
AGL/Phase 2 - Pulse Audio
Routing Module
Developer Documentation

Version 1.0

September 2016

AGL/Phase 2 - Pulse Audio Routing Module - Developer
Documentation

Abstract

This document is the “Developer Documentation”, as a part of the “AGL/Phase2-
AppFw-Audio: Audio Routing” SoW deliverable.

Document revisions

Date Version Designation Author

14 Sept 2016 0.1 First version Y. Gicquel [IoT.bzh]

20 Sept 2016 1.0 Review & document approval S. Desneux [IoT.bzh]

Table of contents

1.Introduction..3
2.Linux Audio frameworks..4

2.1.Advanced Linux Sound Architecture..4
2.2.PulseAudio..4
2.3.IVI systems requirements...5

3.Audio routing module design...6
3.1.Functional scope..6
3.2.Plugin definitions...7
3.3.Architecture overview...8
3.4.Dynamic routing..9
3.5.Source code repositories...9
3.6.Known limitations..10

4.Audio routing on Porter board..11
4.1.Prerequisites...11
4.2.Files deployed on target..11
4.3.Launch PulseAudio server in debug mode..11
4.4.Load the routing module...13
4.5.Launch multiple stream with different priorities................................14

5.Sample clients...16
5.1.AlsaPlayer client...16
5.2.GStreamer client..16

6.Externals references...17

Version 1.0 September 2016 – 2 / 17 –

AGL/Phase 2 - Pulse Audio Routing Module - Developer
Documentation

1. Introduction

The PulseAudio routing module for AGL presented here is targeted to fill the gap
between open-source audio stacks and the current Automotive Grade Linux audio
specifications.

The current routing module is a fork of the “pulseaudio-murphy-ivi-plugin” developed
for Tizen [1], and its refit was done in the scope of a proof of concept which had been
performed end of July this year.

Whereas the POC had confirmed it's ability to fulfill some typical routing scenarios
which will be described in the next sections of this document, it also highlights the
need to some further changes.

This document presents the audio related solution on which the plugin interacts with:
Alsa, PulseAudio, and their respective scope. In a second part, it presents the
requirements for IVI systems and the current state and design of the routing plugins.

The last section presents the necessary steps to activate and test this plugin on a
Renesas Porter board on AGL-2.0.

Version 1.0 September 2016 – 3 / 17 –

AGL/Phase 2 - Pulse Audio Routing Module - Developer
Documentation

2. Linux Audio frameworks

Before describing the module itself, this section presents some of the functional
scopes of common Linux audio solutions which are involved in the routing feature.

2.1. Advanced Linux Sound Architecture

Advanced Linux Sound Architecture (ALSA) is a software framework which takes place
in the Linux Kernel and in a user-space library: libalsa. It brings a set of API to enable
the management of sound devices & data streams from user-space applications.

ALSA abstracts the hardware specificity through a common Kernel API, to:

• Reference cards, devices, and sub-devices, to get access to sound streams,

• Configure session streams at a specific sampling rate, a specific sample

format/resolution, a specific number of channels, whereas they are input/output
or both,

• Manage the sounds volumes setup and the hardware mixing feature if

supported.

Accesses to ALSA devices are exclusive, meaning when a user-space application
acquires the device resources, all others requesting applications are not able to
perform a playback nor an acquisition. Accordingly, when a stream is captured or
played, its characteristics such as sampling rate or resolution are fixed.

2.2. PulseAudio

PulseAudio is a proxy system which can run on top of ALSA API and which brings new
functionalities to provide a more powerful & extendable audio solution. It is composed
of a process (which can be executed as a daemon) and an associated library: libpulse.

