaster

loc.passwd

The names and addresses of the primary and any sec­
ondary name servers for your domain, along with the same
information on other domains with which you share re­
sources
Each host's authentication password

The files that contain information about users, groups, and passwords
are described in Chapter 40.

Here are a few procedures for obtaining information quickly:

1. Display the name of your host's domain and network type:

dname -a

2. Display the name of the current name server:

rfadmin

3. Display the names and addresses of your domain's primary and sec­
ondary name servers:

pg /usr/nserve/rfmaster

4. Display the names and addresses of the primary and secondary name
servers for domains with which your domain shares resources:

pg /usr/nserve/rfmaster

Now we'll proceed to the actual maintenance tasks.

ADDING A NEW HOST

To add a new host to a domain, go to the primary name server and enter
an rfadmin command with the -a (add) option. For example, to add host
mrktg to domain ace, enter the following:

rfadmin -a ace.mrktg
Enter password for mrktg:
Re-enter password for mrktg:

The password you enter (if any) will be stored in
/usr /nserve/auth. i nfo/ace/passwd.

41. Remote File Sharing Maintenance 611

REMOVING A HOST

To remove a host from a domain, go to the primary name server and enter
an rfadmin eommand with the -r (remove) option. For example, to remove
host eng from domain ace, enter the following:

rfadmin -r ace. eng

If eng is not a name server, its entry will be removedfrom
/usr/nserve/auth.info/ace/passwd.

CHANGING DOMAIN NAME SERVERS

To reassign the responsibilities of domain name server, you must go to the
current primary name server, begin an editing session with the rfmaster
file , and make the changes there. For example, suppose mrktg is currently
the primary name server and eng is eurrently the seeondary name server
for domain ace, as shown here:

/usr/nserve/rfmaster

ace p ace.mrktg [Primary name server]
ace s ace.eng [Secondary name server]
ace.mrktg a mrktg.serve [Network address of primary]
ace.eng a eng.serve [Network address of secondary]

To make standard the new primary name server and training and field_s
the new seeondary name servers, modify the file so that it looks like this:

ace p ace. standards [Primary name server)
ace s ace.training [Secondary name server]
ace s ace.field s [Secondary name server]
ace.standards a standards. serve [Network address of primary]
ace.training a training.serve [Network address of secondary]
ace.field s a field s.serve [Network address of secondary]

Now go to eaeh of the five maehines named (mrktg, eng, standards,
training, and field_s) and execute the following two commands to activate
the changes:

rfstop
rfstart

ADDING A NEW DOMAIN

To be able to share resourees with another domain in your network, find
out the names and network addresses of the primary and secondary name

612 Maintaining domains

servers and add them to rfmaster. The proeedure is similar to the one
for changing name servers for your own domain, deseribed in the previous
seetion, "Changing Domain Name Servers" .

RECOVERY PROCEDURES

The Remote File Sharing system provides for the orderly restoration of re­
souree sharing any time one of the maehines in a domain fails. The maehine
that fails may be a file server, whieh is sharing re soure es with other ma­
ehines, or a name server, whieh is keeping track of the names of resourees
that are being shared.

1. File server-The rfudaemon, whieh runs eontinuously whenever RFS
is active, monitors the system for any of these three events:

fuwarn

fumount

warning to users just before a foreed unmount (fu­
mount)
aetual unmount of a shared resouree diseonneet­
dropping of a link to a shared resouree If any of
these oeeurs, rfudaemon starts shell seript rfuad­
min, whieh initiates one of three recovery proeedures,
depending on whieh event triggered the recovery. You
ean modify rfuadmin if you wish.

2. Primary name server-The system immediately switehes responsibil­
ity to a seeondary name server for a temporary duration. When the
primary is restored, name service responsibility is not restored au­
tomatically; the system administrator must restore it manually from
the acting name server with the rfadmin -p eommand. It will not be
possible to add or delete hosts or change host authentieation pass­
words until this has been done.

3. All name servers-If all primary and seeondary name servers fail at
the same time, there will be no reeord of whieh resourees have been
advertised. When the primary is restored, this information will have
to be restored in one of two ways from eaeh host that is sharing
resourees:

• Exeeute adv -m for eaeh resouree already advertised.

• Go to init 2 and back to init 3 and readvertise all resourees to
rest art the RFS system.

41.4 Maintaining hosts

The proeedures for setting up a domain and individual hosts were eovered
in Chapter 40, "Basic Resouree Sharing." In this seetion we'll elaborate

41. Remote File Sharing Maintenance 613

on same of those procedures. In particular, we'll discuss starting up and
shutting down a hast and changing a host's authentication passward.

BASIC INFORMATION

Before getting into specific tasks, let 's take a look at how you can obtain
basic information about your domain and your hast:

1. Display the name of your host's domain and network type:

dname -a

2. Display the name of the current name server:

rfadmin

Now we'll proceed to the actual maintenance tasks.

STARTING UP A HOST

The command used to start Remote File Sharing on your host and notify
the domain name server is rfstart, which is usually run automatically when
the host enters Remote File Sharing state (init 3). The general format of
the command is

rfstart {-v] {-p primary]

where

-y

-p primary

requests verification of any hast that attempts to mount
your resources
specifies the network address of the primary name server

The -Y option provides mount protection by requiring a password from
any hast that attempts to mount one of your resources. The names and
passwords of ot her hosts in a given domain are kept in a passwd file stored
in directory /usr/nserve/auth.info/domain (where domain is the name of the
domain). The attempted mount will fail if the passward entered doesn't
match, the host isn't named in the passwd file, or there is no passwd file
for the host.

If you issue rfstart without the -Y option, validation will depend on
whether or not the password file exists and the host is listed:

1. If domain/passwd exists and the other host is listed, the host will
still be required to enter the correct password.

614 Maintaining hosts

2. If damain/passwd doesn't exist or the host isn't listed, the host will
be able to mount your resourees without a password.

The -p option, whieh is required only the first time you start Remote File
Sharing, allows you to provide the network address of the primary name
server if your host's rfmaster file is unable to provide it beeause of an error.

To verify that Remote File Sharing has started properly, use the ps -e
eommand to make sure all the RFS processes are running:

ps -e
listen
rfdaemon
nserve

rfudaemon
server

[This is only a partial list 1

If Remote File Sharing fails to start, here is achecklist of possible prob­
lems:

o Are you logged in as raat?

o Is the network running properly?

o Is your host's network listener runing properly?

o 1s the domain's name server up and running?

o Ras your host's name been added to the domain?

o 1s there an error in your host's /usr/nserve/rfmaster file?

o 1s there an error in your host's /usr/nserve/lac.passwd file?

SHUTTING DOWN A HOST

The proeedure for shutting down a host, whieh will be earried out auto­
matieally when your host leaves Remote File Sharing state (init 3), is as
follows:

1. Unadvertise all your resourees with unadv.

2. Unmount all remote resourees with umount.

3. Make sure other hosts have unmounted all your resourees (using fu­
mount if neeessary).

4. Diseonneet your host from the network with rfstop.

41. Remote File Sharing Maintenance 615

CHANGING A HOST'S PASSWORD

To change your host's password, make sure Remote File Sharing is running
on your host and on the primary name server (not a seeondary name server).
Then exeeute the rfpasswd eommand, whieh will prompt you for the old
and new passwords:

rfpasswd

41.5 Monitoring remote file sharing

UNIX System V, Release 3 offers five tools for monitoring the flow of in­
formation in the Remote File Sharing system. The reports they produee
ean help you determine whether your resourees are loeated in the most
appropriate plaees on your network and whether it may be possible to im­
prove performance by adjusting system parameters. (System parameters
are diseussed in the next seetion.) The monitoring tools are summarized in
Table 41.1, then deseribed in the paragraphs that follow.

TABLE 41.1. Tools for Monitoring RFS

Command Description

sar -Oe Monitor incoming and outgoing requests for resourees.

sar -Du Display the pereent of CPU time spent on various aetivities.

sar -S Monitor server proeesses and remote requests.

fusage Find out how much other hosts are using your resourees.
df [resource] Display remaining disk spaee on a remote resouree.

MONITORING REQUESTS FOR RESOURCES sar -De
Your host keeps arecord of ineoming requests for local resourees and outgo­
ing requests for remote resourees. The sar -Oe eommand displays averages
for system ealls per seeond (seall/s), read and write system ealls per see­
ond (sread/s and swrit/s), forks and exee's per seeond (fork/s and exee/s),
and eharaeters read and written per second (rehar/s and wehar/s). See
Figure 41.1 for a sampie display.

DISPLAYING CPU TIME BY ACTIVITY sar -Du
You can display the percentage of time your host's epu spends processing
loeal and remote system ealls (%sys local and %sys remote), along with

616 Münitoring remüte file sharing

FIGURE 41.1. The display für sar -Oe.

$ sar -Dc
comp1 ace 3.0v1 0572 VAX 04/16/87

00:05:30 sca1l/s sread/s swrit/s fork/s exec/s rcharls wcharls
01:05:30

in 3 0.00 379 236
out 3 2 0.00 254 309
local 148 35 18 0.81 1. 46 14236 5921

02:05:30
in 4 3 0.00 346 265
out 3 2 2 0.00 261 297
local 152 29 21 0.74 1. 39 l3602 6053

03:05:30
in 0.00 293 286
out 3 4 0.00 278 312
local 159 41 26 0.83 1. 51 15433 7115

Average 153 35 22 0.79 1. 45 14423 6363
$

other information with the sar -Du eommand. See Figure 41.2 for a sample
display.

FIGURE 41.2. The display für sar -Du.

$ sar -Du
compl ace 3.0v1 0572 VAX 04/16/87

00:05:30 $usr %sys %sys %wio %idle
local remote

01:05:30 23 21 12 11 33
02:05:30 17 28 l3 12 30
03:05:30 15 20 19 15 31
04:05:30 12 18 15 9 46
05:05:30 10 15 12 7 56
06:05:30 11 16 14 8 51

Average 15 20 14 10 41
$

MONITORING SERVERS AND REQUESTS sar-S

Ineoming requests for resourees are handled by server processes. An excess
number of requests may have to be queued until a server becomes available.
You ean display information about requests and servers with the sar -Du
eommand. See Figure 41.3 for a sample display.

41. Remüte File Sharing Maintenance 617

FIGURE 41.3. The display für sar oS.

$ sar -s
comp1 ace 3.0v1 0572 VAX 04/16/87

00:05:30 serv/lo-hi request request server server %
5-25 %busy avg 19th %avail avg avail

01:05:30 13 32 26 62 3
02:05:30 12 21 18 70 5
03:05:30 8 40 37 83 7
04:05:30 10 36 33 88 6
05:05:30 11 34 21 93 6
06:05:30 14 52 16 74

Average 12 36 25 78 5
$

If too many servers are available or if there aren't enough servers to
handle all the requests, you ean make adjustments to the MINSERVE and
MAXSERVE parameters (diseussed in the next seetion).

DISPLAYING USAGE BY OTHER HOSTS fusage

The fusage eommand ean tell you how mueh other hosts are using your
resourees. The display shows how mueh data has been read from and writ­
ten to your resourees by eaeh remote host. See Figure 41.4 for a sample
display.

FIGURE 41.4. The display für fusage.

Eusage

FILE USAGE REPORT FOR rt200

/dev/dsk/cldOsO /
/

rt200 507 Kb
Clients 432 Kb

TOTAL 939 Kb

/dev/dsk/cldls2 /usr
/usr

rt200 498 Kb
Clients 375 Kb

TOTAL 873 Kb

618 Adjusting performance

You can also confine the output of this eommand to a single advertised
directory by naming the direetory after the eommand, like this:

fusage /usr/admin/corr

DISPLAYING DISK SPACE ON A REMOTE HOST df
The df eommand ean tell you how mueh spaee is left on a disk on which a
remote resouree is loeated. If resource is a resouree mounted on your host,
then you ean name resource after the df eommand. See Figure 41.5 for a
sampIe display.

FIGURE 41.5. The display for df.

df CUSTOMERS ENTRIES H DISK

/usr/admin/cust (CUSTOMERS):
/usr/admin/entries (ENTRIES) :
/dev/rdsk/1 (H_DISK) :

4029 blocks
6754 blocks
3978 blocks

1936 i-nodes
2543 i-nodes
1624 i-nodes

You ean also eonfine the output of this eommand to a single advertised
directory by naming the direetory after the eommand, like this:

fusage lusrladminlcorr

41.6 Adjusting performance

Eight parameters loeated in the /etc/master.d/du file allow you to adjust
the performance of your Remote File Sharing system. The parameters are
summarized in Table 41.2, then described in the paragraphs that follow.

TABLE 41.2. Performance Parameters

Command

NRDUSER
NRCVD
NSNDD
NSRMOUNT
NADVERTISE
MAXGDP
MINSERVE
MAXSERVE

Description

N umber of user entries for receive descriptors

Maximum nu mb er of receive descriptors

Maximum number of send descriptors

Maximum number of entries in the mount table

Maximum number of entries in the advertise table

Maximum number of virtual circuits

Minimum number of server processes

Maximum nu mb er of server processes

RECEIVE DESCRIPTORS

41. Remote File Sharing Maintenance 619

NRDUSER
NRCVD

Every time a user from another system names a file or directory in your sys­
tem, your system ereates one reeeive deseriptor. Use NRDUSER to indieate
how many user entries to alloeate to reeeive deseriptors. By lowering the
value of NRCVD, you ean reduee the number of loeal files and direetories
that remote users ean aeeess at any given moment.

SEND DESCRIPTORS NSNDD
Every time a user from your system names a file or direetory in anothe
system, your system ereates one reeeive deseriptor. By lowering the value
of NSNDD, you ean reduee the number of remote files and direetories that
your own users ean aeeess at any given moment.

ADVERTISE TABLE NADVERTISE
Every time you advertise a resouree, your system plaees an entry in your
advertise table. With NADVERTISE; you ean set a limit on the number of
resourees that you ean advertise.

VIRTUAL CIRCUITS MAXGDP
Every time any host mounts a resouree on another host, one eonneetion, or
virtual eireuit, is set up on the network. Between any two hosts A and B
there ean be either no virtual eireuits (neither host has any resourees from
the other mounted), one virtual cireuit (one host has resourees from the
other mounted), or two two virtual eireuits (eaeh host has resourees from
the other mounted). You ean set the maximum number of virtual cireuits
allowed on the network with MAXGDP.

SERVER PROCESSES
MINSERVE
MAXSERVE

Server proeesses on your system handle requests for your re soure es from
users of other systems (monitored by the sar -S eommand). You ean set
both the minimum (MINSERVE) and the maximum (MAXSERVE) number
of server proeesses allowed.

620 Adjusting performance

41.7 Summary

In this chapter, you learned how to start and stop run level 3 (Remote File
Sharing mode), maintain domains and hosts, monitor RFS performance,
and tune various performance parameters.

REMOTE FILE SHARING MODE

System V, Release 3 intro duces a new run level 3 (Remote File Sharing
mode), initiated by the init 3 command. When you start run level 3, the
system executes all shell scripts in directory /etc/rc3.d whose names begin
with 8. One of these, 821 rfs, is a standard file; the rest are custom files
that you place in the file. When you stop run level 3, the system executes
all shell scripts in directory /etc/rc3.d whose names begin with K.

MAINTAINING DOMAINS

The files for each domain are stored in directory /usr/nserve. These contain
the name of the domain (domain), the name of each host's RFS network
(netspec), the names and addresses of the name servers (rfmaster) , and
each host's authentication password (loc.passwd). You have commands to
display the name of your host's domain and network type, the name of the
current name server, the names and addresses of name servers, along with
methods for adding a new host, removing a host, changing domain name
servers, adding a new domain, and taking care of error recovery.

MAINTAINING HOSTS

You have commands to display the name of your host's domain and network
type and the name of the current name server. You also have methods for
starting up a host, shutting down a host, and changing a host's password.

MONITORING AND TUNING PERFORMANCE

You have five tools for monitoring the RFS performance: sar -De, sar -
Du, sar -S, fusage, and df. You can adjust performance with any of eight
parameters: NRDUSER, NRCVD, NSNDD, NSRMOUNT, NADVERTISE,
MAXGDP, MINSERVE, and MAXSERVE.

42

RFS Security

42.1 Introduction

Some seeurity measures have already been mentioned in previous ehapters
on RFS. In this ehapter we'll review these, and then deseribe additional
measures that allow you to protect your resourees through an extension
of the UNIX system of permissions known as user mapping. Table 42.1
gives a quick summary of the seeurity measures available to eaeh system
administrator.

TABLE 42.1. Summary of RFS Security Measures

Security Issue

Connection-Which hosts are allowed

to connect to yours?

Mounting-Which hosts are allowed to

mount your resources?

Permissions-What permissions are
granted to users who llse your

resources?

THE CONCEPT OF MAPPING

Measure Available

Verijication-rfstart -v requires verification

via password before the remote host is al­

lowed to connect to your host.

Client list-adv ... client(s) restricts per­

mission to mount to the clients named.

Mapping-idload allows you to control per­

missions für remote users and groups, us­
ing features within your own system.

To eontrol the permissions of remote users who are aeeessing your resourees,
you ean assign to eaeh remote user the perm iss ions already granted to one
of your own loeal users. The teehnique for making these assignments is
ealled mapping, and eaeh remote user (or group) id is said to be mapped to
a loeal user (or group).

As you may reeall from Chapter 35, "System Seeurity," eaeh user on a
system has a unique name and number (id) for identifieation. For example,
in these three entries from the password file on system sales, you ean see
that eaeh user has a login name and also an identifying user number (plus
a group number):

622 Introduction

sales
robin:MWxG240.118fM:lO:50:Robin Russell:/usr/robin:/bin/sh:
pat:Hj3*gFW,nOx5:20:50:Pat Wyman:/usr/pat:/bin/sh
bill:Uo.68mG3h"d6s:30:50:Bill Freeman:/usr/bill:/bin/csh

Robin's user id is 10, Pat's is 20, and Bill's is 30; the group id for all
three is 50. In the following three entries from the password file on system
mrktg, you will find similar information:

mrktg
mary:Bk8Lio45Cxf:lO:500:Mary Spaulding:/usr/mary:/bin/sh
walt:BvCX78z,90fD:20:500:Walter Field:/usr/walt:/bin/sh
ted:Vu5.WqOxc8eA:30:500:Ted Patterson:/usr/ted:/bin/sh

Mary's user id is 10, Walter's is 20, and Ted's is 30; the group id for
all three is 500. We can summarize the identifying information in these
password files as folIows:

sales mrktg
Name Number Name Number
robin 10 mary 10
pat 20 walt 20
bill 30 ted 30

Then we could set up a mapping scheme either by name or by number:

By Name
robin =} mary
pat =} walt
bill =} ted

By Number
10 =} 10
20 =} 20
30 =} 30

With either mapping, Bill will have the permissions of Ted any time
he accesses the resources of Ted's host (mrktg). Similarly, Robin will have
Mary's permissions and Pat will have Walt's. When a name or number on
one host is mapped to the same name or number on another, this is called a
transparent mapping. The mapping by number shown above is an example.

