

OpenVMS Alpha Internals
and Data St ructures
Memory Management

This Page Intentionally Left Blank

OpenVMS Alpha Internals
and Data Structures
Memory Management

Ruth E. Goldenberg

Digital Press
An imprint of Elsevier Science
Amsterdam �9 Boston �9 London �9 N e w York �9 O x f o r d �9 Paris �9 San Diego
San Francisco �9 Singapore �9 Sydney �9 Tokyo

Copyright �9 2003 by Compaq Information Technologies Group, L. P.

All rights reserved.

Digital Press TM is an imprint of Elsevier Science.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without prior written permission of the copyright holder.

Library of Congress Cataloging-in-Publication Data

Goldenberg, Ruth E.
OpenVMS Alpha internals and data structures : memory managment / Ruth

Goldenberg.
p. cm.

Includes bibliographical references and index.
ISBN 1-55558-159-5
1. Operating systems (Computers) 2. OpenVMS. 3. Memory management

(Computer science) I. Title.

QA76.76.O63 G6374 2002
005.4'3--dc21

2002035114

Cover designer. Deborah Dutton and Joseph Sherman Design

Copy editor. Alice Cheyer

Compositor: Sarah Lemaire. This book is set in VAX DOCUMENT.

Index: Sarah Lemaire, Rosemary Simpson, John Mann.

A quotation from the following work appears as an epigraph in this book: Edgar A.
Guest, "The Package of Seeds," Collected Verse of Edgar A. Guest, copyright 1934,
originally published by Contemporary Books, reprinted by permission of The
McGraw-Hill Companies.

Windows NT is a trademark of Microsoft Corporation. Portable Operating System
Interface (POSIX) is an IEEE Standard. Alpha, AlphaServer, DECnet, DECthreads,
DECwindows, Galaxy, OpenVMS, PALcode, VAX, VAXNMS, VMS, VMScluster are
trademarks of Compaq Information Technologies Group, L. P.

Although every precaution has been taken in the preparation of this book, the
publisher and author assume no responsibility for technical or editorial errors or
omissions. Neither is any liability assumed for damages resulting from the
information contained herein. The information in this document is provided "as is"
without warranty of any kind and is subject to change without notice.

1 0 9 8 7 6 5 4 3 2 1

Printed in the United States of America.

In memory of Brian Porter, who spent many hours
reading memory management code.

I wish he could have reviewed this book.

And for my three-year-old nephew, Max Goldenberg,
whose memory management is excellent.

This Page Intentionally Left Blank

TABLE OF C O N T E N T S

Preface . xxiii

C H A P T E R 1 F U N D A M E N T A L S A N D O V E R V I E W z
1.1 O v e r v i e w . 1

1.2 Physica l Memory Configurat ions . 2

1.3 Vir tua l Memory Concepts . 4

1.4 Vir tua l and Physical Pages . 7

1.5 Vir tua l Addresses and Page Tables . 8

1.6 Vir tua l Address Space . 11

1 . 6 . 1 0 p e n V M S Alpha Vir tual Address Space Layou t 12

1.6.2 Page Table Space . 14

1.7 Vir tua l Address ing on a NUMA Sys tem . 19

1.8 PTE Conten t s . 19

1.9 Trans la t ion Buffer . 21

1.10 Vir tua l Address Trans la t ion . 22

1.10.1 Trans la t ion Using the Trans la t ion Buffer . 22

1.10.2 TB Miss PALcode Rout ine . 23

1.10.3 Address Trans la t ion Except ions . 25

1.11 Trans la t ion Buffer Fea tu r e s . 26

1.11.1 Inva l ida t ing TB Ent r i e s . 26

1.11.2 Address Space N u m b e r s . 27

1.11.3 G r a n u l a r i t y Hin t Regions . 28

1.12 Vir tua l Memory . 29

1.12.1 Use of Vir tual Address Spaces . 29

1.12.2 Vir tual Memory Regions . 31

1.12.3 Vir tual Address Space Da ta S t ruc tu re s . 31

1.13 Physica l Memory . 32

1.13.1 Physical Memory Da ta S t ruc tu re s . 32

1.13.2 Sha r ing Physical Memory . 33

1.13.3 Manag ing Physical Memory . 35

1.14 Sof tware Memory M a n a g e m e n t Mechan i sms . 36

1.14.1 Compar i son of Paging and Swapp ing . 36

= =

v i i

1.14.2 Original Design . 36

1.14.3 Auxiliary Mechanisms . 40

1.14.4 Very Large Memory Suppor t . 41

1.15 F u r t h e r Information . 41

C H A P T E R 2 M E M O R Y M A N A G E M E N T DATA
S T R U C T U R E S . 43

2.1 Process Data St ruc tures . 43

2.1.1 Process Control Block and Kernel Thread Block 44

2.1.2 Region Descriptor Entr ies . 47

2.1.3 Process Header . 49

2.1.3.1 Fixed Par t of the PHD . 51

2.1.3.2 Working Set List . 53

2.1.3.3 Process Section Table . 54

2.1.3.4 Process Header Page BAK Array . 58

2.1.3.5 Array of FREDs 59

2.2 System Header and System PCB . 59

2.3 Page Tables . 60

2.3.1 Process-Private Page Tables . 60

2.3.2 System Space Page Tables . 61

2.3.3 S0/S1 Page Table Window . 64

2.3.4 Replicated System Space Page Tables . 65

2.3.5 PTE Formats . 66

2.3.5.1 PTE Containing a Process Section Table Index 70

2.3.5.2 PTE Containing a Page File Page Number 70

2.3.5.3 PTE Containing a Global Page Table Index 70

2.3.5.4 PTE of a Page in Transi t ion . 71

2.3.5.5 PTE of a Demand Zero Page . 71

2.3.5.6 System Space PTEs . 71

2.3.6 Available System Space . 72

2.4 Granula r i ty Hint Regions and Huge Pages . 73

2.4.1 Uses of Granu la r i ty Hint Regions . 74

2.4.2 Loader Huge Page Descriptors . 75

2.4.3 Contents of PTEs Mapping Granu la r i ty Hint Regions 76

2.5 Data St ruc tures Describing Physical Memory . 77

2.5.1 Memory Configuration . 78

2.5.2 Reserved Memory Descriptors . 80

viii

2.5.3 P F N D a t a b a s e . 82

2.5.3.1 P F N Lists . 86

2.5.3.1.1 Colored and RAD-Specific Page Lis ts 87

2.5.3.1.2 U n t e s t e d Page Lis t . 89

2.5.3.1.3 P r iva te P F N Lis ts . 89

2.5.3.2 P F N $ L _ F L I N K and P F N $ L _ B L I N K Fields 90

2.5.3.3 P F N $ L _ S H R C N T Field . 90

2.5.3.4 P F N $ L _ W S L X _ Q W Field . 90

2.5.3.5 P F N $ L _ G B L _ L C K _ C N T Field . 91

2.5.3.6 PFN$L_PAGE_STATE Field . 91

2.5.3.6.1 Page S ta t e Locat ion Codes . 91

2.5.3.6.2 Page S ta te S t a t u s Bits . 92

2.5.3.7 P F N $ L _ P T _ P F N and P F N $ Q _ P T E _ I N D E X Fields 94

2.5.3.8 P F N $ L _ P H D Field . 95

2.5.3.9 P F N $ W _ R E F C N T Field . 95

2.5.3.10 P F N $ L _ C O L O R _ F L I N K and P F N $ L _ C O L O R _ B L I N K fields 96

2.5.3.11 P F N $ Q _ B A K Field . 96

2.5.3.12 P F N $ Q _ B A K _ P R V P F N Field . 96

2.5.3.13 P F N $ W _ S W P P A G Field . 96

2.5.3.14 P F N $ W _ B O _ R E F C Field . 98

2.5.3.15 PFN$W_IO_STS Field . 98

2.5.3.16 PFN$W_PT_VAL_CNT Field . 98

2.5.3.17 P F N $ W _ P T _ L C K _ C N T Field . 98

2.5.3.18 P F N $ W _ P T _ W I N _ C N T Field . 98

2.6 Buffer Objects . 99

2.7 D a t a S t r u c t u r e s for Global Pages .

2.7.1 Global Section Descr ip tor .

2.7.2 Global Section Table En t r i e s .

2.7.3 Global Page Table .

2.7.4 Global Page Table E n t r i e s .

2.7.5 Rela t ions among Global Section D a t a S t r u c t u r e s

2.7.6 Global S h a r e d Page Table Sect ions .

101

101

103

104

105

106

108

2.8 D a t a S t r u c t u r e s for S w a p p i n g . 110

2.8.1 Ba lance Set Slots . 110

2.8.2 Ba lance Set Slot A r r a y s . 111

2.8.3 C o m m e n t on Equal -S ize Ba lance Set Slots . 112

2.9 D a t a S t r u c t u r e s Descr ib ing the Page and Swap Files 112

2.9.1 Page File Control Blocks . 113

2.9.2 Page-and-Swap-F i l e Vector . 117

ix

2.10 Swapper and Modified Page Wri ter Page Table Arrays

2.10.1 Direct I/O and Sca t t e r /Ga ther .

2.10.2 Swapper I/O .

2.10.3 Modified Page Wri ter PTE Arrays .

2.11 Relevant Source Modules .

CHAPTER 3 MEMORY MANAGEMENT SYSTEM
SERVICES .

3.1 Common Charac ter i s t ics of Memory M a n a g e m e n t Sys tem Services

3.1.1 Common Character is t ics of the 32-Bit Sys tem Services

3.1.2 Common Character is t ics of the 64-Bit Sys tem Services

3.2 Vir tual Address Region Creat ion .

3.3 Process-Pr ivate Vir tual Address Space Creat ion .

3.4 D e m a n d Zero Vir tual Address Space Creat ion .

3.4.1 $CRETVA Sys tem Service .

3.4.1.1 MMGLSTD]$TRY_ALL_64 Rout ine .

3.4.1.2 MMGLSTD]$CREPAG_64 Rout ine .

3.4.1.3 EXPANDCHK_64 Routine .

3.4.2 $CRETVA_64 Sys tem Service .

3.4.3 $EXPREG Sys tem Service .

3.4.4 $EXPREG_64 Sys tem Service .

3.4.5 Automat ic Address Space Expans ion .

3.5 Process and Global Sections .

3.6 Process-Pr ivate Sections .

3.6.1 Creat ion of a Process-Pr ivate Section Backed by a File

3.6.1.1 $CRMPSC and Process-Pr ivate Section File Creat ion

3.6.1.2 MAPSECPAG_RDE Routine for a Process Section

3.6.1.3 $CRMPSC_FILE_64 Sys tem Service .

3.6.2 PFN-Mapped Process Section Creat ion .

3.6.2.1 $CRMPSC and PFN-Mapped Process Section Creat ion

3.6.2.2 MAPSECPAG_RDE Routine for a PFN-Mapped Section

3.6.2.3 $CRMPSC_PFN_64 Sys tem Service .

3.7 Global Section Creat ion and Mapping .

3.7.1 Crea t ing Global Sections wi th $CRMPSC .

3.7.2 $CREATE_GFILE Sys tem Service .

3.7.3 $CREATE_GFILE_INT Routine .

3.7.4 $CRMPSC_GFILE_64 Sys tem Service .

118

119

120

120

121

123

124

125

128

129

131

132

133

134

134

136

137

138

139

139

141

143

144

144

147

148

150

150

153

154

157

158

162

163

165

3.7.5 $CREATE_GPFILE Sys t em Service .

3.7.6 $CREATE_GPFILE_INT Rout ine .

3.7.7 $CRMPSC_GPFILE_64 Sys tem Service .

3.7.8 $CREATE_GPFN Sys t em Service .

3.7.9 $CREATE_GPFN_INT Rout ine .

3.7.10 $CRMPSC_GPFN_64 Sys tem Service .

3.7.11 $CREATE_GDZRO Sys tem Service .

3.7.12 $CREATE_GDZRO_INT Rout ine .

3.7.13 $CREATE_SHMGS_INT Rout ine .

3.7.14 $CRMPSC_GDZRO_64 Sys tem Service .

3.8 Mapping a Global Section .

3.8.1 $MGBLSC Sys tem Service .

3.8.2 $MGBLSC_64 Sys t em Service .

3.8.2.1 $MGBLSC_GFILE_INT Rout ine .

3.8.2.2 $M GBLSC_GPFILE_INT Rout ine .

3.8.2.3 $MGBLSC_GDZRO_INT Rout ine .

3.8.3 $MGBLSC_GPFN_64 Sys tem Service .

3.8.3.1 $MGBLSC_GPFN_INT Rout ine .

3.9 Global Section Delet ion .

3.9.1 $DGBLSC Sys tem Service .

3.9.2 MMGLSTD]$DALCSTXSCN and MMGLSTD]$DALCSTXSCN1
Rout ines .

3.9.3 M M G L S T D] $ D E L G B L S E C Rout ine .

3.9.4 M M G L S T D] $ D E L G B L W C B Rout ine .

3.10 Vir tua l Address Space Delet ion .

3.10.1 $DELTVA Sys tem Service .

3.10.2 MMGLSTD]$DELPAG_64 Rout ine .

3.10.3 [MMG_STD$]CHECK_CONTRACT_64 and
[MMG_STD$] CHECK_CONTRACT_64_1 Rout ines

3.10.4 $DELTVA_64 Sys t em Service .

3.10.5 $CNTREG Sys tem Service .

3.11 Vir tua l Address Region Delet ion .

3.12 Buffer Object Crea t ion and Delet ion .

3.12.1 $ C R E A T E _ B U F O B J Sys tem Service .

3.12.2 [MMG_STD$]LCKBUFOBJPAG Rout ine .

3.12.3 $CREATE_BUFOBJ_64 Sys tem Service .

3.12.4 $ D E L E T E _ B U F O B J Sys tem Service .

3.13 Services T h a t R e t u r n In fo rmat ion .

166

166

167

167

168

169

170

171

176

179

180

180

183

184

185

186

187

188

188

189

190

191

194

194

195

196

203

204

204

205

206

207

209

210

211

214

xi

3.13.1 $GET_REGION_INFO Sys tem Service .

3.13.2 $GETSECI System Service .

3.13.3 $FIND_GPAGE_64 Sys tem Service .

3.13.4 $GET_VA_RAD_INFOW System Service .

3.14 $SETSWM System Service .

3.15 Set Page Protection Sys tem Services .

3.15.1 $SETPRT System Service .

3.15.2 [MMG_STD$]SETPRTPAG_64 Routine .

3.15.3 $SETPRT_64 System Service .

3.16 Set Faul t Sys tem Services .

3.16.1 $SETFLT System Service .

3.16.2 [MMG_STD$]SETFLTPAG_64 Routine .

3.16.3 $SETFLT_64 System Service .

3.17 $COPY_FOR_PAGE System Service .

3.18 Relevant Source Modules .

214

214

216

218

219

219

219

220

222

223

223

223

224

224

226

CHAPTER 4 PAGING DYNAMICS .

4.1 Overv iew .

4.2 Page Fau l t H a n d l i n g .
4.2.1 Common Steps in Page Fau l t Handl ing .

4.2.2 Error Returns to SCH$PAGEFAULT .

4.3 Page Transi t ions for Process Pages .

4.3.1 Process Section Page Tha t Is Not Copy-on-Reference

4.3.2 Process Section Page Tha t Is Copy-on-Reference

4.3.3 Demand Zero Page .

4.3.4 Page Faul t s out of Transi t ion Sta tes .

4.3.5 Process-Private Buffer Object Page .

4.4 Page Transi t ions for Process-Private Page Table and PHD Pages

227

227

229

230

235

236

237

242

245

246

249

250

4.4.1 Process-Private Page Table Page . 250

4.4.2 Process Header Page . 255

4.5 Page Transi t ions for Global Pages .

4.5.1 Global Read-Only Page .

4.5.2 Global Writable Page .

4.5.3 Global Copy-on-Reference Page .

4.5.4 Global Page-File Section Page .

4.5.5 Memory-Resident Global Demand Zero Section Page

256

256

259

260

262

264

xii

4.6 Page Transi t ions for Sys tem Pages .

4.6.1 Sys tem Page Tha t Is Not Copy-on-Reference .

4.6.2 Sys tem Page Tha t Is Copy-on-Reference .

4.6.3 Demand Zero Sys tem Page .

266

266

267

267

4.7 Page Transi t ions for Global Page Table Pages . 267

4.8 Page Fau l t Suppor t Routines . 268

4.8.1 MMG_STD$ININEWPFN_64 and MMG_STD$ININEWPFN_DZRO_64 268

4.8.2 MMG_STD$MAKE_WSLE_64 . 269

4.8.3 MMG_STD$INCPTREF_64 . 270

4.9 $FAULT_PAGE System Service . 270

4.10 Page Read Cluster ing .

4.10.1 Termina t ing Conditions for Clus tered Reads

4.10.2 Matching Conditions Dur ing the Page Table Scan

4.10.3 M a x i m u m Cluster Size for Page Read .

271

272

272

274

4.11 Page Read Completion . 274

4.12 Modified Page Writ ing .

4.12.1 Reques t ing the Modified Page Wri ter .

4.12.2 Opera t ion of the Modified Page Wri te r .

4.12.3 Modified Page Write Complet ion .

4.12.4 Modified Page Write Clus ter ing .

4.12.5 Backing Store for Modified Pages .

4.12.6 Page File Space Allocation .

4.12.7 Example of Modified Page Write to a Page File

276

276

278

283

284

284

285

287

4.13 Upda te Section File on Disk Sys tem Services .

4.13.1 $UPDSEC Sys tem Service .

4.13.2 $UPDSEC_64 Sys tem Service .

289

290

292

4.14 Inpu t and Outpu t Tha t Suppor t Paging . 292

4.15 Reference Counts .

4.15.1 P F N $ W _ R E F C N T .

4.15.2 PFN$L_SHRCNT and PHD$L_PTCNTACT .

4.15.2.1 Process Page Table Pages .

4.15.2.2 Global Pages and Global Page Table Pages

4.15.2.3 Sys tem Pages .

4.15.3 PFN$W_PT_VAL_CNT and PHD$L_PTCNTVAL

4.15.4 PFN$W_PT_LCK_CNT and P H D $ L _ P T C N T L C K

4.15.5 PFN$W_PT_WIN_CNT .

295

296

297

297

298

299

299

299

300

xiii

4.15.6 PHV$GL_REFCBAS_LW Array E lemen t .

4.16 Use of Page Files .

4.17 Paging and Schedul ing .

4.17.1 Page Fau l t Wait S ta te .

4.17.2 Free Page Wait S ta te .

4.17.3 Collided Page Wait S ta te .

4.17.4 Resource Wait S ta tes

4.17.4.1 Resource Wait for RSN$_ASTWAIT (RWAST)

4.17.4.2 Resource Wait for RSN$_NPDYNMEM (RWNPP)

4.17.4.3 Resource Wait for RSN$_MPWBUSY (RWMPB)

4.17.4.4 Resource Wait for R S N $ _ M P L E M F I ~ (RWMPE)

4.18 Relevant Source Modules .

C H A P T E R 5 W O R K I N G SET LIST D Y N A M I C S
5.1 Overview .

5.2 The Working Set List .

5.2.1 The WSLE .

5.2.2 Regions of the Working Set List .

5.2.3 Working Set List P a r a m e t e r s .

5.2.3.1 Working Set Limit .

5.2.3.2 Working Set Size .

5.2.3.3 Working Set Capaci ty .

5.3 Working Set Replacement .

5.3.1 Scan of the Working Set List .

5.3.2 Using an E m p t y En t ry in the Working Set List

5.3.3 Releasing a Dead Page Table Page .

5.3.4 Skipping WSLEs .

5.3.5 Reusing WSLEs .

5.3.6 TB Inval idat ion .

5.4 Working Set Limit Adjus tment .

5.4.1 $ADJWSL Sys tem Service .

5.4.2 SET WORKING_SET C o m m a n d .

5.4.3 Automat ic Working Set Limi t Ad jus tmen t .

5.5 Proactive Memory Reclamat ion from Periodically Waking Processes

5.6 Lock Pages in Working Set Sys tem Services .

5.6.1 $LKWSET Sys tem Service .

300

301

302

302

302

303

303

304

304

304

304

305

307

307

308

309

310

313

318

319

319

320

321

321

322

324

326

328

330

331

332

333

337

338

338

xiv

5.6.2 $LKWSET_64 System Service .

5.7 Lock Pages in Memory Sys tem Services .

5.7.1 $LCKPAG System Service .

5.7.2 $LCKPAG_64 System Service .

5.8 Unlock Pages System Services .

5.8.1 $ULWSET and $ULKPAG System Services .

5.8.2 $ULWSET_64 and $ULKPAG_64 Sys tem Services

5.9 Purge Working Set System Services .

5.9.1 $PURGWS System Service .

5.9.2 $PURGE_WS System Service .

5.10 Keeping a Page in the Working Set List .

5.11 Relevant Source Modules .

CHAPTER 6 THE SWAPPER .

6.1 O v e r v i e w .

6.1.1 S w a p p e r Respons ib i l i t i es .

6.1.2 System Events That Trigger Swapper Activity

6.1.3 Swapper Implementa t ion .

6.2 Swapper Use of Memory Managemen t Data St ruc tures

6.2.1 Process-Private St ruc tures .

6.2.2 Swapping I/O Data S t ruc tures .

6.2.3 Swap File Data St ruc tures .

6.3 Swapper Main Loop .

6.3.1 The BALANCE Routine .

6.3.2 The SWAPSCHED Routine and Selection of Inswap Process

6.3.3 The OUTSWAP Routine .

6.4 Selection of Shr ink and Outswap Processes .

6.4.1 The OSWPSCHED and TROLL Tables .

6.4.2 Trolling .

6.4.3 Passes Through the OSWPSCHED Table .

6 . 5 0 u t s w a p Operat ion .

6.5.1 Selection of an Outswap Candidate .

6.5.2 Allocation of Swap Space .

341

342

342

343

343

343

344

344

345

345

346

352

353

353

353

354

355

356

356

357

358

361

362

365

366

368

369

374

375

377

377

377

XV

6 . 5 . 3 0 u t s w a p of the Process Body .

6.5.3.1 Scanning the Working Set List .

6.5.3.2 Pages Within Buffer Objects .

6.5.3.3 Pages with Direct I/O in Progress .

6.5.3.4 Global Pages .

6.5.3.5 PHD Pages and Page Table Pages .

6.5.3.6 Example of a Process Outswap .

6 . 5 . 4 0 u t s w a p of the Process Header and Page Tables

6.5.4.1 Par t ia l Outswap .

6.5.4.2 Prepar ing the Process Header and Page Tables for Outswap

6.6 Inswap Operation .

6.6.1 Selection of an Inswap Candidate .

6.6.2 Prepara t ion for Inswap .

6.6.3 Inswap of the Process Header and Page Tables

6.6.4 Rebuilding the Process Body .

6.6.4.1 Rebuilding the Working Set List and Process Page Tables

6.6.4.2 Pages with I/O in Progress when Outswap Occurred

6.6.4.3 Resolution of Global Read-Only Pages .

6.6.4.4 Example of an Inswap Operation .

6.6.4.5 Final Processing of the Inswap Operat ion

6.7 Relevant Source Modules .

CHAPTER 7 POOL MANAGEMENT .

7.1 Summary of Pool Areas .

7.2 Dynamic Data Structures .

7.3 Var iable-Length Pools .
7.3.1 Var iable-Length Block Al locat ion .
7.3.2 Var iable-Length Block Deal locat ion .

7.4 F ixed-Length Lists .
7.4.1 Doubly L inked Lookaside Lists .
7.4.2 Singly L inked Lookaside Lists .

7.4.2.1 Singly L inked L is t Deal locat ion .
7.4.2.2 Singly L inked L is t Al locat ion .

378

379

381

381

381

382

382

386

386

387

389

389

389

390

393

393

395

395

396

398

399

401

401

405

411

412

414

417

419

419

421

421

xvi

7.4.3 Pool Zone L o o k a s i d e L i s t s .

7 .4.3.1 Pool a n d Zone C r e a t i o n .

7 .4.3.2 D a t a S t r u c t u r e s .

7 .4.3.3 A l loca t ion a n d Zone E x p a n s i o n .

7 .4 .3 .4 D e a l l o c a t i o n .

7 .4.3.5 R e c l a m a t i o n .

7.5 N o n p a g e d Pool .

7.5.1 D a t a S t r u c t u r e s .

7.5.2 U s e s of N o n p a g e d Pool .

7.5.3 I n i t i a l i z a t i o n .

7.5.4 Al loca t ion .

7.5.5 D e a l l o c a t i o n .

7.5.6 R e c l a m a t i o n .

7.5.7 E x p a n s i o n .

7.5.8 S y n c h r o n i z a t i o n .

7.6 P e r - R A D Pool .

7.6.1 D a t a S t r u c t u r e s .

7.6.2 I n i t i a l i z a t i o n .

7.6.3 Al loca t ion .

7.6.4 D e a l l o c a t i o n .

7.7 B u s - A d d r e s s a b l e Pool .

7.7.1 D a t a S t r u c t u r e s .

7.7.2 I n i t i a l i z a t i o n .

7.7.3 Al loca t ion .

7.8 Lock M a n a g e m e n t L o o k a s i d e L i s t .

7.9 E x t e n d e d Fi le C a c h e L o o k a s i d e L i s t s .

7.10 P a g e d Pool .

7.11 P r o c e s s A l loca t ion R e g i o n .

7.12 K R P L o o k a s i d e L i s t .

7.13 A l t e r n a t i v e Ver s ions of M o d u l e s a n d I m a g e s .

7.14 Co l l ec t i ng Pool Al loca t ion S t a t i s t i c s .

7.15 D e t e c t i n g Pool C o r r u p t i o n .

422

422

423

425

425

425

426

427

430

430

431

434

435

437

439

440

440

441

442

442

443

443

444

445

446

447

448

450

452

452

453

455

i i

XVl l

7.15.1 Pool Poisoning

7.15.1.1 P O O L C H E C K P a r a m e t e r .

7.15.1.2 Pool-Poisoning Routine .

7.15.1.3 Pool-Checking Routine .

7.15.1.4 Cons t ra in ts on the Pool-Checking Mechan i sm

7.15.2 Pool History .

7.16 Relevant Source Modules .

A P P E N D I X A SELECTED A C R O N Y M S .

455

456

457

459

460

461

462

463

INDEX

E X A M P L E S
5.1 Locking C Code and Linkage into the Working Set 348

FIGURES
1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

1.10

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

2.10

Example Galaxy Configurat ion . 3

Example GS160 Configurat ion . 4

Pa r t s of an Alpha Vir tual Address . 8

Page Table Hierarchy . 9

Example of Address Trans la t ion . 10

Vir tual Address Space . 13

Page Table Hierarchy Mapping Process-Pr ivate and Sys tem
Space . 15

Page Table Space . 17

Transforming the Page Table Hiera rchy into Page Table Space 18

Valid Page Table En t ry . 20

PCB and KTB (Shaded) Fields Rela ted to Memory M a n a g e m e n t 45

P rocess -Pe rmanen t RDEs in the PHD . 48

Layout of an RDE . 49

Discrete Portions of the Process Header . 50

Layout of Fixed Pa r t of the Process Header (PHD) 52

Process Section Table . 55

Layout of a Process/Global Section Table E n t r y (PSTE/GSTE) 57

Sys tem Header Conta in ing the Sys tem Working Set List and the
Global Section Table . 60

Process-Pr ivate and Sys tem Page Tables . 63

SPT Window . 65

l i e

XVIII

2.11

2.12

2.13

2.14

2.15

2.16

2.17

2.18

2.19

2.20

2.21

2.22

2.23

2.24

2.25

2.26

2.27

2.28

2.29

2.30

2.31

3.1

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.13

5.1

Process-Private and System Page Tables wi th Replicated Sys tem
Space . 67

L3PTE Formats . 69

List of Available System Space L3PTEs . 73

Layout of Huge Page Data S t ruc tures . 76

$GETSYI Physical Memory Map (PMM) Array 79

PFN Memory Map (PMAP) Array . 80

Layout of a Reserved Memory Descriptor (RMD) 83

Layout of a PFN Database Record . 86

Example of Free Page List Showing Linkage Method 87

Example of Colored Page Lists . 89

Contents of PFN$L_PAGE_STATE Field . 91

Possible Contents of PFN$Q_BAK Field . 97

Layout of a Buffer Object Descriptor (BOD) . 100

Layout of a Global Section Descriptor (GSD) . 102

Relation Between Process-Private PTEs and GPTEs 105

GPTE Formats . 107

Relations among Global Section Data St ruc tures 108

Process-Private and Shared Page Tables . 109

Balance Set Slots Containing Process Headers 110

Balance Set Slot Arrays . 111

Page and Swap File Database . 115

Layout of Scratch Space on the Stack . 126

Main Steps in Faul t ing a Page from a Mass Storage Medium 231

Page Types . 232

Page Transi t ions for a Process Section Page Tha t Is Not
Copy-on-Reference . 239

Page Transi t ions for Process and Global Copy-on-Reference Pages and
for Demand Zero Pages . 244

Page Transi t ions for a Page Located in a Page File, 247

Page Transi t ions for a Buffer Object Page . 251

Page Transi t ions for Process Page Table Pages 253

Page Transi t ions for a Global Read-Only Page Mapped by Two
Processes 258

Page Transi t ions for a Global Copy-on-Reference Page 260

Page Transi t ions for a Global Page-File Section Page 263

Page Transi t ions for a Memory-Resident Global Section Page Mapped
with Shared Page Tables . 265

Layout of a Modified Page Writer IRP (MPW IRP) 280

Clustered Write to a Page File . 288

Format of a WSLE . 309

xix

5.2

5.3

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

7.1

7.2

7.3

7.4

7.5

7.6

7.7

7.8

7.9

7.10

7.11

7.12

7.13

7.14

Working Set List .

Working Set List Parameters .

Layout of a Page File Map (PFLMAP) .

Swap File Database .

BALANCE Operations .

Example Working Set List before Outswap Scan

Example Working Set List after Outswap Scan

Changes after Swapper's Write Completes .

Working Set List and Swapper Map before Physical Page
Allocation .

Working Set List and Swapper Map after Physical Page
Allocation .

Working Set List and Rebuilt Page Tables .

Format of Dynamic Data Structures .

Format of Dynamic Data Structures .

Layout of Unused Areas in Variable-Length Pools

Examples of Variable-Length Block Allocation

Examples of Variable-Length Block Deallocation

Fixed-Length Packet Allocation and Deallocation from a Queue

Singly Linked Lookaside List .

Pool Zone Data Structures .

Nonpaged and Bus-Addressable Pool Data Structures

Nonpaged Pool Lookaside Lists .

311

314

360

361

364

383

384

385

396

397

398

406

406

412

415

416

420

420

424

428

429

Per-RAD Nonpaged Pool Data Structures . 441

POOLCHECK Parameter . 456

Format of Poisoned Pool Space . 458

Layout of Nonpaged Pool History Buffer Entry 461

TABLES
1.1 Effects of Page Size on Alpha Virtual Addresses 10

1.2 Comparison of Paging and Swapping . 37

2.1 PFN Database Record Fields . 85

3.1 Section Types and Backing Store . 142

4.1 Cluster Factor in I/O Requests Issued by Memory Management 272

4.2 Summary of I/O Requests Issued by Memory Management , Par t
I . 293

4.3 Summary of I/O Requests Issued by Memory Management , Par t II
(Read Requests) . 294

4.4 Summary of I/O Requests Issued by Memory Management , Par t III
(Write Requests) . 295

XX

4.5

5.1

5.2

5.3

6.1

6.2

6.3

6.4

7.1

7.2

7.3

7.4

7.5

7.6

7.7

Memory Managemen t Reference Counts

WSLE Control Bits .

Working Set Lists" Limits and Quotas .

Process and Sys tem Pa rame te r s Used by Automat ic Working Set
Limit Adjus tment .

Events Tha t May Cause the Swapper to Be Awakened

OSWPSCHED Table .

Scan of Working Set List of Outswap Process

Rebuilding the Working Set List and the Process Page Tables

Comparison of Different Pool Areas .

Data S t ruc ture Type Definitions .

Variable-Length Allocation Lis theads and Routines

Fixed-Length Allocation Lis theads and Routines

Paged and Nonpaged Pool Allocation Stat is t ics

POOLCHECK P a r a m e t e r FLAGS Bits .

POOLCHECK Bugcheck Reason Codes .

295

310

314

333

355

370

379

393

403

407

413

417

454

456

460

xxi

This Page Intentionally Left Blank

Preface

OpenVMS was developed in the 1970s to run on Digital Equipment Corporation's
32-bit VAX architecture. In the early 1990s Digital developed the 64-bit Alpha RISC
architecture, and the OpenVMS code base was ported to Alpha. The book Open-
VMS AXP Internals and Data Structures: Version 1.5 (1994) describes key executive
components of an early version of OpenVMS Alpha.

The present book describes the memory management subsystem of OpenVMS Alpha
Version 7.3 and the system services that create, control, and delete virtual address
space and sections. It emphasizes system data structures and their manipulation by
paging and swapping routines. It also describes management of dynamic memory, such
as nonpaged pool, and support for nonuniform memory access (NUMA) platforms.

This book updates the memory management part of the Version 1.5 volume, as Open-
VMS Alpha Internals: Scheduling and Process Control (1997), updated the scheduling
and process control part. Neither update is wholly independent of the Version 1.5 vol-
ume. Thus, to expand on topics mentioned here, chapters in this book refer to chapters
in any of the three books. References to chapters within this book are by number, for
example, Chapter 1. References to chapters in the preceding books are by title, for
example, Chapter Synchronization Techniques.

For conceptual background on internals topics not covered in this book, consult the
Version 1.5 book and the Scheduling and Process Control volume. Although details
such as data structure layouts will likely have changed since previous versions, much
of the conceptual foundation of OpenVMS is unchanged.

This book describes some features of the Alpha architecture, but presupposes knowl-
edge of other features. The Alpha Architecture Reference Manual describes the
architecture in detail.

Conventions
A number of conventions are used throughout the text and figures of this volume.

During the life of the VAX VMS operating system, the exact form of its name has
changed several times: from VAX/VMS Version 1.0 to VAX VMS Version 5.0 to Open-
VMS VAX Version 5.5. In describing the evolution of VMS algorithms and discussing
the foundation of the OpenVMS Alpha operating system, this book refers to the
OpenVMS VAX operating system by whichever name is appropriate for the version
referenced.

The term executive refers to those parts of the operating system that are loaded into
and that execute from system space. The executive includes the system base images,
SYS$BASE_IMAGE.EXE and SYS$PUBLIC_VECTORS.EXE, and a number of other
loadable executive images. Because there is no need to distinguish different types of
executive image, this book generally shortens the term loadable executive image to
executive image.

Preface xxiii

Preface

The terms system and Open VMS system describe the entire OpenVMS software pack-
age, including privileged processes, utilities, and other support software as well as the
executive itself. The OpenVMS system consists of many different components, each a
different file. Components include the system base images, executive images, device
drivers, command language interpreters, and utility programs.

The source modules from which these components are built and their listings are
organized by facility. Each facility is a directory on a source or listing medium contain-
ing sources and command procedures to build one or more components. The facility
[DRIVER], for example, contains sources for most of the device drivers. The facility
[SYSBOOT] contains sources for the secondary bootstrap program, SYSBOOT. The
facility [SYS] contains the sources that make up the base images and many executive
images.

This book identifies a [SYS] facility source module only by its file name. It identifies a
module from any other facility by facility directory name and file name. For example,
[SYSGEN]SYSGEN refers to the source for the system generation utility (SYSGEN).

Closely related routines and modules often have names that differ by only the last few
characters. For brevity, this volume refers to two such routines by enclosing the last
few characters in square brackets. For example, the name MMG$DALCSTXSCAN[1]
refers to routines MMG$DALCSTXSCAN and MMG$DALCSTXSCAN1.

Almost all source modules are built so as to produce object modules and listing files of
the same file name as the source module. Thus, a reference in this book to a source
module name identifies the file name of the listing file as well. In a case where the two
names differ, the text explicitly identifies the name of the listing file. Appendix Use of
Listing and Map Files discusses how to locate a module in the source listings.

This book identifies a macro from SYS$LIBRARY:LIB.MLB by only its name, for
instance, $PHDDEF. The macro library of all other macros is specified.

Ported from VAX VMS, many OpenVMS Alpha executive routines have JSB-type entry
points. That is, they were originally written to be entered with a VAX 5ss instruction
rather than a VAX CALLS or CALLG instruction. Typically this was done for performance
reasons at a time when most of the executive was written in VAX MACRO and the
rest in VAX BLISS. On an Alpha CPU, however, there is little difference in the code
generated for a MACRO-32 5ss instruction and for a MACRO-32 CALLS instruction.

As part of adding support for high-level language device drivers and other sys-
tem code, a standard call-type entry point has been added for each JSB-type entry
point. An added call-type entry point has the string _STD in its name; for example,
MMG$CREPAG_64 and MMG_STD$CREPAG_64 are the two entry points of a per-
page routine called by system services such as $CRETVA and $CRETVA_64. New
routines typically have only one entry point, a standard call-type entry point with a
name that does not include the string _STD.

The unmodified terms process control block and PCB refer to the software data struc-
ture used by the executive. The data structure that contains a process's hardware
context, the hardware privileged context block (HWPCB), is always called the HWPCB.

xxiv Preface

Preface

The term inner access modes means those access modes with more privilege. The te rm
outer access modes means those with less privilege. Thus, the innermost access mode
is kernel and the outermost mode is user.

The term S Y S G E N parameter refers to a system cell tha t can be altered by a system
manager to affect system operation. Traditionally, these parameters were altered
through either the SYSGEN utility or SYSBOOT, the secondary bootstrap program.
Although they can also now be altered through the SYSMAN utility or AUTOGEN
command procedure, this volume continues to use the traditional term S Y S G E N
parameter. SYSGEN parameters include both dynamic parameters , which can be
changed on the running system, and static parameters , whose changes do not take
effect until the next system boot. These parameters are referred to by their pa ramete r
names ra ther than by the symbolic names of the global locations where their values
are stored. Appendix S Y S G E N Parameters and Their Locations relates parameter
names to their corresponding global locations.

The terms byte index, word index, longword index, and quadword index derive from
methods of VAX operand access tha t use context-indexed addressing modes. That is,
the index value is multiplied by 1, 2, 4, or 8 (for bytes, words, longwords, or quadwords,
respectively) as part of operand evaluation, to calculate the effective address of the
operand. Although the Alpha architecture does not include these addressing modes,
the concept of context indexing is relevant to various OpenVMS Alpha data structures
and tables.

A term in small capital letters refers to the formal name of an argument to an Open-
VMS system service, for example, the LOGNAM argument.

A bit field is sometimes described by its start ing and ending bit numbers within angle
brackets; for example, the interrupt priority level of the processor, in the processor
status bits <12:8>, is contained in bits 8 through 12.

Unless otherwise noted, numbers in the text are decimal.

The term KB refers to a kilobyte, 1,024 bytes; the term MB, to a megabyte, 1,048,576
bytes; the term GB to a gigabyte, 1,024 MB; and the term TB, a terabyte, to 1,024 GB.

Three conventions are observed for lists:

�9 In lists like this one, where no order or hierarchy exists, list elements are indicated
by leading round bullets. Sublists without hierarchy are indicated by dashes.

�9 Lists tha t indicate an ordered set of operations are numbered. Sublists tha t
indicate an ordered set of operations are lettered.

�9 Numbered lists with the numbers enclosed in circles indicate a correspondence
between the list elements and numbered items in a figure or example.

Several conventions are observed for figures. In all diagrams of memory, the lowest
virtual address appears at the top of the page and addresses increase toward the
bottom of the page. Thus, the direction of stack growth is depicted upward from
the bottom of the page. In diagrams that display more detail, such as bytes within
longwords, addresses increase from right to left. That is, the lowest addressed byte (or

Preface xxv

Preface

bit) in a longword is on the r ight-hand side of a figure and the most significant byte (or
bit) is on the left-hand side.

Each field in a data structure layout is represented by a rectangle. In many figures,
the rectangle contains the last part of the name of the field, excluding the structure
name, data type designator, and leading underscore. A rectangle the full width of the
diagram generally represents a longword regardless of its depth. A field smaller than
a longword is represented in proportion to its size; for example, bytes and words are
quarter- and half-width rectangles. A quadword is generally represented by a full-
width rectangle with a short horizontal line segment midway down each side. In some
figures, a rectangle the full width of the diagram represents a quadword. In these
figures, bit position numbers above the top rectangle show numbers from 0 to 63 to
indicate that the rectangle represents a quadword.

For example, Figure 2.5 shows the layout of the fixed part of the process header (PHD).
The rectangle labeled SIZE represents the word PHD$W_SIZE; the rectangle labeled
WSLIST, the longword PHD$L_WSLIST; and the rectangle labeled NEXT_REGION_
ID, the quadword PHD$Q_NEXT_REGION_ID.

In almost all data structure figures, the data structure's full-width rectangles represent
longwords aligned on longword boundaries. In a few data structures, a horizontal row
of boxes represents fields whose sizes do not total a longword. Without this practice,
most of the fields in this kind of structure would be split into two part-width rectangles
in adjoining rows, because they are unaligned longwords.

Some data structures have alternative definitions for fields or areas within them. A
field with multiple names is represented by a box combining the names separated by
slash (/) characters. An area with multiple layouts is shown as a rectangle with a
dashed line separating the alternative definitions. For example, in Figure 2.18, fields
PFN$L_FLINK and PFN$L_SHRCNT are two names for the same field. Figure 2.18
also shows an example of alternative definitions for an area; the quadword at PFN$Q_
BAK is also divided into the longword PFN$L_PHD and PFN$L_COLOR_BLINK.

A data structure field containing the address of another data structure in the same
figure is represented by a bullet connected to an arrow pointing to the other structure.
Where possible, the arrow points to the rightmost end of the field, tha t is, to bit 0.
A field containing a value used as an index into that or another data structure is
represented by an x connected to an arrow pointing to the indexed location.

Two conventions indicate elisions in a data structure layout. A specific amount of
space is shown as a rectangle whose sides contain dots. Text within the rectangle
indicates the amount of space it represents. Field PHD$Q_PAL_RSVD in Figure 2.5,
for example, represents 48 bytes.

An indeterminate amount of space, often unnamed, representing omitted and unde-
scribed fields, is indicated by a rectangle whose sides are intersected by short parallel
horizontal lines. For example, Figure 2.1, which identifies only the PCB fields related
to memory management, contains seven sets of omitted fields among the labeled fields.

xxvi Preface

Preface

In a typical figure that represents a code flow, such as Figure 4.1, time flows down-
ward. Each different environment in which the code executes is represented by a
column in the figure. The headings above the columns identify the environment
characteristics, for example, "Kernel Thread Context" or "Kernel Mode".

A code flow figure represents only the events in the code most relevant to the current
discussion. A description of code within a routine begins with the routine's name in
bold-face type followed by text lines describing the routine's actions. When one routine
calls another, the routine nesting is shown by indents. A lightning bolt represents
an exception or interrupt. A diamond represents a branch test. An arrow indicates a
transfer of control, typically from one routine to another.

Acknowledgments
In addition to acknowledging the work of the many contributors to Open VMS AXP
Internals and Data Structures: Version 1.5, the precursor of the present series, I would
like to acknowledge the contributors to the present volume.

A number of people reviewed substantial portions of the book and made suggestions
that improved its quality. I am particularly grateful to John Gillings, Mike Harvey,
Andy Kiihnel, Arthur Lampert, Karen Noel, and Guy Peleg. I'd also like to thank
Nitin Karkhanis and Bobbi Ketelsen for their review.

I was delighted to work again with Alice Cheyer and Sarah Lemaire. Alice has been
editing previous versions of this book since 1987 and shepherding them through pro-
duction. Her punctilious attention to detail has greatly improved the book's consistency
and readability. She challenges me to do my best work and keeps me honest.

Sarah Lemaire contributed immeasurably to the composition, figures, and index of
this book. She remained unflappable and cheerful in the face of seemingly endless
problems in every aspect of the production.

I am grateful to Bryan Jones, Group Engineering Manager for OpenVMS Engineering,
for funding my work on this volume. I would also like to thank my managers for
their support: Verell Boaen, Jim Janetos, and Joe Schuster. Carl Gallozzi and Margie
Sherlock provided critical supplemental support.

Pam Chester and Theron Shreve guided the book through its publication stages at
Digital Press.

Alan Rose aptly managed the prepress production; his wry sense of humor lightened
the process. Lauralee Reinke capably dealt with font mysteries. Lazarus Guisso
greatly improved the format of the book's pages.

Preface xxvii

This Page Intentionally Left Blank

Chapter 1
Fundamentals and Overview

One must have a good memory to be able to keep
the promises one makes.

Friedrich Wilhelm Nietzsche, Human, All Too Human

Virtual memory support for the OpenVMS Alpha operating system is based upon
Alpha architectural features. It is designed to provide

�9 Maximum compatibility with OpenVMS VAX memory management

�9 Access to the larger Alpha address space

Support for memory shared among multiple OpenVMS instances running on a
Galaxy platform

�9 Support for efficient operation of platforms with nonuniform memory access

This chapter describes the Alpha memory management architecture and provides an
overview of OpenVMS Alpha memory management. Sections 1.1-1.11 describe the
fundamental concepts of memory management and the architectural mechanisms that
underlie it. Sections 1.12-1.14 give an overview of OpenVMS management of virtual
and physical memory.

1.1 Overview
Physical memory is the real memory supplied by the hardware. A virtual memory
environment supports software that has memory requirements greater than the
available physical memory. An individual process can require more physical memory
than is available, or the total requirements of multiple processes can exceed available
physical memory. A virtual memory system simulates real memory by transparently
moving the contents of memory to and from block-addressable mass storage, usually
disks.

An Alpha processor and the executive cooperate to support virtual memory. As used
here, the term processor includes both the CPU hardware and its privileged architec-
ture library (PALcode) address translation code.

Fundamentals and Overview

In normal operation, the processor interprets all instruction and operand addresses as
virtual addresses (addresses in virtual memory) and translates virtual addresses to
physical addresses (addresses in physical memory) as it executes instructions.

This execution time translation capability enables the executive to execute an image
in whatever physical memory is available. It also enables the executive and an Alpha
processor in combination to restrict access to selected areas of memory, a capability
known as memory protection.

The term memory management describes not only virtual memory support but also
the ways in which the executive exploits this capability. Memory management i s
fundamentally concerned with the following issues:

Movement of code and data between mass storage and physical memory as re-
quired to simulate a virtual memory larger than the physical one

Support of memory areas in which individual processes can run without interfer-
ence from others, areas in which system code can be shared but not modified by its
users, and areas in which application code and data can be shared

Arbitration among competing uses of physical memory to optimize system opera-
tion and allocate memory equitably

1.2 Physical Memory Configurations
On a uniprocessor system, all the physical memory is associated with one CPU. Some
of the physical memory is permanently occupied by executive code and data, and the
rest is available for system processes and user applications.

A symmetric multiprocessing (SMP) system is a hardware platform with two or more
CPUs. Each can access all the physical memory and execute instructions indepen-
dently of the others. As in a uniprocessor system, some of the physical memory is
permanently occupied by a single copy of executive code and data, and the rest is
available for other uses. Each CPU executes a different thread of execution, for exam-
ple, an interrupt service routine or a kernel thread of some process. Executive code
allocates physical memory, coordinates scheduling of the CPUs, and when necessary,
synchronizes their operations.

OpenVMS Alpha introduced support for Galaxy systems in Version 7.2. In a Galaxy
system, multiple copies of OpenVMS execute within one multiprocessor computer.
Each copy is called an instance. The system manager assigns each instance some
of the computer's resources, in particular, memory, CPUs, and I/O peripherals. The
system manager can reassign resources among the instances as needs change. With
OpenVMS Alpha Version 7.3, only CPUs can be reassigned.

The term soft partitioning describes this type of software-controlled separation of com-
puting resources. In contrast, hard partitioning is a physical separation of computing
resources by hardware-enforced barriers.

1.2 Physical ,Memory Configurations

An instance ,can be a uniprocessor or an SMP system. In each instance, some physical
memory is occupied by executive code and data, and the rest is available for other uses.
Some physical memory is shared among all the instances for Galaxywide system data
structures. Applications running on multiple instances can create Galaxywide global
sections in shared memory. Executive code synchronizes its own access to executive
Galaxywide data and provides mechanisms for applications to synchronize their access
to Galaxywide sections.

Figure 1.1 shows a simple representation of a Galaxy platform's CPUs and memory,
which have been divided into three instances. Instance 0, for example, is a three-
member SMP system. The executive occupies some of its private memory, and the rest
is available for other uses. The three instances all share memory for executive data,
and applications running on them can share global sections in shared memory.

Figure 1.1 Example Galaxy Configuration

Instance 0
CPUs

Instance 1
CPUs

Instance 2
CPUs

Instance-
Private

Memory

Instance-
Private

Memory

Instance-
Private

Memory

Executive-Shared Memory

Application-Shared Memory

Some newer platforms are made up of hardware components called system building
blocks (SBBs). Each SBB can have CPUs, memory, and I/O adapters. The components
within an SBB have similar access characteristics. On Alphaserver GS160 and GS320
systems, for example, the SBB is called a quad building block (QBB). On these systems
a CPU can access physical memory in its own QBB more quickly than other memory.
This phenomenon is called nonuniform memory access (NUMA).

The system manager can configure the CPUs into a single SMP system running one
OpenVMS instance or into a Galaxy system running multiple instances. In either
case, if a single instance runs on multiple SBBs, the executive differentiates between
memory local to a SBB and nonlocal memory to improve performance. For example,
if a process is assigned to a particular SBB, the executive attempts to allocate its
physical memory from memory local to that SBB. Section 1.7 describes another way in
which OpenVMS supports NUMA platforms.

F u n d a m e n t a l s a n d O v e r v i e w

A software grouping of hardware components with similar access characteristics is
called a resource affinity domain (RAD). For example, on an Alphaserver GS160 or
GS320 system, a RAD corresponds to a QBB. Figure 1.2 shows the CPUs and memory
of an example GS160 configuration. The system manager has configured it as a
Galaxy system running four OpenVMS instances. Instances 0 and 1 each correspond
to a QBB. Instance 2, however, has CPUs and memory from QBB 2 and QBB 3 and
thus makes use of two RADs. Instance 3's CPUs and memory are all from QBB 3.

F i g u r e 1.2 Example GS160 Configuration

Instance 0 Instance 1
.

RAD 0 RAD 1

O
. " " "L" . : .

RAD 2

NNN1
RAD 3

. I

Instance 2 Instance 3

1.3 Virtual Memory Concepts
Virtual memory is implemented so that each process has its own address space. Some
of the address space is private to a process, and some of it is common to all processes.
Executive code and data occupy the common virtual memory, which is called system
space. Virtual memory can be larger than physical memory.

Support for virtual memory enables a process to execute an image that only partly
resides in physical memory at any given time. Only the portion of virtual address
space actually in use need occupy physical memory. This enables the execution of
images larger than the available physical memory. It also makes it possible for parts
of different processes' images and address spaces to be resident simultaneously even
when they are in the same address range. Address references in an image built for a
virtual memory system are independent of the physical memory in which the image
actually executes.

1.3 Virtual Memory Concepts

Physical memory consists of byte-addressable storage locations eight bits (one byte)
long. Physical address space is the set of all physical addresses tha t identify unique
physical memory storage locations and I/O space locations. A physical address can be
t ransmi t ted by the processor over the processor-memory interconnect, typically to a
memory controller.

During normal operations, an instruction accesses memory using the vir tual address
of a byte. The processor t ransla tes the vir tual address to a physical address using
information provided by the operating system. The set of all possible vir tual addresses
is called vir tual memory, or vir tual address space.

Virtual address space and physical memory are divided into units called pages. Virtual
and physical pages are the same size. Each page is a group of contiguous bytes tha t
s tar ts on an address boundary tha t is a multiple of the page size in bytes. The page is
the unit of address translation. An entire vir tual page is always mapped to an entire
physical page; addresses within one vir tual page t rans la te to addresses within the
same physical page. The vir tual page is also the unit of memory protection. Each
vir tual page has protection at t r ibutes specifying which access modes can read and
write tha t page.

Memory management is always enabled on an Alpha processor. The CPU hardware
treats all instruction-generated addresses as virtual. Note, however, tha t kernel mode
code can access a physical address directly by executing the instruction CALL_PAL STQP
or CALL_PAL LDQP.

The CPU hardware at tempts to t rans la te vir tual addresses to physical addresses using
a hardware component called a t ranslat ion buffer (TB). A TB is a cache of previously
t ransla ted addresses. Because a TB can be accessed and searched faster than a page
table, address t ranslat ion is first a t tempted through a TB lookup. If the TB does
not include this part icular translation, PALcode must access a set of software data
s tructures called page tables to load the t ranslat ion into the TB.

Each process has its own set of page tables. Page tables provide a complete association
of virtual to physical pages. A page table consists of page table entries (PTEs), each of
which associates one page of vir tual address space with its physical location, either in
memory or on a mass storage medium.

A PTE contains a bit called the valid bit, which, when set, means tha t the vir tual
page currently occupies some page of physical memory. A PTE whose valid bit is set
contains the number of the physical page occupied by the vir tual page. The physical
page number, called a page frame number, consists of all the bits of the physical page's
address except for those tha t specify the byte within the page. When a reference is
made to a vir tual address whose PTE valid bit is set, the processor uses the page frame
number to t ransform the vir tual address into a physical address. This t ransformation
is called vir tual address translation.

When a reference is made to a vir tual address whose PTE valid bit is clear, the
processor cannot perform address t ranslat ion and instead generates a translat ion-
not-valid exception, more commonly known as a page fault. The page fault exception

Fundamentals and Overview

service routine, called the page fault handler, examines the PTE to determine the
physical location of the invalid page.

�9 If the page is on disk, the page fault handler obtains an available page of physical
memory, stores its page frame number in the PTE, and initiates I/O to read the
virtual page into it from mass storage. When this occurs, the process is said to be
faulting the page in.

When the I/O completes successfully, the page fault handler sets the PTE valid
bit and dismisses the exception. With the vir tual page now valid, control r e tu rns
to the instruction whose previous execution triggered the page fault, and it is
reexecuted.

�9 If the page is a demand zero page, a data page tha t is initialized to all zeros, the
page fault exception service routine allocates a page of memory, zeros it, stores
its page frame number in the PTE, sets the PTE valid bit, and dismisses the
exception.

�9 If the invalid page is still cached in physical memory, the page fault handle r simply
updates the PTE.

Reading a vir tual page into memory or creating a demand zero page in response to an
a t tempted access is called demand paging.

The set of a process's valid virtual pages is called its working set. The executive
limits the number of pages of physical memory a process can use at once by set t ing a
maximum size for its working set. When this limit has been reached and the process
incurs a page fault, the page fault handler selects one of the process's vir tual pages to
remove from its working set. When this occurs, the process is said to be fault ing the
page out. Removing one virtual page from a process's working set to make room for
another is called replacement paging.

The mass storage location from which a vir tual page is read is called its backing
store. A common example of backing store is a set of blocks in an image file. If the
vir tual page is guaranteed not to change (that is, it contains code or read-only data),
the page fault handler need not write the page to mass storage when it is faulted out
(thus saving the I/O) and can reread it from the image file as often as required. Thus,
the backing store file remains the image file. If, however, the vir tual page contains
writable data, the page is faulted in once from the image and later faulted out to page
file backing store, from which any subsequent faults will be satisfied.

The sections tha t follow discuss how these concepts are implemented by the Alpha
architecture and OpenVMS Alpha.

1.4 Virtual and Physical Pages

1.4 Virtual and Physical Pages
The Alpha architecture supports a page size of 8 KB, 16 KB, 32 KB, or 64 KB. Each
of the CPUs supported by OpenVMS Alpha Version 7.3, however, has a page size of 8
KB (8,192 bytes). For simplicity, therefore, this volume describes virtual addresses and
address translation in terms of a page size of 8 KB.

In contrast, the VAX architecture supports a single page size, 512 bytes. To dist inguish
the two architectures' pages, the term pagelet identifies a VAX page, or a 512-byte unit
of memory.

Each page is a group of 8 K contiguous bytes s tar t ing on an 8 KB address boundary.
The first page starts at address 0, the second at address 200016 (or 81921o), the third
at address 400016 (or 1638410), and so on.

Each physical page has an identifying number called a page frame number (PFN).
A PFN is simply the portion of the physical address that specifies the physical page,
namely, all but the low-order bits that specify the byte offset within the page. Typi-
cally, PFNs start at 0 and increase toward higher numbers. OpenVMS, however, does
not require that PFNs start at 0 or that physical memory be contiguous.

Each virtual page has an identifying number called a virtual page number (VPN). A
VPN is the portion of the virtual address that specifies the virtual page, namely, all
but the low-order bits that specify the byte offset within the page.

Although all Alpha CPUs to date have a page size of 8 KB, OpenVMS memory man-
agement is adaptable to other page sizes. The console subsystem passes the page size
to the executive during system initialization, and the executive defines various global
cells accordingly. The following is a list of the most common of these cells and their
contents for a page size of 8 KB:

�9 MMG$GL_PAGE_SIZEmSize of page in bytes (0000200016)

�9 MMG$GL_VPN_TO_VA (also known as MMG$GL_BWP_WIDTH)--Number of
bits to shift left to derive the virtual address from a VPN (0000000D16)

�9 MMG$GL_VA_TO_VPN--Number of bits to shift right to derive the VPN from
a virtual address (expressed as a negative number to indicate a right shii~)
(FFFFFFF316)

�9 MMG$GL_BWP_MASK~Mask of set bits corresponding to the byte offset, or byte
within page, field in a virtual address (00001FFF16)

Executive routines use these and similar cells as parameters for page size dependent
code. An application program can determine the page size by requesting the Get
System Information ($GETSYI) system service to return information about i tem SYI$_
PAGESIZE.

Fundamentals and Overview

1.5 Virtual Addresses and Page Tables
In the Alpha architecture, a virtual address is represented as a 64-bit unsigned
integer. An Alpha virtual address is divided into five parts whose sizes and start ing
bit positions can vary with page size. Figure 1.3 shows the parts of a virtual address
on a system with a page size of 8 KB.

The processor translates a virtual address to a physical address using a three-level
hierarchy of page tables. Each level field diagramed in Figure 1.3 indexes a different
level of page table, and each is used in translating the virtual address. An Alpha page
table of any level is one page long, and each PTE in it is eight bytes long. The value in
a level field is thus multiplied by 8 to select a PTE.

Figure 1.3 Parts of an Alpha Virtual Address

63 43 42 33 32 23 22 13 12 0

Sign extension bits Level 1 Level 2 Level 3 Byte within page

A level 3 page table (L3PT) contains 1,024 L3PTEs (8,192/8 = 1,024), each of which can
map a page of code or data. A level 2 page table (L2PT) contains 1,024 L2PTEs, each
of which can map an L3PT. A level 1 page table (L1PT) contains 1,024 L1PTEs, each of
which can map an L2PT. Figure 1.4 shows the relations among the three levels of page
table.

Each process has its own L1, L2, and L3 page tables; it shares some L2 and L3 page
tables with other processes. The page table base (PTBR) processor register contains
the PFN of the L1PT associated with the current process. The PTBR is part of the
hardware privileged context and is swapped with process context.

The Alpha architecture supports a sparse virtual address space. Whether a particular
virtual page is defined is independent of the state of its neighboring pages. Unlike the
VAX architecture, the Alpha architecture has no page table length registers and does
not require multiple physically contiguous page tables. Moreover, holes in the virtual
address space need not be represented by page tables, and the architecture permits
those L2PTs and L3PTs that exist to be pageable. These characteristics reduce the
memory needed for page tables.

Figure 1.5 illustrates the basic steps of address translation for an example virtual
address whose three level fields contain the values L1, L2, and L3. These steps are as
follows:

1. The PTBR points to the L1PT.

2. The contents of the level 1 field in the virtual address, L1, index the L1PT to select
an L1PTE, which contains the PFN of an L2PT.

Page Table Hierarchy

PTBR 63 LIPT 0

63 L3PT 0

63 L2PT 0
r[L2PTE =J

63 L2PT 0

r [L2PTE -'j

I L2PTE "I

1.5 Virtual Addresses and Page Tables

Code or Data Pages

-~ L3PTE - _,1

63 L3PT 0

L3PTE -!-

63 L3PT 0

63 L3PT 0

l L3PTE = I l

Figure 1.4

3. The contents of the level 2 field in the virtual address, L2, index the L2PT to select
an L2PTE, which contains the PFN of an L3PT.

4. The contents of the level 3 field in the virtual address, L3, index the L3PT to select
an L3PTE, which, if its valid bit is set, contains the PFN of the page containing
the code or data at that virtual address.

~ If the L3PTE is valid, the contents of the byte within page field, B, are concate-
nated with the PFN to form the target physical address.

Otherwise, a memory management exception occurs to notify the operating system
that the translation cannot be completed.

Section 1.10 covers virtual address translation in more detail.

Fundamentals and Overview

F i g u r e 1.5 E x a m p l e o f A d d r e s s T r a n s l a t i o n

Virtual Address IS I LIIL2IL3] B I

PTBR 63 LIPT 0 63 L2PT 0 63 L3PT 0 Code or Data Page

L 1 - 8 !IL~ t-e:
bytes L~e8 L3PTE = 1 Byte s

L1PTE = I 1_2PTE : ']~r.-Target ']]Address

Although instruction execution generates 64-bit vir tual addresses, a par t icular proces-
sor implements a smaller virtual address whose size is a function of the processor's
page size. A page table on a system with a page size of 8 KB contains 1,024 PTEs.
On such a system, each level field in a vir tual address identifies one of 1,024 PTEs
and thus is ten bits wide (1,024 = 21~ Byte offset, or byte within page, is 13 bits
wide (8,192 = 213). Thus, a virtual address on a system with an 8 KB page with a
three-level page table has only 43 bits of significance; the high 21 bits are simply sign
extension bits.

Table 1.1 shows the sizes of the virtual address parts for the possible page sizes. Each
number in the column Virtual Address Bits is calculated as the byte offset bits plus
three times the number of level bits. Each number in the column Physical Address
Bits is calculated as the byte offset bits plus 32, the size of a page frame number.

Table 1.1 Ef fec t s o f P a g e S i ze on A l p h a V ir tu a l A d d r e s s e s

Byte Maximum Size Virtual Physical
Page Offset Level of Virtual Address Address
Size Bits Bits Address Space Bits Bits

8 KB 13 10 8 TB 43 45

16 KB 14 11 128 TB 47 46

32 KB 15 12 2,048 TB 51 47

64 KB 16 13 32,768 TB 55 48

On a system with an 8 KB page, a correct 64-bit vir tual address therefore has identical
values in bits <63:43>, and the values of these sign extension bits are the same as the
value of bit 42, the high bit of the level fields (see Figure 1.3). Thus, correct vir tual
addresses must be either in the range 0 to 000003FF FFFFFFFF16 or the range
FFFFFC00 0000000016 to F F F F F F F F FFFFFFFF16.

10

1.6 Virtual Address Space

Addresses in the range 00000400 0000000016 to FFFFFBFF FFFFFFFF16 are illegal.
This address range is known as the gap. The processor generates an access violation
if an at tempt is made to access an address in this range. The gap represents an
inherently unreachable portion of the virtual address space, addresses in which
bits <63:43> are not the same as bit 42. The gap exists because there are only 43
significant bits in a virtual address, given an 8 KB page and a three-level page table,
yet there are 64 bits available for expressing a virtual address.

1.6 Virtual Address Space
Each process has its own virtual address space and page tables. Virtual address space
is divided into the following parts:

�9 System space

�9 Process-private space

�9 Page table space

The executive is mapped into the same address range in each process's address space
and is shared among all processes. That address range is called system space. The
page tables that map system space are shared in each process's page table space.
When the executive builds L1PTs for new processes, it initializes the L1PTEs tha t map
system space to the same value in each L1PT. As a result, the L2PTs and thus the
L3PTs that map system space are the same physical pages for every process.

The nonshared part of virtual address space is called process-private space. Each
process can access only system space and its own process-private space; it is thereby
protected against references to its process-private space from other processes.

All the kernel threads within a process share the same address space. One kernel
thread at a time executes on a processor. (On a symmetric multiprocessing system,
each processor can be executing a different kernel thread from the same process.)
When a kernel thread is placed into execution, its process's page tables become the
working page tables for that processor.

Process page tables are mapped into the same virtual address range, called page table
space, in each process's address space. Some of this range maps process-private space,
and some maps system space. The page tables that map process-private space are
typically process-private, and the page tables that map system space are shared.

In early versions of OpenVMS Alpha, page table space was used only by PALcode. The
executive mapped each process's page tables into system space as well and accessed
them using system space addresses.

OpenVMS Alpha Version 7.0 and subsequent releases access page tables only through
page table space. This change removes prior limits to the growth of process address
space, enabling a process to use a much larger process-private virtual address space.
The change, however, removes the double mapping by which the executive could access
process-private page tables from outside the context of that process. The executive
must now use another mechanism in those cases where such access is required.

11

Fundamentals and Overview

Section 1.6.1 describes the organization of virtual address space in more detail, and
Section 1.6.2 discusses page table space.

1.6.10penVMS Alpha Virtual Address Space Layout
Figure 1.6, not to scale, shows OpenVMS Alpha virtual address space.

A key initial design goal of OpenVMS Alpha memory management was maximum
compatibility with VAX VMS. OpenVMS Alpha virtual address space was initially
based upon VAX VMS virtual address space. The VAX architecture defines a 32-bit
virtual address space.

The low half of the VAX virtual address space (addresses between 0 and 7FFFFFFF16)
is called process-private space. This space is further divided into two equal pieces
called P0 space and P1 space. Each is 1 GB long. The P0 space range is from 0 to
3FFFFFFF16. P0 space starts at 0 and expands toward increasing addresses. The P1
space range is from 4000000016 to 7FFFFFFF16. P1 space starts at 7FFFFFFF16 and
expands toward decreasing addresses.

The upper half of the VAX virtual address space is called system space and is shared
by all processes. The lower half of system space (the addresses between 8000000016
and BFFFFFFF16) is called SO space. SO space begins at 8000000016 and expands
toward increasing addresses. Although the original VAX architecture specified that
the upper half of system space, S1 space, was undefined and reserved, the architecture
has since been modified to permit SO space to expand to FFFFFFFF16. The expanded
address range results in 2 GB of system space.

OpenVMS Alpha P0 and P1 virtual address space ranges are identical to their
VAX counterparts. OpenVMS Alpha defines the combined S0/S1 space as
FFFFFFFF 8000000016 to FFFFFFFF FFFFFFFF16.

The Alpha 64-bit addresses for P0, P1, and S0/S1 ranges are sign-extended versions
of the VAX 32-bit ones. Because the Alpha LDL instruction sign-extends in loading a
longword from memory into a quadword register, P0, P1, and S0/S1 addresses can be
stored as longwords in memory. (An Alpha instruction requires its address operands
to be in registers.) These three virtual address ranges are 32-bit addressable spaces.
Although they are part of the overall 64-bit Alpha address space, because of their
addressability they are known as 32-bit space.

Defining system space at the high end of address space rather than at
00000000 8000000016 had the advantage of maximizing compatibility of the initial
OpenVMS Alpha port. Moreover, it leaves the low end of address space free for
process-private use, and it enables the L3PTEs that map system space to be mapped
by a shared L2PT rather than by a process-private one. (On a system with an 8 KB
page, an L2PT maps 8 GB. Thus a single L2PT would map P0, P1, and system space if
system space were mapped at 00000000 8000000016.)

12

1.6 Virtual Address Space

Figure 1.6 Vir tua l Address Space

OpenVMS Alpha Version 7.0 added support for additional virtual address space ranges
to exploit Alpha's 64-bit addressing capability and to enable a process to map a very
large process-private address space:

13

Fundamentals and Overview

* A shared virtual address range called $2 space is adjacent to S0/S1 space and
extends toward lower addresses.

�9 A process-private virtual address range called P2 space is adjacent to P1 space and
extends toward higher addresses.

The $2 and P2 ranges can only be accessed with 64-bit addresses. Although the
entire 64-bit address space includes P0, P1, and S0/S1 space as well, the $2 and P2
ranges in particular are referred to as 64-bit space because of their distinctive 64-bit
addressability.

The size of $2 space is determined at boot time rather than being fixed; its size de-
pends on its contents, which include the PFN database and the global page table. The
base address of $2 space can therefore vary from boot to boot. MMG$GQ_SYSTEM_
VIRTUAL_BASE contains the $2 space base address.

Because the upper bound of P2 space is the lower bound of $2 space, constraining $2
space to be no larger than necessary leaves the maximum amount of virtual space for
application use in P2 space. The maximum size of P2 space is a function of the size
of $2 space. MMG$GQ_PROCESS_SPACE_LIMIT contains a value 1 higher than the
highest possible P2 space address.

Page table space, described further in Section 1.6.2, consists of both process-private
and shared memory. Its address range varies. Accessing it requires 64-bit addressing.

Figure 1.7 shows the relations among the levels of page table that map process-private
and system space. For simplicity, it omits page table address space.

1.6.2 Page Table Space
In early versions of OpenVMS Alpha, a process's process-private page tables were part
of a data structure called a process header (see Section 1.12.3) and double-mapped in
32-bit system space as well as in page table space. The maximum size of a process
header is computed during system initialization, and enough system space is reserved
for each resident process to have a maximum-sized process header. Mapping process-
private page tables in this way does not scale to support many processes with a 64-bit
address space. The maximum possible page table space for a single process is 8 GB
long, clearly dwarfing the combined S0/S1 space in which all processes' process-private
page tables had been double-mapped.

In OpenVMS Alpha Version 7.0, therefore, the process-private page tables were re-
moved from system space and mapped only in page table space. The shared page
tables were also mapped only in page table space. A consequence of removing this
double mapping is that the page tables are no longer accessible via 32-bit system space
addresses or from outside the owning process's context. Although most references to
process-private page tables are made by the memory management subsystem from the
context of that process, additional support was required to minimize the impact on
kernel mode code referring to page tables from outside process context or using 32-bit
addressing. Section 1.12.3 describes one aspect of this support, the system page table
window.

14

Figure 1.7

PTBR

[

1.6 Virtual Address Space

Page Table Hierarchy Mapping Process-Private and System
Space

L1 PT
L1PTE : I

1
L1PTE :!

P0 Space L3PT

L3PTE :.1 I

Process-PrivateL2PT [

P2 Space L3PT

Shared L2PT

L2FI'E -~

'~Ei i L2FI'E

S2 Space L3PT

S0/Sl Space L3PT

L3PTE
1 Space T

I L~PT~: I]

Code or Data Pages

15

Fundamentals and Overview

Page table space is unique in not only being mapped by page tables but also consisting
of them. The operating system creates page table space by selecting its virtual address
range and initializing the corresponding LIPTE to map the LIPT itself. During system
initialization the operating system selects a virtual address range for this space that
meets the following constraints:

�9 It is a virtual address range not otherwise in use.

It is as large as the number of bytes that are mapped by one LIPTE. On a system
with an 8 KB page size this address space is 2 0000000016 bytes, or 8 GB, long.

�9 It begins on a boundary that is a multiple of its size in bytes.

It is at an address range higher than process-private space and lower than system
space so that there is a single dividing line, within page table space, between the
process-private and shared address spaces.

The operating system initializes the LIPTE corresponding to the base of this virtual
address range with the PFN of the L1PT, valid bit set, kernel mode read and write
enabled, and all other bits zero. The operating system then records the base of the
corresponding virtual address in MMG$GQ_PT_BASE and also loads it into the
virtual page table base (VPTB) processor register. The VPTB contains the virtual (not
physical) address of the base of page table space.

Whenever a new process is created, the operating system allocates and initializes an
LIPT for it. The system then initializes the appropriate L1PTE in the process's L1PT
to map the LIPT and thereby the page table virtual address space. Because page table
virtual address space is mapped by the same L1PTE in each process's L1PT, page table
space occupies the same address range in each process's virtual address space.

Figure 1.8 shows the organization of page table space on a system with an 8 KB page.
In the figure, m is a function of the L1PTE selected for self-mapping and represents the
high-order part of the resulting virtual address; n is equivalent to m + 1. MMG$GQ_
SHARED_VA_PTES contains the address of the dividing line between process-private
and system space.

The self-mapped LIPT creates a page tablehierarchy that is shifted one level up from
its use in a normal page table. Because the self-mapped L1PT is pointed to by an
L1PTE, and an L1PTE maps an L2PT, the self-mapped L1PT becomes an L2PT as
well. Because the self-mapped L1PT is pointed to by an L2PTE, it is also an L3PT.
Mapped by an L2PTE in the shifted hierarchy, each normal L2PT becomes an L3PT,
and the normal L3PTs become the data pages, the target of virtual address translation.
The shifted hierarchy maps page table space.

Page table space contains a linear array of all possible L3PTEs for a given process
address space, including process-private, page table, and system address space. In this
address space, any L3PTE can be located by using the concatenated level 1, level 2,
and level 3 parts of a virtual address as a single linear index. The linear layout and
single index eliminate the necessity for the L1PTE and L2PTE accesses in many cases.

16

Figure 1.8 Page Table Space

MMG$GQ_PT_BASE

1.6 Virtual Address Space

m 0 0 0 0 0 0 0 0

�9 256 L3PTs for
P0 and P1 Space i

I m 00200000

MMG$GQ_L2_BASE " L3PTs for P2 Space
_ i

I -I
1_2PT for P0, P1, and Some P2 Space

MMG$GQ_LI_BASE L2PTs for P2 Space
_ I I -!

MMG$GQ_SHARED_VA_PTES L1PT
i _1

-I
L2PTs for S2 Space

L2PT for Some $2 and All S0/S1 Space

L3PTs for $2 Space

I T 256 L3PTs for
�9 S0/S1 Space "

n FFFFFFFI=

Seen as a l inear array of L3PTEs, on a system with an 8 KB page size, page table
space consists of 1 ,024 , 1,024 L3PTs. Figure 1.8 consists of L3PTs tha t map P0, P1,
and P2 space, followed by L3PTs tha t map page table space, and finally by L3PTs tha t
map $2 space and S0/S1 space. Seen as the s tandard page table hierarchy, page table
space includes 1 L1PT, 1,023 L2PTs, and 1 ,023 , 1,024 L3PTs.

Figure 1.9 shows the t ransformation of the page table hierarchy of Figure 1.7 into
page table space. Each page table in Figure 1.9 has two labels: one identifying its use
in mapping page table vir tual address space (PTVAS), and the other, in parentheses ,
identifying its normal use in mapping any other vir tual address. The page table
containing the L1PTE is not only the L1PT but is now also an L2PT (and an L3PT and
a data page). The page table vir tual address space L3PTs it maps are normally used
as L2PTs. The page table space data pages are normally used as L3PTs.

17

Fundamentals and Overview

Figure 1.9 Transforming the Page Table Hierarchy into Page Table Space

PTBR

LIPT as
PTVAS L2PT

o o . o O . ~ . ,.ol L2PTE~--'- i
LIpT'as I.-'" T T

..-Itself -'"l I I

" LIPTE ~" l 1 I~PTE :!
" se.-Map_T--"t"" .-"'" L1P'I'E -I" """

J.
L1FI'E --/.,'"'""

PTVAS L3PT
(Process-Private L2PT)

taP'rE ~]. ~P'rE

PTVAS L3PT
(Shared L2PT)

I"1 l
L3PTE : T L3PTE
L3PTE ~

PTVAS Data Pages

(P0 Space L3PT)

~-~ (L3PTE)t

r T
(P1 Space L3PT)

,q (L~PTE)I 1
Space L3iT)

I LPTE I
(S2 Space L3PT)

- 7 1

l l (SO/S1 Space L3PT)

I LPTE I
(SOIS1 Space L3PT)

I LPTE I

18

1.8 PTE Contents

1.7 Virtual Addressing on a NUMA System
In the case of an SMP system with multiple RADs, OpenVMS optionally replicates
system space code in physical memory local to each RAD. Having multiple copies
improves the performance of executive code and images installed resident. This
replication requires RAD-specific system PTEs: each RAD's system space PTEs must
map its own copy of the code and data.

To facilitate this mapping, the Alpha architecture has been enhanced to support
separate physical page table structures for system and process-private space. A new
processor register, the virtual address boundary (VIRBND) register, contains the lowest
virtual address in shared address space, the address of the self-mapping L1PTE.
Another new processor register, the system page table base register (SYSPTBR),
contains the PFN of the L1PT that maps system space addresses.

Each RAD has its own LIPT to map system space and its own L2PT and L3PTs to
map the RAD-specific copy of system code. An L1PTE mapping system space data
that is not RAD-specific is identical to its counterparts in all the other RADs' L1PTs.
Similarly, an L2PTE that maps system space data is identical to its counterparts in
all the other RADs. L2PTs and L3PTs that map system space data are not replicated.
Chapter 2 contains further details.

On a NUMA system, the basic steps of address translation, described in Section
1.5, include a comparison of the virtual address to be translated and the contents of
VIRBND:

* If the address is less than VIRBND, the address of the L1PT to be used is con-
tained in the PTBR.

�9 If the address is equal to or greater than VIRBND, the address of the L1PT to be
used is contained in the SYSPTBR.

System space replication is controlled at boot time through SYSGEN parameter RAD_
SUPPORT: when bit 0 (RIH$V_RAD_ENABLE) is set to enable general RAD support,
bit 2 (RIH$V_SYSTEM_REPL) must also be set to enable system space replication.

1.8 PTE Contents
Figure 1.10 shows the architectural definition of a valid PTE, which contains the
following fields:

Bit 0 in the PTE is set to indicate that the virtual page is valid and that the
processor can interpret bits <63:32> as a PFN.

Each of the fault-on bits, when set, causes the hardware or PALcode to trigger an
exception when the page is referenced in a particular way. Chapter 2 describes
how OpenVMS uses the fault-on bits.

19

Fundamentals and Overview

Figure 1.10 Valid Page Table Entry

63 32 31

Page Frame Number
(reserved for

executive)

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2

W W R R R R
E E E E E E I I I I

No TB miss MB required J J
Granularity hint

Address space match

1 0

i I

Va,i

Fault-on-read

- - Fault-on-write

--- Fault-on-execute

Bit 4, the address space match bit, is set in a PTE tha t maps a page shared at the
same address range in all processes' address spaces. System space address ranges
are mapped at the same place in all processes' address spaces and are shared. The
executive therefore sets the address space match bit in the L2PTEs and L3PTEs
tha t map system space. Section 1.11.1 explains the purpose of this bit.

The Alpha architecture includes support for a feature called a granular i ty hint
region. A granular i ty hint region is made up of a number of physically and vir-
tually contiguous pages that are t reated as a unit during address translat ion. A
nonzero value in bits <6:5>, the granular i ty hint bits, identifies the page as belong-
ing to a granular i ty hint region. Section 1.11.3 provides fur ther information about
granular i ty hint regions.

Bit 7, if set, indicates tha t no TB miss memory barr ier is required. This bit is
architecturally reserved for hardware and is currently used on EV6 platforms
when bit NO_MB is set in the MMG_CTLFLAGS SYSGEN parameter . Under
these circumstances, the operating system sets bit 7 in certain PTEs, for example,
PTEs for process-private pages accessed from a single-threaded process and PTEs
for pages permanent ly mapped into system space. Section 1.10.2 explains how
setting this bit in a PTE can improve performance.

Bits <15:8> of the PTE are the protection bits for the vir tual page. The Alpha
architecture provides two bits for each access mode: a read enable (raRE, where m
symbolizes access mode) and a write enable (mWE). The first, if set, enables read
references to the page from tha t mode. The other enables write references. If a
write enable bit is set but the corresponding read enable is not, the operation of
the processor is undefined. In other words, access to the page may be allowed or
may cause an access violation, depending on the part icular system.

The OpenVMS executive uses only a subset of the possible combinations of pro-
tections tha t the architecture provides. For compatibility with OpenVMS VAX
applications, it uses only those combinations tha t implement protections consistent
with the VAX architecture. These combinations obey the following rules:

If a given access mode has write access to a part icular page, then tha t access
mode also has read access to tha t page.

20

1.9 Translation Buffer

If a given access mode can read a particular page, then all more privileged
access modes can read the same page.

If a given access mode can write a part icular page, then all more privileged
access modes can write the same page.

The architecture reserves bits <31:16> for use by the executive, which mainta ins a
modify bit in one of them. (Because the architecturally defined Alpha PTE has no
modify bit, the operating system is responsible for recording whether a page has
been modified.)

OpenVMS Alpha use of the reserved bits is explained further in Chapters 2 and 4.

The maximum amount of space addressable on any processor, whether physical
memory or I/O space, is limited by the 32-bit PFN field. Thus, the maximum
architecturally defined physical address space is 2 32 pages. The architectural
maximum number of bytes of physical address space varies with page size, as
shown in Table 1.1. On processors with 8 KB pages, the architectural max imum is
32 TB.

1.9 Translation Buffer
A translation buffer (TB) is a CPU hardware component that caches the results of
recent successful virtual address translations of valid pages. Each TB entry has an
associated valid bit; when the bit is set, the entry represents a valid t ranslat ion tha t
the CPU can use. Each TB entry caches one translation: a VPN and, minimally,
its corresponding PFN, address space match, and protection bits. To simplify the
hardware and software, only information from valid PTEs is cached. An a t tempted
translation that results in a page fault is not cached; however, after the page is read in
from backing store, the faulting instruction will be reexecuted and then the valid PTE
will be cached.

Like a physical memory cache, a TB is a relatively small amount of memory tha t the
CPU can access more quickly than physical memory.

In the course of fetching instructions and the operands they reference, the CPU
accesses the TB to get mapping information for a part icular page containing an
instruction or an operand. For an instruction to be fetched and then executed, the TB
must contain mapping information for the code and all data pages referenced by tha t
instruction.

The CPU's access to the TB is purely associative and does not involve the page table
hierarchy or page table space. Thus, for the CPU to access a code or data page, the
TB must contain mapping information from L3PTEs. The contents of L1PTEs and
L2PTEs are not directly relevant to the CPU's operation.

Consider, however, an instruction that refers to an L2PT or L3PT as data using its
page table space address. For such an instruction to execute, the TB must contain
mapping information for the page of page table space. Although this situation is more
complex to describe, the concept is the same as accessing a code or data page not in

21

Fundamentals and Overview

page table space: the CPU needs mapping information in the TB from an L3PTE
tha t maps the code or data page in order to execute the instruction. In terms of the
s tandard page table hierarchy, tha t mapping information comes from an L1PTE or
L2PTE. In page table space terms, the mapping information comes from one of the
quadwords in the page table space, each of which is an L3PTE.

The size and organization of a TB are CPU-specific. Some CPUs have both an in-
struction s t ream TB (ITB) and a data s t ream TB (DTB). The ITB caches t rans la t ions
performed as the result of instruction fetches. The DTB caches t ranslat ions performed
as the result of loading or storing memory operands. The information in each type of
TB entry can be different. For example, on some CPUs, the ITB does not include the
fault-on bits. On such CPUs, therefore, no TB entry is made for a page whose fault-
on-execute bit is set. Instead, it is always the PALcode's responsibility to generate this
fault.

Because there are considerably fewer TB entries than vir tual pages, a one-to-one
mapping between vir tual pages and TB entries is impossible. When all the TB entr ies
are in use and another t ranslat ion must be cached, one of the entries must be replaced
with the new translation.

The architecture defines a processor register related to TB use called t ranslat ion
buffer check (TBCHK). The operating system can execute the instruction CALL_PAL

MFPR, specifying the TBCHK register and a vir tual address to determine whether the
t ranslat ion for a part icular virtual page is cached in the TB. The presence of a TB
entry for a page indicates the page has been referenced recently and may therefore not
be a good candidate to remove from a process working set. OpenVMS makes this check
as par t of its page replacement algorithm.

Section 1.10 describes the TB's role in address translation, and Section 1.11, addit ional
TB features.

1.10 Virtual Address Translation
The sections tha t follow build on the simplified description of address t ranslat ion in
Section 1.5.

1.10.1 Translation Using the Translation Buffer
Section 1.5 describes indexing the page table hierarchy with a vir tual address's level
fields to locate the L3PTE that maps tha t virtual address. In practice, performing
physical memory references is too slow to do every address t ranslat ion tha t way.
Instead, an Alpha CPU transla tes addresses through TB lookups.

If a vir tual address to be t rans la ted is represented in the TB (a hit), the CPU ha rdware
tests the cached PTE information to determine whether the reference should be
allowed:

22

1.10 Virtual Address Translation

1. The CPU tests the access mode and intended type of reference against the pro-
tection bits to determine whether the reference is legal. For this purpose, an
instruction fetch is considered a read.

If the protection on the page prohibits the access, the CPU generates an exception
called an access violation.

2. If the protection bits allow the access, the CPU checks the intended reference
against the fault-on bits. For this purpose, an instruction fetch is considered an
at tempted execution. If the corresponding fault-on bit is set, the CPU invalidates
the TB entry and generates a fault-on-read, fault-on-write, or fault-on-execute
exception, as appropriate. (The TB entry is invalidated on the presumption that
the exception service routine will alter the PTE to clear the fault-on bit so that
the instruction can reexecute without faulting. Having altered a valid PTE,
the exception service routine would otherwise have to request the invalidation
explicitly.)

3. If the access is allowed and no fault-on exception need be generated, the CPU
forms the physical address by concatenating the PFN in the TB entry with the
low-order bits of the virtual address, the byte offset within page.

If a virtual address to be translated is not present in the TB (a miss), the CPU
dispatches to the PALcode TB miss routine, described in the next section.

1.10.2 TB Miss PALcode Routine
After a TB miss, the CPU hardware extracts the concatenated level 1, level 2, and
level 3 fields of the address and multiplies them by 8, the size of a PTE, to form an
offset into the array of L3PTEs in the page table virtual address space. It adds the
offset to the contents of the vtxrB to form the page table space virtual address of the
L3PTE that maps the virtual address to be translated. It then dispatches to the TB
miss PALcode routine.

In general, the routine tries to access the L3PTE using its page table space virtual
address, but if that results in another TB miss, the page table hierarchy is used
instead. The routine then creates a TB entry for the original virtual address so that
the CPU can execute the instruction.

In detail, the TB miss PALcode routine proceeds as follows:

1. It tries to fetch the contents of the L3PTE using its page table space virtual
address.

2. If the fetch causes another TB miss, the PALcode routine continues with step 8.
Otherwise, it now has the L3PTE contents.

3. The routine tests the valid bit in the L3PTE contents, and if the bit is set, it
continues with step 5.

23

Fundamentals and Overview

4. If the valid bit is clear, the routine tests the intended reference to the target
virtual address and the mode from which it is being made against the protection
bits in the L3PTE. If the page is protected against the intended reference, the
routine generates an access violation. This test enables the legality of an intended
reference to an invalid page to be checked without having to fault the page into
memory.

If the protection permits the intended access, the routine generates a page fault
exception and exits.

5. For an L3PTE whose valid bit is set, the routine loads a TB entry with information
from the L3PTE. The CPU hardware will check the intended access against the
protection when the instruction is reexecuted.

6. The routine must then execute a memory barrier (MB) instruction or take some
other CPU-specific action to ensure ordering between its fetching the PTE and
other software's fetching data from the page. Without this ordering, it is possible
for stale data to be prefetched from the page under certain circumstances. Con-
sider, for example, a page accessed by multiple threads on an SMP system that
has just been read into memory by one CPU to satisfy a page fault. When the I/O
completes on that CPU, an MB is done, after which the operating system sets the
valid bit in the PTE. Without the ordering, a thread on another CPU could access
stale data using the newly valid PTE. See Chapter Synchronization Techniques for
information on read and write ordering.

The TB miss PALcode routine on EV6 tests bit 7 in the PTE, prior to taking action
to ensure ordering. If the bit is set, indicating that no ordering is necessary, the
routine performs no ordering action. By default the bit is clear and the routine
executes an MB.

Use of bit 7 is not implemented in earlier CPUs. Instead their TB miss PALcode
routines always perform a CPU-specific ordering action.

7. The routine exits.

8. If the fetch of the L3PTE caused a TB miss, a double TB miss PALcode routine
is entered to load the TB so that the fetch in step 1 can be completed. In other
words, the double TB miss routine must load the TB with mapping information
for the page table space page containing the L3PTE that maps the original virtual
address.

In terms of the shifted page table hierarchy, the entry corresponds to the L3PTE
that maps the page table page containing the target L3PTE (recall that in the
shifted page table hierarchy, the target L3PTE is a quadword in a data page). In
terms of the standard page table hierarchy, the entry to be loaded corresponds to
the L2PT that maps the target L3PTE.

The double TB miss routine takes the following steps:

a. It indexes the page table hierarchy using the level fields in the target L3PTE
address. The level 1 field is irrelevant because of the self-mapping in page
table space: that field simply selects an LIPTE that contains the PFN of the

24

1.10 Virtual Address Translation

L1PT itself. The routine gets the PFN of the LIPT more quickly from either
the PTBR register or the SYSPTBR register, depending on the faulted virtual
address and the contents of the VIRBND register.

It extracts the level 2 field from the target L3PTE address, multiplies by 8,
and adds the result to the PTBR contents to calculate the physical address of
the L2PTE. (Recall that the L1PT and the L2PT are one and the same for page
table space.) This L2PTE maps the L3PT page containing the target L3PTE.

b. The routine physically fetches the L2PTE and tests its valid bit. Physically
fetching the L2PTE without checking for residence is safe because the L1PT
must be resident.

If the L2PTE valid bit is clear, the routine also tests that the L2PTE
permits kernel mode read access. If it does not, the routine generates an
access violation. If it does, the routine generates a page fault exception.

If the L2PTE valid bit is set, the PFN in it identifies the page containing
the L3PT. The routine calculates the physical address of the L3PTE that
maps the page table space page containing the target L3PTE.

c. It physically fetches that L3PTE and makes the tests just described to deter-
mine whether the L3PTE is valid or whether a page fault or access violation
exception should be generated.

d. If the L3PTE valid bit is set, the PFN in it identifies the page table page
containing the target L3PTE. The routine loads a TB entry with information
from the L3PTE, thereby loading the target L2PTE.

The double TB miss routine exits and returns control to step 1, having loaded
the TB with the information (the target L2PTE) necessary for the fetch in step
1 to succeed. That TB entry enables any of the 1,024 L3PTEs in the same page
table space page to be fetched with one virtual memory reference.

When the PALcode TB miss routine exits, the CPU retries its translation of the
address that incurred the TB miss. This time the TB contains an entry representing
the virtual address. Using data from the entry, the CPU checks the intended reference
against the fault-on bits, calculates the target physical address, and executes the
instruction.

The Alpha Architecture Reference Manual contains further details of the architecturally
defined address translation mechanism.

1.10.3 Address Translation Exceptions
Before dispatching to any memory management exception service routine (access
violation, translation-not-valid, or fault-on), PALcode loads the following exception
parameter information into registers:

�9 R4--The exact virtual address whose attempted reference caused the exception

25

Fundamentals and Overview

�9 R5--The memory management flag quadword, whose possible values are

00000000 0000000016 for a faulting data read

m 00000000 0000000116 for a faulting instruction fetch

80000000 0000000016 for a faulting data write

The saved program counter (PC) field in the exception stack frame (see Chapter
Interrupts, Exceptions, and Machine Checks) contains the address of the instruct ion
the fetching of which failed or the address of the instruction tha t incurred the fault.

1,11 Translation Buffer Features
The following sections provide additional information on the t ranslat ion buffer.

1.11.1 Invalidating TB Entries
The contents of a TB entry that represents a valid t ransla t ion can remain valid unt i l
they are superseded by a later t ranslat ion of a different vir tual address tha t maps
to the same TB entry. The operating system is responsible, therefore, for flushing
no longer correct entries from the TB. For example, it must invalidate a TB ent ry
corresponding to a no longer valid PTE that maps a page being deleted or removed
from a process's working set.

Because all processes have the same virtual address range, all TB entries are process-
specific. In theory, the entire TB would have to be invalidated when process context
is swapped. However, in practice, a TB entry tha t represents a physical page shared
at the same virtual address in all processes need not be invalidated. The L3PTE
mapping such a page has the address space match bit set to indicate it maps a v i r tual
address whose t ranslat ion is the same in any process context. When process context
is swapped, the swap privileged context (SWPCTX) PALcode routine invalidates only
entries whose address space match bits are clear. Moreover, as described in Section
1.11.2, the use of address space numbers fur ther reduces the need for TB invalidations.

On a multiprocessor system, each CPU has its own TB. Although each CPU executes
a different process, it is possible for a part icular page to be represented in mult iple
processors' TBs, for example, a system space page shared by all processes. When the
operating system changes the L3PTE of a valid page whose address space match bit is
set, it is responsible for invalidating the page in all processors' TBs.

More precisely, each CPU executes a different kernel thread. On a multiprocessor
system, multiple CPUs could be executing multiple kernel threads of the same process.
Thus, even a process-private page accessed from different kernel threads could be in
multiple processors' TBs. When the operating system changes the L3PTE of a valid
page in a mul t i threaded process, it is responsible for invalidating the page in all
processors' TBs.

26

1.11 Translation Buffer Features

The operating system can invalidate one or more TB entries by executing the CALL_PAL

MTPR instruction with one of the following possible processor registers specified:

�9 TBIA--TB invalidate all

�9 TBISD--TB invalidate a single DTB entry

�9 TBISI--TB invalidate a single ITB entry

�9 TBIS--TB invalidate a single TB entry from both the ITB and DTB

�9 TBIAP--TB invalidate all process entries (those whose address space match bits
are clear)

A CPU implementation is allowed to flush more entries than the register specifies.