PulseAudio most relevant features are listed below:

• It supports multiple application streams mixing and thus enables the sharing of

the same hardware resources. This feature may trigger the use of an internal
re-sampler when the different streams have different characteristics,

Version 1.0 September 2016 – 4 / 17 –

AGL/Phase 2 - Pulse Audio Routing Module - Developer
Documentation

• It can be employed in the users sessions, and thus enforce the isolation of

allocated resources & the security level of the whole sound system. This feature
is enabled by the launch of a dedicated daemon for the system and the
different users,

• It is expandable with plugins thanks to its module API. This is the way the

routing feature is currently interfaced with PulseAudio,

• It can be used over network interfaces to share the local sound resources to

remote clients,

• It can apply some treatments on the data streams (i.e. sound effects),

Whereas PulseAudio main target is the desktop environment, some of its features can
be reused to fulfill the requirements of an IVI system.

2.3. IVI systems requirements

Targeted IVI systems are composed of multiples sounds peripherals, dispatched in
different places inside the vehicle. Thus, some are part of the main IVI system, others
may require to be remotely accessed through a dedicated link or the network. The
system also requires to manage some transient peripherals such as Bluetooth
headsets.

On the client side, as an embedded IVI system aims to allow end-users to install some
3rd party applications, some mechanisms should be available to handle those multiples
applications to coexists with the pre-installed applications from OEMs. On the security
aspects, this means handling application priority to keep the safety related sound
available whatever the applications are.

PulseAudio in its current implementation (6.0 is integrated in AGL-2.0) has some
native features and/or allows plugins to enable such requirements, but it also lacks
some of them, including a consistent way to handle dynamic routing and events:
these features are covered by the routing plugin itself.

Version 1.0 September 2016 – 5 / 17 –

AGL/Phase 2 - Pulse Audio Routing Module - Developer
Documentation

3. Audio routing module design

The previous section briefly presents functional scopes of the most common open-
source Audio frameworks. In this section, the document presents the routing module
itself.

3.1. Functional scope

The functional scope for audio routing in Automotive systems introduces new concepts
described below. They are inherited from its predecessor (pulseaudio-murphy-ivi-
plugin) and are subject to further modifications.

Definitions will be detailed in following sections, but basically the aim of the routing
plugin is to dynamically associate sound stream producers to sound stream
consumers.

The features in the current release of the routing module are:

• Application's audio streams classification by rules which can be explicitly

defined from a configuration file, or implicitly applied by following a default
behavior,

• Configuration of stream priorities by a set of rules,

• Audio stream routing between classified streams and dedicated sound cards,

• Automatic volume ramp-down, ramp-up or mute, in the respect of applications

defined priorities and applications classes,

The following features are planned to be covered, or are subject to further research:

• Established stream routing on a hot-pluggable devices: this feature can be

managed by the plugin, but it is currently under development by the pulseaudio
upstream team. Some matching should be done to avoid some feature
“overlap” between main stream & the plugin,

Version 1.0 September 2016 – 6 / 17 –

AGL/Phase 2 - Pulse Audio Routing Module - Developer
Documentation

3.2. Plugin definitions

Some IVI specifics definitions are introduced by the routing plugin:

• zone: it refers to a set of physicals speakers inside the vehicle. (This setting is

currently not managed).

• type map: this is a n-to-1 associative table: one or more “application

identifier” (the pulseaudio media.role property) can be configured to belong to
one specific “application class”.

• application class: a set of applications grouped regarding their role in the

system.

• priority map: this is a 1-to-1 table which statically defines the “application

class” statics priorities.

• routing groups: this is a set of possible routing target (i.e. the sounds cards),

• class map: this is were the routing rules are defined. This is a list which

defines how streams within an application class should be associated to one ore
multiple routing groups.

Here below is a figure representing how those associations interacts in the routing
process:

Version 1.0 September 2016 – 7 / 17 –

AGL/Phase 2 - Pulse Audio Routing Module - Developer
Documentation

3.3. Architecture overview

As from its predecessor, the plugin is a shared object which implements the module
API as defined by PulseAudio [2].

While Tizen policy engine had a large scope with a tight dependency to the murphy
policy manager daemon, the current routing policy architecture for AGL is much
lighter and focuses on audio domain only.

Thus, the dependency with murphy service has been removed and the policy engine is
currently based on the rules defined in the plugin configuration file.