MAPPING OPTIONS AVAILABLE

The Remote File Sharing system allows you to make mapping as simple or
as complex as you choose. If you take no action at all , each remote user
will be mapped to a special guest id on your host (the highest id allowed
plus one). A second approach is to map each remote user either to a single
name or number or to the name or number that matches the user's own. A
third approach is to map each remote user individually to a specific Iocal
user. Here is a brief summary of your options, with a pictorial example of
each:

42. Remote File Sharing Security 623

1. No mapping-one choice, whether by name or by number:

By Name By Number
robin ~ guest 10 ~ 101
pat ~ guest 20 ~ 101
bill ~ guest 30 ~ 101

2. Default mapping-four different choices:

Map to One Name
robin ~ ted
pat ~ ted
bill ~ ted

Map to Same Name
robin ~ robin
pat ~ pat
bill ~ bill

Map to One N umber
10 ~ 30
20 ~ 30
30 ~ 30

Map to Same N umber
10 ~ 10
20 ~ 20
30 ~ 30

3. Specific mapping-by name or by number:

By Name
robin ~ mick

By Number
10 ~ 50
20 ~ 40
30 ~ 60

pat ~ phil
bill ~ paula

42.2 Specifying mapping

If you choose to set up mapping, you will have to enter a pair of rules
files (one for user ids and one for group ids). A command called idload
will read these files, along with the appropriate password files, to perform
the actual mapping requested. Note that, if you choose to map by name,
you and the other hosts will have to share password files with each other.
All files used by idload are stored in the /usr/nserve/auth.info directory:
/usr/nserve/auth.info

domain/passwd
domain/host/passwd
domain/host/group
uid.rules
gid.rules

Password files for individual domains
Password files for individual hosts
Group files for individual hosts
Rules for mapping remote user ids
Rules for mapping remote group ids

624 Specifying mapping

RULES FILES

A rules file (user or group) is composed of blocks, one global block that
applies to all hosts and possibly host blocks for individual hosts. User rules
files and group rules files employ the same format, in which all statements
are optional. The following simple example of a user rules file (which con­
tains a global block only) maps each user from any host to the user's own
id by number and maps root (id 0) to the special guest login:

global
default transparent
exclude 0

Here is an explanation of each line allowed in a global block:

global
default

exclude

map

These rules apply to all remote hosts.
Map each remote user to either of the following:

loeaL id a single local user id number
transparent the same id number

Exclude the remote users with the id number(s) indicated
from the default rule and map the number(s) instead to
the special guest id:

remote- id a single remote id number
remote- id-remote- id a range of remote id numbers

Perform a special mapping from the remote id number
indicated to the local id name or number indicated:

remote- id:loeal from remote- id to loeal

Note that in the global block, you must map by number, not by name.
You are also allowed to include additional blocks for individual hosts (or

sets of hosts). Here is an explanation of each line in a host block:

host These rules apply only to the remote host(s) named:

default

exclude

domain.host [domain.host ... 1

Map each remote user to either of the following:

loeal

transparent

a single local user id name or num­
ber
the same id number

Exclude the remote users with the id number(s) or the id
name indicated from the default rule and map the num­
ber(s) instead to the special guest id:

remote- name a single remote id name

42. Remote File Sharing Security 625

remote-id
remote-id-remote-id

a single remote id number
a range of remote id numbers

map Perform a special mapping from the remote id number or
name indicated as indicated:

remote:local
remote

all

from remote to local
from remote to the same name or num­
ber
from each remote name to the same name

In a host block, you are allowed to map either by name or by number.
Once again, you may have as many host blocks as you wish-either for
single hosts or for sets of hosts.

To summarize for both types of blocks (global and host), the default
li ne maps remote users either to a single local user or to the same user id
number (transparent), while the exclude line exempts remote users
from the rules of the default line, mapping them instead to the special
guest id. The map line then allows you to set up additional mappings-from
one id to another, from one id to itself, or from all id names to themselves
(all).

EXAMPLES OF MAPPING BY NUMBER

Here are some examples of mapping remote users by id number, along with
explanations following each:

global
default 100
exclude 0

Map all users except reet (user id 0) to local user id number 100; map
reet to the special guest id. In the interest of security, it's usually best to
restrict reet to special guest permissions.

global
default transparent
exclude 0-50
map 60:100 70:100

Map all users except reet, all users with id numbers from 1 to 50 and 60
and 70 to their own user id numbers; map reet and users 1-50 to the special
guest id; map users 60 and 70 to local user 100.

global
default transparent
exclude 0-50
map 60:100 70:100

626 Specifying mapping

host ace.eng
default 200
exclude 0-199

In this example, the global block is the same as in the previous example.
However, a host block has been added to indicate a different set of mIes
for users on remote system ace.eng: map all users except raat and users
1-199 to 200; map ra at and users 1-199 to the special guest id.

EXAMPLES OF MAPPING BY NAME

Before you can map users by name, you and the other hosts will first have
to share your password and group files with each other (described in a later
section). Once you've done this, here are some examples ofmapping remote
users by id name, along with explanations following each:

global
default transparent
exclude 0

hast ace.acctg
default tanya
exclude 0 pau1 Ip

In this example, a host block has been added to indicate a different set of
mIes for ace.acctg: map all users except roat, paul, and Ip to tanya; map
roat, paul, and Ip to the special guest id.

global
default transparent
exclude 0

hast ace.acctg
exclude 0 paul Ip
map robin pat:will

In this example, the exclude block exempts the users named from the
map mIes, rather than from the default mIes. According to the map
line, map rabin to rabin and pat to will; then map roat, paul, and Ip to the
special guest id.

global
default 100
exclude 0

hast ace.acctg
exclude 0 paul Ip
map all

42. Remote File Sharing Security 627

In this example, the excl ude block again exempts the users named from
the map rules. According to the map line, map each user except root, paul,
and Ip to the same name; then map root, paul, and Ip to the special guest
id.

THE MAPPING COMMAND idload
Once you've set up your user and group rules files, the idload command,
which is executed automatically whenever a remote mount takes place,
reads these files and performs the mapping requested. You can execute this
command manually either to display your current mappings or to change
the directory and filenames for your rules files. To display your current
mappings, use this form of the command:

idload -n

TYPE MACHINE REM ID REM NAME LOC ID LOCNAME -

USR GLOBAL DEFAULT n/a 100 remote d
USR GLOBAL 0 n/a 60001 guest_ id
USR ace.acctg n/a 60001 guest_ id
USR ace.acctg 67 pau1 60001 guest id -
USR ace.acctg 243 1p 60001 guest id -
USR ace.acctg 10 robin 120 robin
USR ace.acctg 20 pat l36 will

GRP GLOBAL DEFAULT n/a 100 remote d

The display shown here describes the mappings requested in the following
default rules files:

global
default 100
exclude 0

host ace.acctg
exclude 0 paul lp
map robin pat:will

/usr/nserve/auth. info/uid. rules

global
default 100

To use other files for your rules files and the directory that contains them,
you can use a form like this for the idload command:

idload -u /usr/perm/u.rules -g /usr/perm/g.rules /usr/perm

The general format for the idload command is as follows:

idload [-n] [-u u 'rules] [-g 9 'rules] [directory]

where

-n requests a display only with no updating of mapping.

628 Specifying mapping

-u u..rules
-g g_rules
directory

indicates a rules file other than /usr/nserve/auth.info/uid.rules.
indicates a group file other than /usr/nserve/auth.info/gid.rules.
is a directory name other than /usr/nserve/auth.info.

42.3 Procedures for mapping by name

As mentioned earlier, you have some additional tasks to perform when you
map remote users by name. These tasks include all the steps required for
sharing password and group files with other hosts.

PROCEDURES FOR THE DOMAIN

The domain administrator has to advertise the domain and collect user and
group information. Here are the steps:

1. Advertise the domain:

o Execute a command like the following:

adv -d "ace data" ACE /usr/nserve/auth.info/ace

o Now other hosts have access to your host password file and to
the names of your users

2. Collect user and group information:

o Ask each host administrator to access the directory you just
advertised and store their password and group files

o Now advertise the directory again (read-only this time):

adv -r -d "Sun data" ACE /usr/nserve/auth.info/ace

PROCEDURES FOR THE HOST

Each host administrator has to mount and copy the domain directory,
set verification, set remote user permissions, and create the password and
group files. Here are the steps:

1. Mount and copy the domain directory:

o Create a new directory if necessary:

o Mount the domain directory:

42. Remote File Sharing Security 629

mount -r -d ACE /d_info

o Change to the new directory:

cd /d_info

o Copy all files into /usr/nserve/auth.info/ace:

find. -depth -print I cpio -pd /usr/nserve/auth.info/ace

o Change back to the root directory:

cd /

OUnmount the domain directory:

umount ACE

2. Set up verifications:

DOpen the password file:

vi /usr/nserve/auth.info/ace/passwd

o Delete passwords for any hosts that you don't need to verify
after issuing rfstart -v

3. Set up remote user permissions:

o Create a user rules file (/usr/nserve/auth.info/uid.rules).

o Create a group rules file (/usr/nserve/auth.info/gid.rules).

4. Deliver password and group files to the domain name server:

o Make copies of your /etc/passwd and /etc/group files.

o Place them in the directory /usr/nserve/auth.info/ace/sales (as­
suming domain ace and host sales).

This last step matches step 2 "Collect user and group information" under
"Procedures for the Domain" above. Now you are prepared to map remote
users by name.

630 Procedures for mapping by name

42.4 Summary

In this chapter you learned how to maintain the security of your host when
sharing resources. Mapping allows you to assign to a remote user all the
perm iss ions granted to a local user on your own system, using either user
names or user numbers (ids).

Using user and group rules files, you can request either default mapping
(either to a single id or to matching ids) or specific mapping. Each rules
file must contain one global block and may contain additional blocks for
individual hosts, using the default, exclude, and map statements. You
can display the mappings you have selected with the idload -n command.

If you choose to map by name, several additional steps are necessary.
The domain administrator must advertise the domain and collect user and
group perm iss ion information. Each host administrator must mount and
copy the domain directory, set authorizations, set remote user permissions,
and create the passwd and group files.

Appendices

A Summary of Basic Commands and Symbols 633

B Summary of ed 637

C Summary of vi and ex Commands 641

D Summary of vi Options 647

E Summary of Processing Commands 653

F Summary of Formatting Requests 657

G Summary of Formatting Options 661

H Summary of the Bourne Shell 667

I Summary of the C Shell 673

J Summary of System Administration 679

K Network Administration 689

L termcap and terminfo 697

M UNIX versus XENIX 703

N Character codes 709

Appendix A

Summary of Basic Commands
and Symbols

Here is a list of basic UNIX commands and symbols.

A.l Basic commands for starting out

date
who
@
tor AH
(CTRL-o)
man
learn

Display date and time
List logged on users
Erase an entire command line
Erase a character on the command line
Log off the system; sometimes end-of-file (EOF)
CaU up on-line UNIX documentation
CaU up on-line UNIX tutorials

A.2 Working with directories and files

/ The root directory
/bin The directory that contains most system shell proce­

dures and executable command programs
/usr The directory that usually contains user accounts

The current directory

>file
»file
<file
cmdl I cmd2

cat file

pg file
more file

The parent directory

Redirect output to file
Redirect output and append to file
Redirect input from file
Pipe: use the output of cmdl as the input for cmd2

Display the contents of file

(CTRL-S)
(CTRL-Q)

: Halt scrolling of screen output
: Resume scrolling of screen output

Display the contents of file by screen (UNIX)
Display the contents of file by screen (XENIX)

634 Working with directories and files

head file
tail file

cat 11 12 >file
mv 1112
mv 1112 dir
cp 1112
cp 1112 dir
rm file
In file
Is
Is -I
pwd
cd dir
mkdir dir
rmdir dir
rmdir -r dir
mv d1 d2

chmod" ,file

Display the opening lines of file (XENIX)
Display the last lines of file

Concatenate files 11 and 12 into file file
Change the name of file 11 to 12
Move files 11 and 12 to directory dir
Make a copy of file 11 and call the copy 12
Copy files 11 and 12 to directory dir
Remove file from the current directory
Link file to the current directory
List the names of files and subdirectories
Displayalang directory list
Display the name of your working directory
Change your working directory to dir
Create directory dir
Remove directory dir (em pty~no files)
Remove directory dir and every file in it
Change the name of directory d1 to d2

Change the access permissions to file, using the fol­
lowing abbreviations:

U user
9 group
o others

+ add r read
remove W write

= absolute X execute

A.3 Searching: forming regular expressions

$
?
*
[]
\

A.4

Beginning of line
End of line
Match a single character in a search
Match any character in a search
Match any of the characters enclosed in a search
Interpret the following special character literally

Setting basic features

passwd
newgrp name
newgrp

Change your password
Switch to working group name
Switch back to your default group
Set your terminal options stty

tabs term Specify tab settings for terminal term

Appendix A. Summary of Basic Commands and Symbols 635

A.5 Working with processes

&

DEL
kill nnnn
ps

time process

Run a process in the background (placed at the end of
a command line)
Abort a foreground process
Abort background process with PID number nnnn
Display the status of active processes associated with
your terminal
Display the amount of time required to run process

A.6 Processing information

dc CaU up the desk calculator
bc CaU up the high-precision calculator
cal Displaya calendar for a given month or year

echo Displayastring on the screen

sort file
grep 'p' file
awk 'p { a }' file

Sort file by the sequence specified
Search for pattern p in file
Select lines in file with pattern p and process them
by taking action a

wc file
speil file
diff fl f2
Cmpfl f2
comm 1112
tr si s2 file

Ip file
nroff file

Count the lines, words, and characters in file
Check spelling of words in file
Display the differences between files fl and f2
Compare files fl and f2
Display lines common to files 11 and 12
Translate from string si to s2 in file

Send contents of file to the lineprinter
Format and print the contents of file

A.7 Communicating

mail user
mail
calendar
write user
cu
uucp

Send electronic mail to user
Read your electronic mail
Display events stored by date as areminder
Write directly to user's terminal
CaU up another UNIX system
Communicate with another UNIX system

Appendix B

Summary of ed

B.I Commands

The general form of an ed command is a letter, preceded by one or two
line numbers (generally option al). Two ed commands, e (edit) and r (read),
must be followed by a filename, and w (write) may be. Only one command
is allowed per line, but p (print) may follow any command except e (edit),
r (read), w (write), or q (quit). A backslash (\) may be used at the end of
each li ne to continue a long command string on the next line.

a Append lines to the editing buffer, starting at the current line, un­
less another li ne is specified. Appending continues until aperiod
appears by itself as the first character on aseparate line. Once
appending is completed, the last li ne appended is considered the
current line.

c Change the lines specified to the text that follows. The text must
be terminated with aperiod on aseparate line. If no lines are
specified, replace only the current line. The last line changed be­
comes the new current line.

d Delete the lines of text specified. If no lines are specified, the cur­
rent line is deleted. Generally, the first li ne following the deleted
text becomes the new current line. However, if the last line is
deleted, then the new last line becomes the new current line.

e Edit a file. If the editing buffer contains text when e is issued, it
will be overwritten by the contents of the new file. To avoid loss
of text, use the W (write) command for the buffer before using e.

f File is to recall the name of the active file. If you type a filename
after f, that is the name that will become the new active file. It
will also be recalled the next time you issue f.

9 Global search is to execute the command specified for all lines in
the editing buffer.
Insert the text that follows in front of the current li ne (or in front
of the line specified). The text to be inserted must be terminated
by aperiod on aseparate line. The last line inserted becomes the
current line.

638

m

p

q

r

5

v

w

?

$=

Commands

Move the lines specified to the location immediately following the
line specified after m. The last line moved becomes the current
line.
Print (that is, display) the lines specified. If no lines are specified,
display the current line. Press (RETURN) to display the line
following the current line.
Quit ed is to exit the editor and return to the shell. Unless you
first issue W (write), q will discard the editing buffer.
Read a file into the editing buffer, beginning at the end of the
buffer, unless another line is specified. The last line read becomes
the new current line.
Substitute the first occurrence of one string for another in the lines
specified. If no lines are specified, the substitution takes place only
in the current line. The last line in which a substitution takes
place becomes the new first line. If no substitution takes place,
the current line remains unchanged.
Reverse global search is to execute commands on those lines that
do not match the string indicated.

Write text from the editing buffer to a file. The file may be named
either here or in an earlier ed or e (edit) command. The current
line remains unchanged.
Context search is to search for the next li ne that matches the
string indicated by /string/ The search begins at the line follow­
ing the current line, and continues all the way through the editing
buffer back to the current line if necessary. The line where the
string is matched becomes the new current line.
Reverse context search is to search backwards for the line that
matches the string indicated by ?string? The search begins at the
line preceding the current line, and continues all the way through
the file~wrapping back around to the current line if necessary.
The line where the string is matched becomes the new current
line.
Current line is to display the number of the current line.
Last line is to display the number of the last line of the editing
buffer.
Escape is to execute a UNIX command without leaving ed.

Appendix B. Summary of ed 639

B.2 Special characters for searching

In search and replace commands, the following special characters have the
meanings given here, except when preceded by a backslash (\). In those
instances they are interpreted literally.

Beginning of line
Match a character

$
*

End of line
Repeat a character

[] Match one of the characters enclosed
& U se the search string as the replacement

string
\ Turn off special meaning

The following special characters are fixed, and do not change in meaning:

/

\ (\)
\n

Delimiter for search strings and replacement strings; in a re­
placement string, you can also use any other character not
found in the replacement string itself.
Tag a substring (in a search string).
Insert substring n (in areplacement string).

Appendix C

Summary of vi and ex
Commands

You enter vi commands from vi command mode. These commands are never
displayed on the screen. To enter an ex command, type a colon (:) to enter
ex command mode, type the command, then type (ESC) or (RETURN)
to return to vi command mode. The search commands begin with either /
or ? and end with a (RETURN). Commands that begin with :, /, and ?
are displayed at the bot tom of the screen.

C.1 Moving the cursor

Move the cursor as indicated:

h One space to the left
i One space down
k One space up
I One space to the right

b Beginning of the previous word
B Beginning of the previous word (ignore punctuation)

w Beginning of the next word
W Beginning of the next word (ignore punctuation)

e End of the next word
E End of the next word (ignore punctuation)

(Beginning of sentence
) End of sentence
{ Beginning of paragraph
} End of paragraph
[Beginning of section
] End of section

First visible character of Une
o Beginning of li ne
$ End of Une

642 Moving the cursor

H Top of screen
M Middle of screen
L Bottom of screen
nG Line n (last line if n is omitted)
% Matching symbol: (), { }, [1
AU Scroll up (C CTRL-u »)
AB Page back (CCTRL-B»)
AD Scroll down (C CTRL-o))
AF Page forward (C CTRL-F »)

C.2 Adding new text

a Append text after the cursor
A Append text at the end of the line
I Insert text at the beginning of the line
i Insert text before the cursor
o Open a new line of text above the current line
o Open a new line of text below the current line

C.3 Changing text

In each instance, change text from the cursor to the place indicated. All
of the commands shown here may be used with multipliers (for example,
e5w, 5ee, e5), e5}, and so on).

ew End of word
eW End of word (ignore punctuation)
e

A

First visible character of line
cO Beginning of line e$ End of line
ce The entire line
e{ Beginning of sentence e) End of sentence
e{ Beginning of paragraph e} End of paragraph

Appendix C. Summary of vi and ex Commands 643

C.4 Shifting text

In each instance, shift the text from the cursor to the place indicated a
distance of one shiftwidth either left «) or right (». All of the commands
may be used with multipliers (for example, 5», >5), <5}, and so on).