Chapter 5 describes OpenVMS use of these processor registers.

OpenVMS uses the fault-on-execute bit to minimize TB invalidations on a system with
both an ITB and a DTB. It sets the fault-on-execute bit in a page faulted as the result
of anything but an instruction fetch. Any later a t tempt to execute an instruction from
the page results in a fault-on-execute exception. The exception service routine clears
the fault-on-execute bit and returns. If no instruction is executed from the page, the
fault-on-execute bit remains set. If, when the page is removed from the working set,
the fault-on-execute bit is still set, there cannot be a TB entry for the page in the
ITB, and the executive needs to invalidate only the DTB. If, however, the fault-on-
execute bit is clear when the page is removed from the working set, the executive must
invalidate both the DTB and the ITB.

1.11.2 Address Space Numbers
The architecture includes support for a feature called address space number (ASN).
Each TB entry is tagged with a number identifying the address space whose address
translation the TB entry represents. (TB entries for pages whose address space match
bits are set are not tagged in this way.) The processor register ASN is par t of hardware
privileged context on a CPU that supports this feature. The current ASN is an implicit
input for all TB lookups, invalidation of single TB entries, and examination of the
TBCHK register.

On a CPU that supports ASNs, the SWPCTX PALcode routine does not invalidate
TB entries. Instead, the operating system ensures that unique ASNs are assigned
to different kernel threads and invalidates all process-private TB entries if it must
recycle ASNs. Use of ASNs can increase the usefulness of the TB as a cache by
making it possible for entries to remain cached across multiple executions of a kernel
thread on a particular CPU.

ASN is a CPU-specific designation; although each member of an SMP system uses
the same numeric range of ASNs, the members do not use the same set of ASNs: a
particular ASN on one CPU typically does not represent the same virtual address
space as tha t ASN on another CPU. Because ASNs are CPU-specific and because
multiple kernel threads of a process can execute concurrently on multiple CPUs, an
ASN is associated with each hardware privileged context block (HWPCB) ra ther than

2 7

Fundamentals and Overview

with each process or address space. Chapter Scheduling contains fur ther information
on the executive's handling of ASNs.

1.11.3 Granularity Hint Regions
An Alpha t ranslat ion buffer optionally supports a feature called a granular i ty hint,
by means of which one TB entry can represent a group of physically and virtually
contiguous pages with identical PTE characteristics (protection, validity, and fault-
on bits), known as a granular i ty hint region. Use of granular i ty hints improves
performance by increasing the number of apparent TB entries and thus reducing TB
misses. The number of pages in a group specified by one TB entry is specified in bits
<6:5> of the PTE of each page in the group. The bits are as follows:

�9 Bit value 00--1-page region

�9 Bit value 01--8-page region

�9 Bit value 10--64-page region

�9 Bit value 11--512-page region

If the TB holds an entry for any vir tual page in the group, the CPU uses tha t entry to
t ransla te any vir tual address in the entire group. The details of a par t icular TB, such
as how many entries support granular i ty hints, vary with CPU type.

A granular i ty hint region must be on a natural ly aligned boundary. For example,
a granular i ty hint region of 64 pages must be on a physical and vir tual 64-page
boundary. For the operating system to make use of granular i ty hints, it must reserve
blocks of physical memory and vir tual address space early in system initialization to
ensure that the address constraints can be met.

By default OpenVMS allocates one or more granular i ty hint regions in system space
for each of the following purposes:

�9 Base and executive images' nonpaged code

�9 Base and executive images' nonpaged data

�9 S0/S1 space executive data (see Section 1.6.1 for a description of the various
address spaces)

�9 Resident images' code

�9 Resident images' data

It creates additional granular i ty hint regions wherever possible, such as for the PFN
database tha t describes memory.

The appropriate granular i ty hint bits as well as the address space match bit are set in
each of the L3PTEs tha t map these regions.

Applications can also create granular i ty hint regions (see Chapter 3).

Chapters 2 and The Modular Executive provide more information on granular i ty hint
regions.

28

1.12 Virtual Memory

1.12 Virtual Memory
This section summarizes OpenVMS Alpha use of each of the virtual address spaces
and the data structures associated with those uses.

1.12.1 Use of Virtual Address Spaces
The various address spaces are used differently, created at different times, and have
different protections.

Virtual address space is created (and recreated) at different times during system
operation. System space is formed once and mapped in each process's address space.
Process-private address space is created for each process and mapped only when tha t
process is current.

S0/S1 space contains the executive, systemwide data structures, and any images
installed permanently resident by the system manager. The highest virtual page in
S0/S1 space is left invalid for error detection. For example, to differentiate 64-bit
calling standard descriptors from 32-bit descriptors, the former have a longword of
FFFFFFFF16, or -1 , at offset 4, the address field location in a 32-bit descriptor. If
a 64-bit descriptor is passed to a routine expecting a 32-bit descriptor, the routine's
a t tempt to access FFFFFFFF FFFFFFFF16 will cause an access violation ra ther than
incorrect results or corrupted data. Consult the OpenVMS Calling Standard for more
information on calling standard descriptors.

Actually, the highest 64 KB of S0/S1 space are left invalid regardless of page size. The
system page table window (see Section 1.12.3) occupies the part of S0/S1 space just
below the invalid 64 KB. Leaving the high 64 KB of S0/S1 space invalid aligns the
system page table window on a granulari ty hint boundary.

$2 space contains systemwide data structures accessed by 64-bit pointers, in particular,
the PFN database, global page table, and lock management lock ID and resource hash
tables.

SYSBOOT and other initialization routines load executive images into S0/S1 space,
form the dynamic memory pools, and initialize the other parts of system space. Chap-
ters Bootstrap Processing and Operating System Initialization and Shutdown describe
the formation and initialization of system space in detail. Even after initialization
is over, S0/S1 space can expand upward to its maximum size of 2 GB, and $2 space
can expand downward to the address in MMG$GQ_SYSTEM_VIRTUAL_BASE. The
architecture does not require that page tables be physically contiguous, and it permits
a sparse mapping. Expansion of system space during normal operation is described in
Chapter The Modular Executive. Individual PTEs can be altered to create, delete, or
modify particular pages of system space.

P1 space contains the process stacks and permanent process control information
maintained by the executive. It also contains address space used on the process's
behalf by inner access mode components such as Record Management Services, the file
system, and a command language interpreter.

29

Fundamentals and Overview

When a process is created, its P1 space is created in several stages, as described in
Chapters Process Creation and Process Dynamics. The global cell CTL$GL_CTLBASVA
contains the address that is the boundary between the permanent and temporary
portions of P1 space. The parts of P1 space below this address, namely, the user stack
and a possible replacement image I/O section, are recreated by the image activator
when it activates an executable image. P1 space can expand toward lower addresses
during image execution as a result of system services requested explicitly by the image
or implicitly on its behalf.

P0 space maps whatever images the user activates. By default an image is linked to a
base address of 1000016. 1000016, or 64 KB, is the size of the largest potential Alpha
page. This leaves VPN 0 invalid, regardless of page size, to help catch errors such as
references through uninitialized pointers.

The image activator creates address space for the image and every shareable image
that it references. As the image activator processes images, it creates process sections
for the image sections it encounters. (A process section can also be created dynamically
in response to a system service request.) A process section is a group of contiguous
virtual pages with the same characteristics, such as writability and shareability.

During image execution the image activator creates additional P0 address space as
necessary to activate images requested through the Run-Time Library procedure
LIB$FIND_IMAGE_SYMBOL.

P0 and P1 space can be dynamically allocated at run time through various system
services and Run-Time Library routines.

P2 space can contain user data accessed through 64-bit pointers. It can be dynamically
allocated at run time through various system services and Run-Time Library routines.
In addition, an image can contain demand zero data sections based in P2 space.
Although code can theoretically execute in P2 space, OpenVMS does not currently
support activating code sections there.

P0 space and the nonpermanent parts of P1 and P2 space are deleted at image run-
down and recreated with each new image run.

Chapter Image Activation and Exit describes the image activator and the memory
management system services it requests to map the sections of an image. Chapter 3
describes those system services as well as others an image can request to create, map,
and delete address space.

Appendix Size of System and P1 Virtual Address Spaces describes the layout of system
and P1 space in more detail.

Different areas of virtual address space have different protections. The protection
codes on most system space data pages prohibit access from all but kernel and exec-
utive modes. S0/S1 space pages occupied by executive code allow any access mode to
execute code in them. The protection on P2 space pages is specified indirectly to the
system service that creates it. It usually allows read and write access from user mode.
Certain parts of P1 space are protected against access from outer access modes. The

30

1.12 Virtual Memory

protection on P0 space pages is specified indirectly to the system service tha t creates
it. It usually allows read access from user mode and sometimes write access as well.

1.12.2 Virtual Memory Regions
From the first release of VAX/VMS, process-private vir tual address space was divided
into regions. Initially, regions corresponded one-for-one to the page tables defined by
the VAX architecture:

�9 The program region, corresponding to P0 space

�9 The control region, corresponding to P1 space

A significant aspect to this division is tha t a section in vir tual memory mus t be
contained within a single region; a section cannot cross a region boundary. Address
space within a region can be expanded contiguously to existing address space. In the
program region, address space expands upward to higher addresses; in the control
region, downward to lower addresses.

In OpenVMS Alpha Version 7.0, the concept of vir tual region was extended and formal-
ized. OpenVMS defines three process-permanent regions--program, control, and 64-bit
program (P2) regions--and enables an application to define additional regions within
them. A user-defined region must be within a single one of the process-permanent
regions and cannot overlap another user-defined region. A region is identified by its ID
and has at t r ibutes such as size, protection, and expansion direction.

Defining a region is a low-overhead operation tha t enables an application to reserve
contiguous vir tual address space for a given region's maximum needs without having
to create all the address space for that region at once. When the application requests
a system service to create or expand address space, it identifies the region. This gives
the application better control of a virtual address region, with no conflicting allocations
and deallocations by code such as run-t ime libraries running in the same process. With
the traditional 32-bit system services, the application can only implicitly identify the
program or control region; the newer 64-bit system services accept a region ID.

1.12.3 Virtual Address Space Data Structures
The major data s tructures tha t describe vir tual address space are

�9 Process section table (PST)

�9 Region descriptor entries (RDEs)

�9 Page tables

�9 System page table window

The executive builds a data s tructure called a process header (PHD) to record memory
management data about the process. The PHD contains the PST, which has one
process section table entry (PSTE) to describe each process section created in tha t
process's address space. A PSTE contains information necessary to resolve a page fault

31

Fundamentals and Overview

for a page in the section. The PTE for an invalid page tha t is par t of a process section
contains a pointer to the section's PSTE.

Chapter 2 contains more information on the PST.

An RDE describes a region. RDEs for the process-permanent regions are defined
within the PHD. RDEs for user-defined regions are allocated dynamically. Chapter 2
contains more information on RDEs, and Chapter 3 describes the services tha t create
and delete regions.

During system initialization, the shared page tables tha t map system space are
created. OpenVMS double-maps the L3PTs tha t map S0/S1 space so tha t those L3PTs
can be accessed using 32-bit pointers. These double-mapped page tables are referred
to as the system page table (SPT) window. The SPT window provides compatibility for
a device driver ported from OpenVMS VAX tha t allocates a system page table entry
and accesses it using a 32-bit pointer.

Chapter 2 describes page tables in fur ther detail.

1.13 Physical Memory
The OpenVMS Alpha system allocates some pages of physical memory permanently, for
example, the pages that contain the SPT or the system base images. More typically,
the system allocates a physical page of memory for a part icular need, such as a vir tual
page in a process's address space, and deallocates the page when it is no longer needed.

This section summarizes the OpenVMS Alpha management of physical memory and
its associated data structures.

1.13.1 Physical Memory Data Structures
OpenVMS Alpha Version 7.1 and later versions support noncontiguous physical mem-
ory. OpenVMS records what memory is present in several forms. A structure called
the SYI memory map lists the s tar t ing PFN and size of each memory segment. A user
can access this information through the $GETSYI system service, which re turns it in a
form called a physical memory map (PMM) structure.

A database called the PFN database records significant information about each physi-
cal page, such as whether it is currently in use and for what purpose.

Chapter 2 contains detailed descriptions of data s tructures related to physical memory.

The pages of physical memory allocated to a process are called its working set. A
structure within the PHD called the working set list represents just those pages in
a compact form. (In contrast, L3PTEs describing valid pages are scattered among
those describing invalid pages in process-private L3PTs.) The working set list is briefly
described in Chapter 2 and in more detail in Chapter 5.

32

1.13 Physical Memory

Physical pages available for allocation are linked together into a list called the free
page list. A page is allocated from the front of the list and generally deallocated to the
back of the list. At allocation a physical page is associated with a virtual page: the
PFN of the physical page is placed in the PTE corresponding to the virtual page, and
the contents of the virtual page are read into the physical page from mass storage.
The physical page retains its virtual contents until it is allocated for a new use. Even
when the physical page is removed from a process's working set and the valid bit
in the virtual page's PTE is cleared, the PTE still contains the physical page's PFN.
Until the physical page is reused, it is possible to resolve a fault for the virtual page
by removing the physical page from the free page list and setting the PTE valid bit
again. A page fault resolved in this manner without the need for mass storage I/O is
sometimes called a soft page fault.

When a physical page that has been modified is removed from a process's working
set, the page is inserted at the back of another list, called the modified page list. The
modified page list differs from the free page list in that a physical page on the modified
page list cannot be reused until its contents are writ ten to backing store, for example,
a page file or the section file to which the virtual page belongs. Once the swapper has
written the contents of the modified page to backing store, the swapper moves the page
to the back of the free page list. (Acting in this capacity, the swapper is referred to as
the modified page writer.)

While a physical page is on either the modified or free page list, a page fault for its
virtual page can be resolved as a soft page fault without I/O. Thus these lists act as
systemwide caches of recently used virtual pages.

When the system has no current process to run, the executive removes a page from
the free page list that has no more ties to a virtual page, for example, a page whose
contents have been deleted, and zeros it. Afterward, it inserts the page into a list of
similar pages called the zeroed page list, from which demand zero pages and certain
other types of virtual page are allocated. Zeroing an 8 KB or larger page when the
system would otherwise be idle reduces the overhead incurred to allocate a page of all
zeros. Chapter Scheduling provides further details.

1.13.2 Sharing Physical Memory
The page is the unit of sharing. Because system space addresses are mapped into each
process's address space, the physical memory occupied by system pages is shared by all
processes. However, on a NUMA system with replicated system space, only processes
in the same RAD share replicated system space code pages; all processes in all RADs
share system space data pages.

In addition, multiple processes' PTEs can map the same physical pages to enable the
processes to share physical memory. For example, multiple processes using the same
command language interpreter can share the read-only pages of the image. (However,
each process needs a private copy of its writable data pages.) Sharing physical pages
makes more efficient use of memory and reduces the number of page faults that
require mass storage I/O.

33

Fundamentals and Overview

Multiple processes share physical memory through a mechanism called a global
section. All the pages of a global section have the same attr ibutes. A global section
resembles a process section and is dealt with similarly by the page fault handler.

Several data s t ructures are associated with global sections:

�9 Global section table

�9 Global section descriptors

�9 Global page table

The global section table (GST) is analogous to a process section table and contains a
global section table entry (GSTE) for each global section. Like a PSTE, a GSTE has
information necessary to resolve a page fault for a page in the section.

A global section descriptor (GSD) identifies a par t icular global section by name and
associates the name with a GSTE. A GSD contains information used to determine
whether a part icular process is allowed to access the global section.

The global page table (GPT) contains global PTEs (GPTEs) tha t serve as templates for
the process PTEs tha t map global pages. Unlike other PTEs, GPTEs are not accessed
in the course of t rans la t ing virtual addresses; they are only accessed by memory
management routines.

When multiple processes are mapped to a global section, all processes can potentially
benefit from each other's page faults. When process A incurs a page fault for a global
page not in its working set, if the page is not valid it is read in from its backing store.
After the page fault completes, the GPTE is modified to show tha t the global page
is valid. If process B then incurs a page fault for tha t page, the page fault handler
copies the information from the GPTE to B's PTE and resolves the fault as a soft fault
without the need for I/O.

OpenVMS Alpha also supports memory-resident global sections. Once made valid, all
the pages of a memory-resident global section are permanent ly resident. Pe rmanen t ly
resident pages are not listed in the process's working set, and they do not require
backing store. Optionally, the page tables tha t map a global section can be shared as
well, saving memory and backing store.

Chapter 2 contains more details on these da ta s t ructures as well as those tha t describe
memory-resident sections. Chapter 3 describes the system services tha t create, map,
and delete global sections. Chapter 4 discusses global page faults.

In an SMP system, multiple CPUs share all of physical memory, executing one copy,
or instance, of OpenVMS. Processes running on the different CPUs can share physical
memory through global sections just as they can on a single CPU.

On a Galaxy platform, multiple instances of OpenVMS can execute cooperatively. On
current platforms, all instances have access to the same physical memory. Software
parti t ions the memory and assigns it to individual instances of the operating system.
Each instance thus has private physical memory for its copy of the operating system
and for the processes tha t run on it.

34

1.13 Physical Memory

The system manager can apportion some of the physical memory to be shared by all
the instances. Processes running on the multiple instances can map memory-resident
Galaxywide shared sections and share access to application data. Like memory-
resident sections, Galaxywide section pages are not listed in a process's working set
and do not require backing store. Optionally, the page tables tha t map a Galaxywide
section can be shared as well, saving memory and backing store.

1.13.3 Managing Physical Memory
Physical memory is used in the following ways:

�9 Permanently, by pages occupied by the system base images and the nonpageable
sections of executive images (may be replicated on a NUMA system)

�9 Permanently, by systemwide nonpageable data structures (for example, system
context stacks, the PFN database, and nonpaged pool)

�9 Permanently, by images other than executive images that have been installed
resident in system space, for example LIBOTS.EXE and LIBRTL.EXE

�9 Permanently, by pages within memory-resident global sections

�9 Permanently, by pages reserved for memory-resident global sections

�9 Dynamically, by pages on the free, modified, and zeroed page lists

�9 Dynamically, by pages in processes' working sets

�9 Dynamically, by pages in the system working set, namely, pageable sections of
executive images and pageable system data (although much of the executive is
nonpageable, some executive images have pageable image sections)

The executive apportions physical memory among these uses based on

�9 SYSGEN parameters that specify various minimum and maximum limits, such as
the sizes of the free and modified page lists and the systemwide maximum process
working set size

�9 Process quotas and limits tha t specify process-specific minimum and maximum
working set sizes

�9 Statistics and measurements that describe the current environment, such as the
size of the free page list and the rate at which a particular process has been page
faulting recently

Hewlett-Packard Company recommends that memory-resident sections be registered
in the Reserved Memory Registry so that AUTOGEN can tune the system to exclude
permanently resident pages from its SYSGEN parameter calculations. Chapter 2 has
more information on the Reserved Memory Registry.

35

Fundamentals and Overview

1.14 Software Memory Management Mechanisms
This section provides an overview of the mechanisms by which physical and virtual
memory are managed. OpenVMS Alpha memory management is based upon VAX
VMS memory management. Recent OpenVMS Alpha releases, however, have added
mechanisms designed to improve performance of applications using very large amounts
of memory.

VAX VMS memory management mechanisms are best introduced from a historical
perspective. Historically, the system has had two basic mechanisms to control its
allocation of physical memory to processes" paging and swapping. Several auxiliary
mechanisms, such as automatic working set limit adjustment and swapper tr imming,
supplement these fundamental ones.

1.14.1 Comparison of Paging and Swapping
The executive uses both paging and swapping to make efficient use of available
physical memory. The page fault handler executes in the context of the process tha t
incurs a page fault. It supports programs with virtual address spaces larger than
physical memory. The swapper enables a system to support more active processes
than can fit into physical memory at one time. The swapper's responsibilities are more
global and systemwide than those of the page fault handler. Table 1.2 compares the
page fault handler and the swapper in its role as working set swapper.

1.14.2 Original Design
An important goal of the initial release of the VAX/VMS operating system was to
provide an environment for a variety of applications, including real-time, batch, and
time-sharing, on a family of VAX processors with a wide range of performance and
capacity. The memory management subsystem was designed to adjust to the changing
demands of t ime-sharing loads and to meet the more predictable performance required
by real-time processes.

The major problems common to virtual memory systems that concerned the original
designers were the following:

�9 The negative effect that one heavily paging process has on others' performance

�9 The high cost of start ing a process tha t has to fault all its pages into memory

�9 The high I/O load imposed by paging

VAX/VMS support of virtual memory was designed to address these problems. With
some modifications, the original design remains intact in the OpenVMS Alpha operat-
ing system.

36

1.14 Software Memory Management Mechanisms

Table 1.2 Comparison of Paging and Swapping

Differences

Paging Swapping

The page fault handler moves pages in
and out of process working sets.

The page fault handler is an exception
service routine that executes in the
context of the process incurring the page
fault.

The unit of paging is the page, although
the page fault handler attempts to read
more than one page (a page cluster) with
a single disk read.

Page read requests for process pages are
queued to the driver according to the
base priority of the process incurring the
page fault. I

Paging supports images with very large
address spaces.

The swapper moves entire processes in and out of
physical memory.

The swapper is a separate process that is awak-
ened from hibernation periodically and as needed
by components that detect a need for swapper
action.

The unit of swapping is the process or, actually,
the pages of the process currently in its working
set.

Swapper I/O requests are queued according to
the value of the SYSGEN parameter SWP_PRIO.
Modified page write requests are queued according
to the SYSGEN parameter MPW PRIO. 1

Swapping supports a large number of concurrently
active processes.

Similarities

The page fault handler and swapper work from a common database. The most important
structures used for both paging and swapping are the process page tables, the working set list,
and the PFN database.

The page fault handler and swapper do conventional I/O, using a shortcut into the normal
Queue I/O Request ($QIO) system service mechanism.

Both attempt to maximize the number of blocks read or written with a given I/O request. The
page fault handler reads clusters of pages. The swapper attempts to inswap or outswap the
entire working set in one or a few I/O requests. The modified page writer writes clusters of
pages.

iT his consideration has meaning for few mass storage device drivers. The priority at which an I/O
request is queued to many drivers is largely irrelevant because they handle most requests immediately
by queuing them to the device, which is likely to reorder them based on considerations such as disk head
position.

The original VAX/VMS designers chose to have a process page agains t itself, for the
most part , r a the r t han against other processes. This minimizes the r isk of page

37

Fundamentals and Overview

fault th rash ing among processes and also enables more predictable performance for a
real-time process.

A process is created with a working set quota tha t limits its maximum use of physical
memory. The default and maximum sizes of each process's working set are specified at
process creation. As a process executes and faults pages, they are read into memory
from backing store and added to the process's working set. When the process's working
set grows to its maximum size, a subsequent page fault must be a replacement page
fault, requir ing that a page first be removed from the working set. In this manner , the
process pages against itself.

Unlike some virtual memory architectures, nei ther the VAX nor the Alpha archi tecture
includes a reference bit in each PTE by means of which less recently referenced pages
can be identified. Instead, the executive uses the order of working set list entr ies to
determine length of residence. The working set list, which describes the pages in the
process's working set, is a ring buffer with a pointer to the entry most recently added
to the working set. In general, the page most likely to be removed from the working
set is the one following the most recently added, tha t is, the oldest.

Although this working set replacement algorithm is simple to implement and has low
CPU overhead, its selection of a page to be removed is not optimal and may cause more
page faults. For those reasons, the original algorithm has been enhanced. Chapter 5
describes the current algorithm.

To minimize the performance impact of this algorithm, the executive caches pages
removed from a working set so tha t they can be faulted back into it without the need
for mass storage I/O; the executive inserts a page removed from a working set at the
tail of the free page list or the modified page list, depending on whether the page
had been modified. When a process needs a physical page of memory, for example, to
fault a nonresident page, the executive allocates the physical page at the head of the
free page list. Thus an unmodified page is cached for a length of t ime proportional
to the size of the free page list and the frequency with which pages are allocated
from it. When the modified page list grows beyond a certain size or the free page list
shrinks below a certain size, the executive writes modified pages to their backing store,
typically a page file, and then inserts them at the tail of the free page list. A modified
page is thus cached while it is on both the modified and free page lists.

As previously noted, the working set replacement algorithm typically removes the
oldest page in the working set ra ther than the least recently used. The page list
caches, however, make it possible to fault the page back in as the newest page in the
working set with little overhead. Because the working set list thereby tends to become
somewhat ordered by use, the page list caches considerably improve the performance
of the working set list replacement algorithm, bringing it close to tha t possible with
a least-recently-used algorithm but with less overhead. (Note tha t a heavily paging
process can affect others indirectly by causing the page lists to turn over more rapidly,
thus reducing their effectiveness as caches for the other processes.)

38

1.14 Software Memory Management Mechanisms

The executive provides services by which a process can exercise some control over its
working set list: it can lock and unlock selected pages into its working set and purge
its working set of pages in a specified address range. At image exit, the executive
deletes P0 space and the nonpermanent par ts of P1 and P2 space, thereby removing
these pages from the working set. Before a process executes a new image, the exec-
utive purges the working set of no longer needed pages, such as command language
interpreter code and data.

The VAX/VMS system was designed to manage memory by both paging and swapping.
Paging occurs in response to process page fault exceptions and results in moving
virtual pages into and out of physical memory. Swapping, which occurs in response
to events detected by the executive, results in moving whole working sets into and
out of physical memory. Swapping all of a process's working set minimizes the t ime
to reactivate the process and the number of I/O operations required to remove its
pages from memory and to read them back in. Swapping makes it possible for more
processes to coexist even when their working sets cannot all fit into memory at once.

Processes in certain long-lasting wait states are more likely to be outswapped than
computable processes. When an outswapped process becomes computable, it is even-
tually inswapped. Chapter 6 describes the relation between process scheduling states
and the swapper 's selection of inswap and outswap candidates. A privileged process
can prevent itself from being swapped.

To reduce the I/O overhead of paging, the executive reads and writes multiple pages at
a time in units called clusters. A page fault cluster size is defined for each pageable
entity, for example, an image section or a process page table. When a page is faulted,
the executive tries to read a cluster's worth of pages. It writes modified pages in
clusters also, to reduce I/O overhead. A SYSGEN paramete r specifies the number of
modified pages wri t ten to a page file at once. Within this larger cluster, the modified
page wri ter groups related vir tual pages so tha t they can be faulted back in as a
cluster. Chapter 4 describes both types of clustering.

Simply deferring the writ ing of modified pages reduces I/O overhead to some extent:
some pages are deleted before they are written; some pages are faulted in from the
modified page list and modified again before they are written.

In VAX/VMS Version 1, the following characteristics of the memory managemen t
subsystem could be controlled by SYSGEN parameters and process authorizat ion
limits:

�9 The minimum sizes of the free and modified page lists

�9 The maximum size the modified page list could grow before the system began to
write its pages to a page file

�9 The maximum number of concurrently resident processes

�9 For each process, a default and maximum working set size

39

Fundamentals and Overview

As processes were created, used free pages, and faulted pages, the free page list
would shrink and the modified page list would grow. If the free page list sh runk too
low, the swapper would write modified pages and, if necessary, outswap a process.
If the modified page list grew too large, the swapper would write modified pages.
Occasionally, the swapper would have to write the entire modified page list, or flush
it, in order to force specific pages out of memory. A process could alter its working set
size from its default to its maximum through a system service to use tha t many more
pages. Its working set size would be reset to its default at image exit.

1.14.3 Auxiliary Mechanisms
VAX/VMS Version 2 added a mechanism called automatic working set limit adjust-
ment, by which a process's working set size was altered in response to its page fault
rate. The working set of a heavily faulting process grew so as to reduce its page fault
rate. The working set of a process that incurred very few page faults was shrunk.
With expansion considered the more significant part of the mechanism, it was trig-
gered at quan tum end, based on the idea tha t a process tha t could not execute even for
a quantum did not need its working set limit adjusted. Chapter 5 describes automatic
working set limit adjustment.

VAX/VMS Version 2 also employed an enhancement to the VAX architecture tha t made
it possible to test whether a page had been referenced recently enough so tha t its PTE
was in the TB cache and thus not a candidate to be removed from the working set.
The Alpha architecture also supports this capability through the TBCHK processor
register.

In VAX/VMS Version 3, automatic working set limit adjustment was enhanced to
permit a heavily faulting process to grow beyond its normal maximum working set
if the free page list was sufficiently large. An alternative mechanism for reclaiming
physical pages was added, called swapper trimming. The basic idea was tha t when the
swapper process detected that the free page list had shrunk too low, it could reclaim
memory from the working sets of processes expanded in times of plenty. If more
memory was needed, it could either outswap a process or shrink a process working set
as low as the SYSGEN parameter SWPOUTPGCNT. This added considerable flexibility
to the original design; by altering this and several other parameters, a system manager
could tune the system to favor swapping over paging, or vice versa.

VAX/VMS Version 4 refined swapper trimming, correcting a failure to reclaim memory
from a low-priority compute-bound process whose working set had expanded when the
system was lightly loaded. As a result of the pixscan mechanism, described in Chapter
Scheduling, the refinement was not always effective.

In VAX VMS Version 5 there were several changes to the modified page writer, the
most significant being that it no longer flushed the modified page list to force specific
pages out of memory. Instead, it could be requested to search the list for selected pages
and write them, leaving the rest of the pages as cache. Swapper t r imming was fur ther
refined to reclaim memory more quickly from certain kinds of processes, in some
cases by outswapping rather than t r imming them. Chapters 5, 6, and Scheduling give
further details of these proactive memory reclamation mechanisms.

40

1.15 Further Information

Based on VAX VMS Version 5, the OpenVMS Alpha operating system uses these same
mechanisms.

1.14.4 Very Large Memory Support
As the cost of physical memory has dropped, systems have been configured with
more and more memory. OpenVMS Alpha has been extended to improve performance
for applications such as database applications that can benefit by using very large
amounts of memory (VLM).

In systems with limited physical memory, the mechanisms that limit per-process use
ensure fair and equal access to a scarce resource. On a memory-rich system, however,
intended to service VLM applications, such memory limits constrain performance of
the VLM applications.

Extensions in support of VLM include

�9 Support for a 64-bit virtual address space

�9 Memory-resident global sections for large caches, to decrease time to access data

�9 Shared page tables for memory-resident global sections, to reduce application
startup and shutdown time as well as memory needs

�9 Larger working set lists

�9 Reserved Memory Registry, to reserve and preallocate memory for memory-resident
global sections so that they may occupy granulari ty hint regions

Chapters 2, 3, and 5 provide additional information.

1.15 Further Information

Chapter 2, for a description of the data structures used by the memory manage-
ment subsystem

Chapter 3, for a description of the system services that an image requests to alter
a process's virtual address space

Chapter 4, for a discussion of the translation-not-valid fault (page fault) handler,
the exception service routine that responds to page faults and brings virtual pages
into memory

Chapter 5, for a description of the working set list and the mechanisms tha t alter,
shrink, and expand it

Chapter 6, for an examination of the swapper process, a system process tha t
manages physical memory by writing modified pages, shrinking process working
sets, and swapping processes

Chapter 7, for a description of the various pools from which virtual memory is
allocated for t ransient needs, such as creation of dynamic data structures

4 1

Fundamentals and Overview

Alpha Architecture Reference Manual, Part II A, Chapter 3, for information on
OpenVMS Alpha memory management support (http://www.digitalpressbooks.com/)

Digital Technical Journal 8, no. 2 (1996), "OpenVMS for 64-Bit Addressable
Virtual Memory" (http://www.research.compaq.com]wrl/DECarchives/DTJ/)

Digital Technical Journal 9, no. 4 (1997), "OpenVMS Alpha 64-Bit Very Large
Memory Design" (http://www.research.compaq.com/wrl/DECarchives/DTJ/)

OpenVMS Alpha Partitioning and Galaxy Guide
(http://www.openvms.compaq.com:8000/, order no. AA-REZQC-TE)

OpenVMS Alpha Guide to Upgrading Privileged-Code Applications
(http://www.openvms.compaq.com:8000/, order no. AA-QSBGD-TE)

OpenVMS Calling Standard (http://www.openvms.compaq.com:8000/, order no.
AA-QSBBD-TE)

42

Chapter 2
Memory Management Data Structures

�9 . . b u t t h e r e ' s one g r e a t a d v a n t a g e i n it , t h a t one ' s
m e m o r y w o r k s b o t h w a y s .

L e w i s C a r r o l l , Through the Looking Glass

This chapter describes data s t ructures used by the memory managemen t subsystem.
These include the following:

�9 Structures that describe process vir tual memory

�9 Page tables tha t help implement vir tual memory

�9 Structures tha t describe granular i ty hint regions

�9 Structures tha t describe the state of physical memory

�9 Structures tha t enable processes to share memory through global pages and
sections

�9 Structures tha t describe the state of page and swap files

The other memory management chapters discuss how the routines tha t compose the
memory management subsystem use these structures.

2.1 Process Data Structures
Much memory management information about a process is mainta ined in its process
header (PHD). The PHD includes a list of valid vir tual process pages (the working
set list), a description of the sections tha t make up the process-private address space
(process section table), and a description of the pe rmanen t regions in P0, P1, and P2
space.

The process control block (PCB) is the key da ta s t ructure tha t represents a process.
The kernel th read block (KTB) is the key data s t ructure tha t represents a kernel
thread. A process is created with an initial kernel thread, tha t is, an execution context,
and optionally can create additional kernel threads. The PCB and KTB contain some
information related to memory management .

43

Memory Management Data Structures

The PHD, PCB, and KTB are all allocated in system space. When a process is created,
a PCB and KTB are allocated for it from nonpaged pool. A region of system space
called the balance set slots contains space for the PHDs of the maximum number of
resident processes. When a process is created, a slot is reserved for its PHD. If the
process is outswapped, its PHD may be outswapped as well, but the PCB and KTB
remain resident.

Region descriptor entries (RDEs) describe reserved regions of process-private v i r tual
memory.

The PCB, KTB, RDEs, and PHD are described in the sections tha t follow.

A process's page tables describe its address space and the state of its vir tual pages.
Section 2.3 discusses page tables.

2.1.1 Process Control Block and Kernel Thread Block
A PCB is allocated for the life of the process and remains in nonpaged pool whe the r the
process is resident or outswapped. When a process is outswapped, the PCB remains
as the representat ion of the existence of tha t process and must contain all information
tha t the swapper requires to inswap the process.

Figure 2.1 shows the PCB and KTB fields related to memory management . The KTB
was designed to overlay the PCB. That is, each s t ructure is sparse, with some fields
designated KTB fields and others PCB fields. This overlay enables the initial thread 's
KTB to occupy the same memory as the PCB. In Figure 2.1 the KTB fields are shaded.

The longwords STS and STS2 are unusual in tha t they each represent fields in both
the PCB and the KTB. Some STS and STS2 bits are processwide and are par t of
PCB$L_STS and PCB$L_STS2. Others are kernel-thread-specific and are par t of
KTB$L_STS and KTB$L_STS2. All the s ta tus bits related to memory m a n a g e m e n t
are par t of the PCB status fields.

PCB$L_STS contains several s tatus bits relevant to memory management :

�9 PCB$V_RES, when set, means tha t the process (that is, its PHD and its working
set) is resident in memory.

�9 PCB$V_PSWAPM, when set, means tha t the process has disabled outswapping of
itself.

�9 PCB$V_PHDRES, when set, means tha t the process's PHD is resident. (When a
process is outswapped, its header may remain in memory.)

�9 PCB$V_DISAWS, when set, means tha t the process has disabled automatic work-
ing set limit adjustment.

PCB$L_STS2 contains two status bits related to memory management :

�9 PCB$V_PHDLOCK, when set, means tha t the process has one or more pages
locked in memory through one of the Lock Pages in Memory ($LCKPAG or $LCK-
PAG_64) system services. The PHD of such a process may not be outswapped.

4 4

F i g u r e 2.1

2.1 Process Data Structures

PCB and KTB (Shaded) Fields Related to Memory Management

PCB$V_FREDLOCK, when set, means that the process has created more than
16 additional kernel threads and its PHD has been expanded by more than one
FRED page to accommodate them. Because the additional floating-point register
and execution data structure (FRED) pages are accessed physically by code that
does not hold the MMG or SCHED spinlock, the PHD of such a process may not be
outswapped. Chapter Kernel Threads describes FRED structures.

PCB$L_APTCNT only has meaning for an outswapped process; the swapper records
in it the number of PHD and page table pages outswapped in the process's swap slot.
Page table pages that map buffer objects (see Section 2.6) are not outswapped and thus
not included in this count.

45

Memory Management Data Structures

PCB$L_GPGCNT contains the number of global pages in the process's working set,
and PCB$L PPGCNT, the number of process-private pages. The sum of these two
fields is the number of physically resident pages, the size of the process's working
set. Note tha t this sum does not include pages of memory-resident global sections,
PFN-mapped sections, and Galaxywide sections to which the process is mapped.

When a process is newly created, PCB$L_WSSWP is cleared to signal the swapper
that the process's initial pages come from the shell (see Chapter Process Creation).
The field has a different use later in the life of the process: when a process is
outswapped, PCB$L_WSSWP contains its mass storage location. If the process has
been outswapped in one extent, PCB$L_WSSWP contains a page file index (see Section
2.9.2) identifying the swap file and the start ing virtual block number. The high bit
of PCB$L_SWAPSIZE is set to indicate such a process; the low 31 bits of PCB$L_
SWAPSIZE contain its outswapped size in pages. If the process is outswapped in more
than one extent, PCB$L_WSSWP contains the address of a page and swap file map-
ping window block (PFLMAP), a data structure that lists the locations and sizes of the
extents. Chapter 6 describes the PFLMAP and process swapping.

PCB$L_PHD, and KTB$L_PHD contain the address of the PHD, if PCB$V_PHDRES
in PCB$L_STS is set.

On a nonuniform memory access (NUMA) platform with resource affinity domain
(RAD) support enabled (RIH$V_RAD_ENABLE set in SYSGEN parameter R A D
SUPPORT), PCB$L_HOME_RAD and KTB$L_HOME_RAD record the number of
the RAD associated with the process, the one to which most of its physical memory
belongs. The default va lue , -1 , means no RAD is associated with the process.

PCB$Q_BUFOBJ_LIST is the listhead for buffer object descriptors. Each buffer
object descriptor describes a buffer object, a piece of address space used for certain
kinds of I/O. Section 2.6 contains further information on buffer objects and their
descriptors. PCB$L_BUFOBJ_CNT is the number of buffer object and PFN-locked
pages left in memory aider the process has been outswapped. Chapter 6 contains
further information.

PCB$A_FREWSLE_CALLOUT, if nonzero, is the procedure value of a procedure to
be called when a page is selected for removal from the process's working set. The
procedure is called with arguments identifying the process and the page, and with the
contents of PCB$L_FREWSLE_PARAM. Chapter 5 gives further information.

PCB$Q_KEEP_IN_WS and PCB$Q_KEEP_IN_WS2 delimit the virtual address range
whose pages should not be removed from the working set list. Executive code uses
these fields to keep particular pages in the working set temporarily. Chapter 5 con-
tains further details.

KTB$L_SWP_SEQ and KTB$L_SWP_KT are used by the code that selects a process to
outswap (see Chapter 6).

46

2.1 Process Data Structures

2.1.2 Region Descriptor Entries
A virtual region is a reserved range of process-private virtual address space. (The
term virtual region is usually shortened to region.) Identified by its ID, a region
has attributes such as size, protection, owner access mode, permanence, expansion
direction, and whether address space within it can be mapped by shared page tables.

OpenVMS defines three process-permanent regions: the program region in P0 space,
the control region in P1 space, and the program region in P2 space. The P0 and P1
space regions can be accessed with 32-bit addresses sign-extended to 64 bits. The P2
space region can only be accessed with 64-bit addresses. An application can create
additional regions. It can also create address space within a region and later expand
within that region. If an application has not explicitly deleted regions it created, they
are typically deleted at image rundown. Permanent regions, however, which can be
created by inner access mode code, survive image rundown.

The three process-permanent regions occupy all the P0, P1, and P2 address space
unused by application-defined, or dynamic, regions. Thus they may shrink as dynamic
regions are created and expand as dynamic regions are deleted.

Each region is described by an RDE. RDEs are process-private data structures; each
process has its own set of RDEs. The RDEs for the process-permanent regions are
created within the PHD, as shown in Figure 2.2. The RDE for the program region, for
example, begins at offset PHD$Q_P0_RDE.

When a user requests the Create Virtual Region ($CREATE_REGION_64) system
service to create a new virtual region, a dynamic RDE for it is allocated from the P1
space variable-length pool. As shown in Figure 2.2, RDE$PS_VA_LIST_FLINK and
RDESPS_VA_LIST_BLINK link a dynamic RDE into a list of all dynamic RDEs within
the same part of process-private address space.

RDE$PS_VA_LIST_FLINK and RDE$PS_VA_LIST_BLINK in each of the three perma-
nent RDEs form the listheads for these lists of dynamic RDEs. The P0 and P2 space
lists are ordered in ascending order by start ing virtual address. The P1 space list is
ordered in descending order.

Figure 2.3 shows the layout of an RDE and the array of RDE listheads.

RDEW_SIZE, RDEB_TYPE, and RDE$B_SUBTYPE form the s tandard dynamic
data structure header.

A dynamic RDE is linked through RDE$L_TABLE_LINK into an RDE list correspond-
ing to the low-order four bits of its region ID. A 16-1ongword array of such listheads
begins at CTL$A_REGION_TABLE. This array speeds the lookup of a dynamic RDE
with a particular region ID. Figure 2.3 shows an example of a process that has created
two dynamic regions.

47

Memory Management Data Structures

Figure 2.2 Proces s -Permanent RDEs in the PHD

PHD$Q_P0_RDE

PHD$Q_PI_RDE

PHD$Q_P2_RDE

PHD

1

Program Region RDE

Control Region RDE

VA_LIST_FLINK = I.
VA_LIST_BLINK r I

64-Bit Program
Region RDE

DYNAMIC RDE
VA_LIST_FLINK

= VA_LIST_BLINK

DYNAMIC RDE
e- ~ VA_LIST_FLINK e-

= VA_LIST_BLINK

RDE$Q_REGION_ID contains the ID associated with the region. The process-
permanent regions have IDs VAC_P0, VAC_P1, and VA$C_P2. PHD$Q_NEXT_
REGION_ID contains the ID of the next dynamic region to be created. It is initialized
to 16 at process creation. When a new dynamic region is assigned the ID stored in
PHD$Q_NEXT_REGION_ID, the latter is incremented. The application identifies the
region by its ID in subsequent memory management system service requests.

RDE$L_FLAGS describes various characteristics of the region, for example, whether
it expands toward ascending or descending addresses, in which virtual address space
it exists, whether its page tables are shared, and whether to expand it automatically
after an access violation. A shared page table region can map only memory-resident or
Galaxywide global sections.

RDE$R_REGPROT contains a structure that identifies the access mode tha t created
the region and the access mode that owns it. Only the owner and more privileged
modes can delete a region. The low-order four bits specify the access mode of the
owner. The next four bits specify the least privileged mode allowed to create address
space.

RDE$PQ_START_VA contains the lowest possible address in the region. RDE$PS_
START_VA is the name for the low 32 bits of this field. RDE$Q_REGION_SIZE (alias
RDE$L_REGION_SIZE) contains the size of the region. RDE$PQ_FIRST_FREE_VA
(alias RDE$PS_FIRST_FREE_VA) contains the virtual address of the next available
page in the region.

48

2.1 Process Data Structures

Figure 2.3 Layout of an RDE

C T L $ A _ R E G I O N _ T A B L E

0
0

t 12 Iongwords ;

L " l

,'" VA LIST FLINK ooOO - _
o�9

,"~ VA LIST BLINK oOO - _
RDE ; - "

I TABLE_LINK= 0 I
FLAGS

T T, REGION_ID

",,, START_VA

"-, -- REGION_SIZE - -
RDE ",,

.L "'", -- FIRST_FREE_VA - -

TABLE_LINK = 0

RDE Rags

I I Blt Mean lng 0 Descending addresses I P0 space R E G I O N _ I D = 17 2 P1 space
3 Permanent

T T 4 5 Don't Expand clone on access violation

6 Shared page tables

I SUBTYPE I TYPE SIZE

TABLE_LINK

In previous versions PHD$L_FREPOVA contained the virtual address corresponding to
the first available unmapped page in P0 space. PHD$L_FREPOVA is now an alias for
the field RDE$PS_FIRST_FREE_VA in the program region RDE. Similarly, PHD$L_
FREP1VA is now an alias for RDE$PS_FIRST_FREE_VA in the control region RDE.

RDEs are accessed only from process context. Accesses to them are synchronized with
the inner mode semaphore (see Chapter Kernel Threads) and IPL 2 execution.

2.1.3 Process Header
Much important process-specific memory management information about a process is
contained in its PHD. Shown in Figure 2.4, a PHD consists of a fixed part and several
variable-length substructures:

�9 The working set list describes the subset of process-private pages that are cur-
rently valid. It also describes global pages that are valid in the process's page
tables.

�9 The process section table (PST) contains entries that associate the process sections
created in the process's address space with the corresponding sections in the files
where the pages originate.

49

Memory Management Data Structures

�9 The BAK array contains information about the pages of the PHD itself, which the
swapper uses when it outswaps the PHD.

�9 In the case of a process with multiple kernel threads, an inner mode semaphore
data structure synchronizes inner mode execution of the threads and an array
containing FREDs.

F i g u r e 2.4 D i s c r e t e P o r t i o n s of the P r o c e s s H e a d e r

Contains pointers to variable _ . r -
portions of the process header L
Describes pages in the

i

process header itself L

Describes valid page table - - - I
entries L
Describes pages in section F
files -L
Reserved for expansion of the p . - . .

working set list and process ~ 1
section table L
Synchronizes inner mode V

I

execution of multiple kernel -L
threads

Contains floating-point
register and execution data
for kernel threads

Fixed Portion of Process Header

Process Header BAK Array

Working Set List

Process Section Table

Empty Pages

Inner Mode Semaphore

FRED Pages

The maximum sizes of these substructures are fixed by SYSGEN parameters , but
their actual sizes vary in response to process needs. Pointers or indexes in the fixed
portion of the PHD locate each substructure. Although the substructures vary in
size, the balance set slots in which PHDs reside are of fixed size to simplify memory
management code, as described in Section 2.8.3. The size of a balance set slot in pages
is stored in global location SWP$GL_BSLOTSZ.

The dynamic growth area of the PHD must accommodate the growth of both the PST
and the working set list. Expansion in either of these can result in moving the PST to
higher addresses in the PHD. Section 2.1.3.3 describes PST/working set list expansion.

The PHD has several unusual characteristics tha t dist inguish it from other data
structures:

�9 The PHD is swappable.

When a process is outswapped, its PHD may be outswapped as well. When later
inswapped, the PHD is likely to be placed in a different balance set slot at a
different system space address. Section 2.8.1 describes balance set slots.

�9 The PHD is referenced using addresses in two different address regions.

50

2.1 Process Data Structures

The PHD is located in system space so tha t the swapper and other memory
management code can access it.

The PHD is also mapped in P1 space and accessed through global pointer
CTL$GL_PHD. This P1 window to the PHD is at a fixed vir tual address range
and remains the same across outswaps and inswaps. The exact location of the win-
dow varies with system version; its size varies with several SYSGEN parameters .
Chapter 6 contains more information on the double mapping of the PHD.

�9 The PHD is described by the process's working set list and is, in fact, locked into
the working set because none of the PHD is pageable. PHD pages are the only
pages with system virtual addresses tha t are par t of a process working set.

The swappabili ty of the PHD results in several different methods for synchronizing
access to fields within it. Because a PHD can be inswapped to a different balance set
slot than it last occupied, accesses to a PHD tha t use its system space address must
be synchronized against swapper interference. Accesses from a kernel th read to its
own PHD can be made with the SCHED spinlock held to block any rescheduling and
possible swapping of the process. Holding the MMG spinlock is another way to block
swapping.

Alternatively, executive code tha t runs in process context can access the PHD through
the P1 window and thus avoid the need for blocking possible movement of the PHD to
a different balance set slot.

The sections tha t follow describe the fixed par t of the PHD and its memory manage-
ment substructures.

2.1.3.1 Fixed Part of the PHD
In addition to the pointers and indexes tha t locate variable-length par ts of the PHD,
the fixed area contains cells for process accounting information and several process
quotas and limits. As described in Section 2.1.2, the fixed area of the PHD contains
the RDEs for the three process-permanent regions.

Figure 2.5 shows the detailed layout of the fixed par t of the PHD. Specific fields in
the PHD are described, where appropriate, in this and the other memory managemen t
chapters.

The hardware privileged context block (HWPCB), the area in which the privileged
register context of the initial kernel th read is saved, is in the fixed par t of the PHD.
This par t of the PHD also contains space to save the contents of the initial kernel
thread's floating-point registers when it is not current. In effect, it is a FRED page for
the initial kernel thread.

51

Memory Management Data Structures

Figure 2.5 Layout of Fixed Part of the Process Header (PHD)

m

(reserved)

PRIVMSK

TYPE SIZE

! WSLIST

; WSLOCK

' WSDYN

WSNEXT

WSLAST

WSEXTENT

WSQUOTA

DFWSCNT

CPULIM

PST_BASE_OFFSET

PST_LAST

PST_FREE

IOREFC

- - NEXT_REGION_ID - -

(reserved)

EMPTPG

DFPFC

PGTBPFC

ASTLM

PST_BASE_MAX / FREDOFF / IM_SEMAPHORE

WSSlZE

DIOCNT

BIOCNT

PHVINDEX

- - (r e s e r v e d) - -

- - LEFC

HWPCB / KSP

- - ESP

(continued)

-- SSP --

-- U S P --

-- PTBR --

-- ASN --

-- ASTSR_ASTEN --

-- FEN_DATFX --

- C O --

-- U N Q --

P A L _ R S V D (48 bytes)

FPR (256 bytes)

FLAGS2

EXTRACPU

-- ASNSEQ --

EXTDYNWS

PAGEFLTS

FOW_FLTS

FOR_FLTS

FOE_FLTS

CPUTIM

CPUMODE

AWSMODE

�9 (reserved) (8 bytes)

PTCNTLCK

PTCNTVAL

PTCNTACT

PTCNTMAX

(reserved) (20 bytes)

WSFLUID

WSAUTH

WSAUTHNEXT

(continued)

52

2.1 Process Data Structures

F i g u r e 2.5 (continued) Layout of F i x e d Part o f the P r o c e s s H e a d e r (PHD)

RESLSTH

AUTHPRI

- - AUTHPRIV --

- - IMAGPRIV - -

IMGCNT

PFLTRATE

PFLREF

TIMREF

PGFLTIO

�9 MIN_CLASS (20 bytes) "

I I
: MAX_CLASS (20 bytes) "
I I
: (reserved) (20 bytes) "

- - PAGEFILE_REFS --~

: (reserved) (8 bytes) :

FLAGS

PSCANCTX_SEQNUM

PSCANCTX_QUEUE

(continued)

L2PT_WSLX

L3PT_WSLX

L3PT_COUNT

L2PT_COUNT

BUFOBJ_WSLX

(reserved) (12 bytes)

PT_NO_DELETE1

PT_NODELETE2

FREE_PTE_COUNT

(Process-Permanent RDEs) (168 bytes)

- - IMAGE_AUTHPRIV - -

- - IMAGE_PERMPRIV - -

IMAGE_AUTHRIGHTS

IMAGE_RIGHTS

SUBSYSTEM_AUTHRIGHTS

SUBSYSTEM_RIGHTS

2.1.3.2 Working Set List
Another memory management data structure located in the PHD is the working set
list. The working set list describes the subset of process-private and global pages that
are currently valid. Pages described in a process's working set list are P0, P1, P2, page
table, or PHD pages. Its capacity to describe pages limits the number of physical pages
the process can occupy with the exception of memory-resident and Galaxywide global
section pages or PFN-mapped section pages, which are not included in the working set
list.

The page fault handler and swapper use the working set list to determine which
virtual page to discard (to mark invalid) when it is necessary to remove a physical
page from the process. The swapper also uses the working set list to determine which
virtual pages need to be written to the swap file when the process is outswapped.

Although the working set list currently remains in the PHD, it may move in a future
release. For that reason, a process's working set list is generally located through the
pointer CTL$GQ_WSL, which currently points to the working set list within the P1
space mapping of the PHD.

53

Memory Management Data Structures

Chapter 5 describes the organization and use of the working set list and the layout of
a working set list entry (WSLE).

2.1.3.3 Process Section Table
The process section table (PST) is also located in the PHD. It contains process section
table entries (PSTEs).

A PSTE describes the association between a contiguous portion of virtual address
space and a contiguous portion of a file. Both these portions are known as sections and
consist of pages with identical characteristics, for example, protection, owner access
mode, writability, and file location. Virtual address space is largely managed in units
of sections.

When an image is activated (see Chapter Image Activation and Exit), the file contain-
ing the image is opened and a process section is created for each process-private image
section. Although each image section is mapped separately, the image file is opened
only once, and the image's sections page using the same assigned channel and window
control block.

A process section is also created when

�9 A process opens a file and requests a system service that creates and maps a
process-private section, for example, the Create and Map Private Disk File Section
($CRMPSC_FILE_64) system service or the Create and Map Section ($CRMPSC)
system service, to map the file or some part of it into its address space

* A shareable image is activated that is not shared (that is, one that has not been
installed with the/SHARED qualifier through the Install utility)

�9 A shared image is activated that has a copy-on-reference section

PSTEs enable the memory management subsystem to keep track of process pages in
different sections, potentially in different files on different mass storage devices.

Figure 2.6 shows the location of the PST within the PHD. PHD$L_PST_BASE_
OFFSET contains the byte offset from the beginning of the PHD to the base of the
PST, its high-address end.

Each PSTE within the table is 40 (symbolically, SEC$C_LENGTH) bytes long and is
located through a longword index from the base of the PST. The first PSTE has an
index of 1, and the second an index of 2. Successive PSTEs are at lower addresses.
Since all references to a PSTE are relative to PHD$L_PST_BASE_OFFSET, the PST
can be moved within the PHD without requiring changes in process PTEs that contain
process section table indexes or in PSTEs.

The following operations compute the address of a particular PSTE:

1. Add the contents of PHD$L_PST_BASE_OFFSET to the address of the PHD. The
result is the address of the base of the PST.

2. Multiply the process section table index by the length of a PSTE.

54

2.1 Process Data Structures

F i g u r e 2.6 P r o c e s s Sec t ion Table

3. Subtract the result from the address of the base of the PST.

Allocating or deleting a PSTE is synchronized by executing at IPL 2 and holding the
inner mode semaphore (see Chapter Kernel Threads).

A PST is organized into a variable number of linked lists of PSTEs. Figure 2.6 shows a
typical PST with free and allocated PSTEs; the allocated PSTEs are shaded. The index
in PHD$L_PST_LAST is the largest index of any entry ever allocated and is thus a
"high-water mark."

All the process sections that page from the same section file using the same assigned
channel are linked together. The entries are linked together through the backward
and forward link index fields of each entry.

55

Memory Management Data Structures

When a section is deleted, the PSTE tha t mapped the section is placed on the list
of free entries so that it can be reused. The index PHD$L_PST_FREE points to the
most recent addition to the free list. If no entry has been deleted, PHD$L_PST_FREE
contains zero. The first longword in a PSTE on the free list contains the index to
the previous element on the free list. When a section is created, the PSTE allocation
routine first checks the free list. If there is no free PSTE, a new one is created from
the expansion region between the working set list and the PST, and PHD$L_PST_
LAST is modified.

The executive at tempts to keep the working set list and PST virtually adjacent, partly
to simplify and shorten manipulation of the PHD during outswap and inswap and
partly to minimize the chances of wasting physical memory for part ial pages of both.
When the executive must expand the working set list into the area already occupied by
the PST or vice versa, it allocates space from the existing empty page area (see Figure
2.6). Then it moves the entire PST into the allocated space at higher addresses and
stores the byte offset of the new base address in PHD$L_PST_BASE_OFFSET.

The longword at PHD$L_PST_BASE_MAX specifies the maximum size of the PST.
This longword points to the high-address end of the empty page area. It contains a
byte offset from the beginning of the PHD.

Room is reserved in the PHD for the maximum PST and working set list, specified by
the SYSGEN parameters PROCSECTCNT and WSMAX. It is possible for the PST to
grow larger than PROCSECTCNT specifies, at the expense of the working set list.

Figure 2.7 shows the layout of a section table entry. A section table entry in the
system header describes a global section and is called a global section table entry
(GSTE; see Section 2.7.2). Field names within a section table entry are defined by the
STARLET.MLB macro $SECDEF and begin with SEC$.

The first longword in the PSTE has two names: in a PSTE, SEC$L_CCB contains the
address of the channel control block (CCB) on which the section file has been opened;
in a GSTE, SEC$L_GSD contains the address of the global section descriptor (GSD) for
that section.

SEC$L_SECXFL and SEC$L_SECXBL contain indexes of the previous and next
section table entry. These link an entry in use into a list of others that page using the
same CCB. They also link all free entries together.

SEC$L_PFC contains the page fault cluster for this section, the number of section
pages that the page fault handler at tempts to read in together when a page fault
occurs.

SEC$L_WINDOW is the address of the window control block (WCB) that describes
the locations of the section file on a mass storage volume. The WCB points to the unit
control block (UCB) for the volume.

SEC$L_VBN specifies the starting virtual, or file-relative, block number (VBN) of the
section file at which the pages in this section begin.

SEC$L_FLAGS contains flag bits that describe the section.

56

2.1 Process Data Structures

Figure 2.7 Layout of a Process/Global Section Table Entry (PSTE/GSTE)

CCB / GSD

SECXFL

SECXBL

PFC

WINDOW

VBN

FLAGS

REFCNT

UNrl'_CNT

VPX

PSTE Flags
Blt Meaning
0 Global
1 Copy on reference
2 Demand zero
3 Writable
4 Shared memory-resident section
5 (resen,'ed)

6-7 Access mode for writing
8-9 Owner access mode
1o Creserved)
11 Shared read-only page tables
12 Shared page tables
13 Memory-resident section
14 Permanent
15 0 = Group global

1 = System global

SEC$L_REFCNT contains the number of PTEs tha t refer to the section.

SEC$L_UNIT_CNT contains the number of units in the section. A PFN-mapped
section is measured in units of physical pages. Any other type of section is measured
in 512-byte pagelets. A pagelet is the size of a mass storage block. Note tha t a section
file can occupy an arbitrary number of blocks or pagelets but a section must be created
as a number of pages. If the number of blocks in a section file is not an integral
multiple of blocks per page, the last page in the section is said to be partial.

For a process-private section, SEC$L_UNIT_CNT is initially related to SEC$L_
REFCNT. If the section has no partial pages, then SEC$L_UNIT_CNT is initial-
ized as an integral multiple of SEC$L_REFCNT. On a system with an 8 KB page size,
SEC$L_UNIT_CNT would be SEC$L_REFCNT multiplied by 16. If the section ends
with a page not completely backed up by section file blocks, SEC$L_UNIT_CNT is less
than an integral multiple of SEC$L_REFCNT. For a global section, SEC$L_REFCNT
is the number of PTEs that refer to the section's units from all the processes tha t have
mapped it. For either type of section, SEC$L_REFCNT is reduced when a process
deletes pages in its address space tha t map the section.

SEC$L_VPX contains the start ing virtual page number at which the section's pages
are mapped in the address space.

Most fields in a PSTE are initialized when the section is created and not modified
subsequently. SEC$L_REFCNT is modified as the process deletes section pages from
its address space. It is modified with the MMG spinlock held, since it can be accessed
from process context and also by I/O postprocessing code.

The following steps locate a virtual page in a section file through information in the
PSTE:

1. Subtract the section's start ing virtual page number from the virtual page number
of the faulting page to get the page offset into the section.

57

Memory Management Data Structures

2. Multiply the page offset by the number of pagelets per page.

3. Add the contents of SEC$L_VBN to the block offset computed in step 2 to get the
VBN of the vir tual page within the file.

In page fault ing from a section file or wri t ing a modified page back to a section
file, the executive checks whether the section file has a page's worth of blocks
beginning at tha t VBN. It compares the contents of SEC$L_UNIT_CNT, the
number of pagelets (and therefore blocks) in the section file, to the sum of t ha t
VBN and the number of blocks in a page. If the section does not have enough
blocks, the executive t ransfers only as many blocks as exist in the section file for
tha t vir tual page and zeros the rest of the page.

4. Use the mapping information in the WCB to t ransform the VBN to a logical block
number on a mass storage volume.

2.1.3.4 Process Header Page BAK Array
In OpenVMS versions prior to Version 7.0, information about each PHD page was
stored in four PHD page arrays.

Two of the arrays contained reference counts for each L3PT page. Sizing these ar rays
as a function of the size of the PHD, which previously contained the page tables, was
straightforward. Now tha t the page tables have been removed from the confines of the
PHD and their maximum lengths are not fixed, describing them with a fixed-size a r ray
is not viable. Instead, the reference counts have been moved to the PFN database (see
Sections 2.5.3.16 and 2.5.3.17).

Two of the arrays saved information about each PHD page in the working set, namely,
their working set list position and backing store. Information was recorded in these
two arrays at outswap of a process and was used during inswap. The working set list
information is reconstructed at inswap (see Chapter 6).

The BAK array is the only one left in the PHD. While a PHD is resident, the backing
store location of each of its pages is stored in the PFN database. When the PHD is
outswapped, both the physical pages and the balance set slot it occupied are released
for other uses. The PHD BAK array records the backing store information for each
PHD page, which would otherwise be lost. Note tha t it does not include information
about page table pages, which are no longer par t of the PHD. The backing store
location of a page table page in a page file is stored in the PTE tha t maps tha t page
table page.

The BAK array begins at offset PHD$Q_BAK_ARRAY, following the fixed par t of the
PHD. It has a quadword element for each of the maximum number of pages in the
PHD.

58

2.2 System Header and System PCB

2.1.3.5 Array of FREDs
A FRED consists of a HWPCB followed by space in which the floating-point registers
can be saved at context switch, plus several other fields.

The FRED for the initial kernel thread in a process is contained in the fixed part of
the PHD. The FREDs of subsequent kernel threads are contained in a part of the PHD
expanded when multithreading is initiated in a process. Each FRED occupies 512
bytes.

The PHD is expanded by one or more physically contiguous pages, depending on
the number of kernel threads requested. The maximum number of expansion pages
possible, stored in SWP$GW_FREDPTE, is based on the maximum number of kernel
threads supported, PCB$K_MAX_KT_COUNT. In Version 7.3, PCB$K_MAX_KT_
COUNT is 256.

PHD$L_FRED_OFF contains the longword offset from the beginning of the PHD to
the FRED array in the expansion pages. The array is indexed by the low part of the
kernel thread ID. The process's inner mode semaphore occupies the first 512-byte
block. Chapter Kernel Threads contains further information.

2.2 System Header and System PCB
The executive maintains two data structures for itself that are analogous to process
structures: the system PCB and system header. Using these, the page fault handler
can treat page faults of system pages almost identically to page faults for process
pages.

The system PCB, whose address is in MMG$AR_SYSPCB, contains a base priority
used for I/O requests for page faults of system space pages and global pages. It also
has a pointer to the system header, parallel to the PHD pointer in any process PCB.

The system header, whose address is in MMG$GL_SYSPHD, occupies part of the
granularity hint region for systemwide writable data (see Section 2.4). As shown in
Figure 2.8, the system header contains a working set list and a section table.

Its working set list governs page replacement for pageable system pages from pageable
sections in executive images and paged pool. (Although much of the executive is
nonpageable, some executive images contain pageable image sections.) These are all
described in the system working set list. Its size in pagelets is determined by the
SYSGEN parameter SYSMWCNT. Unlike other working set lists, the system working
set list does not expand or contract in response to system page fault rate. Once the
system working set fills, replacement paging is required. Changes to the system
working set list are synchronized by the MMG spinlock.

For consistency with the process working set list, the system working set list is also
located through a pointer, which is named MMG$GQ_SYSWSL.

The backing store for pageable writable executive data and page file global sections is
within page files.

59

Memory Management Data Structures

F i g u r e 2.8 System Header Containing the System Working Set List and the
Global Section Table

MMG$GQ_SYSWSL

Global (System)
Section Table

/

PST_BASE_OFFSET
PST_LAST
PST_FREE

System Working Set List
T Room for Expansion of GST

GSTE

~T

T

I TI

MMG$GL_SYSPHD
I - u- I

ovable boundary
etween system workingset

list and global section table

GSTX * SEC$C_LENGTH

The section table in the system header contains entries for sections in files that
contain pageable system pages and for global sections. The SYSGEN parameter
GBLSECTIONS specifies the number of entries in the section table.

Although the system header, like any other PHD, has space to describe three process-
permanent regions, it does not describe any process-private space. The P1 and P2
RDEs are unused. The P0 space RDE represents allocatable S0/S1 space, insofar
as PHD$PQ_P0_FIRST_FREE_VA contains the virtual address of the next available
unmapped page of S0/S1 space.

2.3 Page Tables
As shown in Figure 1.7, each process has its own page table hierarchy, beginning with
its own level 1 page table (L1PT). The hierarchy includes process-private level 2 page
tables (L2PTs) that map process-private level 3 page tables (L3PTs) and shared L2PTs
that map shared L3PTs. A process that maps a memory-resident global section with
shared page tables potentially has a process-private L2PT that maps both process-
private and shared L3PTs.

The sections that follow describe process-private and shared page tables, system space
page tables on a platform with replicated system space, and page table entry (PTE)
formats.

2.3.1 Process-Private Page Tables
When a process is created, the executive allocates and initializes a page of physical
memory for use as the process's LIPT. It zeros most of the LIPTEs and initializes
several valid LIPTEs:

�9 An LIPTE at offset 0 to map a process-private L2PT for P0 and P1 space and some
of P2 space

60

2.3 Page Tables

�9 An LIPTE to map the page table virtual address space

One or more LIPTEs, at the end of the LIPT, to map one or more shared L2PTs
for system space

A process's LIPT is permanently locked into the process's working set list and is
outswapped and inswapped with the process header.

The executive also creates a process-private L2PT for the process. This L2PT maps the
L3PTs that map the process's P0, P1, and some of P2 space. On a system with an 8 KB
page size, the first 256 L2PTEs are sufficient to map the entire 1 GB of P0 space and 1
GB of P1 space. This L2PT is nonpageable and permanently locked into the process's
working set list.

The executive also creates some P1 space for the process and an L3PT to map the P1
space. This L3PT is permanently locked into the process's working set because some of
the pages it maps are nonpageable.

As additional P0, P1, or P2 virtual address space is created for the process, the
executive creates additional pageable L3PTs as necessary. If the process creates P2
space that cannot be mapped by the L2PT that maps P0 and P1 space, the executive
creates additional pageable L2PTs as necessary.

2.3.2 System Space Page Tables
During system initialization, console software allocates and initializes page tables for
the primary bootstrap program, APB. The secondary bootstrap program, SYSBOOT,
uses the same page tables during its execution.

SYSBOOT is responsible for initializing system space. It sizes system space based on
the sum of the maximum size of S0/S1 space and the following:

�9 The value of the GBLPAGES SYSGEN parameter

�9 The value of the S2_SIZE SYSGEN parameter

�9 The value of the MAXBOBS2 SYSGEN parameter

�9 The size of the PFN database

�9 The size of the lock management database

SYSBOOT allocates a physical page to become the shared L2PT that maps S0/S1 space
and part of $2 space and zeros it. It initializes the last L1PTE in the current L1PT
with the L2PT's PFN. The ASM bit is set in the L1PTE.

SYSBOOT creates S0/S1 space beginning at location FFFFFFFF 8000000016 and going
toward higher addresses. It creates as much as is needed for executive images; data
structures such as the balance set slots and error log message buffers; and nonpaged
pool.

61

Memory Management Data Structures

Beginning at the lowest possible $2 space address and going toward higher addresses,
SYSBOOT creates as much $2 space as is needed for the PFN database and global
page table. Subsequent expansion of $2 space begins at the high end of $2 space and
goes toward lower addresses.

SYSBOOT also double-maps the current L1PT into $2 space, storing its address in
MMG$GQ_SYSTEM_L1PT. This will be the system context L1PT to be used when no
thread is executable.

SYSBOOT allocates physical pages of memory for the page tables that map the system
space it is creating and stores their PFNs in the appropriate PTEs. Because the Alpha
architecture supports a sparse address space and does not require page tables that
map virtually contiguous address regions to be physically contiguous, additional L3PTs
and L2PTs can be allocated after system initialization as additional S0/S1 or $2 system
space is needed.

Chapters Bootstrap Processing and Operating System Initialization and Shutdown
describe the bootstrap sequence in detail.

System space is shared by all processes. The ASM bit is set in all L1PTEs, L2PTEs,
and L3PTEs that map system space. When a new process is created, the shared PTEs
in the system LIPT are copied to the new process's L1PT so that the new process maps
the shared L2PTs that map S0/S1 and $2 space.

Figure 2.9 shows part of the page table hierarchies of two independent processes. Each
L1PT maps a process-private L2PT and process-private L3PTs for P0 and P1 space,
but each maps a shared L2PT and shared L3PTs for system space. For simplicity, the
figure omits the shared L2PT and L3PT that map the lower end of $2 space.

When a shared L3PT is allocated to accommodate system space expansion, a PTE in a
shared L2PT is updated to map the new L3PT. Because each process maps that shared
L2PT, each process automatically has access to the new system space.

When, however, a shared L2PT is allocated to accommodate $2 space expansion, a PTE
in each process-private L1PT must be updated to map the new L2PT. (S0/S1 expansion
cannot exceed a single L2PT.) The update is performed asynchronously, as needed:
when an access violation accessing system space occurs, the exception handler checks
whether the attempted access was to $2 space not currently mapped by the current
process's L1PT. If so and if the space is mapped by the system L1PT, the exception
handler updates the current process's L1PT and dismisses the exception.

The page tables that map system space are not pageable.

Section 2.3.4 summarizes how system space page tables differ on a system with
replicated system space.

62

ProcassA WPT .; . *I-- ;

i [pf
Process A Space process B Space 3!

PmCeSsB
w%=3paSe Process6 WPT

-4.: I n .

-

RocsssB
Pl space Page n 4 l r .- -.-

il 1 ; ProcessB LlPT

)(....................... . :.....
Indexed physical address pointer

SharedL2PT : Shared UPT Shared SOIS1 Page

Shared System Space

Memory Management Data Structures

2.3.3 S0/S1 Page Table Window
In OpenVMS versions prior to Version 7.0, the S0/S1 page table self-mapped itself to
be accessible through system space addresses. For example, memory management
routines altering S0/S1 PTEs in response to system space page faults accessed them
through system space virtual addresses. That self-mapping had the following disad-
vantage: because it self-mapped through an L2PTE, it wasted 6 MB of system space
on a system with an 8 KB page.

In OpenVMS Version 7.0 and later versions, the level 2 self-mapping has been elim-
inated. Memory management routines access S0/S1 and $2 page tables using 64-bit
page table space addresses.

OpenVMS, however, also double-maps into S0/S1 space the L3PTs that map S0/S1
space. The double mapping enables pre-Version 7.0 device drivers that referenced
S0/S1 space L3PTEs with 32-bit addresses to execute on Version 7.0 and later versions
without source changes.

The global cell MMG$GL_SPTBASE continues to contain the system virtual address
of the S0/S1 L3PTs. In releases of OpenVMS prior to Version 7.0, in which the only
system space was S0/S1 space, the L3PTs that mapped system space were called the
system page table (SPT), a name taken from the VAX architecture. Thus, the term
S P T window refers to the double-mapped S0/S1 L3PTs.

Figure 2.10 shows the SPT window. Basically, up to 256 S0/S1 L3PTEs are copies
of the L2PTEs that map S0/S1 space L3PTs. This enables the S0/S1 L3PTs to be
accessed using S0/S1 addresses. The shaded areas in the figure represent those two
sets of PTEs.

The left-hand part of the figure shows a process's L1PT. The last L1PTE maps 8 GB
that includes S0/S1 space. That L1PTE points to an L2PT whose last 256 L2PTEs
map S0/S1 space L3PTs. The figure shows the 768th and the last L2PTE each pointing
to an S0/S1 L3PT.

The next part of the figure shows those two L3PTs. The upper one, in this example
contained in PFN 1000, maps the lowest 1,024 pages of S0/S1 space. The lower one, in
this example, PFN 2012, maps the highest 1,024 pages of S0/S1 space.

The highest page of S0/S1 space is deliberately made not accessible (see Chapter 1). To
make the size of the no-access space consistent regardless of page size, 64 KB is made
inaccessible. The L3PTEs that map the rest of S0/S1 space are simply copied from the
L2PTEs that map S0/S1 space L3PTs.

As a consequence of this double mapping, any reference to an S0/S1 space L3PTE
made using its S0/S1 space address accesses the real L3PTE. Whenever memory
management code expands S0/S1 space such that a new L3PT is allocated, it copies
the contents of the newly used L2PTE to the corresponding L2PTE that maps the SPT
window.

64

Figure 2.10 SPT Window

2.3 Page Tables

2.3.4 Replicated System Space Page Tables
As discussed in Chapter 1, on a NUMA platform OpenVMS optionally replicates a part
of system space in physical memory local to each RAD. The system manager enables
replication by setting bits 0 and 2 (RIH$V_RAD ENABLE and RIH$V_SYSTEM_
REPL) in SYSGEN parameter RAD_SUPPORT.

During system initialization, after executive and resident images have been loaded,
OpenVMS calculates the number of physical pages needed for each RAD's replication
as the sum of the following:

�9 1 for an L1PT

�9 1 for an L2PT to map some of S0/S1 space

�9 SYSGEN parameter GH_EXEC_CODE, the size of the executive image code huge
page (see Section 2.4)

65

Memory Management Data Structures

SYSGEN parameter GH_RES_CODE, the size of the resident image code huge
page

�9 L3PTs to map the executive and resident image code huge pages

OpenVMS checks that there is enough physical memory to accommodate system repli-
cation for each RAD and allocates tha t many physically contiguous pages from memory
local to each RAD. It double-maps each RAD's L1PT into $2 space. It initializes each
RAD's L1PT by copying the base RAD's L1PT and replacing the self-map L1PTE and
the L1PTE tha t maps the two huge pages.

It initializes each RAD's L2PT by copying the base RAD's S0/S1 L2PT and replacing
the L2PTEs tha t map the two huge pages. It initializes the L3PTs tha t map the two
huge pages and copies the contents of the two code huge pages to the pages allocated
for this RAD's use. The PFN of the RAD's L1PT is stored in the SYSPTBR processor
register of each CPU in tha t RAD.

When OpenVMS creates a new process's L IPT on such a system, it initializes only
the L1PTEs tha t map process-private space. The RAD-specific L1PT will map system
space.

Figure 2.11 shows a slightly simplified version of the page table hierarchy of Figure 2.9
on a NUMA platform with replicated system space. Each process has its L1PT to map
process-private space. Each RAD has its own L1PT to map system space. Each L1PTE
that maps S0/S1 space points to a RAD-specific L2PT. Each valid RAD-specific L2PTE
points to a RAD-specific L3PT tha t maps RAD-specific copies of system space code.

Expansion of system space has to be reflected in each RAD's page tables. When a
shared L3PT is allocated to accommodate system space expansion, as described in
Section 2.3.2, each RAD's L2PT is updated to map the new L3PT. If a shared L2PT
is allocated to accommodate system space expansion, each RAD's L1PT is updated to
map the new L2PT.

2.3.5 PTE Formats
Chapter 1 describes the architecturally defined bits in a valid PTE: bits <15:0> and
bits <63:32>. This section describes the bits reserved to software and the various
formats possible for a PTE that describes an invalid page. Although the three fault-on
bits are architecturally defined, their use is operating-system-specific and is described
here.

Figure 2.12 shows the various forms of valid and invalid PTE tha t can appear in an
L3PT. The shaded bits in each PTE are ei ther reserved or bits whose contents are
irrelevant for tha t form of PTE.

The fault-on-write bit enables OpenVMS to mainta in a modify bit for a writable vir tual
page. The state of the modify bit determines on which transi t ion list a page is placed
when it is faulted out of the working set. OpenVMS sets the fault-on-write bit in the
L3PTE of a writable page when it is faulted with read intent. After the page becomes
valid, if any a t tempt is made to write it, the processor generates a fault-on-write

66

: SharedUPT

RAD 0 Ll PT RAD 1 LlPT
: 1-1

setf-map L l m

L l m T

a ,
Indexed physical address pointer

Memory Management Data Structures

exception. The exception service rout ine clears the fault-on-write bit and sets the
modify bit in the L3PTE, which is wi th in the bits reserved to software. In cont ras t ,
when a wri table page is faulted with wri te intent , the modify bit in its L3PTE is set
when the page fault I/O completes. Chapte r 4 describes in more detail how the modify
bit is mainta ined.

The executive uses fault-on-execute to restr ict access to t r ans la ted image pages t h a t
the Transla ted Image Env i ronment (TIE) facility identifies as no-execute. These are
image pages tha t contain VAX instructions. Any a t t emp t to execute ins t ruc t ions from
such a page resul ts in a fault-on-execute exception. The exception service rout ine
signals an access violation to the TIE's condition handler. Chap te r Translated Image
Environment describes the use of this mechan ism in more detail. Chap te r 1 describes
an addit ional use of the fault-on-execute bit.

Section 2.4.3 describes the use of the fault-on-read bit.

Bits <31:16> are reserved for software. The executive defines a number of them:

�9 Bit 16 in a valid PTE is the window bit. When set in an L3PTE, it means t h a t
the vi r tual page is a double mapping of a physical page. When the v i r tua l page
is deleted, the PFN database for the physical page should not be altered. This
bit is also set in an L2PTE for an L3PT tha t is a shared page table or t ha t m a p s
memory-res ident global sections or window pages. This bit is set in an L I P T E for
an L2PT tha t maps shared page tables.

�9 Bit 20 in a valid PTE is the modify bit. When set, it means tha t the v i r tua l page
has been modified and not yet been wr i t ten to backing store.

�9 Bits <29:28> specify how the page should be copied when a process's address space
is cloned dur ing a Portable Opera t ing Sys tem Interface (POSIX) fork operat ion.

�9 Bit 30, when set, specifies tha t no execution access to the page is permit ted. The
TIE facility identifies a VAX image page containing un t r ans l a t ed code as no-
execute. The executive sets the fault-on-execute bit as well so tha t an a t t e m p t e d
instruct ion fetch from such a page tr iggers an exception.

�9 Bit 31 always contains zero. In previous versions, it was used to d is t inguish PTE
contents from the sys tem space vir tual address of a PTE or GPTE, whose bit 31
was set.

Note tha t the valid bit, protection bits, owner access mode bits, copy character is t ic
bits, and bits 7 (no TB miss MB required) and 31 have the same mean ing in all forms
of PTE.

The owner access mode bits record the access mode tha t owns tha t page. The executive
allows a process to modify the characterist ics of a v i r tua l page or delete it from an
access mode equal to or more privileged than the page's owner access mode.

68

P a y IS

act lve
and val d

Demand
zero paw

lnval~d
global
page

Translt~on
page or
Gal-
page to be
z e r d

Page 16 In
page hie

Page IS in
sec110n file

61 32 31 30 29 28 27 2 1 2 0 1 9 1 8 1 7 1 6 1 5 1 4 1 3 1 2 1 1 1 0 9 B 7 6 5 4 3 2 1 0

Global Page Tabb Index 0
h

0 m
I 1 I 1 I

65 3231 702928 27 2 1 2 0 1 9 1 8 1 ' 1 6 1 5 1 4 1 3 1 2 1 1 1 0 9 B 7 6 5 4 3 7 1 d

I a tD

No TB mlss MB requtred -

63 56 55 3231 3 0 2 9 2 8 27 2 1 2 0 1 9 1 8 1 7 1 6 1 5 1 4 1 3 1 7 1 1 1 0 9 8 7 6 5 4 3 2 1 0

System Page File Index Page I% Page Nunber

Vald P
CI

Fault-on-read

63 3231 302928 27 2 1 2 0 1 9 1 8 1 7 1 6 1 5 1 4 1 0 1 2 1 t 1 0 9 5 7 6 5 4 3 2 1 0

I

NO-executeA Lcopy characterishc L ~ a l d
M TB m!ss MB requlrd

Page Frame N W

Granularity hmt - -Fault-on-wr~tr

0

AWress space match- -Fault-on-erwtrt

NO-executeJ L ~ o ~ y character~sl~c LType 1 L T ~ O
No TB mrss MI3 r q u l r e d

I

Fault-on-write

I

- Fault-on-execute

Memory Management Data Structures

A PTE for an invalid page contains either the location of the page or a pointer to
further information about the page. The page fault handler uses the type bits, bits 16
and 20, in the invalid PTE to distinguish the different forms of invalid PTE. These are
described in the sections that follow. Chapter 4 describes the processing of page faults
for various types of invalid PTE.

One form of invalid PTE not pictured in Figure 2.12 is a null page, a quadword of zero.
A PTE with a zero protection code disallows any access to the page by any mode. This
form of PTE describes an unmapped page of address space.

2.3.5.1 PTE Containing a Process Section Table Index
The PTE of each page in a process section contains the index of the PSTE describing
that section. The PSTE has information about the location of the file mapped into the
process address space and about the mapping between virtual file blocks and section
pages.

The PSTE also contains control bits that are copied to the PTE of each page in the
section:

�9 Bit PTE$V_CRF (bit 48) is set to indicate the page is copy-on-reference.

�9 Bit PTE$V_DZRO (bit 49) is set to indicate the page is demand zero.

�9 Bit PTE$V_WRT (bit 50) is set to indicate the page is writable.

In addition, bit PTE$V_PARTIAL_SECTION (bit 19) is set in a PTE that maps a page
not entirely backed by a section file. With page size not equal to disk block size, any
section file whose block count is not an integral multiple of pages has a last page with
this attribute.

Section 2.1.3.3 describes the PST organization and the layout of the PSTE.

2.3.5.2 PTE Containing a Page File Page Number
With OpenVMS Version 7.3, the system manager can install up to 254 page files. A
process can page in any or all of them and is no longer limited to four page files, as it
was in prior versions.

When a virtual page has been faulted out to a page file, its PTE contains the number
of the page within the page file and an eight-bit number start ing at bit PTE$V_PGFLX
(bits <63:56>) indicating the page file in which the page is located. The eight-bit
number is an index into the page-and-swap-file vector. Section 2.9.2 contains more
information on the page-and-swap-file vector, and Chapter 4 discusses how page file
backing store is assigned.

2.3.5.3 PTE Containing a Global Page Table Index
The PTE of an invalid process page mapped to a global page contains an index into
the global page table, where an associated global PTE contains the information used to
locate the page. Section 2.7.4 describes the contents of global PTEs.

70

2.3 Page Tables

2.3.5.4 PTE of a Page in Transition

When a physical page is removed from a process working set, it is not discarded but
put on the free or modified page list. The invalid virtual page, still associated with the
physical page, is called a transition page. Its PTE contains a PFN, but the valid bit
is clear. The two type bits are also clear. Retaining the connection to a physical page
enables the executive to fault the virtual page back into the working set with minimal
overhead until the physical page is reallocated for another use.

Another type of transition page is a virtual page in t ransi t between mass storage
and physical memory. When a process faults a page not in memory, the page fault
handler allocates a physical page and requests an I/O operation to read the virtual
page from its backing store. While the I/O request is in progress, the virtual page has
a transition PTE.

Yet another type of transition page is a page in a Galaxywide demand zero memory-
resident section that has not yet been zeroed. When a process first accesses a page
mapped by such an invalid L3PTE, it will trigger a page fault. The page fault excep-
tion service routine will recognize that this is an uninitialized page in a Galaxywide
global section and zero it.

A transition page is described further by its physical page's record in the PFN database
(see Section 2.5.3). In particular, the PFN$L_PAGE_STATE field in the PFN database
record (see Section 2.5.3.6) identifies the state of the page and distinguishes among the
different types of transition page.

2.3.5.5 PTE of a Demand Zero Page
One form of transition PTE has a zero in the PFN field. This zero indicates a special
form of page called a demand-allocate, zero-fill page, or demand zero page for short.
A demand zero page is a writable page of address space, created on demand instead
of being read in from backing store, and zeroed. When a page fault occurs for such a
page, the page fault handler first tries to allocate a physical page from the zeroed page
list. If the zeroed page list is empty, the page fault handler must allocate a physical
page from the free page list and fill the page with zeros. In either case, it then inserts
the PFN into the PTE, sets the valid and modify bits, and dismisses the exception.

2.3.5.6 System Space PTEs
For the most part, system space L3PTEs can take on the same formats as valid and
invalid process-private L3PTEs (see Figure 2.12). One exception is that an invalid
system space L3PTE cannot have the global page table index format.

Additionally, invalid system space L3PTEs that are unused and available for allocation
are linked together in a list. The L3PTEs themselves contain information: a pointer to
the next group of free L3PTEs and the number of free L3PTEs in this group. Section
2.3.6 shows the contents of L3PTEs used in this way.

The MMG spinlock synchronizes changes to system space PTEs.

71

Memory Management Data Structures

2.3.6 Available System Space
As previously described, SYSBOOT defines the initial size and layout of S0/S1 and $2
space, based on SYSGEN parameters and other values. Additional space is created
during normal system operation by creating additional L3PTEs, a page's worth at a
time. Code running in kernel mode calls various executive routines to allocate and
map pages of system space.

Unused and available L3PTEs tha t map system space are kept in ei ther of two lists:
the one for S0/S1 space or the one for $2 space. These lists facilitate a search for
available system space PTEs: examining list elements is quicker than scanning all
the PTEs for adjacent free ones. The elements on each list are groups of system space
L3PTEs. The listheads are LDR$GQ_FREE_SOSI_PT and LDR$GQ_FREE_S2_PT.
Each points to the first element on its list. Figure 2.13 shows the form of the list, with
free L3PTEs shaded.

Each element on the list represents a group of adjacent available system space
L3PTEs. The smallest group contains one L3PTE. A single available L3PTE con-
tains, in bits <63:19>, a pointer to the next group. Bit 16 is set to identify the L3PTE
as the sole member of its group.

Two L3PTEs are required to describe an element consisting of a group of two or more
adjacent available L3PTEs. The first L3PTE points to the next group of free L3PTEs;
the second contains the number of L3PTEs in this group.

The low-order 16 bits of each free L3PTE, which include protection code bits and the
valid bit, must be zero so that the L3PTE appears to map an invalid page with all
access prohibited.

A group of free L3PTEs is identified by its quadword index from the beginning of page
table space (that is, its PTE number). The quadword index of the next e lement is
stored in bits <63:19> of the L3PTE. For example, if LDR$GQ_FREE_SOSl_PT<63:19>
contains 10016, the first L3PTE available for allocation is at offset (10016 * 8) from the
base of page table space. The number of L3PTEs in tha t group is at offset (10016 * 8)
+ C16.

The MMG spinlock synchronizes allocation from and deallocation to the lists of avail-
able system space L3PTEs.

This list format is also used for free global page table entries (see Section 2.7.4).

Chapter The Modular Executive describes some of the routines by which system space
L3PTEs are allocated and deallocated.

72

F i g u r e 2.13

2.4 Granularity Hint Regions and Huge Pages

List of Available System Space L3PTEs

2.4 Granularity Hint Regions and Huge Pages
An Alpha translation buffer (TB) supports granulari ty hints, by which a single TB
entry can represent a group of pages that are virtually and physically contiguous.
The total number of TB entries and the number that can represent a group of pages
are CPU-dependent. Chapter 1 describes the role of the TB in address translation.
During system initialization, physical memory and system address space are reserved
for granulari ty hint regions.

73

Memory Management Data Structures

2.4.1 Uses of Granularity Hint Regions
During system initialization, OpenVMS creates one or more granularity hint regions
for several specific uses. The term huge page refers to the granularity hint region or
regions associated with each of these particular uses. A huge page consists of more
than one granularity hint region if it requires more physical pages than can be mapped
by one TB entry. Each huge page is described by a data structure called a loader huge
page descriptor (see Section 2.4.2).

By default OpenVMS creates the following huge pages:

�9 Base and executive images' nonpaged code (LDRHP$K_CODE)

�9 Base and executive images' nonpaged user-read data (LDRHP$K_DATA)

Nonpaged dynamically allocated executive-read S0/S1 space data (LDRHP$K_
EXEC_DATA)

�9 Code of images installed resident (LDRHP$K_RES_CODE)

�9 User-read data of images installed resident (LDRHP$K_RES_DATA)

One granularity hint region is always created for nonpaged dynamically allocated sys-
tem data. Whether other regions are created depends on various SYSGEN parameters,
including the flags in the SYSGEN parameter LOAD_SYS_IMAGES.

In conjunction with nonzero values for SYSGEN parameters GH_EXEC_CODE and
GH_EXEC_DATA, bit 1 of LOAD_SYS IMAGES, SGN$V_EXEC_SLICING, when set,
specifies that base and executive images should be loaded with their nonpaged code
sections in the code huge page and their data in a data huge page. The SYSGEN
parameter GH_EXEC_CODE specifies the size of the code huge page, and GH_EXEC_
DATA, the size of the data huge page. The default value for GH_EXEC_CODE is 512
pages, and for GH_EXEC_DATA, 128 pages. Chapter The Modular Executive describes
how executive images are loaded sliced into huge pages.

Regardless of whether executive image slicing is enabled, a data huge page is allocated.
Its size is based on various SYSGEN parameters, including the initial size of nonpaged
pool, the size of the error log allocation buffers, and the size of the system header. At
the end of system initialization, unused space in the executive image code and data
huge pages is released.

The code sections of images installed resident, such as LIBOTS and LIBRTL, are
loaded into another huge page, whose size is based on the SYSGEN parameter GH_
RES_CODE. Their data is stored in a huge page whose size is based on GH_RES_
DATA. The default value for GH_RES_CODE is 512 pages, and for GH_RES_DATA,
zero pages. Chapter Image Activation and Exit describes the use and installation of
resident images.

By default, at the end of system initialization, some or all unused pages in the resident
image huge page code region are released to the free page list. The contents of the
SYSGEN parameter GH_RSRVPGCNT specify how many pages are to be left available
for mapping images installed resident after system initialization is complete. By
default its value is zero.

74

2.4 Granularity Hint Regions and Huge Pages

On a NUMA platform with RAD support and system space replication enabled (bits
RIH$V_RAD_ENABLE and RIH$V_SYSTEM_REPL set in SYSGEN parameter RAD_
SUPPORT), each RAD has its own copy of the executive and resident image code huge
pages (see Section 2.3.4). When system space replication is enabled, unused space in
both the executive and resident image code sections is not released.

Provision is made for a huge page in $2 space containing nonpaged dynamically
allocated kernel data. In OpenVMS Versions 7.0 and 7.1, the PFN database occupied
this page. In Version 7.2 and later versions, the PFN database is mapped by its
own granularity hint regions (see Section 2.5.3), and this huge page is currently not
created.

In addition to these huge pages, one or more granularity hint regions are created to
map each memory-resident global section. Furthermore, granularity hint regions can
be created dynamically, for example, in response to a request to create a PFN-mapped
section (see Chapter 3). The number of granularity hint regions possible is limited
only by the availability of contiguous physical memory and virtual address space with
the required alignment.

2.4.2 Loader Huge Page Descriptors
Each huge page is described by a nonpaged pool data structure called a loader huge
page descriptor (LDRHP) and a bitmap that reflects allocations within the huge
page. Six LDRHPs are allocated together, followed by six bitmaps. The LDRHPs are
accessed by page type, defined symbolically by the $LDRHPDEF macro, for example,
LDRHP$K_EXEC_DATA.

Each bitmap begins on a quadword boundary. The starting address of these struc-
tures is recorded in LDR$GQ_HPDESC. Once SYSINIT begins to execute, access to
these structures and bitmaps is synchronized with the base image mutex, EXE$GQ_
BASIMGMTX. Figure 2.14 shows the layout of these structures.

LDRHP$Q_TYPE identifies the type of huge page: read-only image sections, writable
image sections, or systemwide writable data. LDRHP$Q_SIZE contains the size of the
huge page in bytes; LDRHP$Q_PA, its starting physical address; and LDRHP$Q_VA,
its starting virtual address.

LDRHP$Q_SLICE_SIZE contains the granularity of allocation, or slice, from this huge
page. On current Alpha implementations, the granularity of allocation is 8 KB for the
image code page and systemwide data page and 512 bytes for the image data page.
LDRHP$Q_FREE_SLICES contains the number of available slices left in the huge
page. LDRHP$Q_USED_SLICES contains the number of slices in the page that are in
use. LDRHP$Q_STARTUP_PAGES contains the number of pages in use in the huge
page at the end of system initialization. The contents of this field in the code huge
page are used to determine how many pages to release to the free list.

75

Memory Management Data Structures

Figure 2.14 Layout of Huge Page Data Structures

LDRHP for
fi~thuge page

LDRHP for
sixth huge page

Bitmapfor
fi~thuge page

Bitmapfor
sixth huge page

LDR$GQ_HPDESC

-~s~

~.
LDRHP$Q BITMAP SIZE "'-.

63 LDRHP

TYPE

SIZE

VA

PA

SLICE_SIZE

NEXT_SLICE

FREE_SLICES

USED_SLICES

STARTUP_PAGES

BITMAP_SlZE

- BITMAP_VA

FLAGS

The bitmap, whose starting virtual address is in LDRHP$Q_BITMAP_VA, has one bit
per slice. If the value of the bit is 1, the slice is available; if 0, it has been allocated.
The size in bytes of the bitmap is in LDRHP$Q_BITMAP_SIZE. LDRHP$Q_NEXT_
SLICE contains the number of the first free slice.