Here below is a figure summarizing the different parts of the architecture:

Version 1.0 September 2016 – 8 / 17 –

AGL/Phase 2 - Pulse Audio Routing Module - Developer
Documentation

3.4. Dynamic routing

While PulseAudio supports dynamic addition and removal of audio sources and sinks,
it does not support to dynamically change the setup of an established stream between
those one. As soon as a stream is established between a source and a sink, it is not
possible to change it's configuration (or route) without stopping the stream, and thus
without impacting the application themselves.

To bypass this constraint, a particular design is proposed by the plugin:

1. all streams clients (i.e. the applications) are connected to a dedicated "null"
sink, which is nothing more than a /dev/null equivalent in PulseAudio
framework,

2. by default, application streams routes are thus established to an inaudible end-
point.

3. when a new route is required and granted on such an established stream, the
plugin instantiates a "loopback module" to dynamically connect the application
null sink to a real sound card sink.

3.5. Source code repositories

At the time of writing this documentation, its Yocto recipe is already integrated in AGL
distribution [3] and it builds the source code accessible through a public repository
[4].

The plugin has few dependencies and requires 'json-c' & 'pulseaudio-module-devel'
packages for building.

Version 1.0 September 2016 – 9 / 17 –

AGL/Phase 2 - Pulse Audio Routing Module - Developer
Documentation

3.6. Known limitations

• Some jitter/timing issue can be audible on some stream playback. A

workaround is possible by tuning the latency parameter passed to the loopback
module, but it needs some further investigation to avoid any transient,

• Json configuration is not validated and can produce silent error and apply some

default configuration,

• Effects functions are hardcoded,

Version 1.0 September 2016 – 10 / 17 –

AGL/Phase 2 - Pulse Audio Routing Module - Developer
Documentation

4. Audio routing on Porter board

In this section, we present a procedure to activate the plugin and to start a stream
prioritization process by launching two different streams with different IVI roles.

4.1. Prerequisites

To start the bench, you need:

• a Porter board with AGL-2.0 image installed,

• a 3.5" Jack headset, or loudspeaker plugged to the Audio Out jack connector,

• a set of sound files to be played (some samples are provided below),

4.2. Files deployed on target

The routing PulseAudio module is implemented by those following files:

File path Description

/etc/pulse/pulseaudio-agl.cfg Routing module configuration file

/usr/lib/pulse-6.0/modules/agl-audio-plugin.so Routing module shared object

We also provides two sound sample file to perform further tests. Once logged on the
Porter board, you can get them:

cd /home/root
wget http://iot.bzh/download/public/2016/medias/celtic_irish.mp3
wget http://iot.bzh/download/public/2016/medias/Phone_Ringing.wav

4.3. Launch PulseAudio server in debug mode

In AGL-2.0, the routing module is not loaded by default, and the PulseAudio
configuration is kept with default configuration files. For the next steps, we propose to
prepare the environment with a single system instance of the PulseAudio server with
its logs visible in the console.

Also, PulseAudio server can be launched on-demand when clients require a sound
session: this is a feature implemented in libpulse, and transparently available to
applications. To clarify the following steps, we will disable the autospawn feature.

Version 1.0 September 2016 – 11 / 17 –

AGL/Phase 2 - Pulse Audio Routing Module - Developer
Documentation

First, we can disable all PulseAudio servers:

rm -Rf /home/root/.config/systemd/user/*
echo "autospawn = no" >> /etc/pulse/client.conf
pulseaudio --kill

We can confirm that no more daemon is running by using:

ps x | grep pulseaudio
 2121 pts/2 S+ 0:00 grep pulse
#

Or by trying to play sound:

aplay Phone_Ringing.wav
ALSA lib /ssd/agl2016-sept/build/tmp/work/cortexa15hf-vfp-neon-poky-linux-
gnueabi/alsa-plugins/1.0.29-r0/alsa-plugins-1.0.29/pulse/pulse.c:243:
(pulse_connect) PulseAudio: Unable to connect: Connection refused

aplay: main:730: audio open error: Connection refused
#

Now, we can launch a single instance using:

/usr/bin/pulseaudio --daemonize=no -v --log-target=stderr \
--exit-idle-time=3600 --log-time
(0.000| 0.000) W: [pulseaudio] main.c: This program is not intended to be
run as root (unless --system is specified).
(0.000| 0.000) I: [pulseaudio] core-util.c: Successfully gained nice level
-11.
(0.000| 0.000) I: [pulseaudio] main.c: This is PulseAudio 6.0
(0.000| 0.000) I: [pulseaudio] main.c: Page size is 4096 bytes
(0.000| 0.000) I: [pulseaudio] main.c: Machine ID is
d28ff6cd7f154f35a75cd72acdf5d1d0.
[snip]
(0.134| 0.000) I: [pulseaudio] main.c: Daemon startup complete.

If the last line "Daemon startup complete" appears, it means everything is now ready
for the next steps. We can confirm functional state, by playing a sound. Using a new
terminal window, let's connect to the Porter board and launch a playback client:

aplay Phone_Ringing.wav
Playing WAVE 'Phone_Ringing.wav' : Signed 16 bit Little Endian, Rate 44100 Hz,
Stereo
#

Version 1.0 September 2016 – 12 / 17 –

AGL/Phase 2 - Pulse Audio Routing Module - Developer
Documentation

4.4. Load the routing module

Enter the following command to load the routing module:

pactl load-module agl-audio-plugin
17
#

If we look at the PulseAudio terminal, we can see the logs resulting of the plugin load:

[snip]
(500.163| 250.686) I: [pulseaudio] client.c: Created 3 "Native client (UNIX
socket client)"
(500.164| 0.000) I: [pulseaudio] protocol-native.c: Got credentials: uid=0
gid=0 success=1
(500.166| 0.002) E: [pulseaudio] module.c: Initializing "pulseaudio-agl"
module
(500.166| 0.000) E: [pulseaudio] module.c: cfgdir : /etc/pulse
(500.166| 0.000) E: [pulseaudio] module.c: cfgfile : pulseaudio-agl.cfg
(500.167| 0.000) I: [pulseaudio] config.c: parsing configuration file
'/etc/pulse/pulseaudio-agl.cfg'
Key : alsa_input.platform-sound.6.(null)@analog-input
Key : alsa_output.platform-sound.6.analog-stereo@analog-output
Key : alsa_output.platform-sound.6.analog-stereo@analog-output
Key : alsa_input.platform-sound.6.analog-stereo@analog-input
(500.168| 0.001) I: [pulseaudio] module.c: Loaded "agl-audio-plugin" (index:
#17; argument: "").
(500.168| 0.000) I: [pulseaudio] client.c: Freed 3 "pactl"
(500.169| 0.000) I: [pulseaudio] protocol-native.c: Connection died.
[snip]

Now, we can play a sound which will be handled by the routing module. For example,
we can start a stream with an “application type” set to “navi” class by using:

PULSE_PROP='media.role=navi' \
gst-launch-1.0 playbin uri=file:///home/root/celtic_irish.mp3

Version 1.0 September 2016 – 13 / 17 –

AGL/Phase 2 - Pulse Audio Routing Module - Developer
Documentation

4.5. Launch multiple stream with different priorities

To illustrate the priority handling mechanism, we can launch two different streams
with different priorities. The table below summarize default priority map as defined in
the configuration file:

Stream class Priority

event 5

phone 4

navi 2

radio 1

music 1

Test 1: A stream is played and a new one with higher priority stream is launched:

For this test, we will launch two instances of gstreamer, with the first stream
associated to the “navi” class (priority 2) and the second stream associated to the
“event” class (priority 5).

Step 1: Start stream priority 2

PULSE_PROP='media.role=navi' \
gst-launch-1.0 playbin uri=file:///home/root/celtic_irish.mp3 &

Step 2: Start stream priority 5

PULSE_PROP='media.role=event' \
gst-launch-1.0 playbin uri=file:///home/root/Phone_Ringing.wav

Results: New high priority stream mutes the lower one.