« Entire line » Entire line
« Beginning of sentence >(Beginning of sentence
<) End of sentence » End of sentence
<{ Beginning of paragraph >{ Beginning of paragraph
<} End of paragraph >} End of paragraph

C.5 Deleting text

In each instance, delete text from the cursor to the place indicated. All
of the commands shown here may be used with multipliers (for example,
d5w, 5dd, d5), d5}, and so on).

dw End of word
dW End of word (ignore punctuation)
dA First visible character of line
dO Beginning of line d$ End of line (same as 0)
dd Entire line
d(Beginning of sentence d) End of sentence

d} End of paragraph d{ Beginning of paragraph

C.6 Searching and Replacing

tx or Tx
ctx or cTx
dtx or dTx
fx or Fx
cfx or cFx

dfx or dFx

Iward
?ward
r

R

Move the cursor next to x on the current line
Change from the cursor to the character next to x
Delete from the cursor to the character next to x
Find character x on the current line
Change from the cursor to character x on the cur­
rent line
Delete from the cursor to character x on the current
line
Search forward for ward in the work area
Search backwards for ward in the work area
Replace the character under the cursor with an­
other
Replace several characters one after another as you
type

644 Searching and Replacing

s Replace one character with several
S Replace an entire line (same as ce)

:n,Ns/old/new/g Substitute new for old in every occurrence from
line n to line N, searching forward in the work
area.

:n,Ns?old?new?g Substitute new for old in every occurrence from
line n to li ne N, searching backwards in the work
area.

C.7 Invoking the editor

$ vi file Begin an editing session with file, starting on
the first line.

$ vi +line file Begin an editing session with file, starting on
line line.

$ vi +Iwordl file Begin an editing session with file, starting on
the first line that contains word.

$ vi + file Begin an editing session with file, starting on
the last line.

$ vi -r file Begin an editing session to recover file after a
system faHure.

$ vi -R file Begin an editing session to make file read-only.
$ vi -t tag Edit the file that contains tag.
$ vi -x file Edit an encrypted file (or edit a cleartext file

and have it encrypted when writing it to disk).

C.8 Exiting the editor

:wq (RETURN)

:x(RETURN)

:q! (RETURN)

Write and Quit -Write the text in the work area
to a file and end the editing session.
Conditional Write and Quit -Write the text in the
work area only if there have been changes, then end
the editing session (same as ZZ).
Abandon Text Abandon the text in the work area
(along with any changes made to it) and end the
editing session.

C.9 Moving or copying text

The general procedure for moving (or copying) text within the buffer is to
move the cursor to the beginning of the text, delete (or yank) the text,

Appendix C. Summary of vi and ex Commands 645

move the cursor to the new location, and then put the text either in front
of the cursor (P) or after the cursor (p). If you are moving text to another
file, you must delete the text to a buffer (a-z) and then put it from the same
buffer. You must begin editing the other file (:e) with no other operators
intervening between the delete and the put. Some of the many variations
of the basic procedure involve the foUowing combinations:

Delete yank text delete yank text
X a character nX n characters

dw yw a word dnW ynw n words
d) y) a sentence dn) yn) n sentences
d} y} a paragraph dn} yn} n paragraphs
dd yy a line ndd nyy n lines
P Before or above "xP Before or above from buffer x
p After or below "xp After or below from buffer x

CUSTOMIZING VI

You can customize vi by setting options, assigning abbreviations, and as­
signing command sequences to keys on the keyboard.

SETTING OPTIONS

:set aw
:set report=3
:set dir=files

Set auto-write mode
Set report to 3
Set your directory to files

set

ASSIGNING ABBREVIATIONS ab

:ab unx UNIX operating system Assign UNIX operating sys­
tem to the abbreviation unx.

DEFINING KEYS map

:map * { >} Assign the sequence { >} to the * key.

MAKING ASSIGNMENTS PERMANENT

To make assignments permanent, place the commands (without colons) in
the .exrc file, which will be read each time you caU up vi. Here is a sampling
of line entries you could place in .exrc:

set aw report=3 dir=files
ab xen XENIX operating system
map * { >}

Appendix D

Summary of vi Options

This appendix lists all vi (and ex) options that can be set with the :set
command. The options are grouped as toggled, number-valued, and string­
valued. For each option, you will find its name, abbreviation (if any) , default
setting, and description.

D.1 Toggled options

These options may be set only as on or off. To turn an option off, type no
in front of its name (or abbreviation).

AUTOMATIC INDENTATION ai
The autoindent (ai) option allows you to achieve the indentation desired in
structured programming. For each line entered during text entry mode, vi
matches the indentation with the previous line, using the spacing between
tab stops specified by the shiftwidth option. The only way to back the
cursor up to the previous tab stop is to type (CTRL-D).

When this mode is set, certain lines are processed in a different way:

1. A line with no characters in it is turned into a blank line.

2. The input for a line that begins with a caret (,,), followed immedi­
ately by (CTRL-D), is placed at the beginning of the line, but the
indentation for the previous li ne is retained for the line that follows.

3. The input for a li ne that begins with a zero (0), followed immediately
by (CTRL-D), is placed at the beginning of the line, along with input
for subsequent lines.

The autoindent option is not in effect for global commands. The default
for autoindent is noai.

AUTOMATIC PRINTING ap
The autoprint (ap) option causes the current line to be printed after any
ex command that changes the buffer. This is the same as appending p to

648 Toggled options

each command. The ap option applies only to the last of a sequence of
commands on a single line, and is not in effect for global commands. The
Default is apo

AUTOMATIC WRITING aw

The autowrite (aw) option causes the contents of the editing buffer to be
written automatically to the current file if you have made any changes to
it before giving one of the following commands:

:n
:rew
:tag

Next
Rewind
Tag

Default for autowrite: noaw.

BEAUTIFYING TEXT

:!
(CTRL-A)
(CTRL-])

Escape
Switch files
Go to tag

bf

The beautify (bf) option prevents all control characters except tab, new­
line, and formfeed from being entered into the editing buffer during text
entry. The first time a backspace is discarded, there is a message. The bf
option does not apply to command input. The Default is nobf.

COMPATIBILITY WITH ed edeompatible

The edeompatible option retains the global (g) and confirm (e) suffixes
during multiple substitutions, and causes the read (r) suffix to work like
the read command, instead üf like the repeat string (&) suffix. The Default
is noedeompatible.

IGNORE CASE ie
The ignoreease (ie) option maps upper case characters in text to lower
case für the purpose of matching regular expressions-except for characters
enclüsed within brackets. The Default is noie.

LISP OPERATION lisp

The lisp option allows indentation appropriate for writing programs in
the LISP language, and modifies the meanings of the following symbols to
conform to standard LISP usage:

{ } [[II

The Default is nolisp.

Appendix D. Summary of vi Options 649

LIST ALL list

The list option displays text the way ed's list command (I) does, with tab
stops and newline characters shown on the screen as ,,/\ r" and "$"; list
also folds any line longer than 72 characters. The Default is nolist.

SPECIAL MEANINGS FOR CHARACTERS magie

The magie option allows metacharacters to retain their special meanings.
When this option is turned off, only the caret (/\) and dollar sign ($) retain
their special meanings. However, you can still evoke the special meanings
of other special characters by preceding each with a backslash (\). The
Default is magie.

ALLOWING MESSAGES mesg

The mesg option allows other UNIX users to write to your screen with the
UNIX write command while you are using vi. The usual setting nomesg
prevents others from interfering with your screen display during editing.
The Default is nomesg.

LINE- NUMBERING nu
The number option displays line numbers with text. The Default is nonu.

QPTIMIZING OUTPUT optimize
The optimize option is used to speed up the operation of terminals that
lack cursor-addressing by eliminating automatie returns when displaying
more than one line. This is especially helpful if the text contains quite a
bit of indentation at the start of each line. The Default is optimize.

REDRAWING THE SCREEN redraw
The redraw option allows vi to simulate the operation of an intelligent
terminal on a dumb terminal by redrawing the screen each time a dele­
tion takes place and refreshing text continuously during insertion. Since
this option requires considerable processing, it is useful only at very high
transmission speeds. The Default is noredraw.

DISPLAYING MATCHING SYMBOL sm
The showmateh option allows you to display the matching symbol of a
pair of parentheses or braces. When you type) or }, for example, the cursor

650 Toggled options

moves to the matching (or { and waits for one second before returning-if
the matching symbol is on the screen. The Default is nosm.

ALLOWING BRIEF MESSAGES terse

The terse option allows an experienced user to revert to briefer messages
on the screen (for example, 15/297 instead of 15 lines 297 charac­
te r s). The Default is noterse.

WARNING TO SAVE warn

The warn option makes ex give a warning before allowing you to execute
a shell command via the escape command (!), for instance, [No write since
last change]. The Default is warn.

ALLOWING WRAPPING DURING SEARCHES ws

The wrapscan (ws) option allows a search for astring to wrap from the
end of the editing buffer to the beginning, rat her than stop at the end. The
Default is ws.

ALLOWING ANY WRITE wa
The writeany (wa) option allows you to write to any file allowed by UNIX
file access permissions, inhibiting the checks usually made before executing
a write command. The Default is nowa.

D.2 Numbered options

These options are set to numerical values, using an equal sign to indicate
the assignment.

HARDWARE TAB STOPS ht
The hardtabs (ht) option indicate the spacing between terminal hardware
tab stops. The Default is ht=8.

REPORT ON COMMANDS report

The report option indicates the number of repetitions of a command needed
to cause a message to be displayed on the screen. For commands that may
have extensive consequences (global commands and the undo command),
the message is saved until completion of execution. The Default is report=5.

Appendix D. Summary of vi Options 651

LINES TO BE SCROLLED seroll

The seroll option indicates the number of logicallines to be scrolled dur­
ing execution of scroll down (C CTRL-D ») and scroll up (C CTRL-U»). The
Default is seroll=1/2 window.

SOFTWARE TAB STOPS sw
The shiftwidth (sw) option indicates the number of spaces between soft­
ware tab stops, which is used by the shift commands, autoindent, and
C CTRL-D) for indenting text and moving back to previous indentations.
The Default is sw=8.

EDITOR TAB STOPS ts

The tabstops (ts) option indicates the amount of space between tab stops
when a file is displayed on the screen. The Default is ts=8.

TAG LENGTH tl

The taglength (tl) option indicates how many characters in a tag name
are significant. A value of zero (0) means that all characters in the name
are significant. The Default is tl=O.

WINDOW HEIGHT window

The window option indicates the number of lines to be displayed in one
window of text, with the default value based on the transmission speed to
the terminal. The defaults are window=8 (up to 600 bit/s), window=16
(1200 bit/s), window=23 (9600 bit/s). The variables w300, w1200, w9600
may be used in place of the numbers 8, 16, and 23.

WRAP MARGIN wm
The wrapmargin (wm) option indicates the margin for automatie word
wrapping to the following line. A value of zero (0) means no margin (and
therefore no wrapping). The Default is wm=O.

D.3 String-valued options

These options are set to string values using an equal sign to indicate the
assignment.

652 String-valued options

DIRECTORY dir
The directory (dir) option names the directory that is to contain the edit­
ing buffer. If this directory is write-protected, vi will exit immediately, since
it won't be able to maintain an editing buffer. The Default is dir:/tmp.

PARAGRAPRS para
The paragraphs (para) option gives the delimiters for the "beginning of
paragraph" (/pg {) and "end of paragraph" (}) commands, using the names
of nroff macros for starting paragraphs. The Default is para:IPLPPPQPP
Llbp.

Note: The default string represents an abbreviation for seven macros­
fOUf ms macros (.lP, .LP, .PP, .QP, and .PP), two mm macros (.P and
.LI), and one nroff macro (.bp).

SECTIONS sections
The sections option gives the delimiters for the "beginning of section" ([[)
and "end of section" (]]) commands, using the names of nroff macros for
starting paragraphs. The Default is sections:SHNHH HU.

Note: The default string represents an abbreviation for fOUf macros-two
ms macros (.SH, and .NH) and two mm macros (.H and .HU).

SRELL sh

The shell (sh) option gives the pathname of the shell to be used whenever
you execute a shell escape command (!) or a shell command. If SHELL
has been assigned a value, then this becomes the default. The Default is
sh:/bin/sh.

TAGS tags
The tags option gives the pathnames of files to be used as tag files by
the tag command. Any time a tag is requested, this tag is searched for
sequentially in the files designated. The Default is tags:/usrllib and the
CUfrent directory.

TERMINAL term
The term option gives the type of the terminal. The Default is term:$TERM
(the value of the shell variable TERM).

Appendix E

Summary of Processing
Commands

E.l Searching with grep

Use grep to search for text in a file (or aseries of files), using a command
line like this:

$ grep {- options} pattern /ile(s)

The pattern can be literal strings, regular expressions, or both.

OPTIONS FOR grep
-b Precede each matched line with a block number
-c Show how many times the string was found, but not the text
-i Ignore case during comparisons
-I Show the name(s) of the file(s) in which the string was found, but

not the text
-n Show line numbers along with the text
-5 Suppress any file error messages that may arise during processing
-v Invert (match those lines in which the string was not found)

ADDITIONAL OPTIONS FOR fgrep
-e string
-1 file
-x

Match astring that begins with a hyphen
Read strings from file
Match only entire lines

ADDITIONAL OPTIONS FOR egrep
-e expr
-1 file

Match an expression that begins with a hyphen
Read expressions from file

Each program can match

19rep
grep

Literal strings only
Patterns (strings and regular expressions)

654 Searching with grep

egrep Compound express ions

E.2 Sorting with sort

U se sort to sort lines of text in a file (or se ries of files), using a command
line like this:

$ Bort [options] [field(s)] file(s)

OPTIONS FOR sort

-b

-n

-M
-r

-f

-d
-j

-u
-m
-e
-t X

-y k
-z n
-0 file

Ignore leading blanks (spaces and tabs) when comparing fields­
useful if items in a field vary in length
Sort a numeric field (allow for optional blanks, minus signs,
zeroes, or decimal points)-this option includes -b automat i­
cally
Sort a field that contains months (JAN, FEB, ... , DEC)

Sort in reverse order (Z-A, z-a, 9-0)

Fold upper case letters onto lower case (for example, treat
CASE, Case, and case as identical when sorting)
Sort in dictionary order
Ignore non-printing characters when sorting
Sort uniquely (if lines are identical, discard all but the first)
Merge several files: the files are already sorted; just merge them
Make sure the input file has already been sorted
Make x (any character) the field separator
Set aside k kilobytes of memory for this sort
Allow no more than n characters per li ne of input
Place the output in file-the same as >file

E.3 Programming with awk

Use awk to program output from an input file (or se ries of files), using a
command li ne like this:

$ awk pattern { action} file(s)

The pattern selects lines to be processed; the action specifies the process­
ing to be performed. Fields in the input file(s) are designated $1, $2, $3,
and so on; while an entire record is designated $0.

Appendix E. Summary of Processing Commands 655

BUILT-IN VARIABLES USED BY awk

Variable Description Default
$1-$n Individual fields None
NF Number of fields in arecord None
FS Input field separator Space or TAB
OFS Output field separator Space

$0 The current record None
NR N umber of the current record None
RS Input record separator Newline
ORS Output record separator Newline

FILENAME Name of the current input file None

PRINTING

You can display or print the output using either the plain print command or
the more sophisticated printf command, which allows custom formatting.

SEARCH PATTERNS

To match lines for processing, you have available pre-processing (BEGIN),
post-processing (END), the standard regular express ions (Appendix A,
"Summary of Basic Commands and Symbols"), arithmetic and relational
operators, ranges, and compound statements. To match an expression with
a particular field, awk uses tilde for match n and exclamation-tilde for
no-match (r).

OPERATORS

+ Add * Multiply
Subtract Divide

% Take remainder

< Less than > Greater than

<= Less than or equal to >= Greater than or equal to
-- Equal to != Not equal to

++ Increment the variable Decrement the variable
+= Add and assign -- Subtract and assign
*= Multipy and assign /= Divide and assign

%= Take remainder and assign

11 OR && AND
NOT

656 Programming with awk

ACTION STATEMENTS

To construct action statements to perform processing, you can use built-in
functions, variables (built-in and user-defined), arrays, and program control
statements.