LDRHP$Q_FLAGS describes the state of the huge page. Currently, two flags are
defined:

�9 LDRHP$V_ALLOC_FAIL, when set, means an attempt to allocate a slice from this
huge page has failed.

�9 LDRHP$V_RELEASED, when set, means that unused pages of the huge page have
been released to the free list.

2.4.3 Contents of PTEs Mapping Granularity Hint Regions
As described in Chapter 1, a nonzero value in bits <6:5>, the granularity hint bits,
identifies the page as belonging to a granularity hint region and specifies the number
of pages in the region.

On a system without replicated system space, OpenVMS sets the fault-on-read bit
in each L3PTE that maps pages in the granularity hint regions containing executive
nonpaged code and resident image code sections. The executive sets all mRE bits for
these pages, which can contain mode of caller system service procedures and Run-
Time Library procedures. That the protection bits enable read access means that
any mode can fetch and execute instructions from these pages. The set fault-on-read
bit, however, causes data fetches to fault. This mechanism blocks undesirable read
accesses to these pages.

76

2.5 Data Structures Describing Physical Memory

On a system without replicated system space, after all resident images have been
installed, some or all of the unused physical pages tha t were par t of a code huge page
are released to the free page list. The system space L3PTEs tha t mapped them are
zeroed. Even though the L3PTE tha t mapped such a page is zeroed, the g ranu la r i ty
hint feature permits vir tual addresses to be t rans la ted to physical addresses wi th in the
released page. If the TB holds an entry for any valid vir tual page in the g ranu la r i ty
hint region, the CPU uses tha t entry to t rans la te any vir tual address in the ent i re
region, which still includes the released pages.

Once on the free page list, a released page can be reallocated for another use and
mapped by some other L3PTE. Such a page can have two mappings: one, for example,
in process-private space, and the other through the system space address range for the
granular i ty hint region. If one process tries to read from a page reallocated to another
process by using its former system vir tual address, the set fault-on-read bit causes
the CPU to generate a fault-on-read exception. If the system space L3PTE is null, the
exception service routine advances the program counter in the exception s tack f rame
past the instruction tha t incurred the exception and dismisses the exception. If the
L3PTE is not null, the service routine interprets the instruction, fetches the data , and
re turns it. Chapter 3 describes another method by which the contents of these pages
can be accessed as data.

If a process tries to execute from such a page, nei ther the protection nor fault-on bits
will block its execution of whatever random contents the page might have.

On a system with replicated system space, unused pages are not released.

2.5 Data Structures Describing Physical Memory
OpenVMS mainta ins information about physical memory in several kinds of da ta
structures:

�9 Configuration of the memory in physical memory maps and page frame number
(PFN) memory maps (see Section 2.5.1)

�9 Reservations of physical memory for specific application purposes in reserved
memory descriptors (see Section 2.5.2)

�9 Current state of each page of memory available to OpenVMS in the PFN da tabase
(see Section 2.5.3)

The actual amount of memory under OpenVMS control and available for it to allocate
is not necessarily all the physical memory present on the system. Several factors can
reduce this amount:

�9 Memory reserved by the console software for its code and data and for PALcode

�9 The PHYSICAL_MEMORY SYSGEN paramete r

�9 Memory reserved for application use through the Reserved Memory Registry (see
Section 2.5.2)

77

Memory Management Data Structures

The PHYSICAL_MEMORY SYSGEN parameter specifies the amount of available
memory that OpenVMS is allowed to use. Its default value, -1, allows OpenVMS to
use all available memory, apart from that reserved by the console and the Reserved
Memory Registry. A value lower than the actual amount of memory present enables
smaller memory configurations to be tested on a larger system and also enables custom
applications to use the upper part of memory.

In addition to the data structures previously listed, OpenVMS records some informa-
tion about physical memory in system global cells. Following are some global cells tha t
describe physical memory sizes and their contents:

MMG$GL_MEMSIZE--the actual number of physical pages in the system, includ-
ing console pages, any pages reserved through the PHYSICAL_MEMORY SYSGEN
parameter, and any pages reserved through the Reserved Memory Registry file

MMG$GL_PHYPGCNT--the number of physical pages in the system, excluding
any reserved through the PHYSICAL_MEMORY SYSGEN parameter

PFN$GL_PHYPGCNT--the number of fluid pages in the system, those not commit-
ted to permanent or long-term use

Section 2.5.3 describes several cells related to sizing the PFN database.

2.5.1 Memory Configuration
At boot time, the console determines the memory configuration and passes its findings
as well as its own memory use to OpenVMS through a data structure called the
hardware restart parameter block (HWRPB). Because physical memory is not required
to start at PFN 0 or be contiguous, the console describes each group of contiguous
pages by its starting page number and number of pages. Chapter Bootstrap Processing
provides more details on the HWRPB and associated structures.

Using the information provided by the console, SYSBOOT initializes system cells and
builds data structures to describe the memory accessible to this system:

On every system, it describes memory in an array of physical memory map (PMM)
descriptors.

On a system with noncontiguous physical memory or a Galaxy node, SYSBOOT
describes memory in an array of PFN memory map (PMAP) structures.

On every system, memory is described by an array of PMMs. Each PMM describes
a contiguous set of pages with a common owner. PMM contents are returned to
application code in response to a Get System Information ($GETSYI) request that
specifies the item code SYI$_PFN_MEMORY_MAP. Through this information, an
application can determine, for example, which pages, if any, have been excluded from
OpenVMS use through the PHYSICAL_MEMORY SYSGEN parameter.

78

2.5 Data Structures Describing Physical Memory

Figure 2.15 $GETSYI Physical Memory Map (PMM) Array

MMG$GL_SYI_PFN_MEMORY_MAP

PMM l'.'.' START_PFN

PFN_COUNT

PMM Flags
Bit Meaning
0 Allocated to console
1 Allocated to OpenVMS
2 Available for other uses
3 Galaxy base memory
4 Galaxy shared memory

m

PMM

PMM

PMM

n PMMs

Figure 2.15 shows the PMM array.

MMG$GL_SYI_PFN MEMORY_MAP points to the longword that immediately pre-
cedes the nonpaged pool PMM array. The longword contains the number of PMMs
that follow. PMM$L_START_PFN and PMM$L_PFN_COUNT have the same meaning
as the corresponding PMAP fields. PMM$W_LENGTH contains 12, the size of each
PMM, and PMM$W_FLAGS describes the state of the memory.

On a Galaxy instance or a system with noncontiguous physical memory, a PMAP
array is allocated from nonpaged pool. MMG$GL_PFN MEMORY_MAP contains the
number of valid PMAPs in the array. The longword following it contains the address
of the array. MMG$GL_MAX_MEM_FRAGMENTS contains the maximum number
of PMAPs in the array. The valid PMAPs are at the beginning of the array; the
invalid PMAPs are zeroed. On a non-Galaxy system with contiguous physical memory,
MMG$GL_PFN_MEMORY_MAP contains zero.

The macro VALID_PFN tests whether a given PFN represents a page of memory or the
number of a nonexistent page. The macro generates code that scans the PMAP array
to determine whether the page exists. The macro returns TRUE if the page has a PFN
database entry.

Figure 2.16 shows the PMAP array. PMAP$L_START_PFN contains the number of the
first PFN in the group, and PMAP$L_PFN_COUNT, the number of PFNs.

On a Galaxy system, PMAPs are also used to describe I/O space that is private to
this instance. MMG$GL IO_MEMORY_MAP and the following longword describe the
array of I/O PMAPs.

79

Memory Management Data Structures

F i g u r e 2.16 P F N Memory Map (PMAP) A r r a y

MMG$GL_PFN_MEMORY_MAP

- I

PMAP
START_PFN

PFN_COUNT

PMAP

PMAP

PMAP

i PMAP i_
-- n PMAPs

2.5.2 Reserved Memory Descriptors
A system manager or similarly privileged user runs the System Manage-
ment (SYSMAN) utility to build a Reserved Memory Registry file, called
SYS$SYSTEM:VMS$RESERVED_MEMORY.DATA. The file describes physical mem-
ory to be reserved for use by demand zero memory-resident global sections and by
privileged kernel mode applications.

Memory reserved through entries in this file is not included in AUTOGEN's calculation
of fluid page count, ensuring a better-tuned system. AUTOGEN uses fluid page count
to size the system page file, maximum number of processes, and maximum working
set size. Additionally, the Reserved Memory Registry enables a memory-resident
global section to be created from one or more chunks of contiguous aligned memory
suitable for granularity hints. This kind of allocation is possible only during system
initialization, while large chunks of contiguous physical pages are still unused. Note
that physical contiguity is not guaranteed: bad pages of memory or gaps in physical
memory, for example, may result in a reservation that occupies several noncontiguous
segments of physical memory.

Each entry in the file is identified by a name and, optionally, a UIC group number.
Memory for an entry can be preallocated at system initialization or allocated later
when the section is actually created. Preallocated memory can be zeroed on demand
when each page is first accessed or through a combination of the idle loop and code
that creates memory-resident global sections. An entry describing a memory-resident
global section can specify that the section is mapped by shared page tables, in which
case memory is also reserved for the page tables.

An entry can request allocation in the memory of a particular RAD; a reservation can
be extended into multiple RADs.

During system initialization, OpenVMS reads the Reserved Memory Registry file and
attempts to act on each record in it. First, it builds one or more reserved memory
descriptors (RMDs) for each record. A record that describes a section mapped by
shared page tables requires a second RMD for the page table memory. A reservation

80

2.5 Data Structures Describing Physical Memory

that requested allocation in multiple, specific RADs has a record and thus an RMD for
each requested RAD.

OpenVMS then attempts to process the RMDs. For each RMD, it reduces the system's
fluid page count, PFN$GL_PHYPGCNT, by the size of the reservation. It checks
whether the sum of the fluid page count and the minimum number of modified and
free pages is large enough to accommodate a maximum-size outswapped process. If
not, it sets RMD$V_RESERVE_ERROR in RMD$L_FLAGS and writes the value SS$_
INSFLPGS in RMD$L_ERROR_STATUS. It outputs the RMD name and size with the
error message

%RESMEMINIT-I-ALLOCFAIL, Fluid page check failed on reservation

It restores the previous value of PFN$GL_PHYPGCNT. Then it continues with the
next RMD because there may be sufficient memory on the system to satisfy other,
smaller requests.

If an RMD describes a section to be preallocated, OpenVMS tries to allocate contiguous
aligned memory of the specified size from the RAD requested, if any. If that RAD has
no memory, OpenVMS tries to allocate memory without regard to RAD.

�9 If it could allocate no contiguous pages anywhere, it sets RMD$V_RESERVE_
ERROR in RMD$L FLAGS and writes the value SS$_INSFRPGS in RMD$L_
ERROR_STATUS. It outputs the RMD name and size with the error message

%RESMEMINIT-I-ALLOCFAIL, Failed to allocate PFNs for reservation

and restores the previous value of PFN$GL_PHYPGCNT.

If it was partially successful, it records the number of pages allocated in RMD$L_
PFN_COUNT and creates a new RMD and inserts it in the list aider the current
one. The new RMD is identical to the current one except that the number of pages
already allocated is subtracted from the new RMD$L_PFN_COUNT.

While processing the new RMD, OpenVMS may create another new RMD if it is
unable to allocate enough contiguous physical memory.

If it was partially or completely successful, it initializes the PFN database record
for each page, setting its type to PFN$C_UNKNOWN.

In either case, it continues with the next RMD.

Figure 2.17 shows the layout of an RMD. As shown in the figure, RMDs are linked
together into a list whose head is MMG$GL_RES_MEM_FLINK and MMG$GL_
RES_MEM_BLINK. The list is ordered by UIC group and name. Access to the list is
synchronized with the MMG spinlock. RMDs are allocated from nonpaged pool.

RMD$PS_FLINK and RMD$PS_BLINK link the RMD into the list. RMD$W_SIZE,
RMD$B_TYPE, and RMD$B_SUBTYPE form the standard dynamic data structure
header.

81

Memory Management Data Structures

RMD$L_FLAGS records choices made when the Reserved Memory Registry entry was
created, for example, whether the reservation is for a group or system global section.
It also describes the state of the entry, for example, whether pages have been zeroed
and whether they are in use.

In the case of an allocated reservation, RMD$L_FIRST_PFN contains the s tar t ing
PFN.

RMD$L_PFN_COUNT contains the number of PFNs in this reservation, and RMD$L_
IN_USE_COUNT, the number currently in use.

If RMD$V_RESERVE_ERROR is set, RMD$L_ERROR_STATUS records the error
status resulting from the last at tempt to allocate pages for this reservation.

During the zeroing of a preallocated section, RMD$L_ZERO_PFN records the number
of the next page to be zeroed.

RMD$T_NAME contains an ASCII counted string identifying the reserved memory.
RMD$L_GROUP contains the UIC group code.

RMD$L_RAD contains the number of the RAD requested for allocation.

For further information on the Reserved Memory Registry, consult the Open VMS
System Manager's Manual, Volume 1: Essentials.

2.5.3 PFN Database
The PFN database contains information about each page of physical memory. It
includes pages reserved for use by the console subsystem or for memory-resident global
sections but excludes memory reserved through the PHYSICAL_MEMORY SYSGEN
parameter.

The fact that this information must be accessible while the page is in use means that
it cannot be stored in the page itself. In addition, the caching strategy for the free
and modified page lists requires physical page information to be accessible even when
pages are not currently active and valid.

During system initialization, SYSBOOT determines the range of PFNs present on the
system and records the highest PFN in MMG$GL_MAX_NODE_PFN. It also deter-
mines the maximum PFN possible on the system, because on a Galaxy platform there
may be shared memory not yet known to this system, and records it in MMG$GL_
MAXPFN. If the PHYSICAL_MEMORY SYSGEN parameter has been used to re-
serve memory for customer use, the highest PFNs are reserved for customer use and
subtracted from MMG$GL MAX_NODE_PFN.

It calculates the size of the PFN database needed to describe pages from PFN 0 to the
contents of MMG$GL_MAXPFN.

82

2.5 Data Structures Describing Physical Memory

F i g u r e 2.17 Layout of a R e s e r v e d M e m o r y D e s c r i p t o r (RMD)

MMG$GL_RES_MEM_FLINK
MMG$GL_RES_MEM_BLINK

RMD Flags

Bit Meaning
0 Allocated
1 In use
2 Should be zeroed
3 Has been zeroed
4 Freed
5 Group global section
6 Page tables
7 Global section
8 Error during boot

o

RMD RMD

FLINK

'"'"........

BLINK

SUBTYPE ! TYPE I

FLAGS

SIZE

FIRST_PFN

PFN_COUNT

ZERO_PFN

IN_USE_COUNT / ERROR_STATUS

GROUP

RAD

(reserved)

�9 NAME (44 bytes) " i i

SYSBOOT creates enough $2 space for the entire database, allocates physical memory
for PFN records to describe instance-local memory (pages from PFN 0 to MMG$GL_
MAX_NODE_PFN), and zeros that memory. To the extent possible, it allocates the
physical memory as granularity hint regions. In each PFN record for a PFN that
exists, SYSBOOT initializes the type to PFN$C_UNKNOWN.

Because physical memory can be noncontiguous, the database may have physical gaps
but can still be accessed virtually as an array of records from PFN 0 to MMG$GL_
MAXPFN.

The OpenVMS Alpha PFN database consists of one 40-byte record, or structure,
for each page of physical memory. Its starting address is stored in cell PFN$PQ__
DATABASE, and access to it is synchronized by the MMG spinlock. Each field in the
record contains a specific item of information about that physical page of memory.

83

Memory Management Data Structures

Figure 2.18 shows the layout of the Alpha PFN database record. To save space, many
bytes within it have multiple uses. The quadword name PFN$Q_BAK, for example, is
also called PFN$Q_BAK_PRVPFN to represent an alternative use. Furthermore, as
shown, that quadword can also be made up of two longwords, one with two uses.

Table 2.1 summarizes the information in each PFN database record. In listing the
names of the fields in each record, the table omits the prefix PFN$x_, where x identifies
the data type.

Although the OpenVMS VAX PFN database contains the same basic information,
its organization is quite different: it consists of multiple arrays, each containing a
different type of information with an element for each page.

Typically, executive code accesses more than one kind of information about a particular
page when it accesses the PFN database. Thus, to make cache hits more likely and
to improve performance, the OpenVMS Alpha PFN database is organized as a set of
records, each one holding different types of information about the same page.

The page frame number of a physical page is the index of its record in the PFN
database; that is, information about a particular page is located by indexing the
PFN database with the PFN of that page. To transform a PFN into the address of
its PFN database record, the OpenVMS Alpha system provides a macro called PFN_
TO_ENTRY for use by kernel mode code. This transformation currently consists of
multiplying the size of each record by the page's PFN and adding that offset to the
base address of the PFN database.

An example of the use of this macro in MACRO-32 code follows:

PFN_TO_ENTRY - ;Get PFN database record address
PFN = R0,- ;PFN of interest (input)
ENTRY = RI5 ;Address of its record (output)

EVAX_LDQ R2, PFN$Q_BAK (RI5) ;Get backing store information
MOVL PFN$L_PAGE_STATE (RI5) , R3 ;Get page state information

An example of the use of this macro in C code follows"

/* Get MMG protected info about PFN */

pfn = pte_contents.pte$v_pfn;
entry = pfn_to_entry (pfn);
wslx = entry->pfn$1_wslx_qw;
wsle = *(ctl$gq_wsl + wslx);

Most of the information in a PFN record for a page relates to the current virtual use of
that physical page. For a physical page that has no connection to a virtual page, the
only meaningful information is found in the PFNL_FLINK, PFNL_BLINK, PFN$L_
PAGE_STATE, PFN$L_COLOR_FLINI~ and PFN$L_COLOR_BLINK fields.

The sections that follow describe the various lists on which a PFN can be found and
the fields that make up each PFN record.

84

2.5 Data Structures Describing Physical Memory

Table 2.1 P F N D a t a b a s e R e c o r d F i e l d s

Contents Name Size Comments

Forward link FLINK Longword

Global share count SHRCNT Longword

Backward link BLINK Longword

Working set list index W S L X _ Q W Longword

Global lock count G B L _ L C K _ Longword
CNT

Physical page state PAGE_ Longword
and type STATE

PFN of mapping page PT_PFN Longword
table

Page table space index PTE_INDEX Quadword
of PTE

Reference count REFCNT Word

Address of associated PHD Longword
PHD

Forward link in page COLOR_ Longword
color list FLINK

Backward link in page COLOR_ Longword
color list BLINK

Backing store address BAK Quadword

Private PFN listhead BAK_ Quadword
link PRVPFN

Swap file page number SWPPAG Word

Buffer object reference BO_REFC Word
count

I]O error status IOSTS Word

Page table count of PT_VAL_ Word
valid WSLEs CNT

Page table count of PT_LCK_ Word
locked WSLEs CNT

Page table count of PT_WIN_ Word
window pages CNT

Figure 2.19; overlays SHRCNT

Overlays FLINK

Figure 2.19; overlays WSLX_QW,
GBL_LCK_CNT

Overlays BLINK, GBL_LCK_CNT

Overlays BLINK, WSLX_QW

Figure 2.21

Partially overlays PTE_INDEX

Overlays COLOR_FLINK, BAK, BAK_
PRVPFN

Overlays PHD, BAK, BAK_PRVPFN

Overlays BAK, BAK_PRVPFN

Figure 2.22; overlays BAK_PRVPFN,
PHD, COLOR_FLINK, COLOR_
BLINK

Overlays BAK, PHD, COLOR_FLINK,
COLOR_BLINK

Overlays BO_REFC, IO_STS

Overlays SWPPAG, IO_STS

Overlays SWPPAG, BO_REFC

85

Memory Management Data Structures

Figure 2.18 Layout of a P F N D a t a b a s e R e c o r d

FLINK / SHRCNT

BLINK / WSLX_QW / GBL_LCK_CNT

PAGE_STATE

PT_PFN

PTE_INDEX (6 bytes)

REFCNT

BAK / BAK_PRVPFN
PHD / COLOR_FLINK

COLOR_BLINK

PT_VAL_CNT SWPPAG / BO_REFC / IO_STS

PT_WlN_CNT PT_LCK_CNT

2.5.3.1 PFN Lists
A physical page tha t is available to OpenVMS and tha t is not occupied by a valid
virtual page is commonly in one of five lists: the free, modified, bad, untested, or
zeroed page list. Note that preallocated memory registered in the Reserved Memory
Registry is not on any list, nor is memory reserved to the console.

The heads of these lists are in an array of longwords tha t begins at global location
PFN$AL_HEAD. Their list tails are in the ar ray PFN$AL_TAIL. Each ar ray has eight
elements: the first for the free page list, the second for the modified page list, the third
for the bad page list, the fourth for the untes ted page list, and the last for the zeroed
page list. The fifth, sixth, and seventh elements are unused. The arrays are indexed
by the PFN$V_LOC bits in the PFN$L_PAGE_STATE field.

A third longword array, PFN$AL_COUNT, is also indexed by page type. An ent ry
typically contains the number of pages in the corresponding list.

These page lists must all be doubly linked because a page is often removed from
the middle of the list. The links cannot exist in the pages themselves because the
contents of each page must be preserved. The forward link (FLINK) and backward
link (BLINK) fields in a PFN database record implement the links for each page. The
PFN$L_FLINK field contains the PFN of the successor page, and the PFN$L_BLINK
field that of the predecessor page.

A zero in one of the link fields indicates the end of the list ra ther than being a pointer
to physical page 0. This is one reason tha t physical page 0 cannot be used in any
dynamic function. Another reason is tha t the representat ion of invalid demand zero
PTEs assumes tha t a PFN of zero can never appear in an invalid PTE (see Figure
2.12). However, it can be used by a system vir tual page tha t is always resident.
Physical page 0 is usually in an area of memory reserved for the console subsystem.

86

2.5 Data Structures Describing Physical Memory

Figure 2.19 shows an example of pages on the free page list, along with thei r cor-
responding PFN$L_FLINK and PFN$L_BLINK fields. The PFN$L_PAGE_STATE
location bits for each page contain zero, indicating tha t the physical page is on the free
page list. The PFNs are hexadecimal.

The number of pages on the zeroed list is in cell MMG$GQ_ZEROED_LIST_COUNT.
The SYSGEN paramete r ZERO_LIST_HI specifies the maximum number of pages on
this list. The list serves as a source of demand zero pages tha t have already been
zeroed. When there is no computable kernel th read to execute, the idle loop removes
from the free page list a page tha t has no connection to any vir tual page and clears it.
After clearing the entire page, the idle loop inserts it on the zeroed page list.

2.5.3.1.1 Colored and RAD-Specific Page Lists
Since OpenVMS Version 6.1, there may be multiple free and zeroed page lists. That
release added support for a feature known as page coloring.

Historically, OpenVMS has allocated PFNs randomly in response to processes' demand
paging. Consequently, program execution results in random access to physical memory
as references cross page boundaries. For some applications, less random references
improve performance. Performance can suffer, for example, if a loop crosses page
boundaries and addresses in two of the pages in the loop have the same cache index:
executing code in one of those sections would cause the other to be removed from
cache.

Figure 2.19 Example of Free Page List Showing Linkage Method

Free Page List
PFNSAL_HEAD I - ~

PFN$AL_TAIL I - ~

Subscript
Number
(PFN)

28

42

128 11 ,2 I

FUNK BUNK PAGE_STATE
Field Field Location Bits

Rest of PFN
Record

11

42

28

0

5 0 0

87

Memory Management Data Structures

Page coloring is a technique for addressing such cache thrashing problems and the
resulting performance loss. Page coloring classifies allocatable pages by the low-order
bits of their PFN. The SYSGEN parameter PFN_COLOR_COUNT, whose default value
is 1, specifies how many classifications should exist. The number of classifications
determines the number of low-order PFN bits used to classify pages. The default value
of 1 effectively disables page coloring.

The only pages classified this way are unencumbered free pages (pages with no ties
to virtual pages, that is, with no backing store connections) and zeroed pages. The
classification is used when a physical page is being allocated in response to demand
paging: instead of allocating the next available page from the free page list, a page
whose color matches the faulting virtual address is allocated.

On a NUMA platform with RAD support enabled (RIH$V_RAD_ENABLE set in
SYSGEN parameter RAD_SUPPORT), free and zeroed pages are classified by RAD
instead of by color. The classification is used when a physical page is being allocated
in response to demand paging: instead of allocating the next available page from the
free page list, a page may be allocated from the RAD associated with the process, for
example. The number of classifications is the maximum number of RADs present on
the platform.

At system initialization, on a non-NUMA platform, the value of PFN_COLOR_COUNT
is rounded up, if necessary, to a power of 2. On a NUMA platform, the maximum num-
ber of RADs is rounded up, if necessary, to a power of 2. That many free and zeroed
page listheads and tails are allocated from nonpaged pool. PFN$AL_COLOR_HEAD
and PFN$AL_COLOR_TAIL are eight-longword arrays corresponding to PFN$AL_
HEAD and PFN$AL_TAIL for pages to which coloring has been applied. The arrays
must be large enough to cover all possible values of the page state location bits (see
Section 2.5.3.6.1) to which page coloring might be applied. Currently only the entries
corresponding to free and zeroed pages are used. Rather than containing PFNs, each
entry contains a pointer to an array of longwords indexed by page color.

An unencumbered free page is inserted not only at the head of the standard free page
list but also onto the free page list corresponding to its color or its RAD, through
PFN$L_COLOR_FLINK and PFN$L_COLOR_BLINK. Similarly, a zeroed page is
inserted onto both the zeroed page list and the zeroed page list corresponding to its
color.

Figure 2.20 shows the free page list of Figure 2.19 sorted onto free page lists corre-
sponding to their page colors. The figure assumes that all pages are unencumbered,
that the value of PFN_COLOR_COUNT is 4, and that therefore the low-order two bits
of the PFN are the color value. The PFNs are hexadecimal.

88

2.5 Data Structures Describing Physical Memory

Figure 2.20 Example of Colored Page Lists

PFN$AL_COLOR_HEAD I

PFN$AL_COLOR_TAIL I

Free Page Lists Sorted by Color
28

5

42

o

0

0

2.5.3.1.2 Untested Page List
On some Alpha systems, the console tests all of memory before passing control to the
OpenVMS bootstrap program. The time to test all pages on a system that supports
a very large memory may be prohibitively long. On such systems some of the testing
is therefore left to the operating system, to enable the system to become operational
sooner.

On such systems, a flag in the SYSGEN parameter MMG_CTLFLAGS controls when
OpenVMS performs testing of memory beyond that needed to boot the system. If
MMG$V_BOOTIME_MEMTEST is 1, all previously untested memory is tested in
EXE$INIT (see Chapter Operating System Initialization and Shutdown). By default
the flag is 0 and memory testing is deferred; untested memory is put on the untested
page list. The idle loop performs deferred memory testing, placing a tested page
on either the free page list or the bad page list. Deferred memory testing is also
performed when necessary, for example, when allocating a physical page that has not
yet been tested.

2.5.3.1.3 Private PFN Lists
In addition to the lists previously described, a page can be on a private PFN list. This
mechanism enables a kernel mode application to manage a list of PFNs, perhaps for
a system space cache that must occupy a fixed amount of physical memory. Such an
application would call MMG_STD$ESTABLISH_FREEPFN_LIST, in module MEM_
ALLOC, to create the list and populate it with free PFNs. The routine allocates a
private PFN (PRVPFN) listhead from nonpaged pool and links it into a list of such
listheads at MMG$GL_PRVPFN_FLINK and MMG$GL_PRVPFN_BLINK. The kernel
mode application is responsible for synchronizing access to its private PFN list and for
returning PFNs from the list in response to a request from OpenVMS when memory is
scarce.

89

Memory Management Data Structures

2.5.3.2 PFN$L_FLINK and PFN$L_BLINK Fields
These fields link a page into the mas ter flee, modified, mas ter zeroed, bad, untested,
or a private PFN page list. The PFN$L_FLINK field contains the PFN of the successor
page, and the PFN$L_BLINK field tha t of the predecessor page.

2.5.3.3 PFN$L_SHRCNT Field
PFN$L_SHRCNT, the share count field in a PFN database record, counts the number
of process-private PTEs tha t are mapped to a par t icular global page. When the share
count for a par t icular page goes from 0 to 1, the PFN$W_REFCNT field is incremented.
Fur ther additions to the share count do not affect the reference count.

As the global page is removed from the working set of each process mapped to the
page, the share count is decremented. When the share count finally reaches zero, the
PFN$W_REFCNT field for the page is also decremented.

In the case of a global page mapped only by a shared page table, the share count is 1,
regardless of how many processes are mapped to the global section.

Because a physical page with a nonzero share count cannot be on one of the page lists,
the forward and backward link fields are not needed for such a page. The PFN$L_
SHRCNT field overlays the PFN$L_FLINK field.

Process-private page table pages also use the PFN$L_SHRCNT field as a reference
count for the page table page. The count includes all valid or t ransi t ion PTEs in the
page, excluding window pages. When this count goes from zero to nonzero, the page
table page is dynamically locked into the process working set. Chapter 4 describes the
share count in further detail.

2.5.3.4 PFN$L_WSLX_QW Field
The working set list index field, PFN$L_WSLX_QW, for a valid page contains a
quadword index from the beginning of the working set list to the WSLE for tha t page.
The PFN$L_WSLX_QW field is used, for example, during the deallocation of a page
of memory. If the virtual page is valid, the WSLE that describes it must be altered.
Without the contents of the PFN$L_WSLX_QW field, it would be necessary to search
the working set list to locate the WSLE.

In OpenVMS versions prior to Version 7.0, the WSLX was a longword index from the
beginning of the PHD. The meaning of this field changed to reflect the fact tha t a
WSLE is now a quadword. Basing the index on the beginning of the working set list
ra ther than the beginning of the PHD facilitates the possible removal of the working
set list from the PHD in some future release.

Because a physical page in a working set is not on one of the page lists, the PFN$L_
FLINK and PFN$L_BLINK fields are not needed for such a page. The PFN$L_WSLX_
QW field overlays the PFN$L_BLINK field.

90

2.5 Data Structures Describing Physical Memory

2.5.3.5 PFN$L_GBL_LCK_CNT Field
The PFN$L_GBL_LCK_CNT field for a global page counts the number of t imes the
page has been locked into memory. The field is initialized to 0.

In prior versions, this information was kept in the PFN$L_WSLX field. In OpenVMS
Version 7.0, the PFN$L_GBL_LCK_CNT field was added as an overlay of the PFN$L_
WSLX_QW field to formalize the additional use of the field.

2.5.3.6 PFN$L_PAGE_STATE Field
The PFN$L_PAGE_STATE field, shown in Figure 2.21, indicates the state, type, and
location of a physical page.

F i g u r e 2.21 C o n t e n t s o f P F N $ L _ P A G E _ S T A T E F i e l d

31

(reserved)

19 18 17 16 15 14 13 12 11 10 9 8 7 4 2 0
ILocation of Page I Page Type

I I (See table) I (res') (See table)

Buffer object Code Type
Collided page 0

1
Report event on I/O completion 2

3

Code Location
0 Free page list
1 Modified page list
2 Bad page list
3 Release pending or

on untested memory
list

4 Page read error
5 Write in progress

by modified page
writer

6 Read in progress by

i i i i I

~ ~ _ Ba~--d pL~ag e

Delete PFN contents
Saved modify bit from PTE

m Unavailable page
m SWPPAG contents valid
Top-level page table

Within a PHD
Shared memory page

page fault handler
7 Zeroed page list
8 On private PFN list - - Zeroed shared memory global section page

9-14 (reserved)
15 Active

Process
System or shared
memory PFNLST
Global read-only
Global writable or
shared memory
region
Process page table
Global page table
('reserved)
Unknown

As shown in the figure, bits <2:0> of this field identify the type of virtual page that
occupies the corresponding physical page, for example, whether it is a process or
system page or page table page. The page fault handler, swapper, and other parts of
the executive take actions dependent on page type.

The sections that follow describe the location codes and status bits in the page state
field.

2.5.3.6.1 Page State Location Codes
Bits <7:4> contain the page location code, indicating, for example, whether the page is
on the free page list or valid in a working set.

Several page location codes require further explanation:

�9 Release pending means that the virtual page has been removed from a working set
but still has a nonzero reference count. When the reference count is decremented
to zero at I/O completion, the physical page will be placed on the free or modified
page list.

91

Memory Management Data Structures

An untested page is one not yet tested by console or operating system. Because
there is no overlap in the code that deals with release pending and untested pages,
PFN$C_RELPEND and PFN$C_UNTESTED have the same numeric value. This
conserves space in the page state field. Section 2.5.3.1 has further information on
untested pages.

Page read error means that a nonrecoverable I/O error occurred during an a t tempt
to read the virtual page from its backing store into the physical page. During
postprocessing of the I/O request, when the error is noted, this code is stored in the
PFN$L_PAGE_STATE field, and the I/O error status is stored in PFN$W_IO_STS.
Consequently, when the page is later refaulted, the page fault handler will signal
a page read error exception, passing the I/O error status in bits <15:0> of the first
argument of the signal array.

Write in progress means that the modified page writer has initiated I/O to write
the page to its backing store.

Read in progress means that the page fault handler has initiated I/O to read the
page from its backing store.

A page on the zeroed page list is a free page that was completely zeroed when the
system would otherwise have been idle. Such a page can be allocated as a demand
zero page, as a page most of whose contents are zero (for example, an L1PT page),
or as a section page only partly represented on disk.

A page on a private PFN list is being managed by a kernel mode application
independently of OpenVMS. Section 2.5.3.1 has further information.

2.5.3.6.2 Page State Status Bits
The PFN$L_PAGE_STATE field has a number of status bits.

The buffer object bit (PFN$V_BUFOBJ), when set, means the page is part of a buffer
object or is a page table page that maps a buffer object (see Section 2.6).

The collided page bit (PFN$V_COLLISION) is set when a page fault occurs for a
virtual page that is already being read in from its backing store (one whose location
bits show it as read in progress). This can happen, for example, if multiple kernel
threads from the same or different processes fault the same page. It can also happen
if a kernel thread in a page fault wait is interrupted for asynchronous system trap
(AST) delivery and then reexecutes the instruction that triggered the page fault. When
I/O completes for a page with this bit set, I/O postprocessing code clears the bit and
reports the system event collided page available for all kernel threads in the collided
page wait state. Chapter Scheduling describes system events. Collided pages are
discussed briefly in Chapter 4.

The bad page bit (PFN$V_BADPAG) is set when an uncorrectable memory error occurs
trying to access the page in memory. The page will be put onto the bad page list when
it is deallocated.

92

2.5 Data Structures Describing Physical Memory

The report event bit (PFN$V_RPTEVT) is set when an a t tempt is made to delete a
vir tual page tha t cannot be deleted immediately, for example, because the modified
page writer is wri t ing the page to its backing store. The executive places the kernel
thread into a page fault wait. When the modified page writer 's I/O completes, it
reports a page fault completion system event. When the kernel thread is placed back
into execution, the page deletion proceeds.

The delete contents bit (PFN$V_DELCON) is set to indicate tha t the connection be-
tween a physical page and its vir tual contents should be severed. When the reference
count of a physical page whose delete contents bit is set becomes zero, the PFN$L_
PT_PFN and PFN$Q_PTE_INDEX fields in its PFN database record are cleared. The
physical page is then put at the front of the free page list, where it will be reused
before pages tha t are still associated with vir tual pages. Such a page is also put on the
free page list corresponding to its color.

The saved modify bit (PFN$V_MODIFY) is set to indicate a modified page tha t has
not yet been wri t ten to its backing store. It determines whether a physical page is put
on the free page list or the modified page list when the page's reference count reaches
zero. The modify bit is set under a number of circumstances, including the following:

* On the first a t tempt to write to a writable vir tual page, the executive sets the
modify bit in its PTE. When a vir tual page is removed from a working set, the
modify bit in its PTE is logically ORed into the saved modify bit in the PFN$L_
PAGE_STATE field for the physical page. The modify bit must be recorded in the
PFN$L_PAGE_STATE field because tha t bit in an invalid PTE has another use as
the TYP1 bit.

�9 When a page is used as a direct I/O read buffer, the executive routine tha t locks
down pages, MMG$IOLOCK, in module IOLOCK, sets the modify bit in its PTE.
When the page is removed from the process's working set, the OR operation
described in the previous item sets the modify bit in PFN$L_PAGE_STATE.

�9 When a copy-on-reference page is faulted into a working set, the executive sets the
modify bit in the PFN$L_PAGE_STATE field of the physical page. Thus, even if
the virtual page is not modified while it is valid, when the page is removed from
the working set, the physical page is inserted into the modified list. This ensures
tha t it will be wri t ten to page file backing store, from where it will be read on a
subsequent page fault.

�9 When a demand zero page is faulted into a process's working set, the modify bit in
PFN$L_PAGE_STATE is set.

* When a buffer object is created, the modify bit is set in PFN$L_PAGE_STATE for
each of its pages.

The unavailable page bit (PFN$V_UNAVAILABLE), when set, means the page is not
available for the operating system to use. Typically, it means tha t the page is in a
memory region reserved for the console subsystem's use.

93

Memory Management Data Structures

The swap page valid bit (PFN$V_SWPPAG_VALID) is set by the swapper to indicate
that the contents of PFN$W_SWPPAG represent a swap file page number. Chapter 6
has further details.

The top-level page table bit (PFN$V_TOP_LEVEL_PT) is set to indicate that the
page is the most significant page table in the hierarchy and further that its PFN$L_
PHD field identifies the PHD of the process associated with this page table hierarchy.
Currently, with a three-level hierarchy, this bit is set for a PFN containing an L1PT.
Memory management code tests this bit to determine whether it has reached the top of
the hierarchy following the pointer (PFN$L_PT_PFN) from one page table to the page
table that maps it.

The balance slot (PFN$V_SLOT) bit is set to indicate that the page is part of some
process's PHD. Historically, all PHD pages had a page type of process page table
(PFN$C_PPGTBL), even those that were not page tables. To minimize code changes,
PHD pages continue to have this page type, as do actual page table pages. The value
of this bit distinguishes the two types.

The shared memory page bit (PFN$V_SHARED) and the zeroed shared memory page
bit (PFN$V_ZEROED) describe pages in a Galaxywide section.

2.5.3.7 PFN$L_PT_PFN and PFN$Q_PTE_INDEX Fields
When assigning a physical page to a new use, the executive examines the PTE that
maps it to determine whether the page is a transition page and still pointed to by a
PTE associated with its previous use. If the field contents are not zero, the executive
must take steps to sever the connection between the physical page and its previous
use. The term back pointer is used to refer to the location of the PTE that maps a
physical page.

In versions prior to OpenVMS Version 7.0, PFN$L_PTE contained the system virtual
address of the PTE mapping the PFN. Furthermore, with process-private page tables
mapped in system space, the PTE address itself was enough to locate the PHD, given
fixed-size balance set slots.

With page tables mapped only in page table space, unique specification of a PTE is
more complex: the process associated with the PTE may not be current at the time
memory management code needs to examine the PTE. PFN$Q_PTE_INDEX and
PFN$L_PT_PFN replace PFN$L_PTE and enable the PTE to be located.

PFN$L_PT_PFN contains the PFN of the page table page with the PTE that maps this
PFN. The PFN$Q_PTE_INDEX field contains the quadword index from the base of
page table space to the PTE containing this PFN.

To locate the PTE when the process is current, memory management code simply
uses the contents of PFN$Q_PTE_INDEX to index the current page table space. To
locate the PTE when the process is not current, memory management code takes the
following steps:

1. It maps the PFN in PFN$L_PT_PFN into system space.

2. It multiplies PFN$Q_PTE_INDEX by 8.

94

2.5 Data Structures Describing Physical Memory

3. It indexes the mapped page using the low-order bits of the product in step 2 as a
byte offset into the page.

There are several instances, most notably within the modified page writer, when it is
necessary to obtain a PHD address from a physical page's PFN. To do this, memory
management code iterates the preceding steps, traversing the PFN$L_PT_PFN links
from a lower level page table up to the next level page table, until it reaches one
with the PFN$V_TOP_LEVEL_PT bit set. That page table page's PFN database field
PFN$L_PHD contains the address of the PHD.

If no virtual page is mapped to a physical page, its PFN$Q_PTE_INDEX field contains
zero. The PFN$Q_PTE_INDEX field for a non-copy-on-reference global page contains
the index of the global PTE from the beginning of the global page table. The PFN$L_
PT_PFN for a global page contains the number of the global page table page.

A page that is part of a buffer object (see Section 2.6) is not assigned to another use
until the buffer object is deleted. The page remains associated with the buffer object
across process outswap and inswap. For that reason, no attempt is made to keep
correct PFN$L_PT_PFN information. Instead, the PCB of the process that created the
buffer object is stored in its PFN$L_PT_PFN field. If the page is used for direct I/O,
I/O completion code will be able to locate the PHD address from the PCB to unlock the
PHD.

2.5.3.8 PFN$L_PHD Field
This field is used only for a PFN that is a top-level page table. It contains the system
virtual address of the PHD belonging to the process whose top-level page table it is.

During deletion of the PHD, the swapper uses this field to record the balance set slot
index (see Section 2.8.2) corresponding to the PHD.

This field overlays PFNQ_BAK, PFNQ_BAK_PRVPFN, and PFN$L_COLOR_
FLINK, which are unused for a top-level page table page.

2.5.3.9 PFN$W_REFCNT Field
The PFN$W_REFCNT field counts the number of reasons a physical page should
retain its current contents. For instance, the count is incremented if a page is in a
process working set; is part of a direct I/O buffer with I/O in progress; or is part of a
buffer object or a page table page mapping a buffer object. The field is initialized to
zero.

I/O completion and working set replacement use the same mechanism to decrement the
reference count. When the reference count goes to zero, the physical page is released
to the free or modified page list, depending on the saved modify bit in its PFN$L_
PAGE_STATE field. Manipulations of the reference count are illustrated and described
in greater detail in Chapter 4.

95

Memory Management Data Structures

2.5.3.10 PFN$L_COLOR_FLINK and PFN$L_COLOR_BLINK fields
These fields link an unencumbered free page (one with no connection left to a v i r tua l
page) into a colored free or zeroed page list. Such a page has no valid BAK contents;
thus these links overlay the PFN$Q_BAK field as well as the PFN$BAK_PRVPFN
field.

On a NUMA platform with RAD support enabled, these fields link an unencumbered
free page into a RAD-specific free or zeroed page list.

2.5.3.11 PFN$Q_BAK Field
The PFN$Q_BAK field contains the backing store location for the vir tual page occu-
pying a physical page. When a physical page is assigned to another use, the PTE, if
any, tha t currently maps the page must be updated. The executive replaces informa-
tion about the location of the virtual page in memory (the PFN of the physical page
tha t contains it) with information about its location in mass storage copied from the
PFN$Q_BAK field.

Figure 2.22 shows the possible contents of a PFN$Q_BAK field. The shaded bits in
each form are either reserved or bits whose contents are i rrelevant for tha t form of
backing store information.

Before a demand zero or copy-on-reference page is assigned actual page file backing
store, the system page file index field contains FF16 to indicate no assigned page file.
In addition, the field can contain zero.

2.5.3.12 PFN$Q_BAK_PRVPFN Field
PFN$Q_BAK_PRVPFN is used only for a page managed through a private PFN list. It
contains the address of the PRVPFN listhead used to manage the page.

2.5.3.13 PFN$W_SWPPAG Field
The swap file page number field, PFN$W_SWPPAG, supports the outswap of a process
with read I/O in progress. When such an outswap occurs, the swapper sets bit PFN$V_
SWPPAG_VALID in PFN$L_PAGE_STATE and records in PFN$W_SWPPAG the page
offset in the process body part of the swap slot into which the locked down page should
be written.

When the swapper I/O is completed, the locked page is marked release pending. When
the original I/O is completed, the I/O postprocessing routine sees tha t the page is in
the release pending state and has the saved modify bit set, and inserts the page on the
modified page list. The modified page writer checks the PFN$V_SWPPAG_VALID bit
and, if it is nonzero, diverts a modified page from its normal backing store address to
the designated location in the swap file.

Because a physical page in a buffer object or a page table page tha t maps a buffer
object cannot be outswapped, this field is not needed to describe such a page. The
PFN$W_BO_REFC field and PFN$W_IO_STS overlay the PFN$W_SWPPAG field.

96

63 3231 30 20 1918 17 16 15 1 0

20 1918 1' 16 15 1 0
Cd

63 56 5 5 3231 3 0

0 Global

r?.

f

0
I

Global Page Table Index

0
I

L Global back~ng store L~YPe 0 L ~ a l d 5 s
63 50 4 9 48 47 3231 30 20 1918 17 16 15 1 0

B
Secllon B

Section Table Index 0 1 0
page I I I I I I m 5

2 w 0 1

0

~ n t a ~ e --]

L ~ l o b a l back~ng store L~YPe 0 J V a M N

1

0
I

Paqe file System Page
PF F~le Index

L ~cpy-on-reference LGlobal backlng store L~YPe 0 P L v a a g

I

Page Rie Page Number

- Demand zero Partlal sect~on

B
G P r
$
c a

k p
S
P
3 fn

s
2
b e
s
3

I

Memory Management Data Structures

2.5.3.14 PFN$W_BO_REFC Field
Another form of reference count is kept for buffer object pages (see Section 2.6). The
buffer object reference count field, PFN$W_BO_REFC, counts the number of buffer
objects mapping the page. The field is initialized t o - 1 . When the reference count
for a particular buffer object page goes f r o m - 1 to 0, its PFN$W_REFCNT field is
incremented. Fur ther additions to the buffer object reference count do not affect the
PFN reference count. For a page table page that maps one or more buffer objects,
PFN$W_BO_REFC contains the number of buffer object pages mapped by the page
table page.

Because a physical page in a buffer object or a page table page that maps a buffer
object cannot be outswapped, the PFN$W_SWPPAG field is not needed to describe such
a page. The PFN$W_BO_REFC field overlays the PFN$W_SWPPAG and PFN$W_IO_
STS fields.

2.5.3.15 PFN$W_IO_STS Field
This field is used only for a page that incurs an I/O processing error during an a t tempt
to fault it in from backing store or inswap it. The I/O error status is recorded in it.
Section 2.5.3.6.1 has additional information.

The PFN$W_IO_STS field overlays the PFN$W_SWPPAG and PFN$W_BO_REFC
fields.

2.5.3.16 PFN$W_PT_VAL_CNT Field
This field is used only for page table pages. It contains the number of valid working
set list entries mapped by that page table page. A value o f - 1 for this field means the
page maps no such pages or is not a page table.

Prior to OpenVMS Version 7.0, this information was kept in the PHD PTWSLEVAL
array.

Chapter 4 contains further information.

2.5.3.17 PFN$W_PT_LCK_CNT Field
This field is used only for page table pages. It contains the number of locked pages
mapped by that page table page. A value o f - 1 for this field means the page table page
maps no such pages or is not currently in use as a page table.

Prior to OpenVMS Version 7.0, this count was included in the PHD PTWSLELCK
array.

Chapter 4 contains further information.

2.5.3.18 PFN$W_PT_WlN_CNT Field
This field is used only for page table pages. It contains the number of window pages
and memory-resident global section pages mapped by that page table page. A window
page is a virtual page that is a double mapping of a physical page. For example, a
virtual page in a section mapped by PFN is a window page. A value o f - 1 for this field
means the page table page maps no such pages or is not currently in use as a page
table.

98

2.6 Buffer Objects

In the case of a shared L3PT mapping shared global section pages, PFN$W_PT_WIN_
CNT counts the number of pages of global section mapped. In the case of a process-
private L2PT mapping shared L3PTs, PFN$W_PT_WIN_CNT counts the number of
shared L3PTs mapped by this L2PT.

Prior to OpenVMS Version 7.0, this count was included in the PHD PTWSLELCK
array.

Chapter 4 contains further information.

2.6 Buffer Objects
A buffer object is a special kind of I/O buffer. When a buffer object is created, the
pages that compose it are locked into physical memory and may be mapped in process-
private space, system space, or both, depending on how the buffer object was created.
A system buffer object, new with OpenVMS Version 7.3, is mapped only in system
space. An ordinary buffer object consists of process-private pages. A global buffer
object consists of global pages. Typically, a very large global buffer object is not
double-mapped in system space.

I/O can be initiated to or from the buffer with minimal overhead using the Perform
Fast I/O ($IO_PERFORM) system service; in particular, there is no need to probe the
buffer or lock its pages into memory. The body, PHD, and page tables of a process with
I/O in progress to a buffer object can all be swapped. Although an L3PT page table
page that maps a buffer object is locked in memory, it is not locked into the process's
working set.

A buffer object is created when a process requests the Create Buffer Object ($CRE-
ATE_BUFOBJ_64) system service (see Chapter 3), specifying an existing process-
private address range to be mapped as a buffer object.

Each buffer object is described by a nonpaged pool data structure called a buffer object
descriptor (BOD), shown in Figure 2.23. All the BODs for buffer objects created by a
particular process are linked together in a list whose head is in the process's PCB$Q_
BUFOBJ_LIST field. The listhead for system buffer object BODs is in the system
PCB.

BODs enable the memory management subsystem to keep track of the buffer objects
the process created and their associated system virtual addresses. When an image
exits, the executive examines the process's BOD list and deletes buffer objects that still
exist.

BOD$L_FLINK and BOD$L_BLINK link a BOD into the PCB list of others by the
same process.

BOD$W_SIZE and BOD$B_TYPE are the standard dynamic data structure header
fields. A BOD has a type of DYN$C_BOD.

BOD$L_ACMODE contains the owner access mode of the buffer object.

99

Memory Management Data Structures

Figure 2.23 Layout of a Buffer Object Descriptor (BOD)

FLINK

BLINK

(reserved)l TYPE !

ACMODE

SIZE

SEQNUM

REFCNT

FLAGS

PID

u BASEPVA

BASESVA

VA_PTE m

PAGCNT

BOD$L_SEQNUM contains a sequence number identifying the buffer object.

BOD$L_REFCNT contains the number of references to the buffer object and the num-
ber of reasons the buffer should not be deleted. Creat ing a buffer object establishes
the reference count as 1. The reference count is incremented when an I/O reques t is
processed tha t uses the buffer and decremented when the I/O completes.

BOD$L_FLAGS contains flag bits tha t describe the section:

�9 BOD$V_DELPEN, when set, means tha t a request to delete the buffer object has
been made and tha t its deletion is pending.

�9 BOD$V_NOQUOTA, when set, means tha t the buffer object creation was requested
from an inner access mode with flag CBO$V_EXMAXLIM set to specify tha t limit
checking is to be bypassed.

�9 BOD$V_NOSVA, when set, means the buffer is not double-mapped in system
space.

�9 BOD$V_S2_WINDOW, when set, means the buffer is double-mapped in $2 space.

�9 BOD$V_SYSBUFOBJ, when set, means the buffer is mapped only in system space
and is a system buffer. Record Management Services (RMS) uses a system buffer
object to map global buffer descriptors and the s t ructures tha t synchronize access
to them.

BOD$L_PID contains the internal ID of the process tha t created the buffer object.

BOD$L_PAGCNT contains the number of pages in the buffer object.

100

2.7 Data Structures for Global Pages

BOD$PQ_BASEPVA contains the process virtual address at which the buffer object is
mapped.

If BOD$V_NOSVA is clear, the buffer is double-mapped into system space. BOD$PQ_
BASESVA contains the system virtual address at which the buffer object is mapped.

If BOD$V_S2_WINDOW is clear, the buffer is mapped into S0/S1 space, and BOD$PQ_
VA_PTE contains the system virtual address of the SPT window PTE that maps the
first page of the buffer object. If BOD$V_S2_WINDOW is set, the buffer is mapped
into $2 space, and BOD$PQ_VA_PTE contains the page table space address of the PTE
that maps the first page of the buffer object.

SYSGEN parameter MAXBOBMEM limits the amount of physical memory buffer
objects can consume.

2.7 Data Structures for Global Pages
The t rea tment of global pages is somewhat different from that of process-private
pages; the executive must keep additional systemwide data to describe global pages
and sections. The sections that follow describe these data structures.

2.7.1 Global Section Descriptor
Global sections are created by various OpenVMS system services, for example, Create
and Map Section ($CRMPSC), Create Permanent Global Demand Zero Section ($CRE-
ATE GDZRO), and Create Permanent Global Disk File Section ($CREATE_GFILE).
Such services can be requested directly from a user image or indirectly through the
Install utility.

A special type of global section, new with OpenVMS Version 7.1, is a memory-resident
global section. The pages of such a section do not page and are not backed up by a
section file. The global pages are permanently valid. Like any other global section, a
memory-resident global section is described by a GSD.

Optionally, a process can map memory-resident global sections with shared page
tables, thereby using the same L3PTs as other processes to map the global section.
Those shared page tables themselves make up a type of global section called a global
page table section, which like any other global section, is described by a GSD. Thus a
memory-resident global section with shared page tables is described by two GSDs.

Figure 2.24 shows the layout of a GSD. A GSD associates the global section name to
its GSTE. The information in the GSD is only used when some process a t tempts to
map to or delete the section. The page fault handler does not use this data structure.

GSD$L GSDFL and GSD$L_GSDBL link a GSD into one of several GSD lists main-
tained by the system. All system global section descriptors are linked into one
list, whose listhead is formed by global cells EXE$GL_GSDSYSFL and EXE$GL_
GSDSYSBL. Group global section descriptors (independent of group number) are
linked into the other list, at EXE$GL_GSDGRPFL and EXE$GL_GSDGRPBL. Note

101

Memory Management Data Structures

Figure 2.24 Layout of a Global S e c t i o n D e s c r i p t o r (GSD)

Regular GSD

GSDFL

GSDBL

(reserved)J TYPE I
HASH

, ,

PCBUIC

FILUIC

PROT
GSTX

IDENT

ORB

SIZE

IPID/RELATED_GSTX
,,

FLAGS
. GSDNAM

(up to 44 characters)

$

.,,,.,""

a �9

: i

Extended GSD for Map-by-PFN
Global Section

Regular GSD

BASEPFN
PAGES

REFCNT
PFNGSDNAM

(up to 44 characters)

that a GSD for a global page table section is not linked to any of these GSD lists except
immediately prior to its deletion.

When a request is made to delete a global section to which processes are still mapped,
its GSD is removed from its current list and inserted into a list of delete-pending
GSDs, the listhead of which is at EXE$GL_GSDDELFL and EXE$GL_GSDDELBL.

GSDs representing Galaxywide shared sections are linked to separate lists: EXE$GL_
GLXGRPFL and EXE$GL_GLXGRPBL for group sections, and EXE$GL_GLXSYSFL
and EXE$GL_GLXSYSBL for system sections.

The mutex EXE$GL_GSDMTX (see Chapter Synchronization Techniques) serializes
access to all these GSD lists.

GSD$W_SIZE and GSD$B_TYPE are the standard dynamic data structure fields.

GSD$L_HASH contains a hashed representation of the global section name. Compar-
ing hash values rather than section names speeds up a search for a global section with
a particular name.

GSD$L_PCBUIC is the user identification code (UIC) from the software PCB of the
creating process. GSD$L_FILUIC is the UIC of the owner of the section file.

GSD$L_PROT is currently unused. Information about the protection on the global
section is stored in the object rights block associated with the global section.

GSD$L_GSTX contains the global section table index (GSTX) for the section's GSTE.

102

2.7 Data Structures for Global Pages

GSD$L_IDENT contains the version identification of the global section. The value is
specified by the requestor of the system service that created the global section. In the
case of a global section created for image installed/SHARE, the Install utility gets the
information from the image header of the image being installed.

GSD$L_ORB contains the address of the associated object rights block (ORB). In the
case of a section that maps a file, the global section shares the ORB associated with
the open file.

When a process requests that a global section be deleted, its internal process ID is
copied to GSD$L_IPID. If the global section is writable, when all its modified pages
have been written, the modified page writer queues an AST to that process to perform
the cleanup and deletion of the global section.

For a memory-resident global section with shared page tables, GSD$L_RELATED_
GSTX contains the index of the GSTX of the related global page table section.

GSD$L_FLAGS contains flags that describe the section. They are based on the ones in
the GSTE (see Figure 2.7).

GSD$T_GSDNAM contains a counted ASCII string that is the section's name.

A PFN-mapped global section has no associated GSTE; its pages are not paged. Such a
section has an extended GSD, as shown in Figure 2.24. In the extended GSD, GSD$L_
BASEPFN contains the starting PFN of the section. GSD$L_PAGES specifies its size
in pages. GSD$L_REFCNT specifies how many PTEs map to this section. GSD$T_
PFNGSDNAM, rather than GSD$T_GSDNAM, contains the section name.

2.7.2 Global Section Table Entries
The section table in the system header serves a second purpose. When a global section
is created, a section table entry that describes the global section file is allocated from
the section table in the system header. Because of this use, the system header's section
table is usually called the global section table (GST).

The layout of a GSTE is nearly identical to the layout of a PSTE. Figure 2.7 illustrates
both kinds of section table entry.

A GSTE is accessed in a similar way to a PSTE, with a positive index from the bottom
of the GST (see Section 2.1.3.3). The GSTX in the GSD is such an index, associating a
GSD with a GSTE.

When a memory-resident global section with shared page tables is created, two GSTEs
are created: one for the global section itself, and one for the related global page table
section.

Allocation and deletion of GSTEs are synchronized by the MMG spinlock.

103

Memory Management Data Structures

2.7.3 Global Page Table
Like other L3PTs, the global page table (GPT) describes the state of the pages it maps.
Unlike the others, the GPT is not accessed by the TB miss PALcode routine to load
an entry into the translat ion buffer. It is only accessed by OpenVMS Alpha memory
management routines. The GSD mutex synchronizes allocation and deallocation of
global page table entries (GPTEs). The MMG spinlock synchronizes modification of
GPTEs allocated to a global section.

The global page table is located at the low-address end of $2 space, allocated dur-
ing system initialization. Its initial size depends upon the SYSGEN parameter
GBLPAGES, the number of expected global pagelets. (Historically, the parameter
was defined in terms of VAX pages. To facilitate application porting and maximize
cross-platform compatibility, the units of the parameter continue to be pagelets.)
MMG$GQ._MAX_GPTE contains the address of the highest GPTE.

Free GPTEs are maintained in a list whose structure is described in Section 2.3.6. The
listhead for free GPTEs is MMG$GQ__FREE_GPT.

Each global page is mapped by one GPTE. When a process maps a portion of its
address space to a global section, its process-private PTEs tha t map the section are
initialized to the GPTX form of PTE (see Figure 2.12). A global section is mapped by a
set of contiguous GPTEs, one for each global page plus two additional GPTEs. The two
additional GPTEs, one at the beginning of the set and one at the end, are cleared and
serve as stoppers to limit modified page write clustering (see Chapter 4).

During system operation, GPTEs are allocated when an image is ins ta l led/SHARE or
an application creates a global section. If there are insufficient GPTEs to map a new
global section, the system manager can increase the value of GBLPAGES, which is
dynamic. A subsequent a t tempt to create a global section would result in expanding
the GPT if all the following are true:

* Expanding it by the necessary number of GPTEs doesn't increase its size over the
value of GBLPAGES.

* There is sufficient free $2 address space contiguous with the existing GPT.

* Decreasing fluid pages by the growth of the GPT leaves a result larger than four
times the largest swap image.

GPT pages are created as demand zero pages. Once faulted, each remains resident
unless the GPT is contracted by tha t page. (This is a change from earlier versions, in
which global page table pages were pageable.) The GPT can be contracted by one or
more pages under the following circumstances:

�9 Global pages are deleted and GPTEs thus deallocated.

* One or more pages of GPT at the high-address end map no global pages.

�9 The system manager has reduced GBLPAGES, and the current size of the GPT is
larger.

104

2.7 Data Structures for Global Pages

The executive locates a specific GPTE in the GPT using a G F I ~ as a quadword context
index from the contents of MMG$GQ_GPT_BASE, the cell tha t contains the s ta r t ing
address of the GPT.

The process-private PTE tha t maps the first page of a global section contains the GPTX
of the GPTE tha t maps the first page in the global section. Each successive process-
private PTE contains the next higher GPTX, so tha t each PTE effectively points to the
GPTE tha t maps tha t part icular page in the global section.

The relation between process-private PTEs and GPTEs is shown in Figure 2.25. In the
figure, the first M GPTEs are in use for other sections, and the global section shown is
mapped by N + 2 GPTEs beginning with GPTE M + 2. GPTE M + 1, GPTE M + 2, and
GPTE M + 2 + N + 1 are stoppers.

Figure 2.25 Relat ion B e t w e e n Process -Pr ivate PTEs and GPTEs

MMG$GQ_GPT_BASE 63 Global Page Table 0

F

63 Process L3 Page Table
.L

GPTX=M+3 V=0 x

GPTX=M+4 V=0 x

GPTX=M+5 V=0 x
.

0

0

GPTE

GPTE

GPTE

GPTX=M+N+2 V=0 • "[I GPTE _

0

T r ~

M GPTEs

N GPTEs

MMG$GQ_MAX_GPTE

When a process first accesses an invalid global section page, it incurs a page fault.
Determining tha t the invalid page is a global page, the page fault handler indexes the
GPT with the GPTX to locate the GPTE tha t describes the global page.

2.7.4 Global Page Table Entries
Each page in every type of global section is described by a GPTE. Even pages in
memory-resident global sections with shared page tables are described by GPTEs.
This simplifies the memory management code and enables a process to map the
global section using process-private page tables, perhaps to obtain read-only access.
Moreover, each global page table section is itself described by GPTEs.

105

Memory Management Data Structures

GPTEs are restricted to the following forms of PTE, i l lustrated in Figure 2.26. The
shaded bits in each GPTE are either reserved or bits whose contents are irrelevant for
that form of GPTE.

�9 The GPTE can be valid, indicating that the global page is in at least one process
working set or that it is a valid page in a memory-resident global section.

�9 The GPTE can indicate a page in some transition state. The corresponding
PFN$L_PAGE_STATE field identifies the transition state.

�9 For a global page in a global section file, the GPTE contains a global section table
index.

�9 The GPTE can indicate a demand zero page in a global page-file section.

�9 The GPTE can indicate a global page-file section page that has been created and is
in use.

Note that there are no protection bits in a GPTE. When a global section is mapped, the
executive determines values for the protection bits based on section flags, the access
mode from which the section is mapped, and the FLAGS argument to the system service
that maps the section.

When a global page is faulted in, the bits shown in Figure 2.26 labeled Global and
Global Write are incorporated into the PFN$L_PAGE_STATE field for the physical
page and the entry corresponding to the page in the working set lists of processes tha t
have mapped to it.

Invalid GPTEs that are unused and available for allocation are linked together in a
list from listhead MMG$GQ_FREE_GPT. The organization of the list is the same as
that of free system page table entries (see Section 2.3.5.6).

2.7.5 Relations among Global Section Data Structures
Figure 2.27 shows the relations among the GSD, GSTE, and GPTEs for a given section
on a system with a page size of 8 KB (for simplicity, the figure omits the stopper
GPTEs):

The central shaded structure is the GSTE (see Figure 2.7 for its layout) within the
GST. The first longword in the GSTE points to the GSD.

The virtual page number field (which contains J in Figure 2.27) contains the GP ' I~
of the first GPTE that maps this section.

The global section consists of K pages and, in this example, none of them is partial.
That is, the number of mass storage blocks in the section is an integral multiple
of the number of blocks per page. Given a system with a page size of 8 KB, the
SEC$L_UNIT_CNT field in the GSTE therefore contains the number of pages in
the section multiplied by 16, the number of mass storage blocks per page.

�9 The GSD contains a GSTX that locates the GSTE.

106

63 32 31 30 2V 20 1918 17 16 15 1 0

Type 1 ~ loba l wnte
Pafi.1 secton J L G W I

60 3231 30 21 20 1918 17 16 15

Global valld
paw

Global
Page Frame Nvmber

Global page-
l~le section
page matmal'ized

0 1

0

1 0
&

63 50 49 48 47 32 31 30 21 20 1918 17 16 15 @

Pama1 section J L G ~ ~

0 1 2 (P Page Fmme Number
I

0

o o l o 17 O 3

0

I

1 1 1

63 56 55 3231 30 21 20 1918 17 15 15 1 0

M translflon page

0
Global
SJ33Qrl Page

LTW 0 I " E

I L T ~ O L v ~ I ~ q
1 1 6 1

Global Section TaMe Index
e

0
I,

Modity

I 1 1

Global wnte Q,

I

~ r d a b b J L my-on-reference
Demand zem TVpe 1

1 0 1
I

TVpe 1

Padla1 sectm- -Global

L T ~ O L va~d
Global wnte

1 0
I

0 Syslm Page File Index

L ~ W 0 L ~ a l d
Gtmal wnte

Pamal seclon - Gbbal

Page Fik Page Number

Pamal sechon- -Glabal

Memory Management Data Structures

�9 The original form of each GPTE contains the same GSTX found in the GSD.
When any given GPTE is either valid or in transition, the GSTX is stored in the
corresponding PFN database record PFN$Q_BAK field. Note that a GPTE for a
global page-file section contains a page file backing store address.

The allocation and initialization of global section data structures are described along
with the create and map global section system services in Chapter 3.

Figure 2.27 Relat ions a m o n g Global Sect ion Data Structures

2.7.6 Global Shared Page Table Sections
To map a memory-resident global section using shared page tables, a process first
creates a shared page table region by requesting the $CREATE_REGION_64 service.
This ensures that the global section can be mapped starting at a suitable virtual
address, one mapped by the first L3PTE in an L3PT.

If the memory-resident global section has not already been created, the process then
requests either the Create Permanent Global Demand Zero Section ($CREATE_
GDZRO_64) system service or the Create and Map to Global Demand Zero Section
($CRMPSC_GDZRO_64) system service to create and map the section as well as the
global page table section. To map the sections, another process would request either
the Map to Global Section ($MGBLSC_64) system service or the $CRMPSC_GDZRO_
64 system service.

Figure 2.28 shows part of the page table hierarchies of two independent processes.
Each L1PT maps a process-private L2PT and process-private L3PTs for P0 and P1
space, and each also maps a shared L3PT that maps a memory-resident global section.
For simplicity, the figure shows only one shared data page and omits the shared L2PTs
and L3PTs that map system space.

108

Process A U P T i :

Process A Space Process B Space #

RoatssA
PI Space page

ProoessB
Space Page process^ WPT

L3F'lE

T T ;
ProoessB

Process B L l PT

X
Indexed physical address pointer

Shared WPT Shared Data Page
................

- L3F'lE " '

Shared Space

Memory Management Data Structures

2.8 Data Structures for Swapping
The swapper and page fault handler both reference page tables, described in Section
2.3. In addition, the following three data structures are used primarily by the swapper
but also indirectly by the page fault handler:

�9 Balance set slots

�9 PHD reference count array

�9 Process index array

The SYSGEN parameter BALSETCNT, whose global cell name is SGN$GL_
BALSETCT, specifies the number of elements in each array.

2.8.1 Balance Set Slots
A balance set slot is a piece of system virtual address space reserved for a PHD. The
number of balance set slots defines the maximum number of concurrently resident
processes.

When the system is initialized, an amount of system virtual address space equal to
the size of a PHD times BALSETCNT is allocated. The location of the beginning of
the balance set slots is stored in global cell SWP$GL_BALBASE. The size of a PHD in
pages is stored in global location SWP$GL_BSLOTSZ.

Figure 2.29 shows this area. Appendix Size of System and P1 Virtual Address Spaces
describes the calculations performed by SYSGEN to determine the size of the PHD.

Figure 2.29 Balance Set Slots Containing Process Headers

Balance Set
PFN Database PHD Slots

PFN$L_PHD "
. ,

~", Slot 0

-- PHV,NDEX-M iii S ,o , ,

Slot M

l Slot
BALSETCNT-1

SWPSGL_BALBASE

I~ ._. SWP$GL_BSLOTSZ
pages

T

110

F i g u r e 2.30 B a l a n c e Set S lo t A r r a y s

PHV$GL_REFCBAS_LW PHV$GL_PIXBAS

I T I
~5 o I ~5

The contents of
PHD$L_PHVINDEX
are used as an
index into each of
these arrays.

Reference Count Process Index

SCH$GL_PCBVEC

I L I c v,c,o,

2.8

@ SCH$GL_PCBVEC _ ~
+ (4 * process index) Pointer to PCB:

Data Structures for Swapping

BALSETCNT
- - entries in

each array

PCB of Process
Whose PHD
Is in Slot M

MAXPROCESSCNT
entries

2.8.2 Ba lance Set Slot Ar rays

As shown in Figure 2.30, the system maintains two arrays describing each process
with a PHD stored in a balance set slot. Both arrays are indexed by the balance set
slot number occupied by the resident process. The balance set slot number is stored in
the fixed portion of the PHD at offset PHD$L_PHVINDEX. Entries in the first array
contain the number of references to each PHD. Entries in the second array contain an
index into a longword array that points to the PCB for each PHD.

Global cell PHV$GL_REFCBAS_LW contains the starting address of the longword
reference count array. Each of its e lements counts the number of reasons that the cor-
responding PHD cannot be removed from memory. Chapter 4 lists the circumstances
under which an element is incremented and decremented. A value o f - 1 in a reference
count array element means that the corresponding balance set slot is not in use.

111

Memory Management Data Structures

Global cell PHV$GL_PIXBAS contains the s tar t ing address of the process index word
array. Each of its elements contains an index into the longword array, based at the
global pointer SCH$GL_PCBVEC. An element in the longword PCB vector contains
the address of the PCB of the process with tha t process index. Figure 2.30 i l lustrates
how the address of a PHD is t ransformed into the address of the PCB for tha t process,
using the entry in the process index array.

A value of 0 in the process index ar ray entry means tha t the corresponding balance set
slot is not in use. A value o f - 1 in a process index ar ray entry means tha t the process
whose PHD used tha t balance set slot has been deleted and its PHD can be deleted to
reclaim physical memory as well as the balance set slot.

If the PHD address is known, the balance set slot index can be calculated or obtained
from PHD$L_PHVINDEX. By using this as an index into the process index array, the
longword index into the PCB vector is found. The ar ray element in the PCB vector is
the address of the PCB, whose PCB$L_PHD entry points back to the balance set slot.
Chapter Process Creation contains a more detailed description of the PCB vector and
its use by the Create Process ($CREPRC) system service.

2.8.3 Comment on Equal-Size Balance Set Slots
In the original VAX/VMS design, a fixed amount of vir tual address space was reserved
for each balance set slot, despite the fact tha t PHDs would vary in size a great deal
because of differences in section count, working set list size, and vir tual address size.

This design simplified memory management code and ensured tha t if a free balance set
slot were available, its size would be sufficient to inswap any process. It also simplified
keeping track of the state of PHD pages with fixed-length PHD page arrays.

Another reason for this choice was tha t it enabled easy calculation of an associated
PHD address from a PFN for a private page. PFN$L_PTE contained the system space
vir tual address of the PTE mapping tha t page. (Recall tha t page tables were par t of
the PHD.) From that, it was easy to identify which PHD contained the PTE.

Although the last reason no longer holds because the page tables have been removed
from the PHD, the balance set slots remain equal-size.

2.9 Data Structures Describing the Page and Swap Files
Page and swap files are used by the memory management subsystem to save physical
page contents and process working sets. Page files are used to save the contents of
modified pages that are not in physical memory. With OpenVMS Version 7.3, the
use of page files is recommended, but not absolutely necessary, on a system with
enough memory to accommodate all modified pages. The crash dump is wri t ten to
the pr imary page file when the system crashes and there is no dump file (see Chapter
Error Handling).

112

2.9 Data Structures Describing the Page and Swap Files

Swap files save the working sets of processes tha t are not in the balance set. On
today's large memory systems, there is typically little or no swapping. However, on a
system tha t allows very large working sets and tha t occasionally has a load of many
processes, swapping is likely to occur. When it does, having at least one swap file is
desirable, because a swap file is typically less f ragmented than a page file. Moreover,
after several large processes are outswapped into a page file, the page file may be
sufficiently full to hinder modified page write clustering.

If there is insufficient space in the swap files, or if there are no swap files, a process
can be outswapped to a page file unless SYSGEN pa rame te r NOPGFLSWP is set,
inhibiting swapping to page files.

OpenVMS keeps t rack of total page and swap file usage in the following global cells:

MMG$GQ_PAGEFILE_PAGES, total number of pages in all installed page files

MMG$GQ_PAGEFILE_ALLOCS, total number of pages allocated from all instal led
page files

MMG$GQ_PAGEFILE_REFS, count of all pages to be backed by page files

MMG$GQ_SWAPFILE_PAGES, total number of pages in all installed swap files

MMG$GQ_SWAPFILE_ALLOCS, total number of pages allocated from all instal led
swap files

The subsections tha t follow discuss the data s t ructures tha t describe page and swap
files, except for the page file map (PFLMAP) structure, described in Chapter 6.

2.9.1 Page File Control Blocks
Each page and swap file in use is described by a data s t ructure called a page file
control block (PFL). A page or swap file can be placed in use ei ther automatical ly
during system initialization or manual ly through SYSGEN commands. In ei ther
case, code in module [SYSINI]INITPGFIL allocates a PFL from nonpaged pool and
initializes it.

In addition, each page and swap file is described by two bitmaps:

�9 The storage bi tmap has one bit for each page in the file. A value of 1 means the
mass storage blocks equivalent to one page of memory are free; a value of 0 means
the page is in use. (Although the unit typically associated with a file is a mass
storage block, page and swap files are also described in terms of their capacity to
hold pages of memory.)

�9 Each bit in the directory bi tmap represents 16 bits in the storage bi tmap tha t
are aligned on a 16-bit boundary. A value of 1 in a directory bit means all the
corresponding bits in the storage bi tmap are 1; a value of 0 means some or all of
them are 0.

bi tmap first to allocate pages, ra ther than the storage bitmap, Scanning the directory
improves performance.

113

Memory Management Data Structures

Initializing the PFL includes the following operations:

1. The file is opened and a special window control block is built to describe all the
file's extents. The special WCB, called a cathedral window, ensures tha t the
memory management subsystem does not have to take a window turn (see Chapter
I/O System Services), which could lead to a system deadlock.

2. The address of the WCB is stored in the PFL.

3. The sizes of the storage and directory bitmaps are calculated. If the combined sizes
of the bitmaps are less than a page of memory, they are allocated from nonpaged
pool. Otherwise, they are allocated from $2 space. Both bitmaps are initialized to
all rs .

4. The address of the PFL is stored in an available slot in the page-and-swap-file
vector. The slot number is the index tha t identifies tha t page or swap file. If the
PFL represents a page file, it is also linked into one of four page file lists. Section
2.9.2 contains more details.

Figure 2.31 shows the layout of a PFL.

PFL$W_SIZE and PFL$B_TYPE are the s tandard dynamic data s tructure fields.
PFL$L_POOLBYTES contains the size of the nonpaged pool request.

PFL$L_PFC is the number of pages to try to cluster on a page read; it sets an upper
limit on modified page writer clustering (see Chapter 4). It is the min imum of 1,024
and SYSGEN parameter MPW_WRTCLUSTER.

PFL$L_WINDOW is the address of the WCB tha t describes the mapping extents
of the file, which enable file-relative, or virtual, block numbers to be converted to
volume-relative, or logical, block numbers.

Generally, PFL$L_VBN contains zero; in the case of a primary page file in use as a
crash dump file, it contains a number that reserves enough blocks in the page file to
contain the dump. If the dump has already been analyzed, one page's worth of blocks
is reserved. If there is a valid unanalyzed dump in the file, PFL$L_VBN contains the
size of the dump in blocks rounded up to the next multiple of one page's worth of mass
storage blocks. Chapter Error Handling discusses use of the primary page file as a
dump file.

PFL$L_VBN has an additional use for a page file larger than FFFFFF16 pages.
When installing such a file, SYSGEN divides it into segments of FFFFFF16 blocks. It
initializes a PFL for each segment, plus one for the last partial segment. PFL$L_VBN
indicates the star t ing virtual block number of each segment. A page in a segment is
represented by the combination of page file index and a page number relative to the
start of the segment. The page number is thus small enough to fit into the page file
page number portion of a page file backing store PTE. To calculate the actual backing
store address, the page file page number is multiplied by the blocks per page and then
added to the contents of the associated PFL$L_VBN.

When installing a swap file larger than FFFFFF16 pages, SYSGEN similarly divides it
into segments of FFFFFF16 pages.

114

2.9 Data Structures Describing the Page and Swap Files

F i g u r e 2.31 P a g e and S w a p F i l e D a t a b a s e

MMG$GPQ_PAG E_SWAP_VECTOR

INFO_LONG0

INFO_LONG1

~I ~'PEI SIZE

PTRCNT

; T ---
I~ I I =_ _

L_7-

PFL Rags
Bit Meaning
0 Initialized
1 Page space allocation has failed
2 Swap space allocation has failed
3 (reserved)
4 Deinstall pending

5 - 31 (reserved)

"1

BITMAPSIZ
bytes

.-II,
PFL

FLINK

BLINK

(reserved) TYPE SIZE

PFC

WINDOW

VBN

BITMAPSIZ

FREPAGCNT

- - BITMAP ._

- - BITMAP_DIR - -

-- LAST DIR_QUAD --

(reserved) (12 bytes)

POOLBYTES

S2PAGES

MINFREPAGCNT

PGFLX

FLAGS

REFCNT

MAXVBN

STARTBYTE

MAX_ALLOC_EXPO

CUR_ALLOC_EXPO

BITMAP_QUADS

DIR_QUADS

�9 DIR_CLUSTER (32 bytes) �9

�9 One Bit per Page of File i
I (bit set for available page)

Note that the PFL contains a WCB field, virtual block number field, and page fault
cluster factor field at the same relative offsets they are in a section table entry.
Because all fields are present and at the same offsets, page file and section file I/O
requests can be processed by common code, independent of the data structure that
describes the file being read or written.

115

Memory Management Data Structures

PFL$L_FREPAGCNT is the actual number of pages that can be accommodated by the
free blocks in the page file. This field is not decremented until the modified page wri ter
actually assigns space to a particular virtual page. It is incremented whenever a page
file page is released, either because its virtual page is being deleted or its contents are
known to be obsolete. (That is, when a page previously assigned space in a page file is
placed into the modified page list, its backing store copy can no longer be regarded as
good.)

PFL$L_BITMAPSIZ is the length of the storage bitmap in bytes, and PFL$L_
BITMAP_QUADS, its length in quadwords. If the bitmap is allocated from $2 space,
its size in pages is stored in PFL$L_S2PAGES; otherwise, the field contains 0. PFL$Q_
BITMAP contains the address of the start of the storage bitmap.

PFL$Q_BITMAP_DIR contains the address of the s tar t of the directory bitmap.
PFL$Q_DIR_QUADS contains its size in quadwords. PFL$L_STARTBYTE identi-
fies the directory bitmap quadword at which the next scan for free blocks should begin.
A negative value means that the directory bitmap is all zeros, indicating a fragmented
page file, and that the storage bitmap has to be scanned, s tar t ing at the quadword tha t
is the complement of the negative value.

PFL$Q_LAST_DIR_QUAD contains the initial value of the last directory quadword.

PFL$L_DIR_CLUSTER is an eight-longword array that describes the directory bi tmap
and indicates the degree of fragmentation of available space in the file. The first
element counts the number of set bits in the directory bitmap. The second element
records the number of pairs of bits that are set within each directory quadword. The
third element counts the number of groups of four adjacent set bits, and so on through
the seventh element, which counts the number of quadwords equal t o - 1 . The eighth
element is unused. The counts are initialized when the file is installed and updated as
pages are allocated and deallocated.

A directory quadword o f - l , for example, has 64 single bits, 32 pairs, 16 groups of four,
eight groups of eight, four groups of 16, two groups of 32, and one group of 64. Such a
quadword would be represented in each of the seven different counters.

PFL$L_MAX_ALLOC_EXPO contains the largest index into this array of the nonzero
element whose group size represents a cluster less than or equal to PFL$L_PFC. For
example, a PFL$L_PFC value of 64 pages is represented by four adjacent directory
bits, and thus PFL$L_MAX_ALLOC_EXPO is 2.

PFL$L_CUR_ALLOC_EXPO contains the index currently being used for this page
file. Initially, it has the same value as PFL$L_MAX_ALLOC_EXPO. When the file
becomes full or fragmented and there are no more groups of the size corresponding to
PFL$L_MAX_ALLOC_EXPO, PFL$L_CUR_ALLOC_EXPO is decremented. If the file
becomes more full or fragmented and there are no more groups corresponding to tha t
size, PFL$L_CUR_ALLOC_EXPO is decremented again. As pages are deallocated and
the directory counters updated, PFL$L_CUR_ALLOC_EXPO can be incremented to
reflect availability of the next larger group. Keeping track of the largest group in this
manner prevents fruitless scans of the directory bitmap.

116

2.9 Data Structures Describing the Page and Swap Files

PFL$L_MINFREPAGCNT is the "low-water mark" for the file and represents the
smallest number of pages free during the use of the file.

PFL$L_PGFLX is the index number of the page-and-swap-file vector entry that con-
tains the address of the PFL.

PFL$L_FLAGS contains bits describing the state of the file.

PFL$L_REFCNT contains the number of pages used in the file for paging or swapping.

PFL$L_MAXVBN is the mask applied to a PTE with a page file backing store address.
For either type of file, it contains the value FFFFFF16.

If the bitmaps were allocated from nonpaged pool, the storage bitmap begins at offset
PFL$L_BITMAPLOC. The directory bitmap follows it.

Chapter 4 describes the use of page files, and Chapter 6, of swap files.

2.9.2 Page-and-Swap-File Vector
Pointers to the PFLs are stored in a nonpaged pool array called the page-and-swap-
file vector. The array contains 255 longwords and can accommodate pointers to 254
files, the maximum number of page and swap files that can be in use on the system.
SYSGEN parameters SWPFILCNT and PAGFILCNT are obsolete as of OpenVMS
Version 7.3; a maximum-size array is always allocated. A header precedes the array.
The macro $PTRDEF defines symbolic names for the fields in the header.

A page or swap file is identified by an index number indicating the position of its PFL
address in this array. Addresses of swap file PFLs are stored at the beginning of the
array, and addresses of page file PFLs, at the end of the array.

During system initialization, the routine EXE$INIT, in module INIT (see Chapter
Operating System Initialization and Shutdown), allocates and initializes the page-and-
swap-file vector.

It initializes PTR$L_INFO_LONG0 to 0 and PTR$L_INFO_LONG1 to 255 to indicate
no page or swap files have been installed. When a swap file is installed, OpenVMS
increments PTR$L_INFO_LONG0; when a page file is installed, OpenVMS decrements
PTR$L_INFO_LONG1. Each longword identifies the most recently used slot number
for files of that type. The third longword of the header contains the size of the data
structure, a type value of DYN$C_PTR, and a subtype value of DYN$C_PFL. PTR$L_
PTRCNT contains the number of elements in the array. The array begins at the next
longword.

EXE$INIT stores the address of the structure in MMG$GPQ_PAGE_SWAP_VECTOR.
Figure 2.31 shows the use of the page-and-swap-file vector data area to point to PFLs.
EXE$INIT initializes each pointer with the address of the null page file control block,
the contents of MMG$AR_NULLPFL. For the most part, this address serves as a zero
value, indicating that no page or swap file with this index is in use.

117

Memory Management Data Structures

A PFL for a page file is also linked into one of four circular lists, in descending order
of its free space:

1. Page files that have at least one cluster's (PFL$L_PFC) worth of adjacent pages

2. Page files that do not have even one cluster's worth of adjacent pages but do have
set bits in the directory bitmap

3. Page files that do not have set bits in the directory bitmap but do have set bits in
the storage bitmap

4. Page files that are full or being deinstalled

A four-longword array at MMG$GA_PAGE_FILES contains the current positions in
each list. Pages are allocated from the first PFL found, beginning with the first list.
After pages are allocated from a PFL, the pointer into its list is moved to the next PFL
in the list, to enable more even page file use. Chapter 4 has additional details.

The SYSINIT process (see Chapter Operating System Initialization and Shutdown)
places in use SYS$SPECIFIC:[SYSEXE]PAGEFILE.SYS, the primary page file, if it
exists. (Any page file installed at a later stage of system initialization or operation is
not considered a primary page file, even if it is the first page file installed.) SYSINIT
builds a PFL and places its address in the page-and-swap-file vector. The first page
file installed has an index value of 254. Additional page files have decreasing index
values.

SYSINIT also installs SYS$SPECIFIC:[SYSEXE]SWAPFILE.SYS, if it exists, as the
primary swap file. (A swap file installed at a later stage is not a pr imary swap file,
even if it is the first one.) The first swap file installed has index 1. If there is no swap
file, index 1 points to the null PFL. Additional swap files have increasing index values.

Any additional page and swap files are placed in use by SYSGEN in response to the
commands INSTALL/PAGEFILE and INSTALL/SWAPFILE. Installing page files other
than the primary one on different disks allows for balancing the paging load. A system
with alternative swap files can support a greater number of processes or processes
with larger working sets.

An inactive page or swap file can be removed from use. After a privileged user enters
the SYSGEN command DEINSTALL to initiate the removal of a page or swap file, no
new allocations are made from it. However, the actual removal from use is deferred
until the file is inactive and PFL$L_REFCNT has gone to zero.

2.10 Swapper and Modified Page Writer Page Table Arrays
The I/O subsystem enables an image to make a direct I/O request (direct memory
access transfer) to a virtually contiguous buffer. There is no requirement tha t pages in
a buffer be physically contiguous, only virtually contiguous. This capability is called
scatter-read/gather-write or, more simply, scatter/gather.

118

2.10 Swapper and Modified Page Writer Page Table Arrays

2.10.1 Direct I/O and Scatter/Gather
A combination of hardware and I/O subsystem software supports I/O to and from
physically noncontiguous pages. The manner in which this is supported varies with
processor type and I/O adapter type.

Regardless of the manner of the support, a direct I/O request typically involves locking
the pages of a virtually contiguous buffer into memory. The I/O locking mechanism
brings each page into the working set of the requesting process, makes it valid, and
increments that page's reference count in its PFN database record to reflect the
pending read or write. The buffer is generally described in the I/O request packet
(IRP) through three fields:

�9 IRP$L_SVAPTE has traditionally contained the system virtual address of the first
PTE that maps the buffer.

�9 IRP$L_BOFF and IRP$L_BCNT are used to calculate how many PTEs are required
to map the buffer.

A driver processes this I/O request in a manner suitable to the processor and I/O
adapter. Typically, the PFNs of the buffer are copied into I/O adapter map registers.
After the requested I/O operation is complete, I/O postprocessing code accesses these
fields to decrement each PFN's reference count.

As of OpenVMS Version 7.0, process PTE addresses are no longer in system space
and are thus inaccessible when that process is not current. Consequently, the exact
meaning of IRP$L_SVAPTE has changed. In order for existing device drivers to
work with minimal or no change, however, IRP$L_SVAt~E continues to point to a
nonpageable system space address at which the PTE contents are accessible.

The I/O subsystem implements two techniques:

�9 PTE copy method

�9 PTE window method

The former is used for relatively small buffers, the latter for larger buffers. These
techniques make the change in page table location t ransparent to most device drivers.

In the PTE copy method, PTE contents are copied into a data structure called a direct
I/O buffer map (DIOBM). DIOBMs vary in length. An embedded DIOBM in the IRP
can accommodate the contents of nine PTEs. If necessary, a secondary DIOBM can be
allocated instead.

In the PTE window method, the page table pages that map the buffer are double-
mapped into 32-bit system space. This method has the relatively high overhead of
PTE allocation and translation buffer invalidation of the system space addresses but
can support very large buffers.

The I/O subsystem chooses between the two techniques based on the contents of
IOC$GL_DIOBM_PTECNT_MAX, which contains a value derived from performance
testing. If the buffer has more pages than the contents of that cell, the PTE window
method is used. Otherwise, the PTE copy method is used.

119

Memory Management Data Structures

The OpenVMS Alpha Guide to Upgrading Privileged-Code Applications contains
further information.

2.10.2 Swapper I/0
The swapper is presented with a more difficult problem. It must write a collection of
process pages to disk that are not virtually contiguous.

During system initialization, a piece of nonpaged 32-bit system space is allocated for
the swapper's use. The space contains one quadword for each entry in the largest
possible working set that could be swapped (the minimum of WSMAX and 64 K pages).
This system space is known as the swapper map. The starting address of the swapper
map is stored in global cell SWP$GL_MAP.

As described in Chapter 1, the swapper is an independent process, scheduled like any
other. Its code, however, is part of an executive image loaded into system space. The
swapper temporarily adopts the address space of the process being swapped when it
needs to access the process's page tables. This enables it to keep running from system
space while accessing the page table space of the process being swapped.

When the swapper scans the working set list of the process being outswapped, it copies
the PFNs in every valid PTE to successive entries in its swapper map. The swapper
stores the address of the base of the swapper map in the field IRP$L_SVAPTE before
the IRP is passed to the driver. (The swapper can exercise this control because it
builds a portion of its own IRP.) The swapper map looks just like any other page table
to the hardware/software combination that implements scatter/gather I/O.

What the swapper has succeeded in doing is making pages that were not virtually
contiguous into pages that appear to be virtually contiguous. At the same time that
each PTE is processed, any special actions based on the type of page are also taken
care of. The whole operation of outswap and the complementary steps taken when the
process is swapped back into memory are discussed in Chapter 6.

The swapper map supports only one use at a time. When an inswap or outswap
operation is in progress, the swap-in-progress flag (SCH$V_SIP), in location SCH$GL_
SIP, is set to indicate its use.

2.10.3 Modified Page Writer PTE Arrays
The modified page writer, in its at tempt to write many pages to backing store with a
single write request (so-called modified page write clustering), is faced with a problem
similar to that of the swapper. The modified page writer must build a table of PTEs
just as the swapper does.

Unlike the swapper, which can perform only one swap operation at a time, the modified
page writer can perform concurrent multiple modified page writes. The SYSGEN
parameter MPW_IOLIMIT specifies its maximum number of concurrent I/O operations.

120

2.11 Relevant Source Modules

When the modified page writer is building an I/O request, it can encounter three
different types of page:

�9 Pages bound for a swap file (PFN$V_SWPPAG_VALID set) are writ ten individually.

Pages bound for a section file are not necessarily virtually contiguous; these pages
will be written as a group only if they are virtually contiguous.

Pages on the modified page list that are to be written to a particular page file may
not only be noncontiguous within one process address space but may also belong to
several processes. It is these pages that the modified page writer must cluster so
they appear virtually contiguous.

During system initialization, the modified page writer's initialization routine,
MPW$INIT in module WRTMFYPAG, allocates nonpaged pool to build I/O maps. It al-
locates MPW_IOLIMIT number of structures and links them into a lookaside list. Each
structure is large enough for an IRP and two arrays, each of MPW_WRTCLUSTER
elements. One array is a quadword array, and the other is a longword array.

When modified pages are written, the first array is filled with PTEs containing PFNs
in a manner analogous to the way in which the swapper map is used. The longword
array contains an index into the PHD vector for each page in the map. In this way,
each page that is put into the map and written to its backing store location is related
to the PHD containing the PTE that maps this page. The operation of the modified
page writer, including its clustered writes to a page file, is discussed in detail in
Chapter 4.

2.11 Relevant Source Modules
Source modules described in this chapter include

[LIB]BODDEF.SDL
[LIB]GSDDEF.SDL
[LIB]LDRHPDEF.SDL
[LIB]PCBDEF.SDL
[LIB]PFLDEF.SDL
[LIB]PFNDEF.SDL
[LIB]PHDDEF.SDL
[LIB]PTEDEF.SDL
[LIB]RDEDEF.SDL
[LIB]RMDDEF.SDL
[LIB] SYSPARDE F. SDL
[STARLET] PMMDEF.SDL
[STARLET] SECDEF.SDL
[STARLET]VADEF.SDL
[SYS]ALLOCPFN.MAR
[SYS]INIT.C
[SYS] INIT_PFL B ITMAP. C
[SYS]INITPGFIL.MAR

121

Memory Management Data Structures

[SYS] LD R_INIT_ME M. B64
[SYS] PAGE_FILE.C
[SYS] RE S_ME M_INIT. C
[SYS] SYSTEM_REPLICATE.C

122

Chapter 3
Memory Management System Services

A place for everything and everything in its place.

Isabella Mary Beeton, The Book of Household Management

This chapter describes those system services tha t affect process-private vir tual address
space and several related others:

�9 $CREATE_REGION_64, which assigns characteristics to an area of a given size

�9 $CRETVA and $CRETVA_64, which create demand zero pages in P0, P1, and P2
space

�9 $EXPREG and $EXPREG_64, which create demand zero pages at the next avail-
able address within a specified virtual address region

�9 Various create and map section services tha t create a process-private or global
section tha t maps the blocks of a file or part icular pages of physical address space
to a portion of process-private address space

�9 Various create and map section services tha t create and map memory-resident or
Galaxywide global sections

�9 $MGBLSC, $MGBLSC_64, and $MGBLSC_GPFN_64, which map to an existing
global section

�9 $DELTVA and $DELTVA_64, which delete P0, P1, or P2 pages

�9 $CNTREG, which deletes the upper end of P0 space or the lower end of P1 space

�9 $DGBLSC, which marks a global section for deletion when no more processes are
mapped to it

�9 $DELETE_REGION_64, which deletes a given region

�9 $CREATE_BUFOBJ and $CREATE_BUFOBJ_64, which create a buffer object

�9 $DELETE_BUFOBJ, which deletes a buffer object

�9 Services tha t re turn information about address space, such as $GET_REGION_
INFO, $GETSECI, and $FIND_GPAGE_64

123

Memory Management System Services

�9 $SETSWM, which enables or disables process swapping

$SETPRT and $SETPRT_64, which change the protection on pages of virtual
address space

�9 $SETFLT and $SETFLT_64, which set the fault-on-execute bit for a page

�9 $COPY_FOR_PAGE, which reads data from a page with fault-on-read set

Chapter 4 describes the Update Section File on Disk ($UPDSEC) and Update Global
Section File on Disk ($UPDSEC_64) system services, which write the contents of all
modified pages in a section to their backing store. It also describes the Fault Page
($FAULT_PAGE) system service, requested to fault a set of pages prior to their use.
Chapter 5 describes the system services that control a process's working set list.

