

OpenVMS wi th Apache,
and WASD

OSU,

This Page Intentionally Left Blank

OpenVMS with Apache,
and WASD

OSU,

Alan Winston

Digital PTess
An imprint of Elsevier Science
Amste rdam �9 Boston �9 London �9 N e w Y o r k . O x f o r d �9 Paris �9 San Diego
San Francisco �9 Singapore �9 Sydney �9 Tokyo

Digital Press is an imprint of Elsevier Science.

Copyright �9 2003 Alan Winston. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any
form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the
prior written permission of the publisher.

Recognizing the importance of preserving what has been written, Elsevier Science prints its
books on acid-free paper whenever possible.

Library of Congress Cataloging-in-Publication Data

A catalogue record for this book is available from the Library of Congress

ISBN 1-55558-264-8

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

The publisher offers special discounts on bulk orders of this book.
For information, please contact:

Manager of Special Sales
Elsevier Science
200 Wheeler Road
Burlington, MA 01803
Tel: 781-313-4700
Fax: 781-313 4882

For information on all Digital Press publications available, contact our World Wide Web home page
at: http://www.digitalpress.com or http://www.bh.com/digitalpress.

10 9 8 7 6 5 4 3 2 1

Printed in the United States of America

To Deborah, with love, for many reasons.

This Page Intentionally Left Blank

Contents

I n t r o d u c t i o n xi

W h y Run a W e b S e r v e r on VMS?

I. I VMS clustering
1.2 Reliability
1.3 Security
1.4 You already have it
1.5 Can VMS do what l need?

2 V M S and t h e W e b

2. I Beginnings
2.2 OSU
2.3 Apache
2.4 WASD and others

4

W e b O p t i o n s

3. I CSWS
3.2 OSU
3.3 WASD
3.4 Which should you use?

I n s t a l l a t i o n Issues

4.1
4.2

Preinstallation
Installation guides

9

9
II
12
13

15

15
19

vii

viii Contents

7

10

Basic Configurat ion and Server Control

5. I CSWS
5.2 OSU
5.3 WASD
5.4 Basic configuration
5.5 Starting and stopping
5.6 Command-line control
5.7 Web-based control

Encrypted/Secure Communications:
HTTPS Protocol Support

6. I HTTPS
6.2 Installation
6.3 Configuration

Managing Access to Your Server Resources

7. I Mapping resources
7.2 Authentication
7.3 Access controls

Providing User Personal Web Directories
8. I User directories: pro and con
8.2 Implementing userdirs

Mult ihosting and Mult ihoming

9. I Why multihosting?
9.2 Multihosting/multihoming configuration

Indexing and Searching Your Site

10.1 Why index?
10.2 VMSindex and Lynx Crawl
10.3 SWISH-E
10.4 HT://DIG

35

35
38
39
40
50
56
63

67

67
78
86

97

97
117
135

151
151
152

161

161
162

171

171
172
175
179

Contents ix

I I Cache and Proxy

I1.1 Cache and proxy
11.2 Cache management
11.3 Proxy management

12 Managing and Understanding Your Server Logs

12.1 Customizing your logging
12.2 Log-file formats and locations
12.3 Log-file rotation
12.4 Unavoidable ambiguities and user tracking
12.5 Error logs
12.6 Tools to interpret your logs

13 Dynamic Content: D i rectory Browsing and
Server-Side Includes

13.1 Directory browsing
13.2 Dynamic content with SSI
13.3 Configuring SSI
13.4 SSI directives

183

183
185
193

203

203
204
211
213
216
218

237

237
259
260
262

14 Running CGI Programs

14.1 CGI defined
14.2 Environment variables
14.3 Necessary HTTP headers
14.4 Configuration for CGI
14.5 CGI environment
14.6 Languages for CGI

15 RDB Database Access f rom CG! Scripts

15. I RDB Web Agent
15.2 Embedded RDO or SQL module language
15.3 Perl, DBI, and DBD::RDB
15.4 Python and the RDB plug-in
15.5 Java

281

281
284
293
293
296
306

313

313
315
315
322
323

I Contents

x Contents

16 Useful Freeware CGI Scripts
16.1 Serving VMS MAIL files
16.2 Sending mail from forms
16.3 System management functions
16.4 Presenting documentation

17 High-Performance Scripting Options
17. I Issues
17.2 Options
17.3 Conclusion

325

325
327
329
330

333

333
335
348

18 User-Edited Web Pages
18. I File-naming standards
18.2 File layout
18.3 Alternatives to FTP

349

349
350
351

19 User-Developed CGI Scripts
19. I CSWS/Apache
19 .20SU
19.3 WASD

355

356
356
361

Appendix A: Perl

Appendix B: P y t h o n

Appendix C: PHP

Appendix D: Apache

Appendix E: Annotated Sample Configuration Files

363

369

375

379

383

Index 4 3 9

Introduction

This book is intended for people considering running a Web server on an
OpenVMS system. This includes OpenVMS hobbyists, professional system
administrators, and software developers working on VMS systems. My
assumption is that readers are already somewhat familiar with VMS systems
and may or may not have any exposure to UNIX/LINUX, Web servers, or
freeware tools originating in the UNIX/LINUX world. Although I will
endeavor not to make the text unnecessarily confusing for the VMS neo-
phyte, I am not including a VMS primer; that would make the book both
unwieldy and tedious.

The goal of this book is to provide a detailed introduction to the VMS-
based Web servers under current active development. The reader may
expect to learn the features and capabilities of those Web servers, and gain
an understanding of the issues common to all three (and, in some cases, to
all Web server installations). The capability-oriented organization of the
book will also assist in conversions from one server to another by showing
the differences and similarities in the ways the servers address the same
issues.

All three servers covered run from text-based configuration files.
Although I touch on GUI-based configuration tools from time to time,
generally I simply show the text files. This will more clearly represent what's
actually going on in each file, as well as making it easier to compare the con-
figurations of the three servers. In many chapters, a narrative section on the
main topic is followed by example excerpts from the configuration files for
each server. The annotated example configurations in the appendices
should also help to make the meanings and differences clear.

The exigencies of formatting for book publication may have resulted in
some of the examples wrapping at the wrong places. Be wary of this.

This Page Intentionally Left Blank

I
Why Run a Web Server on VMS?

I . I

To ask the question posed by the title of this chapter is, in effect, nearly the
same as asking "Why should I buy a book about running a Web server on
VMS?" So if you're standing in the aisle at a bookstore trying to make up
your mind, read on. The answers are different depending on whether you're
considering starting up a huge Web-based enterprise from scratch, looking
to add Web access to the data you already have, or running a hobbyist site.
If you're starting up a huge Web-based enterprise, you might want to show
this chapter to your management.

The reasons to choose VMS as a Web platform if you're starting from
scratch include reliability, availability, stability, scalability, security, and ease
of administration, all of which boil down to VMS and VMS clustering
technology. Clusters were invented for VMS and have been available on
that operating system since the 1980s. Other operating systems are starting
to catch up, but VMS clustering capability continues to be developed and
will probably retain its technological lead for some time to come.

VMS clustering

If you absolutely, positively must have access to your data all the time, you
can get that capability with VMS-based computers. With VMS cluster
technology and shareable RAID storage, multiple systems can access your
databases or plain files simultaneously, with access arbitrated at a fine-
grained level by the distributed lock manager. If you're set up with volume
shadowing, losing a physical disk still leaves you with an on-line copy of the
information. Losing a system just distributes the load over the other systems
in the cluster. If you're really on the high end, you can do clustering over
dedicated wide area network links and have your data centers miles apart; in
this instance, losing a data center will just distribute the load over your
other data centers. (This is the "disaster-tolerant" configuration.)

2 1.3 Security

1.2

1.3

You don't need to reserve a system as the "backup" server; you can load-
balance over all your cluster member systems and get full use from your
hardware investment. Your cluster doesn't have to come down altogether
when you do an operating system upgrade; "rolling upgrades" are sup-
ported, which let you shut down and upgrade one system at a time. The
cluster can share user authorization files, configuration files, and so on,
enabling the system manager to manage dozens of systems with little more
effort than it takes to manage a single one.

Clustering is very scalable. In a well-designed cluster, if the load is get-
ting too big for the existing systems, you can buy another system, configure
it as a cluster member, and have it start taking its share of the load, all with-
out ever having to suffer an outage. Even a small cluster with three nodes
can give high availability; you never have to go down altogether for operat-
ing system upgrades, and a single hardware failure won't take you off the air.
Because you still have two systems remaining, you can fix the failed system
and bring it back online, again without having a visible outage.

Reliability
VMS has had more than 20 years of development targeted at environments
in which reliability is very important. It runs chip foundries, factories, rail-
road switch yards, banks, cell phone billing, laboratories, and hospitals,
environments in which computer availability is mission critical.

VMS was designed, rather than just growing or being patched together,
and the design has rarely been compromised by, say, having to support
existing Windows applications, or by putting graphics display code into the
kernel where it Can crash the system. It doesn't crash by itself, absent hard-
ware failures or really serious misconfiguration. User-mode code doesn't
usually require recompilation to run on later operating system releases;
VMS 1.0 binaries still work on VAXes running 7.2.

Security
The culture in VMS engineering is such that you just don't do things like
taking input into a buffer without checking the length of the input, which
is something that has caused UNIX systems untold problems and is the
enabling problem for the famous Code Red virus on Windows systems.
Even if you did write a program that allowed user input to overrun a buffer,
your process would blow up when it got outside its own memory area,
rather than having a chance to compromise the OS itself.

1.5 Can VMS dowhat l need? 3

1 .4

1 .5

This feature makes VMS less vulnerable to compromise from outside
than other popular systems. Even if sendmail ran on it, it wouldn't be vul-
nerable to the famous sendmail bug, in which overflowing an unchecked
buffer with specific values gave the attacker the ability to execute arbitrary
code. But sendmail doesn't run on VMS and neither do many other well-
known vulnerable applications. The VMS separation of program and data
space means that arbitrary code can't overwrite the stack and execute, but
buffer overflows can still occur~especially in software ported from UNIX.
VMS does a good job of containing the damage.

The bright side of Digital Equipment Corporation's failure to market
VMS effectively in the 1990s is that most of the bad guys are unfamiliar
with it. You can find cookbook instructions on the Web for cracking Win-
dows and UNIX systems, but those don't exist for modern versions of VMS.
(I wouldn't ordinarily try to sell "security-through-obscurity," but this
obscurity comes in addition to a robust security model with a fine-grained
privilege structure that's been built into VMS from the start.) A properly
administered VMS Web server isn't going to display any defaced pages.

There hasn't been a virus or worm that affected VMS since the famous
Morris worm of 1987, which knew how to exploit an unsecured DECnet
default account. Since then systems are locked down by default, rather than
getting installed wide open and requiring a system manager to close the
holes. VMS is a C2 rated operating system, following formal evaluation by
the NCSC.

You a l r e a d y have it

The other obvious reason to run a Web server on VMS is that you already
have VMS. Your departmental server is a VMS system, and you want to
Web-enable some of your applications, or you're a hobbyist with a home or
club server. You don't need to be sold on VMS; you already run it. This
book is also for you. If you have it, why bring in a security hazard such as a
Windows Web server, or a LINUX box you don't already know how to
manage? Why mess with expensive cross-platform middleware to get your
data to a Web server running on a different box?

Can V M S do w h a t I need?

That's the question this book is meant to answer. After some discussion of
the history of each currently supported Web server, we'll look at broad func-
tional questions, such as "How do I do X?" and give the answers for each

I Chapter I

4 i.5 Can VMS do what l need?

server. (On some servers, sometimes, the answer will be "You can't.") You
can compare your Web-service requirements with what's available on VMS
and decide for yourself whether VMS can do the job.

I hope you'll phrase questions in terms of functional requirements (e.g.,
"Can VMS provide dynamic database-driven pages?") rather than in terms
of specific products (e.g., "Can VMS run ColdFusion?") because, while the
capabilities are there, the fact that VMS is a minority platform means that
some of the specific commercial products aren't available. Often, open
source products that do the same things have been ported to VMS, so there
are ways to accomplish this.

The strategy of incorporating open source technology brings a nice ben-
efit: platform-independence. Apache, Perl, PHP, and Java are all platform-
independent technologies, which makes it easier to find experienced people
for Web development, allows easy porting of applications from UNIX sys-
tems, and allows bespoke development on low-cost platforms with deploy-
ment on VMS.

According to Macromedia, the next generation ColdFusion Server
("Neo") will rely on underlying Java technology for ColdFusion application
services. This will broaden the number of platforms that support Cold-
Fusion and opens the door to a potential VMS port in the future.

Halcyon Software has a Java-based implementation of ASP technology
called "Instant ASP" (iASP), which one of the CSWS developers got run-
ning in test under CSWS~this shows how Java technology is bringing
more capabilities to VMS.

At the time of writing, VMS Engineering is working on the DII COE
project, a Defense Department-mandated effort to bring a full Posix-com-
pliant UNIX environment to VMS. When this is complete, there will be
fewer barriers to porting commercial UNIX code to VMS. Maybe Cold
Fusion will run on VMS eventually. In the meantime, PHP does quite a
good job. Altogether, VMS provides a robust, secure, scalable environment,
with a good complement of tools available to meet your Web-service needs.

2
VMS and the Web

In a way, this chapter also answers the question "Why VMS?" A short
answer is "Because it was there from the start."

2. I Beginnings

m
n

I.

As you may well recall, Tim Bernars-Lee at CERN, the European high-
energy physics laboratory, invented the Web as a convenient means of shar-
ing high-energy physics information stored in different forms on diverse
servers. VMS systems were big players in the scientific community. (They'd
been preeminent in the middle 1980s, but the price/performance of RISC-
based UNIX workstations compared with that of the VAXes, which were
the only VMS platform at the time, meant that the price-sensitive and per-
formance-hungry scientific market was buying a lot of those as well.) So
CERN developed Web servers for UNIX, for IBM machines, and for VMS.

The Web uses the HyperText Transfer Protocol (HTTP), so a typical
name for a Web server is HTTPd, with the "d" standing for "daemon." (A
"daemon"~an essential concept on UNIX systems~is a program that runs
in the background, listening until it recognizes that it needs to do some-
thing, then doing it.) The first HTTPd was developed at CERN; and the
first non-European Web server was installed at SLAC 1 in December 1991
(running on an IBM mainframe). My site started running the CERN
HTTP server on VMS in 1993 (on a VAX 8700).

A basic Web server, one that just takes requests and serves files, isn't that
hard to write. The requirements begin to get exponentially more compli-
cated when the server needs to provide dynamic content in various ways;
when it needs to support encrypted communication; when it needs to han-
dle heavy loads gracefully; and when it needs to be robust and secure in the

www.slac.stanford.edu

6 2.3 Apache

2 . 2

2 . 3

face of hacking attempts and badly behaved browser software. The Web
actually started before the Internet went commercial, and the environment
for Web servers changed considerably when that happened.

CERN eventually needed to spend its money on the Large Hadron Col-
lider and ceased WWW software development after December 1994. (The
CERN server can still be found on the OpenVMS Freeware CD.) Various
computer science and physics sites had already developed browsers, includ-
ing SLAC; the National Center for Supercomputing Applications had
already developed Mosaic (whose developers went on to found Netscape)
and produced an NCSA HTTPd; but development on that product
stopped when the primary author, Rob McCool, left. NCSA HTTPd was
the most popular server on the Web, but Webmasters now had to develop
their own patches, changes, fixes, and enhancements without any coordina-
tion, and the program was wandering in different directions.

OSU

In 1994 came the first release of an excellent ffeeware server on VMS,
which I have used at my site since 1995: the Ohio State University
DECthreads HTTP server (OSU) written by David Jones. It has been
actively enhanced and maintained ever since.

Apache

In February 1995, a group of Webmasters "got together" via mailing list to
support the NCSA HTTPd product. They combined their patches and bug
fixes, and by April 1995 they made the first official public release of the
Apache server (version 0.6.2). Because of all the patches, it was "a patchy
server"--I'm afraid that's where the name came from.

The Webmasters developed a methodology for making changes to the
core, a method of "lazy consensus," in which no changes could be checked
into the archive without a number of "Yes" votes and an absence of "No"
votes. You got voting rights by being recognized as a useful contributor to
Apache development.

Using this methodology for working together, the Apache group started
improving the server. Version 0.7 involved various new features, but version
0.8 had a new server architecture incorporating features for speed (e.g.,
spinning off new processes before they were needed) and extensibility (e.g.,
a clearly defined application programming interface [API] and a modular

2.4 WASD and others 7

structure). After lots more work, Apache version 1.0 came out in December
1995, extensively tested, ported to lots of UNIX platforms, and adequately
documented. Within a year, it was the most popular server on the Web, and
it has held that leadership position since. Some 6 million sites run Apache,
including Amazon.com, Hewlett-Packard, the Financial Times, and the
English royal family (www.royal.gov.uk).

Apache runs on Linux, FreeBSD, on other UNIX variants, on Windows
NT, MacOS X, OS/2, and now on OpenVMS. Compaq, VMS's proprietor
at the time, created the Apache port. The current version is CSWS 1.2
(based on Apache 1.3.20, mod_ssl 2.8.4, and OpenSSL 0.9.5a). The
CSWS engineers are working with the Apache Software Foundation to get
their port checked in to the official CVS repository.

Apache 2.0, currently in test, is a rewritten server organized with the
platform-specific services isolated in the Apache run-time library (APR) and
multiprocessing modules (MPM). The rest of the code is platform-
independent. This should considerably simplify the process of porting 2.0
for a later release of CSWS.

2 . 4

m
m

2.
3.

W A S D and o t h e r s

In 1995 came the release of Process Software's Purveyor, a commercial Web
server for VMS. Support was dropped in 1999. (It can still be purchased on
an "as-is" basis or downloaded and run for free by hobbyists, but source
code is not available.) At this writing, the Multinet Web site 2 is still running
Purveyor, and Compaq's own site 3 didn't switch from Purveyor to Apache
until September 2001. This book doesn't cover Purveyor because it's unsup-
ported and not under active development; for the same reason I don't cover
the port ofNetscape FastTrack Server to VMS. (The retirement and end-of-
support date for FastTrack is December 31, 2001, on OpenVMS Alpha
V7.1-2 and June 30, 2002, for OpenVMS Alpha V7.2-1 and V7.2-2.) Also
in 1995, TGV (the company that originated Multinet) produced the Chee-
tah Web server but dropped it in 1997. VMS was not proving a profitable
market for commercial Web server software. It's not entirely clear that a
profitable market for Web server software exists anywhere, with the ubiqui-
tous availability of free alternatives. (I would have said "free high-quality
alternatives," but that wouldn't have covered IIS.) Figure 2.1 illustrates the
Web server timeline.

multinet.process.com
www.openvms.compaq.com

I Chapter 2

8 2.4 WASD and others

Hgure 2.1 Web server timeline.

In 1996 Mark Daniel in Australia came out with the first public release
of the WASD (initially HFRD) server, which had been working inside the
High Frequency Radar Division of the Defense Science and Technology
Organization for some 18 months before that. Both OSU and WASD were
adopted fairly widely and have grown user communities; both are still
under active development.

3
Web Options

At this stage in history, the real options for VMS Web serving are CSWS/
Apache, OSU, and WASD. (There are still some vocal adherents of Pur-
veyor from Process Software, but it doesn't really make much sense to start
any new project on a server that's neither Open Source nor supported, no
matter how solidly it works.) Here's an overview of what the three programs
offer.

3.1 CSWS

Compaq Secure Web Server (CSWS) is an official, Compaq-supported port
of Apache, the most popular Web server on the planet. It's available for
download from the OpenVMS Web page (www.openvms.compaq.com/
openvms/products/ips/apachelcsws.html). If you have a support contract
for VMS, you have support for Apache, so you can call in if you find bugs.
It comes as a PCSI kit and is extremely easy to install, delivering compiled
images that are ready to go, so you don't need to have a C compiler on your

"CSWS" system. (I will endeavor to use when referring to the VMS port in
particular, and "Apache" for how Apache generally works.)

The most widely used add-ons for Apache are probably mod_ssl,
FrontPage extensions, mod_php, and mod_perl. Compaq has ported
mod_ssl and mod_perl, created a supported port of Perl, created a new
module for OpenVMS user authorization, added a module that lets you run
CGI programs written for the OSU Web server, added mod_php in the 1.2
beta release, and added mod_rewrite as well. There are dozens of modules
available for Apache on other platforms; it's hoped that a VMS community
will develop around Apache/CSWS and port more of the modules. (I'd cer-
tainly like to see mod_python, since there's a VMS port of that scripting
language. There was a port of mod_python for an early version of Python.)
There is at present no port of the FrontPage extensions to VMS.

I0 3. I CSWS

Mod_include, the server-side include module, is part of the core, so CSWS
can do very full server-side includes that incorporate some scripting logic.
CSWS can run Java servlets (if Java's installed), and Compaq also makes
Tomcat/Jakarta, the Java application server, available on VMS. (Jakarta
won't be discussed in much detail in this book.)

Perl is the amazingly capable scripting/glue language that, in addition to a
lot of data manipulation and system management applications, turned out to
be perfect for Web programming through the Common Gateway Interface.
mod_perl embeds a persistent copy of the Perl interpreter into Apache, with
two good effects: When the server needs to process a Perl script, it doesn't
have to spend the time to fire up a separate process and load Perl from disk.
It can handle the request faster and with less overall system load. In addition,
it means that Apache can be extended with Perl modules, instead of being
limited to writing, compiling, and linking additional C modules. (The
mod_perl interface exposes enough of the Apache internal state to Perl that
Perl modules can be involved in Apache's internal processing.)

A Perl module such as Apache::ASP brings Active Server Pages function-
ality, developed for Microsoft's IIS, to Perl. mod_perl in CSWS 1.1 works
only with the version of Perl it was built with (5.5.3), which is not the most
up-to-date version; still, with some ingenuity you can use later versions of
Perl in CGI scripts but not with mod_perl. The CSW 1.2 has a
CSWS_PERL and mod_perl that use Perl 5.6.1, which is the most current
stable Perl version as this is written, although Perl development continues
apace. See Appendix A for more about Perl history and capability. PHP is
the PHP HyperText Processor, the most popular Web-templating language;
see Appendix C for more about PHP's history and capability.

There are more add-ons and modules for Apache than for any other
Web server, but they aren't supported by Compaq. Just because something
runs on UNIX or Windows Apache doesn't mean it will necessarily work on
VMS at all or without considerable porting effort, but it will probably be
easier to get something that exists working than to build something from
scratch. Some things that are fairly standard on UNIX Apaches (e.g., using
the Berkeley database manager for authentication files) aren't supported on
VMS; I'll point these instances out as we come to them.

The VMS Apache port runs only on Alpha, not on VAX. It requires
VMS 7.2-1 or higher. In order to maximize portability, the port doesn't rad-
ically change the Apache core very much. As a result, it doesn't really take
advantage of many of VMS's unique features~exceptions include that
processes use shared memory to communicate rather than keeping a score-

3.2 OSU II

3.2 OSU

board file on disk and the use of Galactic shared memory for SSL session
cache~and doesn't wring out the last possible bit of performance from the
hardware.

CSWS doesn't offer a Web-based administration tool. (There are a num-
ber of third-party add-ons that do this on UNIX.) Most configuration will
be done by editing the configuration file.

The Ohio State University DECthreads HTTP Server, developed by
David Jones, is available from http://kcgll.eng.ohio-state.edu/www/doc/
serverinfo.html. Jones also wrote a freeware secure shell server for VMS, the
first available SSH server on VMS as far as I know. (Multinet and TCPware
include SSH servers, but TCP/IP Services doesn't offer one, and no plans to
offer one have been announced so far.)

You can get OSU to run on VAX or Alpha with any version from 5.5-2
on up. (For versions of VMS higher than 7.2 you need to run OSU 3.6b or
higher. The current version as of this writing is OSU 3.9b, with 3.10alpha
in alpha test.) OSU uses threading to handle concurrent Web requests. If
you're running a multiprocessor box and a version of VMS recent enough to
handle kernel threads properly, you can take advantage of your CPU invest-
ment by automatically running different threads from the same image con-
currently on any available processor. (OSU is really good at exposing bugs
in VMS's threading implementation, and you may need to turn off kernel
threading in the server. Also, the threading model has changed a couple of
times, so if you're on an old-enough VMS version you may need to run an
old version of OSU.)

To communicate with CGI worker processes, OSU uses DECnet inter-
nally~that is, without going outside the server box. (There's a hack that
uses VMS mailboxes instead, but that isn't in common use and is really
intended only for testing.) Because of the DECnet method, the scripting
environment isn't completely standard, and scripts developed for other Web
servers often need a small DCL wrapper to work properly. (An exception is
made for Perl scripts; the environment sends the right stuff out on the
DECnet link and makes the necessary assignments before invoking Perl.)
OSU has some support for persistent scripting environments, ranging from
using DECnet tweaking to keep the script processes around a long time to a
special Webperl image to a High-Performance Script Server process pool
manager that accelerates compiled programs linked with the HPSS share-

I Chapter 3

12 3.3 WASD

3 .3

able image. This server can run Java servlets on an Alpha with Java installed.
OSU has also has very capable and flexible authentication and access con-
trol options.

OSU has no built-in SSL support; you have to build OpenSSL and then
create an SSL_ENGINE or SSL_TASK process that communicates with
OSU over DECnet, such as a CGI. (This is extremely finicky to set up but
works very solidly once it's going; it's discussed in greater detail in Chapter
6.) You definitely need a C compiler if you're going to have encrypted com-
munication support for OSU, and it's a good idea to have one anyway, as
there are enough combinations of operating system levels and VMS TCP]
IP products that it may be difficult to find a precompiled version of OSU
with everything you need.

OSU has very configurable and sophisticated file caching, which gives it
an advantage over serving pages just from disk. Some MicroVAX systems
serve hundreds of thousands of pages a month, and the cache can help con-
siderably in reducing the system load. Pulling something from memory is a
lot cheaper than pulling it from disk.

Documentation is somewhat sketchy. There are example configuration
files and some on-line documentation of what they mean, and some users
have put up documentation Web pages. Digital Press expects to release an
OSU manual in 2002. Quite a lot of server configuration can be done via a
Web form, although I prefer editing the configuration files, and most of my
examples will be in the form of edited configuration files.

Support is by volunteer effort on the VMS-WEB-DAEMON mailing
list. If you have a question or problem, you can raise it on the list and will
often get an answer back very promptly, day or night. (Some of the contrib-
utors are on different continents, so there's effectively 24ohour coverage.)
Jones himself reads the list and answers questions when he's available. I've
been using OSU since 1994 and have generally been very happy with it.

WASD

Mark Daniel developed WASD (then HFRD) for internal use at the High
Frequency Radar Division of the Defense Science and Technology Organi-
zation, and it was in use for some 18 months before being released to the
public. The High Frequency Radar Division of the Defense Science and
Technology Organization changed its name to Wide Area Surveillance
Division, so the package became WASD; later the division became Surveil-
lance Systems Division, but WASD was too well known to change to SSD,

3.4 Which should you use? 13

3 . 4

and it might have been too easily confused with the secure shell daemon
(SSHD). It's available from http://wasd.vsm.com.au. WASD runs on VAX
or Alpha.

The idea with WASD was to be a really good VMS-only server; Mark
Daniel says, "I suffered a bit of a VMS cringe when amongst my UNIX col-
leagues (VMS was and is perceived to be a bit slow and cumbersome), so I
have also endeavored to make WASD as fast and efficient as I could, avoid-
ing C run-time library and even RMS code layers where it was feasible and
worth it. I also wanted a similarly tight scripting environment and have
spent a lot of time honing this aspect."

Although everybody's usage varies, WASD seems to be the fastest server
available, getting as much performance as possible from the system. WASD
supports a number of scripting environments: standard CGI; CGIplus
(each with callouts that can request the server to perform certain functions
for the CGI and then resume processing); ISAPI (the fast application pro-
gram interface developed for Microsoft's IIS); a framework for a persistent
run-time environment that you can customize to make your own applica-
tion permanently available, and a Perl processor that takes advantage of this;
plus a CGIUTL utility that simplifies the job of DCL scripts. All of these
goodies are supplied with object code, but for customization you'll need a C
compiler. There's support for Java servlets on Alpha with Java installed, and
there's also an OSU compatibility mode. WASD also allows the execution
of DCL commands from within server-side include statements in HTML
code.

WASD offers server administration and some statistics via a Web form,
or you can edit the configuration file manually. To get SSL working you
install a separate kit, which includes the OpenSSL object libraries into the
WASD directory tree, and then run a script to link. You don't need to make
any source code changes. It is also possible to link WASD against the object
libraries of an existing OpenSSL installation. This is easier than OSU but
marginally harder than CSWS.

Which should you use?

The answer to the question "Which should I use?" is always "It depends." If
you're running on a VAX, CSWS isn't an option, so you'll need to choose
between OSU and WASD. If your Webmaster already understands Apache,
use CSWS. If you need to squeeze out the last bit of performance, use
WASD. If your site policies won't let you use software without a support

I Chapter 3

14 3.4 Which should you use?

contract, use CSWS (or go to a third-party provider of OSU or WASD sup-
port). If you're not afraid of compiling source code and want a very stable
server with a knowledgeable user base, use OSU. If being "industry stan-
dard" matters to you~being able to buy O'Reilly handbooks, Durnmy's
Guides, and so on--go with CSWS, but be prepared to find out that the
stuff they document isn't in the VMS version, or at least be prepared to have
to figure out file names and the like. If you don't have a C compiler, don't
use OSU. If you're stuck on a less-current version of VMS (such as the very
stable 6.2 or 6.2-1H 1), Apache is out of the picture.

In most cases, everything will matter somewhat to you, so you're going
to have to prioritize (i.e., figure out what matters most or how much to
weight each factor). All of these servers are available for flee, so you do have
the comforting option of downloading each one and trying it out, seeing
how well it works in your environment, and finding out which one you find
most congenial to maintain. You can even run them all at once, on different
TCP/IP ports, serving the same or different documents.

4
Installation Issues

Before making a decision about which Web server to choose for your pro-
duction server, I strongly encourage you to install at least one and play with
it. (You could qualify or disqualify Web servers based on the information in
this book, but you still shouldn't make a final decision without a real evalu-
ation in your own environment. If you're a hobbyist with a home setup, you
don't have to do a full-scale evaluation, or at least you don't have to persuade
your management that you made the right decision. However, you still need
to go through some preinstallation process to give yourself the best chance
of a successful installation. Some of the advice I give here, as in the rest of
this book, is more relevant for some readers than for others.

After working through the steps in this chapter, you should have a run-
ning copy of the Web server of your choice, which you can then refine and
configure more fully following the advice in subsequent chapters.

4.1 P r e i n s t a l l a t i o n

4 . I . I V M S v e r s i o n

CSWS requires at least version 7.2-1 of OpenVMS on Alpha to run. OSU
will work back to VMS 5.5-2 on VAX; WASD goes back pretty far as well.
(Version 7.2-1 of WASD included special code to enable PERSONA func-
tionality on VMS 6.0 and 6.1; this wasn't provided with the OS until ver-
sion 6.2.)

The caution with the OSU DECthreads Server is that it was extremely
good at exposing thread bugs; you don't get kernel threads (threads as inde-
pendently scheduleable entities within a process that can be run simulta-
neously on different processors in an symmetric multiprocessing system)
that work right until sometime in the version 7 timeframe. OpenVMS 7.1
introduced kernel threads. OpenVMS 7.2-1 brought persona-based security

15

16 4. I Preinstallation

4 .1 .2

profiles to kernel threads. (The absence of these resulted in some baroque
complications in OSU and WASD. Prior to 7.2-1 kernel threads shared a
common security profile.) Therefore, if you have an SMP system and want
OSU to work it as hard as possible, you'd better get a recent VMS release.
As I write, OSU is at 3.10alpha (that's "three.ten," which followed 3.9c); if
you're on a version of VMS earlier than 7.2, you can't use higher than 3.6,
but all versions back to the first are available on the OSU Web site (and can
be browsed through Dave Jones's targazer script or downloaded as entire
archives).

If you're running OSU you need a C compiler. (You can download pre-
compiled object files for WASD and link them on your system.) You should
get a C compiler anyway if you want to be able to build any other tools. If
you have VAX C, get DEC C (now Compaq C). Your VAX C license will
work for DEC C, and it's a much better and more standard compiler; it will
make your life much, much easier when you go to build other packages. If
you're on a VMS version before 6.2, you should download and install the
"Backport" C library from Compaq; this will also make your development
life easier. A C license is included in the hobbyist and educational layered
products license; commercial users can buy single-user C licenses for less
than $1,000.

TCPIIP sof tware

Because VMS was developed before the broad spread of TCP/IP software,
TCP/IP is an add-on to the operating system rather than an integrated
component. Third parties developed TCP/IP for VMS before Digital did,
and Digital's offering (originally UCX for "Ultrix Connection") was for a
long time really inferior to the third-party products. Process Software was
the original developer of TCPware, and they are now also the owners and
maintainers of Multinet, first sold by TGV, then by Cisco when Cisco
acquired TGV (apparently to get the expertise of the designers rather than
the product), and finally by Process. (Wollongong was a respectable TCP/
IP package for VMS, but it was eventually sold to Attachmate, which let it
wither, and now it's a dead product.) There was also a Carnegie-Mellon
freeware package, but it doesn't seem to be maintained now; in any case,
Process and Compaq both provide free hobbyist licenses for their software,
so few people have any interest in the CMU-IP package any longer. As far
as I can tell, it never worked on Alpha anyway. Version 5 of the UCX pack-
age, renamed "TCP/IP Services for VMS," is considerably more useful and
robust than the earlier versions; much of it is a port from the Tru-64
UNIX IP components. With version 5, TCP/IP Services becomes a serious

4. I Preinstallation 17

4 .1 .3

option for heavy-duty IP use (although I'm told UCX 4.2 was pretty ade-
quate).

Now the three realistic options for IP software are Multinet and TCP-
ware from Process and TCP/IP Services (UCX) from Compaq. If you buy a
new server, you'll probably get a license bundle that includes UCX as well as
VMS. If you're a hobbyist user, you can get a free hobbyist license for any of
the three. New features for Multinet and TCPware are usually developed
together; Process writes newer stuff, such as their IMAP server, so that it'll
be compatible with either one. There's no longer a significant difference in
robustness among the three packages, so if you're picking an IP package ab
initio, you'll have to compare on cost and features. Multinet includes an
SSH (Secure Shell~essentially encrypted Telnet) server; UCX doesn't, and
Compaq has announced no plans to support one. UCX already has support
for IPv6, the next-generation Internet; Process doesn't plan to introduce
such support until customers ask for it, and so on.

The good news is that they all work pretty well for Web service. CSWS
is written to work with UCX, but the developers are also working with
Process to make sure it runs on Multinet and TCPware. (For CSWS you
need to run at least Multinet 4.3 with patches; 4.4 will be out by the time
this book is published, and that should work with CSWS out of the box.)
One minor gotcha with the UCX 5 transition is that logical names begin-
ning with UCX$, such as UCXSDEVICE, got changed to TCPIPSwhat-
ever, and the UCX compatibility in Multinet at least didn't get updated in
time, so you need to define the TCPIP$ names yourself, at least in Multi-
net 4.3.

Disk space

If you're contemplating doing any serious Web serving, you're probably pre-
pared to devote a few gigabytes of disk to it, unless you're on an old micro-
VAX system where the amount of disk you can support is pretty limited. I'll
note the sizes of files in the installation dialogs. If you're developing an e-
commerce application, you should be thinking about cluster-attached stor-
age, or even storage area network, and that should get you into terabytes of
storage, so the amount of space the software takes up won't be a question.

If you expect to get really substantial traffic, you want your executables
and configuration files on a disk that is neither the system disk (where the
CSWS installation will put it by default) nor a disk with files that you'll be
serving; ideally, they should be on a controller different from either. The
system disk is typically the most heavily loaded disk in the system (espe-

I Chapter 4

18 4. I Preinstallation

4 . 1 . 4

cially if your page files are located there), and working from the same disk as
your data files means that you'll be in contention with yourself and shut-
tling the disk heads around. It's not that big an issue for the main executable
image of the Web server, since that will typically get loaded into memory on
startup and stay memory resident throughout, requiring no more disk
access, but it may be significant when you spin up new processes to execute
CGIs. This isn't worth worrying about for low-traffic hobbyists, but it defi-
nitely matters for high-traffic, performance-intensive sites. For those sites,
you might want to consider putting configuration and log files on RAM
disks (shadowed to real disk so you don't lose the data upon system crash).
(The benefit of the RAM disk is considerably reduced if it's accessed via
MSCP by multiple cluster members in separate boxes, but if you have a
large Galaxy system and put the disk in Galactic shared memory, it can be a
big win.)

However, if you just want to know whether you have enough disk space
to play with this stuff at all, I can say that my Apache installation is about
17 MB, Compaq's Perl is about 20 MB, and Compaq's PHP is about 3 MB.
WASD is about 33 MB, including about 5 MB of excellent documentation.
OSU is about 12.5 MB total. Perl, from the Perlbuild kit which comes
with many useful built-in modules that Compaq's Perl doesn't offer~takes
up about 60 MB. Python takes up about 43 MB. (Of course, you'll need
more than the installed space available, since you've got to have room for a
compressed archive~ZIP file or SFX_EXE~and its expansion at the same
time, but not necessarily on the same disk.) Basically, 40 MB free should be
good enough to install any of the Web servers in a minimal configuration,
and 100 MB will let you install most other tools. Even at hobbyist prices
you ought to be able to devote a 1-gig drive to your server installation, and
that'll be more than you need, strictly speaking (although less than you
want, since they don't make fast 1-gig drives).

N e t w o r k issues

If you're running a departmental system that you want to make accessible to
the world at large--the situation at my laboratory~you need to talk to
your sitewide network administrators. They may have a firewall up that will
block access from offsite, which pretty much defeats the purpose of having a
Web server. VMS has an enviable security record, and if you're a competent
system manager you should be able to make a case to have them poke a hole
in the firewall for your system or systems. Sometimes they are unwilling to
open the standard Web ports (port 80 for HTTP, 443 for HTTPS) but will
leave higher ports (8000 or 8080 for HTTP, 8443 for HTTPS) open; you

4.2 Installation guides 19

can work with that if you know what ports are available. It's much better to
use the standard Web ports if you can.

If your site runs scans on port 80 all over the internal network to make
sure nobody's running a vulnerable Microsoft IIS server, they'll find your
VMS system. Therefore, you should definitely talk to site security people
before you start the project; otherwise, you'll be talking to them after
they've found your "rogue" server, and you'll start from a disadvantage.

If you're running a home system over DSL and don't have a nice DNS
name, you can get usable ones for free in the domains owned by dyndns.org
just by signing up with them. This will also leave your system locatable in
the event you have to change DSL providers, since your numeric IP address
is just about guaranteed to change under those conditions. The dyndns.org
service is intended for people who want to run servers and don't even have a
static numeric IP address, but you can use it even if your IP address doesn't
change from boot to boot. hudson.dyndns.info (my server) is a much nicer
name than anything your DSL provider will give you by default. Actually, I
registered three names: hudson.dyndns.info, alanwinston.homeip.net, and,
my favorite, vms.kicks-ass.net. In later examples I'll show how I provide dif-
ferent content depending on with which name you reach my system.

You can start your installation and testing before making your system
visible to the outside world, and it's probably a good idea to do so---one less
thing to worry about. However, in some environments it can take months
to get firewall changes approved, so you should at least start this process in
parallel with installation and configuration. If you give your network people
a heads-up as early as possible, it may make them feel more collegial.

If you're intending to run a high-traffic Web site, you may want to look
at co-location facilities, multiple high-bandwidth pipes to the Internet, off-
loading the most heavily hit content to Akamai, using a specialized Web
cache device from Inktomi, and so on. I won't go into detail here because
these are issues with high-traffic Web sites, not issues with VMS-based Web
sites.

4.2 Installation guides

4 . 2 . I D o w n l o a d s

I've generally used Mozilla 0.9.4-0.9.8 to download kits for this book. The
browser runs pretty well on VMS. There are some problems with it, how-
ever. You may find yourself compelled to use a PC, Mac, or UNIX browser

I Chapter 4

20 4.2 Installation guides

4 . 2 . 2

to get the files inside your firewall, and then FTP to get the kits onto your
VMS system. If you do this, remember to use binary (or image) mode to
transfer the files to VMS; ASCII mode will mess up the kits beyond easy
repair.

CSWS

There are separate kits for CSWS Apache, Perl, mod_perl, mod_java, and
PHE You can get the kits from the CSWS home pages, at http://
www.openvms.compaq.com/products/ips/apache/csws.html. (Perl is a sepa-
rate and prerequisite kit from mod_perl; PHP and mod_php come in the
same kit.) While you'll see mod_jserv up on the site, you don't want i t~ th is
has been superseded by mod_java (Jakarta), which adds Java Server pages to
the server-side Java capability provided by mod_jserv.

The files you download are self-extracting compressed archive files; you
run them to create a PCSI install kit. You can download the self-extracting
kit with any name you like; it will still (by default) extract the expanded kit
with the name PCSI needs to see. These were the kits for version 1.2 beta;
as you can see, I downloaded the PHP with a shorter name. The names you
see with a different version will be different (Note: directory output is
rewrapped to fit on the page.)

$ dir

Directory DKB0 �9 [CSWS_KITS]

CPQ-AXPVMS-CSWS-TOIO2--I.PCSI-DCX-AXPEXE;I
14382/14382 17-DEC-2001 09:21:15.50 (RWED, RWED,RE,)

CPQ-AXPVMS-CSWS_JAVA-VOIOO--I.PCSI-DCX-AXPEXE;I
10501/10503 17-DEC-2001 00:04:34.86 (RWED,RWED,RE,)

CPQ-AXPVMS-CSWS_PERL-T0101--I.PCSI-DCX-AXPEXE;I
2507/2508 16-DEC-2001 23:59:38.74 (RWED,RWED,RE,)

CPQ-AXPVMS-PERL-T0506-1-I.PCSI-DCX-AXPEXE;I
19158/19158 16-DEC-2001 23:57:09.82 (RWED,RWED,RE,)

csws_php_pcsi.exe;l
2994/2994 16-DEC-2001 23:55:29.10 (RWED,RWED,RE,)

Total of 5 files, 49542/49545 blocks.

To decompress one of these ~ts, run it.

$
$! Decompressing the downloaded self-extracting executable.
$
$ run CPQ-AXPVMS-CSWS-TOIO2--I.PCSI-DCX-AXPEXE;I

4.2 Installation guides 21

FTSV DCX auto-extractable compressed file for OpenVMS (AXP)
FTSV V3.0 -- FTSV$DCX_AXP_AUTO_EXTRACT
Copyright (c) Digital Equipment Corp. 1993

Options: [output_file_specification
[input_file_specification]]

The decompressor needs to know the file name to use for the decom-
pressed file. If you don't specify any, it will use the original name of the file
before it was compressed and create it in the current directory. If you specify
a directory name, the file will be created in that directory. Decompress into
(file specification):

Opening and checking compressed file...
Decompressing (press Ctrl-T to watch the evolution)...
Creating decompressed file...
Original file specification: ROOT$:[APACHE.KIT]CPQ-AXPVMS-
CSWS-T0102--I.PCSI;I
Decompressed file specification: DKB0:[CSWS_KITS]CPQ-
AXPVMS-CSWS-T0102--I.PCSI;I
Successful decompression, decompression report follows:
File Size: 14381.07 Blocks, 7190.53 Kbytes, 7363107 bytes
Decompression ratio is 1 to 1.60 (60.43 % expansion)
Elapsed CPU time- 0 00-00-03.95
Elapsed time : 0 00:00-05.44
Speed : 254329.83 Blocks/min, 127164.91 Kbytes/min,
2170281.25 bytes/sec

And you can see here that a larger file has been created.

$ dir

Directory DKB0 : [CSWS_KITS]
CPQ-AXPVMS-CSWS-T0102--I. PCSI ; 1
23072/23073 17-OCT-2001 17:41:14.54 (RWED,RWED,RE,)

CPQ-AXPVMS-CSWS-T0102 -- 1. PCSI-DCX-AXPEXE; 1
14382/14382 17-DEC-2001 09:21:15.50 (RWED,RWED,RE,)

CPQ-AXPVMS-CSWS_JAVA-V0100-- 1. PCS I-DCX-AXPEXE; 1
10501/10503 17-DEC-2001 00:04:34.86 (RWED,RWED,RE,)

CPQ-AXPVMS-CSWS_PERL-T010 i-- 1. PCSI-DCX-AXPEXE; 1
2507/2508 16-DEC-2001 23:59:38.74 (RWED,RWED,RE,)

CPQ-AXPVMS-PERL-T0506- i- 1. PCSI-DCX-AXPEXE; 1
19158/19158 16-DEC-2001 23:57:09.82 (RWED,RWED,RE,)

csws_php_pcsi, exe ; 1
2994/2994 16-DEC-2001 23:55:29.10 (RWED,RWED,RE,)

Total of 6 files, 72614/72618 blocks.
$

I Chapter 4

22 4.2 Installation guides

Under certain circumstances on ODS-5 disks, the PCSI kit will be cre-
ated with a name in lowercase letters. PCSI can't deal with that, so you need
to rename the kit to uppercase, with

$ RENAME whatever-the-kit-is.pcsi WHATEVER-THE-KIT-IS.PCSI

If you want to install the bare server, you can do it now; I'd expect you'd
rather install all the kits. To have the mod_perl installation work, you need
to install Perl first.

$ product install perl /source=dkb0: [csws_kits] -
_$ /destination=dkb0- [compaq_perl]

After a successful installation, you need to define some logicals so that
the next install can find where Perl is. (I recommend installing Craig Berry's
prebuilt Perl kit even if you're going to run mod_perl, because it has a lot of
useful modules that have had their VMS compilation issues sorted out, and
you can install them into the Compaq Perl tree. At the moment Compaq's
Perl and this one are the same version [5.6.1], but there'll likely be a pre-
build for 5.8 before Compaq gets its own out; the 5.6.1 prebuild was more
than a year ahead of Compaq's. Anyway, if you've already got the prebuilt
Perl up, you probably have definitions for PERL_ROOT and PERLSHR
that point to it, so you need to overwrite them.)

$ define/job/translation=concealed PERL_ROOT -
dkb0 : [compaq__perl. PERL5_006_01.]
$ define/job PERLSHR PERL_ROOT: [000000]PERLSHR.EXE

You need to define these logicals in some way that will propagate to other
processes. A plain define won't be seen in the process that PCSI creates.

$ define/job

will be visible to all the subprocesses. You could also do

$ define/system

but if you have a systemwide definition for the prebuilt Perl, this will wipe
that out.

$ define/job

will work without breaking anything else.

You can certainly install one product at a time, like this:

$ product install csws /source=dkb0: [csws_kits] -
_$ /destination=dkb0-[apache$common]

4.2 Installation guides 23

But there's little reason not to do them all together. Leave out any you
don't want to use. You need to have Java installed and configured if you're
going to install CSWS_JAVA; you can get it from http:l/www.compaq.com/
java/download/index.html.

$product install csws, csws_java, csws_perl, csws_php
_$ / source=dkb0 : [csws_kits]
-$ /destination=dkb0 : [000000]

The following products have been selected:
CPQ AXPVMS CSWS TI.2 Layered Product
CPQ AXPVMS CSWS_JAVA VI. 0 Layered Product
CPQ AXPVMS CSWS_PERL TI.I Layered Product
CPQ AXPVMS CSWS_PHP TI. 0 Layered Product

This will install all the products at once.

After that you need to run APACHE$CONFIG to get Apache running
at all. It will create an account/user name for the server to run under.

$ @sys$manager: apache$config

Compaq Secure Web Server VI.I for OpenVMS Alpha
[based on Apache]

This procedure helps you define the parameters and the operating envi-
ronment required to run the Compaq Secure Web Server on this system.

[Creating OpenVMS username "APACHE$WWW"]
[Starting
HUDSON$DKB0 : [APACHE$COMMON. APACHE] APACHE$ADDUSER. COM]

You will be prompted for a name that goes in the owner field of the
APACHESWWW account, a password for the account, and a UIC
[group,member] number for the account. Pick a group that doesn't have
other user names already established in it, since that could cause unexpected
results (e.g., the server being able to serve files owned by those other users
who have G:RE protection). Servers are usually given the first unused
group, starting at [377,*] and working down. Do not go below SYSGEN
parameter MAXSYSGROUP (since members of such groups automatically
get system access.)

Other questions include whether you want to define the system-
wide logical names APACHE$SPECIFIC, APACHE$COMMON, and
APACHESROOT. (You probably do, unless you have some unusual
requirement to run multiple instances of Apache~not just multiple proc-

I Chapter 4

24 4.2 Installation guides

esses, but multiple instances~which isn't even required to run multiple vir-
tual hosts on multiple IP addresses.)

You'll also be asked whether to enable MOD_SSL and whether to spec-
ify any command-line arguments for the server. (This is useful for mildly
tricky stuff such as testing configuration files or making temporary changes
with defines, but you probably don't need to do it in the permanent con-
figuration.)

Add

@SYS$STARTUP �9 apache$startup

to your systartup_vms.com and

@sys$startup : apacheS shutdown

to your syshutdwn.com files so that Apache will start on system boot. If
you're going to run MOD_PERL and don't have a DEFINE/SYSTEM of
PERL_ROOT and PERLSHR that'll point to the right Perl image, go to
the Apache login directory and add

$ define~job~translation=concealed PERL_ROOT -

dkb0 : [compaq_perl. PERL5_006_01.]
$ define/job PERLSHR PERL ROOT- [000000]PERLSHR.EXE

to the LOGIN.COM file there.

To start Apache "by hand" now, do

$ @SYS$STARTUP" APACHE$STARTUP

Run

@SYS SMANAGER : APACHE $JAKARTA_CONFIG

to configure Jakarta (CSWS_JAVA). By default, Jakarta runs as SYSTEM,
but you should make it run as APACHE$WWW; so pick Option 1 from
the configuration menu.

Enter the OpenVMS account name for Jakarta (Tomcat)

[SYSTEM] �9 apache$www

Set the owner of the Java files to apache$www. Look in SYS$MAN-
AGER:SYLOGIN.COM to make sure that you don't run

$ SET TERMINAL/INQUIRE

on any but interactive processes, since this will fail when Jakarta starts.

4.2 Installation guides 25

$ @SYS$STARTUP. APACHE$JAKARTA_STARTUP

will start Jakarta; you can add that or a slight variant

$ file �9 = SYS$STARTUP-APACHE$JAKARTA_STARTUP.COM

$ if f$search(.... file'") .nes. "" then @'file'

to

SYS$MANAGER- SYSTARTUP_VMS. COM,

and similarly add

$ file �9 = SYS$STARTUP'APACHESJAKARTA_SHUTDOWN.COM

$ if f$search(.... file'") .nes. "" then @'file'

tO

SYSSMANAGER- SYSHUTDWN. COM

Figure 4.1 The default Apache startup page.

I Chapter 4

26 4.2 Installation guides

Point your browser to HTTP://yourhost.yourdomain.tld/ and you
should see the standard Apache startup page, as shown in Figure 4.1.

HTTP://yourhost.yourdomain.tld:8080/should show the Tomcat star-
tup page, as shown in Figure 4.2.

Edit

APACHE$COMMON : [CONF] HTTPD. CONF

and look for the "include" lines for the mod_ssl, mod_perl, and mod_php
configurations (assuming that you chose to install them). The installation
should have automatically inserted them at the bottom of the file. (Later,

Figure 4.2 The default Tomcat~Jakarta startup page.

4.2 Installation guides 27

you'll be happier if you've moved the mod_ssl include up near the top.) If
they're not there, insert them.

You can now test the mod_perl configuration by pointing your browser
to this test page: http://yourserver.yourdomain.tld/perllperl_rules.pl. See
Figure 4.3.

Similarly, to determine whether or not mod_php is working, look at
http:l/yourserver.yourdomain.tld/php/php_rules.pl. See Figure 4.4.

You should now have a working CSWS/Apache server, although all it
will serve right now is the Apache documentation set. If you have an exist-
ing set of files you want to serve, you can edit H T T P D . C O N F and add

DocumentRoot "/deviceorlogicalname/directoryname"

to point there, but make sure Apache$WWW can read them.

Figure 4.3 The mod_perl test page.

I Chapter 4

28 4.2 Installation guides

Figure 4.4

4 . 2 . 3

The mod_php test page.

OSU

These directions are suggested by, but enhanced and somewhat reorganized
from, Brian Reed's directions at http://www.iron.net/www/userguide/
index.html.

Download the server as a .ZIP or .TAR file from http://kcgll.eng.ohio-
state.edu/www/doc/serverinfo.html. (You can get UNZIP and TAR2VMS
from the freeware CD, either using the copy that's distributed with operat-
ing system distributions or from the OpenVMS home page, http://
www.openvms.compaq.com/ffeeware.) I use ZIP, but that's a personal pref-
erence. Put the ZIP file in the root directory in which you want to install
the server software. I've made that DKB0:[OSU].

4.2 Installation guides 29

$ dir

Directory DKB0- [OSU]

HTTP_SERVER_3-10 . ZIP
2549/2550 5-FEB-2002 03:07:35.32 (RWED,RWED,RE,)

Total of 1 file, 2549/2550 blocks.

$ unzip "-V" http_server_3-10.ZIP

(The "-V" option retains whatever version numbers the files were zipped
up with, rather than making all the files version 1. This doesn't make a lot
of real difference.) ZIP will create and populate a set of subdirectories to
your root directory; these are [.BASE_CODE], [.BIN], [.CGI-BIN],
[.FORK_CODE], [.JAVA_CODE], [.PROXY_CODE], [.PVBIN],
[.SCRIPT_CODE], [.SERVERDOC], [.SYSOSF], and [.SYSTEM]. Con-
figuration files and server executables typically live in [.SYSTEM], sources
for distribution-provided CGI programs and CGI infrastructure in
[.SCRIPT_CODE], and CGI programs in [.BIN].

To build the server image (which requires a C compiler), choose a name
based on which IP software you're running

$ SET DEFAULT [.BASE_CODE]

and then the appropriate one of

$ @BUILD_MULTINET ! for MULTINET
$ @BUILD_TCPWARE [for TCP
$ @BUILD_UCXTCP ! for UCX or TCP/IP Services
$ @BUILD_TWGTCP [for Pathway (Wollongong, then Attachmate)
$ @BUILD_CMUTCP ! for CMU TCP/IP

Move over to [-.SCRIPT_CODE] and execute

$ @BUILD_SCRI PTS_t cpip-name

Before you can run the server, you need to create a server account and set
up some DECnet proxies. (It's actually possible to run the server interac-
tively out of a user account, but that isn't a good long-term approach. It's
also possible to run it without DECnet, but the author of the software
doesn't recommend it; the MBXnet protocol [communicating via mail-
boxes] is included only for testing purposes.)

To create the account, do

$ SET DEFAULT SYS$SYSTEM ! not necessary if SYSUAF is
defined.

I Chapter 4

30 4.2 Installation guides

$ RUN AUTHORIZE ! or AUTHORIZE if DCL$PATH includes

SYS$SYSTEM

UAF>ADD HTTP_SERVER -

/DEVICE=disk_you_gut_the_directory_on -

/DIRECTORY=[OSU]/PASSWORD=make_up_a_password -

/FILLM=I8/BIOLM=I8/PRCLM=I5/DIOLM=I8 -

/ASTLM=20/BYTLM=32000/JTQUOTA=4096 -

/WSDEF=2000/WSQUO=4000/WSEXTENT=32767 -

/PGFLQUO=I50000 -

/PRIV=(TMP MBX,NET MBX)/DEFPRIV=(TMP MBX,NET MBX)

UAF>

The account doesn't have to be named HTTP_SERVER. On VAX, if
the SYSGEN parameter VIRTUALPAGECNT is smaller than the/PGFL-
QUO qualifier, the server will only get VIRTUALPAGECNT pages, so you
may need to edit MODPARAMS.DAT to increase VIRTUALPAGECNT
and run AUTOGEN to make it take effect. If the various PQL_Mxxxx
working set parameters (which define the minimum working set quotas for
processes) are larger than those you've specified, the values from
PQL_Mxxxx will be used rather than those from the UAE

If you're not running DECnet, you'll have to start it and may need to
install it. On VMS versions prior to 6, the command was

@SYS$STARTUP:STARTNET

For more recent versions, see the documentation. Note that you have to
start DECnet Phase IV before you start an IP product, because it changes
the hardware address of your Ethernet card, which it can't do after the IP
software is already using it. So if you're not already running DECnet, you'll
need to reboot. A complete DECnet installation and management guide is
outside the scope of this book.

Because OSU uses DECnet to communicate with the processes that run
CGI scripts and because SYSTEM needs to be able to tell it to start, you
need to define some DECnet proxies. If you've never defined a DECnet
proxy before, you'll need to create the proxy file.

UAF> CREATE/PROXY

Now you can add the proxies:

UAF>ADD/PROXY 0 : :http httD/DEFAULT

UAF>ADD/PROXY 0 : : system http

(0 is DECnet shorthand for the current system, so this enables password-
less login from the HTTP account on this system to itself, and from the
SYSTEM account to itself. If your proxy file is shared clusterwide, the 0::

4.2 Installation guides 31

notation means that the same proxies are defined on each system, whereas
if you included a node name, you'd be defining proxies from that node to
each system.)

On really old DECnet Phase IV systems, you may need to tell DECnet
that you've updated the proxy file. This shouldn't hurt, in any case.

$MCR NCP SET KNOWN PROXIES ALL

At this stage, you can download Brian Reed's TEST_SERVER.COM
and run it to see whether your configuration is basically okay, but it's not an
essential part of the installation or startup. Get it from http://www.iron.net/
www/userguide/test_server.com. Before you start it up, make sure
HTTP_STARTUECOM is readable by the server account, either via W:RE
protection, an Access Control List entry, or making OSU the owner of the

Figure 4.5 OS U default page.

I Chapter 4

32 4.2 Installation guides

4 . 2 . 4

file. (If you've been editing in the SYSTEM account, you may end up with
SYSTEM owning the file even though you think it's something else.)

You can also just start it up:

$ @device : [directory. SYSTEM] HTTP_STARTUP account-name

(While the rest of this could be done from any suitably privileged account,
this must be done from the SYSTEM account, or at least from an account
that has a proxy to the server account.) The startup will define the/SYS-
TEM logicals WWW_ROOT and WWW_SYSTEM.

If DECnet is configured to allow it, you should now have a running
OSU server. You can add the startup command to your system configura-
tion. There isn't a Web server shutdown command file to include in
SYSHUTDWN. Point a browser at your server and you should see some-
thing similar to the page shown in Figure 4.5.

WASD

Go to the WASD download page (http://wasd.vsm.com.au/wasd/) and pick
your nearest mirror site. Download the zipped WASD kit, currently
HTROOT_721.ZIP (for a full kit including both VAX and Alpha object
files); there's a beta of version 8 out already. If you want SSL support, you
can get precompiled binaries of current OpenSSL objects as
WASDOPENSSL096C_AXP.ZIP (or WASDOPENSSL096C_VAX.ZIP).
Put the zip files in a handy directory, say [WASD].

$ UNZIP "-V" HTROOT_721
$ UNZIP "-V" WASDOPENSSL096C_AXP. ZIP

This creates the [.HT_ROOT] subdirectory, with the whole tree under-
neath it. (You can promote this to a root directory by RENAMing

$device_name- [WASD] HT_ROOT.DIR Sdevice_name : [000000]

but you don't have to do that.

$ SET DEFAULT [.HT_ROOT]
$ @INSTALL ! no SSL support

Or

$ @INSTALL SSL [SSL support

This will ask you if you want to compile and link or just link the pro-
vided objects. (I always feel better about compiling, since I then have some
independent confirmation that [1] the sources provided actually do compile

4.2 Installation guides 33

and [2] there are probably no poorly concealed backdoors in the software.
Although, in fact, I rarely take the time to desk-check thousands of lines of
code for possible bad behavior, I feel fairly confident with a well-known
package that someone other than the developer will have looked at the code
at some point. In the course of writing this book, I've looked at a lot of
surce code and not found any trapdoors.)

At any rate, if this is a new install of WASD, the install script creates all
the executables and then runs the server (from the account you're installing
from); if all goes well, you can see the server test page on port 7080.

It runs in PROMISCUOUS mode, a mode basically intended just for
these circumstances. It will accept any user=name/password combination

Figure 4.6 The WASD testpage.

I Chapter 4

34 4.2 Installation guides

for authentication in this mode. Hit CTRL-Y when you've checked out the
server using a browser. Then the procedure will create an HTTP$SERVER
account; you'll need to provide a UIC. As I mention in the OSU install, this
should be a group without any other users (so you don't get any unexpected
results from GROUP:RE protection) and of a higher number than the SYS-
GEN parameter MAXSYSGROUP, since anything with a lower number
than MAXSYSGROUP has implicit system privilege.

Make sure that the HTTP$SERVER account has access to its own files.
You can get it running (in a very minimal mode) with

$ DEFINE HT_ROOT /TRANSLATION=CONCEALED -

device_name : [WASD. HT_ROOT.]
$ @HT_ROOT- [LOCAL] STARTUP

This will start the Server (on port 80, by default); and you can again use
the browser. Without being configured to give access to anything, it'll give
an "ERROR 403 - Access denied, by default." message, and serve the error
pages.

You now have a working WASD server. Point a browser at your server
and you should see something like Figure 4.6.

If you've followed the instructions here, you now have a working server,
whether it's CSWS, OSU, or WASD. In the next chapter, you'll learn how
to read and understand the configuration files and to start and stop the
servers; we'll then take the first steps toward making these servers actually
serve useful content.

S
Basic Configuration and Server Control

S . I

Ultimately, the configurations of each of the VMS Web servers come down
to a few text files. In this chapter we'll discuss the file names and locations
for each server, and, more important, give an overview of the underlying
concepts and structure of each file. This will be vital in understanding the
configuration file excerpts given as examples throughout the rest of the
book. We'll also discuss some of the most basic configuration directives, the
ones that tell the servers what ports to listen to, where to find the files to
serve, and how to redirect browsers to the right location for content that has
moved. Finally, we'll discuss command-line control and Web-based control
for each server.

Simultaneous with or after reading this chapter, I suggest browsing
through the annotated sample configuration files in the appendices. This
chapter plus the annotated sample files can give you a quick start in getting
a server up to play with.

CSWS

The main CSWS configuration file is HTTPD.CONF, usually found in
APACHE$COMMON:[CONF]HTTPD.CONE There are other files in
APACHE$COMMON:[CONF]. (If you're looking at an Apache book for
UNIX, it will tell you that you can specify a different location for the con-
figuration files as a command-line argument when starting Apache. That's
not an available option under VMS, and APACHE$COMMON is a sensi-
ble location anyway. Apache books will also tell you about various third-
party Apache configuration tools, but they won't work with VMS either.)

Individual modules (mod_perl, mod_ssl, mod_php) have their own con-
figuration files, which are referenced from HTTPD.CONF with include
statements. HTTPD.CONF-DIST has the completely uncustomized

35

36 5. I CSWS

default configuration file. HTTPD.CONF-DIST-NW (NetWare) and
HTTPD.CONF-DIST-WIN (Windows) can be safely ignored on VMS.
ACCESS.CONF-DIST and SRM.CONF-DIST can also be ignored; these
are prototypes for files whose functionality is better put in HTTPD.CONE
HIGHPERFORMANCE.CONF-DIST has some configuration hints that
work on UNIX and don't work on VMS~is there a/dev/null on your sys-
tem? MAGIC. is a data file for MOD_MAGIC, which enables the Web
server to guess the appropriate file type for an unknown file based on the
"magic numbers" at the beginning of the file~or would, if MOD_MAGIC
were supported on VMS. You're better off making sure files have appropri-
ate names and using MIME types. The MIME.TYPES file provides a
default mapping of file extensions to MIME types; you can add more either
by editing MIME.TYPES or by using the AddType directive in
HTTPD.CONF--al though Compaq recommends using AddType because
MIME.TYPES is repaced with each upgrade. (To shorten all this, the only
supplied configuration files you need to worry about are HTTPD.CONF,
MOD_PERL.CONF, MOD_PHECONF, and MOD_SSL.CONE)

HTTPD.CONF has server-level directives, which affect the whole
server, and container directives, which affect only the things contained in
them. (You can also scatter per-directory configuration and authentication
information out in files in the relevant directories, which you have to be
careful not to serve out to the world.) Container directives look a bit like
HTML code, with a tag to start them and another one to finish. It's worth
mentioning here that the directives in Apache/CSWS are case-sensitive;
those in OSU and WASD typically are not.

The general form is"

<Container conditions>
directives that apply to this container
</Container>

The directives are Limit, LimitExcept, Directory, DirectoryMatch,

Files, FilesMatch, Location, LocationMatch, and VirtualHost. The
Limit, LimitExcept, Files, and FilesMatch directives c a n be nested
inside other container directives.

Di rec to ry lets you specify either a directory or a wildcard-matched
series of directories to which the commands inside will apply; D i rec to ry -
Match does the same but uses regular expressions which are emphatically
not the wildcards VMS users are used to--to specify directories that can
match.

5. I CSWS 37

<Directory /$diskl/stuff/*>
order allows deny
deny from all
allow from 127.0.0.i
</Directory>

F i i es, as you'd guess, lets you specify either a file or a wildcard-matched
series of files to which the commands inside will apply; F i l esMatch does
the same with a regular expression.

Loca t ion is similar to Di rec to ry , exceptwith URLs rather than physi-
cal directory names; the directives inside are applied before the server maps
the URL into a directory, and Locat ionMatch is a version of Loca t ion
that uses regular expressions.

Limi t is about HTTP methods and is mostly used to grant or restrict
access to particular groups. If you want to allow someone at a particular
node to PUT (upload) Web pages into a directory, you can do:

<Limit PUT>
order deny, allow
deny from all
allow from the-ip-address-you-like
</Limit>

which disallows everybody except the ip-address-you-like and then allows
that one. (But if you want to use it to disallow all methods, you need to
exhaustively list all methods, including any custom ones.) To put a restric-
tion on all but a few methods without listing them exhaustively, use himi t -
Except; the following directive says that you have to be an authenticated
user to do anything but GET.

<Limi tExcept GET>
require valid-user
< / LimitExcept>

You'll see a lot of container directives throughout the book, so I won't
give you examples of them all now.

CSWS can also take instructions from files distributed throughout the
document tree; .htaccess files (the typical UNIX dot-file format for configu-
rations) allow restrictions on access and specifying options for automatically
generated directory listings. CSWS can also use different password files to
secure different parts of the document tree and these can be located in dif-
ferent places.

I Chapter 5

38 5.2 OSU

5.2 OSU

The OSU configuration files as delivered look pretty confusing. They're
actually designed to run through a preprocessor in the server to generate the
full configuration file. The reason for this is that the server has come with a
Web-based configuration aid for many years, and that configuration aid
requires this preprocessor format. You can use the Web-based administra-
tion tool, you can hand-edit the files with preprocessor stuff in them, and
you can stick nonpreprocessor directives into the config file along with the
preprocessor directives.

Most experienced users of the OSU server edit their configuration files
by hand. The config files live in the [.SYSTEM] subdirectory of the Web
server directory. Preprocessor code looks like this:

�9 ITERATE Welcome $welcome_file

.NEXT index.html

�9 NEXT welcome, html

.NEXT index.htmlx

The preprocessor iterates from the . ITERATE command through all the
�9 NEXTS, each time plugging the actual parameter into the placeholder in the
iterate statement. This ends up translated as

Welcome index.html

Welcome welcome, html

Welcome index, htmlx

(That particular command specifies what files to look for in each direc-
tory when the URL specifies the directory but does not specify a file, serv-
ing the first one found. If index.html, welcome.html, and index.htmlx all
exist, index.html will get served, but if index.html doesn't exist, wel-
come.html will get served. You can, of course, specify .htm files as well, if
your users are all using PC-based HTML editors. You could also just type in
this translation directly.)

.DEFINE $placeholder parameter

works like a C preprocessor macro, more or less--further appearances of the
placeholder in . EXV~D commands will be replaced by the parameter.

.EXPAND $placeholder [$placeholder2 ...]

Most of my examples will have the expanded directives, not the preproc-
essor code.

5.3 WASD 39

5.3

The config files that come with OSU and are enabled by default are
HTTP_MAIN.CONF (the main file), HTTP_SUFFIXES.CONF (MIME
types and in some cases presentation scripts), HTTP_PATHS.CONF
(URL path to directory path translation and access control), and
HTTP_MANAGE.CONF (configuration for both the Web-based and
command-line server management interfaces). HTTP_SCRIPTS.CONF
specifies how scripts in different virtual directories are run,
HTTP_DIRECTORY configures the MST-based directory browser (the
thing that generates clickable listings of directories that don't have a wel-
come file in them), FASTCGI.CONF configures the optional FASTCGI
script execution environment, ISAPI.CONF configures the ISAPI script
execution environment, and WWWJEXEC.CONf configures the Java exe-
cution environment.

Additional configuration files are .PROT files (which specify access con-
trols and are invoked in the HTTP_PATHS.CONF file) and files that
allow tuning of automatically-generated directory listings. In my configura-
tion the .PROT files are in the server root directory, not in the document
tree, but actually they can be placed anywhere the server account has read
access to. Some additional configuration can be done through the use of
logical names, and a little bit more~mostly setting log file levels~can be
done from a command-line utility after server startup.

WASD

WASD's configuration files typically look like this:

[DirectiveName]
stuff to do with that directive
more stuff to do with that directive

[SomeOtherDirectiveName]

Or

[DirectiveName] Attribute

or

[[SchemeServiceName]]

or

[[SchemeServiceName : Port]]

when configuring virtual services.

I Chapter 5

40 5.4 Basic configuration

5 . 4

The configuration files you get out of the box are HTTPD$CON-
FIG.CONF (essential serverwide configuration information);
HTTPDSAUTH.CONF (info relating to authorization and authentica-
tion); HTTPDSMAP.CONF (mapping URLs to file names, mostly); and
HTTPDSMSG.CONF, which allows you to specify values for server-gener-
ated messages in different languages. (If you're aiming only at English
speakers, you'll generally leave this one alone.)

You can also define an HTTPD$SERVICE.CONF, which lets you con-
figure different services in more detail than you can in the HTTPD$CON-
FIG.CONE HTTPD$SERVICE.CONF typically looks like this:

[[SchemeServiceNamel : Port]]
attribute
attribute
[Directive] attribute
[Directive] attribute
[[SchemeServiceName2]]
attribute
attribute
[Directive] attribute
[Directive] attribute

Some configuration can be done by setting systemwide logical names.
Some can also be done from the command line at server startup, and there's
also a GUI administration utility. (Note that the GUI administrator was
somewhat broken in 7.2-1, but is fixed in the advance copy of 7.2-2 1 was
given, and will surely be working in version 8, which is likely to be out by
the time this book is published. If you have 7.2-1 and want to use Web-
based server administration, you should upgrade.)

Basic configuration

Basic configuration elements include ways to tell the server what TCP/IP
port to listen on, where to find your document tree or trees, what host
name the server should consider itself to be running on, and how to bring
in or block out additional document trees.

5 . 4 . I P o r t s a n d h o s t n a m e s

The default port for the HTTP transport is 80; for the HTTPS transport it
is 443. If you are an unprivileged user and want to run a Web server pro-
cess, you can't use ports below 1024, so may need to use 8000, 8001, or
8443. (Even if you're a privileged user, if your site has port 80 blocked at the

5.4 Basic configuration 41

firewall, you may need to use a higher-numbered port.) If you're doing a
test installation and don't want to mess up the existing installation, you may
need some other port than the default. It is, nonetheless, preferable to use
80 and 443 if you can. You can also set your servers up to listen on multiple
ports, so if you have an old port 8001 installation you can run on port 80 as
well but not lose people who have port 8001 bookmarked.

You'd think you wouldn't need to tell a server what its name was, but it's
helpful in constructing self-referential URLs and e-mail addresses for
server administrators, as seen in error messages. It's rarely the case that the
server has only one name in the DNS; most people want the server to
respond to yourhost.yourdomain.tld and www.yourdomain.tld. If you're
running in a cluster with a cluster alias, you want to be sure to use the clus-
ter alias rather than the individual system's name so that the requests you
generate can be satisfied by the least busy cluster member, rather than
keeping the user tied to the same system even if it's busy or becomes
unavailable. So, trust me, you want a host name. (This chapter is on basic
configuration; if you want to have multiple hosts with different names on
your server, refer to Chapter 9.)

In CSWS, the relevant directives are in HTTPD.CONF and
MOD_SSL.CONE

ServerName server, domain, tld
Port port-number
Listen [ip-address-]port-number

(Listen directives are cumulative; there's one in HTTPD.CONF for the
HTTP port and another one in MOD_SSL.CONF for the HTTPS port
[or ports].) While the Listen directive, as the name suggests, tells the server
what port(s) to listen for, the Port directive says what port to use in con-
structing self-referential external URLs, as, for example, in filling out
HREFs that are specified relative to the current document.

In OSU, the host-name command is hostname.

hostname server.domain, tld

Until version 3.10alpha there were only two ports supported~the
cached port and the noncached port. (The noncached port could be handy
in viewing changes to documents as soon as the changes have been made,
rather than waiting for a cache sweep to find that the document had been
updated. However, it's the port that ended up being used for HTTPS sup-
port, which just adds to the overhead of HTTPS on OSU.) With 3.10alpha
you can have up to eight ports in play at once, and you can run HTTPS on
a cached port for better performance.

I Chapter 5

42 5.4 Basic configuration

You can specify the ports you want listened to in the
HTTPD_MAIN.CONF file, although these can be overridden by putting
different values in the server startup command. In the file, put

port cached-port[/[+] [:] [scheme]] [noncached-port [/[+] [:]scheme]]

By default, this looks like:

port 80 443

Add additional port commands to add more ports. The second one on a
line will always be a noncached port. If, for some reason I can't currently
imagine, you want to specify more noncached ports than cached ports, you
can respecify one of the cached ports and OSU will recognize and ignore
the duplication.

port 8000 8001
port 8000 8002

If you just give a bare port number, OSU defaults to running HTTP on
it, not HTTPS, unless it's 443. OSU notices whether the port is the stan-
dard port for that protocol or not, and marks it if it isn't, but you can also
save it the trouble by marking it yourself with a '" (This matters because it
tells the server whether to include the port number in self-referential
URLs.) You can give it a plus sign to indicate that keep-alives are supported
in the protocol, which is by default true for HTTP and false for HTTPS. A
whole-hog full specification of standard and variant ports, including a
cached variant HTTPS port, would look like this:

port 80/+http
port 443/https
port 8001/+:http
port 8443/:https

In the 3.10 alpha release, there's no easy way to actually get the ports in
the configuration file honored; the ports specified as arguments to
HTTP_STARTUP will override the first two ports in the configuration file,
and if you leave those arguments blank, HTTP_STARTUP will substitute
defaults for them. You may be able to finesse this by defining
WWW_SERVER_PORTS to make the port list yourself.

(The problem is that if these are privileged ports~value less than
1024~OSU won't have the privilege to allocate them itself and needs SYS-
TEM to do it in the startup, but SYSTEM doesn't read the OSU config files
so doesn't know about them.) This should be sorted out by the time 3.10
becomes the production version. As I read the source code, the rule-file

5.4 Basic configuration 43

parser will also substitute the value of a logical name or global symbol at the
time of startup, so if you wanted to you could put

port MY_WEIRD_PORT_SPEC

in HTTP MAIN.CONF and then do

$ DEFINE /SYSTEM MY_WEIRD_PORT_SPEC "8444/: https"

before starting or restarting the server and get that value substituted. It
seems to me that this feature would rarely be valuable, and it is definitely
not what you'd consider basic configuration.

When you start the server with the HTTP_STARTUP command proce-
dure, there are six parameters: the name of the server account (e.g.,
HTTP_SERVER); the name of the startup log file (as distinct from the
access log; this is where any configuration errors will be reported); the name
of the main configuration file (typically http_main.conf); the cached port
(typically 80); the no-cache port (typically 443); and the value for
WWW_SYSTEM, where all the files will be found. Values specified for
ports in the HTTP_STARTUP invocation take precedence over values in
the config file.

For basic configuration in WASD, these questions are all handled in the
[Services] directive in HTTPD$CONFIG.CONE For more advanced
configurations, you can use a separate file in HTTPD$SERVICE.CONE

[Services]
[scheme :] node-name or numeric ip [: portnumber I *]

Scheme defaults to HTTP:, port defaults to 80 for HTTP or 445 for
HTTPS, so this looks like:

[Services]

server, domain, tld
https : / / server, domain, tld

for default ports, and looks like

server, domain, tld: 8001

https �9 //server.domain. tld: 8443

for nonstandard ports.

The first service you list will be the "standard" name for the server
(although this can be overridden by service in virtual service configuration).
You may want to do the following:

1 Chapter 5

44 5.4 Basic configuration

5 .4 .2

[Services]

www. server, domain, tld

https : //www. server, domain, tld

server, domain, tld-

https : / / server, domain, tld

if you want the server name to show up with the "www" included. An
important note if you do not want the server to run on port 80 is that it's
possible to wildcard everything in a service definition; a simple '*' as the
server name will result in your having a service that's bound to port 80
unless you explicitly specify something else. If you don't specify any services,
WASD will start up listening on port 80.

D o c u m e n t t rees and index files

In general, you're likely to have one document tree where a lot of your
H T M L documents can be found along with other stuff scattered over your
file system, some of which you want to serve out and most of which you
don't. It all has to be mappable by a URL whose document part starts with
"/". (URLs, "uniform" or "universal" resource locators, are supposed to be
platform independent, but they are, in fact, extremely reminiscent of the
UNIX file system.) As you may know, everything in UNIX (including
devices) is a file, and everything is in a single file system depending from
"/". "/dev" is the directory that is actually devices. Disk-based file structures
can be mounted into the file system at different places. There's no difference
in how you specify a directory or subdirectory or file; they're all files. VMS
people are used to device-logical:[directory.subdirectory]file.type (e.g.,
S D I S K I : [W A S D . H T _ R O O T . L O C A L] H T T P D $ C O N F I G . C O N F) , but
for all of the Web servers you need to get used to making the mental trans-
lation into/device-logical or Irooted-logicalldirectory/subdirectory/file.type
(or, in extreme cases, such as the Apache log files, "/file_type").

My first advice is to do yourself a favor. Define a rooted logical that
specifies the base Web directory you want to use, and do all the definitions
in terms of that logical. (That way you can move it to another disk later, or
even make it a search list and use multiple disks, without having to recon-
figure the Web server.)

$ DEFINE $WEB $DISKI: [WEB.]/SYSTEM/EXEC/TRANSLATION=CONCEALED
$ DEFINE $WEB_ROOT $WEB: [ROOT]

You'll also need to tell the server which file to display if the URL speci-
fies a directory but not a file. (If it ends in a slash, it specifies a directory; if
it doesn't end in a slash, it still might specify a directory.) Should it display
an INDEX.HTML, a W E L C O M E . H T M L , or what? (Although we won't

5.4 Basic configuration 45

talk about server-side includes until a later chapter, there are reasonable
grounds for including .SHTML and .HTMLX files--files containing
server-side includes--in the list.)

CSWS defines the default Web document directory as
apacheSroot:[htdocs] and places the Apache documentation in there as
well. I think it's less confusing to separate your site documents from the
Apache docs, but you still want to be able to reach them.

Here's the changes to HTTPD$CONF to serve your own files from the
Web_root directory tree and still be able to reach the Apache documents.

DocumentRoot /$Web_root/ # or /$diskl/Web/root/

<Directory "/$Web_root">
Options Indexes MultiViews
Allow0verride None
Order allow, deny
Allow from all

</Directory>

DirectoryIndex index.html index.shtml welcome.html index.htm welcome.htm

(That Di rec toryIndex command means that whenever Apache gets a
directory specification, it will search in order for index.html, index.shtml,
welcome.html, index.htm, and welcome.htm, displaying the first one of
those it finds. If you're expecting to serve up mostly PC-created files, you
might want to put the index.htm [and welcome.htm files, if you'll allow
that] first in the list, since putting the likeliest ones first will save processing
time.)

By changing the document root you've made Apache unable to find the
cute file-type icons it uses for automatically generated directory browsing,
so you'll want to fix that as well as making the documents available.

The Alias directive is

Alias URLstring directory-or-file-name

Here's what to put into HTTPD.CONF:

Alias /icons/ "/apache$root/icons/"
Alias /docs/ "/apache$common/htdocs/manual/"

<Directory "/apache$root/icons">
Options Indexes
Allow0verride None
Order allow, deny
Allow from all

I Chapter 5

46 5.4 Basic configuration

</Directory>
<Directory "/apache$common/htdocs">

Options Indexes MultiViews
Allow0verride None
Order allow, deny
Allow from all

</Directory>

(You need the Directory containers to tell Apache that it's permitted to
serve the contents of these directories; I'll explain this in detail in Chapter 7.)

In OSU, you set the equivalent of the root directory with the Pass com-
mand. These go in the HTTP_PATHS.CONF file. (Pass combines trans-
muting the URL component and giving access to the file, assuming the
server itself has access; the similar map command transmutes the URL file
component but doesn't give access.)

pass url-file-component (wildcard permitted) translated-value

pass / /$Web_root/index.html # or whatever file you choose.
pass /* /$Web_root/*

(Pass, map, and f a i l commands are processed in the order found in the
http_paths file, so if you want to be able to serve anything that isn't directly
under SWeb_root, you'll need a pass command for it that appears prior to
the "pass /* / SWeb_root/*" command.)

HTTP_PATHS.CONF already, by default, has several useful pass and
map commands for server demonstrations and documentation.

The pass / specified the precise welcome file for your root directory,
but for other directories you can give more options by using the W e l c o m e

command in http_main.conf. (If you specify the scriptserver directory
browser--this is covered in greater detail in Chapter 13--you'll have to
configure this in HTTP_DIRECTORY.CONE) The syntax is

Welcome filename, ext

and this is cumulative, so you can do

Welcome index, html
Welcome welcome, html
Welcome index, htmlx
Welcome welcome, htmlx
Welcome index, htm
Welcome welcome, htm

5.4 Basic configuration 47

5 .4 .3

and the server will check for files in that order whenever the URL points it
to a directory rather than a full file name. As in Apache, try to get the order
so that the likeliest files pecs show up first.

In WASD, edit the HTTPD$MAP.CONF file to accomplish these
goals. The items here are mapping rules, not directives, which is why their
syntax is different from the [directive] syntax. There are three syntaxes for
the pass rule:

pass template
pass template result
pass template "numeric_status message-text"

In your out-of-the-box HTTPD$MAECONF file, you want to com-
ment out (with a '#') the

pass /ht_root/*

because that allows any unauthorized user to browse your configuration
files.

pass /* /$Web_root/*

will reset your document root without taking away access to the WASD
docs, which are in/ht_root/doc/.

Specify the welcome page choices (which apply at the "/" level in
WASD, unlike OSU) with the [Welcome] directive in HTTPD$CON-
FIG.CONF

[Welcome]
index.html
welcome.html
index.htmlx
welcome.htmlx
index.shtml
welcome.shtml
index.htm
welcome.htm

C u s t o m i z e d e r r o r messages and
W e b m a s t e r address

You could, in fact, stop here, start your server, and experience the mild thrill
of seeing your documents being served. But it might be better at this stage
to do some more configuration. You can make each of these servers offer
helpful Web pages for each HTTP status code that turns up, and, further,

I Chapter 5

48 5.4 Basic configuration

optionally have those pages identify which server has produced the error
code, and optionally have the pages provide an address to e-mail you to tell
you about the problem.

In Apache, make these changes to the HTTPD.CONF file:

ServerAdmin your-account@your, domain, tld

(You may want to set up forwarding from Webmaster@your.domain.tld to
your account and use Webmaster here, rather than revealing your identity.)
By default, Apache will produce a reasonable error page (see Figure 5.1).
Whether or not it identifies itself as Apache is up to you.

ServerSignature On l Off I Email

ServerSignature Email will generate error pages that say what version
of Apache is running on what system, and the system name is actually a

Figure 5.1 Apache error page with signature.

5.4 Basic configuration 49

mailto: link to the S e r v e r A d m i n address. "On" will do the same thing with-
out the mailto:; "of f" won't do it at all. (This is arguably more secure, since
a potential attacker doesn't get the extra clue of what Web server this is, but
I'd be more concerned about this if I were running IIS.)

If you want to do something fancy with errors, Apache lets you do a lot,
although we're getting out of the realm of basic configuration. The magic
directive is

ErrorDocument error-code response

If response begins with a double quote ("), what follows will be taken as
a literal string, which the server will write out; this can be plain text or
HTML embedded in the conflg file. (Lines can be continued with back-
slashes.) If it doesn't begin with a quote, response is considered to be a local
or remote URL. If it begins with HTTP or HTTPS, Apache will issue a
redirect to that URL. If it begins with a slash, Apache processes it like any
other URL; that means it can be a CGI program as well as an HTML page.
Once you get to that stage, your response can be arbitrarily complex.

In OSU, there's no equivalent to the ServerAdmin function, but there's
support for the ErrorPage command, which uses symbolic names for the
error codes.

You can have different actions for protection failures, open failures (a
sample script is provided), rule failures, CGI problems, and others. And, of
course, if you're producing error pages, you may as well include your e-mail
address of choice. The errorpage command goes in HTTP_PATHS.CONF

errorpage protfail I openfail I rulefail I cqiprotocol I
I code4 response

In WASD, the server administrator e-mail is configured in
H T T P D $ C O N F I G . C O N F with the [ServerAdmin] directive.

[ServerAdmin] user@server, domain, tld

Whether this will be included in error reports is determined by the
[ServerSignature] directive:

[ServerSignature] ENABLED I EMAIL I DISABLED

DISABLED (the default) suppresses the signature altogether, ENABLED

appends a report of which server on which host produced the message, and
EMAIL makes the host name into a mailto: link to the value specified in
[S erverAdmin].

I Chapter 5

50 5.5 Starting and stopping

5 . 5

WASD plugs error codes into a template that's found in the
HTTPD$MSG.CONF file, so the result of any error will be an HTML
page. The [ServerReportBodyTag] directive lets you specify the HTML
<BODY> tag that will be plugged into that template, letting your error mes-
sages share at least some of your site's "look and feel." You can also edit the
template to include graphics, font choices, and the like to make the mes-
sages really match the rest of your site, but this will cause you trouble if you
do multihosting because the change is made on a serverwide basis.

[ServerReportBodyTag] String

(If you specify this, it needs to at least say <BODY>, but could be <BODY

8OCOLOR="#00FFFF"> or even call in a cascading style sheet.)

Your basic configuration is complete, and your server should now be
ready to serve your own documents.

Starting and stopping

To start Apache, invoke sys$startup:apacheSstartup.com. (This procedure
can accept parameters; the default value for P1 is START, which instructs
Apache to start in a detached process, which is how you ordinarily want to
run it. The second parameter is a file in which startup configuration infor-
mation is stored; this defaults to sys$manager:apache$config.dat, or the
value of a logical name APACHE$CONFIG_FILE.) If you want to start
Apache running in your current process~most likely because you're debug-
ging configuration files~use the parameter RUN. This is potentially danger-
ous if you're running from a privileged account.

To shut down Apache, invoke sysSstartup:apacheSshutdown.com.
(Again, this can accept parameters, but defaults to SHUTDOWN.)

To get Apache to reread the configuration files as though it were starting
cleanly, you can invoke either apache$startup.com or apache$shut-
down.com and use the parameter GRACEFUL, if you don't want to break
existing requests, or the parameter RESTART, if you don't care about existing
requests.

Both procedures are actually front ends to another procedure,
apache$config.com, which has more options available; these are discussed
in the following section.

To start OSU, invoke HTTP_STARTUECOM from the [OSU.SYS-
TEM] directory. HTTP_STARTUECOM takes six parameters, in the fol-
lowing order: the name of the account under which OSU will run; the name

5.5 Starting and stopping 51

of the error log file (which defaults to HTTP_SYSTEM, but can be defined
as [for example] www_root:[logs]http_errors.log if you want to put your log
files in a different directory; the configuration file name; the primary port;
the nocache port; and a directory path to have www_system defined as:

$ HTTP_STARTUP HTTP_SERVER HTTP_ERRORS.LOG HTTP_MAIN.CONF
80 443 -
WWW_ROOT : [SYSTEM]

(I generally create another startup file that calls HTTP_STARTUP with
the parameters it needs, so that I can just type @OSU_STARTUP without
worrying about the rest.) OSU doesn't require any special shutdown, but if
you want to be sure it flushes its log files before it exits, use the privrequest
program (discussed in the following section) to issue a shutdown.

$ privrequest comm-port-number SHUTDOWN [port if not 80]

If you just want it to reread the configuration files, do

$ privrequest comm-port-number RESTART [port if not 80]

WASD startup is accomplished by invoking [HT_ROOT.LOCAL]
STARTUECOM, which invokes [HT_ROOT. LOCAL]SERVER_START
UECOM and in turn [HT_ROOT.LOCAL]LOCAL_STARTUECOM to
bring in local customizations.

If you're running multiple services on multiple nodes from the same
[HT_ROOT], you can create STARTUP_SERVER_nodename.COM or
even STARTUP_SERVER_nodename_port.COM files to customize which
services to run from which nodes. The least-interruptible version is just to
run all services on all nodes in the cluster and use DNS load-balancing to
direct the clients to the least heavily loaded machine at any given moment,
but there are legitimate reasons to run different services. (If you have two
production nodes and two development nodes in the cluster, you don't
want the development nodes running potentially broken versions of the
services the outside world can see.)

You can also start WASD running in your process.

$ MC $HT_EXE:HTTPD_SSL

will start it up, and complaints about the configuration file will go directly
to your screen. This is handy when you're making radical configuration
changes and want to debug them quickly, but this is a dangerous habit to
get into if you're running from a privileged account.

There are a number of possible command-line options that affect the
behavior of the server if used at server startup; edit your STARTUP_LOCAL

I Chapter 5

52 5.5 Starting and stopping

or your STARTUP_SERVER_nodename.com to bring these into play. (This
list is closely based on section 5.3 of the server documentation, with my own
comments interleaved.)

/ACCEPT=hostl. domain, tld, host2, domain, tld

The argument is a comma-separated list of hosts/domains allowed to
connect to the server; connects from everywhere else are rejected.

/REJECT=hostl. domain, tld, host2, domain, tld

Alternatively, use /REJECT to disallow certain hosts/domains and allow
everybody else.

/ALL [=servergroupname]

At startup, this assigns a server to a specific group of servers (for cluster-
wide server control and proxy cache management). If the string isn't speci-
fied, it becomes part of the cluster-wide ALL group.

/AUTHORIZATION= [SSL, ALL]

The "SSL" keyword causes all authentication (both SYSUAF and HTA
database) to be available only via "HTTPS:" requests--thus guaranteeing
that no passwords will be exchanged in plain text. (Of course, this works
only if you are using the SSL-enabled version of the server; see Chapter 6
for a fuller discussion of SSL and Chapter 7 for authentication.)

The ALL keyword will make the server deny access to any path that isn't
explicitly authorized, thus reversing the default of allowing access to any
path that isn't protected against access in some way.

/CGI_PREFIX=s tring

The value here will be used as the beginning of each CGI symbol name
accessible to scripts. (Use this to allow scripts written for other servers to get
the symbol names they expect. Default is "WWW_", a tradition established
by the CERN VMS server.)

/ DETACH=dc l-procedurename/USER=username

On VMS 6.2 and later, this causes the server to create a detached process
executing the specified dcl-procedurename operating as the specified user
name.

/ FILBUF=number

This specifies the number of bytes in the read buffer for files open for
processing (i.e., menu files, image mapping configuration files, preproc-

5.5 Starting and stopping 53

essed HTML files, etc., not direct file transfers), which you're likely to be
interested in tuning only if you have either extremely large preprocessor files
or small available memory that you need to conserve.

/ FORMAT= formatstring

The format string overrides the configuration parameter [LogFormat];
see Chapter 12 for details.

/GBLSEC=DELETE=integer

At startup, the server creates a permanent global section named by the
main port number the server is serving. This section stores accounting and
request data and is visible to the server monitor utility, HTTPDMON. If
you're experimenting with configurations on different ports, you can burn
up too much memory on these global sections. Use this parameter to make
them deleteable. This won't be used in a stable configuration.

/LOG [=name]

enables logging and optionally specifies the log file name. If the name is
SYS$OUTPUT, the log entries will show up on your screen. If you're
experimenting with log file formats, the combination of /FORMAT and
/LOG=SYS$OUTPUT will let you see what you're getting before you edit
your configuration files. (If not specified in the config files, logging is dis-
abled by default.)

/NOLOG

disables logging, overriding the logging directives in the configuration files.

/NOMONITOR

The H T T P D M O N utility (discussed in section 5.6) displays informa-
tion made available to it by the server. This qualifier disables the update of
those data, making H T T P D M O N useless. This is of most use on an over-
loaded server, which needs every possible cycle.

/NETBUF=number

gives the number of bytes to allocate for the network read buffer, allowing
tuning if you run frequent large file uploads.

/ OUTBUF=number

gives the number of bytes in the output buffer (for direct file transfers, buff-
ered output from menu interpretation, HTML preprocessing), allowing
tuning if you have buffer overruns from large transfers.

I Chapter 5

54 5.5 Starting and stopping

/PERIOD= DAILY I
MONDAY ITUESDAYIWEDNESDAYITH~RSDAYIFRIDAYISATURDAYIS~NDAYI
MONTHLY

overrides the configuration parameter [LogPeriod], which specifies how
often to start a new log file: every day, every week on the specified day, or
every month.

/ PERSONA [=rightsl ist- identi f i er]

enables detached process scripting. If you don't specify a rightslist identifier,
scripts can be executed under any account~if they're mapped to do so in
the configuration file. If you do specify one, then scripts can be run only
under accounts that have been GRANTed that identifier

PORT=port-number

is primarily useful for command-line control with t h e / D O qualifier, dis-
cussed subsequently. At startup, it overrides the configuration parameter
[Port] but will be overridden both by any [Service] specified in the configu-
ration files and by any /SERVICE= qualifier.

/PRIORITY=number

Server process priority. By default, this is 4, which means the server com-
petes on an equal basis with interactive users at their default priority. If your
interactive users aren't getting enough compute time, you can set this to 3,
which is the default batch priority. Setting this to a higher priority than that
of your interactive users (if any) risks slow performance and apparent sys-
tem lockup if some script gets into a tight loop. It would be extremely inad-
visable to set this in the real-time priority range of 17-32.

/ [NO] PROFILE

allows (or, with /NOPROFILE, disallows) the use of rightslist-identifier-
based file access for users authenticated against the SYSUAE (This is dis-
cussed more fully in Chapter 7. It is irrelevant unless the/SYSUAF qualifier
is also present.)

/ PROMISCUOUS [=password]

If the password is omitted, this makes the server accept any user name/
password pair for authentication; if a password is included, it requires that
to be the password used. This is used for testing, demonstration, and initial
server configuration via the Web-based interface. If you're going to do this
when you have actual material to serve and some authentication in place, it
would be a good idea to use the /ACCEPT parameter and restrict connec-
tions to the system you plan to use for the demo or the configuration.

5.5 Starting and stopping 55

/ SERViCE=scheme : //hostnamel : portl, scheme : //hostname2 : port2

The argument is a comma-separated service list, which overrides the
[se rv ice] configuration parameter, primarily useful for starting with some
services disabled. (In a duster configuration in which you share configura-
tion files but offer different services on each node, you can specify services by
node using this parameter in the STARTUP_SERVER_nodename.COM
file; the server will accept the configuration details of the specified services
from the configuration file.)

/NOSSL
/SSL [=version]

In the /NOSSL form, this disables HTTPS/SSL support altogether. In
the /SSL= [vers ion] , it directs the server to support SSL v2, v3, or (the
default) both. It is irrelevant if you haven't built the server with SSL sup-
port.

/ SUBBUF=number

gives the number of bytes in a script process's SYS$OUTPUT buffer.

/ [NO] SWAP

controls whether the server process may be swapped out of the balance set.
(/NOSWAP is the default.) It doesn't disable the use of virtual memory alto-
gether, but keeps the server process from being rolled out of memory
entirely, since there is a distinct detriment to response time if the system has
to identify some other victim process, swap it out to disk, copy every bit of
the server process back from disk to memory, and only then deliver the AST
for the read on port 80. It's not inconceivable, on a slow and heavily loaded
VAX, that the browser would time out the connection by the time the
process was ready to handle it. If your system is really starved for memory
and you don't care much about Web server response time, you can enable
swapping for the server.