BUILT-IN FUNCTIONS USED BY awk

length[$i]

split(string,array[, fs])

substr(string,p[,max))

index(STRING,string)

sprintf(format, eXl, eX2, . ..)

sqrt(n)
log(n)
exp(n)
int(n)

DIRECTIVES USED BY awk

Without an argument, returns the length
of the current record; with an argument,
returns the length of the field named as
an argument
Split string string into n fields, place them
in separate array elements array!lj, ar­
ray!2j, ... , array!nj, and return the num­
ber of elements n; if the optional field sep­
arator fs is omitted, then the value of FS
becomes the default.
Returns the number of elements in the
substring of string that begins at posi­
tion p and contains no more than max
characters
Returns the position in STRING where
string begins (or 0 if string doesn 't occur)
Returns the value of the express ions named
in printf format statement format
Returns the square root of n
Returns the natural logarithm of n
Returns the value of e to the power n
Returns the truncated integral value of n

next
continue
break
exit

Proceed to the next record and begin looking for a match
Proceed to the next iteration of the current loop
Exit from the current while or for loop immediately
Proceed as if the last record had just been read

Appendix F

Summary of Formatting
Requests

MM REQUESTS

FORMING PARAGRAPHS

.P 0 Block paragraph

FORMING LISTS

.BL

.OL

.ML mark

.RL

.VLn

.LI

Begin buHet list
Begin dash list
Begin marked list
Begin reference list
Begin variable-item list
Item in the list

DISPLAYING TEXT

.OS

.OSC
Standard display
Centered display

EMPHASIZING TEXT

.I Underlining (italic)

.B Bold

.P 1 Indented paragraph

1
A

.AL a
1

.LE

Begin auto-numbered list

End of list

.OSI

.OSCB

.OE

Indented display
Blocked (centered) display
End of display

.R End of underlining (roman)

.R End of bold (roman)

JUSTIFYING THE RIGHT MARGIN

.SA 1 J ustify .SA 0 Unjustify

658 Appendix F. Summary of Formatting Requests

SKIPPING LINES

.SP n Skip n blank lines

KEEPING LINES TOGETHER

.OS Standard display .OF Floating display

USING FOOTNOTES

.FS Start of footnote .FE End of footnote
\ *F Use auto-numbering

U SING HEADINGS

.HU Unnumbered heading .H n Numbered heading, level n

TABLE OF CONTENTS

.TC Produce a table of contents (placed after all text)

PAGE LAYOUT

.NO Change the date

.PH "'Ieft'center'right'"

.EH "'Ieft'center'right'"

.OH '"Ieft'center'right'''

.PF "'Ieft'center'right'"

.EF "'Ieft'center'right'"

.OF "'Ieft'center'right'"

.SK Skip a page

.OP Skip to an odd page

THE mm COMMAND LINE

\ \ \ \ *(OT (date)
\ \ \ \nP (page number)

{
for all pages

Change the he ader for even pages
for odd pages

{
for all pages

Change the footer for even pages
for odd pages

$ nun [- options] file{s} [I pg } [I ~p }

Appendix F. Summary of Formatting Requests 659

-E Equal spacing
-t Include tables
-e Include equations
-c Filter columns

NROFF AND TROFF REQUESTS

PAGE ADJUSTMENT

.pl

.11

.pn

.bp

Page length
Line length
Page number
Page break

DISPLAYING LINES

.fi

.ad

.hy n

.br

.ce

TUrn on filling
Adjust text
Hyphenation
Break to a new page
Center a li ne

DISPLAYING CHARACTERS

.ul Underline

% Page number

COLUMN FORMAT

Setup
.1C Single column
.2C Double column

FORMATTING TABLES

Setup
.TS [Start of table]

-12 Pica output
-y No compact files
-Tname Name the printer

.po

.in n

.ti n

.ne

.nf

.na

.nh

.Is n

.ce n

Page offset
Indent n characters
Temporary indentation
N eed vertical space

Turn off filling
No adjustment
No hyphenation
Line spacing n
Center next n lines

.cu Continuous underline
\u Superscript
\d Subscript

Execution
$ mm -c -Tlp file I lp
$ nroff -cm -Tlp file I col I lp

Execution

660 Appendix F. Summary of Formatting Requests

over-all;
heading format
body format.
headings
Body of table

$ mm -t -c -Tlp I lp

$ tbl file I nroff -cm I col I lp

• TE [End of table]

FORMATTING EQUATIONS

Setup Execution
.EQ [Start of equation] $ mm -e -c -Tlp I lp
statements
.EN [End of equation]

$ neqn lusrlpubleqnchar file I lp
$ nroff -cm I col I Ip

WRITING MACROS

· de name Start of macro definition for name (one or two characters)
statements

End of macro

· name Execute macro name
· wh n mm Activate macro mm at page location n

TROFF REQUESTS

.ps n

\f n
.vs n
. ss n
.es fn

.ft n

\f n
.fp nf

Change the point size

Change the vertical spacing

Change the word spacing
Change to constant character spacing
Select a font

Change font positions

. tl '1' C' R' Print title line using left, center, and right positions

Appendix G

Summary of Formatting
Options

G.I Modifying mm

PAGE LAYOUT AND GENERAL SETTINGS

Number Registers

L Length of page 66 (66 lines)
W Width of page 6i (Six inches)
0 Offset of page . 7 Si (3/4 inch)

N Numbering style 0
P Page number manager 0
T Type of nroff device 0

Strings
OT Today's date mm dd, yy format
EM Ern dash
Tm Trademark symbol TM (superscript)

Grave accent Cedilla
Acute accent Umlaut over upper case
Circumfiex accent Umlaut over lower case
Tilde

662 Modifying mm

PARAGRAPHS

N umber registers

Pt Paragraph type
Ps Paragraph spacing
Pi Paragraph indentation

Np Numbering of paragraphs
Hy Hyphenation

LISTS

Number registers
Ls List spacing
Li List indentation

Strings
BU BuHet

DISPLAYS

Number registers
Os Display spacing
Si Standard indentation

FLOATING DISPLAYS

Number registers

o (Left-justified), 1 (Indented)
1 (Single-spacing)
5 (Five spaces)

o (No numbering)
o (Thrn off hyphenation)

6 (Spacing at aHlevels)
6 (Six spaces from the margin)

~ (Plus sign over lower ca se 0)

1 (One line before and after)
5 (Five spaces from the margin)

o (Move to end of section or document)
1 (Current page if possible, or 0)
2 (Only one display to top of page)

Of Display format 3 (One display on current page if
possible; otherwise, move to the
top of the next page)
4 (As many displays as space permits
at the top of the next page)

Appendix G. Summary of Formatting Options 663

Oe Display eject

FOOTNOTES

N umber register

5 (Current page if possible; other­
wise, as many displays as space
permits at top of next page)

o (No action)
1 (Eject a page automatically)

Fs Footnote spacing 1 (One line before and after)

String
F Footnote numberer (Superscript)

HEADINGS

Number registers
Hu Heading level (.HU only)
Ht Heading type (.H only)
U Underlining style
H1-7 Heading counters

Hs
Hi
Hb
He

Ej

Heading spacing level
Heading temporary indentation
Heading break level
Heading centering level

Page eject for headings

Strings
HF Heading font list

TABLE OF CONTENTS

Options for request

2 (Level 2 by default)
o (Numbers concatenated)
o (Continuous underlining)
o (Start at zero)

2 (Double after level 1 or 2)
1 (Indent as a paragraph)

o (No centered headings)

o (None), 1 (Before level 1)

3 3 2 2 2 2 2 (Levels 1 and 2 bold,
levels 3-7 underlined)

.TC [si] [sp] [tl] [tb] 1 1 2 0 (See lines following)
Precede each heading of level si or higher with sp blank lines;
right-justify the page number of each heading of level tl or higher,

664 Modifying mm

preceding the page number with either dots (D) or spaces (1)

Number Registers

CI Contents level
Oe Page-numbering style
Lf Include a list of figures
Lt Include a list of tables
Lx Include a list of exhibits
Le Include a list 01' equations

Strings
Ci Indent list

Lf Title for list of figures
Lt Title for list of tables
Lx Title for list of exhibits
Le Title for list of equations

2 (Include all level 1 and 2)
D (Lower case Roman numerals)
1 (Yes), 0 (No)
1 (Yes) , 0 (No)
1 (Yes), 0 (No)
D (No), 1 (Yes)

Dm Dm Dm Dm Dm Dm Dm
(no indentation)
LIST OF FIGURES
LIST OF TABLES
LIST OF EXHIBITS
LIST OF EQUATIONS

FIGURES, TABLES, AND EQUATIONS

Number registers

Of Figure caption style
Fg Figure counter (.FG)
Cp Placement of list of figures

Tb Table counter (. TB)

Ee Equation counter (.EC)
Eq Equation label placement

G.2 Modifying nraff

GENERAL NUMBER REGISTERS

% Current page number

D (Period separates description)
D (Start at zero)
1 (Separate page)

D (Start at zero)

D (Start at zero)
D (Right adjusted)

e. Current line number (same as .e)
hp Current horizontal position on current line
In Output line number

Appendix G. Summary of Formatting Options 665

nl Vertical position on most recent output line

dw Current day of the week (1-7)
dy Current day of the month (1-31)
mo Current month (1-12)
yr Last two digits of current year (00-99)

READ-ONLY NUMBER REGISTERS

.F Name of current input file

.e Current line number in the input file

.H Horizontal resolution in basic units

.V Vertical resolution in basic units

.P 0 if the current page has not been selected to be printed (-0)
1 if the current page has been selected to be printed (-0 option)

.T 0 if the -T option is not in effect
1 if the -T option is in effect

.p Current page length

.0 Current page offset

.I Current line length

.i Current indentation

.h High-water mark on the current page

.U 0 in no-fill mode (.nf)
1 in fill mode (.fi)

.j Current adjustment mode and type (.ad)

.n Length of text in the previous output line

.k Length of text in the current output line

.v Current verticalline spacing

.L Current line spacing (.Is)

Appendix H

Summary of the Bourne Shell

H.l Shell variables

These variables may be set in the login file (.profile):

Bourne and C shells
HOME Login directory

Bourne shell only
PS1 Primary prompt

MAlL Mai! file PS2 Secondary prompt
PATH Command file search IFS Internal file separator

path
TERM Terminal type TZ Time zone

LOGNAME Login name

H.2 Standard input, output, and diagnostics

Standard input
Standard output

File descriptor 0
File descriptor 1
File descriptor 2

From terminal
To terminal
To terminal Standard diagnostic output

< Redirect command input
> Redirect command output
> > Append to an output file

H.3 Background commands

&
ps
nice
kill nnnn
shl

Run a process in the background
Monitor the status of background processes
Change the priority of a process
Terminate background process number nnnn
Begin a session with the shell layer manager

H.4 Connecting processes

pi I p2 Pipeline: Connect pi to p2 with a pipeline

668 Connecting processes

p1 1 tee file Tee: View the output of p1 as it is being written to
file

H.5 Giving directives to the she11

COMMAND GROUPING

(p1 p2)
{p1 p2}
p1 ;p2;p3

Create a subshell to read commands p1 and p2
Cause the shell to read commands p1 and p2
Command list with three commands

CONDITIONAL EXECUTION

p1 11 p2
p1 && p2

OR-IF: Invoke command p2 only if p1 fails
AND-IF: Invoke p2 only if p1 succeeds

PATTERN MATCHING

*
?
[]

Match any string of any length
Match any single character
Match any of the characters enclosed

R.6 8he11 proced ures

PRELIMINARY COMMANDS

echo Display text at the standard output (terminal screen)
read Receive text from the standard input (terminal keyboard)

SRELL VARIABLES

$ var=string
$ echo $var , ,

" "

eval
{$var}S

Assign string to the variable var
Display the contents of the variable
Use single quotes for astring that contains spaces
Use double quotes for astring that also contains spe­
cial characters whose meanings need to be retained
Evaluate a command string
Distinguish variable var from the surrounding text

COMMAND SUBSTITUTION

$ files= 'ls' Assign the result of the Is command to files

Appendix H. Summary af the Baume Shell 669

$ y= 'expr $x + 5 Evaluate the arithmetic expression and assign
the result to y

CONDITIONAL SUBSTITUTION

${ var-sub} If var has a value, use it; if not, use sub and leave var
unassigned

${var=sub} If var has a value, use it; if not, assign the value of sub
to var

${var?sub}
If var has a value, use it; if not, display the message
var:sub and abort the process

${var+sub} If var has a value, use the value of sub instead; if not,
use a null string and leave var unassigned

POSITIONAL PARAMETERS

$0 Command
$1 First argument

RESERVED SHELL VARIABLES

$2 Second argument
$3 Third argument

N umber of arguments in a command line
?

Return code for the command
$ PID of the current process

PID of the most recent background process
Status of shell fiags

H.7 Constructing loops

Looping While True
while command list
do [Execute commands

between do and donel
done
Nesting Loops

while command list
do [Execute commands

between do and donel
until command list
do [execute commands

between do and donel
done

Looping While False
untll command list
do [Execute commands

between do and donel
done
Looping on a Variable

for variable in list
do [Execute commands

between do and done
done

670 Constructing loops

done

LOOPING STATEMENTS

break
continue
exit

Exit from a loop
Resurne execution at the start of the nearest loop
Exit from the shell procedure

H.8 The conditional statement

if expression if expression
then command list

fi
then command list

else command list
fi

elif = else if

TESTING FILES, STRINGS, AND QUANTITIES

TESTING FILES

[-r file}
[-w file}
[-f file}
[-d file}
[-s file}

[File exists and can be read]
[File exists and can be written to]
[File exists and is not a directory]
[File exists and is a directory]
[File is not empty-its size is non-zero]

COMPARING QUANTITIES

[A -eq B] [Is A equal to B?] [A = B?]
[A -ne B] [Is A not equal to B?] [A i- B?]
[A -ge B] [Is A greater than or equal to B?] [A ~ B?]
[A -Ie B] [Is A less than or equal to B?] [A ::; B?]
[A -gt B] [Is A greater than B?] [A > B?]
[A -It B] [Is A less than B?] [A < B?]

COMPARING STRINGS

[-n string]
[-z string]
[strl = str2]
[str 1 != str2]

[The string exists]
[The string doesn't exist]
[The two strings are the same]
[The two strings are not the same]

test
[]

Appendix H. Summary of the Boume Shell 671

COMPOUND TESTING

NOT -0 OR -8 AND

H.9 Other shell programming techniques

MULTIPLE BRANCHING

ease string in
51) command list ;;
52) command list ;;

5n) command list ;;
esae

INTERRUPT- HANDLING

Signal 1: Hangup
Signal 2: Quit signal trap' command list' signals
Signal 3: Interrupt
Signal 15: Software termination

DEBUGGING A SHELL PROCEDURE

$ sh -x file [Execution option: display commands]
$ sh -v file [Verbose option: display input lines]

Appendix I

Summary of the C Shell

1.1 1nitialization files

A SAMPLE LOGIN FILE ./ogin

stty Set up your terminal (tty)
Set up your command search path set path

setenvTERM
echo

Select a terminal name from those already described
Select an opening display

TRE SRELL READ COMMAND FILE

set prompt
set history
alias

Set your prompt
Set the number of events to be saved
Set an alias

1.2 Reinvoking previous commands

!! Reinvoke the most recent event
!17 Reinvoke event number 1 7

!-4 Reinvoke the fourth event back from the current event
IIs Reinvoke the event that begins with Is
!?s

.cshrc

Reinvoke the event that contains s (anywhere in the line)

1.3 Selecting individual arguments

!18:4
!18:A

!18:$
!18:2-5
!18:*

Select the fourth argument of event 18
Select the first argument of event 18 (also !18A

)

Select the last argument of event 18 (also !18$)
Select arguments 2, 3, 4, and 5 of event 18
Select all arguments of event 18 (also !18*)

674 Selecting individual arguments

1.4 Modifying a command line

!!:s/wlW
!!:&

Replace w with W in the previous event

!!:h
Repeat the previous substitution in the previous event
Remove the last name from a pathname in the previous
event

!!:t
!!:r
!!:p
!!:q

Remove the prefix from a pathname in the previous event
Remove the suffix from a pathname in the previous event
Preview the previous event
Protect the previous event from further modification

1.5 Assigning an alias to a command string

alias d pwd
d

Use d as an abbreviation (alias) for pwd
Invoke d

unalias d
eh chapter10
cdl /etc/termcap

Remove d as an abbreviation (alias)
Invoke eh with areal-time selection
Invoke cdl as a multiple-command alias

1.6 The logout file

STANDARD LOGOUT

% "0 [Press (CTRL-D)]

EXPLICIT LOGOUT

set ignoreeof

% logout
(placed in .Iogin)

I. 7 Assigning string values

% set VAR = value

% echo $VAR

% set

% echo $path
/usr/peter/bin /bin
% echo $path[2]

/bin
% set array = (" ")
% set array[2] = two

% echo $?array

Assign value to variable VAR
Retrieve the value of VAR
Display all declared variables and their
values

/usr/clan/bin
Display the second argument of path

Declare array with two elements

Assign the second element
Test whether array has been declared

1

% echo $#array

2

Appendix 1. Summary of the C Shell 675

[True: array declared]

Display the number of elements of array

1.8 Manipulating variables that contain numeric
values

<
>

% @ val = 5

% echo $val

5
% @

Assign 5 to the variable val
Display the value of val

Display all numerie variables and their assigned values

+ Add
Subtraet

* Multiply
Divide % Remainder

%

%

%

%

%

%

%

@ y++ Inerement Y by one
@ X+=5 Inerement X by five

@ y-- Deerement Y by one
@ X-=3 Decrement X by three

@ X =- $X Assign the one's eomplement of X to X

@ M = 9; @ N= 10 Assign 9 to M and 10 to N

@ T =($M < $N) Test whether M is less than N

Less than
Greater than

<= Less than or equal to
>= Greater than or equal to !=

Equal to
Not equal to

676 Manipulating variables that contain numeric values

1.9 Variables reserved by the C shell

Description Name Type
Argument N umber n $argv[n] String or numeric
Number of Arguments $#argv Numeric
Search Path $cdpath String
Child Process Number $child Numeric
Echo a Command $echo True or false
Length of History List $history Numeric
Horne Directory $home String
Ignore End-of-File $ignoreeof True or false
Prevent Overwriting $noclobber True or false
Remove Special Meaning $noglob True or false

Automatically
Remove Special Meaning If There $nonomatch True or false

Is No Match
Search Path $path String
Prompt Symbol $prompt String
Pathname of the Shell $shell String
Exit Status of Last Command $status True or false
Time to Execute a Command $time String
Terminal Type $TERM String
Process Identification Number $$ Numeric
Complete Messages $verbose True or false

You can set some of these variables in your .cshrc file, which is executed
each time you log on and each time a new process is created.

1.10 File-checking

The C shell uses the following expressions in if, foreach, and while state­
ments the way the Boume shell uses test to performs similar tests:

-e file
-z file
-f file
-d file
-0 file
-r file
-w file
-x file

True if the file exists
True if the size of the file is zero
True if the file is an ordinary file
True if the file is a directory
True if the user owns the file
True if the file is readable
True if the file is writable
True if the file is executable

Appendix I. Summary of the C Shell 677

1.11 Forming conditional statements

if ... then
if ... then ... else
if ... then ... else .. . else if

1.12 Forming loops

goto label Branch to the line labeled label

foreaeh variable (wordlist)
command(s)

end

while (expression)
command(s)

end

break
eontinue
exit

Exit from a loop

Continue execution at the start of the nearest loop
Exit from the shell procedure

1.13 Other programming techniques

swlteh (string)
ease patternl:

command(s)
breaksw
ease pattern2 :

command(s)
breaksw
default:

command(s)
breaksw
endsw

shift

onlntr label

[optional]

Shift all arguments to the left one position

Branch to the line labeled label if an interrupt occurs

1.14 Built-in commands

Built-in commands are commands whose code is part of the C shell. When
a built-in command is invoked, the C shell doesn't need to use au command

678 Built-in commands

search path to locate this command, since the command isn't in aseparate
file. The C shell gives contral to an invoked built-in command without
creating a new pracess. The following is a list of built-in commands. Most
of them are explained in greater detail in Chapters 25-27.