3.1 Common Characteristics of Memory Management
System Services

This chapter describes several types of memory management system services. The
original system services accept only 32-bit address arguments and have been sup-
plemented with 64-bit services that take 64-bit address arguments. The latter have
names ending in _64 to indicate that they accept 64-bit addresses by reference. For
example, $CRETVA is the original system service requested to create virtual address
space. It continues to be used, but to create P2 space, an application must request
$CRETVA_64. This chapter uses the term 32-bit services to refer to the original ser-
vices and the term 64-bit services for the services whose names end in _64 or services
that can affect P2 space.

When 64-bit support was provided for $CRMPSC, that complex system service was
split into a number of new services. $CRMPSC both creates and maps various types
of process and global sections. The new services deal with either process or global
sections, but not both. Generally, three new services are provided for each type of
section: one to create the section if it does not already exist and then to map it, one
simply to create the section, and one simply to map an existing section. The names
of many of the new services end in _64, for example, $CRMPSC_PFN_64, but those
without address arguments do not, for example, $CREATE_GPFN.

A process's ability to use the services described in this chapter may be limited by
access mode, process quotas, limits, privileges, and SYSGEN parameters.

The level 3 page table entry (L3PTE) associated with each page of virtual address
space contains an owner field (see Figure 2.12) that specifies which access mode
owns the page. The memory management system service checks the owner field to
determine whether the service's requestor has an access mode at least as privileged
as the owner mode of the page and thus is able to manipulate the page in the desired
fashion.

In general, a process is only permitted to affect P0, P1, and P2 address space, not
system space, with these services. The only exception is when a process uses the
buffer object services to double-map process-private address space into system space.

124

3.1 Common Characteristics of Memory Management System Services

Almost all the memory management system services accept a desired virtual address
range as one or more input arguments. Many of the services can partly succeed, that
is, affect only a portion of the specified address range. A system service indicates
partial success by returning an error status and the address range for which the
operation completed.

3.1.1 Common Characteristics of the 32-Bit System Services
Many of the 32-bit memory management system services have similar structures and
sequences and similar arguments. The input range for a 32-bit service is specified
by the address of a two-longword array, the INADR argument. The first longword is
the starting address, and the second, the address of the last byte to be created. The
RETADR argument is the address of a two-longword array that receives the addresses
of the starting and ending bytes actually created. The ACMODE argument specifies the
owner of the address space, the least privileged mode that can access it.

Each 32-bit system service first executes code generated by a MACRO-32 macro that
tests whether enough arguments have been supplied and, if not, returns the error
status SS$_INSFARG to the requestor.

Each service validates its arguments. A typical service makes the following checks:

It tests the accessibility of the INADR and RETADR arguments.

It maximizes the ACMODE argument with the mode of the service requestor.

It tests the starting and ending addresses and, if either is a system space address,
returns the error status SS$_NOPRIV.

The service then explicitly creates scratch space on the stack to record information
about the service request.

The macro $MMGDEF defines symbolic offsets into this scratch space, which is pointed
to by the frame pointer (FP) register while the system service procedure is executing.
Figure 3.1 shows the layout of the scratch space on the stack. Some fields are used by
only a few system services; others are common to all.

MMG$L_MMG_FLAGS contains flag bits associated with the operation. Some of
the 64-bit services use these same flags, passing them to inner mode routines as an
argument.

* Bit MMG$V_CHGPAGFIL in this longword, when set, means page file quota
should be charged for the operation.

�9 Bit MMG$V_NOWAIT_IPL0, when set, means that a memory management routine
should return with an error status rather than waiting at interrupt priority level
(IPL) 0 for I/O completion.

Bit MMG$V_NO_OVERMAP, when set, means that address space to be created
may not overlap existing address space.

125

Memory Management System Services

F i g u r e 3.1 Layout of Scratch Space on the Stack

PGFLCNT

PAGCNT / EFBLK

VFYFLAGS

SVSTARTVA

PAGESUBR

SAVRETADR

CALLEDIPL

PER_PAGE

ACCESS_MODE

MMG_FLAGS
F P . V.L

T T

Bit MMG$V_PARTIAL_FIRST, when set, means that the first page to be mapped
is only partially backed by section file (see Section 3.6.1.1, step 12).

Bit MMG$V_PARTIAL_LAST, when set, means that the last page to be mapped is
only partially backed by section file (see Section 3.6.1.1, step 12).

Bit MMG$V_NO_IRP_DELETE, when set, means that an I/O request packet
created by the $UPDSEC system service is currently in use and should not be
deallocated to nonpaged pool.

Bit MMG$V_DELPAG_NOP, when set, means that not all pages in the specified
region could be deleted.

Bit MMG$V_CLUSTER_DEL, when set, means that the per-page deletion routine
(see Section 3.10.2) can delete a whole cluster of pages at once.

Bit MMG$V_WINDOW, when set, means that the page is part of a memory-
resident global section or a section mapped by page frame number (PFN).

Bit MMG$V_SHARED_L3PTS, when set, means that the page is part of a memory-
resident global section that is mapped with shared page tables.

Bit MMG$V_RWAST_AT_IPL0, when set, means that the per-page deletion routine
(see Section 3.10.2) should wait the kernel thread at IPL 0 rather than IPL 2.
The bit is set by the $DELTVA and $DELTVA_64 system services. The IPL 0 wait
enables Extended QIO Processor (XQP) kernel mode asynchronous system traps
(ASTs) to be delivered, preventing a deadlock in certain circumstances.

MMG$L_ACCESS_MODE contains the access mode associated with the operation, the
maximized ACMODE argument.

126

3.1 Common Characteristics of Memory Management System Services

MMG$L_PER_PAGE is the per-page processing context area. It contains one defined
flag, MMG$V_DELGBLDON. When set, the bit means that global pages in the range
have already been deleted.

MMG$L_CALLEDIPL records the IPL from which the service was requested, typically
0.

MMG$L_SAVRETADR contains the value of the optional service RETADR argument.

MMG$L_PAGESUBR contains the procedure value of the executive routine tha t
performs the requested service on a single page.

MMG$L_SVSTARTVA saves the start ing virtual address specified by the service
requestor.

MMG$L_VFYFLAGS contains the section flags passed as an argument to a service
such as $CRMPSC and verified by the service.

MMG$L_PAGCNT and MMG$L_EFBLK are two names for the same field. MMG$L_
PAGCNT, used by services related to buffer objects, contains the number of pages in
a buffer object being created or deleted. MMG$L_EFBLK contains the number of the
end-of-file block for a section file.

MMG$L_PGFLCNT contains the number of pages of page file quota that have been
reserved against the job's quota for this request.

After creating and initializing the scratch space on the stack, a 32-bit memory man-
agement system service takes the following steps:

1. It performs argument validation.

2. It raises IPL to 2 to block the delivery of an AST. In addition to blocking process
deletion, this prevents the execution of AST code that could cause unexpected
changes to the page tables, working set list, region descriptor entries (RDEs), and
other data structures.

3. If appropriate, it checks page ownership to ensure that a less privileged access
mode is not at tempting to alter the properties of pages owned by a more privileged
access mode.

4. It calls the routine MMG$CREDEL, in module SYSCREDEL, passing it the
procedure value of a per-page service-specific routine to accomplish the desired
action of the system service. MMG$CREDEL performs general page processing
and calls the per-page routine for each page in the desired range.

5. It reprobes write accessibility of any output arguments.

6. It returns the address range actually affected by MMG$CREDEL's actions in the
optional RETADR argument.

7. It restores the entry IPL and returns to its requestor.

In some cases, step 4 in that sequence is replaced by calling a routine that affects all
pages in the desired range.

127

Memory Management System Services

MMG$CREDEL takes the following steps:

1. It tests the s tar t ing and ending addresses of the range and, if ei ther is in system
space, re turns the error s tatus SS$_NOPRIV.

2. It initializes MMG$L_PAGESUBR and MMG$L_SVSTARTVA in the scratch space
and loads registers with information such as process control block (PCB) address,
process header (PHD) address, page count, s tar t ing vir tual address, and ending
virtual address.

3. MMG$CREDEL calls the per-page routine. Unless the routine re turns an error
status, MMG$CREDEL continues to call it, once per page.

4. If the per-page routine re turns the s ta tus SS$_REGISFULL, MMG$CREDEL
converts it to SS$_VASFULL.

5. When an error occurs or there are no more pages, MMG$CREDEL re turns to its
caller with a s ta tus code and the address of the last affected page.

3.1.2 Common Characteristics of the 64-Bit System Services
The 64-bit system services have a common s t ructure and sequence and similar argu-
ments. They do not explicitly use scratch space on the stack.

A 64-bit service typically takes the following steps:

1. It performs a rgument validation, for example:

These services are writ ten in C and must explicitly test whether too few or too
many arguments have been supplied. Each checks the number of a rguments
and, if incorrect, re turns either the error s ta tus SS$_INSFARG or SS$_TOO_
MANY ARGS.

It checks tha t output arguments are accessible and, if not, re turns the error
s tatus SS$_ACCVIO.

If the service has a FLAGS argument , it checks tha t only valid flags were set in
the a rgument and, if not, re turns the error s ta tus SS$_IVSECFLG.

It maximizes the ACMODE argument .

2. It raises IPL to 2 to block AST delivery.

3. If appropriate, it checks page ownership.

4. It loops, calling a per-page service-specific routine, typically the same routine as its
32-bit counterpart .

5. It reprobes write accessibility of any output arguments .

6. It re turns the address range actually affected in the RETURN_VA_64 and RETURN_
LENGTH_64 arguments .

7. It restores the entry IPL and re turns to its requestor.

128

3.2 Virtual Address Region Creation

3.2 Virtual Address Region Creation
The Create Virtual Region ($CREATE_REGION_64) system service is requested to
create a region within process-private address space. Chapter 2 discusses regions and
the RDEs that describe them.

Service arguments include the desired length, protection, and flags that specify
whether the region is in P0, P1, or P2 space; whether its allocation is to be ascending
or descending; whether address space within it should be created automatically in
response to an access violation; whether it should be permanent; and whether its space
is capable of being mapped with shared page tables. Only memory-resident global
sections and Galaxywide global sections are mapped into such a region.

The service creates a region with the requested characteristics, assigns an ID to it, and
returns its ID and address.

The $CREATE_REGION_64 system service procedure, EXE$CREATE_REGION_64 in
module SYS_REGIONS, runs in kernel mode. EXE$CREATE_REGION_64 takes the
following steps:

1. It calculates the number of PTEs in a page table page and the number of bytes
mapped by an L3PT.

2. In addition to making the checks described in Section 3.1.2, it validates its argu-
ments as follows"

a. It checks that REGION_PROW is valid, returning SS$_IVPROTECT if not.

b. It maximizes the create and owner access mode fields in the REGION_PROW
argument with that of the requestor. It checks that the owner mode is less or
equally privileged to the creator mode, returning SS$_IVREGPROT if not.

c. It checks that the LENGTH_64 argument is nonzero and a multiple of the size of
a page, returning the error status SS$_LEN_NOTPAGMULT if not.

d. If VA$V_SHARED_PTS in the FLAGS argument is clear, EXE$CREATE_
REGION_64 checks that the optional START_VA_64 argument, if supplied, is on
a page-aligned boundary and returns the error status SS$_VA_NOTPAGALGN
if not.

e. If VA$V_SHARED_PTS in the FLAGS argument is set, indicating tha t the
region can be mapped by shared page tables, EXE$CREATE_REGION_64
checks that the START_VA_64 argument is a multiple of the number of bytes
mapped by one L3PT. On a system with an 8 KB page size, an L3PT maps 8
MB. It also rounds up the LENGTH_64 argument to such a multiple.

f. It calculates the address of the process-permanent RDE corresponding to the
specified address space.

g. It checks that the LENGTH_64 argument can be expressed in the number of
significant address bits for the system's page size and page table hierarchy, for
example, 43 bits for a page size of 8 KB and a three-level page table. If not, it
returns the error status SS$_VASFULL.

129

Memory Management System Services

h. If the START_VA_64 argument was supplied, it checks tha t the sum of the START_
VA_64 and LENGTH_64 arguments can be expressed in tha t number of bits,
re turning SS$_VASFULL if not. It also checks tha t the START_VA_64 and the
sum of START_VA_64 and LENGTH_64 are within the process-permanent region
specified in the FLAGS argument, re turning SS$_VA_IN_USE if not.

3. It raises IPL to 2.

4. It allocates an RDE from the P1 allocation region and initializes it with infor-
mation from the service arguments. It initializes RDE$Q_REGION_ID from the
contents of PHD$Q_NEXT_REGION_ID and increments them.

5. If the argument START_VA_64 was not specified, it determines the al ignment re-
quirement for the star t ing address.

- - For a region without shared page tables, the s tar t ing address merely needs to
be page-aligned.

- - For a region with shared page tables, EXE$CREATE_REGION_64 first at-
tempts a 512-page alignment so that the shared pages can potentially be
mapped as a 512-page granular i ty hint region.

It scans the list of user-defined RDEs within the specified process-permanent
region, looking for an unused piece of address space with at least the specified
al ignment and size. If it fails to find one and this is a shared page table region, it
tries again, shrinking the desired alignment to the next smaller granular i ty hint
region size, 64 pages, and then, if necessary, to eight pages, and finally to one page.

If it fails to find an unused piece with single-page al ignment tha t is large enough,
it deallocates the RDE and returns SS$_VA_IN USE to its requestor.

6. If START_VA_64 was specified, it scans the list of user-defined RDEs within the
specified process-permanent region, which are ordered by virtual address. It looks
for the place at which the new RDE should be inserted.

- - If the address range of the new RDE overlaps the range of an existing user-
defined RDE, EXE$CREATE_REGION_64 deallocates the new RDE and
returns the error status SS$_VA_IN_USE to its requestor.

- - If there is overlap with the process-permanent region, it adjusts tha t region so
tha t it ends where the new one begins.

7. It inserts the RDE into the list and also at the front of the region ID list (see
Figures 2.2 and 2.3).

8. It lowers IPL.

9. It records peak page file use and virtual size statistics, and stores re turn informa-
tion about the newly created RDE in the RETURN_VA_64, RETURN_REGION_ID_64, and
RETURN_LENGTH_64 arguments. It re turns SS$_NORMAL to its requestor.

130

3.3 Process-Private Virtual Address Space Creation

3.3 Process-Private Virtual Address Space Creation
Among the most basic memory management services are those that create process-
private virtual address space: $CRETVA, $CRETVA_64, $EXPREG, $EXPREG_
64, the various create and map section services, $MGBLSC, $MGBLSC_64, and
$MGBLSC_GPFN_64. The image activator requests some of these services during
image activation, as described in Chapter Image Activation and Exit. An image can
request these services directly to alter process-private address space.

P0, P1, and part of P2 space are described by a single process-private level 2 page
table (L2PT). Additional P2 space requires additional L2PTs. Each space is described
by level 3 page tables (L3PTs), with an L3PTE for each page of address space.

Creating address space typically requires adding page table pages and modifying the
RDE of the affected region as well as initializing L3PTEs to map the new address
space. It may also require initializing one or more L2PTEs.

In the case of address space associated with a process-private section file, creating
address space also involves allocating and initializing a process section table entry
(PSTE). Chapter 2 describes page tables, PTEs, process sections, and PSTEs.

There are several limits on the amount of process-private virtual address space that
can be created:

�9 A process's working set limit can constrain the size of tha t process's address space.
When a process tries to expand its address space, the executive checks whether
there is enough room in the dynamic working set list for the fluid working set
(PHD$L_WSFLUID, initialized from the SYSGEN parameter MINWSCNT), plus
the worst-case number of page table pages required to map it, to allow the process
to perform useful work. If this check succeeds, the virtual address space creation
can proceed. Otherwise, if the process's working set limit is smaller than its quota,
the working set limit is increased. If the working set limit cannot be increased, the
virtual address space creation fails with the error status SS$_INSFWSL. Chapter
5 describes working set limits, quotas, and expansion.

Note that pages from memory-resident and Galaxywide global sections are not
represented in a process's working set list. Shared L3PTs that map a memory-
resident or Galaxywide global section are also not represented in the working set
list.

* Another constraint on the total size of the process address space is page file quota.
Each demand zero page, copy-on-reference (CRF) section page, and process-private
page table page is charged against the job's page file quota, JIB$L_PGFLCNT.
(Although the page file quota is externally represented as pagelets, the quota is
internally maintained in pages.)

Pages from PFN-mapped sections, memory-resident global sections, Galaxywide
global sections, read-only sections, and writable non-CRF sections do not require
page file quota. Shared L3PTs that map a memory-resident or Galaxywide global
section also do not require page file quota.

131

Memory Management System Services

In versions prior to Version 7.3, creation of address space with page file backing
store was limited because a process could page in only four files and the form
of invalid PTE that describes a page file page was limited to a 20-bit number.
OpenVMS recorded how many pages of pageable address space a process had
created to ensure this limit was not reached.

Such accounting is no longer necessary. As of Version 7.3, page file backing store
is not assigned until modified pages are being written out. Assigned backing store
is represented by an eight-bit page file index and a 24-bit page number. Thus, in
each page file, a process could have a theoretical maximum of 2 24 pages of pageable
address space that requires page file backing store (for example, demand zero or
copy-on-reference sections).

In versions prior to Version 7.0, the SYSGEN parameter VIRTUALPAGECNT
controlled the total number of L3PTEs mapping P0 and P1 space that any process
could have. A limit was required because process page tables were mapped as part
of a fixed-length PHD. With the removal of the page tables from system space,
OpenVMS Version 7.0 and later releases place no such limits. The parameter is
obsolete but still exists to provide compatibility to applications that determine
their actions from the value of the parameter. It is set to the maximum value.
System services no longer reference VIRTUALPAGECNT.

In OpenVMS Version 7.0 and later, address space checks are made against
PHD$Q_FREE_PTE_COUNT, which contains the number of unused process-
private virtual pages. It is initialized from the contents of MMG$GQ_PROCESS_
VA_PAGES, the number of pages of process-private address space between zero
and the base of page table space, excluding the gap (see Chapter 1).

3.4 Demand Zero Virtual Address Space Creation
The simplest form of address space creation is the creation of a series of demand
zero pages through the $CRETVA, $CRETVA_64, $EXPREG, or $EXPREG_64 system
services. The services initialize PTEs, that is, create address space, to map the demand
zero pages. A demand zero page is not itself created until the first time the process
accesses it. These services do not create process sections, that is, they initialize PTEs
with no corresponding PSTE.

For the $EXPREG and $EXPREG_64 system services, PTEs to map demand zero pages
are initialized beginning at the first free address in the designated process-private
address region.

For the $CRETVA and $CRETVA_64 system services, PTEs are initialized to map the
specified address range. If any pages already exist in the requested range, they must
be deleted first.

These system services can partly succeed, that is, a number of pages smaller than
the number originally requested may be mapped. After several pages have already
been successfully mapped, the service can run into one of the limits to address space
creation.

132

3.4 Demand Zero Virtual Address Space Creation

3.4.1 $CRETVA System Service
The Create Virtual Address Space ($CRETVA) system service procedure,
EXE$CRETVA in module SYSCREDEL, runs in kernel mode. It has an alterna-
tive entry point, MMG$CRETVA_K, called from code already in kernel mode, such as
image activator routines and EXE$PROCSTRT in module PROCSTRT. The alternative
entry point has additional arguments that enable the caller to specify the protection
of the new address space, whether the new space may overlap existing space, and the
contents of the copy characteristic and no-execute bits in each L3PTE.

EXE$CRETVA takes the following steps:

1. It creates and initializes the scratch space on the stack.

2. It validates its arguments (see Section 3.1.1).

3. It constructs template L3PTE contents for the new pages (see Figure 2.12).

The template L3PTE indicates a demand zero page, with owner access mode
the less privileged of the requesting access mode and the ACMODE argument.
In the case of a normal system service request, the L3PTE has protection bits
enabling read and write access to the owner mode. In the case of entry through
MMG$CRETVA_K, the protection, copy characteristic, and no-execute bits are
specified by the caller.

4. EXE$CRETVA raises IPL to 2 to block AST delivery while it is modifying the PHD.

5. It determines in which region of process-private address space the address range
lies. It checks whether the access mode from which the service was requested is
allowed to create pages in this region and, if not, returns the error status SS$_
NOPRIV.

6. It rounds the starting and ending addresses down to an Alpha page boundary and
calculates the desired page count based on the difference between them.

7. It checks that the address range is entirely within a region and that there is no
overlap with already existing space. If either is false, EXE$CRETVA continues
with step 10.

8. Typically the process is requesting the creation of address space within a region
just beyond the end of what has already been defined. As an optimization for this
common case, EXE$CRETVA calls MMG$TRY_ALL_64 (see Section 3.4.1.1) to test
further whether the entire space can be created.

If the entire address space cannot be created, EXE$CRETVA proceeds with step
10.

9. If none of the limits to growth of the process's virtual address space has been
reached, EXE$CRETVA calls MMG$FAST_CREATE_64, in module SYSCREDEL.

133

Memory Management System Services

MMG$FAST_CREATE_64 and its alternative entry point, MMG_STD$FAST_
CREATE_64, determine the starting address in page table space of the first new
PTE. The routine loops, initializing four L3PTEs in each iteration. Creating the
address space in this manner is significantly faster than creating it one page at a
time through MMG$CREPAG_64.

EXE$CRETVA continues with step 11.

10. If any of the limits to virtual address space growth described in Section 3.3 pre-
vents creation of the entire space, EXE$CRETVA creates it one page at a time,
stopping when the limit is reached. Page-by-page creation is also necessary
if the specified address space overlaps already existing space, since the exist-
ing pages must first be deleted. In either of these cases, EXE$CRETVA calls
MMG$CREDEL, specifying MMG$CREPAG_64 (see Section 3.4.1.2) as the per-
page service-specific routine.

11. EXE$CRETVA returns any unused page file quota, records peak page file use
and virtual size statistics, and stores return information in the optional RETADR

argument.

12. If the process has any deleted sections to be cleaned up, it calls
MMG$DALCSTXSCN, in module PHDUTL, to check whether any process section
table entries can be deallocated (see Section 3.9.2).

13. It restores the IPL at entry and returns to its requestor.

3.4.1.1 MMGLSTD]$TRY_ALL_64 Routine
MMG$TRY_ALL_64 and its alternative entry point, MMG_STD$TRY_ALL_64, in
module SYSCREDEL, test whether there is enough free space in the region, enough
process-private address space (PHD$Q_FREE_PTE_COUNT), enough room in the
dynamic working set list, and enough page file quota (see Section 3.3).

If all tests pass, it adjusts RDEQ_REGION_SIZE, RDEPQ_FIRST_FREE_VA,
and PHD$Q_FREE_PTE_COUNT and charges against reserved page file quota. If
necessary, it initializes L2PTEs to map new L3PT pages for the address space being
created. It returns a status indicating its findings.

3.4.1.2 MMGLSTD]$CREPAG_64 Routlne
MMG$CREPAG_64, with its alternative entry point, MMG_STD$CREPAG_64, in mod-
ule SYSCREDEL, is the per-page service-specific routine for the $CRETVA, $CRETVA_
64, $CRMPSC_FILE_64, $CRMPSC_GDZRO_64, $CRMPSC_GPFN_64, $CRMPSC_
PFN_64, $EXPREG, $EXPREG_64, $MGBLSC_GPFN_64, and $MGBLSC_64 system
services.

It is used when the entire page creation request cannot be performed as a single
operation, possibly because the new pages would overlap existing address space that
must be deleted first or because the process lacks enough quota and only part of the
request can be satisfied.

134

3.4 Demand Zero Virtual Address Space Creation

MMG$CREPAG_64 is called with arguments that include the L3PTE contents for the
new page, the address of the RDE for the region to contain the new space, and the
total number of pages to create.

MMG$CREPAG_64 takes the following steps:

�9 It tests whether the space required by the pages to be mapped is beyond the
limit of the region's defined address space. If the pages are within the limit,
MMG$CREPAG_64 continues with step 5.

, Otherwise, it calls the local routine EXPANDCHK_64 (see Section 3.4.1.3) to check
whether the region can accommodate the entire creation request and to create any
necessary page table pages.

, If the entire creation request can now be satisfied, MMG$CREPAG_64 continues
with step 6.

. Otherwise, it calls EXPANDCHK_64 to expand the region by a single page.
MMG$CREPAG_64 returns any errors from EXPANDCHK_64 to its caller. If
the expansion was successful, MMG$CREPAG_64 continues with step 6.

. It calls MMG_STD$ADD_PTS, in module SYS_CREDEL_64, to create any page
table pages necessary to map the page being created.

, MMG$CREPAG_64 tests whether the page to be created already exists. If it
does and the service requestor specified no address overmap, MMG$CREPAG_64
returns the status SS$_VA_IN_USE to its caller, which returns it as the system
service status. (The image activator specifies the NO_OVERMAP flag when it
requests the $CRETVA system service.)

, If the page already exists but overmap is allowed, MMG$CREPAG_64 calls
MMG$DELPAG_64 (see Section 3.10.2), to delete the virtual page. If the dele-
tion is successful, MMG$CREPAG_64 continues at step 1. Otherwise, it continues
at step 10.

, If page file quota does not need to be charged, MMG$CREPAG_64 continues with
step 9. Otherwise, it must charge the page against the process's reserved page file
quota.

If no more reserved page file quota is left, MMG$CREPAG_64 tries to reserve more
quota from the process's job page file quota, JIB$L_PGFLCNT.

If the charge cannot be made, MMG$CREPAG_64 adjusts RDE$PQ_FIRST_FREE_
VA, RDE$Q_REGION_SIZE, and PHD$Q_FREE_PTE_COUNT to show expansion
up to but not including the page that could not be mapped. It returns the error
status SS$_EXQUOTA.

9. It stores the requested value into the L3PTE.

I0. It returns to its caller.

135

Memory Management System Services

3.4.1.3 EXPANDCHK_64 Routine
EXPANDCHK_64, in module SYSCREDEL, is called with arguments that include the
RDE address, the number of bytes to expand, and the starting virtual address. It
takes the following steps:

I. It tests whether there is enough free process-private address space (PHD$Q_
FREE_PTE_COUNT) and, if not, returns the error status SS$_VASFULL.

2. Otherwise, it charges PHD$Q_FREE_PTE_COUNT to account for the pages to be
created.

3. It tests whether there is enough free space left in the region. If not, it restores the
charge against PHD$Q_FREE_PTE_COUNT and returns the error status SS$_
REGISFULL.

Otherwise, it updates RDE$PQ_FIRST_FREE_VA to account for the expanded
address space within the region.

It calls either MMG_STD$ADD_PTS or MMG_STD$ADD_L2PTS, in module SYS_
CREDEL_64, to create any necessary page table pages.

To create a page table page, each of these routines initializes a demand zero
PTE and charges the process's page file quota. MMG_STD$ADD_PTS creates
L3PTs and any necessary L2PTs as demand zero pages. If the process has
insufficient resources for the charge, each routine returns error status SS$_
EXPGFLQUOTA; in response, EXPANDCHK_64 returns both SS$_EXQUOTA and
SS$_EXPGFLQUOTA to its caller.

The MMG_STD$ADD_L2PTS routine is called to add any necessary L2PTs for
memory-resident and Galaxywide global sections with shared L3PTs. Such sections
are created through services such as $CRMPSC_GDZRO_64.

EXPANDCHK_64 then checks whether there is enough room in the dynamic
working set list for the fluid working set (PHD$L_WSFLUID, initialized from
the SYSGEN parameter MINWSCNT), plus the worst-case number of page table
pages required to map it, to allow the process to perform useful work. If this
check succeeds, the virtual address space creation can proceed. Otherwise, if
the process's working set limit is smaller than its quota, the working set limit is
increased.

If the working set limit cannot be increased, it restores RDE$PQ_FIRST_FREE_VA
and PHD$Q_FREE_PTE_COUNT to their previous values and returns the error
status SS$_INSFWSL.

,

D

~

7. Otherwise, it returns SS$_NORMAL.

136

3.4 Demand Zero Virtual Address Space Creation

3.4.2 $CRETVA_64 System Service
The Create Virtual Address Space ($CRETVA_64) system service procedure,
EXE$CRETVA_64 in module SYS_CREDEL_64, runs in kernel mode. It resembles
the $CRETVA system service, but its arguments include a region ID, and all its ad-
dress arguments are 64 bits. Thus it can be used to create address space in P0, P1, or
P2 space, either in a process-private region or a user-created one.

EXE$CRETVA_64 takes the following steps:

1. In addition to making the checks described in Section 3.1.2, it validates its argu-
ments as follows"

a. It confirms that the LENGTH_64 argument is nonzero and an integral number of
pages and, if not, returns the error status SS$_LEN_NOTPAGMULT.

b. It checks that the START_VA_64 argument, if specified, is on a page boundary
and, if not, returns the error status SS$_VA_NOTPAGALGN.

2. It constructs template L3PTE contents for the new pages (see Figure 2.12).

The template L3PTE indicates a demand zero page, with owner access mode the
less privileged of the requesting access mode and the ACMODE argument. The
L3PTE has protection bits enabling read and write access to the owner mode.

3. EXE$CRETVA_64 raises IPL to 2 to block AST delivery while it examines and
possibly modifies RDEs.

4. It locates the RDE corresponding to the REGION_ID_64 argument. If there is none, it
lowers IPL and returns the error status SS$_IVREGID.

5. If that region is intended for memory-resident and Galaxywide global sections, it
returns the error status SS$_NOSHPTS. A process may not create process-private
address space to be mapped in such a region. A page table shared by multiple
processes only maps global pages that are shared by multiple processes.

EXE$CRETVA_64 checks whether the access mode from which the service was
requested is allowed to create pages in this region and, if not, lowers IPL and
returns the error status SS$_IVACMODE.

6. It checks whether the starting address is within the space reserved for the region
and, if not, lowers IPL and returns the error status SS$_PAGNOTINREG.

7. It calls MMG_STD$TRY_ALL_64 (see Section 3.4.1.1), to test whether the entire
space can be created. If the entire address space cannot be created or if some of it
overlaps existing address space, EXE$CRETVA_64 proceeds with step 9.

8. If none of the limits to growth of the process's virtual address space has been
reached, EXE$CRETVA_64 calls MMG_STD$FAST_CREATE_64 (see Section
3.4.1), to create the entire address space. EXE$CRETVA_64 continues with step
10.

137

Memory Management System Services

1

10.

If any of the limits to virtual address space growth prevents creation of the entire
space, EXE$CRETVA_64 creates it one page at a time, stopping when the limit
is reached. Page-by-page creation is also necessary if the specified address space
overlaps already existing space, since the existing pages must first be deleted. In
either of these cases, EXE$CRETVA_64 loops, calling MMG_STD$CREPAG_64 (see
Section 3.4.1.2) until the routine returns an error status or all pages are done.

EXE$CRETVA_64 returns any unused reserved page file quota, records peak page
file use and virtual size statistics, and stores return information in the RETURN_VA_
64 and RETURN_LENGTH_64 arguments. It lowers IPL and returns SS$_NORMAL to
its requestor.

3.4.3 $EXPREG System Service
The Expand Program/Control Region ($EXPREG) system service is very similar to
the $CRETVA system service. Its name is based on the early VAX/VMS use of the
term region" an architecturally defined portion of virtual address space, such as the
P0 or P1 space region. In a VAX/VMS region, address space could be created only
densely. The Alpha service actually creates new demand zero address space at the
next available address in the region rather than changing the boundaries of the region.

The $EXPREG system service procedure, EXE$EXPREG in module SYSCREDEL, runs
in kernel mode. It has an alternative entry point, MMG$EXPREG, called from code
already in kernel mode, such as EXE$ALOPIIMAG in module MEMORYALC. The
alternative entry point enables the caller to specify the protection of the new space.

EXE$EXPREG selects the RDE corresponding to the region to be expanded and uses
the contents of RDE$PQ_FIRST_FREE_VA as one end of the address range.

It converts its PAGCNT argument, the number of pagelets by which the region is to be
expanded, to a number of physical pages, rounding up if necessary. It adds the number
of bytes corresponding to that many physical pages to the end of the address range to
form the new end of the address region.

It forms template L3PTE contents for the new page as EXE$CRETVA does (see Section
3.4.1).

As an optimization, EXE$EXPREG first checks whether the entire address space
can be created. If so, EXE$EXPREG creates it all at once rather than page by page,
calling the routine MMG$FAST_CREATE_64 (see Section 3.4.1). Otherwise, it calls
the routine MMG$CREDEL, specifying MMG$CREPAG_64 (see Section 3.4.1.2) as the
per-page service-specific routine.

138

3.4 Demand Zero Virtual Address Space Creation

3.4.4 $EXPREG_64 System Service
The Expand Virtual Address Space ($EXPREG_64) system service procedure,
EXE$EXPREG_64 in module SYS_CREDEL_64, runs in kernel mode. It resembles the
$EXPREG system service, but its a rguments include a region ID, and all its address
arguments are 64 bits. Thus it can be used to create new demand zero address space
at the next available address in P0, P1, or P2 space, ei ther in a process-permanent
region or a user-created one. It is very similar to the $CRETVA_64 system service.

EXE$EXPREG_64 selects the RDE corresponding to the region to be expanded and
uses the contents of RDE$PQ_FIRST_FREE_VA as one end of the address range.

It checks tha t its LENGTH_64 argument , the number of bytes by which the region is to
be expanded, is an integral number of pages, re turn ing the SS$_LEN_NOTPAGMULT
error s ta tus if not.

It forms template L3PTE contents for the new page as EXE$CRETVA does (see Section
3.4.1).

As an optimization, EXE$EXPREG_64 checks whether the entire address space can
be created. If so, EXE$EXPREG_64 creates it all at once ra ther than page by page,
calling the routine MMG_STD$FAST_CREATE_64 (see Section 3.4.1). Otherwise, it
loops, calling MMG_STD$CREPAG_64 (see Section 3.4.1.2) until the routine re turns
an error s tatus or all pages are done.

3.4.5 Automatic Address Space Expansion
A special form of P1 space expansion occurs when a request for user stack space
exceeds the remaining size of the user stack. OpenVMS can detect such a request
made implicitly through an access violation.

In addition to the access violation exception service routine, several other executive
software routines can also detect the need to expand the user stack:

�9 The AST delivery in terrupt service routine (see Chapter ASTs), when it is unable
to copy AST-related information from the kernel stack to the user stack

�9 The Adjust Outer Mode Stack Pointer ($ADJSTK) system service

�9 The exception dispatching routine, EXE$EXCEPTION in module EXCEPTION,
when it is unable to copy the exception context area onto the user stack (see
Chapter Condition Handling)

These routines call EXE$EXPANDSTK, in module SYSADJSTK, to try to expand
the user stack. EXE$EXPANDSTK is also called by the access violation exception
service routine, EXE$ACVIOLAT in module EXCEPTION, for an access violation tha t
occurred in user mode. EXE$EXPANDSTK checks tha t

�9 An a t tempt to access an empty page occurred ra ther than a protection violation

The inaccessible address is in P1 space and less than the high end of the user
stack

139

Memory Management System Services

If these conditions are true, EXE$EXPANDSTK requests the $CRETVA_64 system ser-
vice to expand P1 space from its current low-address end to the specified inaccessible
address. For the usual case, one in which a program requires more user stack space
than requested at link time, the expansion typically occurs one page at a time.

Because this automatic expansion cannot be disabled on a process-specific or sys-
temwide basis, a runaway program that uses stack space without returning it is not
aborted immediately. Instead, the program runs until it reaches one of the limits to
growth of virtual address space described in Section 3.3.

Another side effect of automatic expansion occurs when a program makes a possibly
incorrect reference to an arbitrary P1 address lower than the top of the user stack.
Rather than exiting with some error status, the program will probably continue to
execute (aider the creation of many demand zero pages).

If the stack expansion fails for any reason, the process is notified in a way that depends
on the caller of EXE$EXPANDSTK:

The $ADJSTK system service can fail with one of the error codes returned by the
$CRETVA system service.

An attempt to deliver an AST to a process with insufficient user stack space results
in an AST delivery fault (SS$_ASTFLT) condition reported to the process.

If the user stack cannot be expanded in response to a P1 space length violation,
EXE$ACVIOLAT checks whether this is a multithreaded process. If so, and if the
faulting virtual address was within a DECthreads guard page or a kernel thread's
yellow stack zone, it reports an SS$_STKOVF exception to the process. Otherwise,
an access violation fault is reported to the process.

If there is not enough user stack to report an exception, EXE$EXCEPTION first
tries to reset the user stack pointer to the high-address end of the stack. If that
fails, EXE$EXCEPTION requests the $CRETVA system service in an at tempt to
recreate the address space. If that fails, EXE$EXCEPTION bypasses the normal
condition handler search and reports the exception directly to the last chance
handler. Typically, this handler aborts the currently executing image. Chapter
Condition Handling contains more details.

In OpenVMS Version 7.0 and later versions, the concept of stack expansion has been
broadened to include potential expansion of any process region created with the
characteristic expand-on-access-violation. EXE$ACVIOLAT calls EXE$EXPANDSTK
for any user mode access violation.

If the faulting virtual address is not in P1 space, EXE$EXPANDSTK checks whether
the region flag RDE$V_EXPAND_ON_ACCVIO is set. If not, an access violation
is reported to the process. If the region has the characteristic, EXE$EXPANDSTK
requests the $CRETVA_64 system service to extend the region from its current end to
the faulting virtual address.

140

3.5 Process and Global Sections

3.5 Process and Global Sections
The system services tha t create and map sections are an al ternat ive method of creat ing
address space, one tha t enables a process to associate a portion of its address space
with a specified portion of a file. The section may be specific to a process (called a
process-private section, or simply, a process section) or it may be a global section,
shared among several processes.

Table 3.1 summarizes the different types of section tha t can be created through these
services, and the source of and backing for their pages. In addition to these types of
section, a process can create demand zero pages backed by a page file through the
system services $CRETVA, $CRETVA_64, $EXPREG, and $EXPREG_64.

The original Create and Map Section system service, $CRMPSC, enables a process
to create many different types of section, both process and global. If the section does
not exist, $CRMPSC creates it and then maps to it; if the section does exist and the
process is allowed to map it, $CRMPSC maps the section. A new version of $CRMPSC
was required to support 64-bit addresses. For simplicity, multiple 64-bit services were
created: each 64-bit service is typically specific to a type of section. In the case of
64-bit services for global sections, there is a service to create a par t icular kind of global
section, one to map tha t type of section, and another to both create and map it.

A global section is characterized by whether it is pe rmanen t or temporary. A tem-
porary section is automatically deleted when no more processes are mapped to it. A
permanent global section must be deleted explicitly through the $DGBLSC system
service. Creating a permanent section requires PRMGBL privilege. The name space
for global sections can be systemwide or specific to a UIC group. A security persona
must have SYSGBL privilege to create a systemwide section.

In addition to section files, a process can create and map other types of section:

A security persona with PFNMAP privilege can map vir tual address space to a
specific range of physical addresses. Typically, a process uses this capability to
access a physical page in I/O space to communicate with a par t icular I]O device.

A process can also create global page-file sections, demand zero global sections
whose pages are backed by a page file.

In OpenVMS Version 7.0 and later versions, a security persona holding the r ights
identifier VMS$MEM_RESIDENT_USER can create a memory-resident demand
zero global section. Optionally, a memory-resident demand zero global section can
be mapped with shared L3PTs.

141

Memory Management System Services

Table 3.1 S e c t i o n Types and B a c k i n g S tore

Section Source of Backing
Type/Attribute Contents Store System Service

Process-Private Sections

Demand zero Demand zero Section file
page

Section file Copy-on-reference Page file

Read-only Section file Section file

Writable (and not
copy-on-reference)

PFN-mapped

Section file Section file

Physical page or None
I/O space

$CRMPSC,
$CRMPSC_FILE_64

$CRMPSC,
$CRMPSC_FILE_64

$CRMPSC,
$CRMPSC_FILE_64

$CRMPSC,
$CRMPSC_FILE_64

$CRMPSC,
$CRMPSC_PFN_64

Global Sections

None Memory-resident
demand zero

Galaxywide
demand zero

Demand zero

Page-file

Copy-on-reference

Read-only

Writable (and not
copy-on-reference)

PFN-mapped

Demand zero
page

Demand zero
page

Demand zero
page

Demand zero
page

Section file

Section file

Section file

Physical page or
I/O space

None

Section file

Page file

Page file

Section file

Section file

None

$CREATE_GDZRO, $CRMPSC_
GDZRO_64

$CREATE_GDZRO, $CRMPSC_
GDZRO_64

$CRMPSC,
$CREATE_GFILE,
$CRMPSC GFILE_64

$CRMPSC,
$CREATE_GPFILE,
$CRMPSC_GPFILE_64

$CRMPSC,
$CREATE_GFILE,
$CRMPSC_GFILE_64

$CRMPSC,
$CREATE_GFILE,
$CRMPSC_GFILE_64

$CRMPSC,
$CREATE_GFILE,
$CRMPSC_GFILE_64

$CRMPSC,
$CREATE_GPFN,
$CRMPSC_GPFN_64

142

3.6 Process-Private Sections

�9 A security persona having SHMEM privilege and running in a Galaxy instance
can create a memory-resident demand zero global section in shared memory, called
a Galaxywide global section. A Galaxywide global section can be accessed by
processes running on multiple OpenVMS instances and optionally be mapped with
shared L3PTs.

The map global section system services are another way to create address space, one
that enables a process to map a portion of its address space to an already existing
global section.

The image activator (see Chapter Image Activation and Exit) requests the $CRMPSC
and $MGBLSC system services to map portions of process address space to sections in
image files and to previously installed global sections.

When the image activator opens a file, it does so specifying that all extents of the file
should be mapped. However, an image may open a file itself and then itself request
the $CRMPSC or $MGBLSC system service; in that case, the window control block
(WCB) might not contain a complete description of the file.

The memory management subsystem cannot take a window turn (see Chapter I / 0
System Services for information on WCBs and window turns) on pages within a
section. It therefore requires that the WCB describe all the extents of the mapped file.
Such a WCB is called a cathedral window or a cathedral WCB.

Because the WCB occupies nonpaged pool, its extension is charged against the job's
buffered I/O byte count quota, JIB$L_BYTCNT. Because the quota charge persists
until the section is deleted, this charge is also made against the job's JIB$L_BYTLM,
which limits the maximum charge against JIB$L_BYTCNT. When a job has insuffi-
cient JIB$L_BYTCNT for a request, the executive checks that the request is not larger
than JIB$L_BYTLM before placing the kernel thread in resource wait. Charging the
WCB extension against JIB$L_BYTLM prevents placing the kernel thread into what
might otherwise be a never-ending resource wait.

3.6 Process-Private Sections
The $CRMPSC system service creates a process-private or global section and maps
it into process-private address space. The particular actions it takes are determined
by the options or flags with which the service is requested. The Open VMS System
Services Reference Manual describes the system service arguments and shows which
flags can be used together. The 64-bit services $CRMPSC_FILE_64 and $CRMPSC_
PFN_64 also create process-private sections and map them into process-private address
space.

The sections that follow describe creation of a process-private section backed by section
file or page file and creation of a PFN-mapped process-private section.

Section 3.7 and its subsections describe creation of global sections.

143

Memory Management System Services

3.6.1 Creation of a Process-Private Section Backed by a File
To create a process-private section the system service must validate the arguments; al-
locate and initialize a PSTE to describe the section and connect it to its associated file,
if any; determine start ing and ending virtual addresses of the section; and initialize
L3PTEs to describe a page in a section file.

3.6.1.1 $CRMPSC and Process-Private Section File Creation
The $CRMPSC system service procedure, EXE$CRMPSC in module SYSCRMPSC,
runs in kernel mode. When requested to map a process-private section, it takes the
following steps:

In addition to making the argument validation checks described in Section 3.1.1,
EXE$CRMPSC checks the INADR argument: unless the SEC$V_EXPREG flag was
specified in the FLAGS argument, it confirms that the start ing address is on an
Alpha page boundary and that the ending address is one byte less than a page
boundary. (It takes into account the possibility that the addresses have been
specified in reverse order.) If the addresses are not correct, it returns the error
status SS$_INVARG.

2. It creates and initializes the scratch space on the stack.

0 It calls MMG$VFY_SECFLG, in module SYSDGBLSC, to test the compatibility of
the flags in the FLAGS argument with each other. If the flags are incompatible, if
the system service requestor specified the flag SEC$V_SHMGS, or if the argument
is absent, it returns the error status SS$_IVSECFLG.

, EXE$CRMPSC then confirms that the CHAN argument was supplied. (The re-
questor must have already opened the section file on the specified channel.) It
confirms that the specified channel has been assigned; tha t its associated device
is directory-structured, files-oriented, and random access; and that a file is open
on the channel. In case of error, it returns the error status SS$_NOTFILEDEV or
SS$_IVCHNLSEC.

0 If the WCB does not map the entire file, EXE$CRMPSC remaps the file with a
cathedral WCB (see Section 3.5). It copies the end-of-file virtual block number
from the file control block to MMG$L_EFBLK.

6 0 If the section to be mapped is a copy-on-reference section, EXE$CRMPSC sets bit
MMG$V_CHGPAGFIL in MMG$L_MMG_FLAGS as a signal that the section must
be charged against the job's page file quota.

m It checks that the PAGCNT argument is positive and, if not, returns the error s tatus
SS$_ILLPAGCNT.

,

9.

It raises IPL to 2 to block AST delivery.

Prior to allocating a PSTE, it calls MMG$DALCSTXSCN (see Section 3.9.2) to
check whether any PSTEs can be deallocated. A section table entry cannot always
be deallocated synchronously on request. For example, if direct I/O is in progress
to pages in the section, those pages cannot be deleted and hence the section cannot

144

10.

3.6 Process-Private Sectlons

be. After the I/O completes, a subsequent call to MMG$DALCSTXSCN will result
in deallocation of the section table entry.

Unless the section is copy-on-reference and demand zero (a section probably being
mapped from an image file), EXE$CRMPSC allocates a PSTE (see Figure 2.7) and
initializes it. (A copy-on-reference demand zero section does not need a PSTE; its
page faults require no I/O from a section file.)

When the process section is being created as a part of image activation (see
Chapter Image Activation and Exit), the original source for much of the data stored
in the PSTE is an image section descriptor in the image file.

a. EXE$CRMPSC copies the SEC$V_WRT, SEC$V_DZRO, and SEC$V_CRF bits
from the FLAGS to SEC$L_FLAGS.

bO It stores in SEC$L_WINDOW the address of the WCB from the channel control
block (CCB) or from the PSTE to which the CCB points. Recall tha t if multiple
sections are mapped from the same file, there is one PSTE for each section but
only one CCB and one WCB.

c. It checks that the file has been opened in a manner consistent with the section
flags: if the section is writable but not copy-on-reference, the file must have
been opened for write access. If the file was opened for write access, then
EXE$CRMPSC sets SEC$V_WRT in SEC$L_FLAGS. If the file was not opened
for write access, but SEC$V_WRT is set, EXE$CRMPSC sets SEC$V_CRF so
that the section will be created as copy-on-reference with backing store in a
page file.

d. It copies the VBN argument to SEC$L_VBN. If the VBN argument is 0, its
default, EXE$CRMPSC replaces it with 1.

6 . It copies the PAGCNT argument, if present, to SEC$L_UNIT_CNT after checking
that the file contains at least that many blocks between SEC$L_VBN and its
end-of-file. If the argument is absent, it initializes SEC$L_UNIT_CNT to the
difference between the end-of-file block and SEC$L_VBN.

If this is the first section mapped on this file, it stores the section offset
in CCB$L_WIND and the index in the PSTE forward and backward links.
Otherwise, it inserts the PSTE into the chain of other PSTEs paging on tha t
channel.

g o

h.

It clears SEC$L_VPX, the virtual page index.

It initializes SEC$L_REFCNT to 1 and sets the section table entry flag SEC$V_
INPROG to ensure that the section is not inadvertently deleted before its PTEs
are initialized. If the system service cannot complete, it may place the kernel
thread into a wait state at IPL 0. If the process were deleted at that point,
the Delete Process ($DELPRC) system service would be able to detect such a
section by the set SEC$V_INPROG flag and decrement the biased reference
count.

145

Memory Management System Services

11.

12.

13.

i. It converts the section pagelet fault cluster argument, PFC, to a page fault
cluster value and stores the minimum of tha t and 127 in SECSL_PFC.

EXE$CRMPSC forms a template L3PTE for the section's pages (see Figure 2.12).
The L3PTE has both type bits set; the section table index in bits <47:32> (or zero
for a copy-on-reference demand zero section); and the WRT, CRF, and DZRO bits
copied from the section flags. It calculates the page owner mode and protection
bits based on MMGSL_ACCESS_MODE, the writable flag in SEC$L_FLAGS, and
the input section flags specifying the mode allowed to write the section pages.

If the SEC$V_EXPREG flag was specified in the FLAGS system service argument,
it calculates the start ing and ending addresses to map based on the pagelet count
multiplied by 512 and the contents of RDESPQ_FIRST_FREE_VA in the P0 or P1
space RDE, whichever is appropriate.

If the SEC$V_EXPREG flag was not specified, it determines the address of
the RDE corresponding to the INADR argument. If that region is intended for
memory-resident and Galaxywide global sections, it returns the error status SS$_
NOSHPTS. A process may not create process-private address space to be mapped
with a shared page table. EXE$CRMPSC checks whether the access mode from
which the service was requested is allowed to create pages in this region and, if
not, returns the error status SS$_NOPRIV. It calculates the actual and useful
address ranges to be mapped, based on the INADR a n d PAGCNT arguments and,
depending on the section type, number of blocks in the section file.

Regardless of the value of the SEC$V_EXPREG flag, an integral number of Alpha
pages will be mapped. If the pagelet count does not represent an integral number
of pages, the page at the high-address end of the section will be only partly
occupied by the section. Its L3PTE will have the PTESV_PARTIAL_SECTION bit
set. Either MMGSV_PARTIAL_FIRST or MMG$V_PARTIAL_LAST in MMG$L_
MMG_FLAGS is set, indicating that the first or last page to be mapped is partial.
Which is partial depends on the order of mapping, which depends on how the
address range was specified in the INADR argument.

EXE$CRMPSC determines whether the section must be mapped one page at a
time:

- - If the new address space does not already exist, is entirely within a region,
and can all be created without hit t ing any of the limits to growth described in
Section 3.3, EXE$CRMPSC adjusts RDE$PQ_FIRST_FREE_VA and initializes
the section's L3PTEs. It then increases SECSL_REFCNT by the number of
pages just mapped. If the section is not an integral number of physical pages,
EXE$CRMPSC sets PTESV_PARTIAL_SECTION in the L3PTE that maps the
page with the highest address.

- - If the section to be mapped is copy-on-reference or demand zero, or if the space
to be created overmaps existing space or cannot all be created, EXE$CRMPSC
calls MMG$CREDEL, described in Section 3.1.1, specifying MAPSECPAG_RDE
(see Section 3.6.1.2) as the per-page routine.

146

3.6 Process-Private Sections

14. EXE$CRMPSC calculates the starting virtual page number of the section and
stores it in SEC$L_VPX.

15. It decrements SEC$L_REFCNT to remove the extra reference, unnecessary now
that the reference count reflects the mapped L3PTEs, and clears the SEC$V_
INPROG flag.

16. If PHD$V_DALCSTX in PHD$L_FLAGS is set, indicating one or more sections to
be deallocated, it calls MMG$DALCSTXSCN (see Section 3.9.2) to deallocate them.

17. EXE$CRMPSC returns any unused page file quota, records peak page file use
and virtual size statistics, and stores return information in the optional RETADR

argument.

18. It returns to its requestor.

3.6.1.2 MAPSECPAG_RDE Routine for a Process Section
MAPSECPAG_RDE is called with a number of arguments, including the L3PTE
contents for the new page, number of pages in the section, number of pages to be
mapped, addresses of the section table entry and RDE, and flags that control its
actions.

For a process section, it takes the following steps:

1. Within initialization code, executed only once, MAPSECPAG RDE sets the NO_
OVERMAP flag in MMG$L_MMG_FLAGS if it is set in MMG$L_VFYFLAGS. It
minimizes the requested number of pages to be mapped with the number of pages
in the section. For a section file section being mapped in reverse order (from high
address to low) whose highest address page is partial, it maps the first page with
PTE$V_PARTIAL_SECTION set. It increments SEC$L_REFCNT.

It replaces its own address in MMG$L_PAGESUBR so as to bypass the initializa-
tion code the next time it is entered.

2. MAPSECPAG_RDE increments the section table entry's reference count to reflect
that one more L3PTE maps a page in that section.

3. It calls MMG$CREPAG_64, described in Section 3.4.1.2, which stores the template
L3PTE contents into the next L3PTE and charges against job page file quota.

4. MAPSECPAG_RDE returns to its caller, MMG$CREDEL, which continues to call
it until there are no more pages to be mapped or until one of the limits to growth
is reached.

For a section file section being mapped in forward order (from low address to high)
whose highest address page is partial, MAPSECPAG_RDE maps the last page with
PTE$V_PARTIAL_SECTION set.

147

Memory Management System Services

3.6.1.3 $CRMPSC_FILE_64 System Service
The Create and Map Private Disk File Section ($CRMPSC_FILE_64) system service
procedure, EXE$CRMPSC_FILE_64 in module SYS_CRMPSC_64, runs in kernel
mode. It resembles the $CRMPSC system service requested to create a file section, bu t
its a rguments include a region ID, and all its address a rguments are 64 bits. Thus it
can be used to create a file section in P0, P1, or P2 space, ei ther in a default region or
a user-created one.

EXE$CRMPSC_FILE_64 takes the following steps"

1. In addition to making the checks described in Section 3.1.2, it validates its argu-
ments as follows:

a. If the START_VA_64 a rgument was omitted and the flag SEC$V_EXPREG was
clear, it re turns the error s ta tus SS$_IVSECFLG.

b. It rounds the FAULT_CLUSTER argument , if specified, up to a page boundary.

c. It checks that the FILE_OFFSET 64 and LENGTH_64 arguments are mult iples of
the size of a disk block, re turning the error s ta tus SS$_OFF_NOTBLKALGN
or SS$_LEN_NOTBLKMULT if not.

d. It checks tha t the START VA_64 argument , if specified, is aligned on a page
boundary, re turning the error s tatus SS$_VA_NOTPAGALGN if not.

e. It confirms that the specified channel has been assigned; tha t its associated
device is directory-structured, files-oriented, and random access; and tha t a
file is open on the channel. In ease of error, it re turns the error s ta tus SS$_
NOTFILEDEV or SS$ IVCHNLSEC.

f. If the WCB does not map the entire file, EXE$CRMPSC_FILE_64 remaps the
file with a cathedral WCB (see Section 3.5). It copies the end-of-file vir tual
block number from the file control block to MMGSL_EFBLK.

2. t t raises IPL to 2 to block AST delivery.

3. It determines the address of the RDE corresponding to the REGION_ID_64 argument ,
re turning the error s ta tus SS$_IVREGID if the ID is invalid. If tha t region is
intended for memory-resident and Galaxywide global sections, it re turns the error
s tatus SS$_NOSHPTS. It checks whether the access mode from which the service
was requested is allowed to create pages in this region and, if not, re turns the
error s ta tus SS$_NOPRIV.

4. If the section is demand zero and copy-on-reference, EXE$CRMPSC_FILE_64
reduces the number of pagelets to be mapped to the number of pagelets between
the FILE_OFFSET_64 a rgument and the end-of-file.

5. For a section tha t is not demand zero copy-on-reference, it allocates a PSTE (see
Figure 2.7) and initializes it, as described in Section 3.6.1.1. (A copy-on-reference
demand zero section does not need a PSTE; its page faults require no I/O from a
section file.)

148

3.6 Process-Private Sections

6. It forms a template L3PTE for the section's pages (see Figure 2.12). The L3PTE
has both type bits set; the section table index in bits <47:32> (or zero for a demand
zero copy-on-reference section); and the WRT, CRF, and DZRO bits copied from
the section flags. It calculates the page owner mode and protection bits based
on the maximized access mode and the writable flag in SEC$L_FLAGS. The
$CRMPSC_FILE_64 service differs from the $CRMPSC service in that there is no
input argument to specify access mode allowed to write the section: if the section
is writable, the mode allowed to read determines the mode allowed to write.

7. If the SEC$V_EXPREG flag was specified in the FLAGS system service argument,
EXE$CRMPSC_FILE_64 calculates the starting and ending addresses to map
based on the LENGTH_64 argument and the contents of RDE$PQ_FIRST_FREE_VA
in the RDE corresponding to the REGION_ID_64 argument. If that address range
intersects with the gap (see Chapter 1), it moves the address range.

If the SEC$V_EXPREG flag was not specified, it calculates the address based on
the START_VA_64 and LENGTH_64 arguments. If the address range is not entirely
within the specified region, it deallocates the PSTE and returns the error status
SS$_PAGNOTINREG to its requestor.

Regardless of the value of the SEC$V_EXPREG flag, an integral number of Alpha
pages will be mapped. If the LENGTH_64 does not represent an integral number of
pages, the page at the high-address end of the section will be only partly occupied
by the section. Its L3PTE will have the PTE$V_PARTIAL_SECTION bit set.

8. EXE$CRMPSC FILE_64 determines whether the section must be mapped one
page at a time and maps it:

- - If the new address space does not already exist, is entirely within a region,
and can all be created without hitting any of the limits to growth described in
Section 3.3, it adjusts RDE$PQ_FIRST_FREE_VA and initializes the section's
L3PTEs. It then increases SEC$L_REFCNT by the number of pages just
mapped. If the section is not an integral number of physical pages, it sets
PTE$V_PARTIAL_SECTION in the L3PTE that maps the page with the
highest address.

- - If the section to be mapped cannot all be created at once, it loops, calling
MMG_STD$CREPAG_64 (see Section 3.4.1.2) until the routine returns an error
status or all pages are done. On each successful return, EXE$CRMPSC_FILE_
64 increments SEC$L_REFCNT. When the section is completely mapped, it
decrements SEC$L_REFCNT to remove the extra reference added at PSTE
initialization.

If MMG_STD$CREPAG_64 returns the error status SS$_ABORT, which means
an overmapped page had to be deleted but a wait would have been required,
EXE$CRMPSC_FILE_64 deletes the address space it created and repeats the
loop, recreating the address space.

9. If PHD$V_DALCSTX in PHD$L_FLAGS is set, indicating the need to deallocate
one or more overmapped and thus deleted sections, it calls MMG$DALCSTXSCN
(see Section 3.9.2) to deallocate them.

149

Memory Management System Services

10. It lowers IPL to 0.

11. It returns any unused reserved page file quota, records peak page file use and
virtual size statistics, and stores return information in the optional RETURN_VA_64
argument.

12. If MMG_STD$CREPAG_64 returned an error status, EXE$CRMPSC_FILE_64
passes that status back to its requestor; otherwise, it returns SS$_CREATED.

3.6.2 PFN-Mapped Process Section Creation
To create a PFN-mapped section the system service must validate the arguments,
determine starting and ending virtual addresses of the section, and initialize L3PTEs
to describe the range of PFNs to be mapped. No PSTE is needed to describe the
section.

The PFN fields in these L3PTEs contain the requested physical page numbers. The
window bit is set in each L3PTE to indicate that the virtual page is PFN-mapped.
The valid bit is set. These pages do not count against the process's working set. They
cannot be paged, swapped, or locked into the process's working set. Moreover, no
record is maintained in the PFN database that such pages are PFN-mapped.

3.6.2.1 $CRMPSC and PFN-Mapped Process Section Creation
The $CRMPSC system service enables a security persona with PFNMAP privilege to
map a portion of its virtual address space to a specific range of physical addresses.
Although the primary purpose of this feature is to map process-private address space
to I/O addresses, it is also used to map specific physical memory pages. When such a
section is larger than one page, it maps physically contiguous pages.

Requested to create a PFN-mapped section, EXE$CRMPSC takes the following steps:

1. In addition to making the argument validation checks described in Section 3.1.1,
EXE$CRMPSC checks the INADR argument: unless the SEC$V_EXPREG flag was
specified in the FLAGS argument, it confirms that the starting address is on an
Alpha page boundary and that the ending address is one byte less than a page
boundary. (It takes into account the possibility that the addresses have been
specified in reverse order.) If the addresses are not correct, it returns the error
status SS$_INVARG.

2. It creates and initializes the scratch space on the stack.

3. It calls MMG$VFY_SECFLG, in module SYSDGBLSC, to test the compatibility of
the FLAGS arguments with each other. If the flags are incompatible, if the system
service requestor specified the flag SEC$V_SHMGS, or if the argument is absent,
it returns the error status SS$_IVSECFLG.

4. EXE$CRMPSC checks whether the CHAN argument is present, indicating an
opened file, which would be incompatible with a PFN-mapped section. If so, it
returns the error status SS$_IVSECFLG.

150

,

.

3.6 Process-Private Sections

If SEC$V_WRT was specified in the FLAGS argument and if this system is a Galaxy
instance, EXE$CRMPSC checks whether this is a request to map instance-private
memory. If not, it returns the error status SS$_INVPFN; only private memory can
be mapped writable.

It checks that the PAGCNT argument is positive and, if not, returns the error status
SS$_ILLPAGCNT. (Note that for a PFN-mapped section, the PAGCNT argument
specifies a number of pages, not pagelets.)

7. It raises IPL to 2 to block AST delivery.

,

,

10.

11.

It calls MMG_STD$SEC_PRIVCHK, in module SYSCRMPSC, to check whether
the current security persona has the privileges necessary to create a PFN-mapped
section and, if not, returns the error status SS$_NOPRIV.

It calls MMG$DALCSTXSCN (see Section 3.9.2), to deallocate any process section
whose reference count has gone to zero.

EXE$CRMPSC forms a template L3PTE (see Figure 2.12) for pages in the section.
The L3PTE has the valid and window bits set. EXE$CRMPSC calculates its page
owner mode and protection bits based on MMG$L_ACCESS_MODE, the writable
flag in SEC$L_FLAGS, and the bits in the FLAGS argument specifying the mode
allowed to write the section pages.

If the SEC$V_EXPREG flag is clear, EXE$CRMPSC continues with step 15. If
both the SEC$V_EXPREG and the undocumented SEC$V_GRANHINT flags were
set in the FLAGS system service argument, it determines which, if any, granulari ty
hint value is appropriate for the input PFN, input starting virtual address, section
size, and state of the region in which the section is to be mapped. The input PFN
is specified by the VBN argument, which is named for its more typical use.

Chapter 1 describes how granularity hint regions improve translation buffer (TB)
performance.

It first tries a 512-page granularity hint region. If that cannot be made to work,
possibly because the input PAGCNT argument is too much smaller than the gran-
ularity hint region size, it tries a 64-page region, and then an eight-page region.
As part of testing for a granularity hint region, EXE$CRMPSC tries to expand
the region in which the section is to be mapped, checking that the new address
space is entirely within the virtual address region and can all be created without
hitting any of the limits to growth described in Section 3.3. If the expansion is
unsuccessful, EXE$CRMPSC continues with step 16.

If the expansion is successful, EXE$CRMPSC adjusts RDE$PQ_FIRST_FREE_VA.
Note that it may expand the virtual address region so as to align the start ing
virtual address on a granularity hint region boundary suitable for the input PFN
and length, and it may require that additional PFNs be mapped to align the
starting physical virtual address on a corresponding boundary.

It incorporates as many pages as possible into granularity hint regions and maps
them one region at a time, as described in step 14. It continues with step 17.

151

Memory Management System Services

12. If the SEC$V_EXPREG flag was set but the SEC$V_GRANHINT flag was clear
(or if an optimal granulari ty hint region could not be formed in the previous step),
EXE$CRMPSC calculates the start ing and ending section addresses based on the
page count and contents of RDE$PQ_FIRST_FREE_VA in the P0 or P1 space RDE,
depending on the INADR argument.

13. If the address space to be created overmaps existing space or cannot all be created,
EXE$CRMPSC continues with step 16. If the address space to be created does
not overmap existing address space and it can all be created, the routine checks
whether the PFN-mapped section meets the requirements for a granular i ty hint
region:

The page count must be 8, 64, or 512.

The start ing virtual and physical addresses must be aligned multiples of the
page count.

It calculates the appropriate granulari ty hint value, making it zero if the section
does not meet the requirements for a granulari ty hint region.

14. EXE$CRMPSC inserts the granulari ty hint value into the template L3PTE and
then initializes all the section's L3PTEs. For each L3PT containing those L3PTEs,
it takes the following steps:

a. It tests whether the L3PT is still valid and, if not, faults it in.

b. It acquires the MMG spinlock and confirms that the L3PT is still valid. If not,
it releases the MMG spinlock, refaults the page, and reacquires the spinlock.

c. If the L3PT did not previously map any window pages or locked pages,
EXE$CRMPSC increments PHD$L_PTCNTLCK to indicate one more locked
page table page.

d. It sets PTE$V_WINDOW in the L2PTE that maps this L3PT and locks the
L3PT into the process's working set list by setting WSLX$V_PFNLOCK in its
working set list entry.

e. It adds the number of PFN-mapped pages to the L3PT's PFN$W_PT_WIN_
CNT.

f. It releases the MMG spinlock.

It continues with step 17.

15. If the SEC$V_EXPREG flag was clear, EXE$CRMPSC determines the address
of the RDE corresponding to the INADR argument. If that region is intended
for memory-resident and Galaxywide global sections, it returns the error s tatus
SS$_NOSHPTS. It checks whether the access mode from which the service was
requested is allowed to create pages in this region and, if not, returns the error
status SS$_NOPRIV. It calculates the actual and useful address ranges to be
mapped, based on the INADR and PAGCNT arguments.

152

3.6 Process-Prlvate Sectlons

To varying extents, it incorporates pages into granulari ty hint regions:

If the SEC$V_GRANHINT flag was clear, it continues with step 13.

- - If the SEC$V_GRANHINT flag was set and the INADR range was specified in
ascending order, it incorporates as many pages as possible into granulari ty
hint regions and maps them one region at a time, as described in step 14, and
continues with step 17.

If the SEC$V_GRANHINT flag was set but the INADR range was specified in
reverse order, it continues with step 13.

16. EXE$CRMPSC calls MMG$CREDEL (see Section 3.1.1), specifying MAPSECPAG_
RDE (see Section 3.6.2.2) as the per-page routine.

17. If PHD$V_DALCSTX in PHD$L_FLAGS is set, indicating one or more sections to
be deallocated, EXE$CRMPSC calls MMG$DALCSTXSCN (see Section 3.9.2) to
deallocate them.

18. EXE$CRMPSC records peak virtual size statistics and stores re turn information in
the optional RETADR argument.

19. It restores the IPL at entry and returns to its requestor.

3.6.2.2 MAPSECPAG_RDE Routine for a PFN-Mapped Section
MAPSECPAG_RDE is called with a number of arguments, including the L3PTE
contents for the new page, number of pages in the section, number of pages to be
mapped, address of the RDE, and flags that control its actions.

Called to create a PFN-mapped section page, MAPSECPAG_RDE takes the following
steps"

1. Within initialization code, executed only once, MAPSECPAG_RDE sets the NO_
OVERMAP flag in MMG$L_MMG_FLAGS if it is set in MMG$L_VFYFLAGS.
It minimizes the number of pages requested in the PAGCNT argument with the
number of pages in the address range specified by the INADR argument. It replaces
its own address in MMG$L_PAGESUBR so as to bypass the initialization code the
next time it is entered.

2. MAPSECPAG_RDE calls MMG$CREPAG_64 (see Section 3.4.1.2), which stores the
template L3PTE contents into the next L3PTE.

3. MAPSECPAG_RDE calculates the contents of the next L3PTE by incrementing
or decrementing the PFN value from the current PTE, depending on the order of
mapping.

4. It returns to its caller, MMG$CREDEL, which continues to call it until there are
no more pages to be mapped or until one of the limits to growth is reached.

153

Memory Management System Services

3.6.2.3 $CRMPSC_PFN_64 System Service
The Create and Map Private Page Frame Section ($CRMPSC_PFN_64) system service
is requested to create and map a PFN-mapped section. It resembles the $CRMPSC
system service requested to create a PFN-mapped section, but its arguments include a
region ID, and all its address arguments are 64 bits. Thus, it can be used to create a
PFN-mapped section in P0, P1, or P2 space, either in a process-permanent region or a
user-created one.

The requestor specifies section name, ident, protection, first PFN to be mapped, region
ID, relative page number, number of pages in the section, access mode, number of
pages to be mapped, and section flags. The requestor has not opened a section file to
be mapped so does not specify channel number. The requestor does not specify page
fault cluster; such a section incurs no page faults.

The $CRMPSC_PFN_64 system service procedure, EXE$CRMPSC_PFN_64 in module
SYS_CRMPSC_64, runs in kernel mode.

It takes the following steps"

1. In addition to making the checks described in Section 3.1.2, it validates its argu-
ments as follows:

a. If only seven arguments were passed, omitting START_VA_64, and if the flag
SEC$V_EXPREG was clear, it re turns the error s tatus SS$_IVSECFLG.

b. It sets the flag SEC$V_PFNMAP in the FLAGS argument in case it was clear.

C. It checks that the PAGE_COUNT argument is nonzero and smaller than the max-
imum amount of physical memory, returning the error s tatus SS$_ILLPAGCNT
if not.

d. It checks that the START_VA_64 argument, if specified, is aligned on a page
boundary, returning the error status SS$_VA_NOTPAGALGN if not.

e. If SEC$V_WRT was specified in the FLAGS argument and if this system is a
Galaxy instance, EXE$CRMPSC_PFN_64 checks whether this is a request to
map instance-private memory. If not, it returns the error s tatus SS$_INVPFN;
only private memory can be PFN-mapped writable.

f. If the SEC$V_EXPREG flag was clear, EXE$CRMPSC_PFN_64 confirms tha t
the START_VA_64 argument is within the specified region, re turning the error
status SS$_PAGNOTINREG if not.

2. It raises IPL to 2 to block AST delivery.

3. It determines the address of the RDE corresponding to the REGION_ID_64 argument,
returning the error status SS$_IVREGID if the ID is invalid. If that region is
intended for memory-resident and Galaxywide global sections, it re turns the error
status SS$_NOSHPTS. It checks whether the access mode from which the service
was requested is allowed to create pages in this region and, if not, returns the
error s tatus SS$_NOPRIV.

154

,

,

,

.

.

,

3.6 Process-Private Sections

It calls MMG_STD$SEC_PRIVCHK, in module SYSCRMPSC, to check whether
the current security persona has the privileges necessary to create a PFN-mapped
section and, if not, returns the error status SS$_NOPRIV.

EXE$CRMPSC_PFN_64 forms a template L3PTE for pages in the section. The
L3PTE has the valid and window bits set and the starting PFN. EXE$CRMPSC_
PFN_64 calculates its page owner mode and protection bits based on the maxi-
mized access mode. If the section is writable, the mode allowed to read determines
the mode allowed to write.

If both the SEC$V_EXPREG and the undocumented SEC$V_GRANHINT flags
were set in the FLAGS argument, EXE$CRMPSC_PFN_64 determines which, if
any, granularity hint value is appropriate for the input PFN, input starting virtual
address, section size, and state of the region in which the section is to be mapped.

It first tries a 512-page granularity hint region. If that cannot be made to work,
possibly because the input PAGE_COUNT argument is too much smaller than the
granularity hint region size, it tries a 64-page region, and then an eight-page
region. As part of testing for a granularity hint region, EXE$CRMPSC_PFN_64
tries to expand the region in which the section is to be mapped, checking that
the new address space is entirely within the virtual address region and can all be
created without hitting any of the limits to growth described in Section 3.3. If the
expansion is unsuccessful, EXE$CRMPSC_PFN_64 continues with step 7.

If the expansion is successful, EXE$CRMPSC_PFN_64 adjusts RDE$PQ_FIRST_
FREE_VA. Note that it may expand the virtual address region so as to align
the starting virtual address on a granularity hint region boundary suitable for the
input PFN and length, and it may require that additional PFNs be mapped to align
the starting physical virtual address on a corresponding boundary. It continues
with step 9.

If the expansion in step 6 was unsuccessful or if SEC$V_EXPREG was clear,
EXE$CRMPSC_PFN_64 rounds the starting and ending addresses down to an
Alpha page boundary and calculates the desired page count based on the difference
between them. It checks that the address range is entirely within the specified
region and does not overlap with already existing space. If both are true, it
continues with the next step. Otherwise, it continues with step 13.

EXE$CRMPSC_PFN_64 tries to expand the region in which the section is to be
mapped, checking that the new address space can all be created without hitting
any of the limits to growth described in Section 3.3. If expansion is unsuccessful,
EXE$CRMPSC_PFN_64 continues with step 13.

If the expansion is successful, EXE$CRMPSC adjusts RDE$PQ_FIRST_FREE_VA
and continues with step 11.

If the SEC$V_GRANHINT flag was set, and the region grows toward ascending
addresses, it incorporates as many pages as possible into granularity hint regions
and maps them one granularity hint region at a time, as described in step 12. It
continues with step 14.

155

Memory Management System Services

10. If the SEC$V_GRANHINT flag was set but the region grows toward descending
addresses, it continues with step 11.

11. EXE$CRMPSC_PFN_64 checks whether the PFN-mapped section meets the
requirements for a granulari ty hint region:

The page count must be 8, 64, or 512.

The start ing virtual and physical addresses must be aligned multiples of the
page count.

EXE$CRMPSC_PFN_64 calculates the appropriate granulari ty hint value, making
it zero if the section does not meet the requirements to become a granular i ty hint
region.

12. EXE$CRMPSC_PFN_64 inserts the granulari ty hint value into the template
L3PTE and then initializes all the section's L3PTEs, incrementing the PFN for
each new virtual page. For each L3PT containing those L3PTEs, it takes the
following steps:

a. It tests whether the L3PT is still valid and, if not, faults it in.

b. It acquires the MMG spinlock and confirms that the L3PT is still valid. If not,
it releases the MMG spinlock, refaults the page, and reacquires the spinlock.

c. If the L3PT did not previously map any window pages or locked pages,
EXE$CRMPSC_PFN_64 increments PHD$L_PTCNTLCK to indicate one
more locked page table page.

d. It sets PTE$V_WINDOW in the L2PTE that maps this L3PT and locks the
L3PT into the process's working set list by setting WSLX$V_PFNLOCK in its
working set list entry.

e. It adds the number of PFN-mapped pages to the L3PT's PFN$W_PT_WIN_
CNT.

f. It releases the MMG spinlock.

It continues with step 14.

When the section must be mapped one page at a time, EXE$CRMPSC_PFN_64
calls MMG_STD$CREPAG_64 (see Section 3.4.1.2), passing it the state of the
SEC$V_NO_OVERMAP flag as well as MMG$V_NOWAIT_IPL0. EXE$CRMPSC_
PFN_64 loops, calling MMG_STD$CREPAG_64 until the routine returns an error
status or all pages are done.

If MMG_STD$CREPAG_64 returns the error status SS$_ABORT, which means
an overmapped page had to be deleted but a wait would have been required,
EXE$CRMPSC_PFN_64 deletes the address space it created and repeats the loop,
recreating the address space.

If PHD$V_DALCSTX in PHD$L_FLAGS is set, indicating the need to deallocate
one or more overmapped and thus deleted sections, it calls MMG$DALCSTXSCN
(see Section 3.9.2) to deallocate them.

13.

14.

156

3.7 Global Section Creation and Mapping

15. It lowers IPL to 0.

16. It records peak page file use and virtual size statistics, and stores re turn informa-
tion in the RETURN_VA 64 and RETURN_LENGTH_64 arguments.

17. If MMG_STD$CREPAG_64 returned an error status, EXE$CRMPSC_PFN_64
passes tha t status back to its requestor; otherwise, it returns SS$_CREATED.

3.7 Global Section Creation and Mapping
$CRMPSC and various other system services enable a process to create a global section
or, if the section already exists, to map to it. The Install utility requests the $CRMPSC
system service to create one or more global sections when an image is installed with
the /SHARED qualifier.

The creation of a global section is similar to the creation of a process section except
that additional data structures are involved. Chapter 2 shows the layouts of these
data structures and describes them and their interrelations in more detail.

�9 A global section descriptor (GSD; see Figure 2.24), which enables subsequent map
global section system service requests to determine whether the named section
exists and to locate its global section table entry (GSTE).

�9 A GSTE (see Figure 2.7), analogous to the PSTE but part of the system header
rather than of a PHD.

�9 Global page table entries (GPTEs), each of which describes the state of one global
page in the section. GPTEs are used by the page fault handler when a process
incurs a page fault for a global page. They are not used in address translation.

Each process has its own page table space and, in general, its own page tables to map
process-private space. Typically, when a process maps to a global section, its L3PTEs
that describe the specified address range are initialized with global page table indexes
(GPTXs; see Figure 2.25).

Like a process-private section, a global section can consist of specific pages of memory
or I/O address space. Creation of a global PFN-mapped section requires the PFNMAP
privilege. The only data structure necessary to describe a global PFN-mapped section
is a special form of GSD (see Figure 2.24). There are no GPTEs nor is there a GSTE.
When a process maps to such a section, its L3PTEs are initialized with the valid and
window bits set and PFNs based on GSD$L_BASEPFN.

Another type of global section is a demand zero section whose pages are backed in a
page file. This type of section is called a global page-file section. Record Management
Services (RMS) uses this type of section to implement global buffers on a file. The
dynamic SYSGEN parameter GBLPAGFIL specifies the maximum number of page file
pages that can be put to this use.

157

Memory Management System Services

Another type of global section, new with OpenVMS Version 7.1, is a memory-resident
global section. The pages of such a section do not page and are not backed up by a
section file. Once initialized, the global pages are permanent ly valid. When a process
maps to a memory-resident global section, any L3PTEs that map already valid pages
of global section are initialized as valid. Once such pages are valid in a process's page
table, they remain valid until deleted from the process's address space. They are not
listed in the working set list and do not count against working set or page file quotas.
A memory-resident global section is writable by definition.

Optionally, multiple processes can map memory-resident global sections with shared
page tables, using the same L3PTs to map the global section. Shared L3PTs are
permanently valid and not listed in the working set list. They do not count against
working set quotas or page file quotas. Figure 2.28 shows shared page tables mapping
a shared page. Use of shared page tables saves not only memory but also the time
to map the section. For more flexibility, shared page tables can be created tha t give
read-only access, enabling more reader processes to share page tables while fewer
writer processes map with private page tables.

For optimum performance, the system manager registers a memory-resident global
section in the Reserved Memory Registry (see Chapter 2) with the/ALLOCATE and
/PAGE_TABLES qualifiers. These make it possible for granulari ty hint regions to be
created for both the global section and its shared page tables.

On an OpenVMS Galaxy platform, a memory-resident global section can be created
in memory shared among all the instances. Such a global section is referred to as
a Galaxywide global section and as a shared memory global section. Galaxywide
shared memory is reserved for various uses through the Galaxy Configuration utility.
Through the utility the system manager can reserve a portion of shared memory for
global sections but cannot apportion it to particular global sections.

Optionally, processes can map a Galaxywide global section with shared page tables and
use the same L3PTs to map the section.

3.7.1 Creating Global Sections with $CRMPSC
Requested to create or map a global section, the $CRMPSC system service procedure,
EXE$CRMPSC, takes the following steps:

I As described in Section 3.6.1.1, it initializes scratch space on the stack, determines
the actual and useful ranges to be mapped, and tests the compatibility of the flags
in the FLAGS argument. It examines the FLAGS argument to determine what type
of global section is to be created and what further checks are required:

If a global section is to be mapped and the requestor specified a value for the
RELPAG argument, the RETADR argument must also have been specified.

If a PFN-mapped section or global page-file section is to be created, the CHAN
argument should not be present.

158

3.7 Global Section Creation and Mapping

- - If a section file section is to be created, the CHAN argument must be present,
the file must have been opened, and the WCB must map the entire file. If the
section already exists, the CHAN argument need not be present.

If the section is to be copy-on-reference, EXE$CRMPSC sets bit MMG$V_
CHGPAGFIL in MMG$L_MMG_FLAGS.

2. It locks the GSD mutex for write access, raising IPL to 2. The GSD mutex syn-
chronizes access to both the systemwide and group GSD lists.

3. EXE$CRMPSC calls MMG$DALCSTXSCN1 (see Section 3.9.2) to check the global
(system) section table for any sections to be deleted.

4. It calls MMG_STD$GSDSCAN, in module SYSDGBLSC, to find the GSD, if any,
that corresponds to the GSDNAM argument. MMG_STD$GSDSCAN attempts
logical name translation of the GSDNAM argument, as described in the Open VMS
Programming Concepts Manual. If the translation fails, it uses the string specified
by the service requestor as the global section name.

MMG_STD$GSDSCAN scans the group or systemwide GSD list, depending on the
type of section. In scanning the group list, it first compares the current security
persona's UIC group code with the high word of GSD$L_PCBUIC. If they are
equal, it then compares the global section names. Because a character string
comparison is relatively lengthy, the routine first confirms that one is necessary by
requiring that the hash values and the character string lengths be the same for the
target section name and the one in the candidate GSD. If they are not the same,
the global section names cannot be.

If the names match, MMG_STD$GSDSCAN checks the match control information
specified in the IDENT argument against GSD$L_IDENT. If there is a version
incompatibility, MMG_STD$GSDSCAN continues to scan the list until it reaches
the end or finds a match.

Multiple versions of a global section with different version identifications and
match control information can be installed. If a newer one were installed last and
had match control specifying upward compatibility (match less or equal), it could
be used with executables linked against it or earlier versions. If it had match
control specifying no upward compatibility (match equal), an executable linked
against an earlier version would not match; EXE$CRMPSC would continue to scan
the list and find the earlier one.

5. If MMG_STD$GSDSCAN locates a matching GSD, EXE$CRMPSC is being re-
quested to map to an existing section, and it transfers control to EXE$MGBLSC,
at step 7 in the description in Section 3.8.1.

6. If no match is found, EXE$CRMPSC is being requested to create a new section. It
calls MMG_STD$SEC_PRIVCHK, in module SYSCRMPSC, to check whether the
current security persona has the privileges necessary to create the type of section
specified by its FLAGS argument and, if not, unlocks the GSD mutex and returns
the error status SS$_NOPRIV.

159

Memory Management System Services

o

Q

, ,

10.

11.

12.

13.

14.
15.

EXE$CRMPSC allocates paged pool for a GSD. The size of the GSD depends on
whether the global section is PFN-mapped. If pool is unavailable, it unlocks the
GSD mutex and returns the error status SS$_GSDFULL.

It begins to initialize the GSD, copying the section name to GSD$T_GSDNAM,
storing the hash value in GSD$L_HASH, and clearing GSD$L_IPID.

If the section is PFN-mapped, EXE$CRMPSC clears GSD fields irrelevant to this
type of section and copies the VBN argument to GSD$L_BASEPFN, the section
name to GSD$T_PFNGSDNAM, and the contents of the PAGCNT argument to
GSD$L_PAGES. (Note that for a PFN-mapped section, the PAGCNT argument
specifies a number of pages, not pagelets.)

EXE$CRMPSC initializes GSD$L_FLAGS from the section flags and access mode.

EXE$CRMPSC calls MMG$INIT_ORB, in module SYSCRMPSC, which takes the
following steps:

a. It stores the current security persona's UIC in GSD$L_PCBUIC and clears
GSD$L_FILUIC.

b. It sets GSD$L_PROT to FFFF16, a no-access protection mask. Protection
information in the object rights block (ORB) is used instead of GSD$L_PROT.

c. If the section is to map a file, MMG$INIT_ORB stores the address of the ORB
associated with the open file in GSD$L_ORB. If there is no ORB associated
with the file, MMG$INIT_ORB returns the error status SS$_ABORT. Oth-
erwise, MMG$INIT_ORB copies ORB$L_OWNER into GSD$L_FILUIC and
initializes the ACL mutex in the ORB.

If the section is a PFN-mapped or global page-file section, MMG$INIT_ORB
allocates an ORB from paged pool and initializes it, copying the current
security persona's UIC to ORB$L_OWNER; bits from the PROW argument to
ORBL_SYS_PROT, ORBL_GRP_PROT, ORB$L_OWN_PROT, and ORB$L_
WOR_PROT; and the current security persona's class information, if any,
to ORB$R_MIN_CLASS and ORB$R_MAX_CLASS. If pool for the ORB is
unavailable, MMG$INIT_ORB returns the error status SS$_INSFMEM.

If MMG$INIT_ORB returns an error status, EXE$CRMPSC deallocates the GSD,
unlocks the GSD mutex, and returns the error status to the system service re-
questor.

EXE$CRMPSC initializes GSD$L_IDENT from the IDENT argument.

If the section is PFN-mapped, EXE$CRMPSC continues with step 26.

Otherwise, it allocates a GSTE from the system header. If none is available, it
deallocates the ORB and GSD, unlocks the mutex, and returns the error status
SS$_SECTBLFUL.

160

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

3.7 Global Section Creation and Mapping

EXE$CRMPSC takes most of the same steps to initialize a GSTE as for a PSTE
(see steps 10a through 10i in Section 3.6.1.1). One additional step required for
a global section is making the WCB a "shared" one if it is not already. This
chiefly involves returning the byte count quota charged for it to the appropriate
job, setting WCB$V_SHRWCB in WCB$B_ACCESS, and incrementing WCB$L_
REFCNT to indicate one more reason the file should not be closed.

Also, between clearing the virtual page index and setting the section reference
count to 1, it executes a memory barrier instruction. The memory barrier ensures
that another processor cannot see a nonzero reference count without also seeing
a zero virtual page index. The zero virtual page index prevents the section table
entry from being used to map a global section before it is fully initialized.

It stores the GSTE index in GSD$L_GSTX.

If the section is a section file section rather than a global page-file section, it copies
the file owner UIC to GSD$L_FILUIC.

If the section is a global page-file section, it updates MMG$GL_GBLPAGFIL, the
number of pages of page file that can be used for this purpose, to reflect any change
in the dynamic SYSGEN parameter GBLPAGFIL. It subtracts the section's page
count from MMG$GL_GBLPAGFIL.

If mapping this section would exceed the allowed global page file count,
EXE$CRMPSC deallocates the GSD, ORB, and GSTE; unlocks the mutex; and
returns the error status SS$_EXGBLPAGFIL.

It converts the number of pagelets in the section to pages and allocates a set of
contiguous GPTEs, one for each global page plus two additional GPTEs, one at the
beginning of the set and one at the end. The two additional GPTEs are cleared to
serve as stoppers, limits to modified page write clustering (see Chapter 4).

If there are insufficient GPTEs, EXE$CRMPSC deallocates the data structures it
built, restores the page file charge, unlocks the mutex, and returns the error status
SS$_GPTFULL.

It zeros the beginning stopper GPTE and calculates the virtual page number of the
second GPTE (skipping the stopper GPTE) and stores that in SEC$L_VPX.

It forms template PTE contents for the GPTEs (see Figure 2.26).

It then loops, initializing GPTEs with the template PTE contents.

If necessary, it sets PTE$V_PARTIAL_SECTION in the highest GPTE to indicate
that the page will be only partly occupied by global section data.

It zeros the end stopper GPTE.

It inserts the GSD at the front of the group or systemwide list, enabling a more
recently installed global section to supersede an earlier one (see step 4).

161

Memory Management System Services

27. The global section has been created. It transfers control to EXE$MGBLSC (at step
11 in the description in Section 3.8.1) to map it into the process's virtual address
space as an existing section.

3.7.2 $CREATE_GFILE System Service
The Create Permanent Global Disk File Section ($CREATE_GFILE) system service
procedure, EXE$CREATE_GFILE in module SYS_GBLSEC_64, runs in kernel mode.

EXE$CREATE_GFILE takes the following steps"

1. In addition to making the checks described in Section 3.1.2, it validates its argu-
ments as follows:

a. If the FAULT_CLUSTER argument was specified, it rounds it up to an integral
number of pages.

b. It checks the FLAGS argument to confirm that

SEC$V_DZRO and SEC$V_CRF are not both specified

If SEC$V_DZRO is set, SEC$V_WRT is as well

If any condition is false, it returns the error status SS$_IVSECFLG. Otherwise,
it sets the flags SEC$V_PERM and SEC$V_GBL in case they were clear. It
stores the maximized access mode in SEC$V_AMOD. If the section is writable,
the mode allowed to read determines the mode allowed to write.

2. It calls local routine $CREATE_GFILE_INT (see Section 3.7.3) to create the
section. EXE$CREATE_GFILE returns any error status to its requestor.

3. If $CREATE_GFILE_INT returns SS$_NORMAL, the section already exists and
was not created. EXE$CREATE_GFILE locks the GSD mutex, raising IPL to 2;
decrements the section reference count, which had been incremented; and unlocks
the mutex. It returns SS$_DUPLNAM to its requestor.

4. EXE$CREATE_GFILE calls MMG_STD$CHKPRO_AUDIT, in module
SYSCRMPSC, to check whether the current security persona's creation of the
global section needs to be audited.

5. EXE$CREATE_GFILE calls MMG_STD$DELGBLWCB (see Section 3.9.4) to close
any open files associated with temporary global sections whose reference counts
have gone to zero and to delete their WCBs.

6. If an audit is necessary, EXE$CREATE_GFILE lowers IPL to 0 and performs the
actual audit of the global section creation.

7. It acquires the MMG spinlock, decrements the section reference count, which had
been incremented, and releases the spinlock. It returns SS$_CREATED to its
requestor if the section was created or an error status from MMG_STD$CHKPRO_
AUDIT.

162

3.7 Global Section Creation and Mapping

3.7.3 $CREATE_GFILE_INT Routine
$CREATE_GFILE_INT, in module SYS_GBLSEC_64, performs much of the work of
the $CREATE_GFILE and $CRMPSC_GFILE_64 system services.

It takes the following steps:

. It checks that the FILE_OFFSET_64 and LENGTH_64 arguments are multiples of the
size of a disk block, returning the error status SS$_OFF_NOTBLKALGN or SS$_
LEN_NOTBLKMULT if not.

, It confirms that the specified channel has been assigned; that its associated device
is directory-structured, files-oriented, and random access; and that a file is open
on the channel. In case of error, it returns the error status SS$_NOTFILEDEV,
SS$_IVCHNLSEC, or SS$_IVCHAN.

, If the WCB does not map the entire file, $CREATE_GFILE_INT remaps the file
with a cathedral WCB (see Section 3.5). It copies the end-of-file virtual block
number from the file control block to MMG$L_EFBLK.

4. It locks the GSD mutex for write, raising IPL to 2.

5. It calls MMG_STD$DALCSTXSCN (see Section 3.9.2) to check the global (system)
section table for any sections to be deleted.

6. It calls MMG_STD$GSDSCAN (see Section 3.7.1) to find the GSD, if any, tha t
corresponds to the GSDNAM argument.

7. If MMG_STD$GSDSCAN returns an error status other than SS$_NOSUCHSEC,
$CREATE_GFILE_INT unlocks the mutex, calls MMG_STD$DELGBLWCB (see
Section 3.9.4) to close any open files associated with temporary global sections
whose reference counts have gone to zero and to delete their WCBs, and returns
the error status to its caller.

, Otherwise, $CREATE_GFILE_INT checks that the global section ident is positive
and, if not, unlocks the mutex, calls MMG_STD$DELGBLWCB, and returns the
error status SS$_IVSECIDCTL to its caller.

, If the section already exists, it checks whether the section is a PFN-mapped,
page-file, or memory-resident section and, if so, unlocks the mutex, calls MMG_
STD$DELGBLWCB, and returns the error status SS$_GBLSEC_MISMATCH.

It checks that the requesting access mode is allowed to map the section and, if not,
unlocks the mutex, calls MMG_STD$DELGBLWCB, and returns the error status
SS$_NOPRIV.

It determines the address of the GSTE, acquires the MMG spinlock, and incre-
ments SEC$L_REFCNT to prevent section deletion. It releases the MMG spinlock.
With the section's deletion blocked, $CREATE_GFILE_INT can safely unlock the
GSD mutex. It returns SS$_NORMAL to its caller.

163

Memory Management System Services

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

If the section does not already exist, it calls MMG_STD$SEC_PRIVCHK, in module
SYSCRMPSC, to check whether the current security persona has the privileges
necessary to create a section file global section and, if not, unlocks the mutex, calls
MMG_STD$DELGBLWCB, and returns the error status SS$_NOPRIV.

It allocates paged pool for a GSD. If pool is unavailable, it unlocks the GSD mutex,
calls MMG_STD$DELGBLWCB, and returns the error status SS$_GSDFULL.

It initializes the GSD, copying the section name to GSD$T_GSDNAM, storing the
hash value in GSD$L_HASH, and clearing GSD$L_IPID. It initializes GSD$L_
FLAGS from the section flags and access mode.