/NOSYSUAF
/ SYSUAF [=ID, PROXY, SSL, WASD]

The /NOSYSUAF form (the default) disables SYSUAF authentication
altogether. (You can still have password support from the HTA database,
but not the VMS user name/password from the SYSUAF.) /SYSUAF=SSL
enables SYSUAF authentication and forces the password dialog to
HTTPS, guaranteeing encryption and making it harder to snoop pass-
words. /SYSUAF=PROXY enables SYSUAF proxying; /SYSUAF=ID restricts
SYSUAF authentication to accounts holding a particular identifier (see

I Chapter 5

56 5.6 Command-line control

5 . 6

Chapter 7 for some details); /SYSUAF=WASD is deprecated; it makes the
"hard-wired" WASD identifier environment available.

/VERS I ON

displays the copyright notice and version of the executables.

/NOWATCH
/WATCH=" category- integer, [client- filter] , [service-
filter], [path-filter] "

The WATCH facility (discussed subsequently) allows an in-browser
view of server processing as it happens. If you want to use it, use neither one
of these qualifiers. /N0WATC8 disables it altogether. /WATCH= directs watch
output to standard output if running from your process or to the server log
if running detached. The category-integer is the bitwise-OR of the catego-
ries specified in the ADMIN.H source code header; the easiest way to get it
is to set up a WATCH with the categories you want in the Web-based
admin program, and then note the parenthetical category integer that
shows on the screen in all the WATCH reports.

To shut down WASD, define the HTTPD foreign command (described
in the next section), and issue either

$ HTTPD/PORT=port-number/DO=EXIT ! exit after finishing
[current requests

or

$ HTTPD/PORT=port-number/DO=EXIT=NOW ! immediate shutdown.

To make WASD reread the configuration files freshly, do

$ HTTPD/PORT=port-number/DO=RESTART ! restart after
[finishing current requests

or

$ HTTPD/PORT=port-number/DO=RESTART=NOW ! immediate restart

C o m m a n d - l i n e cont ro l

Now you can start and stop the servers. What other control is available from
the command line?

In Apache, all the available functions are implemented through
SYS$STARTUP:APACHE$CONFIG.COM. The command is the first
parameter, so

5.6 Command-line control 57

SYS$STARTUP :APACHE$CONFIG command

The commands are as follows:

CONFIGURE

which runs the configuration dialog you had at server startup; you probably
don't want to mess with that.

FLUSH

which gets the log files on disk up-to-date by telling the server to flush the
buffered messages to disk. (Implicit in SHUTDOWN.)

GRACEFUL

which tells the server to finish existing requests, then reread the configura-
tion file.

NEW

which tells the server to flush the current buffers, then open new log files.
(This can be issued from a batch job to get new files daily, weekly, or
monthly, but, in fact, the logging module in Apache lets you specify log file
turnover with considerable precision.)

READ

which reads the APACHE$CONFIG.COM configuration file and defines
processwide logical names based on that information. (This function is use-
ful when you want multiple Apaches running with different configuration
files on the same system, but in a vanilla configuration you'll never use it.)

RESTART

which sends a restart signal to the server to reread APACHE$ROOT:
[CONF]HTTPD.CONF immediately.

RUN

which runs the Web server in your current process. (This represents a s
security exposure when you run from a privileged account.)

SHUTDOWN

which stops the Web server process immediately.

STOP

which stops the Web server process. (Same as SHUTDOWN.)

I Chapter 5

58 5.6 Command-line control

START

which starts the Web server as a detached process.

(Incidentally, if you're a UNIX person and you're wondering how a DCL
script manages to send a signal to a program, APACHE$CONFIG actually
runs a small executable program to send whatever signals it needs to be
sending. If you're porting other signal-driven UNIX programs to VMS, you
can borrow it; it's somewhat frighteningly named APACHE_KILL and
takes two parameters: the process-id to deliver the message to and the mes-
sage itself. A VMS hacker might be wondering why Apache didn't just
declare a control mailbox when it was started to which DCL could just
write messages. I presume it was because making Apache create the mailbox
and hang a read with read-complete AST on it would do excessively radical
things to the structure of the program, and the VMS changes are supposed
to fold back into the Apache mainstream. It already expects to get a signal.)

OSU offers the PRIVREQUEST program for some command-line con-
trol of the program. Unlike Apache, which sends out-of-band signals to the
executing server, PRIVREQUEST sends control messages on a port the
server is listening to anyway (80, by default) and gets responses on a port it
specifies (usually 931). The central port must be specified in the configura-
tion file.

Define a foreign command, such as

$ privrequest : == $www_system:privrequest

(That's handy for the LOGIN.COM of the Webmaster's account.)

$ PRIVREQUEST 931 HELP

This brings back a list of the available commands. If the server isn't run-
ning on port 80, you have to specify which port to talk to; for 8001, that
command would look like

$ PRIVREQUEST 931 HELP 8001

(If you don't specify a port, it will use port 80, with unexpected results if
you're running some other server on port 80.)

Here are the commands, other than HELP.

DSPCACHE

displays the current entries in the cache. (See Chapter 11 for more informa-
tion on caching.)

5.6 Command-line control 59

INVCACHE

invalidates the document cache. This means that the next request for any
particular document will have to go out to the disk and check the file head-
ers, possibly resulting in fetching a new copy of the file into cache. I've
found this most useful when doing incremental changes to an HTML file
on the server. If I want to see my changes right away when the default cache
expiration is set to three minutes, I need to invalidate the cache to get the
most current version. (This whole area is somewhat problematic, since users
tend to panic if they upload a file and can't see it right away; this is one of
the reasons for making a nocache port available, but the nocache port has
been commandeered to run SSL. It will be handy when the multiple port
support in 3.10alpha has matured, since that will allow other nocache
ports.)

NEWLOG

creates a new access log. The name and location of the access log is defined
in the configuration file; you can't change it here, but you can make a new
one run. This is a handy command to run in batch mode to get a new log
file on a daily, weekly, or monthly basis.

NEWTRACE [/ 1 ogger- i evel]

starts a new trace file. (This has the name given as the second parameter in
the HTTP_STARTUP.COM. The logger level specifies what you want
details of and how you want them; higher levels include lower levels. Use
plain NEWTVaXCE tO start a new log with the default log level~/1 for con-
nect/completion logging, /5 for script diagnostics, and /11 for a detailed
trace of requests as they pass through the rule file (so you can see where you
messed up in file mapping.) There are higher levels still, which were proba-
bly used for debugging problems in developing ISAPI and FastCGI mod-
ules~you can basically find out about them only by reading the source
code or by experimenting. NEWTVaXCE/11 and higher will make huge log
files very quickly, so if you're at all short on disk space watch this closely.

RESTART [/ t imeout]

restarts the server after allowing the specified number of seconds (or ten sec-
onds if not specified) for current requests to complete.

SHUTDOWN [/ t imeout]

shuts down the server after allowing the specified number of seconds (or ten
seconds if not specified) for current requests to complete.

I Chapter 5

60 5.6 Command-line control

5.6.1

STATISTICS [/ ZERO]

displays counters or resets them to zero. I find myself using this mostly
when I'm trying to find out whether my server is alive or not, but it's also
useful for getting a handle on your current level of traffic without doing
extensive log-file analysis.

W A S D

Define the foreign command $HTTPD to either "$HT_EXE:HTTPD" or
"$HT_EXE:HTTPD_SSL" depending on whether you're running the SSL-
enabled server or not. If the main port for your server isn't 80, your com-
mands will need to include /VORT=whatever-the-main-port-is in order to be
delivered. If you want to control all the servers in the cluster, add the/ALL
qualifier; if you've defined a group of servers with /ALL=servergroupname
in the server startup, you can address just that group by including/Ann=serv-
ergroupname in the HTTPD command.

That's actually the server image, so if you just type HTTPD you'll find
yourself running a copy of the server from the command line. (It won't do
much if you've already got a started server process grabbing the IP requests
before your copy gets to them.) You need to use the /DO= qualifier to tell
HTTPD to pass the message along to the running server and exit. Again,
this discussion follows the server documentation fairly closely.

/ DO=AUTH=LOAD

reloads the authorization rule file (HTTPDSAUTH), enabling any changes
made since the last reload. (See Chapter 7.)

/ DO=AUTH= PURGE

The authentication cache may be purged, requiring all subsequent
authorization-controlled accesses to reauthenticate. This is helpful if you've
disabled some authorizations and want them to lose access right away, or if
you've enabled it--for example, when a user has been locked out by auto-
matic break-in evasion for too many invalid password attempts and you've
cleared the intrusions.

~DO=CACHE=ON

enables the file cache (see Chapter 11).

/ DO=CACHE=OFF

disables the file cache.

5.6 Command-line control 61

/ DO=CACHE= PURGE

invalidates the current contents of the file cache so that subsequent accesses
will go out to the file system, repopulating the cache with current versions
of the file.

/DO=DCL=DELETE

deletes all scripting processes, whether they're doing work or not. (It may
cause browsers to display errors.)

/DO=DCL=PURGE

deletes idle scripting processes immediately and deletes currently busy ones
when they've completed the requests they're working on. (Preferable, unless
you've got a script process in a tight loop.)

/ DO= D ECNET = D I S CONNECT

disconnects all DECnet connections, busy or not. (Relevant for OSU-com-
patible scripting.) Clients may lose data.

/ DO= DECNET= PURGE

disconnects idle DECnet connections immediately and disconnects cur-
rently busy ones once they're done. (Generally preferable.)

/ DO: LOG= FORMAT= s tr ing

/ DO= LOG= PERIOD= s tr ing

changes, respectively, the format and period specification of the access log;
this will take effect only after the log file is opened or reopened. (See Chap-
ter 12 for log-file format.) These commands are server-by-server; the/ALL
qualifier is not available.

/DO=LOG=CLOSE

closes the access log file(s).

/DO=LOG=OPEN

opens the access log file(s).

/DO=LOG=REOPEN

closes and then reopens the access log file(s).

/DO=LOG=FLUSH

All unwritten log records may be flushed to the access log file(s).

I Chapter 5

62 5.6 Command-line control

/DO=MAP

reloads the mapping file (HTTPDSMAP.CONF), enabling the changes
made since the last load or reload. (See Chapter 7.)

/DO=SSL=CA=LOAD

reloads the Certificate Authority verification list--relevant only if you're
using X.509 authentication. (See Chapter 7.)

/ DO= S SL=KEY= PASSWORD
Enter private key password []:

If your server key requires a password/passphrase to enable it, as
described (and recommended against) in Chapter 6, this command allows
you to enter the password.

/ DO=THROTTLE=RELEASE
/ DO=THROTTLE=TERMINATE

Request throttling is discussed in Chapter 7. Briefly, throttling allows
the Webmaster to specify how many simultaneous requests will be handled
for a particular path. Requests in excess of that number go onto a FIFO
queue for later processing.

/DO=THROTTLE=RELEASE instructs the server to immediately start pro-
cessing all queue requests. (You might use this if you were throttling
requests because you were running a big CPU-intensive job that has now
finished and want to allow it all now, or if you just want to see what hap-
pens to the server load without request throttling.)

/DO=THROTTLE=TERMINATE instructs the server to cancel all queued
requests, sending them back a 503 "server too busy" response.

/DO=ZERO

zeroes the server counters. (These are the counters that you'd see using
HTTPDMON or the statistics menu item in the Web-based server admin
menu. You'd want to do this to get an immediate handle on current traffic;
zero it now and check it a couple of minutes later.)

There are a couple of other command-line things that aren't exactly
issuing server commands. You can do proxy cache maintenance activities
from the command line, using the /PROXY (not /DO=PROXY) qualifier; I'll
discuss this more fully in Chapter 11. The HTTPDMon utility
($HT_EXE:HTTPDMON) enables real-time monitoring of WASD
activity from the command line.

5.7 Web-based control 63

5 .7 W e b - b a s e d c o n t r o l

Apache has no built-in Web-based configuration or control utility. (In the
UNIX world, there are various GUI configuration utilities provided by
third parties, but they aren't part of the Apache distribution. It's probably a
bit much to ask VMS Engineering to port and then support TCL/TK so
that we can use an existing TCL/TK-based GUI configurator.) It should be
fairly easy to write a CGI that could generate the commands to
@SYS$STARTUP:APACHE$CONFIG.COM to issue control messages to
start/stop/restart the server, but then it would be fairly dangerous to run
CGIs in a sufficiently privileged context to actually do that.

Figure 5.2 OSU Web-based administration utility--main page.

I Chapter 5

64 5.7 Web-based control

OSU provides a Web-based server administration utility. (See Figure
5.2.) By default, this is configured as http://yourserver.domain.tld/demo/
servermaint.html (You can also look at http://yourserver.domain.tld/demo/
servermaint_userguide.html for advice on using the server maintenance
Web-based utility.)

The user name and password for this are, by default, server and maint,
respectively. (The first thing to do when using it is to change the password
for access on that page only to something else~you don't want everybody
else who uses OSU to know the password that lets them update your con-
figuration.)

Most of the screens simply allow you to update configuration files, but
one screen allows the same kind of server control you're able to do with
PRIVREQUEST from the command line.

As you can see, from the Web you can stop or restart the server, start a
new access log file, or start a new trace file with a different setting of how
much information to trace.

Experienced OSU users typically do not use the Web-based configura-
tor, and there are certain things that it just won't do for you~for example,
inserting rules into a local-address block if you're multihosting and want to
apply specific rules only to certain hosts. (Multihosting is discussed in
Chapter 9.) Also, Web-based support for new features tends to lag the
release of the new features. New managers should definitely fire it up and
poke around, just to get an idea of what's available in the server configura-
tion (although you won't learn much that you didn't get by reading this
book).

WASD has an extensive on-line administration utility, which requires
some configuration effort to make work. (See Figure 5.3.) Alternatively, to
get an idea of what's available, you can just break in.

Sspawn/wait httpd /promiscuous=password/service=8010
/accept=node-you'll-use

This brings up a new copy of HTTPD, willing to accept connections
only from the node you specified, running on the port you specified (8010,
in the example), willing to authenticate any user name you give it provided
you give it the password specified.

This can give you a good idea of what capabilities are available in a fully
configured server, which include not only everything you can do from the
command line but also configuration file editing, reports, and WATCHing
the server processing in real time. However, until you do some authoriza-

5.7 Web-based control 65

Figure 5.3 OS U Web-based administrative utility-server commands.

tion/authentication work (details are discussed in Chapter 7), you won't be
able to edit the configuration files or save changes from the Web-based util-
ity. (You will be able to run the reports.)

If you exit or restart at this point, with the server running in a spawned
subprocess, the server will just go away rather than restarting.

I Chapter 5

This Page Intentionally Left Blank

6
Encrypted~Secure Co m m u n ica tt'o ns:

H T T P S Protocol Support

6. I H T T P S

6.1.1 Why?

The HyperText Transfer Protocol (HTTP) is intended for the easy inter-
change of information between systems on multiple platforms. It was
designed with the idea that the free sharing of information is good, secrecy
is bad, and barriers to communication are to be avoided; overall, it does a
good job in embodying these ideals.

Material in HTTP comes over with no attempt at obscurity. Anybody
listening in--anyone on your network using a sniffer, any system cracker
who may have compromised a system on your network and put its Ethernet
card into promiscuous mode so it listens to all the traffic, or any systems
person at your Internet Service Provider who monitors your traffic--can see
both ends of every dialog conducted over the Web.

This is fine when you're sharing information about the latest results in
particle physics or publishing movie times; it's not really a good idea when
collecting credit card numbers, passwords, or other confidential informa-
tion. People found the Web just too attractive as a universal applications
platform to leave it exclusively for free sharing of information. Whether
you're ordering something by credit card or trying to remotely access your e-
mail, you need to provide some information you don't want random strang-
ers to know.

So, HTTPS (S for secure) was invented. This allows both sides of a Web
dialog to be encrypted in a cipher negotiated between the browser and the
server. (There would be no point in a cipher that was the same for every
browser, because then everybody who got the traffic would know how to
decipher it.) HTTPS uses the secure session layer (SSL) software, which can

67

68 6. I H-I-I-PS

6 . 1 . 2

use an assortment of different public-key algorithms having colorful names
(e.g., RSA, Blowfish, Twofish, and IDEA). SSL code also supports transport
layer security (TLS) software. If you're running PMDF-TLS encrypted
SMTP you're already running OpenSSL. SSL has been through several ver-
sions, and there are browsers that support both version 2 and version 3, so
you're best off supporting both.

SSL and PKI

The idea of the secure session layer is to provide a secure wrapper for
other protocols. Thus, the same SSL code can support HTTPS and SSH
(secure shell, which works like an encrypted Telnet), SCP (secure copy,
like an encrypted RCP), and SFTP (encrypted FTP); further, port for-
warding in SSH can support X Windows and potentially other protocols.
However, "secure" doesn't just mean that it's encrypted (and thus hard for
eavesdroppers to understand). It also means that you're talking to who
you think you're talking to. (Your credit card information isn't safe if you
have a strongly encrypted connection to the wrong site.) SSL supports
authentication as well as encryption, and this is where the confusion,
annoyance, and expense associated with HTTPS comes in--the rest,
which I'm glad to say has eased lately, comes from patents and export
restrictions.

This whole system works on "public-key" encryption and authentica-
tion methods. (These methods, introduced in 1976 by mathematicians
Whitfield Diffie and Martin Hellman, are potentially useful in much
broader areas than just the Web and e-commerce, and I expect we'll see a
lot more applications for them than we already have. The ones in use now
include S/MIME for secure e-mail and code signing for Active-X controls.)
Entities are issued key pairs, a private key (which is never shared with any-
body), and a public key (which can be given out freely). These are crypto-
graphic inverses of each other, which means that you can encrypt with a
public key and decrypt with a private key, but if the keys are of any substan-
tial length, it takes an unfeasibly long time to compute the private key from
the public key. So, you can sign something with a private key, and other
people can verify that you signed it using your public key. You can encrypt
stuff using the recipient's public key, and they can decrypt it using their pri-
vate key.

Each packet in a dialog is encrypted, but the keys are exchanged only at
the beginning, so an eavesdropper would have to catch the whole thing, not
just random packets, to even begin to be able to break the encryption. An

6. I HTTPS 69

eavesdropper who has the whole dialog has only the public key, and it's sup-
posed to be too long and slow a process to get from public key to private
key. Not an impossible task; just an unwieldy one. (It's not that the encryp-
tion can't be broken; it can't be broken while the contents are still interest-
ing. If your traffic is still going to be interesting to the bad guys 30 years
from now, you want to use channels you believe can't easily be eavesdropped
upon.)

The longer the key, the longer the process of breaking it will take, so a
government that wants to be able to read the traffic of its enemies in war-
time might plausibly consider strong encryption a weapon that shouldn't be
exported. And so the U.S.government did, which led to all kinds of absur-
dities. This was a problem because it assumed there were no people outside
U.S. borders smart enough to code strong encryption themselves; it meant
that a T-shirt with a few lines of Perl code was technically a weapon. In
addition, it kept U.S. companies from selling strong encryption abroad
while European firms could do so; and, relevantly for this book, it meant
that browser vendors were obliged to produce U.S. (128-bit encryption)
and export (40-bit encryption) versions of their products and servers have
to support both. These restrictions were eased in 2000, but the 40-bit
browsers are still out there. The usual means for a server to authenticate
itself is to present a digital certificate~sometimes called an X.509 certifi-
cate because it complies with the X.509 standard promulgated by the Inter-
national Telecommunications Union which says not only "this is my
name" but also points to a certificate authority (CA) that has validated the
certificate by signing it with its private key. Note that users and browsers
can also present certificates to authenticate themselves, although this is
fairly uncommon within the general Web user population.

How does the browser know to trust the certificate authority? The
browser vendor shipped a database of certificate authorities and their public
keys along with the browser, and users can also update that database and
add other CAs (although the vast majority of them have no idea how to do
this or why they'd want to). How did the CAs get in the database? They
made deals with the browser vendors to ship their certificates with the
browsers. There are two reasons that there isn't a volunteer-run automated
CA handing out certificates for free. First, none of the browsers currently
deployed would acknowledge them as legitimate authorities, and anybody
who used the certificates they issued would have customers frightened by
pop-up messages about "a problem with the digital certificate~certificate
authority not recognized." (This is the same reason commercial sites don't
just generally make themselves a CA and issue themselves the necessary cer-

I Chapter 6

70 6. I HTTPS

Figure 6.1 Internet Explorer displays a frightening message.

tificates~frightening messages from the browser tend to scare off the cus-
tomers, despite the fact that the encryption is equally good or bad regardless
of the validity of the CA.) Second, it actually costs money and effort to ver-
ify the identity of the person or organization who's asking you to certify that
they are who they say they are, and without the CA making that effort, the
authentication value of the certificate is nil.

As for frightening messages, incidentally, it's now generally considered to
have been a bad idea that the certificate-authority certificates distributed
with Netscape version 3 all expired at midnight on December 31, 1999,
making every HTTPS site users tried to access pop up a frightening mes-
sage about an unknown or expired certificate authority, and giving the peo-
ple who had to support those users a totally unnecessary Y2K problem. (See
Figure 6.1.) Since Netscape 3 was the DEC-supported browser on VMS at
the time, this was the only Y2K problem many VMS sites had.

6. I HTTPS 71

6 . 1 . 3 G e t t i n g a c e r t i f i c a t e f r o m a C A

If all your users are technical people who won't panic at browser messages
about unrecognized CAs or who can follow instructions to add your CA
certificate to their browser database, or if you have control over the
machines they'll use to access your site (so you can update their browsers
yourself), you can use a self-signed certificate and not have to pay anybody
any money. You might want to do this to provide access to your Web appli-
cations over insecure networks (e.g., the general Internet) without having
passwords flying around in plain text, or just to let people get at their mail
using yahMAIL without compromising their passwords. If your CA certifi-
cate is in the browser database, you're still safe from being impersonated by
some other server~the bad guys shouldn't have your private key. If you
teach your users just not to worry about the scary messages, you make them
vulnerable to impersonation attacks. Many universities, including MIT and
Columbia, have set up their own CAs and installed their certificates in the
official university-distributed browser kit.

Otherwise, you're going to have to get a certificate from a commercial
provider. Find out whether your organization already has a public key infra-
structure (PKI) and arrangements already in place with a CA. If so, you'll
have to use whatever procedures the organization has in place for getting a
digital certificate. (Organizations can make arrangements with known CAs
to receive the delegated authority to issue certificates; the "chain of trust" on
those certificates eventually works its way back to a known CA and the
browser accepts it without complaint.)

If your organization doesn't have anything in place, it's up to you to do
it. Pick a commercial CA and check out their requirements. As an example,
I'll use Thawte, a South African company generally considered to have low
prices and good service. (They were bought by VeriSign a while ago but still
maintain a separate identity and pricing schedule.)

Here's their recommended procedure. Get your documentation
together, which means proof that you're the organization you say you are
and that you are entitled to use the domain name for which you want the
certificate. For incorporated commercial entities, articles of incorporation
or state or city documents (business licenses) will work. Partnerships should
provide "some form of verifiable proof of the partnership name," which
ought to include business licenses. If you're doing business as a particular
name, they need a copy of the DBA forms. (All of these documents can be
faxed.) Government departments, nongovernment organizations, universi-

I Chapter 6

72 6. I HTTPS

ties, and university departments need to physically mail an original signed
letter on organizational letterhead stationery from the department head (for
government departments); the Chief Executive, Chair, or Managing Direc-
tor (for NGOs); or the Dean or Vice-Chancellor (for university depart-
ments). Special interest groups which I would take to mean
unincorporated hobby groups, clubs, international criminal gangs, and the
like need to get in touch with Thawte and discuss individual require-
ments. Obviously, if you want to register for a certificate as SPECTRE,
KAOS, or THRUSH, there'll be some unique needs for verification.

To make a certificate request, you need to install OpenSSL. (More on
this follows.) OpenSSL binaries come with CSWS for mod_ssl, and can be
downloaded in a separate kit for WASD; for HTTPS support in OSU you'll
need either to do a full OpenSSL installation or install the binaries from
WASD. Since kits that come from third parties are usually out of date, I rec-
ommend installing OpenSSL directly.

These OpenSSL instructions follow those provided by R. A. Byers on his
Web site, at http://www.ourservers.net/openvms_ports/openssl/openssl_
contents.html; since he keeps them updated, you should go back and read
them to see if anything has changed. I have made changes in his directions
to match Thawte's requirements.

You have to fill out your configuration files before you can generate cer-
tificates or certificate requests. Set your current directory to the SSLROOT
directory (where you installed the OpenSSL files). If you've run the
OPENSSL_STARTUECOM, this will be SSLROOT.

$ SET DEFAULT SSLROOT: [000000]

Create directories to store certificate requests and certificates.

$ CREATE/DIRECTORY [.CRL]

$ CREATE/DIRECTORY [.NEWCERTS]

You need a file with a few hundred bytes of random data to prime the
random number generators in the encryption libraries. A good place to put
this is in your [.PRIVATE] directory under the name of RANDFILE., but
you could name it anything since you'll define a logical name to point at it.
An easy way to get this is to send the output of a long variable command
into a file, for example, is as follows:

$ SHOW SYSTEM/FULL/OUTPUT=SSLROOT: [PRIVATE] RANDFILE. ;

$ DEFINE/SYSTEM/EXEC RANDFILE -

SSLROOT : [PRIVATE] RANDFILE . ;

6. I HTTPS 73

Create an empty INDEX.TXT in the SSL root directory.

$ CREATE SSLROOT: [000000] INDEX.TXT

^Z

Create a file SERIAL. with "01" in it in the SSL root directory.

$ CREATE SSLROOT : [000000] SERIAL.

01

^Z

Now bring up the OPENSSL.CNF file in your favorite editor and make
these changes.

The line that says:

dir = sys\$disk-[.demoCA #Where everything is kept

should say:

dir = SSLROOT-[000000 #Where everything is kept

The line that says:

RANDFILE = Sdir.private] . rand # private random number

file

should look like

RANDFILE = $dir.private] RANDFILE. ; # private random

number file

and the line that says

RANDFILE = $ENV: : HOME/. rnd

should just be deleted.

Although there are other options, for SSL server certificates only, do
this. Find the lines that say

This is OK for an SSL server.

nsCertType = server

and make them look like this:

This is OK for an SSL server.

nsCertType = server

Now you're ready to generate your certificate request.

$ @SSLROOT: [VMS]OPENSSL_UTILS.COM ! Defines the symbol

! for the OPENSSL utility

I Chapter 6

74 6. I HTTPS

Use the OPENSSL utility to generate a certificate request.

$ OPENSSL
OpenSSL> req-config openssl.cnf -nodes -new-days 365
-keyout newreq_key.pem -out newreq.pem

Here's a description of what the parameters mean.

- r e q

This is a certificate request.

-config

Use this configuration file.

-nodes

Don't DES encode the output key. (Because OSU won't let you specify a
passphrase, it won't be able to use a DES-encoded key. Leave the parameter
out if you want to use a passphrase on WASD or CSWS.)

-new

This is a new request.

-days

The number of days the X.509 certificate will be good for.

-keyout

File to which to output the key.

-out

File to which to output the certificate request.

The program will prompt for some parameter values. For some CAs (not
Thawte) you need to answer only one:

Common Name (e.g., YOUR name) [] :

This is not your personal name; this is the name you intend to use as the
canonical name for the Web server. So, use www.yourhost.domain.tld if
you're going to be in the DNS as www.yourhost.domain.tld; if you expect
to be addressed as secure.domain.tld, use that. If you expect to just be called
yourhost.domain.tld, use that.

For Thawte, make sure that the company name, state/province, and
country that you enter here (or put in your openssl.cnf) exactly match the
details in the documentation that you fax or mail to them.

6. I H-I-FPS 75

6.1 .4

After that, keep pressing return until you get the OpenSSL> prompt;
then use CTRL-Z, exit, or quit to get out. You should have two files~the
key file (newreq_key.pem) and the certificate request file (newreq.pem).
The contents of newreq.pem will look something like this:

.... BEGIN CERTIFICATE REQUEST

gibberishgibberishgibberishformanyl ines

.... END CERTIFICATE REQUEST

Despite the .PEM filetype, it's not actually a PEM (privacy-enhanced
mail) file, it's just a BASE64-encoded certificate signing request (CSR).

At this point go to the Thawte Web site, http://www.thawte.com/buy/
contents.html. You'll cut and paste NEWREQ.PEM into an on-line form
at the Thawte site; save the key file, somewhere safe. (If you lose the key file
you can't use the certificate when you get it back; this will cost you money.)
Also, it wouldn't be a bad idea at this point to request a free test certificate,
which will make sure you've got the process working before you spend
money on it. Assuming you're going for the real certificate, the Thawte Web
site will give you an order number, which you shouldn't lose either, since
you'll need it to track the status of your request, generate a subscriber agree-
ment, and download the certificate. Send Thawte the supporting docu-
ments by fax or courier. When they're ready to issue the certificate, you'll
get e-mail with a URL to download the certificate from. Do so. When
you've got it onto your VMS system, append your key to the end of the
signed certificate.

$ APPEND NEWREQ_KEY.PEM <certificate the CA signed>

Then tell the server where to find the certificate (detailed in the follow-
ing text), and you're set.

Creating a self-signed cert i f icate.

If you're either not going to use a CA certificate or want to get going while
you're waiting for your certificate to arrive, you can use OpenSSL to create a
self-signed certificate. Here's how. (Again, these instructions follow those
provided by R. A. Byers on his Web site at http://www.ourservers.net/
openvms_ports/openssl/openssl_contents.html. Assume you've already
installed OpenSSL and have run @OPENSSL_STARTUE) Run SSL-
ROOT:[VMS]OPENSSL_UTILS.COM file to define the symbol for the
OPENSSL utility.

$ @SSLROOT : [VMS] OPENSSL_UTILS. COM

I Chapter 6

76 6. I H-I-FPS

Set your default to the SSL root directory.

$ SET DEFAULT SSLROOT: [000000]

Generate a certificate request using the OPENSSL utility.

$ OPENSSL
OpenSSL> req-config openssl.cnf -nodes -new-days 365
-x509 -keyout test_key.pem -out test.pem

Here's a description of what the parameters mean.

-config

This indicates which configuration file to use.

-nodes

Don't DES encode the output key. (Because OSU won't let you specify a
passphrase, it won't be able to use a DES-encoded key. Leave the parameter
out if you want to use a passphrase on WASD or CSWS.)

-new

This is a new certificate request.

-days

The number of days the X.509 certificate is good for.

-x509

Output an X.509 certificate instead of a regular certificate request.

-keyout

File to which to output the key.

-out

File to which to output the certificate.

The program will prompt for some parameters, but there's only one you
need to answer.

Common Name (e.g., YOUR name) [] :

This is not your personal name, this is the name you intend to use as the
canonical name for the Web server. So, use www.yourhost.domain.tld if
you're going to be in the DNS as www.yourhost.domain.tld; if you expect
to be addressed as secure.domain.tld, use that. If you expect to be called
simply yourhost.domain.tld, use that.

6. I H-I-I-PS 77

6.1.5

Exit the OPENSSL program. You should have two files--the key file
and the certificate file. You now need to append the key file (the one you
generated when you created the certificate) to the end of the certificate file.
(At least you do if you use OSU; Apache lets you specify key and certificate
separately if you want.)

$ APPEND TEST_KEY. PEM TEST. PEM

Verify the certificate.

$ OPENSSL
OpenSSL> verify test.pem

If OpenSSL confirms that the certificate is okay, you have a working
self-signed certificate, and you just need to tell the Web server where to find
it. (If it doesn't verify, go back through all the steps and make a new one;
that's quicker than trying to figure out what's gone wrong.)

HTTPS dialog

The browser is given an HTTPS URL. It looks the name up in the domain
name server to get an IP address and then initiates a dialog with the host at
that address, requesting the site certificate. The host passes the browser the
site certificate, and the browser looks it over to see if it's acceptable. If the
host name on the certificate is different from the host name the browser
looked up in the DNS, the browser will complain.

This means that you cannot successfully support name-based muhihost-
ing or virtual hosting on standard ports with HTTPS. The certificate must
be presented before the browser gets a chance to tell the host what server it
was looking for, so the server can't give different certificates based on host
names. This is not a VMS restriction and not a restriction of any particular
Web server software; it's inherent in the design of the protocol. If HTTPS is
going to be a major concern, you'll need to have different numeric IP
addresses for each domain you host. While you could try to centralize
HTTPS services on one node name and make every domain you host link
to that one when HTTPS is desired, this is an unsatisfactory solution if the
different services belong to different noncooperating groups, or if you want
to do password-based authentication without having passwords flying
around in plain text.

There's an ugly work-around, which may or may not actually work for
all users. It will work only if the only way users get to your HTTPS connec-
tions is by clicking links on the HTTP-served pages. The standard HTTPS
port is 443, and that's the only port you can expect the browser to use with-

I Chapter 6

78 6.2 Installation

6 . 2

out your specifying it in the URL. You can run multiple copies of your serv-
ers on different ports, each one corresponding to a particular name
translation of your IP address; the URLs will have to specify the port (e.g.,
https://node.domain.tld:8443 for port 8443).

The problem, as I learned when my site didn't allow me to specify port
443 and I had to do HTTPS service on port 8443, is that while some sites
leave all the unprivileged ports (ports with numbers greater than 1024)
open, other sites block access to ports that aren't the standard ports for well-
known services. This means that if you run on 8443, users at those other
sites can't reach you. If you have any choice in the matter, run your HTTPS
service on port 443, and if you're an ISP hosting multiple noncooperating
domains, get each one a separate IP address and use IP-based virtual hosting.

If the certificate is acceptable, the server and browser have a dialog about
which encryption algorithms at what strength each one supports; choose a
mutually agreeable one, and commence normal HTTP interchange tun-
neled through the encryption algorithm. (This is, of course, expensive in
compute cycles on both host and client sides, in comparison with plain-text
communications, so you should use HTTPS only when you need it, if at all
possible, especially on a heavily loaded server, or one on a slow pipe. But
you need it whenever you're passing passwords back and forth.)

Ins ta l la t ion

To use HTTPS, each server must connect with the SSL library. MOD_SSL
interfaces the library with Apache; WASD has an equivalent hookup, and
OSU can be connected either intimately (as an MST) or at arm's length
(with the SSL task running as a separate process connected to the main
server via DECnet.)

6.2 .1 CSWSIMOD_SSL

MOD_SSL installs automatically as part of the CSWS installation; that's
the argument for calling it Compaq SECURE Web Server. The installation
procedure automatically creates a self-signed certificate for you, which will
last only 30 days.

Compaq has provided some nice DCL procedures to interface to
OpenSSL for certificate handling; these are in APACHE$COMMON:
[OPENSSL.COM] and include OPENSSL_AUTO_CERT.COM for
automatic creation of a self-signed certificate (used at installation);
OPENSSL_SELF_CERT.COM for interactive creation of a self-signed

6.2 Installation 79

certificate with prompting for organization name; and OPEN-
SSL_RQST_CERT.COM for interactively preparing a certificate request.
You can substitute those for the more laborious instructions given above.
Also, CSWS is now a recognized server type at VeriSign.

6 . 2 . 2 OSU

You need to install OpenSSL to use HTTPS with OSU. (OpenSSL started
as SSLEAY, the EAY part because it was coded by Eric A. Young, later
joined by Tim Hudson. It became OpenSSL and is now supported on
many platforms by a multiperson development team that does regular
releases. The code is very widely used, although it still isn't up to version 1.0
yet. If you see references to SSLEAY in documentation, mentally replace
them with OpenSSL.)

The installation process used to be quite annoying, but now Richard
Levitte, who did the OpenSSL port to VMS, is part of the OpenSSL devel-
opment team and his changes are folded in to the standard OpenSSL distri-
bution, which includes a MAKEVMS.COM command file for compiling
on VMS and an INSTALL.COM for copying the relevant pieces to a pro-
duction directory tree. Browse to www.openssl.org and download the kit,
which will have a name such as OPENSSL-0_9_6C.TAR-GZ;1. (That is, if
you download it with Netscape 3.03, which is older than the ODS-5 file
system and doesn't know anything about it.) If you use a recent version of
Mozilla and download to an ODS-5 disk, the file ends up named openssl-
0_9_6C.tar.gz, which also ends up being a problem because the GNU Zip
program doesn't understand ODS-5 and is looking for something named
.tar-gz in order to work.

Get GZIP (installed as GUNZIP) and VMSTAR from the VMS free-
ware CD, either the copy that came with your OS distribution or as a
download from the www.openvms.compaq.com Web site, and install them.

Here's the routine for preparing and unpacking the kit:

$ dir openssl*

Directory DKB0:[CSWS_KITS]

OPENSSL-0 9 6C.TAR-GZ;I 4202/4203 25-JAN-2002 02:53:08.95 (RWED,RWED,RE,)

Total of 1 file, 4202/4203 blocks.
$

$ gunzip openssl*.*

$ dir openssl*.*

Directory DKB0:[CSWS_KITS]

OPENSSL-0 9 6C.TAR;I 22040/22041 25-JAN-2002 02:58:33.29 (RWED,RWED, RE,)

Total of 1 file, 22040/22041 blocks.

I Chapter 6

80 6.2 Installation

$ rename openssl-0 9 6C.TAR dkb0: [openssl]

$ set def dkb0:[openssl]

$ dir

Directory DKB0 : [OPENSSL]

OPENSSL-0 9 6C.TAR;I 22040/22041 25-JAN-2002 02:58:33.29 (RWED,RWED,RE,)

Total of 1 file, 22040/22041 blocks.

$

$ vmstar /extract openssl-0 9 6c.tar

$ set def [.openssl-0 9 6C]

$ dir

Directory DKB0:[OPENSSL.OPENSSL-0 9 6C]

APPS.DIR;I 5/6 25-JAN-2002

BUGS.DIR;I 1/3 25-JAN-2002

CERTS.DIR;I 2/3 25-JAN-2002

CHANGES.;1 52/354 20-DEC-2001

CHANGES.SSLEAY;I 4/84 22-DEC-1998

CONFIG.;I 32/33 19-DEC-2001

CONFIGURE.;1 15/117 6-DEC-2001

CRYPTO.DIR;I 3/3 25-JAN-2002

DEMOS.DIR;I 1/3 25-JAN-2002

DOC.DIR;I 1/3 25-JAN-2002

E_OS.H;I 28/30 8-NOV-2001

E_OS2.H;I 2/3 2-MAY-2000

FAQ.;I 53/54 20-DEC-2001

INCLUDE.DIR;I 1/3 25-JAN-2002

INSTALL.;1 22/24 16-MAY-2001

INSTALL.COM;I 6/6 II-NOV-1999

INSTALL.MACOS;I 7/9 I-OCT-2001

INSTALL.VMS;I 23/24 16-MAY-2001

INSTALL.W32;1 18/18 22-SEP-2000

LICENSE.;1 13/15 23-JAN-2001

MACOS.DIR;I 1/3 25-JAN-2002

MAKEFILE.;I 1/3 20-DEC-2001

MAKEFILE.ORG;I 41/42 14-NOV-2001

MAKEFILE.SSL;I 41/42 20-DEC-2001

MAKEVMS.COM;I 49/51 29-0CT-2001

MS.DIR;I 2/3 25-JAN-2002

NEWS.;1 16/18 20-DEC-2001

OPENSSL.DOXY;I 1/3 28-FEB-1999

OPENSSL.SPEC;I 16/18 13-NOV-2001

PERL.DIR;I 1/3 25-JAN-2002

README.;I 14/15 20-DEC-2001

README.ENGINE;I 5/6 I-OCT-2001

RSAREF.DIR;I 1/3 25-JAN-2002

SHLIB.DIR;I 1/3 25-JAN-2002

SSL.DIR;I 3/3 25-JAN-2002

TEST.DIR;I 4/6 25-JAN-2002

TIMES.DIR;I 4/6 25-JAN-2002

TOOLS.DIR;I 1/3 25-JAN-2002

03:01:09.51

03:01:24.13

03:01:25.41

17:20:51.00

23:42:26.00

11:37:41.00

05:11:39.00

03:01:30.56

03:03:23.54

03:03:29.33

06:36:49.00

05:15:25.00

17:21:03.00

03:04:00.60

22:03:47.00

17:42:53.00

07:39:22.00

22:03:47.00

19:06:08.00

18:56:13.00

03:04:08.96

18:54:43.00

02:44:11.00

18:54:43.00

05:05:56.00

03:04:12.80

04:36:39.00

09:41:51.00

23:42:39.00

03:04:16.91

17:21:04.00

07:39:23.00

03:04:19.64

03:04:20.65

03:04:22.15

03:04:29.17

03:04:39.36

03:04:47.54

(RWE,RWE,RE,E)

(RWE,RWE,RE,E)

(RWE,RWE,RE,E)

(RWED,RWED,RE,)

(RWED,RWED,RE,)

(RWED,RWED,RE,)

(RWED,RWED,RE,)

(RWE,RWE,RE,E)

(RWE,RWE,RE,E)

(RWE,RWE,RE,E)

(RWED,RWED,RE,)

(RWED,RWED,RE,)

(RWED,RWED,RE,)

(RWE,RWE,RE,E)

(RWED,RWED,RE,)

(RWED,RWED,RE,)

(RWED, RWED,RE,)

(RWED, RWED,RE,)

(RWED,RWED,RE,)

(RWED,RWED,RE,)

(RWE,RWE, RE,E)

(RWED,RWED,RE,)

(RWED,RWED,RE,)

(RWED,RWED,RE,)

(RWED,RWED,RE,)

(RWE,RWE,RE,E)

(RWED,RWED,RE,)

(RWED, RWED,RE,)

(RWED,RWED,RE,)

(RWE,RWE,RE,E)

(RWED,RWED,RE,)

(RWED,RWED,RE,)

(RWE,RWE,RE,E)

(RWE,RWE,RE,E)

(RWE,RWE,RE,E)

(RWE,RWE,RE,E)

(RWE,RWE,RE,E)

(RWE,RWE,RE,E)

6.2 Installation 81

UTIL.DIR;I 2/3 25-JAN-2002

VMS.DIR;I 1/3 25-JAN-2002

03:04:48.76

03:04:54.25

(RWE, RWE, RE, E)

(RWE, RWE, RE, E)

Total of 40 files, 974/1032 blocks.
$

Here's the actual compilation. In the old days (two years ago), the RSA
algorithm was patented and could legally be implemented only in some C
code provided by RSA, Inc. The RSAREF parameter was used if you had
the code from RSA on your system; NORSAREF if you didn't. Since the
RSA patent expired in 2000 (two weeks after RSA, Inc., made it available
for free use), RSAREF has become moot, so we compile with NORSAREE
The fifth parameter, UCX, tells whether to link against NETLIB or the
UCX library. (NETLIB is a package that presented a uniform interface to
the multifarious TCP/IP packages that used to run on VMS. The only
packages that make any sense to run now are TCP/IP Services, TCPware,
and Multinet, all of which provide a UCX$IPC_SHR library that will work
with OpenSSL).

Here's what the OPENSSL install looks like in outline.

$ set def [.openssl-0 9 6C]
$

$ @makevms all norsaref nodebug decc ucx

Using DECC 'C' Compiler.

Using UCX or an emulation thereof for TCP/IP

TCP/IP library spec: [-.VMS]UCX_SHR_DECC.OPT/OPT

Creating [.CRYPTO]OPENSSLCONF.H Include File.

Creating [.CRYPTO]BUILDINF.H Include File.

Rebuilding The '[.APPS]MD5.C' And '[.APPS]RMDI60.C' Files.

%DELETE-W-SEARCHFAIL, error searching for DKB0:[OPENSSL.OPENSSL-0 9 6C.APPS]MD5.C;*

-RMS-E-FNF, file not found

%DELETE-W-SEARCHFAIL, error searching for DKB0:[OPENSSL.OPENSSL 0 9 6C.APPS]RMDI60.C;*

-RMS-E-FNF, file not found

Rebuilding The '[.TEST]*.C' Files.

Rebuilding The '[.INCLUDE.OPENSSL]' Directory.

Building The [.AXP.EXE.CRYPTO]LIBCRYPTO.OLB Library.

No Debugger Information Will Be Produced During Compile.

Compiling With Compiler Optimization.

Using DECC 'C' Compiler.

Compiling Without The RSAREF Routines.

Main C Compiling Command: CC/OPTIMIZE/NODEBUG/STANDARD=ANSI89/NOLIST/PREFIX=ALL/
INCLUDE=SYSSDISK:[]/DEFINE=(~FLAT_INC=I",VMS=I,TCPIP_TYPE_UCX,DSO_VMS)/
WARNING=(DISABLE=(LONGLONGTYPE,LONGLONGSUFX))

Main MACRO Compiling Command: MACRO/MIGRATION/NODEBUG/OPTIMIZE

TCP/IP library spec: [-.VMS]UCX_SHR_DECC.OPT/OPT

Compiling On A AXP Machine.

I Chapter 6

82 6.2 Installation

Using Linker Option File SYS$DISK: []VAX_DECC_OPTIONS.OPT.
Compiling The uid.c File. (LIBRARY, LIB)
Compiling The MD2 Library Files. (LIBRARY,LIB)

and so on, concluding w i t h . . .

Building The OPENSSL Application Program.
$

Here's the command to copy libraries, configuration files, and so on into
another directory tree for production purposes. Once you've done this, you
can nuke the SSL, tree if you need the disk space. Quite a lot of it is code
and scripts for non-VMS platforms. When you get a later version of SSL
you can build that one in its own tree and use this same procedure to put it
in your production SSL space. (But note, however, that if you do, this will
overwrite your configuration file; therefore, save it before you upgrade.)

$ @install dkb0: [production_ssl]
%CREATE-I-CREATED, WRK_SSLROOT: [000000] created
%CREATE-I-CREATED, WRK_SSLROOT: [VAX_EXE] created
%CREATE-I-CREATED, WRK_SSLROOT: [ALPHA_EXE] created
%CREATE-I-CREATED, WRK_SSLROOT- [VAX_LIB] created
%CREATE-I-CREATED, WRK_SSLROOT: [ALPHA_LIB] created
%CREATE-I-CREATED, WRK_SSLROOT: [LIB] created
%CREATE-I-CREATED, WRK_SSLROOT: [INCLUDE] created
%CREATE-I-CREATED, WRK_SSLROOT: [CERTS] created
%CREATE-I-CREATED, WRK_SSLROOT: [PRIVATE] created
%CREATE-I-CREATED, WRK_SSLROOT: [VMS] created
%COPY-S-COPIED, DKB0:[OPENSSL.OPENSSL-0 9 6C]E_OS.H;I
copied to WRK_SSLROOT: [INCLUDE]E_OS.H;I (28 blocks)
%COPY-S-COPIED, DKB0:[OPENSSL.OPENSSL-0 9 6C]E_OS2.H;I
copied to WRK_SSLROOT-[INCLUDE]E_OS2.H;I (2 blocks)
%COPY-S-NEWFILES, 2 files created
Installing CRYPTO files.

and so on, and so on, concluding w i t h . . .

Installing VMS files.
%OPEN-I-CREATED, WRK_SSLROOT: [VMS] OPENSSL_STARTUP. COM; 1
created.
%COPY-S-COPIED, DKB0 : [OPENSSL.OPENSSL-
0 9 6C.VMS]OPENSSL_UTILS.COM;I copied to
WRK_SSLROOT. [VMS]OPENSSL_UTILS.COM; 1 (3 blocks)
Installation done!

At this point you probably want to put

Sdkb0 �9 [production_ssl. vms] openssl_startup, com "/system"

into your system startup so that your SSL root will be defined systemwide.

6.2 Installation 83

Your SSL library is built. Now comes the fun part of installing an SSL
component into OSU. While there are three different ways to do this, they
all start out the same, so I'll go through the common part first. (Again, I'm
working from R. A. Byers's instructions at http://www.ourservers.net/
openvms_ports/openssl/openssl_contents.html. I've been using these
instructions to run various versions of OSU with SSL in a separate task for
several years, so I know they're good.)

You'll need to replace a few parts of the OSU server distribution. Point
your browser to http://www.ourservers.net/openssl/openssl4.html and fol-
low the links to download newtserver.zip, osu_ssl.zip and wwwssl.zip
(unless you're going for the MST version of SSL, in which case you won't
need WWWSSL.) You'll also need to have either M M S ~ t h e Compaq-
licensed make utility, part of DECset---or the free compatible MMK pack-
age, which you can get at ftp://ftp.madgoat.com/madgoat/MMK.zip. You'll
need to have one of these packages to install Perl extensions or modules
later, anyway, so it's good to have this in your toolbox.

Unpack the osu_ssl.zip into the [.BASE_CODE] subdirectory of your
OSU directory. (This brings in replacements for some of the linker .OPT
files that are in the OSU distribution point to old SSLEAY files.) If you
didn't use the shareable-image TCP library options when you built OSU
originally, you need to rebuild it using them.

$ MMS/MACRO= (SHARE_TCP=xxxx) ! or MMK/

MACRO= (SHARE_TCP=xxxx)

where the "xxxx" is one of the following:

CMUTCP CMU TCP/IP

MULTINET Multinet TCP/IP

TCPWARE TCPware TCP/IP

TWGTCP Pathway TCP/IP

UCXTCP DEC UCX TCP/IP

Next, unpack the newtserver.zip file into your [.SYSTEM] directory;
this replaces the existing tserver_tcpshr_install.com file. Unless you're build-
ing the MST version of SSL, unpack the WWWSSL.ZIP file into the root
OSU directory, making a WWWSSL.COM file. (This small pure-text file
is sent as a ZIP archive because some people have to download using PCs,
and if they have Internet Explorer, which doesn't honor MIME-type specifi-
cations, it will assume that a .COM file is a PC binary executable and mess
it up. ZIPs are reasonably immune to this kind of nonsense.) Edit

I Chapter 6

84 6.2 Installation

WWWSSL.COM so that the SSL_SERVER_CERTIFICATE logical name
is defined to point to the file the certificate is in. (Byers recommends put-
ting the certificate into SSLCERTS:~as defined in the OpenSSL star tup~
and the file name is by default SERVER.PEM.)

Your options are the TASK interface (which works with every combina-
tion of a 40- or 128-bit browser and a self-signed or CA-signed server certif-
icate, but which requires a trip through same-system DECnet to get to the
server); the ENGINE interface (which supports most browser/certificate
combinations and which has the same DECnet trip to cover); and the mes-
sage-based server thread (MST) interface, which is linked in with the server
image and has the best performance but supports the fewest browser/certifi-
cate combinations. (As of version 3.10, the MST interface has been altered
to support authentication using client certificates; this is not the case with
SSL_ENGINE or SSL_TASK.)

All three options work fine with nonexport browsers with 128-bit
encryption. If you can rely on all your users having that, you'll be fine. At
my site, we need to support users all over the world, including staff who
have traveled to conferences in other countries and are using Internet cafes
or other systems on which they aren't allowed to install software. Flexibility
was more important than getting absolutely optimal performance; there-
fore, I've always used the TASK interface.

The TASK interface
If you want to use the SSL TASK interface (using the SSLTASK image com-
piled when you installed OpenSSL), do the following. Compile the DEC-
net interface to SSL.

$ CC TSERVER_SSL. C

$ CC SSL_SERVER_DNET.C

Link it.

$ MMS TSERVER_SSL. EXE/FORCE/MACRO= (SSL=SSL_SERVER_DNET)

That should create a TSERVER_SSL.EXE in your [.SYSTEM] direc-
tory. Start the server; if DISK$WORK:[HTTP_SERVER] is your OSU
server root, a startup command such as

$ @DISK$WORK : [HTTP_SERVER. SYSTEM] HTTP_STARTUP. COM

HTTP_SERVER -

DISK$WORK : [HTTP_LOGS] HTTP_ERROR. LOG -
DISK$WORK: [HTTP_SERVER. SYSTEM] HTTP_MAIN. CONF -

80 443

6.2 Installation 85

6 .2 .3

should start you up with an HTTPS service on port 443. If it doesn't work,
look in WWWSSL.LOG for clues.

The E N G I N E in te r face

To use the SSL ENGINE interface (using the SSL_ENGINE code provided
with the server), do the following. Compile the DECnet interface to SSL
and the SSL_ENGINE code.

$ CC TSERVER_SSL.C

$ CC SSL_SERVER_DNET.C

$ CC SSL_ENGINE.C

You now need to compile the SSL_THREADED.C and BSS_MST.C
files as follows:

$ CC/STANDARD=ANSI89/PREFIX=ALL/WARNING=DISABLE=DOLLARID -

/INCLUDE=SSLINCLUDE:/DEFINE= ("FLAT_INC=I", "VMS=I") -

S SL_THREADED. C

$ CC/STANDARD=ANSI89/PREFIX=ALL/WARNING=DISABLE=DOLLARID -

/INCLUDE=SSLINCLUDE:/DEFINE= ("FLAT_INC=I", "VMS=I") -

BSS_MST. C

and link the SSL_ENGINE:

$ LINK/NOTRACEBACK/EXE=SSLEXE: SSL_ENGINE.EXE -

S SL_ENGINE . OPT / OPT

This puts the SSL_ENGINE code in your installed OpenSSL directory
tree, not in your OSU tree. To work properly, this needs to be world-read-
able, so set the protection:

$ SET FILE SSLEXE:SSL_ENGINE.EXE -

/PROTECTION= (S : RWED, 0 : RWED, G, W:RE)

and it needs SYSNAM privilege, so install it as follows:

$ INSTALL ADD SSLEXE : SSL_ENGINE. EXE/PRIVS= (SYSNAM)

(If you are upgrading OSU, that needs to be INSTALL REPLACE
rather than ADD.) You should put this INSTALL command into your
server startup script so that it will be executed every time the server starts; if
you don't, your HTTPS service will stop working when you next reboot.

Start the server (with the command shown for the TASK interface) and
see if it works; if it doesn't, check WWWSSL.LOG for clues. A common
problem is having the ownership or the protection on the server certificate
set wrong. Remember, you can't make it W:R, because your private key is
attached to it, but the OSU account (usually HTTP_SERVER) has to able

I Chapter 6

86 6.3 Configuration

6 .3

to read it; anybody else who gets the file can use it to impersonate your
server.

6 . 2 . 4 T h e M S T i n t e r f a c e L

In the [.BASE_CODE] directory, compile the TSERVER_SSL.C and
SSL_SERVER_MST.C files.

$ CC TSERVER_SSL.C

$ CC SSL_SERVER_MST.C Message-based Server Thread

Compile the SSL_THREADED.C and BSS_MST.C files as follows:

$ CC/STANDARD=ANSI89/PREFIX=ALL/WARNING=DISABLE=DOLLARID -

/ INCLUDE=SSLINCLUDE :/DEFINE= ("FLAT_INC= 1" , "VMS=I") -

SSL_THREADED. C

$ CC / STANDARD=ANSI 89 / PREFIX=ALL/WARNING=DISABLE=DOLLARID -

/INCLUDE=SSLINCLUDE"/DEFINE= ("FLAT_INC=I", "VMS=I") -

BSS_MST. C

It's normal in this case to get some warnings (-W-) and informational (-I-)
compile messages; don't worry about it. Link the MST SSL server.

$ MMS TSERVER_SSL. EXE/FORCE/MACRO= (SSL=SSL_SERVER_MST) ! or

MMK

You should now see the file TSERVER_SSL.EXE in your OSU [.SYS-
TEM] directory.

6 . 2 . 5 W A S D

There isn't really a separate SSL installation process for WASD. At installation
time, you need to use the optional WASD OpenSSL kit and install against
that as described in Chapter 4, section 4.2.4 or link against your site's existing
OpenSSL installation to provide an SSL-enabled WASD image. The WASD
OpenSSL kit includes a self-signed test certificate so SSL can be deployed
immediately. The [.WASD] directory includes some DCL procedures that
make it easy to generate self-signed CA, server, and client certificates.

Configuration
6 . 3 . 1 CSWSIMOD_SSL*

MOD_SSL offers global directives that affect the entire Apache installation;
per-server directives that apply to either the default server configuration or

6.3 Configuration 87

within a VirtualHost container; and per-directory directives, which can
appear not just in the main server config files but in the .htaccess files you
may choose to locate in particular directories.

Here's a tip that will save you a little annoyance: mod_ssl.conf is
included at the end of HTTPD.CONF by the installation. If you leave it
there, any container configuration such a s SSLRequireSSL that appears
above it will keep your server from starting. Move the include of
mod_ssl.conf near the top of your HTTPD.CONF, or append all your sys-
tem configuration below it.

Apache allows different certificates for different IP-based virtual hosts.
You can specify those in the mod_ssl.conf include file. The default
mod_ssl.conf, incidentally, uses a virtual host container for the default host
(with port 443 specified), and has a document root specification in that
container. It's a little surprising when you've pointed your document root in
the default server to where your actual files are and then go to your site with
HTTPS and still see the Apache documentation page.

It is my strongly held opinion that you don't want certificates that
require you to enter a passphrase, even though Apache supports it. This
would mean that your site couldn't run SSL if the people who knew the
passphrases weren't available; if everybody knows the passphrases, they aren't
secret, and there's no point in having them. Passphrases make sense if you
don't trust the security of your file system--since the encrypted certificate is
no good without the passphrase--or the ability of the operating system to
keep untrusted users from getting privileges to access resources they're not
supposed to. The robust security model of VMS is one of the reasons you're
running it; set up your files correctly and don't mess with passphrases. You
shouldn't compromise the ability of the platform to boot unattended by
requiring operator input to make SSL services work.

(Apache also gives the option of running an arbitrary program to pro-
vide the passphrase input, but, in fact, if you're going to have a program
know the phrases, or have a program read a file that has the phrases in it,
you subvert the point of having passphrases at all.) Apache provides quite a
few knobs to twiddle in SSL; on VMS, you mostly don't want to touch
them. If you're curious, you can go to modssl.org and read their documen-
tation in detail.

Here are the parameters you care about. (I'11 give a brief discussion
later of the parameters you don't care about, and why.) In general they can
be included at the main server configuration level or in a VirtualHost
container.

I Chapter 6

88 6.3 Configuration

SSLEngine onloff (default off)

You need this to use HTTPS at all. This enables or disables use of the
SSL/TLS protocol engine for this VirtualHost (or, if you do it for the
default server configuration, the main server). Typically, you'd use only the
SSLEngine on format.

SSLCert i f icateFi le pathto / cert i f icate f i i ename
SSLCerti ficateKeyFile pathto/keyfilename

As you'd guess, these directives allow you to specify where your certifi-
cate file is located. (If your key is combined with the certificate file, you
need only the S S L C e r t i f i c a t e F i l e directive; if not, you need the
sSmCer t i f ica teKeyVi le directive to tell Apache where the key file is.) If
you include these directives in IP-address-based VirtualHost containers,
you can specify a different certificate for each VirtualHost. (As already men-
tioned, this won't work for name-based virtual hosts with the same numeric
IP address, because the SSL dialog occurs before the browser can tell the
server what host it's looking for.)

SSLLog /pathto/filename
SSLLogLevel none I error I warn I info I trace I debug

If you want a dedicated log that shows only HTTPS transactions, use
SSLLog to specify where you want it. A typical path would be l o s s /
s s l_eng ine_ log (and that's what's in the CSWS MOD_SSL file by
default). SSLLogLevel specifies what information you want to see in the
SSL log file; if not specified, the default is none. Each level incorporates all
the levels shown to the left of it; CSWS gives you info by default. Even if
you don't have an SSL log, errors will be written to the main Apache log.
t r a c e is interesting to watch how an SSL dialog unfolds, but you don't
want to leave it on all the time--it 'll burn a lot of disk space. That's even
more true for debug.

SSLRequireSSL
SSLRequire [arbitrarily-complex boolean-expression]

SSLRequireSSn, included in any container directive or .htaccess file,
forbids non-SSL access to the stuff specified therein. If you use password-
based authentication for access to the contents, the password dialog will be
SSL-encrypted, which is a good thing.

SSLRequire, on the other hand, is like Require, the directive that lets
you limit access to anything unless any conditions you can specify are met.
Potentially, however, it is considerably more complicated, because it has a
lot more environment variables to play with. If you want to require that

6.3 Configuration 89

only a particular IP address can get at this container, or get at it only
between 9:00 A.M. and 5:00 P.M., or use only SSL version 3 with the Blow-
fish cipher and a 512-bit key, this is the command you want. I include it
here for completeness, but I'll discuss this (and the Require command)
more fully in Chapter 7.

SSLOptions [+-] StdEnvVars I CompatEnvVars I ExportCertData I
FakeBasicAuth I StrictRequire I OptRenegotiate

This can go in a server config, VirtualHost, container, or .htaccess file; if
the options specified are preceded with + or -, they are merged with the
options already in effect from any higher-level SSLOptions specification.

S t d E n v V a r s tells Apache to create the standard set of SSL-related
environment variables (symbols), which you usually want to do only if
you're going to be using them in CGIs or SSIs or possibly in SSLRequire
statements.

CompatEnvVars produces the environment variables for backward
compatibility with pre-mod_ssl Apache SSL environments; you're unlikely
to need this on VMS unless you've imported CGIs from an old UNIX
installation.

ExportCertData and FakeBasicAuth apply only if you're using client
certificates for authentication, which is fairly rare (and is discussed in Chap-
ter 7). E x p o r t C e r t D a t a makes the certificate information available as sym-
bols in the CGI/SSI environment, while FakeBasicAuth takes the subject
distinguished name (DN) of the client certificate and pretends that the cli-
ent was authenticated as that user under basic authorization, allowing regu-
lar Apache access controls to be used. Since no password is collected, the
user name has to be entered in the authorization file--not the SYSUAF but
an .htauth file with the password xxj31ZMTzkVA, which is the DES-
encoded version of the word "password."

S t r i c t R e q u i r e is designed to keep a s a t i s f y any with other autho-
rized accesses specified from working when SSLRequire or SSLRe-
quireSSL forbids access; it forces an access failure without looking at the
other options permitted in the s a t i s f y command.

OptRenegotiate should be used only on per-container specs; it enables
optimized SSL connection renegotiation handling. Without this, a full new
SSL handshake will occur every time a container is specified that has an SSL
directive in it; with it, mod_ssl does parameter checks less often, but still
often enough to be safe.

... I Chapter 6

90 6.3 Configuration

CustomLog pathto/filename logformat

mod_ssl enhances the CustomLog directive (which is technically from
mod_log_config, one of the core modules of Apache/CSWS), allowing it to
log SSL-related environment variables. The CSWS-distributed
mod_ssl.conf has a CustomLog defining an SSL_REQUEST_LOG., track-
ing which protocols and which ciphers were used; it looks like this:

CustomLog logs/ssl_request_log \
"%t %h %{SSL_PROTOCOL}x %{SSL_CIPHER}x \"%r\" %b"

The resulting log entries (with the IP address sanitized) look like:

[2 7 / J a n / 2 0 0 2 - 0 3 : 2 9 : 0 5 -0800] [IP] TLSvl EDH-RSA-DES-CBCB-

SHA "GET / HTTP/I.I" 2673

Now for the parameters you probably don't want to, or shouldn't, mess
with, either because you're unlikely to need them at all or because the
default values are good ones. (I don't actually expect good system managers
to believe that they aren't important on my word alone, so I explain them
anyway.)

SSLPassPhraseDialog

I don't really believe in passphrases for VMS; they can compromise avail-
ability without giving much of an increase in security. Don't use encrypted
keys that require passphrases.

SSLSessionCache none I dbm:/pathto/file I [c]shm:/pathto/
file[(size)]
SSLSess ionCacheTimeout number-of-seconds
SSLMutex none I /pathto/lockfile I I [c]sem

If it's told to, Apache will maintain a cache of currently open SSL ses-
sions, which is available to all of the Apache server processes. Modern
browsers may issue multiple parallel requests, which can be satisfied by dif-
ferent server processes. If the credentials are cached, each server process
doesn't have to go through the whole dialog over again, and you get much
better throughput, resulting in pages that load faster. So you want to have a
session cache, thus ruling out the none option. The dbm: parameter isn't
actually telling CSW to use a dbm file, but it does let you specify a disk-
based table, which is slower than having the session cache in shared mem-
ory, which is what shm: gives you; this is what's in the mod_ssl.conf file
when you install CSWS. (If you get really, really, heavy SSL use and see per-
formance suffer, you might want to increase the SSL cache size from the
default 512,000 bytes, but I'd expect you to do more for SSL performance
by splitting the encryption load across more CPUs.)

6.3 Configuration 91

With version 1.2, there's support for a clusterwide session cache. If your
cluster is in a Galaxy box, the session cache can be in Galactic shared mem-
ory; specify cshm: rather than shm: and make sure the size of the datafile is
the same everywhere it's referred to. If your cluster combines multiple sys-
tems, you can use shared disk storage by specifying dbm:/pathto/data-
f i 1 e tO a cluster-visible disk and use

SSLMutex csem

to specify cluster semaphore control. This gives you the performance bene-
fit of a clusterwide shared cache along with the performance drawbacks of
having to do disk I/O to get to it. Whether you save or lose time by using
disk-based clusterwide SSL session cache is probably highly dependent both
on load and I/O speed, and it might be worth some experimentation.

SSLSessionCacheTimeout says how many seconds to hold the SSL
data in the cache if there's room; the CSWS default is 300 (five minutes),
which is what mod_ssl.org suggests. If your users typically put data that are
secret enough to require encryption up on their screens and leave it sit for
longer than five minutes, you can accommodate that behavior by increasing
the SSLSes s ionCacheTimeout.

Since every Apache process can update the SSL Session Cache, they need
some way to keep from tripping over each other. SSLMutex tells Apache
whether to use nothing to direct traffic which is silly, since it will result in
cache corruption the first time two processes try to update the cache at the
same time--or a lock file (which is the traditional pathetic UNIX work-
around for not having a lock manager and which fails to result in crip-
plingly bad I/O performance only because the heavily cached file system
doesn't guarantee that the file will actually get out to disk when it signals
that a write is complete)--or a semaphore if the operating system provides
that advanced construct. VMS has had a lock manager for a long, long
time, and the sem setting (or the csem variant) is, therefore, the only one
that makes sense; it's the one that CSWS provides out of the box.

SSLRandomSeed startup I connect builtin I
/pathto/pseudodevice I/pathto/exe

UNIX servers offer pseudodevices that are supposed to provide random
values based on events meant to be nondeterministic (e.g., the number and
content of I / 0 operations the system has performed so far); they have
names such as/dev/random and/dev/urandom. Those devices have more
randomness available when the system has been running awhile~or at least
can provide more random bytes~than they do at startup, so on those sys-
tems you might want to use different sources of randomness at startup than

I Chapter 6

92 6.3 Configuration

6 .3 .2

you do at each new SSL connection. The devices aren't available on VMS,
so you either need to use the built-in pseudorandom number generator or
roll your own and tell Apache to use it. I'm guessing that nearly everybody
will go with the built-in option, and that's what's configured in the CSWS
mod-ssl.conf. This works only in the whole-server context, incidentally, not
in VirtualHosts.

SSLProtocol All I + I - S S L v 2 I + I- SSLv3 I + I-TLSvl

allows you to specify which SSL protocols you'll support. Unless you want
to keep customers or users from talking to you, you'll pick A11, which is the
default. (Mozilla supports TLSvl; Netscape 4.73 and up supports SSLv3, as
does Internet Explorer 5.5 and up.) The + o r - apply when this command
appears in VirtualHost, container, or .htaccess mode, in which the parame-
ters can be merged with those inherited from higher levels.

SSLCipherSuite cipher-spec

This lets you restrict which ciphers you're willing to support with which
SSL protocols, in per-server and per-container contexts and also in .htaccess
files. My belief is that most sites want to embrace as many as possible,
which is the default. Look up the cipher table on modssl.org if you want to
get involved with this.

SSLCertificateChainFile pathto/certificatechainfile

If your certificate doesn't come directly from a known CA, but rather
from an entity that has been delegated the authority by a known CA, you
can provide a file consisting of the certificates from the entity that issued
your certificate all the way up to a known CA; this directive tells Apache
where to find that file.

SSLCACertificatePath /path
SSLCACertificateFile filename

MOD_SSL supports X.509 client authentication; this is discussed more
fully in Chapter. 7

OSU

The SSL configuration for OSU is minimal, and it was covered in the
instructions for building in SSL support. For SSL_TASK or
SSL_ENGINE, make sure the WWWSSL.COM file specifies where to
find the certificate. For MSTs, insert $ DEVINE/SYSTEM/EXEC statements
for the following logicals into the HTTP_STARTUP.COM file so that
they're defined whenever you start the server.

6.3 Configuration 93

WWWSSL_MST_THREAD_L IMIT

WWWS S L_MST_STACK_S I ZE

Maximum number of SSL threads
allowed. (Default is 10)

The stack size for SSL server threads.
(Default is 60000)

WWWSSL_MST_QUEUE_FLAG To wait for next available thread or
not. (TRUE or FALSE value)

WWWS SL_MST_CERT I F I CATE Location of the server's SSL certificate.

WWWSSL_MST_LOGF ILE

WWWSSL_MST_VERS ION

Location to put the MST SSL log file.

Which versions of SSL to use: 2, 3, or
23 (Default is 2; 23 supports both.)

Here's an example:

$ DEFINE/SYSTEM/EXEC WWWSSL_MST_THREAD_LIMIT 15

$ DEFINE/SYSTEM/EXEC WWWSSL_MST_STACK_SIZE 90000

$ DEFINE/SYSTEM/EXEC WWWSSL_MST_QUEUE_FLAG TRUE

$ DEFINE/SYSTEM/EXEC WWWSSL_MST_CERTIFICATE -

SSLCERTS : SERVER. PEM

$ DEFINE/SYSTEM/EXEC WWWSSL_MST_LOGFILE -

DISK$HTTP : [HTTP_LOGS] SSL_MST. LOG

$ DEFINE/SYSTEM/EXEC WWWSSL_MST_VERSION 23

If you put these define statements in your OSU HTTP startup file,
you won't be surprised if your HTTP service fails when you next reboot.
Start up the HTTPD server (same command as seen in the TASK version)
and HTTPS should work. If not, check the file you defined in
WWWSSL_MST_LOGFILE for clues.

OSU doesn't need SSL cache configuration directives, because it isn't
sharing the information among multiple processes, just multiple threads
with the same environment available.

OSU supports the use of exactly one certificate, so don't try to support
multiple domains. (There's an ugly hack that allows you to run multiple
versions of OSU on different ports, tweaking all the SYSTEM-level logical
names into GROUP-level tables; this might let you run the MST SSL ver-
sion, although only one copy of OSU could be listening to port 443, and
the rest would have to specify a nonstandard port. To run multiple copies of
SSL_TASK or SSL_ENGINE, you'd need to run OSU under multiple user
names so that the DECnet task created to run SSL could have different
environments.)

I Chapter 6

94 6.3 Configuration

6 .3 .3

Until the just-released (end of January 2002) 3.10alpha version, OSU
did not support authentication through the use of client certificates at all.
That version supports it in the MST version only, and the support is
described in the release notes as "experimental"; I'll discuss configuration
for that in Chapter 7.

WASD

If the WASD server startup finds a certificate in HT_ROOT:
[LOCAL]HTTPD.PEM, the startup will automatically define HTTPD$
SSL_CERT to point to the certificate file specified. (You can also specify a
WASD_SSL_CERT symbol to point to a certificate file before running the
startup, and HTTPD$SSL_CERT will end up pointing to that value.) If
you do no further configuration, all SSL services will use that certificate. If
the key is in a separate file rather than appended to the certificate, you can
manually define HTTPD$SSL_KEY to point to the key file. If the key
requires a passphrase~which, as I've said previously, I don't think is a good
idea~the server will issue a status message saying that it needs to be told
the phrase, either to the HTTPDMON utility or, if you've enabled
OPCOM logging, to OPCOM. The passphrase can then be entered by a
privileged user running the command-line interface to the server:

$ HTTPD /DO=SSL=KEY=PASSWORD
Enter private key password [] :

(The passphrase isn't echoed; you get three tries to get it right before the
server carries on with the startup with that service disabled. If there are mul-
tiple services with multiple keys with multiple passphrases specified, you
need to repeat this dialog and be sure to get it in the right order.)

To specify different SSL services in WASD, you can use a command-line
parameter in the server startup (/SERVICE=), the [Service] header in the
file pointed to by the logical HTTPD$CONFIG (which is, by default,
HTTPD$CONFIG.CONF), or a separate HTTPD$SERVICE file. (If the
startup sees an HT_ROOT:[LOCAL]HTTPD$SERVICE.CONE it'll
define an HTTPD$SERVICE logical name.)

In the HTTPD$CONFIG variant, you define on one line the service
name (and port, if it's not the default) for each service you want to support.
If no service type is given, it's assumed to be HTTP. If no port is given, it's
assumed to be 80 for HTTP and 443 for HTTPS. After the service name,
insert a semicolon and then give a cert parameter to locate the appropriate
certificate. (This still requires different numeric IP addresses for the differ-
ent HTTP services, at least the ones on the same ports.)

6.3 Configuration 95

[Service]

yourserver, yourdomain, tld

https : //yourserver. yourdomain, tld; cert=ht_root : [local] yourserver, pem

https : //otherserver. yourdomain, tld; cert=ht_root : [local] otherserver, pem

https : //otherportserver. yourdomain, tld: 8443 ; cert=ht_root : [local] otherport, pem

In the HTTPD$SERVICE variant, there are more directives available.
In the HTTPD$SERVICE file, the headers are the service names:

[[http://yourserver.yourdomain.tld:80]]

[[https : //yourserver. yourdomain, tld: 443]]

[ServiceSSLcert] ht_root : [local] servicename, pem

[ServiceSSLkey] ht_root : [local] servicename_key, pem

As shown, S S L c e r t points to the location (as a VMS file name, not a
UNIXified string with slashes) of the server certificate for this service;
SSLkey points to the location of the private key file, if you didn't bundle it
with the server certificate in a single file.

WASD also supports X.509 certificate authentication and authorization
on a per-resource basis. This is discussed more fully in Chapter 7.

I Chapter 6

This Page Intentionally Left Blank

7
ManagingAccess to Your Server Resources

7.1

There are two sides to managing access to server resources: the outside and
the inside. You need to control who (and how many) entities from outside
the system can get at what's on the inside in what way. This brings up the
issues of user identification, either anonymously (people coming from par-
ticular subnets or domains) or identifiably (through some kind of authenti-
cation procedure).

Presented with a URL by the client, the server has to map that into a
resource name recognizable by the operating system; determine whether
there are any access restrictions on that resource; and, if the access is
restricted to particular users, authenticate the requester as one of the users.
Resource mapping, access control, and authentication are closely enough
intertwined that they should be discussed together.

On the inside, there's presentation, so I'll start by discussing how you
map URLs to particular resources along with some related path- or URL-
oriented commands. File protection and access control are right in the mid-
dle and require some understanding of both sides, so I'll discuss that last.

Mapping resources

In the basic configuration for each of the servers (discussed in Chapter 5), I
described how to specify the document root for each server. (In Apache,
that's a DocumentRoot directive; in the other servers, it's a PASS mapping
rule, which specifies how/* is interpreted.)

If you just want to serve everything from one document tree, with a
URL that exactly matches the subdirectory structure of that document tree
and do nothing else, then you may not need to use other mapping rules at
all. This is unlikely for any Web site of significant size. In a larger site Web-
masters find themselves mapping short URLs rather than long paths, mak-

97

98 7. I Mapping resources

7.1.1

ing CGI programs look like HTML files and redirecting requests for
documents that have moved to other servers.

In general, on the inside you want to map URLs into file specifications
(or sometimes into other URLs). The easiest way is to point "/" at the top
of a directory tree and map URLs to file names according to the file-system
mapping, but very often you want to do more than that.

The cleanest, most efficient, easiest-to-maintain layout for your file
structure may not produce the cleanest layout for URLs, which can get very
long very quickly. You can provide easier access and hide your internal
structures, which makes life easier for anybody who has to type in a URL
and also makes it possible to reorganize your internal structures without dis-
turbing customer bookmarks.

If you're muhihosting (see Chapter 9) and want to present different con-
tent for each host, you need to point the server-root to different places,
which may or may not be in the same directory tree. You can present con-
tent from different devices--even from different systems--without expos-
ing that fact to the world. You can send browsers off to other systems to
look for content that used to be on yours.

Sometimes it's handy to run scripts without it being obvious that you're
doing so. Scripts that generate pages dynamically can be mapped so they
look to browsers (and indexers) like indexable static pages.

Apache

Mapping
CSWS 1.2 gives us mod_rewrite, which has an amazing set of capabilities in
file mapping. Prior to 1.2, mod_alias was available, and is still useful for
bringing in additional document trees that aren't under the document root,
as well as handling redirects (and script aliases, which I will discuss later in
the book). All of these commands go into HTTPD.CONE Here are the
mod_alias directives.

Alias url-prefix filename-prefix

This maps URL-prefix (e.g., /tree2) to filename-prefix (e.g., /$disk2/
wwwtree). Any URL coming in with/tree2/anyname will be resolved as
/$disk2/wwwtree/anyname rather than looking for/tree2 in your main doc-
ument tree.

AliasMatch url-pattern file-system-path

7.1 Mapping resources 99

This is similar to Alias but uses a regular expression for the URL pat-
tern, rather than matching just on the prefix, and substitutes the matched
components into the file-system path. Regular expressions are a very
nuanced version of wildcarding, which allows you to specify matching on
various components. They are a complicated topic; there's an entire
O'Reilly book dedicated to them (Mastering Regular Expressions by Jeffrey
Friedl). Learning about them will repay the Apache Webmaster, but any
detailed discussion is beyond the scope of this book. A good tutorial intro-
duc t ion- in the context of Perl programming--can be found at http://
www. perldoc.com/perl5.6.1/pod/perlretut.html.

Redirect [status] url-prefix /redirect-prefix]

Possible values for status are permanent, temp, seeother, and gone.

This catches URLs starting with a URL prefix (e.g., /temporary) and
replaces that with the redirect-prefix (e.g., http://www.otherserver.tld/tem-
porary) and sends that redirection instruction back to the client. The first
argument, status, is optional (defaulting to 302~temporary redirect), but if
gone is used, you shouldn't include a redirect-prefix. You can also give
numeric status values instead of the names; include a redirect-prefix for a
3xx status code and omit it for anything else.

RedirectMatch /status]
url-pattern
redirect-URL

This is similar to Redirect but with a regular expression instead of a
plain prefix match.

ScriptAlias url-prefix file-system-path

This has the same syntax as Alias, but marks the directory as containing
executable CGI scripts. A typical usage example would be a URL prefix of
/ c s i - b i n and a file-system-path corresponding to / $ c g i - d i s k / c g i - b i n .
(You could achieve the same effect by using Alias and specifying opt ions
+ExecCGI in a container directive for that directory or path.)

ScriptAliasMatch url-pattern file-system-path

This has the same meaning as ScriptAlias but uses regular expression
for the URL pattern.

Mod_rewrite is a very capable module indeed. For a comprehensive
series of examples displaying its capabilities, check out http://
httpd.apache.org/docs/misc/rewriteguide.html; and for a full manual,

I Chapter 7

I00 7. I Mapping resources

look at http://httpd.apache.org/docs/mod/mod_rewrite.html. One sur-
prising feature is that mod_rewrite directives can be put in per-directory
.HTACCESS files (discussed in section 7.3). This is surprising, because it
means mod_rewrite hooks into Apache URL processing twice, once at the
URL interpretation level and then again after the URLs have been
mapped to the file system. Here's a brief introduction to some of the
mod_rewrite directives.

RewriteEngine on I o f f

This enables or disables the run-time rewrite engine, which is off by
default. You must turn this on. The setting is not inherited across virtual
hosts (see Chapter 9), so you need to specify this for each virtual host where
you intend to use it.

RewriteOptions inherit

In the future there may be more options specified, but at present only
"inherit" is implemented. If used in an .HTACCESS file, it means that
RewriteCond and RewriteRule directives of the parent directory are inher-
ited; in a virtual host it means that these directives are inherited from the
main server, along with RewriteMap (which I will not discuss here).

RewriteLog logfile

The log-file specification uses the same syntax as that for any Apache log
file, so a typical value would be "logs/rewrite_log". What gets logged
depends on RewriteLogLevel.

RewriteLogLevel 0111213141516171819

The argument to RewriteLogLevel is a verbosity level, where 0 is "log
nothing" and 9 is "log everything including debug info."

RewriteBase url

This is useful for per-directory rewriting (implemented in an .HTACCESS
file). Because the .HTACCESS files are processed after Apache mapping has
worked its way down to the current directory, the RewriteRule directives in
it apply only to local files; the directory-path prefix is stripped off. If you do
redirects, the value of the RewriteBase will be prefixed back on to the front
of the result of the RewriteRule directives, unless the result begins with
HTTP: or HTTPS:, since that's probably a redirect to a different server and
should be fully specified. (For example, if files that had formerly been in a
user directory (see Chapter 8) were moved to a new directory in the main
server root, the user directory could get an .HTACCESS file that specifies a

7.1 Mapping resources I01

RewriteBase of "/newdir/" and a RewriteRule that matches all the moved
files and says to redirect, mod_rewrite would combine the file specification
with the RewriteBase for any file accessed and issue a redirect from the old
URL to the new.

RewriteCond test-value pattern [[NC I nocase, 0R I ornext...]]

If a RewriteRule is preceded by one or more RewriteCond directives, it
will be executed only if the conditions specified in the RewriteCond have
been met and the URL matches the predicate of the RewriteRule. The test
string can be a server variable (%{variable-name}) or various other items that
require some knowledge of regular expressions to understand. This would let
you provide different content for users coming from America Online than for
everybody else, using a RewriteCond %{REMOTE_HOST} AOL.COM
(You can also negate the pattern with an exclamation point; ~ O L . C O M
would mean "if REMOTE_HOST doesn't match AOL.COM do the next
RewriteRule.")

The "NC" or "nocase" flag value makes the comparison with the pattern
case insensitive. The "OR" or "ornext" flag means that the truth value of
this RewriteCond is ORed with that of the next RewriteCond, rather than
the implicit AND that would otherwise be in effect; this makes it easier to
have multiple cases that end up executing the same rule.

RewriteRule url-pattern new-template [[flag[,flag]]]

The instruction says to rewrite everything that matches the URL pattern
to match the new template (which may include specific pieces of the URL
pattern) and do things according to the flags specified. Among these flags
are:

�9 "R" or "redirect," which terminates rewrite processing and forces the
issue of a redirect to the value made from the new-template

"F" "~ " " " " �9 or rormcmen, which generates a 403 error
�9 ,,p,' ,, ,,

or proxy, which passes the mapped URL on to mod-proxy to be
fetched from another system (see Chapter 11)

�9 "L" or "last," which terminates rewrite processing

�9 "N" " " or next, which bails out of the current round of rewrite
processing and starts again from the top with the new URL

�9 "T" or "type," which can force a particular MIME type

�9 " N C or nocase, which makes the comparison case insensitive

I Chapter 7

102 7.1 Mapping resources

�9 "S" or "skip," which skips the next rule

�9 "E" or "env," which lets you set an environment variable that can
then be used in subsequent RewriteCond or access control checks

An example

Case-insensitive redirect of any URL containing "othersite" to another site.

RewriteRule othersite http://www.othersite.com/ [R,NC]

Force a redirect of anything starting with/shortname (including the
rest of the path) to/longpath/to/shortname plus the rest of the path, which
bails out of rewrite processing immediately. (The $ and $1 syntax are regu-
lar expression stuff; $1 refers to the value matched by the .* in the original
pattern.)

RewriteRule shortname (. *) $ /longpath/to/shortname$1 [L, R,NC]

Simply rewrite/shortname to/longpath/to/shortname and restart map-
ping processing from the top:

RewriteRule shortname(.*) $ /longpath/to/shortname$1 [N,NC]

Since the file names that URL paths map to are, in fact, case insensitive
on VMS, it seems silly not to make any URL mappings case insensitive as
well; that's why all my examples include the NC flag.

Content type
Another important component of server presentation is what the server
does with files once they're identified. Apache uses the MIME.TYPES file
to tell what content type to send back based on the file extension. This can
be tweaked or extended by using the AddType directive in HTTPD.CONE

AddType content-type . extension [. extension]

To tell Apache that files named something.letter are plain-text files, use

AddType text/plain . letter

Some files need to be processed by something before they can be pre-
sented. The AddHandler directive is used to identify the handling program.

AddHandler handler-type . extension [. extension]

To tell Apache that .HTMLX files (the standard extension for the OSU
preprocessor) and .SHTML (a standard extension for the Apache preproces-

7.1 Mapping resources 103

7 .1 .2

sor) should both be preprocessed by Apache and presented to the browser as
regular HTML files, use the following directives:

AddType text/html . shtml . h t m l x

AddHandler server-parsed . shtml .htmlx

Other values for handler-type include send-as-is (used for documents
that contain all the HTTP headers they need) and imap-f i le (used for
image maps).

OSU

Mapping rules
The mapping directives in OSU are found in HTTP_PATHS.CONE They
can be included inside local address blocks and will apply only to that par-
ticular host. Full VMS-style wildcarding~where the asterisk matches any-
thing and can be placed anywhere in the string~is supported in f a i l ,
protect, hostprot, localaddress, and filecache rules. In most other
cases, the only wildcard allowed is a single asterisk at the end of the string.

You can get a trace log of mapping activity in detail by using P R / V ~ -
QUEST; the command to pass is NEWTRACE/11. Examining the
HTTP_ER/~OR.LOG file (or whatever you've named that file) will give
you a good idea of the mapping process and will probably show you why
any particular mapping rule isn't having the effect you expected. The order
of commands in the file is important; the first match on a PASS command
will bail out of rules file interpretation and look up the file on disk.

redirect url-template redirect-template

causes the server to issue a redirect if the URL-template is matched. If a
wildcard is included in the URL template, the value it matched is replaced
in the redirect template. If you've moved the whole/elsewhere directory
elsewhere, do

redirect /elsewhere/* http://name-of-elsewhere-server, tld/*

and the file name in the elsewhere directory gets plugged into the redirect.
This can also be used to insist that certain files be accessed only through
HTTPS, with

redirect http://www.myserver, tld/needsSSL \
https : //www.myserver. tld- 443/needsSSL
map url-template filesystem-path-template

I Chapter 7

104 7. I Mapping resources

The map rule rewrites an incoming URL into another form but does not
terminate processing. (What you've mapped it into can fall through to sub-
sequent pass or map commands.) Again, each template can include a wild-
card. If you've moved everything from old-directory to new-directory, use
the following:

map /old-directory/* /new-directory/*

to keep from breaking anybody's old bookmarks. To make what appears to
be a static Web page actually invoke a script, do

map /static-Web-page.html /htbin/scriptname

You can use multiple map directives to resolve multiple URLs down to
the same file or directory, and then have a single pass (or p r o t e c t or
hos tp ro t) statement to address the whole thing.

pass url-template filesystem-template

The pass rule operates the same way as the map rule but terminates
mapping processing for that URL. If the pass rule is defined incorrectly,
it'll send the server out to the file system looking for a file that doesn't exist.
Another possibility for the pass rule is to convert URL specs to file specifi-
cations that actually refer to files on other systems to which the server has
access via a DECnet or NFS proxy. For example,

pass / othervax/* / othervax: : $diskl/Web_content / *

(This will certainly fail if your OSU Web server account doesn't have
default proxy access to othervax::. This approach enables you to display cur-
rent sky images from the VAX controlling the telescope while keeping that
VAX safely inside your firewall and not dedicating resources to running a
Web server itself.)

fail url-template

Anything matching the template terminates map processing and returns
a 403 error. In the default configuration for the server, a

pass / desired-welcome-page
pass /www/* document-root/*

fail / *

maps / to the welcome page, causes any/www/* URL to pass to the file sys-
tem, and anything else to fail. (Other mapping is done with map and pass
statements between the first pass and the final f a i l .) Because there's a sep-
arate mapping for the "/" root, any images or pages referenced in that root

7. I Mapping resources 105

can't just specify the file name; they have to specify "/www/filename". I find
this sufficiently hard to explain to my users that I configure OSU with a
catchall

pass /* document-root/*

at the end of my HTTP_PATHS.CONF and let access to files that aren't
really there fail with a 404 (file not found) instead of a 403 (access ruled
out); I end up not using the f a i l directive at all. If you have enough traffic
that the disk I/O to look up nonexistent directories becomes an issue, you
may prefer the/www/and catchall fail configuration, despite the drawbacks
I've mentioned.

Content type
OSU uses MIME types defined in the HTTP_SUFFIXES.CONF file to
determine the content-type header it will send. The command for a partic-
ular type is

suffix .extension representation encoding qualifier

So the command to specify the GIF (binary image file) format is

suffix .gif image/gif BINARY 1.0

(.GIFs, along with most common filetypes, come prespecified by
default.)

PHP template pages include

suffix .php text/php 8BIT 1.0

If the filetype needs to be processed by something else, you use a presen-
tation rule to define the script.

presentation content-type processor

For PHP template pages, which need the PHP processor run on them
before they go to the browser, that's

presentation text/php PHP

(if the PHP command is defined systemwide or in the OSU account's
login.com).

Image maps are specified by default with

presentation application/imagemap www_root: [bin]mapimage

I Chapter 7

106 7.1 Mapping resources

7 .1 .3

PDFs or other large files can be usefully downloaded in chunks by some
clients if you use the byterange script.

presentation application/pdf byterange

WASD

Mapping
WASD's mapping rules go in HTTPD$MAP.CONE They'll look familiar
if you're used to OSU mapping. What will look unfamiliar is the addition
of conditional mapping statements. They fall somewhere between access
control and mapping but are included here for the sake of consistency.

REDIRECT template result

For a URL that matches the template, substitute the result string. There
are four different formats for the result string, all but one of which will gen-
erate genuine external redirects. If the result string is just a path specifica-
tion with no scheme or host name specified (starting with a single slash),
the server restarts the request internally.

If the result is a full URL (scheme://server.domain.tldlpath with or
without a trailing query string "?a=b"), the server instructs the browser to
try that new URL as it stands.

If the result str ing leaves out the scheme: (giving a URL such as
I/server.domain.tldlpath with two leading slashes), the current scheme is
defaulted in, so the same redirect statement can redirect HTTP requests to
HTTP and HTTPS requests to HTTPS.

If the result includes the scheme but leaves out the host name, the server
will default in the current host name, which allows you to redirect requests
from HTTP: to HTTPS: for documents that require it, or, if for some rea-
son you want to, you can go the other way and have the same redirect rule
work across virtual hosts.

If the result string leaves out the host name as well, giving a URL such as
(ll/path, with three leading slashes), the server defaults in both scheme and
host name from the current request, so the same redirect rule can be used
for multiple hosts.

If you need to pass query strings in any of the redirects, make the last
character of the result string a question mark ("?"). Without that, query
strings will be dropped from the redirect.

MAP template result

7.1 Mapping resources 107

(See the foregoing discussion of the map rule for OSU.) Both template
and result must be absolute, not relative paths~they must start with a sin-
gle slash. As with OSU, a match on a map statement doesn't terminate map
processing.

PASS template [result I "numeric-status [alphanumeric-explanation]"]

The pass rule extends the OSU map rule. The form where it's just the
template is permitted if file-name translation isn't required (e.g.,/ht_root/
docs/*, where/ht_root/is translated as the directory referred to by the sys-
tem logical HT_ROOT). The WASD pass rule can also return a numeric
status and an explanatory string, if desired, or can just refuse the connection.

For example, if you discovered that one of your users had put some inap-
propriate but popular material in a user directory (see Chapter 8) on your
server, you could forestall user-name translation and file access with

PASS /~username/* "403 very naughty"

or, if you want to frustrate the attempted users, you can use a lxx or 2xx sta-
tus code without explanation, which will just drop the connection immedi-
ately. (You could also use this version of the pass command to do
redirections, by substituting a 3xx code and a URL to redirect, perhaps, to a
page describing the institution's policy on inappropriate materials.)

FAIL template

Similar to the OSU fail, this will terminate map processing and reject
the request with an access denied failure.

WASD offers three mapping rules that relate to CGI scripting. Exec and
uxec rules map script directories; the script rule maps a specific script.

EXEC[+] template [(RTEname)]result

The template should include a wildcard so that named scripts will be
matched (e.g., "/htbin/*"). The result can have the wildcard substituted in
(e.g., "/ht_root/bin/*"). This instructs the server both where to look for files
in htbin and that those files should be treated as executables. This means that
any script in the directory can be executed, which means that anybody who
can contrive to put a file in that directory can get the server to execute any-
thing he or she wants. Make sure permissions are set appropriately.

If the "exec+" form is used, the CGIplus persistent scripting environ-
ment will be used. If a Run-Time Environment name is given, that environ-
ment (e.g., a persistent Perl process) will be used. (More discussion on
CGIplus and RTEs can be found in Chapter 17.)

I Chapter 7

108 7. I Mapping resources

UXEC[+] template [(RTEname)]result

works like exec, except that it maps script execution for users (running as
that user if the Persona services are enabled). Template looks like "/-*/direc-
tory/*", and r e s u l t looks like "/*/www/cgi-bin/*". (Template could also be
"/-specificusemame/directory/*", and r e s u l t would be "/specificdirectory/
www/cgi-bin/*".) The first wildcard is for user name, and the second is for the
script name. uxec must always be preceded by a SET rule--for example,

SET /-*/www/cgi-bin/* script=as=-

(The set rule is discussed subsequently, but this is what instructs the
server to run scripts from that directory in the persona of the user it belongs
tO.)

SCRIPT template file-system-path-to-script

The script rule maps a URL to a particular file and makes that file exe-
cutable. This can be used (as in my earlier example) for making a script look
like a static Web page--for example,

SCRIPT /status.html /cgi-bin/status.pl

or for making sure only specific named scripts in particular locations are
run. Typically the template will look like "/scriptname/*", and the path to
script like "/Web/myscripts/bin/scriptname.exe*"; the wildcards here are to
pass along path names on which the scripts should operate.

The final rule, and it's a doozy, is the set rule. Set doesn't actually do
any mapping, but it fits logically with the mapping rules because it acts on
path ames, instructing the server to adjust the characteristics of the specified
path in a wide variety of ways.

SET pathname characteristic [characteristic-2 ...characteristic-n]

You can have multiple characteristics for a path in a single SET com-
mand; just separate them with a space. You can also have multiple SET com-
mands with additional characteristics. They're processed in the order they
appear in the HTTPDSMAECONF file, so you can turn a characteristic
on for a large tree and then, below it, turn the characteristic off for a subtree
within it.

Many of the characteristics are binary, turned on with the characteristic
name and off with NOcharacteristic. Some of these characteristics mention
attributes we haven't discussed yet, but it makes sense to put a full reference
for the set rule in one place.

7. I Mapping resources 109

AUTHONCE, NOAUTHONCE

When a request path has both a script and a resource the script acts
upon, the server ordinarily checks access to both the script and the resource.
AUTHONCE makes the server authorize only the original path. NOAUTHONCE
restores the original behavior.

CACHE, NOCACHE

When caching is enabled~see Chapter 1 l~fi les are cached by default.
NOCACHE turns off caching for this path; CACHE can turn it back on for a
subtree. Of course, a path can be specified down to the level of a particular
document.

CGI PREFIX= "des i red-pre f ix"

Chapter 14 discusses CGI environment variable names. By default,
these are prefixed with WWW_, but the prefix can be changed for compat-
ibility with scripts written for other servers. To remove the prefix altogether
u s e CGIprefix= with no value.

CHARSET= "charset- speci f ier"

This setting can override the default character set parameter ([Charset-
Default]), which is sent in the character set parameter of the content-type
header for text files. You must specify what charset you want to identify~
for example, "charset=ISO-8859-5".

CONTENT=" content- type/parameter"

Ordinarily the server chooses what content type to put in the header
based on the file extension (determined by the [UddType] directive in the
HTTPD$CONF or an external MIME types file specified in [AddMime-
TypesFile]). This setting allows that mapping to be overridden for files in
the path you specified, as, for example, when you have a lot of text files with
a .DOC extension in one particular directory tree; you can specify "/patla-
to-DOC-files/*.VOC" as the template and "content=text/plain",

while letting all other .DOC files on the system be served as DECwrite files
(the default) or MS-Word files (which is how IE will interpret them regard-
less of the content-type header).

EXPIRED, NOEXPIRED

Files in the path will be sent with headers indicating that they are already
expired, so that the browser will automatically fetch them again when
they're accessed, rather than coming up with the old version from the

I Chapter 7

I I0 7.1 Mapping resources

browser cache. (This is useful on very dynamic documents; you likely want
to use it in conjunction with NOCACHE.)