@ cd (chdir) end goto set time
alias continue endsw history setenv unalias
break default exec if shift unset
breaksw echo exit login source while
case else foreach logout switch

Appendix J

Summary of System
Administration

J .1 Basic commands and files

lete
reet
su
lete/metd
letelnews
wall

Directory for administrative commands and files
Login name from outside of UNIX
Login name from inside UNIX
File for the message of the day
File for news items
Command to write directly to all users

J . 2 File systems

Contents of the super block:
1. Size of the file system in blocks
2. The name of the file system
3. The name of the volume
4. The time of the last update
5. The time of the last back-up
6. The number of blocks used for i-nodes
7. A list of free i-nodes
8. A list of free data blocks

680 File systems

/etc/f5ck

Contents of each i-node:
1. The size of the file in blocks
2. The owner ID (UID)
3. The group ID (GID)
4. Perm iss ions allowed
5. The time of creation
6. The time of last access
7. The time of last modification
8. The number of links to the file
9. Direct pointers to the file's actual

data blocks
10. Indirect pointers (if required) to

indirect blocks

Pro gram to find and correct errors

J.3 Devices

/dev
15

mknod

The directory that contains special (device) files
Command to list the contents of a directory

-a Show all entries
-i Display i-numbers
-5 Display sizes in blocks

File types:

Ordinary b
d Directory c

Block special p fifo (named pipe)
Character special

Command to create a device file in /dev

mknod file name file type major device number minor device number

mkf5 Command to create a file system

mkfs file name number of blocks[:number of i-nodes}

labelit Command to create a label for a file system

labelit file system name file system identifier volume identifier

Appendix J. Summary of System Administration 681

mount Command to mount a file system

mount device name file system name

umount Command to unmount a file system

umount device name

tar Command to copy files to and from tape (or disk)

$ tar crutx[fbvlmwO-7] [file(s)]

C Create t
r Write X

U Update f

Contents
Extract
File

b
V

I

Block m
Verbose w
Links 0-7

Modification
Confirm
Override drive number

cpio Command to copy files to and from tape (or disk)

cpio -o[crtvuamBdf] Copyout
cpio -i[crtvuamB] patterns Copy in
cpio -p[crtvuamdl] directory Pass

C Compatible V Verbose
r Rename u U nconditional
t Contents a Access time
m Modification time
B Block I Link
d Directory f Reverse

J.4 Disk maintenance

df Command to display the number of free blocks available

Display the nu mb er of free i-nodes

Display also the number of allocated blocks

Dislay also the nu mb er of free blocks

du Command to display the number of blocks used by files

Summary report: total number of blocks used only

name(s)All report: blocks used by ordinary files also

Error report: blocks used and troublesome files

682 Disk maintenance

find Command for finding files and taking action

+--- the name of the command
+--- which files to select
I

$ find path(s) criteria action(s)

Criteria:

-name file

f
d

-type b
c
P

-user name
-group name

-perm pppp
-newer file

I
I
+---

+--- what to do with the file(s)
the directory (or directories) to be searched

Find file (s) named file

ordinary file
directory

Find file (s) of type block device
character device
named pipe

Find by user name

Find by group name
Find by permission code pppp
Find file (s) modified more recently than file file

{+b} {more than b blOCkS}
-size _bb Find file(s) with exactly b blocks

fewer than b blocks

{+l} {more than llinkS}
-links _ll Find file(s) with exactly llinks

fewer than llinks

{ :~!:e} {~dl {Created } {more than d days ago}
-atime -d$nd file(s) modified exactly d days aga

accessed fewer than d days aga
Logical constructions:

Grouping:
AND:
OR:
NOT:

(option-l option-2) option-3 (1 and 2 before 3)
option-l option-2 option-3 (as in the examples above)
option-l -0 option-2 option-3 (1 or 2)
option-l option-2 \! option-3 (not 3)
\! (option-l option-2) option-3 (not 1 and 2)

Action statements:

-print Display names
-exec command Execute unconditionally

-ok command
-depth
-cpio device
update
cron

Appendix J. Summary of System Administration 683

Execute with confirmation
Used before -cpio, include directory entries
Copy to device using cpio format.
Daemon to update the disk every thirty seconds
Daemon to perform tasks automatically on a timer
Fields: minute, hour, day, month, day of week, com­
mand line.

J.5 Startup and shutdown

fete/re

/ete/inittab
/ete/gettydefs
/ete/passwd
/ete/profile
.profile
.eshre
.Iogin
/ete/shutdown

System initialization script carries out three steps:

1. Mounts devices (mount)

2. Performs disk maintenance (fsck)

3. Starts deamons (update, cron)

Processes to be run at each run level
Information about each terminal
Information about each user
Initialization script for all users (Bourne shell)
Initialization script for one user (Bourne shell)
Initialization script for one user (C shell)
Initialization script for one user (C shell)
System shutdown script carries out five steps:

1. Warns users (wall)

2. Kills all processes (killall)

3. Concludes disk activity (sync)

4. Unmounts devices (umount)

5. Returns the system to single-user mode (init s)

J . 6 Terminals and printers

stty

/ete/termeap
/usr/lib/terminfo/* /*

Command to set terminal operation (too many
options)
File that contains terminal descriptions
Terminal descriptions (System V, Release 2)

684 Terminals and printers

tabs

Ipsehed
Ipshut
aeeept ppp
rejeet ppp

Ipmove ppp qqq

enable ppp
disable ppp

Ipadmin

Command to set tab stops:

-a IBM 8/370 assembler
-a2 IBM 8/370 assembler (second

format)
-e COBOL normal
-e2 COBOL compact
-e3 COBOL expanded compact
-f FORTRAN
-p PL/I
-s 8NOBOL
-u UNIVAC
-n Every nth column, starting at 1

/usr/lib

8tart the printing scheduler (usually placed in /ete/re)
Stop the sched uler (usually placed in /ete/shutdown)
Allow Ip to accept printing requests to printer ppp
Prevent Ip from accepting printing requests to printer
ppp
Reroute printing requests from printer ppp to printer
qqq
Allow the scheduler to rout requests to printer ppp
Prevent the scheduler from routing requests to printer
ppp
Configure the Ip spooling system; the scheduler must
be idle; details in the following:

-m model
Ipadmin -p printer -v device -e printer

-i progmm

Variable
ADMIN
GROUP
ADMDIR
USRDIR
SPOOL

Function Default Value
Ip Login name of the Ip administrator

Group that owns the Ip commands and data
Directüry für the administratür's cümmands
Directüry for user commands
Directüry für printer spoüling

bin
/usr/lib
/usr/bin
/usr/spool/lp

Appendix J. Summary of System Administration 685

J.7 System security

letc/passwd

letc/group

chmod

File that contains the following information ab out users:

1. Identifier 5. Comments
2. Encrypted password 6. Horne directory
3. Numerical user identifier 7. Login program
4. Numerical group identifier

File that contains the following information ab out groups:

1. Name of the group
2. Encrypted password
3. Numerical group identifier
4. Members of the group

Command for granting permissions for files, with per­
missions in either numeric or symbolic form:

4000
2000
1000

Set user ID (UID) on execution
Set group ID (GID) on execution
Set the sticky bit (super-user)

u+s
g+S
u+t

0400 Allow read by owner

0200 Allow write by owner

u+r 0040 by group g+r

u+w 0020 by group g+w

0004 by others o+r

0002 by others o+w

0001 by others o+x 0100 Allow execute* by owner u+x 0010 by group g+x

* Execute a file or search a directory

Symbolic command li ne

umask Command for setting default permissions:

0400
0200
0100

Deny read by owner
Deny write by owner
Deny execute by owner

0040
0020
0010

by group
by group
by group

0004
0002
0001

by others
by others
by others

686 System security

J.8 System accounting

acctcom
startup
runacct
dodisk
ckpacct

monacct
shutacct
timex
sar
sag
sadp

Command to check system activity with eight fields
Command to start process accounting
Command to produce command and usage summaries
Command to produce usage files for runacct
Command to keep the accounting file from becoming over­
grown
Command to generate a monthly summary
Command to shut down process accounting
Command to time a command and report on the system
Command to report on the system in tabular format
Command to report on the system in graphical format
Command to check disk activity every second

[
-P X]

timex =~ command

[N umber of characters and blocks transferredJ
[Show process activity-see sub options belowJ
[Show all system activity during executionJ

Process activity can be displayed using the following parameters:

-pr Display user time divided by (system time + user time)
-pt Separate user time from system CPU time
-ph Display CPU time divided by elapsed time
-pm Display mean core size
-pk Display Kcore-minutes
-pt Display the fork/exec Hag and exit status of the command

-A
-8

-b
-c
-d

$ sar -m
-q
-u
-v
-w
-y

[All system activity]
[File access]

[Buffers]

[System calls]

[Block devices]
{-o file] t {n] [Messages and semaphores]

[Queues]

[CPU usage-the default]

[Text, processes, i-nodes, and files]

[Swapping and switching]

[Terminal devices]

t the length of each sampIe in seconds
n the number of sampIes to take (default: 1)

$ sadp [=~] {-d device {- drive]] s {n]

Appendix J. Summary of System Administration 687

The options are as follows:

-t Use tabular format-the defauit
-h Use histogram format
-d Device (and optional drive number)
s Length of each sam pIe in seconds
n Number of times to repeat sampling

Appendix K

N etwork Administration

Here is a list of administrative commands and files that relate to commu­
nication and resource sharing.

K.l Communication before Release 3

/usr/bin
/usr/lib/uucp

/usr/lib/uucp/L -devices

/usr/bin/uucp
/usr/bin/uux

/usr/bin/uustat
/usr/bin/uuname

/usr/bin/uulog
/usr/lib/uucp/uucico
/usr/lib/uucp/uuxqt

/usr/lib/uucp/uuclean
/usr/lib/uucp/uusub

/etc/passwd
/usr/lib/uucp/L.sys

/usr/lib/uucp/L -dialcodes

/usr/spool/uucp/LCK*
/usr/spoolluucp/LOGFILE
/usr/spool/uucp/SYSLOG

Directory for uucp's operational commands
Directory for maintenance commands and
daemons
Directory for identifying other systems:

type line call-unit speed [protocol]

Command for requesting a file transfer
Command for requesting remote command
execution
Command for checking network status
Command for listing the names of other
systems
Command for printing a history log
Daemon that calls other systems
Daemon that executes remote UNIX com­
mands
Command for cleaning the spool directory
Command for creating and monitoring net­
works
File for identifying your system to others
File for identifying other systems to yours:

name time device speed phone login

File for storing phone abbreviations for
L.sys
Directory of lock files (requests that failed)
Directory of log files (all transactions)
Directory of system log files

690 Communication before Release 3

/usr/spool/uucp/ERRLOG
/usr/lib/uucp/USERFILE

Directory of error log files
File for controlling user access:

10gin,system [cl path [path]

/usr/lib/uucp/ORIGFILE File for restricting forwarding of files:

system[userl[,user2[, ...]]]

/usr/lib/uucp/FWDFILE File for restricting forwarding of files:

-s s
-1 I
-h
-t

$ cu -d

-e

-0

-m
-n

-d
-f

-c

-C
$ UUCp -m

-n

-e
-r

-j

system [userl [, user2 [, ...]]]

[Transmission speed s; default: 300]

[Line l; default in /usr/lib/uucp/L-devices]

[Emulate local echo for half-duplex]

[Auto-answer ASCII terminal; CR ----> CR LF]

phone I name I dir [Print diagnostic traces]

[Generate even parity]

[Generate odd parity]

source dest.

[Direct Jine with modem control]

[Manual diaJing]

[Create any directories required (default)]

[Do not create intermediate directories]
[U se the source file directly (default)]

[First copy the file to the spool directory]
[Mail to requester upon completion]

[Notify the user named on the other system]
[Execute uucp on the system named]
[Queue the job, but don't transfer files]

[Control writing of the uucp job number]

Notes: -m may be followed by a filename (-mjile); -n must be followed
by a user identifier (-nuser); -e must be followed by the name of a system
(-esystem).

$ uwc -m
-n
-j

[Use standard input to uux for command(s)]
I command(s) [Mail to requester upon completion]

[Do not notify the requester]

[Control writing of the uucp job number]

Note: -m may be fOllowed by a filename (-mjile).

$ uustat

Code
000001
000002
000004
000010
000020
000040
000100
000200
000400
001000
002000
004000
010000
020000

-u u
-8 S

-0 h
-y h
-c h
-m m

-M m

-j j
-k j
-r j

-q

-0

Appendix K. Network Administration 691

[Report the status on requests from user u]

[Report the status on requests from system s]

[Report the status on requests older than h hours]

[Report the status on requests younger than h hours]

[Remove status entries older than h hours-uucp or root]

[Report on accessibility of machine m (all for all)]

[Same as m, but give time of last status and transfer]

[Report the status of request j (all for all)]

[Kill request j, which must be owned by requester]

[Rejuvenate request j to avoid deletion by uuclean]

[List number of jobs and files queued for each machine, time]
of youngest and oldest file, date of any lock file

[Report status using codes, as listed here]

Meaning
Copying failed, reason unknown
Permission to aeeess loeal file denied
Permission to aeeess remote file denied
The uucp eommand is ineorreet
Remote system is unable to ereate a temporary file
Unable to eopy to remote direetory
Unable to eopy to loeal direetory
Loeal system is unable to ereate a temporary file
Cannot exeeute uucp
Copy sueceeded partially
Copy completed, job deleted
Job is queued
Job has been killed (ineomplete)
Job has been killed (complete)

-a s [Add system s to the network]
-d s [Delete system s from the network]

- c s [Exercise connection to system s (all for all)]
$ uusub -1

-f
[Report statistics on connections]

[Flush statistics on connections]

[Report statistics on amount of trafIic] -r

-u h
[Collect statistics on trafIic for the past h hours]

K.2 Communication after Release 3

/usr/bin Directory for uucp's operational eommands

692 Communication after Release 3

/usr/lib/uucp

/usr/lib/uucp/Devices

/usr/bin/cu
/usr/bin/ctcp
/usr/bin/uucp
/usr/bin/uuto
/usr/bin/uupick

/usr/bin/uux

/usr/bin/uustat
/usr/bin/uuname

/usr/bin/uulog
/usr/lib/uucp/uucico
/usr/lib/uucp/Uuxqt

/usr/lib/uucp/uusched
/usr/lib/uucp/uucleanup
/usr/lib/uucp/Uutry
/usr/lib/uucp/uucheck
/usr/spool/C.sysnxxxx
/usr/spool/X.sysnxxxx
/usr/spool/D. sysnxxxxyyy

/usr/spool/LCK. name
/usr/spool/TM.pid. ddd
/etc/passwd
/usr/lib/uucp/Dialers

/usr/lib/uucp/Systems

Directory for maintenance commands and
daemons
Directory for identifying other systems:

Type Line Line2 Class Dialer, Token ...

Command for calling another UNIX system
Command for calling a terminal
Command for requesting a file transfer
Command for sending files to a spool file
Command for retrieving files from a spool
file
Command for requesting remote command
execution
Command for checking network status
Command for listing the names of other sys­
tems
Command for printing a history log
Daemon that calls other systems
Daemon that executes remote UNIX com­
mands
Daemon that schedules work queued
Command for cleaning the spool directory
Command for testing and debugging
Command for checking directories, programs
Work files
Execute files

Data files
Lock files
Temporary data files
File for identifying your system to others
File for character strings for connections:

dialer substitutions expect-send

File for identifying other systems to yours:

Name Time Type Class Phone Login

/usr/lib/uucp/Dialcodes File for storing phone abbreviations for L.sys
/usr/lib/uucp/uudemon.poll

Shell script for setting up work scheduling
/usr/lib/uucp/uudemon.hour

Shell script for scheduling work files

Appendix K. Network Administration 693

/usr/lib/uucp/uudemon.admin
Shell script for starting uustat -p -q

/usr/lib/uucp/uudemon.cleanup
Shell script for storing log files

/usr/lib/uucp/Permissions

/usr/lib/uucp/Sysfiles
/usr/lib/uucp/Devconfig

File for controlling access to your system
File for identifying alternate files
File for specifying STREAMS modules

REMOTE FILE SHARING

adv [-r]
/etc/rstab

[-d "description"] RESOURCE pathname [client(s)]
File far advertizing automatically:

adv
nsquery
unadv

Display resourees advertised by your host

Display resourees advertised in your domain

U nadvertise a resouree

mount Command for mounting a resource

mount [-r] -d
/etc/fstab

RESOURCE mount'point
File for mounting automatieally:

RESOURCE mount'point -d[r]
mount Display resourees mounted on your host

rmntstat Display resourees mounted in your domain
fuser [-ku] RESOURCE Report proeesses that use a resouree

umount -d RESOURCE Unmount a remote resouree
fumount [-w sec] RESOURCE

Foreibly unmount a remote resouree

/etc/rc1.d {I}
/etc/rc2.d Files for start and stop files for run level 2

3
/etc/rc3.d
/etc/init.d File for initialization she11 seripts
/usr/nserve/domain File with the name of the host's domain
/usr/nserve/netspec File with the name of each host's network
/usr/nserve/rfmaster File with names and addresses of name servers
/usr/nserve/loc.passwd

File with each host's authentication password
rfadmin -a domain.host

Add a host.
rfadmin -r domain.host

Remove a host
rfstart [-v] [-p primary

11 rfstop
rfpasswd

Start up a host
Shut down a host
Change a host's password

694 Communication after Release 3

sar -Oe

sar -Du

sar -S
fusage

df [resouree]

NRDUSER
NRCVD
NSNDD
NSRMOUNT
NADVERTISE

MAXGDP
MINSERVE
MAXSERVE

Monitor ineoming and outgoing requests for re­
sourees
Display the percent of epu time spent on var­
ious activities
Monitor server processes and remote requests
Find out how mueh other hosts are using your
resources
Display remaining disk space on a remote re­
souree
Number of user entries for receive descriptor
Maximum number of receive descriptors
Maximum number of send descriptors
Maximum number of entries in the mount table
Maximum number of entries in the advertise
table
Maximum number of virtual circuits
Minimum number of server proeesses
Maximum number of server proeesses

Files for seeurity (/usr/nserve/auth.info direetory):

domain/passwd Password files for individual domains
domain/host/passwd Password files for individual hosts
domain/host/group Group files for individual hosts
uid.rules Rules for mapping remote users
gid.rules Rules for mapping remote groups

Global block

global These rules apply to all remote hosts
default loeaL id A single loeal user id number

transparent The same id number
exelude

remote.. id A single remote id number
remote.. id-remote.. id A range of remote id numbers

map remote.. id:loeal From remote.. id to loeal

Host bloek

host
default

exelude

These rules apply only to the remote host(s) named:
loeal A single loeal user id name or number
transparent The same id number

remote.. name A single remote id name
remote.. id A single remote id number
remote.. id-remote.. id A range of remote id numbers

map remote:loeal From remote to loeal
remote From remote to the same name or number
all From eaeh remote name to the same name

Appendix K. Network Administration 695

idload
Cümmand für mapping users

idload [on] [-u u 'rules] [-g g 'rules] [directory]

Appendix L

termcap and terminfo

This appendix gives you a summary of the most eommon features that ean
be speeified in an entry in termcap or term info. For eaeh feature, you will
find its termcap name, its terminfo name, and abrief deseription. There are
three types of variables used: numerie (like Iines#24), string-valued (like
clear= AZ), and boolean (like am).