Test 2: A stream is played and a new one with lower priority stream is launched:

For this test, we will launch two instances of gstreamer, with the first stream
associated to the “navi” class (priority 2) and the second stream associated to the
“radio” class (priority 1).

Step 1: Start stream priority 2

PULSE_PROP='media.role=navi' \
gst-launch-1.0 playbin uri=file:///home/root/celtic_irish.mp3 &

Version 1.0 September 2016 – 14 / 17 –

AGL/Phase 2 - Pulse Audio Routing Module - Developer
Documentation

Step 2: Start stream priority 1

PULSE_PROP='media.role=radio' \
gst-launch-1.0 playbin uri=file:///home/root/Phone_Ringing.wav

Results: New low priority stream mutes the lower one.

Version 1.0 September 2016 – 15 / 17 –

AGL/Phase 2 - Pulse Audio Routing Module - Developer
Documentation

5. Sample clients

In the routing module, the stream classification is based on the “media.role”
PulseAudio property. This property is not related to a particular client, but can be
passed to audio application which use the libpulse library. The library will look for
“PULSE_PROP” environment variable, and will append its value to the streams
properties.

5.1. AlsaPlayer client

Here is an example of the property setup for GStreamer client:

PULSE_PROP='media.role=radio' \
gst-launch-1.0 playbin uri=file:///home/root/Phone_Ringing.wav

5.2. GStreamer client

Here is an example of the property setup for GStreamer pulsesink client:

gst-launch-1.0 playbin uri=file:///home/root/celtic_irish.mp3 \
audio-sink="pulsesink stream-properties=props,media.role=navi"

Version 1.0 September 2016 – 16 / 17 –

AGL/Phase 2 - Pulse Audio Routing Module - Developer
Documentation

6. Externals references

[1] Murphy Pulseaudio module for IVI

https://github.com/otcshare/pulseaudio-module-murphy-ivi

[2] PulseAudio module API
https://freedesktop.org/wiki/Software/PulseAudio/Documentation/Developer/Module API /

[3] PulseAudio routing module Yocto recipe in AGL

meta-agl/recipes-multimedia/pulseaudio/agl-audio-plugin_0.1.bb

[4] PulseAudio routing module for AGL source code
https://github.com/iotbzh/agl-audio-plugin.git

[5]: Murphy policy engine documentation
https://01.org/sites/default/files/documentation/audio-policy-configuration.pdf

Version 1.0 September 2016 – 17 / 17 –

https://01.org/sites/default/files/documentation/audio-policy-configuration.pdf
https://github.com/iotbzh/agl-audio-plugin.git
https://git.automotivelinux.org/gerrit/gitweb?p=AGL/meta-agl.git;a=blob;f=meta-agl/recipes-multimedia/pulseaudio/agl-audio-plugin_0.1.bb;h=8e19b91c11b65da8b98660fb91088fd15f49ebef;hb=refs/heads/blowfish
https://freedesktop.org/wiki/Software/PulseAudio/Documentation/Developer/ModuleAPI/
https://freedesktop.org/wiki/Software/PulseAudio/Documentation/Developer/ModuleAPI/
https://freedesktop.org/wiki/Software/PulseAudio/Documentation/Developer/ModuleAPI/
https://github.com/otcshare/pulseaudio-module-murphy-ivi

	1. Introduction
	2. Linux Audio frameworks
	2.1. Advanced Linux Sound Architecture
	2.2. PulseAudio
	2.3. IVI systems requirements

	3. Audio routing module design
	3.1. Functional scope
	3.2. Plugin definitions
	3.3. Architecture overview
	3.4. Dynamic routing
	3.5. Source code repositories
	3.6. Known limitations

	4. Audio routing on Porter board
	4.1. Prerequisites
	4.2. Files deployed on target
	4.3. Launch PulseAudio server in debug mode
	4.4. Load the routing module
	4.5. Launch multiple stream with different priorities

	5. Sample clients
	5.1. AlsaPlayer client
	5.2. GStreamer client

	6. Externals references