INDEX=" format string"

The value here is the directory listing format string for directories in the
specified path. (See Chapter 13 for more on directory listings.)

LOG, NOLOG

If you're logging at all, by default you log all accesses. NOLOG will sup-
press logging to this path. (If you want to know what pages are being loaded
but don't particularly want a log entry for every button, ball, or line graphic,
you can set NOLOG on the path containing those images. This not only
speeds up your logging, it can speed up your log-file analysis.)

MAPONCE, NOMAPONCE

Once the application of a script, exec, or uxec rule has identified a par-
ticular request as a script and mapped it to a path, that path takes another
trip through the mapping process in case it needs to be translated again. You
can suppress this with a SET path ~VONCE. (You might do this to save some
processing effort when an exec directory can be located without further
mapping~for example,/ht_root/bin/*.)

PROFILE, NOPROFILE

If the server has been started with/PROFILE and/SYSUAF (see Chap-
ter 5), it uses SYSUAF authentication and rightslist-based access to server
resources. NOVROFILE will enable you to ignore rightslist-based access for
the specific path; PROVILE will reenable it. (If the server hasn't been started
with the relevant qualifiers, this setting won't do anything~all access is
NOPROFILE.)

REPORT= [BASIC I DETAILED]

This setting changes server-generated reports between BASIC and
DETAILED for a particular path.

ODS-5, ODS-2

ODS-5 warns the server that a path maps to files on an ODS-5 volume
and may thus have names that use the Extended File Specification and need
to be treated differently; for example, the rU~SCHAR setting won't be applied.
ODS-2 is the default, so you never actually need to specify it, but it may
help you make the mapping rules read more more clearly.

RMS CHAR= inval i d- rep i ac emen t-charac t er

7.1 Mapping resources I I I

For ODS-2 paths, the server will replace RMS-invalid characters or
syntax with this replacement character. By default, a $ is used; other plausi-
ble choices are underscore ("_") and hyphen ("-"), but this will let you
specify any alphanumeric character. If you've got files moved from a UNIX
system or even NFS served from another system, this may enable you to
serve them.

SCRIPT=AS= [-I $ I username]

This applies only if the server was started with the/PERSONA qualifier.
This setting instructs the server to run scripts from this path under a user
name different from than that of the server. Tilde will run the script as the
user specified in the URL after the tilde; dollar sign will run the script as the
SYSUAF-authenticated user accessing the script; a user name will run the
script as the specified user name. I urge caution in the use of any of these
options (and strongly suggest using the /PERSONA=identifier variant,
which limits scripting capabilities to accounts that hold the specified identi-
fier).

SCRIPT=BIT-BUCKET=hh : mm: ss

tells the server how long to allow a script to execute if the client disconnects
prematurely, overriding the HTTPD$CONFIG.CONF [DChBitBucket-
T i m e o u t] directive.

SCRIPT=CPU=hh : mm: ss

directs the server to whack script processes in the specified path that have
used more than the specified quantity of CPU time, preventing runaway
scripts from running forever.

SCRIPT=FINDINOFIND

The server ordinarily makes sure scripts exist before trying to run them.
However, a script might be executed by a process that knows how to find it
by means not available to the server~for example, if the scripts are stored as
procedures in a relational database. NOFIND tells the server not to bother
looking for it, but just to go ahead and execute it.

SSI=PRIVINOPRIV

Server-side includes documents (discussed in greater detail in Chapter
13) can contain directives (e.g., <--#exec command-name-->) that are con-
sidered privileged, because they could do damage through running a pro-
gram in server context. The server won't run those directives unless the
documents are owned by SYSTEM or the path they're in is set as PRIV to
allow these directives. Caution is strongly recommended here.

I Chapter 7

112 7. i Mapping resources

SSLCGI=none I Apache_mod_SSL I Purveyor

If you're running a CGI script (see Chapter 14) under SSL (see Chapter
6) and the script needs environment variables set to tell it about the SSL
environment, this setting tells the server which style of CGI variable should
be created: none, Apache's mod-ssl style, or Process Software's Purveyor
style. If you need this, go back to HTTPD$CONFIG.CONF and add
2048 to the values of the [BufferSizeDclCommand] and [BufferSize-
CgiPlusIn] directives to account for the extra room taken by the variables.

STMLF, NOSTMLF

specifies paths for files to be automatically converted to Stream-LF format.
Default is no conversion.

THROTTLE=parameters

controls the concurrent number of scripts to be processed on the path.
(This is discussed more fully in Chapter 14.) Options are:

"THROTTLE=n, [n, n, n, hh :mm: ss, hh :mm: ss] "
"THROTTLE=FROM=n"
"THROTTLE=TO=n"
"THROTTLE=RESUME=n"
"THROTTLE=BUSY=n"
"THROTTLE=TIMEOUT=QUEUE=hh:mm:ss"
"THROTTLE=TIMEOUT=BUSY=hh:mm:ss"

TIMEOUT=KEEPALIVE=hh:mm:ss

overrides the [TimeoutKeepAlive] HTTPD$CONFIG.CONF directive
for this path.

TIMEOUT=NOPROGRESS=hh : mm: ss

overrides the [TimeoutNoProgress] HTTPD$CONFIG.CONF directive
for this path.

TIMEOUT=OUTPUT=hh : mm: ss

overrides the [TimeoutOutput] in the HTTPD$CONFIG.CONF file.

TIMEOUT=hh :mm: ss, hh :mm: ss, hh :mm: ss

overrides the [TimeoutKeepAlive], [TimeoutNoProgress], [Timeout-

Output] directives, in that order, for this path.

Conditional mapping
You can use conditional mapping on paths in the HTTPD$MAP file. Rules
using conditional mapping are applied only if criteria other than just the

7. I Mapping resources 113

URL path match are met, which offers immense flexibility and power to the
administrator, as well as an opportunity to get really confusing results if you
forget what you've done. Conditional processing adds some overhead to the
URL path translation. (Because the mapping can control access to the
resources, a case could be made for including this in section 7.3, but I've left
it here in the mapping section. Possibly, this is the wrong choice.)

Conditionals appear on the same line as the mapping rule to which they
refer, following the rule. They are set off by square brackets. A conditional is
in the form "specific thing" :pattern, and can usefully be read as "if specific
thing matches pattern." A rule whose conditional(s) is not met is ignored and
doesn't affect subsequent processing. The patterns are spedfied in the same
way as patterns you'd give to the VMS $ DIRECTORY command: a simple,
case-insensitive, string comparison, using the asterisk to match any number of
characters and a percent sign to match a single character. If the string you're
looking to test has a space, tab, asterisk, or left or right square bracket in it,
substitute a % sign~you can't match those characters other than by single-
character wildcard match there are no escape characters or encoding.

Multiple conditionals inside one set of square brackets are treated as
"OR" conditions; if any of the matches are true, the whole conditional is
true. Multiple conditionals in separate sets of square brackets on a single
line are treated as "AND" conditions; all must be true for the rule to be
applied. An exclamation point preceding the conditional negates it (changes
it from "if it matches" to "if it doesn't match"); you can put an exclamation
point outside the square brackets to negate the entire sense of a muhipart
conditional. Here are the conditionals and what they match against.

[!] AC : accept-string

Contents of the HTTP Accept: header coming from the browser, which
details content types the browser is willing to render.

[!] AL : accept- language-string

Contents of the HTTP Accept-Language: header coming from the
browser; you could choose to map different directories or file names to sup-
port different languages.

[!] AS : accept-charset-string

Contents of the HTTP Accept-Charset: header. Again, map to different
versions of files to support different character sets.

[!] CK: cookie

Contents of cookie returned bybrowser.

. . . . I Chapter 7

114 7.1 Mapping resources

[X]EX:

This is actually a Boolean, rather than a pattern match. EX matches if
this path has been set ODS'5 with a SET directive.

[!] FO :host-name/address

Contents of the "Forwarded:" header, seen if the request is coming to
you through a proxy or gateway. You can test for specific values in this
header or just put in an * if you want to do something different for all prox-
ied requests.

[!] HO : host-name / address

That's host-name/address of the client, not the server.

[!]HM:host network mask (client mask, see immediately below)

To directly quote the WASD documentation, "The host-mask ('HM')
directive is a dotted-decimal IP address, a slash, then a dotted-decimal mask.
For example, [HM:131.185.250.0/255.255.255.192]. This has a 6- bit sub-
net. It operates by bitwise-ANDing the client host address with the mask, bit-
wise-ANDing the network address supplied with the mask, and then
comparing the two results for equality. Using this example the host
131.185.250.250 would be accepted, but 131.185.250.50 would be rejected.

[!] ME : http-method

GET, POST, PUT, and so on.

[!] QS : query-string

This is the request query string, the part that comes after the "?" in the
URL. It's particularly fun to combine the capability of the PASS command
to return a status and message you specify with conditional mapping capa-
bility against the values in the query string.

[!] SC : request-scheme

HTTP or HTTPS. Handy for ensuring that certain pages are always
viewed encrypted (by using it on a redirect to HTTPS with an SC:HTTP).

[!] SN : server-name

The name of this server. This is helpful when multiple cluster nodes
share the same configuration files. It's potentially confusing if they're all
responding to the same cluster alias.

[!] SP: server-port

7. I Mapping resources 115

The port the browser connected to.

[!] RF : referring-URL

This is the contents of the (curiously misspelled in the standard)
"Referer:" header. If you only want people to be able to get to the download
page after getting the "you have successfully filled out the application page,"
you can use this. Remember, however, that while headers are hard to spoof
using standard browsers, they're easy using tools such as wget or the Perl lib-
W W W programs, so don't rely on this for anything really important.

[!] UA: user-agent

The contents of the "User-Agent:" header. This can let you map old
browsers off to a version of your pages they can handle. (Let me insert a plea
here not to map them off to the "you need the latest and greatest version to
see our site at all; download it here!" page, on behalf of everybody who used
Netscape 3 on VMS for years and kept getting those pages, which never had
a VMS version.) You can also use this conditional to play practical jokes on
search engine robots, mapping them each by name to a page very different
from the one their users will get when they click on the link back to your
site. I can't in good conscience recommend this practice either.

[!] VS : host-name / address

The host-name header for a name-based virtual server or the numeric IP
the client connected to. (This is a synonym for the obsolete HH" condi-
tional, in case you're looking at an old HTTPDSMAP file and trying to fig-
ure it out.) Here are some examples.

PASS /content/* /browserspecific/M0ZILLA/*
[UA: *MOZILLA*] [!UA: *MSIE*]
PASS /content/* /browserspecific/IE/* [UA:*MSIE*]
PASS /content/* /generic/*

If your pages are optimized for specific browsers (a bad practice, but
sometimes the Web designers feel an urgent need for control, which can be
obtained only by using browser-specific extensions), you can have multiple
versions of your site. Each one has links relative to the "content" directory,
which will be where the HTML resides. This will map "content" back to
the appropriate directory. IE identifies itself as Mozilla compatible, so it
would match the Mozilla mapping if we didn't include the negated Explorer
match (although we could avoid this problem by changing the order of the
lines). Read the first line as "Pass /content/* as /browserspecific/
MOZILLA]* if user-agent matches MOZILLA AND user-agent doesn't
match MSIE."

I Chapter 7

116 7. I Mapping resources

PASS /images/* /MacImages/* [UA:*Mac*]
PASS /images/* /PCimages/* ! [UA:*Mac*]

Because of design and display differences, images optimized on PCs tend
to look darker and dingier on Macintoshes. For your site to look its best on
each platform, you should have two versions of each image: one optimized
for Mac, one for PC. The foregoing example will allow the links in the
HTML to refer to the/images/directory, so you need only one copy of the
HTML code, but it will map the /images/links to the right directory,
depending on what the user agent says about the platform in identifying
itself. There's no consistency here; some say "Mac_PowerPC," some say
"Macintosh PPC," but "*MAC*" will match any of them. We can't test for
PCs that way, obviously, since *PC* will match the PC in PowerPC and
PPC. You could test for *Windows*, but other OSs run on the same hard-
ware and have the same issues.

PASS /doc/* /Web/doc/english/* [al:en*]
PASS /doc/* /Web/doc/french/* [ho:*.fr al:fr*]
PASS /doc/* /Web/doc/swedish/* [ho:*.se al:se*]
PASS /doc/* /Web/doc/english/*

This example (modified from the WASD documentation) demonstrates
mapping based on country-oriented domain or accept-language header.
Wherever they are, if English is their flrst-choice language, they get English.
If the host is in France or France is their first-choice language, make it
French; similarly for Sweden and Swedish. Otherwise, fall through to
English because it's better than nothing, even though not the first choice.

PASS /companyspecific/* "403 You can't see that!"
! [ho : *. mydomain. TLD]

If somebody from a host that isn't in my domain tries to look at my
company-speciflc material, they get told not to. See the WASD documents
for more examples.

Content type
WASD uses the [AddType] directive in HTTPD$CONFIG.CONF or can
use a MIME.TYPES file if specified in the [Udc~Zime~oesgile] directive.
The syntax for [AddType] is . extension content-type [; charset]

description. That look~ like

.HTML "text/html ; charset=ISO-8859-1" HyperText Markup
Language
.HTM text/html HyperText Markup Language
�9 GIF image/gif image (GIF)

7.2 Authentication 117

7 . 2

MIME.TYPES specifications are compatible with those used by Apache.
The basic format is content-type extension(s), which looks like

application/msword
application/octet-stream
application/oda

doc

bin dms lha izh exe class
oda

but there are some WASD-specific extensions (which are used for descrip-
tions in server-generated directories, among other things). These are hidden
in comments; WASD knows they're there because the hash mark (#) com-
ment indicator is followed by an exclamation point. The comments follow
the line to which they refer.

#! file description

A single blank indicates that what's coming is free-form text for direc-
tory listings.

! / cgi-bin/script

A slash indicates that what follows is the name of a script that should be
run automatically whenever the file type is requested--the same thing as an
Apache handler or an OSU presentation script.

#! [alt-tag-text] /path/to/icon.gif

A left square bracket is used to specify an icon to be used in directory
listings. Since these are mapped against content type, not suffix, they have
to be specified only once per content type. The contents of the square
brackets will be used as the alt-tag for the icon, so they should be brief.

A u t h e n t i c a t i o n

There are several types of authentication available to Web servers. Structur-
ally, they all work the same way. The client requests a resource that has
access controls that require authentication; the Web server asks the client to
authenticate (by sending it a "401 Authentication Required" header along
with a "realm" or "authentication name"). The browser then asks the user
for user name and password (typically in a separate small window on graph-
ical browsers) or gets them from some other source~Internet Explorer run-
ning Windows NT talking to an IIS server in the same Windows domain
will pass along your authenticated login name without requiring you to
enter it, although that example is irrelevant for a VMS-based server~and
then assembles a credentials packet, which it sends back to the server. The
browser caches the contents of the credentials packet, based on realm and

I Chapter 7

Mehdi

118 7.2 Authentication

fully qualified server name, so it doesn't have to ask the user over and over
again.

Since HTTP is a stateless protocol, the server needs authentication
information for each protected page and will ask the browser for it every
time. If the browser has the credentials for that realm in its cache, it supplies
them.

Unfortunately, there's no way for either the server or the user to tell the
browser to forget the credentials it has cached--that is, to log out from
the session with the server. If you've provided a user name/password to a
Web browser at an Internet cafe, you need to shut down the browser pro-
gram altogether to be sure that the next person doesn't use your cached
authentication to impersonate you. If it's a kiosk with a browser you can't
shut down, don't use it for anything for which you have to put in creden-
tials. Another unfortunate effect of caching credentials by server name is
that if you refer to a system by different names~foo.bar.tld and
www.foo.bar.tld---the browser won't realize these refer to the same system
and will have to ask the user for credentials for each of them separately. Of
course, if the browser cached by numeric IP address, it would do the wrong
thing with multihosted domains that share the same numeric IP, thinking
they were all the same server, and it would do a different wrong thing with
servers that respond to a cluster alias with different numeric IPs.

The server takes the credentials packet and looks up the user name and
password in some authentication database. If it matches and if access to the
page isn't disallowed by some other access control, the server returns the
page to the browser.

In the BASIC authentication mode the credentials packet with the~ user
name and password is encoded (not encrypted!) in BASE-64. There's noth-
ing secret about this~BASE-64 can be decoded by anybody who wants to.
BASIC authentication makes passwords vulnerable to anyone with a sniffer
on the line anywhere between the browser and the server. If you're going to
use BASIC authentication, it's a particularly good idea to use SSL encryp-
tion for it.

DIGEST authentication returns a cryptographic digest of the password
using the MD5 algorithm. Not all browsers support this; curiously, the
most recent Mozilla does and Netscape 6.2 apparently doesn't. Netscape
4.78 on Macintosh appears to. Basically, you can't count on DIGEST work-
ing unless you have control of which browsers the users will use. Anyway, a
person with a network sniffer can't just pick the password up from the
DIGEST packet, but, by catching the digest of the password, he or she

7.2 Authentication 119

could write a program to pretend to be a browser and resubmit the same
credentials. (This class of attack is referred to by security specialists as a
"replay" attack. OSU and WASD, at least, defeat this by including a
"nonce" value in the credentials request that's used in the encoding of the
reply. The next time the request is issued it will have a different nonce value,
so replay is ineffectual.)

Furthermore, that same individual with the sniffer can catch everything
the server sends; therefore, if the content that comes back is unencrypted,
the intruder can read it all, with little difficulty. Even with DIGEST
authentication, if you care about the security of your content, use SSL
encryption for the whole dialog.

In X.509 authentication the server requests and the browser presents a
digital certificate (see Chapter 6 for more on digital certificates), and the
server decides whether to accept it based on whether it has expired or
whether it was issued by a Certificate Authority the server recognizes (or, at
any rate, whether up the chain of issuers there is, somewhere, a CA the
server recognizes). If the certificate is accepted, the server can then accept
the identity of the person at the other end as authenticated. (Of course, the
person at the other end could be a random visitor if a user walked away
from his or her PC leaving it logged on, but that's more of a user education
issue than a technological one.) The necessary configuration here is to let
the server know where to find a file or database of recognized certificate
authorities, and how far up the chain you're willing to go. You may want to
honor only self-signed certificates, for example, and you don't care if they're
presenting a certificate signed by some other system that is also known to
Verisign or Thawte.

There are other authentication schemes that allow a single sign-on into a
security domain (e.g., Kerberos), require possession of a physical token, or
do a retinal scan or fingerprint check. These are not directly supported by
any VMS-based Web servers, but I expec, r such support will be coming as
these technologies become more popular. (Most likely, such access systems
will have modes in which they can present authentication information to
the browser, which will then use one of the authentication methods already
in place. Thus, the servers won't have to explicitly contend with new
authentication schemes.)

The server may be using one or more of many different authentication
databases, regardless of the method used to present the credentials packet. It
can validate against the SYSUAF, so the credentials are the same user name
and password you can use to log in. It can validate against a special-purpose

I Chapter 7

120 7.2 Authentication

7.2.1

database that contains Web-only user names and passwords, either in some
binary form or as a simple ASCII file.

On UNIX systems Apache modules have been written to check creden-
tials against entries in relational databases, such as Oracle, but these are not
currently available on VMS systems. This makes it harder to run pay-for-
content sites on VMS without human intervention. If you can authenticate
against a relational database, the same CGI script that accepts and validates
the credit card information can easily insert the credentials into the data~
base; it's somewhat harder to programmaticaUy update the special-purpose
authentication databases. Database access for large numbers of users~
thousands or millions~scales well under a good relational database,
whereas the plain-text lookup supported by OSU does not. If you're plan-
ning to run a pay-for-content site, you might want to look into porting one
of the database authorization modules. VMS also doesn't support
mod_auth_dbm, which uses the semigeneric DBM file format, for UNIX.
VMS never needed the DBM file format because it had indexed files pro-
vided for free by RMS; as a result, however, tools layered on top of DBM
can require significant porting effort.

In theory, you could authenticate against an LDAP (lightweight direc-
tory access protocol) server or by using remote authentication against an
NT domain controller (which works for Pathworks and Advanced Server
installations), but at present none of these authentication methods is avail-
able for VMS. mod_auth_ldap, mod_auth_kerberos, and mod_auth_radius
exist for UNIX and could presumably be ported to VMS; indeed, CSWS
Engineering has an LDAP authorization module working in the lab now.

Here's how each server manages authentication.

Apache

Password-based authentication
CSWS offers authentication against the SYSUAF using mod_auth_openvms;
authentication against BASIC or DIGEST password files using mod_auth
(which is part of the Apache core); authentication using X.509 certificates;
and anonymous authorization (analogous to anonymous FTP). To use VMS
authentication, you need to load the appropriate module; therefore, the fol-
lowing statement needs to go in your HTTPD.CONF before any directive
that uses VMS authentication.

LoadModul e auth_openvms_modul e / apaches common/modul es /
mod_auth_openvms, exe_alpha

7.2 Authentication 121

Authentication and access control directives can be placed in a per-direc-
tory .HTACCESS file, unless you configure the directory not to honor such
files. This delegates responsibility to the users who own those directories; if
you trust them, you can put [Allow0verrideAuthConfig] (or All) in
your container directive.

In the container directive that specifies the resources you're controlling
access for (typically <Location>, <Directory>, or <Fi les>) , you can
specify the following directives:

AuthType Basic I Digest

specifies whether to use BASIC or DIGEST for the authorization dialog.
(You might think it would make sense to be able to say X.509 here, but
with the way Apache modules work, mod_SSL is responsible for all the SSL
stuff, and mod_auth, which is responsible for processing this directive,
doesn't know anything about X5.09.) Instead, the mod_SSL SSLVerify-
Client directive is used to ask the browser to send an X.509 certificate. If
you use BASIC authorization, you should use SSLRequireSSL to ensure
that the dialog is encrypted.

AuthName realm_name

This is what% going to show up in the browser window after "Enter user
name and password for." Every time the browser tries to get into something
with a different realm_name, the user will get a new credentials dialog, so
you want to reuse realm_names as much as makes sense. If various different
parts of the server directory tree are restricted to authenticated local users,
make sure all the realm names for those parts are the same thing, just to
minimize annoyance. I find that a useful value is "your VMS account" (in
quotes, just as shown). This reminds the users, who may well be logged into
some Windows domain with different credentials, which user name and
password to put in. Of course, that name should be used only if you mean
to do SYSUAF-based authentication.

AuthUser0penVMS On

This enables SYSUAF-based authentication for the current container.
To disable it, just leave this directive out. If you don't specify UuthUser-
OpenVMS On, you need to specify some other authentication source.

AuthUserFile /path-to-password-file

This will authenticate against a special file containing user names and
passwords that don't have to match anything in the UAF. You create and
maintain the file by using the HTPASSWD.EXE_ALPHA utility. The rele-

I Chapter 7

122 7.2 Authentication

rant command-line arguments for HTPASSWD are -c (create a new pass-
word file), -m (force MD5 encryption of the password), and -b (take the
password from the command line rather than prompting for i t~thus, "b
for batch"). So you can d o

$ MC apache$common: [000000] ht_passwd, exe_alpha -
_$ -cmb password-file-name username password

and create a password file suitable for DIGEST authentication, populating
it with the user name and password you specified; the password is stored in
MD5 DIGEST form. You can add user names and passwords to that file
by issuing the command with the same format, just leaving off the "c"
from the switch. You can maintain multiple password files. You can make
files suitable for basic authentication by leaving off the "m" flag. At any
rate, the path to this file is what you put i n t o / p a t h - t o - p a s s w o r d f i l e in
AuthUserFile.

require valid-user

This is t, echnically an access-control directive rather than an authentica-
tion directive, but this, or the related require group, is what triggers Apache
to actually request the authentication. Valid-user will be determined accord-
ing to the authentication method you currently have active.

AuthGroupFi le /path-to-group-file

The group file is a plain-text file that looks like

group-namel : list-of-usernames
group-name2 : list-of-usernames

require group group-name

Again, r equ i r e is technically access control rather than authentication,
but looking ahead, this is the form of the r equ i r e directive with which you
can insist that the user be a member of a particular group. Looking in the
AuthGroupFile is how Apache can tell whether that condition is met. The
same user name can appear in any number of groups.

Using SSL authentication
SSLCARevocat i onPath / path
SSLCARevocationFile filename

SSLCARevocationPath and SSLCARevocationFile are combined to

point to lists of certificates the CAs say they've revoked. (You or your organ-
ization may Well be the CA in this case; you'd revoke a client certificate if

7.2 Authentication 123

the employee it identified had been terminated or if the certificate had been
installed on a laptop that had beenstolen.) You probably want to make
these items serverwide, or at least VirtualHostwide, rather than putting
them in every container file in which SSL authentication is used.

SSLCACertificatePath /path
SSLCACertificateFile filename

If you're going to use client certificates for authentication, you need to
be able to verify the certificate authorities they claim to be issued by; the
SSLCACertificatePath and SSLCACertificateFile are combined to
point to a file containing the information for the CAs from which you'll
accept client certificates. (The reason this file is specified in two parts, path-
to-file and file name, in Apache and in other servers, is that they all end up
calling an OpenSSL routine, SSL_CTX_load_verify_locations, which
wants the path and the file name as two distinct arguments.)

SSLVerifyClient none I optional I require I optional_no_ca

SSLVerifyClient says whether clients need to have certificates, none
(the default) requires no certificate; optional allows the client to present a
certificate; r equ i r e means that the client must present a valid certificate;
o p t i o n a l n o c a means that the client may present a certificate and if it
does, the certificate doesn't have to be signed by a verifiable CA~you'll talk
to them anyway. (In fact, however, only none and r equ i r e will definitely
work with all SSL-enabled browsers.)

SSLVeri fyDepth number-of-levels

SSLVeri fyDepth specifies how far you'll go up a certificate chain to ver-
ify a certificate; 0 works only for self-signed certificates, 1 only for self-
signed certificates and CAs already known to you (in the SSLCACertifi-
ca teF i le) , and so on.

SSLOptions [+-] ExportCertData I FakeBasicAuth I StrictRequire

(The whole list of options is included in Chapter 6.)

FakeBasicAuth will take the subject distinguished name (DN) of the
client certificate and pretend that the client was authenticated as that user
under BASIC authorization, allowing regular Apache access controls to be
used. (Since no password is collected, you may need to edit the password
file to put the user name into the authorization file with the password
"xxj31ZMTzkVA," which is the DES-encoded version of the word "pass-
word".)

I Chapter 7

124 7.2 Authentication

7.2.2

ExportCertData makes the certificate information available as symbols
in the CGI/SSI environment (which is useful if you are doing complicated
things with SSLRequire or you have a CGI to do an LDAP lookup).

S t r i c t R e q u i r e is designed to keep a " s a t i s f y any" with other autho-
rized accesses specified from working when S S L R e q u i r e or SSLRe-

quireSSL forbid access; it forces an access failure without looking at the
other options permitted in the s a t i s f y statement. (This will make more
sense after reading section 7.3.)

Anonymous authentication
Mod_auth_anon is intended to let you do the same kind of (minimal)
authentication anonymous FTP does. Here are the directives for this
module:

Anonymous list-of-users

or

Anonymous_NoUser ID on

Anonymous has a list of user names, one of which must be entered for
access to these resources unless Anonymous_NoUserID is set on. (Typical
user names include "guest" or VlSltOr.)

Anonymous_Mus tGiveEma i I on l off

If on (the default), the person must enter an e-mail address as the pass-
word.

Anonymous_Ver i fyEmai i on l off

If on (the default is o f f) , the e-mail address the person puts in must
resemble a real e-mail address, containing an @ symbol and at least one "."
No attempt is made to determine that what's entered is indeed a working
e-mail address.

Anonymous_LogEmai i on [o f f

If on (the default is o f f) , the e-mail addresses entered will show up in
the access log.

OSU

Password-based authentication
OSU offers authentication against the SYSUAF; against user name/pass-
word combinations specified in plain-text protection files; and, starting in

7.2 Authentication 125

3.10alpha, in client SSL certificates. (There's also a mechanism for making
callouts to an external authentication routine, so if you really need to check
passwords via LDAP or a database, you can write a shareable image library,
including a check_password routine, that will be called if the setup file spec-
ifies a domain or if the target user name in the SYSUAF has the external
authentication bit set. However, you get only one, so you can't both check
against the Windows NT domain and look it up in an Oracle database. For
further details see the EXT_AUTHENTICATOR.C source code.)

All the authentication work is done by a separate authenticator process
(which keeps the entire server from needing to be installed with elevated
privileges; only the authenticator needs it). Three different authenticator
programs are provided with the server. Sample_Authenticator is, as it
sounds, a skeletal program that doesn't do much; MD5_Authenticator
was the first attempt at supporting DIGEST authentication; and
EXT_AUTHENTICATOR is the real and current program. By default,
the authenticator isn't installed with SYSPRV. If you want to be able to do
SYSUAF authentication, you need to do that. Edit HTTP_SYS-
STARTUP.COM to comment out or remove the line

$ got@ auth_install_done

because this skips the INSTALL you need.

Access control is managed in plain text .PROT files. Remember that
host-based access controls (as distinct from numeric-address-based access
controls won't work unless nNSr,ookup is enabled; this is discussed in Chap-
ter 11). The formats of those files are discussed in greater detail subse-
quently, but in any case, you can specify user name and password for access
control as follows"

* [@host] *

This accepts any SYSUAF-validated user name and password.

username [@host] *

This allows access only to the specified user name and gets the password
from the SYSUAF.

username password

This requires that the user enter the specific user name and password
found in the file.

* password

This accepts any user name but must match the entered password.

. . . . I Chapter 7

126 7.2 Authentication

Using SSL authentication
SSL authentication via client certificate has just been implemented with the
most recent test release, OSU 5.10alpha. It works only with the threaded
SSL server, not with the SSL_Engine or SSL_Task. There's no documenta-
tion other than a mention in the release notes that this capability is
included, and some comments in the source code.

Reading the source code and the tempm.conf included with the server, I
conjecture that you want to include at the end of the HTTP_MAIN.CONF
file, localaddress blocks with fake variable names for configuration purposes.
(Variables beginning with "@" are ignored by the main rule file parser, which
is under the impression that they are configuration variables for the server-
maint utility. This mechanism has been overloaded to allow for some SSL
configuration.)

localaddress @SSL_CA_FILE=vms- ful i- file- spec- for-CA- file
localaddress @SSL_CA_PATH=/path-to-file

If you're going to use client certificates for authentication, you need to
be able to verify the certificate authorities they claim to be issued by; the
SSL_CA_FILE and SSL_CA_PATH are combined to point to a file containing
the information for the CAs from which you'll accept client certificates.

localaddress @S SL_CL IENT_VERIFY=digi t

SSL_CLIENT_VERIFY says whether clients need to have certificates.
Don't include at all if you don't want a certificate; "0" makes the certificate
optional; "1" means that the client must present a valid certificate; "2"
means that the client may present a certificate and, if it does, the certificate
doesn't have to be signed by a verifiable CA--you'll talk to them anyway.
(But, in fact, only using "1" or leaving it out altogether will definitely work
with all SSL-enabled browsers.)

localaddress @SSL_CHAIN_VERIFY=digit

SSL_CHAIN_VERIFY specifies how far you'll go up a certificate chain to
verify a certificate; 0 works only for self-signed certificates; 1 only for self-
signed and CAs already known to you (in the only), and so on.

David Jones, the OSU author, has provided some tools for building
an indexed certificate map file that maps X.509 distinguished names to
VMS identifiers (user names). You can compile cert_map_manager.c
and cert_map.c, link them together with SSL routines using

7.2 Authenticat ion 127

7 .2 .3

cert_map_manager.opt., and use cert_map_manager to create and populate
the file. The commands for the cert_map_manager are

$cert_map_manager create [filename]
$cert_map_manager add certfile [identifier] [/noissuer]
$cert_map_manager remove cert-file [identifier]
$cert_map_manager show [/default] [cert-file]
$cert_map_manager set default defspec

When you issue a client certificate, you can use this program to associate
it with a VMS user name. Because you can break the association with the
remove command, OSU doesn't need an SSL_CA_REVOCATION file
and path; if the DN isn't associated with a user name, you don't care
whether the certificate is valid.

localaddress @SSLCERTMAP= ful l-path- to- certmap-DB

Use this to tell the server where the certificate map database is.

To invoke all this, use the <CERTV~XV>O tag in the protection file; the
authenticator will do the mapping and pretend it got the user name and
the right password for it from the browser, matching any later user-name
directives.

WASD

Password-based authentication
WASD supports the usual forms of authentication as well as some unusual
ones. If you want to do any flavor of SYSUAF-based authentication, you
must have the/SYSUAF parameter in the server startup. I'd recommend
/SYSUAF=SSL, which will guarantee that the credentials dialog is
encrypted. /SYSUAF=ID would restrict SYSUAF authentication to
accounts holding relevant rightslist identifiers.

/SYSUAF by itself supports any active (non-disusered, non-expired), non-
privileged, nonsystem user names for a u t h e n t i c a t i o n ; / S Y S U A F = R E ~ D
allows any active user names at all to go through; and/SYSUAF=PROXY
supports the unusual SYSUAF proxying function, which can map remote
user names at other hosts into particular VMS user names on your local sys-
tem as though user name and password had been entered. Combine the val-
ues with parentheses around a comma-separated list, such as/SYSUAF=(SSL,
PROXY, RELAXED).

.. I Chap te r7

128 7.2 Authentication

If you're using/SYSUAF=ID, the relevant identifiers are as follows:

�9 WASD_HTTPS_ONLY~if present, it requires SSL for authentication
on the particular account (obviously superseded by/SYSUAF=SSL).

�9 WASD_NIL_ACCESS~if present, it allows authentication against
an account even outside of any time restrictions given for the
account.

�9 WASD_PASSWORD_CHANGE~this lets the authenticated user
on the account change the SYSUAF password, if the server is set up
to allow that.

�9 WASD_PROXY_ACCESS~this permits proxy access (discussed
subsequently).

You can also add the startup qualifier/AUTHORIZE=SSL to make sure
that all authentication dialogs are conducted encrypted, not just SYSUAF
authentication. (/AUTHORIZE=ALL will let you require that every path
that's served be ruled in by a protection rule, rather than just not ruled out;
this is probably a good idea for sites with data that should not get out.)

You can authenticate group membership against plain-text list files with
an .$HTL extension, placed in the HT_AUTH directory (HT_LOCAL by
default). These can be created with any source editor. You can also authenti-
cate against server-specific .$HTA files with user names and passwords.
These can be created only via the on-line administration utility; there is no
command-line program to create them.

You can also use the (spoofable and somewhat dubious) RFC 1413
authentication, which follows the TCP/IP connection for this user back to
the host and asks the ident server on the host who owns it. (This is probably
a good idea only on an intranet.) A very detailed X.509-based authentica-
tion and access control method is available, and access control allows access
by rightslist identifier held by the SYSUAF-authenticated user. As with
OSU, WASD also has hooks for an external authentication program in case
you need to authenticate via a relational database, an LDAP lookup, or
some other scheme.

In the HTTPD$CONFIG.CONF file you may want to set the authori-
zation failure limit, which enables the server to mimic VMS break-in detec-
tion and evasion. After a specified number of unsuccessful login attempts
(three by default for VMS), even correct user name/password combinations
won't be accepted.

[AuthFailureLimit] number-of-attempts

7.2 Authentication 129

This prevents your Web server from allowing indefinite numbers of
password-guessing attempts and thereby weakening security on your
SYSUAF-authenticated users. Once the failure limit is exceeded, a failure
count number of minutes must expire before legitimate password checking
again occurs (i.e., if five failures occurred, then five minutes after the last
attempt, input of correct credentials will result in successful access). If the
user calls you and you set that user's password to something known, you can
do HTTPD/DO-PURGE=AUTH to clear the authentication cache and
allow the user to access the resources.

[AuthRevalidateUserMinutes] minutes

This forces the browser to demand authentication credentials again after
a specified number of minutes. For example, setting this to 600 would allow
a user's credentials to be checked once every working day. Such reentering of
user name and password has the potential to become very irritating if it is
more frequent than is really required.

You specify authentication realms in the HTTPD$AUTH.CONF file.
The realm specification is wrapped in square brackets and consists of an
optional realm-name string (in quotes if it contains blanks), an equals sign
if the realm-name string is specified, an authentication type, and optional
qualifiers to the type. (If you leave out the realm name, then the authentica-
tion type is the name of the realm as well.)

[authorizationtype; full-access-group; read-access-group]

Authorization type is

"Optional Realm Description" [=type-specific-
identifier] =authenticationtype

The optional realm description is what shows up in the browser window
when it asks for user name and password; if you're going to use something
that doesn't ask for user name and password, you can leave it out. If you
leave it out on user name/password-driven lookups, the authentication type
will be used as the realm descriptor.

Here are the available authentication types and what they mean. The
types that do SYSUAF lookups are VMS and ID. Those that do authentica-
tion against a server-specific list or database are LIST and HTA. Other
forms are AGENT, HOST, NONE, PROMISCUOUS, RFC 1413,
WORLD, and X.509. Here's what they each mean, along with sample syn-
tax for them:

"Optional realm description" =EXTERNALAGENT_NAME=agent"

., I Chapter 7

130 7.2 Authentication

If you need to do that LDAP callout or RDB lookup, you can build a
program to do so based on the HT_ROOT:[SRC.AGENT]AUTH-
AGENT_EXAMPLE.C example program. This runs as a CGIplus persis-
tent script, so you don't take a hit from image activation on every path
validation. The script can get realm, group, user names, and plain-text pass-
words as CGI variables if needed for lookups. The server will look for the
agent program in/cgiauth-bin/.

If the script doesn't need the server to issue an authentication request to
the client~for example, you want to authenticate by hardware address or
biometrics~you can use the param/NOa01 qualifier on the path. Samples
follow:

["Windows-NT username
/password" =AuthAgentNTLookup=agent; NTful I=HTA; NTread]

When you're looking for any path within this realm, the server issues a 401
WWW-Authorize request to the browser, then invokes /cgiauth-bin/
AuthAgent_NTLookup.EXE and gets back from it a status on whether that
user name and password are authenticated. (Presumably, AuthAgentNT-
Lookup validates against a Windows NT domain.) The server checks the
NTfulI.$HTA database to see whether that authenticated user is in the full
access group; failing that, it checks the NTread.$HTA to see whether the user
is in the read-only group. If the user is in neither, it makes the request fail.

[guthAgentBiometrics =agent]
path /biometricallyqualifiedstuff/* param="/NO401"

This doesn't ask the browser for credentials but does invoke/cgiauth-
bin/AuthAgentBiometrics.exe, which then does whatever it has to do to
authenticate the user without going back through the browser. For SYSUAF
authentication, you can use the VMS authorization type, as follows.

[VMS]

prompts for user name and password, looks it up in the SYSUAF, and
accounts for time/day restrictions.

["Your VMS Username and Password"=VMS]

This does the same thing, but uses the string "Your VMS Username and
Password," which shows in the browser window.

[righstlist-identi fier=ID]

prompts for VMS user name and password and allows access only if that
account holds the identifier given in the rightslist-identifier.

7.2 Authentication 131

["Enter your application-specific username/password"=databasename=HTA]

The server prompts for user name and password using the description
string you entered; it validates against the HT_AUTH:database-
name.$HTA database you specified.

["Enter your application~specific username/password"=listname=LIST]

The server prompts for user name and password using the description
string you gave; it validates against HT_AUTH:Iistname.$HTL plain text
list you specified. (This is not generally a good idea.)

[EXTERNAL]

Will accept any request at all. The understanding is that authorization
and authentication will be done by some external agent that you provide.
(The example configuration files shows this as being used for CGI program,
which can make callbacks to the Web server for help with authentication or
authorization if they need it.

[NONE]

Any request is accepted, no authentication is done, and no user name or
realm is set.

[PROMISCUOUS]

This is available only when the server is running in PROMISCUOUS
mode (that is, with the startup parameter/PROMISCUOUS), which usu-
ally is not the case. PROMISCUOUS mode should only be used for server
testing.

[WORLD]

passes any request; it doesn't prompt for user name or password and sets the
realm and user name value both to "WORLD." (This is helpful when run-
ning in/AUTHORIZATION=ALL mode, where you have to explicitly say
that the entire world can look at a given path.)

Using SSL authentication
[X509]

This provides authentication by client certificate. If you want to do this, a
few more files come into play. You need a file containing root certificates for
all the Certificate Authorities you plan to use; if you put that in
HT_ROOT:[LOCAL]CA-BUNDLE_CRT.TXT, the startup will find it
there and define HTTPD$SSL_CAFILE to point to it. You can define

I Chapter 7

132 7.2 Authentication

Certificate Authority bundles for each service, using the [ServiceSSL-
c l i e n t V e r i f y C A f i l e] , you can define for each service whether a verifiable
client certificate is required with the [ServiceSSLcl ientVer i fy-
Required] directive.

Alternatively, if you're using the HTTPD$SERVICE file to run multiple
services, you can specify this on a per-service basis using:

[ServiceSSLclientVerifyCAfile] vms-filename-for-per-
service-Cafile
[ServiceSSLclientVerifyRequired] enable I disable

When using X.509 certificates, you generally want to do more than just
ask for a certificate; you need to specify which certificates get to have access.
By default, WASD takes the fingerprint from the certificate record, which is
a 32-digit hexadecimal number. (This is an MD5 digest of the record so it's
unique per certificate.) That fingerprint is then used as the user name for
access controls, which are discussed in section 7.3. If you'd rather use some
other field as the user name (e.g., distinguished-name, e-mail, etc.), you
need to tell WASD to do that, using the param directive on the path line.
For example, P a r a m = " [r u : / C N =] " says to set the remote-user name to the
value in the certificate name field.

There a number of directives that can be passed as parameters and that
allow you to tweak some aspects of certificate negotiation. The format for
each follows. Please note that in WASD syntax the external square brackets
are literal square brackets, not signifying an optional item.

These directives can be set on a per-path basis, overriding any serverwide
or servicewide defaults. They also give you a way to talk about values in the
certificate record, which can be used for access control.

[DP : depth- integer]

Verify the certificate's CA chain to this depth (default 10).

[LT-minutes]

Set the certificate verification lifetime in integer minutes. By default
(without specifying this directive), the certificate must be reverified with
each new access. When this is specified, the lifetime counter is reset with
every new access before the lifetime runs out.

[RU:/record-option=]

Set the remote-user name based on the specified record from the certif-
icate. Options, not all of which make a lot of sense but are available,
include / C ~ (c o u n t r y name), / C N ~ (c o m m o n name), /ST~(s t a t e or

7.2 Authentication 133

province), /SP--(also state or province), /L--(locality), /O--(organiza-
tion),/OU--(organizational uni t) , /T--(t i t le) , / I - -(ini t ia ls) , /G--(given
name), /S--(surname), /D--(description), /UID--(unique identifier),
and Email--(e-mail address).

[TO- minutes] EXPIRED]

sets the session cache entry timeout (normally five minutes) to the number
of minutes specified if any; if "EXPIRED," sets the session cache entry for
the current certificate as expired immediately, requiring (and initiating).

SSL renegotiation
[VF'NONE I OPTIONAL I REQUIRED]

sets CA verification options. With NONE, no certificate is required, and
any existing certificate authentication is expired from the cache without
triggering a new SSL negotiation. With OPTIONAL, the client must
present a certificate (or have one unexpired in session cache), but it doesn't
have to be verifiable against known Certificate Authorities. With
REQUIRED, a verifiable certificate must be presented or be in session
cache.

Ident-based (SYSUAF proxy) authentication
[RFCI413]

This doesn't prompt; it asks the ident daemon on the other end of the
connection for the name of the user who's using that port and takes that as
user name. (Of course, there may be no ident daemon, in which case this
will fail.) It provides no password authentication. It can be used with
SYSUAF proxying to map a remote user name to a local one that is consid-
ered to be authenticated.

If/SYSUAF=ID is in effect, user names to be proxied to must hold the
rightslist identifier WASD_PROXY_ACCESS. The proxy commands can
be applied at realm level or at path level within a realm.

Proxy entries come in three basic formats, each with an optional host
or network mask component. The entries can appear directly in
HTTPD$AUTH.CONF or can be in a separate file referenced with [Auth-
Prox-yFile]. If you want them to apply to everything in a realm, put them
directly after the realm specifier. If you want to apply to a particular path or
set of paths, place them before those paths and put an [AuthProxy] direc-
tive with no proxy entries right after those paths. (The paths themselves will
presumably have access control directives that involve user names.)

I Chapter 7

134 7.2 Authentication

You can have multiple proxy entries in a single [AuthVroxy] directive,
and multiple [AuthProxy] directives with no intervening path specifica-
tions all active at the same time. If there's a path specification and then
another [AuthProxy], all existing proxy mappings are cleared and only the
new one is accepted.

Here are the proxy entry formats. (In these particular WASD formats,
square brackets really do indicate optional elements rather than literal
brackets.) The SYSUAF_NAME is the VMS user name being mapped to.
The REMOTE_NAME is the remote user name (CGI variable
WWW_REMOTE_USER).

REMOTE_NAME [@HOST I @network/mask] =SYSUAF_NAME

Maps a specified remote user name (and optional host/network) onto the
specified SYSUAF user name. For example, ALAN@vms.kicks-ass.net=
WINSTON maps the Alan account at vms.kicks-ass.net to the WINSTON
account on my system. ALAN@134.79.32.0/255.255.255.0=WINSTON
maps Alan logged in to any machine on the 134.79.32 network to WIN-
STON on my system.

* [@HOST I @network/mask] =SYSUAF_NAME

Maps all remote user names, or all remote user names on particular
hosts or networks, to a single specific user name on this system. This is
good as a catchall proxy after you've matched other names. *@vms. k i c k s -
ass.net=GUEST maps any user on vms.kicks-ass.net to GUEST on your
system, *=GUEST maps any user anywhere to GUEST.

* [@HOST l @network/mask] =*

Maps any remote user names into that same user name on your system.
This is handy if you can specify the rest of your VMS cluster easily with a
network and mask; if they're coming from there they share a SYSUAF with
you and actually are the same people. Otherwise, it's terribly dangerous. If
you've set up /SYSUAF=RELAXED, then all people on another system
have to do is have an account with the same name as a privileged account of
yours in order to be considered to be that user. That doesn't matter too
much with path-based authentication until you get to persona-based script-
ing, but it might be good to disallow mapping of the system account alto-
gether, which you can do with an early system=-.

Here's an example set of [AuthProxy] entries taken from the WASD

documentation.

7.3 Access controls 135

[RFCI413]
[AuthProxy] bloggs@131.185.250.1=fred
[AuthProxy] doe@131.185.250.*=john system=- "8131.185.252.0/24=*
[AuthProxy] *=GUEST

First line: bloggs on system 131.185.250.1 is allowed access as though
he'd been UAF authenticated as FRED (assuming FRED has the proxy-
access identifier set up.)

Second line: doe on any system in the 131.185.250.* network is J O H N
on VMS. system=- keeps a remote "system" from being mapped to my
local SYSTEM. * ~ 131.18 5 . 2 5 2 . 0 / 2 4 =* maps all accounts on all systems
in 131.185.250.0 8-bit subnet to the same VMS user name on the server
system as they have on the remote system.

Third line: Anybody who hasn't been mapped already is mapped as
GUEST.

7.3 Access cont ro ls

Just because something's on your server doesn't mean you want the whole
world to see it. You may have files that tech support people should be able
to see but that customers shouldn't or programs that only certain people
should be able to run. (You don't want random strangers updating your
phone list, much less writing purchase requisitions.) You probably don't
want search engines wasting your resources by trying to run your CGI
scripts.

You can restrict or allow access to your pages in a bewildering variety of
ways. You can do it based on the IP address it comes from (or portion
thereof, such as the subnet or just the domain). If only your on-site users
need access to the company-provided pizza-order page, you can allow access
only to those with internal IP addresses.

You can require that people get to a page only via another page (even on
another site) using the REFERER [sic] header; that they be running a par-
ticular browser; that they validate user name and password against your
SYSUAF; or that they validate against some external file that's just for that
project or that directory (or just that they know the specific password for
that file and that directory). You can even do combinations: any on-site user
can look at the building plans but off-site users have to authenticate with
user name and password to do it.

I Chapter 7

136 7.3 Access controls

7.3.1

All that said, if you have stuff on a computer that would put the com-
pany out of business or put you in jail if it got out, that computer shouldn't
be connected to the Internet at all, much less in any directory a Web server
can serve. If it's merely embarrassing material, you might be better off with
a separate intranet-only machine on a network that has no Internet connec-
tivity. You don't see a lot of successful break-ins to VMS systems, but it
would be silly to put your business or your freedom at risk because of blind
faith. VMS systems are a lot less vulnerable to OS security failures (buffer
overflows and so on) than many other systems, but they're just as vulnerable
to social-engineering and disgruntled-employee attacks as any other kind.

Each of the servers has particular strengths and weaknesses in this area.
OSU lets you have different people authenticate in different ways--some
against the UAF, some against a file-specific password; CSWS lets you do
arbitrarily complicated access-control logic.

Apache

In Chapter 5, I introduced container directives. These are the basic ele-
ments of access control in Apache. Which directive you use will determine
at what point in processing your access-control directives are applied.

To do it based on URL path, you want Loca t ion or LoeationMatch.
To do it after alias or rewrite processing has mapped the resource into a
file, use Directory or DirectoryMatch. You can use Files or Files-

M a t c h either standalone or nested. All of these can be nested inside V i r -

t ua lHos t containers, if necessary.

.HTACCESS files can be used in the directories--the same directories
you're serving--to control access to those directories. (The actual name of
the file is controlled by Acces sF i l e in H T T P D . C O N E but people gener-
ally don't mess with it.) You don't usually want those to be visible to the
world, so you can do a F i l e s at the highest level that blocks access to
.HTACCESS, and similarly to .HTPASSWD (or whatever you decide to
name the password files.) You'll find this in the H T T P D . C O N F file you get
by default.

<Files \ .ht">
Order allow, deny
Deny from all

</Files>

(In fact, the tilde format of the F i l e s container, which can be read as
"matching," is deprecated; for good form this should be <Fi lesMatch
"^\ .h t"> rather than a F i l e s directive.)

7.3 Access controls 137

The directive applies to any files matching that regular expression. The
caret means that what follows is at the beginning of the file name; the back-
slash is an escape character that means that the period is a literal period; and
the h and t are literal letters. So this means "any files with names beginning
.ht". And what we do with them is deny access to everyone.

This particular instruction could also have been written, using the lim-
ited wildcarding available without going to regular expressions, as

<Files .HT*>

Order allow, deny

Deny from all

</Files>

The network-based access control directives in Apache are Order,

Allow, and Deny, which can appear inside any container, including a
<Limit> or <LimitExcept>.

Allow from SOURCE [SOURCE . . .]

SOURCE is a full or partial host name or a full or partial numeric IP
address or network/netmask pair (192.168.0.0/255.255.0.0) or network/
CIDR specification (192.18.0.0/16). For host names, if you want the trail-
ing part (e.g., to allow all the educational sites), you need to include the
leading "." on the trailing part (e.g., ".edu"). (If the host name doesn't begin
with a dot, Apache thinks it's a whole host name, not a partial one.) You can
match only whole tokens in the host name, so "ford.edu" wouldn't match
".stanford.edu". Source can also be env=VARIABLENAME, which controls
access through the existence or nonexistence of the variable. (The variable
would presumably be set through SetEnvIf elsewhere in the body of the
server config.) Source can also be a l l , which is every system everywhere.

Multiple sources separated by white space are permitted.

Deny from SOURCE [SOURCE . . .]

SOURCE is defined the same way as for Allow.

Order deny, allow I allow, deny I mutual-failure

specifies the order in which the other two directives are evaluated, except for
m u t u a l - f a i l u r e , which makes o rde r irrelevant. (M u t u a l - f a i l u r e says
allow access only for those hosts that are matched by Allow and not by
Deny. So if you had a Deny from a l l , it wouldn't matter what your Allow
said. M u t u a l - f a i l u r e isn't used very often.)

I Chapter 7

138 7.3 Access controls

The first order (deny, allow) lets you specify the (presumably lim-
ited) number of hosts you want to allow access to and disallow the rest, as
follows:

Order deny, allow
Deny from all
Allow from host-I-like other-host-I-like env=CLUSTERMEMBER

The second o r d e r (a l l o w , deny) lets you specify the (presumably
limited) number of hosts you want to deny access to and welcomes the rest,
as follows:

Order allow, deny
Deny from .bad-domain.tld env=SPAMSPIDER
Allow from all

As I discussed briefly in Chapter 5, Limit is about HTTP methods and
is used primarily to grant or restrict access to particular groups. If you want
to allow someone at a particular node to PUT (upload) Web pages into a
directory, you can do:

<Limit PUT>
order deny, allow
deny from all
allow from the-ip-address-you-like
</Limit>

which disallows everybody except the ip-address-you-like, and then allows
that one. (But if you want to use it to disallow all methods, you need to
exhaustively list all methods, including any custom ones.) To put a restric-
tion on all but some methods without listing them exhaustively, use L imi t -
Except; the directive says that you have to be an authenticated user to do
anything but GET.

<LimitExcept GET>
require valid-user
</LimitExcept>

This brings us to authentication-based access controls, which can be
combined with host-based access controls. The relevant commands here are
Require, SSLRequire, and satisfy.

Require valid-user I user USERNAME [...] I group GROUPNAME [...]

This lets you specify that access requires having a valid user according to
whatever authentication method you're using, a list of specific user names,

7.3 Access controls 139

or a member of one of a list of groups~all of which require and trigger an
authentication dialog. The necessary support commands were discussed in
section 7.2.

Satisfy all I any

When you combine host-based access controls and authentication-based
access controls, Satisfy lets you determine whether every requirement must
be satisfied or just some of them. al 1 means that you must meet both host-
based and authentication-based controls; any means that if you're from an
acceptable host, you won't even be asked for user name and password.
Unfortunately, this doesn't appear to work with SYSUAF-based authentica-
tion; if you specify AuthUser0penVMS, the user will get prompted for a
VMS user name and password. If the user doesn't have one, the access fails
without the host being checked.

Example
<Directory / device / account inggroup>
Order deny, allow
Deny from All
Allow from .mycompany. tld
<Limit PUT>
AuthUser0penVMS On
AuthGroupfile /device/accountinggroup/groupmembers. txt
Require group accountingupdate

</Limit>
</Directory>

This says that for the accounting group's directory, anyone coming from
a host with a name that says it's part of the company's domain can see all the
files, and people from outside the domain can't see anything. The only peo-
ple who can publish files using the PUT method are SYSUAF-authenti-
cated VMS users whose user names are listed in the groupmembers.txt file
as part of the accountingupdate group. (As written, anybody can see who
this is by looking at the groupmembers.txt file, which is accessible to every-
body, but the only people who can replace it via the Web are those who
already have update access. Therefore, the group members can add another
member to their group without having to bother the Webmaster. (Or they
could prankishly remove one another's authorization, which will definitely
end up bothering the Webmaster.)

I Chapter 7

140 7.3 Access controls

SSLRequireSSL

SSLRequireSSL, included in any container directive or .HTACCESS
file, forbids non-SSL access to the stuff specified therein. If you use pass-
word-based authentication for access to the contents, the password dialog
will be SSL-encrypted, which is a good thing.

SSLRequire [arbitrarily-complex Boolean-expression]

SSLRequire, on the other hand, is a directive that lets you limit access
to anything unless any conditions you can specify are met. This is poten-
tially very complicated, because it has a lot more environmental variables to
play with. SSLRequire has access to all the mod_SSL variables and all the
Apache host variables as well, and it's not limited to SSL-related activities,
so you can use it even when certificates aren't involved at all. But this is your
only choice for access based on a combination of cipher strength, time of
day, and domain name of the e-mail address on the certificate. I'll list the
SSL CGI variables in Chapter 14.

Example
SSLRequire %{HTTPS_SECRETKEYSIZE} != % {HTTPS_KEYSIZE}

(These would be the same in a domestic version of the browser but are
different in crippled Export versions. So this denies access to cryptographi-
cally weaker browsers.)

OSU
The access controls in OSU are implemented basically through two ru les~
PROT and HOSTPROT. Each applies the contents of a plain-text protec-
tion file (.prot) to a particular path. PROT is for authentication-based pro-
tection; HOSTPROT is for host/network-based protection. DEFPROT
sets default authentication protection. (I just now learned about DEF-
PROT by reading the source code. To be honest, in seven years of running
an OSU server I have never known that DEFPROT existed and I have
never felt the lack. But it's in there, so I'm telling you about it.)

DEFPROT path filename

sets the default protection file for a path specification, which may include
wildcards. The protection file specification may be overridden by a more
detailed path specification occurring later in the HTTP_PATHS.CONF
configuration file, and won't even be reached if the matching PROTECT or
HOSTPROT path spec is encountered earlier.

7.3 Access controls 141

PROTECT path f i lename

sets the authentication-based protection file for a path specification that
may include wildcards. The first PROTECT or HOSTPROT encountered
that matches the current path will be applied.

HOSTPROT path f i i ename

sets the network-address-based protection file for a path specification that
may include wildcards.

Basically, the only difference between using DEFPROT and using a
PROTECT with a very general path specification is that DEFPROT can be
overridden by a matching PROTECT/HOSTPROT that come after it, and
PROTECT can be overridden only by matching PROTECT or HOST~
PROT that come before it in the config file.

Here's what the protection files look like. For HOSTPROT, the sample
file is LEVEL1.PROT as distributed; I think David Jones's explanatory text
speaks for itself.

Example level-i (hostprot) protection file. This file restricts access to

the protected documents based upon IP address or host name (host-spec).
The only recognized command a level 1 protection file can have is limited

form of maskgroup (getmask) :

maskgroup @host-spec [, @host-spec2]
e.g. maskgroup @128.146.235.50, @*.eng.ohio-state.edu, @128.146.10.*

The ip-address may substitute a wildcard for any octet in the address.
A host name may substitute the wildcard character (*) for one or more
labels (labels are delimited by periods).

A host mask may optionally specify the local port number by appending
a ":port" to the end of the mask (e.g. @*.*.*.*:443). If a port number
is present, it must match the target port in addition to the regular
matching rules. The port match allows you to require certain
document access to be via a secure protocol (e.g.. SSL).

maskgroup @*.*.*.*-443, @*.acs.ohio-state.edu
maskgroup @* .dec. com, @kcgll. *. ohio-state, edu

For PROTECT or DEFPROT, the sample file is LEVEL2.PROT as dis-

tributed.

Level 2 example protection file. For the sample authenticator, this

file is not actually used but is kept as a place holder. For a
real authenticator, this file has pointers to the password and group

I Chapter 7

142 7.3 Access controls

definition files as well as other configuration information (scheme
supported, etc.) for the protection domain being defined.

For the CEL authenticator (1.3), lines have the following formats:
notes comment
<realm> Realm name Set string user sees in username prompt.
@host * Host address must match
user[@host] password Both user and password must match.
user[@host] * Must match username, password from SYSUAF
*[@host] * Any username, password from SYSUAF

For the MD5 authenticator (test), these additional formats are available:
<acl> (ACE) Accesss control list entry.
<digest> [args] Set MD5 mode and parameters. Any subsequent
username/password pairs will be case-sensitive
(since client is generating hashes).
<cache> timeout Set refresh time in seconds for file cache.

For the EXT authenticator, these additional formats are available:
<xxxx> arg

[\ \domain\] user [@host] *
[\ \domain\] * [@host] *

<CACHE> 0 # argument is seconds before expiration.
<CERTMAP> 0 # Argument is processing options, must be present
<realm> Sample Authenticator
#<digest> private="makeup" pwdfile="excess"
<ACL> (ID=PATHWORKS,ACCESS=READ)
<ACL> (ID=CE_ARISS,ACCESS=READ)
#<DEMOTAGI> tcp
#<DEMOTAG3> localhost
#\\Dave* *

#@*.acs.*.edu *
#*@164.107.183.*:431 *
#*@*.*.*.*:443 *
#8*.*.*.*:8040 *
guest oqobf

Invoke external authenticator.

local subnet with SSL
anywhere using SSL and username
anywhere using port 8040

Examples
hostprot */localonly/* www_system: localonly, prot

This takes any path that has */localonly/anywhere in it and applies the
contents of the localonly.prot file to it. (This even works for userdirs, inci-
dentally, and it's very handy if you have material that should be shared

7.3 Access controls 143

broadly on-site and not at all off-site.) The localonly.prot file might look
like the following:

maskgroup @127.0.0.i, @*.slac.stanford.edu

prot /htbin/s tockroom_update*
www_system: stockroom_updaters, prot

The stockroom_updaters might look like:

<realm>"Your stockroom update account"
StockroomTemp boguspasswrd # takes the password from this

file, since this week's temp
won't have a VMS account.

Milo * # Use his SYSUAF password
Serena CuttySarkl2 # take the password from this

file.

Only the users identified in the protection file can gain access to this
program and only if they use the correct passwords. You can mix and match
authentication sources.

exec /protbin/* www_root : [protbin]
prot /protbin/* www_system: SYSUAF. PROT

The SYSUAF.PROT would look like:

<realm>"your VMS account"

Any program you put in PROTBIN will require SYSUAF authentica-
tion to run, but can be run by any user who can log into the system. (If the
particular program needs to limit access further, it will have to do it itself. I
have some RDBWeb programs that just have a database table of which users
are allowed to do updates and enforce that themselves.)

OSU has no equivalent to the Require and Satisfy directives in
Apache. You can have the server apply only one kind of protection to each
object, and if access fails, it won't try anything else. If you want anybody to
be able to see a document from on-site, and off-site people to only be able
to see it if they are authenticated users, you'll have to write a little program
to mediate access to those documents and then map the document items to
run the program~for example:

map / d o c u m e n t - d i r e c t o r y / * \
/htbin / access_cntrl, p I ? f i i e=document_di rec tory / *

I Chapter 7

144 7.3 Access controls

7 . 3 . 2 W A S D

Password-based access control
As I mentioned previously, the configuration file for authorization and
access control as well as authentication is in H T T P D $ A U T H . C O N E All
access control is based on the untranslated path that came in. Paths may not
appear in more than one realm in the same virtual service. (So if you want
to authenticate the same thing by two different methods, you need different
IP addresses, ports, or host names.)

The config file has a realm statement, which looks like

[AuthorizationSource [; full-access-grp; read-only-grp]]

AuthorizationSource is defined in exhaustive detail in section 7.2.
Those group specifications are identifier-or-database=authtype.

Group lists can be defined by those holding a particular rightslist identifier
(provided this is a SYSUAF-based authorization source) or those in a partic-
ular list or database (which, as I noted previously, must reside in the
HT_AUTH: directory).

GROUVN~E [= IDIHTAI LIST]

In the ID format, GROUPNAME is a rightslist identifier. In the LIST
format, GROUPNAME is the plain-text HT_AUTH:GROUPNAME.
$HTL list of user names. In the HTA format (which is the default), it's the
HT_AUTH:GROUPNAME.$HTA list. Note that if you have two group
names, they're the full-access group and the read-access group. If you have
one group name and it's an HTA format group, access per person is deter-
mined by what access is set for that user name in the HTA database.

If you leave off the groups, everybody who successfully authenticates has
read and write access to the paths in the realm unless restricted by the path
s t a t e m e n t s .

Paths within a realm can specify the kind of access that's available for them
and restrict further what's available in the realm. Access restrictions specified
by the path can include user names, access schemes, full or partial host names,
networks, or network/netmask combinations. The path directive is

PATH /path/* restrictions type [param="paramstring"]

The access restrictions, which appear in the statement as a list of restric-
tions separated by commas, are:

7.3 Access controls 145

Scheme http: or https :

Host name *. domain, tld or server, domain, tld

Numeric IP #11.22.33.44/255.255.255.252 o r

#11.22.33.44/16 (subnet) o r

#11.22.33.44 or #1ocalhost

User name(s) -username

The param= "paramstring" is a means of passing additional parameters
that apply on a per-path basis to an authenticator process. More on params
is provided subsequently.

Example
PATH /onlyfromserver/ https:, #1ocalhost, -winston,-alan, r+w

This means that path/onlyfromserver/can be accessed only through
SSL, only from a browser running on the same machine, and only by users
named WINSTON or ALAN. Those people get read and write access.

SSL and access control in WASD

You can also restrict access to paths based on matching values in the client
certificate. (This works only in paths specified in the [X.509] section of the
HTTPDSAUTH.CONE because the other paths don't have certificates to
compare against.) You do this by passing conditional statements with the
param= directive. The syntax and the logical possibilities are the same as for
conditional mapping except for requiring param= in front. Here are the
available conditionals for matching.

[CI : string]

This indicates the choice of cipher that was negotiated between client
and server.

[IS" / recordname=string]

The /recordname parameter matches one of the certificate records
shown previously in "authenticating with SSL" for WASD.

[IS" string]

matches against the entire Issuer (CA) DN.

,,, I Chapter7

146 7.3 Access controls

[KS : integer]

matches the minimum allowed key size from certificate (in bits).

[SU:/recordname:string]

matches specified Subject (client) DN record only.

[SU: string]

matches entire Subject (client) DN. Some examples follow. These are all
assumed to be in the [X.509] section of the H T T P D $ A U T H . C O N F file.

/certneeded/quitesecure/* r, param=" [KS : 128] [CI : RC4-MD5

CI : DES-CBC-MD5] "

This allows access only to minimum key size of 128 bits and using either
the RC4-MD5 or the DES-CBD-MD5 cipher.

/mylocalstuff/* r+w,param=" [RU:/CN=] [IS:/O=My\ Own\

Authority\ Cert] "

Take the common-name record as the remote-user name and do it only
on certificates granted by my own authority. For more examples consult the
WASD docs.

For certificate-based access control, the default user name is the 32-digit
fingerprint of the certificate. You can treat this just like a user name, putting
it into lists (.$HTL files) to establish group membership. Alternatively, you
can use the [RU=/recordname] parameter to take some other record (e.g.,
CommonName) and get a derived name, which may be a little less intimi-
dating when you're reading the files. However you derive the user name,
you can use it in access restrictions, just like a user name derived any other
way. Here are some example group lists (closely related to examples in the
WASD docs).

FINGERPRINTGROUP. $HTL
(a file of X.509 fingerprints for access to "/path/requiring/cert/")
ABI2D58890013406BBA517418D253CE2 winston@vms .kicks-ass .net
6ADA07108C20338ADDC3613D6D8BI 59D just. another@where, ever. com

CERT_CN.$HTL
(a file of X.509 remote-user names derived using [RU-/CN=]
Alan_Winston winston@vms.kicks-ass.net
Just_Another just.another@where.ever.com
[X509;FINGERPRINTGROUP=Iist]
/path/requiring/cert/* r+w

(Gives fingerprints listed in FINGERPRINTGROUP full access to the
path, restricted to read and write.)

7.3 Access controls 147

7 .3 .3

[X509 ; CERT_CN=Iist]

/path/requiring/cn/* r+w

Similarly, gives access to this path, restricted to read and write, to people
whose certificate CommonNames are in the CERT_CN.$HTL file. Alter-
natively, you can use the fingerprint or the CommonName where you'd use
any authenticated user name.

[X509]

/httpd/- / admin/* -i 06C8342890A1703AAA517317BI45BF7, r+w

/ht_root/local/* -106C8342890AI703AAA517317BI45BF7,r+w

Access granted only to the user with this fingerprint on his or her certif-
icate.

/ other/path/* -Alan_Winston, r+w, param=" [ru : / cn=] "

/yet/another/path/* -Just_Another, r+w, param=" [ru:/cn=] "

Access granted to the user whose CommonName from the certificate
matches the access restriction list; the param says to get the remote user
name from the CommonName field. Again, once you get the remote user
set, you can use it just like a SYSUAF user name.

R o b o t s . t x t

Search engine companies such as Google or Altavista have crawlers or spi-
ders searching the Web all the time. Most sites have quite a lot of links that
it would be pointless for a robot to follow--anything that leads to a form
that has to be filled out and "submit" pressed, for example, or material
that's highly dynamic. (You don't want to index the every-two-minutes
stock quote; you want to index the menu page that gets you to it.) It's to
everybody's benefit that the crawlers don't spend their time indexing the
wrong stuff and you don't waste your horsepower serving them stuff they
can't use.

The convention is that crawlers will ask the server for "/robots.txt"
before starting to crawl the server. Robots.txt is an ASCII file containing a
list of paths on this server that robots shouldn't follow. (Indexing graphics
and the like can be bad news.)

Note that there are badly behaved crawlers out there. E-mail-address
mongers have crawlers searching the Web looking for stuff that looks like
valid e-mail addresses, which they can compile and sell for the purpose of
sending unsolicited commercial e-mail. (If they believe in wasting e-mail
bandwidth and everybody else's disk space, there's no reason to think they
care about your network and CPU utilization.) Further, in the early days of

I Chapter 7

148 7.3 Access controls

the Web it occurred to some people that the contents of the robots.txt file
might be "secret and possibly embarrassing stuff we don't want the world to
see," and they'd have fun retrieving the file and following exactly those
links. So you need appropriate access controls on those paths, not just a
robots.txt that keeps polite spiders out.

You can put a robots.txt file in your root directory, except in the
default configuration of OSU, where the root is mapped to/www/; the
spiders don't ask for/www/robots.txt, so the default configuration pro-
vides a mapping of/robots.txt to/www/robots.txt. (Robots ask for an all-
lowercase "/robots.txt"; if you're doing mapping in CSWS, be sure you're
either case-blind or using lowercase.)

The robots.txt file is created according to the Robot Exclusion Standard.
It can be maintained with your favorite text editor. The file is composed of
records. Each record has one User-Agent line and one or more Disallow
lines.

User-Agent- * I name-of-specific-agent
Disallow path

(The asterisk is a wildcard, which should match any agent. Alternatively,
you can match a specific agent. Agents have names such as googlebot, Web-
Crawler, and Slurp. There's a registry of Web robots~284 different ones
now~at http://www.robotstxt.org/wc/active/html/index.html.) Look in
your logs (if you're using an extended format that logs the User-Agent) for
more robot names.

Inktomi's Slurp seems to be a fairly typical well-behaved robot. It
processes the robots.txt top down. Whichever User-Agent line it encounters
first, whether "Slurp" or "*", is the only line it'll process. If you have special
instructions for specific robots, they need to precede the "*" User-Agent,
which should be the last one in the file, and they need to reiterate all the
stuff you want all agents to do.

It's worth pointing out the Wayback Machine at the Internet Archive,
www.archive.org. The aim of this project is to keep, online, all the content
that ever was on the Web. So far, this is working to a surprising degree.
When Micro 7qmes, a magazine for which I did a couple of years' worth of
columns, went bust and shut down its Web site, my stuff was still retriev-
able from the Wayback Machine. Alexa Internet does periodic Web crawl-
ing and makes data donations to the Internet Archive. If you want to be
sure to be crawled, you can go to www.alexa.com and follow links until you
get to a place where you can enter a request to crawl your site. If you want
to be sure not to be crawled~if your current content is something that

7.3 Access controls 149

you'd be happier to see lost to history~you can also request not to be
crawled and archived. You should also bar ia-archiver (Alexa's user-agent
name) and googlebot (which caches your content on its site) in the
robots.txt and possibly through mapping rules as well.

Disallow: (blank) I filename I directorypath I /

Disallow: followed by a blank bars nothing and tells the robot it can
cruise the whole site. Followed by a bare slash, it bars everything. Fol-
lowed by a file name, it bars the file name wherever it might be found.
Followed by a directory path, it bars that directory path. The directory
path is matched left to right against links on this site. There's no explicit
wildcard specification, but it's a "greedy" match: /www matches/www/
index.html,/www.html,/www56/giantrobots.html, and so on.

Typically you'd at least like to bar robots from trying to cruise your script
directories, so you can use

Disallow: /htbin/# on OSU (same-line comments are legal)
Disallow: /cgi-bin/
not that the server should allow them out. (this
comment format is preferred)
Disallow: . HTACCESS

If you want to D i s a l l o w most stuff and allow crawling only a small por-
tion of your site, you might want to consider putting the crawlable stuff in a
separate directory, if not a separate server.

Note that browsers as well as robots can retrieve/robots.txt, so if you'd
like to see what big complicated/robots.txt files look like, you can retrieve
some from your favorite sites.

One problem with/robots.txt is that there's only one per server. Per-
directory robots.txt files don't do anything~the robots never request them.
You could set up some kind of a batch job to locate and roll up robots.txt
files out of all your directories (or at least all those that aren't in the Web-
master's direct control) every couple of days and make an official robots.txt
for your site out of it. But there's an alternative that is accessible to users
who can put files into Web directories: the Robots <META> tag.

META tags go in the HEAD portion of your HTML document and
describe things about the document that don't necessarily get rendered. In
this case, the interesting tag is <META NAME="ROBOTS" CON-

TENT=" [NO] INDEX, [NO] FOLLOW" >.

The contents of CONTENT are permutations of INDEX, and FOLLOW.

INDEX instructs the robot that it's okay to index this page (e.g., to put this

I Chapter 7

150 7.3 Access controls

page into the search-engine database); NOINDEX asks it not to do that. FOL-
LOW encourages the robot to follow the links from this page as it keeps on
crawling; NOFOLLOW says to treat this page as a dead end--don't crawl along
any links found here. Most, but not all, robots default to "INDEX, FOLLOW"
if there is no tag and the path hasn't been ruled out by/robots.txt.

Here are the four legal values of the CONTENT tag; you can have only one
of them effective in a document. (It's robot specific whether the first META
ROBOTS tag would be processed and scanning would immediately cease or
the robot would follow the last one in the file.)

<META NAME= "ROBOTS" CONTENT=" INDEX, FOLLOW" >

<META NAME= "ROBOTS" CONTENT= "NOINDEX, FOLLOW" >

<META NAME= "ROBOTS" CONTENT=" INDEX, NOFOLLOW" >

<META NAME= "ROBOTS" CONTENT= "NOINDEX, NOFOLLOW">

Again, these tags have power only over well-behaved robots--they won't
do a thing to stop impolite robots from grabbing the pages. Watch your
server logs so that you can tell whether rebellious Web crawlers are actually
sucking down your entire site. Note the names and use mapping or protec-
tion rules to keep these naughty bots from doing you any harm.

8
Providing User Personal Web Directories

8.1 User d i rec tor ies : p ro and con

You've probably seen URLs that bring you to personal Web directories. The
http://host.domain.tld/-username/syntax brings you to Web space in a
nonprivileged user's personal account. User Web directories are often called
userdirs.

Is this a good idea? It depends. In an educational or hobbyist environ-
ment, it's likely to be a very good idea. Users can develop their own Web
content, take responsibility for it, organize their directories to suit them-
selves, update whenever they feel like it, and never have to hassle the system
manager. Instructors can put assignments or syllabi on their personal Web
sites, researchers display digital offprints of papers, and so on. The system
manager can plausibly claim that he or she never checks anybody's content,
and avoid uncomfortable issues of censorship, quality standards, browser
compatibility, and so on. If your institution is teaching a class in Web devel-
opment, this approach can solve a lot of problems.

In a commercial environment, it's probably a bad idea. If the Web site is
your company's Internet storefront, it looks unprofessional to have people
putting up digitized pictures from their wedding~and your company
probably has a written acceptable-use policy that you'll be responsible for
enforcing, or at least required not to subvert. The userdir approach may be
useful for providing test Web sites for your authorized Web developers, but
you're mostly better off avoiding it.

There are a few additional security risks in user Web directories. (If
you've decided to conceal the operating system and hardware type you're
running on, and you allow server-side includes in user Web directories, then
it's possible that a user would have documents that included that potentially
dangerous information; if you allow execution of DCL scripts from within

151

152 8.2 Implementing userdirs

8 . 2

server-side include documents in user Web directories, then any internally
available information could be seen outs ide~if that's a concern, then you
shouldn't allow that. You can still have user Web directories~just don't
allow execs. You also need to consider whether you want your users to be
able to run CGIs directly. One comforting note is that since the users, not
the server, own the files in the user directory, they can only be read (and
thus served) by the server if VMS file protection allows it, either via W:RE
protection or by an ACL permitting access. The server won't be able to acci-
dentally serve out the user's mail files unless he or she puts them in a subtree
of the [.www] directory and sets the protection so that anybody on the sys-
tem can read them.

An alternative to userdirs, which takes a bit more system management
time but avoids the funky tilde, and which makes a structure that's a little
easier to exercise some central management over, is to set up a user direc-
tory tree in your Web space (e.g., $WEB:[USERS...]). Each user, or each
user who requests personal space, gets a directory ($WEB:[USERS.THIS-
USER]), some quota on the $WEB disk, and access by ACL entry to the
directory. The system manager has to create the Web directory, issue the
quota, and set up the access control list, but this is easy to do as a DCL
script and shouldn't take the system manager much t ime-- i t can even be
automated as part of the account creation process. Once that's done, the
user's directory will be available as http://node.domain.tld/users/thisuser/,
which looks a little more professional. A real advantage of this structure
over userdirs, if you believe the material posted is going to be of some
actual use, is that it's much easier to automatically index the material in a
structure like this than in user space scattered over multiple trees.

Implementing userdirs

8 . 2 . ! CSWS

Apache books assume that all your users are in a file system something like
/home/users/username. In fact, more typically on VMS, your users may be
on $userdiskl:[theirname], or $userdisk2:[groupname.username]. In some
cases, their SYS$LOGIN directory won't even be the root of their own
directory; at my site, we had some users who were migrated in the early
1980s from the RSX-11 system we ran before we got our first VAX; their
original directories were ODS-1 style [ggg,uuu] specifiers. Eventually we
put them on ODS-2 disks and changed the numbered directory to [their-
name.numbered], but we had to make their SYS$LOGIN directory the

8.2 Implementing userdirs 153

numbered directory they were used to. If one of these people needed a user-
dir, it would be $disk2:[username.numbered.www]. If one of these people
had gotten married and changed names and the system manager was too
lazy to change the directory name, he or she could be $disk2:[old-user-
name.numbered.www]. (That works fine if the server gets the device and
directory information out of the SYSUAF, but will frustrate any other map-
ping scheme.) You may well have to account for this kind of irregularity in
your file structure.

Apache implements userdirs with the UserDir directive:

UserDir absolute-or-relative-path-name

The name used in the example in the default configuration file is
public_html; I prefer WWW, which happens to be the default for OSU. To
make everybody's ~username directory be the [.WWW] subdirectory of
their SYS$LOGIN directory, even if the account name is something differ-
ent do

UserDir www # relative path name

If you want to do userdirs on some other volume than their
SYS$LOGIN directories~which requires a community of users who can
figure out how to get FTP to change volumes when they're uploading files

UserDir / $userwww_disk/

and the tilde translation will turn

-username / index, html

into

/ $us erwww_di sk/username / index, html

(And something will break if the users ever change their user names.) For
completeness, I'll mention that you can plug the user name into the middle
of the path, not just the end, by using a placeholder.

UserDir / $userwww_di sk/*/www

results in translation of

-username/index. html

into

/ Suserwww_disk/username/www/index. html

I Chapter 8

154 8.2 Implementing userdirs

Either of these last two approaches is faster than a SYSUAF lookup, so
you might want to do it in the extremely unlikely case that you expected
very high traffic on a userdir-intensive site. (Maybe if your individual users
were all serving porn and warez, this could happen, but it's unlikely in any
legitimate business or academic environment.)

You can also implement the above functionality with AliasMatch or
RewriteRule directives (discussed briefly in Chapter 7), since this just says
how to translate -username. But that's getting pretty far away from the
point of having userdirs.

Apache lets you enable and disable user directory support for specific
users, or for all users.

UserDir disable [list of usernames]

If you leave out the list of user names, it's disabled for everybody who
isn't specifically enabled.

UserDir enable [list of usernames]

Unless you include the list of user names, this is fairly pointless outside
of a VirtualHost container, where you might want to override a serverwide
disable. It's still on the confusing side, since a SYSUAF-based userdir
scheme can't restrict the users to particular hosts. However, if you felt it
looked unprofessional to have userdirs on www.your-ecommerce-site.com
but still wanted to provide that service, possibly on staff.your-ecommerce-
site.corn, you could use this scheme to disable them sitewide and reenable
them only in the staff.your-ecommerce-site.com VirtualHost.

With the list of user names, this makes sense if your site policy requires
that people sign a document indicating that they understand the require-
ments to post only content that fits the acceptable-use policy, is legal,
doesn't violate copyright, and so on; you can enable them when they sign
the document.

Once you've told Apache how to translate the .-username in the URL,
you also need to tell it who has access to those documents. The <Direc-
tory> container on your DocumentRoot won't apply--unless you've
mapped the userdirs into your regular directory tree, in which case you can
skip the next bit. Instead, you'll need to specify something that matches any
place the user files are going to end up.

This is where you need to know what your users' sys$1ogin directories
look like. If everybody is on one disk, and has a sys$1ogin that looks like

8.2 Implementing userdirs 155

USERSDISK:[username], then you might think you were in business, and
that

<Directory /user$disk/*/www>

will get everyone. Maybe, maybe not. If they're scattered around, you may
need multiple directory specifications, or you may be able to do something
extremely clever with the regular-expression matching capabilities of
<DirectoryMatch>.

My site used to have a bunch of different disks; then we got a RAID
array and moved all the user files to that. But we wanted to maintain the
appearance of the old disk structure in order to avoid user retraining. We
had SDISK1, SDISK2 . . . SDISK6. Now we made one big honking disk,
SDATADISK, and put the old disk trees as subdirectories on that: SDAT-
ADISK:[DISK1] and so on. SDATADISK, which is in cluster-accessible
storage, is actually 9DKA2. I ended up finding a bug in CSWS 1.1,
which has been fixed.

<Directory /dka2/*/*/www>

didn~ work because "dka2" wasn't recognized as the same device as
"DKA2", which is what SDATADISK translated into. If you have come to
rely on this bug for some reason I don't understand, and you insist on hav-
ing case sensitivity in your user directory device names, you can insert

$ DEFINE/PROCESS APACHE$USER_HOME_PATH_UPPERCASE YES

in the LOGIN.COM of your APACHE$WWW account.

Eventually I ended up with

<Directory /9DKA2/*/*/www/>
AllowOverride FileInfo AuthConfig Limit
Options MultiViews Indexes IncludesNOEXEC
<Limit GET POST OPTIONS PROPFIND>

Order allow, deny
Allow from all

</Limit>
<Limit PUT DELETE PATCH PROPPATCH MKCOL COPY MOVE LOCK

UNLOCK>
Order deny, allow
Deny from all

</Limit>
</Directory>

and that worked for me.

I Chapter 8

156 8.2 Implementing userdirs

8 . 2 . 2

<Directory */www/> doesn't work, incidentally, because if your direc-
tory doesn't begin with a slash, Apache assumes that it's a subdirectory
within the DocumentRoot tree, which is exactly where your user directories
aren't. One potential pitfall with userdirs: If you don't want users running
their own scripts, you need to be sure not to include ExecCGI as one of the
options on the <Directory> or <DirectoryMatch> container for the user-
dir. (They can still have forms that use scripts you provide in a sitewide
CGI-BIN directory.) Note the IncludesNOEXEC in my example specifica-
tion; this keeps a user-provided server-side include document from making
Apache run an arbitrary program it specifies.

OSU

In processing userdirs, OSU does a straightforward SYSUAF lookup of the
user name and maps the given user directory name to that subdirectory of the
SYS$LOGIN directory. (I keep saying that instead of SYS$LOGIN:[Web-
directory] because this is invalid syntax; Su isn't a rooted logical.)
To enable this, the relevant commands are in HTTP_PATHS.CONE In the
preprocessor form, they're

.define userdirenable userdir

.define userdirname www
�9 define baduserenable #

�9 define baduser /www_root/serverdoc/baduser.html

and

.EXPAND Suserdirenable $userdirname

.EXPAND $baduserenable /-* $baduser

If you want to get something other than the standard 404 status if they
enter a user who doesn't exist or doesn't have a userdir, change the value of
baduserenable from "#" to "pass." That'll result in these expanded com-
mands:

userdir www

pass /-* /www_root/serverdoc/baduser.html

If you're worried about people probing your server using -randomname
to determine what user names exist on it in order to launch password-crack-
ing attacks on those user names, you should make the pass/* point to the
404 error page so that they'll get the same results on undefined users as on
defined ones who don't have userdirs set up. However, if you're really con-
cerned about that, then you shouldn't allow userdirs at all. And I hope
you've already disabled FINGER; further, block your phone directory from

8.2 Implementing userdirs 157

8 . 2 . 3

off-site access if it includes e-mail addresses that can be mapped to user
names on the Web host; and don't allow Telnet access from outside the fire-
wall so that passwords can't be sniffed; and so on. There's a lot of stuff
higher on the 'keep-you-up-nights' scale than people probing userdirs for
random user names. If you see the same IP address failing on random user
names over and over in the access log, adjust your configuration so you
won't even talk to that node any more.

Here's a major gotcha: These commands appear in the distributed
HTTP_PATHS.CONF below the localaddress blocks. If you put pass /*
mapping blocks inside the localaddress containers, userdirs won't work. If
you have a pass /* at the top, userdirs won't work. This isn't a problem
with the way the server is configured by default, because the document root
is aliased to/www/*, and you don't need a pass /* command. However, if
you're like me and don't like the superfluous-seeming/www/and therefore
simply replacethepass /www/* $sitepath with pass /* $sitepath,
userdirs won't work because the server will map -filename as though it were
in your $sitepath tree, resulting in a nonexistent file. As a result, to make
userdirs work in this configuration, you need to move the userdir com-
mands above any pass /* or map /*, whether it's in a l o c a l a d d r e s s
block or sitewide.

Since OSU will run scripts only from predefined script directories and
the server-side includes don't allow you to run arbitrary executables, you
don't have to worry about locking down those functions.

OSU gives you a nice command procedure, WWW_SYSTEM:
BUILD_USERDIR.COM, which you can customize and make world-
readable; then users can run it, and it will create their Web-readable subdi-
rectory set ACLs to allow the server appropriate access, and create an
index.html template with their name in it.

W A S D

WASD has some restrictions on userdirs. It won't serve user directories for
accounts with SYSPRV, DISUSERed accounts, CAPTIVE accounts, or
accounts with expired passwords, all for fairly obvious reasons. (If you really
want to serve particular accounts that match those criteria, you can use map-
ping rules for each account to make the Web space available.) OSU and
Apache appear to have no such restrictions. (However, in the case of Apache,
if you have a <Directory /SYS$MGR/*> you deserve what you get, and in
either case making SYS$MGR world readable isn't a big win. The restriction
to an explicit [.www] subdirectory is probably good enough.)

I Chapter 8

158 8.2 Implementing userdirs

To provide SYSUAF-mapped userdirs, the following commands go in
HTTPD$MARCONF:

USER /-*/* /*lwww/*
REDIRECT /~* III~*/
PASS /~*/* /user$disk/*/www/*

The USER command maps .~username/* to /device: [directory.www] *,
but doesn't handle the case where the browser sends the URL without a ter-
minal slash. The REDIRECT makes the server tell the browser to try it again
with a slash. The PASS command is required so that the server knows to
actually serve the stuff from that directory. (Redirect and Pass are dis-
cussed more fully in Chapter 7.)

The same requirements--that the userdir be world readable or be
marked with ACLs to make it usable by the server account--apply. If you
have users scattered on multiple disks, you'll need multiple pass com-
mands. Don't try defining a search list logical for userSdisk and using that;
instead; bite the bullet and put in one PASS command for each disk with
user directories.

Naturally, the PASS command for the user directories needs to appear in
the file earlier than any applicable catchall PASS /* command. If you're
doing multihosting or multihoming (see Chapter 9), you can enable user
directories either for every service on your server or for a particular virtual
host by putting the relevant mapping rules inside the virtual service block in
the HTTPDSMARCONF file. Be sure to get the PASS /--*/* before the
catchall PASS /* in the virtual service block.

There is some security concern about the ability to have user-generated
server-side include documents run arbitrary executable programs in the
context of the server through use of the <exec> or <dcl> tags (discussed
more fully in Chapter 13).

How big a concern is this? Well, the server account doesn't have SYSPRV,
so it's hard even for a malicious user to do a lot of damage to the system at
large (although that person could possibly mess up the server configuration).
However, if you have things anywhere on your server that can be read by any
local user but you don't want them getting out--classic examples are FIN-
GER, or for that matter SHOW USER, which will display currently logged
in users, thereby giving a system cracker a litde bit of a leg up on guessing
user name/password combinations--then the <--#EXEC--> tag can make
your server into a tunnel through the firewall, displaying local-only info to
anyone in the world. If you've got real secrets, you probably shouldn't be
running anything but the Web server on your machine anyway. If you've got

8.2 Implementing userdirs 159

stuffyou just don't want to have get out, you've got a user-education issue on
your hands.

However, WASD lets you fine-tune this. If you enable [ssIexec] on
the server level, it will, by default, work only on documents that are
owned by [1,4], the SYSTEM account. (If malicious users have the ability
to modify files owned by SYSTEM, the game is already over--the bad
guys own the box.) The SSI processor works on user-owned documents,
but if it encounters an <--#exec--> tag in a document not owned by [1,4],
it quits interpreting.

If you do want to allow <#exec> access for some non-SYSTEM files, you
can use the SET mapping rule for the path--for example:

SET /path-to-document/ SSI=PRIV
SET /path-to-document/ SSI=NOPRIV

(SET is discussed at length in Chapter 7.) Since this does run the risk of
giving away the store, you want to do this only on document trees you have
good reason to trust, which means you probably don't want to do it on
userdirs.

Mark Daniel, the WASD author, recommends configuring your WASD
server so that the account that runs scripts is a harmless nonprivileged
account that doesn't own the WASD configuration or executable files--a
different account altogether. I'll discuss this again when talking about
scripting environments, but the brief recipe is to create the scripting
account, enable [DCLDetachProcess] in HTTPD$CONFIG.CONE and
edit STARTUP_LOCAL.COM to use/PERSONA=scripting-account as a
startup qualifier. This is essentially the only way to allow nonvetted
scripts--including SSI with <#EXEC> capability--without potentially
compromising the security and stability of your system.

I Chapter 8

This Page Intentionally Left Blank

9
Multihostin g and Multihom in g

9.1 Why multihosting?

You want your system/cluster to provide Web service for more than one
domain. You could be a VMS-based ISP (e.g., Pageweavers.com in Sacra-
mento, CA), or implementing a server consolidation program, or a hobbyist
hosting a personal and a club Web site.

One approach, which is, in my opinion, really ugly, is to assign different
sites to different ports on the server. Since people keying in the URL are
likely to forget the :8001, they may get presented with the wrong site, and
you get a support call. I like this so little that I'm not going to discuss in any
detail how to do it.

You can put multiple node names in the Domain Name Server system
that all resolve to the same numeric IP address. When modern browsers
connect, they remember what alphabetic name they were looking for and
tell the server, using the host header. (This is the CNAME, or Canonical
Name.) Unfortunately, one of the antique browsers that doesn't support the
host header is Netscape 3.03 on VMS; fortunately, as I write, Mozilla has
reached a state of sufficient maturity that Compaq is releasing it as the
Compaq Secure Web Browser (CSWB). If there's no host header and you
haven't configured the server with a default host or an explicit numeric host,
results can be surprising.

While you can make the browser issue a redirect to a particular directory
tree based on the CNAME, you can also use multihosting configuration to
simply serve from the appropriate directory tree. If you don't, you can get
unprofessional results. Ultranet, a Massachusetts ISP, provides Web space to
the New England Folk Festival Association (NEFFA. WWW~.NEFFA.ORG
goes to WWW~.ULTRANET.COM and shows the Ultranet home page. You
have to go to www.neffa.org/-neffa to get the NEFFA information; this

161

162 9.2 Multihosting/multihoming configuration

9 . 2

inconveniences the NEFFA users over and over.) It's preferable, in my opin-
ion, for the server to recognize what people were trying to connect to (by
the CNAME, not the IP address) and give them the appropriate Web root
automatically. If your IP package supports it, each node name can have a
separate numeric IP address in the DNS, and your system can respond to
every relevant numeric IE (This is multihoming, and it requires some IP
configuration effort every time you start or stop hosting a domain, which
may require a reboot depending on your IP package.)

Multihosting is supporting different host names with the same numeric
IP address. Multihoming is supporting different numeric IP addresses on
the same Ethernet interface.

Life gets more complicated if you have to provide HTTPS service for
more than one node name. The most you can do with any server is to offer
one certificate per numeric-IP/port combination. (You can't do it by
CNAME, because the SSL dialog precedes the HTTP dialog; the browser
never has a chance to tell the server what host it's looking for.) If you pro-
vide the wrong certificate, the browser will complain. (Even with OSU it's
possible, with some cleverness, to run multiple instances on different ports
using the MST version of SSL and have a different certificate for each
instance, but it makes for some slightly odd-looking URLs.)

Multihostinglmultihoming configuration
When you multihost or multihome, you have to be able to configure what's
different for each server: host name, document root, log file name and loca-
tion, and so on. Typically, your multihost configuration will inherit any-
thing from the general server configuration that you don't explicitly
override~so, for example, the server documentation directory can be avail-
able to every domain you host.

9 . 2 . I CSWS

Apache thinks of the individual hosts in your multihosting or multihoming
configuration as virtual hosts. You configure them with the VirtualHost
container directive. (Many Apache books will tell you that VirtualHost can
be used only with numeric IP addresses and that you differentiate different
CNAMEs by having multiple VirtualHost containers with different Server-
Names, after using the NameVirtualHost directive to alert Apache that
you'll be doing this. This is not true under CSWS 1.2; you can specify

9.2 Multihosting/multihoming configuration 163

names or numeric addresses in your VirtualHost container.) You do still
need the NameVirtualHost directive.

Here are the HTTPD.CONF directives:

NameVirtualHost numeric-ip [:port]
<VirtualHost cname-or-ip-address [:port]
[cname-or-ip-address [: port]] >
[ServerAdmin Webmaster-email-address]
[DocumentRoot directory-specification]
[ServerName servername, domain, t id]
[ErrorLog filespec-for-error-log-for-this-host]
[CustomLog filespec-for-access-log log-format]

</VirtualHost>

The port number is optional in both the NameVirtualHost directive
and the Vi r tua lHos t container directive. If you leave it off, it defaults to
port 80 (or whatever port you defined with the Port directive in the general
configuration); if you replace it with "*", your Vi r tua lHos t will be defined
on all the ports that Apache has been told to listen to with the L is ten
directive. (And if you want to, you can define different virtual hosts on the
same CNAME or IP based on having different explicit port numbers--but
it's not a good idea.)

If you want more than one CNAME or IP to resolve to the same virtual
host (a common example of this is www.servername.domain.tld and server-
name.domain.tld), you can specify both of them in the Vi r tua lHos t direc-
tive. The directives shown within the Vi r tua lHos t container are all
optional; if you don't specify them, this virtual host will inherit the values
from the general configuration. You can actually specify almost any direc-
tive (the excluded ones are the ones that only make sense systemwide, such
as StartServers, BindAddress, ServerRoot, and NameVirtualHost)
within a VirtualHost container, including nesting Directory and File
containers. (See Chapter 7 for details of Di rec to ry and F i l e containers.)
The directives are discussed in order in the following paragraphs. The draw-
back is that this introduces a dependency on the DNS server, which would
have been avoided by relying solely on numeric IP addresses.

ServerAdmin probably looks a little better--or at least gives away less
about your hosting setup--if you set the e-mail address to be at the domain
of the virtual host, although you should make sure the e-mail will be deliv-
ered there.

DocumentRoot is a full directory specification, not one relative to the
general server's DocumentRoot. One convention on UNIX systems is to put

I Chapter 9

164 9.2 Multihosting/multihoming configuration

the virtual host's documents into a directory named /www/
server.domain.tld; this won't work at all on ODS-2 disks and will only cause
you trouble even on ODS-5 disks. If you want all your virtual hosts in the
same directory tree, consider trying/www/server_domain_tld instead. In
some senses it's neater to put all the documents in the same directory tree,
but there are sometimes good reasons not to do so. Are all the hosts main-
tained by trustworthy people? Do they all need the same backup regimes?
You can certainly manage multiple access to the contents of one directory
tree with access control lists and resource identifiers, but it may make your
life easier to put customers with larger sets of files on their own disks, or
even on virtual disks maintained with VDDriver, which may be less annoy-
ing to the system manager than managing disk quotas.

You really need ServerName only if you've got more than one CNAME
or IP in the V i r t ua lHos t container; this is what Apache will use in con-
structing self-referential URLs. (This is also the case if you include a por t
command.)