L.1 Terminal features

termcap terminfo Deseription Type
Ii lines N umber of lines per sereen Numerie
co cols Number of eolumns per line Numerie

bs bs Terminal ean baekspaee Boolean
os os Terminal ean overstrike Boolean
am am Terminal has automatie (right) margins Boolean
bw bw Terminal has automatie left margins Boolean

hs hs Terminal has an extra status line Boolean
xo xon Terminal uses XON/XOFF handshaking Boolean
hc hc Hardeopy terminal Boolean

698 Terminal features

L.2 Cursor movement and scrolling

termcap terminfo Description Type

ho home Horne the cursor String
cl clear Clear screen and horne the cursor String
cm cup Cursor motion (cursor addressing) String
cv vpa Vertical position absolute (set row) String
eh hpa Horizontal position absolute (set column) String

up cuu1 Cursor up one li ne String
do cud1 Cursor down one line String
nd cuf1 Cursor right one column String
le cub1 Cursor left one column String

UP cuu Cursor up r lines String
00 cud Cursor down r lines String
RI cuf Cursor right c columns String
LE cub Cursor left c columns String

eh hpa Set cursor column String
ta ht Tab right to the next tab stop String
bt cbt Tab left to the previous tab stop String
er er Carriage return String

sf ind Scroll text up one line String
sr ri Scroll text down one line String

SF indn Scroll text up n lines String
SR rin Scroll text down n lines String

Appendix L. termcap and terminfo 699

L.3 Screen editing

termcap terminfo Description Type

ce el Clear to end of line String
cd ed Clear to end of display String
cl clear Clear entire screen and horne cursor String

ic ich1 Insert one character String
dc deM Delete one character String
al il1 Insert one line String
dl dl1 Delete one line String

IC ich Insert n characters String
OC dch Delete n characters String
AL iI Insert r lines String
OL dl Delete r lines String

ec ech Erase n characters String

im smir Enter insert mode String
ei rmir Exit insert mode String
dm smdc Enter delete mode String
ed rmdc Exit delete mode String

700 Screen editing

L.4 Functions activated by special keys

termcap terminfo Description Type

kh khome Horne key String

ku kcuu1 Up arrow key String
kd kcud1 Down arrow key String
kr kcuf1 Right arrow key String
kl kcub1 Left arrow key String
kb kbs Backspace key String

ke kel Clear to end of line key String
kS ked Clear to end of display key String
kC kcl Clear screen key String

kl kich1 Insert one character key String
kD kdch1 Delete one character key String
kA kil1 Insert one line key String
dK kdl1 Delete one line key String

ks smkx Enter keypad transmit mode String
ke rmkx Exit keypad transmit mode String

kn kfn Function key n String

L.5 Video attributes

termcap terminfo Description Type

md bold Begin bold mode String
mh dim Begin dirn mode String
mb blink Begin blink mode String
so smso Begin standout mode String
us smul Begin underscore mode String
mr rev Begin reverse video mode String
mp prot Begin protected mode String

se rmso End standout mode String
ue rmul End underscore mode String
me sgrO End all attributes String

Appendix L. termcap and terminfo 701

L.6 Control directives

termcap terminfo Description Type

is is Initialization string (for setting options) String
if if Initialization file (for setting tab stops) String

ti ti Terminal initialization (cursor motion) String
te te Terminal end (cursor motion) String

vs vs Visual start (vi) String
ve ve Visual end (vi) String

as as Start alternate character set String
ae ae End alternate character set String

po mc5 Turn on the printer String
pf mc4 Turn off the printer String

tc tc U se another termcap or terminfo definition String

Appendix M

UNIX versus XENIX

M.l Description of XENIX

IMPROVEMENTS

XENIX was developed by Microsoft in the late 1970s and early 1980s to
fill the need for a commercial version of UNIX. (The Santa Cruz Operation
became a major distributor of XENIX in 1983.) Evolving as it did in the
world of academic research, UNIX originally lacked so me of the features
required for use in a business environment. XENIX and System V, Re­
lease 3.0 have added some of these features, along with some other general
improvements.

First, let's consider the improvements. XENIX takes advantage of the
unique features of each of the major microprocessors used in the more recent
microcomputers (the Intel 8086, 8088, and 80386; the Motorola 68000; and
the Zilog Z8000). For example, in the 8086 and 8088, XENIX avails itself of
memory segment at ion, dynamic relocatability of code, separation of data
and instructions, input/output via memory-mapping, and multiprocessing.

On the minicomputers on which UNIX was developed, central process­
ing and memory resources were scarce, while disk input/output was fast.
On today's personal computers, however, the reverse is true, with central
processing and memory abundant and disk input/output relatively slow.
XENIX accommodates these differences by, for example, increasing the
data transfer rate and reducing the amount of swapping of programs to
and from disko

Other improvements include avoidance of bad disk sectors, interactive
system configuration, built-in floating-point arithmetic, logging of device
errors, automatie file system recovery, optimization of the C compiler, and
a number of miscellaneous bug fixes.

ENHANCEMENTS

Next, we'll consider the enhancements, largely to facilitate the implemen­
tat ion of network and database applications. XENIX offers record- and
file-locking. With this feature, a program can gain exclusive access to a
single re cord , a group of records, or an entire file , thereby avoiding the

704 Description of XENIX

errors that can result when more than one program attempts to access and
update the same record at the same time.

To coordinate the activity of different tasks in progress, XENIX provides
semaphores and a message buffer. Semaphores allow two different tasks to
achieve synchronization with simple signals to each other. The message
buffer allows unrelated tasks to communicate with each other.

Other enhancements include scatter-loading (placing segments of a pro­
gram in noncontiguous areas of memory), synchronous writing of records
to disk, and nonblocked reading of records to avoid unnecessary waiting.

M.2 Differences between UNIX and XENIX

To the ordinary user, each version of XENIX is very similar to the corre­
sponding version of UNIX from which it has been derived. For example,
XE NIX System V is very much like UNIX System V. This is because
XENIX V is in fact UNIX System V -with the internal modifications
described above and a number of extra utilities. You will see differences
mainly in the area of system administration, including additional utilities
like the mkuser and rmuser commands of XENIX, which aren't included
in AT&T's System V.

Other features of XENIX worth mentioning are its menu-driven visual
shell (vsh); its custom installation program (custom); its automatie tun­
ing for the current system configuration; its Micnet subsystem for direct
networking (netutil, remote, and rcp); and its support of programmable
key functions (setkey), multiple and color screens (multiscreen and set­
color), various diskette formats, add-on boards for serial ports, laser print­
ers, and cross-development between MS-DOS and XENIX.

COMMANDS UNIQUE TO UNIX

The following System V commands are available in UNIX, but not in
XENIX. The right-hand column indicates the part of this book to which
the command most closely relates. A dash (-) me ans the command relates
to software development, which is not covered in this book.

Command

300/300s
450
arcv
convert
crypt
ct
dis
efl

Description Topic

DASI 300/300s terminal handler VI
DASI 450 terminal handler VI
Convert archive file format VI
Format archive and object files
Encrypt and decrypt standard input to standard output I
Call a terminal and log in VII
Disassembler
Extended FORTRAN language

Appendix M. UNIX versus XENIX 705

fsplit Split f77, efl, or ratfor files into segments
gath Gather files for Remote Job Entry (RJE) VII
greek Set up filtering for an extended character set IV
help Explain a message or a command I
hp HP 2640 and HP 2621 terminal handler VI
hpio Tape file archiver for the HP 2645A terminal VI
login Log into a UNIX system I
makekey Create an encryption key I
manprog Return a date file modified for nroff or troff IV
mvt Typeset a viewgraph IV
nsestat Report the status of an NSC network VII
nsetorje Reroute jobs from the NSC network to RJE VII
nusend Send files to UNIX over an NSC network VII
osdd Print mm documents in OSDD format IV
pee Portable C compiler
pdp11 Return exit status of true for a PDP-11 VI
pg Displayafile by pages I
prof Display profile data VI
rjestat Report RJE status and simulate an IBM remote console VII
sadp Report on disk access VI
sar Report on system activity VI
seat Concatenate and route files to a synchronous printer
sec C compiler to generate stand-alone programs
sdb Symbolic debugger for C and f77
se Screen editor II
send Send files to RJE VII
sno SNOBOL interpreter
stlogin Log into a synchronous terminal I
ststat Display the status of synchronous terminals VI
tabs Set terminal tabs VI
te Simulate a phototypesetter IV
timex Display time and system activity for a command VI
trouble Report trouble VI
u3b Return an exit status of true for a 3B2 processor VI
vax Return an exit status of true for a VAX 11/750 or 11/780 VI
ve Handle UNIX version control VI
vedit Screen editor for beginners II
vpr Route files to a Versatec printer

COMMANDS UNIQUE TO XENIX

The following System V commands are available in XENIX, but not in
UNIX. The right-hand column indicates the part of this book to which the
command most closely relates. A dash (-) means the command relates to
software development, which is not covered in this book.

Command Description Topic

assign Assign a device to a user VI

706 Differences between UNIX and XENIX

asx C compiler assembler for emerge
bateh Run a command when system scheduling permits VI
emehk Show the block size of a hard disk in bytes VI
eref Create a cross reference listing
erontab Copy a file to the crontab directory VI
esh C shell V
etags Create a tags file of functions for a source program
eustom Select XENIX system features VI
eweheek Check constant-width text III
deassign Deassign a device from a user VI
devnm Display device names far a mounted file system VI
dial Dial a modem I
dietion Locate awkward phrases in a file III
diskemp Compare the contents of two diskettes VI
diskep Copy the contents of one diskette to another VI
dmesg Display all system messages since the last boot VI
doseat Copy DOS files to the standard output VI
dosep Copy files from a DOS disk to a XENIX file system VI
dosdir List DOS files using the format of the DOS dir command VI
dosld Cross linker from XE NIX to MS-DOS
dosis List DOS files using the format of the XENIX Is commandVI
dosmkdir Create a directory on a DOS disk VI
dosrm Remove a DOS file VI
dosrmdir Remove a directory from a DOS disk VI
dtype Report on disk type VI
eqneheek Check an eqn input file for syntax IV
explain Suggest better phrases for dietion III
finger Find information ab out system users VI
fixhdr Change headers of binary files
fixperm Set or correct file permissions VI
format Format a diskette VI
gets Get astring from the standard input V
grpeheek Check entries in a group file VI
hd Produce a hexadecimal file dump
hdr Display parts of object files
head Display the opening lines of a file
I Display the contents of a directory in long format (Is -I)
le Display the contents of a directary in columns
look Locate lines of text that begin with astring in a list III
Ipr Send a file to a line printer I
mapsern Display the output mapping of a screen
mapstr Display the mapping of function keys on a keyboard
masm XENIX assembler for the 8086 and the 80286
mkdev Create device files VI
mknod Create special files VI
mkstr Create an error message file from a set of C programs
mkuser Set up a new user account on the XENIX system VI
more Display the contents of a file by screens I
multisereen Access up to ten screens on the console VI

Appendix M. UNIX versus XENIX 707

mvdir Move a directory and its contents VI
netutil Create and maintain a Micnet network VII
prep Break a file into one-word lines I
pstat Display system statistics VI
pwcheck Check the password file for inconsistencies VI
random Generate a random number I
ranllb Create a random library from archive VI
rcp Copy files from one system to another over Micnet VI
red Restricted version of the ed text editor II
remote Execute a command on a machine in XE NIX network VII
restor Restore files from archive VI
restore Restore files from archive VI
rmuser Remove a user from a XENIS system VI
sddate Check the date of the last system backup VI
setcolor Select the screen color for a color monitor VI
setkey Assign function keys VI
settime Change the dates of last file access and modification VI
soelimn Perform .so requests during nroff input IV
stackuse Determine stack requirements for a C program
strings Search binary files for ASCII strings
style Report on writing style IV
tset Set terminal-dependent parameters VI
uuclean Delete old uucp files VII
uusub Define a uucp subnetwork and monitor trafiic VII
vsh Menu-driven visual shell V
whodo Determine what users are doing VI
xref Create a cross reference for C programs
xstr Facilitate shared strings by extracting strings
yes Output repeated strings III

M.3 Features of System V, Release 3

UNIX System V, Release 3 offers features that provide resource-sharing,
standardization in communication, shared libraries, demand paging, and
file- and record-Iocking. The document that describes System V software
interface standards in detail for this version and future versions of UNIX
is AT&T's two-volume System V Interface Definition.1 Here is a summary
of the features of Release 3:

1. Remote File Sharing (RFS) allows users to share resources (files and
devices) over a network. This feature is transparent to the user and
relies on the use of standard UNIX commands. It allows system ad­
ministrators to save disk space and reduce the number of expensive
devices required (tape drives, plotters, laser printers, and so on).

1 System V Interface Definition, [no location given], AT&T, 1986.

708 Features of System V, Release 3

2. STREAMS provides a consistent, uniform character 1/0 interface
based on the ISO / OSI reference model, allowing programmers to de­
velop network interfaces that are independent of media and low-level
protocols.

3. Transport Level Interface and Transport Provider Interface (TLI/TPI)
combine with STREAMS to implement the reference model of the In­
ternational Standards Organization (ISO).

The TLI is accessible from either the kernel or a user process. Kernel
applications and higher level protocols access the TLI via STREAMS
messages; user processes access the TLI via a new Transport Inter­
face Library. The RFS feature operates over TLI directly through
STREAMS; cu and UUcp now operate over the TLI using the new
library. The capabilities that must be furnished by a protocol (trans­
port provider) are specified by the TPI. The TPI also specifies how
to maintain consistency with the new library.

4. Modification ofcu and UUCp to incorporate STREAMS and TLI/TPI
make these programs independent of media and low-level protocols.

5. Shared libraries for active processes reduce disk and memory space
requirements and simplify system administration.

6. Demand-paging (actually from Release 2.1) makes it easier to run
programs that are too large to fit in memory and allows all programs
to run more efficiently.

7. Mandatory and advisory file- and record-locking allow many users to
share and update files freely.

8. ASSIST allows beginners to construct command lines from aseries
of questions on a screen menu.

9. Internationalization paves the way for the introduction of supplemen­
tary character sets in future release of UNIX. This will allow users in
different parts of the world to add national supplements (with mes­
sages, databases, documentation, and device drivers for other lan­
guages and hardware). Eight-bit words will allow all European char­
acter sets; 16-bit words will allow Oriental character sets (Chinese,
Japanese, Korean, and so on).

Appendix N

Character codes

TABLE N.l. U.S. ASCII Character Set

Char dee oet hex ehar dee oet hex ehar dee oet hex eh ar dee oet hex

NUL 0 0000

SOH 1 0011

STX 2

ETX 3

EOT 4

ENQ 5

ACK 6

BEL 7

0022

0033

0044

0055

0066

0077

BS 8 010 8

HT 9 0119

NL 10 012 A

VT 11 013 B

FF 12 014 C

CR 13 015 D

SO 14 016 E

SI 15 017 F

Die 16 02010
DCl 17 02111

DC2 18 02212

DC3 19 02313

DC4 20 02414

NAK 21 02515

SYN 22 02616

ETB 23 02717

CAN 24 03018

EM 25 03119

SUB 26 0321A

ESC 27 0331B

FS 28 0341C

GS 29 0351D

RS 30 0361E

US 31 0371F

[sp] 32 040 20

33 041 21

34 04222

$

%
&

35 04323

36 04424

37 04525

38 04626

39 04727

40 05028

41 051 29

* 42 0522A

+ 43 0532B

44 0542C

45 0552D

46 0562E

/ 47 0572F

o 48 06030
1 49 061 31

2 50 06232

3 51 06333
4 52 06434

5 53 06535
6 54 06636

7 55 06737

8 56 07038

9 57 071 39

58 072 3A

59 0733B

< 60 0743C

61 0753D

> 62 0763E

63 0773F

@ 64 10040

A 65 10141

B

C
D

E

F

G

66 10242

67 10343

68 10444

69 10545

70 10646

71 10747

H 72 11048

73 111 49

J 74 1124A

K 75 1134B

L 76 1144C

M 77 1154D

N 78 1164E

o 79 1174F

P 80 12050

Q 81 12151

R 82 12252

S 83 12353
T 84 12454

U 85 12555

V 86 12656

W 87 12757

X 88 13058

Y 89 13159

Z 90 1325A

[91 1335B

& 92 1345C

] 93 1355D

94 1365E

95 1375F

96 14060

a 97 14161

b

e

d

e

g

98 14262

99 14363

10014464

10114565

10214666

10314767

h 10415068

105 151 69

j 106152 6A

k 107153 6B

1081546C

m 109155 6D

n 110156 6E

o 111 157 6F

p 11216070

q 11316171

11416272
11516373

11616474

u 11716575

v 11816676

w 11916777

x 12017078

Y 12117179

z 1221727 A

1231737B

1241747C

1251757D

1261767E

DEL 127 177 7F

710 The contro! characters

N.1 The control characters

The control characters shown in Table N.l are described in Table N.2. Each
entry gives one character (abbreviation and fuH name), the keys used to
generate it, and some typical uses for the character in the operation of
a terminal. The names were selected long before computer users adopted
them.

TABLE N.2. The Contra! Characters

Character keys typical use

NUL Null (CTRH) (A@) Occupy space in astring

SOH Start of Header (CTRL-A) (AA) Begin a heading

STX Start of Text (CTRL-B) (AB) Begin text

ETX End of Text (CTRL-c) (AC) End text

EOT End of Transmission (CTRL-D) (AD) End transmission (or UNIX process)

ENQ Enquiry (CTRL-E) (AE) Request information

ACK Acknowledgment (CTRL-F) (AF) Affirmative reply

BEL Bell (CTRL-G) (AG) Sound the beeper (bell)

BS Backspace (CTRL-H) (AH) Move the cursor (or printhead) back

HT Horizontal Tab (CTRL- I) (A I) Advance to a tab stop (TAB) key)

NL Newline* (CTRL-J) (AJ) Begin a new line of text (RETURN) key)

VT Vertical Tab (CTRL-K) (AK) Advance to adesignated line

FF Formfeed (CTRL-L) (AL) Advance to top of page

CR Carriage Return (CTRL-M) (AM) Return to start of line

SO Shift Out (CTRL-N) (AN) Shift out of ASCII codes

SI Shift In (CTRL-O) (AO) Shift back into ASCII codes

DLE Data Link Escape (CTRL-p) (Ap) Begin transmission control sequence

DCI Device Control 1 (CTRL-Q) (AQ) Transmit-ON (XON); resume scrolling

DC2 Device Contral 2 (CTRL-R) (AR) Turn on an unspecified device

DC3 Device Control 3 (CTRL-s) (AS) Transmit-OFF (XOFF); stop scrolling

DC4 Device Control 4 (CTRL-T) (AT) Turn of an unspecified device

NAK Negative Ack. (CTRL-U) (AU) Negative reply

SYN Synchronous Idle (CTRL-v) (AV) Wait for furt her transmission

ETB End of Trans. Block (CTRL-w) (AW) End a block of transmission data

CAN Cancel (CTRL-X) (AX) Ignore data just transmitted

EM End of Medium (CTRL-Y) (AY) End of tape, paper tape, etc.

SUB Substitute (CTRL-z) (AZ) Replace one character with another

ESC Escape (CTRL- [) (A [) Begin an escape sequence

FS File Separator (CTRL-~) ('\) Mark the end of a file

GS Group Separator (CTRL- I) (A J) Mark the end of a group (block, etc.)

RS Record Separator (CTRL-') (M) Mark the end of arecord

US U nit Separator (CTRL-_) (A_) Mark the end of a unit (field, etc.)

* This character is known as LF (linefeed) in most ASCII tables; but in UNIX ASCII tables, it's

called NL (newline), wh ich combines the function of CR and LF.

Appendix N. Character codes 711

Note that UNIX makes no distinction between (CTRL-o) and (CTRL-d),
which means that you don't have to press the (SHIFT) key when you type
(CTRL-o).

The 8-bit extended character set, with its international symbols, is shown
in Table N.3. You can currently access these characters via the XENIX
mapchan command; by the time this book is published, it should also be
possible to access these characters in UNIX.