It calls MMG_STD$INIT_ORB (see Section 3.7.1) to allocate and initialize an
ORB that describes the protection on the GSD. If it returns an error status,
$CREATE_GFILE_INT deallocates the GSD, unlocks the mutex, calls MMG_
STD$DELGBLWCB, and returns the error status to its caller.

It checks whether the IDENT_64 argument is greater than SEC$K_MATLEQ
and, if so, deallocates the GSD and ORB, unlocks the mutex, calls MMG_
STD$DELGBLWCB, and returns the error status SS$_IVSECIDCTL to its caller.

It allocates a GSTE from the system header. If none is available, it deallocates the
GSD and ORB, unlocks the mutex, calls MMG_STD$DELGBLWCB, and returns
the error status SS$_SECTBLFUL.

$CREATE_GFILE_INT takes most of the same steps to initialize a GSTE as for
a PSTE for a process section (see steps 10a through 10i in Section 3.6.1.1). One
additional step required for a global section is making the WCB a shared one if it
is not already. This chiefly involves returning the byte count quota charged for it
to the appropriate job, setting the bit WCB$V_SHRWCB in WCB$B_ACCESS, and
incrementing WCB$L_REFCNT to indicate one more reason the file should not be
closed.

It stores the GSTE index in GSD$L_GSTX.

It copies the section flags from the GSD to the GSTE.

It copies the file owner UIC to GSD$L_FILUIC.

It calculates the number of pages to be mapped based on the LENGTH_64 argument
and actual number of blocks in the section file to be mapped.

It sanity checks that the number of pages can be represented as a positive 32-bit
number and, if not, returns SS$_GPTFULL to its caller.

It allocates a set of contiguous GPTEs, one for each global page plus two additional
GPTEs, one at the beginning of the set and one at the end. The two additional
GPTEs are cleared and serve as stoppers, limits to modified page write clustering
(see Chapter 4).

If there are insufficient GPTEs, $CREATE_GFILE_INT unlocks the mutex, deallo-
cates the data structures it built, calls MMG_STD$DELGBLWCB, and returns the
error status SS$_GPTFULL.

164

23.

24.

25.

26.

27.

28.

29.

30.

3.7 Global Section Creation and Mapping

It updates performance cells (PMS$GL_GBLPAGCNT and PMS$GL_
GBLPAGMAX).

It zeros the beginning stopper GPTE and calculates the virtual page number of the
second GPTE (skipping the stopper GPTE) and stores that in SEC$L_VPX.

It forms template PTE contents for the GPTEs (see Figure 2.26).

It then loops, initializing GPTEs with the template PTE.

If necessary, it sets PTE$V_PARTIAL_SECTION in the highest GPTE to indicate
that the page will be only partly occupied by global section data.

It zeros the end stopper GPTE.

It inserts the GSD at the front of the group or systemwide list.

It unlocks the mutex and returns SS$_CREATED to its caller.

3.7.4 $CRMPSC_GFILE_64 System Service
The Create and Map Global Disk File Section ($CRMPSC_GFILE_64) system service
procedure, EXE$CRMPSC_GFILE_64 in module SYS_GBLSEC_64, runs in kernel
mode.

EXE$CRMPSC_GFILE_64 takes the following steps"

1. It validates the arguments with which it was requested, making the same checks
as EXE$CREATE_GFILE (see Section 3.7.2), with the following additions"

- - If the START_VA_64 argument was omitted or contains zero, and the flag SEC$V_
EXPREG was clear, it returns the error status SS$_IVSECFLG.

- - It checks that the START_VA_64 is aligned on a page boundary, returning the
error status SS$_VA_NOTPAGALGN if not.

- - It checks that the SECTION_OFFSET_64, LENGTH_64, and MAP_LENGTH_64 argu-
ments are multiples of the size of a disk block, returning the error status SS$_
OFF_NOTBLKALGN or SS$_LEN_NOTBLKMULT if not.

2. It sets the flag SEC$V_GBL in case it was clear.

3. It calls local routine $CREATE_GFILE_INT (see Section 3.7.3) to create the section
if it does not exist. EXE$CRMPSC_GFILE_64 returns any error status to its
requestor.

4. It calls MMG_STD$CHKPRO_AUDIT to check access to the file.

5. If access is allowed, EXE$CRMPSC_GFILE_64 determines how much of the section
to map: if the MAP_LENGTH_64 argument was omitted, it calculates the difference
between the length of the created section and the SECTION_OFFSET_64 argument. It
calls $MGBLSC GFILE_INT (see Section 3.8.2.1) to map the section.

6. EXE$CRMPSC_GFILE_64 acquires the MMG spinlock, decrements the section
reference count, which had been incremented, and releases the spinlock.

165

Memory Management System Services

7. If the section was created, it records peak page file use and virtual size statistics,
and stores return information in the RETURN_VA_64 argument.

8. It returns to its requestor the status from $CREATE_GFILE_INT or, if there was a
mapping error, the error status from $MGBLSC_GFILE_INT.

3.7.5 $CREATE_GPFILE System Service
The Create Permanent Global Page File Section ($CREATE_GPFILE) system service
is requested to create a demand zero global section whose backing store is the page
file. The requestor specifies section name, ident, length, access mode, and section
flags. Section protection is specified by the requestor ra ther than being derived from
a section file. The requestor does not open a section file so does not specify channel
number or offset into the file. The requestor does not specify page fault cluster; its
value is determined by the SYSGEN parameter PFCDEFAULT.

The $CREATE_GPFILE system service procedure, EXE$CREATE_GPFILE in module
SYS_GBLSEC_64, runs in kernel mode. It resembles EXE$CREATE_GFILE (see
Section 3.7.2), with the following major differences:

There are no output arguments to validate.

There is no need to check the channel argument or remap the section file.

The section flags set automatically by EXE$CREATE_GPFILE are SEC$V_PERM,
SECV_GBL, SECV_DZRO, SEC$V_WRT, and SEC$V_PAGFIL.

It calls $CREATE_GPFILE_INT (see Section 3.7.6).

3.7.6 $CREATE_GPFILE_INT Routine
$CREATE_GPFILE_INT, in module SYS_GBLSEC_64, performs much of the work of
the $CREATE_GPFILE and $CRMPSC_GPFILE_64 system services.

It resembles $CREATE_GFILE_INT (see Section 3.7.3), with the following major
differences:

�9 If a global section has already been created with matching name and ident, it
must be a page file section for a successful match. If not, $CREATE_GPFILE_INT
returns the error status SS$_GBLSEC_MISMATCH.

�9 The GSTE is initialized with a zero SEC$L_WINDOW.

�9 If the system manager has changed SYSGEN parameter GBLPAGFIL, $CREATE_
GPFILE_INT records the new value in MMG$GL_LAST_GBLPAGFIL and updates
MMG$GL_GBLPAGFIL, the number of available pages of global page file, by the
difference between the old and new value.

�9 It checks that there are enough available pages of global page file for the new
global section, returning SS$_EXGBLPAGFIL to its caller if not.

�9 It charges the section's pages against MMG$GL_GBLPAGFIL.

166

3.7 Global Section Creation and Mapping

* The prototype GPTE has its type 0 and type I bits clear (see Figure 2.26).

3.7.7 $CRMPSC_GPFILE_64 System Service
The Create and Map Global Page File Section ($CRMPSC_GPFILE_64) system service
is requested to create a demand zero global section whose backing store is the page
file and map to it. The requestor specifies section name, ident, length, access mode,
and section flags. Section protection is specified by the requestor rather than being
derived from a section file. The requestor does not open a section file so does not
specify channel number or offset into the file. The requestor does not specify page
fault cluster; its value is determined by the SYSGEN parameter PFCDEFAULT.

The $CRMPSC_GPFILE_64 system service procedure, EXE$CRMPSC_GPFILE_64 in
module SYS_GBLSEC_64, runs in kernel mode. It resembles EXE$CRMPSC_GFILE_
64 (see Section 3.7.4), with the following major differences:

There is no need to check the channel argument or remap the section file.

The section flags set automatically by EXE$CRMPSC_GPFILE_64 are SEC$V_
GBL, SECV_DZRO, SECV_WRT, and SEC$V_PAGFIL.

EXE$CRMPSC_GPFILE_64 checks that the START_VA_64 and SECTION_OFFSET_64
arguments are page-aligned, returning the error status SS$_VA_NOTPAGALGN or
SS$_OFF_NOTPAGALGN if not. It checks that the LENGTH_64, and MAP_LENGTH_
64 arguments are page multiples, returning SS$_LEN_NOTPAGMULT if not.

It calls $CREATE_GPFILE_INT and $MGBLSC_GPFILE_INT (see Sections 3.7.6
and 3.8.2.2).

3.7.8 $CREATE_GPFN System Service
The Create Permanent Global Page Frame Section ($CREATE_GPFN) system service
is requested to create a PFN-mapped global section with no backing store. The re-
questor specifies section name, ident, protection, length, access mode, starting PFN,
and section flags. The requestor has not opened a section file to be mapped so does
not specify a channel argument or file offset. The requestor does not specify page fault
cluster; such a section incurs no page faults.

The $CREATE_GPFN system service procedure, EXE$CREATE_GPFN in module
SYS_GPFN_64, runs in kernel mode.

EXE$CREATE_GPFN takes the following steps:

~ In addition to making the checks described in Section 3.1.2, it validates its argu-
ments as follows:

a ~ It sets the flags SECV_PFNMAP, SECV_PERM, and SEC$V_GBL in the
FLAGS argument in case they were clear.

167

Memory Management System Services

J

,

o

,

b. It checks that the PAGE_COUNT argument is nonzero and is smaller than the
maximum amount of physical memory, and that the start ing and ending PFNs
can be expressed with 32 bits, returning the error status SS$_ILLPAGCNT if
any test fails.

c. It checks that the protection code is valid, re turning SS$_IVPROTECT if not.

d. If SEC$V_WRT was specified in the FLAGS argument and if this system is a
Galaxy instance, it checks whether this is a request to map instance-private
memory. If not, it returns the error status SS$_INVPFN; only private memory
can be PFN-mapped writable.

It calls local routine $CREATE_GPFN_INT (see Section 3.7.9) to create the section.
EXE$CREATE_GPFN returns any error status to its requestor.

If $CREATE_GPFN_INT returns SS$_NORMAL, the section already exists and
was not created. EXE$CREATE_GPFN locks the GSD mutex, decrements GSD$L_
REFCNT, which had been incremented, and unlocks the mutex. It returns SS$_
DUPLNAM to its requestor.

EXE$CREATE_GPFN calls MMG_STD$CHKPRO_AUDIT to audit the section
creation.

EXE$CREATE_GPFN locks the GSD mutex, decrements GSD$L_REFCNT, which
had been incremented, and unlocks the mutex. It returns SS$_CREATED to its
requestor.

3.7.9 $CREATE_GPFN_INT Routine
$CREATE_GPFN_INT, in module SYS_GPFN_64, performs much of the work of the
$CREATE_GPFN and $CRMPSC_GPFN_64 system services.

It takes the following steps:

1. It locks the GSD mutex for write, raising IPL to 2.

2. It calls MMG_STD$DALCSTXSCN1 (see Section 3.9.2) to check the global (system)
section table for any sections to be deleted.

3. It calls MMG_STD$GSDSCAN (see Section 3.7.1) to find the GSD, if any, that
corresponds to the GSDNAM argument.

4. If MMG_STD$GSDSCAN returns an error status other than SS$_NOSUCHSEC,
$CREATE_GPFN_INT unlocks the mutex and returns the error status to its caller.

5. Otherwise, $CREATE_GPFN_INT performs an additional sanity check on the
global section ident: it confirms that the ident is positive and, if not, unlocks the
mutex and returns the error status SS$_IVSECIDCTL to its caller.

6. If the section already exists, it checks whether the section is a PFN-mapped
section and, if not, unlocks the mutex and returns the error status SS$_GBLSEC_
MISMATCH.

168

3.7 Global Section Creation and Mapping

.

,

,

10.

11.

12.

It checks that the requesting access mode is allowed to map the section and, if not,
unlocks the mutex and returns the error status SS$_NOPRIV.

Otherwise, it increments GSD$L_REFCNT to prevent section deletion. With the
section's deletion blocked, $CREATE_GPFN_INT can safely unlock the GSD mutex.
It returns SS$_NORMAL to its caller.

If the section does not already exist, $CREATE_GPFN_INT calls MMG_STD$SEC_
PRIVCHK, in module SYSCRMPSC, to check whether the current security per-
sona has the privileges necessary to create the type of section specified by its
FLAGS argument and, if not, unlocks the mutex and returns the error status SS$_
NOPRIV.

It allocates paged pool for an extended GSD. If pool is unavailable, it unlocks the
GSD mutex and returns the error status SS$_GSDFULL.

It initializes the GSD, copying the section name to GSD$T_GSDNAM, storing
the hash value in GSD$L_HASH, and clearing GSD$L_IPID. It clears GSD fields
irrelevant to this type of section and copies the START_PFN argument to GSD$L_
BASEPFN, the section name to GSD$T_PFNGSDNAM, and the contents of the
PAGE_COUNT argument to GSD$L_PAGES. It initializes GSD$L_FLAGS from the
section flags and access mode.

It calls MMG_STD$INIT_ORB (see Section 3.7.1) to allocate and initialize an ORB
that describes the protection on the GSD. If it returns an error status, $CREATE_
GPFN_INT deallocates the ORB and GSD, unlocks the mutex, and returns the
error status to its caller.

It checks that the IDENT_64 argument is greater than SEC$K_MATLEQ and, if not,
deallocates the GSD and ORB, unlocks the mutex, and returns the error status
SS$_IVSECIDCTL to its caller.

Otherwise, it increments GSD$L_REFCNT to prevent section deletion, unlocks the
mutex, and returns the success status SS$_CREATED to its caller.

3.7.10 $CRMPSC_GPFN_64 System Service
The Create and Map Global Page Frame Section ($CRMPSC_GPFN_64) system service
is requested to create and map a PFN-mapped global section. The requestor specifies
section name, ident, protection, first PFN to be mapped, region ID, relative page
number, number of pages in the section, access mode, number of pages to be mapped,
and section flags.

The $CRMPSC_GPFN_64 system service procedure, EXE$CRMPSC_GPFN_64 in
module SYS_GPFN_64, runs in kernel mode.

EXE$CRMPSC_GPFN_64 takes the following steps:

169

Memory Management System Services

1. It validates the arguments with which it was requested, making the same checks
as EXE$CREATE_GPFN (see Section 3.7.8), with the following additions:

- - If the START_VA 64 argument was omitted and the flag SEC$V_EXPREG was
clear, EXE$CRMPSC_GPFN_64 returns the error status SS$_IVSECFLG.

- - It tests the accessibility of the region ID argument, returning the error status
SS$_ACCVIO if it is not accessible.

- - It checks that the START_VA_64 is aligned on a page boundary, returning the
error status SS$_VA_NOTPAGALGN if not.

2. It calls $CREATE_GPFN_INT (see Section 3.7.9) to create the global section. If it
returns an error status, EXE$CRMPSC_GPFN_64 returns the error status to its
requestor.

3. Otherwise, it calls $MGBLSC_GPFN_INT (see Section 3.8.3.1) to perform the
mapping.

4. EXE$CRMPSC_GPFN_64 locks the GSD mutex for write, decrements the extra
section reference added by $CREATE_GFPN_INT, and unlocks the mutex.

5. If the mapping succeeded, it records peak virtual size statistics, and stores return
information in the RETURN_VA_64 and RETURN_LENGTH_64 arguments. If the output
arguments are inaccessible, it returns SS$_ACCVIO to its requestor.

6. Otherwise, it returns to its requestor the status from $MGBLSC_GPFN_INT.

3.7.11 $CREATE_GDZRO System Service
The Create Permanent Global Demand Zero Section ($CREATE_GDZRO) system
service is requested to create a permanent, memory-resident, demand zero global
section without backing store, either in local memory or in Galaxywide shared memory.

The requestor specifies section name, ident, length, access mode, and section flags.
Section protection is specified by the requestor rather than being derived from a
section file. Optionally, the requestor can specify in which resource affinity domain
(RAD) the system service should create the global section.

The $CREATE_GDZRO system service procedure, EXE$CREATE_GDZRO in module
SYS_GDZRO_64, runs in kernel mode. It resembles EXE$CREATE_GPFN (see Section
3.7.8), with the following major differences"

If the requestor specified a RAD, EXE$CREATE_GDZRO checks that RAD support
is enabled and returns error status SS$_BADRAD if not. If RAD support is
enabled, it checks that the requestor specified a single RAD and one that actually
exists, returning SS$_BADRAD if not.

It sets the flags SECV_DZRO, SECV_PERM, SECV_WRT, SECV_GBL, and
SEC$V_MRES in case they were clear.

If the request is to create a Galaxywide section (if SEC$V_SHMGS is set), it checks
that the service was requested from IPL 0, returning SS$_BADPARAM if not.

170

3.7 Global Section Creation and Mapping

If the request is to create a memory-resident section, it calls $CREATE_GDZRO_
INT (see Section 3.7.12).

If the request is to create a Galaxywide section, it calls $CREATE_SHMGS_INT
(see Section 3.7.13).

It returns the number of bytes tha t had been reserved for the global section in
argument RESERVED_LENGTH_64, if present.

3.7.12 $CREATE_G DZRO_INT Routine
$CREATE_GDZRO_INT, in module SYS_GDZRO_64, performs much of the work of
the $CREATE_GDZRO and $CRMPSC_GDZRO_64 system services when either is
requested to create a memory-resident section.

It takes the following steps:

1. If the requestor specified in which RAD the global section should be allocated,
$CREATE_GDZRO_INT checks that there is memory associated with that RAD,
returning error status SS$_BADRAD if not.

2. It validates system service arguments, as described in Section 3.1.2.

3. It locks the GSD mutex for write, raising IPL to 2.

4. It calls MMG_STD$DALCSTXSCN (see Section 3.9.2) to check the global (system)
section table for any sections to be deleted.

5. It calls MMG_STD$GSDSCAN (see Section 3.7.1) to find the GSD, if any, that
corresponds to the GS_NAME_64 argument.

6. If MMG_STD$GSDSCAN returns an error status other than SS$_NOSUCHSEC,
$CREATE_GDZRO_INT unlocks the mutex and returns the error status to its
caller.

7. Otherwise, it checks that the IDENT_64 argument is positive and, if not, unlocks the
mutex and returns the error status SS$_IVSECIDCTL to its caller.

8. If the section already exists, it checks whether the section is a demand zero
memory-resident or Galaxywide global section and, if not, unlocks the mutex and
returns the error status SS$_GBLSEC_MISMATCH.

It checks that the requesting access mode is allowed to map the section and, if not,
unlocks the mutex and returns the error status SS$_NOPRIV.

Otherwise, it increments GSD$L_REFCNT to prevent section deletion. With the
section's deletion blocked, it can safely unlock the GSD mutex. It returns SS$_
NORMAL to its caller.

9. If the section does not already exist, $CREATE_GDZRO_INT calls MMG_
STD$SEC_PRIVCHK, in module SYSCRMPSC, to check whether the current
security persona has the privileges necessary to create the type of section specified
by its FLAGS argument and, if not, unlocks the mutex and returns the error status
SS$_NOPRIV.

171

Memory Management System Services

10. If the section to be created is a memory-resident section, $CREATE_GDZRO_INT
makes an additional check for the rights identifier VMS$MEM_RESIDENT_USER.
If the persona does not hold this identifier, it unlocks the mutex and returns the
error status SS$_NOMEMRESID.

11. It allocates paged pool for a GSD. If pool is unavailable, it unlocks the GSD mutex
and returns the error status SS$_GSDFULL.

12. It initializes the GSD, copying the section name to GSD$T_GSDNAM, storing
the hash value in GSD$L_HASH, and clearing GSD$L_IPID. It clears GSD fields
irrelevant to this type of section and initializes GSD$L_FLAGS from the section
flags and access mode.

13. It checks that the LENGTH_64 argument, converted to pagelets, fits within 32 bits
and, if not, deallocates the GSD, unlocks the mutex, and returns the error status
SS$_ILLPAGCNT.

14. It checks that the IDENT_64 argument is valid and, if not, deallocates the GSD,
unlocks the mutex, and returns the error status SS$_IVSECIDCTL.

15. $CREATE_GDZRO_INT allocates a GSTE from the system header. If none is
available, it deallocates the GSD, unlocks the mutex, and returns the error status
SS$_SECTBLFUL.

Otherwise, it initializes the GSTE:

a. It copies the FLAGS argument to SEC$L_FLAGS and sets section flag SEC$V_
WRT unless the section is a shared page table read-only section.

b. It checks that the number of pagelets to be mapped is nonzero and, if not,
deallocates the GSTE and GSD, unlocks the mutex, and returns SS$_LEN_
NOTPAGMULT to its caller.

c. It stores the number of pagelets to be mapped in SEC$L_UNIT_CNT.

d. It clears SEC$L_WINDOW.

e. It stores the section offset in the GSTE forward and backward links and clears
SEC$L_VPX, the virtual page index.

f. Before setting the section reference count to 1, $CREATE_GDZRO_INT exe-
cutes a memory barrier instruction to ensure another processor cannot see a
nonzero reference count without also seeing a zero virtual page index. The zero
virtual page index prevents the section table entry from being used to map a
global section while it is not fully initialized.

g. It sets SEC$V_INPROG in SEC$L_FLAGS to indicate section initialization is
in progress.

16. $CREATE_GDZRO_INT copies the IDENT_64 argument to GSD$L_IDENT and
initializes GSD$L_FLAGS from the section flags and access mode.

172

17.

18.

19.

3.7 Global Section Creation and Mapping

It calls MMG_STD$INIT_ORB (see Section 3.7.1) to allocate and initialize an ORB
that describes the protection on the GSD. If it returns an error status, $CREATE_
GDZRO_INT deallocates the ORB, GSD, and GSTE; unlocks the mutex; and
returns the error status to its caller.

It calls MMG_STD$USE_RES_MEM, in module MEM_ALLOC, iteratively to locate
all the reserved memory descriptors (RMDs), if any, associated with this global
section. A global section with memory reserved in multiple RADs has an RMD for
each RAD. $CREATE_GDZRO_INT continues to call MMG_STD$USE_RES_MEM,
accumulating reserved pages, until that routine returns an error status.

MMG_STD$USE_RES_MEM takes the following steps:

a. If a matching RMD exists, but its pages are already in use, MMG_STD$USE_
RES_MEM returns the error status SS$_RESERVEDMEMUSED.

b. If a matching RMD exists, its pages are not in use, and its pages were pre-
allocated, it checks that the requested page count is less than or equal to
the number reserved, returning the error status SS$_MRES_PFNSMALL if
not. Otherwise, it zeros the pages if they were not already zeroed, stores the
requested page count in RMD$L_IN_USE_COUNT, sets RMD$V_IN_USE in
RMD$L_FLAGS, and returns SS$_NORMAL and the address of the RMD.

c. If a matching RMD exists but its pages were not preallocated, MMG_
STD$USE_RES_MEM compares the requested page count to the number
reserved. If the request is larger, it checks whether the difference would
reduce the system fluid page count (PFN$GL_PHYPGCNT) too much and re-
turns the error status SS$_INSFLPGS if so. Otherwise, it reduces the fluid
page count by the requested page count, stores the requested page count in
RMD$L_IN_USE_COUNT, sets RMD$V_IN_USE in RMD$L_FLAGS, and
returns SS$_NORMAL and the address of the RMD.

d. If no matching RMD exists, the routine checks whether the requested page
count would reduce the fluid page count too much and returns the error
status SS$_INSFLPGS if so. Otherwise, it reduces the fluid page count by the
requested page count and returns SS$_NORMAL.

If MMG_STD$USE_RES_MEM returns SS$_RESERVEDMEMUSED but enough
pages have been reserved for the global section, $CREATE_GDZRO_INT continues.
Otherwise, $CREATE_GDZRO_INT returns any reserved memory, deallocates the
GSD and GSTE, unlocks the mutex, and returns the error status to its caller.

If MMG_STD$USE_RES_MEM returns any other error status, $CREATE_
GDZRO_INT returns any reserved memory, deallocates the GSD and GSTE,
unlocks the mutex, and returns the error status to its caller.

If the RMD pages were preallocated, $CREATE_GDZRO_INT sets SEC$V_MRES_
ALLOC in both the GSD and GSTE flags.

173

Memory Management System Services

20.

21.

22.

23.

24.

It calls MMG_STD$USE_RES_MEM again, this time to locate an RMD for shared
page tables for the global section. MMG_STD$USE_RES_MEM takes the steps
previously described, with the exception that it returns SS$_NORESERVEDMEM
if there is no RMD for a shared page table reservation.

If a shared page table RMD exists, $CREATE_GDZRO_INT allocates paged pool
for a GSD to describe the shared page table global section. If the allocation fails,
it calls MMG_STD$RETURN_RES_MEM, in module MEM_ALLOC, to indicate
the memory is no longer being used, deallocates the GSD and GSTE, unlocks the
mutex, and returns SS$_GSDFULL to its caller.

Otherwise, $CREATE_GDZRO_INT initializes the shared page table global section
GSD with information from the global section GSD. It sets SEC$V_SHARED_PTS
and, if the system service FLAGS bit SEC$V_READ_ONLY_SHPT is clear, also
sets SEC$V_WRT in the shared page table GSD$L_FLAGS. It copies the global
section's SEC$V_RAD_HINT flag. It links the two GSDs together by storing the
global section index of the global section in the shared page table GSD's GSD$L_
RELATED_GSTX.

It checks that the global section and the shared page table global section are both
preallocated or both not. If they differ, it calls MMG_STD$RETURN_RES_MEM,
deallocates the GSDs and GSTE, unlocks the mutex, and returns SS$_MRES_
INCON to its caller.

It allocates and initializes a GSTE for the shared page table global section and
stores its index number in the global section's GSD$L_RELATED_GSTX. If the
GSTE allocation fails, it calls MMG_STD$RETURN_RES_MEM to release any
memory reserved for the global section or shared page table global section, deallo-
cates the GSDs and GSTE, unlocks the mutex, and returns SS$_MRES_INCON to
its caller.

$CREATE_GDZRO_INT allocates enough GPTEs to map the global section plus
two stopper GPTEs. If it is unable to allocate them, it calls MMG_STD$RETURN_
RES_MEM, deallocates the GSDs and GSTE, unlocks the mutex, and returns SS$_
GPTFULL to its caller.

Otherwise, it calculates the global page table index corresponding to the first
page of the section and records it in GSTE$L_VPX. It updates global page table
performance cells, PMS$GL_GBLPAGCNT and PMS$GL_GBLPAGMAX.

If there is an associated shared page table global section, it repeats the actions of
the previous step in preparation for mapping that section.

It allocates and initializes an $2 space L3PTE to map the shared page table pages
one at a time so that it can initialize their L3PTEs.

It zeros the first and last GPTEs allocated for the global section and initializes the
rest of them:

If this is a preallocated section, each GPTE is valid and contains the PFN
associated with that page. If the reservation is described by multiple RMDs,
$CREATE_GDZRO_INT stripes the allocation across the RMDs, allocating the

174

3.7 Global Section Creation and Mapping

largest possible chunk in each tha t is a granulari ty hint multiple (512, 64, 8,
or 1). It returns any unused memory.

If the pages of the section are allocated on demand, each GPTE has its valid
bit clear, and its type 0, type 1, write, and demand zero bits set. The GPTE
contains the GSTE index and a type of PFN$C_GBLWRT. Figure 2.26 shows
the format of the section table index form of GPTE.

In the course of initializing GPTEs, $CREATE_GDZRO_INT increments PFN$L_
SHRCNT to 1 for the PFN occupied by the GPT page. If the section's pages
are preallocated, it confirms that the current page type of each PFN is PFN$C_
UNKNOWN, generating the fatal bugcheck INCONMMGST if not. It also initial-
izes the PFN database record of each PFN:

PFN$L_SHRCNT is 1, and PFN$L_WSLX_QW is 0, that is, a memory-resident
page is not part of any working set list.

Page type is PFN$C_GBLWRT, and page state is PFN$C_ACTIVE.

- - PFN$Q_PTE_INDEX and PFN$L_PT_PFN describe the GPTE that maps this
page.

PFN$W_REFCNT is 1.

PFN$Q_BAK contains the index of the associated GSTE.

25. If there is an associated shared page table global section, it repeats most of
the actions of the previous step to map that section, with the following major
differences and additional actions:

a. One difference is that if the shared page table pages were not preallocated,
$CREATE_GDZRO_INT must allocate them and initialize their PFN database
records. If the allocation fails, it places the kernel thread into a free page wait
until a free page is available.

It records the allocated PFNs in the GPTEs that map the shared page table
section. Each GPTE has a set valid bit and a PFN; the rest of its fields are
zero. The GPTEs simply record what memory has been allocated; the shared
page tables will eventually be mapped through process-private L2PTEs (see
Section 3.8.2.3).

b. $CREATE GDZRO_INT determines the page owner mode and protection bits
to insert in the shared L3PTEs, based on the section's owner mode.

c. It initializes PFN$W_PT_WIN_CNT in the PFN database record of each
shared page table to 1 less than the number of shared L3PTEs in that page,
the number of pages mapped by that shared page table page. A value o f - 1 in
PFN$W_PT_WIN_CNT represents a count of zero.

d. It maps each shared page table temporarily in $2 space and initializes each of
the L3PTEs in it. Each L3PTE contains protection and owner mode determined
in step 2. If the memory-resident global section's pages are preallocated, each
L3PTE contains the corresponding PFN and a set valid bit. If MMG$M_NO_

175

Memory Management System Services

MB is set in the MMG_CTLFLAGS SYSGEN parameter , it sets PTE$V_NO_
MB in each L3PTE. In addition, each L3PTE contains the granular i ty hint bits
corresponding to the physical and vir tual memory alignment. If the memory-
resident section's pages are not preallocated, each L3PTE contains a set type 0
bit and the global section page index.

It zeros any L3PTEs in the page table page tha t do not map global section
pages.

e. It deallocates the $2 space L3PTE.

26. It inserts the global section GSD onto the group or system list.

27. It unlocks the GSD mutex.

28. It re turns SS$_CREATED or SS$_CREATED_SHPT to its caller, depending on
whether the section has an associated shared page table global section.

3.7.13 $CREATE_SHMGS_INT Routine
$CREATE_SHMGS_INT, in module SYS_GDZRO_64, creates a Galaxywide section.
The $CREATE_GDZRO and $CRMPSC_GDZRO_64 system services call it when
requested with flag SEC$V_SHMGS set.

In contrast to a memory-resident global section, a Galaxywide section is not described
by RMDs. Because the instances of a Galaxy do not necessarily share mass storage, a
common reserved memory registry cannot be relied on.

A Galaxywide global section must be created on each instance from which a process
will map to the section. Creating the section requires creating a Galaxywide shared
memory region, initializing data s tructures in shared memory to describe the region,
and initializing global section data s tructures to describe the section. If the shared
memory region is larger than 127 pages, a second shared memory region is created for
shared page tables.

If the shared memory region has already been created by another instance, $CREATE_
SHMGS_INT establishes this instance's connection to it and initializes the global
section data structures.

$CREATE_SHMGS_INT takes the following steps:

~ It checks tha t the system is a Galaxy instance with shared memory support,
re turning error s tatus SS$_INV_SHMEM if not.

, It takes out an exclusive lock on a clusterwide resource whose name begins with
the string "MMG$SEC_". If SEC$V_SYSGBL was not specified, the resource name
includes the UIC group code of the current security persona.

This prevents multiple processes on one or more clustered Galaxy instances from
creating a system Galaxywide section at the same time or more than one process
in the same UIC group from creating a group Galaxywide section at the same time.

Subsequent error re turns dequeue the lock.

176

3.7 Global Section Creation and Mapping

3. $CREATE_SHMGS_INT takes the same steps as $CREATE_GDZRO_INT to
validate service arguments and to create a GSD and GSTE (see steps 1 through 17
in Section 3.7.12).

4. It allocates enough GPTEs to map the section pages and two stopper pages. If
there are insufficient free GPTEs and the global page table cannot be expanded, it
releases all resources and returns the error status SS$_GPTFULL.

5. It faults in the global page table pages.

6. It calculates the G F I ~ corresponding to the first GPTE and records it in SEC$L_
VPX.

7. It updates global page table performance cells, PMS$GL_GBLPAGCNT and
PMS$GL_GBLPAGMAX.

8. It calls GLX$SHM_REG_CREATE, in module [GALAXY]GLX_SHM_REG, to cre-
ate a shared memory region, preferably in the RAD, if any, specified on the call
to $CREATE_SHMGS_INT. The region's name is the string "GLX$', concate-
nated with the global section name, $, and either the string "SYSGBL" or the
hexadecimal representation of the UIC group code.

If another Galaxywide shared memory region of the same name but different
ident or different access mode already exists, $CREATE_SHMGS_INT releases
all resources, and returns error status SS$_DUPLNAM, SS$_IDMISMATCH, or
SS$_WRONGACMODE to its caller.

If a region of the same name and characteristics but a different length exists,
$CREATE_SHMGS_INT deallocates the GPTEs, reallocates GPTEs for the existing
length, faults them into memory again, and recalls GLX$SHM_REG_CREATE.

GLX$SHM_REG_CREATE initializes the GPTEs as writable invalid transition
PTEs. Each physical page will be zeroed later when it is first referenced.

9. $CREATE_SHMGS_INT initializes the GSD and GSTE to reflect the access mode,
ident, and flags of the actual Galaxywide section, which may have been created by
another instance. It sets SEC$V_MRES_ALLOC in both the GSD and GSTE flags.

10. It temporarily maps a page of P1 space to the first physical page of the Galaxywide
section. This will serve as a signal to image rundown that the process has begun
to map this section. The signal is necessary because $CREATE_SHMGS_INT must
drop IPL to 0, leaving the process vulnerable to deletion.

11. It unlocks the GSD mutex, lowers IPL to 0, and calls EXE$DISTRIBUTE_
PROFILE, in module SYSOBJSUB, either to create an ORB for the section on
this instance based on its already defined security profile or to propagate the
security profile of a newly created section to the other Galaxy instances in the
cluster.

12. It relocks the GSD mutex for write, raising IPL to 2, and unmaps the P1 space
page.

177

Memory Management System Services

13. If the section is larger than 127 pages, $CREATE_SHMGS_INT creates a shared
page table section to map the Galaxywide global section:

a. It allocates paged pool for a shared page table section GSD. If pool is not
available, it continues with step 14: the Galaxywide section exists but must be
mapped by private page tables on this instance.

b. It initializes the GSD by copying information from the Galaxywide section
GSD and from its arguments. It sets SEC$V_SHARED_PTS and, if the flags
argument bit SEC$V_READ_ONLY_SHPT is clear, also sets SEC$V_WRT in
the shared page table GSD$L_FLAGS. It stores the Galaxywide section's index
in the shared page table GSD$L_RELATED_GSTX.

c. It temporarily allocates an $2 L3PTE to map a page of shared page table
during initialization.

d. $CREATE_SHMGS_INT allocates and initializes a GSTE to describe the
shared page table section. If allocation fails, it deallocates the shared page
table GSD and continues with step 14.

e. It allocates GPTEs to map the shared page table section plus two stoppers. If
allocation fails, it deallocates the shared page table section's GSD and GSTE
and continues with step 14. It updates global page table performance cells,
PMS$GL_GBLPAGCNT and PMS$GL_GBLPAGMAX.

f. It touches each global page table page that maps the shared page table section
to fault it into memory.

g. It calls GLX$SHM_REG_CREATE to create a shared memory region, prefer-
ably in the RAD, if any, specified on the call to $CREATE_SHMGS_INT,
to contain the shared page table section. The region's name is the string
~GLXSHPT$', concatenated with the global section name, $, and either the
string "SYSGBL" or the group UIC code represented as a hexadecimal string.
If it returns SS$_NOWAIT because the Galaxy lock that synchronizes access
to the shared memory data structures is locked, $CREATE_SHMGS_INT re-
peats its at tempt to create a Galaxywide region. If any other error occurs, it
deallocates the shared page table section resources and continues with step 14.

h. $CREATE_SHMGS_INT calculates the page owner mode and protection bits
based on the region's access mode. If the section is writable, the mode allowed
to read determines the mode allowed to write.

i. It records the allocated PFNs in the GPTEs that map the shared page table
section. Each GPTE has a set valid bit and a PFN; the rest of its fields are
zero. The GPTEs simply record what memory has been allocated; the shared
page tables will eventually be mapped through process-private L2PTEs (see
Section 3.8.2.3).

178

3.7 Global Section Creation and Mapping

14.

15.

16.

j. It maps each shared page table temporarily in $2 space and initializes each of
the L3PTEs in it. Each L3PTE contains protection and owner mode determined
in step 2 and the corresponding PFN. If the L3PTE maps a page already in use
on another instance, the routine sets the valid bit in the L3PTE; otherwise,
it leaves it clear. When a process first accesses a page mapped by such an
invalid L3PTE, it will page fault. The page fault exception service routine will
recognize that this is an uninitialized page in a Galaxywide global section and
zero it.

It zeros any L3PTEs in the page table page that do not map global section
pages.

k. It deallocates the $2 space L3PTE.

It inserts the Galaxywide section GSD into either the Galaxywide group or system
global section list.

It unlocks the GSD mutex.

It dequeues the lock and returns the success status SS$_REMOTE if the section
was created by another instance, SS$_CREATED_SHPT if the section and shared
page table section were created, or SS$_CREATED if only the section was created.

3.7.14 $CRMPSC_GDZRO_64 System Service
The Create and Map to Global Demand Zero Section ($CRMPSC_GDZRO_64) service is
requested to create and map either a memory-resident global section or a Galaxywide
global section. The requestor specifies section name, ident, protection, section length,
region ID, section offset, access mode, section flags, and optionally the map length.
Optionally, the requestor can specify in which RAD the system service should create
the global section.

The $CRMPSC_GDZRO_64 system service procedure, EXE$CRMPSC_GDZRO_64 in
module SYS_GDZRO_64, runs in kernel mode.

It resembles EXE$CRMPSC_GPFN_64 (see Section 3.7.10), with the following major
differences:

If the requestor specified a RAD, EXE$CRMPSC_GDZRO_64 checks tha t RAD
support is enabled and returns the error status SS$_BADRAD if not. If RAD
support is enabled, it checks that the requestor specified a single RAD and one
that actually exists, returning SS$_BADRAD if not.

It sets the flags SECV_DZRO, SECV_PERM, SECV_WRT, SECV_GBL, and
SEC$V_MRES in case they were clear.

If the request is to create a Galaxywide section (if SEC$V_SHMGS is set), it checks
that the service was requested from IPL 0, re turning SS$_BADPARAM if not.

179

Memory Management System Services

If the request is to create a memory-resident section, it calls $CREATE_GDZRO_
INT (see Section 3.7.12). If that routine returns an error status, EXE$CRMPSC_
GDZRO_64 returns the error status to its requestor. Otherwise, it calls
$MGBLSC_GDZRO_INT (see Section 3.8.2.3) to perform the mapping.

If the request is to create a Galaxywide section, it calls $CREATE_SHMGS_INT
(see Section 3.7.13). If that routine returns an error status, EXE$CRMPSC_
GDZRO_64 returns the error status to its requestor. Otherwise, it calls
$MGBLSC_GDZRO_INT (see Section 3.8.2.3) to perform the mapping.

It returns the number of bytes that had been reserved for the global section
in argument RESERVED_LENGTH_64, if present, and if the request is to create a
memory-resident section.

3.8 Mapping a Global Section
The map global section system services can be considered a special case of the create
and map section system services, one in which the global section already exists. Each
of these services maps a range of process addresses to the named global section. Each
usually has no effect on the global section database other than to include the latest
mapping in various reference counts.

When a process maps to a global section backed by a file rather than a PFN-mapped
section, each of its process L3PTEs in the designated range is initialized with a GPTX
(see Figures 2.12 and 2.25). A GPTX is a pointer to the GPTE that records the current
state of the global page.

3.8.1 $MGBLSC System Service
The Map Global Section ($MGBLSC) system service procedure, EXE$MGBLSC in
module SYSCRMPSC, runs in kernel mode. It takes the following steps:

,

e

e

,

It creates and initializes scratch space on the stack. In addition to making the
argument validation checks described in Section 3.1.1, EXE$MGBLSC checks the
INADR argument: unless the SEC$V_EXPREG flag was specified in the FLAGS
argument, it confirms that the starting address is on an Alpha page boundary
and that the ending address is one byte less than a page boundary. (It takes into
account the possibility that the addresses have been specified in reverse order.) If
the addresses are not correct, it returns the error status SS$_INVARG.

It calls MMG$VFY_SECFLG, in module SYSDGBLSC, to test the compatibility of
the section flags with each other. If the flags are incompatible or if the requestor
specified SEC$V_SHMGS, it returns the error status SS$_IVSECFLG.

It locks the GSD mutex for write access to synchronize access to the GSD lists,
raising IPL to 2.

It calls MMG$DALCSTXSCN1 (see Section 3.9.2) to check the global (system)
section table for any sections to be deleted.

180

,

1

11

1

.

10.

11.

12.

3.8 Mapping a Global Section

It calls MMG_STD$GSDSCAN (see Section 3.7.1) to scan the GSD list for the
specified global section.

If the section is not found, EXE$MGBLSC unlocks the GSD mutex and returns
MMG_STD$GSDSCAN's error status to the system service requestor.

If the global section is mapped to a file, EXE$MGBLSC calculates the address of
its GSTE from GSD$L_GSTX and the contents of PHD$L_PST_BASE_OFFSET in
the system header.

If the section is memory-resident, EXE$MGBLSC unlocks the GSD mutex and
returns SS$_GBLSEC_MISMATCH to its requestor.

If the section is copy-on-reference, it sets MMG$V_CHGPAGFIL in MMG$L_
MMG_FLAGS so that the section pages will be charged against the process's page
file quota.

It compares the section access mode with the mode bits in MMG$L_ACCESS_
MODE to determine if the system service requestor is allowed to map the section.
If not, EXE$MGBLSC unlocks the GSD mutex and returns the error status SS$_
NOPRIV.

If the section is not PFN-mapped, it acquires the MMG spinlock, increments
SEC$L_REFCNT so that the section cannot inadvertently be deleted before its
pages are mapped into the process's address space, and releases the MMG spinlock.

If the section is PFN-mapped, EXE$MGBLSC increments GSD$L_REFCNT to pre-
vent section deletion. (Recall that a PFN-mapped global section has no associated
GSTE.)

With the section's deletion blocked, EXE$MGBLSC can safely unlock the GSD
mutex.

If the SEC$V_EXPREG flag was specified in the FLAGS system service argument,
EXE$MGBLSC calculates the starting and ending section addresses based on
the RELPAG argument, the section page count (GSD$L_PAGES for a PFN-mapped
section or SEC$L_UNIT_CNT multiplied by pagelets per page for all others), and
contents of RDE$PQ_FIRST_FREE_VA from either the P0 or P1 RDE. The INADR

argument simply identifies in which process-private region the section is to be
created.

If the SEC$V_EXPREG flag was not specified, EXE$MGBLSC determines the
address of the RDE in which the starting address falls. It checks whether the
region is a shared page table region and, if so, continues with step 19, returning
error status SS$_NOSHPTS. It checks whether the access mode from which the
service was requested is allowed to create pages in this region and, if not, continues
with step 19, returning error status SS$_NOPRIV.

EXE$MGBLSC calculates the virtual address range to be mapped based on the
RELPAG argument (in units of pages or pagelets, depending on section type), the
section page count (GSD$L_PAGES for a PFN-mapped section or SEC$L_UNIT_
CNT multiplied by pagelets per page for all others), and the INADR argument.

181

Memory Management System Services

In either case, an integral number of Alpha pages will be mapped. If the pagelet
count does not represent an integral number of pages, the highest address page
of the section will be only partly occupied by the section. Its L3PTE will have the
PTE$V_PARTIAL_SECTION bit set.

13. EXE$MGBLSC forms a template L3PTE for pages in the section.

If the section is PFN-mapped, the L3PTE has the valid and window bits set,
and its PFN is based upon the contents of GSD$L_BASEPFN. (The L3PTE
that maps the lowest address page of the section will have tha t PFN.)

If the section is backed by a section file, the L3PTE has the type 0 bit set and
the type 1 bit clear to indicate a global page, and its GP'I~ is based upon the
contents of SEC$L_VPX. (The L3PTE that maps the lowest address page of the
section will have that GPTX.)

EXE$MGBLSC calculates the L3PTE protection bits based on MMG$L_ACCESS_
MODE, the writable flag in SEC$L_FLAGS, and the input section flags specifying
the mode allowed to write the section pages.

14. It tests whether the current security persona has the necessary access (read, write,
or execute) to the section based on the persona's access rights list and the ORB
associated with the section.

If the persona does not have the desired access, EXE$MGBLSC continues with
step 19, returning the error status from the access check.

If the persona does have access, EXE$MGBLSC also calls security auditing code,
which checks whether a successful access should be audited, and if so, builds a
message to be logged before the service exits.

15. EXE$MGBLSC determines whether the address space into which the section will
be mapped overmaps existing space and whether the section is a PFN-mapped
section.

If no space will be overmapped, if the number of pages in the section is equal to
the number of pages to be mapped, if the section is not a PFN-mapped section,
and if all pages can be created, EXE$MGBLSC acquires the MMG spinlock,
increases the section's reference count by the number of pages to be mapped,
and releases the MMG spinlock. It initializes each of the process's L3PTEs by
inserting the appropriate GPTX along with the template L3PTE.

If the space to be created overmaps existing space or cannot all be created, or
if the section is a PFN-mapped section, EXE$MGBLSC calls MMG$CREDEL,
specifying MAPSECPAG_RDE (see Section 3.6.1.2) as the per-page routine.

16. If PHD$V_DALCSTX in PHD$L_FLAGS is set, indicating there are global sections
to be deallocated, EXE$MGBLSC calls MMG$DALCSTXSCN (see Section 3.9.2).

17. EXE$MGBLSC returns any unused page file quota, records peak page file use
and virtual size statistics, and stores return information in the optional RETADR

argument.

182

3.8 Mapping a Global Section

18.

19.

20.

21.

It decrements the section reference count to remove the extra reference, unneces-
sary now that the reference count reflects the mapped PTEs.

It calls MMG$DELGBLWCB (see Section 3.9.4) to close open files associated with
temporary global sections whose reference counts have gone to zero and to delete
their WCBs.

It calls a security audit routine, which may log successful access to the section.

It returns to its requestor.

3.8.2 $MGBLSC_64 System Service
The Map to Global Section ($MGBLSC_64) system service procedure, EXE$MGBLSC_
64 in module SYS_GBLSEC_64, runs in kernel mode.

EXE$MGBLSC_64 takes the following steps:

1. In addition to making the checks described in Section 3.1.2, it validates its argu-
ments as follows:

a. If the START_VA_64 argument was omitted and the flag SEC$V_EXPREG was
clear, it returns the error status SS$_IVSECFLG. If the START_VA_64 argument
was nonzero and the flag SEC$V_EXPREG was set, it returns the error status
SS$_IVSECFLG.

b. It maximizes the ACMODE argument. There is no input argument to specify
access mode allowed to write the section: if the section is writable, the mode
allowed to read determines the mode allowed to write.

c. It checks that the START_VA 64, SECTION_OFFSET 64, and LENGTH_64 argu-
ments are multiples of the size of a page, returning the error status SS$_VA_
NOTPAGALGN, SS$_OFF_NOTPAGALGN, or SS$_LEN_NOTPAGMULT if
not.

It locks the GSD mutex, raising IPL to 2.

3. It calls MMG_STD$DALCSTXSCN (see Section 3.9.2) to check the global (system)
section table for any sections to be deleted.

4. It calls MMG_STD$GSDSCAN (see Section 3.7.1) to find the GSD, if any, that
corresponds to the GS_NAME_64 and IDENT_64 arguments.

5. If MMG_STD$GSDSCAN returns an error status, EXE$MGBLSC_64 unlocks the
mutex, calls MMG_STD$DELGBLWCB (see Section 3.9.4), and returns the error
status to its caller.

6. Otherwise, EXE$MGBLSC_64 performs an additional sanity check on the global
section ident: it confirms that the ident is positive and, if not, unlocks the mutex,
calls MMG_STD$DELGBLWCB, and returns the error status SS$_IVSECIDCTL to
its caller.

,

183

Memory Management System Services

7. Examining the GSD flags, EXE$MGBLSC_64 tests whether the section is a PFN-
mapped one. If so, it unlocks the mutex, calls MMG_STD$DELGBLWCB, and
returns the error status SS$_GBLSEC_MISMATCH to its requestor.

8. EXE$MGBLSC_64 compares the section access mode with the requestor's mode to
determine if the system service requestor is allowed to map the section. If not, it
unlocks the mutex, calls MMG_STD$DELGBLWCB, and returns the error status
SS$_NOPRIV to its requestor.

9. It calculates the address of the GSTE. It acquires the MMG spinlock, increments
the section's SEC$L_REFCNT to prevent its deletion, and releases the MMG
spinlock. Having incremented the section reference count, it can unlock the GSD
mutex.

10. It calls MMG_STD$CHKPRO_AUDIT to check access to the file. If access is not
allowed, it decrements the reference count and returns an error status to its
requestor.

11. EXE$MGBLSC_64 calls a routine to map the section, depending on the section
type:

If it is a disk file section, it calls $MGBLSC_GFILE_INT (see Section 3.8.2.1).

If it is a page file section, it calls $MGBLSC_GPFILE_INT (see Section 3.8.2.2).

If it is a memory-resident section, it calls $MGBLSC_GDZRO_INT (see Section
3.8.2.3).

12. If any pages were mapped, EXE$MGBLSC_64 records peak page file use and
virtual size statistics, and stores return information in the RETURN_VA_64, START_
VA_64, and RETURN LENGTH_64 arguments .

13. It calls a security audit routine, which may log successful access to the section.

14. If an output argument was inaccessible, it returns SS$_ACCVIO; otherwise, it
returns to its requestor the status from the mapping routine.

3.8.2.1 $MGBLSC_GFILE_INT Routine
$MGBLSC_GFILE_INT, in module SYS_GBLSEC_64, performs much of the work of
the $MGBLSC_64 and $CRMPSC_GFILE_64 system services. It is entered at IPL 2.
It is called with information derived from the service arguments as well as pointers to
the GSTE and GSD.

$MGBLSC_GFILE_INT takes the following steps:

1. It determines the address of the RDE corresponding to the REGION_ID_64 argument,
returning the error status SS$_IVREGID if the ID is invalid. If that region is
intended for memory-resident and Galaxywide global sections, it returns the error
status SS$_NOSHPTS. It checks whether the access mode from which the service
was requested is allowed to create pages in this region and, if not, returns the
error status SS$_NOPRIV.

2. It checks that the SECTION_OFFSET_64 is within the global section, returning the
error status SS$_OFFSET_TOO_BIG if not.

184

3.8 Mapping a Global Section

3. It calculates how many bytes of section there are between SECTION_OFFSET_64 and
the section's end, minimizes that with the LENGTH_64 argument, and transforms
that into a count of pages to be mapped. The count includes a partial page if
SECTION_OFFSET_64 is not an integral number of pages.

4. If the SEC$V_EXPREG flag was specified in the FLAGS argument, $MGBLSC_
GFILE_INT calculates the starting and ending addresses to map based on the
LENGTH_64 argument and the contents of RDE$PQ_FIRST_FREE_VA in the RDE
corresponding to the REGION_ID_64 argument. If that address range intersects with
the gap (see Chapter 1), $MGBLSC_GFILE_INT moves the address range.

If the SEC$V_EXPREG flag was not specified, $MGBLSC_GFILE_INT calculates
the address based on the START_VA_64 and LENGTH_64 arguments. If the address
range is not entirely within the specified region, it returns the error status SS$_
PAGNOTINREG to its caller.

5. $MGBLSC_GFILE_INT forms a template L3PTE for the section's pages (see
Figure 2.12). The L3PTE has the type 0 bit set, the global page table index in
bits <47:32>, and the WRT, CRF, and DZRO bits copied from the section flags.
It calculates the page owner mode and protection bits based on the access mode
information passed from its caller, the writable flag in SEC$L_FLAGS, and the
protection specified when the global section was created.

If the caller is trying to write to the section but its protection prohibits write
access, $MGBLSC_GFILE_INT returns SS$_NOPRIV to its caller.

If the new address space does not already exist, is entirely within a region, and
can all be created without hitting any of the limits to growth described in Section
3.3, $MGBLSC_GFILE_INT adjusts RDE$PQ_FIRST_FREE_VA. It increases the
section's reference count by the number of pages to be mapped. It initializes the
section's L3PTEs.

If the space to be created overmaps existing space or cannot all be created at once,
$MGBLSC_GFILE_INT loops, calling MAPSECPAG_RDE (see Section 3.6.1.2) once
per page until the routine returns an error status or all pages are done. On each
successful return, $MGBLSC_GFILE_INT increments the section's reference count.

If PHD$V_DALCSTX in the process's PHD$L_FLAGS is set, indicating there
are process sections to be deallocated, $MGBLSC_GFILE_INT calls MMG_
STD$DALCSTXSCN (see Section 3.9.2).

8. It returns to its caller.

3.8.2.2 $MGBLSC_GPFILE_INT Routine
$MGBLSC_GPFILE_INT, in module SYS_GBLSEC_64, performs much of the work
of the $MGBLSC_64 and $CRMPSC_GPFILE_64 system services. It is called with
information derived from the service arguments as well as pointers to the GSTE and
GSD.

.

.

185

Memory Management System Services

It resembles $MGBLSC_GFILE_INT (see Section 3.8.2.1), with the following major
differences:

�9 The section offset for a global section must be an integral number of pages.

�9 Mapping a global page file section does not take process page file quota.

3.8.2.3 $MGBLSC_GDZRO_INT Routine
$MGBLSC_GDZRO_INT, in module SYS_GDZRO_64, performs much of the work
of the $MGBLSC_64 and $CRMPSC_GDZRO_64 system services. It is called with
information derived from the service arguments as well as pointers to the GSTE and
GSD. It maps an existing memory-resident global demand zero section or a Galaxywide
global section.

It resembles $MGBLSC_GFILE_INT (see Section 3.8.2.1), with the following major
differences:

�9 If the global section has an associated shared page table global section and the
global section is being mapped into a shared page table region, the state of the
SEC$V_WRT flag specified by the service requestor must match that state of the
global section: if SEC$V_WRT is set, the GSTE flag SEC$V_READ_ONLY_SHPT
must be clear, and vice versa. Otherwise, $MGBLSC_GDZRO_INT returns the
error status SS$_IVSECFLG to its caller.

�9 If the global section is being mapped into a shared page table region, $ M G B L S C
GDZRO_INT checks that the SECTION_OFFSET_64 and LENGTH_64 arguments are
multiples of the number of bytes mapped by an L3PTE. If not, it returns the error
status SS$_OFF_NOTPAGALGN or SS$_LEN_NOTPAGMULT.

It also checks that if the START_VA_64 argument was supplied, its value is a multiple
of the number of bytes mapped by an L3PTE. If not, it returns the error status
SS$_VA_NOTPAGALGN.

�9 If the SEC$V_EXPREG flag was specified in the FLAGS argument, $MGBLSC_
GDZRO_INT calculates the start ing and ending addresses to map. It aligns the
contents of RDE$PQ_FIRST_FREE_VA in the RDE corresponding to the REGION
ID_64 argument to a multiple of the number of pages mapped by an L3PTE to form
the starting address. It adds the LENGTH 64 argument to form the ending address.

�9 In the case of a section mapped with shared page tables, the maximized AC-
MODE argument must match the global section's SEC$V_ACMODE bits. If not,
$MGBLSC_GDZRO_INT returns the error status SS$_IVACMODE.

�9 $MGBLSC_GDZRO_INT forms a template PTE for the section's pages. In the case
of a section with shared page tables, the template PTE maps a shared page table
rather than a section page.

It calculates the page owner mode and protection bits based on the access mode
information passed from its caller, SEC$V_WRT, and the protection specified when
the global section was created.

186

3.8 Mapping a Global Section

If the section is memory-resident in instance-private memory and has preallocated
pages, $MGBLSC_GDZRO_INT determines the best possible granulari ty hint bits
with which it can be mapped. (Granularity hint regions in shared memory are not
currently supported.) If SEC$V_EXPREG is set, it may round down the s tar t ing
virtual address to be able to form a larger granulari ty hint region. If all the section
cannot be mapped at once or if it overmaps existing space, the routine clears the
granulari ty hint bits and does not round down the start ing address. It sets the
valid bit. If MMG$M_NO_MB is set in the MMG_CTLFLAGS SYSGEN parameter
and the current process has only one kernel thread, it sets PTE$V_NO_MB in the
template PTE. The PFN in each PTE will be copied from the corresponding GPTE.

If the section is memory-resident but does not consist of preallocated pages, the
routine leaves the valid bit clear and sets the type 0 bit. Each L3PTE will have a
GPTX inserted.

In the case of a Galaxywide section, the PTE contents depend on whether the page
being mapped has already been zeroed. If so, the PTE's valid and modify bits are
set. If MMG$M_NO_MB is set in the MMG_CTLFLAGS SYSGEN parameter and
the current process has only one kernel thread, PTE$V_NO_MB is also set. If the
page has not been zeroed, the valid bit, type 0, and type 1 bits are cleared so tha t
the page looks like an invalid transition page. The PFN in each PTE is copied from
the corresponding GPTE.

If the section is mapped with shared page tables, it initializes the template PTE as
any other L2PTE would be: kernel mode read and write enabled, executive mode
read enabled, PTE$V_NOX set, and kernel mode as owner.

In mapping a section with shared page tables, $MGBLSC_GDZRO_INT increments
the shared page table section's reference count by the number of shared page table
pages. It increments the PFN$W_PT_WIN_CNT for each associated L2PT by the
number of shared page table pages it maps.

In mapping a memory-resident section without shared page tables, it increments
the PFN$W_PT_WIN_CNT for each associated L3PT by the number of section
pages it maps.

3.8.3 $MGBLSC_GPFN_64 System Service
The Map Global Page Frame Section ($MGBLSC_GPFN_64) system service is re-
quested to map an existing PFN-mapped global section. The requestor specifies section
name, ident, region ID, relative page number, page count, access mode, and section
flags. The requestor has not opened a section file to be mapped so does not specify
channel number. The requestor does not specify page fault cluster; such a section
incurs no page faults.

The $MGBLSC_GPFN_64 system service procedure, EXE$MGBLSC_GPFN_64 in
module SYS_GPFN_64, runs in kernel mode. It resembles EXE$MGBLSC_64, with
the following major differences:

187

Memory Management System Services

�9 The section flags set automatically by EXE$MGBLSC_GPFN_64 are SEC$V_GBL
and SEC$V_PFNMAP.

�9 It checks that the PAGECOUNT and RELATIVE_PAGE arguments can be represented
as a positive 32-bit number, returning error status SS$_ILLPAGCNT or SS$_
ILLRELPAG if not.

�9 If a global section has already been created with matching name and ident, it must
be a PFN-mapped section for a successful match. If not, EXE$MGBLSC_GPFN_64
returns the error status SS$_GBLSEC_MISMATCH.

�9 It calls $MGBLSC_GPFN_INT (see Section 3.8.3.1).

3.8,3,1 $MGBLSC_GPFN_INT Routine
$MGBLSC_GPFN_INT, in module SYS_GPFN_64, performs much of the work of the
$MGBLSC_GPFN_64 and $CRMPSC_GPFN_64 system services. It is called with
information derived from the service arguments as well as a pointer to the GSD.
It resembles $MGBLSC_GFILE_INT (see Section 3.8.2.1), with the following major
differences:

�9 $MGBLSC_GPFN_INT is not entered with the address of a GSTE because a
PFN-mapped global section does not have an associated GSTE.

�9 It is entered with a relative page argument ra ther than with a section offset. It
checks that the relative page number is within the section, returning the error
status SS$_ILLRELPAG if not.

�9 It calculates how many pages there are between the relative page number and
the end of the section to determine the maximum number of pages that can be
mapped.

�9 The template L3PTE it forms has the valid and window bits set and a PFN derived
from the GSD$L_BASEPFN field and the RELATIVE_PAGE argument.

�9 There is no code path to initialize all the process's L3PTEs at once. $MGBLSC_
GPFN_INT loops, calling MMG_STD$CREPAG_64 (see Section 3.4.1.2) once per
page until the routine returns an error status or all pages are done.

3.9 Global Section Deletion
Deleting a global section is more complex than creating one because the section must
be reduced from one of many states to nonexistence. In addition, global writable pages
must be written to their backing store before a global section can be fully deleted.
To avoid stalling the kernel thread requesting the service until all associated I/O
completes, the final steps in the deletion of a global section are often deferred to a time
after the system service request and return.

188

3.9 Global Section Deletion

The actual section deletion cannot occur until the reference count in the GSTE, the
count of process-private PTEs mapped to the section, goes to zero. If the reference
count is zero when the $DGBLSC service is requested, the global section is deleted.
More commonly, however, global section deletion occurs later as a side effect of virtual
address deletion, which itself might occur as a result of image exit or process deletion.

3.9.1 $DGBLSC System Service
The Delete Global Section ($DGBLSC) system service procedure, EXE$DGBLSC in
module SYSDGBLSC, runs in kernel mode. It takes the following steps:

1. It creates and initializes scratch space on the stack.

2. It calls MMG$VFY_SECFLG to test the compatibility of the specified section flags.

3. It calls MMG_STD$GSDSCAN (see Section 3.7.1) to locate the GSD for the speci-
fied global section. MMG_STD$GSDSCAN returns at IPL 2 with the GSD mutex
locked for write access. If the section does not exist, it unlocks the mutex and
returns the error status SS$_NOSUCHSEC.

4. It confirms that the process's current security persona has PRMGBL privilege
and, if the section to be deleted is a system global section, SYSGBL privilege.
If the requestor specified SEC$V_SHMGS in the FLAGS, EXE$DGBLSC also
checks for SHMEM privilege. If the security persona lacks a necessary privilege,
EXE$DGBLSC returns the error status SS$_NOPRIV. Otherwise, it audits the use
of privilege, as appropriate.

5. If the global section is a PFN-mapped section, EXE$DGBLSC confirms that the
process's current security persona has PFNMAP privilege, unlocking the mutex
and returning the error status SS$_NOPRIV if not. A PFN-mapped section is
described solely by a GSD; there are no GSTE, GPTEs, or section reference count.
The section can be deleted immediately. EXE$DGBLSC deallocates the ORB and
GSD to paged pool. It continues with step 8.

6. If the global section is not a PFN-mapped section, EXE$DGBLSC checks whether
it is a Galaxywide global section. If not, it removes the GSD from its current list
and inserts it on the delete pending list, at global location EXE$GL_GSDDELFL.
In either case, it clears the global section's permanent flag, SEC$V_PERM in
GSD$L_FLAGS and, if there is an associated GSTE, in SEC$L_FLAGS as well.
This step changes the section to a temporary global section that can be deleted
when its reference count becomes zero.

Q If the section is a memory-resident section, EXE$DGBLSC checks whether the
section has an associated shared page table section. If so, it clears SEC$V_PERM
in the shared page table section's GSD$L_FLAGS and SEC$L_FLAGS.

If the reference count in the GSTE is zero, the section can be deleted now;
EXE$DGBLSC sets PHD$V_DALCSTX in the system header PHD$L_FLAGS
as a signal for MMG$DALCSTXSCN.

189

Memory Management System Services

8. It calls MMG$DALCSTXSCN (see Section 3.9.2) in case this section or any other
can be deleted now.

9. It unlocks the GSD mutex.

10. It calls MMG$DELGBLWCB (see Section 3.9.4).

11. It restores the IPL at entry and returns to its requestor.

3.9.2 MMGLSTD]$DALCSTXSCN and MMGLSTD]$DALCSTXSCN1
Routines

MMG$DALCSTXSCN and its alternative entry point, MMG_STD$DALCSTXSCN, in
module PHDUTL, are called to locate and deal with deletable section table entries, in
both the global section and process section tables. Section deletion cannot occur until
the section reference count goes to zero, generally as the result of virtual address space
deletion or modified page writing.

A scan for deletable PSTEs or GSTEs is initiated from many of the services described
in this chapter whenever virtual address space has been deleted, either explicitly or as
a side effect of overmapping virtual address space (see Section 3.10.3).

MMG$DALCSTXSCN is entered at IPL 2 in kernel mode, with the address of a
process header (PHD) whose section table should be scanned. In the case of deleted
global sections, it is entered with the address of the system header and with the GSD
mutex locked.

At the alternative entry point MMGLSTD]$DALCSTXSCN1, the routine first gets the
address of the system header and then merges with MMG$DALCSTXSCN.

MMG$DALCSTXSCN takes the following steps:

1. It tests and clears PHD$V_DALCSTX, re turning immediately if the bit was already
clear.

2. It scans the list of section table entries, re turning when it reaches the end of the
list. It examines each entry's reference count, skipping to the next one if the count
is nonzero.

3. If the reference count is zero, MMG$DALCSTXSCN tests whether the section is
permanent and, if so, continues with step 2.

4. If the section has a zero reference count and is not permanent , it tests whether the
section is a global section. If it is, MMG$DALCSTXSCN calls MMG$DELGBLSEC
(see Section 3.9.3) to delete it and then continues with step 2.

5. If the section is a process-private section, MMG$DALCSTXSCN checks whether it
is the only one still mapped from its section file.

If so, it restores the address of the WCB to CCB$L_WIND and inserts the
section table entry into the free entry list.

190

3.9 Global Section Deletion

If there are other sections still mapped, it removes this one from the chain,
inserts it into the free entry list, and, if necessary, adjusts CCB$L_WIND to
point to a section table entry other than the one being deleted.

In either case, it continues with step 2.

3.9.3 MMG[_STD]$DELGBLSEC Routine
MMG$DELGBLSEC and its alternative entry point, MMG_STD$DELGBLSEC, in
module SYSDGBLSC, are called by MMG$DALCSTXSCN to delete a temporary global
section whose reference count has gone to zero, that is, one with no pages mapped by
any process.

~

~

.

MMG$DELGBLSEC checks whether this is a memory-resident section. If so, and
if the section has an associated shared page table section, it gets the address of the
associated section's GSD, clears its GSD$L_RELATED_GSTX, and inserts it into
the delete pending list so it can be cleaned up first. It continues with step 3.

If the section is not memory-resident or has no associated shared page table
section, it removes the GSD from its current list, which could be the group or
systemwide list or the delete pending list, and inserts it into the delete pending list
so tha t no more processes can map to it.

Start ing with SEC$L_UNIT_CNT, the number of pagelets in the section, it calcu-
lates the number of pages in the section.

4. It gets the start ing GPTX from the GSTE.

,

~

.

If this section is a Galaxywide global section, MMG$DELGBLSEC reads the GPTE
to get its PFN and then gets the shared memory region ID from the PFN database.
It calls GLX$SHM_REG_DELETE, in module [GALAXY]GLX_SHM_REG, to delete
the shared memory region.

If GLX$SHM_REG_DELETE returns an error s tatus other than SS$_
NOBREAK or SS$_NOWAIT, MMG$DELGBLSEC generates a fatal DEL-
GBLSEC bugcheck.

If it returns the error status SS$_NOWAIT, indicating spinlock time out,
MMG$DELGBLSEC calls it again.

If it returns SS$_NOBREAK or a success status, MMG$DELGBLSEC contin-
ues with step 12.

If this section is not a Galaxywide global section, MMG$DELGBLSEC acquires the
MMG spinlock, raising IPL to IPL$_MMG.

It scans the section's GPTEs to determine the state of the global pages. Processing
done in this scan eliminates references to these GPTEs from the PFN database
records of both valid memory-resident global section pages and transit ion pages. It
also reduces pointless modified page writing of pages from a page file global section

191

Memory Management System Services

o

o

10.

tha t is being deleted. If MMG$DELGBLSEC reaches the last GPTE ra ther than
one of the end conditions in the following list, it continues with step 10.

If it finds a valid page, it confirms tha t the page is a memory-resident section
page, crashing the system with a DELGBLSEC bugcheck if not. It checks
that the physical page's PFN$L_SHRCNT and PFN$W_REFCNT are both 1,
crashing the system with a DELGBLSEC bugcheck if not. It then stores the
contents of PFN$Q_BAK in the GPTE, resett ing it to the invalid form, and
reinitializes the page's PFN record fields.

If the page is not from a preallocated memory-resident section,
MMG$DELGBLSEC inserts the page at the head of the free page list.

In either case, it calls MMG_STD$DECPTREF_GPT to decrement the reference
count on the global page table page.

If it finds a transition page on the free page list, it calls MMG$DEL_PFNLST,
in module ALLOCPFN, to delete the page's virtual contents. The PFN is
moved from its current position on the free page list to the head of the list, so
that it can be reallocated before pages whose contents might still be useful. Its
PFN record fields are reinitialized.

If it finds a global page-file section page on the modified page list, it clears
the saved modify bit in the physical page's PFN$L_PAGE_STATE field and
calls MMG$DEL_PFNLST as described. It continues its scan of the section's
GPTEs.

If it finds a transition page on the modified page list tha t is not part of a
global page-file section, the page must be wri t ten to its backing store before the
section is deleted, and MMG$DELGBLSEC goes to step 8.

If it finds a transition page tha t is not part of a global page-file section and
that is not on the free or modified page list, the page is being wri t ten to
its backing store. That I/O must complete before the section is deleted, and
MMG$DELGBLSEC goes to step 9.

It requests the modified page writer to perform a selective purge of the modified
page list to write this section's global pages to their backing store and release them
(see Chapter 4).

It releases the MMG spinlock, restoring IPL to 2, stores the process ID of the
current process in GSD$L_IPID as the target of an eventual cleanup AST. It sets
PHD$V_DALCSTX in the system header so tha t MMG$DALCSTXSCN and thus
MMG$DELGBLSEC will be called again some time later, possibly when modified
page writ ing is complete. It returns.

If MMG$DELGBLSEC has scanned all the GPTEs for the section and found none
for whose I/O it must wait, it scans the GPTEs again, this time to decrement the
global page table page reference count and to release page file backing store.

If it finds a global page in a page file, it deallocates that page, decrements the
global page table page reference count, and clears the GPTE.

192

3.9 Global Section Deletion

If it finds a demand zero global page, it simply decrements the global page
table reference count and clears the GPTE. When an entire page of GPTEs
is freed, the global page table page can be unlocked from the system working
set.

11. It releases the MMG spinlock, setting IPL to 2.

12. It deallocates the GPTEs.

13. It tests whether the global section is a memory-resident section. If so, it resets this
global section's RAD in the global section RAD array (RIH$PQ_GBLSEC_RADS) to
-1. It calls MMG_STD$RETURN_RES_MEM, in module MEM_ALLOC, to return
reserved memory pages and update the RMD. It continues with step 16.

14. It tests whether a file is open on the section. If not, this was a global page-
file section, and MMG$DELGBLSEC adds its page count back to MMG$GL_
GBLPAGFIL. It continues with step 16.

15. If there is a file open, and if this is a shared WCB, it decrements the reference
count in the WCB. If the count is now zero, it inserts the WCB into a queue of
delete pending WCBs.

16. It removes the GSD from the delete pending list and deallocates the GSD and ORB
to paged pool, unless the ORB is still in use for an open section file.

17. It deallocates the GSTE.

18. If the section just deleted was a shared page table section, MMG$DELGBLSEC
continues with step 1 to delete the associated memory-resident section.

19. It allocates nonpaged pool, forms it into an AST control block, queues a normal
kernel mode AST to the current process, and returns to its caller. The specified
AST procedure is GSD_CLEAN_AST.

GSD_CLEAN_AST, in module SYSDGBLSC, executes as a normal kernel mode AST
procedure in the context of the process that requested the system service that triggered
MMG$DELGBLSEC, possibly but not necessarily the process that requested deletion
of the global section. Its enqueuing can be requested from MMG$DELGBLSEC or the
modified page writer, and also by the routines that decrease section reference count,
MMG$SUBSECREF and MMG$DECSECREF in module PHDUTL, when a temporary
global section's reference count goes to zero. It takes the following steps:

1. GSD_CLEAN_AST tests whether the process is being deleted or already has this
procedure active. If either is true, it returns.

2. It requests the Clear AST ($CLRAST) system service so that a subsequent kernel
mode AST can be delivered.

3. If PHD$V_DALCSTX in the system header is set, it locks the GSD mutex, calls
MMG$DALCSTXSCN (see Section 3.9.2) and unlocks the mutex.

4. It calls MMG$DELGBLWCB (see Section 3.9.4) to close the section file.

5. It returns.

193

Memory Management System Services

3.9.4 MMGLSTD]$DELGBLWCB Routine
MMG$DELGBLWCB and its alternative entry point, MMG_STD$DELGBLWCB, in
module SYSDGBLSC, are called to close an open file associated with a temporary
global section whose reference count has gone to zero and to delete the WCB. It takes
the following steps:

1. It makes several consistency checks, returning immediately if it is executing within
a kernel thread that owns any mutexes, has kernel mode AST delivery disabled,
has an active kernel mode AST, or if the file system impure area in this process is
not yet initialized. Its subsequent processing requires delivery of a kernel mode
AST, IPL 0 execution, and file system processing.

It removes a WCB from the delete pending list, returning if there is none.

It checks that the job has enough open file quota so that a deduction can be made
from it. If not, MMG$DELGBLWCB inserts the WCB back on the delete pending
list and returns.

It finds an available channel control block and stores in it the address of the unit
control block on which the file represented by the WCB is open; the address of the
WCB; and an indication that the channel has been assigned in kernel mode.

It locks the I/O database mutex for write; increments the unit's reference count,
which will be decremented in the next step; and unlocks the I/O database mutex.

It lowers IPL to 0 and requests the Deassign Channel ($DASSGN) system service,
the actions of which result in closing the file.

It raises IPL back to 2 and continues with step 2.

,

,

,

,

,

,

3.10 Virtual Address Space Deletion
Page deletion is generally more complicated than page creation. Creation involves
taking the process from one known state (the address space does not yet exist) to
another known state (for example, the process-private PTEs contain demand zero
L3PTEs). Page deletion must deal with initial conditions that include all possible
states of a virtual page.

Page creation may first require that the specified pages be deleted to put the process
page tables into their known state. Thus, page deletion is often an integral part of
page creation.

A process deletes part of its address space by requesting the $DELTVA, $DELTVA_64,
or $CNTREG system service.

A page that has I/O in progress cannot be deleted until the I/O completes. A kernel
thread trying to delete such a page may be placed in one of several wait states,
depending on the page type and state, for example:

194

3.10 Virtual Address Space Deletion

A kernel thread trying to delete a page in the write-in-progress transition state is
placed into a page fault wait state (with a request that a system event be reported
when I/O completes) until the page write completes.

A page in the read-in-progress transition state is faulted, with the result that the
kernel thread is placed into page fault wait.

Additional tests are required when a kernel thread deletes a global page with
I/O in progress because there is no way to determine if the process deleting the
page is also responsible for the I/O. Hence, if the process has any direct I/O in
progress, the kernel thread may be placed into a resource wait for the resource
RSN$_ASTWAIT until its direct I/O completes.

Section 3.10.2 has further details.

3.10.1 $DELTVA System Service
A process requests the Delete Virtual Address Space ($DELTVA) system service to
delete process-private address space. Service arguments are the range to be deleted
and, optionally, the actual range deleted and the access mode associated with the
request.

The $DELTVA system service procedure, EXE$DELTVA in module SYSCREDEL, runs
in kernel mode. EXE$DELTVA takes the following steps:

1. It creates and initializes the scratch space on the stack.

2. It tests the accessibility of the INADR argument and maximizes the ACMODE argu-
ment with the mode of the service requestor.

3. It sets flag MMG$V_CLUSTER_DEL in MMG$L_FLAGS.

4. It raises IPL to 2.

5. It locates the RDE corresponding to the INADR argument's ending address. If there
is none, it picks either the P0 or P1 RDE, depending on the value of the ending
address. If that region is one with shared page tables, it returns the error status
SS$_NOSHPTS. A process may not delete process-private address space that could
be mapped by a shared page table.

6. EXE$DELTVA tests whether the service was requested from IPL 0 and whether
the region is a process-permanent region. If both are true, it sets MMG$V_
RWAST_AT_IPL0 to enable MMG$DELPAG_64, the per-page service-specific
routine, to wait the kernel thread at IPL 0 if a wait is necessary. Section 3.10.2
has further details.

7. If the range to be deleted crosses the boundary between defined and undefined
address space in the region, it adjusts the ending address to be within the defined
address space.

8. It calls MMG$CREDEL (see Section 3.1.1), specifying MMG$DELPAG_64 as the
per-page service-specific routine.

195

Memory Management System Services

,

10.

11.

12.

13.

If contiguous address space was deleted, it calls CHECK_CONTRACT_64 (see
Section 3.10.3) to contract the region and account for now empty page tables tha t
will be deleted.

Otherwise, if a page within the range could not be deleted, it calls CHECK_
CONTRACT_64_l (see Section 3.10.3) to contract the region page by page.
CHECK_CONTRACT_64_l simply alters the input a rguments for CHECK_
CONTRACT_64 to ensure tha t contraction is checked one page at a time.

It restores the IPL at entry.

EXE$DELTVA records peak page file use and vir tual size statistics, and stores
re turn information in the optional RETADR argument .

It executes an instruction memory barr ier to flush any instructions tha t might
have been prefetched from the deleted address space.

It re turns to its requestor.

3.10.2 MMG[_STD]$DELPAG_64 Routine
When a virtual page is deleted, all process and system resources associated with the
page must be returned. These can include the following:

�9 A physical page of memory for a valid or t ransi t ion page

�9 A page file page for a page whose backing store address indicates already allocated
blocks

�9 A working set list entry for a page in a process working set list

�9 Page file quota for a page with a page file type backing store

Deleting a process-private section page results in decrementing the reference count in
the PSTE (see Figure 2.7). If the reference count goes to zero, the PSTE itself can be
released. Deleting a global section page results in decrementing the reference count in
the GSTE. If the reference count goes to zero, the GSTE itself can be released.

In addition, a valid or modified page with a section file backing store address ra the r
than a page file backing store address must have its latest contents wri t ten back to
the section file. (The contents of a page with a page file backing store address are
unimpor tant after the virtual page is deleted and do not have to be saved before the
physical page is reused.)

Deleting the contents of a physical page means tha t the PFN$Q_PTE__INDEX and
PFN$L_PT_PFN fields in its PFN database record are cleared, destroying all ties
between the physical page and any process-private virtual address. In addition, the
page is placed at the head of the free page list, so tha t it can be reallocated before
other pages whose contents might still be useful.

196

3.10 Virtual Address Space Deletion

MMGLSTD]$DELPAG_64, in module SYSCREDEL, is the per-page service-specific
routine for the $DELTVA, $DELTVA_64, and $CNTREG system services. Its argu-
ments include the address to be deleted, the RDE address, the address of memory
management flags (MMG$L_FLAGS in the case of entry from $DELTVA and $CNT-
REG), and the number of pages to be deleted.

It takes the following steps:

1. It gets the address of the L3PTE that maps the specified virtual address and, if
necessary, faults the page table page into the process's working set list. It acquires
the MMG spinlock, raising IPL.

2. It examines the L3PTE that maps the page to be deleted.

3. If the L3PTE contains zero, the page is a null page and has already been deleted.
If the page is a demand zero L3PTE, it zeros the L3PTE and restores page file
quota deducted for it.

If MMG$V_CLUSTER_DEL is clear, indicating only one page is to be deleted at
a time, MMG$DELPAG_64 returns to its caller after releasing the MMG spinlock
and restoring the previous IPL.

If MMG$V_CLUSTER_DEL is set, MMG$DELPAG_64 at tempts to delete a cluster
of similar pages, as many as the lesser of pages in the delete range and pages
mapped by the same L3PT. It continues deleting, by clearing the L3PTE and
incrementing JIB$L_PGFLCNT, until it has reached the maximum or found an
L3PTE that is not zero or a demand zero PTE. It releases the MMG spinlock and
returns.

4. If the page is neither a null nor a demand zero page, and its valid bit is clear,
MMG$DELPAG_64 performs a sanity check tha t the NO_MB bit is clear in the
PTE. If not, it generates the fatal bugcheck INCONMMGST.

If the PTE valid bit is set or the NO_MB bit is clear, MMG$DELPAG_64 compares
the requestor access mode with that of the page owner. If the access mode is
insufficiently privileged, it releases the MMG spinlock and returns the error s tatus
SS$_PAGOWNVIO.

5. Otherwise, it determines the type of the virtual page, based on the valid and type
bits in the L3PTE tha t maps it.

6. If the page is in a page file, MMG$DELPAG_64 deallocates the occupied page
of page file, restores job page file quota, clears the L3PTE, releases the MMG
spinlock, and returns.

7. If the page is from a demand zero process section, MMG$DELPAG_64 releases
the MMG spinlock, lowers IPL, touches the page to fault it into the working set,
and continues with step 1. Fault ing it into the working set first ensures tha t an
untouched demand zero page backed by a section file will be writ ten back to it as
all zeros. Handling it in this way minimizes the need for complex code to handle a
relatively rare case.

197

Memory Management System Services

8. If the page is an invalid page from a read-only or copy-on-reference process section,
MMG$DELPAG_64 tests MMG$V_CLUSTER_DEL to see whether a cluster of
pages can be deleted. If so, it a t tempts to delete a cluster of pages. The cluster
size is the minimum of the number of pages in the delete range, pages mapped by
the same L3PT, and the contents of MMG$GL_CLONE_CLUMP. (The intent is to
constrain the maximum amount of time the memory management spinlock is held.)
For each valid page it encounters, it removes the page from the working set list,
releases the PFN, invalidates the TB, and clears the L3PTE. It continues, clearing
L3PTEs, until it has reached the maximum count or a page that cannot be deleted
in this cluster, for example, a page from another section. It adjusts the section
reference count and, if the section is copy-on-reference, JIB$L_PGFLCNT as well,
by the number of pages deleted. It releases the MMG spinlock and returns.

, ,

9. If the page is an invalid page from any other type of process section, or if page
deletion clustering is not allowed, MMG$DELPAG_64 decrements the section ref-
erence count. If the page is copy-on-reference, MMG$DELPAG_64 also increments
the job page file quota. It clears the L3PTE, releases the MMG spinlock, and
returns.

10. If the page is any other type of transition page, MMG$DELPAG_64 examines the
page's PFN$L_PAGE_STATE location bits to determine its actions:

Free page list. MMG$DELPAG_64 calls MMG$DEL_PFNLST, in module
ALLOCPFN, to delete the page's virtual contents and modify the L3PTE. The
PFN is moved from its current position on the free page list to the head of
the list. Its PFN record is reinitialized. PFN$V_DELCON is set in the page's
PFN$L_PAGE_STATE field. The PTE is reinitialized with its backing store
contents. MMG$DELPAG_64 continues with step 2 to delete the virtual page
in its new state.

Modified page list. If the page has page file backing store, MMG$DELPAG_
64 clears the saved modify bit in the page's PFN$L_PAGE_STATE field so
that the page, when deleted, will be inserted into the free page list, and calls
MMG$DEL_PFNLST, as just described. The PTE is reinitialized with its
backing store contents. MMG$DELPAG_64 continues with step 2 to delete the
virtual page in its new state.

If the page is a section page, MMG$DELPAG_64 releases the MMG spinlock,
lowers IPL, touches the page to fault it into the working set, and continues
with step 1. Handling the page this way simplifies MMG$DELPAG_64's
subsequent steps to write the page to its section file.

Read-in-progress or release pending. MMG$DELPAG_64 releases the MMG
spinlock, lowers IPL, touches the page to fault it into the working set, and
continues with step 1.

Write-in-progress. The I/O must complete before the page can be deleted.
MMG$DELPAG_64 releases the MMG spinlock and places the kernel thread
into a page fault wait at the IPL of the caller. When the kernel thread is
resumed, MMG$DELPAG_64 raises IPL to 2 and continues with step 1.

198

3.10 Virtual Address Space Deletion

- - Page read error. MMG$DELPAG_64 continues with the next step.

- - Active. MMG$DELPAG_64 continues with the next step.

11. If the page is valid (or a transit ion page tha t is active or tha t incurred a page read
I/O error), MMG$DELPAG_64 examines the page's PFN$L_PAGE_STATE field, the
window bit in the PTE, and other memory management data s tructures as needed,
to determine its actions:

- - PFN-mapped section page. MMG$DELPAG_64 tests whether the process has
direct I/O in progress. If not, it clears the valid, fault-on-read, fault-on-write,
and NO_MB bits in the L3PTE. It decrements PFN$W_PT_WIN_CNT for the
L3PT that maps the section page to indicate one less reason for tha t page table
page to be locked into the working set list. If the count transit ions t o - 1 , it
decrements PHD$L_PTCNTLCK, clears the L2PTE PTE$V_WINDOW bit, and
clears WSL$V_PFNLOCK in the L3PT working set list entry. It invalidates
any possible TB entry and clears the entire L3PTE. (Note tha t if the page
being deleted is part of a PFN-mapped granulari ty hint region, the granular i ty
hint bits are cleared in all other L3PTEs that map pages in the granular i ty
hint region.) It releases the MMG spinlock and returns.

If the process has direct I/O in progress, its I/O must complete before this page
can be deleted. When direct I/O is in progress to a typical process page, its
PFN$W_REFCNT field is incremented. Thus a value larger than 1 indicates
I/O in progress. A PFN-mapped page may have other processes mapped to
it, some of which could be doing I/O to it, so its REFCNT value is not precise
enough to determine whether the page is in use as an I/O buffer for this
process. Furthermore, a page mapped by PFN may be one without any PFN
database to examine.

If bit MMG$V_NOWAIT_IPL0 in MMG$L_MMG_FLAGS is set (as it would be
if the page were being deleted as a side effect of creating a process section tha t
overmapped the page), the kernel thread cannot wait at IPL 0 for the I/O to
complete, and MMG$DELPAG_64 releases the MMG spinlock and returns the
error status SS$_ABORT to its caller. Otherwise, it releases the MMG spinlock
and places the kernel thread into a resource wait for resource RSN$_ASTWAIT
(effectively, wait for an I/O completion) at IPL 0. When the kernel thread is
placed back into execution, MMG$DELPAG_64 raises IPL to 2 and resumes at
step 1.

- - Galaxywide section page. MMG$DELPAG_64 determines the address of the
shared memory section descriptor and, from that, the GSTX.

If the page is not mapped by a shared page table, it checks whether I/O is in
progress to the section and whether the process has direct I/O outstanding. If
so, the I/O must complete before the page can be deleted. It releases the MMG
spinlock and places the kernel thread into a wait on RSN$_ASTWAIT. When
the kernel thread is resumed, MMG$DELPAG_64 continues with step 1. If
no I/O is outstanding, MMG$DELPAG_64 checks whether the page is part of
a buffer object. If so, it releases the MMG spinlock and returns SS$_VA_IN_

199

Memory Management System Services

USE. Otherwise, it decrements the global section reference count and continues
as for a PFN-mapped page.

If the page is mapped by a shared page table, MMG$DELPAG_64 must check
whether all the pages mapped by that shared L3PT can be deleted: it is not
possible to alter an L3PTE in a shared page table. It checks whether any pages
are part of a buffer object and, if so, unlocks the MMG spinlock and returns
SS$_VA_IN_USE. It checks whether the process has any outstanding direct I/O
in progress and, if so, places the kernel thread into a wait for it to complete.
(Checking the PFN$W_REFCNT of all pages mapped by the shared L3PT is a
lengthy operation and would not uniquely associate any pending I/O with this
process in any case.)

Once all the I/O is complete, MMG$DELPAG_64 dissolves any granulari ty hint
region that includes the L3PT. It decrements PFN$W_PT_WIN_CNT for the
L2PT that maps the L3PT. It reduces the section reference count for both the
Galaxywide section and the shared page table section. It clears the L2PTE
that mapped the shared L3PT and invalidates any possible TB entry for the
shared L3PT. If the process is multi threaded, MMG$DELPAG_64 invalidates
all translation buffer entries on the system, because other threads of the
process might be current on other processors. Otherwise, it merely invalidates
all process-private TB entries on this processor. It releases the MMG spinlock
and returns.

Memory-resident section page. MMG$DELPAG_64 gets the GSTX from the
PFN$Q_BAK information. It checks whether the page's reference count is
elevated and whether the process has direct I/O outstanding. If both are true,
I/O is presumed to be in progress to the page. The I/O must complete before
the page can be deleted. It releases the MMG spinlock and places the kernel
thread into a wait on RSN$_ASTWAIT. When the kernel thread is resumed,
MMG$DELPAG_64 continues with step 1.

If the reference count is elevated but no direct I/O is outstanding,
MMG$DELPAG_64 checks whether the page is part of a buffer object. If
so, it releases the MMG spinlock and returns SS$_VA_IN_USE. If not, it
checks whether the section is mapped with shared page tables. If so, it takes
the actions described previously for deleting Galaxywide global section pages
mapped by a shared page table.

If the section is not mapped with shared page tables and if only one page is
being deleted, MMG$DELPAG_64 decrements the global section reference
count and continues as for a PFN-mapped page. If more pages are being
deleted and MMG$V_CLUSTER_DEL is set, it a t tempts to delete a cluster
of pages. The cluster size is the minimum of the number of pages in the
delete range, pages mapped by the same L3PT, and the contents of MMG$GL_
CLONE_CLUMP. It continues, clearing L3PTEs and invalidating TB entries,
until it has reached the maximum count or a page that is not part of this global
section. It adjusts the section reference count and PFN$W_PT_WIN_CNT.

200

3.10 Virtual Address Space Deletion

Permanently locked in the working set. MMG$DELPAG_64 simply releases
the MMG spinlock and returns a success code. Such a page cannot be deleted
until the process is deleted or outswapped.

Process-locked page. MMG$DELPAG_64 releases the MMG spinlock; calls
MMG$LCKULKPAG, in module SYSLKWSET (described in Chapter 5) to
unlock the page; and then resumes at step 1.

I/O buffer page. If the PFN$W_REFCNT field for this page contains a value
larger than 1, the page is in use as an I/O buffer. MMG$DELPAG_64 tests
whether the page is part of a buffer object (see Section 3.12) and, if so, re-
leases the MMG spinlock and returns the error status SS$_VA_IN_USE to its
caller. If the page is not part of a buffer object, MMG$DELPAG tests against
MMG$V_NOWAIT_IPL0 as previously described and either returns an error
status or places the kernel thread into a wait until the I/O completes.

Unmodified page and modified page with page file backing store.
MMG$DELPAG_64 calls MMG$REL_PFN, in module ALLOCPFN, which
sets the PFN$V_DELCON bit and clears the saved modify bit in the PFN$L_
PAGE_STATE field so the page's contents will be deleted when it is inserted
into the free page list. It clears the valid, modify, fault-on-execute, and fault-
on-write bits in the L3PTE; invalidates any possible TB entry; and removes the
page from the working set list. MMG$DELPAG_64 decrements its PFN$W_
REFCNT field.

It deallocates the associated physical page, as a result of which the L3PTE
once again contains a backing store format, and then resumes with step 1,
deleting the page as an invalid unmodified page-file section page.

Modified page backed by a section file. MMG$DELPAG_64 calls MMG$WRT_
PGS_BAK, in module SYSUPDSEC (see Chapter 4), to write the page to its
backing store. The page's modify bit is cleared and its state is changed to write
in progress. When the I/O completes, MMG$DELPAG_64 calls MMG$REL_
PFN and decrements PFN$W_REFCNT. If the count transitions to zero,
MMG$DELPAG_64 deallocates the associated physical page as previously
described and resumes with step 1. If the count is still positive, it must place
the kernel thread into a wait.

Valid and unmodified page. MMG$DELPAG 64 decrements PFN$W_REFCNT,
calls MMG$REL_PFN, and either waits the kernel thread for I/O to complete
or deallocates the page. It resumes with step 1.

12. If the page is an invalid global page, MMG$DELPAG_64 examines the associated
GPTE to determine the page type and validity of the master page.

If the global page is in transition and is a Galaxywide section page, one that
has not yet been zeroed, MMG$DELPAG_64 treats the page as it does a valid
L3PTE representing a Galaxywide section page.

201

Memory Management System Services

If the global page is an invalid memory-resident page, for example, one that
has not yet been zeroed, MMG$DELPAG_64 treats the page as it does a valid
L3PTE representing a memory-resident page.

If the master page is a demand zero page or a page in a global page-file section,
MMG$DELPAG_64 decrements the global section reference count and clears
the process L3PTE. It releases the MMG spinlock and returns.

If the global page is in transition being faulted from its backing store,
MMG$DELPAG_64 tests and sets MMG$V_DELGBLDON in the memory
management flags. If the bit was already set, it continues with the next step.
Otherwise, MMG$DELPAG_64 must free the process's working set list entry
associated with the global page. It calls a routine within the Purge Working
Set ($PURGWS) system service to remove that page and any other global pages
in the address range being deleted from the working set list and to change the
PFN database accordingly. It resumes with step 1.

If the global page is valid or in transition and has an elevated PFN$W_
REFCNT, MMG$DELPAG_64 tests whether the page is part of a global buffer
object. If the page is part of a system global buffer object and the reference
count is 1, the page may be deleted. If the global buffer page is not par t of a
system global buffer object, MMG$DELPAG_64 releases the MMG spinlock and
returns SS$_VA_IN_USE.

If the page is not part of a global buffer object, it has I/O in progress. If the
process has outstanding direct I/O, the direct I/O may be to the global page
that the process is trying to delete. MMG$DELPAG_64 therefore places the
kernel thread into a resource wait, as previously described, until the I/O
completes. It resumes with step 1.