For E r ro r log and CustomLog, if you don't include these directives for
the Vi r tua lHos t , logging will be done to the general server's log; if you do
specify them, the errors and accesses for the virtual host won't show up in
the general log and will be only in the host-specific logs. There are reasons
why you'd want to do either; I'd be inclined to combine my ErrorLogs,
since as the Webmaster I want to know if anything's going wrong with the
server, but I would keep the access logs different for each host for easier
analysis of traffic by host. There's more information on log file configura-
tion and management in Chapter 12.

If you're doing virtual hosts at all, you should be sure to include a default
host. The setup is shown in the H T T P D . C O N F that comes with the
server, and it looks like this:

<VirtualHost _default_: *>
[directives]
</VirtualHost>

This will catch any requests that didn't match any of the other virtual
hosts; you don't want to leave this undefined. For example, what happens if
you're running a browser on the same system as the server and you point it at
127.0.0.1, which is the local host? No host header for CNAMEs and doesn't
match your numeric IP address. The default virtual host will catch it.

9.2 Multihosting/multihoming configuration 165

9 .2 .2 OSU

OSU thinks of the hosts as local addresses. Your configuration file can
include multiple l o c a l a d d r e s s blocks. (Although you can get the blocks
set up using the GUI configuration, I have been unable to get them to work
correctly that way.)

l o c a l a d d r e s s blocks take two forms, depending on whether this is an
IP-based or CNAME-based localaddress.

localaddress CNAME server.domain.tld # CNAME based form

localaddress numeric-IP [hostname] # Ip-based form

Each localaddress block goes on until the next localaddress com-
mand starts, so the last one specified is

localaddress

with no name or IP address. That ends the last localaddress block and
after that commands are interpreted in the context of the general server
again. The numeric-IP form instructs the server to listen to that specific IP
address, rather than to all; as a result, if you include any specific numeric-
IPs (even including 127.0.0.1), you need to include every numeric-IP you
want the server to listen to. You can mix and match CNAME-based and
numeric-IP-based localaddresses, but the CNAMEs won't work unless
you have a numeric-IP-based one for at least one of the CNAMES you
want to support.

What you find in http_paths.conf are the following preprocessor com-
mands. (Remember that the semicolon indicates the end of a line in the
expansion, while the backslash indicates a line continuation in the tem-
plate.)

.ITERATE localaddress cname $hname ;\
AccessLog $cn_logfile $cn_extflags ;\
map / $cn_root_page ;

�9 next server, domain�9 \
vms-style-log-file-directory-and-file-name log-file-

format- flag \

root-page

So, for example:

�9 next alanwinston.homeip.net \
SWeb_root- [logs] accessaw, log 1 \
/ index�9 htmlx

I Chapter 9

166 9.2 Multihosting/multihoming configuration

.ITERATE localaddress $addr Sname ;\
AccessLog $mh_logfile $mh_extflags ;\
map / $mh_root

(The log file format flag is 0 for "common" format and 1 for extended
format, which saves the "referer" [sic], and for user-agent, which isn't on by
default because it can make your log files bigger.)

The example says: Respond to the CNAME alanwinston.homeip.net,
log accesses into a special log file, and make requests that just have the
address and a slash get index.htmlx (a file with some preprocessor direc-
tives in it). This is perfectly reasonable if you want all your virtual hosts to
serve from the same root directory, but if you want them to be in different
directory trees, you need to modify the file. In this case, I changed the tem-
plate to

.ITERATE localaddress cname $hname ;\
AccessLog $cn_logfile $cn_extflags ;\
map / $cn_root_page ;\
pass /* $cn_root_star
�9 next alanwinston.homeip.net \
SWeb_root : [logs] accessaw, log 1 \
/index.htmlx \
/ $diskl / alanwins ton/*

and did my other CNAME-based host configuration the same way. This
works fine, but it breaks the PATH portion of the GUI configuration util-
ity. You can make the same changes for the IP-based virtual hosts, or you
can just spell out the whole l o c a l a d d r e s s block for either one:

localaddress cname server.domain.tld
AccessLog logfilename formatflag
map /index.htmlx
pass /* /rootdirectoryname/*

followed by any other server rules you want to have apply to this server only.

Be sure to terminate your last l o c a l a d d r e s s block with

localaddress

You don't need to configure a special catchall localaddress, as in
Apache; instead, any unrecognized CNAME will be processed as though it
were the host name specified in the general configuration, and go to that
root page. The same is true for unrecognized IPs if you didn't use any
numeric-IP localaddresses; if you did, the server won't accept any connec-
tions on numeric-IP addresses you didn't specify.

9.2 Multihosting/multihoming configuration 167

9.2 .3 WASD

The WASD approach is somewhat different. A virtual host is a virtual service;
you specify the services you mean to turn on either in the [service]
directive of HTTPD$CONFIG.CONF or in a separate HTTPD$SERV-
ICE.CONF file. While there are specific configurable items (detailed in the
following text) for each service, the mapping rules for the service are placed in
the HTTPDSMAP.CONF file. (Services can also be specified in the com-
mand line using the /SERVICE qualifier; this trumps the HTTPD$SERV-
ICE.CONF, which in turn trumps the [service] definitions in the
HTTPD$CONFIG.CONF file.)

Service definitions in HTTPD$CONFIG.CONF look like this:

[Service]

[scheme : / /] hostname-or-number [: port]

or, by example:

[Service]
alanwins ton. homeip, net

https : //alanwinston. homeip, net

vms. kicks-ass, net : 81

https : //vms. kicks-ass .net : 444

Scheme defaults to HTTP and needs to be specified only for HTTPS:;
port defaults to 80 if the scheme is HTTP or blank, or to 443 if the scheme
is HTTPS. The name is based on the host header from the browser, and if
you want to allow connections from an explicit numeric-IP-based lookup
you need to define a service for it.

Therefore, my example defines four services: HTTP service for alanwin-
ston.homeip.net on port 80, HTTPS service for alanwinston.homeip.net
on port 443, HTTP service for vms.kicks-ass.net on port 81, and HTTPS
service for vms.kicks-ass.net on port 444.

The port on the first service you specify will become the port the server
listens to for administrative control messages.

If you want to allow any access via unexpected numeric-IP or unconfig-
ured host name to work, you need to do nothing, and the default (server-
wide) configuration will apply in those cases. (Remember, anybody
anywhere in the world can put your IP address in the domain name server
with a host name that implies you're in that person's domain, or with an
uncomplimentary host name. If you don't want to be a victim of this, you
may want to configure a catchall connection. The downside is that people

I Chapter 9

168 9.2 Multihosting/multihoming configuration

using the old browsers that don't use the host header will fall through to the
same configuration.) If you don't want unexpected accesses to end up at
your generally configured home page, use the [ServiceNotVounauRn]
directive.

For the default page that comes with the server, make that

[ServiceNotFoundURL]
/ / yourserver, domain, t i d / ht tpd / - / servi ceno t found, html

Incidentally, remember that just because you defined a name-based vir-
tual service in your server configuration, that's meaningless until it's defined
in the DNS, and defining a numeric-IP-based service will have no visible
effect until you've configured your IP software to respond to that address. If
you want to run different services on different systems in a cluster, you may
want to share one configuration file and define all the services on all the sys-
tems, using DNS and IP configuration to restrict which systems actually get
messages routed to them. This enables you to change the DNS if one of
your systems is down and point that traffic to another one without having
to reconfigure the server or take any downtime on the node that's picking
up the load. If you're supporting additional numeric IPs, you may have to
reboot. If you have everything map to the cluster alias IP address, then you
can share all your name-based services across the cluster.

If you're doing more than just a couple of services, it makes sense to use
the HTTPD$SERVICE.CONF file. Note that the documentation says that
the server will not use the file unless the HTTPD$SERVICE logical name
is defined to point at it. This is true, but the standard startup command
procedure will define the logical name if the file exists. Therefore, if you're
using the standard startup and have the file, you will use it. If you don't
want to use it, rename or delete it and deassign the logical. (If you do want
to use the file and are running the server from the command line for testing
purposes, you should remember to define the logical.)

The HTTPD$SERVICE.CONF definitions look like this:

[[[scheme://]servername-or-numeric-ip[:port]]]
[ServiceBodyTag] string (default: <BODY>)
[ServiceSSLclientVerifyCAfile] string (default: none)
[ServiceSSLclientVerifyRequired] string (default: none)
[ServiceErrorReportPath] string (default- none)
[ServiceIpAddress] dotted-decimal address (default: none)
[ServiceNoLog] ENABLEDIDISABLED (default: DISABLED)
[ServiceNoTrack] ENABLEDIDISABLED (default: DISABLED)
[ServiceProxy] ENABLEDIDISABLED (default" DISABLED)
[ServiceProxyAuth] nonelAUTHILOCAL (default: DISABLED)

9.2 Multihosting/multihoming configuration 169

[ServiceProxyCache] ENABLEDIDISABLED (default: DISABLED)
[ServiceProxyChain] string (default: none)
[ServiceProxyTrack] ENABLED I DISABLED (default : DISABLED)
[ServiceProxySSL] ENABLED IDISABLED (default : DISABLED)
[ServiceSSLcert] VMS file spec for certificate (default: none)
[ServiceSSLkey] VMS file spec for private key (default: none)

All elements except the actual virtual-service definition are optional. The
service scheme, name, and port number are enclosed in double square
brackets.

I've listed all the possible elements for the sake of completeness, but
most of them are discussed in detail in other chapters: the s s l c l i e n t tags
are discussed under SSL authentication in Chapter 7, the moLog and
NoTrack tags in Chapter 12, and the SSLcert and SSLkey in Chapter 6.

[ServiceBodyTag]

This is the contents of the <BODY> tag you want to have the server use in
server-generated reports and errors for this service. You can set up different
background colors and such for the pages to make them fit in with the site.
The server does no validation of the contents, so if you want you can add
some non-<BODY> stuff that will precede the contents of the page as pro-
vided by the server. If you want to go to a lot of trouble, you can edit the
HTTPDSMSG.CONF file to find the source of the pages and include
 tags with relatively specified calls to generically named items--for
example, company logos, background images, even cascading style sheets--
then adjust this parameter to set the base directory for the included img
tags, thus getting different logos or entirely different looking pages for each
service. If you don't specify this, you get a plain <BODY> tag.

[ServiceErrorReportPath]
path- to-error- report ing- SS I-doc- or- script

This does the same thing as [ErrorReportPath] in the general server
configuration (mentioned in Chapter 5). If you want to override the general
server configurations error pages, you can specify this which may be a better
idea than subverting the <BODY> tag, as mentioned previously.) You can
have a Web designer make the report page for this service fit exactly with
the rest of the site design. The path is formatted as a URL.

[ServiceIpAddress] dotted-decimal address (default: none)

Rarely necessary, but if you're running multiple numeric IP addresses
(multihomed networking), this binds the service to the specific IP address,
rather than working based on the host header.

I Chapter 9

170 9.2 Multihosting/multihoming configuration

The careful reader will by now have noticed~or remembered from
Chapter 5~ tha t the service definition doesn't include the option to specify
a document tree or any protection rules. This is handled in the
HTTPD$MAP.CONF file, described in some detail in Chapter 7.

In the HTTPD$MAP.CONF file, you can include a virtual service and
include mapping or protection rules that apply only to that service; these
can override the general server configuration. An important note: In
HTTPD$MAECONF, a virtual service specification cannot include the
scheme; by the time the mapping portion of the server is at work, it no
longer matters whether this is encrypted or unencrypted. If you include a
scheme, the mapper won't recognize the service as defined and will not
implement the mapping rules you've applied for it. For each virtual service
that needs to serve different documents, you'll need to apply a pass rule:

[[virtual-servicel]]
pass /* /unixified-path-to-doc-tree-for-service-i/*
[[virtual-service2]]
pass /* /unixified-path-to-doc-tree-for-service-2/*
[[*]] # which resets the environment to talking about

all services.

Here is an example:

[[alanwinston.homeip.net]] # this covers all ports on
this hostname

pass /* / $diskl/Web/alanwinston/*
[[vms.kicks-ass.net:81]] # covers only the non-standard

port
pass /* $diskl/vms/*
[[vms.kicks-ass.net:444]] # covers only the non-standard

HTTPS port
pass /* /$diskl/vmssecret/*
[[*]]

The example shows that if you want to provide the same content for
both HTTP and HTTPS ports, you can specify the host name without
specifying a port, and what remains will apply to both. Alternatively, you
can specify a port, and the configuration will apply only to that port. In the
example, port 81 shows the standard content from the SDISKI:[VMS]
directory, while port 444 shows an entirely different directory: the
$DISKI:[VMSSECRET] directory.

/ 0
Indexing and Searching Your Site

I O. I W h y index?

It's no good having useful information on your site if your users can't find it.
It's hard to predict how they'll look for it, but if you have a full-text index of
your pages, you won't have to guess how the users will look for information,
and they'll have the best chance to get hold of what they need.

Unless you go to some trouble to prevent it (as described in Chapter 7),
your s i t e~or at least those pages that are linked to from elsewhere~is
searchable by external search engines. But they won't do this job very effec-
tively.

There are two problems with using external search engines for this func-
tion. One is that they can't find files that they don't know are the re~ i f
items are present but not linked from pages that the search engine has seen,
they can't be seen or indexed. The other problem is that it's more user
friendly to offer a search function on your home page than to tell your users
to go off to Google for it. (If you decide to use an external search appliance,
you can offer a form on your home page that has as its action a script that
runs on the appliance in order to get this capacity without running it on
VMS.)

If your site is very small, you can, of course, implement a search function
that searches through your Web tree for either specific strings (even using
plain old DCL SEARCH) or regular expressions (using GNU grep) and
returns file names; a small DCL or Perl wrapper would let you convert
those to URLs. That's pretty easy; the problem is that it gets very slow very
quickly to read every file and look at every line, and all that disk access may
slow down your other activity. An indexer reads through all your files once,
then builds an index optimized for fast searching. This trades off time for
disk space; these index files are typically at least half as large as the files they

171

172 10.2 VMSindex and Lynx Crawl

10.2

index. However, the disk space can be on some other drive on some other
controller, so accessing it doesn't slow down your regular access; you can
even dedicate a separate server to do the indexing and the searches. Also, a
proper index-based searcher, unlike grep or $ SEARCH, can do matches
based on more than one line of a file~does the whole document contain
"X" but not "Y"?

If VMS really takes off as a Web platform, commercial indexers will be
ported to or developed for the platform. In the meantime, there are a num-
ber of freeware alternatives: VMSindex (alone or in combination with
Lynx), SWISH-E, and the newly ported ht://Dig. SWISH-E and ht://Dig
are both recent ports, not fully shaken down but still quite usable.

Search tools, CGIs, and the fine points of each would fill a book in
themselves. The aim of this chapter is to give you enough information
about each of these tools to get you started.

VMSindex and Lynx Crawl

Ohio University has contributed a toolkit it uses to the OpenVMS freeware
CD, on-line at http://www.openvms.compaq.comlfreeware/freeware501
lynx-2-8-3/osu.

This is used to index the contents of some 80 different servers. There
is a nice write-up of this at http://www.ohiou.edu/pagemasterslmemo85/
append4.html.

Download the contents of both the index and the Lynx subdirectories.
The index portion is Bruce Tanner and Foteos Macrides's VMSindex pack-
age, which does extensive indexing of text files, including HTML. The
Lynx portion is Richard Piccard's specially tweaked version of the character-
based Web browser, Lynx, version 2.8.2, which saves files from the Web in a
way that VMSindex can index much more efficiently. The directory also
contains Diff output showing the changes, so you can apply them yourself
to a more recent version of Lynx if you prefer.

The last time I looked at this, a couple of years ago, the tweaked version
was 2.7.something and the current version was 2.8.1; the newer version had
Unicode support, and many routines were much, much longer than they
had been; I gave up on trying to apply the diffs. I'm glad they've made a
more recent version available.

There are some gotchas in building these applications. Unzip the
index.zip package. (If you just do unzip without directing the output any-

10.2 VMSindex and Lynx Crawl 173

where, it'll unzip into the current directory rather than a subdirectory.)
Unzip the Lynx package (which goes into a subdirectory).

If you're running Multinet, you need to lie to the build procedure to get
Lynx to compile. Make sure the header file OCXSINETDEF.H is located
somewhere the build procedure can find it. I copied MULTI-
NET: [MULTINET_ROOT.INCLUDE.VMS] UCX$INETDEE H to
SYS$LIBRARY:, which seemed to do the trick.

Type OBUILD. COM and you'll see:

Acceptable TCP/IP agents are
[1] MULTINET (default)
[2] UCX
[3] WIN_TCP
[4] CMU_TCP
[5] SOCKETSHR_TCP
[6] TCPWARE

Agent [1,2,3,4,5,6] (RETURN = [i])

Tell it you're running UCX (whether you're running TCP/IP services,
Muhinet, or TCPware). The problem is that if you admit that you're run-
ning Muhinet, it will attempt to use a Muhinet header file that's incompat-
ible with the DECC libraries, and your compile will fail. This is not the
Lynx developer's fault; the Muhinet developers have given up trying to track
DECC-required changes and don't maintain that header file any longer, so
it just drifts further and further out of synch. It's not needed for new devel-
opment; the DECC library calls just go to the (Multinet-provided)
UCXDRIVER and all remains well. This should be enough to let you build
Lynx. (To run Lynx, minimally, you need to define Lynx_dir to point to
where the sample lynx. cfg file is.)

To build VMSindex with DECC, don't bother using MMS or
MAKE.COM. (First, MMS won't recognize .c files as .C files, so it won't try
to build anything if you're on an ODS-5 disk unless you $ RENAME *. c
*. C before running it. Second, MMS aborts the build when it gets a warn-
ing message on line 628 of build_index.C, which seems like an overreac-
tion.) Instead, just use the supplied command procedures

$ @COMPILE
$ @LINK

and you should get a working build_index.exe and query.exe. (Don't be
freaked by the 0-block DECC.OPT file, which seems to be included for
symmetry with the VAXC.OPT and GNUC.OPT files.)

I Chapter I0

174 10.2 VMSindex and Lynx Crawl

Lynx does a nice job of crawling. Based on the freeware readme, you can
do

$ CRAWL : == "$LYNX_DIR: LYNX -NOPAUSE -CRAWL -TRAVERSAL -REAIM"

$ CRAWL http: //yourserver. domain, tld

and Lynx will start from the top on your server, follow no links that lead off
the server (that's what the -REALM flag does), and create in your current
default directory a whole bunch of .DAT files with the contents of HTML
pages, modified to tag each at the top with THE_URL:url-at-which-this-
was-found and THE_TITLE:the-contents-of-the-title-tag. This is fun to
watch, because Lynx renders the pages as it's crawling them.

When I tried to use the existing index-building command procedures
from the freeware CD against these files, I ended up with a blank index. I
couldn't find any documentation in the freeware kit explaining how to
build an index based on this output. Don't waste your time trying to use
any of the provided command procedures from the freeware CD; they won't
work.

I went searching on Google and found this page at Ohio University,
which nicely explains how VMSindex works and links to example com-
mand procedures. (These were presumably not included in the freeware dis-
tribution because they were quite specific to Ohio's setup. Nonetheless, you
want them.) The URL of the page is http:l/ouvaxa.cats.ohiou.edu/vmsin-
dex/index.html. From here, I learned that the incantation to index pages in
this format is

$ index :== $[where-build-index-is]build_index.exe

$ index -

[where-the-Lynx-output-is]Ink*.dat.* -

/output=[where-you-want-the-index]indexname.idx -

/topic=(text="the_title:",exclude) -

/wordlength=40 -

/url=(text="the_url:")

If you want to prove to yourself that the documents have, in fact, been
indexed, do

$ query : == $ [where-query. exe-is]

$ query indexname

Enter query: [searchstring]

and it will show you the pages that match your search string.

To set up a regular procedure and a Web-based search for your environ-
ment, go to http:l/ouvaxa.cats.ohiou.edu/vmsindex/exampleslindex.html
and download every command procedure shown. None of them will work

10.3 SWISH-E 175

10.3

in your environment without significant modification, but what to change
and where should be pretty clear. The search CGI program provided works
for OSU; you'll either need to run it under the OSU emulation from other
servers or write your own for Apache or WASD.

Be aware that index-building with Lynx and VMSindex is not a pro-
cess that you can completely automate; you can't just write a batch script,
run it every week or month, and expect to have clear full indexes forever.
Lynx can hang or crash, so somebody has to baby-sit i t ~ o r at least check
in on it every so often while it's crawling~and diagnose problems if they
occur. Since this process creates a copy of every Web page it crawls, it can
demand a lot of disk space; you may need to crawl your site in sections
and merge the indexes later. If you do that, you need to keep on top of
your site organization, since a new section won't automatically be indexed
unless you put in a job to do it. Nonetheless, scrupulously maintained,
this can work very well, as the quick response from the Ohio University
search page shows.

SWISH-E

SWISH-E stands for Simple Web Indexing System for Humans~
Enhanced. Originally developed by Kevin Hughes, it's now under active
development by a large team, with versions for various UNIXes, Windows
flavors, OS/2, and even Amiga. The home page is http:llwww.swish-e.orgl,
and you can find the documentation and pointers to third-party scripts
there.

While the source from the SWISH-E home page includes VMS support
files, it may be easier to get the VMS package from the WASD site. This
includes precompiled binaries and some VMS-specific instructions. You can
find it at http:l/wasd.vsm.com.au/wasd/. There are AXP and VAX versions
there. You need DECC version 6 or better to compile it, but the packages
contain precompiled objects.

In addition to SWISH-E itself, the package also contains SWISHESI
(pronounced "SWISH-Easy"), Mark Daniel's CGI front end used to do
SWISH-E searches. It uses his CGI library to run under Apache, OSU,
WASD (of course), and Purveyor if you're using that.

SWISH-E can do file system searching and Web spidering and can use
external programs or filters to understand filetypes it doesn't have built in.
(Built in are HTML, XML, and plain text.) It can do all kinds of indexing,
not just Web indexing.

I Chapter 10

176 10.3 SWISH-E

Figure 10.1 The SWISHESI documentation index search page.

If you're running WASD, you can use the SWISHESI setup as supplied.
Copy the SWISH-E. EXE to HT_EXE:; rename [SWISH] into a subdirectory of
HT_ROOT : [SRC] ; copy INDEX_DOC.HTML to some directory the server
can see; and execute 0INDEX_DOC. COM, which will index the WASD docu-
mentation tree into DOC.SWISH_E and DOC.SWISH-E_PROR

Go to your browser and bring up INDEX_DOC.HTML, as shown in

Figure 10.1.

If you select the default results page, the results are as seen in Figure

10.2.

If you select the custom results page, the results are as seen in Figure

10.3.

For other servers, you'll need to put SWISHESI into HTBIN/CGIBIN,
set up a path name where it can find the index, edit INDEX_DOC.CONF
to index some other set of documents, edit INDEX_DOC.COM to find
SWISH-E.EXE in some other location, and change the ACTION items in
INDEX_DOC.HTML to refer to the location you've decided upon for the
index and results page.

10.3 SWISH-E 177

Figure 10.2 SWISHESI default page layout.

In any case, when you go to index your own documents, you'll need to
edit the appropriate configuration file (whose name is supplied as a com-
mand-line parameter to SWISH-E). To index other stuff, you need to make
different configuration files. There are fine points that you should read the
documentation for, but here are the basic things to change:

IndexFile ./doc.swish-e

That translates to doc.swish-e in your default directory when you run
SWISH-E. Put in a UNIXified file-system path if you want to put the index
somewhere else.

IndexDir /ht_root/doc/

This gives the top-level directory of which to index the documents
therein. In theory, this can be a top-level URL to spider. The spidering is
done with an external Perl script, swishspider. If you want to try spidering,
you need to use the command-line switch "-s h t tp" , and since the case of
the S matters, you need to quote the switch (e.g., "-s").

I Chapter 10

178 10.3 SWISH-E

Figure 10.3 SWISH-E custom resultspage layout.

If you can manage something as convenient as a file system path that
matches the URL path, as/ht_root/doc/does, it'll make life easier later.
Even when Web-spidering works, it's slower than local direct access.

IndexName "WASD Documents"

Any string you like, which some presentation scripts will show as the
name of the index you're creating.

IndexDescription "Example SWISH-E index of WASD

documentation"

Any string you like, which some presentation scripts will show as a
description of the index you're creating.

IndexAdmin "Mark. Daniel@wasd. vsm. com. au"

Any name or name and e-mail address, which some presentation scripts
will show as a description of the index you're creating.

IndexContents HTML .htm .html

10.4 HT://DIG 179

10.4

If your site has server-parsed HTML files, such as .HTMLX, .SHTML,
.PHP, or .JSP, you may want to add them here. This line tells SWISH-E to
use the HTML parser on files of these types.

HT:IIDIG

ht://Dig is a multiplatform suite of Web indexing programs originally
developed at San Diego State University. ht://Dig's particular claim to fame
is its ability to make various "fuzzy search" indexes, including indexing by
soundex and by synonyms. It can also index PDFs by using XPDF to do the
rendering for it. You can find samples, the FAQ, and documentation for the
UNIX version at http://www.htdig.org; the documentation is also in
[.HTDOC] once you've unpacked the kits.

Martin Vorl~inder has ported version 3.1.5 to VMS. You can find it on
his home page, http://www.pdv-systeme.de/users/martinv/. Note that even
if you download the source distribution, you need to get both the binary
and the data distributions, and unzip them all into the same tree. (With the
source distribution you can rebuild and replace the binaries, but you need
some files that are only in the binary distribution.)

Be warned that ht://Dig uses the Berkeley "database" for file storage~
necessary on UNIX where this was developed because of an absence of
native indexed file formats. On UNIX, the Berkeley DB doesn't really
understand locking and can get badly messed up if multiple updaters try to
access the same database simultaneously. Be careful when indexing not to
get your hands crossed. (Multiuser read access isn't a problem.)

To build the package you need to have a copy of the ZLIB library, which
isn't included in the ht://Dig package. You can get this from Rick Dyson's
Web site; it's included in several of the log file analysis programs (see Chapter
12). You can also get it from the info-ZIP project at http://www.info-zip.org/
pub/infozip/zlib/.

Edit SET_BUILD_ENVIRONMENT.COM to define ZLIB_DIR tO
point to a directory with ZLIB in it. To build the package, do

$ @SET_BUILD_ENVIRONMENT
$ MMS

Read the README.VMS first. The installation directions that follow
are closely based on those found there. Note that building the various
images leaves them throughout the [HTDIG-3_I_5...] tree and doesn't put

I Chapter 10

180 10.4 HT://DIG

them in the [.INSTALL_VMS...] tree, which is where the precompiled
binaries are found. To move them to the INSTALL directory, do

$ MMS INSTALL

All the files needed are in the [.INSTALL_VMS] tree. Its structure is
used in all the command procedures and configuration files, but you should
be able to make it work with a directory structure suitable to your Web
server by defining logical names appropriately.

Move the files in [.BIN] and [.COMMON] to some location and make
sure that the [.COMMON] files can be read by the account that runs
scripts for your Web server. (You don't want to serve them out, they just
need to be reachable by the HTSEARCH CGI program.) Move [.CGI-
BIN]HTSEARCH.EXE to a CGI script directory for your Web server, or
map that directory as a CGI script location.

Move the files in [.IMAGE] to some location accessible over the Web
by the URL " /htdig_image" or map that path to point to this directory.
(If you want some other name for the path, you can edit
DESCRIP.MMS_MACROS and change IMAGE_URL_PREFIX to the path
name you prefer. If you built the package before reading this paragraph,
you can edit [.CONF]HTDIG.CONF, [.SEARCH]SEARCH.HTML,
and [.COMMON]*.HTML.)

Move [.SEARCH]SEARCH.HTML to some location accessible over
the Web. This is a sample search form you can build upon. Adjust the
"/cgi-bin/htsearch" form action in that file to a path that will find
where you put HTSEARCH.EXE. Move [.CONF]HTDIG.CONF to
some convenient location and edit it. More on the configuration file is
given subsequently.

Create a [.DB] directory on a disk that has lots of free space. Edit
SETUP_HTDIG.COM to reflect the choices you've made about where to
locate files and execute it. Edit SYSTARTUP_VMS or whatever other
arrangements you have for startup to be sure it's included in system startup.
Define TMPDIR to a place that has lots of free space.

To index PDF documents, you'll need PDFTOPS.EXE from the XPDF
package (on the OpenVMS freeware CD-ROM). Define the symbol pdf-
tops as a foreign command--that is

pdftops == "$device: [directory]pdftops.exe"

Before you can start searching, you will need to create a search database.
A sample script to do this is in [.BIN]RUNDIG.COM. (This is one of the

10.4 HT://DIG 181

files that's in the binary distribution but not the source.) Martin strongly
suggests that you read the comments in RUNDIG.COM so you know
what's going on; there's actually quite a lot.

You can do an incremental index update~run through the directories
and index any new or updated documents~by editing RUNDIG.COM to
remove the "- i" option from the call to HTDIG.EXE, and set the "ah"
symbol to (or call RUNDIG with) "-a".

There are a few configuration file entries you must or should change
before doing any work of your own.

da t abas e_di r �9 /htdi g_roo t / db

UNIXified path name; if you've done the logical assignments in
SETUP_HTDIG, the default assignment will work. Note that if you do
specify a device name in the path, you need to escape any dollar signs with a
backslash, as in "/user\$diskl/db".

start_url �9 http : //www. htdig, org/

If you don't change this to your own site, you'll be indexing the ht://Dig
home site, which is probably not what you want.

limi t_urls_to �9 $ { start_url }

This defaults to the value of start_url, so that you don't go spidering off
over the entire Web. This should be read as "limit URLs followed to values
containing the following string"; if you make this blank or "http://" you can
spider the entire Web if you like. This can be multiple strings.

exclude_urls- /cgi-bin/ .cgi

Read this as "don't follow URLs containing any of the following strings."
This is typically used to keep from trying to index scripts. If you're indexing
an OSU site, you probably want/htbin/rather than/cgi-bin/; the .CGI
extension might be supplemented by .corn, .exe, and .pl. This string is
matched anywhere in the URL, so be sure to include the "." when you're
defining extensions.

maintainer : unconfigured@htdig, searchengine .maintainer

Change this to your e-mail address, or at any rate to the e-mail address
of somebody who can reasonably respond to requests from a site Webmaster
to stop spidering them at peak hours, or whatever, ht://Dig will supply this
in response to any identification requests it gets.

I Chapter 10

182 10.4 HT://DIG

The configuration file is worth reading; it has the best comments--
explaining what's going on in an unambiguous way--of any config file I've
seen recently.

Here's a quick start guide for ht://Dig on CSWS, provided by one of the
CSWS engineers.

- @HTDIG_ROOT:HTDIG_STARTUP CONFIG ! Create environment file
- @HTDIG_ROOT:HTDIG_STARTUP ! Define environment
- $ Edit HTDIG_ROOT: [CONF]HTDIG.CONF ! Configure search engine controls
- Copy HTDIG_ROOT: [SEARCH]SEARCH.HTML APACHE$COMMON: [HTDOCS] ! Search form
- Copy HTDIG_ROOT : [CGI-BIN] HTSEARCH. EXE APACHE$COMMON: [CGI-BIN] ! Search
script
- @HTDIG_ROOT: [BIN] RUNDIG
! Create database and index the site

Define aliases for on-line documentation and image directories:

Alias /htdig/ "/sys$common/htdig/documentation/"

<Directory "/sys$common/htdig/documentation">
Options Indexes MultiViews
AllowOverride None
Order allow, deny
Allow from all

</Directory>

Alias /htdig_image/ "/sys$common/htdig/image/"

<Directory "/sys$common/htdig/image">
Options Indexes MultiViews
AllowOverride None
Order allow, deny
Allow from all

</Directory>

Set file protection to W:RE on HTDIG_ROOT: [DB]* .* database files.
Start Apache and point browser at http://<server-name>/search.html.

/ /

Cache and Proxy

I1.1 Cache and proxy

Caching in general is the act of keeping things around where you can access
them faster, typically by keeping them in RAM after you've accessed them
from disk (and thus amortizing the cost of the disk I/O over multiple
accesses). For this to be a win, you need to have enough physical memory
available to do it. If you don't, any I/O wins from having the documents in
memory are more than offset by the hit from increased paging.

Caching is distributed all over the Web. The second America Online
user who looks at your home page in 15 seconds will probably receive a
copy of it from America Online's cache, not from your server. But if you're
actually getting multiple hits yourself, you want to avoid expensive disk I/O
to get the pages and images in question, so you run a cache yourself, keep-
ing the pages in memory.

In some environments it makes sense for the desktop clients to access the
wider world through a single gateway~for example, if you have only one
high-speed connection to the greater world or if your organization needs to
restrict Web access to specific outside sites. In that case, you configure a
Web proxy that will collect Web content from outside your local site on
behalf of the Web clients, cache the results locally for greater performance,
and distribute the results to local clients when they request it.

A Web proxy can also block local clients from getting at outside data, if
your organization is required to do that either as diligent stewards of tax-
payer-funded bandwidth resources or as Big-Brotheresque censors more
concerned with what employees are looking at than with how much work
they get done. If, as Webmaster, you can possibly avoid getting involved
with blocking access to certain sites because their content is deemed bad or
unprofessional, do so. If the site policy is that employees shouldn't use com-

183

184 I I.I Cache and proxy

pany resources to view porn, then the way to implement that policy is to
make viewing porn a firing offense and make sure everybody knows it. It
will not be accomplished by your trying to list the name of every porn site
and blocking it in your configuration files; there are new porn sites every
day. Even if you succeeded in blocking access to every porn site, you'd need
to block access to all anonymizing proxy servers, which clever users could
use to fetch porn on their behalf. It's a losing battle; stay out of it if you can.

Proxy servers are a big win for large ISPs; if 6,000 AOL users are trying
to look at the CNN home page, it's a lot faster if they can all fetch it from a
cache in AOEs network than if all their requests have to go round trip to
CNN, and it's easier on CNN's servers too. (But you probably would use a
dedicated proxy server for this purpose, not overloading the Web server
capability.)

Conversely, sometimes you want to serve material from a system inside
your corporate firewall to the outside world; rather than open a hole
through the firewall to that system, your existing Web server can act as a
proxy server, ferrying requests from the outside world to the inside server
and returning results. That's called (by some) "reverse proxying." In some
cases similar goals can be attained by using DECnet to run tasks on VMS
servers that can't get through the firewall and return the results to the Web
server system. DECnet isn't an option if what you're trying to do is serve
data from Windows NT servers without exposing those servers to IIS
viruses, and it might make considerable sense to front-end those with a Web
server that laughs off attempted buffer-overflow exploits.

In the case of a proxy, the content you're serving happens not to live on
your system, and you have to do an expensive fetch over the Net to get
pages, which you may then keep on disk because local disk is likely to be
faster than distant Net pages. Once you have the pages you cache them and
manage the proxy cache in pretty much the same way as content generated
on your own site, although with proxies you have some additional manage-
ment hints from the original server. (It is, however, entirely possible to
proxy and not cache the results.) Since these ideas are so closely linked, we'll
cover proxy and caching information together in this chapter.

There are some special-purpose Web proxy server boxes and some flee-
ware proxy server software. Some proxy service capability is also available in
Apache, WASD, and OSU.

I must say here that if you really need high-performance dedicated prox-
ying capacity, this is an excellent application for a cheap non-VMS box.
Why? Because, in the long term, you don't care about the data. The only

I 1.2 Cache management 185

11.2

thing on a dedicated proxy server that you'd back up would be the configu-
ration information and maybe the log files. The data are all temporary, and
are available on the Web. If you have a disk dedicated to proxy cache and
lose it, you can just put in another disk and start over; your cache will get
repopulated as requests come in. Dedicate a reasonably fast PC with a fast
Ethernet interface; throw in lots and lots of memory and some adequately
speedy disk, which comes fast, big, and cheap in IDE formats~and
remember, you don't care about the data, so IDE's not a big p rob lem~run
a CD-based version of LINUX or NetBSD (so your OS directories aren't
writeable) or use netboot; put on squid or socks; keep the configuration files
on some VMS disk served (read-only) to the cache over NFS, use SSH
when you need to connect to the box; and you're in business.

The popular freeware proxy servers don't run on VMS (although there
was an attempt to port squid in 1997, and this kind of porting has gotten
easier as the C library has gotten more UNIX-compatible, so they may
run on VMS someday). The reliability and redundancy of VMS clusters,
the security, the extreme competence of the BACKUP utility, the careful
flushing to disk of data before RMS reports that a file is closed---the
things that give you a warm, comfortable feeling about your Web server
and your database running on V M S ~ a r e not particularly helpful in a
proxy cache environment, where you want speed, which you get from
cheapness. Nonproprietary memory is pretty cheap, so you can get a ton
of it; big fast, IDE drives are cheap compared with SCSI, so you can get
more of those (and some spares to replace them). If this suggestion makes
you twitch, remind yourself again that you don't care about the data and
it's okay to lose all the data.

However, if you need light-to-medium proxy service, the VMS Web
server software can handle it.

Cache management

Here's the way the caches in Web servers work in general. The Web server
has allocated a chunk of RAM (generally at a size you've configured) for
cache. The server has to read files into memory before it pushes them out to
the client. In fact, if the system or cluster has a significant amount of mem-
ory set aside for disk caching, the server's first read of a file may put it into
VMS's disk cache, and the next time the server reads the file (within an
interval determined by how much other activity there is on your system and
how much memory is available), the OS satisfies the file read from the
cache if there is no new version of the file and the file header on disk shows

I Chapter I I

186 I 1.2 Cache management

that there have been no modifications since the version now in cache was
cached.

The Web server sticks the file into memory and puts a pointer to it in a
header structure. When a file is requested (e.g., when mapping rules have
been applied and the specific file identified), the server checks the cache to
see if that file is present, looks at the header to see how old the version in
memory is, checks the in-memory configuration structures to see how often
the server is supposed to check for new file versions (e.g., "Is the cached ver-
sion three minutes old yet?"), and, if it's outside that window, checks
whether there's a new version of the file. If there isn't, check the headers for
the file on disk to see if it's been modified since that time. If there's no new
version of the file and the file hasn't been modified, update the cached head-
ers for this file to refresh its expiration time and serve the file out of RAM.
If it has been modified, flush the old version and serve and cache the new
version with updated headers.

The issues tend to be these: How much memory is available for the
cache? Is usage distributed evenly across all the documents you serve or are
there some documents or paths in much higher demand than others? Does
your free-with-VMS (VCC, VIOC, XFC) or paid-for third-party disk cache
program do an adequate job of preventing excessive disk I/O without mak-
ing the Web server take care of it? (And, if you've got a clusterwide disk
cache, does that make it more effective than multiple instances of a Web
server, each with its own individual file cache? And is that answer different
on a Galaxy system if the file cache can be shared and put in Galactic shared
memory?) One thing that a Web server-specific cache does is save on over-
head from reading variable-record-length files with the C run-time library.
C does a poor job with those files, which are the kind typically created by
VMS editors, compared with STM-LF files. If the Web server caches the
file contents, the cost of reading the file is potentially amortized over multi-
ple accesses. If the disk cache provides it, the C RTL overhead of reading it
is repeated every time.

While OSU and WASD provide some knobs for tuning the in-memory
cache organization, odds are poor that you'll see any very substantial change
from messing with, for example, the chunk size. So there is no one-size-fits-
all answer (except for Apache; see the following subsection). To be opti-
mally effective, you'll not only need to configure cache as sensibly as you
can, you'll need to run tests in different configurations to see what the
effects actually are.

I 1.2 Cache management 187

I 1.2.1

I 1 .2 .2

A p a c h e

Apache 1.3 has no file cache as part of the core distribution. There's an
experimental mod_mmap, a memory-based cache for static pages. (In
Apache 2.0, where CSWS will eventually be, there's a mod_cache with
mod_disk_cache and mod_mem_cache modules; this is also experimental
in 2.0, and in any case there's no VMS port of 2.0 yet.) There are a lot of
promising-sounding Cache directives; these are all interpreted by
mod_proxy and have to do with proxy cache. This is probably because
modern UNIX systems do really aggressive disk/file caching, so Apache
wouldn't gain much performance benefit from doing it itself.

If your VCC/VIOC/XFC cache isn't doing enough for you and increas-
ing the amount of memory available to it doesn't help enough, perhaps
because the most popular documents are also the most frequently updated,
you can try putting your most heavily accessed Web files onto a RAM disk
so all access is at memory speeds. If that doesn't do enough for you, you can
put your VMS box behind a cache appliance.

OSU

In the default configuration, OSU maintains a file cache. Access through
the nocache port(s) bypasses the cache and goes straight to the on-disk file
system. Information on cache contents and hit rates is available via the
PRIVREQUEST command.

The main part of the cache (where the actual data are stored) is divided
into chunks of a size you can specify. There's a linked list of headers, also in
RAM, that maintain the metadata (file name, file size, expiration time) and
point to which chunk(s) the file data are stored in. Every cache entry will
take up at least one chunk; the chunk size isn't related to the on-disk record
size of the file.

The available knobs that affect the whole cache system are LIMIT (larg-
est size in bytes of a file you're willing to cache), SIZE (how many bytes of
RAM to allocate to the cache), Ir (size of a chunk in bytes), and
REFRESH (the maximum number of seconds after a file has been cached
that it can be served out without checking the on-disk structure to see
whether there's been a new version). EXCLUDE specifies a path to exclude
from caching.

I Chapter 11

188 I 1.2 Cache management

These directives go in HTTP_MMN.CONE

FILECACHE SIZE number-of-bytes

specifies how much memory to allocate for the file cache (defaults to
1,000,000 bytes).

FILECACHE LIMIT number-of-bytes

specifies the maximum size of file you're willing to cache (defaults to
48,000).

FILECACHE REFRESH minutes : seconds I seconds

specifies the number of seconds for which a document can be served from
cache without being checked against the on-disk file system. The default is
three minutes; you could specify that as 3:00 or 180. You could also specify
it as 0; this would force an on-disk check for every file access, but you'd still
get some benefit from the cache, since the actual file wouldn't be read if it
hadn't changed since the last time.

FILECACHE MAXREC number-of-bytes

shows in-memory chunk size for cache, (defaults to 4,096). It should be
roughly the average size in bytes of files you serve. The criteria for choosing
this are a lot like the criteria for choosing cluster size on a disk. The larger
the chunk size the faster things theoretically go, since there's less overhead;
however, since each cache entry consumes at least one chunk, the larger the
chunk size the fewer the things you can cache. If the average size of a served
file is significantly smaller than the chunk size, you'll waste a lot of space.
Unless you have a very unusual system where, all files to be served are the
same size (so there's no dilemma; just set the chunk size to that one file size),
you may as well take the default chunk size as a reasonable compromise.
Setting MAXREC higher than LIMIT is guaranteed to waste memory.

FILECACHE EXCLUDE template

Don't cache files matching this template. You can have multiple
instances of this directive, and all will apply. By default the
HTTP_PATHS.CONF file has a

FileCache exclude * ;

directive in it. This allows the requester to force an on-disk lookup of a
given file by putting a bare semicolon on the end of the path. This template
supports full VMS wildcarding. If you had a lot of documents that changed
very frequently and getting the most recent version was important, you
could do

I 1.2 Cache management 189

FileCache exclude */dynamic/*

and any directory tree, including userdirs, could have a [.DYNAMIC] sub-
directory, within which any file would automatically be noncached.

A related directive is FZLEEXVIRE, which sets expiration date and time
on files. This will be reflected in an expires: header when the file is served,
but the internal cache will also honor the expiration set by the directive and
go out to the file system. This lets you override the cache-wide REFRESH
setting for the particular file or path.

FILEEXPIRE template EDT
FILEEXPIRE template CDT+ I RDT+ time-offset

Template is a fully wildcardable path specification, which can get
down to a directory, a file name, a file extension, or all the files beginning
with a particular string. The second argument says which RMS attribute
of the file to base expiration upon. (Do a $ DIR/FULL of some file to see
these attributes.) "EDT" is the expiration date/time of the file as given by
RMS. (This can be set by the creating program, or inherited at creation
time from the RETENTION setting of the disk volume; see $ HELP SET
VOLUME /RETENTION for more info.)

In the second format, time-offset (specified as either a number of sec-
onds or minutes:seconds) is applied to the creation date (CDT+) or revi-
sion/modification date (RDT+) of the file to determine the expiration.

FileExpire */winston/create* CDT+59:00

would cause every file in any tree ending with/winston/whose name began
with "create" to expire 59 minutes after it was created. (Sixty minutes after
creation, OSU won't stop serving the file, but it will end up going out to
disk to check for a new version every time.)

You can get an understanding of how well your cache is doing with the
PRIVREQUEST command.

$ PRIVREQUEST control-port-# DSPCACHE port-#

will display the headers of what's currently cached, showing you paths, expi-
rations, files ize, and how many times the individual files have been served
from cache. (If hits are zero it means the file was requested, was served and
cached, and hasn't been requested since.)

$ PRIVREQUEST control-port-# STAT port-#

shows a number of statistics about the current Web server, including some
overall file cache information.

I Chapter II

190 I 1.2 Cache management

File Cache Statistics:
Hit rate: 82.8%

items: 191189 lookups, 1604/156786 hits (act/iru), 32743/56/0 misses
(new/lock/fail)

chunks: 486 used (18 dir), 486 total, 92605 alloc attempts

What this means is discussed in the following paragraphs.

Lookups are the total number of times the cache has been checked since
the last time the statistics were zeroed. The two hit counts are active and
least recently used. An active hit is counted when the lookup finds an entry
that was concurrently being read by another thread and therefore already on
the active list. The least-recently used hits are counted when the lookup
finds the item on the least-recently used list of items that are candidates for
purging if the cache runs out of memory. When this happens, the entry is
moved to the active list.

The number of misses is divided into new, lock, and fail. A "new" miss
occurs when a cache lookup doesn't find the entry because it's not in cache;
in that case a new entry is created, usually by deleting the oldest entry on
the lru list. A "lock" miss occurs when another thread has just created a
cache entry for the file and is still loading it into cache. Rather than waiting
or serving a potentially incomplete version of the file, the current thread
gets the file from disk and doesn't try to cache it. A "fail" miss would be a
"new" miss except that the thread couldn't create a new cache entry. If you
get a lot of"fail" misses, your cache may be too small.

The chunks line shows how many chunks are used in cache; the (nn dir)
says how many are being used as cache headers. (Each header takes around
300 bytes, so a 4,096-byte chunk holds 13 headers; in this example,
between 241 and 254 headers are in use.)

Finally, you can force the server to treat every current entry in the cache
as stale by using

$ PRIVREQUEST [manage-port] INVCACHE [server-port]

After receiving this command (also available through the Web-based
SERVERMAINT), the server marks all entries as expired. On the next
access, the file is checked on-disk. If the modification date hasn't changed
and there isn't a new version, the expiration date of the cache entry is
updated and the cached data are reused; if the modification times are differ-
ent, the file contents are loaded anew from disk (or from disk cache).

I 1.2 Cache management 191

I 1 .2 .3 W A S D

Cache control directives go in the HTTPD$CONFIG.CONF file. The
WASD cache, like the OSU cache, manages the cache contents in chunks of
a size you specify. It attempts to notice what cache entries are often used and
thus shouldn't be candidates to be overwritten with other files; you get to
specify what "often" is. You can specify the maximum number of cache
entries, the maximum size (in kilobytes) of the whole cache, the maximum
file size you're willing to cache, and how long cached files can be served
without checking them on-disk. As usual with WASD directives, the square
brackets are part of the syntax rather than indicating optional components.

[Cache] enabled I disabled

specifies whether or not to cache at all. Default is enabled.

[CacheHashTableEntries] number

specifies how many hash table entries (used for speedier indexed lookup
into the cache) to allocate; it should be a power of 2 to work well with the
algorithm used (and if it isn't, it will be rounded down to the smaller power
of 2--for example, anything between 513 and 1,023 will be rounded down
to 512). Default is 1,024.

[CacheEntriesMax] number

specifies how many different files can be cached at once. Default is 200. If
this limit is reached, even if the cache size limit is not reached, the cache will
not grow.

[CacheTotalKBytesMax] number

specifies the maximum amount of memory to be used by the cache, in kilo-
bytes. Default is 2,048 (two megabytes). If this limit is reached, even if the
CacheEntriesMax number has not been reached, the cache will not grow.

[CacheFileKBytesMax] number

specifies the largest file you're willing to cache, in kilobytes. Default is 64.

[CacheChunkKBytes] number

shows the chunk size for cache, in kilobytes. It defaults to 8 (16 blocks). If
your files average much smaller or much larger than 16 blocks, you could
try adjusting this number; if you cut it in half, double the size of the hash
table.

.- I Chapter II

192 I 1.2 Cache management

[CacheValidatePeriod] HH-MM- SS

shows how long a document can be cached before it has to be revalidated
against the on-disk structure. Default is 00:01:00 (one minute).

[CacheFrequentHits] number

shows the total number of hits needed to qualify a cache entry as a candi-
date for immunity against getting removed to make room for a new entry.
Default is 3. See the next directive for discussion.

[CacheFrequentPeriod] HH:MM: SS

If the server has a new file to cache and is out of room or already at the
maximum number of entries, it looks for a victim file to remove. Entries
that have been used both frequently and recently are immune. If the entry
has been served from cache at least [CacheFrectuentHits] number of
times and the most recent time was within [CacheFrequentPeriod], then
the file is considered to be frequently and recently used and will stay in
cache. (It will still be revalidated if [CacheVal ida tePer iod] has passed
since the last time it was validated.) The default is 00:02:00 (two minutes).

As mentioned in Chapter 7, you can mark a path that you want never to
be cached using the s e t directive in HTTPD$MAP.CONE

SET path-template NOCACHE

In addition, requests that contain a semicolon always go to disk for the
file, and the response is not saved in cache.

From the command line you can do some large-scale cache manage-
ment:

$ HTTPD /DO=CACHE=ON

enables caching.

$ HTTPD /DO=CACHE=OFF

disables caching.

$ HTTPD /DO=CACHE=PURGE

These capabilities are available from the Web-based administration tool
as well. The admin menu has a cache report, which can tell you how good a
job the cache is doing. Use the results from that and the suggestions in the
server documentation to see if you need to tune your cache; the most pro-
ductive thing to change is probably the number of hash table entries if you
see too many hash collisions.

I 1.3 Proxy management 193

11.3 Proxy management

In addition to proxying other servers' documents, you have considerable
influence over how other proxy servers handle yours. You can include an
expires: header, which tells the other servers when they can't safely serve
your file from cache and need to fetch a new copy; a cache-control header,
which describes in general how caches should handle the document; or for
HTTP 1.0 clients, a P r a g m a : n o c a c h e header, which tells them not to

cache it at all.

Note that browsers typically maintain their own client-side cache so that
they don't automatically go out for a new page when the user clicks on
"Back," and in some cases won't even do it when the user clicks on
"Reload." If your content changes frequently, you'll want to control this
behavior with headers. For each server, the options available for proxy-cache
management are discussed in the following subsections.

I 1.3.1 A p a c h e

Mod_proxy is first supported in CSWS 1.2. Capabilities include proxy,
reverse proxy, and proxy caching. You can get more information about
mod_proxy from the mod_proxy manual at apache.org; look it up at http://
httpd.apache.org!docs/mod!mod_proxy.html.

You can be part of a proxy chain, forwarding proxy requests to another
proxy server. You can enable or disable proxy support either serverwide or
on a virtual host-by-virtual host basis. For proxying (as distinct from reverse
proxying) you almost certainly don't want to act as a proxy server for every-
one on the entire Internet.

If you're doing forward proxy only (fetching things from the great world
for users on your internal network), use a D i r e c t o r y container directive to
lock down all proxy services to users from your domain.

<Directory proxy- *>
Order Deny, Allow
Deny from all
Allow from mydomain, tld
</Directory>

The special proxy: directory specification can be extended with the
scheme (rood_proxy supports HTTP, HTTPS, and FTP) and/or a wild-
carded host name. <Di rec to ry proxy: f t p : *> will affect only FTP prox-
ying services. <Directory p r ~ 1 7 6 affects

I Chapter II

194 I 1.3 Proxy management

proxying of H T T P requests to server.domain.tld. <Directory
p r o x y - *- * . d o m a i n , t l d > affects proxying of any requests to any server in
domain.rid.

If you're going to do reverse proxying (presenting content from servers
on the internal network to the outside world), you'll want to use one of the
foregoing variants of the D i r e c t o r y directive to allow proxy access to hosts
you're proxying from All . The variant directive will need to appear in the
H T T P D . C O N F I G file physically before the <Di r ec to ry proxy: *>,
which rules out any proxy access to any external user at all.

ProxyRequests onloff

enables general proxying (and proxy caching, if configured) if turned on.
The default is off. (This setting doesn't affect ProxyPass or proxy directives
generated by rood_rewrite.)

ProxyRemote match-URL remote-server

forwards all requests that match match-URL to the remote proxy server
specified (as a partial URL) in remote-server. (If your path through the fire-
wall depends on this other server, you want to pass everything nonlocal to
it.) The match-URL can be "*" (for all requests of any kind), a scheme
(http:, https:, ftp:), or a partial URL (http:llotherdomain.mydomain.tld/
http:/Iproxy.otherdomain.tld/.) You can use this to make it look as though
all the content available via proxy.otherdomain.tld is on your server as oth-
erdomain.mydomain.tld. Since requests are forwarded, they'll come back to
this server to get back to the user.

NoProxy pattern [pattern . . .]

"pattern" is a subnet, IP address, host name, or domain name to which the
proxy will connect directly, without using one of the forwarding proxies
specified in ProxyRemote. This is useful primarily to specify other servers on
your intranet, since a ProxyRemote on the other side of the firewall might
not be able to get back in to them. To be sure of overriding patterns matched
in ProxyRemote put NoProxy ahead of it in your configuration file.

ProxyBlock pattern [pattern . . .]

"pattern" is a URL substring, host name, or domain name; you can have as
many as you like, separated by spaces. Apache will refuse to proxy to sites
matching those patterns, whether by HTTP, FTP, or HTTPS.

I 1.3 Proxy management 195

ProxyPass path URL

makes other servers appear to be within your directory tree. Path is the por-
tion of the URL that follows the host name; URL is the other system to map
it to. ProxyPass /CNN/ ht tp : / /www.cnn.com/ will make it look as
though the whole CNN Web site is on your site in the/CNN/directory.

ProxyPassReverse path URL

Path and URL have the same meanings as in proxypass . ProxyPass-
Reverse intercepts the Location: headers produced by redirects on a
machine being proxied to and rewrites them so that what the browser
receives points at your machine. (If you're doing reverse proxy and the inter-
hal machines can't be reached from outside the firewall, a redirect to
another path on the internal machine would leave the client at a dead end,
unable to reach the machine it was redirected to. This directive fixes that
problem by mapping redirects into the apparent space of the machine that's
visible from outside.)

ProxyDomain domain

This directive specifies the default domain to which the Apache proxy
server will belong. If a request to a host without a domain name is encoun-
tered, a redirect to the same host with the configured Domain appended will
be generated. Useful only in intranet situations.

ProxyVia onloffl full Iblock

The Via: header is used to control the flow of proxy requests along a
chain of proxy servers. This directive controls the user of that header, off
(the default), does nothing special; if Via: headers are present, they're left
unchanged, on adds a Via: header line to each request and reply, specifying
the current host. f u l l does the same as on and adds the Apache server ver-
sion as a Via: comment field, b lock will strip out any Via: lines from proxy
requests and not generate any new Via: headers.

AIIowCONNECT port [port ...]

enables proxy tunneling (which lets other protocols run over HTTP). By
default, HTTPS and news ports (443 and 563) are enabled. To support Tel-
net proxying, you'd specify port 23. Note that if you have an AllowCON-
NECT directive, only the ports called out in that directive are enabled; if you
don't list the HTTPS port, you won't be able to connect to it this way.

I Chapter II

196 I 1.3 Proxy management

CacheRoot directory-spec

The presence of the CacheRoot directive is what enables proxy caching;
without it, Apache will proxy (if configured) but not cache. This directory
needs to be writeable by ApacheSWWW; it should ideally be on a disk and
controller, different from your Web server executables or your local content.
Remember that directory-specs end with the end of the directory-name, not
a slash; this could be/apacheSroot/cache but not lapacheSrootlcachel.

CacheSize number-of-kilobytes

sets the desired--rather than the maximum~space usage of the cache, in
kilobytes. Default is 5. The cache may grow bigger than this setting, but
garbage collection will be triggered to delete files until the cache shrinks
back to this size or below. Make this value no more than 80 percent of the
space available.

CacheDefaultExpire hours

If the document is fetched via a protocol that doesn't have an expires:
header (e.g., FTP), it will be assigned a cache lifetime of eacheDefaul t E x -

p i r e hours. (Default is 1.) This takes precedence over CacheMaxmxpire for
such documents.

CacheMaxExpire hours

determines the maximum number of hours you'll keep a document in cache
without fetching it again from the original server. This directive takes prece-
dence over a longer-term expires: header in the document. (Default is 24.)

CacheLastModifiedFactor factor

If the origin HTTP server did not supply an expiration date for the doc-
ument, the server will estimate one by multiplying the time since last modi-
fication by the factor you specify here. (The default is 0.1.) If that gives it
more time to live than it would be given by CacheMaxExpire, the Cache-
MaxExpire date/time takes precedence.

CacheGcInterval decimal-hours

is used to perform garbage collection on the cache every specified number
of hours. (ninety minutes would be rendered as 1.5 hours). The larger you
set CacheGcInterval, the likelier it is that cache space utilization will grow
past the CacheSize you specified.

I 1.3 Proxy management 197

I 1 . 3 . 2

CacheDirLevels number-of-levels

sets the number of subdirectories that will be used below the CacheRoot.
Default is 3. This probably has file-system performance implications, and I
suspect they are different implications depending on what file system you're
on, whether on UNIX or VMS (ODS-2 and ODS-5 or NFS-cached).

CacheDirLength number-o f-characters-per-subdirectory-name

Again, this probably has file-system performance implications, but you'll
have to experiment to see what they are. Default is 1.

CacheForceCompletion percentage

If the transfer of a document is canceled--user pushes stop button or
closes window--the file will still be cached if it was at least percentage
complete, percentage is the bare integer~no % sign; default is 90. At
100, only files that were completely delivered will be cached.

NoCache * lwordlhostldomain [wordlhostldomain] ...

The NoCache directive takes a list of words, hosts, and/or domains, sepa-
rated by spaces. HTTP and nonpassworded FTP documents from matched
words, hosts, or domains are not cached by the proxy server. "*" disables
caching completely. Partial matches are supported, so if you list "green," that
will keep you from caching anything from greenbaypackers.com, green-
peace.org, SimpleGreen.com, or any file with green in the name.

At startup mod_proxy guesses which of the parameters might be host
names and does a DNS lookup, caching the IP addresses and treating them
as nocache as well. This makes it difficult to cache stuff from one name-
based virtual host on a system and not from another.

(I have not discussed the two directives that let you adjust IP buffer size,
because one of them isn't implemented until Apache 1.3.24, which is later
than the 1.3.20 CSWS version, and because I'm not sure the VMS IP stacks
would support it anyway.)

O S U

OSU provides two different tools, both somewhat experimental, for proxying.
One is a CGI script that only does proxy (equivalent to vroxyvass in
Apache); the other is a persistent DECnet object that does the same kind of
processing. Neither one caches the result, and neither one leaves a trail in the
headers.

I Chapter I I

198 I 1.3 Proxy management

The CGI script is proxygw.c, found in the script_code directory. You
can build it (along with various other goodies) by setting default to
[OSU.SCRIPT_CODE] and then issuing

$ @BUILD_UNSUPPORTED. COM

Copy or rename proxygw.exe to [OSU.BIN], your CGI directory. Add
the following rules:

PROXYSCRIPT /HTBIN/PROXYGW/*
PROXYLOG /path- to- logf i le

to your HTTP_MAIN.CONF and give it a try. (Internet Explorer on a
PowerBook gave me three choices of proxy types for this; the one labeled
"Normal" as distinct from "Tunnel" or "Socks" was the one that worked.) If
you leave out the PROXYLOG directive, you'll log into your ACCESSLOG-
specified file.

For the full-featured proxy program, setup is a little more complicated.
You need to compile and link the proxy_server.c file found in the
[.PROXY_CODE] subdirectory. Set default to that subdirectory.

$ CC PROXY_SERVER.C /PREFIX=ALL
$ LINK PROXY_SERVER/OPT ! uses the proxy_server.opt
linker options

Copy or rename proxy_server.exe into the [.SYSTEM] directory.

Modify your HTTP_STARTURCOM so that in the part that SYSTEM
executes, you

$ DEFINE/SYSTEM/EXEC WWW_PROXY_OBJECT WWWPROXY

Edit the WWWPROXY.COM file. There's a sample in the
[PROXY_CODE] directory, but the real one is in the OSU root directory.
Define these logical names:

WWW_PROXY_ACCES S

This is a multivalued logical containing node::username pairs, which
will be authorized to connect to the proxy server. This needs at minimum to
be this_node::http_server_account. If you want to have one proxy server
accessed by multiple nodes over DECnet, you'll have to put all those values
in there.

WWW_PROXY_LOCALHOSTS

This is a multivalued (comma-separated) list of hosts that are truly local
(e.g., hosted by the same host). Include port numbers if necessary. This will

I 1.3 Proxy management 199

I 1 . 3 . 3

tell the server to serve that content directly, not go through proxy processing
for it. Defaults (in WWWPROT) to current host name.

WWW_PROXY_LOG

This is the fully specified name for the log file, including device specifi-
cation. (WWW_SYSTEM" PROXY. LOG would work.)

WWW_PROXY_LOG_LEVEL

This is the trace level for logging. Defaults to 0.

WWW_PROXY_CL I ENT_L IMI T

is the maximum number of concurrent clients allowed. Default is 52.

WWW_ P ROXY_TARGET_T I MEOUT

is the maximum number of seconds to allow for a remote transaction.
Defaults to 600 seconds (ten minutes).

Add the following Web server configuration rules to
HTTP_MAIN.CONE

PROXYSCRIPT /proxy_gateway/
EXEC /proxy_gateway/ 0:-"0=WWWPROXY"

Use HTTP_STARTUP to restart the server and you should have the
proxy gateway in place.

Either of these proxy systems runs forward or reverse. If you want to
limit proxy access to forward only, use a

HOSTPROT proxyfile, prot

to limit access to your local network. (See Chapter 7 for details.) If you
want to run reverse as well, don't protect the file.

OSU's proxy processors appear to leave the headers pretty much alone.

W A S D

As with Apache, WASD capabilities include standard proxy, reverse proxy,
and proxy caching. You can specify the directory structure of the on-disk
cache, say where it is (RAM disk, if you have lots more memory than you're
using otherwise), how much space it should be allowed to use on disk, and
when garbage collection should be triggered. WASD mapping and authori-
zation rules provide control over access to the proxy services themselves, as

I Chapter II

200 11.3 Proxy management

well as to what may be accessed via the proxy, allowing implementation of a
site policy on Web access.

Here are WASD's proxy-cache related directives.

[ProxyForwardedBy] ENABLED IDISABLED

controls the presence of a "Forwarded:" header line added to the request.
The added header line would look like "Forwarded: by http://
host.name.domain (HTTPd-WASD/n.n.n OpenVMS/AXP Digital-
TCPIP SSL)". This is disabled by default.

[ProxyHostLookupRetryCount] numeric-count

indicates how many times to retry a DNS lookup for the requested site
before giving it up. The retries come at five-second intervals; two or three
should be sufficient. Default is 0.

[ProxyReportLog] ENABLED I DISABLED

determines whether to report significant proxy-processing activities, such as
cache maintenance.

[ProxyReportCacheLog] ENABLED I DISABLED

controls reporting of proxy caching activity to the server process log.

[ProxyServing] ENABLED I DISABLED

enables or disables proxy serving on a whole-server basis, regardless of any
proxy services that might be configured.

[ProxyCacheFi leKBytesMax] file-size-in-kilobytes

indicates how big a file has to be before you're not willing to cache it; by
default, that's 64KB.

[ProxyCacheRoutineHourOfDay] hour I NONE

A routine cache purge is equivalent to garbage collection. The server
takes a sweep through the cache headers, sees which files have expired and
which haven't, and then revalidates the expired files if possible.

The parameter is the integer hour of day to run a routine cache purge.
You can leave it blank or set it to something nonnumeric in order to dis-
suade the server from doing routine purges, which makes it your responsi-
bility to schedule cache purges youself.

I 1.3 Proxy management 201

[ProxyCacheDeviceCheckMinutes] minutes

indicates how many minutes apart the server will check the amount of avail-
able space on the cache device. If space is not available, then an immediate
garbage collection pass is instituted.

[ProxyCacheDeviceDirOrg] FLAT256 164X64

specifies how the cache-device directories will be organized. FLAT2 5 6 makes
a single-level structure with as many as 256 directories below it. 6ax6a
makes a top level of 64 directories, each with as many as 64 below it.
FLAT256 was a drawback on machines prior to the ODS-2 optimization
that had a distinct knee in file-handling performance as soon as the direc-
tory got too big to cache in memory.

[ProxyCacheDeviceMaxPercent] percentage

If the cache device is this full, drastic measures are indicated. The server
will only allow this percentage in use on the cache device before a reactive
purge is scheduled. When this limit is exceeded, no more cache files are cre-
ated. Use the bare integer, no percent sign (defaults to 85).

[ProxyCacheDevicePurgePercent] percentage

indicates what percentage the server will attempt to reduce usage by when a
reactive purge is run (defaults to 1).

[ProxyCacheNoReloadSeconds] seconds

Prevents p r a g - m a : n o c a c h e reloads from actually retrieving the file
from the source host until the period expires and limits concurrent reloads
of files into cache. Thirty seconds is probably a good value.

[ProxyCachePurgeList] hours[, hours]

The argument is a comma-separated list of integers specifying the
sequence of last accessed period in hours used during proxy cache purging,
whether routine or reactive, (default: 168,48,24,8,0). This means that the
server will first trim all files with as much time in the cache as the largest
number of hours listed, and then go down to the second count if more free
space is still needed.

[ProxyCacheReloadList] hours [, hours]

A list of comma-separated integers representing the sequence of age in
hours used when determining whether a cache file's contents should be

I Chapter I I

202 11.3 Proxy management

reloaded (default: 1,2,4,8,12,24,48,96,168). This list actually demarcates a
series of ranges that determine the frequency with which a file is refetched,
or at least rechecked, from the origin, based on the file's age in cache, upon
a request. The default list would result in a file 1.5 hours old being reloaded
every hour, 3.25 hours old every 2 hours, 4-8 hours old every 4 hours, and
so on. Files not reloaded since the final integer, in this example 168, are
always reloaded.

[ProxyHostCachePurgeHours] hours

specifies the frequency (every x hours) at which the cache of host names to
IP addresses is purged.

Some proxy maintenance activities can be initiated from the command
line, either interactively or in a batch job.

$ HTTPD /PROXY=PURGE=ROUTINE

initiates a routine purge. Since hours aren't specified, this form uses the
hours from [ProxyCachePurgeList].

$ HTTPD /PROXY=PURGE=ROUTINE=I68

specifies the maximum age explicitly, overriding the [ProxyCachePurge-
List] hours. Anything older than the specified number of hours is
removed.

$ HTTPD ~PROXY=PURGE=REACTIVE=80%,168,48,24,8,0

You can initiate a "reactive" purge, which will work down through the
list of hours until the space utilization on the device is down to the specified
percentage. If you put a number with a percent sign (80%, in the example)
in the previous list, that overrides the configured percentage, and the rest of
the items are considered to be the list, overriding the [ProxyCachePurge-
List] value.

$ HTTPD /PROXY=CACHE=STATISTICS

scans to collect cache statistics. If you really want to tune your proxy cache,
you'll monitor your statistics regularly.

/ 2
Managing and Understanding
Your Server Logs

12.1

Most Web servers, including the ones under discussion here, log accesses in
a standard format. (You can generally customize how much information
gets logged, and further on I'll discuss the commands for how to do that. If
you're considering a customized log-file format, though, you'd better have a
plan for what you're going to do with it; many log-file analysis tools under-
stand only the standard formats.)

A typical log entry will have the IP address of the originator, the URL
requested, and the status returned. Counting the 200 status lines gives you a
rough indication of how many hits you had. However, each page you serve
will probably result in multiple entries in the log file~one for the actual
page and one each for any images linked in the page.

Apache and WASD offer cookie-based user-tracking features that gener-
ate a unique user ID, which you can use to track "visits" rather than hits
(this won't work if cookies aren't enabled on the browser). (Some Perl mod-
ules exist for session tracking that fall back to URL-encoded IDs if cookies
aren't enabled, but they're not core browser functionality so I won't docu-
ment them here.) In addition to access logs, your server can generate error
logs, which are useful in identifying and solving problems.

Customizing your logging

You can locate your log files where you want them. (In a high-performance
configuration you'll want to put them on a different disk and ideally on a
controller different from either your Web content or your server executa-
bles, since a heavily laden site will generate a lot of I/O in just logging activ-
ity.) You can also configure what will be included in your log files, in what
format, and how often a new log file will be created (although this turns out
to require some cleverness in OSU and Apache).

203

204 12.2 Log-file formats and locations

It's worth pointing out that the server logs are just big sequential ASCII
files. They're quite human-readable, and the formats are very portable~you
could FTP your log files to a UNIX or Windows machine for analysis, if
you wanted. You can do some primitive log-file analysis with the
DCLSEARCH command. Web server log-files get big very quickly, since,
depending on the format you choose, you might log 80 to 200 bytes worth
of data for each file you serve.

You can choose whether to log all access to the server in the same log, to
log each virtual hosts/localaddress/service separately, to log different kinds
of access (proxying, SSL) separately, and more.

12.2 Log-file fo rmats and locations

12.2.1

Two well-known log-file formats are the Common format, which lists client-
IP, user name if available (through ident), user name if available (through
HTTP authentication), time request completed, request from client,
scheme, status, and number of bytes transferred); the Combined format
(which appends Referer and User-Agent to the Common format); and, less
well known, the Common_Server format, which is Common with the host
name of the server appended to the end. (Common_Server is interesting
either when you have a lot of virtual hosts appending to the same log file and
you want to break down the requests by virtual host, or when you have mul-
tiple cluster nodes, perhaps sharing a cluster alias, appending to the same log
file and you want to determine which box serviced which requests~to find
out, among other things, if your load-balancing is working.)

Log-file analysis tools can deal happily with any one of these formats,
which are provided by most Web servers. If you want to use some other for-
mat, Apache and WASD make it easy to do so, but think carefully about
why you're doing it and how you'll interpret the files before you customize.

Apache

You can do everything (format, location, decision whether or not to log)
with the single CustomLog directive, but the LogFormat and TransferLog
directives are also available to you and may make life more convenient when
dealing with virtual hosts. (CookieLog is also available, but deprecated, so I
won't discuss it.)

You can define a format (using either LogFormat or CustomLog) and
give it a nickname by which other log directives can refer to it. If you want
the same log formats in every virtual host but different log files, use Log-

12.2 Log-file formats and locations 205

v

Table 12.1

Format to def ine the fo rma t serverwide and CustomLog to create a new log

for each host . (You can also use the L o g F o r m a t to set the defaul t format ,

w h i c h will be used by subsequen t C u s t o m L o s or T r a n s f e r L o g directives.)

A log fo rma t str ing is set o f f by doub le quotes , the con ten t s o f wh ich are

in te rp re ted no t unl ike a C- language fo rma t string. Table 12.1 (taken f rom

the Apache .o rg on- l ine docs for mod_ log_con f ig) indicates the fo rma t spec-

ifiers and their meanings . I f you're p l ann ing to use C o m m o n or C o m b i n e d

log formats , you can skip this.

Format Specifiers for Apache Logs

Element Meaning

%...a �9 Remote IP address

%...A : Local IP address

%...B : Bytes sent, excluding HTTP headers

%...b- Bytes sent, excluding HTTP headers. In CLF format (i.e., a "-"
rather than a 0 when no bytes are sent).

%...c �9 Connection status when response is completed
"X" - connection aborted before the response completed
"+" = connection may be kept alive after the response is sent
"-" = connection will be closed after the response is sent

%... { FOOBAR } e- The contents of the environment variable FOOBAR

%...f : File name

%...h : Remote host

%...H The request protocol

%... { F o o b a r } i" The contents of Foobar: header line(s) in the request sent to the
server

%...1- Remote log name (from identd, if supplied)

%...m The request method

%... { F o o b a r } n- The contents of note Foobar from another module

%... { F o o b a r } o : The contents of Foobar: header line(s) in the reply

9 6 . . . p : The canonical port of the server serving the request

%...P : The process ID of the child that serviced the request
.

%...q The query string (prepended with a ? if a query string exists, oth-
erwise an empty string)

I Chapter 12

206 12.2 Log-file formats and locations

Table 12.1 Format Specifiers for Apache Logs (continued)

Hement Meaning

%...r : First line of request

96...S l Status. For requests that got internally redirected, this is the sta-
tus of the *original* request --- %...>s for the last.

%...t : Time, in Common log format time format (standard English for-
ma0

%... { format } t: The time, in the form given by format, which should be in strf-
time(3) format (potentially localized)

%...T : The time taken to serve the request, in seconds

%...u : Remote user (from auth; may be bogus if return status [%s] is
401)

%...U: The URL path requested, not including any query string

96...V Z The canonical ServerName of the server serving the request

%...V : The server name according to the UseCanonicalName setting

In this table, the ellipses C...") in the format string are not to be taken
literally. They're either omitted entirely (so "%h %u") or can have condi-
tions for inclusion of the item (which, if not met, will replace the item with

The conditions are a comma-separated list of HTTP status codes; you
can either match a code from the list or negate the whole list with a leading
"!". For example, "%400,501 {use r - agen t} i " logs the contents of the
User-agent header on requests that produced 400 and 501 errors, while
"% ! 20 o, 304,302 { Re f e r e r } i" logs the contents of the Referer header on
requests that didn't return some normal status (so you can tell what pages
have bad links on them).

Common format looks like this:

"%h %1%u %t \"%r\" %>s %b"

Combined format looks like this (note the quotes escaped with back-
slash):

"%h %1%u %t \"%r\" %>s %b \"%{Referer}i\" \"%{User agent}i\

LogFormat format-string nickname

12.2 Log-file formats and locations 207

In this form, the LogFormat directive defines a format string and associ-
ates it with a nickname, which can be referred to by other directives. It does
not set a default format.

LogFormat format-string
LogFormat nickname

Either of these forms sets the default log format, either defining the log
format or referring to a previously defined log format by nickname.

CustomLog file format I nickname [env= [!] environment-
variable]

The CustomLog directive lets you specify the log file path relative to the
ServerRoot. (A typical value is logs/accesslog, which puts it in the logs
subdirectory; you can make a separate log file subdirectory for each virtual
host or adjust the file name per host, as you choose. Unless you're an ISP
and your clients want their very own log files to play with, you may as well
do all your logging into one log file; it makes management easier, and it's
easy enough to break the log out by host later.) Where I have "file," the
Apache documentation has "file or pipe"; Apache on UNIX can open a pipe
to another program, which can deal with the log in the manner desired.
That's not a very VMS-like thing to do.

You can log, or not, based on the value of an environment variable
(which can be virtually anything if you use SetEnvIf.) Here is an example
from the mod_log_config documentation:

SetEnvIf Request_URI \.gif$ gif-image
CustomLog gif-requests.log common env=gif-image
CustomLog nongif-requests, log common env= ! gif-image

The S e t E n v I f says that if the request matched a regular expression that
translates to "ended with .gif", set the gif-image variable to true. The first
CustomLos logs just the requests for gifs into gif-requests.log; the second
logs every request other than those into nongif-requests.log.

Trans ferLog file

This directive uses the default format established by the most recent
LosFormat directive that didn't define a nickname and logs into the file
(again relative to ServerRoot) specified. It defaults to Common format if
no format has been specified.

HostNameLookups On I Off

Must be on if you want to log host names rather than numeric-IP
addresses. (Even with it on, you'll get a certain number of numeric-IPs,

I Chapter 12

208 12.2 Log-file formats and locations

12 .2 .2

12 .2 .3

either because of DNS failures or because there is no corresponding DNS
entry for the host name.)

OSU

In OSU you can specify either Common (the default) or Combined for-
mats; no other options are available. You can include ACCESSLOG or VROXY-
LOG directives inside LOCALADDRESS blocks to get different logs for each
virtual host, either by directory or by file name.

ACCESSLOG vms-style-file-name [0,1]

You can have a serverwide access log or a different one for each localad-
dress block. The file name (e.g., www_system:accesses.log) is mandatory.
The optional number (actually a bitmask, but with only two choices it
doesn't make much difference) is the choice of format: 0 is the Common
file, 1 is the Combined file.

PROXYLOG vms-style- file-name [0,1]

This takes the same arguments as ACCESSLOG. If PROXYLOG is omitted,
proxy requests are logged to the ACCESSLOG.

DNSLookup 0nl0f f

While this parameter affects more than logging--name-driven host-
based access control is the other significant aspect--your log files will have
only numeric-IP addresses unless DNSnookup is On. If your server is very
heavily loaded, you may want to turn DNSlookup O f f tO save a little
processing effort and then postprocess your log files from the numeric-IPs
later.

WASD

WASD allows you to pick a name for the log file if you have only a server-
wide log file and don't enable periodic log-file rollover. If you have sepa-
rate logs for each service, [LogPerService] lets you specify elements
from which a log-file name can be derived, which will include the port
number unless you enable [LogPerServiceHostOnly]. If you enable
periodic logfile rollover, that will also affect the naming scheme, and only
the directory you've specified for logging is used in determining the file
name.

WASD predefines COMMON, COMMON_SERVER, and COM-
BINED log formats and also allows user-defined formats. You can specify a

12.2 Log-file formats and locations 209

Table 12.2

log format either in the configuration file with [LogFormat] or at startup

t ime with the/FORMAT= qualifier. The log-file format string will look curi-

ously familiar to people who've worked with the S FAO system services. The

string must begin with the character to use if a specified field is unavailable,

typically "-". W h a t goes in a string is either a substi tution field (begins with

"!") or a formatt ing character (begins with "V'). (See Table 12.2.)

WASD Format Strings

Element Meaning

l AR authentication realm (if any)

!AU authenticated user name (if any)

!BB bytes in body (excludes response header)

!BY bytes in response (includes header)

!CA client address

!CN client host name (or address if DNS lookup disabled)

l EM request elapsed time in milliseconds

!ES request elapsed time in fractional seconds

! ID session track ID

!ME request method

! PA request path ONLY (not query string or script)

!QS request query string (if any)

l RF referer (if any)

!RQ complete request string (including script and query string, if any)

! RS response status code

!SC script name (if any)

!SM request scheme (HTTP: or HTTPS:)

l SN server host name

! S P server port

[TC request time (Common log format)

!TG request time (GMT)

! TV request time (VMS format)

I Chapter 12

210 12.2 Log-file formats and locations

Table 12.2 WASD Format Strings (continued)

H e m e n t Meaning

l UA user agent

\0 a null character (used to define the empty field character)

\ ! insert an "!"

\ \ insert a "V'

\ n insert a new line

\ q insert a quote

\ t insert a TAB

The Common log format looks like this:

-!CN- !AU [[TC] \q!RQ\q [RS !BY

The Combined log format looks like this:

-!CN- !AU [!TC] \q!RQ\q !RS !BY \q!RF\q \qlUA\q

Here are the relevant directives"

[Logging] ENABLED]DISABLED

controls whether the server logs anything at all. Defaults to disabled.

[LogFormat] COMMON [COMMON_SERVER] COMBINED [custom-
format-string

defaults to "combined." Overridden by/FORMAT= startup qualifier. All logs
use the same format string.

[LogPerService] ENABLED] DISABLED

defaults to disabled. If enabled, a separate log file is created for each
service. Since services running on different ports are different services, port
number is included in the log-file name.

[LogNaming] NAME]ADDRESS]HOST

applies only if [LogPerService] is enabled. Directs WASD on naming the
per-service log files. NAME says to take the nodename portion of the
DNSname of the service (so for y o u r s e r v e r . y o u r d o m a i n , t l d it takes
"YOURSERVER"); this is the default. HOST takes as much of the full
DNSname as will fit in an ODS-2 style file name, possibly

12.3 Log-file rotation 21 I

YOURSERVER_YOURDOMAIN_TLD, and ADDRESS takes the
numeric-IP, so 192_168_10_0. The port number is appended to this unless

[LogPerServi c eHos tOnly]

is enabled.

[LogPerServiceHostOnly] ENABLED I DISABLED

controls whether per-service log files have port numbers in their names.
Disabled (i.e., include port numbers) by default.

[LogFile] VMS- style- logf ile-name

defaults to HT_LOGS:, a logical defined by the server startup to be the
HT_ROOT: [LOG] directory, but you can override that. If you put in a log-
file name, it may be overridden by other processing, especially log-file rota-
tion processing.

[LogFileExtend] 0-65535

indicates the number of blocks to have RMS extend the log file by when-
ever it needs to be extended. Values below 0 (the default) are treated as 0,
above 65,535 are treated as 65,535. (If 0, RMS will take the extend quan-
tity set as the default for the WASD process, if any, or systemwide.) Setting
this higher helps reduce file-system overhead, because larger extend quanti-
ties mean fewer extends but may waste disk space if set too large.

[LogExcludeHosts] host[,host...]

gives a comma-separated list of hosts not to log activities from. Useful if you
want to keep your developers from polluting your page view statistics.

[DNSLookup] ENABLE IDISABLE

must be enabled to be able to log host names rather than numeric-IP.

12.3 Log-file rotat ion

12.3.1 Apache

Be careful with the Apache log files. Multiple server processes can update
the log file, sometimes interrupting each other, so it's not safe to just rename
the existing log to something (or somewhere) else. You need to make a new
version, using

$ @sys$startup: apache$config NEW

I Chapter 12

212 12.3 Log-file rotation

12 .3 .2

12 .3 .3

(which will produce new versions of all access and errorlog files), then
rename or copy the old versions.

$ @sysSstartup: apache$config FLUSH

will flush any existing but unwritten log entries out to the existing log files.

You can set up a periodic batch job to issue the relevant command.
(There are various freeware tools resembling UNIX "cron," which will con-
veniently run jobs at periodic intervals~every hour, every day, every Mon-
day, or first Monday of the month. KRONOS is a good one on the
Freeware Tools. This is a good application for that. You don't want to spend
a lot of time debugging the code that reschedules the batch job.)

OSU

OSU successfully serializes access to its log file. You can flush and close the
current log file with

$ privrequest [command-port] NEWLOG [server-port]

This can also easily be put in a periodic batch job. (I have a "monthly
new logs" file that runs from the system account and does this, also creating
a new ACCOUNTNG.DAT and a new AUDIT.LOG.)

Then move whatever.log;-1 to wherever you want it, either through
COPY or RENAME, and if desired run a log-file analysis tool on it.

WASD

WASD will automatically create new log files for you on a daily, weekly, or
monthly basis, controlled by the [Logperiod] directive.

[LogPeriod] DAILY I weekday-name I MONTHLY

(This defaults to blank, or unused.) "Weekday-name" implies a new file
every week on Monday, Tuesday, and so on.

The log file changes on the first request after midnight of the new
period; in a weekly period, it changes on the first request after midnight of
the named day.

An automatically created file will have a name that includes the date on
which it was created, in YYYYMMDD format. The directory is taken from
the [LogFile] directory, and the file name is then made up (if the log is
serverwide) of host-name_port_yyyymmdd_ACCESS.LOG. Consequently
for a server running on VMS.KICKS-ASS.NET on port 81, the log for

12.4 Unavoidable ambiguities and user tracking 213

12.4

March 2002 would be named VMS_81_200203_ACCESS.LOG. If that
server is running multiple services with a log per service and [hogName] set
to HOST, the log for the same month would be VMS_KICKS-
ASS_NET_200203_ACCESS.LOG if [hogPerServkceHostOnly] is
enabled and VMS_KICKS_ASS_NET_81_200203_ACCESS.LOG if
[LogPerServiceHostOnly] is disabled.

Unavoidable ambiguities and user t racking

There are limits to the precision with which the server can log activity.
Some of the clients connecting to it may actually be proxy/cache servers. If
50 AOL users are looking at files from your site, you may log only one hit
from the AOL proxy server. Your server has only served the files once, but
you had 50 page views.

The desire to count actual page views has resulted in various cheesy tac-
tics, such as setting and testing cookies just to make sure the client has to
respond with something; this slows things down, and makes some users
worry about privacy. (Alternatively, you can mark all your pages with a
time-to-live of zero so the proxies won't cache them.) With these tactics,
you still can't tell who exactly is trying to talk to you, but you can get a good
idea of how many there are. These are supported in Apache and WASD,
and I detail them below.

I think it's a better idea not to use that kind of thing and just accept that
your logs may somewhat understate your actual hit count. (However, if
you're selling banner ads and the number of page views actually matters
directly in terms of income, then you might as well use the "transparent
.gif" trick. Here, in addition to the link to the vendor's server where the ads
reside, on each page with a banner you have a link to a useless but harmless
image file that's always expired; the number of hits on that should be equal
to the number of hits the banner ad vendor gets from your pages, so you
have some rough measure of the page views you're delivering to the vendor.)

Once you get into cookies, you learn that there are different formats for
them, starting with the original Netscape-defined format (which included a
two-digit year) and going on to a couple of other formats. Not all browsers
support all cookie formats. Cookies are available to hosts in a domain range
you specify; if you say it's only for your host, then the browser won't return
the cookie contents to any other system. If you're running on a cluster, you
may want to specify a wider range so that if the next request is load-bal-
anced to another system of yours, you can still identify the user. (You can't
do this on CSWS 1.2 but probably can in the next release.)

I Chapter 12

214 12.4 Unavoidable ambiguities and user tracking

12.4.1 Apache

All the cookie directives can apply serverwide within a VirtualHost con-
tainer, within a D i r e c t o r y container, or within an .htaccess file. I'll refer to
realm of applicability as the context.

CookieTracking on l off

If "on," Apache will send a user-tracking cookie for all new requests
applicable to the context. (It recognizes new requests because the old ones
return the cookie.)

CookieDomain domain

This directive was introduced in Apache 1.5.21 so is not available in
CSWS 1.2, which tracks Apache 1.3.20. It's highly likely to be available in
the next release of CSWS, so I'm including it here.

If this directive is absent, no domain is included in the cookie header
field. The domain must begin with a dot and have at least one other dot
within it. ".domain.tld" is legal, "server.domain.tld" is not, and neither is
".com". ".domain.tld" instructs the browser to return the contents of the
cookie to any host in "domain.tld".

CookieExpires time-to-live

(In CSWS 1.2 the context is serverwide or virtual host; in later releases it
should extend to directory and .htaccess files.)

This sets an expiration period how far in the future the cookie will
expire. It can be rendered either as a bare integer, in which case it's the num-
ber of seconds until expiration, or as a quoted string "[n yea r s] [n
weeks] [n days] [n hours] [n minutes] [n seconds]" where at

least one element should be present, so "10 y e a r s , 2 weeks 3 d a y s , "

"7 hours I0 minutes 3 s e c o n d s " are all legal.

If you don't specify a CookieExpires time-to-live, cookies go away as
soon as the browser exits. (If you're really tracking visits rather than trying
to find out about individuals, that's the behavior you'd prefer to have. The
same person coming back tomorrow is a new visit.)

CookieName token

If you'd like your cookie to be named something other than "Apache,"
you can specify that name here. Use normal characters; upper- and lower-
case letters, numbers, hyphen, and underscore are all legitimate.

12.4 Unavoidable ambiguities and user tracking 215

12 .4 .2

CookieStyle NetscapelCookielCookie2 I RFC21091RFC2965

This enables you to specify what style of cookie you want to use. The
default is Netscape, which is the oldest and now deprecated format. Despite
there being five styles shown, there are only two actual choices; Cookie is a
synonym for RFC 2109, the syntax that came after Netscape; Cookie2 is a
synonym for RFC 2965, which is the most current.

To actually log the cookie values, you need to either include the cookie
header value in your log files or you can use Customhog to create a separate
log file logging just the cookie activity. The field identifier to include in
another log specification is % { cookie } n,and a complete CustomLog direc-
tive for a separate log file named cookielog, logging cookie, request, and
time is as follows:

CustomLog logs/cookie_log "%{cookie}n %r %t"

W A S D

Tracking is enabled for the whole server with the [Track] directive. If you
want to disable it for a particular service, you can use the " ;no t r ack"
parameter if the service is specified in H T T P D $ C O N F I G . C O N F or the
[ServiceNoTrack] enable directive in HTTPD$SERVICE.CONE (It's
disabled by default for proxy services, but you can reenable it with
; track" " or [ServiceNoTrack] disable.)

[Track] ENABLED I DISABLED

enables or disables user-tracking cookies on a serverwide basis. Disabled by
default.

[TrackMultiSession] ENABLED I DISABLED

If tracking is enabled, this enables cookies that (probably) won't go away
when the browser shuts down. ("Probably," because some users carefully
purge their cookie files, while others carefully don't let browsers write cook-
ies out to files at all, and browsers are permitted to abandon cookies if they
run out of disk space. So you can't count on finding these cookies again.)

[TrackDomain] domain

The domain must begin with a dot and have at least one other dot
within it. ".domain.tld" is legal, " " " ""' server.ctomam.tm is not, and neither is
".com". ".domain.tld" instructs the browser to return the contents of the
cookie to any host in "domain.tld". If you leave this out, only your server
can see the contents of this cookie.

I Chapter 12

216 12.5 Error logs

12.5 Error logs

The two things you want to do with error logs are to specify where to put
them and to tell the server how much detail to go into. (When you don't
have a problem, you don't want too much detail. These things get huge
really fast, especially at debug levels, where you may get a line in the log for
every comparison of a request with a mapping rule, resulting in hundreds of
lines for every request.)

12.5.1 Apache

ErrorLog file-path

You can have a separate error log for each virtual host or one for the
whole server. If the file path begins with a slash, then it's an absolute path so
you can do /otherdevice/logs/logfilename, and if it doesn't begin
with a slash, it's relative to S e r v e r R o o t SO you can do l o g s / e r r o r , l o g if
you prefer.

(UNIX allows reporting to syslog or opening a pipe to another process,
but since there is no VMS syslog and not many ported programs that expect
to read a pipe and write an error log, I'm not detailing that here.)

LogLevel emerg I alert I crit I error I warn I notice I
info I debug

This can be set for the whole server or by virtual host. The default is
"warn"; and the recommended level is at least "c r i t " . The options are
listed in decreasing order of significance; "emerg" is emergency, " c r i t " is
critical. Each lower level incorporates all the notices that would be seen in
the higher level, so crit includes emerg and alert. "debug" will give you
very large log files.

12.5.2 OSU

The name of the server error log is one of the startup parameters for the
server. (In Chapter 5, I show how to set it to HTTP_ERRORS.LOG.) This
is only serverwide, not settable by localaddress.

The level of detail for the error/trace log is a numeric parameter; the ini-
tial level can be set into the configuration files and dynamically adjusted
with the PRIWEQUEST program. You can specify a trace-log file separately
from the error log by editing the configuration file; you can't specify it in
the SERVERMAINT Web-based administrator.

12.5 Error logs 217

12.5.3

TRACELEVEL level [tracelogfile]

The trace-log file is optional, and if it is omitted, logging will go into the
error log file as defined at startup. Level is a positive integer. Higher num-
bers will include the trace information shown by lower numbers. Zero (the
default) will show only errors; 1 shows connection open and close; 6 shows
script execution; and 11 shows the rule file translation steps, which will very
quickly get you a large trace file. (Eleven is the highest number I've ever had
call to use, but a quick trawl through the source code shows that the highest
number referenced is 19, so if you want to see every possible trace message,
use a level of 19 or higher.)

To dynamically change the trace level without stopping the server, use

$ PRIVREQUEST [manage-port] NEWTRACE/level [port]

This will create a new trace log if you've specified a trace log, or a new
error log, flushing any buffered errors or traces before closing the old log.

While you can $TYVE or $EDIT the active error log, you may not see
anything interesting for a while; for performance reasons, OSU is pretty
lazy about updating the log. If you're trying to solve a particular problem
with a high trace level, let it run for a time while you try the request, then
issue another NEWTRACE command with a lower level so you can exam-
ine the trace.

W A S D

WASD does not have a distinct error log file. It reports run-time and other
selected errors directly into its process log, and can log significant items to
O P C O M and the OPERATOR.LOG file. The WATCH utility (available
from the Web-based Admin component or from the command line) takes
care of the needs of tracing requests for debugging purposes. The relevant
directives for OPCOM logging follow.

[OpcomTarget] NONE I messageclass

indicates the VMS message class for any O P C O M messages, which is one
of: "CARDS," "CENTRAL, CLUSTER, DEVICE, DISKS, NET-
WORK, PRINT, SECURITY, T A P E S , " or "OPERI" through
"OPER12."

[OpcomAdmin] DISABLED I ENABLED

If enabled, this sets up O P C O M logging of ADMIN utility actions.

I Chapter 12

218 12.6 Tools to interpret your logs

[OpcomAuthorization] DISABLED I ENABLED

If enabled, this sets up OPCOM logging of HTTP authorization fail-
ures and logouts.

[OpcomControl] DISABLED I ENABLED

If enabled, this sets up O P C O M logging of command-line
(H T T P D / D O -) activity; it also reports if an insufficiently privileged
account runs the image.

[OpcomProxyMaint] DISABLED [ENABLED

If enabled, this reports proxy cache maintenance activities.

[OpcomHTTPd] DISABLED I ENABLED

When enabled, this reports significant server events, such as startup and
shutdown.

12.6 Tools to interpret your logs

Before you get all excited about the information you're going to be able to
pull out of your logs, go to your browser and read the text posted at http://
www.goldmark.org/netrants/Webstats/.

(It's an excellent rant from 1995 about why Web usage statistics are com-
pletely meaningless. A bit hyperbolic, but worth knowing about.) Similarly,
the ANALOG site has the page http://www.analog.cxJdocs/Webworks.html,
which explains how the way the Web works defeats any attempt to gain abso-
lute knowledge from your Web log.

12.6.1 LogResolve
ftp: //www-pi. physics, uiowa, edu/-dyson/Webalizer/logresolve, c

LogResolve is a tool that reads log files (or standard input, or whatever)
and copies them to its output with numeric-IP addresses converted into
fully qualified domain names. If you have DNS lookups turned off in your
Web server, you may want to do this before you analyze your log files.

Actually, even with DNS lookups enabled, you'll get some percentage of
numeric-IP addresses in your log file. If, at the time you happened to do
your lookup, the relevant DNS which is often the one at the client's site,
since it's likelier to be authoritative for the client's domain than yours i s ~
was busy, down, or otherwise unavailable, your Web server didn't wait

12.6 Tools to interpret your logs 219

12.6.2

around until the DNS was up to serve and log the request. LogResolve can
probably fix those, unless the DNS at those sites is coincidentally down
when you run it. It can't do much about nodes that were never in the DNS
at all, which do, definitely, exist, and running it ex post facto won't tell you
with 100 percent certainty what the DNS would have said at the time of
the transaction. If the node that looked you up is gone and something else
is using the numeric-IP, you'll get the new value, not the old. None of this,
actually, should be that big a deal. Just don't have a heart attack if there are
entries LogResolve doesn't resolve.

Log-file analyzers

Log-file analysis tools help a lot in pulling comprehensible information
from huge log files. They'll answer questions such as "How many unique
visitors did I have?" and "What are my most popular pages?" and "Where
is my traffic coming from?" (by showing top referrers), and they'll pull out
hits that came via search engines; some will show you what search strings
people were using to find you. Some of them will notice multiple hits
from a particular visitor within a time range (a half hour, usually) and
count it all as part of a single visit. They'll all show you nice usage graphs,
usually broken down by hour, day, week, and month. Most can run either
as CGIs or from the command line. Some can read gzipped (compressed)
log files.

Some will keep a record of summary data, usually broken down by
month, so that you can feed them log files with partial months or broken
down on an irregular schedule (e.g., if you create a new one only when you
notice the old one is too big), or if you have to roll them over daily but want
only weekly or monthly statistics.

Rick Dyson maintains readily installable VMS versions of three popular
log-file analyzers: ANALOG, Webalizer, and WUSAGE. They rely on pub-
lic-domain libraries for GIF, PNG, and JPG drawing and for compression,
so he keeps those libraries up on VMS as well. If you download the com-
plete kit for any of these three, you'll get another copy of those libraries, so
you might want to keep only one set of libraries after you've built all the
tools you want to use. The libraries are very handy; you may well want
them for Perl, Python, and PHP extensions.