TABLE N.3. Extended Character Set

Char dee oet hex ehar dee oet hex eh ar dee oet hex eh ar dee oet hex

[#] 12820080 NBSP 160240 AO A 192300 CO a 224340 EO

[#] 129 201 81 161 241 Al A 193301 Cl a 225341 EI

[#] 13020282 162242 A2 A 194302 C2 a 226342 E2

[#] 131 203 83 163243 A3 A 195303 C3 a 227343 E3

IND 13220484 164244 A4 A 196304 C4 a 228344 E4

NEL 133 205 85 165245 A5 A 197305 C5 a 229345 E5
SSA 134206 86 166246 A6 198306 C6 230346 E6

ESA 135 207 87 167247 A7 C 199307 C7 e 231347 E7

HTS 136 210 88 168250 A8 E 200310 C8 e 232350 E8

HT J 137211 89 169251 A9 E 201311 C9 e 233351 E9
VTS 138212 8A 170252 AA E 202312 CA e 234352 EA
PLD 139213 8B 171 253 AB E 203313 CB e 235353 EB
PLU 140214 8C 172254 AC 204314 CC 236354 EC

RI 1412158D 173255 AD 205315 CD 237355 ED

SS2 1422168E 174256AE 206316 CE 238356 EE

SS3 1432178F 175257 AF 207317 CF 239357 EF

Des 14422090 176260 BO D 208320 DO d 240360 FO

PUl 145 221 91 177 261 BI N 209321 D1 n 241361 F1

PU2 14622292 178262 B2 0 210322 D2 0 242362 F2

STS 14722393 179263 B3 0 211 323 D3 0 243363 F3
CCH 148 224 94 180264 B4 0 212324 D4 0 244364 F4
MW 14922595 181265 B5 0 213325 D5 0 245365 F5
SPA 15022696 182266 B6 0 214326 D6 0 246366 F6
EPA 15122797 183267 B7 [#] 215327 D7 [#] 247367F7

[#] 152 230 98 184270 B8 0 216330 D8 0 248370 F8

[#] 153 231 99 185271 B9 U 217331 D9 u 249371 F9

[#] 1542329A 186272 BA U 218332 DA u 250372 FA
CSI 1552339B 187273 BB U 219333 DB u 251373 FB

ST 1562349C 188274 BC U 220334 DC u 252374 FC

OSC 157235 9D 189275 BD Y 221335 DD Y 253375 FD

PM 1582369E 190276 BE 222336 DE 254376 FE

APC 159 237 9F 191277 BF 223337 DF Y 255377 FF

712 The extended control characters

N.2 The extended control characters

The control characters shown in Table N.3 are described in Table N.4. Each
entry gives one character (abbreviation and fuH name), the keys used to
generate it, and some typical uses for the character in the operation of a
terminal.

TABLE N.4. The Extended Contral Characters

Character keys typical use
IND Index Ese D Move the cursor down one line
NEL Next line ESe E Move the cursor to the first column of the nex

SSA Start of selected area Ese F Start adesignated block
ESA End of selected area Ese G End adesignated block

HTS Horizontal Tab Set Ese H Set horizontal tab at cursor column

HTJ Horizontal Tab with Justification Ese Set horizontal tab with justification

VTS Vertical Tab Set Ese J Set vertical tab at cursor line

PLD Partial Line Down Ese K Move down less than a full line

PLU Partial Line Up Ese L Move up less than a full line

RI Reverse Index Ese M Move the cursor up one line

SS2 Single Shift 2 Ese N Shift to a second character set

SS3 Single Shift 3 Ese 0 Shift to a third character set

Des Device Control String Ese P Introduce a device control string

PUl Private Use 1 Ese Q First user-designated
PU2 Private Use 2 Ese R Second user-designated
STS Set Transmit State Ese S Prepare for transmission of text
eeH Cancel Character Ese T Cancel one character

MW Message Waiting Ese U Notification of a message
SPA Start of Protected Area Ese V Start a protected block of text

EPA End of Protected Area Ese W End a protected block of text

eSI Control Sequence Introducer Ese Introduce a control sequence
ST String Terminator Ese End astring introduced by DCS
ose Operating System Command Ese Command for an operating system
PM Privacy Message Ese ' Non-public message to follow
APe Application Program Command Ese _ Command for an application program

Glossary

advertise In the Remote File Sharing (FRS) system, to make known to
other UNIX systems in a network the availability of a resource on your
system with the adv (advertise) command. See Chapter 40, "Basic
Resource Sharing," for details.

alias In the C shell, a user-defined command constructed from standard
UNIX commands.

analog A method of indicating quantities by measuring something (volt­
age, current, a column of meccury, the position of a pointer) on a
continuous scale. Until recently, audio and video devices (telephones,
radios, stereos, and televisions) have been analog; while computers
have been digital. However, as the twentieth century draws to a dose,
designers of all electronic devices are abandoning analog logic in favor
of digital. (See also digital.)

argument In computer usage, something added to a basic command to
modify the way the command is used. In the command line cat wall,
wall is an argument for the cat command. The UNIX shell uses $0
to denote a command and $1, $2, $3, ... to denote its arguments.

array In computer usage, a table of either string or numeric values, each
referred to by an ordinal number called its index. By convention,
each element of an array is denoted by giving the name of the array,
followed by the index in brackets. For example, ifthe individualletters
of the word UNIX have been stored in an array called name, then
name[1] refers to u, name[2] refers to N, name[3] refers to I, and
name[4] refers to X. In mathematical usage, an array is the same as
a matrix.

ASCII In computer usage, "American Standard Code for Information In­
terchange," a set of 128 codes that are used by UNIX and many other
hardware and software systems for control and display. The ASCII
character set is known in Europe as the I SO (International Stan­
dards Organization) character set. (See Chapter 5, "Communication
in UNIX," for details.)

assembly language In computer usage, a computer language whose com­
mands parallel the primitive machine language codes used by the

714 The extended control characters

main processor, or CPU (central processing unit). The main advan­
tage of programming in assembly language is that the programs pro­
duced run very fast; the main disadvantages are that the co ding is
very difficult to read and that the programs produced are not portable
to machines that use a different CPU. Machine language and assem­
bly language are also referred to as low-level languages.

asynchronous In electronic communication, a method of communication
that allows individual characters to be transmitted one at a time;
as opposed to synchronous communication, which allows two devices
to exchange large amounts of data by synchronizing the timing of
the exchange. In general, asynchronous co mmunication is used for
devices like keyboards, where human entry of data is relatively slow
and at random intervals; while synchronous communication is used
for high-speed devices that communicate directly with each other.

background In computer usage, processing that a system carries out
without human interaction; as opposed to foreground processing. In
UNIX, the ampersand (&), appended to the end of a command line,
indicates arequest for background processing.

backup In computer usage, an extra copy of a file that can be retrieved in
the event that some system failure damages or destroys your working
copy.

baud rate See da ta rate.

binary Base two. (See number.)

bit

blank Open space that appears either on the video screen or on a printed
page, produced by either space characters or tab characters. The lim­
itations of some terminals and printers sometimes make it necessary
to convert tabs to spaces, or vi ce versa.

block In computer usage, a predetermined segment of data, usually mea­
sured in bytes, that is used to set aside larger amounts of storage
space. In System V, a block is 1,024 bytes; in earlier versions of
UNIX, a block was 512 bytes. Mass storage devices like disk and
tape drives, which transfer data in blocks, are sometimes referred to
as block devices in UNIX terminology.

bold In printing, a style of typeface that is characterized by thicker, darker
character strokes.

Bourne shell The standard shell, originally designed by Stephen R. Boume
at Bell Telephone Laboratories; as opposed to the C shell and the

Appendix N. Character codes 715

Korn shell, newer shells derived from the standard shell. The Bourne
shell is the fastest of the three, the C shell is richer in programming
features, and the Korn shell combines the advantages of the two ear­
lier shells. (See also shell.)

buffer In computer usage, a temporary storage area in memory where
data may be either held or processed during an intermediate phase
of processing.

bug In computer usage, an error in hardware or software design. According
to legend, the term came into the vernacular when an investigation
into an early computer failure in the 1940s revealed a dead insect
lying amid the machine's electronic components. Getting rid of bugs
is called debugging.

byte In computer usage, a smaller unit of measure, usually eight bits-In
text-processing, a byte is equivalent to one character.

character The smallest unit that is used in text-processing, which may
either represent a visible symbol (alphanumeric or special character)
or carry out a control function (control character). You can enter
a control character at the keyboard either by pressing adesignated
key ((RETURN), (TAB), CESW) or by holding down the (CTRL)
key and pressing another key. The asynchronaus devices that process
characters (terminals, printers, modems) are referred to as character
devices in UNIX terminology.

client In networking in general and in the Remote File Sharing (RFS)
system in particular, a UNIX system that uses the file systems made
available by another UNIX system. This feature is unique to System
V, Release 3.0.

compiler A program that converts the co ding used to enter a high-level
language to machine language. Any program written in C, FOR­
TRAN, Pascal, Ada, or Modula-2 must be compiled before the com­
puter can execute it. The C compiler in UNIX is called ce (ce also
performs assembly).

concatenate To join two units, such as words or files. The UNIX com­
mand that concatenates files is called cat.

condition code See exit status.

console In computer usage, the primary terminal in a multi-terminal sys­
tem, usually located next to, or on top of, the main computer. In
UNIX, the console is named ttyOO (terminal 00); in System V, any
terminal can be used as the console because of the virtual console
feature.

716 The extended control characters

control character See character.

C shell The shell that was developed by William N. Joy and others at
the University of California in the late 1970s to enhance the original
shell. The C shell allows arrays and reselection of previous command
lines (referred to as events). (See also shell.)

cursor The symbol that holds your place on a video screen and points to
where the character you type next will be entered.

daemon In DEC and UNIX usage, a process that the system initiates
automatically without human intervention.

data rate In communication, the rate at which data is being transferred,
as measured in bits per second (bit/s). Also called the bit rate; also
called (incorrectly) the baud rate. Engineers love to say "baud" and
"baud rate" because they sound so esoteric; however, baud rate is
controlled by the telephone company, not by a computer that happens
to be using the telephone lines.

debug To get rid of bugs. (See also bug.)

decimal Base ten. (See number.)

demand paging A memory multiplexing scheme whereby programs are
executed in segments called pages. Whenever an instruction in a pro­
gram refers to data or an instruction not currently in memory, the
page that contains that data or instruction can be swapped into mem­
ory upon demand.

device Any piece of equipment that is attached to a computer, also called
an input/output device or a peripheral device. Terminals, printer,
modems, disk drives, and tape drives are examples of physical de­
vices. In UNIX, a file system is regarded as a logical device.

device driver A program that processes the flow of data between a com­
puter and one of its devices.

device file A file that indicates the presence of a device that is included
in a UNIX system. Device files are found in the device directory /dev.
Device files are also called special files.

digital A method of measuring that reduces quantities to numeric val­
ues, expressed in digits. Except for a handful of analog computers,
all computers are digital, and all of them use the binary system to
express numbers. There are several advantages of digital processing
over analog: 1) it can be performed with simpler electronic circuits;
2) the opportunity for error is reduced; 3) all computers use exactly
the same number system. (See also analog.)

Appendix N. Character codes 717

directory In UNIX and other operating systems, a file that contains the
names of other files. In UNIX, the primary directory is called the root
directory (or just the root) , and is denoted by a single slash (I).

domain In networking in general and in the Remote File Sharing (RFS)
system, a set of UNIX systems on a network that are grouped together
for administrative purposes.

drive A machine that rotates a storage medium (disk or tape), reads in­
formation from it, and writes information to it.

driver See device driver.

echo To display on a video screen a character that has been typed at the
keyboard. The shell's echo command performs this function. Because
printing Teletype machines, with paper output in place of a screen,
were used for the earliest UNIX terminals, displaying of characters on
the screen (or echoing) is frequently referred to as printing in UNIX
manuals.

element An individual item in an array. (See also array.)

environment A set of variables and their assigned values that is made
available to a process when the process is called; also called the calling
environment. The environment in effect when you log in is stored in
a file named either .profile (Boume shell) or .Iogin (C shell). You
can alter the environment during a UNIX session by re-assigning
variables; refer to either Chapter 23, "Boume Shell Variables" or
Chapter 26, "C Shell Variables").

EOF In computer usage, end-of-file character; e.g., in UNIX, (CTRL-D).

escape To leave one program and enter another (as in escaping to ex
from vi); to take a special character (such as A or $) literally, rather
than use its special meaning to the shell. In general, you can use a
backslash (\) 0 escape a special character. However, the shell also
allows you to use pairs of quotation marks (" ... ", ' ... " ' ... ,) to
produce different results (see Chapter 23, "Boume Shell Variables,"
for details). In UNIX terminology, escaping is also called quoting.

event In the C shell, a previous command line that you have executed,
which is stored in a history list for later retrieval, modification, and
re-execution.

exit-status In UNIX and other operating systems, a numeric code that
is retumed to the operating system at the conclusion of a process
to indicate whether or not the process was executed successfully. In
UNIX, zero (0) means that the process failed, while a non-zero code
means that it succeeded.

718 The extended control characters

expression A numeric or string representation of something that may
assume one of a number of different values. For example, 2* (x+3)
represents "8" if x = 1, "la" if x = 2, and so on, while a. e represents
"ace" if c is read for ., "axe" if x is read for ., and so on. See also
regular expression.

field In text-processing, an area within a line that may be named and
processed by a program. The sort and awk commands both use fields
extensively, but, unfortunately, use different conventions for naming
fields.

field separator A character that separates fields, usually a blank (a space
or a tab). The awk program and the Boume shell allow you to use
any character instead.

fifo file First-in first-out file; also called a named pipe.

file A collection of characters with a name that may contain a program,
text, records, the names of other files, or the names of devices. In
UNIX, a file that contains the names of other files is called a directory
file, or a directory; a file that contains the names of devices is called a
device file or a special file and a file that begins with aperiod (or dot)
is called an invisible file (because the ordinary Is command doesn't
display it).

file server In networking in general and in the Remote File Sharing (RFS)
system in particular, anode that offers files to other nodes. (See also
server)

fill In text-formatting, to draw upon text in subsequent lines to make the
current line extend to its margins (or nearly to its margins).

font In typesetting, a set of characters that share a common size, style,
and typeface.

footer In text-formatting, a segment of text that is placed at the bottom,
or foot, of every page of a multi-page document.

foreground In computer usage, processing that invloves user interaction;
as opposed to background processing.

fork In UNIX shell usage, to produce a copy of a program before executing
it; forking is also called spawning.

gateway server Also called a gateway. (See server.)

global In computer usage, something that occurs or is defined throughout
an entire file or program; as opposed to local.

Appendix N. Character codes 719

hardware The tangible parts of a computer system, the actual electronic
circuits and connections; as opposed to the programs executed on the
system (software).

header In text-formatting, a segment of text that is placed at the top, or
head, of every page of a multi-page document.

hexadecirnal Base sixteen. (See number.)

history In the C shell, a collection of previous command lines (or events)
that can be displayed on the screen for review.

horne direetory The directory assigned to you by the system adminis­
trator; the directory that you enter whenever you log in; also called
your login directory.

host In networking in general and in the Remote File Sharing (FRS) sys­
tem in particular, a single computer in a network; also called anode
or astation.

i-node In UNIX system administration, a data structure that provides
information about one file (length; location; number of links; IDs of
owner and group; access permissions; and time stamps for creation,
last access, and last modification).

interrupt In computer usage, arequest to the main processor from one
of its devices for processing time.

1/0 Input/output; the transfer of data to and from a computer and its
devices.

italie In printing, a style of typeface that is characterized by slanting of
vertical character strokes to the right and rounding of corners.

justify In text-formatting, to align the characters on the margin. Since
most text is justified on the left margin automatically, justijy often
becomes synonymous with right-justijy.

kernel The program that provides the basic interface between UNIX and
the machine's hardware. When UNIX is transported to a new com­
puter system, the kernel is all that needs to be modified. The kernel
resides in a file that is named either /unix or /xenix.

Korn shell The third, and latest, major shell program in use on UNIX
systems. The Korn shell, named after David G. Korn, was designed
to combine the major advantages of the standard shell (the Bourne
shell) and the C shell.

720 The extended control characters

language A set of commands, names, and rules of syntax that allow you to
write a computer program. Languages are classified as either low-level
(computer-oriented) or high-level (task-oriented). Machine language
and assembly language are low-levellanguages; BASIC, FORTRAN,
COBOL, and Pascal are high-levellanguages. Other languages, like C
and Modula-2, fall somewhere in between, and are sometimes called
middle-level languages. A language may also be called a computer
language or a programming language.

laser printer a printer, based on the technology used in photocopiers,
makes it possible to print graphics and text (in different fonts) on the
same page.

link Attachment of a file to a directory. UNIX allows a user (or several
users) to attach one file to more than one directory. No matter how
many links there are for a file, there is still only one copy of the file
in the system.

listener In networking in general and in the Remote File Sharing (RFS)
system in particular, a program that notifies stations of the presence
of a message on the network.

local In computer usage, applicable only to one segment of a file or pro­
gram; as opposed to global.

login name The name you use to log into your UNIX system; the name
used to indicate ownership of your files.

machine language The set of primitive codes that operate a computer's
main processor, or CPU. (See also assembly language and language.)

macro A set of commands combined to form a single, more comprehensive
command. In nroff and troff formatting, a user can define a macro
from existing requests with the .de request; in the C shell, a user
can construct a macro from existing UNIX commands with the alias
command.

map In computer usage, to re-route program execution from one memory
address to another; to assign a group of characters or functions to a
key on the keyboard. In vi, you can design your own key functions
with the :map command.

memory The internal area of a computer where programs, text, and data
are stored for immediate processing; as opposed to mass storage me­
dia, where files are stored for long-term preservation. The UNIX op­
erating system frequently writes program files from disk to memory,
a proceess called swapping.

Appendix N. Character codes 721

modem Modulator/demodulator, a device that modulates data (converts
it from digital to analog) before sending it over a telephone line and
demodulates data (converts it from analog back to digital) after re­
ceiving it from a telephone line. (See also analog and digital.)

mount In system administration, to make a file system known to the
UNIX operating system. UNIX provides two commands, mount and
umount. In System V, Release 3.0, a system administrator can use
the -d option of the mount command to obtain access to file systems
on other UNIX systems within a network. (See Part VII for furt her
information.)

multiplexing In computer applications in general, the process whereby a
series of data segments is processed in increments using a rotation
scheme. For example, many frequencies of data can be multiplexed
over a single channel, rather than transmitted sequentially. Swapping
and demand paging are examples of memory multiplexing.

name server In the Remote File Sharing (RFS) system, the host that
maintains re cords on the use of files by hosts inside and outside its
domain; also called the domain name server. (See also server.)

node In networking in general and in the Remote File Sharing (RFS)
system in particular, another name for a host or a station. (See host.)

number In a computer system, a number may be used to represent not
only a quantity, but also a character or a machine code. The computer
itself recognizes only two digits (low and high voltage in hardware
design; ° and 1 in software design), which form a binary (base two)
number system. However, because binary numbers are so difficult
to read, people who work with computers usually use either octal
(base eight) or hexadecimal (base sixteen) representation for numbers.
For example, the binary number 1011010 becomes 132 (octal), 5A
(hexadecimal), or 90 (decimal), which is also the ASCII code for the
letter Z.

octal Base eight. (See number.)

owner The user who created a file.

page In text-editing, to move to either the previous or the following screen­
ful of text; in memory management in general and in UNIX System
V, Release 3.0 in particular, a segment of a program (usually 2,048
bytes) that is transferred to memory to be executed.

paging See demand paging.