If the process has no outstanding direct I/O, MMG$DELPAG_64 continues with
the next step.

If the global page is valid with no I/O in progress, or invalid and in a section
file, or a transition page with no I/O in progress, MMG$DELPAG_64 examines
its PFN$Q_BAK field to determine the type of section. If the section is demand
zero, it continues with the next step. If the section is copy-on-reference, it first
increments the job page file quota. For any type of section that is not demand
zero, MMG$DELPAG_64 decrements the global section reference count, clears
the process PTE, releases the MMG spinlock, and continues at step 1.

If the global page is invalid and a page from a demand zero writable section,
MMG$DELPAG_64 allocates a physical page and maps it temporarily to zero
it. MMG$DELPAG_64 initializes the page's PFN database record, storing the
address of the global table entry in PFN$Q_PTE_INDEX and setting PFN$L_
PAGE_STATE global writable and active. It decrements the global section's
reference count and calls MMG$INCPTREF, in module PAGEFAULT, to lock
the global page table page. MMG$DELPAG_64 then inserts the page onto the
modified page list, clears the process L3PTE, releases the MMG spinlock, and
returns.

202

3.10 Virtual Address Space Deletion

These steps ensure that an untouched demand zero page backed by a global
section file will be written back to it as all zeros. This requirement is sim-
ilar to that for a demand zero page in a writable process section. However,
MMG$DELPAG_64 takes these steps rather than fault the page in first as it
does a process-private page, for better performance in a more common case.

3.10.3 [MMG_STD$]CH ECK_CONTRACT_64 and
[M MG_STD$]CH EC K_CONTRACT_64_1 Routines

CHECK_CONTRACT_64 or one of its alternative entry points, MMG_STD$CHECK_
CONTRACT_64 and MMG_STD$CHECK_CONTRACT_64_l, in module SYSCREDEL,
takes the following steps"

1. CHECK_CONTRACT_64 calls MMG$DALCSTXSCN (see Section 3.9.2) to see if
any process sections can be deleted.

If this system has mapped any Galaxywide shared memory, CHECK_CONTRACT_
64 locks the GSD mutex for write, calls MMG$DALCSTXSCN to see if any global
sections can be deleted, and unlocks the mutex.

CHECK_CONTRACT_64 initializes PHD$PQ_PT_NO_DELETE1 and PHD$PQ_
PT_NO_DELETE2 to prevent the asynchronous deletion of any L2PTs that map
the deleted range so that it can scan them without holding the MMG spinlock the
entire time.

It checks whether one end of the range to be deleted is the same address as the
end of the defined address space in the region. If not, the range must be deleted
one page at a time, and it continues with step 6.

It calls MMG STD$DELETE_PTS, in module SYS_CREDEL_64, to delete now
empty L2PTs and L3PTs that map the deleted address range, starting from the last
defined space in the region. MMG_STD$DELETE_PTS examines each associated
L1PTE"

It skips any L1PTE containing zero.

If the L1PTE contains the demand zero form of PTE, it clears it, decrements
PHD$L_PTCNTMAX to indicate one less (L2) page table, and increments
JIB$L_PGFLCNT to return charges against page file quota.

In any other case, it examines each PTE in the page of the L2PT mapped by
that L1PTE. It deletes an empty L3PT by clearing the demand zero L2PTE
and adjusting PHD$L_PTCNTMAX and JIB$L_PGFLCNT.

CHECK_CONTRACT_64 adjusts PHD$Q_FREE_PTE_COUNT by the number of
pages being deleted and RDE$PQ_FIRST_FREE_VA by the number of bytes of
address space deleted.

,

,

,

@

203

Memory Management System Services

,

,

1

Beginning with the page tables that map the last defined page in the region, based
on the contents of RDE$PQ_FIRST_FREE_VA, it scans for a nonzero L3PTE. It
begins with the L1PTE that maps that page, skipping it if it contains zero and
going on to the next. When it finds a nonzero L1PTE, it scans the PTEs in that
L2PT until it finds a nonzero one. It then scans the PTEs in that L3PT, until
it finds a nonzero one. The nonzero L3PTE corresponds to what is now the last
defined page in the region.

It adjusts RDE$PQ_FIRST_FREE_VA to reflect the new end of the region.

It clears PHD$PQ_PT_NO_DELETE1 and PHD$PQ_PT_NO_DELETE2 to permit
asynchronous page table deletion.

It calls MMG$EXTRADYNWS, in module SYSADJWSL, to recalculate the number
of fluid working set list entries available to the process, given the number of page
tables that have just been deleted.

3.10.4 $DELTVA_64 System Service
The Delete Virtual Address Space ($DELTVA_64) system service is requested to delete
virtual address space. It resembles the $DELTVA system service, but its arguments
include a region ID, and all its address arguments are 64 bits. Thus it can be used
to delete virtual address space in P0, P1, or P2 space, either in a default region or a
user-created one.

The $DELTVA_64 system service procedure, EXE$DELTVA_64 in module SYS_
CREDEL_64, runs in kernel mode. It resembles EXE$DELTVA with the following
major differences:

�9 It checks that the address range to be deleted lies within defined space in the
specified region.

�9 It loops through the pages to be deleted, calling MMG_STD$DELPAG_64 (see
Section 3.10.2) until it returns an error status or all pages are done.

3.10.5 $CNTREG System Service
The Contract Region ($CNTREG) system service procedure, EXE$CNTREG in module
SYSCREDEL, runs in kernel mode. The $CNTREG system service is a special case of
the $DELTVA system service. EXE$CNTREG simply converts the requested number
of pagelets into a P0 or P1 page range and merges with EXE$DELTVA at step 7 in the
description in Section 3.10.1.

Use of the $CNTREG system service is reserved to Hewlett-Packard Company. Any
other use is unsupported.

204

3.11 Virtual Address Region Deletion

3.11 Virtual Address Region Deletion
The Delete Virtual Region ($DELETE_REGION_64) system service is requested to
delete a particular region. Its arguments include the ID of the region to be deleted and
the access mode associated with the request.

The $DELETE_REGION_64 system service procedure, EXE$DELETE_REGION_64 in
module SYS_REGIONS, runs in kernel mode. EXE$DELETE_REGION_64 takes the
following steps:

1. In addition to making the checks described in Section 3.1.2, it checks that the
region to be deleted is a user-defined one, returning SS$_IVREGID if not.

2. It raises IPL to 2.

3. It locates the RDE corresponding to the REGION_ID 64 argument. If there is none, it
returns the error status SS$_IVREGID.

4. It checks that the access mode from which the service is requested is at least
as privileged as that of the owner of the region, returning the error status SS$_
NOPRIV if not.

5. It calculates how many pages are in the region. If there are none, it removes the
RDE from its two lists, deallocates it to P1 pool, and returns SS$_NORMAL to its
requestor.

If there are pages in the region, it loops, calling MMG_STD$DELPAG_64 (see
Section 3.10.2) to delete them. If the region grows in an ascending direction, it
deletes the high-address pages first. If the region grows in a descending direction,
it deletes the low-address pages first.

It continues until MMG_STD$DELPAG_64 returns an error status or all pages are
deleted. If no pages were deleted, EXE$DELETE_REGION_64 returns the error
status from MMG_STD$DELPAG_64.

Otherwise, it calculates how many pages were deleted and the starting and ending
addresses of the deleted pages. It executes an instruction memory barrier (see
Chapter Synchronization Techniques) in case instructions were deleted that might
have been prefetched.

8. It calls MMG STD$CHECK_CONTRACT_64 (see Section 3.10.3) or M M G
STD$CHECK_CONTRACT_64_l, depending on whether a contiguous range of
pages was deleted or whether there was at least one page that could not be
deleted, to contract the region.

9. If MMG_STD$DELPAG_64 returned an error status, EXE$DELETE_REGION_64
returns that error status to its requestor along with the starting address and
number of bytes deleted.

10. Otherwise, it removes the RDE from its two lists, deallocates it to P1 pool, and
returns SS$_NORMAL to its requestor along with the starting address and number
of bytes deleted.

,

11

205

,Memory Management System Services

3.12 Buffer Object Creation and Deletion
A buffer object is a special kind of I/O buffer. The pages that make up a buffer object
are locked into physical memory and may be doubly mapped in system space as well
as process-private space. Multiple I/O requests can be initiated to or from an existing
buffer object with less overhead than with the s tandard I/O mechanisms, direct and
buffered I/O.

The pages of a s tandard direct I/O buffer are probed and locked into memory when
the I/O request is initiated. The PFN$W_REFCNT in the PFN database record of each
page is incremented to lock the page. The page table pages that map the buffer pages
are locked into the process's working set and into memory, and the process's header
cannot be outswapped. When the I/O request completes, for each page of the buffer,
PFN$W_REFCNT is decremented, and page table pages are unlocked.

Buffered I/O is initiated to or from a buffer allocated in nonpaged pool. On output,
data is copied from the user's buffer to the pool buffer. On input, data is copied from
the pool buffer to the user's buffer.

In contrast, the pages of a buffer object are probed only once and the pages are locked
only once, at buffer creation. The L3PT pages that map the buffer object in process-
private address space are locked into memory. Because the buffer object pages have a
process-private mapping, there is no need to copy data between a process buffer and a
system buffer. Tests for buffer object pages in the swapper make it possible to outswap
a process body and header even though I/O may be in progress to its buffer object.

The pseudo terminal driver, [PTD]SYS$FTDRIVER, uses the buffer object mech-
anism. A process interacts with this driver through system services (in the
privileged shareable image [PTD]PTD$SERVICES_SHR.EXE) that create and
manage the process's buffer objects. The DECwindows terminal class driver,
[DECW$XTERMINAL]DECW$XTDRIVER.EXE, also uses the buffer object mecha-
nism.

OpenVMS Version 7.0 added several I/O system services that enable an application
to use buffer objects for disk and tape I/O transfers: Set Up Fast I/O ($IO_SETUP),
Perform Fast I/O ($IO_PERFORM), and Clean Up Fast I/O ($IO_CLEANUP). Typi-
cally, an application creates one or more buffer objects, requests $IO_SETUP to make
its buffer objects known and to define other information for the I/O requests, and
calls $IO_PERFORM repeatedly to do multiple transfers into or from the buffer ob-
jects. When all I/O is done, the application calls $IO_CLEANUP and then deletes the
buffer objects. Consult the Open VMS System Services Reference Manual for additional
information on these services.

Use of the $CREATE_BUFOBJ system service is reserved to Hewlett-Packard
Company. Any other use is unsupported. Use of the $CREATE_BUFOBJ_64 and
$DELETE_BUFOBJ system services, however, is supported.

206

3.12 Buffer Object Creation and Deletion

An image creates a buffer object by requesting the $CREATE_BUFOBJ or $CREATE_
BUFOBJ_64 system service. (Actually, a user's image should not directly request
$CREATE_BUFOBJ; it may, however, request a pseudo terminal system service that
requests $CREATE_BUFOBJ.) The system service creates a data structure called a
buffer object descriptor (BOD; see Chapter 2) that contains the process-private and
system space addresses of the buffer.

The $IO_SETUP system service increments the reference count associated with the
buffer object. The $IO_CLEANUP system service decrements the reference count.

When an image deletes a buffer object by requesting the $DELETE_BUFOBJ system
service, if the reference count is nonzero, the buffer object is merely marked for
deletion. Its actual deletion is deferred until the reference count is decremented to
zero.

Chapter 4 provides additional information on the transitions of buffer object pages and
their page tables.

3.12.1 $CREATE_BUFOBJ System Service
The Create Buffer Object ($CREATE_BUFOBJ) system service procedure,
EXE$CREATE_BUFOBJ in module SYSLKWSET, runs in kernel mode. The service is
requested with the following arguments:

INADR, RETADR, and ACMODE--The standard memory management service argu-
ments

FLAGS--Flags, for inner mode requestors only, to specify that limit checking is to be
bypassed or that the RETADR argument addresses should contain the system space
addresses

�9 CREBUF HANDLE--The address of a two-longword array to receive the buffer handle
of the created buffer object

A buffer handle identifies the buffer object in subsequent I/O, $IO_SETUP, and
$DELETE_BUFOBJ requests. The first longword of a buffer handle contains the
address of the BOD. The second longword contains a sequence number, copied from
BOD$L SEQNUM, which is used to validate the buffer handle itself.

A buffer object created through this service must be in 32-bit process-private address
space and is always doubly mapped in S0/S1 space.

EXE$CREATE_BUFOBJ takes the following steps:

1. It creates and initializes scratch space on the stack.

. It tests the accessibility of the INADR argument and maximizes the ACMODE argu-
ment with the mode of the service caller.

, If the service was requested from user mode, EXE$CREATE_BUFOBJ checks
whether the current security persona has the rights identifier VMS$BUFFER_
OBJECT_USER. If not, it returns the error status SS$_NOBUFOBJID.

207

Memory Management System Services

111

11

,

D

11

9 1

10.

11.

12.

13.

14.

15.

16.

17.

18.
19.

If a user requestor specified either flag CBO$V_RETSVA or CBO$V EXMAXLIM,
EXE$CREATE_BUFOFJ returns the error status SS$_NOPRIV.

It raises IPL to 2 to block AST delivery.

It determines the number of pages the buffer object is to contain and adds that
count to PMS$GL_BUFOBJ_PAGES_SOS1.

It tests that the CREBUF_HANDLE is writable and, if not, restores the previous value
of PMS$GL_BUFOBJ_PAGES_SOS1 and returns the error status SS$_ACCVIO.

It allocates nonpaged pool for a BOD, charging the pool against the process's byte
count quota and limit.

It initializes the BOD, copying the process ID to BOD$L_PID and the access mode
to BOD$L_ACMODE, and links it to the tail of the PCB list at PCB$Q_BUFOBJ_
LIST.

It allocates system page table entries (SPTEs) to map the buffer into system
space and stores the address of the first SPTE in BOD$PQ_VA_PTE and the
corresponding starting system virtual address in BOD$PQ_BASESVA.

It increments the master buffer object sequence number and stores that number in
BOD$L_SEQNUM.

EXE$CREATE_BUFOBJ calls MMG$CREDEL (see Section 3.1.1), specifying
LCKBUFOBJPAG (see Section 3.12.2) as the per-page service-specific routine.

When MMG$CREDEL returns, EXE$CREATE_BUFOBJ checks whether the
buffer object contains all requested pages. If not, it reduces PMS$GL_BUFOBJ_
PAGES_SOS1 and deallocates unused SPTEs.

If the requestor specified flag CBO$V_EXMAXLIM, EXE$CREATE_BUFOBJ sets
BOD$V_NOQUOTA to indicate that system limits need not be checked.

If the requestor specified flag CBO$V_RETSVA, it calculates the ending system
virtual address of the buffer to store in the RETADR argument.

It records peak page file use and virtual size statistics, and stores return informa-
tion in the optional RETADR argument.

If the current value of PMS$GL_BUFOBJ_PAGES_SOS1 is a peak value,
EXE$CREATE_BUFOBJ records it in PMS$GL_BUFOBJ_SOSI_PEAK. Similarly,
if appropriate, it updates PMS$GL_BUFOBJ_PAGES_PEAK.

It increments BOD$L_REFCNT and stores the buffer handle in the requestor's
CREBUF_HANDLE argument.

It restores the IPL at entry.

It returns to its requestor, passing any error status from LCKBUFOBJPAG.

208

3.12 Buffer Object Creation and Deletion

3.12.2 [MMG_STD$]LCKBUFOBJPAG Routine
LCKBUFOBJPAG, in module SYSLKWSET, is the per-page service-specific routine for
$CREATE_BUFOBJ. The $CREATE_BUFOBJ_64 system service uses its alternative
entry point, MMG_STD$LCKBUFOBJPAG.

LCKBUFOBJPAG takes the following steps:

1. It tests that the process-private page is writable from the requesting access mode
and, if not, returns the error status SS$_ACCVIO, which is returned to the service
requestor.

2. It calculates the address of the L3PTE that maps the page and acquires the MMG
spinlock, raising IPL to IPL$_MMG.

3. It tests whether the page is valid. If not, it releases the spinlock, touches the page
to fault it, and resumes with step 2.

LCKBUFOBJPAG makes several consistency tests on the page, for example,
checking that its owner mode is not more privileged than the maximized access
mode, the page is a process page or a global writable page, and the page is not
a PFN-mapped page. In the case of a system buffer object, the page must no t be
a process page. If any test fails, LCKBUFOBJPAG returns an appropriate error
status, which is passed back to the service requestor.

If the page is part of a Galaxywide section, it calculates the address of the SHM_
DESC structure that describes the section and increments its buffer object refer-
ence count. If the reference count transitions from 0 to 1, it also locks the section
for I/O. It does not modify the PFN database record for the page because the PFN
database for pages in Galaxywide shared memory is common to all Galaxy in-
stances, and the page is not necessarily part of a buffer object on other instances.
LCKBUFOBJPAG continues with step 16.

If the page is not part of a Galaxywide section, it tests and sets PFN$V_BUFOBJ
in the physical page's PFN$L_PAGE_STATE. If the bit was already set, it in-
crements PFN$W_BO_REFC for the buffer object page and continues with step
15.

Otherwise, it checks whether the page is a memory-resident global section page. If
so, the page is already locked in physical memory, and it is therefore unnecessary
to update physical memory use statistics. LCKBUFOBJPAG continues with step
11.

If the page was not already locked in memory, LCKBUFOBJPAG increments
PMS$GL_BUFOBJ_PAGES.

It tests whether the page has already been locked into memory (a nonzero P F N $ L
GBL_LCK_CNT for a global writable page or a set WSL$V_PFNLOCK for a
process page) and, if so, continues with step 11.

111

o

o

B

o

o

209

Memory Management System Services

10.

11.

12.

13.

14.

15.

16.

17.

18.

It decrements PFN$GL_PHYPGCNT, the fluid page count, and checks whether the
count is still high enough. If so, it continues with step 11. If not, it increments
PFN$GL_PHYPGCNT, clears PFN$V_BUFOBJ, decrements PMS$GL_BUFOBJ_
PAGES, and returns the error status SS$_INSFLPGS to its caller.

If this is the first lock of the page, it increments PFN$W_BO_REFC (to zero) and
increments the page's PFN$W_REFCNT.

If this is a global page, it continues with step 15.

It modifies the PFN database record for the page table page tha t maps this buffer
object page and increments PFN$W_BO_REFC. If this is the first buffer object
page mapped by this page table page, it also sets the modify and buffer object bits
in PFN$L_PAGE_STATE and increments PFN$W_REFCNT.

It stores an illegal address containing the process index in the buffer object page's
PFN$L_PT_PFN as a troubleshooting aid. (Correct t rea tment of a buffer object
page should never result in access of this field.)

It sets the modify bit in the buffer object page's PFN$L_PAGE_STATE.

Unless BOD$V_NOSVA is set, it initializes the SPTE that doubly maps the buffer
object page with the PFN, kernel mode read and write enabled, kernel mode owner,
valid address space match, modify, no-execute, fault-on-execute, and window bits
set.

It increments BOD$L_PAGCNT to show that another page has been added to the
buffer object.

It releases the MMG spinlock and returns.

3.12.3 $CREATE_BUFOBJ_64 System Service
The Create Buffer Object ($CREATE_BUFOBJ_64) system service procedure,
EXE$CREATE_BUFOBJ_64 in module SYS_LKWSET_64, runs in kernel mode. It
resembles the $CREATE_BUFOBJ system service, but all its address arguments are
64 bits. Thus it can be used to create a buffer object in P0, P1, or P2 space. By default
the service double-maps the process buffer in $2 space.

Its FLAGS argument includes the bits

�9 CBO$V_SVA_32, to specify that the buffer be doubly mapped in S0/S1 space

�9 CBO$V_NOSVA, to specify that no system space mapping be created

�9 CBO$V_SYSBUFOBJ, to specify that the buffer be mapped only in system space

EXE$CREATE_BUFOBJ_64 is very similar to EXE$CREATE_BUFOBJ, with the
following major differences"

�9 EXE$CREATE_BUFOBJ_64 rounds up the START_VA_64 argument to the next page
boundary and rounds down LENGTH_64.

210

3.12 Buffer Object Creation and Deletion

If the requestor set the FLAGS argument CBO$V_SYSBUFOBJ, it checks that the
service was requested from executive or kernel mode, returning SS$_BADPARAM
if not.

By default it adds the buffer object pages to PMS$GL_BUFOBJ_PAGES_S2 rather
than PMS$GL_BUFOBJ_PAGES SOS1. It checks the size of the buffer object
against a limit set by SYSGEN parameter MAXBOBMEM, returning error status
SS$_EXBUFOBJLIM if the buffer object is too large. It allocates L3PTEs that map
S2 space to double-map the buffer and records their page table space address in
BOD$PQ_VA_PTE. It sets BOD$V_S2_WINDOW in BOD$L_FLAGS.

If the requestor set the FLAGS argument CBOV_SVA_32, EXECREATE_
BUFOBJ_64 double-maps the buffer in S0/S1 space, as EXE$CREATE_BUFOBJ
does.

If the requestor set the FLAGS argument CBOV_NOSVA, EXECREATE_
BUFOBJ_64 does not double-map the buffer into system space. It initializes
BOD$PQ_VA_PTE and BOD$PQ_BASESVA t o - 1 and sets BOD$V_NOSVA.

If the requestor set the FLAGS argument CBO$V_SYSBUFOBJ, it inserts the BOD
at the tail of the system PCB.

3.12.4 $DELETE_BUFOBJ System Service
The Delete Buffer Object ($DELETE_BUFOBJ) system service procedure,
EXE$DELETE_BUFOBJ in module SYSLKWSET, runs in kernel mode. The ser-
vice is requested with the address of a buffer handle describing the buffer object to be
deleted.

EXE$DELETE_BUFOBJ takes the following steps:

1. It probes accessibility of the buffer handle and in case of error returns the error
status SS$_BADPARAM to its requestor.

2. It fetches the contents of the buffer handle, namely the BOD address and sequence
number.

3. It acquires the MMG spinlock, raising IPL to IPL$_MMG.

4. It checks the following:

--- The BOD is actually linked into the process's BOD list at PCB$Q_BUFOBJ_
LIST. In the case of a system buffer object, it checks that the BOD is linked
into the system PCB BOD list.

- - The sequence number matches that in the BOD.

- - The BOD address is actually a nonpaged pool address.

BOD$B_TYPE contains DYN$C_BOD.

The requesting process's ID is the same as BOD$L_PID.

211

Memory Management System Services

~

m

,

- - The access mode from which the service was requested is at least as privileged
as the creator of the buffer object.

If any consistency check fails, EXE$DELETE_BUFOBJ releases the MMG spinlock
and returns either SS$_BADPARAM or SS$_NOPRIV.

It tests and sets BOD$V_DELPEN in BOD$L_FLAGS. Once BOD$V_DELPEN
is set, no further I/O can be initiated to this buffer object. If the bit was already
set, EXE$DELETE_BUFOBJ releases the spinlock and returns the error s ta tus
SS$_BADPARAM.

It decrements BOD$L_REFCNT and, if the count is still positive, indicating
outstanding I/O requests in progress, releases the MMG spinlock, restores the byte
count quota and limit charged for the BOD, and returns.

If the reference count is zero, EXE$DELETE_BUFOBJ changes the state of the
buffer object pages, one page at a time.

For a buffer mapped in system space, the common case, it takes the following
steps:

a. If BOD$V_S2_WINDOW is set, indicating the buffer object is mapped in $2
space, it determines the address of the shared L3PTE that maps that buffer
page. Otherwise, it indexes into the system page table window to get the
address of the SPTE that maps that buffer page.

Regardless of which system space the virtual page is in, if it is invalid,
EXE$DELETE_BUFOBJ generates a fatal PAGNTRNVAL bugcheck.

b. If the virtual page is valid, it clears the L3PTE and flushes any cached transla-
tion from the TB.

It examines the physical page's PFN database record and tests whether the
page is a Galaxy shared memory page. If not, it continues with step d. If so, it
determines the address of the shared memory section descriptor corresponding
to this page and decrements its buffer object reference count. If the count
transitions to zero, it calls GLX$SHM_REG_DECREF to decrement the I/O
reference count for that shared memory region.

d. For a page that is not a Galaxy shared memory page, EXE$DELETE_BUFOBJ
decrements the physical page's PFN$W_BO_REFC. If the count transitions to
zero, it checks whether this a memory-resident section page. If so, it continues
with step g.

If not, it clears PFN$V_BUFOBJ in the page's PFN$L_PAGE_STATE field and
decrements PMS$GL_BUFOBJ_PAGES to indicate one less physical buffer
object page.

If this is a global page, it continues with step f. If this is a process page,
it calculates the address of the process-private L3PTE that maps the page
and then the address of the L2PTE that maps that L3PT. It tests whether
the page table page that maps the buffer object is valid and, if not, frees a
working set list entry for it and makes it valid. It decrements the page table

C.

212

~

~

10.

11.

12.

3.12 Buffer Object Creation and Deletion

page's PFN$W_BO_REFC. If the reference count is now zero, EXE$DELETE_
BUFOBJ clears PFN$V_BUFOBJ in PFN$L_PAGE_STATE for the page and
decrements its PFN$W_REFCNT.

e .

If the buffer object page is in a release pending state, EXE$DELETE_BUFOBJ
calls MMG_STD$INCPTREF_64, in module PAGEFAULT, to increment the
PFN$L_SHRCNT of the process page table page that mapped it. (To allow the
page table page to be removed from the working set, its PFN$L_SHRCNT was
decremented even though it continued to map a buffer object page in transi-
tion.) If the buffer object page is instead in an active state, EXE$DELETE_
BUFOBJ tests whether the page is locked into the working set list. If so, it
continues with step g; if not, with step f.

For a buffer object page that is a global page, EXE$DELETE_BUFOBJ tests
whether the page is locked in memory (nonzero PFN$L_GBL_LCK_CNT). If so,
it continues with step g.

It increments PFN$GL_PHYPGCNT, the system fluid page count, to show one
more available page.

g. It decrements the buffer object page's PFN$W_REFCNT. If the count is now
zero, the page is released to the modified page list. EXE$DELETE_BUFOBJ
goes on to the next page.

When all buffer object pages have been processed, EXE$DELETE_BUFOBJ sub-
tracts the number of buffer object pages from either PMS$GL_BUFOBJ_PAGES_
SOS1 or PMS$GL_BUFOBJ_PAGES_S2 and deallocates the system space PTEs
that doubly mapped the buffer object.

For a buffer object mapped only in process-private space, EXE$DELETE_BUFOBJ
takes most of the same steps as for a buffer object mapped in system space, with
the following exceptions:

It does not clear the L3PTE that mapped each buffer object page and therefore
no TB invalidate is necessary.

It does not deallocate system space L3PTEs or update PMS$GL_BUFOBJ_
PAGES Sn.

Regardless of whether the buffer object was mapped in system space,
EXE$DELETE_BUFOBJ clears BOD$L_SEQNUM and BOD$B_TYPE to en-
sure invalidity of any subsequent reference to the deleted buffer object through
its handle, removes the BOD from the PCB queue, and deallocates the BOD to
nonpaged pool.

It releases the MMG spinlock, lowering IPL.

It restores the byte count quota and limit charged against the process for the BOD
and buffer object pages.

It returns to its requestor.

213

Memory Management System Services

3.13 Services That Return Information
OpenVMS provides several services tha t return memory-management-related informa-
tion. They are described in the following sections.

3.13.1 $GET_REGION_INFO System Service
The Get Information About Specified Region ($GET_REGION_INFO) system service
is requested to get information about a region within process-private address space,
a region specified by ID or by virtual address. Its arguments include a function code
that specifies whether a region ID or virtual address identifies the region, region
identification, and a buffer in which information is returned.

The $GET_REGION_INFO system service procedure, EXE$GET_REGION_INFO in
module SYS_REGIONS, runs in kernel mode. EXE$GET_REGION_INFO takes the
following steps:

1. In addition to making the checks described in Section 3.1.2, it validates its argu-
ments as follows"

a. If the FUNCTION argument is invalid, it returns the error status SS$_
BADPARAM.

b. If START_VA_64 was supplied, it checks that the argument can be expressed in
the number of significant address bits for the system's page size and page table
hierarchy, for example, 43 bits for a page size of 8 KB and a three-level page
table. If not, it returns the error status SS$_PAGNOTINREG.

2. Depending on the function code, it locates the region of interest, based on its ID or
start ing virtual address. The function code can also specify that the target region
is the one following the region at the start ing virtual address. If the region was
not found, EXE$GET_REGION_INFO returns the error status SS$_IVREGID or
SS$_PAGNOTINREG, depending on the function code.

3. If the region was found, it copies information from the RDE to the requestor-
specified buffer and stores the length of the information in the RETURN_LENGTH_64
argument.

4. It returns SS$_NORMAL to its requestor.

3.13.2 $GETSECl System Service
A process requests the Get Section Information ($GETSECI) system service to get
information about a particular global page mapped into its address space. Its argu-
ments include the address of a page in the global section of interest and an item list
describing the information to be returned. Use of this undocumented system service is
reserved to Hewlett-Packard Company.

Basically, the system service sanity checks the virtual address specified, determines
the address of the GSTE that describes the corresponding global section, and returns
the requested information from the GSTE to the service requestor.

214

3.13 Services That Return Information

The $GETSECI system service procedure, EXE$GETSECI in module SYSPARPRC,
runs in kernel mode. EXE$GETSECI takes the following steps:

1. It raises IPL to 2.

2. It locates the RDE corresponding to the virtual address argument. If none is
found, EXE$GETSECI returns the error status SS$_NONXPAG to its requestor.

3. If the address is within a region, but beyond the currently defined space in the
region, EXE$GETSECI returns the error status SS$_LENVIO. If the address falls
on a page of nonexistent address space within the defined space in the region,
EXE$GETSECI returns the error status SS$_ACCVIO.

4. Otherwise, it determines the address of the L3PTE that maps the specified virtual
address and faults the page table page into the process's working set list.

5. It compares the requestor's access mode to that of the page owner and, if it is less
privileged, returns the error status SS$_PAGOWNVIO. The requestor can only get
information about pages owned by the requesting mode and less privileged modes.

6. EXE$GETSECI determines the page type and rules out unsuitable pages:

If the page is a PFN-mapped page, EXE$GETSECI returns the error status
SS$_PAGTYPVIO.

If the page is a process-private demand zero page, a process-private section
page, or a page file page, it returns the error status SS$_NOTINSEC.

If the page is a transition or valid page, EXE$GETSECI determines the page
type from the physical page's PFN database record. If the page is anything but
PFNC_GLOBAL, PFNC_GBLWRT, or a Galaxywide section page, it returns
the error status SS$_NOTINSEC.

7. For suitable page types, EXE$GETSECI uses the information in the PTE to get
the corresponding GPTX and GSTX:

a. For a valid or transition global page, it examines the physical page's PFN
database record fields PFN$Q_PTE_INDEX, which contains the GPTX, and
PFN$Q_BAK. If the page is a page file global page, EXE$GETSECI scans all
the GSTEs, looking for one that includes that GPTX. If the page is not a page
file global page, PFN$Q_BAK contains the global section index.

b. For a valid Galaxywide section page, EXE$GETSECI gets the Galaxywide
shared memory section ID from the physical page's PFN database record
(SHM_ID$W_INDEX) and indexes the Galaxy shared memory descriptor table
to get the GSTX.

c. For an invalid global page that is not a transition page, EXE$GETSECI
examines the GPTE. If the page is a page file global page, it scans all the
GSTEs, looking for one that includes that GPTX. If the page is not a page file
global page, the GPTE contains the GSTX.

8. EXE$GETSECI calculates the address of the GSTE.

215

Memory Management System Services

SO

10.

If the page is a Galaxywide section page, it adds SEC$L_VPX to the GPTX value
to transform it into a real index into the GPT.

It then processes the item list: checking access to each entry and each buffer an
entry describes, validating item codes, and recording information in buffers. If
an entry or buffer is inaccessible, EXE$GETSECI returns SS$_ACCVIO to its
requestor. If an item code is invalid, it re turns SS$_BADPARAM. Information
that can be returned includes global section flags, access mode, ident, name, and
relative page number of the input virtual address.

3.13.3 $FIND_GPAGE_64 System Service
A process requests the Find Mapped Global Page ($FIND_GPAGE_64) system service
to determine the address at which a part icular offset in a named global section is
mapped in that process. Its input arguments include the offset in the global section
offset, the global section name and ID, flags specifying the global section type, and
access mode. Use of this undocumented system service is reserved to Hewlett-Packard
Company.

Basically, the system service finds the specified global section, calculates the GPTX
corresponding to the specified offset in that section, and then scans the process's page
tables looking for the virtual page that corresponds to that GPTX. If it finds such a
page, it calculates the corresponding virtual address and returns that to the requestor.

The $FIND_GPAGE_64 system service procedure, EXE$FIND_GPAGE_64 in module
SYS_FIND_GPAGE_64, runs in kernel mode. EXE$FIND_GPAGE_64 takes the
following steps:

1. In addition to making the checks described in Section 3.1.2, it validates its argu-
ments as follows"

a. It checks that the SECTION_OFFSET_64 argument and, if present, optional
arguments START_VA_64 and LENGTH_64 arguments are multiples of the size
of a page, returning the error status SS$_OFF_NOTPAGALGN, SS$_VA_
NOTPAGALGN, or SS$_LEN_NOTPAGMULT if not.

b. It checks that the START_VA_64 argument is within process-private space,
returning the error status SS$_NOSUCHPAG if not.

c. It minimizes the LENGTH_64 argument with the difference between START_VA_64
and the end of process-private space.

2. It locks the GSD mutex for read access, raising IPL to 2.

3. It calls MMG_STD$GSDSCAN, in module SYSDGBLSC, to find the GSD, if
any, that corresponds to the GS_NAME_64 and IDENT_64 arguments. Section 3.7.1
describes MMG_STD$GSDSCAN. If none is found, it unlocks the mutex and
returns the error status SS$_NOSUCHSEC.

4. Otherwise, EXE$FIND_GPAGE_64 performs an additional sanity check on the
global section ident: it confirms that the ident is positive and, if not, unlocks the
mutex and returns the error status SS$_IVSECIDCTL to its requestor.

216

,

,

,

11

,

10.

11.

12.

3.13 Services That Return Information

Examining the GSD flags, EXE$FIND_GPAGE_64 tests whether the section is a
PFN-mapped one. If so, it unlocks the mutex and re turns the error s ta tus SS$_
GBLSEC_MISMATCH.

It compares the section access mode with the requestor 's mode to determine if the
system service requestor is allowed to map the section. If not, it unlocks the mutex
and re turns the error s tatus SS$_NOPRIV.

It calculates the address of the GSTE.

It calls MMG_STD$CHKPRO_AUDIT to check access to the file. If access is not
allowed, it unlocks the mutex and re turns an error s ta tus to its requestor.

It checks whether SECTION_OFFSET_64 is within the global section and, if not,
unlocks the mutex and re turns the error s ta tus SS$_OFFSET_TOO_BIG.

It calculates the GPTX corresponding to the sum of the section offset and the
GPTX for the first page of the section.

It unlocks the mutex.

EXE$FIND_GPAGE_64 establishes an exception handler for any subsequent
access violations and scans the process's page tables for a match. It loops through
the L1PT and, for each nonzero L1PTE, scans the corresponding L2PT. For each
nonzero L2PTE, it scans the corresponding L3PT looking for a match. It skips any
L3PTE tha t is no-access, PFN-mapped, or a window page.

If it finds an L3PTE whose valid and type 1 bits are clear, whose type 0 bit is set,
and whose high 32 bits match the GPTX, it has found the matching page. If the
page's owner access mode is more privileged than the maximized access mode, it
re turns error s ta tus SS$_NOPRIV. Otherwise, it calculates the vir tual address
tha t corresponds to tha t L3PTE and re turns it and the s ta tus SS$_NORMAL to its
requestor.

For each valid or t ransi t ion L3PTE it finds, it takes the following steps"

a. It acquires the MMG spinlock, raising IPL to IPL$_MMG.

b. It confirms tha t the L3PTE is still a valid or t ransi t ion page. If not, it releases
the spinlock, lowering IPL, and goes on to the next L3PTE.

c. In the case of a valid or t ransi t ion L3PTE, any GPTX information is in the
PFN database ra ther than in the L3PTE. EXE$FIND_GPAGE_64 gets the
G P 2 ~ from PFN$Q_PTE_INDEX in the PFN database record for the PFN
mapped by tha t L3PTE.

d. If the page is a Galaxywide shared memory page (PFN$V_SHARED is set
in PFN$L_PAGE_STATE), the GPTX in the L3PTE is a section-relative in-
dex; EXE$FIND_GPAGE_64 adds the GPTX in the shared memory section
descriptor to it.

e. It releases the MMG spinlock, lowering IPL.

217

Memory Management System Services

g,

If the page is not a shared memory page, it checks whether the page type is
PFN$C_GLOBAL or PFN$C_GBLWRT. If not, it goes on to the next L3PTE.

It compares the G P 2 ~ to the GPTX of interest. If tha t matches, it has found
the matching page. If the page's owner access mode is more privileged than
the maximized access mode, it re turns the error s ta tus SS$_PAGOWNVIO.
Otherwise, it calculates the vir tual address tha t corresponds to tha t L3PTE
and re turns it and the s tatus SS$_NORMAL to its requestor.

3.13.4 $GET_VA_RAD_INFOW System Service
The $GET_VA_RAD_INFOW system service is requested to get per-RAD page counts
for a specified virtual address range. Its a rguments include the s tar t ing vir tual
address, size of the range in bytes, and the address and size of a buffer in which
the information is returned. A size o f - 1 means the vir tual range ends at the end
of process-private address space. Use of this system service is reserved to Hewlett-
Packard Company. Any other use is unsupported.

The $GET_VA_RAD_INFOW system service procedure, EXE$GET_VA_RAD_INFOW
in module PTECHECK, runs in kernel mode. It takes the following steps:

1. It validates its arguments , checking tha t the vir tual address range is en-
tirely within process-private address space, and re turns the error s ta tus SS$_
BADPARAM if not. It confirms that the re turn buffer is large enough for a long-
word array of page counts with an element for each RAD on the system, re turn ing
SS$_BADPARAM if not.

2. It checks that the requestor has write access to the buffer, re turning SS$_ACCVIO
if not. Otherwise, it clears the buffer.

3. It raises IPL to 2.

4. It determines the RDE associated with the beginning par t of the range.

5. It determines the lesser of the last virtual page in tha t region and the ending
virtual address.

6. It scans the L3PTEs tha t map tha t subrange. If the PTE maps a valid or t ransi t ion
page, it determines the RAD based on the PFN and increments that RAD's counter
in the re turn buffer.

7. If the ending address of the subrange is less than the address of the entire vir tual
range, it determines the RDE associated with the next par t of the range and
continues with step 5.

8. Otherwise, it re turns to its requestor.

218

3.15 Set Page Protection System Services

3.14 $SETSWM System Service
A security persona with PSWAPM privilege can lock and unlock its process into the
balance set by requesting the $SETSWM system service. A process locked into the
balance set cannot be outswapped.

The Set Process Swap Mode ($SETSWM) system service procedure, EXE$SETSWM in
module SYSSETMOD, runs in kernel mode. EXE$SETSWM checks that the security
persona has privilege and simply sets (or clears) the PCB$V_PSWAPM bit in PCB$L_
STS, the status longword in the software PCB. While setting or clearing the bit,
EXE$SETSWM holds the SCHED spinlock.

When the swapper is searching for suitable outswap candidates, a process whose
PCB$V_PSWAPM bit is set is passed over.

3.15 Set Page Protection System Services
A process can alter the protection of a set of pages in its address space by requesting
either the $SETPRT or the $SETPRT_64 system service.

3.15.1 $SETPRT System Service
The Set Protection on Pages ($SETPRT) system service procedure, EXE$SETPRT in
module SYSSETPRT, runs in kernel mode. It takes the following steps:

1. It transforms the contents of the PROT argument from a VAX protection encoding
to the analogous Alpha protection bits. (VAX encoding was used for ease in porting
VAX code to Alpha.)

2. It creates and initializes scratch space on the stack.

3. It tests the accessibility of the INADR argument and maximizes the ACMODE argu-
ment with the mode of the service requestor.

4. It raises IPL to 2 to block AST delivery.

5. It determines the address of the RDE corresponding to the INADR argument.

6. EXE$SETPRT calls MMG$CREDEL, specifying SETPRTPAG_64 (see Section
3.15.2) as the per-page service-specific routine.

7. If necessary, EXE$SETPRT transforms error statuses returned by SETPRTPAG_
64 into more traditional ones (SS$_PAGTYPVIO into SS$_NOPRIV and SS$_
NOSUCHPAG into SS$_ACCVIO).

8. If the PRVPRT argument was specified, EXE$SETPRT tests its accessibility and
returns in it the most recent previous page protection returned from SETPRTPAG_
64.

9. It restores the IPL at entry and returns to its requestor.

219

Memory Management System Services

In general, the operation of this service is straightforward. However, its actions have
one interesting side effect. If a section page for a read-only section has its protection
set to writable, the copy-on-reference bit is set. This set bit forces the page to have its
backing store address changed to the page file when the page is faulted, preventing
a later attempt to write the modified section pages back to a file to which the process
may be denied write access.

3.15.2 [MMG_STD$]SETPRTPAG_64 Routine
SETPRTPAG_64, with its alternative entry point MMG_STD$SETPRTPAG_64, in
module SYSSETPRT, is the per-page service-specific routine for the $SETPRT and
$SETPRT_64 system services.

It takes the following steps:

1. It calls MMG_STD$PTEREF_64, in module SVAPTE, to fault in the page table
page containing the PTE that maps the page whose protection is to be changed.
MMG_STD$PTEREF_64 takes the following steps:

a. It confirms that the virtual address is within the current space of the region,
returning SS$_LENVIO if not.

b. It gets the address of the L3PTE that maps the specified virtual address.

c. It acquires the MMG spinlock, raising IPL, and then checks whether all the
PTEs involved in translating the specified virtual address are valid. If so,
it returns the address of the PTE to its caller with the MMG spinlock held,
ensuring that the state of the L3PT cannot be changed asynchronously.

d. If some PTEs are invalid, the routine records the address of the L3PTE in
PCB$Q_KEEP_IN_WS and the starting and ending addresses of the L2PT
that maps it in PHD$PQ_PT_NO_DELETE1 and PHD$PQ_PT_NO_DELETE2.
Recording these addresses enables the L2PT to be faulted into the working set
list and temporarily locked there, temporarily preventing any of the L3PTs it
maps from being deleted.

e. MMG_STD$PTEREF 64 releases the MMG spinlock, lowering IPL to 2.

f. It faults the L2PT, if necessary. If the L2PTE that maps the L3PT is null,
MMG_STD$PTEREF_64 returns SS$_ACCVIO. Otherwise, it then faults the
L3PT.

g. It reacquires the MMG spinlock, clears PHD$PQ_PT_NO_DELETE1 and
PHD$PQ_PT_NO_DELETE2, and stores a - 1 in PCB$Q_KEEP_IN_WS. With
the L3PT faulted into the working set list and the MMG spinlock held, the
temporary measures are no longer necessary.

h. It returns the address of the PTE to its caller, with the MMG spinlock still
held.

220

,

,

,

3.15 Set Page Protection System Services

If MMG_STD$PTEREF_64 re turned an error status, SETPRTPAG_64 re turns it to
its caller. Otherwise, SETPRTPAG_64 tests whether the L3PTE is zero, indicating
a null page, and, if so, releases the MMG spinlock and re turns the error s ta tus
SS$_NOSUCHPAG, which is t ransformed before being re turned to a $SETPRT
requestor.

SETPRTPAG_64 compares the requestor 's access mode in MMG$L_ACCESS_
MODE with tha t of the page owner. If the access mode is insufficiently privi-
leged, the routine releases the MMG spinlock and re turns the error s ta tus SS$_
PAGOWNVIO.

Otherwise, it determines the type of the vir tual page, based on the valid and type
bits in the L3PTE that maps it.

If the page is a t ransi t ion or demand zero page tha t is to become read-only,
SETPRTPAG_64 releases the MMG spinlock, lowers IPL, touches the page to
make it valid, and continues at step 1.

If the page is a demand zero page and will remain writable or is a page file
page, SETPRTPAG_64 continues with step 5.

If the page is a process-private section page and the protection change would
make a writable page read-only, SETPRTPAG_64 continues with step 5.

If the page is already writable from some mode or is a copy-on-reference page,
SETPRTPAG_64 continues with step 5.

If the protection change would make a read-only page writable, SETPRTPAG_
64 must change the page to be a copy-on-reference page: it charges the page
against the process's job page file quota and changes the page's backing store
to a page file. It continues with step 5, also sett ing the copy-on-reference bit in
the L3PTE. An inability to charge the page against quota results in an error
s tatus return.

If the page is valid, SETPRTPAG_64 checks tha t it is not a PFN-mapped page
and tha t it is a process page. If ei ther is false, it re turns the error s ta tus SS$_
PAGTYPVIO.

If the page is a valid process page and the protection change would make a
writable page read-only, SETPRTPAG_64 continues with step 5, also clearing
the fault-on-write bit if it was set.

If the page is a valid process page and the protection change does not make
a read-only page writable or if the page already has page file backing store,
SETPRTPAG_64 continues with step 5.

Otherwise, it changes the PFN$Q_BAK field for the physical page to a page file
backing store form and decrements the section's reference count. It completes
changing the page to a copy-on-reference page, taking the same steps as for a
process-private section page.

221

Memory Management System Services

,

,

If the page is a global section page, SETPRTPAG_64 determines the page
type from the global PTE. If it contains anything but a global section index
for a copy-on-reference page, SETPRTPAG_64 returns the error status SS$_
PAGTYPVIO. Otherwise, it continues.

It modifies the L3PTE to change the page's protection and, if the page is valid,
invalidates any cached TB entry for the page.

It releases the MMG spinlock, restoring the previous IPL of 2, and returns to its
caller.

3.15.3 $SETPRT_64 System Service
The Set Protection on Pages ($SETPRT_64) system service procedure, EXE$SETPRT_
64 in module SYS_SETPRT_64, runs in kernel mode. It resembles the $SETPRT
system service, but all its address arguments are 64 bits. Thus it can be used to
change the protection of P0, P1, or P2 space pages.

It takes the following steps:

1. It validates its arguments.

o It transforms the contents of the PROT argument from a VAX protection encoding
to the analogous Alpha protection bits. (VAX encoding is used for consistency with
the 32-bit service.)

3. It maximizes the ACMODE argument with the mode of the service requestor.

. It rounds down the START_VA_64 argument to a page boundary and rounds up the
LENGTH_64 to an integral number of pages that includes the user-specified start ing
and ending addresses.

5. It raises IPL to 2 to disable AST delivery.

~ It determines the address of the RDE corresponding to the START_VA_64 argu-
ment. If the address is not within a region, it returns the error status SS$_
PAGNOTINREG or SS$_NOT_PROCESS_VA, whichever is appropriate.

7. It loops, calling MMG_STD$SETPRTPAG_64 (see Section 3.15.2) until the routine
returns an error status or all pages are done.

8. If the protection on any page was changed successfully, EXE$SETPRT_64 con-
verts the old protection into VAX encoding and records it in the RETURN_PROT_64
argument if it is accessible.

o It returns the rounded-down starting address and rounded-up length to its re-
questor.

222

3.16 Set Fault System Services

3.16 Set Fault System Services
A process can set the no-execute characteristic for each of a group of pages in its
address space by requesting the undocumented $SETFLT or $SETFLT_64 system
service. Use of these services is reserved to Hewlett-Packard Company. Any other use
is unsupported.

3.16.1 $SETFLT System Service
The Set Fault Characteristic ($SETFLT) system service procedure, EXE$SETFLT in
module SYSSETPRT, runs in kernel mode. It takes the following steps:

1. It creates and initializes scratch space on the stack.

2. It performs several consistency checks on the arguments, returning the error
status SS$_BADPARAM if the FLAGS argument specifies anything other than
no-execute or the error status SS$_ACCVIO if other arguments are inaccessible.

3. It maximizes the ACMODE argument with the mode of the service requestor.

4. It raises IPL to 2 to block AST delivery.

5. It determines the address of the RDE corresponding to the INADR argument.

6. EXE$SETFLT calls MMG$CREDEL (see Section 3.1.1), specifying SETFLTPAG_64
(see Section 3.16.2) as the per-page service-specific routine.

7. If necessary, EXE$SETFLT transforms error statuses returned by SETPRTPAG_
64 into more traditional ones (SS$_PAGTYPVIO into SS$_NOPRIV and SS$_
NOSUCHPAG into SS$_ACCVIO).

8. If MMG$CREDEL returns successfully, EXE$SETFLT executes an instruction
memory barrier to flush any instructions that might have been prefetched from the
pages whose fault-on-execute bit has just been set.

9. It restores the previous IPL and returns to its requestor.

3.16.2 [MMG_STD$]SETFLTPAG_64 Routine
SETFLTPAG_64, with its alternative entry point MMG_STD$SETFLTPAG_64, in
module SYSSETPRT, is the per-page service-specific routine for the $SETFLT and
$SETFLT_64 system services.

It takes the following steps:

. It calls MMG_STD$PTEREF_64 (see Section 3.15.2) to fault in the page table page
containing the PTE that maps the page whose no-execute characteristic is to be
set. MMG_STD$PTEREF_64 returns the address of the PTE to SETFLTPAG_64
with the MMG spinlock held.

223

Memory Management System Services

2. If MMG_STD$PTEREF_64 re turned an error status, SETFLTPAG_64 re turns it to
its caller. Otherwise, SETFLTPAG_64 tests whether the L3PTE is zero, indicating
a null page, and, if so, releases the MMG spinlock and re turns the error s ta tus
SS$_NOSUCHPAG, which is t ransformed before being re turned to a $SETFLT
requestor.

3. SETFLTPAG_64 compares the requestor 's access mode with tha t of the page owner.
If the access mode is insufficiently privileged, it releases the MMG spinlock and
re turns the error s tatus SS$_PAGOWNVIO, which is passed back to the system
service requestor.

4. Otherwise, it determines the type of the vir tual page, based on the valid and type
bits in the L3PTE tha t maps it.

If the page is a transit ion or demand zero page, SETFLTPAG_64 releases the
MMG spinlock, lowers IPL, touches the page to make it valid, and continues at
step 1.

If the page is valid, SETFLTPAG_64 checks tha t it is a process or global
page and tha t it is not a PFN-mapped page, re turning the error s ta tus SS$_
PAGTYPVIO if ei ther is false. If both are true, it sets the no-execute and
fault-on-execute bits in the L3PTE.

If the page is a global page, a page file page, or a section page, SETFLTPAG_64
sets the no-execute bit in the L3PTE.

5. It invalidates any possible TB entry for the page; releases the MMG spinlock,
lowering IPL; and returns.

3.16.3 $SETFLT_64 System Service
The Set Faul t Characterist ic ($SETFLT_64) system service procedure, EXE$SETFLT_
64 in module SYS_SETPRT_64, runs in kernel mode. It resembles the $SETFLT
system service, but all its address a rguments are 64 bits. Thus it can be used to set
the no-execute characteristic for P0, P1, or P2 space pages.

Its control flow resembles that of EXE$SETPRT_64 (see Section 3.15.3), with the
exception tha t the per-page routine it calls is MMG_STD$SETFLTPAG_64 (see Section
3.16.2).

3.17 $COPY_FOR_PAGE System Service
A process can read data from a page whose fault-on-read bit is set by request ing the
undocumented Copy Faul t on Read Page ($COPY_FOR_PAGE) system service. The
service is requested with three arguments: the number of bytes to be copied, the
source vir tual address, and the destination vir tual address. As described in Chapter
1, the executive sets the fault-on-read bit in the SPTEs mapping the granular i ty hint
region tha t contains executive and other installed resident images' code sections. The
protection on these pages permits user access so tha t instructions in mode of caller

224

3.17 $COPY_FOR_PAGE System Service

system services and images installed resident can be executed by any access mode.
Data fetches, in contrast, are blocked by the fault-on-read bit.

The System Dump Analyzer (SDA) utility and debuggers use this service when they
are requested to display instructions in system space. This service provides the ability
to fetch data from system pages set fault-on-read for the few instances in which it is
required. Use of this service is reserved to Hewlett-Packard Company. Any other use
is unsupported.

The $COPY_FOR_PAGE system service procedure, EXE$COPY_FOR_PAGE in module
COPY_FOR_PAGE, runs in kernel mode. It takes the following steps:

, It confirms that the data to be read is in system space, returning the error status
SS$_BADPARAM if not.

. It probes the protection on the system page to confirm that the access mode from
which the service was requested is allowed to read the page and, if not, returns the
error status SS$_ACCVIO.

, It probes the output buffer page to confirm that the requesting access mode has
write access and, if not, returns the error status SS$_ACCVIO.

4. EXE$COPY_FOR_PAGE examines the SPTE containing the start of the data.

If the page is invalid but the fault-on-read bit is set, the SPTE is inconsistent
and EXE$COPY_FOR_PAGE generates the fatal bugcheck INCONMMGST.

If the page is valid and the fault-on-read bit is not set, EXE$COPY_FOR_
PAGE simply copies the data to the requestor's output buffer.

If the page is valid and the fault-on-read bit is set, EXE$COPY_FOR_PAGE
acquires the MMG spinlock, raising IPL, and temporarily double-maps the
physical page or pages containing the data. The temporary mapping permits
kernel mode read access and has the fault-on-read bit clear. The alternative to
the double mapping is temporarily clearing the fault-on-read bit in the original
SPTE. That alternative would not only make it possible for other threads of
execution to fetch data from the page but would also require clearing and then
resetting the bit in each SPTE that maps any page within the granularity hint
region.

EXE$COPY_FOR_PAGE releases the spinlock, lowering IPL. Using the tempo-
rary mapping of the physical page, it copies the data to the requestor's output
buffer. It reacquires the spinlock to unmap the page or pages and releases the
spinlock.

5. It returns to its requestor.

225

Memory Management System Services

3.18 Relevant Source Modules
Source modules described in this chapter include

[LIB]MMGDEF.SDL
[LIB_H]MMG_FUNCTIONS.H
[LIB_H]MMG_ROUTINES.H
[SYS] COPY_FOR_PAGE.B32
[SYS]PHDUTL.MAR
[SYS]PTECHECK.C
[SYS] SVAPTE.MAR
[SYS] SYS_C RE D E L_64. C
[SYS]SYS_CRMPSC_64.C
[SYS] SYS_GB LSE C_64. C
[SYS] SYS_GDZRO_64. C
[SYS]SYS_GPFN_64.C
[SYS] SYS_LKWS ET_64. C
[SYS] SYS_RE GI ON S. C
[SYS]SYS_SETPRT_64.C
[SYS]SYSADJSTK.MAR
[SYS]SYSCREDEL.MAR
[SYS]SYSCRMPSC.MAR
[SYS]SYSDGBLSC.MAR
[SYS]SYSLKWSET.MAR
[SYS]SYSSETMOD.MAR
[SYS]SYSSETPRT.MAR

226

Chapter 4
Paging Dynamics

I consider that a man's brain originally is like a little empty
attic, and you have to stock it with such furniture as you
choose Now, the skillful workman is very careful indeed as
to what he takes into his brain-attic. He will have nothing but
the tools which may help him in doing his work, but of these
he has a large assortment, and all in the most perfect order. It
is a mistake to think that that little room has elastic walls
and can distend to any extent. Depend upon it, there comes a
time when for every addition of knowledge you forget some-
thing that you knew before. It is of highest importance, there-
fore, not to have useless facts elbowing out the useful ones.

Sir Arthur Conan Doyle, A Study in Scarlet

This chapter 's subject is paging dynamics, the movement of pages of code and da ta
between memory and mass storage. Specifically, it describes the transit ions a page
makes as it is faulted into and out of a working set list, and as it moves between its
backing store and memory.

Section 4.9 describes the $FAULT_PAGE system service and its effect on page fault
handling. The service enables an application to fault a set of pages prior to their use.

The chapter also discusses modified page writing, the allocation and use of page files,
and the operation of the $UPDSEC and $UPDSEC_64 system services.

4.1 Overview
A typical vir tual page begins life as a demand zero page or as a number of blocks in
a section file on a mass storage medium. Commonly, a vir tual page comes from an
image. A process initiates execution of the image by request ing the Image Activate
($IMGACT) system service, bet ter known as the image activator.

The image activator, described in detail in Chapter Image Activation and Exit, maps
the entire image into the process's address space, using the memory management
system services described in Chapter 3. It initializes data s t ructures such as process
section table entries (PSTEs) and page table entries (PTEs) to associate blocks of
the image file with the pages they are to occupy. Chapter 2 discusses the memory
management data structures.

227

Paging Dynamics

When an image begins to execute, few of its pages have been read into memory from
the image file, and most of the level 3 page table entries (L3PTEs) tha t map the image
have a clear valid bit. (The image activator did access some pages to relocate and fix
up address references within the image.) When an image page whose valid bit is clear
is referenced, a translation-not-valid exception results.

The processor changes access mode to kernel and switches to the kernel stack. It
dispatches to the translation-not-valid exception service routine, more commonly
known as the page fault handler.

The page fault handler examines the memory management data s t ructures to deter-
mine what kind of vir tual page this is and takes appropriate actions:

For example, in the case of a demand zero page, it finds an available entry in the
process's working set list, allocates a page of zeroed memory, and stores its page
frame number (PFN) in the L3PTE with a set valid bit. It dismisses the exception.
The process reexecutes the instruction whose a t tempted execution caused the page
fault. This time, with the L3PTE valid bit set, the processor t rans la tes the vir tual
address to a physical address and execution continues.

In the case of a vir tual page in a mass storage file, the page fault handler de-
termines which blocks contain the vir tual page tha t tr iggered the fault, finds an
available entry in the process's working set list, allocates a physical page of mem-
ory from the free page list, stores its PFN in the L3PTE with a clear valid bit, and
requests an I/O operation to read those blocks into the allocated page. It places the
kernel thread into a page fault wait state.

When the I/O completes, I/O postprocessing code sets the valid bit in the L3PTE
and makes the kernel thread computable. When the kernel thread is placed back
into execution, it reexecutes the instruction whose a t tempted execution caused the
page fault. This time, with the L3PTE valid bit set, the processor t rans la tes the
virtual address to a physical address and execution continues.

Although many steps in page fault handl ing are common to most types of page, some
depend on page type and state. Section 4.2 describes the common steps in page fault
handling and serves as a framework for details of type- and state-specific processing
described in subsequent sections.

Faulted in, a page remains valid and in the working set until removed. Reasons for
removal include the following:

�9 Room is required for another page (see Chapter 5).

The Purge Working Set ($PURGWS or $PURGE_WS) system service removes it
(see Chapter 5).

�9 Swapper t r imming removes it (see Chapter 6).

�9 Proactive memory reclamation removes it (see Chapter 5).

�9 Working set limit adjustment removes it (see Chapter 5).

228

4.2 Page Fault Handling

Removed from the working set list, the page is inserted into the modified page list, if it
has been modified; otherwise, it is inserted into the free page list. Sometime later, the
swapper, in response to insufficient free pages or an excess of modified pages, wri tes
modified pages to their backing store, typically a page file. It then inserts them into
the free page list. Acting in this capacity, the swapper is called the modified page
writer.

While the page is on the free or modified page list, it is essentially cached; the page
fault handler can resolve a fault for it by simply updat ing the memory m a n a g e m e n t
data s t ructures and placing the page back into the process's working set list. Such a
page fault requires no I/O and is sometimes referred to as a soft page fault or a soft
fault.

This chapter shows how the page fault handler manipula tes the various memory
management data s tructures in response to faults for different types of vir tual page. It
presents page fault handler action largely in terms of modifications to da ta s t ructures
and state transitions. It also describes the t ransi t ions tha t a vir tual page makes when
it is removed from a working set list.

Section 4.3 discusses the transit ions of different kinds of process page. Section 4.5
covers the transit ions of global pages. Sections 4.6 and 4.7 describe the t ransi t ions of
system space pages and global page table pages.

4.2 Page Fault Handling
As described in Chapter 1, the t ranslat ion buffer (TB) miss privileged archi tecture li-
brary (PALcode) routine generates a page fault exception when it detects an a t tempted
reference to a vir tual address whose L3PTE valid bit is clear. It also generates a page
fault exception if ei ther the level 1 page table entry (L1PTE) or the level 2 page table
entry (L2PTE) involved in the t ranslat ion is not valid but otherwise allows kernel
mode read access.

The page fault handler is entered in response to a translation-not-valid fault, described
in detail in Chapter 1. When it is entered, the stack contains the s tandard exception
stack frame, pictured in Chapter Interrupts, Exceptions, and Machine Checks. The
page fault is described by the contents of the following registers:

�9 R4---The fault vir tual address

�9 R5--One of the following values:

80000000 0000000016 for a write da ta fault
00000000 0000000016 for a read data fault
00000000 0000000116 for a read instruction fault

The page fault handler is implemented in a combination of MACRO-64 assembly
language and MACRO-32:

�9 SCH$PAGEFAULT, in the MACRO-64 assembly language module SCHEDULER

229

Paging Dynamics

�9 MMG$PAGEFAULT, in the MACRO-32 module PAGEFAULT

Assembly language is required to save all the scratch registers so they can be restored
when the exception is dismissed. Forming the canonical kernel stack (see Chapter
Scheduling) in case the kernel thread must be placed into a wait state also requires
assembly language.

4.2.1 Common Steps in Page Fault Handling
Figure 4.1 summarizes the main steps in handling a typical fault for a page on a mass
storage medium. The numbers in the figure are keyed to the explanations tha t follow:

O

e

@

Entered first, SCH$PAGEFAULT saves the scratch registers on the stack and calls
MMG$PAGEFAULT.

MMG$PAGEFAULT checks the interrupt priority level (IPL) at which the page
fault occurred. If the IPL is higher than 2, it generates the fatal PGFIPLHI
bugcheck. Page faults above IPL 2 are not allowed for the following reasons:

Code executes at an elevated IPL to perform a series of synchronized instruc-
tions. If a page fault occurs, the faulting kernel thread might be removed
from execution, allowing another kernel thread to execute the same routine or
access the same protected data structure. The alternative, looping in kernel
thread context at elevated IPL until the page fault I/O completes, would reduce
system performance and responsiveness.

Moreover, any loop at IPL 4 or above would block the I/O postprocessing
necessary for page fault resolution. On a uniprocessor system, a loop above
IPL 2 blocks swapper execution and would result in a deadlock if the free page
list were empty and the page fault required allocation of a page of memory.

When the system is executing at an IPL higher than 2, it may be running in
system context. MMG$PAGEFAULT and related routines perform operations
that require process context.

MMG$PAGEFAULT acquires the MMG spinlock, raising IPL to IPL$_MMG. It
makes an initial determination of what kind of working set list entry (WSLE)
and page type this page will be, based on the address range in which the faulting
virtual address falls, as shown in Figure 4.2. Later, it will distinguish among
process pages that are process-private, global read-only, and global writable.

Note that global page table pages no longer page and thus do not appear in a
working set list, but the page type bits are in the PFN database records for pages
occupied by global page table pages. Historically, process-private page tables
were part of the process header (PHD), and all the PHD pages had a page type of
PFN$C_PPGTBL. Now that process-private page tables are mapped in page table
space along with system space page tables, pages from the two address regions
(the PHD pages from system space and the process-private page tables from page
table space) have a type of PFN$C_PPGTBL.

230

4.2 Page Fault Handling

Figure 4.1

Time

Main Steps in Fault ing a Page from a Mass Storage Medium

Outer Mode

[Page fault]

15 Reexecute faulting
instruction

Kemel Thread Context I System Context

Kernel Mode

f
SCHSPAGEFAULT
1 Save registers

Call MMG$PAGEFAULT
MMG$PAGEFAULT
2 Test IPL

BUG_CHECK -
PGFIPLHI, FATAL

3 Determine WSLE type
4 Calculate address of L3PTE
5 Reserve WSLE
6 Determine page type
7 Allocate PFN
8 Modify memory manage-

ment database
9 Queue I/O request to read

page
10 Insert KTB into wait queue
11 RET

12 Swap kernel thread context

REI
i

IOPOST Interrupt Service
Routine PAGIO

13 Set valid bit in L3PTE
Report page fault complete

event to make kernel
thread computable

RB i

J
Rescheduling Interrupt

Service Routine
14 Swap kernel thread context

231

Paging Dynamics

Figure 4.2 Page Types

00000000 00000000

MMG$GQ_PT_BASE I-- --I_

MMG$GQSHARED_VA_PTES }-- ~ =

MMG$GQGPT_BASE I'- --I_

MMG$GQ_MAX_GPTE }-- ~ ~

SWP$GQBALBASE I~ ~ ~--

SWP$GQ_BAL_END l-- ~

FFFFFFFF FFFFFFFF

PFN$C_PROCESS
Process Pages

PFN$C_PPGTBL
Process-Private Page Table Pages

PFN$CSYSTEM
System Pages

PFN$C_GPGTBL
Global Page Table Pages

PFN$C_SYSTEM
System Pages

PFN$C_PPGTBL
PHD Pages

PFN$C_SYSTEM
System Pages

O

O

Indexing the process's page table space with the level fields from the faulting
virtual address, MMG$PAGEFAULT calculates the addresses of the L1PTE,
L2PTE, and L3PTE that map the page (see Figures 1.3 and 1.8).

Before examining the L3PTE, it determines whether the LIPTE and L2PTE that
map the page table page containing the L3PTE are themselves valid. If the L1PTE
is not valid, MMG$PAGEFAULT transforms the fault into one for the L2PT. If the
L1PTE is valid but the L2PTE is not, it transforms the fault into one for the L3PT.
These checks avoid the necessity of making the page fault handler recursive.

After the page table page has been faulted in, its PTE made valid, and the excep-
tion dismissed, the instruction that caused the original fault will reexecute and
refault. If none of the PTEs are valid, there could be three page faults: one for the
L2PT, one for the L3PT, and one for the data page.

Depending on WSLE type, it calls MMG$FREWSLE, in module PAGEFAULT,
to find room in the working set list for a new page, possibly by removing a page
from it (see step 4 in Section 4.3.1). A typical process or process page table page
is described by a WSLE in the process's working set list. Pages from memory-
resident and Galaxywide global sections, however, are not described by WSLEs. A
typical system pageable page is described by a WSLE in the system working set
list. Global page table pages and page tables that map system space, however, are
not described by WSLEs.

232

0

@

0
0

0

4.2 Page Fault Handling

If MMG$FREWSLE returns an error status indicating that a free WSLE is not
currently available, MMG$PAGEFAULT acquires the SCHED spinlock, releases
the MMG spinlock, inserts the kernel thread's kernel thread block (KTB) into the
appropriate resource wait queue, loads the status SS$_WAIT_CALLERS_MODE
into R0, and continues with step 11.

If a free WSLE is available, MMG$PAGEFAULT retests the validity of the L1PTE
and L2PTE mapping the page table page (one of whose L3PTEs maps the virtual
address). This is done in case MMG$FREWSLE has removed the L2PT or L3PT
from the working set. If either is no longer valid, MMG$PAGEFAULT transforms
the fault into one for that page table page. After the page table page has been
faulted in, its PTE made valid, and the exception dismissed, the instruction that
caused the original fault will reexecute and refault, and the page fault handler will
fault in the process page.

It determines the type of page from the PTE contents. Its subsequent actions
depend on the nature of the invalid page. Figure 2.12 shows the different forms
of invalid L3PTE, and Chapter 3 describes how most of them are initialized in
response to various system service requests.

If necessary, MMG$PAGEFAULT allocates a physical page of memory. (If the
virtual page is already in memory, for example, occupying a physical page on the
free page list, this step is unnecessary.)

If a page of memory is not currently available, MMG$PAGEFAULT acquires the
SCHED spinlock, releases the MMG spinlock, inserts the KTB into the free page
wait queue, loads the status SS$_WAIT_CALLERS_MODE into R0, and continues
with step 11.

MMG$PAGEFAULT updates the memory management data structures.

If the page does not need to be read, perhaps because it is a demand zero page
or a page faulted from the free page list, MMG$PAGEFAULT releases the MMG
spinlock, loads the status SS$_NORMAL into R0, and continues with step 11.

If the page must be read in from a mass storage device, MMG$PAGEFAULT builds
an I/O request packet (see Section 4.14) that describes the read to be done, releases
the MMG spinlock, and queues the request to the driver.

MMG$PAGEFAULT acquires the SCHED spinlock. Before placing the kernel
thread into a page fault wait state, it tests whether the faulted page is still in-
valid. On a symmetric multiprocessing (SMP) system, where MMG$PAGEFAULT
is running on one processor, concurrent processing and completion of the I/O re-
quest on another may have already made the page valid. If the page is valid,
MMG$PAGEFAULT releases the SCHED spinlock, loads the status SS$_NORMAL
into R0, and continues with step 11.

If the page is still invalid, it checks whether the page was faulted by user mode
code running in a multithreaded process. If so, it checks whether an upcall should
be made to the thread manager and, if so, returns with additional status to

233

Paging Dynamics

O

O

O

SCH$PAGEFAULT (see Chapter Kernel Threads for a description of upcalls and
user mode thread management).

If the page is still invalid, but no upcall is necessary, it inserts the KTB into the
page fault wait queue and loads the status SS$_WAIT_CALLERS_MODE into R0.

MMG$PAGEFAULT returns to SCH$PAGEFAULT.

SCH$PAGEFAULT's actions depend on the status from MMG$PAGEFAULT:

If MMG$PAGEFAULT returned the status SS$_NORMAL, indicating that
page fault handling is complete, SCH$PAGEFAULT restores the saved scratch
registers and executes a CALL_PAL REI instruction to dismiss the page fault.

If MMG$PAGEFAULT returned the status SS$_WAIT_CALLERS_MODE,
indicating that the kernel thread must wait, SCH$PAGEFAULT takes the
following actions:

a . It updates several systemwide data cells to reflect that this kernel thread
is no longer current.

bQ It selects a computable resident kernel thread with whose hardware
context that of the waiting kernel thread can be swapped. If none is
available, it will swap to the system hardware context.

C. It saves the nonscratch integer registers on the stack and, if the kernel
thread is using floating-point arithmetic, the floating-point registers in the
floating-point execution data block (FRED) in the PHD.

d. It swaps kernel thread context.

e . Running in the new kernel thread's context, it releases the SCHED spin-
lock, restores the new kernel thread's hardware context, and reenters it by
executing the instruction CALL_PAL REI.

If MMG$PAGEFAULT returned a status indicating that an upcall should be
made, SCH$PAGEFAULT copies the page fault exception frame and some
additional information about the page fault to the user mode stack. It modifies
the saved program counter in the exception stack frame on the kernel stack
and restores the saved scratch registers. It executes a CALL_PAL REI instruction
to return to user mode and pass control to SCH$PAGEFAULT_UPCALL_JKT,
in module SCHEDULER (see Chapter Kernel Threads).

Page read completion occurs as part of I/O postprocessing (see Chapter I / 0 System
Services) and runs in system context. The I/O postprocessing routine PAGIO, in
module IOCIOPOST, sets the valid bit in the L3PTE. If the kernel thread was
placed into a page fault wait, it reports the scheduling event page fault completion
for the kernel thread to make it computable. Otherwise, if an upcall to a user
mode thread manager was made, it queues a user mode asynchronous system trap
(AST) to the process to notify the thread manager of the page fault completion.
PAGIO's actions are described in more detail in Section 4.11.

234

4.2 Page Fault Handling

@

@

When the event is reported, if the process is resident and the kernel thread's
priority is sufficiently high so that it should preempt, a rescheduling interrupt
is requested. For simplicity, Figure 4.1 shows this step as occurring in system
context, although it is more likely to occur in the context of whatever kernel thread
is current. Section 4.17 describes the various wait states associated with page
faults.

The rescheduling interrupt service routine selects the page faulting kernel thread
for execution, swaps to its context, and then executes a CALL_PAL REI instruction.

The kernel thread reexecutes the instruction that caused the page fault, this time
with the page valid.

4.2.2 Error Returns to SCH$PAGEFAULT
MMG$PAGEFAULT can also return several error status values to SCH$PAGEFAULT:

�9 SS$_ACCVIO

�9 SS$_PAGRDERR

�9 SS$_PAGRDERRXM

If the kernel thread has attempted access to another process's header,
MMG$PAGEFAULT returns the error status SS$_ACCVIO, in response to which
SCH$PAGEFAULT restores the scratch registers and transfers to EXE$ACVIOLAT,
in module EXCEPTION. EXE$ACVIOLAT, described in Chapter Condition Handling,
simulates an access violation exception to be reported to the access mode that incurred
the page fault. If the fault occurred in an inner mode, the system may crash. Section
4.4.2 has further details.

If the system incurred a hardware error on a previous attempt to read the faulted
page, MMG$PAGEFAULT determines the access mode in which this page fault oc-
curred and the mode of the page owner. It returns the error status SS$_PAGRDERR
when either of the following is true:

�9 The page fault occurred in user or supervisor mode.

�9 The page fault occurred in executive or kernel mode and the page is owned by
executive or kernel mode.

If the page fault occurred in executive or kernel mode but the page is owned by user
or supervisor mode, MMG$PAGEFAULT returns the error status SS$_PAGRDERRXM.
This set of circumstances is called a cross-mode page read error.

In response to either status, SCH$PAGEFAULT restores the scratch registers and
transfers to EXE$PAGRDERR, in module EXCEPTION. EXE$PAGRDERR, described
in Chapter Condition Handling, generates the special condition SS$_PAGRDERR or
SS$_PAGRDERRXM and reports it to the access mode that incurred the page fault.

235

Paging Dynamics

If no other condition handler handles ei ther condition, the condition is passed to the
last chance condition handler for tha t mode. For executive mode, the last chance
condition handler is EXE$EXCPTNE, in module EXCEPTION_ROUTINES; for kernel
mode, the handler is EXE$EXCPTN, in the same module.

Each of these handlers checks whether the condition is SS$_PAGRDERRXM and, if
so, requests the Exit ($EXIT) system service, specifying SS$_PAGRDERRXM as the
reason for exit. Exiting the image from either executive or kernel mode will cause its
process to be deleted. In the case of a cross-mode page read error, the process cannot
continue execution, but the system is not affected.

For any other type of condition, in particular, SS$_PAGRDERR, the executive mode
last chance condition handler generates the nonfatal bugcheck SSRVEXCEPT and
requests the $EXIT system service, causing the process to be deleted. When such con-
ditions occur in kernel mode, the kernel mode last chance condition handler genera tes
the fatal bugcheck SSRVEXCEPT. In the case of a read error for a page owned by
kernel mode, system operation may be affected and the executive crashes the system
ra ther than risk system and file integrity.

4.3 Page Transitions for Process Pages
This section describes the transit ions of different kinds of process page, which are of
type PFN$C_PROCESS. Many of the transit ions depend upon the initial location of
the virtual page and the location of its backing store.

Initially, a process page is faulted in from a section file on a mass storage medium or
created on demand as a page of all zeros, a demand zero page. (One other possibility
is a page in a PFN-mapped section. Such a page remains valid throughout its life
and is thus outside the scope of this chapter.) A page from a section file is fur ther
characterized by whether it is read-only or writable. All demand zero pages are
writable.

When a read-only page is removed from the working set, there is no need to record its
current contents; the page can be refaulted from its original location. When a writable
modified page is removed from the working set, its current contents must be recorded
to retain the modifications. The term backing store refers to the mass storage location
of the modified page.

A writable section page can be characterized by whether it is copy-on-reference. When
a process reads or writes a copy-on-reference page, it gets a private copy of the page.
The backing store for a copy-on-reference page is a page file. The backing store for one
tha t is not is its section file. A copy-on-reference page removed from the working set
list is placed on the modified page list even if it has not been modified. When reducing
the size of the modified page list, the modified page wri ter assigns a page file backing
store location and writes the page to it. Subsequently faulted, the page is read from
the backing store. This approach simplifies the management of the page at the cost of
having to write the page to its backing store even when it has not been modified.

236

4.3 Page Transitions for Process Pages

Most demand zero pages are created through the Create Virtual Address Space
($CRETVA and $CRETVA_64), the Expand Program/Control Region ($EXPREG),
or the Expand Virtual Address Space ($EXPREG_64) system services. The backing
store for such pages is a page file. It is also possible, however, for a process to create a
section of demand zero pages backed by a section file. Chapter 3 describes the system
services tha t create various kinds of vir tual address space.

The sections tha t follow describe the transi t ions for several kinds of process page.
Typically, the first t ransit ion occurs when the page is faulted in from a mass storage
device. In subsequent t ransi t ions the page is removed from the working set. It may
be placed into the free page list, or it may be placed into the modified page list and
wri t ten to its backing store. During any of these transit ions, the page may be faulted
again.

Section 4.2.1 describes the page fault handling steps common to many types of
page fault but omits the details of concomitant memory management data s t ructure
changes. The sections tha t follow describe the data s t ructure changes.

Section 4.3.1 describes the initial fault and subsequent t ransi t ions of a process section
page that is not copy-on-reference; and Section 4.3.2, of a process section page tha t is
copy-on-reference. Section 4.3.3 describes the initial fault of a demand zero page. Its
subsequent transit ions depend on whether it is a demand zero section page backed
in a section file or a simple demand zero page backed in a page file. Section 4.3.4
summarizes some additional kinds of page fault common to the page types already
described.

Section 4.3.5 discusses the transi t ions of a process page tha t is par t of a buffer object
page.

4.3.1 Process Section Page That Is Not Copy-on-Reference
An L3PTE for a writable section page, one tha t is not copy-on-reference, initially
contains a process section table index (PSTX) with the copy-on-reference bit (PTE$V_
CRF) clear. The transit ions tha t such a page can make are i l lustrated in Figure 4.3.
The numbers in the figure are keyed to the explanations tha t follow. The column on
the right shows how key PFN information changes as the page moves from one state
to another.

For simplicity, clustered reads and writes are ignored here, but they are discussed in
Sections 4.10 and 4.12.4.

O The first t ransi t ion is faulting the page in from the file tha t contains it. As
described in Section 4.2.1, MMG$PAGEFAULT locates the L3PTE tha t maps
the faulting page and ensures the validity of the page table pages tha t map it.
MMG$PAGEFAULT uses three other routines in module PAGEFAULT to perform
key tasks and update memory management da ta s t ructures accordingly:

- - MMG_STD$ININEWPFN_64, in module PAGEFAULT, allocates a page of
memory and updates the PFN database tha t describes it (see Section 4.8.1).

237

Paging Dynamics

- - MMG_STD$INCPTREF_64, in module PAGEFAULT, increments the share
count of the page table page that maps the virtual page in question (see
Section 4.8.3).

MMG_STD$MAKE_WSLE_64, in module PAGEFAULT, updates working set
list information (see Section 4.8.2). In particular, it increments the physical
page's PFN$W_REFCNT to indicate the page is in a working set list.

MMG$PAGEFAULT itself also increments the PFN$W_REFCNT field for the
allocated physical page, bringing the count to 2, to indicate the I/O request about
to be queued for this page.

It initializes the L3PTE:

�9 It inserts the PFN of the allocated page into the L3PTE.

�9 It leaves the protection, owner, and copy characteristics bits as they were.

�9 It initializes the type bits to indicate a transition page.

�9 If the page is writable but was faulted with read intent, it sets the fault-on-
write bit.

�9 It sets the fault-on-execute bit either if the no-execute bit was set or if the page
was faulted with read or write data intent rather than with execute intent.

Chapter 2 discusses the significance of the fault-on bits and the executive's use of
them.

MMG$PAGEFAULT initializes the location bits in the page's PFN$L_PAGE_
STATE field to read in progress. It initializes the page's PFN$Q_BAK field from
the L3PTE's type and partial section bits and bits <63:32>.

It builds an I/O request packet (IRP; see Section 4.14) that describes the read to be
done. From the PSTX in the original L3PTE contents, it locates the corresponding
PSTE in the PHD. From information in the PSTE, it can calculate which virtual
blocks in the file contain the virtual page.

If the last page in the section has the partial section bit set and is in the cluster to
be read, MMG$PAGEFAULT must take extra steps. A partial section is one whose
size in blocks is not an exact multiple of the number of blocks in a page. Thus,
its last page is not entirely backed by a section file. For this kind of page fault,
MMG$PAGEFAULT calculates the I/O request byte count such that the last page's
contribution to the count includes only those pagelets that have backing store. It
temporarily maps the PFN with a reserved system space L3PTE and clears the
part of the partially backed page that has no backing store.

It queues the request to the driver for the device containing the page.

238

4.3 Page Transitions for Process Pages

Figure 4.3 Page Transit ions for a Process Sect ion Page That Is Not Copy-
on-Reference

START]

L3PTE contains
Process Section

Table Index (PSTX)

L3PTE--~ Transition
In working set

L3PTE is valid
In working set

Modify bit clear

. _ _ |
L3PTE-*Transition I_

Saved modify bit clear I"
/

{ ~ , To top of
figure

PFN Data

From bottom Page not in
~ ~) of figure physical memory;

no PFN data

L3PTE is valid
In working set
Modify bit set

L3PTE --* Transition

Saved modify Saved modify
bit clear bit set

Read in progress
REFCNT = 2
BAK = PSTX

.

. . . . , (~ - -

L3PTE--~ Transition

Saved modify bit set

L3PTE --~ Transition

Saved modify bit clear

r

. . . . (~) - - - #

Active and valid
REFCNT > 0
BAK = PSTX

Release pending
REFCNT > 0
BAK = PS'I'X

Modified page list
REFCNT = 0
BAK = PSTX

Write in progress
REFCNT = 1
BAK = PSTX

Free page list
REFCNT = 0
BAK = PSTX

- - - - (~ - - I ~
Page fault transition Other transitions 239

Paging Dynamics

Q

O

O

Because most of the work was done in response to the initial fault, there is little
left to do when the page read completes. Holding the MMG spinlock, routine
PAGIO, in module IOCIOPOST, decrements PFN$W_REFCNT. In the usual case,
the reference count remains greater than zero. In tha t case, PAGIO changes
the PFN$L_PAGE_STATE location bits to active and sets the valid bit in the
process-private L3PTE.

If the page is writable, PAGIO tests the fault-on-write bit. If it is clear, indicating
tha t the page was faulted with write intent, PAGIO sets the modify bit in the
L3PTE. If the process is not mul t i threaded and if MMG$V_NO_MB is set in the
MMG_CTLFLAGS SYSGEN parameter , PAGIO sets the no-TB-miss-memory-
barrier-required bit (see Chapter 1) in the L3PTE.

It is, however, possible for PAGIO to decrement the reference count to zero. This
can happen if the page was removed from the working set list, for example,
through swapper t r imming or automatic working set limit adjustment, before the
page read completed. The page would have been put in the release pending state
with a reference count of 1. If PAGIO decrements the reference count to zero, then
instead of sett ing the valid bit, it inserts the page into the free page list.

OpenVMS mainta ins the modify bit. When an a t tempt is made to write to a page
tha t was originally faulted with read intent and one whose fault-on-write bit is set,
the processor generates a fault-on-write exception. The exception service routine
clears the fault-on-write bit in the L3PTE and sets the modify bit. The change is
not noted at this time in the PFN database. When a page is faulted with write
intent, the modify bit is set at the same time as the valid bit.

A valid page becomes invalid when it is removed from the working set list as a
result of any of the conditions listed in Section 4.1. Most of those result in calling
MMG$FREWSLE or its al ternative entry point, MMG_STD$FREWSLX_64, in
module PAGEFAULT. Chapter 5 describes them in detail. Of most relevance to
this chapter are the changes to memory management data s tructures when a page
tha t is not copy-on-reference is removed from the process working set list:

a . The modify bit in the L3PTE is saved. The valid, modify, fault-on-write, fault-
on-execute, and no-TB-miss-memory-barrier-required bits are cleared. Its PFN
field is unchanged.

bo The translat ion buffer is invalidated to remove the cached but now obsolete
contents of the L3PTE. If the page was never executed, only the data TB is
invalidated. If the process is mul t i threaded and this is an SMP system, the
invalidation is done on every CPU on which kernel threads of the process are
active.

C. The saved modify bit from the L3PTE is inserted into the PFN$L_PAGE_
STATE field, saving its value.

240

0

0

@

4.3 Page Transitions for Process Pages

d, The page's PFN$W_REFCNT is decremented. If the reference count goes to
zero, the page is put into the free or modified page list, according to the setting
of the saved modify bit in PFN$L_PAGE_STATE. Since the PFN$L_BLINK
field overlays the PFN$L_WSLX_QW field, inserting the page into the free or
modified page list supplants the PFN$L_WSLX_QW field contents. The page's
new location (free or modified page list) is inserted into the PFN$L_PAGE_
STATE field.

e . Whether or not the reference count goes to zero, the WSLE is zeroed. PFN$W_
PT_VAL_CNT for the page table page mapping this page is decremented. If the
count makes the transition t o -1 , PHD$L_PTCNTVAL is also decremented (see
Section 4.4.1). PCB$L_PPGCNT is decremented to indicate one less process
page.

If the reference count (decremented in step 4d) does not go to zero, there is out-
standing direct I/O for this page. MMG_STD$FREWSLX_64 changes the page's
PFN$L_PAGE_STATE location bits from active to release pending.

When direct I/O for the page completes, the I/O postprocessing routine calls MMG_
STD$IOUNLOCK_BUF, in module IOLOCK.

For each page in the I/O buffer, MMG_STD$IOUNLOCK_BUF decrements the
page's PFN$W_REFCNT. If it goes to zero, MMG_STD$IOUNLOCK_BUF puts the
page into either the free or the modified page list, based on the setting of the saved
modify bit, and changes PFN$L_PAGE_STATE accordingly. In a typical direct I/O
request, the process-private PTEs that map the buffer are copied to a nonpaged
pool structure called a direct I/O buffer map (DIOBM) so that a driver can examine
them. The L3PTs that contain the PTEs are not locked into memory. If the buffer,
however, is too large to be efficiently described in this manner, the L3PTs are
locked into memory and doubly mapped into system space; they must be unlocked
at I/O completion.

If the L3PTs were locked into memory, MMG_STD$DECPTREF_PFNDB, in
module PAGEFAULT, is called for each L3PT that maps I/O buffer pages. It
decrements the PFN$L_SHRCNT field in the PFN database record for the L3PT
(incremented when the I/O was initiated) to indicate one less reason for it to
remain in existence (see Section 4.4.1).

If the page was placed into the free page list, the next stages in its processing are
as described in step 9.

If the page was placed into the modified page list, the modified page writer eventu-
ally removes the page and writes it to its backing store. A writable page that is not
copy-on-reference is written back to the file where it originated. If the page is to
be backed in a page file, the modified page writer assigns it to a page file, allocates
space for it, and writes it.

The modified page writer sets the PFN$L_PAGE_STATE location bits for the page
to write in progress and clears the saved modify bit. The reference count of 1
reflects the outstanding I/O operation.

241

Paging Dynamics

O

O

Note that a section containing writable process pages that are not copy-on-
reference cannot be produced by the linker. Such a section must be created with
the Create and Map Section ($CRMPSC) or Create and Map Private Disk File
Section ($CRMPSC_FILE_64) system service.

When the modified page write completes, the page's reference count is decremented
to zero. Because the saved modify bit is clear, the page is put into the free page
list.

A page placed on the free page list normally remains attached to the process
for some time; that is, the L3PTE contains its PFN, and the PFN$L_PT_PFN
and PFN$Q_PTE_INDEX fields in the PFN database record for that page jointly
contain the address of the process-private L3PTE.

When the physical page is allocated for another purpose, several steps must be
taken to break the ties between the process virtual page and the physical page
that is about to be reused. The routine MMG$DEL_CONTENTS_PFN, in module
ALLOCPFN, performs those steps:

a. It locates the L3PTE from the contents of the PFN$L_PT_PFN and PFN$Q_
PTE_INDEX fields.

b. The L3PTE must be altered to reflect the backing store address of the page.
For a page that is not copy-on-reference, the routine restores some of the
L3PTE's contents before the initial page fault, namely, the PSTX from the
page's PFN$Q_BAK field. It leaves the protection, owner, copy characteristics,
and no-execute bits as they were.

c. It calls MMG_STD$DECPTREF_PFNDB, which decrements the PFN$L_
SHRCNT field in the PFN database record for the L3PT to indicate one less
reason for it to remain valid (see Section 4.4.1).

d. MMG$DEL_CONTENTS_PFN reinitializes the PFN database record for the
physical page before reallocating it. In particular, it clears PFN$L_PT_PFN
and PFN$Q_PTE_INDEX, the connection from the PFN database to its for-
mer process page table. It clears PFN$Q_BAK, the connection to the former
contents of the page.

A subsequent fault for the virtual page requires rereading the page from the
section file.

4.3.2 Process Section Page That Is Copy-on-Reference
The more common type of writable process page is a copy-on-reference page. The
initial value in the L3PTE (START 1 in Figure 4.4) is a PSTX; the copy-on-reference
bit (PTE$V_CRF) is set. The writable bit (PTE$V_WRT) is usually set.

Figure 4.4 illustrates the transitions that such a page makes from its initial page fault
until it is written to page file backing store. The numbers in the figure are keyed to
the explanations that follow. The column on the right shows how key PFN information
changes as the page moves from one state to another.

242

4.3 Page Transitions for Process Pages

Many of the transitions that occur here resemble the case just described. This section
notes each transition but elaborates only those areas that are different.

O When a page fault occurs, MMG$PAGEFAULT performs the actions described in
step 1 of Section 4.3.1. It also takes several additional steps:

a. It initializes PFN$Q_BAK to indicate that the page will have page file backing
store but none has been assigned yet. (Section 4.16 provides further details on
page file allocation.) At this time, all ties to the original section file have been
broken. When the modified page writer first writes this page to its backing
store (as it eventually will because the saved modify bit will be set), it will
assign a page file and allocate blocks in it.

b. It updates the PFN$L_PAGE_STATE field location bits to the value read in
progress, with the saved modify bit set. The page's backing store will be a
page file, not a section file; the copy of the page in the section file must not be
modified, yet each of the potentially many copies of the page may be modified.
Setting the saved modify bit guarantees that an initial copy of the page will be
written to the page file when it is first paged out, whether or not it has been
modified.

c. If the last page in the section has the partial section bit set in its L3PTE and
is in the cluster to be read, MMG$PAGEFAULT calculates the I/O request
byte count accordingly and clears the part of the page without backing store, as
described in step 1 of Section 4.3.1. In addition, it clears the partial section flag
in PFN$Q_BAK, because once the page is faulted in, it is no longer partially
backed; its backing store will be a whole page in a page file.

After the read completes, PAGIO decrements the reference count of each page in
the page fault cluster. If the reference count is greater than zero, it updates the
PFN$L_PAGE_STATE location bits to active and sets the L3PTE valid bit. If the
reference count is decremented to zero because the page has been removed from
the working set list, it places the page on the modified page list and changes its
PFN$L_PAGE_STATE location bits accordingly.

PAGIO also subtracts the number of pages read from the PSTE's reference count to
show that many fewer L3PTEs mapping pages from that section file.

This transition is described in Section 4.3.3.

When the copy-on-reference page is removed from the working set and its reference
count goes to zero, the page is placed into the modified page list.

If the page has been modified, its assigned page file backing store, if any, contains
an obsolete copy. That storage is deallocated, and the page number and page file
number in PFN$Q_BAK are cleared.

If the reference count did not go to zero when the page was removed from the
process working set, the physical page is placed into the release pending state
until the I/O completes.

At that time, the page is put into the modified page list.

Q

@

0

0

243

Paging Dynamics

Figure 4.4 Page Transitions for Process and Global Copy-on-Reference
Pages and for Demand Zero Pages

S T A R T 1

L3PTE contains
PSTX, CRF

The area
within these
dotted lines
is also shown
in Figure 4.9.

I sTA.T3) [STA.T=] [STA.T4]

L3PTE contains
GPTX

GPTE contains
GSTX, CRF

L3PTE--~ Transition
In working set
Saved modify

bit set

. d

L3PTE is valid
In working set
Modify bit set

L3PTE ~ Transition
Saved modify

bit set

L3PTE --~
Demand Zero Page

r

L3PTE ~Transition
Saved modify

bit set

1 j
To Figure 4.5

The area
within these
dotted lines
is also shown
in Figure 4.10.

L3PTE contains
GPTX

GPTE contains 0

L

Page not in
physical memory;
no PFN data

Read in progress
REFCNT = 2
BAK = PGFLX,0

�9 I Active and vaild
REFCNT > 0
BAK = PGFLX,0

Release pending
REFCNT > 0
BAK = PGFLX,0

. ~) - - I ~
Modified page list
REFCNT = 0
BAK = PGFLX,0

- - - - ~ - - I ~
Page fault transition

O-*
Other transitions

LoS
Connection for
copy-on-reference page

Connection for
page file global page

~J
Connection for
global page

244

4.3 Page Transitions for Process Pages

�9 This t ransi t ion is described as t ransi t ion 3 in Section 4.5.3.

When the modified page wri ter writes the page to its backing store in a page file, the
page makes a transi t ion from the modified page list.

Figure 4.5, the diagram for faults from a page file, shows this transition. The column
on the right shows how key PFN information changes as the page moves from one
state to another. The connection between Figure 4.4 and Figure 4.5 is indicated by
path C in the two figures. A subsequent fault for the page is resolved from a page file.