Here's a hint for using any of these packages. If you unpack the zip file
onto an ODS-5 disk, you may get all lowercase file names. This shouldn't
be a problem~ODS-5 is a case-insensitive case-preserving file system~but

I Chapter 12

220 12.6 Tools to interpret your logs

12.6.3

it turns out that it is. MMS, at least in the version on my test machine,
co�9)~ c c . C)~ doesn't recognize a c file as being a file, and it refuses to build these

kits. I eventually did

$ RENAME [...]*.c *.C

at the top of the directory I'd unpacked the tools into, and I was then able
to build it with no trouble.

A N A L O G

http : //www-pi. physics, uiowa, edu/-dyson/analog/

The program, written by Stephen Turner, has a home page at www. ana-
log. c x . It is frequently updated, runs on many platforms, is very popular,
and supports many different languages through language files. It can ana-
lyze the log file on the fly. (I just tried it on a DS20E, and it took about 90
seconds to process a 77-MB log file--a month's worth, logging over
400,000 requests.) At www.repor tmasic .ors there's a program that can
work with ANALOG output and make very pretty results from it. You need
MMS (or MMK) and a fairly current DEC/Compaq C compiler.

OSU comes with a nice DCL script to run ANALOG for you. Unfortu-
nately, it works properly only with a very old version of ANALOG and will
need rewriting if you want to use it against a current version.

Download the analog.zip file from the URL. I find Mozilla doesn't know
how to deal with the FTP URL that gets to the actual zip file; it doesn't rec-
ognize the FTP server and can't figure out what commands to issue. The
URL given is a page describing ANALOG. I used WGET to fetch the zip
file. Unpack the ZIP file, and you get a directory tree under the current one,
named ANALOG_5-22 (or whatever the version is). If you're on an ODS-5
disk, fix the case problem as described.

$ SET DEFAULT [. ANALOG-5-22. SRC]
$ @BUILD_VMS

This'll crank away for a fairly long time--it's building the graphics
library as well as the program--and eventually report success. The compiled
program is ANALOG.EXE.

ANALOG analyzes the log file you feed it, rather than doing incremen-
tal analysis. It can produce reports in any number of languages and very
finely detailed reports as well. Although the program itself operates in batch
mode (it reads a log file and produces HTML output), it comes with an
HTML form and a Perl CGI program that will run ANALOG for you to

12.6 Tools to interpret your logs 221

produce reports on demand. You can also simply run a batch job whenever
you roll over your log files and have the output placed in a Web-accessible
directory or mailed to you.

Edit the configuration file, analog.cfg. Make at least the following
changes:

LOGFILE logfile.log

Change logfile.log to a UNIXified path to your log file (e.g.,/disk/direc-
tory/access.log) or leave it like this if your default is set to the directory your
log file is in and the file is named logfile.log. For best results don't try to run
ANALOG on the log file that's currently being updated.

LANGFILE /path-to- langfile

If you don't specify this, it defaults to UK, which would be okay except
that there's apparently something funky in the subdirectory translation and
ANALOG fails to open [ANALOG.ANALOG-5_22]Iang/uk.lng and dies
horribly. Specify a full path, not a partial one (e.g., "/dkbO/analoglanalog-
5_22/lang/us.lng").

DOMAINSFILE /path-to-domainfile

Similarly, ANALOG fails to open the default (lang/ukdom.tab) domain
file. I made this "/dkb0/analog/analog-5_22/lang/usdom.tab." These
errors occurred on an ODS-5 disk, and it might be different on an ODS-2
disk.

HOSTNAME " [my organization] "

Replace the contents of the quoted string with the name you want to
have show up on the reports (e.g., "Alan's VMS Web server").

Remove or comment out the following line

UNCOMPRESS *.gz,*.Z "gzip -cd"

(Otherwise, ANALOG, which has been built without pipe support, will
complain about not recognizing the UNCOMPRESS command.
UNCOMPRESS works by opening a pipe to the UNCOMPRESS com-
mand, feeding it the compressed log file, and receiving the uncompressed
form through the pipe. It's possible that you could build ANALOG with
pipe support by going into BUILD_ANALOG.COM and defining PIPES
as part of the CFLAGS definition. I haven't tried that. If it were going to
work, you'd probably want to make the extension "*.*-gz", which is what
the version of gzip that I got from the freeware CD names the compressed
files it creates.)

I Chapter 12

222 12.6 Tools to interpret your logs

PAGEINCLUDE filename, type

If you want filetypes to be counted in page views, you need a P A G E I N -

eLUDE statement for each filetype. It comes with PAGEINCLUDE * . shtml

present but commented out; I'd recommend adding or uncommenting:

PAGEINCLUDE *. shtml

PAGEINCLUDE * .htmlx

PAGEINCLUDE * .pl

PAGEINCLUDE * .php

PAGEINCLUDE *. cgi

PAGEINCLUDE *. com

and also adding

TYPEALIAS .htmlx " .htmlx [Server-parsed HTML] "

so that if you have .htmlx files, they'll be presented in the correct part of the
graph.

You can uncomment

#OUTFILE Report. html

and get the output created in your default directory, or use a UNIXified
path name to put the report where you want it. (ANALOG processed the
same file that took AWSTATS three hours in under a minute.) If you prefer
to run ANALOG in a batch mode, you're now all set. Have your batch job

Figure 12.1 ANALOG Ssummary report.

12.6 Tools to interpret your logs 223

mail you the file, or place it in a directory accessible to the Web server; the
DCL wrapper can rename it to the month and year log file.

The following page explains in detail what the charts and reports mean:
http://www.analog.cx/docs/reports.html.

Figure 12.1 shows the summary report, and Figure 12.2 shows the daily
report with images enabled for the bar charts.

You can make ANALOG emit material suitable for import into a
spreadsheet by using the line

OUTPUT COMPUTER

and set the field separator command with

COMPSEP separator-character

(Typical separator characters are comma for CSV files and "\ t" for tab-
separated files, which Excel seems to like.)

Figure 12.2 ANALOG Daily Report.

I Chapter 12

224 12.6 Tools to interpret your logs

ANALOG can do incremental processing using cache files, which have a
number of confusing features. Read http://www.analog.cx/docs/cache.html
if you want to learn about cache files.

ANALOG should not be run directly as a CGI program; the distribu-
tion provides a Perl wrapper, which makes sure that it's passed no dangerous
options. There's also a sample HTML form for selecting options. To run it
you need to edit the Perl program and tell it where it can find ANALOG;
it's going to open a pipe to it. The program is anlgform.pl. But there's noth-
ing magic about Perl; you could examine the analog.com program that
comes with OSU and tweak it to make it work with a modern ANALOG
version. Figure 12.3 shows the OSU ANALOG menu.

The easiest way to edit the OSU program is to delete the configuration
file included in the program and replace it with the contents of the configu-

Figure 12.3 O S U A N A L O G menu.

12.6 Tools to interpret your logs 225

ration file you used to get it running in batch_mode. Change OUTPUT to
NET_LINK: (for OSU, and for the OSU-compatible scripting in CSWS
and WASD). If you want graphics, you need to put the provided bar-chart
graphics in a Web-available directory and tell ANALOG where they are
using IMAGEDIR. If you want ANALOG to make pie charts for you when
the output is a nondisk device, you need to give it

CHARTDIR /URL-path- to-chart-directory/
LOCALCHARTDIR / file-system-path-to-chart-directory/

Remember to set LOCALCHARTDIR SO that the Web server can read and
write to it, and map the CHARTDIR path. (The charts will be in PNG for-
mat, so look at them with a PNG-capable browser. Alternatively, add
JPEGCHARTS ON tO get JPEGs instead.) Figure 12.4 shows what the pie
charts look like.

Figure 12.4 ANALOG Operating System Report with pie chart.

I Chapter 12

226 12.6 Tools to interpret your logs

12.6 .4 AWStats

http : / / awstats, sourceforge, net

AWStats (Advanced Web Statistics) is a large Perl program for reading
log format files and producing interesting and useful charts and info. It
handles Combined, Common, IIS, and Webstar formats and lets you define
your own as well. I collected the gzipped tar archive, awstats-4_0.tgz, from
sourceforge. I presume you've already gotten the gzip/gunzip and VMS tar
tools from the freeware CD; they're pretty handy.

$ gunzip awstats-4_0.tgz
$ vmstar /extract awstats-4_0.tar /verbose

This creates a directory tree below the current level including all the
scripts and icons needed. It's okay to set protection w:re on the entire t r ee~
there's nothing very secret in there.

I'll describe a configuration that's not the default but works fine and
doesn't clutter up your htbin/cgi-bin directory. (The program was not writ-
ten with VMS in mind at all, but Perl is handily portable.)

The author was thinking of having you copy a whole bunch of stuff--all
the icons, a whole subdirectory full of browser information, robot signatures,
and so on into your Web server tree. That's ugly and makes for maintenance
problems when you upgrade your Web server. Instead, map the icons direc-
tory of the AWStats tree into/awstatsicons/(or some other value that you
can specify in the AWStats file). For OSU or WASD, that looks like

map /awstatsicons/* dkb0- [awstats.awstats-4_0.wwwroot. icon]

You can have either a separate configuration file for each virtualhost/
localaddress/service, which you certainly want if you're logging separately
for each one, or a single configuration file. I'll show how a single configura-
tion file works. (The virtualhost config file name is awstats.virtualhost-
name.conf with the periods. You can do this on an ODS-5 volume, if you
want.) The vanilla config file name is awstats.conf. (You'll need either to
put it in the same directory awstats.pl lives in, or edit the program so that it
looks somewhere else, or do something clever with logical names to make
/etc/opt/awstats,/etc/awstats, or plain/etc exist, since those are the only
other places AWStats will look for it.) In any case you have to specify the
statistics file name on the command line for AWStats.

Edit awstats.model_conf into awstats.conf, making these changes:

LogFile="/UNIXified path to log file"

12.6 Tools to interpret your logs 227

Examples:

CSWS: LogFile="/apache\$specific/logs/access_log. "

OSU: LogFile="/www_root/OOOOOO/access.log"
WASD. LogFile="/ht_logs/access. log"

The CSWS example looks so odd because the file name is going into a
Perl program, and when Perl encounters a dollar sign, under some condi-
tions it will attempt to interpret what follows as a variable name. Therefore,
we have a backslash in front of the $ to "escape" it. Remember this trick, if
you do much Perl programming this will come up a lot. (AWStats supports
interpolating time elements into log-file names; read the comments in the

config file for details.)

DNSLookup= 1

This is set at zero by default; use this if you want it to resolve numeric-IP
addresses in the log files. LogResolve might be faster.

DirData=". "

This indicates where to store the data files it uses for incremental log
analysis. This is set to /var/cache/awstats by default, which, of course,
doesn't exist unless you want to define var as a rooted logical name pointing
somewhere and create a cache subdirectory to it. A "." (quotes are needed)
says put it in the same directory the file is in; if you prefer, create a subdirec-
tory and use a relative path to it.

DirCGI="/Web server-path-to-this-directory"

This comes as "/cgi-bin," but that only works if you're in the Web
server's own CGI directory. Use whatever directory name you mapped,
(e.g., "/awstatbin").

DirIcons="/Web server-path-to-icon-directory"

This shows whatever you decided to alias the icons file to, such as
"/awstaticon."

SiteDomain=" server, domain, tld"

Leaving this blank is okay too. AWStats uses it to generate links in URLs
in the report.

HostAliases="server.domain.tld 127.0.0.I localhost"

This is a blank-separated list of other names the server might be called.
It's used in order to be able to recognize referrer names that are actually this
same server.

I Chapter 12

228 12.6 Tools to interpret your logs

A11 owToUpda teSta t s FromBrows er = 0

1 = yes, 0 = no. The update job may take a very long time, allowing the
browser to time out. You're better off doing updates from a regular batch
job. If you want to update from the browser, note that the DirData direc-
tory needs to be writeable by the Web server account (apache$www,
http_server, httpSserver), and if you change your mind and do this later,
you need to make the existing data files writeable.

S aveDa t abas eF i i esWi thPermi s s i onsF o rEveryone = 1

This will store the database files world readable, allowing the Web server
to get at them without your going through any special ACL setup. If you
don't want them world readable, create an Access Control List, allow the
Web server appropriate access, and set this value to 0.

You can go through the other items in the optional section of the config-
uration file and set them for yourself; they're described in the config file. For
example, there's a value called Notvager.ist , which is a space-separated list
of filetypes not to count as page views; by default that's "css js class gif jpg
jpeg png bmp," but you might want to add more. The parameters I've listed
are the mandatory ones to get this running.

AWStats would like to run with taint detection and suppression. (This is
a Perl-specific thing that notices when the program is doing particular kinds
of operations on data that could be hazardous because the data came from
outside the program and haven't been laundered.) This is a good thing, but
it complicates your life a little bit. AWSTATS.PL has a -T flag on the first
line of the program. This means that it will refuse to run unless you invoke
Perl with the same "-T" flag. (The flag has to be in literal double quotes
because the C run time will otherwise automatically lowercase it, and Perl
doesn't recognize a -t flag.) However, it may not work with the "-T" flag
either. You can~and this is, I should admit here, bad advice~edit
AWSTATS.PL and remove the -T flag from the first line of the code.

Now you should be able to run AWStats. Here's the command line
(which will create the database files, which are confusingly named with the
.TMP extension. They need to be permanent.) You can override the log file
specified in the configuration file with -logfile file name.

$ perl awstats.pl -config=awstats.conf -update

Be aware that this can be really slow, which is why you don't want to do
the update run from the browser. It took about three hours to process a 77-
MB file on my 533-MHz EV56 Alpha.

12.6 Tools to interpret your logs 229

If you're getting your historical data into the databases, make sure you
run it on old log files in chronological order. The database files remember
where they left off, and you can't go backward.

To get AWStats running as a CGI program, you'll need to write a DCL
wrapper that lives in your standard CGI-BIN directory. (This is because
AWStats insists on command-line variables such as the config file name. That
means you can't readily run it in a higher-performance persistent Perl environ-
ment such as mod-perl, Webperl, or PERLrte.) The DCL can do the appro-
priate setup (discussed in general in Chapter 14), then $ SET DEFAULT to
the AWStats directory and invoke Perl with the right command-line argu-
ments.

Figure 12.5 shows AWStats running as a CGI on a UNIX system.

You'll have to do quite a bit of work to get AWStats running properly as
a CGI on your VMS system. It does nicer graphs than ANALOG, but I'm

Figure 12.5 AWStats.

I Chapter 12

230 12.6 Tools to interpret your logs

12.6 .5

not sure you'll find it worth it, at least until the AWStats package works
right out of the box.

W e b a l i z e r

http : //www-pi. physics, uiowa, edu/-dyson/Webalizer /

The Webalizer is a log-file analysis program designed to be run in batch
mode or from the UNIX command line. It creates HTML pages and graph-
ics for charts. It can retain a summarized history file or do incremental
processing on large log files. You'll get a big zip file; unzip it, and you'll get
several libraries (lib-gd, lib-jpeg, etc.) and a Webalizer directory.

In the directory you unpacked everything into, do

$ I,~s

to build the version that uses .PNGs, and

$ MMS jpeg

to build the version that uses JPEGs instead. The images are, respectively,
WEBALIZER-PNG.EXE and WEBALIZER.EXE.

In the directory named after the version (currently [.WEBALIZER-
2_01-09]), you'll find sample.conE You should read all the readmes, but just
to get a quick start, copy sample.conf to Webalizer.conf and then edit Webal-
izer.cons You'll need to uncomment and change at least these settings.

LogFile /var/lib/httpd/logs/access_log

Replace the path to the log file with an appropriate UNIXified path to
your log file.

LogType c l f

Actually, just uncomment this. CLF is an abbreviation for the Common
Log Format.

OutputDir /var/lib/httpd/htdocs/usage

This gives a UNIXified file-system path to a directory that your Web
server can see and read. (I just made this /dkb0/Webalizer , which was the
top level of the directory tree Webalizer was in, and mapped the directory.)

His toryName Webal i zer. hist

If you want to build Webalizer summary history files, you specify the
path here. If it's just a bare file name, it goes into the OutputDir.

12.6 Tools to interpret your logs 231

Hgure 12.6 Webalizer's index, html.

Hos tName localhos t

Change this to the host name you want to show on the report. If you
don't specify anything, Webalizer will do reverse DNS lookups and may not
come up with the answer you want.

PageType extension

If you w a n t t o make sure your view of pages agrees with Webalizer, add
as many VageTypes as you need to cover the kinds of files you think
count--shtml, htmlx, php*, pl, for example.

At this point, you can just $ RUN W~BALIZ~.R and it will populate the
OutputDir. Look at it with a browser. Figure 12.6 shows the generated
index.html--I fed it only a January log file, so usage spikes in January.
The summary line nicely shows the difference between computed page
views and total hits. Figure 12.7 shows the 3-D graph summarizing the
daily statistics.

I Chapter 12

232 12.6 Tools to interpret your logs

Figure 12.7

12 .6 .6

Webalizer's 3-D graph of daily statistics.

W U S A G E

http: //www-pi .physics. uiowa, edu/WUSAGE-3_2-VMS. ZIP

Download the zip file from this URL. If you put it in
$DISKI:[WUSAGE] and unpack it, you'll get [WUSAGE.WUSAGE-3_2A-
VMS], so set the default there. (Alternatively, you can rename the lower-level
directory to a higher level.)

To build with DEC/Compaq C, run

$ @MAKE_VMS

or with VAX C, run

$ OMAKE_VMS VAXC

or with GNU C (although I couldn't test this), run

12.6 Tools to interpret your logs 233

$ MAKE_VMS GNUC

WUSAGE is a pretty old program and the most recent format it recog-
nizes is the Common format. Run it in batch to prepare static HTML
pages summarizing weekly usage. It will incorporate prefix and suffix files
you specify to make the pages fit in with the standard look of your site, and
it will place them in the directory you specify. It will also need to know
how that directory is mapped to the Web server, since the pages will refer
to image files (pie charts) that it creates and will need to know what URLs
to precede them with. All this information is determined in the configura-
tion file; if you want to do different servers, create different configuration
files.

Edit wusage.conf, find the lines identified with the comments, and
make the appropriate changes. Don't introduce any blank lines in your
editing.

#Name of your Server as it should be presented

IowaSP

(Change I owaSP to your server, cluster, or institution name as you want
it to show on the Web pages.)

#File to use as a prefix; MUST BE A COMPLETE FILE SYSTEM PATH.

#REALLY. NOT A URL.
/disk$www/www/wusage/prefix. html

That's a UNIXified file-system path; I used /wusagedisk/wusage/

wusage-3 2 vms/prefix.html.

#File to use as a suffix; MUST BE A COMPLETE FILE SYSTEM PATH. REALLY.
#NOT A URL.
/ disk$www/www/wusage / suf fix. html.

That's another UNIXified file system path. I used /wusagedisk/
wusage/wusage-3 2 VMS/suffix.html

#Directory where html pages generated by usage program should be located
/ disk$www/www/wusage

That's another UNIXified file-system path; the directory needs to be
mapped into the space the Web server can see, but this is the file system not
the URL. I used/wusagedisk/wusage.

#URL to which locations of html pages should be appended for usage reports
#(the same as the first line, but in Web space, not filesystem space)
/wusage

I Chapter 12

234 12.6 Tools to interpret your logs

This is whatever you decide to map in the Web server; it doesn't need to
have wusage in the name anywhere if you don't want it to.

#Path of httpd log file
/ diskSwww/Web / 1 ogs / access. 1 og

That's a UNIXified file-system path; for OSU it could be/www_root/
access.log. However, WUSAGE won't read a log currently being updated, so
you might want to put this in some other directory. It doesn't understand
logs named by date, so this value is fixed unless you want to create an
enclosing command procedure that defines the name specified in the con-
figuration file to point somewhere else.

#Default domain (for named sites with no domain; should be
#our own domain)
#Top-level domain only (i.e., org not cshl.org)
edu

(Make this your own top-level domain.)

#Directories/items that should never register in the top ten
#To inhibit everything on a path, use /path*
{
}

The values here are URL paths, not file-system indicators, and wild-
cards are supported.

#items that should never register at *all*, even
#for the total access count
{
/gifs/
*/bckgrds / *
* / icons / *
*/usage_graph_small. gif
*/usage_graph. gi f
}

Again, these are URL paths. If you want to count only page views, you're
limited to figuring out what pages are (shtml, htmlx, html, htm, php, asp,
.pl, cgi) and defining everything else in between the curly braces, one item
per line. Suggested values would be

{
* .gif

* . jPg
*. jpeg
*.png
* .css
)

12.6 Tools to interpret your logs 235

plus anything else on your site that you never want to count.

#Sites that should never register in the usage statistics
{
localhost
}

You might also include the host names of the workstations used by your
Web developers and your Webmaster, if you want to avoid statistics pol-
luted by the upload-view-tweak-upload cycle of development. Check your
log files to see what the host names actually look like.

When you run WUSAGE, it will create a page for the statistics of every
week with an entry in the log file and every week since then, so if you run it
on old log files, you'll get a bunch of pages that show zero activity. See Fig-
ure 12.8 for a sample weekly page with pie chart.

Figure 12.8 WUSAGE's weekly page.

I Chapter 12

236 12.6 Tools to interpret your logs

Figure 12.9 WUSA GE's index, html.

It also creates an Index.html, which lists each of the weekly pages it cre-
ated. See Figure 12.9 for the Index.html page. The simplest mode, if you
turn your log files over monthly, is probably to run WUSAGE immediately
after rolling over the log file and just keep the statistics for that month
online.

Arranging cumulative log file usage reports takes some cleverness, and
you'll probably have to rename a bunch of the weekly pages and edit the
index.html every time. This is a simple tool for reporting all the weeks in
one log; if you push it past that, you'll end up doing a lot of work you
wouldn't need to do using another tool.

/ 3
Dynamic Content: Directory Browsing
and Server-Side Includes

13.1

In this chapter, we'll discuss two ways to generate dynamic content on your
site without getting fully into CGI scripting (covered in Chapter 14).
Directory browsing displays the files that are currently present--or some
subset~and different views may be available. Server-Side Includes (SSI)
allow highly variable content presentation with a wide variety of techniques.

Directory browsing

In general, if the URL path translates to a directory name (without a "/"),
the server automatically issues a redirect to the path with a 'T' appended. If
it's a directory with a "/" but no file name, the server looks for files match-
ing the defined names of "Welcome" or "Index" files, and, if it finds one,
serves it. If no Welcome file is found, servers will (if permitted to do so),
dynamically generate a directory listing as an HTML document with click-
able file names that will enable downloading the files, and serve that docu-
ment out. The form of this document varies from server to server and may
include icons representing the filetypes. You have some ability to configure
the format in which file information is presented, the order the files are pre-
sented in, whether the listing is generated at all (either serverwide or for the
particular directory), and whether the directory listing includes a prologue
from a particular file.

A caveat: Users who know about directory browsing typically expect
their actual file list to be completely hidden if a welcome file is present.
WASD can be configured to allow directory browsing to be forced by
strings in the URL even if a welcome file is present, so if you allow that, you
need to be sure to educate your users.

A historical note: The original function of the World Wide Web was to
facilitate easy exchange of files on unlike platforms, so directory browsing
was present very early on. A directory listing was referred to as an index; it

237

238 13. I Directory browsing

13.1.1

could either be automatically generated or be prepared in advance by the
owner of the files. Thus, index.html is the name to look for in a directory if
only the directory name has been presented--thus, also, ModAutolndex
and options DirectoryIndex, Index, and FancyIndexing in Apache.
Let's look at the options available.

Apache

In Apache, if the URL path refers to a directory name, a query string can set
the primary sort field and the direction of the sort if indexes are allowed on
the directory at all. (That's " / p a t h / ? q u e r y - s t r i n g " , and the strings are of
the form " f i e l d = d i r e c t i o n " ; the fields are "N" for file name, "M" for mod-
ification date, "s" for file size, "D" for description, and the directions are "A"
for ascending and "v" for descending, so the values are "N-A", "N=D", "M=A",
"M--D", and so on.)

I briefly discussed the Direc toryZndex command in Chapter 5. This is
where you can set the names of index or welcome files, or set an action
(overriding the server's automatic index generation) if you wish. The com-
mand can be used serverwide, virtual-hostwide, within a <Directory> or
<DirectoryMatch> container, or within an .htaccess file in the directory
itself if overrides are configured for that directory.

DirectoryIndex local-URL [local-URL . . .]

l oca l -URL can be just a file name (index.html, wilkommen.html) or a
path; if you wanted to, you could make every file that doesn't have an
index.html of its own present a default index.html from somewhere else--
for example,

DirectoryIndex index.html /defaultfiles/index.html

or you can run a program of your own to generate the directory listing~for
example,

DirectoryIndex / c g i - b i n / m y l i s t i n g p r o g r a m . p l

or return an ErrorPage if you like.

If you don't want automatic indexes at all, use an op t ions directive that
doesn't include indexes on the most expansive container; you can use the
whole document tree. If you want them in general but want to turn them
off in certain trees use

<Directory / filesystem/path>
Options -Indexes
</Directory>

13.1 Directory browsing 239

Or, to let the users turn them off, allow Overrides and let them disable
the Index option in the .htaccess file.

But assuming you want to do standard directory indexing, this will be
handled by mod_auto_index. This can sort the directories in ascending or
descending order by file name, file size, modification date, or description.
(Description is something you can set by filetype with the AddDescrip-
t ion directive; as shown further on. By default you don't get any. In addi-
tion, if you enable ScanHTMLTitles in IndexOptions and you haven't set
up a general description for .HTML files, Apache will pull out the contents
of the <TITLE> tag and list that as the description.) Apache on UNIX
includes the case when sorting by file name (so "Apache" comes after
"zebra") but Apache on VMS does not, even when serving from an ODS-5
disk, where the file names can display in mixed case.

The FancyIndexing option produces listings with clickable headers for
those columns that will enable the user to request the directory sorted in
any of those ways, but you can also set the default order with IndexOrder-
Default.

Figure 15.1 shows a user directory with a FancyIndex with name as the
default index order. Figure 13.2 shows the same directory after I clicked on
"Last Modified", showing the new order.

These are the available directives:

IndexOptions [+ I -] option [[+I-] option ...]

As with the other directives in this section, this can go serverwide, vir-
tual-hostwide, in a directory container, or in an .htaccess file. These options
control how your directories will look.

Multiple IndexOptions directives for a single directory are merged
together. Options can be prefixed with "+" or "-", which adds or subtracts
them to current IndexOptions settings, either from previous IndexOp-
t ions directives in the same directory or from inherited settings from
some upper level. You can't usefully mix prefixed keywords with unprefixed
ones; whenever an unprefixed keyword is found, Apache clears all the
inherited options, not just those for that key-word. Incremental options
found on subsequent (same level or lower level) IndexOptions directives
will be applied.

The options for IndexOptions are discussed in the following text.

I Chapter 13

240 13. I Directory browsing

Figure 13.i A fancy indexj~om Apache.

DescriptionWidth= [number I *]

specifies the width of the description column in characters, or if "*" auto-
matically sizes the description to the length of the longest description in the
display.

FancyIndexing

This turns on fancy indexing of directories, as described previously. If you
turn off FancyIndexing, you'll get something that looks like Figure 13.3.
There is a separate FancyIndexing directive, but its use is deprecated.

FoldersFirst

If FancyIndexing is enabled, all subdirectories will be listed before any
normal files in any listing, regardless of sort order. The subdirectories will

13. I Directory browsing 241

Figure 13.2 The same index in last-modified order.

appear sorted in the prevailing sort order, and after them the regular files,
sorted independently in the prevailing sort order.

IconHeight [=number-of-pixels]

If you specify this and IconWidth, the server will include "HEIGHT" and
"WIDTH" attributes in the <IMO> tag for the file icon. This lets the browser
calculate the page layout before receiving all the icons, enabling faster initial
display with slow links. If you leave out the "=nu~er -o f -p ixe l s " , the
server will give the standard values for the standard supplied icons.

IconsAreLinks

In fancy indexing, this makes the icons part of the anchor for the file
name, so that the user can click on the icon to get the file.

I Chapter 13

242 13. I Directory browsing

Figure 13.3 Index header with Fancylndex enabled.

IconWidth [=pixels]

See IconHeight.

NameWidth= [number-of-characters I *]

specifies the width of the file-name column in bytes (which for ASCII is
equivalent to the number of characters, but may change when you have a
file system that supports Unicode). If you specify "*", then the server sizes
the columns to the length of the longest file name in the display.

ScanHTMLTi t i es

In FancyIndex mode this tells the server to pull the contents of the
<TITLE> tag from any HTML files and put that in the "Description" area,

13. I Directory browsing 243

although if there's an AddDescription item for HTML files, this won't be
applied. This is a potentially expensive option, since the server has to read
the file and parse the HTML therein.

Suppr e s s Co i umnSo rt ing

If you specify this, it disables the FancyIndex behavior of making the
column headings into links for sorting.

SuppressDescription

eliminates the description column in FancyIndex listings, which gives you
back some screen real estate.

Suppre s sHTML Pr eamb i e

If you've got a header file (specified by the HeaderName directive) that
actually includes the usual HTML preamble (<HTML>, <HEAD>, <BODY>),
use this command to tell the server not to generate that stuff itself. (Your
header file can't be a completely valid HTML document, because if it
includes a </BODY> tag, the generated file listing that follows will confuse
the browser, so it's more standard to leave off the <HTML>, <HEAD>, and so
on. However, if you want a custom <TITLE> for your directory page, you
need to do this.)

Suppres sLas tModi f i ed

In FancyIndex listings this suppresses the display of the last-modified
date.

SuppressSize

In FancyIndex listings this suppresses the display of the file size.

TrackModi fied

This returns the L a s t - M o d i f i e d and ETag values for the listed direc-
tory in the HTTP header, so clients can check whether anything has been
updated in the directory via a HEAD request.

This ends the IndexOpt ions options.

HeaderName partial-URL default: "header"

This directive sets the name of the file that, if present, will be inserted at
the top of the index listing. (See Figure 13.3 for an example with Fancy-
Index and Figure 13.4 for an example without FancyIndex.)

.... I Chapter 13

244 13. I Directory browsing

Figure 13.4 Index header with Fancylndex disabled; shows format of plain index.

The partial URL can be a file name; if it's a plain file name (such as
"HEADER"), Apache will look for a file of a type that is mapped as text/html
(i.e., not only header.html but header.shtml or other language variants) and
include it in the output; if it's an SSI file and the directory permits Includes,
the server-side includes in the file will be processed.

If there isn't a text/html-type file there, Apache looks for a text/plain-
type file (such as header.txt) and includes it in the output, wrapped in
<PRE> tags and with any included tags escaped so the browser won't inter-
pret them.

Very trickily, the partial URL can go to a script that generates the header,
but only if the script is marked as a text/html file (rather than merely having

13. I Directory browsing 245

code in it to generate a text/html header). If you want to do this, you have
to use an AaaType to mark the filetype of the script as text/html.

ReadmeName partialURL (default : README)

This works just like the H e a d e r N a m e directive, except that the R e a d M e iS
a trailer, rather than a header--it follows the generated directory listing.

It's worth noting that the HEADER and README processing will
occur even if you don't include these directives and aren't tied to Fancy-
Index at all. You may be able to defeat this processing, if you want to, by
defining ReadmeName and rteadername to impossible or unlikely names,
but you can't readily turn it off.

IndexIgnore wildcarded-file-specifier [wildcarded-file-
specifier]

If you want to hide files when listing directories, you list them in
IndexIgnore. You can list multiple files on a single line or have multiple
IndexIgnore directives. Each one adds to the list of files rather than replac-
ing the list. The file specifier can be a fully specified file name or wildcarded

-,. f" string, such as gi .

IndexOrderDefault Ascending I Descending
Name I Date I Size I Description

The IndexOrderDefault directive works only with FancyIndex list-
ing; it allows you to override the initial display order, which is otherwise
"ascending order by file name."

The first argument is the order (Ascending or Descending); the second
is what field to sort by. (If it isn't Name, file name will always be the second-
ary sort key after the one you specify.)

The remaining directives are the ways you specify what shows up as
icons, what shows up as ALT tags for the icons, and what shows up in the
Description column. (The text in ALT tags will show up in place of the
image in image-incapable browsers or those with image loading disabled;
some browsers will display it when the cursor moves over the image.)

AddAlt "String to include as ALT tag" wildcarded-file-
specifier . . .

sets the value of the ALT tag for files matching the specifier (or any of the
specifiers included on the line). The string must be enclosed in double
quotes.

I Chapter 13

246 13. I Directory browsing

AddAltByEncoding "String to include" MIME-encoding [MIME-
encoding] . . .

sets the ALT tag based on the MIME-encoding of the file; the tag string
must be in double quotes. (The encoding, as distinct from the type, is
something like "x-compressed" or "x-gzip.")

AddAltByType "String to include as ALT tag" MIME-type
[MIME-type]

Sets the ALT tag based on what MIME-type the file is, based on
MIME.TYPES or your AddType directives.

AddDescription "Description string" file-specifier [file-
specifier...]

sets what will be displayed in the Description column under fancy indexing.
The file specifier can be a file extension, partial file name, or wildcard
expression of full filename; the description string must be in double quotes.

(If you have a directory full of binaries and want to describe each one,
you can do this with an .htaccess file that contains an AddDescr ip t ion for
each file. It might make more sense to just create an index.html that
describes each one, where you can have as many lines as you need for each
description.)

Apache doesn't stop you from putting HTML markup in the description,
but it doesn't guarantee to display the whole description if it's too long. If
some closing tag gets cut off, the rest of the page may look pretty strange.

AddIcon [ALT-text,]/URLpath-to-icon filename-or-keyword
[filename-or keyword...]

Use AddlconByType instead of A d d l c o n if possible, which it usually is.
AddIcon sets the icon (and, optionally, the ALT-tag text) to show in the
directory listing next to files of the type or types specified.

The two special keywords are ^^DIRECTORY ̂ ^ for directories in general
(which you could usually accomplish in VMS with a .DIR filetype, but that
doesn't work everywhere Apache runs) and ^"BLANKICON"" for blank lines.
These are already defined in H T T P D . C O N F when you get it, so you won't
have to worry about them. Otherwise, the file name can be a file extension,
a wildcarded file name, or a complete file name.

AddIconByEncoding [alttext,]/URL-path-to-icon MIME-
encoding [MIME-encoding...]

13. I Directory browsing 247

In FancyIndex listings this directive specifies which icon to display
(and, optionally, what ALT-tag text to use) based on the MIME-encoding
of the file.

AddIconByType [alttext,]/URL-path-to-icon MIME-type [MIME-
type ...]

In FancyIndex listings this directive specifies which icon to display
(and, optionally, what ALT-tag text to use) based on the MIME-type of the
file. This can be a wildcard expression, so you can set, for example, a text
icon for everything matching "text/*".

DefaultIcon /URL-path- to-de fault- icon

specifies the icon to display on FancyIndex listings if no icon is otherwise
specified for the file. In the distributed HTTPD.CONF this is set to an
icon with a picture of a question mark, but if you want to change it, this is
the directive to use.

I notice what appears to be a bug in Apache 1.2. The generated index
listing for a directory containing an ODS5-only name, Journallist^.sylk.slk,
simply dropped that name from the listing.

1 3 . 1 . 2 0 S U

OSU offers a choice of external directory browsers--an MST version and a
DECnet-accessed scriptserver version. They accept the same configuration
directives but require different support to work.

To use the MST, you find the following in your http_suffixes.conf:

.ITERATE ThreadPool $pname $qf $a2 $a3

.NEXT dsrv q_flag=l limit=20 stack=162000

.ITERATE Service $sname Sparg $darg $iarg

.NEXT dirserv pool=dsrv dynamic=(dirserv,http_dirserv_mst)\
info=www_system:http_directory.conf

This translates to

ThreadPool dsrv q_flag=l limit=21 stack=162000
Service dirserv pool=dsrv dynamic= (dirserv, http_dirserv_mst) \
info=www_system, http_directory, conf

Add the following presentation rule:

presentation text/file-directory %dirserv

I Chapter 13

248 13, I Directory browsing

Alternatively, you could make sure the MST stuff is all commented out
and use the presentation rule to get the DECnet-based browser:

presentation text/file-directory \
sysSnode : : "0=WWWDIR"www_system: http_directory, conf

You can turn off directory browsing completely with a

DirAccess off

in HTTP_MAIN.CONE (If you use the presentation rule, your
HTTP_MAIN.CONF VirAccess rule will be ignored.) Note that if you
mess up the configuration badly enough that the directory server isn't
invoked, you still get a list of fi les~but it's just plain file names, as shown
in Figure 13.5. In addition, the DECnet-based browser doesn't go away

Figure 13.5 Output from OSU's internal directory list.

13. I Directory browsing 249

immediately when the server is restarted; consequently, if you change the
configuration file, restarting the server won't make the change take effect.
You need to find the process the directory server is running in (it'll be
named TASK-something) and kill it; the next directory browse will create
a new task that reads the configuration file anew.

Each directory server wilt deal with WWW_SYSTEM:HTTP_DIRECT
ORY.CONE

Here are the available directives in that file. (The same directives can be
used in a per-directory control file if DirAccess Selective filename

OverRide is specified in this master file.)

DirAccess on I off I selective [controlfile [OVERRIDE]]

If o n , permits directory browsing; if off, rules it out. If "selective",
permits directory browsing only if the specified control file is present in the
directory. (The name if you don't specify is .WWWBROWSABLE.) If
OVERRIDE is specified, the control file will be read and any directives in it
will be interpreted and applied to the directory listing.

Include filename

If specified, reads the specified file and treats the contents as though they
were part of the current file.

DirDefLangEnable language

enables a default language setting, which, in multilanguage environments,
allows different directories to be processed in different languages. (The
default setting is "en".)

Welcome file-name [lang-list]

adds file names that will be served as the index file; this can be conditional
based on language code. Multiple instances of the directive are allowed. If
the relevant welcome file is found, that file will be served and no directory
listing will be generated. For example,

We i come we i come en, en- *
Welcome vilkommen de,de-*

DirReadme [OFF I TOP I BOTTOM] [readme-file]

OSU offers a header or trailer, or neither, but not both. Unless it's
explicitly turned off, this capability is on, and the default file name is
"README." The contents of the ReadMe file are wrapped with <PRE> but

I Chapter 13

250 13.1 Directory browsing

Figure 13.6 OSU's full listing with README TOP.

not escaped, so tags may be interpreted. Figure 13.6 shows a directory list-
ing with DirReadme TOP and every possible field listed.

DirShowDate [ON[OFF]

Include last-modified date in listing (off by default).

DirShowSize [ON[OFF]

Include file size in listing (off by default).

DirShowBytes [ONIOFF]

If DirShowSize is on, report file size in bytes rather than kilobytes.

DirShowHidden [ONI OFF]

13.1 Directory browsing 251

13.1 .3

If on, will suppress the listing of files that have extensions but no names
(e.g., .WWW_BROWSABLE).

WASD

Remember that userdirs in WASD don't work for accounts that are privi-
leged or disusered or have expired passwords; those directories can't be
browsed either, even if diraccess is enabled. (That is, not as userdirs; if the
same directories are mapped some other way, they can be seen.)

Quite a lot of flexibility is available to the user through query strings
that control the directory browser and through wildcard file specifications
at the end of the path. More information on that follows, after the configu-
ration directives. These directives go in HTTPD$CONFIG.CONF

[DirAccess] ENABLE I DISABLE I Selective

E n a b l e turns directory browsing on for every directory, Disable turns
it off for everybody, Se l ec t ive turns it on only for directories containing a
".WWW BROWSABLE" file.

Even if DirAccess is enabled, the presence or absence of the following
files in those directories affects the behavior of directory browsing.

The presence of the file " .WWW_HIDDEN" means that the files in the
directory can't be listed, but individual files are accessible (can be linked to
if you know the name); this is the equivalent of (W:E) access on the direc-
tory. If a subdirectory of the current directory has a ".WWW_HIDDEN",
it won't be listed in the directory of the parent folder.

The presence of the file ".WWW_NOWILD" means a wildcard file
specification won't work even if configured to work. The presence of the file
".WWW_NOP" suppresses listing of a parent directory. The presence of
the file ".WWW_NOS" suppresses listing of subdirectories. The presence
of the file ".WWW_NOPS" suppresses listing of either.

[DirLayout] layout-string (I L R S-b D supplied in
\ conf file) .

This enables you to specify the layout of each line of generated directo-
ries. (You can experiment with the look of different strings by specifying
them in entered URLs as part of the query string, rather than editing your
config files over and over.)

Straight from the comments in the code that interpret the layout string,
Table 13.1 lists the official descriptions:

I Chapter 13

252 13. I Directory browsing

Table 13.1 Codes for WASD Directory Layouts

Element Meaning

(underscore) each underscore provides one space between fields

c creation date

D content-type description (if specified, should be the last field specified)

D: L content-type description as a link

I icon

file anchor (link, including name as link)

L:F file anchor, ODS-5 file-system name (e.g., spaces, not %20)

L:N file anchor, name only, do not display the file's extension

L:U file anchor, force the name to uppercase (these can have multiple specifi-
cations--e.g., "mL:U:N ")

N file name (without anchor)

file owner (only when SYSUAF authenticated and profile accessed)

file protection (only when SYSUAF authenticated and profile accessed)

R revision date

s file size

S :B file size to be in comma-formatted bytes

S :D express file sizes in 1,000 (decimal) KB not 1,024 (binary) KB

S:F file size MB and KB to be expressed to one significant place

s :K file size to be in KB

S:M file size to be in MB

file/directory name in uppercase (MUST be the FIRST directive)

These values are actually case-insensitive, so the lowercase letter in the
string that's in your configuration by default has no special meaning. The
default string is x L R S: b D, which translates as "Icon, two spaces,
file name with extension as a link, two spaces, revision date, two spaces, size
given as bytes in a comma-separated string, two spaces, description."

Most popular file types have preconfigured descriptions; HTML files are
searched for the contents of the title tag. Figure 13.7 shows the output of a

13. I Directory browsing 253

Hgure 13.7 Directory listing in WASD's supplied format, showing config error.

directory listing in the default format with README processing sup-
pressed.

[DirMetaInfo] ENABLED I DISABLED

If enabled, the server will include META tags in the generated HTML
of directory listings showing the server version, date, host name, and the
VMS-style lookup string that generated the listing. (This is for the benefit
of humans looking at the system via "view source.") (See Figure 13.8.)

I Chapter 13

254 13.1 Directory browsing

Figure 13.8 Directory listing in WASD's supplied formatmsans config error.

[DirReadMe] DISABLED I TOP I BOTTOM

specifies whether to do readme processing at all, and if the function is not
disabled, whether to make the readme a header or a trailer.

[DirReadMeFile] filename, ext

This directive allows multiple readme file names, one per line. The file
names in the directory will be matched against the list of readme file names,
and the alphabetical first match will be processed as the readme file, so there
may be some vanishingly small performance advantage in putting multiple
[DirReadMeFile] directives in alphabetical order by the file name they
specify. The supplied file names are README.HTML, README.HTM,
README.TXT, and README.

13.1 Directory browsing 255

If the content type of the selected readme file is nontext, it won't be pro-
cessed. If it's text/html, it's included in the output as is; if it's text/plain, it's
wrapped in <PRE> and </PRE> tags to preserve the formatting. If it has a
server-side include type, it will be preprocessed by the SSI processor before
going out. (See following discussion.)

[DirWildcard] ENABLE I DISABLE

specifies whether wildcards in file names are enabled at all. (If this is
enabled, and DirAccess is enabled, then any user can force a directory list-
ing even of directories that have welcome pages by specifying a wildcard,
unless the directory has a " .WWW_HIDDEN" or a " .WWW_NOWILD"
file in it.)

[DirBodyTag] body-tag-string

enables you to customize directory listings to more closely resemble the
rest of your site design. Must be at least "<BODY>" but can include an
additional parameter in the BODY tag and an additional HTML after the
tag.

[DirDescriptionLines] number-of-lines

The server gets the Description line for a file of type text/html by search-
ing through the file looking for a title tag, which is obviously fairly expen-
sive, what with having to open and read each file instead of just listing the
name. It's even more expensive if you have long documents, which, perhaps,
never specify a title. This directive, which is set to 30 out of the box, says
how many lines to read looking for the title tag before giving up. You set it
to 0 to disable this behavior altogether.

[DirNoImpliedWildcard] ENABLE I DISABLE

If enabled, the directory browser won't add wildcards to request if they're
not present in the path. (It still gives full directory listings on a bare "/" with
no wildcards at all.)

[DirNoPrivIgnore] ENABLE I DISABLE

Ignore (i.e., do not report) privilege violations on files/directories.

[DirOwner] ENABLE I DISABLE

If enabled, the 0 format specifier that lists file ownership will be
processed if the access itself is SYSUAF authenticated; otherwise, it will
not be.

I Chapter 13

256 13.1 Directory browsing

[DirPreExpired] ENABLE I DISABLE

If enabled, the HTTP headers on listings will show them as already hav-
ing expired, so browsers or intermediate caches that honor those headers
won't cache the responses and will request a new listing each time.

[AddIcon]
/path-to-icon Alt-Tag content-type
[...]

specifies the URL-type path to the icon you want to display for a particular
content type, the contents of the ALT tag for the icon image, and the con-
tent type itself---for example,

httpd/-/text.gif [TXT] text/plain

says to apply the server-supplied text.gif with the ALT tag "[TXT]" for
every file with a content type of text/plain.

Popular content-types are already defined in the out-of-the-box configu-
ration; this directive takes multiple lines of specification.

The following directives are already usefully defined out of the box, and
you probably don't want to mess with them unless the specific directory
browser icons are really important to the look of your site.

[AddBlankIcon] /URL-path-to-blank-icon Alt-text

[AddDefaultIcon] /URL-path-to-default-icon Alt-text

[AddDirIcon] /URL-path-to-directory-icon Alt-text

[AddParentIcon] /URL-path-to-parent-icon Alt-text

[AddUnknownIcon] /URL-path- to- icon- for-unknown- content-
type Alt-text

If directory browsing is permitted at all, you can specify quite a lot of the
directory formatting through a query string in the URL, overriding your
default directory formatting. The format for the query string is
"?httpd=index&" followed by one or more of the following name and
value pairs, such as "?httpd=index&expired=yes¬ype=yes".

Table 15.2 shows the options, adapted from the comments in the direc-
tory browsing module.

Autoscripts are scripts that execute when you click on them directly.
autoscript=no I false I 0 tells the browser to tweak the anchor so that the
link brings you to the script contents, not the result of running the script.

13. I Directory browsing 257

Table 13.2 WASD Parameters for Directory Browsing

Value Legal Values

autoscript= yes (default), no, true, false, 1, 0

delimit= header, footer, both (default), none

expired= yes, no, true, false, 1, 0 (listing preexpired)

filesys= yes, no (default), true, false, 1, 0 (ODS-5 file-system name)

layout= s e e format string definitions

nop= yes, no (default), true, false, 1, 0 (as if.WWW_NOP found)

nops= yes, no (default), true, false, 1, 0 (as if.WWW_NOPS found)

nos= yes, no (default), true, false, 1, 0 (as if .WWW_NOS found)

notype= yes, no (default), true, false, 1, 0 (do not display filetype)

readme= yes, no (default), true, false, 1, 0

type= force file content type (e.g., "&type=text/plain")

upper= yes, no (default), true, false, 1, 0

f i i esys, in practice, specifies what to do about embedded blanks in file
names: allow them (setting is no, false, 0) or interpolate %20s. By defini-

tion no l f a l s e l 0 means ODS-5 file names, and yes I t r u e l 1 means ODS-
2 file names, uppe r=yes l t r u e l l forces the output file names to upper-
case. Figure 13.9 shows directory output using query string values to sup-
press the readme file filetypes and force output to uppercase.

WASD's directory browsing is extremely capable and very configurable,
although what you can configure is different from what Apache lets you
configure. (WASD puts subdirectories first if it shows them at all and sorts
only in ascending file-name order.)

Figure 13.7 shows a configuration error that's corrected in Figure 13.8.
I include this because I found this an easy mistake to make and hope to
spare my readers that problem. The generated title and header tags say
"Index of DEVICE: [DIRECTORY]FILE.TYPE" rather than the directory
name or URL path. This is because I failed to provide a reverse mapping
rule for user directories. (Future versions of WASD will say
"NO: [REVERSE.MAPPING.FOR.THIS]FILE .PATH," which may give
more of a clue.)

I Chapter 13

258 13.1 Directory browsing

Hgure 13.9 WASD directory browser output using query string values to affect formatting.

The reverse mapping in this case, which is a userdir, went in the
HTTPDSMAP.CONF file, and looked like:

pass /~*/www/* /$diskl/*/www/*

I also learned in this exercise that if you're serving an ODS-5 disk, you
need to tell WASD about it; otherwise, it'll give you errors when you tell it
to report files with names that are illegal on ODS-2 drives. The command
for that, also in HTTPDSMAP.CONF, was:

SET /$diskl/* ODS-5

(This is covered in Chapter 7.)

13.2 Dynamic content with SSI 259

13.2 Dynamic content wi th SSI

Static Web pages are the same every time you look at them, at least until
somebody edits them to make changes. Dynamic pages can change each
time they're viewed without additional editing.

One way to do this is to write a special program that generates the
HTML for a page with variable content computed and inserted in the right
places; we'll discuss this approach in another chapter.

Another way is with server-side includes (SSI), where a component of
the Web server parses special tags in the HTML code and replaces them
with other data, whether the content of a file referred to in the code; the
results of executing a program named in the tag; or a special value, such as
today's date, the file date, or the IP address of the browser.

This can be useful for a number of reasons. Including a standard header
and footer can make all your pages consistent; it's then easy to change the
look of all the pages just by changing the included files. Conversely, you can
have a single template page and fill in the body based on a command
included in a tag; this approach is used by tools such as PHP, but can be
productive in the SSI environment as well. Automatic last-updated date
gives the user some idea of how fresh the information presented is. If you
have conditional logic, you can take advantage of the special capabilities of
particular clients.

One possible drawback of the SSI process is that it no longer works, as it
does with plain HTML, to view a page in the browser, save it, edit it, and
upload it. (Well, it works, but afterward all the formerly dynamic parts are
static forever. For good or ill, the client can't tell which parts were generated
by SSI and which were static in the original document.) If your site uses
server-side includes and has numerous people updating documents, make
sure they're educated about how to deal with SSI files.

SSI can also let users who aren't entirely trusted to write CGI programs
have a limited capability to provide dynamic content in their own pages.
There are some general concerns with the ability to execute any arbitrary
command in the context of the Web server; a curious/malicious/prankish
user could delete configuration or log files, shut down the server, or worse.
I'll discuss how each server deals with that in the configuration sections that
follow.

All three servers have SSI capability, with CSWS and WASD exceeding
the tag-replacement model to allow some program logic, presenting or hiding

I Chapter 13

260 13.3 Configuring SSI

13.3

different parts of the page based on conditional statements in tags. I'll discuss
SSI configuration for each server, then review the tags and definitions.

Configuring SSI

1 3 . 3 . I C S W S

The relevant options in Apache are Includes and IncludesNOEXEC, which
can go on directory containers and file containers. If you want to prohibit
SSI processing altogether, configure your directory containers without
Includes . If you want to permit SSI processing but don't trust the users to
execute arbitrary commands in the context of the server, configure
IncludesNOEXEC instead.

The relevant directives for fully enabling the common types of SSI files
are these:

AddType text/html . shtml
AddType text/html . h t m l x

AddHandler server-parsed . shtml .htmlx

The AddType directives let the server know that these will be compliant
HTML files once they've been processed; the A d d H a n d l e r directive says
that the filetypes should be processed by mod-include.

(Another way of handling this, on UNIX, is to mark the files you want
to be preprocessed as executable by setting the execute bit on them; then
you can have all the files be named ".html" and only the ones with execute
bit set will be preprocessed, saving the server resources that would be
required to preprocess all ".html" files. But "the execute bit" is a meaning-
less concept under VMS, so ignore anything you read about the XBit iack
directive, and use a different file type for SSI files than for regular HTML.)

1 3 . 3 . 2 0 S U

OSU's SSI doesn't support running arbitrary programs in server context, so
there's no need for configuration to restrict that ability. SSI is available
either to everybody or to nobody. To enable it, the following rules go into
HTTP SUFFIXES.CONF:

Service preproc pool=dsrv
dynamic= (preproc, http_preproc_mst) \

13.3 Configuring SSI 261

13 .3 .3

info=www_root : [000000] accesses, dat

presentation text/htmlx %preproc :

By default, HTTP_SUFFIXES defines the text/htmlx type for .htmlx
and .htx extensions; you could add

SUFFIX .shtml text/htmlx 8BIT 0.5

if you wanted OSU to take its best shot at parsing Apache SSI files as well,
or change the .html type to text/htmlx if you wanted every HTML file to
run through the preprocessor.

W A S D

Here are the configuration directives to get WASD to do SSI.

[SSI] DISABLE [ENABLE

Enabled, anybody can do SSI but without the ability to execute pro-
grams from SSI tags (except for include virtual, which can run a configured
CGI script.)

[SSIAccesses] DISABLE I ENABLE

If enabled, WASD will (like OSU) maintain a little RMS indexed file
that tracks access counts for pages using the accesses directive.

[Scripting] DISABLE I ENABLE

For SSIexecs to work, scripting must be enabled. (You most likely want
this enabled anyway, and it's enabled in the default configuration file. CGIs
won't work if this is disabled.)

[SSIexec] DISABLE I ENABLE

If disabled, nobody can execute programs from SSIs. If enabled, SSIex-
ecs will work, but only for documents owned by UIC [1,4] (SYSTEM) on
the theory that anyone with enough privilege to make a page owned by
SYSTEM can make so much trouble that any ability granted to such a per-
son by running an ssIexec is superfluous.

If you want to grant the ability to do execs to trusted users who aren't
[SYSTEM], you can set that up on a URL-path basis. (See Chapter 7 for
more on the SET command.)

I Chapter 13

262 13.4 SSI directives

1 3 . 4

Set /URL-path SSI=PRIV

Documents found in this URL path can execute "privileged" commands;
see the directive list for details. (This goes in HTTPD$MAP.CONF, as does
the next.)

Set /URL-path SSI=NOPRIV

Documents found in this URL path can execute only "unprivileged"
commands; see the directive list for details.

WASD supports setting up an unprivileged "sandbox" account that
doesn't have write access to the server's files, and running SSI and scripts
under that, which more or less immunizes the server from the ill effects of
user scripts. If you want to do that--and it's an extremely good idea to do
that if you're going to let unvetted S S I e x e c pages run--you need the fol-
lowing additional configuration.

In your server startup:

/ PERSONA=sandbox-username

In HTTPD$CONFIG.CONF"

[DCLDetachProcesses] ENABLE

SSl d i r e c t i v e s

The directives in SSI documents are all wrapped in HTML comment
tags--for example,

<!--#directive [tag[="value"]] ... -->

Not all directives are supported on all servers, and not all functionality
of supported directives is the same on all servers. Here are some major dif-
ferences.

While all three servers can do "#include virtual", Apache's
"# include v i r t u a l " can reference a CGI program, and the server will
actually run the program and include the output from running the pro-
gram. (If the program returns a Location: header for a redirect, Apache
will convert that into a link.) OSUs and WASDs will just translate the path
to a file and return the file contents.

Apache and WASD support flow-control directives, with #if and #else
directives, which can actually test conditions and include different parts of
the document in the generated file depending on the results. They can both

13.4 SSI directives 263

13.4.1

also set environment variables and print all environment variables with
#printenv.

Apache and WASD also allow # e x e c (WASD synomym #dcl) direc-
tives, which can run DCL commands, scripts, or images. WASD has fairly
fine-grained control, with innocuous DCL commands available to
unprivileged users and potentially hazardous ones available only in paths
marked as privileged or in documents owned by SYSTEM and not world-
writeable.

OSU and WASD preprocessor documents can include only parts of
other documents; the parts are tagged with #begin and # e n d directives.
(This can be really handy when you want to include, say, preformatted
database output. Rather than having, for example, last night's inventory
report for each item required to be in a separate document, you can write a
database report that puts each item into a separate part of the same docu-
ment, and each beautifully formatted page that describes the item can
include just the relevant part of the document. The OSU config files demo
also shows an extremely ingenious use of this feature.) OSU and WASD
also support access counting and display, which Apache doesn't do directly.
WASD has an OSU-compatibility mode for documents whose content-type
maps to "OSU SSI HTML", which in the supplied configuration file is
only .HTMLX files.

OSU processes the entire document before writing any of it to the
screen. If you give it an unsupported directive, the only thing sent to the
browser is an error message identifying the directive. CSWS/Apache will
send the document with the string "[an e r r o r o c c u r r e d w h i l e

processing this directive]" (or a replacement you specify with the
#config e r r m s g directive) in place of any bad directives. WASD will pro-
cess and emit the document from the top down until it encounters a bad
directive; it will then emit a big red "ssI e r r o r " message and stop process-
ing the document.

Here are the SSI directives the three servers support, grouped by func-
tionality.

Access counts (WASD and OSU)

< !--#accesses [ordinal] [since=" "] [timefmt=" "] -->

(WASD-only in this format.) This increments and echoes the count of
accesses to this document (by VMS-file name), s • is a string that will be
echoed between the access count and the time of the first access in the

I Chapter 13

264 13.4 SSI directives

1 3 . 4 . 2

access database if the since string is specified; the time is formatted accord-
ing to the format string in t iraefmt, and means accesses since that time.

" " " "" " " " "th" (Ordinal means appending st , na , ra , or to the returned access
count.) So something like <!--#accesses ordinal since=" time

since initial access on > will produce text like "13th time since
initial access on 01-Jan-2002 13:21"15". To forestall your trying it, the
increment part works only once per load of the document~you can refer to
the access count repeatedly in one document and increment it only once.

To include access counts in OSU, which WASD also supports, do"

<!--#echo "accesses[;versionnumber] > or

< ! --#echo "accesses_ordinal [; vers ionnumber] >

(If you've drastically changed your document and want to reset the access
count to zero, include the version number in the document. This is not nec-
essarily the file system version number; this is a version number retained in
the access file. If you make a new version of the document and don't change
the access file reference, the counts will continue incrementing.)

File i n f o r m a t i o n

All the servers can fetch the last-modified date or the size of a file by file
name or URL path, using the f i l e = or v i r t u a l = tags, respectively. On
Apache and OSU, file paths are relative to the current directory; on WASD,
they must simply be readable by the server. In Apache, URL paths must be
relative to the current directory~you can't get out of the document tree
and you can't go any higher in the document tree than you already are. For
OSU and WASD, URL paths just have to be mapped by the server and
result in a readable file.

<!--#flastmod file="VMS-path" Ivirtual="URLpath"

[fmt="format-string"] -->

This directive is replaced with the value of the last-modified date (RMS
revision date) of the file named or mapped via the file or virtual tag. Apache
doesn't support the fmt=" f o r m a t - s t r i n g " tag; OSU does if it was com-
piled with DECC but not if it was compiled with VAX C.

< !--#fsize file="VMS-path" Ivirtual="/URLpath >

This directive is replaced with the size of the file named in the VMS
path or mapped in the URL path. On Apache and WASD, the value is for-
matted according to #conf ig s i ze fmt : ~ o n OSU, it's bytes.

13.4 SSI directives 265

1 3 .4 .3

< ! --#fcreated file="VMS-file-spec" Ivirtual="/URLpath"
[fmt=" format-string"] -->

(WASD-only.) This is replaced with the file creation date/time of the file
with the VMS path shown in the f i l e= tag, or mapped in the v i r t u a l =
tag, formatted according to either the default format string or the format
string specified with the optional fmt= tag.

F i l e / d o c u m e n t includes

< ! --#include file=" filename" Ivirtual="/URLpath"
[type=" content-type"] [fmt=" ?"] [part="partname"] -->

All three servers support includes, but with some differences. Apache
and OSU will only do "file" includes relative to the current path; WASD
will allow anything that it can read. All three will allow a "/URLpath" that
goes out of the document tree; Apache allows that URL path to be a CGI
program (including URL-encoded query string) and will automatically exe-
cute it and place the results in the generated document. Neither OSU nor
WASD allow that.

The type and fmt tags are WASD-only. WASD automatically wraps the
included content in <PRE> </PRE> tags unless the content-type is text/html;
the type tag lets you dictate that a file called, say, something.inc, be treated
as containing HTML. Alternatively, if you want to include something with
text/html and have it treated as text, you can set t ype=" t ex t / p l a in " . If
fmt= "?" is set, the WASD server, instead of halting processing with an SSI
error message when it doesn't find the file you specified, will simply con-
tinue processing without inserting anything into the generated document.

The part= tag is OSU and WASD-only. OSU supports labeled file
parts, and WASD endeavors to support them compatibly, although this
takes some hacking.

OSU supports referring to a particular named part of a file by using the
syntax f i l ename .pa r t , e x t e n s i o n . On ODS-5 disks it's possible to have
multiple dots in a file name, so this is ambiguous, and the ambiguity is
resolved in favor of multiple dots, meaning that there's a part name in it.

However, the part name is permitted to be null. The somewhat surpris-
ing result of this is that if you want to include a file with multiple dots in
the name, you need to double the last dot so that OSU will take it as a null
part name and accept the rest of the file name.

- I Chapter 13

266 13.4 SSI directives

If you attempt to include multipart, include, firstpart.htmlx,

OSU will try to open the file named multipart.include.htmlx, and if that
fails, report an error. If it succeeds, it will look for the part labeled "first-
part", and if that fails, it will report an error. If you want to include the
entire file multipart.include.htmlx you have to specify multi-

part. include., html.

If you want to allow the part-in-filename hack on WASD, you need to
configure a redirect in HTTPD$MARCONF:

Redirect /*. * .htmlx /* .htmlx?httpd=ssi&___part=*

but this will work only for files with no dots in the file name and only on
#include v i r t u a l . If you use every feature of OSU-type part includes
and are including multidotted ODS-5 files (which I think is a self-inflicted
wound, but one that someone with a UNIX background might have
thought was a good idea), you're best off sticking with OSU rather than try-
ing to make WASD fake it. (You can run the html_preproc component of
OSU as a CGI script under the OSU-compatibility environment of CSWS
or WASD if you really, really want the functionality.)

1 3.4.4 File parts (OSU and WASD)

< ! --#begin "partname >

The part name is an alphanumeric label unique within the document.
Parts can overlap; there's no hierarchy of parts enclosing parts. Including a
part just says to include the file from where it says "#begin partname" to
where it says "#end partname", and the server doesn't care how many irrel-
evant "begin" and "end" directives it finds in the process; it won't echo
them. If there is no matching "#end" directive the part is assumed to end at
the end of the file. This stuff works in WASD only when in OSU-compati-
bility mode, triggered either by a #config 0SO=" 1" directive or by appear-
ing in a file whose content-type description has "OSU" in it, which, in the
supplied configuration, means an .HTMLX file.

<!--#end "partname" ["partname"] . . . -->

OSU lets you end multiple parts with the same #end directive. (WASD
allows only one per directive.) An #end directive appearing before the
#begin directive matching that part name (or if there is no matching
#begin at all) is ignored.

13.4 SSI directives 267

Config (Apache, WASD, OSU)

The #config directive instructs the SSI processor how to behave while
processing this particular document. Each server supports a different set of
directives.

< ! --#config buffersize=" largest-SSI-directive-length >

(WASD-only.) SSI directives can take up multiple lines of the file (espe-
cially with the WASD #SSI, which supports multiple directives within one
comment tag), and very long ones can potentially overflow the statement-
processing buffer, which is set by default to the longest record length in the
file (as reported by RMS). If you're going to have long SSI strings, set the
buffer size high; it can go up to 32,767. This should be the first directive in
the file.

< ! --#config verify="l I 0 >

(OSU and WASD.) If verify="l" is set, this instructs the processor to
include directives as comments in the generated document; if "0", to stop
doing so. This can appear anywhere in the document.

< ! --#config errmsg: "message- string >

(Apache and WASD.) This changes the default message string to what-
ever you direct.

< ! --#config sizefmt:" abbrev I bytes I blocks >

(Apache and WASD.) This sets the default output format for file sizes
(as displayed by the # f s i ze directive). The "blocks" option is WASD-
only. "bytes" is a byte count; "abbrev" is kilobytes or megabytes.

< [--#config timefmt=" format-string >

This sets the default time format for directives that echo time. (See Table
13.3.) Times, incidentally, are formatted in each server by the C library rou-
tine strftime, which is why the format codes are the same for all.

<!--#config OSU="IIO >

(WASD-onlz: set to 1 to require OSU-compatibility.)

<!--#config trace="llO >

(WASD-onlz: set to 1 to have each statement displayed, highlighted at
the browser, before SSI processing, providing a clear trace of of the SSI
directives and their output; set to 0 to disable the trace. Useful if you're try-
ing to debug flow-control statements.)

I Chapter 13

268 13.4 SSI directives

y

Table 13.3 Time Formats

Element Meaning

%a three-letter abbreviated weekday name (e.g., Mon)

%A full weekday name (e.g., Monday)

%b three-letter-abbreviated month name (e.g., Jan)

%B full month name (e.g., January)

%c preferred date and time format for current locale (per C library)

%d day of month as a two-digit number

%H hour of the day as a two-digit number on the 24-hour clock

%I hour of the day as a two-digit number on the 12-hour-clock

%j day of the year as a three-digit number

%m month as a two-digit number

%p AM or PM (or locale equivalent if different)

%s second as a two-digit number

%w day of the week as a one-digit number (Sunday is O)

%x preferred date (but not time) format in current locale

%x preferred time (but not date) format in current locale

%y year as a two-digit number

%z name of the current time zone (if available)

% % a literal percent sign

1 3.4.5 Directory/index generation (WASD-only)

< ! --#dir file="wildcardable-filespec" [par="directory-parameters"] -->
<! --#index file="wildcardable-filespec" [par="directory-parameters"] -->
<!--#dir virtual="URL-path" [par="directory parameters"] -->
<!--#index virtual="URL-path" [par="directory parameters"] -->

(WASD-only.) This invokes the directory browser to include a directory
or autoindex of the file or path you specify. (#index and #a i r are syn-
onyms. As implemented at present, file and virtual are synonyms; either one
will translate a file-system path or a URL path.) The directory parameters

13.4 SSI directives 269

1 3 . 4 . 6

are the same ones you can pass as a query string to a generated directory; see
the first part of this chapter for details.

Note that the links in the index you generate are just file names, which
works fine when you generate a directory based on the URL because your
default path gets you to that directory. If you specify a path that leads to a
different directory, you'll generate an index page with links that don't work,
because they're relative to the directory you specified~not to your current
path.

Echo d i r e c t i v e s

< ! --#echo var= "varname" -->

All three servers support the #echo directive, whose general form is
shown above. This allows you to include the value of a variable provided by
the server in your document; each server has some special variable names
that may result in some action. See Table 13.4 for the names.

OSU and WASD permit you to skip the var-"varname" step for their
special SSI variables; you can get to any that are supported on the particular
server with

< ! --#echo varname -->

This syntax will make Apache very unhappy indeed, and it may swallow
any part of your document that follows a use of this syntax, so if you're try-
ing to be cross-server compatible, don't use this format. Other formats to
avoid are the WASD-only equivalence of #echo and #" (that's "hash-dou-
blequote" without a corresponding closing quote), and the WASD-only
equivalence of "var=" and "value=". WASD also allows a trailing "=for-
mats t r ing" on the ends of date variables, where the contents of the format
string matches the values in Table 13.3.

WASD and Apache allow you to echo any CGI variable name with the
var="varname" syntax; OSU allows only the special variable names in
Table 13.4 but lets you get at any environment variable with

< ! --#echo getenv= "environment-varname >

which WASD also supports for OSU compatibility. Note that "environ-
ment variable" on VMS pretty much means "anything that the C-language
initialization routine has stuffed into the C run-time library's environment
array at program startup," which will not necessarily be updated in real
time. You can't change the value of a global symbol or logical after program

I Chapter 13

270 13.4 SSI directives

Table 13.4

startup and expect an already running instance of a program to see it if the
program uses getenv; such programs need to do a LIBSGET_LOGICAL to
get the current system value.

Apache permits an optional encoding tag, which must precede the
v a r = " v a r n a m e " tag in the directive to be effective. The syntax is

<!--#echo encoding="none [URL]entity" var="varname >

The default encoding is "entity". "none" will give you the unmodified
value of the variable, even if that will screw up your HTML page; "URL"
will do "%" encoding, suitable for including in a generated link.

Special SSI Variables Provided by the Servers

Variable Servers Meaning

DATE_GMT All The current date and time in Greenwich Mean Time

DATE_LOCAL All The current date and time in local time

DOCUMENT_NAME All The file name of the current document (that's the top-
level document)

DOCUMENT_URI All The URL path that reached the top-level document

LAST_MODIFIED All Last-modified date for the current document

ACCESSES OSU+WASD The number of times this document has been accessed

ACCESSES_ORDINAL OSU+WASD As above, with a suffix of st, nd, rd, or th

HW_NAME OSU+WASD The server hardware (as returned from GETSYI)

SERVER_NAME OSU+WASD The ServerName or localaddress name portion of
the URL to which the server responded

SERVER_VERSION OSU+WASD The server software name and version

VMS_VERSION OSU+WASD The version of VMS running on the server

CREATED WASD Creation date of current file

FILE_NAME WASD VMS file spec of the file that was in the path the user

requested

THE_F I LE_NAME WASD
TH I S_F I LE_NAME

File name only of the file the reference is in

PARENT_FILE_NAME WASD File name only of file that included me, if any

QUERY_STRING_UNESCAPED WASD Same as CGI value

13.4 SSI directives 271

1 3 .4 .7 F low-cont ro l d i rect ives (A p a c h e , WASD)

WASD and Apache both allow for reasonably complex logic in conditional
processing via what amounts to a block-structured programming language
implemented as directives. Each one supports #if , # e l i f , #else , and
#endif , so their capabilities come out about equal. However, the syntax is
so different that it'll be clearer to discuss them separately.

Flow control in Apache
<!--#if expr=" test_condi tion >

<! --#elif expr="test_condition >

<!--#else -->

< !--#endif -->

At this point even DCL has IF . . .THEN ... ELSE ... ENDIF, so I'm not
going to spend a lot of time discussing how that stuff works. A sequence of
conditionals begins with #; f and ends with #endi f . If the # i f condition
wasn't satisfied, a subsequent # e l i f (if any) will be evaluated. If no # i f or
#elsif was satisfied, then an #else block (if any) will be selected.

The "expr" in the # i f and # e l i f directives is literally the string expr,
which is somewhat confusing. It's there because the syntax of SSI directives
in Apache requires tag="quoted s t r i n g " , not because it makes it easier
to read. If it helps, imagine that you're setting expr equal to the truth value
of "test_condition" and testing that.

The syntax for " t e s t _ c o n d i t i o n " is pretty familiar to Perl or C pro-
grammers. I won't try to do a full Backus-Naur Form rendition here. The
contents of test_conditions are literals, variables, and operators. Variables
are indicated with $varname, so dollar signs in literals must be escaped with
a backslash. Compound conditions are made up of elementary conditions
connected with && (logical AND; all must be true for the compound condi-
tion to be true) or I I (logical OR; at least one must be true for the com-
pound condition to be true.) The unary condition is $varname, which is
true so long as that variable has any value at all. All other conditions are
comparisons; you can compare variables to literals, variables to other vari-
ables, literals to literals (although that's kind of pointless). A special case of
literal is a regular expression; you can test whether the contents of a variable
match the pattern specified by the regular expression. (Render a regular
expression as / r egexp / , with the slashes.) The operators are ! (negation), =
(is equal to), != (is N O T equal to), < (is less than), <= (is less than or equal
to), > (is greater than), >= (is greater than or equal to), and -= (matches).

I Chapter 13

272 13.4 SSI directives

You can use parentheses for grouping. Basically, put a Perl conditional in
the quotes and you'll be fine.

An example follows:

<!--#if expr="$HTTP_USER_AGENT-= /^Mozilla/" &&

! ($HTTP_USER_AGENT -- /MSIE/) >

You are using Netscape or Mozilla

< ! --#elif expr=" $HTTP_USER_AGENT -= /MSIE/ >

You are using Microsoft Internet Explorer

<!--#else -->

I don't know what you're using. Here, you figure it

out :

< ! --#echo var="HTTP_USER_AGENT >

<!--#endif -->

Here's the explanation. The HTTP_USER_AGENT variable gets what-
ever the client wants to put in it. Netscape claims to be Mozilla; Internet
Explorer starts with the Mozilla string too (and adds "compatible" some-
where in there, before admitting that it's "MSIE" somewhere in the string).
This means that "if the value of HTTP_USER_AGENT starts with
"Mozilla" AND if the value of HTTP_USER_AGENT doesn't contain
"MSIE" anywhere in it, then it really is Mozilla. Failing that, if it does con-
tain MSIE somewhere, it's IE; otherwise, take the catch-all case.

WASD
WASD doesn't have a full expression parser but manages to be reasonably
expressive nonetheless. Multiple conditionals can occur in a single direc-
tive, and the overall evaluation is as though they were ANDed together. To
do OR tests, add the #or i f directive. The use of #e l i f , #else, and
#endi f are the same as in Apache, although the conditional syntax is dif-
ferent.

<!--#if conditional [conditional] ... -->

<!--#orif conditional [conditional] ... -->

<!--#elif conditional [conditional] ... -->

<!--#else -->

<!--#endif -->

13.4 SSI directives 273

A variable reference is {variable_._n&me}. The unary conditional is
VALUE=variable-reference-or-literal. If the variable contains "0" or
is empty, this evaluates to false; otherwise, it is true.

The other conditionals are comparisons. All have the format

VALUE=what-you' re-testing comparison-operator=what-you're-

comparing-it-to

The comparison operator tags are e q s = (string equal to), s r c h = (string
compare with wildcards, * for match 0-n characters, % for single-character
match), i t= (numeric less than), gt= (numeric greater than), and eq=
(numeric equality).

(Numeric operators call a to i on both the value parameter and the com-
parison parameter~that is, use the C library routine to convert each to
integers~and then compare as indicated.)

If you precede a comparison operator tag with an exclamation point, it
will logically negate the tag.

<!--#if value="0" !eq="0 >

evaluates to false.

Here's a variant of the example I gave for Apache:

< ! --#if value= {HTTP_USER_AGENT} srch="Mozilla*"

value={HTTP_USER_AGENT} ! srch = "*compatible* >

You are using Netscape or Mozilla

< ! --#elif expr=" SHTTP_USER_AGENT ~= /^Mozilla/ >

You are using Microsoft Internet Explorer

<!--#else -->

I don't know what you're using. Here, you figure it

out :

< ! --#echo var = "HTTP_US ER_AGENT >

<!--#endif -->

< !--#printenv -->

(Apache and WASD.) This inserts all assigned variables into the current
document, one name/value pair per line. (This has no special formatting---

I Chapter 13

274 13.4 SSI directives

1 3 . 4 . 8

it isn't a table or anything~so if you want it to be legible, you need to wrap
the #printenv in a <PRE> </PRE> pair.)

SET d i r e c t i v e s

<!--#set var=varname value=value -->

(Apache and WASD.) This sets the variable named varname to the value
specified by "value," creating the variable if need be. However, this is done
differently enough that you have little hope for compatibility unless you
restrict yourself to setting variables to string values.

Apache
< ! --#set var="varname" value="value-string >

Varname is, by convention, a variable name in lowercase, which doesn't
appear as an Apache variable in Table 13.4. You put value-string in quotes
whether or not you want variable substitution. For variable substitution, use
a $ in front of the variable name, such as value=" SLAST_MODIFIED". (As a
result of this syntax choice, if you want to use a literal dollar sign in a string,
you have to escape it by putting a backslash in front of it, as in value=" \
$57.60".) If you use the syntax value="$ (varname)" the value will be
delimited by braces.

WASD
WASD has extended #set capability. You can't reset the value of any of the
variables in Table 13.4 ("server variables"), but you can set the value of any
others ("user variables"). You don't need to use quotes around the varname,
and you want to use quotes around the value string only if it's a literal
quoted string. You can substitute the contents of either kind of variable in
place of any tag value in an SSI directive; the syntax for a variable reference
is to wrap the variable name in curly braces, with some options that let you
select only an extract of the value:

{variable_name }

{variable_name, character_count }

{variable_name, of fset_from_zero, character_count }

Here% an example from the comments in the SSI.C routine:

<!--#set var=EXAMPLEI value="This is an example! >

< ! --#set var=EXAMPLE2 value= {EXAMPLE1,0, i0 } -->

< !--#set var=EXAMPLE3 value=" {EXAMPLE2 }other example ... " -->

13.4 SSI directives 275

< ! --#set var=EXAMPLE4 value=" {EXAMPLE1, I0 }other example! >

< ! --#echo "<P>" var= {EXAMPLE3 } "
" var= {EXAMPLE4 } -->

The output from the "#echo" would be

<P>This is another example ...

This is another example!

<!--#ssi l#directivel...] -->

(WASD only) This makes a neater-loo~ng source document by ~low-
ing multiple SSI statements inside only one set of comment delimiters. The
"#" of each new directive lets WASD know to stop processing the previous
directive. This can enhance ~adability considerably when you're using
structured flow-control statements, ~though if yoffre going to end up with
a large multiline statement, you may want to #config buffersize largen
Here% an example ~om the WASD SSI.C comments, which ~so nicely
shows #set and # i f processing.

<HTML>

<!--#ssi

#set var=HOUR value={DATE_LOCAL,12,2}

#if value={HOUR} it=12

#set var=GREETING value="Good morning"
#elif value={HOUR} it=19

#set var=GREETING value="Good afternoon"

#else
#set var=GREETING value="Good evening"

#endif
---->

<TITLE><!--#echo value={GREETING} -->

<!--#echo value="{REMOTE_HOST}! >
</TITLE>

</HEAD>
<BODY>

<H2>Simple XSSI Demonstration</H2>

<!--#echo value={GREETING} --> <!--#echo

value={REMOTE_HOST} -->,

the time here is <!--#echo value={DATE_LOCAL, 12,5} -->.
</BODY>

</HTML>

Note that only directives and their tags can be wrapped in an #ssI direc-
tive; no HTML code is permitted unless as part of an #echo statement.

I Chapter 13

276 13.4 SSI directives

1 3.4.9 Exec directives (Apache and WASD)

Both Apache and WASD give you the ability to execute server-based com-
mands, images, command procedures, or scripts. The syntax is quite differ-
ent.

Apache
<!--#exec cmd="command to execute, with parameters >

The command string is passed to DCL and the output included in the
constructed document. Variable substitution works inside the quotes; just
preface the variable name with a $. (And, as usual, that means you have to
escape any literal dollar signs with a backslash.) It is extremely important
not to allow Includes (as distinct from IncludesNOEXEC) t o users you
don't trust, as the command executes in the context of the Apache server
account.

"@SYS$STARTUP:APACHE$SHUTDOWN" could be pretty annoying--
funny, whenever anybody loads my SSI document the server crashes--but
"DELETE AVACHE$COMMON: [000000.. .] * .*; *" would definitely have you
testing your backups.

< ! --#exec cgi="/URLpath-to-CGI-program >

executes the CGI program--the specification can include a query string
with URL-encoded parameters--and puts the results into the generated
document. (All the Apache documentation I've seen recommends using
#include v i r t u a l instead, but I don't know why.)

WASD
The possible commands to execute have been divided into an unprivileged
set of mostly harmless commands and a privileged set of potentially quite
dangerous commands. Note that WASD makes #de1 an exact synonym of
#exec.

Also note that unless the content-type of the file you execute is text/html,
WASD will wrap the output in <PRE> </PRE> in the generated document. If
you're running executables or scripts that output stuff with embedded
HTML markup tags, you can get WASD to drop the <PRE> </PRE> tags by
including a type=" tex t /h tml" directive in any of the # e x e c directives.

13.4 SSI directives 277

13.4 .10

13.4.1 I

Unpriv i leged directives:

<l--#exec dir=filespec [par=/qualifier[/qualifier-2]] -->

replaces the directive with the output from issuing a $ D I R E C T O R Y f i l e -

spec [qualifiers].

There might be some nuisance value in p a r = " / o u t -

put=ht_root : [local] httpd$config, conf ".

<!--#exec vdir=/URL-path [par=/qualifier[/qualifier]...] -->

replaces the directive with the output of $ DIRECTORY URL-path-trans-
lated [qualifiers].

< l --#exec show=WHAT-TO-SHOW -->

replaces the directive with the output of $ SHOW WHAT-TO-SHO~ ($ SHOW

USERS or SHOW SYSTEM potentially pose a security exposure risk in showing
would-be intruders real user names to try to crack.)

< ! --#exec say=WHAT-TO-SAY -->

replaces the directive with the output of $ WRITE SYS$OUTPUT WHAT-TO-

SAY. Entertaining values for what-to-say are symbol names, lexical func-
tions, and the like.

Privi leged directives:

< ! --#exec exec= "DCL-Command- String >

replaces the tag with the output of $ DCn-Command-String. This permits
the privileged user to execute any DCL command, including parameters.

< ! --#exec fi Ie=VMS- command-procedure- f i lespec
[par:parameters] -->

replaces the tag with the output of $ o VMS-command-procedure-

filespec parameters.

< ! --#exec run=VMS-executable-image- filespec
[par="parameters"] -->

replaces the tag with the output of $ RUN VMS-executable-image-

f i l e s p e c p a r a m e t e r s (which is quite likely to be an error message about
unrecognized parameters).

I Chapter 13

278 13.4 SSI directives

1 3 .4 .12

< ! --#exec virtual= "URL-path-to-command-procedure"

[par=parameters] -->

replaces the tag with the output of $ @ translated-URL-path-command-
procedure- filespec parameters.

< ! --#exec vrun= "URL-path- to- executabl e- image"

[par=parameters] -->

replaces the tag with the output of $ RUN translation-of-URL-path-

to-executable-image parameters

(which is quite likely to be an error message about unrecognized parame-
ters).

Miscel laneous WASD-on ly direct ives

<!--#exit -->

In an included file, this gets the server to quit processing that file right
now and to return to the parent file and continue, if there's more to do. Most
useful inside conditional blocks to avoid needless processing to end of file.

< ! --#stop -->

Wherever encountered, stop processing the generated document imme-
diately. Again, most useful inside conditional blocks to avoid needless
processing to end of file.

#modified directives
This directive controls the generation of headers based on modification
dates of this or other files. This will work only if it appears in the file prior
to anything that will produce HTML output, since the headers can't be
understood after HTML output begins.

<!--#modified file=VMS-filespec [fmt="?"] -->

<!--#modified virtual=/URL-filespec [fmt="?"] -->

Each of these directives gets the revision date of the file referred to. The
fret="?" tag instructs the server not to complain if the file referred to
doesn't exist. At the end of a series of these directives the modified-date
value is that of the most recently modified file referred to in the series.

<!--#modified if-modified-since -->

If the client sent an if-modified-since header and the modified-date pro-
duced by the earlier tags is prior to the date/time sent in that header, the

13.4 SSI directives 279

server will produce a "304 not modified" response rather than generating
the page.

<!--#modified last-modified -->

a "Last-Modified:" header with the modified date produced by the ear-
lier tags.

<! --#modified expires=expiration-string -->

This is here with the #modified directives rather than having multiple
directives that produce headers, but logically it doesn't have much to do
with the other # m o d i f i e d forms. This one generates an " e x p i r e s : " header
with whatever value you have in the expiration string.

<!--## comment string-->

(WASD-only.) This lets you put a comment in the source document
that won't make it into the generated document unless you've set <--#con-
f ig ve r i fy=l - -> , which echoes all directives as comments.

I Chapter 13

This Page Intentionally Left Blank

/ 4
Run n in g CGI Programs

14.1

This chapter is intended to show the differences and similarities in running
CGI programs on the three Web servers on VMS. Although I don't intend
it as a tutorial on CGI programming in general, the content may venture
perilously close to it some of the time, since I hope to give enough context
so that the rest of the discussion makes sense.

For general information on CGI programming, you might want to
check out these books:

CGI Programming in C & Perl: Featuring C and Perl 5 Source Code
By Thomas Boutell
ISBN: 0-201-42219-0

The Official Guide to Programming with CGI.PM
By Lincoln Stein
ISBN: 0-471-24744-8

Some useful Web resources are the CGI interface definition at http://
hoohoo.ncsa.uiuc.edu/cgi/and, for CSWS, the "Dynamic Content with
CGI" chapter in the on-line Apache manual at http://yourserver.domain.tld/
manual/howto.cgi

CGI def ined

CGI stands for Common Gateway Interface, which, as the name suggests is
a standard interface for programs to be run by Web servers. The CGI speci-
fies some environment variables that the program can interrogate to find
out about the caller, two methods of argument passing (POST and GET),
and a very simple method by which to return results.

It's entirely possible to have a CGI program that doesn't take any argu-
ments~a program that displays the current temperature in the computer

281

282 14.1 CGI defined

room, for example, probably doesn't need anything of the kind, but it does
need to execute when requested, perform some processing, and output
HTML.

If a CGI is specified as the ACTION in an HTML form (which also
specifies the GET or POST methods), the client will pack up the form vari-
ables. (Or a client can just do the same thing as though it were called from a
form without a form being involved it doesn't matter to the CGI defini-
tion.) In either case, the variables are "URL encoded," which means that
they are turned into a long string consisting of fieldname=value (for each
field) stuck together with ampersands. Values that aren't letters of the alpha-
bet or numeric digits get replaced with a representation of their ASCII
value; probably the most familiar one is %20 (the hexadecimal value of the
ASCII code for blank).

f i el dl =value 1 & f i el d2 =value2 %2 0va lue2 2

In a GET method, this is appended to the URL of the program after a
question mark and is called the query string. GET is the method clients use
to ask for pages in any case, and they may use query strings even on static
page requests. Most servers ignore that. On a request OSU recognizes as a
script (because the path includes a defined script directory such as
HTBIN), it will take the string as a query string; on a static page OSU by
default treats it as a search string and if you don't have a search script
enabled will produce an error. The limitation with using the GET method
with OSU is the 4-KB limit on the HTTP request header~large form
input will make the URL too long.

http : / / server, domain, tld/cgiscriptpath? fieldl =valuel %2 0valuel2

The value of the query string will be found in the QUERY_STRING envi-
ronment variable and will typically also be passed on the command line that
invokes the program.

With the POST method, the server collects the URL-encoded form
fields and provides them to the CGI program (or a wrapper for that pro-
gram executing in the CGI process) upon request.

You can use a POST method and still have a query string with addi-
tional information; some of the CGI utilities will combine the information
from the query string with the form fields passed via POST.

All the information sent as form fields comes back as text. Numerical
data are passed as text, not as binary data, and the CGI program is responsi-
ble for converting it back to a number before doing any calculation. Some

14.1 CGI defined 283

languages, such as Perl, just don't care, and will silently do the numeric con-
version for you; this is one of the reasons Perl is such a popular language for
CGI. After parsing the input, the CGI program does whatever it's meant to
do--i t inserts records into a database, submits a batch job, targets and fires
nuclear missiles, and writes HTTP headers and HTML, plain text, or
binary to its output.

Pretty much all CGIs work this way. There are various high-perform-
ance options that use different means to communicate with their servers;
they may not be fully CGI compliant. If they have API in the name (such as
ISAPI), you can figure they use a different application programming inter-
face. There are also CGI accelerators, which spare the cost of spinning up a
brand-new process and loading up a brand-new CGI environment; they
provide a CGI-compliant environment to the scripts that run under them
(such as the RTEs in WASD or HPSS processes in OSU). We'll talk about
these in Chapter 17.

Incidentally, while GET and POST are the only methods supported for
CGIs that are the Action of a form, clients can invoke CGIs with HEAD or
PUT methods, so it may be worth coding to deal with that. It's unlikely
that a client will choose to use a HEAD on a CGI that takes parameters,
since the client can guess that the output of the CGI is script output rather
than a document, but it's fairly likely to happen on output from parameter-
less CGIs unless the CGIs issue "pragma no-cache" or "expires:" headers,
which let the client know the output is expired already so there's no point in
doing a HEAD to get the last-updated date. PUT as a rule only involves
uploading files. WASD makes sure that CGI scripts comply with HEAD
requests by suppressing any output following the CGI header response from
a script. An exception is with non-parsed-header scripts, which, by defini-
tion, take care of all the HTTP responses themselves; their output is not
adjusted at all.

OSU uses DECnet to communicate with the worker processes that
execute CGI programs, and so requires talking to SYS$NET instead of
the default SYS$INPUT. Except for a little wrapping at the beginning of
the program, OSU CGIs function the same as WASD or CSWS. This
wrapping is automatically provided for Perl programs by the
WWWEXEC.COM script, so Perl CGIs can run unmodified on OSU,
WASD, and CSWS. It's also very straightforward to write a little DCL
wrapper for a compiled program that runs on CSWS or WASD to make the
SYS$NET assignment before running the program, thereby avoiding source
code changes. If you have a compiled program that runs under OSU, you

I Chapter 14

284 14.2 Environment variables

14.2

can use the mod_OSUscript CSWS component to run it under CSWS or
the OSU compatibility scheme to run it under WASD. You can also config-
ure WASD to run CGIs in DECnet processes, either with or without OSU
compatibility.

There are various CGI subroutine libraries defined; they simplify the work
of parsing the data stream from the server, but they don't do anything particu-
larly magic (such as giving your program access to shared memory with the
server; that's what modules are for in CSWS); you can still write CGI pro-
grams even if you don't have a CGI library available, and you can use a CGI
library other than the one that came with your server. However, for some
capabilities you do at least need a CGILIB that knows how to talk to your
server. Probably the best advice if you're programming in C is to grab Mark
Daniel's CGILIB, which knows how to talk to all three of these servers.

E n v i r o n m e n t var iables

Environment variables are how the server tells the CGI program about the
environment it's running in. Environment variables are the UNIX mecha-
nism addressing the same problem space as symbols and logical names in
VMS, and sometimes the concept has to be force-fitted into VMS. (The
VMS Perl people have all kinds of fun trying to appropriately populate and
manipulate the %ENV array in Perl, given that there can be symbols and
logicals with the same name and multiple definitions of logical names in
different logical name tables.)

A host (or horde, if you don't like the double meaning of"host") of envi-
ronment variables are available to the CGI process. Many are provided to
give access to the HTTP headers provided by the client; these are typically
named HTTP_headername. Others provide more information about the
transaction or the environment, or give configuration information that
might otherwise be unavailable to a process that doesn't have rights to read
the server configuration files.

While there's a core of CGI environment variables supported by each
server, not all variables are supported by all servers. In addition, while
CSWS and OSU simply don't define any blank variables, WASD will allow
certain variables to be blank and define them anyway; therefore, cross-plat-
form scripts must test for both existence and contents of these variables
before using them.

These variables may be named as shown or named WWW_name-as-
shown. (OSU has a means for prefixing them with anything you like, while

14.2 Environment variables 285

the same may be accomplished by either startup option or mapping rule on
a per-path basis with WASD.) They default to the plain name in CSWS.
The following list doesn't include optional variables that include the con-
tents of form fields; see section 14.6 for more information about them.

AUTH_ACCESS (WASD)

Only defined for authenticated users. Returns with what kind of access
they're authorized: "RF~D" or "READ + WRITE."

AUTH_AGENT (WASD)

Only defined during authentication by an agent. Not for general CGI
use. (See Chapter 7 for more details on authentication.)

AUTH_GROUP (WASD)

Only defined for authenticated users. If the user's membership in an
authorization group (see Chapter 7 for details) is what got the user to this
resource, returns the name of the authorization group.

AUTH_PASSWORD (WASD)

Only defined for authentication performed via the "EXTERNAL"
realm (which means the script itself is going to do the authentication).
This returns the password the user entered, since the script will presum-
ably need it.

AUTH_REALM (WASD)

Only defined for authenticated users. Returns the name of the realm in
which they were authenticated. (This means scripts can be configured not
to give up their secrets even when running in "PROMISCUOUS" mode,
although anybody who has the privileges to run the server PROMISCU-
OUSly probably has the privileges to change the scripts not to do that.)

AUTH_REALM_DESCRIPTION (WASD)

Only defined for authenticated users. Returns the (optional) description
specified for the real, which is the string displayed when credentials are
requested by the browser.

AUTH_REMOTE_USER (WASD)

Only defined for authenticated users. When user name proxying
changes an authenticated remote user name into a local SYSUAF equiva-
lent, this variable contains the original, remote user name supplied by the
client.

I Chapter 14

286 14.2 Environment variables

AUTH_TYPE (A11)

Contains the type of authentication used to limit access to the current
document, such as "BASIC" or "DIGEST." Undefined if none used for
CSWS and OSU; defined but blank in WASD.

AUTH_USER (WASD)

Details of user authenticated with a CGIplus authentication agent (see
Chapter 7 for authentication information). For instance, with SYSUAF
authentication this variable will contain any owner string.

CONTENT_LENGTH (All)

Defined only on POST requests. Contains the length of information
provided by a client POST as an ASCII string representing the number of
bytes.

CONTENT_TYPE (AI 1)

Defined only on POST requests. Contains the content type supplied by
the client with POSTed data.

DATE_GMT (CSWS, WASD)

Current date and time according to the server, represented as Greenwich
Mean Time.

DATE_LOCAL (CSWS, WASD)

Current date and time according to the server, shown as local time.

DOCUMENT_NAME (CSWS, WASD)

Applies only in SSI processing (but CGIs can be called from CSWS SSI
documents, so it's available to CGIs).

In CSWS, translates to the file name portion of the path specification
(e.g., "preproc.shtml"), while in WASD it translates to a full VMS file spec-
ification (e.g., "DKB0:[VMS]PREPROC.SHTML").

DOCUMENT_PATH_INFO (CSWS)

Applies only in SSI processing. Same as PATH_INFO. If any additional
path is included after the document name~that is, http://server.domain.dd/
document/more/stuff/here~it ends up in DOCUMENT_PATH_INFO as
/more/stuff/here.

14.2 Environment variables 287

DOCUMENT_ROOT (CSWS, WASD)

In CSWS, this is the document root specified in the configuration for
this virtual host~a UNIXified VMS device and directory spec. In VC'ASD
this will always be empty.

DOCUMENT_URI (CSWS)

Applies only in SSI processing. The whole path to the document,
including any additional material; http://server.domain.tld/document/
more/stuff/here, ends up in DOCUMENT_URI as/document/more/stuff/
here.

GATEWAY_BG (WASD)

Contains the socket BG device name.

GATEWAY_INTERFACE (AI 1)

Contains "CGI/version" (e.g., "CGI/1.1" for WASD and CSWS, "CGI/
1.0" for OSU).

GATEWAY_MRS (WASD)

Maximum record size of mailbox into which output is written--proba-
bly useful to know if you're writing binary files.

HTTP_ACCEPT (All)

Contains the contents of any "Accept:" headers supplied by the client,
otherwise undefined.

HTTP_ACCEPT_CHARSET (A11)

Contains the contents of any "Accept-Charset:" headers supplied by the
client, otherwise undefined.

HTTP_ACCEPT_ENCODING (All)

Contains the contents of any "Accept-Encoding:" headers supplied by
the client; otherwise undefined.

HTTP_ACCEPT_LANGUAGE (AI 1)

Contains the contents of any "Accept-Language:" headers supplied by
the client~for example, "en-us" for U.S. English.

HTTP_AUTHORIZATION (All)

Contains the contents of any "Authorization:" headers supplied by the
client, otherwise undefined.

I Chapter 14

288 14.2 Environment variables

HTTP_CONNECTION (CSWS)

Contains the contents of any "Connection:" header supplied by the cli-
ent. This is typically supplied only if the client supports keep-alives, and
can be rendered as "keep_alive" or, in newer Netscape versions, "Keep-
Alive".

HTTP_COOKIE (All)

Contains the contents of any "Cookie:" header supplied by the client
(and may not exist if there were no cookies).

HTTP_EXTENSION (CSWS, OSU)

Contains the contents of any "Extension:" header supplied by the client.
A typical value is "Security/Remote-Passphrase."

HTTP_FORWARDED (AI 1)

Defined if the "Forwarded:" header was supplied by the client (as is the
case with proxy servers); contains the contents of that header.

HTTP_FROM (AI 1)

Defined if the "From:" header was supplied by the client, and contains
its contents. (If defined, it contains the completely unvalidated e-mail
address of the client user and shouldn't be counted upon.)

HTTP_HOST (All)

Contains the contents of the "Host:" header supplied by the client. This
should contain one of the aliases for the host on which the server is run-
ning. It should be the host name from the URL that the client is requesting.
Thus a client seeking http://www.serverhost.com:8000/foo.html should
supply "www.serverhost.com" in this header. Many browsers do not do this.
It is required in HTTP/1.1.