722 The extended control characters

path In the UNIX file system, the sequence of directories from root to a
file that indicate the file's location in the file system. Depending on
your current directory, you may be able to use either a Jull pathname
(an absolute pathname or a relative pathname) to identify a file.

peripheral deviee Same as a device or an 1/0 device.

pipe A connection that allows UNIX users to use the output of one process
as the input of another. A pipe can also be called a pipeline.

proeess In UNIX, a command being executed at this moment. Each pro­
cess has its own PID (process identifier) for reference.

program A set of instructions to a computer to carry out a procedure,
written in a language. (See also language.)

prompt In computer usage, something that appears on the screen to so­
licit your next input. In UNIX, there are at least three possible shell
prompts: $ (Boume shell), % (standard C shell) , or # (super-user).
In addition, the C shell allows you to design your own prompt, with
an option for numbering your command lines for later reference (see
Chapter 25, "Introduction to the C Shell," for details).

quote Same as escape. (See escape.)

reeord In text-processing, one entity (usually a line) presented to a pro­
gram for processing. Each record is composed of jields, and the usual
record separator is newline. The awk program allows you to specify
your own record separator.

redirect In UNIX, to accept input from a source other than the standard
input or send output to adestination other than the standard output.
(See Chapter 4, "Using UNIX Commands," for details.)

regular expression In UNIX, a symbolic expression that allows you to
search for a particular string of characters. It can specify characters
via sets, ranges, and wild-card selection.

return eode Same as exit status. (See exit status.)

roman In typesetting, a "plain" style of typeface that is neither bold nor
italic.

root The primary directory of UNIX. (See directory.)

seroll In text-editing, to move the screen display either up or down one
line at a time.

Appendix N. Character codes 723

server In a communications network in general and in the Remote File
Sharing (RFS) system in particular, anode that provides some service
to the network. A routing server connects two different networks of
the same architecture; a gateway server connects networks of differ­
ent architectures by translating between their protocols; a file server
make files available to other nodes; and in RFS a name server keeps
track of the names of resources available for sharing.

shell The command interpreter for UNIX; a programming language that
allows you to modify processing, handle input and output, and design
your own UNIX interface. When you use the shell for programming,
you produce a shell script, or shell program, which can be executed
immediately. The shell is discussed in detail in Part V.

software A collective name for computer programs; as opposed to hard­
ware, a collective name for the tangible components of a computer
system.

sort In computer usage, to take a list of items as input and place them
in a given order as output. The UNIX sort command is described in
detail in Chapter 13, "Searching and Sorting."

spawn Same as fork. (See fork.)

special character A keyboard character that has a special meaning to
the UNIX shell; also called a metacharacter. For example, caret (,,)
and dollar sign ($) mean beginning and end of line, respectively.

special file A file that stands for a device; also called a device file.

standard input The expected source of input to the UNIX shell (the
default is the user's keyboard). You can change the standard input
with redirection. (See redirect.)

standard output The expected destination for output from the UNIX
shell (the default is the user's screen). You can change the standard
output with redirection. (See redirect.)

station In networking in general and in the Remote File Sharing (RFS)
system in particular, another name for a host or anode. (See host.)

sticky bit In system administration, a bit that can be set to guarantee
that a program is kept in the swap area; a useful feature for a program
that is in constant demand.

string In computer usage, a sequence of characters. In UNIX, you can
assign strings to variables, search for strings, and replace one string
with another.

724 The extended control characters

super user In system administration, a user who has unlimited access to
all files in a UNIX system, usually to facilitate administrative func­
tions.

swap To rotate programs through memory and disk while they are being
executed, using a swap area (or swap disk) that is always set aside
on disk for this purpose.

termcap A file that contains terminal names and descriptions used for
Berkeley vers ions of UNIX ("terminal capability"). System V uses
terminfo, but also supports termcap.

terminfo A collection of files that contain compiled terminal names and
descriptions used to identify the features of various terminals for
screen-oriented programs like vi ("terminal information").

tty An abbreviation for Teletype; used in UNIX to mean a terminal.

typeface In printing, a specific design for a set of characters that typically
includes roman, italic, and bold vers ions of the characters. Typefaces
are grouped into two categories, depending on whether or not the
characters have decorative accents called serifs: serif and sans-serif.
Times Roman, Century Schoolbook, and Bodoni are ex am pIes of serif
typefaces; Helvetica, Futura, and Optima are examples of sans-serif
typefaces.

variable In computer programming, a storage location with a name to
which you can assign astring or numeric value for subsequent use.
In UNIX, the C language, the shell, and the awk program allow
variables.

wild card A special character (or metacharacter) used in a regular ex­
pression that can be used to match any of a set of characters (., *,
or . *). The name comes from the Joker, which can be used in some
card games to represent any other card in the deck. (See Chapter 13,
"Searching and Sorting," for details.)

work area An area in main memory for text-editing; also called a work
buffer.

working directory The directory in which you are working at a given
moment; also called the current directory.

Index

!!, 388
#,16
$!,363
$$, 363, 413
$-, 363
$?,363
$#,363
&,17
*,37
.,29
.. ,29
.c,233
.cshrc,385
.f,233
Jogin, 386
Jogout, 397
.p,233
.profile, 319
.5,233
/,26
/bin,26
/dev,26
/dev/swap, 466
/etc, 26, 434
/etc/defauIVpasswd, 528
/etc/gettydefs, 495
/etc/group, 528
/ete/inittab, 495
/etc/motd, 435
/etc/passwd, 385, 495, 527
/etc/profile, 495
/etc/shutdown, 499
/etc/termcap, 507
/etc/ttys, 498
/tmp,26
/usr, 26
/usr/lib/font, 286
/usr/spool/lpd, 60
?,35
@, 16

@, 405
[], 36, 375
A,390
init, 496-499
1,46

a.out, 229, 232
absolute pathname, 29
accounting, 541-550
aeeteom,541
ACU,563
adding a new user, 529
adv, 599
alias, 394
American Standard Code for In-

formation Interchange, 77
analog, 75
ANSI,557
arguments, 43
ARPANET, 72
arrays, 402
ASCII, 77
asynchronous, 76
automatie call unit, 563
awk, 207-224

summary, 654-656

background, 334
background processing, 17
BACKSPACE, 16
baud rate, 76
be, 20
binary,78
binary synchronous communica­

tion, 76
bit, 74
block

file, 50
file system, 445

bold,285

726 INDEX

booting, 489
bounded media, 555
Boume shell

introduction, 317-331
pro gram control, 367-384
summary, 667-671

Boume shell processes, 333-348
Boume shell variables, 349-366
break, 370, 421
BSC, 76
BSD, 8
buffer, 76
bus, 556
byte, 74
byte-synchronous protocol, 76

C
compiling, 226

C,225-235
C shell

arithmetic, 405
built-in commands, 427
conditional statements, 416
introduction, 385-399
procedures, 415-429
reserved variables, 408
summary, 673-678
variables, 401-414

cal, 21
calculator, 19
calendar, 68
calendar, 21, 68
call up, 69
case, 380
cat, 32, 48
CCITT, 557
cd,30
$cdpath, 409
$child,409
chmod

summary, 536
chmod, 39, 532
circuit-switching, 556
deartext, 72
dock

setting, 490
coaxial, 555
coding system, 77
COIAK, vii
col, 295
comm, 56
command grouping, 343
command line, 43
command substitution, 356
commands

aliasing, 394
communication, 63-81
concatenation, 46
conditional execution, 344
connecting to another system, 69
continue, 371, 422
control character, 79
copying, UNIX-to-UNIX, 70
corrupted, 452
counting lines in a file, 53
cp,34
cpio, 469-472
cron, 482
crypt,72
CSMA/CD, 557
ct,578
ctags, 175
CTRL-C, 19
CTRL-H,16
CTRL-Q,19
CTRL-S, 19
CTRL-U, 16
CU, 69, 578
current directory, 29
custom, 441
cyphertext, 72

daemon process, 482
daisy-wheel printers, 284
data communications equipment,

516
data link, 556
data rate, 76
data set, 75
data terminal equipment, 516

dc, 19
DCA,559
DCE,516
DELETE,19
demand paging, 437
demand-paging, 708
demodulator, 75
device numbers, 459
devices, 459

adding, 463
creating, 463
removing, 463

devlj,286
devps, 286
df, 475, 618
DIA, 559
diff, 55
digital, 75
directory, 25, 26

changing, 30
changing permissions, 39
creating, 31
find name, 31
listing, 29
permissions, 37
removing,31
renaming, 32
working,30

disc brakes, 74
disk

activity, 547
formatting, 438, 464
free, 475
maintenance, 475-487

Disoss, 559
displaying part of file, 50
Distributed Office Support Sys-

tems, 559
ditroff, 286
DNA,558
Document Content Architecture,

559
Document Interchange Architec­

ture, 559
Documenter's Workbench, 286

domain, 595
DTE, 516

EBCDIC,77
$echo, 410
ECMA,557
ed,85

INDEX 727

summary, 637-645
egrep, 198
elif, 375
else, 374
else if, 417
em,288
encrypting information, 72
erase

character, 16
line, 16

ethernet, 558
eval, 354
even parity, 76
ex, 85
exit, 14, 371, 423
exporting shell variables, 323
expr, 357-359
extended binary-coded decimal in­

terchange code, 77

f77,233
false, 367
FDM, 557
fgrep, 198
fiber optic, 555
field

file

awk, 208
sort, 200

block,50
changing permissions, 39
combining, 32
concatenation, 46
copying,34
deleting, 34
determining type, 50
display part, 50
displaying, 32

728 INDEX

linking, 35
listing, 29
moving,33
naming,28
ordinary, 26
permissions, 37
renaming, 33
special, 26

file , 50
file descriptor, 327
file system, 25-42, 445-458
File 'fransfer Access Method, 559
File 'fransfer Protocol, 559
file types, 460
filter programs, 341
find, 477-482
font, 285
for, 372
foreach, 419
formatting

definitions, 307-310
ditroff, 286
double-column, 295-297
equations, 303-306
mm,239-254
nroff, 269-281
number registers, 311
options, 310
strings, 311
summary, 657-665
tables, 297-303
troff, 269-281, 283-294
units, 307

formatting disks, 438, 464
FORTRAN, 233
free list, 448
frequency division multiplexing, 557
fsck, 454, 491
FTAM, 559
FTP, 559
fuH pathname, 29
fuH-duplex, 77
fusage, 617

getty, 495

goto, 418
grep, 54, 193

summary, 653-654
grouping, command, 343
Gutenberg, Johann, 283

half-duplex, 77
handshaking, 76
hard-wired, 563
head,50
hexade ci mal , 78
$history, 410
history, 387
HOME, 320
$home, 410
horne directory, 26, 29
HoneyDanBer, 551
host, 595

i-node, 446
i-number, 453
idload,627
IEEE, 8, 557
if, 373, 416
IFS, 322
$ignoreeof, 410
indirect inodes, 447
input redirection, 44, 45
interleaving, 439
ISO, 557
ISOjCCITT OSI, 558
italic, 285

job control, 338
Joy, William, 85

kernei, 4
key, 72
kill, 19, 338
Korn sheH, 6

labelit, 465
LAN,554
laser printers, 284
layer, 556
layers, 77

linking file, 35
In, 35
local area network, 554
locked,77
login, 495
logout, 14
Ip,59
Ipadmin, 521
Ipsched, 521
Ipstat, 60, 524
Is, 29, 43, 461
Is -1,37

MAlL, 320
mail

from lp, 59
receiving, 64, 66
sending, 63, 65

mailx, 65, 66
maintenance mode, 490
man, 22
manual, on-line, 22
mesg, 69
Message Handling Standard, 559
metacharacters, 206
Micnet, 572
mkdir,31
mkfs, 464
mknod,463
mm

accents, 249, 253
date, 260
displays, 246-248, 255-256
emphasizing, 248-249
footnotes, 256-257
headings, 257-259
introduction, 239-254
justifying, 250, 253
lists, 242-246
options, 264
page layout, 260-263
paragraphs, 242
point size, 251

MMFS, 559
modem, 75

modulator, 75
more, 49
Morse code, 77
mount, 465
mounted, 440
mouse, 7

INDEX 729

MS-DOS, 7
multi-tasking, 436
multi-user, 436
multi-user mode, 495
Multiple Message Forwarding Sys­

tem, 559
multiplexing, 436
mv, 32, 33

name server, 595
neqn, 305
network

uucp, 72
network administration

summary, 689-695
Network File System, 559
networking

introduction, 553-562
topologies, 556

newlines, 58
NFS, 559
nice, 337
$noclobber, 410
$noglob,411
$nonomatch, 411
nroff, 239, 269-281
null modem, 563

octal, 78
odd parity, 76
on-line manual, 22
onintr, 426
open block, 445
Open Software Foundation, 8
Open System Interconnection, 559
ordinary file, 26
OS/2,7
OSF,8
OSI,559

730 INDEX

output redirection, 44, 46

packet-switching, 556
paging, 437
parallel, 74
PARC, 7
parent directory, 29
parent process, 336
parity bit, 76
partial pathnames, 28
Pascal, 233
password

choosing, 74
PATH, 320
$path,412
pattern matching, 345
pe, 233
PC-DOS,7
peripheral, 75
permission

determining, 37
perm iss ions

changing, 532
default, 537
set group id, 535
set user id, 534
sticky bit, 535

(,322
pg,49
phototypesetter, 285
physical link, 555
PID,18
pipe, 46
pipeline, 46, 340
points, 285
positional parameters, 360
POSIX, 8
PostScript, 286
powerup, 489
prep,52
printers, 515-526
printing, 58-60
priority, 337
process

aborting, 19

channel, 337
daemon, 482
identification number, 18
listing, 18
priority

setting, 337
running in background, 17
terminating, 338

processes
Bourne shell, 333-348

prompt, 5, 13
$prompt, 412
prompt, 386
protocol, 76
ps, 18, 335
PS1, 320, 321
PS2, 320, 322
pwd,31

rack-and-pinion steering, 74
RadCxmlnogrtucpFbqisf, 44
read,351
redirection, 44, 328-330

input, 45
output, 46

regular expression, 206
regular expressions, 195, 215
relative pathname, 29
rem inder service, 68
Remote File Sharing, 559, 593, 707

maintenance, 607-620
security, 621-630
user mapping, 621-630

removing auser, 531
resolution, 284
restricted account, 531
restricted shell, 532
RFS, 559, 593
ring, 556
rm,34
rmdir,31
roman, 285
root, 26
RS-232C, 75, 515
RS-422/423, 75

rsh, 532
runoff, 239

sadp, 547
sag, 544
sans-serif, 285
sar, 544
scrolling, 19
SDLC,76
searching, 193-206

egrep, 198
fgrep, 198
grep, 193
grep,54

security, 527-539
serial, 74
serifs, 285
set, 402

vi, 177
set group id, 535
set user id, 534
shared libraries, 708
shell, 5

comparisons, 377
debugging, 383
function, 333
layer, 338
loops, 367

nested,369
procedure, 349
start-up, 319
variables, 320

exporting, 323
visual, 23

$shell, 412
shell procedures, 233
shell program

writing, 317
shell scripts, 233
shell variable

assignment, 352
shell variables

reserved, 363
shift,426
shl, 338

INDEX 731

shutdown, 499
Simple Mail Transfer Protocol, 559
simplex, 77
single-user mode, 490
SMTP, 559
SNA, 558
sort, 51, 200

summary, 654
sorting, 193-206
special file, 26
speil, 54
spooling, 518
standard input, 45, 327
standard output, 45, 327
star, 556
starlan, 558
start bit, 76
start-stop, 76
$status, 412
sticky bit, 535
stop bit, 76
STREAMS, 708
stty, 503-506
stty, 12
super-block, 445
super-user, 13, 434
swap area, 441
swapping, 437
switch,424
switching method, 556
sync,438
synchronous, 76
synchronous data link control, 76
system accounting, 541-550
system activity, 544
system administration

summary, 679-687
system administrator, 433
system calls, 5
System V, 8

tabs, 512
tail, 50
tape archive, 467
tar, 467

732 INDEX

tbl, 299
TCP/IP, 558
TDM, 557
tee, 342
Teletype, 14
telnet, 559
$TERM, 413
TERM, 320, 321
termcap, 507

summary, 697-701
terminal, 503-514
terminfo, 508

summary, 697-701
test, 375
text editor, 85
text formatter, 85
$time, 412
time division multiplexing, 557
time-sharing, 436
timex, 542
TLI, 588
token bus, 558
token ring, 558
token-passing, 557
tput, 381
tr,56
translating characters, 56
Transport Layer Interface, 588
Transport Level Interface, 708
Transport Provider Interface, 708
trap, 382
troff, 239, 269-281, 283-294
Trojan Horse, 538
true, 367
tty, 14
turbo-charger, 74
turning off messages, 69
twisted pair, 555
typeface, 284
typewriter, 283
TZ, 323

UID,336
umask, 537
umount, 466

unalias, 394
uname, 578
unbounded media, 555
uniq,51
UNIX

BSD, 8
System V, 8
XENIX, 8

UNIX User's Manual, 10
UNIX-to-UNIX copying, 70
UNIX-to-UNIX execute, 72
unset, 402
untiI, 368
update, 482
user ID, 336
uucheck, 578
uucico, 565, 578
uuclean, 565
uucleanup, 578
uucp,70

after Release 3, 575-592
before Release 3, 563-574

uudemon.wk, 565
uulog, 565, 578
uuname, 565, 578
uupick, 578
uusched, 578
uustat, 565, 578
uusub,565
uuto, 578
Uutry, 578
uux, 72, 565, 578
uuxqt, 565, 578

$verbose, 413
vi

abbreviations, 181
appending, 110
buffer information, 95
capitalizing, 97
changing files, 163
changing text, 115-122
clearing screen, 109
copying text, 155-161

between files, 168-171

cursor movement, 102-106
customizing, 177-188
deleting

word,96
deleting text, 122-128
exiting, 97, 129, 147
inserting, 110
introduction, 85-99
invoking, 171
key assignment, 183
markers, 106-107
moving text, 147-155

between files, 165-168
options, 171

setting, 177
saving, 147
saving buffer, 129
scrolling, 107
searching, 134-137
shifting text, 128-129, 143-

144
subshell, 95
substitutions, 138-143
summary, 641-652
tags(, 173
tags), 175
terminal description, 507
transposing, 149
undo, 88

Virtual Terminal Protocol, 559
visible character, 79
visual shell, 23
vsh, 23, 704
VTP,559

wait channel, 337
wc,53
while, 368, 420
who, 16
who am i, 16
wild card

multiple characters, 37
single character, 35
specific characters, 36

wildcard characters, 362

INDEX 733

word processing, 85
working directory, 29
write,68

XENIX,8
XNS,558
XON/XOFF,76

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFA1B:2005
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (sRGB IEC61966-2.1)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200039002000280039002e0034002e00350032003600330029002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003100200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