The transit ions for a page faulted from a page file (see Figure 4.5) resemble those
described for a page tha t is not copy-on-reference (see Figure 4.3). The only difference
in the PFN data between the two figures is tha t the PFN$Q_BAK field value in Figure
4.5 indicates tha t the page belongs in a page file, whereas the PFN$Q_BAK field value
in Figure 4.3 contains a PSTX.

The other difference between the two figures is the entry point into the transi t ion
diagram. A page can s tar t out in a section file (the L3PTE contains a PSTX) but a
page can never s tar t out in a page file. The entry into Figure 4.5 is from pa th C in
Figure 4.4, from one of several initial s tates tha t eventually result in the physical page
contents' being writ ten to the page file.

4.3.3 Demand Zero Page
An L3PTE to map a typical demand zero page is initialized by the $CRETVA,
$CRETVA_64, $EXPREG, or $EXPREG_64 system service. These services can be
requested explicitly by an image or implicitly by the system on behalf of the process,
for example, as par t of image activation. Also, a process can request the $CRMPSC
or $CRMPSC_FILE_64 system service to create a demand zero section backed by a
section file. An L3PTE to map such a section has a PSTX with the PTE$V_CRF bit
clear and the PTE$V_DZRO bit set. Ei ther type of demand zero page is created the
first t ime it is faulted.

Figures 4.4 (START 2) and 4.5 i l lustrate the transit ions of a typical demand zero page,
one backed in a page file.

The transit ions of a demand zero section page resemble those in Figure 4.3 except for
the steps to get to the active and valid state.

The following description corresponds to step 3 in Figure 4.4 for a simple demand zero
page and to the entry into Figure 4.3 for a demand zero section page.

�9 When MMG$PAGEFAULT detects a page fault for a demand zero page, it calls
MMG_STD$ININEWPFN_DZRO_64, in module PAGEFAULT, to allocate a free
zeroed page (see Section 4.8.1). It calls MMG_STD$INCPTREF_64, in module
PAGEFAULT, to increment the share count of the page table page tha t maps the
virtual page in question (see Section 4.8.3). It calls MMG_STD$MAKE_WSLE_
64 to update working set list information (see Section 4.8.2). In particular, it
increments the physical page's PFN$W_REFCNT to indicate the page is in a
working set list.

245

Paging Dynamics

MMG$PAGEFAULT makes additional updates to memory management data
structures:

a o

b.

C.

It changes the PFN$L_PAGE_STATE location bits to active.

It initializes PFN$Q_BAK to indicate tha t the page will have page file backing
store but none has been assigned yet. Assignment of a page file and allocation
of actual blocks in tha t file are done later by the modified page writer.

If the page is a demand zero section page, its backing store is the section file.
MMG$PAGEFAULT clears the PTE$V_DZRO bit. Once the page has been
created, it becomes a non-CRF section page.

It inserts the PFN into the L3PTE associated with the fault, setting the valid
and modify bits, and leaving the protection, owner, copy characteristics, and
no-execute bits as they were. If the no-execute bit is set, MMG$PAGEFAULT
also sets fault-on-execute. If the process is not mult i threaded and if MMG$V_
NO_MB is set in the MMG_CTLFLAGS SYSGEN parameter, it also sets the
no-TB-miss-memory-barrier-required bit (see Chapter 1) in the L3PTE.

Subsequent transit ions for a demand zero page are shown in Figure 4.4 and described
throughout Sections 4.3.1, 4.3.2, and 4.3.4.

4.3.4 Page Faults out of Transition States
Figures 4.3, 4.4, and 4.5 show some of the transit ions tha t can occur when a virtual
page is faulted while the associated physical page is in the transit ion state. Because
these types of page fault require no I/O, they are referred to as soft page faults.

While these changes back to the valid state are straightforward, certain details about
each fault should be mentioned. Most of the following transit ions are represented in
the figures by a P within a circle.

MMG$PAGEFAULT resolves a page fault from the free page list in the following way:

1. It first removes the page from the list.

, If appropriate, MMG$PAGEFAULT copies the contents of the page to a page of
physical memory allocated from the process's home resource affinity domain (RAD).
All the following conditions must be true:

The page is not a global page.

Its PFN$W_REFCNT is zero.

This is a nonuniform memory access (NUMA) platform with general RAD
support, RAD-specific process allocation, and soft fault copy enabled.

- - The RAD associated with the page is not the same as the process's home RAD.

After copying the contents of the page, MMG$PAGEFAULT breaks the page's
connection with the page table that mapped it and reinserts the page at the front
of the free page list.

246

4.3 Page Transitions for Process Pages

Figure 4.5 Page Transi t ions for a Page Located in a Page File

L3PTE contains From bottom Page File Page ~ ~) of figure Number (PGFLPAG)

L3PTE--~ Transition
In working set

L3PTE is valid L3PTE is valid
. -I~ In working set I ~ In working set 4-

Modify bit clear I Modify bit set
!

t L3PTE ---* Transition t
4 --__'(~--- Saved modify Saved modify --- ~ - -

bit clear bit set

/

L3PTE--~Transition |

t Saved modify bit set --- P~')---~;

::~1-- (~ t L3PTE~ Transition ~ , ~
: Saved modify bit clear

: t L3PTE-~Transition L
~ 1 - - - ~ - - - Saved modify bit clear r

(
~ 1 ~ To top of

figure

O - , j
Page fault transition Other transitions Connection for

copy-on-reference page

PFN Data

Page not in
physical memory;
no PFN data

Read in progress
REFCNT = 2
BAK = PGFLPAG

Active and valid
REFCNT > 0
BAK = PGFLPAG

Release pending
REFCNT > 0
BAK = PGFLPAG

Modified page list
REFCNT = 0
BAK = PGFLPAG

Write in progress
REFCNT = 1
BAK = new PGFLPAG

Free page list
REFCNT = 0
BAK = new PGFLPAG

247

Paging Dynamics

Typically, however, MMG$PAGEFAULT instead uses the page jus t removed from
the free page list.

3. It calls MMG_STD$MAKE_WSLE_64 (see Section 4.8.2) to update the memory
management data s tructures to reflect the fact tha t the page is in the working set
list. In particular, it increments the physical page's PFN$W_REFCNT.

4. MMG$PAGEFAULT changes the page's PFN$L_PAGE_STATE location bits to
active.

5. MMG$PAGEFAULT initializes the L3PTE:

If the page is writable but has not been modified, it sets the fault-on-write bit
in the L3PTE.

If the page is writable and was faulted with write intent, it sets the modify bit
in the L3PTE.

If the process is not mul t i threaded and if MMG$V_NO_MB is set in the MMG_
CTLFLAGS SYSGEN parameter , it also sets the no-TB-miss-memory-barrier-
required bit in the L3PTE.

It sets the fault-on-execute bit in the L3PTE either if the no-execute bit was
set or if the page was faulted with read or write data intent.

It sets the valid bit in the L3PTE. (Recall tha t a t ransi t ion PTE retains the
PFN of the physical page in which the vir tual page resides.)

A page fault from the modified page list is resolved in exactly the same way. Figures
4.3 to 4.5 show tha t the page was previously modified but never wri t ten to its backing
store by re turning the page to its modified state. That is, the saved modify bit in its
PFN$L_PAGE_STATE field remains set, causing the page to be put into the modified
page list when it is removed from the working set again.

A page fault from the release pending state is similar to the previous two except tha t
the page does not have to be removed from a page list and copy on soft page fault is
not an option. Artistic license is taken in the figures to differentiate physical pages
tha t were modified from pages tha t were not.

A transi t ion deserving special comment is a page fault tha t occurs while the modified
page wri ter is writ ing the page to its backing store. The saved modify bit is cleared
before the write begins so tha t the page will be placed into the free page list when
the write completes. Although the page has not yet been completely backed up, it is
assumed tha t the write will complete successfully. A page fault for the page can thus
put it into the active but unmodified state. The only difficulty occurs in the event of
a write error. The modified page writer 's I/O completion routine, WRITEDONE in
module WRTMFYPAG, detects this and resets the saved modify bit.

In the case of a single-threaded process, a page fault for a process page (type PFN$C_
PROCESS) being read in response to a previous page fault results in placing the
kernel thread back into a page fault wait state. This can occur if a kernel th read
in page fault wait is made computable to execute an AST. When the AST procedure

248

4.3 Page Transitions for Process Pages

completes, control returns to the instruction that caused the fault. If the page is still
invalid, the kernel thread is placed back into page fault wait.

In the case of a multithreaded process, the kernel thread is placed in collided page
wait.

4.3.5 Process-Private Buffer Object Page
A buffer object is a special kind of I/O buffer. The pages that make up a buffer object
are locked into physical memory and may be doubly mapped in system space as well
as process-private space. Because the pages are already locked into memory, there is
no need for a device driver to lock them when initiating an I/O request and no need for
the I/O postprocessing routine to unlock them. The implementation of buffer objects
enables the body and process header of a process with I/O in progress to a buffer object
to be swapped.

Chapter 3 details the system services that create and delete buffer objects, and Chap-
ter 2 discusses the buffer object descriptor data structure associated with each buffer
object.

A process-private buffer object page begins life as a process page, perhaps a demand
zero page. Its initial transitions therefore are no different from those of that page
type. The transitions particular to a buffer object page are illustrated in Figure 4.6.
The column on the right shows how key PFN information changes as the page moves
from one state to another. The numbers in the figure are keyed to the explanations
that follow.

Figure 4.6 begins with the page already valid, in the process's working set. The Create
Buffer Object ($CREATE_BUFOBJ or $CREATE_BUFOBJ_64) system service faults it
into the working set if it is not already valid.

O The system service locks this page (and any other in the buffer object) into memory
by incrementing the page's reference count, PFN$W_REFCNT; sets the buffer
object and saved modify bits in PFN$L_PAGE_STATE; and increments the page's
PFN$W_BO_REFC to zero.

Similarly, for the process-private page table page that maps the buffer object, it
increments PFN$W_BO_REFC. If this is the first buffer object page mapped by
this page table, it increments PFN$W_REFCNT and sets the buffer object and
saved modify bits in PFN$L_PAGE_STATE.

Optionally, the system service initializes a system space L3PTE to double-map the
buffer object page.

�9 When the buffer object page is removed from the working set, for example, as
a result of replacement paging, the valid and modify bits in the process-private
L3PTE that map it are cleared. The page's reference count is decremented to 1,
and the location bits in PFN$L_PAGE_STATE are set to release pending. The
share count for the process-private page table page that maps it is decremented.

249

Paging Dynamics

O

O

O

When the buffer object page is faulted back into the working set, its PFN$L_
PAGE_STATE location bits are changed to active and its reference count is incre-
mented. The share count for the process-private page table page that maps it is
incremented.

When the buffer object is deleted, the Delete Buffer Object ($DELETE_BUFOBJ)
system service clears the system space L3PTE that double-maps the page, if any,
and invalidates any cached entry from the TB. It decrements the buffer object
page's PFN$W_BO_REFC. Typically, the page is part of only one buffer object, and
PFN$W_BO_REFC is now zero. In that case, the service clears the buffer object
bit in its PFN$L_PAGE_STATE field and decrements PFN$W_BO_REFC for the
process-private page table page that maps the buffer object. If that goes to zero, it
clears the buffer object bit in its PFN$L_PAGE_STATE field and decrements the
page's reference count. Since the former buffer object page is in a release pending
state, the service increments the page table page's share count. It decrements the
former buffer object page's reference count.

If the reference count is now zero, the page is released to the modified page list.

4.4 Page Transitions for Process-Private Page Table and
PHD P a g e s

This section describes the transitions of two kinds of pages of type PFN$C_PPGTBL:
page table pages and PHD pages.

4.4.1 Process-Private Page Table Page
As described in Chapter 2, the LIPT, L2PTs and L3PTs that map a process's P0, P1,
and P2 space are mapped in its page table space. They are only accessible from process
context, except for circumstances in which the executive double-maps a page table page
into system space to access it when that process context is not current.

The L2PT and L3PTs that map permanent P1 space are created when the process is
created. That L2PT is sufficient to map all of P0, P1, and some P2 space. Until an
image is activated in the process and additional address space created, most of the
L2PTEs in the permanent L2PT are zero. When the process requests a system service
to create address space, the system service initializes the L3PTEs that map that space
and, if necessary, the L2PTEs.

Many of the transitions of a process page table page resemble those of other demand
zero pages, described in Section 4.3.3. Some aspects of page table page transitions are
unique, however.

Some of the transitions that such a page can make are illustrated in Figure 4.7. The
numbers in the figure are keyed to the following explanations. The column on the
right shows how key PFN information changes as the page moves from one state to
another.

250

4.4 Page Transitions for Process-Private Page Table and PHD Pages

F i g u r e 4.6 P a g e T r a n s i t i o n s for a B u f f e r Objec t P a g e

START]

L3PTE is valid
In process working set

r
J L3PTE is valid

In process working set
"7 System space L3PTE is valid

I Saved modify bit set

r
L3PTE ~ Transition

System space L3PTE is valid
Saved modify bit set

r
System space L3PTE ~ 0 !"

Saved modify bit set /
/

r
System space L3PTE = 0

Saved modify bit set

Page transitions

PFN Data
Active and valid
REFCNT = 1
BO_REFC = 0

Active and valid
REFCNT = 2
BO_REFC = 1

Release pending
REFCNT = 1
BO_REFC = 1

Release pending
REFCNT = 1
BO_REFC = 0

Modified page list
REFCNT = 0
BO_REFC = 0

For simplicity, some of the transitions shown in Figures 4.4 and 4.5 are omitted here,
and this section is confined to transitions of process-private L3PTs.

O When a process faults a page in a region that expands automatically, such as a
stack page and the page's L3PTE is mapped by a zero L2PTE, the page fault is
transformed into a fault for the L3PT.

251

Paging Dynamics

e

@

When MMG$PAGEFAULT detects a page fault for a process page table page that
has not yet been created, it takes the following steps:

a. MMG$PAGEFAULT uses other routines in module PAGEFAULT to perform
some of the related updates to memory management data structures:

MMG_STD$ININEWPFN_DZRO_64 allocates a free zeroed page (see
Section 4.8.1).

b,

MMG_STD$INCPTREF_64 increments the share count of the L2PT that
maps the L3PT (see Section 4.8.3).

MMG_STD$MAKE_WSLE_64 updates working set list information (see
Section 4.8.2). In particular, it increments the physical page's PFN$W_
REFCNT to indicate the page is in a working set list.

MMG$PAGEFAULT updates the PFN$L_PAGE_STATE location bits to active.

C. It inititializes PFN$Q_BAK to indicate that the page will have page file
backing store but none has been assigned yet. Assignment to a page file and
allocation of space in it are done later by the modified page writer.

d. It inserts the PFN into the L2PTE associated with the fault, setting the valid,
modify, and fault-on-execute bits, and leaving the protection, owner, copy
characteristics, and no-execute bits as they were. If the process is not mul-
tithreaded and if MMG$V_NO_MB is set in the MMG_CTLFLAGS SYSGEN
parameter, it also sets the no-TB-miss-memory-barrier-required bit in the
L2PTE.

e . Finally, MMG$PAGEFAULT returns the status SS$_NORMAL to
SCH$PAGEFAULT.

Control returns to the system service, which initializes L3PTEs, for example, to
map a section. When done, the system service returns.

If none of the process pages mapped by the L3PT is made valid, the process
page table page can be removed from the working set as a result of replacement
paging. MMG$FREWSLE increments the PHD's entry in the array at PHV$GL_
REFCBAS_LW, the number of reasons the PHD should remain in memory, to
account for the page table page as a transition page. Decrementing the page's
reference count to zero, it inserts the page into the modified page list. It also
decrements PCB$L_PPGCNT and clears the WSLE that was associated with the
page.

It decrements the L2PT's PFN$W_PT_VAL_CNT and, if the L2PT maps no more
valid WSLEs, it decrements PHD$L_PTCNTVAL.

The modified page writer eventually removes the page from the modified page list,
assigns it a page file, and writes it to allocated space in the page file.

�9 When the write completes, the page is placed into the free page list.

252

F i g u r e 4 .7

,t
I
I
I
,,
!
!

1
.

!
!

1
!
!
!
!
!
!

1
1 ,~ @ _ o

1
1
!
!
!
!
!
!

!

Page transitions

4.4 Page Transitions for Process-Private Page Table and PHD Pages

P a g e T r a n s i t i o n s f o r P r o c e s s P a g e T a b l e P a g e s

START J

L2PTE
Zero page

L2PTE is valid
In process working set

Modify bit set

L2PTE ~ Transition
Saved modify bit set

L2PTE - ~ Transition
Saved modify bit clear

L2PTE ~ Transition
Saved modify bit clear

PFN Data

/
L2PTE is valid |

In process working set L,,I TM

Modify bit set /

L2PTE is valid
In process working set

Modify bit set

L,?.PTE :-- Transition
Saved modify bit set

-O-~
Page fault transitions

Page not in
= physical memory;

no PFN data

Active and valid
REFCNT = 1
BAK = PGFLX,0
SHRCNT = 0

Modified page list
REFCNT = 0
BAK = PGFLX,0

Write in progress
REFCNT = 1
BAK = new PGFLPAG

Free page list
REFCNT = 0
BAK = PGFLPAG

Active and valid
REFCNT = 1
BAK = PGFLPAG or

PGFLX,0
SHRCNT > 1

Active and valid
REFCNT = 1
BAK = PGFLPAG or

PGFLX,0
SHRCNT > 0

Modified page list
REFCNT = 0
BAK = PGFLPAG or

PGFLX,0
SHRCNT = 0

253

Paging Dynamics

O

O

@

O

When the process later tries to access a page mapped by this L3PT, it incurs a page
fault. MMG$PAGEFAULT calculates the virtual address of the L3PTE mapping
the target address and discovers that the L3PT is not valid. It transforms the fault
for the target address into one for the L3PT.

In Figure 4.7, the fault is shown as happening before the physical page containing
the L3PT is reallocated for another use. MMG$PAGEFAULT faults the page
from the free page list, updates the data structures that describe the page, and
returns the status SS$_NORMAL to SCH$PAGEFAULT. When SCH$PAGEFAULT
dismisses the exception, the instruction that attempted access to a page mapped by
this L3PT is reexecuted.

When MMG$PAGEFAULT processes the first page fault for a page mapped by this
L3PT, it and its associated routines take the following actions:

a. MMG_STD$INCPTREF_64 increments the share count for the L3PT to indi-
cate that it maps one more valid page. If this is the first valid page mapped
by the page table page (that is, if the share count makes the transition from
0 to 1), it locks the WSLE for the page table page into the process's working
set list by setting the WSL$V_WSLOCK bit and also increments PHD$L_
PTCNTACT, the number of active page table pages for the process, and the
PHD's entry in the array at PHV$GL_REFCBAS_LW.

b. When updating the data structures related to the working set list, such as
the WSLE for the faulted page, MMG_STD$MAKE_WSLE_64 also increments
PFN$W_PT_VAL_CNT for the page table page to indicate one more valid entry
in the process's working set list mapped by that page table page. If the count
makes the transition f rom-1 to 0, it also increments PHD$L_PTCNTVAL, the
number of page table pages that map valid WSLEs.

Whenever the process faults another page mapped by this L3PT, the L3PT's share
count and PFN$W_PT_VAL_CNT are incremented.

Whenever one of the pages mapped by this L3PT is removed from the working set,
MMG$FREWSLE decrements PFN$W_PT_VAL_CNT to indicate the L3PT maps
one less valid page. When the count makes the transition t o - 1 , the page table
page is dead, and MMG$FREWSLE also decrements PHD$L_PTCNTVAL.

Once the page table page is dead, its WSLE is a candidate for reuse by a page
being newly faulted into the working set. While the page table page describes
transition pages, however, the WSLE cannot be reused. To free the WSLE,
MMG$FREWSLE severs all ties between the transition pages on the free page
list and the page table page, moves those pages to the head of the free page list,
and requests a selective purge of the modified page list (see Section 4.12). Chapter
5 contains further information on how a dead page table page is removed from the
working set.

As the contents of each page are deleted, MMG_STD$DECPTREF_PFNDB is
called to update the data structures describing the L3PT. It decrements the share
count for the L3PT to indicate one less reason for it to remain valid.

254

4.4 Page Transitions for Process-Private Page Table and PHD Pages

When the share count makes the transi t ion from 1 to 0, MMG_STD$DECPTREF_
PFNDB takes the following additional steps:

a. It decrements the PHD's entry in the ar ray at PHV$GL_REFCBAS_LW, the
number of reasons the PHD should remain in memory. If tha t count goes to
zero, MMG_STD$DECPTREF_PFNDB wakes the swapper process to outswap
the PHD.

b, It locates the WSLE for the page table and clears its WSL$V_WSLOCK bit to
unlock it from the process's working set list.

C. It decrements PHD$L_PTCNTACT, the number of active page table pages for
the process.

The L3PT page is removed from the working set list and placed on the modified
page list. Eventually, it is wri t ten to its backing store and placed on the free
page list. When the L3PT page is allocated for another use, its connections to the
L2PT must be severed: the backing store location of the L3PT is stored in the
L2PTE, and the L2PT's share count is decremented. If the share count is now zero,
the L2PT's WSLE is unlocked from the working set list, PHD$L_PTCNTACT is
decremented to indicate one less active page table page, and the PHD reference
count is decremented.

4.4.2 Process Header Page
Historically, a process's page tables were a pageable par t of its PHD. Unlike other
system space pages, PHD pages belonged to the associated process and were listed in
its working set list. A process was therefore not allowed to fault a page in another
process's PHD.

A specific check for this circumstance was added to MMG$PAGEFAULT. When it
determined that a page fault for a system space page was within the balance set slots,
if one process was trying to fault a page in another process's PHD, it t ransformed the
page fault into an access violation. It used the page fault exception parameters as
access violation parameters (see Section 4.2.2).

To eliminate the possibility tha t the process had been outswapped after faulting the
page table in its PHD's previous balance set slot and tha t it was now trying to access
it in the new balance set slot, MMG$PAGEFAULT also tested and cleared bit PHD$V_
NOACCVIO in PHD$L_FLAGS, which had been set by the swapper at inswap. If
the bit was set, MMG$PAGEFAULT dismissed the page fault so tha t the faulting
instruction could reexecute, recalculating the page table address.

With the page tables removed from the PHD as of OpenVMS Version 7.0, all the pages
of the header are nonpageable, and MMG$PAGEFAULT's check is largely superfluous,
except for one part icular case: A FRED page or expansion PHD page is created by
first storing the demand zero format in its PTE and then touching it to materialize the
page and lock it into the working set. Between those two steps, if the kernel thread
of another process were to fault the newly created page, it would incur an access
violation.

255

Paging Dynamics

4.5 Page Transitions for Global Pages
The transitions of global pages, which are of types PFN$C_GLOBAL and PFN$C_
GBLWRT, resemble those of process pages. A major difference, however, is the pres-
ence of both a global page table entry (GPTE) and potentially multiple process-private
L3PTEs that refer to the same page.

Page transitions for memory-resident global section pages are described in Section
4.5.5.

4.5.1 Global Read-Only Page
This section assumes much of the detail shown earlier in Figure 4.3 and focuses on an
example in which two processes map the same global page. Figure 4.8 illustrates the
transitions that occur for a global read-only page in an already created section that is
mapped by two processes. The column on the right shows how key PFN information
changes as the page moves from one state to another. In the figure, the term VA_PTE
represents the combination of fields PFN$L_PT_PFN and PFN$Q_PTE_INDEX. The
numbers in the figure are keyed to the explanations that follow.

When the global section is initially created, as described in Chapter 3, the data
structures described in Chapter 2 are initialized. The GPTE for the page represented
in Figure 4.8 contains a global section table index (GSTX), which locates the global
section table entry (GSTE) containing information about the global section file.

O When process A maps the section, each L3PTE representing a page in the section
is initialized with a global page table index (GPTX), effectively a pointer to the
associated GPTE.

e

O

When process B maps the section, its L3PTEs contain exactly the same G ~ as
those in process A's L3t~Es .

Process B happens to fault the global page first. After reserving an entry in
process B's working set list, MMG$PAGEFAULT takes the following steps, many of
which are the same as those taken for a process section page (see step 1 in Section
4.3.1):

a. Because process B's L3PTE contains a GPTX, MMG$PAGEFAULT indexes
the global page table with it to get the GPTE. The GPTE contains a GSTX,
indicating that the global page resides on mass storage.

b. It calls MMG_STD$ININEWPFN_64 to allocate a physical page (see Section
4.8.1).

C. MMG_STD$ININEWPFN_64 calls MMG_STD$INCPTREF_64 to update the
data structures describing the global page table page that maps the faulted
page (see Section 4.8.3).

d, MMG_STD$ININEWPFN_64 calls MMG_STD$MAKE_WSLE_64 to update
working set list information (see Section 4.8.2). In particular, it increments the
physical page's PFN$W_REFCNT to indicate the page is in a working set list.

256

O

4.5 Page Transitions for Global Pages

e. MMG$PAGEFAULT inserts the PFN of the allocated page into the GPTE,
leaving the protection, owner, and copy characteristics bits as they were. It
initializes the type bits to indicate a transition page.

f. It sets the PFN$L_PAGE_STATE location bits to read in progress.

g. It stores the GSTX in the PFN$Q_BAK field.

h. It sets the fault-on-execute bit in B's L3PTE either if the no-execute bit was set
or if the page was faulted with read data intent.

MMG$PAGEFAULT initiates a read of the faulted page from its section file. While
the read is in progress, the GPTE contains a transition PTE but process B's L3PTE
still contains the GP'I~. The reference count for the page indicates two references:
one for the read in progress and one because the page is in process B's working set
(the share count field is nonzero).

After the read completes, the I/O postprocessing routine PAGIO locates the process-
private L3PTE through the PTE index and page table PFN stored in the I/O
request packet. It temporarily maps the process's L3PT into system space. It takes
the following steps for each page in the page fault cluster:

a. It decrements the page's reference count. The reference and share counts are
both 1 at this point.

b. It changes the PFN$L_PAGE_STATE location bits to active.

C. It sets the valid bit in the GPTE to record the fact that this page is physically
resident and in a process working set.

d. It inserts the PFN into the process's L3PTE, setting the valid bit.

PAGIO reports the scheduling event page fault completion for process B's kernel
thread so that it becomes computable.

Section 4.11 contains further details.

When process A faults the same global page, MMG$PAGEFAULT's initial action is
the same as it was in step 3, because the L3PTE contains a GPTX. Now, however,
MMG$PAGEFAULT finds a valid GPTE. Resolution of this page fault is simple and
requires no I/O. Such a fault is known as a soft page fault.

Through MMG_STD$MAKE_WSLE_64 and MMG_STD$INCPTREF_64, whose
actions are described in Sections 4.8.2 and 4.8.3, MMG$PAGEFAULT initializes
the WSLE for process A, increments its PCB$L_GPGCNT, and increments the
share count for the global page to 2.

MMG$PAGEFAULT inserts the PFN from the GPTE into process A's L3PTE,
leaving the protection, owner, copy characteristics, and no-execute bits as they
were and setting the valid bit. If the process is not multi threaded and if MMG$V_
NO_MB is set in the MMG_CTLFLAGS SYSGEN parameter, it also sets the
no-TB-miss-memory-barrier-required bit in the L2PTE.

257

Paging Dynamics

Figure 4.8 Page Transitions for a Global Read-Only Page Mapped by Two
Processes

Page transitions

Process B

Process A

L3PTE contains
Global Page Table

Index (GPTX)

I
No change

S T A R T]

GPTE contains
Global Section Table

Index (GSTX)

GPTE = GSTX

L3PTE = GPTX L3PTE = GPTX GPTE = GSTX

1
No change

L3PTE = GPTX L3PTE = GPTX GPTE -~ Transition

t
L3PTE is valid
In working set

I
No change

L3PTE is valid
In working set

+
L3PTE = GPTX

I
No change

I
No change

L3PTE = GPTX

L3PTE is valid
In working set

I
No change

L3PTE is valid
In working set

GPTE is valid

GPTE is valid

GPTE is valid

L3PTE = GPTX L3PTE = GPTX GPTE ~ Transition

I
No change

I
No change

+

L3PTE = GPTX L3PTE = GPTX GPTE = GSTX

These two
states are
exactly
the same.

I

I
l
I
I

PFN Data

Page not in
physical memory;
no PFN data

No PFN data

No PFN data

Read in progress
REFCNT = 2
SHRCNT = 1
BAK = GSTX
VA_PTE - - GPTE

Active and valid
REFCNT = 1
SHRCNT = 1
BAK = GSTX
VA_PTE --~ GPTE

Active and valid
REFCNT = 1
SHRCNT = 2
BAK = GSTX
VA_PTE ---- GPTE

Active and valid
REFCNT = 1
SHRCNT = 1
BAK = GSTX
VA_PTE ---- GPTE

Free page list
REFCNT = 0
SHRCNT = 0
BAK = GSTX
VA_PTE --* GPTE

No PFN data

258

4.5 Page Transitions for Global Pages

O

@

O

When MMG$FREWSLE removes the global page from process B's working set,
it invalidates any cached TB entry for that virtual page and restores process B's
L3PTE to its previous state (rather than some transition form). MMG$FREWSLE
retrieves the GPTX from the physical page's PFN$Q_PTE_INDEX field and inserts
it in process B's L3PTE as a GFI~.

It decrements the share count for the L3PT to indicate that it maps one less page.
It decrements the share count for the global page itself. The share count is still
positive, and thus the GPTE remains valid. It updates the data structures related
to process B's working set list, for example, clearing the WSLE. It decrements
process B's PCB$L_GPGCNT.

When MMG$FREWSLE removes the global page from process A's working set, it
restores the process L3PTE as described in step 6.

It decrements the share count, this time to zero. It therefore clears the valid,
fault-on-read, fault-on-write, modify, and NO_MB bits in the GPTE to turn it into
a transition PTE and decrements the page's reference count. A global read-only
page with a reference count of zero, such as this one, is placed into the free page
list and its PFN$L_PAGE_STATE location bits are updated accordingly. The other
PFN database record fields are unchanged.

When the physical page is reused, the ties must be broken between the physical
page and, in this case, the GPTE. None of the processes mapped to this page are
affected in any way by this step.

The contents of the PFN$Q_BAK field, a GSTX, are inserted into the GPTE
located by the contents of PFN$Q_PTE_INDEX. MMG_STD$DECPTREF_PFNDB,
described in Section 4.4.1, is called to update the data structures describing the
global page table page that contains the GPTE. The PFN$Q_PTE_INDEX and
PFN$L_PT_PFN fields are then cleared, breaking the connection between the
physical page and the global page table.

These steps return the process and global page tables to the state following step 2,
although it is pictured here as a different state to simplify the figure.

4.5.2 Global Writable Page
The transitions that occur for a global writable page, which is of type PFN$C_
GBLWRT, are the same as those for a process page that is not copy-on-reference.
The only difference between such transitions and those illustrated in Figure 4.3 is that
the GPTE, not the process-private L3PTE, is affected by the transitions of the physical
page.

The process-private L3PTE for a global page contains a GPTX up to the time that the
page is made valid. Only then is a PFN inserted into the process L3PTE. As soon as
the page is removed from the process working set, the GPTX is restored to the process
L3PTE. All ties to the PFN database are made through the GPTE, which retains the
PFN while the physical page is in the various transition states.

259

Paging Dynamics

4.5.3 Global Copy-on-Reference Page
A global copy-on-reference page is shared only in its initial state. As soon as the fault
occurs, the page is treated exactly like a process page.

Figure 4.9 illustrates the transitions that occur for a global copy-on-reference page.
The column on the right shows how key PFN information changes as the page moves
from one state to another. In the figure, the term VA_PTE represents the combination
of fields PFN$L_PT_PFN and PFN$Q_PTE_INDEX. The numbers in the figure are
keyed to the explanations that follow.

The initial conditions are identical to those in Figure 4.8. After the section is created,
each of its GPTEs contains a GSTX. In this case, the copy-on-reference bit is set in
each GPTE.

F igure 4.9 P a g e Trans i t ions for a Global Copy-on-Reference P a g e

P r ~ B

P r ~ u t ~ A

L3PTE contains
Global Page Table

Index (GPTX)

I
No change

START }

GPTE contains
Global Section Table

Index (GSTX), CRF

GPTE = GSI'X, CRF

PFN Data

Page not in
physical memory;
no PFN data

No PFN data

The a r e a

within these
dotted lines
is also shown
in Figure 4.4.
Many of A's
transitions
are, as well.

Page transitions

Connection for
global page

L3PTE = GPTX

L3PTE--* Transition
In working set

Saved modify bit set

!
. @ -.

To Figure 4.4

L3PTE = GPTX

I
No change

L3PTE = GPTX

L3PTE-~ Transition
In working set

Saved modify bit set

To Figure 4.4

GPTE = GSTX, CRF

I
No change

+
GPTE = GSTX, CRF

I
No change

GPTE = GSTX, CRF

No PFN data

Read in progress
z REFCNT = 2
a_ BAK = PGFLX, 0 or)

VA_PTE --~ Process B's
L3PrE

z Read in progress
n u" REFCNT = 2

BAK -- PGFLX, 0
'=: VA_PTE --* Process A's

L3PTE

O Process A maps the page; the GP2~ is stored in its L3PTE.

260

e

@

4.5 Page Transitions for Global Pages

Process B maps the page; the same GPTX is stored in its L3PTE. Up to this point,
nothing is different from Figure 4.8.

When process B faults the page, MMG$PAGEFAULT locates the GPTE from the
GPTX and notes that the page is located in a global section file and is copy-on-
reference. MMG$PAGEFAULT, in concert with MMG_STD$ININEWPFN_DZRO_
64, MMG_STD$INCPTREF_64, and MMG_STD$MAKE_WSLE_64 (see Sections
4.8.1 to 4.8.3), allocates a page from the free page list and updates the pert inent
memory management data structures as follows:

a. The GPTE is not altered and retains its GSTX contents.

bD The PFN$Q_PTE_INDEX and PFN$L_PT_PFN fields get the location of
process B's L3PTE.

c. The share count for the page table page containing process B's L3PTE is
incremented. Section 4.4 details other changes to data structures related to the
page table page.

d. The PFN$L_PAGE_STATE type bits for the physical page are set to process
page.

e . An entry in process B's working set list is initialized to describe the faulted
page.

f. The PFN$L_WSLX_QW field is set to the index of the WSLE.

g. PCB$L_PPGCNT is incremented.

h, The reference count is incremented twice, once for the page's membership in
the working set and once for the I/O in progress.

Process B's L3PTE is changed to a transition PTE with the PFN of the al-
located page. The protection, owner, and copy characteristics bits are left
as they were. If the page is writable but was faulted with read intent,
MMG$PAGEFAULT sets the fault-on-write bit. (Code common to several
page types sets the fault-on-write bit, although it is unnecessary in this case.)
It sets fault-on-execute either if the no-execute bit was set or if the page was
faulted with read or write data intent.

j. The physical page's PFN$Q_BAK is initialized to indicate that the page will
have page file backing store but none has been assigned yet.

k. PFN$Q_BAK is also initialized from the GPTE's type and partial section bits,
<63:32>.

The PFN$L_PAGE_STATE location bits are set to read in progress with the
saved modify bit set.

Note that all ties between process B and the global section are broken. The page
is now treated like a process copy-on-reference page. The two boxes for process B
within the dotted lines in Figure 4.9 are also pictured within dotted lines in Figure
4.4.

261

Paging Dynamics

MMG$PAGEFAULT initiates a read of the faulted page.

O When process A faults the same page, the same steps are taken, this t ime with a
different physical page.

Thus, both process A and process B get the same initial copy of the global page from
the global section file, but from tha t point on, each process has its own private copy of
the page to modify.

0
e
0

4.5.4 Global Page-File Section Page
A global page-file section provides a way for processes to share global pages without a
backing store file. A global page-file section page is initially faulted as a demand zero
page and from then on is indistinguishable from other global writable pages except
tha t its backing store is in a page file.

Figure 4.10 i l lustrates the transit ions of a global page-file section page. The column on
the right shows how key PFN information changes as the page moves from one state
to another. The numbers in the figure are keyed to the explanations tha t follow.

The initial conditions are identical to those in Figure 4.8. The section is created; each
of its GPTEs contains a zero in the PFN field.

Process A maps the page; the G F I ~ is stored in its L3PTE.

Process B maps the page; the same GPTX is stored in its L3PTE.

When process B faults this page, MMG$PAGEFAULT locates the GPTE from the
GPTX and notes tha t the page is demand zero. MMG$PAGEFAULT calls MMG_
STD$ININEWPFN_DZRO_64 to allocate a free page from the zeroed page list (see
Section 4.8.1).

MMG$PAGEFAULT, in concert with MMG_STD$ININEWPFN_DZRO_64, MMG_
STD$INCPTREF_64, and MMG_STD$MAKE_WSLE_64 (see Sections 4.8.1 to
4.8.3) makes the following modifications to the per t inent memory managemen t
data structures:

a. The PFN$Q_PTE_INDEX and PFN$L_PT_PFN fields for the allocated page
locate the GPTE.

b. The PFN$L_PAGE_STATE type bits for the allocated global page are set to
global writable.

c. An entry in process B's working set list is initialized to describe the faulted
page.

d. The share count for the page table page containing process B's L3PTE is
incremented. Section 4.4 details other changes to data s t ructures related to the
page table page.

e. PCB$L_GPGCNT is incremented.

f. The share and reference counts for the allocated page are incremented.

262

4.5 Page Transitions for Global Pages

Figure 4.10 P a g e Trans i t ions for a Global P a g e - F i l e S e c t i o n P a g e

START }

PFN Data

The area
within these
dotted lines
is also shown
in Figure 4.4.
Many of A's
transitions are,
as well.

Page transitions

Process B

L3PTE = GPTX

L3PTE is valid
In working set
Modify bit set

/

To Figure 4.4

Connection for
page file global page

Process A

L3PTE contains
Global Page Table

Index (GPTX)
I

No change

L3PTE = GPTX

!
No change

L3PTE = GPTX

L3PTE is valid
In working set
Modify bit set

To Figure 4.4

GPTE is Demand Zero

GPTE = 0

GPTE = 0

GPTE is valid

1
No change

GPTE is valid

Page not in
physical memon];
no PFN data

No PFN data

No PFN data

Active and valid
REFCNT > 0
BAK = PGFLX, 0

Active and valid
REFCNT > 0
BAK = PGFLX, 0
PFNs in A's L3PTE
and B's L3PTE are
identical.

g. Its PFN$L_PAGE_STATE location bits are set to active.

h. MMG$PAGEFAULT inititializes PFN$Q_BAK to indicate that the page will
have page file backing store but none has been assigned yet. Assignment to
a page file and allocation of space in it are done later by the modified page
writer.

i. It inserts the PFN into the process-private L3PTE, setting the valid and
modify bits, and leaving the protection, owner, copy characteristics, and no-
execute bits as they were. If the no-execute bit is set, MMG$PAGEFAULT
also sets fault-on-execute. If the process is not multithreaded and if MMG$V_
NO_MB is set in the MMG_CTLFLAGS SYSGEN parameter, it also sets the
no-TB-miss-memory-barrier-required bit.

j. It inserts the PFN into the GPTE, setting the valid and modify bits and leaving
the protection, owner, copy characteristics, and no-execute bits as they were.

263

Paging Dynamics

O When process A faults the same page, MMG$PAGEFAULT locates the GPTE from
the GPTX and finds that the GPTE is valid. It inserts the PFN, valid, and modify
bits from the valid GPTE into process A's L3PTE, leaving the protection, owner,
copy characteristics, and no-execute bits as they were. If the no-execute bit is set,
MMG$PAGEFAULT also sets fault-on-execute. If the process is not mult i threaded
and if MMG$V_NO_MB is set in the MMG_CTLFLAGS SYSGEN parameter, it
also sets the no-TB-miss-memory-barrier-required bit.

Transitions for a global page-file section page resemble those of a page located in a
page file (see Figure 4.5). However, for a global page-file section page, the GPTE, not
the process L3PTE, is affected by the transitions of the physical page. Once the global
page is removed from a process's working set, the process L3PTE reverts to the GPTX
form.

4.5.5 Memory-Resident Global Demand Zero Section Page
A memory-resident global section is created by the $CREATE_GDZRO or $CRMPSC_
GDZRO_64 system service. If the system manager reserved preallocated physical
pages for the section, its pages are zeroed during system initialization or section
creation, and valid GPTEs are initialized with the PFNs of the allocated pages.

Figure 4.11 illustrates the transitions that occur for a memory-resident global section
page that is mapped with shared page tables and that does not occupy preallocated
pages. The example is for an 8 MB global section, which can be mapped with a single
L3PT.

In the figure, the term VA_PTE represents the combination of fields PFN$L_PT_PFN
and PFN$Q_PTE_INDEX. The term ShL3PTE refers to a PTE in a shared L3PT, and
the term ShPT, to a shared page table. The numbers in the figure are keyed to the
explanations that follow. The column on the right shows how key PFN information
changes as the page moves from one state to another.

When the section is created, pages are allocated for the shared page tables. Each
shared L3PTE is invalid and contains the GSTX of the global section. Each GPTE that
maps the memory-resident global section is initialized with a valid bit clear; type 0,
type 1, writable, and demand zero bits set; and the GSTX (see Figure 2.26).

O

@

@

Process A maps the global section; its L2PTEs are initialized to map the shared
page tables.

Process B maps the global section; its L2PTEs are initialized to the same values.

Process B faults a page in the memory-resident global section. At the first fault
of a page in such a section, MMG$PAGEFAULT calls MMG_STD$ININEWPFN_
DZRO_64 (see Section 4.8.1). Because no WSLE is needed, the process's L3PT
share count is not incremented, nor is its PFN$W_PT_VAL_CNT or PCB$L_
GPGCNT.

264

Figure 4.11

Page transitions

4.5 Page Transitions for Global Pages

Page Trans i t ions for a Memory-Res ident Global Sec t ion P a g e
Mapped wi th Shared Page Tables

Proceu A

L2PTE = ShL3PT

Process B
I

(~ No change

L2PTE = ShL3PT L2PTE = ShL3PT (~ I
No change

L2PTE = ShL3PT L2PTE = ShL3PT (~ I
No change

L2PTE is invalid L2PTE = ShL3PT

No change

L2PTE is invalid L2PTE is invalid

START J

ShL3PTE contains
Global Page Table

Index (GPTX)

GPTE contains
Global Section Table

Index (GSTX)

GPTE = GSTX
ShL3PTE = GPTX

t
GPTE = GSTX

ShL3PTE = GPTX

GPTE is valid
ShL3PTE is valid

GPTE is valid
ShL3PTE is valid

GPTE is valid
ShL3PTE is valid

PFN Data

Section page not
in physical memory;
no PFN data
ShPT page valid
REFCNT = 1
SHRCNT = 1

No section page PFN data
ShPT PFN data unchanged

No section page PFN data
ShPT PFN data unchanged
PFNs in A and B's L2PTEs
are identical

No section page PFN data
ShPT PFN data unchanged

Section page PFN data unchanged
ShPT PFN data unchanged

Section page PFN data unchanged
ShPT PFN data unchanged

When process A accesses the same page, the page mapped by the shared L3PT is
already valid. Because the global section page is mapped by a shared page table,
the page's share count remains unchanged: the page is mapped by exactly one
L3PTE.

�9 When process B deletes the virtual address space occupied by the global section,
its L2PTE is cleared, severing the ties to the shared L3PT.

�9 When process A deletes the virtual address space occupied by the global section,
its L2PTE is cleared.

265

Paging Dynamics

The global section and shared page table pages remain valid until the global section is
deleted.

4.6 Page Transitions for System Pages
This section describes page faults for pageable system space pages, which are of type
PFN$C_SYSTEM:

�9 Read-only pages from pageable image sections in executive images

�9 Writable pages from pageable image sections in executive images

�9 Paged pool pages

The only pageable image sections in system space are from executive images. Although
most executive images are nonpageable, some have pageable image sections. In theory,
the base images, SYS$BASE_IMAGE.EXE and SYS$PUBLIC_VECTORS.EXE, can
contain pageable code and data. In OpenVMS Alpha Version 7.3, however, they have
no pageable sections.

By default, when an executive image is mapped, a section table entry in the system
section table (which also serves as the global section table) is initialized to describe
each pageable section in the image. Each system space L3PTE that maps a page in
a pageable section has both type bits set to indicate the process section index form
of invalid L3PTE and contains the index of the section's entry in the system section
table. Note that it is possible to disable any paging of executive images by setting the
SYSGEN parameter S0_PAGING to a nonzero value.

If the section is writable, each of its L3PTEs also has the copy-on-reference and
writable bits set. Chapter The Modular Executive describes the mapping of executive
images in detail.

4.6.1 System Page That Is Not Copy-on-Reference
The transitions for a read-only system section page resemble those described in Section
4.3.1. This section mainly notes the details that differ from those for a process section
page that is not copy-on-reference. The numbers that follow correspond to those in
Figure 4.3.

O MMG$PAGEFAULT locates an entry in the system working set list for the faulted
page. It allocates a page from the free page list. There is no need to update data
structures describing the page table page that contains the system space L3PTE.
System space L3PTEs do not page. PFN$W_PT_VAL_CNT is not maintained for
system space page table pages. The page type stored in the PFN$L_PAGE_STATE
type bits is system page.

MMG$PAGEFAULT initializes the page's PFN$Q_BAK field from the L3PTE's type
and partial section bits and bits <63:32>. It locates the system section table entry
just as it would a PSTX and calculates which virtual blocks contain the faulted
page.

266

4.7 Page Transitions for Global Page Table Pages

e

O

After the I/O completes, PAGIO, the I/O postprocessing routine, reports a page
fault completion event for the kernel thread that faulted the page. PAGIO sets the
address space match bit in the L3PTE when setting the valid bit.

The system working set is not subject to purging, swapper trimming, or working
set limit adjustment. A page is removed from the system working set list only
when space is required for another page. Also, unloading an executive image may
result in deletion of pages.

On an SMP system, when a page is removed from the system working set list,
the cached L3PTE contents must be flushed from the TBs of all members of
the system. Chapter Symmetric Multiprocessing describes how the processors
cooperate to perform the invalidation.

4.6.2 System Page That Is Copy-on-Reference
The transitions for a copy-on-reference system section page resemble those described
in Section 4.3.2 and shown in Figure 4.4.

The page type stored in the PFN$L_PAGE_STATE type bits is system page.

4.6.3 Demand Zero System Page
The transitions for a demand zero system page resemble those described in Section
4.3.3 and shown in the path labeled START 2 in Figure 4.4.

The page type stored in the PFN$L_PAGE_STATE type bits is system page.

4.7 Page Transitions for Global Page Table Pages
In versions of OpenVMS Alpha prior to Version 7.0, global page table pages, which
are of type PFN$C_GPGTBL, were pageable. They no longer page in the system
working set list. Once faulted into memory, they are locked in memory, typically for
the duration of the system boot.

The L3PTEs that map the global page table initially have the demand zero page form
of invalid PTE. A nonresident page of global page table may be faulted into memory
when one of its GPTEs is allocated for a global section being created. The page table
page is locked in memory and is not represented by a WSLE.

The page type stored in the PFN$L_PAGE_STATE type bits is global page table page.
The share count for the global page table page is incremented once, for the first GPTE
that maps a global section page.

A page table page can be deleted when it no longer maps any global pages, in the
unlikely event tha t it is at the high address end of the global page table and the
system manager has dynamically decreased the GBLPAGES SYSGEN parameter from
its value at system boot.

267

Paging Dynamics

4.8 Page Fault Support Routines
Several support routines are used in most types of page faults. These are described in
the sections tha t follow.

4.8.1 MMG_STD$1NINEWPFN_64 and
MMG_STD$1NINEWPFN_DZRO_64

MMG_STDSININEWPFN_64 and MMG_STDSININEWPFN_DZRO_64, in module
PAGEFAULT, allocate a page of available physical memory. The la t ter ensures tha t
the page is zeroed first. Their a rguments include the address of the vir tual page tha t
was faulted, the address of the PTE tha t maps it, and the address of the working set
list in which the vir tual page is entered.

As described in Chapter 2, there can be multiple free page lists. On a non-NUMA
platform, there are free and zeroed page lists for each page color. Instead of allocating
the next available page from the free page list, a page whose color matches the fault ing
virtual address is allocated.

On a NUMA platform with RAD support enabled, there are free and zeroed page lists
for each RAD. Pages can be allocated by several different methods:

�9 A page from the next RAD in the round-robin sequence (RIH$C_RANDOM_RAD)

�9 A page from the same RAD as the CPU on which the allocation code is executing
(RIH$C_CURRENT_RAD)

�9 A page from the same RAD as the process for which it is being allocated (RIH$C_
HOME RAD)

�9 A page from the base RAD, the one on which OpenVMS booted (RIH$C_BASE_
RAD)

A method can be specified for process pages, system pages, global pages, and pages
allocated by the swapper for inswap. SYSGEN paramete r RAD_SUPPORT, whose
fields are defined by macro $RIHDEF, has fields to specify an allocation method for
each of these categories. If bit RIH$V_SPECIAL in it is clear, default allocation
methods are used:

�9 RIH$C HOME_RAD for process pages

�9 RIH$C_CURRENT_RAD for system pages

�9 RIH$C_RANDOM_RAD for global pages

�9 RIH$C_RANDOM_RAD for swapper allocation

In addition, when a global section is created by the $CRMPSC_GDZRO_64 or $CRE-
ATE_GDZRO system service, it can be associated with a specific RAD to override the
allocation method in use for other global sections.

For any method tha t specifies a par t icular RAD, if no free memory on tha t RAD is
available at the time of allocation, the page is allocated from another RAD.

268

4.8 Page Fault Support Routines

MMG_STD$ININEWPFN_64 allocates a page of physical memory from the free page
list specified by the allocation method for the page type, the free page list of the
appropriate color, or the front of the only free page list. Alternative entry point MMG_
STD$ININEWPFN_DZRO_64 allocates from the appropriate zeroed page fist; if a
zeroed page of the right color or RAD is unavailable, it zeros a free page.

If this is a process page, it stores the location of the L3PTE in the PFN$L_PT_PFN
and PFN$Q_PTE_INDEX fields of that page's PFN database record and a type code of
process page in PFN$L_PAGE STATE.

If this is a process page table page, it stores the location of the process-private L2PTE
that maps the L3PT in PFN$L_PT_PFN and PFN$Q_PTE_INDEX and initializes the
L3PT page's PFN$L_PAGE_STATE type bits to process page table.

If this is a global page, it stores in PFN$L_PT_PFN and PFN$Q_PTE_INDEX the
location of the GPTE, rather than that of a process-private L3PTE, and a type code of
global page in PFN$L_PAGE_STATE.

If the page is a memory-resident global section page or a global page table page,
neither of which is listed in a working set list, it initializes PFN$W_REFCNT and
PFN$L_SHRCNT to 1. Otherwise, it calls MMG_STD$MAKE_WSLE_64.

4.8.2 MMG_STD$MAKE_WSLE_64
MMG_STD$MAKE_WSLE_64, in module PAGEFAULT, updates data structures
related to the working set list. Its arguments include the address of the virtual page
that was faulted, the address of the PTE that maps it, and the address of the working
set list in which the virtual page is entered. The WSLE to be used already has the
type bits that describe the page.

It initializes the WSLE with the virtual address of the page being faulted and sets its
valid bit.

If this is a process page, it stores the index of the WSLE in the PFN$L_WSLX_QW
field of the PFN database record for the physical page and increments its PFN$W_
REFCNT field to indicate that the contained virtual page is in a working set list. It
increments the L3PT's PFN$W_PT_VAL_CNT to indicate another valid WSLE mapped
by this page. If this is the first, it increments PHD$L_PTCNTVAL (see Section 4.4).
It increments the field PCB$L_PPGCNT to indicate one more process page in the
working set.

If this is a process page table page, MMG_STD$MAKE_WSLE stores the index of the
WSLE in the PFN$L_WSLX_QW field of the PFN database record for the page table
page and increments its reference count to indicate that the page table page is in a
working set list.

It increments PFN$W_PT_VAL_CNT of the page table page that maps the page being
faulted. If that page table page previously mapped no valid WSLEs, it increments
PHD$L_PTCNTVAL to indicate the process has one more page table that maps valid
WSLEs. It increments PCB$L_PPGCNT.

269

Paging Dynamics

If this is a global page, MMG_STD$MAKE_WSLE_64 increments the share count for
the page and, if the count makes the transition from 0 to 1, its reference count as well.
Working set list index (WSLX) information is not kept for a global page. It increments
the process's L3PT's PFN$W_PT_VAL_CNT to indicate another valid WSLE mapped
by this page. If this is the first, it increments PHD$L_PTCNTVAL (see Section 4.4.1).
It increments the process's PCB$L_GPGCNT to indicate one more global page in the
working set. It calls MMG_STD$INCPTREF_64 to lock the process page table that
maps the global page into the working set list.

If this is a system page, MMG_STD$MAKE_WSLE_64 stores the index of the WSLE in
the PFN$L_WSLX_QW field of the PFN database record for the page. If this is a global
page table page, it clears PFN$L_WSLX_QW, because global page table pages are not
entered in the system working set list. In either case, it increments its reference count
to indicate that the page is in a working set list and PCB$L_PPGCNT in the system
PCB.

4.8.3 MMG_STD$1NCPTREF_64
MMG_STD$INCPTREF_64 is called with the address of the PTE that maps the virtual
page that was faulted to lock the associated page table page into memory.

It first determines whether the page table is process-private, system, or global.

For a process-private or global page table page, it identifies the PFN that the page
table page occupies and increments PFN$L_SHRCNT. If the share count had pre-
viously been zero, it locks the page table page's WSLE into the working set list by
setting its WSL$V_WSLOCK bit, increments PHD$L_PTCNTACT to indicate another
active page table page, and increments the PHD reference count (the PHD's entry at
the PHV$GL_REFCBAS_LW array).

In the case of a system page, it simply returns: system page table pages do not page.

4.9 $FAULT_PAGE System Service
The Fault Page ($FAULT_PAGE) system service enables an application to initiate page
faults prior to actual use of the pages. Because the application is not placed into a
wait state, it continues to execute during the I/O to fault the pages into memory.

Its arguments are the starting virtual address to be faulted, the number of bytes to be
faulted, and the desired page fault cluster size in bytes.

The system service procedure, EXE$FAULT_PAGE in module SYSSETPRT, runs in
the mode of the service requestor. It takes the following steps:

1. It establishes EXE$SIGTORET as a condition handler so that any error signaled
by MMG$PAGEFAULT is returned as an error status to the service's requestor
(see Chapter Condition Handling).

270

11

4.10 Page Read Clustering

It adjusts its input arguments, if necessary, and copies them to the low general
registers tha t are preserved as part of an exception stack frame. In particular, it
passes the desired cluster size.

3. At a known location, it tries to access the first page in the first cluster.

,

If the page is invalid, a page fault occurs. MMG$PAGEFAULT allocates
physical memory and working set list entries for the desired cluster's worth of
pages. It initiates the I/O but does not place the process into page fault wait
during the I/O. Instead, it modifies the exception stack frame to record the
number of bytes in the I/O request and to advance the program counter so tha t
control will re turn to the instruction following the page fault. EXE$FAULT_
PAGE begins the next cluster at the page following the I/O buffer.

If the page is valid, no page fault occurs, and the next cluster begins at the
next page.

EXE$FAULT_PAGE loops, accessing the first page in the next cluster unti l there
are no more clusters.

5. It returns to its requestor.

4.10 Page Read Clustering
To make reading and writing as efficient as possible, MMG$PAGEFAULT implements
a feature called clustering. It checks whether pages adjacent to the virtual page being
faulted are located in the same file in adjacent virtual blocks. If so, it requests a
multiple-page read so that a cluster of pages will be brought into the working set
at one time. One N-page request has less CPU and I/O overhead than N one-page
requests. The special SYSGEN parameter NOCLUSTER determines whether page
fault clustering is enabled. Its default value of zero enables clustering.

This section discusses clustering in page read I/O.

The modified page writer and the Update Section File on Disk system services also
cluster their write operations, both to make their writes as efficient as possible and to
allow subsequent clustered reads for the pages tha t are being written. Section 4.12.4
summarizes clustering by the modified page writer, and Section 4.13, by the Update
Section File on Disk system services.

Table 4.1 indicates the limit to which the object of each type of memory management
I/O request is clustered and what determines tha t limit. For example, when read-
ing a page from a page file, MMG$PAGEFAULT tries to read SYSGEN parameter
PFCDEFAULT pages.

When MMG$PAGEFAULT determines that a read is required to satisfy a page fault,
it a t tempts to identify a cluster of pages to be read at once. The manner in which this
cluster is formed depends on the initial state of the faulting PTE, as described in the
next sections.

271

Paging Dynamics

4.10.1 Terminating Conditions for Clustered Reads
Beginning with the PTE of the faulting page, MMG$PAGEFAULT scans adjacent PTEs
in the direction of higher virtual addresses, checking for adjacent virtual pages tha t
have the same backing store location. It continues until it reaches the desired cluster
size or until it reaches one of the following other terminat ing conditions:

It encounters a type of PTE different from tha t of the original faulting PTE (see
Section 4.10.2).

* The page table pages that map the next PTE are themselves not valid.

Another WSLE is not available. (Each page in the cluster must be added to the
working set.)

* No physical page is available.

The scan is initially made toward higher virtual addresses because programs typi-
cally execute sequentially toward higher virtual addresses and these pages are more
likely to be needed soon. If that scan does not form a cluster of at least two pages,
MMG$PAGEFAULT scans for pages at lower virtual addresses on the assumption tha t
pages at lower virtual addresses but near the faulting page are likely to be needed
soon.

4.10.2 Matching Conditions During the Page Table Scan
The match criterion for adjacent PTEs depends on the form of the initial PTE:

* If the original PTE contains a PSTX, successive PTEs must contain exactly the
same PSTX.

* If the original PTE contains a page file page number, successive PTEs must contain
PTEs with the same page file index and successively increasing (or decreasing)
page numbers.

�9 If the original PTE contains a GPTX, successive PTEs must contain successively
increasing (or decreasing) indexes. In addition, the GPTEs must all contain exactly
the same GSTX.

Table 4.1 Clus ter Factor in I/O R e q u e s t s I s sued by M e m o r y M a n a g e m e n t

Type of I/O Request Cluster Factor

Process Page Read

Page in section file pfc/PFCDEFAULT 1

1The cluster factor for a private or global section can be specified at link time or when the cluster
is mapped by explicitly declaring a cluster factor (pfc). If it is unspecified, the SYSGEN parameter
PFCDEFAULT is used.

272

Table 4.1 (continued)

4.10 Page Read Clustering

Clus ter F a c t o r in I/O R e q u e s t s I s s u e d by M e m o r y
M a n a g e m e n t

T y p e o f I/O Request Cluster Factor

Process Page R e a d

Page in page file

Page table page

$FAULT_PAGE-induced fault

PFCDEFAULT 2

PAGTBLPFC 2

Clus ter a r g u m e n t

System Page Read

Sys tem section page 3

Paged pool page

SYSPFC 2

PFCDEFAULT 2

Global Page Read

Global page

Global copy-on-reference page

$FAULT_PAGE-induced fault

p f c / P F C D E F A U L T 1

p f c / P F C D E F A U L T 1

Clus ter a r g u m e n t

Modified Page W r i t e

To page file

To private section file

To global section file

To swap file
(set bit PFN$V_SWPPAG)

MPW_WRTCLUSTER 2

MPW_WRTCLUSTER 2

MPW_WRTCLUSTER 2

1

Update Section File on Disk System Service Write

Priva te section

Global section

MPW_WRTCLUSTER 2

MPW_WRTCLUSTER 2

Swapper I/O

Swapper I/O n/a

1The cluster factor for a private or global section can be specified at link time or when the cluster
is mapped by explicitly declaring a cluster factor (pfc). If it is unspecified, the SYSGEN parameter
PFCDEFAULT is used.

2This is a SYSGEN parameter.

3pageable executive routines originate in executive image sections, described by section table entries in
the system header.

273

Paging Dynamics

4.10.3 Maximum Cluster Size for Page Read
The maximum number of pages that can make up a cluster is a function of the type of
page being read:

�9 The cluster factor for process page table pages is taken from PHD$L_PGTBPFC.
The default value of this field is the special SYSGEN parameter PAGTBLPFC,
whose default value is 16 pagelets, resulting in a cluster factor of one page.
Increasing this value is likely to have a negligible effect on most systems.

�9 The cluster factor for pages read from a page file is taken from the PFL$L_PFC
field of the page file control block (see Figure 2.31). The usual contents of this field
are the value of SYSGEN parameter MPW_WRTCLUSTER.

The cluster factor for pages read from a process or global section file is taken from
the SEC$L_PFC field of the process or global section table entry (see Figure 2.7).
This field usually contains zero, in which case the default page fault cluster is
used. Jus t as for clustered reads from the page file, this default is taken from
PHD$L_DFPFC.

There are two methods by which the cluster factor of a process or global section
can be controlled. At link time, the page fault cluster factor in an image section
descriptor can be set to nonzero through the linker cluster option and its PFC

argument:

CLUSTER = cluster-name, [base-address] , pfc, file-spec[....]

Second, the page fault cluster factor for a section mapped through the $CRMPSC
system service can be specified through the optional PFC argument. The page fault
cluster factor for a section created through the $CREATE_GFILE, $CRMPSC_
FILE_64, or $CRMPSC_GFILE_64 system service can be specified through the
optional FAULT CLUSTER argument

4.11 Page Read Completion
The I/O postprocessing routine IOC$IOPOST, in module IOCIOPOST, detects page
read completion when the flags IRP$V_PAGIO and IRP$V_FUNC in IRP$L_STS are
both set.

Page read completion is not reported to the faulting kernel thread in the normal
fashion with a special kernel mode AST because none of the postprocessing has to be
performed in the context of the faulting kernel thread. Holding the MMG spinlock, the
I/O postprocessing routine PAGIO performs the postprocessing needed. It performs the
following steps for each page in the page fault cluster that was successfully read:

1. PAGIO decrements the reference count in the page's PFN database record, indicat-
ing that the read in progress has completed.

2. If the reference count is now zero, it puts the page into the free or modified page
list, depending on the value of the saved modify bit, and continues with the next
page.

274

4.11 Page Read Completion

3. If the reference count is nonzero, it sets the location bits in PFN$L_PAGE_STATE
to active.

4. It sets the valid bit in the L3PTE. If the page is writable and was faulted with
write intent, it sets the modify bit in the L3PTE to avoid the need for a modify
fault. If the process is not mult i threaded, if MMG$V_NO_MB is set in the MMG_
CTLFLAGS SYSGEN parameter , and if this is a process-private address, it also
sets the no-TB-miss-memory-barrier-required bit in the L3PTE. For an S0/S1 space
page, it also sets the address space match bit.

5. If the page is a global page tha t is not copy-on-reference, the valid bit set in step
4 was actually in the GPTE. In this case, the process (slave) L3PTE must also be
altered: PAGIO inserts the PFN, part ial section, type 0, global, global write, and
valid bits from the GPTE into the slave L3PTE. If appropriate, it sets the modify
bit in the slave L3PTE.

6. If the page is a process page table, PAGIO decrements the PHD reference count to
indicate tha t the I/O is complete (PHV$GL_REFCBAS_LW array element).

After processing the pages tha t were read successfully, PAGIO tests whether an I/O
error occurred. If so, it takes the following steps for the page tha t incurred the error:

1. PAGIO decrements the reference count in the page's PFN database record, indicat-
ing tha t the read in progress has completed.

2. It changes the page's PFN$L_PAGE_STATE location bits to read error, set t ing the
delete-contents bit and clearing the saved modify bit.

3. It records the I/O error s tatus in PFN$W_SWPPAG. When the process la ter
refaults this page, MMG$PAGEFAULT will r e tu rn SS$_PAGRDERR to
SCH$PAGEFAULT, which will generate a condition to report the actual I/O error
to the access mode tha t incurred the page fault (see Section 4.2.2).

4. If the vir tual page is a copy-on-reference page, PAGIO restores its backing store
location to the physical page's PFN$Q_BAK field. If the error occurred on the
last page of the transfer, and tha t page was part ial ly backed, it clears the par t ia l
section flag in PFN$Q_BAK.

5. If the page's reference count is now zero and the process is memory-resident,
PAGIO releases the page to the free page list. If the process is outswapped, PAGIO
inserts the page into the bad page list instead. When the process is inswapped, the
page will be removed from the bad page list.

After tending to the individual pages, PAGIO determines whether the pages are from
a copy-on-reference section. If so, it subtracts the number of pages read from the
section's reference count.

PAGIO tests whether an upcall to a user mode thread manager was made when the
kernel thread faulted this page. If so, it t ransforms the IRP into a user mode AST
control block (ACB) for the thread manager and queues an AST to it (see Chapter
Kernel Threads for a description of upcalls and user mode thread management) .
Otherwise, it reports the scheduling event page fault completion for the page fault ing

275

Paging Dynamics

kernel thread so that it is made computable. The priority increment value is zero; that
is, there is no boost to the kernel thread's scheduling priority. If any of the pages just
read were collided pages, it also makes kernel threads in the collided page wait state
computable. Collided pages are discussed in Section 4.17.3.

If an error occurred and more of the transfer remains to be done, PAGIO updates the
IRP to describe the rest of the transfer (excluding any pages already done and the page
that incurred the error) and requeues the IRP to the device driver.

4.12 Modified Page Writing
Once a second as well as in response to particular events, the executive checks whether
any of the swapper's tasks need to be performed and wakes it if necessary; one such
task is writing pages from the modified page list to mass storage.

The modified page writer, MMG$WRTMFYPAG, in module WRTMFYPAG, is
a subroutine of the swapper process. Within its main loop, the swapper calls
MMG$WRTMFYPAG to form a cluster of modified pages that have the same back-
ing store and request a write I/O operation. Writing multiple modified pages together
makes more efficient both the write to backing store and any subsequent refault into
memory.

At completion of the write I/O operation, the modified page writer's special kernel mode
AST routine is entered to place the pages into the free page list and, if appropriate, to
initiate the writing of more modified pages.

4.12.1 Requesting the Modified Page Writer
During system operation other executive routines request the writing of modified
pages by invoking the routine MMG$PURGE_MPL, in module WRTMFYPAG, with
arguments identifying the requested operation and its scope. The possible operations
are

�9 Writing pages within a virtual address range (an SVAPTE request)

�9 Writing pages mapped by a particular page table page (a PAGE_TABLE request)

�9 Writing pages to shrink the modified list to a target size (called a MAINTAIN
request)

* Writing all pages backed by section files (an OPCCRASH request)

Modified page writing is requested in a number of circumstances:

�9 When the modified page list has exceeded its high limit, defined by the SYSGEN
parameter MPW_HILIMIT (MAINTAIN)

�9 When the free page list is below its low limit, defined by the SYSGEN parameter
FREELIM, and can be replenished by writing modified pages (MAINTAIN) in
preference to outswapping a resident process

276

4.12 Modified Page Writing

When particular modified pages must be written to their backing store (SVAPTE
and PAGE_TABLE)

When the OPCCRASH image, running during system shutdown, must write all
pages in the list that are backed by section files to their backing store (OPC-
CRASH)

Originally, the modified page list was sometimes emptied, or flushed, during normal
operations. In VAX VMS Version 5, the flushing was replaced by selective purging,
that is, writing all modified pages whose PTEs fall within a specified system virtual
address range (the SVAPTE request).

For selective purging of process-private space modified pages, in OpenVMS Alpha, the
PTEs of interest are L2PTEs or L3PTEs. In OpenVMS Alpha Version 7.0 and later
releases, each process's page tables are mapped in the same process-private virtual
address range; an SVAPTE request must therefore include the process's page table
base register (PR$_PTBR) contents to identify which process's pages are to be written.
For global and other shared PTEs, the PR$_PTBR recorded is the primary processor's
hardware privileged context block (HWPCB) PR$_PTBR. For selective purging of
writable global pages, the PTEs of interest are GPTEs.

Selective purging is requested under the following circumstances"

When a process body has been outswapped but its PHD, whose slot is needed,
cannot be outswapped because some of its L2 or L3PTEs map transition pages on
the modified page list (an SVAPTE request; see Chapter 6)

When a writable global section with transition pages still on the modified page list
is deleted (an SVAPTE request; see Chapter 3)

When a process needs to reuse a WSLE that describes a dead page table page, one
that is now inactive but still maps transition pages on the modified page list (an
SVAPTE or PAGE_TABLE request; see Chapter 5)

The modified page writer may be requested multiple times before it is actually called
by the swapper. MMG$PURGE_MPL therefore stores the requested command with
the highest rank in MPW$GL_STATE; from low to high rank, the ordering is MAINT_
STATE (from the MAINTAIN command), SELECTIVE (from the SVAFrE and PAGE_
TABLE commands), and CRASH_STATE (from the OPCCRASH command). It records
information about each request:

�9 For an SVAPTE request, MMG$PURGE_MPL increments MPW$GL_REQCNT,
the number of outstanding SVAPTE requests. It checks whether there is already
a request outstanding to purge this page table and, if not, stores the low and high
SVAPTE addresses and corresponding PR$_PTBR contents in a 32-entry table
beginning at local symbol MPW$GQ_SVAPTE. It summarizes the page table base
registers for which SVAPTE requests have been made in MPW$GQ_PTBR_MASK
by setting the bit corresponding to the low eight bits of the address. Use of this
summary mask is described in Section 4.12.2.

277

Paging Dynamics

Unless this request is the result of shrinking a process's working set list
(MPW$V_NO_MPL_FLUSH is set in MPW$GL_FREWFLGS), it clears SCH$GL_
MFYLOLIM and SCH$GL_MFYLIM.

For a PAGE_TABLE request, MMG$PURGE_MPL increments MPW$GL_PT_
REQCNT, the number of outstanding PAGE_TABLE requests. It checks whether
there is already a request outstanding to purge this page table and, if not, stores
the PFN of the page table in a 32-1ongword array beginning at local symbol
MPW$GQ_PT. Unless this request is the result of shrinking a process's working
set list (MPW$V_NO_MPL_FLUSH is set in MPW$GL_FREWFLGS), it clears
SCH$GL_MFYLOLIM and SCH$GL_MFYLIM.

In response to a MAINTAIN request, MMG$PURGE_MPL records the target
size in SCH$GL_MFYLOLIM and SCH$GL_MFYLIM. (If a previous MAINTAIN
request has been made, MMG$PURGE_MPL uses the lesser of its target size and
the current target size.) It clears MPWGL_REQCNT, MPWGL_PT_REQCNT,
and MPW$GQ_PTBR_MASK.

For an OPCCRASH request, MMG$PURGE_MPL clears MPW$GL_REQCNT,
SCH$GL_MFYLOLIM, and SCH$GL_MFYLIM so that all pages on the modified
page list will be flushed.

Once modified page writing to shrink the list (MAINTAIN) is initiated, the modified
page writer continues writing modified pages until the size of the list is at or below
the contents of SCH$GL_MFYLOLIM. The modified page writer typically compares
the target modified page list size with the value of the SYSGEN parameter MPW_
LOLIMIT and uses the larger as a target size. Chapter 6 describes the calculation of
the target modified page list size for the different circumstances in which the swapper
initiates modified page writing.

When an SVAPTE, PAGE_TABLE, or OPCCRASH request initiates modified page
writing to purge or flush the list, both the lower and upper limits for the modified page
list are set to zero. For an SVAFrE request, the modified page writer scans the entire
list and writes all pages whose PTE addresses fall within the specified range. For
an OPCCRASH request, the modified page writer scans the entire list and writes all
pages not backed by a page file. For a PAGE_TABLE request, the modified page writer
scans the target page table for PTEs indicating modified pages and writes those pages
to their backing store.

Before the modified page writer exits, it restores its two limits to the values contained
in the SYSGEN parameters MPW_HILIMIT and MPW_LOLIMIT.

4.12.2 Operation of the Modified Page Writer
Called by the swapper, the modified page writer initiates the writing of modified pages.
The modified page writer forms a cluster and queues an I/O request. When the I/O
request completes, the modified page writer's special kernel mode AST routine is
entered. After performing necessary processing on the pages that have been written, it
checks whether more modified pages must be written and, if so, forms another cluster.

278

4.12 Modified Page Writing

At the completion of tha t request, the special kernel mode AST routine may queue yet
another request.

The modified page writer can initiate up to SYSGEN parameter MPW_IOLIMIT
concurrent I/O requests. The default value of MPW_IOLIMIT is 4. As described in
Chapter 2, during system initialization MPW_IOLIMIT nonpaged pool data s tructures
are allocated. Each contains an IRP and two arrays that describe the pages in the
cluster. These structures are queued to a listhead at MPW$GL_IRPFL and MPW$GL_
IRPBL. Figure 4.12 shows the layout of this data structure, known as a modified page
writer I/O request packet (MPW IRP).

MMG$WRTMFYPAG proceeds in the following fashion:

1. It compares the number of pages on the modified page list to SCH$GL_MFYLIM.
If there are fewer pages on the list, it simply exits.

2. It acquires the MMG spinlock, raising IPL to IPL$_MMG.

3. It sets bit SCH$V_MPW in SCH$GL_SIP to indicate tha t modified page writ ing
is in progress. If the bit was already set, MMG$WRTMFYPAG releases the MMG
spinlock and exits.

4. Otherwise, it tests whether this is a request to do selective purging that includes
SVAPTE requests and, if so, whether 1 second has elapsed since the previous one.
If not, it clears SCH$V_MPW in SCH$GL_SIP, releases the MMG spinlock, and
exits. This test helps limit the time the modified page writer spends scanning the
modified page list. If the selective purging is limited to PAGE_TABLE requests,
the modified page writer does not delay them and continues with the next step.

5. MMG$WRTMFYPAG calls MMG$PURGE_MPL, specifying the default command
of MAINTAIN to shrink the list to MPW_LOWAITLIMIT pages.

If a previous SVAPTE or PAGE_TABLE request has been made and not yet
satisfied, MMG$PURGE_MPL returns immediately.

If no previous SVAFrE, PAGE_TABLE, or other MAINTAIN requests have
been made, it changes MPW$GL_STATE to MAINTAIN and stores the larger
of MPW_LOWAITLIMIT and SCH$GL_MFYLOSV in SCH$GL_MFYLIM and
SCH$GL_MFYLOLIM.

If a previous MAINTAIN request has been made, it stores the lesser of the
previous and current requested limits in SCH$GL_MFYLIM and SCH$GL_
MFYLOLIM.

This step establishes the default for modified page writing if no unsatisfied re-
quests have been made.

6. If there are pending PAGE_TABLE requests, MMG$WRTMFYPAG acts on each of
them by taking the following steps:

a. It confirms that the page is still a process page table, that it maps no valid
pages, but that it does map transition pages. If any one of the tests fails, it
ignores that page and proceeds with the next PAGE_TABLE request. (After

279

Paging Dynamics

F i g u r e 4.12 L a y o u t o f a M o d i f i e d P a g e Wri ter I R P (MPW IRP)

IRP

IRP
extension

PTE
array

PHV
index
array

DYN$C_ DYN$C_
MPWMAP INIT

RP_BCNT

IRP_PAGCNT

IRP_PHVINDX

(reserved)

IRP_PTE
(MPW_WRTCLUSTER quadwords)

(MPW_WRTCLUSTER Iongwords)

O--M

I

b,

C.

do

the P A G E T A B L E request was made, the process could have executed and
faulted in pages mapped by this page table.)

It maps the page table page into system space and scans its PTEs, looking
for non-null entries. If it finds a PTE that is not a transition page, this page
table is not a candidate to be written to a page file, and MMG$WRTMFYPAG
proceeds with the next page.

If it finds a transition PTE describing a page on the modified page list, it
allocates an IRP and processes the page and possibly a cluster of other pages
mapped by this page table page, following steps 10 through 19.

It reacquires the MMG spinlock and confirms that the page is still a page table
page mapping no valid entries. The page's state could have changed while
MMG was unlocked. If the state has changed, it goes on to the next PAGE_

280

4.12 Modified Page Writing

TABLE request. If the state is unchanged, it continues scanning the page table
page.

When all the PAGE_TABLE requests have been processed, if there are pending
SVAPTE requests, MMG$WRTMFYPAG continues with the next step. Otherwise,
it continues with step 21.

7. MMG$WRTMFYPAG removes an MPW IRP from the list. If none is available, it
continues with step 21.

8. It scans the modified page list to find a page with which to begin a cluster. Entered
the first time, it begins with the first page on the list. Subsequently, it typically
resumes with the page at which the last scan stopped. If that page is no longer
on the modified page list, MMG$WRTMFYPAG tries the pages tha t preceded and
followed it on the list. If neither of them is still on the list, it selects the first page
on the list.

From the page's PFN database, it determines the page type (for example, process,
system, or global), the virtual address of the PTE that maps the page, and the
physical address of the corresponding LIPT. In the case of a process page, it maps
into system space the page table page containing tha t PTE.

Its processing of the modified page depends on the type of request it is performing
(the value of MPW$GL_STATE):

If performing a MAINTAIN request, it accepts the page.

- - If performing an SVAPTE request, it tests MPW$GQ_PTBR_MASK to see
whether the corresponding LIPT address matches any of the requested ranges
and, if so, whether the address of the page's PTE falls within tha t range. If
not, it goes on to the next page in the list.

If performing an OPCCRASH request, it accepts the page.

9. MMG$WRTMFYPAG determines the type of the first page in the cluster from its
PFN database record PFN$L_PAGE_STATE type bits.

10. Based on the page type, it gets the address of the relevant PHD, either tha t of a
process or of the system.

11. It examines the PFN$Q_BAK field to determine the type of backing store: page
file, section file, or swap file page (see Section 4.12.5).

12. If the backing store is in a page file, MMG$WRTMFYPAG first checks whether the
system is shut t ing down. If so, writ ing the page to a page file is pointless, and it
skips the page. It continues with the next page in the list.

If the system is not shutt ing down, it then tests whether this page is a process
page table page containing all zeros tha t can be deleted now. If so, it deallocates
the page's page file backing store, decrements the share count of the next level
page table page, restores page file quota to the process, removes the page from
the modified page list, severs its connection to the process's next level page table,
and inserts it on the zeroed page list. If MMG$WRTMFYPAG is processing PAGE_

281

Paging Dynamics

13.

14.

15.

16.

17.

18.

19.

TABLE requests, it continues at step 6d with the next PTE. Otherwise, it continues
at step 9 with the next page on the modified page list.

If the page is not a process page table page tha t can be deleted now,
MMG$WRTMFYPAG tests whether its last a t tempt to allocate space in a page
file failed. If so, it rejects this page as a s tar t ing point and goes on to the next page
in the modified page list, continuing with step 9. The allocation failure information
is cleared each time MMG$WRTMFYPAG is called. If the last a t tempt to allocate
space in a page file was successful, MMG$WRTMFYPAG allocates a cluster of page
file pages (see Section 4.12.6).

Unless the backing store is a swap file page, MMG$WRTMFYPAG tries to form
a cluster of pages, as described in Section 4.12.5. It scans adjacent PTEs looking
for t ransi t ion PTEs tha t map pages on the modified page list, until ei ther the
desired cluster size is reached or one of the other te rminat ing conditions described
in Section 4.12.4 is reached.

Except for PAGE_TABLE requests, it scans first toward lower virtual addresses
and then toward higher virtual addresses. This scan begins first toward smaller
virtual addresses for the same reason that the page read cluster routine begins
toward larger addresses. Given that the program is more likely to reference higher
addresses, it would be inefficient to initiate a write operation only to have the page
immediately faulted and likely modified again. The modified page wri ter writes
first those pages with a smaller likelihood of being referenced in the near future.

In handling a PAGE_TABLE request, it only scans forward: the goal is to write all
the modified pages mapped by that page table.

When it can no longer cluster, it records the PTEs and their associated PHD vector
indexes in the MPW IRP.

If the cluster is one of page file pages, MMG$WRTMFYPAG updates the PFN$Q_
BAK field for each page to show the actual page file page allocated.

It removes each page from the modified page list, decrementing SCH$GL_
MFYCNT to show one less modified page.

It changes the PFN$L_PAGE_STATE location bits for each page to write in
progress and also clears the saved modify bit. It increments the reference count
for each page to reflect the I/O in progress. If the page is a page table page,
MMG$WRTMFYPAG also increments the PHV$GL_REFCBAS_LW array element
corresponding to the PHD.

It releases the MMG spinlock, fills in the MPW IRP, and queues it to the backing
store driver.

MMG$WRTMFYPAG reacquires the MMG spinlock and, if SCH$GL_MFYCNT is
less than SCH$GL_MFYLOLIM, goes to step 8 to try to form another cluster of
pages to write.

282

4.12 Modified Page Writing

20. In local routine MMG$_MPW_END, the modified page writer performs end pro-
cessing. Depending on the operation performed, the modified page writer may
declare as available the resource RSN$_MPWBUSY or the resource RSN$_
MPLEMFI~. If no modified page write I/O requests are outstanding, it clears
SCH$V_MPW in SCH$GL_SIP.

21. The modified page writer releases the MMG spinlock and processes any global
section descriptors (GSDs) on the delete pending list, possibly queuing a kernel
mode AST to the creator of each global section. (Writing modified pages to backing
store may enable the deletion of such global sections.) Chapter 3 describes this
processing in detail.

Whenever a modified page write request completes, MMG$WRTMFYPAG's special
kernel mode AST routine is entered. Section 4.12.3 describes this routine.

4.12.3 Modified Page Write Completion
The modified page writer's special kernel mode AST routine, WRITEDONE in module
WRTMFYPAG, takes the following steps:

1. It acquires the MMG spinlock, raising IPL to IPL$_MMG.

. It deallocates the MPW IRP to its own lookaside list. (Holding the MMG spinlock
blocks any possible allocation from the list, so it is safe for WRITEDONE to
continue to access IRP fields after deallocating it.)

3. It examines the characteristics of each page in the cluster:

a. If the page is a page table page, it decrements the PHV$GL_REFCBAS_LW
array element corresponding to that PHD.

b o If the page's backing store was a swap file page, WRITEDONE clears PFN$V_
SWPPAG_VALID in the PFN$L_PAGE_STATE field to indicate that the con-
tents of PFN$W_SWPPAG are no longer valid.

C. It decrements the reference count for the page. If the count goes to zero, it
places the page into the free page list.

d , If the RPTEVT bit in the PFN$L_PAGE_STATE field is set, WRITEDONE
reports a page fault completion scheduling event for the kernel thread that
owns the page. This bit is set when deletion of the page has been stalled while
it is being written to its backing store.

. If there are pending PAGE_TABLE requests, WRITEDONE processes them,
rejoining the flow described in Section 4.12.2 at step 7.

, If SCH$GL_MFYCNT is greater than SCH$GL_MFYLOLIM, WRITEDONE at-
tempts to form another MPW cluster, rejoining the flow described in Section 4.12.2
at step 8.

283

Paging Dynamics

4.12.4 Modified Page Write Clustering
The modified page writer scans the page table that contains the modified page being
processed, at tempting to form a cluster of adjacent virtual pages with the same
backing store. It scans in both directions from the page being processed, except for
PAGE_TABLE requests, for which the scan is from the beginning of the page table
page to its end. The terminating conditions for the scan include the following:

* The PTE does not indicate a transition page.

�9 The PTE indicates a page in transition, but the physical page is not on the modified
page list.

* Bit PFN$V_SWPPAG_VALID in the page's PFN$L_PAGE_STATE field is set. Such
a page is treated in a special way by the modified page writer.

* The PFN$Q_BAK field for the first page in the cluster and the page in question
indicate that their backing store location is a process or global section file, but the
section indexes are not the same.

�9 In the case of a PAGE_TABLE request, the end of the page table page is reached.

�9 The next page table page is not valid, implying that there are no transition pages
in that page table page.

In OpenVMS versions prior to Version 7.3, a page that would need page file backing
store was assigned to a page file when the virtual page was first faulted into memory.
Clustering of pages to be written to a page file terminated when a page was reached
that was assigned to a different page file than that of the first page in the cluster. In
OpenVMS Version 7.3, page file assignment is deferred until a modified page is about
to be written.

The maximum size of a modified page write cluster depends on its type (see Section
4.12.5).

4.12.5 Backing Store for Modified Pages
The modified page writer attempts to cluster when writing modified pages to their
backing store addresses. It encounters three different clustering situations for the
three possible backing store locations.

The set bit PFN$V_SWPPAG_VALID in PFN$L_PAGE_STATE indicates that the
process has been outswapped and this page remained behind, probably as the result
of an outstanding read request. The modified page writer writes a single page to the
swap file page whose number is in PFN$W_SWPPAG. It does not attempt to cluster
because virtually contiguous pages in an I/O buffer are unlikely to be adjacent in the
outswapped process body. The process body is outswapped with pages ordered as they
appear in the working set list, not in virtual address order. A description of how the
PFN$W_SWPPAG field is loaded is found in Chapter 6, where the entire outswap
operation is discussed.

284

4.12 Modified Page Writing

If the backing store address is in a section file, the modified page wri ter creates a
cluster up to the value of the SYSGEN paramete r MPW_WRTCLUSTER. Any of the
terminat ing conditions listed in the previous section can limit the size of the cluster.
If the last page in the section is in the cluster and the part ial section bit is set in its
L3PTE, the modified page wri ter calculates the I/O request byte count such tha t the
last page's contribution to the count includes only those pagelets tha t have backing
store.

If the backing store address is in a page file, adjacent pages with page file backing
store are wri t ten at the same time. The modified page wri ter a t tempts to allocate
MPW_WRTCLUSTER pages in the most appropriate page file. The desired cluster
factor is reduced to the number of pages actually allocated. Section 4.12.6 describes
allocation of space within a page file.

The cluster created for a write to a page file consists of several smaller clusters, each
represent ing a series of virtually contiguous pages (see Figure 4.13):

1. The modified page wri ter creates a cluster of virtually contiguous pages.

2. If the desired cluster size has not yet been reached, the modified page list is
searched until another page with page file backing store is found.

Pages virtually contiguous to this page form the second minicluster tha t is added
to the eventual cluster to be wri t ten to the page file.

The modified page writer continues in this manner, building a large cluster tha t
consists of a series of smaller clusters, until ei ther the cluster size is reached or no
more pages on the modified page list have page file backing store. Each smaller
cluster can terminate on any of the conditions listed in the previous section, or on
the two terminat ing conditions for the large cluster.

.

,

4.12.6 Page File Space Allocation
Before the modified page wri ter searches for more pages to form a cluster bound for a
page file, it must determine the maximum size of the write cluster, namely the number
of contiguous page file pages, up to a maximum of MPW_WRTCLUSTER, tha t can be
allocated.

The modified page writer calls MMG_STD$ALLOC_PAGSWP_PAGES, in module
PAGE_FILE, to allocate a cluster of pages in the most appropriate page file. Each
page file is described by a nonpaged pool da ta s t ructure called a page file control block
(PFL). Chapter 2 shows the PFL (see Figure 2.31) and describes its fields.

MMG_STD$ALLOC_PAGSWP_PAGES takes the following steps:

1. If there are no PFLs on any of the four lists of page files at MMG$GA_PAGE_
FILES (see Chapter 2), it issues the following message on the console terminal and
returns:

%SYSTEM-W-NOPAGEFILE, no page file installed; system trying
to continue

285

Paging Dynamics

2. If there are no PFLs on the first three lists, it issues the following message and
returns:

%SYSTEM-W-PAGEFILEFULL, all page or swap files are full;
system trying to continue

3. Beginning with the first nonzero pointer in the first two lists, it selects the first
PFL in that list. It moves the pointer to the next PFL in the list to rotate use of
page files.

4. If it had to select a PFL from the second list because there were no page files with
at least one duster 's worth of adjacent pages or if fewer than one-fourth of the
total installed page file pages are flee, it issues the following message:

%SYSTEM-W-PAGEFRAG, page file filling up; please create more space

5. If it had to select a PFL from the third list because there were no page files with
set bits in the directory bitmap or if fewer than one-sixteenth of the total installed
page file pages are free, it issues the following message:

%SYSTEM-W-PAGECRIT, page file nearly full; system trying to continue

Each of the preceding four messages is issued only once between the time the
system is booted and the time it is shut down.

6. It tries to allocate the number of pages represented by the file's PFL$L_CUR_
ALLOC_EXPO. The field is initialized to represent the minimum of 1,024 and
SYSGEN parameter MPW_WRTCLUSTER. Its value is expressed as an index into
the directory quadword counter array at PFL$L_DIR_CLUSTER (see Chapter 2).

Beginning at the quadword specified by PFL$L_STARTBYTE, MMG_
STD$ALLOC_PAGSWP_PAGES scans the directory bitmap for a quadword with
that many adjacent bits set. If the starting set bit is bit 0 in a quadword, and the
adjacent high bits in the preceding quadword are also set, it adjusts the start ing
directory bit position to begin at the high bits in the preceding quadword.

7. Starting at the bit position in the storage bitmap corresponding to the start ing
bit position in the directory bitmap, it checks for adjacent high bits set in the
preceding cluster. If there are any, it adjusts the final start bit for the allocation.

8. It then tries to allocate as many pages as were requested and clears the corre-
sponding bits in the storage and directory bitmaps.

9. It updates PFL$L_DIR_CLUSTER, PFL$L_STARTBYTE, and the counters that
describe the state of the file as well as those that summarize all files.

10. It returns the number of pages allocated to its caller.

286

4.12 Modified Page Writing

4.12.7 Example of Modified Page Write to a Page File
Figure 4.13 i l lustrates a sample cluster for wri t ing to a page file. The modified page
list and fields in the PFN database, pictured in the upper r ight-hand corner of the
figure, are shown as sequential arrays to simplify the figure.

1. The first page on the modified page list is PFN A. The modified page wri ter
maps into system space the page table page tha t maps PFN A (A's PFN$L_PT_
PFN contents) and starts with the PTE tha t maps it (PFN$Q_PTE_INDEX). By
scanning backward through the page table page, the modified page wri ter locates
first PFN F and then PFN H. The L3PTE preceding the one tha t contains PFN H
is also a t ransi t ion PTE, but the page is on the free page list. This page te rminates
the backward search.

2. The modified page writer IRP begins with PFN H, PFN F, and PFN A. The search
now goes in the forward direction, with each page tha t has page file backing store
added to the map up to and including PFN E. Because the next L3PTE is valid,
the first minicluster is terminated.

287

Paging Dynamics

Figure 4.13 Clustered Write to a Page File

Modified Paae List

Page Table Pages
PFN Database ~ & o r d Fields

PT-PFN PT INDEX 63 BAK 0
-

-
quadwords

PFN = D

T

63 Modifkd Page Writer IRP 0

PFN = F
L

PFN = A Valid, PFN = A

..-..-.

. - Valid. PFN = G

I Demand Zem PTE 1

4.13 Update Section File on Disk System Services

3. The next page on the modified page list, PFN B, leads to mapping a different page
table page and adding a second cluster to the map. This cluster begins with PFN
G and ends with PFN J. The backward search was terminated with an L3PTE
containing a section table index. The forward search terminated with a demand
zero PTE.

Note that this second cluster consists of pages belonging to a different process than
that of the first cluster. The difference is reflected in the process header vector
index array, which contains a longword element for each L3PTE in the map (see
Figure 4.12).

4. The next page on the modified page list is PFN C. This page belongs in a global
section file and is skipped during the current scan.

5. PFN D leads to a third cluster that is terminated in the backward direction by
an L3PTE that contains a GPTX. The search in the forward direction terminates
when the desired cluster size is reached, even though the next PTE was bound to
the same page file. The cluster size is either MPW_WRTCLUSTER or the number
of adjacent pages available in the page file, whichever is smaller. In any case, this
cluster will be written with a single write request.

6. Note that reaching the desired cluster size resulted in leaving some pages on the
modified page list bound for the same page file, such as PFN I.

4.13 Update Section File on Disk System Services
The Update Section File on Disk ($UPDSEC[W] and $UPDSEC_64[W]) system services
enable a process to write a specified range of pages in a process or global section to
their backing store in a controlled fashion, without waiting for the modified page writer
to do the backup. They are especially useful for frequently accessed pages tha t may
never be writ ten by the modified page writer because they are always being faulted
from the modified page list back into the working set before they are backed up.

These system services are a cross between modified page writing and a normal write
request. In particular, they resemble modified page writing in that the services write
a cluster of adjacent virtual pages to backing store to enable the cluster to be faulted
in at a later time. In other words, both modified and unmodified pages can be written.
By default all pages in the range are eligible to be written.

In the case of global pages, determining which pages have been modified is not feasible.
The system service runs in the context of one process and can scan its PTEs for set
modify bits. However, to determine whether a particular global page has been modified
requires looking at the PFN database and the PTEs of all processes mapped to this
page. (The state of the saved modify bit in the GPTE does not necessarily reflect the
state of the page.) Because there are no back pointers for valid global pages, this
information is unavailable. Therefore, all pages in a global section are eligible to be
written to their backing store location, regardless of whether the pages have been
modified.

289

Paging Dynamics

The default value of 0 in the UPDFLG argument specifies that all read/write global
section pages are to be writ ten to backing store, whether or not they have been
modified. A value of 1 specifies that the requestor is the only or the last process
having the global section mapped for write access and that, of the global section pages,
only the modified ones should be writ ten to the section file on disk.

As for any I/O request, the requestor can request completion notification with an event
flag and I/O status block or an AST.

The cluster factor is the minimum of MPW_WRTCLUSTER and the number of pages
in the input range.

4.13.1 $UPDSEC System Service
The pages eligible to be written are specified by the INADR argument. The direction
of search for pages is determined by the order in which the INADR address range is
specified.