HTTP_IF_MODIFIED_SINCE (All)

If the client supplied an "If_modified_since:" header, contains the date
specified in that header.

HTTP_PRAGMA (AI 1)

If the client supplied any "Pragma:" headers, contains the pragmas
specified.

14.2 Environment variables 289

HTTP_RANGE (AI 1)

If the client supplied a "Range:" header, contains the contents. (Useful
for stuff like the byterange program in OSU, which enables large files to be
supplied chunk by chunk.)

HTTP_REFERER (All)

If the client suppled a "Referer:" [sic] header, contains the contents. This
is supposed to contain the URL of the form or page from which a link to
this script was activated, and the script may refuse to run if it doesn't come
from the correct referer. However, clients such as WGET allow users to
specify these headers, so the HTTP_REFERER value may be forged.

HTTP_UA_CPU (CSWS and OSU)

CPU on which the client is running (e.g., PPC), if that information is
supplied by the browser. Handy when downloading client-side software.

HTTP_UA_OS (CSWS and OSU)

OS on which the client is running (e.g., MacOS), if that information is
supplied by the browser.

HTTP_USER_AGENT (AI 1)

If the client supplied a "User-Agent:" header which it generally does~
this contains the contents of that header. This is typically the name of the
browser or other tool being used along with some information about the
platform it runs on.

PATH (CSWS)

This contains the VMS file path to where the CSWS files are stored; in
my tests, it returns consistently as apache$root:[000000]. Included for
UNIX compatibility, where the PATH variable is similar to the value of
DCL$PATH, it can include a list of directories to search to find any execut-
able file name mentioned.

PATH_INFO (AI 1)

If any additional path--as distinct from query string~is included after
the document name~that is, http://server.domain.tld/script/more/stuff/
here~it ends up in PATH_INFO as/more/stuff/here, and if there isn't any
additional path, it's blank or not present.

I Chapter 14

290 14.2 Environment variables

PATH_ODS (WASD)

Contains 0, 2, or 5 indicating whether the path of the script has been set
as ODS-5 ("5"), ODS-2 ("2"), or not set ("0," which defaults to ODS-2).
Could be used to instruct the script on what kind of file name parsing to
do.

PATH_TRANSLATED (AI 1)

On CSWS, if PATH_INFO is nonblank---that is, if there was an addi-
tional path after your script name~then PATH_TRANSLATED gives you

,,/,,) the UNIXified (starts with a VMS file name path with the
PATH_INFO contents stuck on the end; so for http://server.domain.tld/
cgi-bin/scriptname/more/stuff/here PATH_TRANSLATED is/$diskname/
directoryname/more/stuff/here, where /$diskname/directoryname is the
DOCUMENT_ROOT for this particular virtual host, if PATH_INFO is
blank and PATH_TRANSLATED is blank or undefined. On WASD it's
the same story except that the translated path is a VMS-style filespec begin-
ning with the device name, not with a/.

On OSU, when PATH_INFO is nonblank, OSU sets PATH_TRANS-
LATED to the result of passing PATH_INFO's value through the server's
translation rules. When PATH_INFO is blank, the translation is mishan-
dled and you see an internal string showing the script path and script direc-
tory. It's best not to even look at PATH_TRANSLATED if PATH_INFO is
blank.

QUERY_STRING (AI 1)

If there was a query string in the U R L ~ a question mark followed by
some text~this variable gets the stuff after the question mark. This is how
variables are passed in a GET request. The values are URL-escaped, with
blanks converted to %20.

QUERY_STRING_UNESCAPED (CSWS)

The query-string with URL-escaping reversed, so %20 is converted back
to blank. Field-delimiting ampersands are escaped in this string with a
backslash, so you can split the string into name = value pairs based on "\&".

REMOTE_ADDR (AI 1)

Contains the IP address of the client or proxy making the request.

REMOTE_HOST (AI 1)

Contains the host name of the client or proxy making the request, if the
server can determine it; otherwise, it contains the IP address. If you have

14.2 Environment variables 291

DNS lookups disabled, the host name will definitely not be determinable,
but it can also be unavailable for other reasons.

REMOTE_PORT (AI 1)

The port on the remote client to which replies should go (of academic
interest only, except when debugging a server).

REMOTE_USER (AI 1)

If the CGI script is password protected, this will contain the user name
provided by the client. In WASD, this is defined but blank if the script
wasn't password protected; in other servers, it's undefined.

REQUEST_METHOD (AI 1)

Contains "GET, HEAD," "PUT," or "POST," depending on the
method of the client request. (Forms can only generate GET and POST,
but CGIs that don't require forms will sometimes get a HEAD request from
browsers looking to see whether a request can be served from cache.)

REQUEST_TIME_GMT (WASD)

The time the request was received on the server, according to the server's
clock, rendered as GMT.

REQUEST_TIME_LOCAL (WASD)

The time the request was received on the server, according to the server's
clock, rendered as local time.

REQUEST_URI (WASD and CSWS)

The path to the request http://server.domain.tld/cgi-bin/scriptname/
whatever yields/cgi-bin/scriptname/whatever.

SCRIPT_FILENAME (CSWS, WASD)

In CSWS, contains a UNIXified full VMS file path (e.g.,/apacheSroot/
cgi-bin/test-cgi-vms.exe) that gets to the script file. In WASD, contains a
non-UNIXified full VMS file path that gets to the script file.

SCRI PT_NAME (AI 1)

Contains the URL path from the root of the CGI script being executed.
(So/htbin/dclenv_rm.com in OSU, not/bin/.)

SCRIPT_RTE (WASD)

The Run-Time Environment (persistent scripting environment in CGI-
plus) in which the current script is being executed.

I Chapter 14

292 14.2 Environment variables

SCRIPT_URI (CSWS)

A fully qualified, host name and scheme included, Uniform Resource
Identifier that points to this script (e.g., http://server.domain.tld/cgi-bin/
scriptname.ext).

SCRIPT_URL (CSWS)

The URL path to this script~for example,/cgi-bin/scriptname.ext.

SERVER_ADDR (WASD)

Numeric IP address of the host serving the request.

SERVER_ADMIN (CSWS, WASD)

The ServerAdmin value from the configuration, which may be an e-mail
address; useful to plug into error page scripts and so on.

SERVER_CHARSET (WASD)

Default server character set (e.g., "ISO-8859-1").

SERVER_GMT (WASD)

The offset of the server's local time from Greenwich Mean Time; my
California-based server shows "-07:00" for Pacific Daylight Time.

SERVER_NAME (AI 1)

The host name of the host/service/local address that responded to the
request; should match HTTP_HOST if the client supported the HOST
header.

SERVER_PORT (AI 1)

Contains the number of the port on which the client accessed the server.

SERVER_PROTOCOL (All)

Contains "HTTP/IeveI" (e.g., "HTTP/1.0, HTTP/0.9," or "HTTP/
1.1") depending on which protocol the client and server negotiated. (With
the same browser, I find CSWS saying "/1.1" while the other two say "/1.0".)

SERVER_SIGNATURE (CSWS, WASD)

The server signature from the configuration files, useful in error pages
and the like. (If you want to be crafty, you can use the server signature only
when you detect an HTTP_FORWARDED variable, which is when there
might be some confusion about which server the client connected to.)

14.4 Configuration for CGI 293

14.3

14.4

SERVER_SOFTWARE (AI 1)

Returns a string describing what software is running on the server.
(Unless you've configured it to be something else, which you can do in
WASD if you want to hide what server you're running.) Sample values:
"HTTPd-WASD/7.2.2aw OpenVMS/AXP SSL, OSU/3.10alpha;UCX,"
"Apache/1.3.20 (OpenVMS) PHP/404p11 mod_perl/1.25 mod_ssl/2.8.4
OpenSSL/0.9.5a."

UNIQUE_ID (CSWS, WASD)

Magically returns a unique value for this request, which can then be
used as a temp-file name (in the case of WASD, which uses the same
unique_id generator as Apache but substitutes "_" for "@" in the resultant
string) or a database key.

Necessary HTTP headers

Your CGI script actually talks to the server, which relays what you pass
along to the client. Because the server doesn't know what the script is going
to do or say, the script has to provide the HTTP headers that the server
ordinarily provides for static content.

HTTP headers are separated from the rest of the output by one blank
line--that is, there's the header, than carriage-return linefeed, then carriage-
return linefeed again.

You need at least one header to tell the client what's coming; that's the
"Content-type:" header. Some popular values are "Content-type: text/
plain" for ASCII text with no markup codes, which the browser will typi-
cally display without reformatting, and "Content-type: text/html" for
HTML pages, which the browser can render as it sees fit. See the discussion
in section 14.5 for more detail.

Configurat ion for CGI

Here's a brief summary of the script configuration highlights from Chapter
7. This should be enough to get a directory defined in which you can put
scripts that will be executed.

I Chapter 14

294 14.4 Configuration for CGI

14.4.1

14 .4 .2

CSWS

ScriptAlias url-prefix file-system-path

Same syntax as Alias, but marks the directory as containing executable
CGI scripts. A typical usage example would be a url-prefix of " / c g i - b i n "
and a file-system-path corresponding to " /$cg i -d i sk /cg i -b in" . (You
could achieve the same effect by using Alias and specifying "opt ions
+ExecCCI" in a container directive for that directory or path.)

ScriptAliasMatch url-pattern file-system-path

Same meaning as S c r i p t A l i a s , but uses regular expression for the url-
pattern.

OSU

OSU's script-directory commands weren't covered very fully in Chapter 7,
so this is new material. The directive to establish a path (which may be to
an individual script or to a directory) as containing executable scripts is:

EXEC /path VMS-path-or-MST-processor-spec

HTBIN is an obsolete directive that still works.

HTB IN WWW_ROOT : [BIN]

is equivalent to:

EXEC / HTBIN/* WWW_ROOT : [BIN]

EXEC is considerably more flexible, since it allows multiple script direc-
tories. You can define processors (either high-performance script server
[HPSS] or MST processors) for anything with a particular path; the proces-
sor itself must be configured to know how to map the path and find the
script it's meant to execute.

If you just give a VMS directory path as the second argument to the
directive, scripts in that directory will be processed via the DECnet object
WWWEXEC. You may need to copy WWWEXEC and some supporting
files (CGI_SYMBOLS.EXE) from WWW_ROOT:[BIN] into other script
directories, or tweak WWWEXEC so it knows to run CGI_SYMBOLS
from WWW_ROOT: [BIN].

There'll be more discussion of MST and HPSS processes in Chapter 17;
the rest of this chapter will discuss DECnet-based CGI scripting in OSU.

14.4 Configuration for CGI 295

14 .4 .3 W A S D

In previous chapters I've discussed the possibilities of using some account
other than the default WASD account for scripting. While this is crucial
when letting users write scripts, it's not a bad idea even for scripts you get to
bench-check first. See the /PERSONA startup qualifier and the SET pa th
SCRIPT=AS=username directive; there's a somewhat fuller discussion in
Chapter 13.

WASD offers three mapping rules that relate to CGI scripting. Exec and
uxec rules map script directories; the script rule maps a specific script. We'll
discuss UXEC fully in Chapter 19, so we're skipping it for now.

EXEC[+] template [(RTEname)]result

The template should include a wildcard so that named scripts will be
matched, resulting in something like " /h tb in /*" . The result can have the
wildcard substituted in, resulting in something like " / h t _ r o o t / b i n / * " .
This instructs the server both where to look for files in htbin and that those
files should be treated as executables.

This means that any script in the directory can be executed, which
means that anybody who can contrive to put a file in that directory can get
the server to execute anything he or she wants. Make sure permissions are
set appropriately.

If the "exec+" form is used, the CGIplus persistent scripting environ-
ment will be used. If a Run-Time Environment name is given, that environ-
ment (e.g., a persistent Perl process) will be used. (More discussion on
CGIplus and RTEs can be found in Chapter 17.)

SCRIPT template file-system-path-to-script

The script rule maps a URL to a particular file and makes that file exe-
cutable. This can be used to make a script look like a static Web page~for
example,

SCRIPT /status .html /cgi-bin/status. pl

or for making sure only specific named scripts in particular locations are
run. Typically the template will look like "/scripgname*", and the path to
script like "/Web/myscripts/bin/scriptname. exe*"; the wildcards here
are to pass along path names on which the scripts should operate.

Before you go into production, go back to Chapter 7 and read about the
WASD SET commands with SCRIPT options.

I Chapter 14

296 14.5 CGI environment

14.5 CGI e n v i r o n m e n t

14 .5 . I CSWS

When a CGI process is activated under CSWS, it has a full complement of
symbols defined, with the names of the environment variables.

SYS$OUTPUT points to a socket that will be read by the server. The
socket is a BG device. If you use writes from DCL, the C RTL, or any lan-
guage that goes through RMS, the carriage-control attribute of the socket
will be applied, whether you're writing text or binary data, and can mess up
your binary data.

HTTP headers must be separated with carriage-return followed by line-
feed. If you need to send binaries, use APACHE$FLIP_CCL.EXE to change
the state of the carriage-control attribute (initially "ON"). Run it after send-
ing the headers, or make sure to use explicit carriage-return linefeeds on your
headers if you emit them after running APACHE$FLIP_CCL. The release
notes recommend using the F$FAO lexical function, like so:

$ write sys$output f$fao("!AS!/!/","Content-type: image/
jpeg")

(" : / " will produce the explicit CRLF needed.)

Use APACHE$DCL_BIN.EXE to copy binary files from within DCL
scripts. If you're running a C program that needs to copy a large binary file,
you can link to the APACHE$FIXBG shareable image and call the routine
to change the socket characteristics to work with large binary files. See the
release notes for details.

Nothing special is done to SYS$INPUT; if you're in a DCL program it
points to SYS$COMMAND (the DCL file itself). If you need to accept
PUT or POSTed data (since you can get the stuff sent with GET from the
QUERY_STRING variable), you can assign SYS$INPUT to
APACHE$INPUT, or read directly from APACHE$INPUT. (You then
have to parse the results yourself, which is annoying in DCL but straight-
forward enough.)

1 4 . 5 . 2 OSU

OSU runs scripts in separate processes to which the server has a logical link
via DECnet. The processes can be kept around for multiple script execu-
tions, saving process start times. OSU makes the connection to the

14.5 CGI environment 297

WWWEXEC DECnet object, which runs the command procedure
WWWEXEC.COM; you can (and should) read the command procedure
to see exactly what's going on. There's built-in support for executables,
DCL procedures, Perl scripts, and PHP pages; you can edit the procedure to
support other languages if you like.

The command procedure can have a dialog with the server over the
DECnet link. (The device name is SYS$NET, but WWWEXEC.COM
opens NET_LINK, so both it and scripts it runs can read and write to
that.) The server always starts by sending WWWEXEC, the method (GET,
POST, PUT, etc.), protocol, and URL (file portion of the URI) from the
request.

Special <DNgTxxx> tags are used to send commands to the server, as fol-
lows; these notes are based on the comments in the WWWEXEC file.

<DNETARG>

Instructs the server to send script process the search argument (that is,
the query string) parsed from the URL of request. If the argument was gen-
erated by an HTML form, the response message may be quite long--possi-
bly even too long for DCL, which has an upper limit of 255 characters for a
symbol value or 1,024 for a symbol value with all the translations done.

<DNETARG2>

Same as <DNETARG> except that the argument is truncated to 255 char-
acters to fit in a DCL symbol.

<DNETBINDIR>

Instructs the servers to send the htbin directory string as defined in the
rule file~that is, tell it where to find executables.

<DNETCGI>

Instructs the server to read DECnet data "raw" and interpret data sent
by Scriptserver as CGI (Common Gateway Interface) script output. If first
line is loca t ion- <URn>, a redirect is performed. End of data is flagged by
< / DNETCGI >.

<DNETHDR>

Instructs the server to send the HTTP request header lines sent by the
client to the server. Last line sent will be a zero-length line. (This allows the
setting of the HTTP_xxx environment variables.)

I Chapter 14

298 14.5 CGI environment

<DNETHOST>

Instructs the server to send the http_defauh_host environment variable
(host name to use in constructing URLs).

<DNETID>

Instructs the server to send the server version, the http_default_host
environment variable, the local port for the connection, and the remote
port and host address. A single message is sent with the items separated by
spaces. Note that the remote address is sent as a signed value.

<DNETINPUT>

Instructs the server to read data from the client TCP connection and
pass it on to the script process. Only one DECnet message will come back
in response; if more data are still needed, the script process needs to ask for
these data. (This is how arbitrarily large PUT files can be uploaded.)

<DNETPATH>

Instructs the server to send the matching portion of the translated URL
that caused the script to be invoked---in other words, what ends up in the
PATH environment variable. This will be truncated to 255 characters to fit
in a symbol and converted to uppercase.

<DNETRAW>

Instructs the server to read DECnet data "raw" from the script process
and send to the client. The script process is responsible for formatting the
entire response in conformance with the HTTP protocol (including car-
riage control characters). End of data is flagged by a DECnet message con-
sisting solely of "</DNETRAW>", which will cause the server to close the
connection.

<DNETRECMODE>

Instructs the server to process any subsequent <DNETRAW> or <DNETCGI>
using "record" mode rather than "stream" mode. In record mode, an
implied CRLF is added to the end of every DECnet record. The maximum
record length is reduced to 4,094 bytes (because the cr/lf takes up two bytes
out of the 4,096).

<DNETRECMODE2 >

Forces "alternate" record mode, which means it tries to use longer
records.

14.5 CGI environment 299

<DNETREUSE>

Instructs the server to try to reuse this script process (which will work up
to the specified maximum number of times from the configuration).

<DNETRQURL>

Instructs the server to pass along the actual URL (prior to rule file trans-
formations) specified in the client's request; the server returns a single DEC-
net message.

<DNETTEXT>

Instructs the server to send the client an HTTP protocol response with a
content-type of "text/plain" and follow with data provided by the scripting
process. The script process will first send an HTTP status line (e.g., "200
sending doc") and then follow it with text that is to appear in the user's
output window.

Data are sent assuming implied carriage control; the server appends a
new line (CRLF) to each DECnet message it receives over the logical link.
The script process marks the end of the text data by sending a line consist-
ing solely of the string "</DNETTEXT>", upon receipt of which the server
will close the connection.

<DNETXLATE>

Instructs the server so that the next thing coming from the script process
is a URL to translate according to the rules file, after which it should send
the results back to the script process.

<DNETXLATEV>

Works the same as <DNETXLATE> but honors any document protection
rules in force for this particular connection. If the user isn't entitled to see
the document based on the URL passed, the translation comes back blank.

You'll mostly have to pay attention to these <DNETxxx> headers only if
you're doing DCL scripting or if you don't want to use the provided
CGILIB. If you're running Perl or PHP, V/WWEXEC will quietly set up
the environment on your behalf.

To get the environment symbols defined, run CGI_SYMBOLS.
(WWWEXEC defines this as a foreign command, since it takes command-
line arguments.) The usage is either:

$ CGI_SYMBOLS prefix [form_prefix] [field=filenamepairs]
[bitmask]

I Chapter 14

300 14.5 CGI environment

or

$ CGI_SYMBOLS logical-name-table [temp-file-
name. extension]

In the first style, CGI_SYMBOLS defines local symbols using whatever
prefix you specified~for example, WWW_ will create symbols named
WWW_xxxx; if you specify a form_prefix, symbols will be created for the
form fields that came back in this request. Assuming you used FORM_ as
the form_prefix, you'll get a symbol called FORM_FIELDS containing a
comma-separated list of field names specified in the form return, a symbol
for each field named FORM_FLD_name, and a FORM_FLD_nnnn (that
is, the number of the matched field in the list of form fields), which con-
tains the value of the form field. The third argument is a hack to get around
the problem of field values, which can be longer than 255 characters; you
can specify a comma-separated list of "fieldname=filename" pairs, and
CGI SYMBOLS will write the values of each of those fields into the file
name specified for it, defining the value of the FORM_FLD_nnnn symbol
as the file name for that field.

CGI_SYMBOLS by default will issue a <DNETCGI> tO the server, which
puts the link to the HTTP server into CGI mode and sets the environment
so that WWWEXEC will automatically send the CGI terminator when the
DCL script exits. In this mode writes must have explicit carriage-control
characters; also, the first line output must be either a content-type:
header or a location: header, followed by a blank line. If you don't want to
be in CGI mode after the symbols are defined, you can tell
CGI_SYMBOLS not to do that by using as the fourth argument a bitmask
with bit 0 set (e.g., "1").

In the second style, CGI_SYMBOLS defines logicals instead of symbols
for the environment variables, and it defines them in the logical-name table
you specify. If a file name is defined (which must include the "." so that
CGI_SYMBOLS can tell it's a file name), the request content (query string
or post block) will be put into that file. (WWWEXEC uses this second style
to set up the environment for Perl scripts to run portably.)

It's typical to run CGI_SYMBOLS explicitly only in DCL scripts, but
you could do it for any script that didn't want to bother parsing the data
itself.

WWWEXEC knows what to do with .COM, .EXE, .PL, and .PHP
files. If you want to execute files with some other extension, you need to
edit WWWEXEC and tell it what to do--there's no configuration option
such as AddHandler.

14.5 CGI environment 301

14.5 .3 WASD

Environment variables include form fields, which are defined as
WWW_FORM_fieldname. The prefix of environment variables is
WWW_ by default, although this may be changed on a serverwide basis
using the/CGI_PREFIX startup qualifier or selectively on a per-path basis
using the CGIPREFIX mapping rule. This latter method allows scripts
requiring different or no prefixes to be configured without disrupting other
scripts that expect the prefix. If you need to read POST information, the
device to read is HTTP$INPUT.

WASD pays attention to the content-type: header produced by the
scripts and attempts to treat the output appropriately.

The kind of communication handled with DNETxxx headers in OSU is
handled through callouts in WASD. (It can also be approached via the
s c r i p t - c o n t r o l : header, which is discussed next.)

CGI/CGIplus callouts are initiated by the script process. The script
writes a special escape character or sequence to the server mailbox; the value
of the sequence is the translation of the logical CGIPLUSESC. Once the
dialog is opened by the script process, it can consist of any number of
(script request: server response) pairs until the script ends the callout.
(Requests can suppress responses, so there can legitimately be more requests
than responses in a callout dialog.)

Requests look like this:

[!] #] keyword: parameters

(The optional exclamation point or hash tells the server not to bother
responding.)

Responses look like this:

status-code response

Here are the keywords. (Some of these really apply only to CGIplus, not
CGI, but it makes sense to describe the mechanism completely here.)

AUTH-FILE- file specification

If/PROFILE is enabled, this determines whether the user name associated
with the request is authorized to access the file specified.

CGIPLUS: struct]record

tells the server that this CGIplus script can process the CGI variables in
"struct" mode. By default each CGI variable is transferred to a CGIplus

I Chapter 14

302 14.5 CGI environment

script one "record" at a time. In "struct" mode all variables are transferred in
a single, binary I/O, which the script then has to parse.

GATEWAY-BEGIN- status-code

If you're using the raw TCP/IP socket for output~which there is rarely
a good reason to do; it's not even noticeably faster--this callout tells the
server about it and gives an HTTP status code.

GATEWAY-END: integer

If you're using the raw TCP/IP socket for output, this callout tells the
server the quantity of data transferred directly to the client by the script.

LIFETIME: minutes-to-livel0l-llnone

sets or resets a script process lifetime (in minutes). It can extend the lifetime
before rundown of frequently used scripts, overriding the [DclCgiPlus-
LifeTime] configuration parameter. Zero resets to configuration default;
- 1 or none makes the script process immortal.

MAP-FILE: file specification

Maps a file back to its URL-style path equivalent; it doesn't guarantee
that the file name is legal.

MAP-PATH: URL-style path

Maps the URL-style path against the server's rule database into a VMS
file specification. Note that this does not verify the file name's legality or
that the file actually exists.

NOOP :

No operation. Just return a success response. (You probably won't be
using this one much.)

TIMEOUT-BIT-BUCKET : number-of-minutes

tells the server how long to let a script continue after the client disconnects.
Overrides the HTTPD$CONFIG [mclBitBucketTimeout] configuration
directive.

TIMEOUT-OUTPUT: minutes l01-11none

sets or resets a script request lifetime (in minutes, overrides the [Timeout-
Output] configuration parameter), even if the script doesn't generate any
output in that time. Specifying none (or -1) gives it an infinite lifetime;
zero resets to default.

14.5 CGI environment 303

TIMEOUT-NOPROGRESS: minutes I 0 1 -i I none

sets or resets a script request no-progress timeout counter. The no-progress
period is the maximum number of seconds for which there may be no out-
put from the script before it is aborted. Specifying none (or -1) gives it an
infinite lifetime; zero resets to default.

Script-Control

is a proposed CGI/1.2 header, with the directive no-abort; WASD imple-
ments not only that but an assortment of WASD-specific extensions, as fol-
lows (in a list based on the WASD documentation).

no-abort

forbids the server from terminating the script process even if it isn't produc-
ing any output. Possibly useful if you've got an incredibly slow script, but
dangerous because such scripts can accumulate and clog up your server.

X-buffer-records

tells the server to buffer records written by the script until there are [Buffer-
SizeDclOutput] bytes available, then write it as a single block to the client.

X-crlf-mode

tells the server to add a trailing CRLF on each record that doesn't have one.
That's standard VMS carriage-control, but it's also what's needed for HTTP
headers.

X-lifetime=number-of-minutesl0 INONE

sets the idle lifetime of the current script process; if it doesn't get any work
before the number of minutes specified, it's deleted; zero sets the lifetime to
the configuration default; none exempts it from idle-process pruning.

X-record-mode

tells the server to add a trailing LF on each record that doesn't have one,
regardless of content type. This is what is usually required by browsers for
carriage-control in text documents.

X-stream-mode

tells the server to leave the carriage-control strictly alone; regardless of con-
tent type, what it sends the client is exactly what the script writes.

I Chapter 14

304 14.5 CGI environment

X-timeout-noprogress=number-of-minutes I 0 I NONE

The length of time the process will be allowed to go without any output
before the server decides it's wedged and deletes it. Zero sets this length
back to the configuration default; none keeps the server from tracking this
info.

X- timeout-output=number-o f-minutes I 0 1 NONE

The length of time the process will be allowed to continue if it hasn't fin-
ished before being deleted by the server, regardless of whether it's still proc-
essing the request. Zero sets it back to the default; n o n e disables this
functionality.

WASD provides the CGIUTL utility, a Swiss army knife that does a
bidirectional assortment of things on behalf of DCL scripts. Define
HT_EXE:CGIUTL as a foreign command and you can use these qualifiers
(based on the list in the comments of the program)"

/2QUOTE

Double up the quotes in the symbol given as a parameter (when you
want the quotes to actually be part of the definition).

/BODY

Output the request body.

/CGIRESPONSE [=s tatus-code]

Send CGI header with this status code (default 200).

/ CHARSET= char a c t er- s e t- name

Tells CGIUTL to explicitly specify a "text/" response character set (to
suppress just supply an empty string).

/CONTENT=content- type

Sets the content-type for the response (default "text/plain").

/COPY

Copy the file given as a command-line parameter out to the client.

/DBUG

Turns on all "if (Debug)" statements.

/EXPIRED

Add a preexpired "Expires:" header to the output.

14.5 CGI environment 305

/FIELD= fieldname

Just output the value of this particular field.

/ FORr~T=HEADINGS I N~ES I NONE

applies when writing a form-URL-encoded body as a file; "HEADINGS" says
to use underlined headings, "NAMES" says to use "f ie ld-name: f i e l d -
value", while "NONE" suppresses field names completely.

/ LOCAT I ON=new- 1 oca t i on- URI

sends a 302 HTTP header (redirect) with the specified location.

/MAXSYM=maxchars

sets the maximum number of characters per output symbol value (and will
spill over values to additional symbols).

/MULTIPART

Body is muhipart/form-data--used to enable file uploading.

/ OUTPUT= f i i espec

Output to specified file; filespec is a VMS file specification.

/PREFiX=string

Use this prefix for all the created symbol names; defaults to "CGIUTL."

/ [NO] QUIETLY

When an error occurs, exit with the status inhibited (allowing the proce-
dure to do its own error recovery).

/RESPONSE [=status-code]

Send a nonparsed header--that is, not interpreted by the server--with
this status code (default 200).

/ SOFTWAREID

A synonym for/VERSION; displays CGIUTL and CGILIB versions.

/ SYMBOLS [=LINES, NOCONTROL]

Put the parsed input into DCL symbols, optionally one line per symbol
(<LF> delimited), optionally strip control characters (e.g., <HT>). (This is
for the benefit of scripts dealing with forms that have TEXTAREAs, which
can be much longer than will fit into a single symbol.)

I Chapter 14

306 14.6 Languages for CGI

/URLDECODE

Read and decode a form-URL-encoded, POSTed body; use with /SYM-
BOL or /OUTPUT to specify whether to decode it into DCL symbols or to
write the output to a temp file.

14.6 Languages for CGI

The VMS calling standard means that any compliant language can call code
in any other compliant language. Perl, Python, and DCL aren't compliant
languages, more's the pity, but C, FORTRAN, COBOL, BASIC, MACRO,
PL/I, and Dibol can all interoperate and, because of the simplicity of the
CGI, all do Web work. (Perl and Python are extensible, so you can write
some glue to call subroutines in C or, with more trouble, other languages.)

This may not be worth your while, but is at least a theoretical possibility,
and might become a reasonable thing to do if you have extensive applica-
tion-specific subroutine libraries already and want to Web-enable those
capabilities.

14.6.1 DCL

The simplest workable CGI needs to put out a header followed by a blank
line, and then some actual text. This looks different on each server. Here's
how you could show your current system uptime on each one:

CSWS

$ write sys$output f$fao("!AS!/!/","Content-type: text/
plain")
$ SHOW SYSTEM/NOPROC

OSU

$ define sys$output net_link
$ write sys$output "<DNETRECMODE>"
$ write sys$output "<DNETCGI>"
$ write sys$output "content-type: text/plain"
$ write sys$output
$ SHOW SYSTEM/NOPROC
$ write sys$output "</DNETCGI>

14.6 Languages for CGI 307

14 .6 .2

14 .6 .3

WASD

$ write sys$output f$fao("!AS!/!/","Content-type: text/
plain")
$ SHOW SYSTEM/NOPROC

Each server comes with at least one example DCL CGI. (Many of the
OSU examples use a clever strategy of including the form text in the script,
using a $ CREATE command to copy the form to the output. This is quite
handy and can be used with the other servers as well.)

ClC++

Get the WASD-CGILIB from the WASD site and you should be able to
link C programs or C++ programs for other servers and have them work,
provided that they were written portably enough to run on VMS. If you're
running OSU, you can also just use the OSU-CGILIB (it's a bit confusing
because both packages supply a collection of different functions to interact
with the scripting environment).

OSU and WASD come with lots of C-based scripts if you want to go
through them in detail and figure out how they do what they do.

F O R T R A N

You can certainly write CGI programs in FORTRAN. A splendid example
is Jonathan Boswell's HYPERMAIL, which serves mail archives to the Web.
You can find it at http://www.newtrumpet.org/jsb/hypermail/.

(I've used this program to serve mailing list archives for about five years
and been quite happy with it. Mark Daniel's yahMAIL is a complete mail
user agent as well as an archive server, so I use that as well.)

This was written specifically for OSU and uses the <DNETxxx> dialog
shown previously. Here's an example of that dialog:

C Connect to network link established by WWWEXEC.COM
Open (unit=l, file='net_link:', status='old',
1 carriagecontrol='list', reci=4096)

Write(l,10) '<DNETRECMODE>'
i0 Format (a)

Write (i, i0) ' <DNETRQURL> '
Read (i, 20, end=30) RqurlL, Requested_URL

20 Format (q,a)

I Chapter 14

308 14.6 Languages for CGI

14 .6 .4

30 Write(l,10) '<DNETCGI>'

Write(l,10) 'status: 200 Sending document'

Write(l,10) 'content-type: text/html'

Write(l,10) !Yes, that's right! A null record. Take THAT, C.

Write (i, I0)

$ ' <html><head><title>HYPERMAILVl. 4< / title></head><body> '

The program also has handy, swipeable code for URL-encoding and
decoding and request parsing as well, using calls to the STR$ run time
library rather than the fairly weak native FORTRAN string manipulation
capability. This approach can be emulated even in Macro code. If you've got
a FORTRAN program you want to Web-enable, or if you just like FOR-
TRAN, get HYPERMAIL and study it.

Another approach, which should work for WASD and OSU, is to run
CGI_SYMBOLS or CGIUTL and make symbols out of form fields, and
then do calls to LIBSGET_SYMBOL to get the values.

Perl

Perl is an extremely handy scripting language, and the CGI.PM module
makes it a splendid CGI language. CGI.PM takes care of most of the book-
keeping; you can use it to define forms or you can use it with static forms.
The Perl cabal have recognized CGI as a core utility, so you get it with each
Perl distribution and don't even have to download it separately.

On UNIX systems the Perl scripts are usually named "name" rather than
"name.pl," and have the execute bit set. The shell reads the first line of the
script, which has a "# ! / pa th - to -pe r1" at the top (sometimes called "the
shebang line") and invokes the processor it finds at that path.

No part of this scheme works on VMS~there is no execute bit, DCL
won't parse a shebang line, and so on. If you're porting Perl scripts from
UNIX, you will at the very least need to change the name from "name" to
"name.pl."

If the script is pure Perl, that may well be all you need to do. If it makes
system() calls to utilities that don't exist on VMS, uses extensions you
haven't installed, and so on, then you have more work to do. (Some Perl
scripts explicitly open a pipe to sendmail when they want to send mail,
which is completely unnecessary, as well as flagrantly unportable; it won't
even work on UNIX systems that run exim or qmail instead of sendmail.)

In CSWS, if you've installed mod_perl and defined a handler for the .PL
data type, the .pl scripts will be executed reasonably if they're in a directory

14.6 Languages for CGI 309

CSWS expects to find Perl scripts in. (To see if you've got this working,
rename the "printenv" script you find in CGI-BIN to "printenv.pl" and
copy it to apache$common:[perl]; then run it as yourserver/perl/print-
env.pl.) As mod_perl comes configured out of the box, it expects to find
Perl scripts in apache$common:[perl], not in cgi-bin.

Similarly, in WASD, if you've mapped .PL under [DclScriptRun-
Time], it knows to use the Pcrl interpreter on your script. (At least if you
haven't specified one of the higher-performance server options.)

In OSU, the distributed WWWEXEC knows what to do with a .PL
extension. (It looks for webperl, then looks for perl, then looks for miniperl,
and invokes the script with output redirected to NET_LINK.)

Here's printenv from the Apache distribution, which should work on
any of the Web servers. It gives a little bit of the flavor of Perl:

#!/usr/local/bin/perl

printenv -- demo CGI program which just prints its
environment

print "Content-type: text/html\n\n";
print "<HTML>\n";
print "<HEAD><TITLE>AII the environment variables</
TITLE></HEAD>\n";
print "<BODY>in";
print "<PRE>\n";

foreach $var (sort(keys(%ENV))) {
$val = $ENV{$var};
$val =- sl\nl\\nlg;

$val :- sl"l\\"Ig;
print "${var}=\"${val}\"kn";

}

print "</PRE> in" ;
print "</BODY>in" ;
print "</HTML>in" ;

(The central loop is very characteristic of Perl. %ENV is an associative
array, which they call a hash; it's an array of environment-variable values
indexed by environment variable names, keys(%ENV) creates a temporary
array of the names of the variables; sort(keys(%ENV)) creates a temporary
array of those names sorted in alphabetical order. So this says, for each envi-
ronment variable taken in alphabetical order, which we'll refer to as the

I Chapter 14

310 14.6 Languages forCGI

14.6 .5

scalar $var, look up the value (that's what $val=$ENV{$var} does), then
escape any new lines or quotes in the value so they don't mess up the dis-
play, then print a line showing the name/value pair. That's quite a lot for six
lines, one of which consists entirely of a right curly brace. And this isn't even
getting into CGI.PM.

PHP4

In December 2001 Compaq announced a beta release of MOD_PHP, the
module that makes PHP work with CSWS. There are literally dozens of
books on how to use PHP, so I'll gloss over this briefly here. PHP can also
be used with OSU~indeed, David Jones of the OSU server did the first
VMS port o f P H P ~ a n d WASD.

PHP is an annoying recursive acronym; it stands for PHP Hypertext
Processor. It's basically a template language; a PHP page is HTML with spe-
cial tags (similar to server-side includes) that are interpreted by PHP and
replaced with the results of various actions, which can include database
lookups, script executions, and so on. The PHP scripting language is pretty
complete, and in fact you can write fully functional PHP scripts that aren't
embedded in HTML pages and still have them be useful.

A very typical use of PHP is to show catalog pages. Where the SSI
approach would require one page for each item (which dynamically
included the standard headers and footers), the PHP approach would have
only one page, with the item number passed as a parameter that would
cause PHP to do a database lookup, fetch the specific content for that item,
and plug it into the page. PHP is also used to display newspaper stories and
in forums. The free software news and rumors site, Slashdot, is run in PHP.

In general, this approach lets you separate the data from the representa-
tion. An artistic HTML developer can make the pages look gorgeous while
the actual information is maintained elsewhere, usually by somebody else.

In CSWS, if you've installed mod_php, PHP will handle .PHP or
.PHTML files wherever it finds them.

In OSU, WWWEXEC knows to run WWW_SYSTEM:PHP.EXE
against any .PHP script it finds in an EXEC (HTBIN) directory. It can also
be configured as a presentation rule for .PHP files found anywhere. You can
either just run the PHP from the command line as the presentation rule, or
use the high-performance server script (HPSS), specifying

presentation text/php %hpss :hpss_srv_php

14.6 Languages forCGI 31 I

14.6.6

WASD has a persistent PHP engine (implemented using CGIplus/RTE)
supported in the same manner as all of the others. Just install the engine
interface and either David Jones's PHP port or the mod_PHP package
(which gives you the ability to run PHP from the command line) and have
the PHP command defined systemwide. You should be able to get PHP
pages processed by adding the following rule to the [DclScriptRunTime]
configuration directive in HTTPD$CONFIG.CONF"

�9 php PHP

Here's the MOD_PHP demo page. It doesn't show off many of the fea-
tures of PHP but does demonstrate the basic idea of PHP programs embed-
ded in tags that can be included in HTML pages. It happens that in this
one the HTML page is entirely generated by the PHP program. PHP can
do arithmetic, looping, and all the other programming language stuff you'd
expect, and can be extended with plug-ins to do graphics, database lookups,
and so on.

< ? p h p

e c h o " < H T M L > " ;

e c h o " < H E A D > " ;

e c h o " < T I T L E > M o d P h p R u l e s < / T I T L E > " ;

e c h o " < / H E A D > " ;

e c h o " < B O D Y > " ;

echo " <P>" ;

echo " <HI ALIGN=\"CENTER\">Mod_Php Rules]] </HI>" ;

echo " <P>" ;

echo " Resistance is futile ";

echo " < P > " ;

echo " <HR>" ;

echo " </BODY>" ;

echo "</HTML>" ;
?>

Python

Python is yet another scripting language. It's known to work well with
WASD. There's a report of a successful port of the UNIX mod_python to
VMS, but it's not distributed by the CSWS group. Python has a capable
CGI module. As with Perl and PHP, it can be extended.

I'm not sure how best to make Python scripts run in CSWS without
mod_python. You can do DCL wrapping, but you need to be sure that the
query string ends up on the command line if it was a GET request.

I Chapter 14

312 14.6 Languages forCGI

14.6.7

In OSU, you need to edit WWWEXEC and tell it to run Python on .PY
scripts, possibly with the same kind of wrapping as Perl gets, or embed your
script in a DCL wrapper.

On WASD, you just need a [DclScriptRunTime] entry if you have the
Python command defined systemwide.

�9 py PYTHON

Java

Java applications typically run as "servlets" in a special scripting environ-
ment, so I will discuss them in Chapter 17.

15
RDB Database Access from CGI Scripts

15.1

Most serious Web applications have an underlying database. On a UNIX
system this might be MySQL, PostgresSQL, Oracle, DB2, or another data-
base package. On VMS, it could be Oracle Server, Oracle (formerly Digital)
Rdb, Cache, or Mimer. But I'm only going to talk about Rdb first,
because that's the database that I have experience with; second, because that
database has only fairly recently acquired most of the Web connection tools
needed; and, third, because there's all kinds of documentation available for
tools such as Oracle Developer and you don't need this book to get the
information. Some of the concepts discussed in this chapter may be useful
with other databases, but the specifics are all for Rdb.

Without any special database connectivity software you can still com-
municate databases by having your program write database update or query
scripts, spawning them, and parsing the results. This is both ugly and slow,
but it could be good enough for very occasional use. (You could even write
Datatrieve scripts, taking advantage of Datatrieve's ability to write HTML
output to skip the parsing step.) Here are the special tools available to con-
nect Rdb to the Web.

Rdb Web Agent

Don't confuse this with the Oracle Web Cartridge, which works only if
you're running the Oracle Web Server. The Rdb Web Agent, which can run
under any of the Web servers, is a CGI package that stands between the
Web server and the database, invoking a program that's written as a stored
procedure in the database. (More precisely, the RdbWeb executable runs as
a CGI and connects to a SQL Services service that you specify in the
RdbWeb.cfg file. A useful result of this implementation is that it can con-
nect to SQL Services on servers other than your Web server, allowing you to

313

314 15.1 Rdb Web Agent

segregate your exposed-to-the-world Web machines from your database
machines.)

Oracle provides a lot of SQL functions for generating HTML output
elements, but in my experience those functions don't add much conve-
nience. It's possible to call compiled code as an external function. You have
to go through a shareable image library, which is a pain, but at least that
mechanism allows you to call any RTL routine you need to.

Rdb Web Agent routines, as with any other CGIs, can generate their
own input forms or can just be called as the action routine from prewritten
forms. A drawback of having them generate their own forms is that there's
no equivalent of the Perl HERE document or the DCL SDECK command,
so you can't stick the unmodified HTML for the form into the program;
you need to write it out, line by line. (You can have multiple-line writes, but
you're still concatenating quoted strings to build the page, and it's very tire-
some for complicated pages.)

Rdb Web Agent works reliably, but it has a number of limitations. The
fact that programs are stored procedures in the database means that they
can't cross databases~your application may deal only with tables in the
same physical database as the program. For some applications this is a fatal
drawback. In addition, you have to shut down all access to the database to
make a change in the stored procedures, which is very inconvenient. If you
want to use the same code against different databases, each database must
have its own copy.

it's all SQL code. SQL is not the best application language possible. The
means by which you find out if your code even compiles is to attempt to
store it as a stored procedure. The entire program is rescanned. If there's an
error, you get a message that there's an error~somewhere, but there are no
hints about line numbers or quotations of invalid syntax. Since you can't
update the stored procedure when there's a client, you need to shut down
the SQL Services service that serves this database when you want to update
the program. If you then find an error after you've dropped the old but pre-
sumably working version and then found that your new version doesn't
compile, panic may ensue. -

RDB Web is definitely better than nothing, and I've used it successfully
for a couple of small applications. But it has severe limitations and can't be
the only tool in your box for database programming; you'll eventually need
to validate against tables in one database for entry into another.

15.3 Perl, DBI, and DBD::RDB 315

15.2

15.3

Embedded RDO or SQL module language

If you have experience writing FORTRAN, C, Pascal, or BASIC that con-
nects to your database using either the RDO precompiler or the SQL mod-
ule language, you can do the same thing; you just need to hook the program
up to the Web. (I discussed doing that in Chapter 14.) Of course, all of
these languages take more effort to hook to the Web than Python or Perl. (I
give no examples of embedded RDO or SQL Module language here
because if you don't already know what they look like, you probably don't
want to start messing with them now.)

Perl, DBI, and DBD::RDB

Perl has a good design to make multiple plug-ins available at the same time.
These make it easy to do CGI programming with Perl. There's a whole
architecture (DBI~DataBase Interface) for plugging in database connectiv-
ity to Perl. DBI is the general Perl-to-data-source interface; individual data-
bases are hooked up using the database driver (DBD) modules. Andreas
Stiller has put together DUD- -RDB, a database driver module for RDB. You
must have a recent version of Perl~the CSWS_PERL or the prebuilt kit are
both at 5.6.1, which is fine. DUD:. RDB needs to link against the SQL mod-
ule language libraries, so your machine must have the RDB development
k i t~not just the run time--installed in order to build and run DBD--RDB.

You must first have DBI installed. It comes in the prebuilt Perl; if you're
running CSWS Perl, you can install the prebuilt and then install DBI from
that directory tree into CSWS Perl. (This is a good idea only because any
VMS configuration/compilation difficulties have been ironed out already.
In theory, you can also fetch the module from www.cpan.org, but in prac-
tice the version you get from CPAN may not build properly, so it's worth
sticking with the prebuilt Perl kit.)

The way to install any module or distribution in Perl is the same. With
your default set to the directory the module is in, and your PERL_ROOT
and PERLSHR defined in terms of the Perl you want to install into, do

$ PERL makefile.pl

$ mms

$ mms test
$ mms install

I Chapter 15

316 15.3 Perl, DBI, and DBD::RDB

MMK can be used here instead of MMS, if you have MMK and don't
have MMS. Don't run ~ s INSTALL if MMS TEST produced any alarming
test failures.

Next, you need to fetch the DBD:: RDB module from CPAN, the Com-
prehensive Perl Archive Network. Point a browser at WWW.CPAN.ORG,
do search-by-author, and look for ASTILLER. Download the ZIP file for the
package and unzip it. You can do this to produce the same thing:

$ PERL makefile.pl

$ mms

$ mms test

$ mms install

Please note here that there are D B D : : modules for many databases that
run on VMS; RDB is just the example I'm used to. You can get the
DBD- .Oracle or DBD: : Sybase module from CPAN just the same way and
try to build it. You can't just get the module and build it if you don't have
the database installed; the way these modules work is to act as glue, using
the callable SQL interface from the database to make a connection with
your Perl scripts. If you have more than one database product, you can have
more than one DBD:: module and you can connect to both database prod-
ucts in the same script, which is very handy for data extraction activities
even aside from CGI programs. There are also DBD:: modules for comma-
separated variable files and xBase file formats; these include SQL parsers
and code to actually do the data extraction and update themselves.

Here's an excerpt from the test script from the DBD: �9 RDB module, just to
give you an idea of what Perl DBI code looks like. If you want to do DBI
coding, you should buy the O'Reilly book, which is enormously helpful. If
you don't know Perl at all and you don't know SQL at all, you should just
skip this excerpt. This test script creates a database, creates a table, retrieves
the field names for the table, populates the table, retrieves the contents, and
makes sure it got what it expected.

use DBI ;

use strict;

my Sprint_error = 0;

print "i..45\n";

load driver

15.3 Perl, DBI, and DBD::RDB 317

my $ok = require DBD: :RDB;

printf("%sok l\n", ($ok ? : "not ")) ;

create test database;

eval {

my $dbh = DBI->connect('dbi:RDB:', undef, undef,
{ RaiseError => 0,

PrintError => Sprint_error,

AutoCommit => 0 });

$dbh->do('create database filename test');
$dbh->disconnect;

};

printf("%sok 2\n", ($@ ? "not" :));

connect to fresh test database

$dbh = DBI->connect('dbi.RDB- ATTACH FILENAME TEST.RDB', undef, undef,
{ RaiseError => 0,

PrintError => Sprint_error,
AutoCommit => 0,
ChopBlanks => 1 });

printf("%sok 4\n", ($dbh ? : "not "));

create test table

$ok = $dbh->do("set transaction read write");
printf("%sok 5\n", (($ok && !$DBI- :errstr) ? : "not ")) ;

$ok = $dbh->do(q/create table dummy (
col_char char (15) ,
col_varchar varchar (3 0) ,

col_int int,

col_float float,

col_date date vms,

col_decimal decimal(5),

col_quad bigint,

col_intp2 int(2)) /);

printf("%sok 6\n", (($ok && !$DBI::errstr) ? : "not "));

$ok = Sdbh->commit ;

printf("%sok 7\n", (($ok && !$DBI: :errstr) ? : "not ")) ;

I Chapter 15

318 15.3 Perl, DBI, and DBD::RDB

get back default dateformat

my $df = $dbh->{rdb_dateformat};

$ok = ($df eq "I!Y4!MN0!D01!H04!M0!S0!C21");

printf("%sok 8\n", (($ok && !$DBI--errstr) ? : "not "));

start read write again to insert something

$ok = Sdbh->do(' set transaction read write') ;

printf("%sok 10\n", (($ok && !$DBI::errstr) ? : "not ")) ;

prepare insert

my $st_text = q/

insert into dummy (
col_char,

col_varchar,

col_int,

col_float,

col_date,
col_decimal,

col_quad,

col_intp2)

values (?, ?, ?, ?, ?, ?, ?, ?)/;

my $st = $dbh->prepare($st_text);
printf("%sok ll\n", (($ok && !$DBI::errstr) ? : "not "));

now two inserts

my $col_char_tl

my $col_varchar_tl

my $col_int_tl

my $col_float_tl

my $col_date_tl

my $col_decimal_tl

my $col_quad_tl
my $col_intp2_tl

$ok = Sst->execute(
$col_char_tl,

$col_varchar_tl,

$col_int_tl,

= 'Abcdef' ;

= 'skjdsdalskhd' ;

= 12345 ;

= 7654.12E12;

= '19630709';

= 54321 ;
= '123456789012' ;

= '321.12';

15.3 Perl, DBI, and DBD::RDB 319

$col_float_tl,

$col_date_tl,
$col_decimal_tl,

$col_quad_tl,

$col_intp2_tl);

printf("%sok 15\n", (($ok && !$DBI:-errstr) ? : "not "));

my $col_char_t2

my $col_varchar_t2

my $col_int_t2
my $col_float_t2

my $col_date_t2

my $col_decimal_t2

my $col_quad_t2

my $col_intp2_t2

= 'BCDEFGHJ';

: 'jhfjsdhfshfkljhd';

= 4242442;

= -123.5678EI00;

= '20000229 120030';

= -54321;

= '-98765432101';

= '-44.44';

$ok = $st->execute(

$col_char_t2,

$col_varchar_t2,

$col_int_t2,

$col_float_t2,

$col_date_t2,

$col_decimal_t2,

$col_quad_t2,
$col_intp2_t2);

printf("%sok 16\n", (($ok && !$DBI: :errstr) ? �9 "not ")) ;

$ok = $dbh->commit;
printf("%sok 17\n", (($ok && !$DBI--errstr) ? : "not ")) ;

prepare select to check the inserted values;

$ok = $dbh->do('set transaction read only') ;
printf("%sok 18\n", (($ok && !$DBI::errstr) ? �9 "not "));

$st = $dbh->prepare(q/

select col_char, col_varchar, col_int, col_float as col_floating,

col_date, col_decimal, col_quad, col_intp2
from dummy

order by col_char /);

printf("%sok 19\n", (($st && !$DBI.-errstr) ? : "not "));

check the NAME attribute (name of the select columns)

I Chapter 15

320 15.3 Perl, DBI, and DBD::RDB

$ok = ($st->{NUM_OF_FIELDS} == 8);
printf("%sok 20\n", (($ok) ? : "not "));

my $names= $st->{NAME};

$ok = (8 == @$names&&
$$names[0] eq "COL_CHAR" &&
$$names[l] eq "COL_VARCHAR" &&
$$names[2] eq "COL_INT" &&
$$names[3] eq "COL_FLOATING" &&
$$names[4] eq "COL_DATE" &&
$$names[5] eq "COL_DECIMAL" &&
$$names[6] eq "COL_QUAD" &&
$$names[7] eq "COL_INTP2");

printf("%sok 21\n", (($ok) ? not "));

$names= $st->{NAME_uc} ;
$ok = (8 == @$names&&

$$names [0] eq "COL_CHAR" &&
$ $names [1] eq "COL_VARCHAR" &&
$$names [2] eq "COL_INT" &&
$$names [3] eq "COL_FLOATING" &&
$$names[4] eq "COL_DATE" &&
$$names [5] eq "COL_DECIMAL" &&l
$$names[6] eq "COL_QUAD" &&
$$names[7] eq "COL_INTP2") ;

printf("%sok 22\n", (($ok) ? not "));

$names= $st->{NAME_Ic};
$ok = (8 == 8$names &&

$$names[0] eq "col_char" &&
$$names[l] eq "col_varchar" &&
$$names[2] eq "col_int" &&
$$names [3] eq "col_floating" &&
$$names [4] eq "col_date" &&
$$names[5] eq "col_decimal" &&
$$names[6] eq "col_quad" &&
$$names[7] eq "col_intp2");

printf("%sok 23\n", (($ok) ? not "));

bind columns

my ($col_char, $col_varchar, $col_int, $col_float, $col_date, $col_decimal,
$col_quad, $col_intp2);

$ok = $st->bind_columns (\$col_char,
\$col_varchar,
\$col_int,
\$col_float,

15.3 Perl, DBI, and DBD::RDB 321

\ $col_date,
\ $col_decimal,
\$col_quad,
\$col_intp2) ;

printf("%sok 29\n", (($st && !$DBI--errstr) ? : "not ")) ;

$ok = $st->execute;
printf("%sok 30\n", ((Sst && !$DBI::errstr) ? : "not ")) ;

first fetch and compare

$ok = $st->fetch;
printf("%sok 31\n", (($st && !$DBI-'errstr) ?

#print "col_char $col_char\n";
#print "col_varchar $col_varchar\n";
#print "col_int $col_int \n";
#print "col_float $col_float \n";
#print "col_date $col_date \n";
#print "col_decimal $col_decimal\n";
#print "col_quad $col_quad \n";
#print "col_intp2 $col_intp2 \n";

$ok = ($col_char eq $col_char_tl &&
$col_varchar eq $col_varchar_tl &&
$col_float == $col_float_tl &&
$col_int == $col_int_tl &&
$col_date =- /^$col_date_tl/ &&
$col_decimal == $col_decimal_tl &&
$col_quad eq $col_quad_tl &&
$col_intp2 eq $col_intp2_tl);

printf("%sok 32\n", (($ok) ? : "not "));

: "not ")) ;

second fetch and compare

$ok = $st->fetch;
printf("%sok 33\n", (($st && !$DBI: :errstr) ? : "not ")) ;

#print "col_char $col_char\n";
#print "col_varchar $col_varchar\n";
#print "col_int $col_int \n";
#print "col_float $col_float \n";
#print "col_date $col_date \n";
#print "col_decimal $col_decimal\n";
#print "col_quad $col_quad \n";

I Chapter 15

322 15.4 Python andthe Rdb plug-in

#print "col_intp2 $col_intp2 in" ;

$ok = ($col_char eq $col_char_t2 &&

$col_varchar eq $col_varchar_t2 &&

$col_float == $col_float_t2 &&

$col_int == $col_int_t2 &&

$col_date =- /^$col_date_t2/ &&
$col_decimal == $col_decimal_t2 &&

$col_quad eq $col_quad_t2 &&

$col_intp2 eq $col_intp2_t2);

printf("%sok 34\n", (($ok) ? : "not "));

$ok = $st->fetch;

printf("%sok 35\n", ((!$ok && !$DBI..errstr) ? not ")) ;

$ok = $dbh->commit;

printf("%sok 36\n", (($ok && '$DBI--errstr) ? : "not ")) ;

$ok : $dbh->disconnect;

printf("%sok 37\n", (($ok && l$DBI'-errstr) ? �9 "not "));

1 5.4 Py thon and the Rdb plug- in

Python, discussed in Chapter 14, also has an Rdb plug-in. Here's the URL for
a presentation from a company that's made Rdb access via Python running on
a WASD server its strategic platform: http:llwasd.vsm.com.aulotherlwasd-th-
exec-council- 1 a.htm.

Jean-Francois Pi~ronne developed the Rdb interface for Python. It
works beautifully. At the time of writing, it's not really in distributable
condition; it works, but it's not packaged well. Jean-Francois has prom-
ised to package it and make it available on his Web site, http://
www.pi-net.dyndns.org/, by the time this book is published. I can't give you
the exact link. Go there and browse around for it; he's got some other inter-
esting tools and utilities as well.

Just to show what Rdb-enabled Python code looks like, here's the instal-
lation verification procedure for the Rdb plug-in installation. This attaches
to the current default database, defined by the logical sqlSdatabase~which
is the same way the SQL utility works~then reads all the nonsystem rela-
tions from RdbSrelations and prints out the names and does the same for all
the system tables. The IVP demonstrates support for filling in variable val-
ues in statements, cursors, and transacton control, as well as working with
database values from Python.

15.5 Java 323

15.5 Java

import string

import sys, traceback

import rdb

attach = rdb.statement("attach 'filename sql$database'")

commit = rdb.statement("commit work")

readonly = rdb.statement("set transaction read only")

curs = rdb.statement(...... select rdb$relation_name from

rdbSrelations

where rdbSsystem_flag = ? order by rdb$relation_name)

attach, execute ()

readonly.execute();

print 'User Tables'

curs.execute(O)

x = curs.fetch()

while (x[O] == O)-

print "user relation name = "

x = curs.fetch()

curs.close()

commit.execute()

x[l] [0]

readonly.execute();

print 'System Tables'

curs.execute(l)

x = curs.fetch()

while (x[O] == 0):

print "system relation name = "

x = curs.fetch()

curs.close()

commit.execute()

, x[l] [0]

Your Java programs/servlets can use JDBC for database access. If you want
to connect to Rdb, have your DBA set up SQL*Net (OCI) Services for the
databases you need to talk to. (This is basically a means of letting Rdb data-
bases pretend to be Oracle Server databases in order to work with tools that
support those.) Now download the "JDBC Thin Client" for Oracle from
the Oracle Technology Web site. (You need to register, which is free, and
then give the user name and password you selected when you go to down-
load software.) The "Thin Client" is all-Java and runs on multiple plat-

I Chapter 15

324 15.5 Java

forms, although only Windows NT and Solaris are mentioned. Select a
Windows NT JDBC Thin Client that matches the version of the Java
Development Kit (JDK) installed on your system. Download it, install it
into your Java libraries, and you can run Java programs that access multiple
Oracle Server and Oracle Rdb databases on your own system and on any
others.

While you're at the OTN site, you can download free developer releases
of Oracle RDB for Alpha (a 56-MB zipped file), as well as VAX and various
Oracle Server products. Another free development-only database kit is
available for Mimer, at www.mimer.com. Mimer offers a JDBC driver as
well, along with preprocessors for C, FORTRAN, and COBOL, but I don't
know of any Perl or Python modules for that database.

/ 6
Useful Freeware CGI Scripts

16.1

With nearly a decade of VMS Web servers behind us, it's not surprising that a
number of programs are available free to do useful VMS-specific functions.
Here's a grab-bag of programs, organized roughly by function, that I've found
useful, along with where to get them. This is only a fraction of the scripts
available for VMS, and is limited by two factors: These are scripts written (or
adapted) specifically to VMS, rather than, say, Perl CGIs, which are written
generically enough towork on VMS, and almost all are scripts I have used
myself and found useful. For pointers to other scripts, check out Arne Vaxjhj's
page at http://www.levitte.org/-ava/cgiscripts.htmlx.

Incidentally, if you're looking for prewritten Perl CGIs, do yourself and
your site a favor and check out http:l/nms-cgi.sourceforge.net/scripts.shtml
for some up-to-date and reasonably secure replacements for the not very
good but very popular scripts found at Matt's Script Archive. Documenta-
tion is a little rough---though no rougher than the original~and these are
models of modern Perl style with attention to security. FORMMAIL.PL
continues to be a source of many, many security holes; use the replacement
from this site if you're going to use anything, even if you have to tweak it
yourself to make it actually send mail. [It opens a pipe to a designated mail
program. If you do download the NMS FORMMAIL script, make sure to
collect NMS-SENDMAIL, a Perl script that will do the SMTP mail-send-
ing portion of the job.)

Serving VMS MAIL files

16. I . I H y p e r m a i l

Jonathan Boswell's Hypermail is a great example of a FORTRAN CGI pro-
gram. It serves VMS mail files (accessed through callable mail functions) to
the Web, splendid for serving archives of mailing lists or meeting notes. It's

325

326 16.1 ServingVMS MAIL files

16.1.2

customizable via logical names to make the display look pretty much like
the rest of your site. It can serve messages in chronological order or search
by a portion of the subject line.

This subject line search can begin to get slow when you have a lot of
entries in your mail file. To find the 66th occurrence of a subject line,
Hypermail has to look through all the occurrences from the beginning and
discard the first 65 occurrences. It's tempting to consider building a mail
search tool that saves search result sets so you don't have to do all the search-
ing over again on every message, but managing the temporary files that this
would require adds considerable complexity to the program. In any case,
Hypermail works very solidly and reasonably quickly on mail files contain-
ing thousands of messages; if for some reason you need tens of thousands
you may have to put up with some slow response times, divide your archives
into multiple mail files, or reconsider whether mail files are the best way to
store this information.

You can find Hypermail at http://www.newtrumpet.org/jsb/hypermail/.

yahMAIL (Yet Another Hypermail)

Mark Daniel, author of the WASD server, wrote this package. It's a full-fea-
tured Web mail interface to VMS mail files and can also send mail using the
callable mail routines (so it isn't limited to interaction with an SMTP server
and can use whatever foreign mail transport your host supports). It can
decode and download MIME attachments and with many TCP/IP pack-
ages upload and include MIME attachments as well. With PMDF all this is
supported using the PMDF API, whereas within other mail environments
it's accomplished through some workarounds. It's being reworked to use the
MIME tools included in the most recent VMS versions so as to be less
dependent on such workarounds.

When my users go off to conferences in other countries, they can get at
their mail from Internet cafes on any platform with a browser that supports
encryption (so their user names and passwords don't go flying by in plain
text). Even on-site, the command-line diehards can deal with the attach-
ments that they inevitably get sent using this tool. yahMAIL makes all fold-
ers in a mail file accessible, so users aren't restricted to looking solely at new
mail; they can file the mail into any folder of their choice or retrieve old
mail from folders.

yahMAIL can be configured to use headers and footers of your choice to
make the pages resemble the rest of your site. You can find yahMAIL (and
many other useful scripts) at http:llwasd.vsm.com.aulwasdl.

16.2 Sending mail from forms 327

TurboyahMAIL, at http://kcgll.eng.ohio-state.edu/www/preview, is a
set of patches and new components for yahMAIL written by David Jones,
the OSU author, to make yahMAIL use persistent detached processes to
access mail files rather than having the same image that talks to the Web
server do it (which necessitates frequent opening and closing of the mail
files, at concomitantly high I/O cost).

16.2 Sending mail f rom forms

1 6 . 2 . I C G I - M A I L T O

CGI-MAILTO is provided with the OSU installation. It parses a GET or
POST set of field values~every field on the form, that i s l a n d mails it off
to the address you specify in the additional path. You make the Action of
the form b e / h t b i n / c g i - m a i l t o / u s e r n a m e .

CGI-MAILTO will look up the user and ask the server to check his or her
[.WWW] subdirectory to make sure that a file named .WWW_MAIIABLE
is present. If the file is missing, CGI-MAILTO will refuse to send the mail.
(This prevents prankish users from using the Web server to generate mail
messages to harass other users.)

This can only be used to send messages to users on the same system (or
cluster) as the Web server, with Su directories on disks that are
accessible to the system the Web server is running on.

The message subject lines are taken from a "Subject" field on the form~
and the message body consists of the fields returned by the client in the
order returned, with URL encoding reversed to make them more easily
human readable. The messages aren't particularly pretty, but the format is
very predictable.

This can be handy if you want form results to be sent to a mail file that
will be read by a batch job later.

1 6 . 2 . 2 T M A I L

TMAIL, also in the OSU distribution, plugs field values from a form into a
template file whose name you provide in the Action of the form. You can
make this as pretty as you like. (Or nearly. If you have the idea of sending a
fully filled out HTML form as mail to an HTML-rendering client, you'll
have to be cleverer than I am, or at least than I was when I looked at this five
years ago, if you want to make radio buttons and menu selections work

I Chapter 16

328 16.2 Sending mail from forms

16.2 .3

properly. But you can definitely make a reasonable human-readable, print-
able, note from it.) In addition to field values you can plug in any CGI vari-
able value, you can specify whether you want the field to be URL encoded or
unencoded, and you can specify that a particular string be output if a field or
variable is nonnull, rather than just plugging in the contents of the field.

The template specifies recipient, subject, and URLs to return for suc-
cess or failure. The URL in the form Action needs to b e / h t b i n / t m a i l /
templatena_me and the template file has to be in [.BIN] or in a directory
below it, because TMAIL relies on the PATH_TRANSLATED variable
value to find the template file, and PATH_TRANSLATED will end up
with the equivalent of WWW_ROOT:[BIN]templatename. (Because ran-
dom users can't use templates from their home directories~unless you've
set them up with user scripting capabilities [as discussed in Chapter 1 9] ~
TMAIL doesn't check for a .WWW_MAILABLE file in the recipient's Web
directory. No untrustworthy user should have enough privilege to write
anything in your WWW_ROOT:[BIN] directory.) This means that it's pos-
sible to send to an address that's not actually on the local system, most easily
by having a FORWARD entry set for the user name on a local system, but
possibly by specifying a foreign mail transport in the template.

An advantage of the template-based mail system is that the To" address is
never seen and can't be inferred by the client, so you're not exposing any
additional addresses to evil spambots. (This is theoretical for me, since I've
posted with an unmunged address on mailing lists and newsgroups for
many years, and as a result get a couple of dozen spam messages a day. But if
you have an address that isn't already known to the world, this is one way to
keep it quiet.)

T M A I L E R

This is Mark Daniel's drop-in replacement for TMAIL, which uses native
CGI and runs faster than under OSU emulation. It uses the WASD
CGILIB to run under any of the three Web servers. It does all the stuff that
TMAIL does and a bit more (which is documented in the comments in the
program). If run under WASD or CSWS, it allows the additional path stuff
to be an absolute path rather than a relative path from the directory the pro-
gram is in. This means that users can put forms in user directories and cre-
ate templates as well, opening up the vague possibility of user-to-user
harassment. (However, you can always check the log to see what the referer
[sic] was at the time the script was executed, which will point the finger
clearly at the offending user, so while it's possible for a user to send

16.3 System management functions 329

unwanted mail without a return address on it, he or she will be found out
immediately.)

16.3 System management functions

16.3.1 Changing passwords

There are two different scripts readily available to change passwords via the
Web. Both expect the OSU environment but can be run via OSU emula-
tion in CSWS and WASD. They both work the same way: A DCL script
puts up a form to collect the user name, old password, and new password,
accepts the info, and calls an executable that's been installed with appropri-
ate privilege to update the SYSUAF.

If you're using SSH and it won't allow users to log in with expired pass-
words, even to change them, it's very handy to have a side door that lets you
change the password if you know the old one. Similarly, if you have users
who never log in directly and use POP or IMAP to fetch mail from your
server, a forms-based password changer is a good thing.

I use Tom Wades FORTRAN program, available at ftp://picard.eurokom.ie/
setpass.zip, which checks password history, updates password history, and so
on; it happens to be the first one I tried, and it works very well. I also have a
weakness for FORTRAN as a systems programming language, so I recom-
mend this heartily.

It appears that Brian Reed's C program, at http://www.iron.net/-reed/
password/, will also do the job.

Jeff Morgan has a super-duper password-change propagator that accepts
a password change via OSU and then updates (using DECnet) passwords
on a list of other nodes and even Pathworks passwords. You can pick it up at
http://www.geocities.com/vmswiz/vms.html.

WASD has a configurable internal mechanism to allow SYSUAF pass-
word modification for Su requests.

16.3.2 Monitoring system performance

HyperSPI++, also available from http://wasd.vsm.com.au/wasd/, is a Web-
based performance monitoring display tool. There's a data-collection com-
ponent, HyperSPlxxSagent, which can run on each system you're interested
in collecting information about, whether or not it has a Web server run-

I Chapter 16

330 16.4 Presenting documentation

ning. (The agent writes updated performance information to a data file,
which the script component reads and graphs.)

HyperSPI++ was extended by Jean-Francois Pi~ronne from Mark
Daniel's original HyperSPI program. The script component uses the WASD
CGILIB, so it can run appropriately under any of the three Web servers.

This is very handy for getting a graphical feel for what's going on with
your VMS cluster or with nonclustered systems with DECnet connections,
and it has the considerable advantage of being flee.

16.3.3 Displaying disk space u t i l i za t ion

HyperDISK, from the WASD site, does a simple graphical display of how
full your disks are. This can be handy if you're figuring out where to put a
new directory tree in a fairly full set of disks, or for helping to convince
management that you aren't kidding when you say you need more disk
space. (Somehow, a diagram showing used space in red is more viscerally
convincing than a percentage figure.)

16.4 Presenting documentat ion

16.4.1 Web-based help browsers

It's helpful to be able to get at VMS help from the Web, especially if you've
extended or supplemented your VMS help files with information on local
utilities.

VMSHELPGATE
VMSHELPGATE ships with the OSU server and can run under OSU
emulation on each server. It uses one of two DCL wrappers, HELP-
GATE.COM (which with the argument/HELP will return all the HELP
topics on your system as clickable links) or VMSHELECOM, which dis-
plays a form to accept a HELP topic, then returns the help entry for just
that topic, with no clickable links.

Conan the librarian
Conan, written by Mark Daniel, is a general interface to any text library, so
you can use it to browse header libraries, help libraries, or print module
libraries. It has keyword search capability and can provide header informa-
tion about the libraries available. It uses the WASD CGILIB, so should run
happily under any of the three Web servers. (Conan is part of the WASD-

16.4 Presenting documentation 331

1 6 . 4 . 2

SCRIPTS package available at http"//wasd.vsm, com. au; this is a set of
handy scripts that will run on all three of the VMS Web servers I discuss
here--and should run under the vanilla CGI environment of Purveyor as
well.)

B o o k r e a d e r s e r v e r s

If you don't have an InfoServer~a long-discontinued device that let you
serve CDs across your network---it's pretty helpful to be able to get at the
documentation CDs (or the files from them) with a Web browser. While
most new VMS documentation comes in HTML format as well as
Bookreader, CDs for older versions and manuals for older software may
exist only in Bookreader format. Here are a couple of scripts that can trans-
late Bookreader to HTML on the fly and serve it up. Let me remind you
that Bookreader files come in two main flavors: bookshelves, which contain
pointers to and descriptions (titles) of multiple volumes on a single topic
(e.g., an installation guide, an administrator manual, a getting started
guide, a user guide, and a reference manual all for the same product), and
books, so a Bookreader server needs to know which it's getting.

WEBBOOK
The W E B B O O K source comes with the OSU server. To build it, you
have to set default to W W W _ R O O T : [S C R I P T _ C O D E] and do
@BUILD_UNSUPPORTED, or extract the commands to build it from
there. It builds by default to run in the OSU CGI environment using the
OSU CGILIB, but you can define NOCGILIB to have it take the CGI info
from environment variables, which should make it runnable in vanilla CGI
on Apache or WASD. (Since the program dates from 1995, this is likely
more a result of intended CERN-server compatibility than anything else.)

The build procedure copies the executable to WWW_ROOT:[BIN], so
a path of/htbin/webbook/will get to it. WEBBOOK gets the information
about where to find the book or shelf from the PATH_INFO provided by
the server, so do/htbin/webbook/path-to-shelf/(with the trailing slash) to
get a bookshelf file, and/htbin/webbook/path-to-book (with no trailing
slash) to get to the book.

Hypershelf and Hyperreader
Also part of the WASDSCRIPTS package is a bookshelf reader and a
bookreader~Hypershelf and Hyperreader, respectively. These have a func-

I Chapter 16

332 16.4 Presenting documentation

tionality similar to WEBBOOK, but have a somewhat prettier interface and
make pages that look a little less basic.

For functions that aren't specific to VMS, there are hundreds of free pre-
written CGIs available in an assortment of languages. (Not DCL, obvi-
ously.) As the C compiler and library get more and more UNIX-
compatible, and as the VMS Perl community works to keep Perl cross-plat-
form capable, more and more of these scripts will work unmodified on
VMS. So if you need something that isn't here, poke around the Web; see if
you can find it. The odds are getting better.

17
High-Pe ormance Scripting Options

17.1 Issues

The basic CGI protocol simply specifies a way for the Web server and the
CGI process to communicate; it doesn't say anything about whether that
communication is fast or slow.

What makes script processes fast or slow? Assume for the moment that
the script program is written efficiently, and the server has enough resources
(CPU, memory) to run it without excessive paging to disk or having the
process spend too much time on the computable queue waiting for other
processes to finish their quantum of computation time. (These are big
assumptions, but they're beyond the control of Web server authors.)

High-performance CGI options generally boil down to (a) ways to use
the minimum number of different processes to minimize process creation
overhead, (b) ways to minimize the number of image activations, generally
by creating persistent scripting environments that don't have to be reloaded
for each script, and (c) ways to communicate with the Web server faster
than the default.

Process creation is a fairly expensive operation on VMS--at least com-
pared with UNIX, where forking a process is pretty cheap. (To be precise to
a fault, process creation on VMS isn't all that big a deal, but populating the
symbol and logical name tables for the process can be relatively expensive. If
it has to run a LOGIN.COM, there's disk access and file parsing time; if it's
a subprocess inheriting the environment of its parent, all that information
gets transferred through a mailbox, and that is slow.) One general means to
avoid paying that penalty, or at least to amortize it over multiple script exe-
cutions, is to keep your processes around for a while once they've been cre-
a ted-so , for example, the scriptserver processes in OSU live (by default)

333

334 17.1 Issues

for ten minutes after the last time anybody spoke to them, and WASD also
deliberately keeps its processes around between scripts.

If you want to write a persistent executable that starts up once, makes its
database connections or other expensive activities once, and hangs around
accepting requests via the server, a different mechanism is offered by each
server. For CSWS, you need to write a module. For OSU, an HPSS (high-
performance server software) program. For WASD, a program to run under
CGIplus. These same requirements are also the requirements to efficiently
run interpreted scripts; get a copy of the script interpreter running and pass
it a new script name each time. (That's relevant for Perl, PHP, and, surpris-
ingly, Java, but for these purposes the Java virtual machine is an interpreter
of the compiled Java byte code.) CSWS provides mod_perl, mod_php, and
mod_jk; the persistent Java interpreter now supported is Tomcat (the
Jakarta project), which also supports Java Server Pages. (It may very well be
possible to use Tomcat with OSU or WASD as well as CSWS; they don't
seem to be very tightly coupled.) OSU provides HPSS versions of Perl and
PHP and a framework for writing your own HPSS applications and a per-
sistent Java execution environment. WASD supports persistent Run-Time
Environments (RTEs), and also provides tweaks for Perl to make it more
successfully reentrant.

If your script is in a noncompiled language--not counting DCL, whose
interpreter you get with any process unless you explicitly create a detached
process without a CLI~you can save time on each script execution by pre-
loading the scripting environment and not exiting from it when the script
completes. (This means you need a function in your script environment
that can clean up everything a previous script might have done; these are
not always provided by scripting environment authors, so the Web server
authors have to do something about them.)

Process Software and Microsoft collaborated on a special application
programming interface (API) that lets you do scripting in what are essen-
tially shareable images loaded by the server; the term of art is "DLL" for
Dynamic Link Library. The Internet Server API (ISAPI) was developed on
Purveyor and IIS and is made available on WASD and OSU. This doesn't
mean that you can take your NT DLL, put it on VMS, and have anythifig
useful happen; it's still got to be VAX or Alpha object code, which means at
least a recompilation and probably more of a port than that. ISAPI applica-
tions are fairly tightly intertwined with their servers~they have to be able
to communicate by callback with the server. Apache on Win32 platforms
has mod_isapi, but this hasn't been ported to VMS as far as I've been able to

17.2 Options 335

tell. (There is a similar NSAPI for Netscape Web servers, but nobody's
implemented this anywhere but Netscape as far as I can tell.)

There's also a FastCGI (FCGI) specification, which allows for persistent
scripting processes with a bidirectional TCP/IP connection between the
process and the server. Although this has been around since 1996, it isn't
seen as widely in the field as ISAPI. There's a mod_fastcgi for Apache on
some platforms, but it's not in VMS; however, there is FastCGI support in
OSU. The FastCGI spec is available on the Web at http://www.fastcgi.com/
devkit/doc/fcgi-spec.html, and you can also download a C library for
FastCGI support from the same site. A DEC BASIC FASTCGI library is
available on the Web at http://www.digitalsynergy.inc, although the idea
they use there is to use VMS as a back-end application server behind a
UNIX or NT version of Apache that actually supports mod_fastcgi.

1 7.2 Opt ions

Here's a brief review of what's available on which server. This is by no means
an exhaustive guide; I hope to tell you enough to get you started with each
environment.

1 7 . 2 . I C S W S

CSWS provides persistent scripting environments for Perl, PHP, and Java
through the Apache modules mod_perl, mod_php, and mod_jk, respec-
tively. Install them according to the installation instructions provided on
the CSWS Web site. (Examples for this are shown with the sample CSWS
installation earlier in the book.)

NIOD PERL
The configuration file for MOD_PERL is MOD_PERL.CONE probably
located in APACHE$COMMON:[CONF]. The installation modifies
HTTPD.CONF to tell Apache to include the MOD_PERL.CONF file.
Note that the default installation will result in Perl scripts getting run per-
sistently; if you want to run them as one-off CGIs, you need to choose the
Apache::PerlRun module rather than the Apache::Registry module. (If you
do that, you still get a win over running DCL wrappers that invoke Perl
from the command line, since you avoid image activation costs even if you
don't use Apache::Registry, but your scripts need to be reread and recom-
piled for each use, which may not be ideal.)

I Chapter 17

336 17.2 Options

Some highlights of the configuration file:

Load the dynamic MOD_PERL module

LoadModule PERL_MODULE modules/mod_perl, exe

(Without this mod_perl won't even be started. The I fModule wrapper
keeps Apache from trying to execute directives that won't work and will
crash the server if the module somehow failed to load; while good practice,
this would be more efficacious if the fact the module failed to load didn't
crash the server.)

<IfModule mod_perl, c>

PerlSetEnv

Allow perl modules to reside in the Apache
subdirectory under the /perl location.

PerlSetEnv PERL5LIB /apache$common/perl

Note that this is appended to the PERL5LIB symbol rather than
replacing it, so Perl can use anything that's installed in its tree also, as
well as anything that the Apache installation, or you, have put into the
APACHE$COMMON- [PERL] director~

Perl-Status

To enable the location "perl-status" which shows
information about the installation of mod_perl,
uncomment the lines below.

#PerlFreshRestart On

PerlFreshRestart applies when you restart the server, not with each
new script that's handled. It tells mod_perl to flush all existing Perl context
when you restart the server.

#PerlModule Apache : : Status

PerlModule tells mod_perl to preload the Apache::Status module.

#<Location /perl-status/>
SetHandler perl-script
PerlHandler Apache : : Status
#</Location>

17.2 Options 337

This <Location> container directive says to map URLs o f / p e r l -
s t a t u s / to run using the Perl script handler and to execute the handler
subroutine from the STATUS.PM module in the Apache tree, which I find
in [.lib.site_perl.apache]. (Or it would if it weren't commented out.) If you
enable this you probably want to put some access controls on it.

Apache::Registry

Enable Apache:-Registry module

PerlModule Apache--Registry

Alias /perl/ "/apache$common/perl/"

But note that if you wanted to mix Perl scripts with other kinds of
scripts in a single CGI directory, you could make this point to the same
directory as cgi-bin, or you could have this go to another disk. Doing this
will break the examples unless you copy the contents of apache$com-
mon:[perl.apache] into your new/perl/location.

<Location/perl>
SetHandler perl-script
PerlHandler Apache : : Registry
Options ExecCGI
Allow from all
PerlSendHeader On

</Location>

This allows everyone in the world to run Perl scripts from URLs starting
with /perl, using the Perl scripts handler; because Apache::Registry is
invoked the scripts will be persistent. This makes it very important that
scripts be written with strict discipline, since they can leave garbage lying
around otherwise. PerlSendHeader On instructs Perl to send out HTTP
headers and not leave it up to the scripts.

Apache : : PerlRun

To setup Apache: :PerlRun, uncomment the
lines below.

#PerlModule Apache : : PerlRun

#Alias /perlrun/ "/apache$common/perl/"

#<Location /perlrun>
SetHandler perl-script

I Chapter 17

338 17.2 Options

PerlHandler Apache::PerlRun
Options ExecCGI
allow from all
PerlSendHeader On
#</Location>

(Apache::PerlRun is the nonpersistent alternative to Apache::Registry.
You may need to invoke it if you have sloppily-written Perl scripts.)

Mod_Perl Modules

Two examples of mod_perl modules follow. To enable
these modules, uncomment the "location" lines.

Hello World example

#<Location /world>
SetHandler perl-script
PerlHandler Apache--Hello
#</Location>

Hello World (w/fancy dialog box) example

#<Location /world2>
SetHandler perl-script
PerlHandler Apache-:Hello2
#</Location>

These are harmless to uncomment, unless you're using the/world or
/world2 paths for something else. /world will invoke mod_perl to run
apache$common:[perl.apache]hello.pm; it could also do it to invoke mod-
ules elsewhere in the perlSlib set of logicals.

</IfModule>

M O D PHP
PHP doesn't take a whole lot of configuration. The installation will modify
HTTPD.CONF to include the mod_php.conf file; an annotated version
follows.

Load PHP module

17.2 Options 339

LoadModule php4_module modules/mod_php, exe

AddType application/x-httpd-php .php .phtml

This informs CSWS to run anything with a .php or .phtml extension
through mod_PHP before serving it out. You might want to add .php3 as
an extension here if you need to serve a suite of older .PHP pages.

AddType application/x-httpd-php-source .phps

This enables you to execute PHP scripts that aren't embedded in HTML
pages.

Alias /php/ " / a p a c h e $ r o o t / p h p / s c r i p t s / "

And this gives you a reasonable directory to put them in.

PHP_FLAG engine ON

The Boolean value for engine enables or disables PHP parsing of PHP
files. On a serverwide basis, you want the engine ON, which is the default,
but you can use this same format (PHP_FLAG engine OFF) tO disable PHP
within a container directive (virtual host, directory, etc.) or in an .HTAC-
CESS file.

#PHP_VALUE error_log /php_root / logs / error_log

You can similarly override the PHP error logging by container directive.

For more information on PHP and Apache, look at the
W W ~ . P H E N E T pages under documentation.

Java
Tomcat is a server that provides a Java Servlet 2.2 container and a Java
Server Pages (JSp) 1.1 processor. Apache communicates with the Tomcat
server through a mod_jk module, which is included with Tomcat. You need
to download and install the most current Java for VMS. (At time of writing,
go to http://www.compaq.com/javaldownload/index.html, but this URL
may change to something involving HP.)

Follow the instructions on the CSWS Web site for downloading and
configuring Tomcat and mod_jserv--these instructions can currently be
found at http://www.openvms.compaq.com/openvms/productslips/apache/
csws_java_relnotes.html.

It's hard to avoid these notes if you download the product. Read them.

I Chapter 17

340 17.2 Options

17 .2 .2 OSU

HPSS support
HPSS (High-Performance Server Software) is the mechanism by which
OSU supports higher-performance environments. Configuration is similar
in all cases; you set up the HPSS executable as a presentation script for the
type of script you wish it to execute. (Presentation scripts are configured in
HTTP_SUFFIXES.CONF; you specify an HPSS module by giving the
name with a percent sign in front of it.)

If you want to write your own HPSS plug-in, study [script_code]
hpss_demo.c, as well as the other applications provided. There's
hpss_qman, which does VMS queue management functions (and which
appears to be completely undocumented), and there's even hpss_mail, a
VMS MAIL file server written as an HPSS server in FORTRAN (persistent
to avoid the overhead of opening and reopening the mail file, which is a
problem for HYPERMAIL).

To allow a generic interface to different HPSS processes, the
HPSS_MST.C module is compiled, and (according to the comments in the
program), requires some configuration rules in HTTP_SCRIPTS.CONF:

ThreadPool hpss stack=120000 q_flag=l limit=4

This rule defines a pool of threads for servicing requests, named HPSS.

Service hpss pool=test dynamic= (HPSS,hpss_mst)
info=hpss_srv*

This rule defines the service HPSS, assigns it to the HPSS pool, says the
start routine is HPSS in the image http_hpss_mst (found in
WWW_SYSTEM), and says that the acceptable parameters match the
wildcard hpss_*~that is, that the services it can support start with hpss_srv.
(Don't confuse these service names with the names of the executables that
run them.)

Exec /$hpss_exec/* %hpss :

This rule says that URLs of the form /$hpss_exec/* will be passed to
~ which will execute them if they match the list in info defined in the
service. So a URL for this looks like:

/ $hps s_exec /hps s_name/s criptname

Somewhat less generically--and making shorter URLs--you can use a
different style of exec rule:

17.2 Options 341

Exec /$hpss_xxx/* %hpss'hpss_srv_xxx

Imagine xxx substituted by Perl or PHP; this results in URLs such as
/$hpss_perl / scriptname or even /perl / scriptname.

You could also configure a presentation rule to execute HPSS applica-
tions based on a .hpss suffix, but I don't think it's a good idea.

WEBPERL
WEBPERL isn't a persistent scripting environment, but it does have some
performance advantages over a command-line invocation of Perl. If present,
WWWEXEC.COM will use it automatically, and pass on the CGI infor-
mation more efficiently than it will to regular Perl.

WEBPERL.C is in the [.SCRIPT_CODE] directory and should be
built with WEBPERL_BLD.COM. As supplied, WEBPERL_BLD.COM
didn't work for me. I needed to locate the header files e x t e r n . h and
p e r l . 1"1. To find them, do a $SEARCH starting at your PERL_ROOT and
note the location; mine was:

PERL_ROOT: [000000.LIB.VMS_AXP.5 6 1.CORE]

The build process requires those two headers, PERLSHR_ATTR.OPT
(which is in the same directory) and PERLSHR.OPT. PERLSHR.OPT
doesn't appear to exist, so you need to create it"

$ CREATE PERLSHR.OPT
PERL_ROOT �9 [000000] PERLSHR. EXE/SHAREABLE
^Z

Then edit WEBPERL_BLD.COM so it knows where to find these files;
it's looking for PERLSHR.OPT in the directory you pass as the parameter
to WEBPERL_BLD and looking for PERLSHR_ATTR.OPT in the
default directory; reverse those locations.

$ @WEBPERL_BLD PERL_ROOT: [000000.LIB.VMS_AXP.5 6 1.CORE]

will now build WEB PERL.EXE and copy it to the [.SYSTEM] subdirectory.

No configuration is necessary to make script processes use W E B P E R L ~
if it's present, it will be used for Perl scripts, which can theoretically run
unmodified. If you do this, you'll expose a typo in WWWEXEC.COM,
which uses protcol when it means protoco in the Vs invo-

cation, so fix WWWEXEC.COM before trying this.

I Chapter 17

342 17.2 Options

HPSS PERL
HPSS_PERL.C can be found in the [.SCRIPT_CODE] subdirectory, and
needs to be built with HPSS_PERL_BLD.COM. I had exactly the same
problems building it as with WEB PERL and solved them the same way,
making the same changes to HPSS_PERL_BLD.COM as I described for
WEBPERL_BLD.COM in the previous section.

HPSS PHP
PHP quite sensibly isn't included in the OSU kit; you'll need to download it
separately from http://www.er6.eng.ohio-state.edu/-jonesd/php/.

After you unzip the kit (in a separate directory tree), read aaareadme.txt.
I found $ w s blew up (because of some pointer mismatch warnings in the
STRING.C module, possibly showing that I'm using a more recent and
therefore pickier C compiler) and had to run @BUILD_PHP instead; then
$ MMS HVSS didn't work because the PHP library had compilation errors,
so I had to link it by hand. But it worked anyway.

Both PHP and HPSS_PHP link to the shareable image containing the
actual guts of PHP.

Follow the instructions in PHP_ROOT:[VMS]aaareadme.txt to load
and configure HPSS_PHP.

ISAPI (HPSS)
OSU includes the code for ISAPI_MST.C, which appears to implement
ISAPI as an HPSS server. It is not built by default, there are no instructions
given for building it, and no command procedures provided for building it.
The code does compile, but linking it (using @LINK_MST) produces
complaints because of a missing entry point. I was unable to load or test it,
so I'm not prepared to swear that it really works. I suspect someone with
DLLs already written for Purveyor might be motivated enough to get this
going on OSU.

(There is a sample ISAPI.CONF file in the WWW_SYSTEM: direc-
tory, which suggests that it was working at some point.)

FastCGI (HPSS)
You can use @BUILD_FASTCGI.COM to compile and link both the
FASTCGI MST server and a test client. To enable it to run properly you
need to update the main configuration file:

17.2 Options 343

ThreadPool fcgi stack=60000 ci_flag=l limit=10
Service testsrv pool=fcgi dynamic=(fastcgi,fastcgi_mst) info=configfile

Exec /$fastcgi/* %fastcgi:

and create a configuration file (named in the info parameter to the Serv-
ice definition).

The Exec rule means that what looks like different scripts in the
U R L / $ f a s t c g i / s c r i p t n a m e are actually processed by different applica-
tion servers (which could be on some other machine). The config file lets
you specify, for each scriptname, what port on what host the
FASTCGI_MST should communicate with to execute the request and if
necessary what VMS command to pass it.

To quote the comments in FASTCGI_MST.C, the format of the config-
uration file is that each line is either a comment or has the form:

role name [+]host:port [command]

e.g., "responder test localhost-2301 "

Where �9
role FastCGI role name, must be ' responder'

name If virtual script name (element after /$fastcgi).

[+] host :port Host and port to make connections to. The
optional plus indicates duplicates are
selected round-robin.

command VMS command to invoke to start the FastCGI
application.

In addition, setting the environment variable FCGI_RESPONDER_
FLAGS to 1 will keep the connections open.

You can examine the TESTFCGI.C sample application to see how the
FastCGI communication works, or use Perl, C, or BASIC libraries available
elsewhere on the Net to write FastCGI applications.

Crinoid
Crinoid is a high-performance multithreaded persistent Perl execution envi-
ronment written for OSU by Charles E. Lane at Drexel University. (I list it
last because it isn't part of the OSU distribution and is available separately,
at http://www.crinoid.com.) A good discussion of how it works and the

I Chapter 17

344 17.2 Options

(minimal) configuration changes for OSU are at http://www.crinoid.com/
ftp/000_readme.txt.

It needs at least VMS 6.0 to run and is better off with 6.2 (where it can
use the Persona service to create sandboxed "tentacles" running Perl scripts
in unprivileged user names). This faces the same issues as user scripting, dis-
cussed in Chapter 19.

Running Crinoid uses a different scriptserver DCL file than the OSU-
supplied WWWEXEC. It might be possible to coerce the OSU emulation
modes in Apache and WASD to run Crinoid. On CSWS you might have to
rename the Crinoid WWWPERL.COM file to WWWEXEC.COM and
clobber your ability to run non-Crinoid CGIs.

Java
OSU provides a persistent Java execution environment with some glue
code. Look in your [.JAVA_CODE] subdirectory; there are clear instruc-
tions in the AAAREADME.JAVA_SCRIPT file.

One minor bug in the instructions is that they refer to
BUILD_JAVA_SCRIPTS.COM, while the file provided is named
BUILD_JAVA_SCRIPT.COM. Here's the outline:

Set default to WWW_ROOT:[JAVA_CODE]. Invoke @BUILD_
JAVA_SCRIPT. This will compile and link the Java script server process
and will also compile the example scripts, although on my system the last
example script, "echo.java," fails to compile. It will also create a
WWW_ROOT:[JBIN] directory and put the compiled Java classes into it,
and build a java_mst.

Edit HTTP_SCRIPTS.CONF and make java_enable blank instead
of"#". The goal here is to get a line that says

exec /jbin/* node. : "task=wwwjava"

where the node is either 0 for this system or the node name of the remote
system on which you want Java applets to run.

Use PRIVREQUEST to completely shut down the server and restart it
with HTTP_STARTURCOM, so all the images will be installed again,
including the new JAVA_MST image.

The first time you make a request to a path starting with / j b i n / a new
persistent Java server will be created. On the first access you'll suffer the
pain of starting up the Java virtual machine, but subsequent execution after
that should be speedy.

17.2 Options 345

17 .2 .3 W A S D

CGIplus
CGIplus scripts are persistent. The variables are the same as in CGI, but the
means of communication are different. A CGIplus script has to read from
CGIPLUSIN, which is actually a mailbox. (If a script uses the WASD-sup-
plied CGILIB or calls the CGIPLUS_CGIVAR routine, the differences
between CGIplus and regular CGI can be hidden from the mainline of the
script.)

The mailbox stays open between invocations of the script. CGIplus
scripts can read in Record mode (one line per CGI variable, and when the
script reads a blank line from the mailbox it knows that it's had all the infor-
mation for the current request and can begin processing) or in Struct mode,
in which the script first reads a record size in bytes, then reads a single
buffer containing all the CGI variables to be passed. (This has to be parsed
to obtain the values for each variable, but that work can be hidden by using
the CGIPLUS_CGIVAR C language utility function.) Since there are
potentially many fewer I/Os in Struct mode, it can be noticeably more effi-
cient than Record mode.

CGIplus scripts need to be written to clean up after each iteration,
rather than relying on image rundown to clean things up automatically,
since the image doesn't run down. All scripts can write output in Record
mode (line-by-line) or binary mode, which is more efficient because of C-
library buffering, but CGIplus scripts have to write a special CGIplus EOF
mark as a separate mark to indicate that they're done. (You can find code
examples in the WASD on-line documentation.) Note that any language
that can read records from a mailbox can be used for CGIplus processes;
this definitely includes DCL. For a language that requires an explicitly
loaded interpreter it might make more sense to use an RTE (discussed in
the next section), but there's no reason you couldn't code up a persistent
Perl script and simply have a DCL CGIplus script invoke Perl (or PHP,
TCL, or what-have-you) with that script as an argument.

To configure exec directories for CGIplus scripts, use:

exec+ /URL-path-to-script-directory/* /VMS-path-to-
executables

The trick is in the "+" after exec. More on exec in Chapter 7.

To configure specific scripts as CGIplus:

script+ /URL-of-script* /VMS-path-to-script*

...... I Chapter 17

346 17.2 Options

The trailing asterisks on the paths are to allow passing of additional path
info for parameters.

When you're messing with CGIplus script mapping, the WASD doc-
umentation suggests that you restart the server rather than just reload-
ing the rules file, to avoid any confusion with existing CGIplus
processes. On a quiet server the same result could be accomplished via a
HTTPD/DO=DCL=DELETE command followed by HTTPD/DO=MAP
(see Chapter 5).

RTE
A CGIplus process runs the same script every time it's accessed. A Run-
Time Environment process can be passed a new script each time it's
accessed, but the script is executed within a persistent environment. (For
example, a tweaked version of the Perl interpreter can be preloaded as an
RTE, and then be passed different Perl script names on every access, execut-
ing a different one each time.)

This not only saves process creation time, as happens in CGIplus, it
saves image activation time for the interpreter. However, a special inter-
preter is required that understands the CGIplus rules. An example RTE is
provided (as RTE_EXAMPLE.C), and you can also study the provided Perl
RTE, PERLRTE.C.

To configure an exec directory in which everything will be run in a spe-
cific RTE, do

exec /URL-directory-path/* (vms location of RTE)/vmspath-
to-files/*

so, specifically:

exec /persistent_perl/* (CGI-BIN-[000000]PERLRTE.EXE)
/ht_root/pperl / *

This means that any request that comes in for / pe r s i s t en t . . . pe r l /
scr iptname will be translated to HT_ROOT:[PPERL]scriptname and
passed to a process that's running the Perl Run-Time Environment.

You could make your RTE be a DCL procedure by specifiying the VMS
location prefixed by an 0.

In this format, the server would check that the passed script name could
actually be found in / h t _ r o o t / p p e r l / and would report "script not
found" if it wasn't. If you have an RTE that does something with the script

17.2 Options 347

name other than just open a file of that name, you can suppress this behav-
ior with

set /persistent-perl/* script=nofind

(See Chapter 7 for more on mapping rules.)

Alternatively, if you wanted every Perl script everywhere to be executed
by the persistent Perl RTE, you could add to the HTTPD$CONFIG file

[DclScriptRunTime]
.PL (CGI-BIN: [000000]PERLRTE.EXE)

RTEs exist for PHP and Python, but neither is integrated into the 7.2
distribution. The PHP RTE is available from the WASD download page
and can work with either the David Jones PHP or the CSWS PHP.

Java
Java classes can be run as CGI-like and as CGIplus scripts. Find the
WASD CGI interface class and some demonstration scripts in the
HTROOT:[SRC.JAVA] directory. To instruct the server on how to run
Java, configure the .CLASS file type to be run via the DCL wrapper, like so:

[Dc 1 S criptRunTime]
�9 CLASS @cgi-bin- [000000]java.com

HTTPD$CONFIG already includes appropriate MIME types for the
types.CLASS, .JAVA, .JAR, and.PROPERTIES.

ISAPI
Normal ISAPI DLLs are so intimately bound up with the server that a
defective application can crash the whole server. WASD has a mechanism
for running the DLLs while holding them at arm's length in autonomous
processes. (So does OSU; both are somewhat safer from DLL bugs than IIS
would be.)

ISAPI is implemented via CGIplus and a wrapper script. The wrapper is
CGIsapi (pronounced, according to the documentation, as "see-gee-eye sap-

,,) ee . CGIsapi complies with ISAPI 1.0 and vanilla ISAPI 2.0.

Configuration for ISAPI DLLs:

In HTTPD$CONFIG:

[DclScriptRunTime]
�9 DLL $CGI-BIN: [000000]CGISAPI.EXE

I Chapter 17

348 17.3 Conclusion

17.3

[AddType]

�9 DLL application/octet-stream - ISAPI extension DLL

In HTTPD$MAP.

exec+ /isapi/* /cgi-bin/*

(If you're planning to put your DLLs in the cgi-bin directory.)

This will let you execute an ISAPI.DLL with server .domain , t l d /
isapi/isapi, dll.

If you don't already have DLLs to run, or expertise in writing new ones,

it's probably pointless to configure and use CGIsapi. There's no real perform-
ance advantage over CGIplus.

Conclusion

High-performance environments are primarily of need in heavy-use envi-
ronments, but may be of help in running low-duty-cycle applications with
adequate performance. Paying the startup costs of Java or perl only once
may make subsequent requests run quickly. In any case, the virtue of these
environments is that they produce their results without a significant cost in
additional memory or CPU and can help even low-use sites extend the use-
ful life of their hardware.

18
User-Edited Web Pages

18.1

This chapter is aimed more at the departmental system level than at the
large commercial site. Large commercial sites had better have some scheme
for moving pages from authoring platform to test to production, with
appropriate testing and signoffs along the way. They may have somebody
whose entire job is to transfer files from the sandbox system to the produc-
tion system. You, as the Webmaster, don't have to worry much about mak-
ing life easier for those people. Some of the following discussion may still be
helpful.

But if you're in a department, and the authority to write Web pages is
delegated to the person in charge of the area the Web page describes, then
you're going to end up with a lot of people building Web sites who really
don't know what they're doing and don't really have either the time or the
interest in learning. If they're Windows or Mac people, they may have a lot
of trouble understanding the VMS file system, and some of them will never
be able to sort out FTE

So you need to make it easy for them to get their pages onto the server
and as likely as possible that the pages will work properly once they get
there. You're probably not that concerned with a formal check-in procedure.

File-naming standards

If your users create their Web pages on PCs or Macs, they can easily create
files with names that will make trouble for you later. Announce early and
often that they must restrict their file names to lowercase letters, numeric
digits, and underscores~no embedded blanks, no punctuation (except
for a period between file name and file type, but that last is supplied by
the OS).

349

350 18.2 File layout

This is the single most important thing you can do to make it likely
that Web sites that work on users' desktops will still work after they're
uploaded to your VMS server. Files with this naming structure can also be
served from the VMS Web server, even if they reside on disks mounted on
other kinds of machines and served over NFS. Mixed-case file names or
those with embedded blanks or other punctuation require some name
hacking to make references to them work, and no upload procedure will
automatically take care of the name hacking in the links specified in the
document.

18.2 File layout

What I've done at my site is to dedicate a disk to the Web tree, with the
directory structure matching the general URL layout. Once we get down
a few levels, each directory is owned by a group (I mean an organization
chart group, not a UIC group). I create an ACL Identifier for that group,
make it the owner of the subdirectory that the pages for that group should
appear in, give the ACL ID enough disk quota for likely use, have the
head of the group tell me who should have the rights to update the
group's pages, grant the ACL to the accounts of the updaters, and let them
have at it.

SYSUAF> ADD/ID/ATTRIBUTE=RESOURCE GROUPNAME_WEB_UPDATE

SYSUAF> GRANT/ID/ATTRIBUTE RESOURCE GROUPNAME_WEB_UPDATE

ONE_USER
DI SKQUOTA> ADD DEVICENAME GROUPNAME_WEB_UPDATE 5 0 0 0 0 0

If those users leave, I can delete their accounts without messing up the
Web tree and grant the ACLs to somebody else. The ACL holders can cre-
ate Web pages using EVE, EDT, or TECO~although I seem to be the only
one who thinks this is a good idea. This also works beautifully if they FTP
their files up using their own user name and password~no anonymous
FTP. (That's obviously not a good idea if they're working from home, since
the password goes in clear text, but inside the corporate firewall we think it's
acceptable. Eventually we'll be on Muhinet 4.4, which supports an
encrypted copy capability via SCE) But FTP can be a problem. Users needs
to understand how to get from their SYS$LOGIN directory to the Web
directory, some FTP packages upload extraneous material (W'S_FTP creates
strange _vti folders), and some users just think FTP is too difficult and
complicated. (I'd like to point out here that I work at a national laboratory.
The people who work there aren't idiots. They just don't spend all their time
managing computer systems.)

18.3 AIternativesto FTP 351

18.3 A l t e r n a t i v e s t o FTP

What are the alternatives to FTP? I can give you a sketchy picture, but I've
only used one of these--my solution is usually to go sit with the people
who need help with FTP and walk them through it.

Netscape Communicator and Mozilla Composer can publish pages and
associated graphics to a Web server via HTTP, using the PUT method.
(Users don't have to figure out how to map the URL to a file name, as they
do with FTP; the Web server does it for them.) They have to put in a user
name and passname. The way the OSU server implements PUT, with a
DECnet script, works beautifully with the disk structure I lay out. Because
the process trying to write to the disk actually is the VMS user, rather than a
privileged program emulating the VMS user, OSU doesn't have to mess
with access checking or reproducing VMS security checks. If VMS lets the
write succeed, it (axiomatically) satisfies VMS access controls. Once you
enable the PUT script, it's available for any file in a mapped directory~
equally true for userdirs as for items under the document root.

Although CSWS and WASD support the PUT method, configuration
for userdirs is much more painful. (If you take a naive approach to CSWS
userdir configuration, you can easily end up enabling any valid VMS user to
update anybody's user directory, which is rarely what you mean.) Userdirs,
as subdirectories off SYSSLOGIN, are pretty easy to get to using FTP, so
not allowing PUT may not be a problem.

There are two drawbacks to using Netscape/Mozilla Composer as a pub-
lishing tool. The first is that it may alter files created in other tools in the
process of uploading them. (I wouldn't have expected this, but I've seen it
make deleterious changes in a clean HTML file created by Dreamweaver.)
The second is that Netscape can only download your preprocessor files in
their processed state, after the server has filled in any includes. This means
that when you go to update a dynamic document you save a static one.

The second drawback is addressed in the UPD utility on the WASD
server. This server lets a user in possession of the correct credentials browse
directory trees, upload files using PUT, edit unprocessed files in an onscreen
text area, and more. To make it work you need to have a "reverse mapping"
(see Chapter 7) for the directory tree you're trying to get at. (This is actually
a possibility even if you want to make OSU or CSWS your "production"
server; you can run WASD on another port and just map the same files, or
even on another cluster node. You won't have the benefit of a unified file
cache knowing about it the very instant that something's been uploaded,

I Chapter 18

352 18.3 Alternatives to FTP

but a few seconds or minutes of latency may be a small price to pay for con-
venient updates.)

There are FrontPage extensions that are supposed to ease the job of
"publishing" stuff to the Web server. These don't, at present, exist on VMS
in any form, although they are supported on IIS and Apache on UNIX.
Incidentally, FrontPage creates ugly, inefficient H T M L - - a n d if you use it
you'll find yourself with hundreds of copies of the fphover Java applet clut-
tering your Web disk. Dreamweaver makes a much cleaner page. However,
even FrontPage is better than the "save to Internet" option on Office 2000
packages. I once had to debug a problem where an HTML file Word 2000
had created rendered acceptably in Netscape and showed up blank on Inter-
net Explorer; that was a really hideous file internally.

You can share your VMS disk with a PC network using Samba (free) or
PathWorks (not free, but a couple of client licenses included with most
recent VMS purchases); with appropriate mapping, in theory, PC users just
save their files to network disk and--poofl--they're on the Web.

You could enable the FTP server on the NT disk server system and use
an FTP mirroring scheme to keep a Web tree on VMS in synch.

You could pay money for a PC-based NFS client and NFS serve the
Web disk from VMS. (This has a lot of system administration overhead in
it as you need to map userids from the other system.)

You can pay money to some third-party vendor for NFS server software
for your NT server and mount the NT disk from VMS. TCP/IP Services
5.3 (which follows immediately on the heels of 5.1) has an NFS client that's
willing to pretend the NFS disk is an ODS-5 disk supporting extended file
specifications, so it doesn't have to hack in funny characters to handle
uppercase letters. This means that the file names in links have a shot at
working.

In a variant on that scheme you can run Samba on a UNIX or LINUX
box and have NFS mount the disk, or use an FTP mirroring scheme to
make a frequent copy of the Web tree from that box to the VMS server.

In another variant, you could use mod_WebDAV on LINUX/xBSD
Apache for easy publishing, and use some scheme to get the disk over to
VMS. (It is my profound hope that WebDAV [Distributed Authoring and
Versioning] will be ported to VMS in the near future, but I don't know of
any plans to that effect.)

You could--this is really unpleasant--run IIS on an NT box inside the
firewall, with all external access to it deliberately cut off, use the Pathworks

18.3 Alternatives to FTP 353

publishing stuff to get files uploaded to it, and then use either NFS or FTP
mirroring to get its disk to your VMS server.

You could use a storage appliance on the network that's NFS mounted
from both PCs and VMS. (All this NFS stuff seems really slow and ugly,
but if you use a caching Web server and give it enough memory, any fre-
quently used file will be in memory most of the time anyway, so the addi-
tional network latency won't be that relevant.)

But all the ideas that make a UNIX/LINUX/NT box an essential part of
your VMS-based Web server scheme are strategically bad for sites whose
technical people are struggling to keep their VMS systems in place against
the rising tide of "LINUX is the future! NT is ready for the Enterprise!"
zealots, so your best bet is probably to standardize on an FTP client and
write really, really good instructions on how to use it.

I Chapter 18

This Page Intentionally Left Blank

19
User-Developed CGI Scripts

Some of your users may need or want to develop their own scripts, or to
play with downloaded scripts without risking the security of your entire sys-
tem. There are a couple of reasonable choices. It's not a good idea to let
them run IIS (or Personal Web Services, or whatever else it's being called
today) on their desktop machines, since that opens many windows of vul-
nerability that can result in bigger problems later (the Nimda worm, among
others).

You could run a separate sandbox machine for them. (If you have a Gal-
axy system, you could run a separate Galaxy instance for them, but this
seems like an unlikely circumstance.)

You could make them e-mail you the scripts for uploading, and you
could eyeball them and make sure they were completely okay. The problems
with this option are obvious (and include you not having all the time in the
world).

You can set up separate CGI-BIN directories that individual users have
rights to upload files into. They had better be trusted users, because their
scripts will run with the same rights the Web server has. (And that might
mean users' scripts could update databases or change files that they don't
have rights to change as individuals.)

Here are the realistic options. You could have a separate instance of the
Web server that runs under a different user name with lesser privileges and
allow users to upload their CGIs into a different CGI-BIN directory. This
could work reasonably well, although if you have multiple users they could
interfere with each other.

You could also, finally, have user CGIs that run with the users' privileges.
(That puts their files at risk, but at least it limits the damages, - assuming
that they don't have any special privileges.)

355

356 19.2 OSU

A few technicalities should be mentioned. The defined capability to
impersonate another user was introduced in VMS 6.0, but the interface
really settled down (as the Persona services) only in VMS 6.2. Servers that
run acceptably on VMS 5.5-2 (OSU and WASD) will not be able to do
some of the tricks involving other user names until you upgrade to a later
version. WASD has some hand-rolled support for impersonation under
VMS 6.0 and 6.1; OSU support starts with the Persona services at 6.2. (Per-
thread security profiles weren't introduced until considerably later, which
means that it's now possible to do this in a less complex way than WASD
and OSU had to; however, these old ways still work.) The following text
describes how it's done.

19.1 CSWSIApache

This isn't currently supported in Apache on VMS. If you need it in Apache,
you'll have to roll your own. This isn't impossible, although it's very fiddly
business. You write your own executable that's INSTALLed with IMPER-
SONATE privilege. It runs as a CGI under the regular Apache Web server
account. It reads its parameters to determine who it's supposed to be, then
uses Persona services to change identity to that user name, and then spawns
a process with that identity to actually run the script and resets its own
identity back to the default Apache account. You can probably steal much
of the code from WASD or OSU.

UNIX/LINUX-based Apache can be configured with suEXEC support,
which (under a very restrictive set of conditions) will allow user scripts. It
also has the User directive, which can be different from virtual host to vir-
tual host (according to a CSWS engineer on comp.os.vms); the release notes
point out that this is not supported in CSWS 1.2, but it's being considered
for the next release of CSWS.

19.2 0SU

User scripting is an optional and perhaps underpublicized feature in OSU.
(The only documentation I could find on it is in the comments in the
user_script.c and user_script.corn files.) Here's what happens: From the
SYSTEM account, create a detached process that acts as a gateway between
the server and the user script execution processes. (This can't be created by
the HTTP_SERVER process because it requires heavy privileges~OPER,
SYSNAM, and SYSPRV~which are privileges you definitely don't want
HTTP_SERVER to have.)

19.2 OSU 357

When the server recognizes that it needs to run a user script, it contacts
the gateway and passes it the script and user name it needs to run under.
The gateway program uses Persona services to assume the needed user
name, and then, through a proxy from that user name to itself, creates
another process with which it communicates using DECnet task-to-task
communication (and then sets itself back to the original Persona). Because
the gateway process doesn't read and parse the server configuration files, it
needs to get some configuration information from system globals. The gate-
way connects to the script execution object, WWWEXEC, and uses a dif-
ferent script object. This process can also be used to run scripts using the
user name/password entered as a result of SYSUAF-based authentication, so
you can run scripts as the user you're talking to as well as run scripts as their
owners.

Here's what you need to do to get that all started up. First, compile (or
link, if you have object files but don't have a C compiler) the user_script.c
program by going to the [.BASE_CODE] directory and doing

$ @USER_SCRIPT. COM BUILD [NOCOMPILE]

(Giving NOCOMPILE as the optional P2 will skip straight to the link
stage.)

Next, you need to define appropriate DECnet proxies. You can define a
default proxy of every account to itself with a single command, or you can
define them user by user. If you want just to give userscript capability to
everybody, you want to do the former; if you want to allow this only on a
user name-by-user name basis after the user has applied to you for permis-
sion, then you add a proxy for each user:

UAF> add/proxy node-number::* */default ! proxies for

every account

o r

UAF> add/proxy node-number: :username username/default !

user by user

The node number is (area * 1,024) + node number, so if your DECnet
node is 49.1 (which it may well be if you're running only over IP), the node
number is 50,177. If you're sharing the UAF among multiple nodes in a
cluster that will need this functionality, you'll need to issue the add/proxy
for each node. You may be able to use node name instead of number, and
you may be able to use 0:: instead of either (which would work on all
nodes), but I couldn't get this to work right on my test machine running
DECnet Phase V.

I Chapter 19

358 19.20SU

Define the following logicals. (You need to include the definitions in
some file that will be run in your system startup before you create the
detached user_script gateway process.)

$ DEFINE /SYSTEM USER_SCRIPT_ACCESS node: :username [,

node2 �9 : username2]

(NODE::USERNAME is the node and user name the H T T P server
runs under. Node is probably the current node. You're telling the gateway
from whom it should accept instructions; this can be a list. Depending on
how DECnet is configured, you may need to specify a node number rather
than a node name.)

$ DEFINE/SYSTEM USER_SCRIPT_LIMIT number-of-concurrent-

threads-allowed

How many user-written scripts are you willing to have running at once?
Note that quotas on the HTTP_SERVER account don't affect this at all,
since the gateway program is running with process quota derived from SYS-
TEM, and each user process is a new process running with that user name's
process quotas. Pick a number appropriate to how heavily loaded your sys-
tem is and how likely you think it is that user processes will go into infinite
loops or go to sleep without giving any response back.

$ DEFINE/SYSTEM USER_SCRIPT_OBJECT WWWUEXEC

Actually, you could make this some other name, but W W W U E X E C is
as good as any, and there is some tradition behind this. Don't get confused
by the presence of WWWUEXEC-OBSOLETE.COM in the OSU k i t ~
you don't need a WWWUEXEC.COM. The user_script.exe program will
register itself as whatever object name you tell it to here; the server will use
whatever object you tell it to in the configuration files (they need to be the
same name).

$ DEFINE/SYSTEM USER_SCRIPTSERVER 0 : : 0=scriptserver-

object-name

You need this only if you plan to run in the somewhat confusingly named
"captive mode," in which the user name from the authenticated user is
passed to DECnet to run scripts from the base Web server. (Something you
might want to do for a script that changed user passwords.) If they're full-
access user accounts, you can just leave this undefined and it will know to
use WWWEXEC.COM. The program comments suggest WWWCEXEC
as the object name; there is no sample file provided, but I think a copy of
WWWEXEC.COM would work.

19.2 OSU 359

Create the script gateway detached process. From examining the code
you might expect executing

@ [OSU. BASE_CODE] USER_SCRIPT DETACH

would work, but it won't until you go to some trouble. Because it defines most
of the environment variables itself, including USER_SCRIPT_ACCESS, if it
runs from any account other than the OSU server account it won't be willing
to talk to the OSU server account. But if you run it from the OSU server
account, it won't work either, because that account doesn't have the privilege
to register a DECnet object. So you can either make the global declarations I
gave, install the user_script.exe, previously, and then, from SYSTEM, do a

$ run/de t ached / UI C =OSU- server- ac coun t

of the user_script.exe, or you can tweak the USER_SCRIPT.COM so that
the link is/NOTRACE, and the DETACH portion will execute the image
from WWW_SYSTEM. Then, in HTTP_STARTUP, you can insert (in
the SYSTEM portion)

$ CALL INSTALL_IMAGE WWW_SYSTEM:USER_SCRIPT -

/PRIV= (SYSPRV, OPER, SYSNAM, IMPERSONATE)

and in the daemon portion of HTTP_STARTUP (which runs as
HTTP_SERVER across the DECnet link from SYSTEM) add

@ [OSU. BASE_CODE] USER_SCRIPT DETACH

so that it starts up this process, at least the first time it runs. (Every time you
restart the server it'll try to start the process up again, but you won't get a
bunch of script processes, because the first thing it does is try to set its
name, and it bails out if the name's already taken.)

For a particular user, create a [.wwwbin] directory under the
SYSSLOGIN directory. [.www] is the user directory for serving files;
[.wwwbin] is the user directory for scripts. Notice that the server has to be
able to read the files in the [.www] subdirectory, either by ACL entry or by
W:RE protection; it doesn't have to be able to read the scripts in the [.www-
bin] directory, because they'll be executed by the user who owns them.
Copy the WWWEXEC.COM from the OSU account's SYSSLOGIN to
the SYSSLOGIN of the particular user account.

Edit the HTTP_SCRIPTS.CONF configuration file. This comes by
default with

.define uscript_enable exec

�9 define uscript_prefix /htbin-cap/*
�9 define uscript_task 0 0=CAPSCRIPT"www_root" [bin]

I Chapter 19

360 19.20SU

which will eventually be expanded to

exec /htbin-cap/* 0 : �9 "0=CAPSCRIPT"www_root : [bin]

which is the format that enables running scripts actually located in
WWW_ROOT:[BIN] (the same directory as/htbin/) as the authenticated
user.

You'd need a

prot /htbin-cap/* WWW_SYSTEM:VMSAUTH.PROT !See chapter 7

before the exec statement to make sure you got a SYSUAF-authenticated
use r .

To get the format where you're running scripts as their owners, you need

exec /htbin-* 0 0=WWWUEXEC"wwwbin

or you can do this user by user if you only want to authorize it for particular
user accounts~for example:

exec /htbin-testuser* 0: : "0=WWWUEXEC"wwwbin

but you can't do

exec /htbin-testuser/* 0- : "0=WWWUEXEC"wwwbin

because the user script gateway program gets a copy of the exec rule from
the server, and if the last character of the matched string is a and the

li/ll
next-to-last character is a . , the gateway program thinks it's meant to be in
captive mode.

One gotcha here is that you'd ordinarily put the exec statements into
http_scripts.conf, but you can't do this if you're multihosting and have a
p a s s / * in the multihost configuration. If you're doing that, then the exec
statements must appear before the first l o c a l a d d r e s s block in the
http_paths file, or, as with userdirs, the server will try to map this as part of
the/* hierarchy for the localaddress host. Another gotcha is with the privi-
leges needed to use user_script. Although the comments in the code don't
mention it, it has to have IMPERSONATE privilege as well as SYSNAM,
SYSPRV, and OPER. If it doesn't have IMPERSONATE privilege, it will
report that the names you're using are invalid user names. In fact, they're
not; it's just that the attempt to assume their personas fails because the
user_script program can't do it.

Now that you've made those changes, you can restart the server using
PRIVREQUEST. Put a script in the [.wwwbin] directory of your testuser
account and try to execute it. (Figure 19.1 shows the output of a copy of

19.3 WASD 361

Figure 19.1 A user script verson of DCL_EN~.

DCL_ENV.COM, slightly modified so that it knows where to run the CGI
symbols from, which I copied into the [.wwwbin] of my testuser account.
As you can see, it works.)

19.3 W A S D

Use the UXEC mapping rule after a corresponding SET rule, which goes

set /-*/www/cgi-bin/* script=as=-
uxec[+] template [(RTEname)]result

This maps script execution for users (running as that user if the Persona
services are enabled). The template looks like "/-*/directory/*", and the
result looks like "/*/www/cgi-binl*".

The optional [+], if present, says to run the script in the CGIplus envi-
ronment. The optional (RTEname) (the parentheses are really part of the

I Chapter 19

362 19.3 WASD

command) specifies whether to load a persistent run-time environment,
such as a Perl or Python interpreter, and run the script in that.

If you made the template be just I-specificusername/directoryl* the
result would be Ispecificdirectory/www/cgi-bin/*, and only the particular
user you called out would be able to run scripts. The first wildcard is for
user name; the second is for the script name. uxec must be paired with a set
rule, as shown previously. The se t rule in this form tells the server to run
scripts from that directory in the Persona~that is, under the user name and
with the privileges~of the user it belongs to. You can also specify
script:as=S, and if you've set up protection so that the user needed to be
authenticated against Su to get to this script, the script will run in the
Persona of the authenticated user, not as the user it belongs to.

A third option is scr ip t=as=username. You can create a VMS user,
named perhaps SANDBOX, with minimal privileges (NETMBX, TMP-
MBX), minimal disk quota, and no rights to write to the Web server files,
and then run your untrusted scripts as this safely sandboxed user using
script=as=SANDBOX. This lets users do even less harm than they would
running the script when logged in as themselves, since SANDBOX can't
even erase their files for them.

This is not necessary for user-developed scripts, but is perhaps helpful if
you want to develop, for example, Web-based management tools that any
user (or perhaps just help desk people who may not be trustable with privi-
leged DCL access) can use to start and stop print queues or delete jobs. The
solution is to create an account with exactly the necessary privileges~in
this case, O P E R ~ a n d configure only those vetted-and-trusted scripts to
run under that user name. The Web allows an easy point-click interface,
and if you require a SYSUAF-authenticated user to run the job, you can log
who's accessing it, making it easy to tell which user prankishly zapped some-
body else's print job.

For any of these run-as-another-user shenanigans to work, the
server must be started with t h e / P E R S O N A qualifier. If you make that
/PERSONA=rightlist-identifier (e.g., /PERSONA=WASD_SCRIPTABLE),
then only the accounts to which the system manager has granted
WASD_SCRIPTABLE can be used to run scripts. That's probably the
method with the least configuration hassle for allowing specific trusted
users to run scripts they maintain themselves~if you trust them, you grant
them WASD_SCRIPTABLE; if not, you can just use the global uxec and
se t rules shown at the beginning of this section.

A
Per/

A . I

The name "Perl" officially stands for "practical extraction and report lan-
guage," reflecting the original use of the language, but in more than a
decade of evolution by open source development, Perl has grown to be far
more than that. Perl is a cross-platform Swiss Army knife of software, a ver-
itable toolkit in itself, with applications in reporting, to be sure, but also in
system management, database maintenance, and, most dramatically, on the
Web.

Perl, not to put too fine a point on it, is the glue that holds the Web
together. I'll explain more about that subsequently.

History
Larry Wall released the first version of Perl in December 1987. The point,
to start with, was to extract data from variously formatted text files and to
be able to write reports with them. Larry is a linguist, and Perl has grown as
a syncretist language, like English, able to adopt idioms from other lan-
guages (some awk, some sed, some C, some sh) and become increasingly
powerful and expressive, acquiring regular expressions in version 2, binary
data in version 3, and considerable extensibility in version 5.

All of this has made Perl into the anti-Pascal. Where one important
branch of computer science has concentrated on purity of design (and con-
comitant aspects, such as the ability to automatically generate code from
algorithms and the ability to formally prove that the code matches the algo-
rithm), producing languages of severe beauty such as Pascal and Modula-2,
Perl has gone the other way. Philosophical purity is out; pragmatism is in.
Pascal is intended to make errors unlikely; Perl is intended to get the job
done, and the range of jobs it does has been extended further and further
since its birth. A design principle of the Algol-Pascal-Modula-Ada family is

363

364 A.2 A software Swiss Army knife

A . 2

to make sure that there's an obvious right way to do any operation. One of
the mottos of the Perl community is: There's more than one way to do it!

It's also, philosophically, the anti-UNIX, although it works and plays
very well on that platform. The idea with which UNIX was originally devel-
oped was that of a big toolbox of little specialized tools, which each did one
particular thing. You could use pipes to connect the little tools together, and
the only code you'd have to write would be the part really specific to your
application. UNIX is rife with little languages and utilities that do really
specific things, awk reads text files (or line-oriented input streams) and takes
actions based on the data. t r transmogrifies files, letting you, for example,
change a document that's all in capital letters into something with initial
caps only. Perl is a big language that does everything.

A software Swiss A r m y knife

Part of the original UNIX idea, back when it was growing at Bell Labs, was
that the smaller the tool was, the easier it would be to get it right. Perl
manages to maintain high quality while incorporating an amazing variety
of functionality through three main approaches. It's open source, so that
developers can take pride in finding other peoples' errors or feel shame if
they leave big errors in their own code. It allows language extensions
through modules (such as subroutine libraries: a big chunk of Perl code
designed for a particular function~for example, parsing HTML); individ-
ual applications can use the routines in the modules without worrying
about how they work. It also allows extensions through XS packages;
developers can write code in some compiled language to do something that
the main Perl engine doesn't do (e.g., making platform-specific operating
system calls). Again, the complexity is hidden from the programmer who
uses the extension.

Perl is both an applications language and a scripting language. Rather
than being rendered into the particular binary code of the processor it runs
on, Perl code is interpreted by the Perl engine. (In fact the code is "under-
stood" all at once, before it runs, and rendered into an internal bytecode
representation, which executes pretty quickly. That's a bigger win for pro-
grams that will process a lot of input than for those that don't go through
the inner loop very many times.) This tends to make it slower than highly
optimized compiled code, but it makes it much easier to have Perl scripts
work across multiple platforms. Perl can spawn any program that runs on
the host machine; capture all the output into memory; and, if necessary,

A.3 Web-ready 365

A . 3

parse through it to understand the results. This makes it an excellent glue
language for sticking applications together that weren't designed to be
stuck together, which has made it very popular with system managers.
Because it's an interpreted language, it's quicker and more fun to slap
something together than in a compiled language such as C or C++.
Because it started out as a text-handling language and has absorbed, over
time, most of the richness of the UNIX text-handling tools, it can do
extremely powerful things with text in a very few lines of code. There are
tools and packages (such as the libwww package) to support all kinds of
network interactions.

The very popular and capable--though sometimes annoyingly f laky--
majordomo mailing-list software is written in Perl, which is a natural choice
for a package that needs to parse requests that come to it in e-mail, reply by
mail, maintain text files of subscribers to list, determine whether a mail mes-
sage comes from somebody who's authorized to post on a list, and so on.

Web-ready
When the Web came along, Perl was a perfect fit. A common gateway inter-
face (CGI) program connected to a Web form will receive all the input as a
text stream from the server; it takes Perl just one line to parse that into an
array of field names and values. The HTML it needs to respond with is just
text, and Perl is good at that. Even more to the point, Lincoln Steins
CGI.PM module does a lot of the work for you, and it works fine on VMS.
Perl has been extended with XS routines to interface with popular database
packages (e.g., Oracle and, more recently, Rdb), so it's straightforward to
use Perl CGI programs for Web-based database queries and updates~
which is basically what e-commerce is all about.

If a program needs to do something that Perl can't do, Perl can open a
pipeline to a program that can do it and pass the data along--~even a pro-
gram on some other machine. There's some overhead in starting up the Perl
engine and interpreting the scripts, but Apache has resolved this by more or
less building in the Perl engine with the mod_perl processor; OSU uses the
Webperl script, and WASD uses the PerlRTE. With connections to various
freeware plotting packages such as PGPLOT and GnuPlot, Perl can easily
output GIF files, charting data on demand. Perl is also good for site mainte-
nance~easily finding stale files, for example~and log file analysis, which
is, after all, the practical extraction and reporting it was designed for from
the beginning.

I Appendix A

366 A.4 Open source

A . 4 Open source

Perl has been open source from the beginning. It's distributed under Larry
Wall's '~Artistic License," rather than the GNU Public License (GPL) that so
many other tools use. Many people work on each Perl release. How new fea-
tures will work is determined by rough consensus on the perl5-porters mail-
ing list, or on other lists devoted to specific platforms (e.g., vmsperl).
Because source is available and because Perl is so massively useful, it's been
ported to many different platforms: various UNIXes and UNIX-like sys-
tems; Macintosh; Windows 3.1, 95, NT, NEXT, OS/390 (on big IBM
iron), OS/2; and, of course, VMS (VAX and Alpha, although you really
need DECC, not VAX C, to compile recent versions). To keep each plat-
form's version from developing incompatibly with the others, all multiplat-
form stuff is folded into one distribution, under the control of a particular
person. (You need to know who has the responsibility, so that person can be
thought of as holding a token that indicates responsibility; the Perl develop-
ers call this a pumpkin, and sometimes refer to the person holding it as the
Pumpking.) Perl distributions, modules, XS packages, and tools are distrib-
uted via the Comprehensive Perl Archive Network (CPAN), which has vol-
unteer-hosted mirror sites all over the world. (Naturally, Perl scripts are used
to keep the sites in synch.)

The development of Perl has been greatly aided by O'Reilly and Associ-
ates (Sebastopol, CA), which has not only published the definitive books on
the language~the famous "camel" book is Programming Perl by Larry Wall,
Tom Christiansen, and Randal L. Schwartz~but hosts the perl.com Web
site and has organized Perl conferences. The spread of Perl is also a tribute
to Larry Wall's original vision.

Important players on Perl for VMS include Craig Berry (who packaged
up a prebuilt kit for 5.6.1 that includes an assortment of useful extensions,
including the database interface) and Dan Sugalski (who wrote a number of
VMS-specific extensions for system management with Perl and ported
mod_perl to VMS, and whose personal site, www.sidhe.org, hosts the Perl
prebuilt kit). Dan is at present a Perl Fellow (with "salary" paid by dona-
tions to the Perl Foundation) and acts as system architect for Perl 6. Charles
Bailey was responsible for the Perl 5.004 port to VMS and has written
CRINOID, a distributed high-performance Perl server for VMS (discussed
in Chapter 17).

A.5 Resources for Perl 367

A . 5 Resources f o r Perl

If you want to read more about Perl and tools that go with it, try the follow-
ing Web sites.

�9 www.perl.com is hosted by O'Reilly and Associates; it has documen-
tation, news, transcripts of Larry Wall's speeches, FAQS, and down-
loads.

�9 perldoc.com has on-line documentations for Perl--be sure to keep a
browser window open here while developing or debugging your Perl
scripts.

�9 www.perl.org is the site of the Perl Mongers, a nonprofit group
designed to establish Perl user groups. It offers geeky tee-shirts, job
listings, documentation, news, and book reviews. It also hosts the
VMSperl mailing list, which chronicles Perl development, and func-
tions as a place for VMS-specific Perl questions.

�9 www.ora.com is the site for O'Reilly and Associates, offering all the
programming books and CDs you could hope for.

�9 http://www.sidhe.org/vmsperl/index.html is Dan Sugalski's VMS Perl
page, which hosts the Perl prebuilt kits among other goodies
(although it's not always up-to-date).

�9 http://www.xray.mpe.mpg.de/mailing-lists/vmsperl/ has searchable
archives of the VMSPerl mailing list.

�9 http:/ /www.cpan.org/modules/by-module/VMS/ tells you how to
find VMS-specific Perl modules at CPAN.

I Appendix A

This Page Intentionally Left Blank

B
Python

Yes, Python is yet another scripting language. Perl may be the most popular
language on the Web, but you may well want to know about Python.

Scripting languages, you'll recall, have some features that make them
important to system administrators and programmers alike. They're inter-
preted rather than compiled, which means that you can usually develop in
them faster than with the edit/compile/run cycle required by compiled lan-
guages. (The tradeoff is that the applications generally run more slowly than
the equivalent application coded in a compiled language. Sometimes this
doesn't matter--do you care if a file scan that runs once a month takes 10
minutes or 20?~and sometimes it does, in which case you can declare the
scripting-language version a prototype and recode the application in C now
that you know for sure what it's supposed to do.) A good scripting language
can function as glue, sticking together otherwise incompatible applications
or libraries and making them work together.

Most scripting languages got started before the Web did, but when that
came along they turned out to be good fits for CGI programming, whether
you're Web-enabling existing applications or putting together new ones. In
the rush to be the first to new Internet territory, the fact that you could get
your site up faster using scripted CGIs rather than compiled ones made
scripting languages more popular than ever.

Perl is probably the best known of these languages, but many script lan-
guages are used for CGI programming, including DCL, various UNIX shell
languages, Tcl, and Python. Users of Python include NASA, Lawrence Liv-
ermore National Laboratories, Infoseek, pobox.com, RedHat (in its installa-
tion package), as well as many sites running Zope, a Python-based Web
application engine (for which there is currently no VMS port--that would
make a good project for someone).

369

370 B. I Python's the meaning of life

B.I

There are lots of Python products and packages available for free (where
lots is roughly 10 percent of the huge quantity of stuff for Perl). Typically,
where there are several different modules or libraries for doing any particu-
lar function with Perl, Python will have one. CGI is a core module for
Python. (Enough core modules come with Python to build a simple all-
Python Web server and a scripted Telnet client for screen scrapers.)

It's somewhat easier than with Perl to teach Python to call any module
from a shareable image library. With Perl, you need to go through a fairly
arcane process to produce an extension (.XS) that connects up with a
library, including writing and compiling glue code in C. (You're supposed
to start by reading a doc called perlguts.) With Python, you still need to
write a C interface for each module you want to call, but you need to know
much less about the Python internals than you do about Perl internals to do
the equivalent thing.

Python's the meaning of life

When Guido van Rossum started work on Python in 1989~although the
first version wasn't released until 1991--he was inspired by software engi-
neering principles (and television sketch comedy; the language is named for
Monty Pythons Flying Circus, and the documentation is larded with refer-
ences and jokes).

Python is a complete enough language that there's some way to do what-
ever you need to do--loop structures, subroutines, and so on--but there's
generally only one way to do it. (Compare this with Perl's motto: There's
more than one way to do it!) Program block structure is shown by indenta-
tion, not by curly braces or other delimiters. (Different authorities suggest
at least four different styles for handling curly braces in C, and the language
itself doesn't mandate any indentation at all; C code written by different
developers can look very different.) This helps to make Python more read-
able--if it's indented, it's a block; if it isn't indented, it isn't one. (In some
ways, this kind of thing makes Python the COBOL of scripting languages.
That's not necessarily a bad thing.)

The language was also designed to be object oriented from the begin-
ning. (Perl didn't acquire object orientation until version 5, and purists have
complaints about how it's implemented. Purists have complaints about lots
of things in Perl. That's part of the joy of Perl for those who love it.) It was
also designed without much regard to the specifics of a particular platform.
Perl has been ported everywhere, but incorporates various UNIX com-
mands and ideas; Python doesn't do much of tha t~i t was designed for

B. I Python's the meaning of life 371

UNIX, but it was first implemented on Macintosh and runs now on UNIX,
32-bit Windows, big IBM iron, and VMS.

Discipline is the watchword of the Python design. A Perl program can
look like line noise~remember line noise, random characters generated by
a poor modem connection? If you had a character-based modem control
program, you'd actually see these strange characters on your screen, but I
suppose most people who got online since Netscape came out have never
encountered line noise. It's still there, hidden in the PPP negotiation
process~but a Python program uses punctuation in normal ways and is
generally less surprising to someone who's unfamiliar with the language. A
C or Pascal programmer can pick up a Python script and get at least some
idea of what's going on. This is also possible with Perl programs that have
been specifically coded for readability, but the language design doesn't par-
ticularly encourage it. I don't mean to suggest that you can't write incom-
prehensible code in Python; just that most parts of the language make it
easier to write code other people can understand. (There are arcana in some
of the object-oriented portions.)

Perl is an extremely large and powerful language, with quite a few idioms
that express the same ideas in different ways. The result is that each pro-
grammer learns the set of structures in the language that work the way he or
she is comfortable with and becomes very productive. This is good, but the
drawback is that most programmers end up speaking their own personal
dialect of Perl and may find reading someone else's Perl code to be like read-
ing a different language. It's entirely rational to decide that the productivity
gains outweigh the maintainability losses, and it's also possible to gain some
maintainability through the use of uncool 1960s methods (e.g., coding
standards and structured walkthroughs), but you'll lose some productivity
that way. If you're writing one-off scripts or prototypes, this isn't an issue,
but it's something that really needs to be considered if you plan to do large,
tightly integrated multideveloper projects in Perl.

There's a game called Perl golf. It's a competition for the shortest code to
perform a particular function. (Golf, because the smallest number of [key]
strokes wins.) This is a viable game because there's always more than one
way to do it in Perl, and more than one way to notate each way to do it, so
if a game proposal goes up on the Perl Monger's Web site, 20 programmers
can produce 20 substantially different programs to accomplish the same
thing. There is no such game in Python. You get different programs if you
use different algorithms, not from expressing the same ideas in different
(and less comprehensible) ways.

I Appendix B

372 B.3 Java on VMS

B . 2

B .3

Python makes it easier to do consistent and coherent multideveloper
projects by not offering you as many choices as Perl does. Some developers
will consider that a straitjacket. Others will be happier to have more structure.

Javawocky

Python and Perl both have, on some platforms, the ability to compile
scripts into executable code (or at least into C code that can be compiled
and linked into a binary, so developers don't have to distribute source code).
One unique advantage of Python is that there's a version of Python that
runs under Java.

This is Jython (initially JPython), which compiles Python scripts to Java
bytecodes that can execute compatibly on any platform that has a Java Vir-
tual Machine (JVM). Version 2.1 was released December 31,2001. Jython
can work in an object-oriented way with any capability the JVM h a s ~
importing Java classes, subclassing them, and inheriting their capabilities.
(Compiling to Java bytecodes means that the resultant programs run con-
siderably faster than if the C-based Python interpreter had just been reim-
plemented in Java and had to go through parsing and executing Python
scripts every time they needed to be executed.) One result of this project is
that whenever the JVM goes on a new platform~a new Palm PC, a set-top
box, a refrigerator, OpenVMS~Python is automatically there. Another
result is that Python coders can write downloadable applets. This is a very
significant development, in my opinion, and may herald considerable
growth for Python. The instant availability of Jython applications on VMS
may be significant for VMS use as well.

Java on VMS

Python has been running on VMS for several years. Uwe Zessin made it
availabe on the German DECUS Web server, at http://www.decus.de/
-zessin/python.html, for some years, although at this writing the material is
no longer there. Jean-Francois Pi~rrone is currently hosting the distribution
on his server, www.pi-net.dyndns.org; see section B.6 for the URL. The
Zessin distribution includes interfaces to the VMS mail library, a SYSUAF
reader, an HTML-to-Runoff converter (with which he's made printable
documentation from the Web version), an IMAP client (with which it
would be pretty straightforward to write a Web mail interface on VMS),
and other goodies.

B.6 Resources 373

B . 4

!1.5

B . 6

Jean-Fran~;ois Pi~rrone and coworkers have developed or ported a num-
ber of excellent Python tools to VMS. These include a High-Performance
Server System module for Python on OSU and an equivalent Run Time
Environment for WASD, along with an interface to Rdb for Python. One
company's successful use of Python CGI scripts with Rdb on WASD (is
that enough acronyms in a sentence?) can be found at http://
wasd.vsm.com.au/other/wasd-tlt-exec-council- 1 a.ppt.

Always look on the br ight side of life
J

Guido van Rossum has received funding for a project called "Computer
Programming for Everybody." The idea is to teach real programming with
real programming languages to schoolchildren and others. The language of
choice for this project, of course, is Python. The funding is meant to pro-
duce teaching materials more appropriate than the O'Reilly books for sixth-
graders. I have no idea how well this will work out, but if it's successful,
there will be a large pool of Python developers in ten years.

Conclusion

I'm trying to avoid the religious argument between Perl and Python. Like
most computer-based religious arguments, both sides are right and wrong,
because there is no universal right answer. Perl is much more popular than
Python, and there are more Perl developers. If you're a manager who decides
to use Python because you want your new hires to be able to read the code
of the people who've moved on, you do have to consider that it'll be harder
to find new hires with Python experience than candidates who have some
Perl background. But it may be easier to train people in Python than in Perl.

If you're a developer or system administrator, I can give you some advice.
You should definitely check out Python, so that you have it in your toolbox
when you come across a project for which Python is the right answer. The
learning curve is pretty short if you know C or Pascal, and it's a rich and
powerful language~if you can take the discipline.

Resources

�9 http://www.python.org is the official Web site for Python users and
developers, with documentation, tutorials, FAQs, how-tos, modules,
and interviews.

I Appendix B

374 B.6 Resources

�9 http://www.python.org/-guido is Guido van Rossum's home page,
with articles, interviews, essays, and philosophy.

�9 http://www.jython.org is the Jython (Python for Java) project home
page.

�9 http://www.cnri.reston.va.us is the site for the Corporation for
National Research Initiatives, which employs Guido van Rossum and
hosts Jython development.

�9 ht tp: / Iwww.pi-net .dyndns.org/anonymousl j fp /python-2 1 1-vms-
src.zip is the site for Python for VMS.

m http://wasd.vsm.com.au/other/wasd-tlt-exec-council-la.ppt provides
presentation on Python with RDB and WASD.

C
PHP

You've got a Web site. You want dynamic content. That particular
buzzword means that the content your site presents to an individual user
changes either with the passage of time or depending on the identity of the
person accessing it. A good example would be a newspaper Web site, where
the top story changes when there's breaking news, and the site might also
allow users to customize their view of the site so that only tech stories are
presented. You don't get dynamic content by having HyperText Markup
Language (HTML) coders sitting at terminals 24/7 frantically editing the
pages to include only the stories the current users want.

Once you've got a good and recognizable page layout, you don't want to
keep messing with it. Hand-editing pages to change the top story is ineffi-
cient and error prone. (And, conversely, when you do change your page lay-
out, you want to change it across the whole application, not page by page.)

You could write CGI programs in any language that has a database con-
nection~Perl, C, Python, server-side Java, Visual BASIC, DCL on VMS
using command-line utilities for the database lookup, whatever~to do this
work. The trick, basically, is that the browser doesn't know where the con-
tent comes from. So long as it gets a stream of text that looks like proper
HTML, the browser doesn't care how many programs it took to produce it;
whether it was in a file or generated in real time; or what computer lan-
guage, operating system, or hardware produced it. A common gateway
interface (CGI) program just has to write valid HTML to its output, and
that ends up at the browser. (In some cases this means emitting a content-
type header that informs the browser that what's coming is to be interpreted
as HTML.)

A program of this kind has a bunch of formatted WRITE or PRINT
statements to put out the static parts of the form, code to do database look-
ups and PRINT the results, and more output statements to clean up at the
bottom. Whenever you want to change the Web page this kind of program

375

376 PHP

produces, you need a programmer to go into the code and change the out-
put statements. You can't use a WYSIWYG editor to make the page layout
the way you want it. You need to keep tweaking the program code and
rerunning the program.

(Perl, incidentally, has one feature that makes this easier than in some
other languages. The "HERE document" lets you include an arbitrary
amount of unmodified HTML source in your program in a single output
statement, rather than needing a new output statement for each line, having
to quote each line separately, and so on. This kind of thing is harder in C,
but pretty straightforward in a shell script or DCL.)

You can't easily use Web design support tools such as Dreamweaver,
FrontPage, or Netscape Composer to develop pages that are constructed
this way. It can take a long time to get your pages looking good when they
come out of programs like these. It's even worse if your Web pages need to
incorporate JavaScript; you can't easily edit the broken JavaScript code and
instead have to edit the program that emits the JavaScript. This is tedious
and error prone.

The solution? Web page templates, which can be developed with WYSI-
WYG editors by page designer, and contain directives to tell a server-side
processor what kind of content to insert. That processor reads the template,
sends the unmodified parts to the browser, and replaces the directives with
the results of following the instructions they contain. Those directives can
be database lookups, stores, or other kinds of programming logic not based
on databases. Your graphics designer can lay out the pages, not worrying
about the programming, and the programmer can insert the appropriate
directives.

Commercial products that do this include Microsoft's Active Server
Pages (ASP) and Cold Fusion from Allaire (Newton, MA). Microsoft pro-
vides ASP on Windows NT servers, but there is a UNIX/LINUX version
from Chili!Soft (Bellevue, W A ~ a division of Cobalt Networks). ASP
allows the use of VBScript or JScript as the scripting language, even on non-
Microsoft platforms. If you see a URL that ends in .asp, you're probably get-
ting something that's been put through an ASP processor. If you see one
that ends in .cfm, it's probably Cold Fusion. These aren't options on VMS.

Interestingly enough, the acronym ASP also refers to application service
providers, vendors to whom companies outsource some of their IT load.
This type of technology~server-side templated scripting languages~is
very helpful in developing the kind of applications ASPs need. (A dynami-
cally created page can display a different company logo depending on which

PHP 377

client company the connection is coming from. The database connection is
also vital.)

In the open source world, PHP is the templating language of choice. On
VMS, it's the only choice of which I'm aware. PHP is an annoying recursive
acronym; it stands for PHP Hypertext Processor. (You find this a lot in the
free software world. GNU stands for GNU's Not UNIX, for example.) Ras-
mus Lerdorf created the first version of PHP in 1995. Now, the PHP Group
Web site credits the language design and concept to Andi Gutmans, Ras-
mus Lerdorf, and Zeev Suraski. Gutmans and Suraski are developers who
got involved while students at the Technion University in Israel and have
gone on to run Zend. Lerdorf is now employed by LinuxCare.

PHP became very popular with version 3. It provides an extensible
architecture; you can write plug-in libraries to extend the capabilities of the
base product, including making it able to talk to different kinds of data-
bases, or for that matter to do anything it doesn't already know how to do.
With the aid of libraries~not yet ported to V M S ~ P H P can talk to Oracle,
Adabas, dBASE files, filePro, Informix, InterBase, SQL Server, Oracle, Post-
greSQL, Sybase, and anything it can access through a generic open database
connectivity (ODBC) driver. There's an XML parser library. There's even
an IMAP library, so PHP scripts can function as proxies to read a user's mail
via IMAP and present it over the Web. (The mail host needs only to speak
IMAP and doesn't even have to have a Web server of its own.)

PHP can run either as a CGI program (which means that when a PHP
request is encountered, the PHP program is loaded into memory and exe-
cuted, at whatever cost in processing time), as an Apache module, or as an
HPSS module on OSU. On WASD it's available as a CGI, a CGIplus pro-
gram, or an RTE, depending on how the mapping rules invoke it. The guts
of PHP are in the PHPSHR shareable image library; the PHP program is a
small front end that links to it, and so is mod_php.

The PHP scripting language is somewhat reminiscent of Perl, and
should be pretty easy to pick up for any programmer. It's somewhat object
oriented, supporting the most basic features~classes, constructors, and
inheritance. (This isn't the place for a tutorial on object-oriented program-
ming, so if you don't know what that last sentence means, just ignore it.)

A pair of developers~Boris Erdmann and Kristian Kuhntopp~found
PHP3 wanting in support for many of the things typically needed by a Web
application. Their PHPIib provides classes (that's an object-oriented thing)
that hide the differences between the libraries to support different data-
bases~thus making it much easier to write portable scripts~and do user

I Appendix C

378 C.I Resources for PHP

C.I

session management (which means that it can automatically keep track of
what user you've been talking to and where in your process you were; this
takes care of the problem of someone bookmarking a page in the middle of
your application).

PHP3 is still in wide use. However, PHP4 came out in 2001, incorpo-
rating much of the functionality of PHPlib. PHP4 is the first version of
PHP to run on VMS. Dave Jones~the OSU author~did the first port of
PHP and has been tracking changes and new releases. CSWS provides a
packaged, supported, mod_php, with a PHP front end so you can use it
from the command line.

PHP users include the geek news site Slashdot, the automaker Honda,
and many other familiar names. If you need dynamic content, PHP may
well be the way to go.

Resources f o r PHP

�9 The PHP Association, home of PHP~www.php.net

�9 High-profile PHP users~www.php.net/sites.php

�9 Zend Technologies, Ltd., home of commercial PHP development~
www.zend.com

�9 Under the hood of PHP4
www.zend.com/zend/art/under-php4-hood.php

�9 PHP Builders, offering lots of PHP help and advice~
www.phpbuilder.com

�9 PHPlib--phplib.netuse.de

�9 Slashdot, a ridiculously popular PHP application~
www.slashdot.org

�9 O'ReiUy Associates's PHP DevCenter~www.oreillynet.com/php

�9 Excerpts from the PHP Pocket Reference~
www.oreillynet.com/pub/a/php/excerpts/intro.html

!1
Apache

Writing a Web server is easy. You just parse URLs, return files~nothing to
it. (http://www.nenie.org/cpcip/httpd.txt has the source code of a minimal
Web server in only 481 lines of Z80 assembly language, including plenty of
white space for readability. It runs only on the Amstrad CPC, though. Web
servers of comparable length have been written in Perl and Python.)

On the other hand, if you want the server to be fast, secure, robust, and
capable, the job is a good deal harder.

You may recall that Tim Berners-Lee at CERN, the European high-
energy physics research lab, invented the World Wide Web. (Not to be con-
fused with the Internet, which predated the Web by many years. The Web
is a set of protocols that runs on top of the Internet.)

The Web uses the HyperText Transfer Protocol (HTTP), so a typical
name for a Web server is HTTPd, with the "d" standing for "daemon." (A
"daemon"~an essential concept on UNIX systems~is a program that
runs in the background, listening until it recognizes that it needs to do
something, and then doing it.) The first HTTPd was developed at
CERN; the first non-European Web server was installed at SLAC (www-
slac.stanford.edu) in December 1991. HyperText had been around as an
idea for a long time, arguably since 1945, but Berners-Lee's major insight,
articulated in a 1989 proposal, was seamless linking to remote data.

CERN developed servers that ran on big IBM mainframes, on UNIX
systems, and on VMS systems. Eventually, however, CERN needed to
spend its money on the Large Hadron Collider and ceased W W W software
development after December 1994. Various computer science and physics
sites had already developed browsers, including SLAC; the National Center
for Supercomputing Applications had already developed Mosaic (whose
developers went on to found Netscape) and produced an NCSA HTTPd,
but development on that product stopped when the primary author, Rob

379

380 Apache

McCool, left. NCSA HTTPd was the most popular server on the Web, but
Webmasters had had to develop their own patches, changes, fixes, and
enhancements without any coordination, and the program was wandering
in different directions.

In February 1995, a group of Webmasters "got together" via mailing list
to support the NCSA HTTPd product. They combined their patches and
bug fixes, and by April 1995 made the first official public release of the
Apache server (version 0.6.2). Because of all the patches, it was "a patchy
server"~I'm afraid that's where the name came from.

The Webmasters developed a methodology for making changes to the
core~a method of"lazy consensus," whereby no changes could be checked
into the archive without a number of "Yes" votes and an absence of "No"
votes. You get voting rights by being recognized as a useful contributor to
Apache development.

Now that they had a methodology for working together, the Apache
Group really got cooking on improving the server. Version 0.7 involved var-
ious new features, but version 0.8 had a new server architecture incorporat-
ing features for speed~such as spinning off new processes before they were
needed--and extensibility~such as a clearly defined application program-
ming interface (API) and a modular structure. After lots more work, Apache
version 1.0 came out in December 1995, extensively tested, ported to lots
of platforms, and adequately documented. Within a year, it was the most
popular server on the Web, and it has held that leadership position since. In
1999, some 6 million sites ran Apache, including Amazon.com, Hot-
mail.com (which Microsoft had tried and failed a couple of times to move
over to IIS on NT; it just couldn't handle the load), Hewlett-Packard
(www.hp.com), The Financial Times (www.ft.com), and the English royal
family (www.royal.gov.uk).

The module structure was very significant. An Apache module can get a
finger in the processing stream wherever it needs it. As a result, the SSI
processor can postprocess the results of CGI execution directly rather than
running only from files. Other capabilities can be layered on top of other
modules; PERL-based extensions are very popular.

Apache runs on LINUX; on FreeBSD; on netBSD; on other UNIX vari-
ants; and on Windows NT, MacOS X, OS/2, and the VMS operating sys-
tem. It powers considerably more sites than all the Microsoft IIS and PWS
servers Netcraft can find on the Web, and all the various Netscape servers as
well. For FrontPage to be a viable product, Microsoft had to release the

D. I Resources 381

D.I

FrontPage publishing extensions for Apache--otherwise, FrontPage
wouldn't work with the majority of servers out there.

The most widely used add-ons for Apache are probably the aforemen-
tioned FrontPage extensions mod_php, mod_perl, and mod_ssl. Mod_perl
means that Apache can be extended with Perl modules, instead of being lim-
ited to writing, compiling, and linking additional C modules. A Perl module
such as Apache::ASP brings Active Server Pages functionality, developed for
Microsoft's IIS, to Perl. There's an embedded Python module for Apache
(PyApache), but it hasn't yet been ported to VMS.

Apache is extremely configurable and has been extended and supported by
various commercial organizations, including IBM and Compaq. Of course,
all this configurability brings with it a lot of complexity, and an Apache Web-
master/sysadmin had really better know his or her stuff. Even Apache.org
itself got hacked, more or less benignly, by folks who exploited configuration
errors. (Once they had access, they used it to change the configuration so the
path they'd used would no longer work, and documented what they'd done.
See: http://dataloss.net/papers/how.defaced.apache.org.txt for a detailed
account.)

That's not unique to Apache. The administrator of any system that's vis-
ible on the Internet had better know his or her stuff. The advantages of
Apache (and other freeware servers) include the fact that if you know what
you're doing, you can fix security vulnerabilities as soon as you find out
about them, rather than waiting for the vendor to develop and release a fix,
which may or may not solve the problem.

Resources

�9 Tim Berners-Lee~http://www.w3.org/People/Berners-Lee/

�9 The Web through 1995~http://www.w3.org/History.html

�9 The Apache Software Foundation~http://www.apache.org

�9 The Apache HTTP Server Project~
http://www.apache.org/httpd.html

�9 Major contributors to Apache~
http://www.apache.org/contributors/index.html

�9 Apache Week newsmagazine--http://www.apacheweek.com/

�9 How Apache.org got defaced~
http://dataloss.net/papers/how, defaced.apache, org.txt

I Appendix D

This Page Intentionally Left Blank

Annotated Sample Configuration Files

E

These are the configuration files as distributed with each server. You might
want to follow along in Chapters 5-7 as we look at the relevant files for
each.

E.I CSWS configurat ion files

E. I . I H T T P D . C O N F

httpd.conf-dist-openvms
1999-12-01 Lee Tibbert

OpenVMS-Httpd.conf-dist modified to have 'reasonable' values on OpenVMS

2000-03-27 Scott LePage

OpenVMS--Added "Multiviews" to HTDOCS directory for Version 1.3.12
The default HTDOCS now has multi-language versions of INDEX.HTML

Multiviews support automatic content negotiation for muhilanguage
versions of documents.

2000-06-13 Rick Barry

Change APACHE_ROOT to APACHE$ROOT and username from APACHE to APACHE$WWW.

2000-06-22 Kevin O'Kelley

Change "/apache$root/htdocs" to "/apache$htdocs" to use the APACHE$HTDOCS

system-wide logical name that is defined at startup time.

2000-08-03 Rick Barry

Change AddIcon directive for README file types. Replace second "." with
.... and use lowercase for "readme".

383

384 E. I CSWS configuration files

2000-08-10 Matthew Doremus

Added the SSL configuration support

2001-01-25 Gaitan D'Antoni

Make README and HEADER lowercase in ReadmeName, HeaderName,
and IndexIgnore directives.

2001-02-26 Rick Barry

Add "Listen 80" directive because the single "Listen 443" directive

in mod_ssl.conf effectively disables the "Port 80" here. According

to Apache documentation we still need the Port directive (even
though we now include a Listen directive) for some internal redirects.

Based upon the NCSA server configuration files originally by Rob McCool.

This is the main Apache server configuration file. It contains the

configuration directives that give the server its instructions.

See <URL:http://www.apache.org/docs/> for detailed information about
the directives.

Do NOT simply read the instructions in here without understanding
what they do. They're here only as hints or reminders. If you are unsure

consult the online docs. You have been warned.

After this file is processed, the server will look for and process
/apacheSroot/conf/srm.conf and then /apache$root/conf/access.conf
unless you have overridden these with ResourceConfig and/or
AccessConfig directives here.

The configuration directives are grouped into three basic sections:
I. Directives that control the operation of the Apache server process as a
whole (the 'global environment').
2. Directives that define the parameters of the 'main' or 'default' server,
which responds to requests that aren't handled by a virtual host.

These directives also provide default values for the settings

of all virtual hosts.

3. Settings for virtual hosts, which allow Web requests to be sent to

different Ip addresses or hostnames and have them handled by the

same Apache server process.

Configuration and logfile names: If the filenames you specify for many

of the server's control files begin with "/" (or "drive:/" for Win32), the

server will use that explicit path. If the filenames do *not* begin
with "/", the value of ServerRoot is prepended-so "logs/foo.log"
with ServerRoot set to "/usr/local/apache" will be interpreted by the
server as "/usr/local/apache/logs/foo.log".

Section i: Global Environment

The directives in this section affect the overall operation of Apache,

E. I CSWS configuration files 385

such as the number of concurrent requests it can handle or where it

can find its configuration files.

ServerType is either inetd, or standalone. Inetd mode is only supported on

Unix platforms.

ServerType standalone

ServerRoot: The top of the directory tree under which the server's

configuration, error, and log files are kept.

NOTE! If you intend to place this on an NFS (or otherwise network)

mounted filesystem then please read the LockFile documentation

(available at <URL:http://www.apache.org/docs/mod/core.html#1ockfile>);
you will save yourself a lot of trouble.

Dofft even think about doing this. Your VMS config will be different
enough from UNIX configs that you can~ share the files, and there% re~ly
no point in putting it on UNIX media. Put it on cluster-accessible disk.

Do NOT add a slash at the end of the directory path.

ServerRoot "/apache$root"

The LockFile directive sets the path to the lockfile used when Apache

is compiled with either USE_FCNTL_SERIALIZED_ACCEPT or

USE_FLOCK_SERIALIZED_ACCEPT. This directive should normally be left at

its default value. The main reason for changing it is if the logs

directory is NFS mounted, since the lockfile MUST BE STORED ON A LOCAL

DISK. The PID of the main server process is automatically appended to

the filename.

#LockFile logs/accept.lock

Leave this commented out. VMS has a re~ lock manage~ so you won~
be messing with a lockfile at ~l.

PidFile: ~ The file in which the server should record its process identification

number when it starts.

PidFile logs/httpd.pid

If you're running in a cluster configuration, it needs to end up in system-
specific storage, so if your logs are directed to APACHE$SPECIFIC, you'll
be fine. You just don't want to be trying to shut down Apache on one node
and picking up the process ID of an instance on another cluster node.

I Appendix E

386 E. I CSWS configuration files

ScoreBoardFile: File used to store internal server process information.
Not all architectures require this. But if yours does (you'll know because

this file will be created when you run Apache) then you *must* ensure that

no two invocations of Apache share the same scoreboard file.

Scoreboard file not used on OpenVMS. Use shared memory instead.
#ScoreBoardFile logs/apache_runtime_status

In the standard configuration, the server will process this file,
srm.conf, and access.conf in that order. The latter two files are
now distributed empty, as it is recommended that all directives
be kept in a single file for simplicity. The commented-out values

below are the built-in defaults. You can have the server ignore

these files altogether by using "/dev/null" (for Unix) or

"nul" (for Win32) for the arguments to the directives.

#ResourceConfig conf/srm.conf

#AccessConfig conf/access.conf

Timeout: The number of seconds before receives and sends time out.

Timeout 300

KeepAlive: Whether or not to allow persistent connections (more than
one request per connection). Set to "Off" to deactivate.

KeepAlive On

There are few circumstances where you'd want this off. You save some

overhead per request if you don't need to set up a new connection, and
pages may load noticeably faster if it's on.

MaxKeepAliveRequests: The maximum number of requests to allow
during a persistent connection. Set to 0 to allow an unlimited amount.

We recommend you leave this number high, for maximum performance.

MaxKeepAl iveRequest s i00

Depending on system load it may be profitable to play with this num-
ber. If you don't get more requests within the KeepAliveTimeout number, it
doesn't matter what the setting is here.

KeepAliveTimeout: Number of seconds to wait for the next request from the
same client on the same connection.

KeepAliveTimeout 15

E. I CSWS configuration files 387

Server-pool size regulation. Rather than making you guess how many

server processes you need, Apache dynamically adapts to the load it
sees-that is, it tries to maintain enough server processes to
handle the current load, plus a few spare servers to handle transient

load spikes (e.g., multiple simultaneous requests from a single

Netscape browser).

It does this by periodically checking how many servers are waiting

for a request. If there are fewer than MinSpareServers, it creates

a new spare. If there are more than MaxSpareServers, some of the

spares die off. The default values are probably OK for most sites.

OpenVMS--If raising number of servers, changed reduced MaxClients below.

MinSpareServers 5
MaxSpareServers i0

Number of servers to start initially-should be a reasonable ballpark
figure.

StartServers 5

Limit on total number of servers running, i.e., limit on the number

of clients who can simultaneously connect-if this limit is ever

reached, clients will be LOCKED OUT, so it should NOT BE SET TOO LOW.

It is intended mainly as a brake to keep a runaway server from taking
the system with it as it spirals down...

OpenVMS--Be paranoid
MaxClients 20
#MaxClients 150

You almost certainly want to enlarge the MaxClients number ~om 20 if
you expect any significant simultaneous load. If you do, go back and
increase MinSpareServers, MaxSpareServers, and the number of servers you
spin up to start with in StartServers.

MaxRequestsPerChild: the number of requests each child process is

allowed to process before the child dies. The child will exit so

as to avoid problems after prolonged use when Apache (and maybe the

libraries it uses) leak memory or other resources. On most systems, this
isn't really needed, but a few (such as Solaris) do have notable leaks
in the libraries. For these platforms, set to something like i0000
or so; a setting of 0 means unlimited.

NOTE: This value does not include keepalive requests after the initial

request per connection. For example, if a child process handles
an initial request and i0 subsequent "keptalive" requests, it
would only count as 1 request towards this limit.

I Appendix E

388 E. I CSWS configuration files

MaxRequestsPerChild 0

Listen: Allows you to bind Apache to specific IP addresses and/or

ports, in addition to the default. See also the <VirtualHost>

directive.

#Listen 3000

#Listen 12.34.56.78:80

Listen 80

BindAddress: You can support virtual hosts with this option. This directive
is used to tell the server which IP address to listen to. It can either
contain "*", an IP address, or a fully qualified Internet domain name.

See also the <VirtualHost> and Listen directives.

#BindAddress *

Dynamic Shared Object (DSO) Support

To be able to use the functionality of a module which was built as a DSO you

have to place corresponding "LoadModule' lines at this location so the

directives contained in it are actually available _before_ they are used.

Please read the file README.DSO in the Apache 1.3 distribution for more

details about the DSO mechanism and run "httpd -i' for the list of already

built-in (statically linked and thus always available) modules in your httpd

binary.

Note: The order is which modules are loaded is important. Don't change
the order below without expert advice.

Example:
LoadModule foo_module libexec/mod_foo.so

While MOD_PERL and MOD_PHP load modules, those commands
will end up in their respective include files, so don't go here. You'll only be
putting a module here if it% not one of the ones distributed with the CSWS
package. (The DSO support to which they refer is what VMS users call
shareable image libraries.)

ExtendedStatus controls whether Apache will generate "full" status
information (ExtendedStatus On) or just basic information (ExtendedStatus

Off) when the "server-status" handler is called. The default is Off.

#ExtendedStatus On

Section 2: 'Main' server configuration

The directives in this section set up the values used by the 'main'

server, which responds to any requests that aren't handled by a
<VirtualHost> definition. These values also provide defaults for
any <VirtualHost> containers you may define later in the file.

E. I CSWS configuration files 389

All of these directives may appear inside <VirtualHost> containers,

in which case these default settings will be overridden for the

virtual host being defined.

If your ServerType directive (set earlier in the 'Global Environment'

section) is set to "inetd", the next few directives don't have any

effect since their settings are defined by the inetd configuration.

Skip ahead to the ServerAdmin directive.

Port: The port to which the standalone server listens. For

ports < 1023, you will need httpd to be run as root initially.

Port 80

T h e same c o m m e n t (well, "run as root" means "run ~om a privileged
account") applies to the Listen directives. Port will be used in constucting
sel~re~renti~ URLs.

If you wish httpd to run as a different user or group, you must run

httpd as root initially and it will switch.

User/Group: The name (or #number) of the user/group to run httpd as.

. On SCO (ODT 3) use "User nouser" and "Group nogroup".

. On HPUX you may not be able to use shared memory as nobody, and the

suggested workaround is to create a user www and use that user.

NOTE that some kernels refuse to setgid(Group) or semctl(IPC_SET)
when the value of (unsigned)Group is above 60000;

don't use Group #-i on these systems!

OpenVMS --

User APACHE$WWW

##User nobody

##Group #-i

Ignore the entire previous comment.

ServerAdmin: Your address, where problems with the server should be

e-mailed. This address appears on some server-generated pages, such

as error documents.

ServerAdmin you@your.address

You may want to make this webmaster@node.domain.tld rather than
using your personal e-mail address. Spam harvesters will probably pick up
this address at some point. It's also convenient to have a forward for this

I Appendix E

390 E. I CSWS configuration files

kind of mail that you can point to somebody else when you're going on
vacation without forwarding your person~ mail as well.

ServerName allows you to set a host name which is sent back to clients for

your server if it's different than the one the program would get (i.e., use

"www" instead of the host's real name).

Note: You cannot just invent host names and hope they work. The name you

define here must be a valid DNS name for your host. If you don't understand

this, ask your network administrator.

If your host doesn't have a registered DNS name, enter its IP address here.

You will have to access it by its address (e.g., http://123.45.67.89/)
anyway, and this will make redirections work in a sensible way.

#ServerName new.host.name

DocumentRoot: The directory out of which you will serve your
documents. By default, all requests are taken from this directory, but
symbolic links and aliases may be used to point to other locations.

DocumentRoot "/apache$common/htdocs"

By default, this has the Apache documentation in it. You may or may

not want to put your main document tree in there. Donk use symbolic links
(VMS equivalent: SET FILE/ENTER) to splice other document trees into
the DocumentRoot; use Alias.

Each directory to which Apache has access, can be configured with respect
to which services and features are allowed and/or disabled in that
directory (and its subdirectories).

First, we configure the "default" to be a very restrictive set of

permissions.

<Directory />

Options FollowSymLinks

AllowOverride None

</Directory>

FollowSymLinks isn't going to do much for you.

Note that from this point forward you must specifically allow

particular features to be enabled-so if something's not working as

you might expect, make sure that you have specifically enabled it

below.

This should be changed to whatever you set DocumentRoot to.

<Directory "/apache$common/htdocs">

E.I CSWS configuration files 391

This may also be "None", "All", or any combination of "Indexes",

"Includes", "FollowSymLinks", "ExecCGI", or "MultiViews".

Note that "MultiViews" must be named *explicitly* "Options All"

doesn't give it to you.

Options Indexes FollowSymLinks Multiviews

This controls which options the .htaccess files in directories can

override. Can also be "All", or any combination of "Options", "FileInfo",

"AuthConfig", and "Limit"

AllowOverride None

Controls who can get stuff from this server.

Order allow, deny
Allow from all

</Directory>

UserDir: The name of the directory which is appended onto a user's home

directory if a ~user request is received.

UserDir public_html

If converting from OSU, you'll want to change this to

Control access to UserDir directories. The following is an example
for a site where these directories are restricted to read-only.

#<Directory /home/*/public_html>
AllowOverride FileInfo AuthConfig Limit
Options MultiViews Indexes SymLinksIfOwnerMatch IncludesNoExec
<Limit GET POST OPTIONS PROPFIND>
Order allow, deny
Allow from all
</Limit>

<Limit PUT DELETE PATCH PROPPATCH MKCOL COPY MOVE LOCK UNLOCK>

Order deny, allow
Deny from all

</Limit>

#</Directory>

This Directory container assumes a UNIXism--that all your users will
have directories in the /home file system, which is not at all standard on
VMS. See the discussion in Chapter 8 on how to handle this, but be aware
that it's very much installation specific. The example here isn't going to
work at all, but there is no one-size-fits-all solution for this problem.

I Appendix E

392 E. I CSWS configuration files

DirectoryIndex: Name of the file or files to use as a pre-written HTML

directory index. Separate multiple entries with spaces.

DirectoryIndex index.html

"Prewritten HTML directory index" means "default file name to serve if
the URL ends with a slash," and doesfft have to be a directory index (list of
files) at ~1. If you ~low multiple names for welcome pages, try to put the
most likely names first in the list. Possible names include index.html, wel-
come.html, and .htm variants thereo6 you could ~so ~low .shtml and

ohtrnlx or even .php versions.

AccessFileName: The name of the file to look for in each directory

for access control information.

AccessFileName .htaccess

The following lines prevent .htaccess files from being viewed by

Web clients. Since .htaccess files often contain authorization
information, access is disallowed for security reasons. Comment
these lines out if you want Web visitors to see the contents of

.htaccess files. If you change the AccessFileName directive above,

be sure to make the corresponding changes here.

Also, folks tend to use names such as .htpasswd for password
files, so this will protect those as well.

<Files \.ht">
Order allow, deny
Deny from all

</Files>

CacheNegotiatedDocs: By default, Apache sends "Pragma: no-cache" with each

document that was negotiated on the basis of content. This asks proxy
servers not to cache the document. Uncommenting the following line disables

this behavior, and proxies will be allowed to cache the documents.

#CacheNegotiatedDocs

UseCanonicalName: (new for 1.3) With this setting turned on, whenever

Apache needs to construct a self-referencing URL (a URL that refers back

to the server the response is coming from) it will use ServerName and

Port to form a "canonical" name. With this setting off, Apache will
use the hostname:port that the client supplied, when possible. This
also affects SERVER_NAME and SERVER_PORT in CGI scripts.

UseCanonicalName On

This is an especially good idea if you're doing virtu~ hosting. It can help
you funnel ~1 your requests into the preferred (fully configured) host name.

E. I CSWS configuration files 393

TypesConfig describes where the mime.types file (or equivalent) is
to be found.

TypesConfig conf/mime, types

DefaultType is the default MIME type the server will use for a document

if it cannot otherwise determine one, such as from filename extensions.

If your server contains mostly text or HTML documents, "text/plain" is

a good value. If most of your content is binary, such as applications

or images, you may want to use "application/octet-stream" instead to

keep browsers from trying to display binary files as though they are

text.

DefaultType text/plain

The mod_mime_magic module allows the server~to use various hints from the

contents of the file itself to determine its type. The MIMEMagicFile

directive tells the module where the hint definitions are located.

mod_mime_magic is not part of the default server (you have to add

it yourself with a LoadModule [see the DSO paragraph in the 'Global
Environment' section], or recompile the server and include mod_mime_magic

as part of the configuration), so it's enclosed in an <IfModule> container.

This means that the MIMEMagicFile directive will only be processed if the
module is part of the server.

<IfModule mod_mime_magic.c>
MIMEMagicFile conf/magic

</IfModule>

Don't worry about this. Mod_mime_magic isn't part of the server on
VMS. If it were~well, by default, the configuration file is included right
where this says it is.

HostnameLookups: Log the names of clients or just their IP addresses
e.g., www.apache.org (on) or 204.62.129.132 (off).
The default is off because it'd be overall better for the net if people
had to knowingly turn this feature on, since enabling it means that

each client request will result in AT LEAST one lookup request to the
nameserver.

HostnameLookups Off

If you're going to do any log-file analysis (see Chapter 12), you'll have to
do lookups later anyway, since some percentage of lookups will fail (either
because clients don't have DNS entries or because the DNS servers that are
authoritative for them aren't reachable at the moment). It's handy for
domain-based security to have the lookups on, but worse for performance.
The right choice is installation specific.

J Appendix E

394 E. I CSWS configuration files

ErrorLog: The location of the error log file.
If you do not specify an ErrorLog directive within a <VirtualHost>
container, error messages relating to that virtual host will be

logged here. If you *do* define an error logfile for a <VirtualHost>
container, that host's errors will be logged there and not here.

ErrorLog logs/error_log

LogLevel: Control the number of messages logged to the error_log.
Possible values include: debug, info, notice, warn, error, crit,
alert, emerg.

LogLevel warn

warn incorporates every condition worse than a warning, so this means
to log error, critical errors, alerts, and emergencies as well.

The following directives define some format nicknames for use with
a CustomLog directive (see below).

LogFormat "%h %1%u %t \"%r\" %>s %b \"%{Referer}i\" \"%{User-Agent}i\ combined
LogFormat "%h %1%u %t \"%r\" %>s %b" common
LogFormat "%{Referer}i -> %U" referer
LogFormat "%{User-agent}i" agent

The location and format of the access logfile (Common Logfile Format).
If you do not define any access logfiles within a <VirtualHost>
container, they will be logged here. Contrariwise, if you *do*
define per-<VirtualHost> access logfiles, transactions will be
logged therein and *not* in this file.

CustomLog logs~access_log common

If you would like to have agent and referer logfiles, uncomment the

following directives.

#CustomLog logs/referer_log referer

#CustomLog logs/agent_log agent

If you prefer a single logfile with access, agent, and referer information

(Combined Logfile Format) you can use the following directive.

#CustomLog logs/access_log combined

The combined log is my personal preference, and all log-file analysis
tools can deal with it. See Chapter 12 for an explanation of the custom log-
file format specifiers.

E. I CSWS configuration files 395

Optionally add a line containing the server version and virtual host
name to server-generated pages (error documents, FTP directory listings,
mod_status and mod_info output etc., but not CGI generated documents).

Set to "EMail" to also include a mailto: link to the ServerAdmin.

Set to one of: On I Off I Email

ServerSignature On

This is useful when you're part of a proxy chain and have a problem to
report--without the server signature the client doesn't know what system is
having the problem.

Aliases: Add here as many aliases as you need (with no limit). The format is

Alias fakename realname

Note that if you include a trailing / on fakename then the server will

require it to be present in the URL. So "/icons" isn't aliased in this

example, only "/icons/"..

Alias /icons/ "/apacheSroot/icons/"

<Directory "/apache$root/icons">
Options Indexes MultiViews

AllowOverride None

Order allow, deny
Allow from all

</Directory>

The icons file is primarily used with Fancylndexing to show pretty pic-
tures representing filetypes on automatically generated directory listings, as
discussed exhaustively in Chapter 13.

ScriptAlias: This controls which directories contain server scripts.
ScriptAliases are essentially the same as Aliases, except that
documents in the realname directory are treated as applications and
run by the server when requested rather than as documents sent to the client.
The same rules about trailing "/" apply to ScriptAlias directives as to

Alias.

ScriptAlias /cgi-bin/ "/apache$root/cgi-bin/"

"/apache$root/cgi-bin" should be changed to whatever your ScriptAliased

CGI directory exists, if you have that configured

You aren't restricted to a single ScriptAlias; you can have as many dif-
ferent ones as you like. This default lets you conveniently run a couple of
small test CGIs distributed with the server.

I Appendix E

396 E. I CSWS configuration files

The /htbin directory invokes the OSUscript module, The DECnet task string
should be customized to invoke the OSU web server's scriptserver object.

<Location /htbin>
SetHandler osuscript-handler
OSUscript 0::"0=WWWEXEC" www_root:[bin]

Order allow, deny
Allow from all

</Location>

Note that the OSUscript command lets you specify a node, which
doesn't have to be this one. Howeveg you do have to be able to reach it via
DECnet, and you need to have the correct proxies set up. WWWEXEC is
the right name for the DECnet object if your OSU setup has been done
norm~l~

<Directory "/apache$root/cgi-bin">
AllowOverride None
Options None
Order allow, deny
Allow from all

</Directory>

Redirect allows you to tell clients about documents which used to exist in
your server's namespace, but do not anymore. This allows you to tell the
clients where to look for the relocated document.
Format: Redirect old-URI new-URL

Directives controlling the display of server-generated directory listings.

See Chapter 15 for extensive discussion and examples about this.

FancyIndexing is whether you want fancy directory indexing or standard

IndexOptions FancyIndexing

AddIcon* directives tell the server which icon to show for different
files or filename extensions. These are only displayed for
FancyIndexed directories.

AddIconByEncoding (CMP,/icons/compressed.gif) x-compress x-gzip

AddIconByType (TXT,/icons/text.gif) text/*
AddIconByType (IMG,/icons/image2.gif) image/*
AddIconByType (SND,/icons/sound2.gif) audio/*
AddIconByType (VID,/icons/movie.gif) video/*

AddIcon /icons/binary.gif .bin .exe
AddIcon /icons/binhex.gif .hqx

E. I CSWS configuration files 397

AddIcon /icons/tar.gif .tar
AddIcon /icons/world2.gif .wrl .wrl.gz .vrml .vrm .iv
AddIcon /icons/compressed.gif .Z .z .tgz .gz .zip
AddIcon /icons/a.gif .ps .ai .eps

AddIcon /icons/layout.gif .html .shtml .htm .pdf

AddIcon /icons/text.gif .txt

AddIcon /icons/c.gif .c

AddIcon /icons/p.gif .pl .py

AddIcon /icons/f.gif .for

AddIcon /icons/dvi.gif .dvi

AddIcon /icons/uuencoded.gif .uu

AddIcon /icons/script.gif .conf .sh .shar .csh .ksh .tcl

AddIcon /icons/tex.gif .tex

AddIcon /icons/bomb.gif core

AddIcon /icons/back.gif ..

AddIcon /icons/hand.right_gif readme

AddIcon /icons/folder.gif ^^DIRECTORY ̂ ^

AddIcon /icons/blank.gif ^^BLANKICON ̂ ^

DefaultIcon is which icon to show for files which do not have an icon

explicitly set.

DefaultIcon /icons/unknown.gif

AddDescription allows you to place a short description after a file in

server-generated indexes. These are only displayed for FancyIndexed

directories.
Format: AddDescription "description" filename

#AddDescription "GZIP compressed document" .gz
#AddDescription "tar archive" .tar
#AddDescription "GZIP compressed tar archive" .tgz

ReadmeName is the name of the README file the server will look for by
default, and append to directory listings.

HeaderName is the name of a file which should be prepended to
directory indexes.

The server will first look for name.html and include it if found.

If name.html doesn't exist, the server will then look for name.txt
and include it as plaintext if found.

ReadmeName readme

HeaderName header

IndexIgnore is a set of filenames which directory indexing should ignore
and not include in the listing. Shell-style wildcarding is permitted.

IndexIgnore .??* *~ *# header* readme* RCS CVS *,v *,t

I Appendix E

398 E. I CSWS configuration files

AddEncoding allows you to have certain browsers (Mosaic/X 2.1+) uncompress
information on the fly. Note: Not all browsers support this.
Despite the name similarity, the following Add* directives have nothing
to do with the FancyIndexing customization directives above.

AddEncoding x-compress Z
AddEncoding x-gzip gz tgz

"Certain browsers" is n o w most browsers; you definitely want to have
this turned on unless your server is grossly underpowered (since on-the-fly
compression is a tradeoff of CPU for bandwidth).

AddLanguage allows you to specify the language of a document. You can
then use content negotiation to give a browser a file in a language
it can understand. Note that the suffix does not have to be the same
as the language keyword-those with documents in Polish (whose
net-standard language code is pl) may wish to use "AddLanguage pl .po"
to avoid the ambiguity with the common suffix for perl scripts.

AddLanguage en .en
AddLanguage fr .fr
AddLanguage de .de
AddLanguage da .da
AddLanguage el .el
AddLanguage it .it

Note that the UNIX-style language suffix produces file names such as
"file.html.ff", which doesn~ work on ODS-2 file systems. CSWS will look
for files using, not the period, but an underscore, so "file.html_ff".

LanguagePriority allows you to give precedence to some languages
in case of a tie during content negotiation.
Just list the languages in decreasing order of preference.

LanguagePriority en fr de

AddType allows you to tweak mime.types without actually editing it, or to
make certain files to be certain types.

For example, the PHP3 module (not part of the Apache distribution-see
http://www.php.net) will typically use:

#AddType application/x-httpd-php3 .php3
#AddType application/x-httpd-php3-source .phps

Mod_PHP is, of course, available as part of the CSWS project.

AddType application/x-tar .tgz

AddHandler allows you to map certain file extensions to "handlers",

E. I CSWS configuration files 399

actions unrelated to filetype. These can be either built into the server

or added with the Action command (see below)

If you want to use server side includes, or CGI outside
ScriptAliased directories, uncomment the following lines.

To use CGI scripts:

#AddHandler cgi-script .cgi

That is, Perl scripts written with the CGI.PM module.

To use server-parsed HTML files

Also known as server-side include files. (If porting from OSU, you may
wish to add .htmlx as well as .shtml.)

#AddType text/html .shtml

#AddHandler server-parsed .shtml

Uncomment the following line to enable Apache's send-asis HTTP file

feature

#AddHandler send-as-is asis

These documents are obliged to include all their HTTP header informa-
t i on~ C SW S won~ add anything, not even a Content-type: text/plain.

If you wish to use server-parsed imagemap files, use

#AddHandler imap-file map

The world has pretty much moved on to client-side image maps.

To enable type maps, you might want to use

#AddHandler type-map var

Action lets you define media types that will execute a script whenever

a matching file is called. This eliminates the need for repeated URL
pathnames for oft-used CGI file processors.

Format: Action media/type /cgi-script/location
Format: Action handler-name /cgi-script/location

MetaDir: specifies the name of the directory in which Apache can find
meta information files. These files contain additional HTTP headers
to include when sending the document

I Appendix E

400 E. I CSWS configuration files

#MetaDir .web

MetaSuffix: specifies the file name suffix for the file containing the
meta information.

#MetaSuffix .meta

The Meta features are very rarely used.

The following directives modify normal HTTP response behavior.
The first directive disables keepalive for Netscape 2.x and browsers that
spoof it. There are known problems with these browser implementations.
The second directive is for Microsoft Internet Explorer 4.0b2
which has a broken HTTP/I.I implementation and does not properly

support keepalive when it is used on 301 or 302 (redirect) responses.

BrowserMatch "Mozilla/2" nokeepalive
BrowserMatch "MSIE 4\.0b2;" nokeepalive downgrade-l.0 force-response-l.0

The following directive disables HTTP/I.I responses to browsers which
are in violation of the HTTP/I.0 spec by not being able to grok a

basic i.I response.

BrowserMatch "RealPlayer 4\.0" force-response-l.0
BrowserMatch "Java/l\.0" force-response-l.0
BrowserMatch "JDK/I\.0" force-response-l.0

Allow server status reports, with the URL of http://servername/server-status
Change the " .your_domain.com" to match your domain to enable.

Customizable error response (Apache style)
these come in three flavors

i) plain text

#ErrorDocument 500 "The server made a boo boo.
n.b. the (") marks it as text, it does not get output

2) local redirects

#ErrorDocument 404 /missing.html

to redirect to local URL /missing.html

#ErrorDocument 404 /cgi-bin/missing_handler.pl
N.B.: You can redirect to a script or a document using server-side-includes.

3) external redirects
#ErrorDocument 402 http://some.other_server.com/subscription_info.html
N.B.: Many of the environment variables associated with the original
request will *not* be available to such a script.

Error documents are discussed in Chapter 5.

E. I CSWS configuration files 401

#<Location /server-status>
SetHandler server-status
Order deny, allow
Deny from all
Allow from .your_domain.com
#</Location>

If you uncomment this and change .your.domain.com to your domain,
you need to enable Hostname lookups for it to work. This still means that
everyone in your domain can see the server status reports, which isn't neces-
sarily bad but should~t come as a surprise. You could restrict it to require a
particular login.

Allow remote server configuration reports, with the URL of
http://servername/server-info (requires that mod_info.c be loaded).
Change the ".your_domain.com" to match your domain to enable.

#<Location /server-info>
SetHandler server-info
Order deny, allow
Deny from all
Allow from .your domain.com
#</Location>

Also requires host name lookups to be enabled.

There have been reports of people trying to abuse an old bug from pre-l.l
days. This bug involved a CGI script distributed as a part of Apache.
By uncommenting these lines you can redirect these attacks to a logging
script on phf.apache.org. Or, you can record them yourself, using the script
support/phf_abuse_log.cgi.

#<Location /cgi-bin/phf*>
Deny from all
ErrorDocument 403 http://phf.apache.org/phf_abuse_log.cgi
#</Location>

Proxy Server directives. Uncomment the following lines to
enable the proxy server:

The proxy server is discussed at length in Chapter 11.

#<IfModule mod_proxy.c>
#ProxyRequests On

#<Directory proxy:*>
Order deny, allow
Deny from all
Allow from .your_domain.com
#</Directory>

I Appendix E

402 E. I CSWS configuration files

Enable/disable the handling of HTTP/I.I "Via:" headers.
("Full" adds the server version; "Block" removes all outgoing Via: headers)

Set to one of: Off I On I Full I Block

ProxyVia On

To enable the cache as well, edit and uncomment the following lines:
(no cacheing without CacheRoot)

#CacheRoot "/apache$root/proxy"
#CacheSize 5

The unit in CacheSize is kilobytes, so this default is 5 KB. (The cache
can grow large~ but garbage collection will be triggered.) This default is
almost certainly too sm~l if your site is active at ~l; any serious use will end
up with the garbage collector running ~l the time, and since this is a disk-
based cache that'll be a slow operation. Donk let this be more than 80 per-
cent of your flee space.

#CacheGcInterval 4
#CacheMaxExpire 24
#CacheLastModifiedFactor 0.i
#CacheDefaultExpire 1

#NoCache a_domain.com another_domain.edu joes.garage_sale.com

#</IfModule>
End of proxy directives.

Section 3: Virtual Hosts

Virtu~ hosts are discussed in Chapter 9.

VirtualHost: If you want to maintain multiple domains/hostnames on your
machine you can setup VirtualHost containers for them.
Please see the documentation at URL:http://www.apache.org/docs/vhosts/
for further details before you try to setup virtual hosts.

You may use the command line option '-S' to verify your virtual host
configuration.

Not on CSWS.

If you want to use name-based virtual hosts you need to define at

least one IP address (and port number) for them.

#NameVirtualHost 12.34.56.78:80
#NameVirtualHost 12.34.56.78

Dofft be misled by the above examples; NameVirtualHost is ~so a con-
tainer directive. The point that they're making is that name-based virtu~
hosts go by the host: header sent from the client, not by a DNS name. You

E. I CSWS configuration files 403

have to be sure to tell CSWS to listen on some numeric-IP address or it
won't be listening and won't see the host: headers. Since some (old) clients
don't send host: headers, you also need to have a default Vir tua lHost con-
figured so that there's somewhere for those clients to fall through to.

VirtualHost example:
Almost any Apache directive may go into a VirtualHost container.

#<VirtualHost ip.address.of.host.some_domain.com>
ServerAdmin webmaster@host.some_domain.com
DocumentRoot /www/docs/host.some_domain.com
ServerName host.some_domain.com
ErrorLog logs/host.some_domain.com-error_log

CustomLog logs/host.some_domain.com-access_log common

#</VirtualHost>

#<VirtualHost _default_:*>

#</VirtualHost>

Again, if you're going to do name-based hosting at all, you must uncom-
ment and populate the default host.

E. I .2 MOD_SSL.CONF

SSL is discussed in Chapter 6.

SSL Support

<IfDefine SSL>

Load SSL module

LoadModule ssl_module modules/mod_ssl.exe_alpha

Listen to the standard HTTPS port

Listen 443

If you need to listen on additional ports, you can add additional Listen
directives; they're cumulative.

SSL Global Context

All SSL configuration in this context applies both to
the main server and all SSL-enabled virtual hosts.

Some MIME-types for downloading Certificates and CRLs

I Appendix E

404 E. I CSWS configuration files

AddType application/x-x509-ca-cert .crt

AddType application/x-pkcs7-crl .crl
Pass Phrase Dialog:
Configure the pass phrase gathering process.
The filtering dialog program ('builtin' is a internal
terminal dialog) has to provide the pass phrase on stdout.
SSLPassPhraseDialog builtin

As I've said, I recommend against using certificates that require a pass-
phrase to work--you generally want the system to come back (after a power
failure, or whatever) without having to find somebody who knows the
secret passphrase and get that person to the system console to type it in
(especially true when you have a widely-distributed disaster-tolerant clus-
ter). And if all your operators know the passphrase, then it's not a secret any
more--so what's the point? Anyway, SSLPassPhraseDialog is only rele-
vant if you have a passphrase.

Inter-Process Session Cache:
Configure the SSL Session Cache: First either "none'
or "dbm:/path/to/file' for the mechanism to use and
second the expiring timeout (in seconds).
#SSLSessionCache none

SSLSessionCache shm:logs/ssl_scache(512000)0

In a clustered environment, make that cshm: (If your cluster is all on a
Galaxy server, cshm: will use Galactic shared memory, allowing very fast
access; if it's in different boxes, the session cache will be maintained on clus-
ter-accessible disk.)

#SSLSessionCache dbm:logs/ssl_scache
SSLSessionCacheTimeout 300
Semaphore:
Configure the path to the mutual explusion semaphore the
SSL engine uses internally for inter-process synchronization.

SSLMutex sem
#SSLMutex file:logs/ssl_mutex

The default setting will use the VMS Distributed Lock Manager to arbi-
trate access to the session cache, which is a good thing. The file: method is a
pathetic workaround for systems that don't do locking or support sema-
phores in the OS.

Pseudo Random Number Generator (PRNG):
Configure one or more sources to seed the PRNG of the
SSL library. The seed data should be of good random quality.
WARNING! On some platforms /dev/random blocks if not enough entropy
is available. This means you then cannot use the /dev/random device

because it would lead to very long connection times (as long as
it requires to make more entropy available). But usually those
platforms additionally provide a /dev/urandom device which doesn't

E. I CSWS configuration files 405

block. So, if available, use this one instead. Read the mod_ssl User

Manual for more details.
SSLRandomSeed startup builtin
SSLRandomSeed connect builtin
#SSLRandomSeed startup file:/dev/random 512
#SSLRandomSeed startup file:/dev/urandom 512

#SSLRandomSeed connect file:/dev/random 512
#SSLRandomSeed connect file:/dev/urandom 512

There is no VMS equivalent to/dev/random or/dev/urandom, so just
stick with the built-in. (Unless you want to write a driver for the RNAO"
device, and even then I wouldn't expect CSWS to work reliably with it.)

Logging:
The home of the dedicated SSL protocol logfile. Errors are
additionally duplicated in the general error log file. Put
this somewhere where it cannot be used for symlink attacks on

a real server (i.e. somewhere where only root can write).
Log levels are (ascending order: higher ones include lower ones):

none, error, warn, info, trace, debug.

SSLLog logs/ssl_engine_log

SSLLogLevel info

SSL Virtual Host Context

<VirtualHost _default_: 443 >

General setup for the virtual host
DocumentRoot "/apache$common/htdocs"
#ServerName new.host.name
ServerAdmin you@your.address
ErrorLog logs/error_log
TransferLog logs/access_log

SSL Engine Switch:
Enable/Disable SSL for this virtual host.
SSLEngine on

SSL Cipher Suite:
List the ciphers that the client is permitted to negotiate.
See the mod_ssl documentation for a complete list.
#SSLCipherSuite ALL:!ADH:RC4+RSA:+HIGH:+MEDIUM:+LOW:+SSLv2:+EXP:+eNULL

Server Certificate:
Point SSLCertificateFile at a PEM encoded certificate. If
the certificate is encrypted, then you will be prompted for a

pass phrase. Note that a kill -HUP will prompt again. A test
certificate can be generated with "make certificate' under
built time. Keep in mind that if you've both a RSA and a DSA

certificate you can configure both in parallel (to also allow

the use of DSA ciphers, etc.)
SSLCertificateFile /apache$root/conf/ssl_crt/server.crt
#SSLCertificateFile /apache$root/conf/ssl_crt/server-dsa.crt

I Appendix E

406 E. I CSWS configuration files

You can put the certificate wherever you want it, but you have to make
sure it's someplace that the CSWS account (Apache$WWW) has read
access to, isn't visible to the entire world, and isn't Aliased or under the Doc-
umentRoot so it won't get served out.

Server Private Key:

If the key is not combined with the certificate, use this
directive to point at the key file. Keep in mind that if
you've both a RSA and a DSA private key you can configure
both in parallel (to also allow the use of DSA ciphers, etc.)
SSLCertificateKeyFile /apache$root/conf/ssl_key/server.key
#SSLCertificateKeyFile /apacheSroot/conf/ssl_key/server-dsa.key

The same constraints apply to the location of the private key.

Server Certificate Chain:

Point SSLCertificateChainFile at a file containing the

concatenation of PEM encoded CA certificates which form the
certificate chain for the server certificate. Alternatively

the referenced file can be the same as SSLCertificateFile
when the CA certificates are directly appended to the server
certificate for convinience.
#SSLCertificateChainFile /apache$root/conf/ssl_crt/ca.crt

But you only need this if you're using a certificate that didn't come from
a known certificate authority.

Certificate Authority (CA):

Set the CA certificate verification path where to find CA
certificates for client authentication or alternatively one
huge file containing all of them (file must be PEM encoded)
Note: Inside SSLCACertificatePath you need hash symlinks
to point to the certificate files. Use the provided
Makefile to update the hash symlinks after changes.
#SSLCACertificatePath /apache$root/conf/ssl_crt
#SSLCACertificateFile /apache$root/conf/ssl_crt/ca-bundle.crt

And you only need SSLCACertificatePath and SSLCARevocationPath if
you're acting as a Certificate Authority.

Certificate Revocation Lists (CRL):

Set the CA revocation path where to find CA CRLs for client
authentication or alternatively one huge file containing all
of them (file must be PEM encoded)

Note: Inside SSLCARevocationPath you need hash symlinks

to point to the certificate files. Use the provided
Makefile to update the hash symlinks after changes.
#SSLCARevocationPath /apache$root/conf/ssl_crl

#SSLCARevocationFile /apacheSroot/conf/ssl_crl/ca-bundle.crl

Client Authentication (Type):

Discussed in Chapter 7.

E. I CSWS configuration files 407

Client certificate verification type and depth. Types are
none, optional, require and optional_no_ca. Depth is a
number which specifies how deeply to verify the certificate
issuer chain before deciding the certificate is not valid.
#SSLVerifyClient require
#SSLVerifyDepth i0

Access Control:
With SSLRequire you can do per-directory access control based
on arbitrary complex boolean expressions containing server

variable checks and other lookup directives. The syntax is a
mixture between C and Perl. See the mod_ssl documentation
for more details.
#<Location />
#SSLRequire (%{SSL_CIPHER} !~ m/^(EXPINULL)-/ \
and %{SSL_CLIENT S DN_O} eq "Snake Oil, Ltd." \
and %{SSL_CLIENT S DN_OU} in {"Staff", "CA", "Dev"} \
and %{TIME_WDAY} >= 1 and %{TIME_WDAY} <= 5 \
and %{TIME_HOUR} >= 8 and %{TIME_HOUR} <= 20) \
or %{REMOTE_ADDR} =~ m/^192\.76\.162\.[0-9]+$/
#</Location>

SSL Engine Options:

Set various options for the SSL engine.

o FakeBasicAuth:

Translate the client X.509 into a Basic Authorisation. This means that
the standard Auth/DBMAuth methods can be used for access control. The
user name is the "one line' version of the client's X.509 certificate.
Note that no password is obtained from the user. Every entry in the user
file needs this password: "xxj31ZMTZzkVA'.
o ExportCertData:
This exports two additional environment variables: SSL_CLIENT_CERT and
SSL_SERVER_CERT. These contain the PEM-encoded certificates of the
server (always existing) and the client (only existing when client
authentication is used). This can be used to import the certificates
into CGI scripts.
o StdEnvVars:
This exports the standard SSL/TLS related "SSL_*' environment variables.
Per default this exportation is switched off for performance reasons,
because the extraction step is an expensive operation and is usually
useless for serving static content. So one usually enables the
exportation for CGI and SSI requests only.
o CompatEnvVars:

This exports obsolete environment variables for backward compatibility
to Apache-SSL l.x, mod_ssl 2.0.x, Sioux 1.0 and Stronghold 2.x. Use this
to provide compatibility to existing CGI scripts.
o StrictRequire:

This denies access when "SSLRequireSSL" or "SSLRequire" applied even

under a "Satisfy any" situation, i.e. when it applies access is denied
and no other module can change it.
o OptRenegotiate:

This enables optimized SSL connection renegotiation handling when SSL
directives are used in per-directory context.
#SSLOptions +FakeBasicAuth +ExportCertData +CompatEnvVars +StrictRequire

I Appendix E

408 E.2 OSU Configuration Files

<Files ~ "\.(cgilshtml)$">

SSLOptions +StdEnvVars
</Files>

<Directory "/apache$root/cgi-bin">

SSLOptions +StdEnvVars
</Directory>

SSL Protocol Adjustments:

The safe and default but still SSL/TLS standard compliant shutdown

approach is that mod_ssl sends the close notify alert but doesn't wait for
the close notify alert from client. When you need a different shutdown
approach you can use one of the following variables:
o ssl-unclean-shutdown:

This forces an unclean shutdown when the connection is closed, i.e. no

SSL close notify alert is send or allowed to received. This violates
the SSL/TLS standard but is needed for some brain-dead browsers. Use

this when you receive I/O errors because of the standard approach where

mod_ssl sends the close notify alert.

o ssl-accurate-shutdown:

This forces an accurate shutdown when the connection is closed, i.e. a

SSL close notify alert is send and mod_ssl waits for the close notify

alert of the client. This is 100% SSL/TLS standard compliant, but in
practice often causes hanging connections with brain-dead browsers. Use

this only for browsers where you know that their SSL implementation
works correctly.

Notice: Most problems of broken clients are also related to the HTTP

keep-alive facility, so you usually additionally want to disable
keep-alive for those clients, too. Use variable "nokeepalive" for this.
SetEnvIf User-Agent ".*MSIE.*" nokeepalive ssl-unclean-shutdown

Per-Server Logging:

The home of a custom SSL log file. Use this when you want a
compact non-error SSL logfile on a virtual host basis.
CustomLog logs/ssl_request_log \

"%t %h %{SSL_PROTOCOL}x %{SSL_CIPHER}x \"%r\" %b"

</VirtualHost>

</IfDefine>

E.2

E . I . 3 M O D _ P E R L . C O N F , M O D _ P H P . C O N F

These files appear, annotated, in Chapter 17.

OSU Configuration Files

E . 2 . I H T T P M A I N . C O N F

. ignore .AUTHORIZE . FORM

The .ignore directives are for the benefit of the servermaint application.

E.2 OSU Configuration Files 409

�9 define HNenable #

The hashmark (#) is the comment indicator. When you see something
like Hnenable, the way to enable it is to change the hash to a blank.

.define hostname preferred.host.name

Change to your preferred host name.

�9 define Penable port

�9 define port 8000

�9 define ncport 8040

ncport is the noncached port; if you're doing SSL on versions prior to
3.10alpha, you need the ncport to be 443 for SSL.

�9 define TraceLevel http_log_level

A numeric value with n o upper limit, although anything above three will
log/an awful lot. You can change this dynamically on the running server
with the PRIVREQUEST command.

.define TraceLog http_error.log

�9 define AccessLog access, log

�9 define aclogext

Set this to 1 to get the extended log format (which matches the Apache
"Common" format, including user-agent and referrer.).

.define DNSLookup Off

Set to o n if you want your log files to show the DNS names of the cli-
ents.

�9 define ReqTMO 2:00
�9 define reqTMOenable TimeLimit Request

�9 define kaTMOenab TimeLimit Keepalive

�9 define kaTMO 40
�9 define kaLIM 12
�9 define kaScavenge scavenge

�9 define rspTMOenable #
�9 define rspTMO i:00:00
�9 define searchenable search

OSU will take a query string (the part of a URL following the ? as a
search string unless you make searchenable "#").

#. define search_script www_root : [bin] index_search, exe
.define search_script nullsearch.com

.define authenable authenticator

.define authenticator www_system-ext_authenticator

I Appendix E

410 E.2 OSU Configuration Files

.define clientcount EventCounter Clients

.define ecflags 3

.define extdirenable presentation

.define extdirscript %dirserv:

See Chapter 13 for a discussion of the directory server options. This
default says to use the MST version of the directory serven

.define DirAccess off

.define putenable #

.define putscript wwwpost.com

Make putenable blank if you want to be able to publish via HTTP from
Netscape Composer or similar tools.

.define fcsize 2000000

.define fcrefresh 3:00

.define fclimit 48000

.define fcmaxrec 4096

The fc parameters are all for the ~le cache; see Chapter 11 for details on
how they work. These defaults are reasonably sensible.

.define proxy_action /demo/nogateway.html

.define proxy_enable #

Proxying is disabled by default. See Chapter 11 for details.

.deflne proxy_gateway /htbin/proxygw/

.deflne proxy_scriptserver ProxyScript

.deflne proxy_task 0::"0=WWWPROXY"

.define proxy_task_prot null

.define proxy_task_pfile www_system:proxy.prot

.define proxy_log_enable null

.define proxy_log_file proxy-access.log

.define file_flags 7

Top-level configuration file for http server.
The .ignore line and .define lines at the beginning of this file
were written there by the servermaint script, which edits this file
via a form interface controlled by the file named in the .form interface
below.

.FORM www_system:http_main.servermaint

define hostname and port number(s), command line args override port numbers.

.EXPAND $HNenable $hostname

.EXPAND $Penable Sport Sncport

Define who can update this file via the servermaint script. There are
currently 3 .authorize formats:

E.2 "OSU Configuration Files 411

user[@host-addr] Allow access if user matches CGI REMOTE_USER

and host-addr (if present) matches client host.
(Must protect script URL).

*[@host-addr]Allow access if CGI REMOTE_USER non-null,

indicating script URL was protected.

user[@host-addr] password Allow access if user (and host-addr) matches

server port is non-provileged (>1023).
.ITERATE .authorize $smaint_user Ssmaint_pwd
.NEXT server maint

.NEXT *

Set trace level to current value of environment variable http_log_level.

Since second argument in TraceLevel rule is null, trace data will go

to error log file. The trace level governs the amount of debugging
information the server will write to the trace file during its execution,
common trace levels:

0 - No trace, errors only (default).

1 - Show connect open and close and URL path info requested.
6 - Trace script execution

ii - Trace rule file translation steps.

.EXPAND TraceLevel $TraceLevel # $TraceLog

Enable access log file and send data to log file name given by AccessLog
pre-processor variable.

.EXPAND AccessLog $AccessLog $aclogext

Enable/disable reverse host lookup. When enabled, hostnames appear in log
file rather than IP addresses.

.EXPAND DNSLookup $DNSLookup

.EXPAND FileFlags $file_flags

Set Network timeout values.

Non-zero keepalive timeout enables keep-alive support.

.EXPAND $reqTMOenable $ReqTMO

.EXPAND $rspTMOenable $rspTMO

.EXPAND $kaTMOenab $kaTMO $kaLIM $kaScavenge

.EXPAND FileCache size $fcsize

.EXPAND FileCache refresh $fcrefresh

.EXPAND FileCache limit $fclimit

.EXPAND FileCache maxrec $fcmaxrec

Set parameters for privrequest and known script operations. Localaddress

rules with host addresses starting with '@' are a hack to pass through

parameters to the TCP module. Note that UCX versions prior to 5.0 have

a hard limit of 5 for the listen backlog. The segment_size parameter
is the max size for a write QIO (larger writes are broken up by tserver_tcp
into multiple QIOs), increase with care due to increased bytlm consumption.

include www_system:http_manage.conf

I Appendix E

412 E.2 OSU Configuration Files

localaddress @listen_backlog=500
#1ocaladdress @segment_size=4096

Enable/disable and specific search script.

.EXPAND $searchenable $search_script
#search www_root:[bin]dtsearch.com

Comment out the following line to disable the authenticator sub-process.
The authenticator must be running in order for any 'protect' rules to
function properly.

.EXPAND $authenable $authenticator

Define the put script, which handles non-script PUT requests sent by clients.

.EXPAND $putenable Sputscript

The proxyscript is effectively a map command applied when a gateway
request is specified. Since it is positioned before http_paths, the
test for proxy will be the first translation rule tested.

.EXPAND proxyscript $proxy_action

.EXPAND $proxy_enable $proxy_gateway

.EXPAND $proxy_scriptserver /prxygwlll/ ; \
$proxy_log_enable Sproxy_log_file ; \
$proxy_task_prot /prxygwlll/ $proxy_task_pfile ; exec /prxygwlll/ Sproxy_task

Enable statistics counters to track number of connections (clients) and\
host classes. Note that DNSLookup must be on for non-numeric host masks.

.EXPAND EventCounter Flags $ecflags

.EXPAND $clientcount

.ITERATE EventCounter HostClass $class $mask

.NEXT kcgl 128.107.76.*

.NEXT kcgl 164.107.77.*

.NEXT kcgl 164.107.78.*

.NEXT kcgl 164.107.79.*

If you're going to use these, change them to netblocks you're likely to
use. KCGL is the computer graphics lab at OSU.

Turn on directory browsing (on by default) so files that don't have
directories will get list of files formatted into HTML.
Note: The Welcome and DirAccess rules only apply when the internal browser
is being used, they don't apply if http_suffixes.conf defines an
external browser (presenation rule for text/file-directory).

.EXPAND DirAccess $DirAccess

E.2 OSU Configuration Files 413

Define list of welcome files (index files) to search for when only a
directory is specified in the URL, 1 file per welcome directive.

.ITERATE Welcome $welcome_file

.NEXT index.html

.NEXT welcome.html

.NEXT index.htmlx

Put these in the order you consider most likely to be used, since it'll
search in the order they're given here.

The suffixes file contains the rules that map file types to the HTTP/MIME
content-type for the file. For some mime types it may also define special
'presentation' scripts that the server will use to convert the file's
data to another form for transfer to the client.

include www_system:http_suffixes.conf
.EXPAND $extdirenable text/file-directory Sextdirscript

The paths file contains the rules that are 'executed' by the server to
translate the path portion of the requested URL to a filename to return
or script to execute.

.iterate FileExpire $fepath $feinterval

.next /demo/images/* RDT+I:00:00
include www_system:http_paths.conf

E.2.2 H T T P PATHS.CONF

. ignore . AUTHORIZE . FORM

.define rootpage /demo/servermaint.html

You'll need to change rootpage to your desired home page, unless you want
every one who goes to your address to check out the server maintenance
page. Note that rootpage is an absolute path, not relative to www_root. (It
happens that /demo/ is mapped in terms of the www_root, but that's not
necessarily the case.)

.define demopath /www_root/serverdoc/*

.define demoenable pass

.define robotenable pass

.define robotfile /www_root/serverdoc/robots. txt

See Chapter 7 for what goes in robots.txt.

.define sitepath /www_root/documents/*

...... I A p p e n d i x E

414 E.2 OSU Configuration Files

All the discussion in this book makes www_root be the location of doc-
uments, but the server design is biased toward making documents in gen-
eral live in/www/whatever, while only home pages live directly under/.

.define scodeenable pass

.define userdirenable userdir

.define userdirname www

.define baduserenable #

.define baduser /www_root/serverdoc/baduser.html

.ITERATE .authorize $smaint_user Ssmaint_pwd

.NEXT server maint

.NEXT *

.AUTHORIZE server maint

.FORM www_system:http_paths.servermaint

The rules in this file are translation/protection rules that govern how the
paths in requesting URLs are translated or trigger protection checks. The
ordering of these rules can affect the outcome of the translation process.
Most of the rules assume the logical www_root exists.

Configure multi-homing (ip based and host/cname-based) root pages and
log files.

.ITERATE localaddress cname $hname ;\
AccessLog $cn_logfile $cn_extflags ;\
map / $cn_root

.ITERATE localaddress $addr $name ;\
AccessLog $mh_logfile $mh_extflags ;\
map / $mh_root

localaddress

Define error pages:
cep_enable
cep_name
cep_path
cep_code

.ITERATE $cep_enable $cep_name $cep_path $cep_code

.NEXT errorpage protfail /demo/error_403.html

.NEXT # openfail /htbin/openfail.com *

.NEXT errorpage rulefail /demo/error_403.html

.NEXT # cgiprotocol /demo/error_500.html

.NEXT errorpage code4 /demo/error_preproc.html

terminate localaddress blocks.

errorpage I #
protfail I openfail I rulefail I cgiprotocol I code4...
{url path}
[*]

Error pages are discussed in Chapter 13.

Configure access to sample document directory (www_root:[serverdoc]). Set
alias /demo to translate to /www_root/serverdoc/ and map the root document
for the server (/) to return this directory's index.html.

filecache exclude *;
.EXPAND map / $rootpage
.EXPAND $demoenable /demo/* $demopath

E.2 OSU Configuration Files 415

Create a special alias used to trigger protection checks to demonstrate
the protection mechanisms. Note that protect rules should always have
templates ending in '*' to avoid problems with version numbers appearing
as multiple names in a file.

protect /protdemo/* www_system:level2.prot

protect /protdemo/conf* www_system:level3.prot
hostprot /protdemo/hostprot.html* www_system:levell.prot

.EXPAND $demoenable /protdemo/* $demopath

Grant access to selected www_root directories.

.EXPAND pass /www/* $sitepath

.EXPAND $demoenable /www_root/serverdoc/*

.EXPAND $scodeenable /www_root/script_code/*

.EXPAND $scodeenable /www_root/base_code/*

#usermap /~* _ fspec_fixup, fixup,www_system:.exe
#usermap /reverse/* /www_root/script_code/ (revers,reverse_shr,www_system:.exe)
#usermap /* /* escape_special,fname_encode

The usermap functions are related to support for identifying users based
on certificates clients present. This is in a very preliminary form as of
3.10alpha and shouldn't be used in any but an experimental way. You'll have
to read ident_map.c if you want to know what this does in detail.

Comment out the follow line to disable user directory access. The server will
allow access to the web subdirectory of a user's account if set by the user.
The argument for the userdir rule is the subdirectory name (www -> [.www]).

.EXPAND $userdirenable $userdirname

.EXPAND $baduserenable /-* $baduser

#protect /slidepost/* www_system:slideshow.prot
#map /slidepost/* /htbin/slideshow2/*

If not a file directory, see if URL matches a script directory.

map /help* /htbin/helpgate/help*

include www_system:servermaint_protection.conf
protect /htbin/yahmail* www_system:yahmail.prot

include www_system:http_scripts.conf

Special mapping for handling crawlers.

.EXPAND $robotenable /robots.txt $robotfile

the xrule dummy arg is limited to map, pass, fail, and redirect.

.ITERATE Sxrule $xtemplate $xpath

.NEXT pass /examples* /sys$sysroot/examples*

I Appendix E

416 E.2 OSU Configuration Files

.NEXT pass /javadoc* /sys$sysroot/syshlp/java*

.NEXT pass /axpdoc* /axpdoc*
Only allow certain of the login directory (www_root:[000000]) files to be
accessible, then prohibit www_root/000000/* in order to prevent users from
circumventing the protected files by putting a series of root dirs.

.EXPAND $scodeenable /www_root/000000/wwwexec.com
fail /www_root/000000/*

Fail everything else (this is the default, but include for completeness)�9

fail *

E . 2 . 3 H T T P S U F F I X E S . C O N F

.ignore .AUTHORIZE .FORM

Define thread pools and MST-based services.

.ITERATE ThreadPool $pname $qf $a2 $a3

.NEXT dsrv q_flag=l limit=20 stack=162000

.ITERATE Service $sname $parg $darg $iarg

.NEXT dirserv pool=dsrv dynamic=(dirserv, http_dirserv_mst) \
info=www_system:http_directory.conf

This sets up only one service, the dirserv mst, but could be used to set
up any number of them.

�9 define forceall suffix
�9 define PPenable presentation
�9 define PPscript %preproc:

Establishes the MST-based (rather than CGI-based) HTML preproces-
sor (for server-side includes).

.define pdfbrenab presentation

.define pdfbyterange byterange

Sets up the byterange server as the presentation script for PDFs, but
could be used for any other large binary file. (Works really well.)

Authorization list for servermaint Script

.FORM www_system:http_suffixes.servermaint

.ITERATE �9 $smaint_user $smaint_pwd

.NEXT server maint

.NEXT *

Define common suffixes, server must properly distinguish between binary
and and ascii (8BIT) files in order to transfer them to the client.

E.2 OSU Configuration Files 417

.ITERATE suffix Ssfx $rep Senc Squal

.NEXT .crt application/x-x509-ca-cert BINARY 1.0

.NEXT .aif audio/x-aiff BINARY 0.8

.NEXT .aifc audio/x-aiff BINARY 0.8

.NEXT .aiff audio/x-aiff BINARY 0.8

.NEXT .gif image/gif BINARY 1.0

.NEXT .txt text/plain 8BIT 0.5

.NEXT .com text/plain 8BIT 0.5

.NEXT .class application/octet-stream BINARY 1.0

.NEXT .jar application/jar BINARY 1.0

.NEXT .htm text/html 8BIT 0.5

.NEXT .html text/html 8BIT 0.5

.NEXT .htmlx text/htmlx 8BIT 0.5

.NEXT .htx text/htmlx 8BIT 0.5

.NEXT .jpg image/jpeg BINARY 1.0

.NEXT .jpeg image/jpeg BINARY 1.0

.NEXT .lis text/plain 8BIT 0.5

.NEXT .mol chemical/x-mdl-molfile BINARY 1.0

.NEXT .mpe video/mpeg BINARY 1.0

.NEXT .mpg video/mpeg BINARY 1.0

.NEXT .mswd application/vnd.ms-word BINARY 1.0

.NEXT .nai application/winstall BINARY 1.0

.NEXT .pac application/x-ns-proxy-autoconfig 8BIT 1.0

.NEXT .pdb chemical/x-pdb 8BIT 1.0

.NEXT .php text/plain 8BIT 1.0

.NEXT .pot application/vnd.ms-powerpoint BINARY 1.0

.NEXT .pps application/vnd.ms-powerpoint BINARY 1.0

.NEXT .ppt application/vnd.ms-powerpoint BINARY 1.0

.NEXT .ppz application/vnd.ms-powerpoint BINARY 1.0

.NEXT .qpw application/quattropro BINARY 1.0

.NEXT .hlp text/plain 8BIT 1.0

.NEXT .ps application/postscript 8BIT 1.0

.NEXT .ps-z application/postscript BINARY/x-compress 1.0

.NEXT .dvi application/x-dvi BINARY 1.0

.NEXT .dcr application/x-director BINARY 1.0

.NEXT .doc application/vnd.ms-word BINARY 1.0

.NEXT .dot application/vnd.ms-word BINARY 1.0

.NEXT .eps application/postscript 8BIT 1.0

.NEXT .gzip application/x-zip-compressed BINARY 1.0

.NEXT .pdf application/pdf BINARY 1.0

.NEXT .hlb vms/help BINARY

.NEXT .tlb vms/tlb BINARY

.NEXT .olb vms/olb BINARY

.NEXT .mcd application/mathcad BINARY

.NEXT .mlb vms/mlb BINARY

.NEXT .mpeg video/mpeg BINARY 1.0

.NEXT .mov video/quicktime BINARY 1.0

.NEXT .moov video/quicktime BINARY 1.0

.NEXT .qt video/quicktime BINARY 1.0

.NEXT .ra audio/x-pn-realaudio BINARY 1.0

.NEXT .ram audio/x-pn-realaudio BINARY 1.0

.NEXT .rpm audio/x-pn-realaudio-plugin BINARY 1.0

.NEXT .spl application/futuresplah BINARY 1.0

.NEXT .rtf application/rtf 8BIT 1.0

I Appendix E

418 E.2 OSU Configuration Files

.NEXT .snd audio/basic BINARY 1.0

.NEXT .exe vms/exe BINARY 1.0

.NEXT .pcsi vms/exe BINARY 1.0

.NEXT .zip application/zip BINARY 1.0

.NEXT .bck application/VMSBACKUP BINARY 1.0

.NEXT .au audio/basic BINARY 1.0

.NEXT .avi video/x-msvideo BINARY 1.0

.NEXT .mid audio/x-midi BINARY 1.0

.NEXT .midi audio/x-midi BINARY 1.0

.NEXT .bleep application/bleeper 8BIT 1.0

.NEXT .wav audio/x-wav BINARY 1.0

.NEXT .xbm image/x-xbm 7BIT

.NEXT .bmp image/x-MS-bmp BINARY 0.8

.NEXT .cab application/octet-stream BINARY 1.0

.NEXT .tar application/tar BINARY 1.0

.NEXT .tar-gz application/x-zip-compressed BINARY 1.0

.NEXT .tgz application/x-zip-compressed BINARY 1.0

.NEXT .imagemap application/imagemap 8BIT 1.0

.NEXT .sit application/x-stuffit BINARY 1.0

.NEXT .swf application/x-shockwave-flash BINARY 1.0

.NEXT .bin application/x-macbinary BINARY 1.0

.NEXT .hqx application/mac-binhex40 BINARY 1.0

.NEXT .png image/png BINARY 1.0

.NEXT .word application/vnd.ms-word BINARY 1.0

.NEXT .wpd application/wordperfect BINARY 1.0

.NEXT .wrl model/vmrl BINARY 1.0

.NEXT .xl application/vnd.ms-excel BINARY 1.0

.NEXT .xlb application/vnd.ms-excel BINARY 1.0

.NEXT .xlm application/vnd.ms-excel BINARY 1.0

.NEXT .xls application/vnd.ms-excel BINARY 1.0
The following line forces the server to send everything.
.EXPAND $forceall *.* text/plain * 0.01

Define converter scripts to handle special representations. Text/htmlx is
used for html files with embedded server-side commands.

Application/imagemap is content-type for mapimage.exe conf files.
.EXPAND $PPenable text/htmlx $Ppscript

.EXPAND $pdfbrenab application/pdf $pdfbyterange

.ITERATE presentation Srep $script

.NEXT application/imagemap www_root:[bin]mapimage

The server makes a special check for text/file-directory when the URL ends
in a '/' (directory URL). If no presentation defined, server will use an internal

routine to generate a HTML listing of the files in the directory.

The presentation rule below makes the server use a special decnet object

(task WWWDIR) to perform directory browse functions. The WWWDIR object

interprets the script name (http_directory.conf) as the name of a
configuration file that defines options for the directory layout.

#presentation text/file-directory sys$node::"0=WWWDIR"www_system:http_directory.conf

The following rules make the server use the dirserv MST to perform directory
browse functions. Note that a separate thread pool must be used because of

E.2 OSU Configuration Files 419

higher stack requirements. This rule is mutually exclusive with use of
the WWWDIR-based browser enabled by the preceding presentation rule, both use
the same http_directory.conf configuration file.

This comment is wrong; the dirserv MST was defined previously. The
following rules define the HTML-processor service, followed by the MST
version of the PHP processor.

Service preproc pool=dsrv dynamic=(preproc,http_preproc_mst)\
info=www_root:[000000]accesses.dat

#presentation text/htmlx %preproc:
presentation text/php %hpss:hpss_srv_php

E.2 .4 H T T P M A N A G E . C O N F

.ignore .AUTHORIZE .FORM

.define manhost 127.0.0.i

That% localhost, so you can run PRIVREQUEST on this system (what-
ever it is) and be listened to. If you want to control OSU on a system differ-
ent from the one yoffre logged into, adjust manhost accordingl~

.define manport 931

That% the number you'll be specifying on the PRIVREQUEST com-
mand line.

.define mhEnable manage port

And without this PRIVREQUEST won't work at ~1.

This configuration file controls the management interface parameters
to the server. It is included by http_main.conf.

.FORM www_system:http_manage.servermaint

.ITERATE .authorize $smaint_user $smaint_pwd

.NEXT server maint

.NEXT *

Management functions on the running server are initiated by connecting
to the server from a designated IP address and port number, known as

the manage host and manage port. The data received by the server from

the management port (usually a privileged port number) is interpreted as
a management command rather than an HTTP request.

.EXPAND manage host $manhost # default to local host.

.EXPAND $mhEnable $manport # arbitrary number (should be less than 1024
manage script /htbin/servermaint/http_manage/
.ITERATE manage script $mscript
.NEXT /htbin/serverman/

I Appendix E

420 E.2 OSU Con~guration Files

E . 2 . 5 H T T P S C R I P T S . C O N F

Scripts in general are discussed in Chapter 14; user scripts are discussed in
Chapter 19.

.ignore .AUTHORIZE .FORM

.define script_enable exec

.define script_task www_root:[bin]

.define script_prefix /htbin/*

.define uscript_enable exec

.define uscript_prefix /htbin-cap/*

.define uscript_task 0::"0=CAPSCRIPT"www_root:[bin]

.define java_enable #

.define java_prefix /jbin/*

.define java_task 0::"task=wwwjava"

.define isapi_enable #

.define sdTMOenab #

.define sdTMO i:00

.define soTMOenab #

.define soTMO i0:00

.define srTMOenab TimeLimit ScriptReuse 2

.define srTMO 300

.define srPERM 0

.FORM www_system:http_scripts.servermaint

.ITERATE .authorize $smaint_user $smaint_pwd

.NEXT server maint

.NEXT *

Define translation rules for triggering scripts. The following virtual
script directories are defined:

/htbin/*
/cgi-bin/*
/$mapimage/*
/$omnimap/*
/$testcgi/*
/tarserv/*

Runs scripts in www_root:[bin] via DECnet
(unix) fork-based CGI scripts.
Builtin clickable image processing
Dynamically loaded clickable image processing
Test environment for dynamically loaded MST.
Connects to alternate DECnet-based scriptserver.

Additionally, bind the following suffixes to virtual scripts:

.mapimage /$omnimap/ncsa
.htimage /$omnimap/htimage
.url /$omnimap/url

Define the primary directories for external scripts. /htbin is used
for external VMS scripts and /cgi-bin is used for unix scripts.

.EXPAND $script_enable $script_prefix $script_task

.EXPAND protect $uscript_prefix www_system:slideshow.prot

.EXPAND $uscript_enable Suscript_prefix $uscript_task

.EXPAND Sjava_enable $java_prefix $java_task

E.2 OSU Configuration Files 421

Enable check for image map requests (/$mapimage/*), restrict the config
files to residing in the /demo or /www directory trees (delete argument for
unrestricted use of builtin mapimage).

.ITERATE ThreadPool $pname $qf $a2 $a3

.NEXT imap q_flag=l limit=10 stack=120000

.ITERATE Ssrvenb $sname $p $a2 $a3

.NEXT service mapimage pool=imap builtin=mapimage

.NEXT service forkscript pool=imap builtin=cgifork

.NEXT service omnimap pool=imap dynamic=(omnimap,http_omnimap_mst)

.NEXT service testcgi pool=imap dynamic=(testcgi,http_testcgi_mst)

.NEXT service hpss pool=imap builtin=HPSS info=hpss_srv_*
#.NEXT service hpss pool=imap dynamic=(hpss,http_hpss_mst) info=hpss_srv_*
#.next # fastcgi pool=imap dynamic=(fastcgi,http_fastcgi_mst) info=fastcgi.conf

Only permit the 1 testfork script to execute from cgi-bin.

map /cgi-bin/testfork/* /forkcgitest/*
fail /cgi-bin/*
map /forkcgitest/* /cgi-bin/testfork/*

Make list of optional exec directories.

.ITERATE $execenb $prefix $task

.NEXT exec /pvbin/* 0::"0=WWWPVEXEC"www_root:[pvbin...]

.NEXT exec /$mapimage/* %mapimage:/www

.NEXT exec /$mapdemo/* %mapimage:/demo

.NEXT exec /$omnimap/* %omnimap:/demo

.NEXT exec /$testcgi/* %testcgi:/bleem

.next exec /$hpss/* %hpss:

.next exec /perlbin/* %hpss:hpss_srv_perl

.NEXT # /$hpss-xxx/* %hpss:hpss_srv_xxx
#.next exec /phpbin/* %hpss:hpss_srv_php

This is an alternate way of handling PHP scripts. The presentation script
approach (seen in HTTP_SUFFIXES) takes care of it in a way that allows
PHP to work on files in any directory.

#.next /$fastcgi/* %fastcgi:
.NEXT exec /tarserv/* sys$node::"0=WWWTAR"tar_archive:
.NEXT # /cgi-bin/* %forkscript:/www_root/cgi-bin/

Those are all pseudodirectories, not actually mapping directly to real
directories on disk. (The %name things are all MST processes.)/tarserv/is
the very cool "targazer" program, which allows browsing tar archives as
though they were disk structures; there's an example of this at the OSU
home page, where every release ever is online and browseable.

I Appendix E

422 E.3 WASD Configuration Files

.EXPAND $isapi_enable www_system:isapi.conf
#exec /pdf/* ER6Sl::"0=PDFCD"pdf_server.conf

This appears to be the spoor of a not-yet-implemented feature, maybe
something that does a PDF->HTML translation on the fly. But I speculate
without adequate evidence.

Set global timeout parameters for DECnet connections.

.EXPAND $sdTMOenab $sdTMO

.EXPAND $soTMOenab $soTMO

.EXPAND $srTMOenab $srTMO $srPERM

Configure the omnimap MST. This dynamically loaded service handles mapping
for multiple input file formats: htimage image maps, NCSA (mapimage) image
maps, and indirection files (url). Use same thread pool as the mapimage
builtin service. Note that in use the omnimap script directory must include
the name of one of its virtual scripts: /htimage/, /ncsa/, /url/.

#service omnimap pool=imap dynamic=(omnimap,http_omnimap_mst)
#exec /$omnimap/* %omnimap:/demo

suffix .mapimage application/mapimage
suffix .mapimage2 application/htimage
suffix .url application/url-redirect
presentation application/mapimage %omnimap:/ncsa
presentation application/htimage %omnimap:/htimage
presentation application/url-redirect %omnimap:/url

FastCGI uses separate file (info=fastcgi.conf) to configure its applications.

#service fastcgi pool=imap dynamic=(fastcgi,http_fastcgi_mst) info=fastcgi.conf
#exec /$fastcgi/* %fastcgi:

See Chapter 17 for a discussion of FastCGI.

E.3 WASD Configuration Files

E.3.1 H T T P D $ C O N F I G . C O N F

Configuration.

Last Modified:

192.168.0.3:443

HTTPd-WASD/7.2.00penVMS/AXP SSL

Saturday, 2-JUN-2001 22:02:23

webadmin. 'PROMISCUOUS'@192. 168.0.3

That header is automatically created during the installation process.

-SERVICE-

E.3 WASD Configuration Files 423

If you maintain multiple services (roughly equivalent to VirtualHosts),
it's probably worth your while to use the separate HTTPD$SERV-
ICE.CONF file.

[Service]
[Servi c eNotFoundURL]
-GENERAL-
[Busy] 50
[ServiceListenBacklog] 5
[RequestHistory] i00
[ActivityDays] 28
[CharsetDefault] IS0-8859-I
[DNSLookup] disabled

Enable it if you want hostnames in your log files.

[Monitor] enabled
[Port] 80
[StreamLF] 250
[SearchScript] / cgi-bin/query
[SearchScriptExc lude]
[PutMaxKbytes] 250
[PutVersionLimit] 3
[MapUserNameCacheEntries] 32
[PersonaCacheEntries] 32
-LOGGING-

See Chapter 12 for information on logging in plenty of detail.

[Logging] disabled
[LogFormat] combined
[LogNaming]
[LogPeriod]
[LogPerServi ce] di sabl ed
[LogPerServiceHostOnly] disabled
[LogF i i e] HT_LOGS �9
[LogFileExtend] 0
[LogExc ludeHosts]

User tracking is discussed in detail in Chapter 12 as well. If enabled,
WASD produces a unique ID and attaches it to all the activity from the par-
ticular user, which enables you to sort out unique users from all the others
using the same Web proxy.

[Track] disabled
[TrackMultiSession] disabled
[TrackDomain]
-OPCOM-

Controls whether messages get sent to the console, in fine detail.

I Appendix E

424 E.3 WASD Configuration Files

[OpcomTarget] none
[OpcomAdmin] disabled
[OpcomAuthorization] disabled
[OpcomControl] disabled
[OpcomHTTPd] disabled
[OpcomProxyMaint] disabled
-CACHE-

See Chapter 11 for a detailed discussion of cache. These defaults should
work adequately. Virtually all file access in WASD will go through the cache
if it's enabled.

see

[Cache] enabled
[CacheHashTableEntries] 1024
[CacheEntriesMax] 200
[CacheTotalKBytesMax] 2048
[CacheFileKBytesMax] 64
[CacheChunkKBytes] 8
[CacheValidatePeriod]
[CacheFrequentHits] 3
[CacheFrequentPeriod]
-TIMEOUTS-
[TimeoutInput] 00:02-00
[TimeoutOutput] 00:30:00
[TimeoutNoProgress] 00-02.00
[TimeoutKeepAlive] 00:00:05
-BUFFER SIZES-

00:01:00

00:02:00

These ~1 have to do with scripting, sometimes advanced scripting.

[BufferSizeDclCommand] 6142
[BufferSizeDclOutput] 4096
[BufferSizeDclCgiPlusIn] 6142
[BufferSizeNetRead] 2048
[BufferSizeNetWrite] 4096
-INDEX PAGES-

What to display if only a directory name is given

[Welcome]
HOME.HTML
INDEX.HTML
HOME.SHTML
INDEX.SHTML
-HOST ACCESS-

Bloc~ng access from particular hosts or granting it to particular hosts;
Chapter 7.

E.3 WASD Configuration Files 425

[Accept]
[Reject]
-REPORTS-
[ServerAdmin]
[ServerSignature] enabled
[ServerReportBodyTag] <BODY LINK="#0000cc"
VLINK="#0000cc">
[ServerAdminBodyTag] <BODY LINK="#0000cc" VLINK="#0000cc">
[ReportBasicOnly] disabled
[ReportMetaInfo] enabled
[ErrorReportPath]
[ErrorRecommend] enabled
-AUTHORIZATION-
[AuthCacheMinutes] i0
[AuthRevalidateUserMinutes] 0
[AuthRevalidateLoginCookie] disabled
[AuthFailureLimit] i0

Get the password wrong this many times and find yourself locked out of
the system.

[AuthBasic] enabled

Basic Authorization: supported everywhere, but dangerous because of an
absence of encryption.

[AuthDigest] disabled

Digest Authorization: safer because encoded, but not supported by ~l
browsers.

[AuthDigestGetLife] 0
[AuthDigestPutLife] 0
-PROXY SERVING-

See Chapter 11 for proxy serving discussion, ~though it% actu~ly pretty
safe tojustturn on ProxyServing and ProxyCache.

[ProxyServing] disabled
[ProxyCache] disabled
[ProxyAddForwardedBy] disabled
[ProxyReportLog] enabled
[ProxyReportCacheLog] disabled
[ProxyHostLookupRetryCount] 4
[ProxyHostCachePurgeHours] 1
[ProxyCacheFileKBytesMax] 0
[ProxyCacheNoReloadSeconds] 30
[ProxyCacheReloadList] 1,2,4,8,12,24,48,96,168

I Appendix E

426 E.3 WASD Configuration Files

[ProxyCacheRoutineHourOfDay] 0
[ProxyCachePurgeList] 168,48,24,8,0
[ProxyCacheDeviceDirOrg] 64x64
[ProxyCacheDeviceCheckMinutes] 15
[ProxyCacheDeviceMaxPercent] 85
[ProxyCacheDevicePurgePercent] 1
-SCRIPTING-

See Chapters 14 and 17 for information about scripting.

[Scripting] enabled
[DclDetachProcess] disabled
[DclDetachProcessPriority]
[CgiStrictOutput] enabled
[DclSpawnAuthPriv] disabled
[DclGatewayBg] disabled
[DclSoftLimit] 15
[DclHardLimit] 20
[DclBitBucketTimeout] 00-00-15
[DclZombieLifeTime] 00:i0:00
[DclCgiPlusLifeTime] 00:i0:00
[DECnetReuseLifeTime] 00"i0:00
[DECnetConnectListMax] 0
[DclCleanupScratchMinutesMax] I0
[DclCleanupScratchMinutesOld] i0
[DclScriptRunTime]
.pl PERL
.dll $CGI-BIN:[000000]CGISAPI.EXE
.class @CGI-BIN:[000000]JAVA.COM
-ssI-

Server-side includes are discussed in Chapter 13.

[SSI] enabled

Allows include processing at ~1:

[SgIexec] enabled

Allows execution of programs from within SSI documents:

[SSIaccesses] enabled

Allows reading/updating the access counter file from SSI documents.

-DIRECTORY-

See Chapter 13 for a n exhaustive discussion of directory browsing.

E.3 WASD Configuration Files 427

[DirAccess] enabled
[DirLayout] I L R S:bmD
[DirBodyTag] <BODY>
[DirDescriptionLines] 30
[DirMetaInfo] disabled
[DirOwner] disabled
[DirPreExpired] disabled
[DirWildcard] enabled
[DirNoImpliedWildcard] enabled
[DirNoPrivIgnore] enabled
[DirReadme] top
[DirReadmeFile]
README.HTML
README.HTM
README.TXT
README.
-ICONS-
[AddIcon]

As in Apache, icons are mostly used to make directory listings look nicer.
The contents of each line is path-to-icon, Alt-tag, content-type.

/httpd/-
/httpd/-
/httpd/-
/httpd/-
/httpd/-
/httpd/-
/httpd/-
/httpd/-
/httpd/-
/httpd/-
/httpd/-
/httpd/-
/httpd/-
/httpd/-
/httpd/-
/httpd/-
/httpd/-
/httpd/-
/httpd/-
/httpd/-
/httpd/-
/httpd/-
/httpd/-

/text.gif [TXT] text/plain
/text.gif [CSS] text/css
/doc.gif [HTM] text/html
/doc.gif [HTM] text/x-menu
/image.gif [IMG] image/gif
/image.gif [IMG] image/x-xbitmap
/image.gif [IMG] image/jpeg
/movie.gif [MOV] image/mpeg
/sound.gif [AUD] application/audio
/x-script.gif [htm] application/x-script
/text.gif [txt] text/x-ismap
/x-shtml.gif [htm] text/x-shtml
/binary.gif [BIN] application/octet-stream
/binary.gif [BIN] application/x-vms512
/binary.gif [BIN] application/x-compressed
/postscript.gif [PS_] application/postscript
/gzip.gif [ZIP] application/x-gzip
/compressed.gif [ZIP] application/x-compress
/uu.gif [UUE] application/x-uuencoded
/wp.gif [WPC] application/x-wp
/doc.gif [PDF] application/pdf
/binary.gif [BIN] application/x-ns-proxy-autoconfig
/binary.gif [BIN] application/x-x509-ca-cert

[AddBlankIcon] /httpd/-/blank. gi f
[AddDe fault I con]
[AddDirIcon] /httpd/-/directory.gif [DIR]
[AddParent Icon] /ht tpd/-/back, gi f [<- -]
[AddUnknownIcon] /httpd/-/unknown. gif [???]

-CONTENT TYPES-

I Appendix E

428 E.3 WASD Configuration Files

[AddType]
.HTML "text/html; charset=ISO-8859-1" HyperText Markup Language
.HTM text/html HyperText Markup Language
.MENU text/x-menu hypertext menu
.MNU text/x-menu hypertext menu
.TXT "text/plain; charset=ISO-8859-1" plain text
.GIF image/gif GIF image
.XBM image/x-xbitmap X-bitmap
.DIR x-internal/directory binary
.SHTML text/x-shtml HyperText Markup Language (pre-processed)
.SHT text/x-shtml HyperText Markup Language (pre-processed)
.ISMAP text/x-ismap Clickable-image mapping
.ISM text/x-ismap Clickable-image mapping
. text/plain plain text
.ACF text/plain DCE Attribute Configuration File
.ADA text/plain Ada source
.ANNOUNCE text/plain plain text
.ASC text/plain plain text
.ASCII text/plain plain text
.B32 text/plain BLISS-32 source
.BAS text/plain BASIC source
.BKB application/x-script /HyperReader Bookreader book
.BKS application/x-script /HyperShelf Bookreader shelf
.C text/plain C source
.CLD text/plain VMS Command Line Definition
.CFG text/plain configuration file
.CGI text/plain Perl source
.CLASS application/octet-stream Java class
.CMS text/plain Code Management System rules
.COB text/plain COBOL source
.COM text/plain DCL procedure
.CONF text/plain configuration file
.CNF text/plain configuration
.CPP text/plain C++ source
.CRT application/x-x509-ca-cert DER certifcate (MSIE)
.CSS text/css W3C Cascading Style Sheet
.DBF application/x-script /dbiv dBASEIV database
.DBT application/octet-stream dBASEIV database memos
.DCL text/plain DCL procedure
.DIS text/plain distribution list
.DLL application/octet-stream ISAPI extension DLL
.DOC application/octet-stream DECwrite document
.DECW$BOOK application/x-script /HyperReader Bookreader book
.DECW$BOOKSHELF application/x-script /HyperShelf Bookreader shelf
.DVI application/octet-stream TeX Device Independent
.EPS text/plain Encapsulated PostScript
.EXE application/octet-stream Executable
.FDL text/plain VMS File Definition Language
.FIRST text/plain plain text
.IST text/plain plain text
.FOR text/plain Fortran source
.H text/plain C header
.HLP text/plain VMS help source
.HDR text/plain LSE template

E.3 WASD Configuration Files 429

.HLB application/x-script /Conan VMS help library

.HTC application/x-script /pcache WASD proxy cache

.HTMLX text/x-shtml OSU SSI HTML

.IMAGEMAP application/x-script /htbin/mapimage OSU Image map

.IDL text/plain DCE Interface Definition Language

.IMG application/octet-stream DDIF image

.JAVA text/plain Java source

.JAR application/octet-stream Java JAR

.JPG image/jpeg JPEG image

.JPEG image/jpeg JPEG image

.LIS text/plain plain text listing

.LIST text/plain plain text listing

.LOG text/plain plain text log

.MAR text/plain MACRO-32 source

.MAN text/plain U**x man page

.MLB application/octet-stream VMS MACRO library

.MMS text/plain Module Management System rules

.MPG image/mpeg MPEG movie

.MPEG image/mpeg MPEG movie

.MSG text/plain VMS message source

.OBJ application/octet-stream VMS object module

.ODL application/x-script /HyperShelf BNU shelf

.OLB application/octet-stream VMS object library

.OPT text/plain VMS linker options

.PAC application/x-ns-proxy-autoconfig proxy autoconfig

.PAS text/plain Pascal source

.PDF application/pdf Adobe Portable Document Format

.PEM application/x-x509-ca-cert Privacy Enhanced Mail certificate

.POD text/plain Perl documentation

.PL text/plain Perl source

.PERL text/plain Perl source

.PM text/plain Perl package

.PRO text/plain IDL source

.PROPERTIES text/plain Java properties

.PS application/postscript PostScript

.PY text/plain Python source

.READ* text/plain plain text

.RELEASE_NOTES text/plain VMS software release notes

.SDML text/plain Standard Digital Markup Language--VAX Document source

.STY text/plain TeX Style

.TEX text/plain TeX source

.TEXT text/plain plain text

.TPU text/plain Text Processing Utility source--VMS TPU

.TLB application/x-script /Conan VMS text library

.UIL text/plain User Interface Language--X Window System

.UID application/octet-stream User Interface Definition--X Window System

.UU application/x-uuencoded UU-encoded

.UUE application/x-uuencoded UU-encoded

.VMS text/plain plain text

.WP application/x-script /hwp WordPerfect document

.WPD application/x-script /hwp WordPerfect document

.WP5 application/x-script /hwp WordPerfect document

.ZIP application/x-gzip ZiP-compressed

.Z application/x-compressed compressed

I Appendix E

430 E.3 WASD Configuration Files

�9 H T L text/plain plain text
* x-internal/unknown
[AddMimeType s F i i e]
End !

E . 3 . 2 H T T P D S M A P . C O N F

example WASD mapping rule file

paranoid?
(un)comment appropriate line to restrict access to the /ht_root/ tree
YOU MAY NEED TO COMMENT-OUT THE FINAL RULE IN THIS FILE ALSO!
(also consider controlling access via HTTPD$AUTH)
#pass /ht_root/doc/*
#pass /ht_root/src/*
#fail /ht_root/*
pass /ht_root/*

You definitely don't want to go in production like this, with all your
configuration files browseable.

(template for HTTP proxy serving)
#pass http://*

(template for FTP proxy serving, currently via proxy agent script)
#redirect ftp://* /fetch/ftp://*
#pass /ftp://*
#script+ /fetch/* /cgi-bin/fetch/*

#(allow stream-LF conversion on these paths)
set /ht_root/* stmLF
set /web/* stmLF

#(disable caching on these paths)
set /ht_root/src/* NOcache

(next line allows for CERN HTTPd icon compatibility)
map /httpd-internal-icons/* /httpd/-/*
pass /ht_root/runtime/* /ht_root/runtime/*
pass /httpd/-/admin/*
pass /*/-/* /ht_root/runtime/*/*

generalised "/web... " rules
#pass /web/* /web/*
#pass /web /web/

#just for the example
map /web/* /ht_root/*

..... scripting rules

exec /cgi-bin/* /cgi-bin/*

Vanilla CGI:

exec+ /cgiplus-bin/* /cgi-bin/*

E.3 WASD Configuration Files 431

CGIplus scripts~scripts located in cgi-bin but accessed via/cgiplus-bin/:

exec+ /cgiauth-bin/* /cgi-bin/*

External authorization agents are CGIplus scripts.

exec+ /isapi/* /cgi-bin/*

ISAPI wrapper in a CGIplus file--see Chapter 17.

server-internal "scripts"
script /upd/* /upd/*
script /echo/* /echo/*
script /tree/* /tree/*
script /where/* /where/*
script /xray/* /xray/*

script /query/* /cgi-bin/query/*

script /extract/* /cgi-bin/extract/*

script /print* /cgi-bin/print*

Individual script mappings rather than mapping entire script directories

script+ /conan* /cgi-bin/conan*
script+ /help* /cgi-bin/conan*
script+ /HyperReader* /cgi-bin/HyperReader*
script+ /HyperShelf* /cgi-bin/HyperShelf*

Individual CGIplus (persistent) script mappings for reduced latency,
faster response.

rules for RTE examples only (may be commented out if not required)
exec /plbin/* /ht_root/src/perl/*

Execute anything referred to in/plbin/from the HT_ROOT:[SRC.PERL]
directory as a vanilla CGI script.

exec /plrte/* (cgi-bin:[000000]perlrte.exe)/ht_root/src/perl/*

Execute anything referred to in/plrte/from the HT_ROOT:[SRC.PERL]
directory using the persistent run-time environment achieved by loading cgi-
bin:perlrte.exe into a persistent process.

exec /rtbin/* (cgi-bin:[OOOOOO]rte_example.exe)/ht_root/src/httpd/*

Execute anything referred to in/rtbin/from HT_ROOT:[SRC.HTTPD]
using the example RTE engine.

..... DECnet-based scripting
for WASD CGI DECnet scripts
exec /decnet/* /0: :/cgi-bin/*
OSU-specific .HTMLX (SSI) processing
redirect /*. * .htmlx /* .htmlx?httpd=ssi&__part=*

See Chapter 13 for an explanation of this.

I Appendix E

432 E.3 WASD Configuration Files

OSU-specific DECnet scripting

exec /osu/* /0::"0=wwwexec"/cgi-bin/*

exec /htbin/* /O::"O=wwwexec"/cgi-bin/*
map /demo/* /www_root/serverdoc/*
for 'vmshelpgate' script
pass /help*
for 'webbook' (maps a VMS file specification jammed into the path)
pass /*[*]*
if a current/previous installation of OSU then this should map to it
pass /www_root/*

..... user (DECnet-based) scripting, directories
based on the assumption user web areas are located in WEB:[USER.<username>]

#exec /~*/cgi-bin/* /0 ::/web/user/*/cgi-bin/*

#exec /~*/osu-bin/* /0 ::"O=wwwexec"/web/user/*/cgi-bin/*
#pass /~* /web/user/*

See Chapters 13 and 19 for a discussion of the issues involved in Mlow-
ing users to run scripts and how WASD ~lows this to be done safel~

..... miscellaneous

uncomment the next line to give free reign to the entire system disk
pass /sys$common/* /sys$common/*

O~ more properlD comment it out to avoid giving ~ee reign to the
entire system disk.

pass /sys$common/syshlp/* /sys$common/syshlp/*
pass /sys$common/syslib/* /sys$common/syslib/*

used for bookreader books
pass /decw$book/* /decw$book/*
pass /sys$common/decwSbook/* /sys$common/decw$book/*
pass /sys$common/decwSdefaults/user/* /sys$common/decw$defaults/user/*
used for BNU environment
pass /disk$vaxdoc* /disk$vaxdoc*
pass /disk$axpdoc* /disk$axpdoc*

How you read/serve the bookreader files is discussed briefly in Chapter
16.

just for the demonstration file!

pass /* /ht_root/*

You definitely want to change this before going live.

E . 3 . 3 H T T P D $ S E R V I C E. C O N F

Note that this file isn't distributed with the server; you have to create it if
you want to use it. I have included my own HTTPD$SERVICE to clear up
some syntax issues.

E.3 WASD Configuration Files 433

The service name goes in double brackets. If the service is HTTP, you
leave it off. If the port is 80, you leave it off. If you try to specify those
default scheme and ports, the server will fail to parse the services file and
refuse to start up. The per-service directives apply to the service under
which they most immediately appear. When you want to go back to config-
uration that affects all services, specify service [*].

[[hudson.dyndns.info:81]]

[[https://hudson.dyndns.info:444]]

[ServiceSSLCert] sslcerts:server.pem

[[vms.kicks-ass.net:81]]

[[https://vms.kicks-ass.net:445]]
[ServiceSSLCert] sslcerts:server.pem

[[alanwinston.homeip.net:81]]

[[https://alanwinston.homeip.net:446]]
[ServiceSSLCert] sslcerts:server.pem
[[http://*:81]]

E.3.4 HTTPDSMSG.CONF

There isn't that much to say about this configuration file, except that it
shows the messages WASD can produce, and how easy it would be to
change them (perhaps on April Fool's Day?)

Example message configuration file.

24-0CT-2000

08-APR-2000

26-NOV-1999
05-MAY-1999
02-APR-1998
12-MAR-1998

25-OCT-1997
09-AUG-1997

MGD V7.1, change "subprocess" to "scripting process"
MGD v7.0, report and HTTP messages

MGD v6.1, agent messages, logout message
MGD v6.0, proxy messages
MGD v5.1, additional SSI messages

MGD v5.0, additional messages
MGD compatible with HTTPd v4.4 and v4.5
MGD v4.4, initial

The case and punctuation in these messages is quite deliberate and
varies depending on the type and context of the message being generated
... try to reproduce it as closely as possible!

[version] 7.0
[language] 1 en

[auth]

en 01 Authentication required!

en 02 Access denied.

en 03 Authentication failed.

en 04 Scheme not supported.
en 05 authenticating user

en 06 authentication database problem
en 07 VMS authentication problem
en 08 Username too long.

I Appendix E

434 E.3 WASD Configuration Files

en 09 Password too long.

en i0 Authorization cancellation has probably not occured!\

<P>Reload/refresh this page, clear the fields, resubmit,\

then cancel the new username/password dialog.\

A failure report indicates successful logout!\

Then navigate backwards.\

en ii Authorization agent mapping problem.

en 12 Authorization agent not found.

en 13 Authorization agent response problem.

[dir]

en 01 CreatedlDescription[NamelOwnerlProtectionlRevisedlSize

en 02 parent directory

en 03 subdirectory

en 04 Directory layout problem.

en 05 Index of

en 06 Tree of

[general]

en 01 Sanity check failure.

en 02 INTERNAL ERROR

en 03 String overflow.

en 04 Heap allocation failed.

en 05 calloc() failed

en 06 Request calloc() failed.

en 07 Server too busy.
en 08 Server access denied.

en 09 Facility is disabled.

en i0 Wildcard not permitted.

en ii File

en 12 Document

en 13 Directory

[htadmin]

en 01 Authentication database problem.

en 02 Current password not verified.

en 03 Password details incomplete.

en 04 New password not verified.

en 05 Current and new passwords identical.

en 06 Password processing error.

en 07 User not found.

en 08 Password database problem.

en 09 Change Authentication[CurrentlNewlVerifylChange[Reset

en i0 Authentication for !%% changed.

[http]

NOTE: messages in (parenthesese) are not used in this version

en 01 The server is reporting an UNKNOWN status code!

en 02 (Continue)

en 03 (Switching protocols)

en 04 The request has been successful.

en 05 The resource has been created.

E.3 WASD Configuration Files 435

en 06 (The request has been accepted for processing.)

en 07 (non-authoritative)

en 08 (The requested resource had no content.)

en 09 (reset content)

en i0 (partial content)

en ii (multiple choices)

en 12 The requested resource has been moved permanently.

en 13 The requested resource has been moved temporarily.

en 14 (see other)

en 15 The requested resource has not been modified.

en 16 (use proxy)

en 17 The server could not understand the request.

en 18 The request requires authorization.

en 19 (payment required)

en 20 The requested action is not permitted.

en 21 The requested resource could not be found.

en 22 (method not allowed)

en 23 (not acceptable)

en 24 Proxy authentication required.

en 25 (request timeout)

en 26 A resource conflict has prevented processing the request.

en 27 (gone)

en 28 (length required)

en 29 (precondition failed)

en 30 (request entity too large)

en 31 (request URI too long)

en 32 (unsupported media type)

en 33 The server has encountered an unexpected condition.

en 34 The requested action is not implemented by this server.

en 35 External agent did not respond (or not acceptably).

en 36 This service is not (or no longer) available.
en 37 (gateway timeout)

en 38 (HTTP version not supported.)

[i smap]

en 01 Confused

en 02 Client (browser) has supplied an unacceptable coordinate.

en 03 No default path specified

en 04 Incomplete specification

en 05 Incorrect number of coordinates

en 06 Number of coordinates exceeds internal limit

en 07 Region specification problem

[mapping]

en 01 Access denied, no mapping rules loaded!

en 02 Access denied, internal processing problem.

en 03 Access denied, by rule.

en 04 Access denied, by default.

[proxy]

en 01 Proxy services are not configured.

en 02 Proxy services are currently disabled.

en 03 This is not a proxy service!

I Appendix E

436 E.3 WASD Configuration Files

en 04 This is not a proxy CONNECT service!

en 05 Only "http:" proxy supported.

en 06 Unknown host.

en 07 Chained proxy server refused connection.

en 08 Host refused connection.

en 09 Chained proxy server not reachable.

en i0 Host not reachable.

en ii Chained proxy server failure.

en 12 Server response could not be understood.

en 13 Server host was disconnected.

en 14 Server response header error.

[put]

en 01 Multipart MIME-encoded processing problem.

en 02 Multipart/mixed MIME-encoded not supported.

en 03 Multipart file name not specified.

en 04 Multipart field problem.

en 05 Multipart upload file name not specified.

en 06 Directory name not specified.

en 07 Directory already exists.

en 08 Delete file name not specified.

en 09 created

en i0 superceded

en ii deleted

[request]

en 01 Request format not understood.
en 02 Request method not supported.

en 03 Request body read problem.

#(this is a sys$fao() format string ... be carefull!)

en 04 Attempted !AZ of !UL kbytes exceeds allowed maximum of !UL kbytes.

en 05 Redirection loop detected.

en 06 URL-encoding problem.

en 07 URL-form-encoding problem.

[script]

en 01 Script not found.

en 02 Scripting process hard-limit reached.

en 03 Request pragma problem.

en 04 Request cookie problem.

en 05 creating mailboxes

en 06 creating scripting process

en 07 initializing DCL enviroment

en 08 writing CGIplus variables

en 09 Script did not provide an acceptable response.

[ssi]

en 01 SSI Error!

en 02 line

en 03 access count disabled

en 04 directive not terminated or too large

en 05 directive unknown

en 06 directive tag unknown

E.3 WASD Configuration Files 437

en 07 directive tag invalid

en 08 DCL execution disabled

en 09 DCL command not supported
en I0 document with DCL must be owned by SYSTEM

en Ii document with DCL cannot be world writable

en 12 included file must be "text/..." content-type

en 13 cannot include file (access problem)

en 14 problem with date/time format string

en 15 possible SSI document recursion (including itself)

en 16 variable problem

en 17 [VARIABLE-DOES-NOT-EXIST!]

en 18 flow-control problem

[status]

en 01 SUCCESS

en 02 ERROR

en 03 Document not found

en 04 File not found

en 05 Document protection violation

en 06 File protection violation

en 07 (no information)

en 08
<I>(document, bookmark, or reference requires revision)</I>

en 09
<I>(protection requires revision)</I>

en i0
<I>(no authorization to access the object)</I>

en Ii
<I>(invalid file specification, requires correction)</I>

en 12
<I>(try again shortly)</I>

en 13
<I>(correct situation, try again)</I>

this template is used for all server error and success reports

en 14 <HTML>\

<HEAD>\

!AZ<TITLE>!AZ !UL !AZ</TITLE>\
</HEAD>\

!AZ\
\
!AZ !UL - !AZ\

\
!%%!%%!%%\

</BODY>\

</HTML>

server signature formatting

en 15 <P><HR WIDTH=85% ALIGN=left SIZE=2 NOSHADE>\

!AZ

server signature itself

en 16 <ADDRESS>!AZ/!AZ Server at !AZ Port !UL</ADDRESS>

if configured this information is added to error and success reports

en 17 <P>Additional information: \

l<I>xx</I>, \

2<I>xx</I>, \

3<I>xx</I>, \

4<I>xx</I>, \

I Appendix E

438 E.3 WASD Configuration Files

5<I>xx</I>, \
Help

[upd]

en 01 Select/enter file name.

en 02 Select/enter directory name.
en 03 Query problem.

en 04 Enter filter specification.

en 05 Select source file name.
en 06 Enter target file name.

en 07 Select current file name.

en 08 Enter new file name.
en 09 File names identical!
en i0 Select action button (do not press [ENTER])
en ii Not a text file.
en 12 Parent directory not supplied.

en 13 UpdatelhelplSubdirectorieslFiles\
select from listlnone availablelenter name\
ResetlGotolListlTreelCreatelProtectlDelete\
Uploadlasllocal file\
select from listlnone availablelenter name/path\
ResetlViewlEditlCreatelFilterlRenamelCopylProtectlDelete

en 14 Update

en 15 Update

en 16 Update
en 17 Update

Create lConfirm

Delete I Confirm

Rename I to lConfirm
Copy I to I Confirm

en 18 New Document IDocument IHelplRevised\
IUpdatelSave As IUpdatelCreatelPreviewlUndo Editing\
IChange Edit Window

en 19 WORLD accessablelOWNER and GROUPIOWNER only
#(the following is a more technical alternative)
#en 19 S:RWED,O:RWED,G:RE,W:REIS:RWED,O:RWED,G:RE,WIS:RWED,O:RWED,G,W
en 20 protection changed

en 21 renamed to
.... END- - -

Index

Access controls, 135-50
Apache, 136-40
OSU, 140-43
password-based, 144-45
Robots.txt, 147-50
SSL and, 145-47
WASD, 144-50

ALT tags, 245-46
ANALOG, 219, 220-25

analog.cfg file, 221
Daily Report, 223
defined, 220-21
downloading, 220
home page, 220
Opening System Report, 225
OSU DCL script, 220
OSU menu, 224
pie charts, 225
Summary Report, 222
UNCOMPRESS command and, 221
See also Log-interpretation tools

Anonymous authentication, 124
Apache, 6-7

access controls, 136-40
AddAl tByType directive, 246
AddA1 t directive, 245--46
AddDescription directive, 246
AddIconByEncod ing directive, 247
AddIconByType directive, 246
AddIcon directive, 246

add-ons, 9
ambiguities and user tracking, 214-15
anonymous authentication, 124
authentication, 120-24
cache management, 187
Combined format, 206
command-line control, 56-58
Common format, 206
CONFIGURE command, 57
cookie-based user-tracking features, 203
DefaultIcon directive, 247
default startup, 25
DescriptionWidth directive, 240
directory browsing, 258-47
DirectoryIndex command, 258
echo directives, 269-70
error logs, 216
error page with signature, 48
exec directive, 276
fancy index from, 240
F a n c y I n d e x i n g directive, 240
flow-control directives, 262-63, 271-72
FLUSH command, 57
F o l d e r s F i r s t directive, 240
format specifiers for logs, 205-6
CRACEFUL command, 57
HeaderName directive, 245
IconHeight directive, 241
I c o n s A r e L i n k s directive, 241
IndexIgnore directive, 245

439

440 Index

Apache (cont'd.)
I n d e x O p t i o n s directive, 239
IndexOrderDefault directive, 245
log-file formats/locations, 204-8
log-file rotation, 211-12
mapping, 98-102
MIME.TYPES file, 102
modules on UNIX systems, 120
NEW command, 57
password-based authentication, 120-22
platforms, 7
proxy management, 193-97
READ command, 57
ReadmeName directive, 245
RESTART command, 57
RUN command, 57
ScanHTMLTi t l es directive, 242
set directives, 274
SHUTDOWN command, 57
SOURCE, 137
SSL and, 87
SSL authentication, 122-24
START command, 58
starting, 50
STOP command, 57
stopping, 50
suppress directives, 243
T r a c k M o d i f i e d directive, 243
user-defined CGI scripts, 356
user directories, enabling/disabling, 154
userdirs, 153
version 1.0, 7
version 2.0, 7
virtual hosts, 162
VMS port, 10
Web-based configuration/control and, 63
See also CSWS

Apache Software Foundation, 7
Authentication, 117-35

anonymous, 124
Apache, 120-24

BASIC, 118, 121
DIGEST, 118-19, 121,122
ident-based, 133-35
OSU, 124-27
password-based, 120-22
SSL, 122-24
SYSUAF-based, 121,127
WASD, 127-35
X.509, 119

Authorization, 95, 120, 128
Autoscripts, 256
AWStats, 226-30

command-line variables, 229
defined, 226
illustrated, 229
running as CGI program, 229
with taint detection and suppression, 228
See also Log-interpretation tools

BASIC authentication, 118, 121
Bookreader servers, 331-32

Cache management, 185-92
Apache, 187
OSU, 187-90
WASD, 191-92

Caches
directives, 187
entries as stale, 190
file expiration date/time, 189
in-memory chunk size, 188
maximum file size, 188
memory allocation, 188
OSU file, 187
VCC/VIOC/XFC, 187

Caching
defined, 183
distribution, 183
memory availability, 186
proxy, 193, 199

C/C++, 307

Index 441

CERN, 5-6
Certificate authorities (CAs), 69

in database, 69
getting certificates from, 71-75
picking, 71

Certificates
getting, from CAs, 71-75
passphrase, 87
self-signed, creating, 75-77
verification lifetime, 132
X.509, 74, 132

CGI
as ACTION, 282
callouts, 301
configuration of, 293-95
defined, 281-84
freeware scripts, 325-32
high-performance scripting options,

333-48
HTTP headers, 293
languages for, 306-12
routine libraries, 284
scripts, 283

CGI-BIN directories, 355
CGI environment, 296-306

CSWS, 296
OSU, 296-300
WASD, 301-6

CGI-MAILTO, 327
CGIplus, 107, 295,345-47

callouts, 301
ISAPI implementation, 347-48
script mapping, 346
scripts, 345

CGI scripts
environment variables, 284-93
freeware, 325-32
GET method and, 282, 283
with no arguments, 281-82
POST method and, 282, 283
running, 281-312

user-developed, 355-62
CGI_SYMBOLS, 299-300
CGIUTL utility, 304-5
Clustering, 1-2
ColdFusion Server, 4
Combined format, 204

Apache, 206
OSU, 208
WASD, 210
See also Log-file formats

Command-line control, 56-62
Common format, 204

Apache, 206
OSU, 208
WASD, 210
See also Log-file formats

Common Gateway Interface. See CGI; CGI
scripts

Compaq Secure Web Browser (CSWB), 161
Compaq Secure Web Server. See CSWS
Conan, 330-31
Conditional mapping, 112-16

overhead, 113
rules using, 112-13
See also Mapping; Mapping resources

Conditionals
AC :accept, 113
AL:accept-language, 113
AS :accept-charset, 113
CK : cooki e, 113
E X , 114
form, 113
HO :host, 114
ME :http, 114

multiple, 113
QS : query-string, 114
R F : referring, 115
SC : r e q u e s t - s c h e m e , 114
S P : s e r v e r - p o r t , 114
UA : user-agent, 115
VS :host-name/address, 115

I Index

442 Index

Configuration, 86-95
basic, 40-50
document trees and index files, 44-47
error messages and Webmaster address,

47-50
ports and hostnames, 40-44
SSL, 86-95

Configuration files, 35-40
CSWS, 35-38
OSU, 38-39
WASD, 39-40

Crinoid, 343-44
CSWS, 9-11

AddType directive, 260
A1 ias directive, 45
cache management, 187
CGI configuration, 294
CGI environment, 296
choosing, 13
configuration file, 35-36
Cus t o m L o g directive, 90
DCL, 306
default Web document directory, 45
defined, 9
directives, 41
disk space and, 17-18
downloading, 9
file instructions, 37
high-performance CGI options,

335-39
home pages, 20
HTTPD.CONF file, 35-36, 41
installation guide, 20-28
listen directives, 41
logicals definition, 22
mod_auth_anon, 124
mod_auth_openvms, 120
mod_perl, 20, 24, 26, 35, 335-38
mod_php, 24, 26, 35, 310, 338-39
mod_proxy, 193
mod_rewrite, 98

mod_ssl, 24, 26, 35, 78-79, 86-92
multihosting/multihoming, 162-64
OpenSSL kit, 86
password files, 37
Perl, 309
PHP, 310
Python, 311
SSI configuration, 260
SSLCACertificateFile directive, 92, 123
SSLCACertificatePath directive, 92, 123
SSLCARevocationFile directive, 122-23
SSLCARevocat ionPath directive, 122-23
SSLCertificateChainFile directive, 92
SSLCipherSuite directive, 92
SSL configuration, 86-92
SSL installation, 78-79
SSLMutex directive, 91
SSLOptions directive, 89
SSLPassPhraseDialog, 90
S S L P r o t o c o l directive, 92
SSLRandomSeed directive, 91-92
SSLRequire directive, 88, 140
SSLRequireSSL directive, 140
SSLSessionCacheTimeout directive, 91
SSLVerifyClient directive, 123
SSLVerifyDepth directive, 123
TCP/IP software and, 16-17
user-defined CGI scripts, 356
user directories, 152-56
VMS version and, 15-16
Web-based administration and, 11
See also Apache; Web servers

CSWS_JAVA, 23

DBD (database driver), 315
DBI (DataBase Interface), 315-22

code, 316-22
defined, 315
See also Perl

DCL, 306-7
CSWS, 306

Index 443

OSU, 306
WASD, 307

DECnet
configuration, 32
installing, 30
method, 11
Phase IV, 30, 31
proxies, 30, 357
starting, 30
WWWEXEC object, 297
See also OSU

DIGEST authentication, 118-19, 121
defined, 118-19
password-suitable file for, 122
See also Authentication

DII COE project, 4
Directory browsing, 237-58

Apache, 238-47
defined, 237
OSU, 247-51
users and, 237
WASD, 251-58

Disk space, 17-18
RAM disks and, 18
utilization display, 330

Documentation presentation, 330-32
Document trees, 44-47
Downloads, 19-20
DSL, 19

Echo directives, 269-70
Embedded RDO, 315
ENGINE inter~ce, 85-86
Environment variables, 284-93

AUTH_ACCESS, 285
AUTH_AGENT, 285
AUTH_DESCRIPTION, 285
AUTH_GROUP, 285
AUTH_PASSWORD, 285
AUTH_REALM, 285
AUTH_REMOTE_USER, 285

AUTH_TYPE, 286
AUTH_USER, 286
CONTENT_LENGTH, 286

CONTENT_TYPE, 286

DATE_GMT, 286

DATE_LOCAL, 286

defined, 284
DOCUMENT_NAME, 286
DOCUMENT_PATH_INFO, 286

DOCUMENT_ROOT, 287
DOCUMENT_URI, 287
GATEWAY_MRS, 287
HTTP_ACCEPT, 287

HTTP_ACCEPT_CHARSET, 287
HTTP_ACCEPT_ENCODING, 287
HTTP_ACCEPT_LANGUAGE, 287
HTTP_AUTHORIZATION, 287

HTTP_CONNECTION, 288

HTTP_COOKIE, 288

HTTP_EXTENSION, 288

HTTP_FORWARDED, 288

HTTP_FROM, 288
HTTP_HOST, 288
HTTP_IF_MODIFIED_SINCE, 288
HTTP_PRAGMA, 288
HTTP_RANGE, 289
HTTP_REFERER, 289

HTTP_UA_CPU, 289
HTTP_UA_OS, 289
HTTP_USER_AGENT, 289

PATH, 289
PATH_INFO, 289

PATH_ODS, 290

PATH_TRANSLATED, 290
QUERY_STRING, 290

QUERY_STRING_UNESCAPED, 290

REMOTE_ADDR, 290

REMOTE_HOST, 290

REMOTE_PORT, 291
REMOTE_USER, 291
REQUEST_METHOD, 291

I Index

444 Index

Environment variables (cont'd.)
REQUEST_TIME_GMT, 291
REQUEST_TIME_LOCAL, 291
REQUEST_URI, 291
SCRIPT_FILENAME, 291
SCRIPT_NAME, 291
SCRIPT_RTE, 291
SCRIPT_URI, 292
SCRIPT_URL, 292
SERVER_ADDR, 292
SERVER_ADMIN, 292
SERVER_CHARSET, 292

SERVER_GMT, 292
SERVER_NAME, 292
SERVER_PORT, 292
SERVER_PROTOCOL, 292
SERVER_SIGNATURE, 292
SERVER_SOFTWARE, 293
UNIQUE_ID, 293
See also CGI; CGI scripts

Error logs, 216-18
Apache, 216
OSU, 216-17
WASD, 217-18

Error messages, customized, 47-50
Exec directives, 276

Fancy indexing, 240-42
FastCGI (FCGI), 335, 343
File layout, 350
File-naming standards, 349-50
Flow-control directives, 262-63, 271-74
FORTRAN, 307-8
Freeware CGI scripts, 325-32

CGI-MAILTO, 327
changing passwords, 329
Conan, 330-31
disk space utilization display, 330
document presentation, 330-32
HyperDISK, 330
Hypermail, 325-26

Hypershelf/Hyperreader, 331-32
HyperSPI++, 329-30
performance monitoring, 329-30
sending mail from forms, 327-29
serving VMS MAIL files, 325-27
system management functions,

329-30
TMAIL, 327-28
TMAILER, 328-29
VMSHELPGATE, 330
WEBBOOK, 331
yahMAIL, 326-27
See also CGI; CGI scripts

FrontPage, 352
FTP

alternatives, 351-53
server, 352

GZIP, 79

High-performance CGI scripting options,
333-48

conclusion, 348
CSWS, 335-39
issues, 333-35
OSU, 340-44
WASD, 345-48
See also CGI; CGI scripts

Hosts
default, 164
virtual, 164, 167

HPSS (High-Performance Server Software),
340-41

HPSS_PERL, 342
HPSS_PHP, 342
Ht://Dig, 179-82

Berkeley database, 179
configuration file entries, changing,

181-82
defined, 179
package, 179

Index 445

search database, 180-81
See also Indexing

HTTP, 5
defined, 67
headers, 103
services, 167
as stateless protocol, 118

HTTPD.CONF file, 35-36
AddType directive, 102
CustomLog directive, 164
default host, 164
defined, 35
directives, 41
D o c u m e n t R o o t directive, 163-64
E r r o r L o g directive, 164
listen directive, 41
N a m e V i r t u a l H o s t directive, 163
S e r v e r A d m i n directive, 163
server-level directives, 36
S e r v e r N a m e directive, 164

HTTPD$CONFIG.CONF file, 9, 167
authorization failure limit, 128
CacheChunkBytes directive, 191
Cache directive, 191
CacheEntriesMax directive, 191
CacheFileBytesMax directive, 191
CacheFrequentHits directive, 192
CacheFrequentPeriod directive, 192
CacheHashTabl eEntries directive, 191
CacheTotalBytesMax directive, 191
CacheValidatePeriod directive, 192
DirAccess directive, 251
DirBodyTas directive, 255
DirDescriptionLines directive, 255
DirLayout directive, 251
DirMetaInfo directive, 253
DirNoImpliedWildcard directive, 255
DirNoPrivIgnore directive, 255
D i r O w n e r directive, 255
DirPreExpired directive, 256
D i r R e a d M e directive, 254

DirReadMeFile directive, 254
DirWildcard directive, 255
service definitions, 167
See aho WASD

HTTPDSMAP.CONF file, 47, 170, 192
HTTPDMON utility, 53, 62, 94
HTTP_MAIN.CONF, 188-90
HTTPS, 67-78

defined, 67
dialog, 77-78
for multiple node names, 162
port, 77-78
requests, 106
service, 167
services centralization, 77
SSL software, 67-68
transaction log, 88
URL, 77

HyperDISK, 330
Hypermail, 325-26
Hyperreader, 331-32
Hypershelf, 331-32
HyperSPI++, 329-30
HyperText Transfer Protocol.

See HTTP
HyperText Transfer Protocol Secure.

See HTTPS

Indexes
automatic, 238
defined, 237-38
fancy, 240-42
last-modified order, 241

Index files, 44-47
Index.html, 238
Indexing

directory, 239
fancy, 240
with ht://Dig, 179-82
with Lynx, 172-75
reasons for, 171-72

I Index

446 Index

Indexes (cont'd.)
with SWISH-E, 175-79
with VMSindex, 172-75

Inkromi's Slurp, 148
Installation

CSWS, 20-28
downloads and, 19-20
guides, 19-34
OSU, 28-32
SSL, 78-86
WASD, 32-34

Instant ASP (iASP), 4
Internet Server API (ISAPI), 334, 342, 347-48

Java, 312, 323-24, 347

Languages for CGI, 306-12
C/C++, 307
DCL, 3O6-7
FORTRAN, 307-8
Java, 312
Perl, 308-10
PHP4, 310-11
Python, 311-12
See also CGI; CGI scripts

LDAP (lightweight directory access protocol),
120

Log-file analyzers, 204, 219-20
ANALOG, 219, 220-25
defined, 219
Webalizer, 219, 230-32
WUSAGE, 219, 232-36

Log-file formats, 204-11
Apache, 204-8
Combined format, 204
Common format, 204
OSU, 208
WASD, 208-11

Log-file rotation, 211-13
Apache, 211-12
OSU, 212

WASD, 212-13
Logging, customizing, 203-4
Log-interpretation tools, 218-36

ANALOG, 219, 220-25
AWStats, 226-30
log-file analyzers, 219-20
LogResolve, 218-19
Webalizer, 219, 230-32
WUSAGE, 232-36

LogResolve, 218-19
Logs

Apache format specifiers for, 205-6
error, 216-18
tools for interpreting, 218-36

Lynx Crawl, 172-75

Mapping
Apache, 98-102
conditional, 112-16
OSU, 103-5
WASD, 106-12

Mapping resources, 97-117
Apache, 98-103
OSU, 103-6
WAS D, 106-17

Message-based server thread (MST), 84
META tags, 149, 253
MIME.TYPES file, 102
Mod_auth_anon, 124
Mod_auth_dbm, 120
Mod_auth_kerberos, 120
Mod_auth_ldap, 120
Mod_auth_openvms, 120
Mod_auth_radius, 120
Mod_java, 20
Mod_perl, 20, 24, 26, 335-38

configuration file, 35
test page, 27

Mod_php, 26, 310, 338-39
configuration file, 35
test page, 28

Index 447

Mod_proxy, 193
A1 IowCONNECT directive, 195
CacheDefaultExpire directive, 196
CacheDirLength directive, 197
C a c h e D i r L e v e l s directive, 197
CacheForceCompletion directive, 197
C a c h e G c I n t e r v a l directive, 196
CacheLastModi fiedFactor directive, 196
C a c h e M a x E x p i r e directive, 196
CacheRoot directive, 196
CacheSize directive, 196
NoCache directive, 197
NoProxy directive, 194
ProxyBlock directive, 194
ProxyDomain directive, 195
ProxyPass directive, 195
ProxyPassReverse directive, 195
ProxyRemote directive, 194
ProxyRequests directive, 194
Proxyvia directive, 195

Mod_rewrite, 98
example, 102
examples, 99
RewriteBase directive, 100
RewriteEngine directive, 100
Rewr i teLog directive, 1 O0
RewriteLogLevel directive, 100
RewriteOptions directive, 100
RewriteRule directive, 101,102

Mod_ssl, 24, 26
configuration, 86-92
configuration file, 35
global directives, 86
installation, 78-79

Mod_WebDAV, 352
Mozilla Composer, 351
MST interface, 86
Multihoming, 161-70

configuration, 162-70
CSWS, 162-64
defined, 162

OSU, 165-66
WASD, 167-70

Multihosting, 161-70
configuration, 162-70
CSWS, 162-64
defined, 162
OSU, 165-66
WASD, 167-70

Netscape Communicator, 351

Ohio State University DECthreads HTTP
Server. See OSU

OpenSSL, 12, 68
binaries, 72
confirmation, 77
for generating certificate request, 74
installation, 72
instructions, 72
object libraries, 13
WASD kit, 86
See also SSL

OPENSSL.CNF file, 73
OpenVMS

freeware, 172
user authorization, 9

OSU, 6, 11-12
access controls, 140-43
ANALOG menu, 224
authentication, 124-27
cache directives, 188-90
cache management, 187-90
CGI configuration, 294
CGI environment, 296-300
choosing, 13-14
Combined format, 208
command-line control, 58
Common format, 208
configuration files, 38-39
content type, 105-6
DCL, 306

I Index

448 Index

OSU (cont'd.)
DECnet method, 11
default page, 31
DEFPROT rule, 141
DirAccess directive, 249
DirDefLangEnable directive, 249
directory browsing, 247-51
DirReadme directive, 249
disk space and, 17-18
documentation, 12
downloading, 28
DSPCACHE command, 58
echo directives, 269-70
editable config files, 39
error logs, 216-17
ErrorPage command, 49
file caching, 12
file/document includes, 265-66
file parts, 266-68
high-performance CGI options, 340-44
host-name command, 41
HOSTPROT rule, 140
HPSS support, 340-41
HTTP_MA/N.CONF, 188-90
HTTP_SCR/PTS.CONF file, 359-60
in-memory cache organization, 186
installation guide, 28-32
internal directory list output, 248
INVCACHE command, 59
Java execution environment, 344
log-file formats/locations, 208
log-file rotation, 212
mapping rules, 103-5
MIME types, 105
MST external directory browser,

247-48
multihosting/multihoming, 165-66
multiple parts, 266
multiple versions on different ports, 93
NEWLOG command, 59
NEWTRACE command, 59

pass command, 46
pass rule, 104-5
password-based authentication, 124-25
Perl, 309
persistent scripting environments and, 11
PHP, 105, 310-11
platforms, 11
PROTECT rule, 141
.PROT files, 39
PROT rule, 140
proxygw.c, 198
proxy management, 197-99
Python, 312
RESTART command, 59
root directory, setting, 46
server account creation, 29-30
server distribution, 83
server image, building, 29
shutdown, 51
SHUTDOWN command, 59
SSI configuration, 260-61
SSL authentication, 126-27
SSL cache configuration directives and, 93
SSL_CHA/N_VEPdFY, 126
SSL_CLIENT_VER/FY, 126
SSL configuration, 92-94
SSL_ENGINE, 92, 93
SSL installation, 79-85
SSL support and, 12
SSL_TASK, 92, 93
starting, 50-51
STATISTICS command, 60
support, 12
SYSUAF lookup, 156
TCP/IP software and, 16-17
testing, 31-32
threading, 11
trace level, 217
user-developed CGI scripts, 356-61
user directories, 156-57
VMS version and, 15-16

Index 449

Web-based administration utility- main
page, 63

Web-based administrative utility- server
commands, 65

Web-based control, 63-64
Welcome directive, 249
See also Web servers

Password-based access control, 144-45
Password-based authentication

Apache, 120-22
OSU, 124-25
WASD, 127-31

Passwords, changing, 329
Perl, 10, 20, 308-10

CGI.PM module, 308
CGI programming with, 315-22
CSWS, 309
DBD, 315
DBI, 315-22
OSU, 309
WASD, 309

PHP, 20
in CSWS, 310
defined, 310
error logging, overriding, 339
in OSU, 310-11
parsing, enabling/disabling, 339
PHP4, 310-11
templates, 105
uses, 310
in WASD, 311

Ports, 42-44
as arguments, 42
commands, adding, 42
default, 40, 43
HTTPS, 77-78
listened to, specifying, 42
privileged, 42

Preinstallation, 15-19
Privileged directives, 277-78

Process Software's Purveyor, 7
Proxy entries, 133-35

dedicated, 185
example set of, 134-35
formats, 133
freeware, 185
multiple, 134

Proxygw.c, 198
Proxy management, 193-202

Apache, 193-97
OSU, 197-99
WASD, 199-202

Proxy servers
anonymizing, 184
as big win, 184
DECnet, 30, 357
special purpose boxes, 184

Public key infrastructure (PKI), 71
Python, 311-12

in CSWS, 311
in OSU, 312
RDB plug-in, 322-23
in WAS D, 312

RAID storage, 1
RAM disks, 18
RDB

database access, 313-24
plug-in, 322-23

RDB Web Agent, 313-15
limitations, 314
routines, 314
running, 313

Reliability, 2
Resources, mapping, 97-117
Reverse proxying, 193, 194, 199
Robot Exclusion Standard, 148
Robots.txt, 147-50

creation standard, 148
defined, 147
META tags, 149

I Index

450 Index

Run-Time Environments (RTEs), 334,
346-47

Search engines, external, 171
Secure session layer. See SSL
Security, 2-3

record, 18
Web directories and, 151

Self-signed certificates, 75-77
Server-side includes (SSI), 259-79

access counts, 263-64
configuring, 260-62
CSWS configuration, 260
defined, 259
directives, 262-79
directory/index generation, 268-69
drawbacks, 259
dynamic content with, 259-60
echo directives, 269-70
exee directives, 276
file/document includes, 265-66
file information, 264-65
file parts, 266-68
flow-control directives, 271-74
miscellaneous directives (WASD), 278-79
OSU configuration, 260-61
privileged directives, 277-78
set directives, 274-75
unprivileged directives, 277
variables provided by servers, 270
WASD configuration, 261-62

set directives, 274-75
Apache, 274
WASD, 274-75

Simple Web Indexing System for Humans-
Enhanced. See SWISH-E

SQL Module language, 315
SSL, 67-68

access control in WASD and, 145-47
cache configuration directives, 93
ENGINE interface, 85-86

HTTPS support, 68
library, 83
MST interface, 86
renegotiation, 133
root directory, 76
TASK interface, 84-85

SSL authentication
Apache, 122-24
OSU, 126-27
WASD, 131-33

SSL configuration, 86-95
CSWS, 86-92
OSU, 92-94
WASD, 94-95

SSL installation, 78-86
CSWS, 78-79
OSU, 79-86
WASD, 86

SWISH-E, 175-79
custom results page layout, 178
default page layout, 177
defined, 175
documentation index search page, 176
functions, 175
package, 175
source, 175
WASD and, 176
See also Indexing

System performance monitoring, 329-30
SYSUAF-based authentication, 121,127

TASK interface, 84-85
TCP/IP software, 16-17
TEST_SERVER.COM, 31
Time formats, 268
TMAIL, 327-28
TMAILER, 328-29
Tomcat, 339
Tracking, 213-15

Apache, 214-15
WASD, 215

Index 451

UCX, 17
UNIXified file-system path, 233-34
Unprivileged directives, 277
UPD utility, 351
Upgrades, rolling, 2
User-developed CGI scripts, 355-62

CSWS/Apache, 356
number running simultaneously,

358
OSU, 356-61
WASD, 361-62
See also CGI scripts

User directories, 151-59
CSWS, 152-56
enabling/disabling, 154
OSU, 156-57
PASS command for, 158
pros and cons, 151-52
WASD, 157-59

User-edited Web pages, 349-53
file layout, 350
file-naming standards, 349-50
FTP alternatives, 351-53

VDDriver, 164
VirtualHost

containers, 87, 88, 89, 164
SSL/TLS protocol engine for, 88

Virtual hosts, 164, 167
VMS

Apache port, 10
clustering, 1-2
mod_auth_dbm and, 120
needs and, 3-4
reasons for using, 1-4
reliability, 2
security, 2-3
threading implementation, 11
Web and, 5-8

VMS Engineering, 4
VMSHELPGATE, 330

VMSindex, 172-75
building with DECC, 173
example command procedures and, 174
index building with, 175

WASD, 8, 12-13
access controls, 144-50
AddType directive, 116
ambiguities and user tracking, 215
authentication, 127-35
AUTHONCE (NOAUTHONCE), 109
basic configuration, 43
cache management, 191-92
CACHE (NOCACHE), 109
CGI configuration, 295
CGI environment, 301-6
CGIplus, 345-46
CGIPREFIX, 109
CGIUTL utility, 304-5
CHARSET, 109
choosing, 13-14
Combined format, 210
command-line control, 60-62
command-line options at server startup, 51
Common format, 210
conditional mapping, 112-16
configuration files, 39-40
CONTENT, 109
content type, 116-17
cookie-based user-tracking features, 203
DCL, 307
defined, 12
directory browser output, 258
directory browsing, 251-58
directory browsing parameters, 257
directory/index generation, 268-69
directory layout codes, 252
directory listing- sans config error, 254
directory listing showing config error, 253
directory tree, 13
disk space and, 17-18

I Index

452 Index

WASD (cont'd.)
DSSnookup directive, 211
DO=AUTH commands, 60
DO-CACHE commands, 60-61
DO=DCL commands, 61
DO=DECNET commands, 61
DO=LOG commands, 61
DO=V~XP command, 62
DO=SSV. commands, 62
DO-THROTTLE commands, 62
downloading, 32
DO=ZERO command, 62
echo directives, 269-70
error codes, 50
error logs, 217-18
exec directive, 276, 295
exec rule, 107
EXPIRED (NOEXPIRED), 109
file/document includes, 265-66
file parts, 266-68
flow-control directives, 262-63, 272-74
format strings, 209-10
high-performance CGI options, 345-48
HTTPD$AUTH.CONF file, 129, 145
HTTPD$CONFIG.CONF file, 9, 128,

167, 191-92
HTTPDSMAECONF file, 47, 170, 192
HTTPDMON utility, 53, 62, 94
HTTPDSMSG.CONF file, 169
HTTPD$SERVICE.CONF file, 95, 132,

168
HTTPD$SSL_CERT file, 94
HTTP$SERVER account, 34
ident-based authentication, 133-35
INDEX, 110
in-memory cache organization, 186
installation guide, 32-34
LogExcludeHosts directive, 211
LogFile directive, 211
LogFileExtended directive, 211
log-file formats/locations, 208-11

log-file rotation, 212-13
LogFormat directive, 210
Logging directive, 210
LogNaming directive, 210
LOG (NOLOG), 110
LogPeriod directive, 212
LogPerService directive, 210
LogPerServiceHostOnly directive, 211
MAPONCE (NOMAPONCE), I 10
mapping, 106-12
mapping rules, 107-8
MIME TYPES, 117
miscellaneous SSI directives, 278-79
muhihosting/muhihoming, 167-70
obtaining, 13
ODS-5 (ODS-2), 110
on-line administration utility, 64--65
OpcomAdmin directive, 217
OpcomAuthorization directive, 218
OpcomControl directive, 218
OpcomHTTPD directive, 218
OpcomProxyMaint directive, 218
OpcomTarget directive, 217
password-based access control, 144-45
password-based authentication, 127-31
Perl, 309
PHP, 311
PROFILE (NOPROFILE), 110
PROMISCUOUS mode, 33
Pr oxyC acheDevi c eChec kMinu t es

directive, 201
ProxyCacheDeviceDirOrg directive, 201
ProxyCacheDevi ceMaxPercent directive,

201
Pr oxyC acheDevi c ePurge Perc en t

directive, 201
ProxyCacheFileBytesMax directive, 200
ProxyCachePurgeList directive, 201
ProxyCacheReloadList directive, 201
ProxyCacheRout ineHourO fDay directive,

200

Index 453

ProxyForwardedBy directive, 200
ProxyHos tCachePurgeHours directive,

202
ProxyHos tLookupRet ryCount directive,

200
proxy maintenance activities, 202
proxy management, 199-202
ProxyReportCacheLog directive,

20O
ProxyReportLog directive, 200
ProxyServing directive, 200
Python, 312
real-time monitoring, 62
REPORT, 110
RMSCHAR, 110
RTE and, 334, 346-47
SCRIPT, 111
sc r ip t ing directive, 261
scripting environments support, 13
script rule, 107, 108
server administration, 13
server administrator e-mail, 49
server process priority, 54
set directives, 274-75
set rule, 108, 159, 361
shutdown, 56
speed, 13
S S I A c c e s s e s directive, 261
SSI configuration, 261-62
ssI directive, 261
S S I e x e c directive, 261
SSI=PRIVINOPRIV, 111
SSL and access control in, 145-47
SSL authentication, 131-33
SSLCGI, 112
SSL configuration, 94-95
SSL installation, 86
SSL renegotiation, 133
SSL services, specifying, 94
startup, 51-56
STMLF (NOSTMLF), 112

SWISH-E and, 176
systemwide logical names, 40
SYSUAF authentication, 55
SYSUAF-mapped userdirs, 158
TCP/IP software and, 16-17
test page, 33
THROTTLE, 112
TIMEOUT, 112
Track directive, 215
TrackDomain directive, 215
TrackMultiSession directive, 215
UPD utility with, 351
user-developed CGI scripts,

361-62
user directories, 157-59
userdirs restrictions, 157
uxec rule, 108, 361
VMS version and, 15-16
WATCH facility, 56
Web-based control, 64-65
Welcome directive, 47
X.509 certificate authentication/

authorization, 95
zip files, 32
See also Web servers

WATCH facility, 56
Wayback Machine, 148
Webalizer, 219, 230-32

3-D graph of daily statistics, 232
defined, 230
home page, 230
index.html, 231
See also Log-interpretation tools

Web-based control, 63-65
WEBBOOK, 331
Web DAV, 352
Web directories, 151-59

pros and cons, 151-52
security risks, 151

Webmaster address, 47-50
WEBPERL, 341

I Index

454 Index

Web servers
access controls, 135-50
ambiguities and user tracking, 213-15
authentication, 117-35
basic configuration, 40-50
cache management, 185-92
CGI configuration, 293
CGI environment, 296-306
choosing, 13-14
command-line control, 56-62
configuration, 86-95
directory browsing, 237-58
disk space, 17-18
document trees, 44-47
error logs, 216-18
error messages, 47-50
functioning of, 185-86
high-performance CGI scripting options,

335-48
hostnames, 40-44
installation, 78-86
installation guidelines, 19-34
log-file formats/locations, 204-11
log-file rotation, 211-13
log interpretation tools, 218-36
network issues, 18-19
options, 9-14
ports, 40-44

preinstallation, 15-19
proxy management, 193-202
security and, 3
SSI, 259-79
starting/stopping, 50-56
TCP/IP software, 16-17
timeline, 8
user-developed CGI scripts, 356-62
Web-based control, 63-65
See also CSWS; OSU; WASD

WUSAGE, 232-36
downloading, 232
home page, 232
index.html, 236
running, 233
weekly page, 235
See also Log-interpretation tools

WWWSSL.COM file, 83-84

X.509 authentication, 95
client, 92
defined, 119

X.509 certificates, 74
authentication/authorization, 95
specifying, 132

yahMAIL, 326-27

	Front Cover
	OpenVMS with Apache, OSU and WASD
	Copyright Page
	Contents
	Introduction
	Chapter 1. Why Run a Web Server on VMS?
	1.1 VMS clustering
	1.2 Reliability
	1.3 Security
	1.4 You already have it
	1.5 Can VMS do what I need?

	Chapter 2. VMS and the Web
	2.1 Beginnings
	2.2 OSU
	2.3 Apache
	2.4 WASD and others

	Chapter 3. Web Options
	3.1 CSWS
	3.2 OSU
	3.3 WASD
	3.4 Which should you use?

	Chapter 4. Installation Issues
	4.1 Preinstallation
	4.2 Installation guides

	Chapter 5. Basic Configuration and Server Control
	5.1 CSWS
	5.2 OSU
	5.3 WASD
	5.4 Basic configuration
	5.5 Starting and stopping
	5.6 Command-line control
	5.7 Web-based control

	Chapter 6. Encrypted/Secure Communications: HTTPS Protocol Support
	6.1 HTTPS
	6.2 Installation
	6.3 Configuration

	Chapter 7. Managing Access to Your Server Resources
	7.1 Mapping resources
	7.2 Authentication
	7.3 Access controls

	Chapter 8. Providing User Personal Web Directories
	8.1 User directories: pro and con
	8.2 Implementing userdirs

	Chapter 9. Multihosting and Multihoming
	9.1 Why multihosting?
	9.2 Multihosting/multihoming configuration

	Chapter 10. Indexing and Searching Your Site
	10.1 Why index?
	10.2 VMSindex and Lynx Crawl
	10.3 SWISH-E
	10.4 HT://DIG

	Chapter 11. Cache and Proxy
	11.1 Cache and proxy
	11.2 Cache management
	11.3 Proxy management

	Chapter 12. Managing and Understanding Your Server Logs
	12.1 Customizing your logging
	12.2 Log-file formats and locations
	12.3 Log-file rotation
	12.4 Unavoidable ambiguities and user tracking
	12.5 Error logs
	12.6 Tools to interpret your logs

	Chapter 13. Dynamic Content: Directory Browsing and Server-Side Includes
	13.1 Directory browsing
	13.2 Dynamic content with SSI
	13.3 Configuring SSI
	13.4 SSI directives

	Chapter 14. Running CGI Programs
	14.1 CGI defined
	14.2 Environment variables
	14.3 Necessary HTTP headers
	14.4 Configuration for CGI
	14.5 CGI environment
	14.6 Languages for CGI

	Chapter 15. RDB Database Access from CGI Scripts
	15.1 RDB Web Agent
	15.2 Embedded RDO or SQL module language
	15.3 Perl, DBI, and DBD::RDB
	15.4 Python and the RDB plug-in
	15.5 Java

	Chapter 16. Useful Freeware CGI Scripts
	16.1 Serving VMS MAIL files
	16.2 Sending mail from forms
	16.3 System management functions
	16.4 Presenting documentation

	Chapter 17. High-Performance Scripting Options
	17.1 Issues
	17.2 Options
	17.3 Conclusion

	Chapter 18. User-Edited Web Pages
	18.1 File-naming standards
	18.2 File layout
	18.3 Alternatives to FTP

	Chapter 19. User-Developed CGI Scripts
	19.1 CSWS/Apache
	19.2 OSU
	19.3 WASD

	Appendix A: Perl
	Appendix B: Python
	Appendix C: PHP
	Appendix D: Apache
	Appendix E: Annotated Sample Configuration Files
	Index