The system service procedure EXE$UPDSEC, in module SYSUPDSEC, runs in kernel
mode. It checks the validity of the input address range, clears the event flag associated
with the I/O request, charges the process direct I/O quota, and allocates nonpaged pool
to serve as an extended I/O packet. The pool is used to queue one or more modified
page write I/O requests and to keep track of how much of the section the service has
processed.

EXE$UPDSEC locates the region descriptor entry (RDE) corresponding to the INADR

argument's start ing address.

EXE$UPDSEC then calls MMG$CREDEL, in module SYSCREDEL, specifying UP-
DSECPAG_RDE, in module SYSUPDSEC, as the per-page service-specific routine.
Chapter 3 describes the actions of MMG$CREDEL and its use of per-page service-
specific routines. Routines UPDSECQWT_64, PTEPFNMFY, MMG$WRT_PGS_BAK,
and MMG$UPDSECAST, all in module SYSUPDSEC, are also part of this system
service.

UPDSECPAG_RDE calls UPDSECQWT_64 to form the first cluster and to initialize
and queue the IRP to the driver for the backing store device.

UPDSECQWT_64 takes the following steps:

1. It touches the first page table page that maps pages in the specified range to fault
it into the working set list.

2. It acquires the MMG spinlock, raising IPL to IPL$_MMG.

3. It scans in the specified direction of the range for the first candidate page to meet
all the following conditions"

Its owner access mode is not more privileged than that of the service requestor.

It is not part of a memory-resident section, Galaxy global section, or PFN-
mapped section.

290

4.13 Update Section File on Disk System Services

- - It is a valid or transit ion process or global page.

- - It is writable but not copy-on-reference.

- - It has been modified.

4. Having found one candidate page, it calls MMG$WRT_PGS_BAK.

5. MMG$WRT_PGS_BAK scans the process's page table in the specified direction for
adjacent pages tha t have similar characteristics; in particular, the backing store
for the pages must be the same. The adjacent pages do not necessarily have to
have been modified but they do all have to be valid or transition, tha t is, resident.

It tries to form a cluster of up to MPW_WRTCLUSTER pages. In the case of
process pages, the cluster begins with the first modified page in the range. In the
case of global pages, if the UPDFLG iS clear, the cluster begins with the first global
page. By setting the low bit of the UPDFLG parameter, the requestor can indicate
that it is the only process whose modified pages should be written. In tha t case,
the process's L3PTEs and the PFN database are used to select candidate pages for
backing up. Only pages modified by this process can be the beginning pages of a
cluster.

The cluster is terminated by failure to meet the constraints previously listed for
selecting the first page. In addition, any of the following conditions terminate the
cluster:

- - A page with different backing store

- - More than one adjacent unmodified page

This constraint, new with OpenVMS Alpha Version 7.2, improves performance
by minimizing the number of unmodified pages writ ten to backing store. It is
particularly helpful for large sections with scattered modified pages.

6. Having formed a cluster, MMGSWRT_PGS_BAK modifies the PFN database
records for the pages in it. It increments the PFN$W_REFCNT field for each page.
If the page is on the free or modified page list, it removes it from the list and
changes its PFN$L_PAGE_STATE location bits to write in progress and clears the
saved modify bit. If the page was valid, it also clears the modify bit in the PTE. If
the page is writable from any access mode, it sets the fault-on-write bit in the PTE
so tha t a subsequent write can trigger resetting the modify bit.

7. If the last page in the section is in the cluster and has the PTE$V_PARTIAL_
SECTION bit set, MMG$WRT_PGS_BAK calculates the I/O request byte count
such tha t the last page's contribution to the count includes only those pagelets tha t
have backing store.

8. It initializes an IRP, releases the MMG spinlock, and queues the I/O request to the
backing store driver.

291

Paging Dynamics

When the write completes, I/O postprocessing code decrements the PFN$W_REFCNT
for each page and queues a special kernel mode AST to the kernel thread that re-
quested the $UPDSEC system service. The AST routine MMG$UPDSECAST first
checks whether all the pages requested by the system service call have been written
or whether another write is required. To perform the check, it calls UPDSECQWT_64,
which forms another cluster and queues another write request if necessary. If all
requested pages have been written, MMG$UPDSECAST enters the normal I/O com-
pletion path involving event flags, I/O status blocks, and user-requested ASTs, thus
notifying the kernel thread.

4.13.2 $UPDSEC_64 System Service
The $UPDSEC_64 system service is requested to write pages in a section to their back-
ing store. It resembles the $UPDSEC system service, but all its address arguments
are 64 bits. Thus it can be used to update a section in P0, P1, or P2 space.

The number of pages written is specified by the LENGTH_64 argument. The direction
of search for modified pages is determined by whether the starting virtual address's
region is ascending or descending.

The $UPDSEC_64 system service procedure, EXE$UPDSEC_64 in module SYS_
UPDSEC_64, runs in kernel mode. It resembles EXE$UPDSEC, using the same
routines: MMG_STD$UPDSECQWT_64, an alternative entry point to UPDSECQWT_
64; PTEPFNMFY, MMG$WRT_PGS_BAK, and MMG$UPDSECAST, all in module
SYSUPDSEC.

4.14 Input and Output That Support Paging
There is little special-purpose code in the I/O subsystem to support page and swap
I/O. MMG$PAGEFAULT and the swapper each build their own IRPs but queue these
packets to a device driver in the normal fashion. These are the only differences:

�9 Special Queue I/O Request ($QIO) entry points for page and swap I/O (in module
SYSQIOREQ) bypass many of the usual $QIO checks to minimize overhead.

�9 An IRP describing a page or swap request is distinguished from other IRPs by
a flag in IRP$L_STS. These flags are detected by the I/O postprocessing routine,
which dispatches to special completion paths for page read and other types of
memory management I/O.

Tables 4.2 to 4.4 summarize the I/O requests issued by memory management compo-
nents. The first table lists the type of paging or swapping I/O, the priority of each such
request, the relevant process identification, and information about the priority boost
the process receives at I/O completion. For more information on priority classes and
boosts, see Chapter Scheduling.

292

Table 4.2

4.14 Input and Output That Support Paging

Summary of I/O Requests Issued by Memory Management , Part I

Type of I/O
Request

Pr io r i ty Process ID Pr io r i t y
IRP$B_PRI IRP$L_PID Boo st

Process page read
Global copy-on-
reference page read
Process page table
read

System page read
Global non-copy-
on-reference page
read

Modified page write

Update section write

Swapper I/O

Base priority of fault-
ing kernel thread

PID of faulting 0
kernel thread

Base priority from PID of faulting 0
system PCBml6 kernel thread

MPW_PRIO 1

Base priority of
requestor

SWP_PRIO 1

PID of swapper e

PID of requestor

PID of swapper

None 3

2

None 3

1This is a SYSGEN parameter.

2The modified page writer is a subroutine of the swapper process.

3The swapper is a real-time process and is therefore not subject to priority boosts.

Tables 4.3 and 4.4 list more information about each type of I/O request , summar i z ing
the uses to which the memory m a n a g e m e n t components put several fields in the
IRP. Some of these fields overlay s t andard fields tha t are not required for the i r more
typical uses. Thus the space can be used for s toring other information needed by these
components. The column WCB Source specifies from which memory m a n a g e m e n t da ta
s t ructure the address of the window control block (WCB) is obtained. This address is
stored in the field IRP$L_WIND.

In Table 4.3 the columns PARAM_0, PARAM_I, and PARAM_3 describe the contents
of the IRP fields IRPQ_PARAM_0, IRPQ_PARAM_I, and IRP$Q_PARAM_3 for each
type of read operat ion requested by the memory m a n a g e m e n t subsystem. The PTE
column identifies the type of PTE tha t maps the pages to be read.

In addit ion to those fields, the contents of IRP$Q_PARAM_2 record whe the r
MMG$PAGEFAULT informed a user mode th read manage r of a page fault. A value of
-1 indicates no upcall was made. Any other value is the vi r tual address of the faul ted
page and indicates tha t PAGIO (see Section 4.11) should inform the th read m a n a g e r of
page fault completion.

293

Paging Dynamics

Table 4.3 Summary of I/O Requests Issued by Memory Management , Part II
(Read Requests)

Page Type
WCB

PTE PARAM_0 PARAM_I PARAM_3 Source

Process Page Read
Section file

Page file

Page table

L3PTE -1 0/PSTX 1 0 PSTE

L3PTE -1 0 0 PFL

L2PTE or -1 0 0 PFL 2
L1PTE

System Page Read

-1 0 0 SSTE System
section 3

Paged pool

System
space L3PTE

System
space L3PTE

-1 0 0 PFL

Global Page Read
Global GPTE

Global copy- L3PTE
on-reference

Slave PTE
address

Slave
L3PTE
index

0 Page table GSTE
PFN

GFI~ 0 GSTE

1If the page is copy-on-reference, IRP$Q_PARAM_I contains the PSTX.

2process page tables originate as demand zero pages whose backing store is a page file.

3pageable executive code originates in executive images, described by section table entries in the system
header, abbreviated here as SSTE.

Table 4.4 lists write requests. For Update Section File on Disk I/O, IRP$PQ_ACB64_
AST and IRP$Q_ACB64_ASTPRM contain the AST address and parameter specified by
the system service requestor. For modified page writer and swapper I/O, IRP$L_IIRP_
P1 contains the address of the special kernel mode AST routine. The PTE column
identifies the type of PTE involved in the I/O request. In most cases it is an L3PTE in
a process's P0, P1, or P2 page table. In other cases, the PTE is contained in an array
within an MPW IRP (see Figure 4.12).

The AST column identifies the procedure that runs at I/O completion. WRITEDONE,
the modified page writer's special kernel AST, is described in Section 4.12.3. IODONE,
the swapper's special kernel AST routine, is described in Chapter 6.

294

4.15 Reference Counts

Table 4.4 Summary of I]O Reques t s Issued by Memory Management , Part
I I I (Wri te Requests)

Type of I]O WCB
Write Request PTE AST ASTPRM Source

Modified Page Write

To page file MPW IRP WRITEDONE 0 PFL

To private section file MPW IRP WRITEDONE 0 PSTE

To global section file MPW IRP WRITEDONE 0 GSTE

To swap file (nonzero MPW IRP WRITEDONE 0 PFL
SWPPAG)

Update Section Write

Private section L3PTE AST address AST argument PSTE

Global section GPTE AST address AST argument GSTE

Swapper I/O

Swapper I/O Swapper IODONE 0 PFL
map

4.15 Reference Counts
Much of the memory m a n a g e m e n t subsystem's activity is asynchronous, ini t ia ted in
response to process actions but completed in other contexts. The memory m a n a g e m e n t
da tabase keeps t rack of the current s ta te of various s t ruc tures and resources th rough
reference counts. Cer ta in count t rans i t ions t r igger addit ional memory m a n a g e m e n t
subsys tem activity. This section summar izes those reference counts and the activities
t r iggered by their t ransi t ions. These counts are ment ioned th roughout this and the
other memory m a n a g e m e n t chapters.

Table 4.5 lists these reference counts wi th a brief description of each. The sections tha t
follow describe each count in more detail.

Table 4.5 Memory Management Reference Counts

Reference Count Location Meaning

PFN$L_REFCNT

PFN$L_SHRCNT for process page table
page

Number of reasons the current contents of physi-
cal page should stay in memory

Number of valid and transition pages it maps

295

Paging Dynamics

Table 4.5 (continued) Memory M a n a g e m e n t Reference Counts

Reference Count Location Meaning

PFN$L_SHRCNT for global page table
page

PFN$L_SHRCNT for global page

PHD$L_PTWSLELCK array element

PHD$L_PTWSLEVAL array element

PHD$L_PTCNTACT

PHD$L_PTCNTLCK

PHD$L_PTCNTVAL

PHV$GL_REFCBAS array element

Number of GPTEs that map global section pages

Number of L3PTEs that are mapped to it

Number of locked WSLEs and window PTEs
mapped by this process page table page

Number of valid WSLEs mapped by this process
page table page

Number of active page table pages with nonzero
PTEs

Number of page table pages with non-negative
PHD$L_PTWSLELCK counts

Number of page table pages with non-negative
PHD$L_PTWSLEVAL counts

Number of reasons the PHD should remain
resident

4.15.1 PFN$W_REFCNT
PFN$W_REFCNT counts the number of reasons a physical page should re ta in its
current contents. A value of zero means the associated page is on the free, modified,
zeroed, or bad page list.

The count is incremented for the following reasons:

�9 The associated process-private vir tual page is added to a working set list.

* PFN$L_SHRCNT of a global page makes the t rans i t ion from 0 to 1, when it is
placed in a process working set list.

�9 The associated vir tual page is being faulted in.

�9 A page is locked as par t of a direct I/O buffer wi th I/O in progress.

�9 A section page is being wri t ten to its backing store by the Update Section File on
Disk system services or the modified page writer.

�9 The associated vir tual page is par t of a buffer object.

�9 The associated vir tual page is a process page table page whose PFN$W_BO_REFC
is grea ter t h a n - 1 .

�9 A page is being outswapped as par t of a process header or body.

�9 A page has jus t been inswapped as par t of a process header or body.

296

4.15 Reference Counts

PFN$W_REFCNT is decremented for the following events:

�9 The associated vir tual page is removed from a working set list.

�9 PFN$L_SHRCNT of a global page makes the t ransi t ion from 1 to 0, when it is no
longer par t of any process working set list.

�9 Page fault I/O completes.

�9 Any other type of direct I/O completes when the buffer pages are unlocked.

�9 Update section I/O completes.

�9 Modified page write I/O completes.

�9 A buffer object is deleted.

�9 PFN$W_BO_REFC transit ions t o - 1 , indicating tha t a process page table page no
longer maps any buffer objects.

�9 Outswap completes.

When a page's reference count transit ions from 1 to 0, the page is inserted into the
free or modified page list, depending on the state of its saved modify bit.

4.15.2 PFN$L_SHRCNT and PHD$L_PTCNTACT
As shown in Table 4.5, the meaning of PFN$L_SHRCNT depends on the type of vir tual
page occupying the physical page.

4.15.2.1 Process Page Table Pages
For an L3PT that maps process-private pages PFN$L_SHRCNT is the number of valid
and transi t ion process-private pages it maps (excluding buffer object pages in the
release pending state). For an L1PT or L2PT tha t maps process-private page table
pages, PFN$L_SHRCNT is the number of valid and transi t ion process-private page
table pages it maps. A count of zero means the page table page maps no valid and no
transi t ion pages.

The count is incremented for the following events:

�9 A physical page is allocated for a vir tual page being faulted tha t is mapped by this
page table, whether the page table is an L1PT, L2PT, or L3PT.

�9 A WSLE is created to map a global page.

�9 An L3PT tha t maps a direct I/O buffer too large to be described by a DIOBM is
locked into memory when a system space window is created to double-map the
L3PTEs that describe the buffer.

�9 A buffer object page in release pending state is faulted and made valid.

�9 A buffer object page in release pending state is made valid and locked as par t of
locking down a direct I/O buffer.

�9 A buffer object page mapped by tha t page table page is being deleted (but the
vir tual address space tha t it occupied still exists).

297

Paging Dynamics

�9 An unmodified global demand zero page is materialized ra ther than faulted in to
expedite deletion of the page.

When the share count for a page table page transitions from 0 to 1, the page table
is considered active. The executive locks it into the process working set by setting
its WSL$V_WSLOCK bit and increments PHD$L_PTCNTACT to indicate one more
process page table page mapping valid or transition pages and also increments the
appropriate PHV$GL_REFCBAS_LW array element.

The share count is decremented for the following events:

�9 A global or buffer object page mapped by that page table page is removed from the
process working set list.

�9 Contents of a virtual page mapped by that page table page are deleted and the
associated physical page is deallocated.

�9 An L3PT that maps a direct I/O buffer too large to be described by a DIOBM is
unlocked from memory at I/O completion.

�9 When the process body has been outswapped, each process page is deleted.

�9 An empty page table is moved from the modified page list to the zeroed page list.

When the count transitions from 1 to 0, the executive decrements PHD$L_PTCNTACT
and the appropriate PHV$GL_REFCBAS_LW array element and clears the WSL$V_
WSLOCK bit.

4.15.2.2 Global Pages and Global Page Table Pages
For a global page table page, PFN$L_SHRCNT is 1 if the global page table page maps
any global section pages; otherwise, it is 0. Because global page table pages are no
longer pageable, there is no reason to maintain an accurate count of the number of
global pages each global page table page maps.

For a global page, PFN$L_SHRCNT is the number of L3PTEs that map to the global
page. The count is incremented for the following events:

�9 A WSLE is created to map a global page.

�9 At inswap, a process is reconnected to a valid global page.

The count is decremented for the following events:

�9 A global page is removed from a process's working set.

�9 After outswap, a process is disconnected from a valid global page.

�9 Prior to outswap, a process is disconnected from a valid writable global page.

When the share count for a global page transitions from 0 to 1, the executive incre-
ments PFN$W_REFCNT to indicate one more reason for the page to remain resident.
When the count transitions from 1 to 0, the executive decrements PFN$W_REFCNT.

298

4.15 Reference Counts

4.15.2.3 System Pages
One other use is made of PFN$L_SHRCNT for system pages. The count records
the number of t imes a part icular page has been locked into the system working set
through the routine MMG$LOCK_SYSTEM_PAGES, in module LOCK_SYSTEM_
PAGES. When the count transit ions from 0 to 1, the routine sets the WSLE's WSL$V_
WSLOCK bit and increments the system header 's PHD$L_PTCNTACT.

Such a page is unlocked through routine MMG$UNLOCK_SYSTEM_PAGES, in the
same module. When the share count t ransi t ions from 1 to 0, the routine clears the
entry's WSL$V WSLOCK to unlock it from the system working set and decrements
PHD$L_PTCNTACT. Chapter 5 describes these routines.

4.15.3 PFN$W_PT_VAL_CNT and PHD$L_PTCNTVAL
For a page tha t maps process-private pages, PFN$W_PT_VAL_CNT contains the
number of valid pages mapped by tha t page table page, excluding pages in memory-
resident global sections. A value o f - 1 means the page is not a page table page or tha t
it maps no such pages. This count is only kept for process-private page tables. In the
case of the L1PT, its count includes itself.

The count is incremented for the following events:

�9 A page mapped by tha t page table page is faulted into the working set list.

�9 A transit ion page mapped by tha t page table page is added to the working set list
so that it can be locked as par t of a direct I/O buffer.

When the count transit ions f r o m - 1 to 0, the executive increments PHD$L_PTCNTVAL
to indicate one more process page table page mapping valid pages.

The count is decremented for the following events:

�9 A page mapped by tha t page table page is removed from the working set list.

�9 A valid, unmodified process page mapped by tha t page table page is being deleted.

When the count transit ions from 0 t o - 1 , the page table page is considered dead; the
executive decrements PHD$L PTCNTVAL.

4.15.4 PFN$W_PT_LCK_CNT and PHD$L_PTCNTLCK
For a page tha t maps process-private pages, PFN$W_PT_LCK_CNT contains the
number of locked pages mapped by tha t page table page. A value o f - 1 means the page
table page maps no such pages (or is not currently in use as an L3PT).

The count is incremented when a page mapped by tha t page table page is locked into
the working set list or into memory.

The count is decremented when a page mapped by tha t page table page is unlocked
from the working set list or from memory.

299

Paging Dynamics

When either PFN$W_PT_LCK_CNT or PFN$W_PT_WIN_CNT transitions f r o m - 1 to
0, the executive increments PHD$L_PTCNTLCK to indicate one more process page
table page mapping locked or window pages. When either count transitions from 0 to
-1, the executive decrements PHD$L_PTCNTLCK.

4.15.5 PFN$W_PT_WlN_CNT
For a page that maps process-private pages, PFN$W_PT_WIN_CNT contains the
number of window and memory-resident global section pages mapped by tha t page
table page. A window page is a virtual page that is a double mapping of a physical
page. For example, a virtual page in a process or global section mapped by PFN is a
window page.

For a shared L3PT, PFN$W_PT_WIN_CNT contains the number of pages mapped by
the shared L3PT. A shared L3PT is counted as a window page for the process-private
L2PT that maps it.

A value o f - 1 in PFN$W_PT_WIN_CNT means the page table page maps no such
pages (or is not currently in use as a page table).

The count is incremented for the following events:

�9 A virtual page is created that is a window page and that is mapped by tha t page
table page.

�9 A PFN-mapped section is created and mapped with a granulari ty hint region

�9 A page of shared L3PT is mapped by that L2PT.

�9 A memory-resident section mapped by that shared L3PT is created.

The count is decremented for the following events:

�9 A window page or PFN-mapped page mapped by that page table page is deleted.

�9 A page of shared L3PT mapped by that L2PT is deleted.

When either PFN$W_PT_LCK_CNT or PFN$W_PT_WIN_CNT transitions f r o m - 1 to
0, the executive increments PHD$L_PTCNTLCK to indicate one more process page
table page mapping locked or window pages. When either count transitions from 0 to
-1, the executive decrements PHD$L_PTCNTLCK.

4.15.6 PHV$GL_REFCBAS_LW Array Element
PHV$GL_REFCBAS_LW contains the address of an array with one element for each
balance set slot (see Chapter 2). Each element counts the number of reasons the
current PHD must continue to occupy that balance set slot, that is, the number of
process page table pages tightly connected to that PHD slot. A value o f - 1 for an
element means the corresponding balance set slot does not contain any PHD. A value
of 0 means that the slot has been assigned to a process.

300

4.16 Use of Page Files

A PHV$GL_REFCBAS_LW element is incremented for the following reasons:

�9 PHD$L_IOREFC, the number of process-private buffers locked down for I/O,
transitions from 0 to 1.

�9 A process page table page is being faulted in from a page file.

�9 A process page table page maps valid or transition pages.

�9 A process page table is being writ ten to a page file by the modified page writer.

Typically, either MMG$DECPHDREF or MMG$DECPHDREF1, both in module PAGE-
FAULT, is called to decrement a PHV$GL_REFCBAS_LW element. A PHV$GL_
REFCBAS_LW element is decremented for the following events:

�9 PHD$L_IOREFC, the number of process-private buffers locked down for I/O,
transitions from 1 to 0.

�9 Page fault I/O for a process page table page completes.

�9 A process page table page's PFN$L_SHRCNT transitions to 0, indicating the page
table maps no valid or transition pages.

�9 Modified page write I/O for a process page table page completes.

When the count transitions to 0, the swapper is awakened to clean up the slot so that
it is available for another process.

4.16 Use of Page Files
During system initialization and operation, one or more page files are placed into
use. In OpenVMS versions prior to Version 7.3, when a process was created, it was
assigned to a page file, and space in that page file was reserved for it. When the
process faulted a copy-on-reference or demand zero page, the page was charged against
the reserved space. Allocation of particular blocks in the page file was deferred until
the modified page writer actually prepared to write the page. A process could be
assigned concurrently to as many as four page files during its lifetime.

As of OpenVMS Version 7.3, a process is not assigned to particular page files; instead,
it can page in any installed page file. A virtual page is not associated with a page
file until the modified page writer allocates space to hold the page. After the page is
faulted back in, if modified, it can be writ ten to a different page file.

A PFL (see Chapter 2) describes each page file in use. Space in a page file is managed
in units the size of an Alpha page. Section 4.12.6 describes the allocation of actual
pages in the page file.

When process pages backed by a page file are deleted, MMG_STD$DEALC_PAGSWP_
PAGES, in module PAGE_FILE, is called to deallocate the associated page file pages, if
any. It updates PFLL_REFCNT, PFLL_FREPAGCNT, and MMG$GQ_PAGEFILE_
ALLOCS to reflect fewer pages in use. It sets the corresponding bits in the storage
bitmap and, if an entire cluster of pages is newly available, the corresponding bit in

301

Paging Dynamics

the directory bitmap. If the directory bitmap is updated, it updates the PFL$L_DIR_
CLUSTER counts accordingly.

If PFL$L_REFCNT is decreased to zero and a deinstall request is pending, it calls
MMG_STD$DINSPAGSWPFIL, in module PAGEFILE, to deinstall the page file.

4,17 Paging and Scheduling
Page fault handling can influence the scheduling state of kernel threads in several
ways. If a read is required to satisfy a page fault, the faulting kernel thread is placed
into a page fault wait state or a collided page wait. If a resource such as physical
memory is not available, the kernel thread is placed into an appropriate wait state.
The kernel thread waits with its program counter (PC), processor status (PS), and
other registers reflecting its state at the time it executed the instruction that generated
the page fault.

Chapter Scheduling describes scheduling, wait states, priority increment classes,
resource waits, and the reporting of scheduler events.

4.17.1 Page Fault Wait State
A kernel thread is placed into page fault wait when a read is required to resolve
a page fault. The I/O postprocessing routine PAGIO detects that a page read has
completed and reports the scheduling event page fault completion for the kernel
thread. As a result, the kernel thread is removed from the page fault wait state and
made computable. No priority boost is associated with page fault read completion.

4.17.2 Free Page Wait State
If not enough physical memory is available to satisfy a page fault, the faulting ker-
nel thread is placed into a free page wait state. Whenever a page is deallocated and
the free page list was formerly empty, routine MMG$DALLOC_PFN, in module AL-
LOCPFN, checks for kernel threads in this state. It reports the scheduling event
free page available so that each kernel thread in the free page wait state is made
computable.

MMG$DALLOC_PFN makes no scheduling decision about which kernel thread will get
the page. There is no first-in/first-out approach to the free page wait state; rather, all
kernel threads waiting for the page are made computable. The next kernel thread to
execute will be the highest priority resident computable kernel thread.

302

4.17 Paging and Scheduling

4.17.3 Collided Page Wait State
It is possible for a page fault to occur for a page that is already being read from its
backing store. If the page is anything but a process page, or if it is a process page of
a multi threaded process, the page is referred to as a collided page. The collided bit is
set in the PFN$L_PAGE_STATE field, and the kernel thread is placed into the collided
page (COLPG) wait state.

When the page fault I/O is complete, the page read completion code in PAGIO checks
if the collided bit was set for any page in the cluster just read. If so, and if the pages
are not process pages, it reports the scheduling event collided page available for each
kernel thread in that wait state. It does not check whether a kernel thread is wait ing
for the collided page that was faulted in. If the pages are process pages, PAGIO reports
the scheduling event only for kernel threads of the same process.

The lack of checking has two advantages:

�9 No special code determines which kernel thread executes first. All kernel threads
are made computable, and the normal scheduling algorithm selects the kernel
thread tha t executes next.

�9 The probability of a collided page is small. The probability of two different collided
pages is even smaller. If a kernel thread waiting for another collided page is
selected for execution, that kernel thread will incur a page fault and be placed
back into the collided page wait state. Nothing unusual occurs, and the operating
system avoids a lot of special-case code to handle a situation that rarely, if ever,
o c c u r s .

4.17.4 Resource Wait States
Several types of resource wait are associated with memory management. A kernel
thread waiting for one of these resources is placed into the miscellaneous wait state
(see Chapter Scheduling) until the resource is available.

Early versions of the VAX/VMS operating system also could place a process into a
wait for resource RSN$_SWPFILE (RWSWP). When a process was unable to increase
its swap file allocation to accommodate a larger working set, it was placed into this
resource wait until space became available in the swap file. The timing and form of
swap file allocation changed, and this resource wait is not used by the OpenVMS Alpha
executive.

Versions of OpenVMS prior to Version 7.3 could also place a kernel thread into a wait
for resource RSN$_PGFILE (RWPFF) when it faulted a modified page with page file
backing store out of its working set and the page file had not been initialized yet. Page
file assignment is now made when the page is being writ ten from the modified page
list, and this resource wait is no longer used by the OpenVMS Alpha executive.

303

Paging Dynamics

4.17.4.1 Resource Wait for RSN$_ASTWAIT (RWAST)
A kernel thread tha t faults a page is placed into this wait when the kernel th read has
no direct I/O quota left against which the page fault I/O request can be charged.

4.17.4.2 Resource Wait for RSN$_NPDYNMEM (RWNPP)
A kernel th read tha t faults a page is placed into this wait when MMG$PAGEFAULT is
unable to allocate nonpaged pool for an IRP for the page fault I/O.

4.17.4.3 Resource Wait for RSN$_MPWBUSY (RWMPB)
A kernel thread tha t faults a modified page out of its working set may be placed into
this wait when any of the following is true:

�9 The modified page list contains more pages than the SYSGEN paramete r MPW_
WAITLIMIT.

�9 The modified page list contains more pages than the SYSGEN pa rame te r MPW_
LOWAITLIMIT and the modified page wri ter is active, writ ing modified pages.

�9 A page table page tha t maps no valid pages is being removed from the working
set list, and modified page writ ing is required to sever the connections between
the modified page list and transi t ion pages mapped by the page table page (see
Chapter 5 for more details on dead page table pages).

The kernel thread is not placed into this wait unless all the following conditions are
also true:

�9 The process holds no mutexes.

�9 The process is not the swapper process.

�9 Bit MMG$V_NOWAIT in MMG$GL_FREWFLGS is clear.

�9 One or more page files have been installed.

The modified page wri ter declares the availability of the resource RSN$_MPWBUSY
in processing a MAINTAIN request when it has wri t ten enough modified pages so tha t
the list is left with MPW_LOWAITLIMIT or fewer pages. Also, if the modified page
list size drops below the current high limit for the list when a page is faulted from it,
and if the modified page writer is not currently active, resource RSN$_MPWBUSY is
declared available. Otherwise, a process could be hung wait ing for tha t resource until
there is enough activity to increase the list size above the limit again.

4.17.4.4 Resource Wait for RSN$_MPLEMPTY (RWMPE)
A kernel thread in RWMPE is wait ing for the modified page writer to signal tha t it
has flushed the modified page list. The only kernel thread currently placed into this
wait is one executing the OPCCRASH image, which forces a flush of the modified page
list prior to stopping the system.

304

4.18 Relevant Source Modules

4.18 Relevant Source Modules
Source modules described in this chapter include

[LIB]RIHDEF.SDL
[SYS]ALLOCPFN.MAR
[SYS] EXCEPTION.M64
[SYS]EXCEPTION_ROUTINES.MAR
[SYS]IOCIOPOST.MAR
[SYS]IOLOCK.MAR
[SYS]PAGE FILE.C
[SYS] PAGE FAULT. MAR
[SYS]PAGEFILE.MAR
[SYS] SCHEDULER.M64
[SYS] SYS_UPDS E C_64. C
[SYS] SYSLKWSET.MAR
[SYS]SYSUPDSEC.MAR
[SYS] SYSVA_ALLOC.C
[SYS]WRTMFYPAG.MAR

305

This Page Intentionally Left Blank

Chapter 5
Working Set List Dynamics

"Then you keep moving round, I suppose?" said Alice.
"Exactly so," said the Hatter, "as the things get used up."
"But what happens when you come to the beginning again?"

Alice ventured to ask.
"Suppose we change the subject," the March Hare interrupted,

yawning. "I'm getting tired of this. I vote the young lady
tell us a story."

Lewis Carroll, Alice's Adventures in Wonderland

The pages of physical memory in use by a process are called its working set. A da ta
s tructure called the working set list describes just those pages in a compact form.

This chapter describes the composition of the working set list, the ways in which it
shrinks and expands to describe a varying number of pages, and the system services
by which a process affects its working set and working set list.

5.1 Overview
The term working set refers to the vir tual pages of a process tha t are current ly valid
and in physical memory. A valid page is one whose page table entry (PTE) valid bit is
set.

As an image is executed in a process, code, data, and page table pages are faulted into
the process's working set. Chapter 4 describes the page fault mechanism in detail.
Execution of asynchronous system t rap (AST) procedures, condition handlers , and
system services tha t touch pageable process-private space can cause additional faults
into the working set. The working set continues to grow as code running in the process
context faults pages until the process occupies as much physical memory as it requires
or is allowed. Each subsequent page fault requires tha t a page be removed from the
working set to make room for the new page.

The executive mainta ins a list of working set pages for each process, called the working
set list.

307

Working Set List Dynamics

The working set list facilitates

�9 Selecting a page to remove from the working set when a page needs to be faulted
in but the process already occupies all the physical memory it is currently allowed,
or when the process's working set is being shrunk

�9 Determining which pages to write when a process is outswapped

�9 Determining which pages to read when a process is inswapped

Section 5.2 describes the structure and makeup of the working set list. Section 5.3
gives a detailed description of replacement paging, that is, removing one virtual page
from the working set to make room for another.

The size of the working set list and the number of its entries constrain a process's use
of physical memory. The working set list size varies over the process's lifetime. It can
be affected by the authorization file entry for an interactive user, SYSGEN parameters ,
availability of physical memory, and the recent paging history of the process. Section
5.4 describes these effects, and Section 5.2.3 discusses the capacity of the working set
list.

By requesting the following system services, code executing in a process can affect the
process's working set and working set list:

�9 Adjust Working Set Limit ($ADJWSL)

�9 Lock Pages in Working Set ($LKWSET and $LKWSET_64)

�9 Lock Pages in Memory ($LCKPAG and $LCKPAG_64)

�9 Unlock Pages from Working Set ($ULWSET and $ULWSET_64)

�9 Unlock Pages from Memory ($ULKPAG and $ULKPAG_64)

�9 Purge Working Set ($PURGWS and $PURGE_WS)

These services are described in later sections of this chapter.

Section 5.10 explains the means by which a process can prevent the removal of a
particular page from its working set.

This chapter is primarily concerned with the process working set list, although some of
it is equally applicable to the system working set list (see Chapter 2).

5.2 The Working Set List
A process's working set includes the process's P0, P1, P2, and page table pages as well
as the system space pages that contain its process header (PHD). Each of these pages
is described by a working set list entry (WSLE). The working set list is self-describing,
containing WSLEs that describe the working set list itself as well as the other PHD
pages.

308

5.2 The Working Set List

Pages that are part of a section mapped by page frame number (PFN) are valid for the
entire time the process maps such pages, and they do not appear in the working set
list.

The working set also includes global pages in use by the process, with the exception of
pages of memory-resident and Galaxywide global sections. These pages are valid for
the entire time the process maps such pages, and they do not appear in the working
set list. If a memory-resident or Galaxywide global section is mapped with shared
page tables, they are valid for the entire time the section is mapped and do not appear
in the working set list.

5.2.1 The WSLE
The format of a valid WSLE is shown in Figure 5.1. Note that the upper bits are the
same as the upper bits of a virtual address. This allows the WSLE to be passed as
a virtual address to several utility routines that ignore the byte offset bits (WSLE
control bits).

F i g u r e 5.1 F o r m a t o f a WSLE

63 12 9 8 7 65 43

Virtual Address Bits <63:13>

(reserved)-.~
Saved modify bit

(reserved)
Page locked into working set

Page Type Page locked into memory Page

Value Meaning type
0 Process page
1 System page
2 Global read-only page
3 Global writable page
4 Process page table page
5 Global page table page

1 0

Working set list
entry valid

As OpenVMS Alpha Version 7.0 expanded the size of a meaningful virtual address to
64 bits, it expanded the size of a WSLE from a longword to a quadword to accommo-
date the larger virtual address.

Although the working set list currently remains in the PHD, it may move in a future
release. For that reason, a process's working set list is located through the pointer
CTL$GQ_WSL, which currently points to the working set list within the P1 space
mapping of the PHD.

Table 5.1 shows the meanings of the WSLE control bits. The MACRO-32 macro
$WSLDEF defines their symbolic values, which begin with the string WSL$V_.

309

Working Set List Dynamics

T a b l e 5 .1 W S L E C o n t r o l B i t s

F i e l d N a m e M e a n i n g

VALID

PAGTYP

PFNLOCK

WSLOCK

MODIFY

When set, this bit indicates that the WSLE is in use.

This field, a duplicate of the contents of the PFN$L_PAGE_STATE type
bits, identifies the page type and specifies the action required when the
page is removed from the working set.

When set, this bit indicates one of the following types of page locked into
the working set:
�9 Page locked into physical memory with the $LCKPAG[_64] system
service
�9 Process-private page table that maps pages locked into physical mem-
ory, window pages, memory-resident global section pages, or Galaxywide
global section pages

When set, this bit indicates one of the following types of page locked into
the working set:
�9 Permanently locked page
�9 Page locked with the $LKWSET[_64] system service
�9 Process-private page table page that maps one or more valid or transi-
tion pages

This bit, used when the process is outswapped, records the logical OR of
the modify bit in the PTE and the saved modify bit in the page's PFN$L_
PAGE_STATE field.

5.2.2 Regions of the Working Set List
The working set list is divided into three regions: one containing entries for pages
tha t are permanent ly locked; one containing entries for pages locked after process
creation, chiefly by user request; and one containing dynamic entries. These regions
are described in more detail later in this section.

Figure 5.2 shows the fields in the fixed portion of the PHD that describe the working
set list. Many of them locate the different regions of the working set list through a
quadword index from the beginning of the working set list to a part icular WSLE. (In
OpenVMS versions prior to Version 7.0, a WSLE was identified through a longword
index from the beginning of the PHD. The index base was changed to allow for the
possibility of removing the working set list from the PHD.) For example, the following
steps compute the address of the end of the working set list from the quadword index
in PHD$L_WSLAST:

1. Multiply the contents of PHD$L_WSLAST by 8.

2. Add the result to the address of the beginning of the working set list.

310

5.2 The Working Set List

Three of the fields shown, PHD$L_DFWSCNT, PHD$L_WSQUOTA, and PHD$L_
WSEXTENT, do not locate region boundaries but instead represent a number of
WSLEs. These fields nonetheless contain quadword indexes, providing easier compari-
son with fields that do locate boundaries. The following steps convert such a field into
the number of WSLEs it represents:

1. Subtract the contents of PHD$L_WSLIST from it.

2. Add 1 to the result.

This chapter refers to the converted contents of a quadword index field using its field
name without the PHD$L_ prefix, for example, WSQUOTA. Note that names used in
this way represent a number of WSLEs, or pages.

Two of the fields shown, PHD$L_WSSIZE and PHD$L_EXTDYNWS, each contain
an actual number of WSLEs. This chapter refers to their contents as WSSIZE and
EXTDYNWS.

Figure 5.2 Working Set List

PCBSL_PHD: -- v j

I
i
I
I
1-,

I

PHD
.L

• WSUST 1
.. WSLOCK

WSDYN •
• WSNEXT 1
.. WSLAST

_ T -! WSQUOTA x

DFWSCNT --

wss,ZE I
I EXTDYNWS, I
.T
"~_ Pages Permanently Locked into Working Set
".!. Pages Locked by User Request

.3"
:1

I T

($LKWSETL64] and $LCKPAGL64])

Working Set List Dynamic Space

Room for Expansion of Working Set List

Rest of Process Header

L

2
T

311

Working Set List Dynamics

The permanently locked region of the working set list describes pages that are forever
a part of the process working set. Pages whose WSLEs are in this region cannot
be unlocked and are not candidates for working set replacement. They include the
following:

�9 Kernel stack page or pages

�9 Page containing the P1 pointer area

PHD pagesmthe fixed portion, the PHD page arrays, the maximum process section
table, and enough pages for a working set list of as many entries as the SYSGEN
parameter PQL_DWSDEFAULT, converted from pagelets to pages

Process-private level 3 page table (L3PT) that maps the kernel stack, P1 pointer
area, and P1 window to the PHD (see Chapter 2)

�9 Process-private level 2 page table (L2PT) that maps P0 and P1 L3PTs

�9 Process-private level 1 page table (LIPT)

The value in PHD$L_WSLIST is a quadword index to the first WSLE in this region.
Its value is 1. The WSLE with index value 0 is reserved so that the executive need not
distinguish a null working set list index from an index of 0.

The second region contains WSLEs for pages that are locked by user request, specif-
ically through the $LKWSET, $LKWSET_64, $LCKPAG, and $LCKPAG_64 system
services. Pages whose WSLEs are in this region are not candidates for working set
replacement. PHD expansion pages resulting from working set list growth or creation
of floating-point register and execution data structure (FRED; see Chapter Kernel
Threads) pages are locked into this region of the working set list.

PHD$L_WSLOCK contains the quadword index to the first WSLE in the locked region.
PHD$L_WSDYN points to the WSLE immediately following the last WSLE in this
region. To lock a page into the working set list, the executive swaps its WSLE with
that pointed to by PHD$L_WSDYN and increments PHD$L_WSDYN. Consequently,
the user-locked region is increased by one WSLE and the dynamic region is decreased
by one.

The two locked regions of the working set list are completely filled with valid WSLEs.
Rather than keep a count of locked pages, the executive can simply calculate the
difference between the contents of PHD$L_WSDYN and PHD$L_WSLIST.

The dynamic region begins at the entry identified by the contents of PHD$L_WSDYN.
PHD$L_WSLAST contains the quadword index for the last WSLE; its contents identify
the end of the dynamic region. The dynamic region is not necessarily dense; there may
be empty entries between those specified by PHD$L_WSDYN and PHD$L_WSLAST.
The dynamic region of the working set list describes process-private and global pages
that have not been locked into the working set list and process-private page table
pages. These pages are candidates for working set replacement.

312

5.2 The Working Set List

The dynamic region is treated as a ring buffer for page replacement. The entry most
recently inserted into the working set list is pointed to by PHD$L_WSNEXT. The entry
following it is the point in the ring buffer at which page replacement typically occurs.
The page replacement algorithm, explained in Section 5.3, is a modified first-in/first-out
(FIFO) scheme.

A process-private L2PT or L3PT page that maps valid, transition, or PFN-mapped
pages is locked into the dynamic region of the working set list through the WSLOCK
bit in the WSLE and is not a candidate for working set replacement while locked. Page
table pages locked in this manner remain in the dynamic region, although locked, for
a number of reasons. They are considered dynamic because they are unlocked when
all the valid, transition, and window pages they map are removed from the working
set. Leaving them in the dynamic region results in less CPU overhead than switching
them into and out of the locked region. Note that a page table page that maps only
buffer object pages is not locked into the working set list. Chapter 3 provides further
information.

The dynamic region can also contain entries temporarily locked into it by kernel mode
code. The virtual pages locked in this way fall within the address range specified
by fields PCB$Q_KEEP_IN_WS and PCB$Q_KEEP_IN_WS2. Section 5.10 contains
further information.

The executive guarantees a minimum size for the dynamic region. Although most
Alpha instructions generate few memory references, the executive must ensure that
an instruction that references memory can execute. All the pages referenced in an
instruction must be valid for the instruction to complete execution. If the dynamic
region of the working set is too small, an infinite page fault loop could occur during the
attempted execution of one instruction. An instruction could begin to execute, incur
a page fault, restart, incur a different page fault, replace the first faulted page in the
working set list, restart, reincur the first page fault, and so on, unable to complete
execution. More realistically, the dynamic region of the working set should be large
enough to allow a typical image to make reasonable progress without continual page
faults.

5.2.3 Working Set List Parameters
Three critical parameters govern working set list dynamics: size, limit, and capacity
(see Figure 5.3).

The process's working set size is the number of WSLEs currently in use. No single
field contains this value; instead, it is the sum of two separately maintained counts,
PCB$L_PPGCNT and PCB$L GPGCNT.

The maximum number of WSLEs the process is allowed to use is known as its working
set limit. It is maintained in a field that is somewhat confusingly called PHD$L_
WSSIZE. Despite its name, it contains the working set limit, not the size (which is the
sum of the two fields listed in the previous paragraph).

313

Working Set List Dynamics

The amount of memory allocated to hold the working set list data structure varies
during the life of a process. The amount of memory currently allocated for the working
set list (PHD$L_WSLAST minus PHD$L_WSLIST, plus 1 entries) is referred to in this
chapter as the working set list capacity. When the capacity increases, the working set
list data structure itself may grow and consume more physical memory.

Figure 5.3 Working Set List P a r a m e t e r s

PHD + (8 �9 PHD$L_WSLIST)

PHD + (8 �9 PHD$L_WSLAST)

(PCB$L_PPGCNT + PCB$L_GPGCNT)
WSLEs are in use.

The process may use up to
PHD$L_WSSIZE WSLEs.

m
Capacity of the
working set list

When the working set limit is reduced, the working set list capacity is not necessarily
altered. The working set list simply becomes more sparsely populated with valid
WSLEs and more heavily populated with invalid WSLEs.

Table 5.2 shows process-specific and systemwide working set list parameters, quotas,
and limits. Note that for compatibility with OpenVMS VAX, user authorization file
(UAF) quotas and SYSGEN parameters related to the working set list are typically
specified externally in units of pagelets and converted to pages for internal use by the
executive.

Table 5.2 Working Set Lists: Limits and Quotas

Description Location or Name Comments

Working set size in pages PCB$L_PPGCNT +
PCB$L_GPGCNT

Cannot grow above working set
limit;
Updated each time a page is added
to or removed from the working set;
Reduced by proactive memory
reclamation, swapper trimming, and
$ADJWSL

314

Table 5.2 (continued)

5.2 The Working Set List

Working Set Lists: L imi t s and Quotas

Description Location or Name Comments

Working set limit PHD$L_WSSIZE

Default working set limit

Normal maximum working
set limit (index)

Extended maximum working
set limit (index); upper value
for automatic working set
limit adjustment

Upper limit to normal max-
imum working set limit
(index)

Upper limit to extended
maximum working set limit
(index)

Index of first WSLE

Index of first locked WSLE

Index of first dynamic WSLE

PHD$L_DFWSCNT

PHD$L_WSQUOTA

PHD$L_WSEXTENT

PHD$L_WSAUTH

PHD$L_
WSAUTHEXT

PHD$L_WSLIST

PHD$L_WSLOCK

PHD$L WSDYN

Cannot grow above working set
capacity;
Implicitly set by LOGINOUT~;
Altered by $ADJWSL, by automatic
working set limit adjustment, image
exit, and swapper trimming;
Altered by locking pages, creating
address space, and requesting direct
I/O

Set by LOGINOUT~;
Altered by DCL command SET
WORKING_SET/LIMIT

Set by LOGINOUT~;
Altered by DCL command SET
WORKING_SET/QUOTA

Set by LOGINOUT~;
Altered by DCL command SET
WORKING_SET/EXTENT

Set by LOGINOUT1;
Cannot be altered

Set by LOGINOUT1;
Cannot be altered

Always 1

The same for all processes in a
given system

Initialized by SHELL;
Altered by $LKWSETL64], $LCK-
PAGL64], $ULWSETL64], and
$ULKPAGL64];
Altered by PHD expansion and
contraction

1The manner in which a process is created determines how a value for this is defined. It may be defined
several times during different steps of process creation (see Chapters Process Creation and Process
Dynamics).

315

Working Set List Dynamics

Table 5.2 (continued) Working Set Lists: L imi t s and Q u o t a s

Description Location or Name Comments

Index of most recently
inserted WSLE

Index of last WSLE (deter-
mines capacity of list)

Sufficient number of dynamic
WSLEs for a process to
execute without continuous
faults

Number of dynamic WSLEs
excluding both PHD$L_
WSFLUID pages and a
reasonable number of page
table pages

Authorized default working
set limit in pagelets

Authorized normal maximum
working set limit in pagelets

Authorized extended max-
imum working set limit in
pagelets

Systemwide minimum num-
ber of fluid working set
pages

Number of pagelets to which
the swapper attempts to
shrink a working set before
outswapping it

Systemwide maximum
working set limit in pagelets

System working set limit in
pagelets

PHD$L_WSNEXT

PHD$L_WSLAST

PHD$L_WSFLUID

PHD$L_EXTDYNWS

UAF$L_DFWSCNT

UAF$L_WSQUOTA

UAF$L_WSEXTENT

MINWSCNT

SWPOUTPGCNT

WSMAX

SYSMWCNT

Initialized by SHELL;
Altered by $ADJWSL;
Updated each time an entry is
added to or released from the
working set;
May be altered if capacity decreased
or locked region increased

Initialized by SHELL;
May be altered by $ADJWSL, page
fault handler, image exit, automatic
working set limit adjustment,
working set page replacement

Set by SHELL to the value of
MINWSCNT

Updated each time size of dynamic
working set region is changed

Converted to pages and copied to
PHD$L_DFWSCNT

Converted to pages and copied to
PHD$L_WSAUTH and PHD$L_
WSQUOTA

Converted to pages and copied to
PHD$L_WSEXTENT and PHD$L_
WSAUTHEXT

SYSGEN parameter

SYSGEN parameter

SYSGEN parameter

SYSGEN parameter

316

Table 5.2 (continued)

5.2 The Working Set Llst

W o r k i n g Se t Lists: L i m i t s a n d Q u o t a s

Description Location or Name Comments

Default value for working
set limit default in pagelets
(used by $CREPRC)

Minimum value for working
set limit default in pagelets
(used by $CREPRC)

Default value for normal
maximum working set
limit in pagelets (used by
$CREPRC)

Minimum value for normal
maximum working set
limit in pagelets (used by
$CREPRC)

Default value for extended
maximum working set
limit in pagelets (used by
$CREPRC)

Minimum value for extended
maximum working set
limit in pagelets (used by
$CREPRC)

PQL_DWSDEFAULT

PQL_MWSDEFAULT

PQL_DWSQUOTA

PQL_MWSQUOTA

PQL_DWSEXTENT

PQL MWSEXTENT

SYSGEN parameter

SYSGEN parameter

SYSGEN parameter

SYSGEN parameter

SYSGEN parameter

SYSGEN parameter

During system initialization, enough virtual address space is reserved in each PHD for
the maximum-size working set list, one with as many entries as the number of pages
represented by the SYSGEN parameter WSMAX.

Each process is created with its initial working set limit and working set list capacity
set to the same value, the process's default working set limit, DFWSCNT (assuming
that DFWSCNT is less than or equal to WSMAX converted to pages). For a typical
interactive process, DFWSCNT is specified by the UAF entry. The executive thus
initially allocates physical memory for only a relatively small working set list.

When a process runs an image, it begins faulting pages; the working set size increases,
growing toward the working set limit. Once it reaches the limit, subsequent page
faults require the removal of pages from the working set. With the working set limit,
the executive governs the amount of physical memory a process may use.

317

Working Set List Dynamics

5.2.3.1 Working Set Limit
During system initialization, the SYSGEN parameters that affect minimum working
set limits are adjusted to allow for at least a minimum dynamic working set list
region. That is, SYSBOOT ensures that the values of PQL_MWSDEFAULT and PQL_
DWSDEFAULT represent a number of pages large enough to accommodate the sum of
the following:

�9 The SYSGEN parameter MINWSCNT, the minimum number of fluid pages in the
working set

* The worst-case number of L3PT pages to map MINWSCNT pages, namely, MIN-
WSCNT

* The maximum PHD

�9 The kernel stack page or pages

�9 The minimum number of page tables to map the P1 space defined by the SHELLxx
module

The manner in which a process is created determines how values for WSQUOTA,
WSEXTENT, and several other working set list paramters are defined. They are
defined and potentially redefined several times during different steps of process
creation. In the case of the typical interactive process, the values come from its
authorization file record and are minimized with WSMAX. Chapters Process Creation
and Process Dynamics supply further information.

The process can increase its default working set limit through the Digital command
language (DCL) command SET WORKING_SET. A running image can increase the
process's current working set limit by requesting the $ADJWSL system service. The
executive can increase a process's working set limit through automatic working set
limit adjustment. These mechanisms are discussed in Section 5.4.

A programmer with a good understanding of an image's paging behavior can voluntar-
ily reduce the process's working set limit by requesting the $ADJWSL system service.
There are several other less direct mechanisms by which the working set limit is
decreased:

�9 Automatic working set limit adjustment can reduce the limit (see Section 5.4.3).

�9 The swapper process can initiate a reduction of the working set limit with a mecha-
nism known as swapper trimming or working set shrinking. In an effort to acquire
needed physical memory, the swapper reduces the working sets and working set
limits of processes in the balance set before actually removing processes from the
balance set. Process selection is performed by a table-driven, prioritized scheme.
Chapter 6 describes the conditions that trigger this mechanism and the criteria by
which processes are selected.

* The process's working set limit is also reset at image exit to its default value,
DFWSCNT (see Chapter Image Activation and Exit).

318

5.2 The Working Set List

Whenever the executive adjusts the working set limit or locks pages into the working
set list, it checks that the dynamic region of the working set list has enough space.
For a typical process and address space, the executive checks that the number of
dynamic WSLEs is at least twice MINWSCNT. In this check, it ignores any working
set list extension above WSQUOTA, since any extension above quota is subject to
swapper trimming. To facilitate the check, the executive maintains the field PHD$L_
EXTDYNWS, which effectively contains the number of WSLEs in the dynamic region
of the working set list beyond the sum of the minimum number required and the
number in use for page tables.

The executive actually calculates the number of entries to be reserved as the sum of
MINWSCNT, PHD$L_PTCNTLCK (number of page table pages mapping locked or
window pages), and the smaller of MINWSCNT and the number of unlocked page table
pages.

For example, when a process tries to lock a page into its working set list, the executive
checks that PHD$L_EXTDYNWS has a value of at least 2, one entry for the page and
another for its page table page.

5.2.3.2 Working Set Size
A process's working set size increases as it executes code and faults pages into its
working set.

The process's working set size decreases as the result of its deleting virtual ad-
dress space (explicitly or, for example, at image exit) or requesting the $PURGWS
or $PURGE_WS system service. With a mechanism known as proactive memory recla-
mation, the executive may reduce the working set size of a long-waiting process or a
periodically waking process to reclaim memory for a depleted free page list. Proactive
memory reclamation differs from swapper trimming in that the former reduces the
working set size but not the limit. This mechanism and the conditions that trigger it
are described in Section 5.5.

A process's working set size also decreases as an effect of having its working set limit
decreased below its working set size.

5.2.3.3 Working Set Capacity
Whenever the working set limit is increased to a value that would exceed the working
set list capacity, the capacity must grow as well to accommodate the new limit. As
described in Chapter 2, the working set list capacity is dynamic; it grows toward the
process section table (PST). When the working set list must expand into the area
already occupied by the PST, the PST is moved to higher addresses. However, there
is not always room in the PHD for the expanded working set list. The total space
available for both the working set list and the PST is determined by the two SYSGEN
parameters WSMAX and PROCSECTCNT.

Because a process is allowed to create more than PROCSECTCNT sections, the PST
can grow into space that would have been available for the working set list. In that
case, the working set list capacity can grow no further, and the process must make do
with its current capacity and a limit no larger than that capacity.

319

Working Set List Dynamics

Furthermore, because the working set list contains WSLEs for all the PHD pages in
physical memory, its size and the size of the PHD are interrelated to a small extent.
As the working set grows, the working set list in the PHD grows, and more WSLEs are
required to describe the PHD pages in memory. The size of the PHD is constrained to
be no larger in pages than half of the process's working set quota.

This constraint preserves a reasonable number of WSLEs for non-PHD pages. A pro-
cess with a large value for working set extent and a relatively small value for working
set quota could have the expansion of its working set limited by this constraint.

At image exit, in addition to reducing the process's working set limit, the executive
may reduce the working set list capacity; if possible, the executive resets PHD$L_
WSLAST by moving it toward lower addresses past any empty WSLEs. It continues
until it reaches a valid WSLE or until the working set list capacity is just equal to the
working set limit. Additionally, when the executive is scanning the working set list
to find an entry for a page being faulted, it may move PHD$L_WSLAST in the same
way, compressing invalid entries at the high-address end of the working set list. The
executive must strike a balance between spending too much overhead compressing
empty entries so that PHD$L_WSLAST is precise and spending too much overhead
searching for a valid replacement WSLE when the working set list is sparse (see
Section 5.3.1).

5.3 Working Set Replacement
When code executing in a process references an invalid virtual page, the page fault
handler must take steps to make the page valid. It must also create a WSLE for
the page. If there is no room in the working set list for another entry, one must be
removed. The page fault handler uses the dynamic region of the working set list to
determine which virtual page to discard.

The dynamic region of the working set list can contain unused WSLEs. When the
working set limit is reduced, the working set list capacity is usually left intact, result-
ing in a sparse working set list. This makes adding a page to the working set slightly
more complex. That a WSLE is empty does not necessarily mean the process can make
use of it; the size of the working set must be less than the working set limit. If the
process is already at its limit, a nonempty WSLE must be found whose virtual page
can be removed from the working set to make room for the new page.

The executive uses a modified FIFO scheme for its working set list replacement
algorithm. The entry most likely to have been in the working set list for the longest
time, the one following that pointed to by PHD$L_WSNEXT, is the one first considered
for replacement.

320

5.3 Working Set Replacement

5.3.1 Scan of the Working Set List
When the page fault handler needs an empty WSLE, it calls routine MMG$FREWSLE,
in module PAGEFAULT. The following steps summarize its flow. Subsequent sections
describe more details of particular aspects of its flow.

MMG$FREWSLE scans the dynamic region of the working set list. It begins by
checking whether the WSLE whose index is in PHD$L_WSNEXT is empty. If not, it
starts with the next WSLE.

1. If the WSLE is empty (contents are zero), MMG$FREWSLE checks whether the
entry can be used (see Section 5.3.2). If it can be used, it is selected.

2. If the WSLE is not empty (contents are nonzero) but is an active page table page
(one that maps valid or window pages), the WSLE cannot be used.

3. If the WSLE is not empty but is a process-private page table page that maps
no pages at all (its WSLE$V_WSLOCK bit is clear), MMG$FREWSLE makes
additional checks (see Section 5.3.4) to see whether the WSLE is suitable for reuse.
If not, the WSLE is skipped.

If the page table maps no valid or window pages, it may be usable.
MMG$FREWSLE takes the steps described in Section 5.3.3 to determine whether
the page table page can be released and its WSLE reused.

4. If the WSLE is not empty, MMG$FREWSLE makes additional checks (see Section
5.3.4) to see whether the WSLE is suitable for reuse. If not, the WSLE is skipped.

5. If the WSLE is selected for reuse and is not empty, MMG$FREWSLE takes the
actions described in Section 5.3.5.

6. If the WSLE is not selected, the index is incremented, and the steps in this list are
repeated until a usable WSLE is found. If the index exceeds the end of the list, it
is reset to the beginning of the dynamic working set list.

Once a WSLE is selected for reuse, PHD$L_WSNEXT is updated to contain its quad-
word index.

5.3.2 Using an Empty Entry in the Working Set List
When an empty WSLE is found, MMG$FREWSLE checks whether a page can be
added to the working set. If there are fewer pages in the working set than WSQUOTA,
a new physical page may be added to the working set. It may also be possible to add
physical pages to the working set above WSQUOTA (up to WSEXTENT), depending on
the size of the free page list.

The following checks are required for an empty WSLE to be usable:

, If the working set size (PCB$L_PPGCNT plus PCB$L_GPGCNT) equals the
working set limit, the empty WSLE may not be used, and a page in the working
set must be replaced.

321

Working Set List Dynamics

2. If the working set size has not reached its limit, the size is compared to
WSQUOTA. If the size is less than WSQUOTA and there are more than FREELIM
pages on the free page list, a new page is allowed into the working set. The empty
WSLE is used.

3. If the working set has WSQUOTA or more pages, the number of pages on the
free page , s t is compared to the SYSGEN paramete r GROWLIM. If there are
more than GROWLIM pages on the free page list, a new page is allowed into the
working set. The empty WSLE is used.

Notc ~hat to extend the working set size above WSQUOTA, the working set limit
must have been extended above WSQUOTA. For the working set limit to have been
extended above WSQUOTA, the free page list must have contained more than the
SYSGEN paramete r BORROWLIM pages. For more information on working set
limits, BORROWLIM, and automatic working set limit adjustment, see Section 5.4.

4. Even if the free page list is below the limit at which another page could be added
to the process's working set, a new page can be added if the working set contains
fewer fluid pages than PHD$L_WSFLUID: if the size of the working set minus
locked pages and minus PHD$L_PTCNTMAX is less than or equal to SYSGEN
parameter MINWSCNT, the empty WSLE is used.

If an empty but unusable WSLE is found at the end of a working set list tha t has
reached its limit, the working set list capacity is reduced; PHD$L_WSLAST is reset to
point to the last unavailable (nonzero) WSLE in the working set list.

5.3.3 Releasing a Dead Page Table Page
MMG$FREWSLE determines whether a WSLE describing a page table page can
be reused to describe a page being faulted into the working set list. It first checks,
however, tha t the executive is not looping endlessly, trying to remove a WSLE from a
working set list tha t contains only nonremovable entries: if it has already tested as
many page table pages as there are dynamic pages in the working set, tha t means
there are no fluid pages in the working set list. It tests whether it may increase the
working set limit based on the number of free pages and the relation between the
working set limit and WSQUOTA.

If there are at least BORROWLIM free pages and the limit is less than WSEX-
TENT, the limit can be increased up to WSEXTENT.

�9 If there are fewer than BORROWLIM free pages and the limit is less than
WSQUOTA, the limit can be increased up to WSQUOTA.

If the limit cannot be increased, MMG$FREWSLE simply re turns without having freed
a WSLE.

If the limit can be increased, MMG$FREWSLE increases it without going over the
maximum previously determined. If possible, it increases the limit by MINWSCNT
pages. If tha t is not possible, it increases the limit by 2 pages. If tha t is not possible,
it increases the limit by only 1 page.

322

5.3 Working Set Replacement

Having increased the limit, MMG$FREWSLE scans the working set list again for a
free entry or a WSLE that describes a page table page that could be removed from the
working set list. After retesting as many page table pages as there are dynamic pages,
it simply returns without having freed a WSLE.

If it has not already tested too many WSLEs that describe page tables, it calls SCAN-
DEADPT to examine the page table page. There are several possible outcomes:

�9 The WSLE describes a page table page that maps valid pages and is therefore not
reusable.

�9 The WSLE describes a page table page that maps only free and modified pages and
can be released from its current use for reuse after the ties between those pages
and the page table page are severed, that is, after no virtual pages mapped by the
page table page are cached in the free or modified page list.

�9 The WSLE describes a page table page that maps only free and modified pages
pages but the working set list contains enough dynamic entries that this one need
not be released now. An at tempt is made to leave a page table page in the working
set list to keep its virtual pages cached on page lists, in case the process refaults
them.

SCANDEADPT first determines whether the process has any dead page table pages.
A dead page table page is one that maps no valid or window pages. It checks by
comparing PHD$L_PTCNTVAL, the number of page table pages with valid WSLEs, to
PHD$L_PTCNTACT, the number of active page table pages. If PHD$L_PTCNTACT is
larger than PHD$L_PTCNTVAL, the difference between them is the number of dead
page table pages. If there are none, it returns immediately. MMG$FREWSLE skips
this WSLE and continues its scan of the working set list.

If there are any dead page table pages, SCANDEADPT checks how full the working
set list is. It checks whether the dynamic region of the working set list has at least
twice MINWSCNT entries, not counting those that describe dead page table pages or
page table pages that map pages locked into memory or into the working set list. If
so, it has sufficient dynamic entries; the dead page table page scan is postponed, and
SCANDEADPT returns. MMG$FREWSLE skips this WSLE and continues its scan of
the working set list.

In making this check, SCANDEADPT uses the process's working set limit if one of the
following is true:

�9 The working set size is less than MINWSCNT.

�9 The limit is less than or equal to WSQUOTA and the free page list has at least
FREELIM pages.

�9 The limit is greater than WSQUOTA and the free page list has at least GROWLIM
pages.

If memory is relatively scarce, the process will not be allowed to expand its working
set, so SCANDEADPT restricts its test to the dynamic entries in a working set of
WSQUOTA pages.

323

Working Set List Dynamics

If there are not sufficient dynamic WSLEs to leave a potentially dead page table page
in the working set list, SCANDEADPT checks whether this page is a dead page table
page by examining the PFN database record of the physical page occupied by the
page table page. If PFN$W_PT_VAL_CNT is non-negative, the page table page maps
pages in the working set list and cannot be released. SCANDEADPT returns, and
MMG$FREWSLE goes on to the next WSLE.

If PFN$W_PT_VAL_CNT is negative, the page table page is dead, and SCANDEADPT
increments PMS$GL_DPTSCN to indicate one more dead page table scan. It stores the
working set list index of the dead page table in PHD$L_NEXT. It must scan each PTE
within the page table page to determine whether it is a transition PTE. If the page
table page contains transition PTEs for pages on the free page list, SCANDEADPT
must modify the PFN database for those pages before the WSLE can be reused. It
moves each such page to the front of the free page list and sets the delete contents bit
in the page's PFN$L_PAGE_STATE field.

If the page table page contains transition PTEs for pages on the modified page list,
those pages must be written to their backing store before the page table page can
be released from the working set list. SCANDEADPT sets the delete contents bit in
each page's PFN$L_PAGE_STATE field and requests a selective purge of the modified
page list so that those pages will be written. If the process's working set is being
shrunk, SCANDEADPT requests that pages in a particular address range be purged
(an SVAPTE request); otherwise, it requests that pages mapped by this page table
page be purged (a PAGE_TABLE request). SCANDEADPT checks that at least one
page file has been installed and, if not, simply returns. Otherwise, it returns to
MMG$FREWSLE with a status indicating it should return to its caller to wait. The
kernel thread is placed into a resource wait for RSN$_MPWBUSY until the modified
page list is selectively purged. Chapter 4 describes the selective purge mechanism and
the resource waits.

If the page table contained transition PTEs only for free page list pages, those pages
have been released, and SCANDEADPT returns to MMG$FREWSLE with a status
indicating that it should reuse this WSLE.

5.3.4 Skipping WSLEs
The operating system uses both process-specific criteria and frequency-of-use informa-
tion maintained by the hardware to modify its strict FIFO page replacement algorithm.
The working set replacement routine can skip a limited number of WSLEs with par-
ticular characteristics. The number is specified by the special SYSGEN parameter
TBSKIPWSL. In addition, it skips entries temporarily locked into the working set by
kernel mode code.

The architecture defines a processor register related to translation buffer (TB) use
called TB check (TBCHK). Kernel mode code can execute the instruction CALL_PAL
MFPR, specifying the TBCHK register and a virtual address to determine whether the
translation for a particular virtual page is cached. The presence of a TB entry for
a page indicates the page has been referenced recently and may therefore be a poor
candidate to remove from the working set.

324

5.3 Working Set Replacement

Additionally, a process can declare a procedure to be notified of every pending removal
from its working set list. The procedure can return a status indicating that this page
is a poor choice.

Kernel mode software running in process context calls the routine MMG$DECLARE_
WSL_PAGER, in module SYSLKWSET, with two arguments. One is the procedure
value of a routine to be called when a page is about to be removed from that process's
working set. The other is a parameter to be passed to that procedure. Because the
working set list removal procedure may be called from outside the context of that pro-
cess, the procedure must be within code loaded into system space. MMG$DECLARE_
WSL_PAGER stores the procedure value in PCB$A_FREWSLE_CALLOUT and the
parameter in PCB$L_FREWSLE_PARAM.

The working set list replacement algorithm works in the following manner. Before a
valid WSLE is reused, a check is first made to see if a translation for the virtual page
described by that WSLE is in the TB. If the translation for that page is cached in the
TB, and fewer than TBSKIPWSL entries have been skipped during this scan of the
working set list, MMG$FREWSLE skips that WSLE and resumes the search for an
available WSLE with the next one. Note that the translation of an address referenced
by another kernel thread of this process may be cached in the TB of one or more other
processors. Because the overhead to check the other processors is greater than the
possible benefit of keeping an active page in the working set list, only the TB of this
processor is checked.

If the translation is not cached in the TB, MMG$FREWSLE compares the address
of the virtual page decribed by the WSLE to the starting and ending addresses in
PCB$Q_KEEP_IN_WS and PCB$Q_KEEP_IN_WS2. If the address falls within that
range, MMG$FREWSLE skips that WSLE and resumes the search for an available
WSLE with the next one.

If the translation is not cached in the TB, the virtual page is not within that range,
and PCB$A_FREWSLE_CALLOUT is nonzero, MMG$FREWSLE calls the working set
removal procedure with the specified parameter, the virtual address, a flag, and the
addresses of the PCB and PHD. Initially the value of the flag is zero. If the procedure
returns the status SS$_RETRY, MMG$FREWSLE skips that WSLE and resumes the
search for an available WSLE with the next one.

Aider TBSKIPWSL WSLEs have been skipped in this manner, the checks for whether
the translation is cached in the TB and whether the removal procedure will approve
are abandoned and the next valid WSLE that is not within the PCB$Q_KEEP_IN_WS
range is simply reused. First, however, if there is a working set removal procedure,
MMG$FREWSLE calls it with a flag value indicating that the selected page will
definitely be removed from the working set.

If the value of TBSKIPWSL is set to zero, the skipping of WSLEs whose translations
are in the TB is disabled; although the working set removal procedure is still called, it
is called with the flag value indicating that the selected page will definitely be removed
from the working set. The default value of TBSKIPWSL is 8.

325

Working Set List Dynamics

Use of the working set removal procedure is limited to kernel mode applications and
is currently intended for support of a graphics subsystem. Accessing its own copy of
the process's page table, the graphics hardware determines how to treat a particular
page based on its valid bit. The device driver for the graphics hardware requests
notification of working set list removals so it can maintain the copy of the page table.
If a page selected for removal is currently in use by the graphics hardware, the
driver's notification routine would indicate that the page is a poor choice. Use of this
mechanism is reserved to Hewlett-Packard Company; any other use is unsupported.

5.3.5 Reusing WSLEs
The virtual page that the WSLE represents must be removed before the WSLE can be
reused. Typically, the virtual page is valid and must be made invalid. This section is
confined to a description of WSLEs representing valid pages.

For such a page, MMG$FREWSLE takes the following steps:

,

1

,

,

It tests whether the page has been modified. If not, it continues with step 2. If the
page has been modified, MMG$FREWSLE tests whether its backing store is a page
file and, if so, how full the modified page list is.

If the modified page list has fewer pages than the SYSGEN parameter MPW_
WAITLIMIT, or if modified page writing is in progress and the list has fewer pages
than the SYSGEN parameter MPW_LOWAITLIMIT, MMG$FREWSLE proceeds
with step 2.

Otherwise, to avoid deadlocks, MMG$FREWSLE checks that the kernel thread
does not hold any mutexes, that it is not the swapper, that bit MMG$V_NOWAIT
in MMG$GL_FREWFLGS is clear, and that at least one page file has been in-
stalled. If any condition is false, MMG$FREWSLE proceeds with step 2.

If all are true, it returns a status to the page fault handler indicating that the
kernel thread should be placed into a resource wait. The kernel thread is placed
into the resource wait RSN$_MPWBUSY until the modified page list has dropped
below MPW_LOWAITLIMIT pages.

At alternative entry point MMG$FREWSLX_64, the routine clears the valid,
modify, no-TB-miss-memory-barrier-required, fault-on-execute, fault-on-write,
and address space match bits in the PTE. If the fault-on-execute bit was set, it
invalidates any cached copy of the PTE from the data stream translation buffer
(DTB). If the bit was clear, it invalidates any cached copy from both the instruction
stream translation buffer (ITB) or the DTB (see Section 5.3.6).

If the page was modified, it sets the saved modify bit in the page's PFN$L_PAGE_
STATE field.

If the page is a global page, whether read-only or writable, MMG$FREWSLE
changes the PTE to the global page table index form.

326

SlID

5.3 Working Set Replacement

It updates the data s tructures describing the process-private page table page tha t
maps the page being removed. It decrements the share count for the page table
page to indicate tha t it maps one less valid or t ransi t ion page. If this was the last
valid or t ransi t ion page mapped by the page table page (that is, if the share count
makes the transi t ion from 1 to 0), it locates the WSLE for the page table page and
clears its WSL$V_WSLOCK bit. It also decrements

n PHD$L_PTCNTACT, the number of active page table pages for the process

The PHD reference count, the number of reasons the PHD should remain in
memory, which is kept in the PHD's entry in the array at PHV$GL_REFCBAS_
LW (see Chapter 2)

MMG$FREWSLE decrements the share count for the global page to indicate one
less process is mapping it. If the count is still nonzero, it proceeds with step 6. If
the count goes to zero, it clears the valid, modify, fault-on-write, fault-on-execute,
and address space match bits in the global page table entry (GPTE).

For a page tha t is a process page, a global page with a zero share count, or a
process page table, it decrements the reference count for the page to indicate one
less reference to it.

If the reference count goes to zero, MMG$FREWSLE calls MMG$REL_PFN,
in module ALLOCPFN, to insert the page at the end of the free or modified
page list, depending on the state of its saved modify bit. If the page has been
modified and has an assigned page file backing store, MMG$REL_PFN releases
its backing store, which has a now-obsolete copy of the page. The PFN$Q_BAK
field is reset to show unallocated page file backing store.

If the reference count is nonzero, indicating possible direct or paging I/O in
progress, MMG$FREWSLE examines the PFN$L_PAGE_STATE field and, if
the page is active, changes its s tate to release pending.

For a process page, it also updates the data s t ructures describing the page's page
table page. It decrements the share count for the page table page to indicate tha t it
maps one less valid or transit ion page. If this was the last valid or t ransi t ion page
mapped by the page table page (that is, if the share count makes the t ransi t ion
from 1 to 0), it locates the WSLE for the page table page and clears its WSL$V_
WSLOCK bit. It also decrements PHD$L_PTCNTACT, the number of active
page table pages for the process, and the PHD's entry in the ar ray at PHV$GL_
REFCBAS_LW, the number of reasons the PHD should remain in memory.

6. MMG$FREWSLE calls MMG_STD$DELWSLEX_64, in module PAGEFAULT.

MMG_STD$DELWSLEX_64 decrements PFN$W_PT_VAL_CNT in the PFN
database record for the page table page tha t mapped this page to indicate the
page table maps one less valid page. If tha t count goes t o - 1 , it also decrements
PHD$L_PTCNTVAL to indicate one less page table page mapping valid pages. It
decrements either PCB$L_PPGCNT or PCB$L_GPGCNT, depending on page type.
It clears the WSLE and returns.

327

Working Set List Dynamics

7. MMG$FREWSLE returns to its caller.

5.3.6 TB Invalidation
As described in Chapter 1, a translation buffer is a CPU component that caches the
results of recent successful virtual address translations of valid pages. Each TB entry
caches one translation: a virtual page number and, minimally, its corresponding PFN,
address space match, and protection bits. The size and organization of a TB are
CPU-specific. Some CPUs have both an ITB and a DTB.

The operating system is responsible for flushing no longer correct entries from the TB.
For example, it must invalidate a TB entry corresponding to a no longer valid PTE
that maps a page being deleted or removed from a process's working set. It must also
invalidate the TB entry for a valid page whose protection is changing.

A TB entry whose address space match (ASM) bit is set represents a physical page
shared at the same virtual address in all processes. In practice, only system space
pages and shared page table space have the ASM bit set. On a symmetric multipro-
cessing (SMP) system, such a shared page can be represented in multiple processors'
TBs and must therefore be invalidated in the TBs of all processors.

Because a process with a single kernel thread runs on only one processor at a time,
its process-private TB entries, those with a clear ASM bit, need be invalidated only
on the TB of the processor on which the kernel thread is running. The kernel threads
of a mult i threaded process, however, can run on multiple processors. Such a process's
pages can be represented in multiple processors' TBs and must therefore be invali-
dated on all processors on which its kernel threads are currently executing. (Chapter
Scheduling describes how the assignment of address space numbers to kernel threads
prevents stale TB entries on processors on which its kernel threads are not currently
executing.)

Executive modules typically invalidate TB entries through one of the following macros,
which are provided for MACRO-32, BLISS, and C:

�9 TBI_DATA_64--Invalidate a single DTB entry for a page whose fault-on-execute
bit is still set.

�9 TBI_SINGLE~Inval idate a single entry from both the ITB and the DTB.

�9 TBI_ALL--Invalidate all TB entries.

Note that the TBI_SINGLE_64 macro provided by versions prior to OpenVMS Version
7.0 is no longer available; TBI_SINGLE can now handle a 32-bit or 64-bit address.

As described in Chapter 1, the executive sets the fault-on-execute bit in the PTE of
each page faulted as the result of a data fetch. If an at tempt is made to execute an
instruction from the page, a fault-on-execute exception occurs. The exception service
routine clears the fault-on-execute bit. When the fault-on-execute bit is still set for a
page whose TB entries must be invalidated, the executive invokes the TBI_DATA_64
macro because there can be no ITB entry for the page.

328

5.3 Working Set Replacement

Both TBI_SINGLE and TBI_DATA_64 include an argument to specify the virtual
address to be invalidated and an argument to specify the address of the PCB associated
with the process context. Each has an ENVIRON argument whose default value is MP.
Other values for the ENVIRON argument are THIS_CPU_ONLY, ASSUME_SHARED,
and ASSUME_PRIVATE.

If one of these macros is invoked with the ENVIRON argument specified as THIS_
CPU_ONLY, the macro merely generates a CALL_PAL MTPR instruction whose processor
register depends on the macro. (Chapter 1 lists the processor registers associated
with TB invalidation.) These macros are invoked this way when the virtual address is
known to be one whose ASM bit is clear and private to a single-thread process or when
the virtual address is known to be CPU-specific.

To invalidate a TB entry for a page that is shared, the executive invokes the appropri-
ate TB invalidate macro and explicitly specifies the ENVIRON argument as ASSUMED_
SHARED. In response, code is generated that transfers control to the subroutine
in module TBI_ROUTINES corresponding to the macro, either MMGLSTD]$TBI_
SINGLE or MMGLSTD]$TBI_DATA_64. Each of these subroutines tests whether
SMP is enabled and, if not, merely executes a CALL_PAL MTPR instruction specifying
the appropriate processor register. If SMP is enabled, each subroutine calls MP_
INVALIDATE or MP_INVALIDATE_DATA, in module TBI_ROUTINES. Chapter Sym-
metric Multiprocessing describes MP_INVALIDATE, MP_INVALIDATE_DATA, and
the means by which one processor notifies the other members to flush one or all TB
entries.

To invalidate a TB entry for a page that may or may not be shared, the executive calls
the appropriate TB invalidate macro and specifies the ENVIRON argument as MP or
implicitly specifies it by omitting the argument. Code is generated that tests whether
SMP is enabled and, if not, executes a CALL_PAL MTPR instruction. If SMP is enabled,
the generated code tests whether the address is actually in shared space (system or
shared page table space):

�9 If so, it calls MMG[_STD]$TBI_SINGLE or MMGLSTD]$TBI_DATA_64.

�9 If not, it tests whether the process has multiple kernel threads. If so, it calls
MMGLSTD]TBI_SINGLE_THREADS or MMGLSTD]$TBI_DATA_64_THREADS,
in module TBI_ROUTINES. If the process is single-threaded, it generates a
CALL_PAL MTPR instruction.

MMGLSTD]$TBI_SINGLE_THREADS and MMGLSTD]$TBI_DATA_64_THREADS
call MP_INVALIDATE_THREADS or MP_INVALIDATE_DATA_THREADS, in module
TBI_ROUTINES. These two subroutines differ from MP_INVALIDATE and MP_
INVALIDATE_DATA in that they notify only those processors on which kernel threads
of this process are active.

To invalidate a TB entry for a page that is not shared, the executive calls the appropri-
ate TB invalidate macro and explicitly specifies the ENVIRON argument as ASSUMED_
PRIVATE. Code is generated that tests whether the process has multiple kernel
threads and, if so, transfers control to either MMGLSTD]$TBI_SINGLE_THREADS

329

Working Set List Dynamics

or MMGLSTD]$TBI_DATA_64_THREADS. If not, the generated code executes a
CALL_PAL MTPR instruction.

The OpenVMS Alpha Guide to Upgrading Privileged-Code Applications contains
further information on the use of the TB invalidate macros.

5.4 Working Set Limit Adjustment
The working set limit is the maximum number of WSLEs the process is allowed to
use. A process's working set limit (see Table 5.2) varies over its lifetime as a result of
events such as image execution and exit, dynamic working set limit adjustment, and
swapper trimming.

The working set limit can be altered with the $ADJWSL system service, described in
Section 5.4.1. Requested explicitly by the process, the system service can alter the
working set limit up to WSEXTENT.

The service can also be requested automatically on behalf of the process, for example,
when the process tries to expand its address space. The executive checks whether
after adding page tables to map the new space, the dynamic working set list would
have enough room for the fluid working set (PHD$L_WSFLUID) plus the worst-case
number of page table pages required to map it, to allow the process to perform useful
work. If this check fails, and the process's working set limit is smaller than its quota,
the executive increases the process's limit.

Similarly, when a process tries to lock pages into memory or into its working set
list, explicitly through system service or implicitly through requesting direct I/O, the
executive checks that the space left for dynamic WSLEs is sufficient. If not and if the
limit is smaller than the quota, the executive increases the process's limit.

The $ADJWSL service is also requested on behalf of the process by the quantum-
end routine when it performs automatic working set limit adjustment. Through this
means, the maximum size to which the working set limit can grow is WSQUOTA, un-
less there are sufficient pages on the free page list (more than the SYSGEN parameter
BORROWLIM). In that case, automatic working set limit adjustment can enlarge the
limit up to WSEXTENT.

After the working set limit is increased, if there are more than the SYSGEN parameter
GROWLIM pages on the free page list, the executive allows the process to use the
extended limit by adding more pages to its working set without removing already valid
entries. Adding pages to a process's working set decreases the probability that the
process will incur a page fault.

Section 5.4.3 describes the automatic working set limit adjustment mechanism.

330

5.4 Working Set Limit Adjustment

5.4.1 $ADJWSL System Service
The $ADJWSL system service is requested to alter the process's working set limit by
a number of pagelets. Its procedure, EXE$ADJWSL in module SYSADJWSL, runs
in kernel mode, at interrupt priority level (IPL) 2 and above. EXE$ADJWSL first
converts its input argument from pagelets to pages, rounding up if necessary. It then
determines whether the request is to increase or reduce the limit.

To increase the limit, EXE$ADJWSL first checks whether the process has multiple
kernel threads. If so, it acquires the MMG spinlock, raising IPL to IPL$_MMG, to
serialize access to fields such as PHD$L_LAST and PHD$L_WSSIZE with the page
fault service routine. Although the need to acquire the inner mode semaphore prevents
more than one kernel thread in a process from executing a memory management
system service, one kernel thread could be executing EXE$ADJWSL while another
incurred a page fault.

EXE$ADJWSL then checks and possibly reduces the size of the increase. The new
limit must be less than or equal to the value of the SYSGEN parameter WSMAX,
converted from units of pagelets to pages; less than or equal to the process's ex-
tended maximum working set limit; and within the system's physical memory capacity
(available pages minus the minimum size of the free page list).

If the new working set limit is within the current capacity of the working set list,
EXE$ADJWSL computes a new value for PHD$L_EXTDYNWS and returns. Other-
wise, EXE$ADJWSL must call MMG$ALCPHD, in module PHDUTL, to increase the
working set list capacity. If EXE$ADJWSL acquired the MMG spinlock, it releases it
and drops IPL to 2 before calling MMG$ALCPHD.

MMG$ALCPHD tests whether there is a gap between the high-address end of the
working set list and the low-address end of the PST that is large enough for the
working set list expansion. If not, it tries to compress enough unused entries from
the low-address end of the PST to accommodate the expansion. If that also fails,
MMG$ALCPHD tries to shift the PST to higher addresses by moving it to as yet
unused pages of the PHD. As previously described, the PHD cannot be expanded in
this manner if the number of pages in the nonpageable part of the current PHD is half
the size of the process's WSQUOTA.

If expanded working set list pages are created, they must be locked into the working
set list. It is possible that locking all the expansion pages at once would leave insuf-
ficient extra dynamic entries in the existing working set list. However, if the working
set list were partially expanded, the number of dynamic entries would increase, allow-
ing more expansion pages to be locked. Thus, expanding the working set limit may
require multiple iterations.

MMG$ALCPHD returns the number of entries by which it increased the capacity of
the working set list. If no increase was possible, it returns zero.

If the process has multiple kernel threads, EXE$ADJWSL reacquires the MMG
spinlock, raising IPL to IPL$_MMG.

331

Working Set List Dynamics

If MMG$ALCPHD added any new entries, EXE$ADJWSL changes PHD$L_WSNEXT
to point to the first of the newly added WSLEs and clears the WSLEs to initialize
them. It adds the number of new WSLEs to both PHD$L_WSLAST and PHD$L_
WSSIZE. It recalculates PHD$L_EXTDYNWS and returns to its requestor.

To decrease the limit, EXE$ADJWSL first acquires the MMG spinlock, raising IPL to
IPL$_MMG, to block swapper trimming and possible quantum-end working set limit
adjustment. It sets MMG$V_NO_MPL_FLUSH in MMG$GL_FREWFLGS to delay
modified page writing during MMG$SHRINKWS's execution (see Chapter 4). This
enables multiple requests to accumulate before the modified page list is processed,
thus improving performance. It calls MMG$SHRINKWS, in module SYSADJWSL.

MMG$SHRINKWS checks and possibly reduces the size of the decrease. The new limit
must allow for a dynamic portion of the working set list that can accommodate at least
SYSGEN parameter MINWSCNT WSLEs plus the number of page tables locked in the
working set. In addition, PHD$L_EXTDYNWS cannot be reduced below zero.

MMG$SHRINKWS modifies the working set limit. If the process's working set size
is already less than or equal to the new limit, it simply returns to EXE$ADJWSL.
Otherwise, MMG$SHRINKWS repeatedly calls MMG$FREWSLE (see Section 5.3.1),
in module PAGEFAULT, for each page to be removed from the process's working set.
The reduced list can be sparse, that is, can contain unused and unusable WSLEs; the
working set capacity is not necessarily decreased with the working set limit. Control
returns to EXE$ADJWSL.

If MMG$FREWSLE generated modified page write requests, EXE$ADJWSL requests
a modified page flush (see Chapter 4) and changes the kernel thread's state to mis-
cellaneous wait on resource RSN$_MPWBUSY. If MMG$FREWSLE did not generate
additional requests, but returned a status from SCANDEADPT indicating the ker-
nel thread should be stalled, EXE$ADJWSL changes the kernel thread's state to
miscellaneous wait on the specified resource, for example, RSN$_MPWBUSY. When
EXE$ADJWSL returns, the system service dispatcher will wait the kernel thread in
the access mode from which the $ADJWSL request was made.

EXE$ADJWSL releases the spinlock, recalculates PHD$L_EXTDYNWS, and returns.

5.4.2 SET WORKING_SET Command
The DCL command SET WORKING_SET enables the user to alter the default working
set limit (DFWSCNT), the normal maximum working set limit (WSQUOTA), or the ex-
tended maximum working set limit (WSEXTENT). None of these can be set to a value
larger than the authorized extended maximum working set limit (WSAUTHEXT).
For OpenVMS VAX compatibility, the command's qualifiers are expressed in units of
pagelets.

Altering the default limit affects the working set list reset operation performed by
the routine MMG$IMGRESET, in module PHDUTL, which is called at image exit.
Altering the normal maximum working set limit affects the maximum working set
limit when physical memory is not plentiful. It changes the upper limit for future
$ADJWSL system service requests.

332

5.4 Working Set Limit Adjustment

With the / [NO]ADJUST qualifier to this command, a user can also disable or reenable
automatic working set limit adjustment. Use of tha t qualifier sets or clears the process
control block (PCB) status longword bit PCB$V_DISAWS.

5.4.3 Automatic Working Set Limit Adjustment
As described in Section 5.4, the executive adjusts working set limit through an explicit
$ADJWSL request or as a side effect of image exit, address expansion, or page locking.
In addition it also provides automatic working set limit adjus tment to keep a process's
page fault ra te within limits set by one of several SYSGEN parameters . Note tha t no
such adjus tment takes place for real-time processes or for a process tha t has disabled
automatic working set limit adjus tment through the DCL command SET WORKING_
SET/NOADJUST. The executive can also use automatic working set limit ad jus tment
to reclaim an extension to the working set of a low-priority process.

Table 5.3 shows the parameters tha t control automatic working set limit adjustment .
All the SYSGEN parameters listed in this table are dynamic and can be al tered
without rebooting the system.

Automatic working set limit adjus tment takes place as par t of the quantum-end
routine (see Chapter Scheduling).

Table 5.3 Proces s and Sys tem P a r a m e t e r s Used by Automat i c Working Set
Limit Adjus tment

Location
Description or Name Comments

Total amount of CPU time
charged to this process

Amount of CPU time at
last adjustment check

Total number of page faults
for this process

Number of page faults at
last adjustment check

Most recent page fault rate
for this process

Process automatic working
set limit adjustment flag

PHD$L_CPUTIM

PHD$L_TIMREF

PHD$L_
PAGEFLTS

PHD$L_PFLREF

PHD$L_
PFLTRATE

PCB$V_DISAWS
in PCB$L_STS

Updated by interval timer interrupt
service routine

Updated by quantum-end routine when
adjustment check is made;
Altered when process is placed into a
wait

Updated each time this process incurs a
page fault

Updated by quantum-end routine when
adjustment check is made

Recorded at each adjustment check;
Compared to PFRATH and PFRATL

When set, disables adjustment for
process

333

Working Set List Dynamics

Table 5.3 (continued) Process and Sys tem Parameters Used by Automat ic
Working Set Limit Adjus tment

Description
Location
or Name Comments

Amount of CPU time
process must accumulate
before page fault rate check
is made

Lower limit page fault rate

Number of pagelets by
which to decrease working
set limit

Lower bound in pagelets for
decreasing working set list
size

Upper limit page fault rate

Number of pagelets by
which to increase working
set limit

Free page list size that
allows growth of working
set

Free page list size that
allows extension of working
set limit

AWSTIME 1

PFRATL 1

WSDEC 1

AWSMIN 1

PFRATH 1

WSINC 1

GROWLIM 1

BORROWLIM 1

1This value is a SYSGEN parameter.

When 0, disables adjustment based on
page fault rate for entire system

Also, amount to reclaim from low-priority
process with extended working set

Do not adjust if PCB$L_PPGCNT is less
than or equal to this

When 0, disables adjustment for entire
system

Add new page to working set only if free
page list has more pages than this value

Extend working set limit beyond
WSQUOTA only if free page list has
more pages than this value;
When-1 , disables working set limit
extension for entire system

The quan tum-end routine, SCH$QEND in module RSE, adjusts the working set l imit
in the following steps:

, It makes the following checks. If any of these conditions is true, SCH$QEND
performs no adjus tment .

If the kernel thread 's priori ty is in the real-t ime range, ad jus tment of this
process is disabled.

If the user has entered the DCL command SET WORKING_SET/NOADJUST,
PCB$V_DISAWS is set and automat ic working set l imit ad jus tment for the
process has been disabled.

If PHD$V_NO_WS_CHNG is set, the executive is delet ing this process and its
address space, and ad jus tment is irrelevant.

334

5.4 Working Set Limit Adjustment

If the WSINC parameter is set to zero, the adjustment is disabled on a sys-
temwide basis.

2. If the process's kernel thread or threads have not been executing long enough since
the last adjustment (if the difference between accumulated CPU time, PHD$L_
CPUTIM, and the time of the last adjustment at tempt, PHD$L_TIMREF, is less
than the SYSGEN parameter AWSTIME), no adjustment based on page fault rate
is made. SCH$QEND proceeds with step 5.

If the process has accumulated enough CPU time, the reference time is updated
(PHD$L_CPUTIM is copied to PHD$L_TIMREF), and the rate checks are made.

Between adjustment checks, PHD$L_TIMREF is also altered whenever a kernel
thread in the process is placed in a wait. As described in Chapter Scheduling,
when a kernel thread goes into a wait, the SYSGEN parameter IOTA is charged
against its quantum. To balance the quantum charge, IOTA is subtracted from
PHD$L_TIMREF, so that the last check for adjustment appears to have taken
place longer ago than it really did and AWSTIME is more quickly reached. This
subtraction helps ensure the expansion of the working set limit of a process tha t is
faulting heavily. Without it, a process that undergoes many page fault waits could
reach quantum end without having accumulated AWSTIME worth of CPU time
and thus not be considered for automatic working set limit adjustment.

3. SCH$QEND calculates the current page fault rate. The philosophy for automatic
working set limit adjustment is based on two premises. If the page fault rate is
low enough, the system can reclaim physical memory from the process, by reducing
its working set limit, without harming the process by causing it to fault heavily. If
the page fault rate is too high, the process can benefit from a larger working set
limit because it will incur fewer faults without degrading the system.

4. If the current page fault rate is too high (greater than or equal to PFRATH),
SCH$QEND checks whether the working set limit should be increased.

If the working set size is less than 75 percent of the current working set limit,
the working set limit is not expanded.

If the current working set limit is below WSQUOTA, it is expanded by WSINC,
converted to pages.

If the working set limit is greater than or equal to WSQUOTA, the num-
ber of pages on the free page list is compared to the SYSGEN parameter
BORROWLIM.

If there are BORROWLIM or more pages on the free page list, the working
set limit is increased by WSINC, converted to pages. It can be increased to a
maximum limit of WSEXTENT.

If there are fewer than BORROWLIM pages on the free page list, the working
set limit is not increased.

Setting BORROWLIM t o - 1 disables working set limit expansion above
WSQUOTA for the entire system.

335

Working Set List Dynamics

g

,

Once the working set limit has been expanded, newly faulted pages may be added
to the working set. The page fault handler adds pages to the working set above
WSQUOTA only when there are more than the SYSGEN parameter GROWLIM
pages on the free page list.

SCH$QEND proceeds with step 6.

If WSDEC is zero, shrinking the working set by automatic working set limit
adjustment is disabled and no adjustment occurs. If WSDEC is nonzero, two types
of decrease to the working set limit are possible.

First, if the current page fault rate is low enough (less than PFRATL), the working
set limit is shrunk by WSDEC, converted to pages. However, if the contents of
PCB$L_PPGCNT are less than or equal to AWSMIN, no adjustment takes place.
This decision is based on the assumption tha t many of the pages in the working
set are global pages and therefore the system will not benefit (and the process may
suffer) if the working set limit is decreased.

Note that PFRATL is zero by default. This default value effectively disables this
method of working set limit reduction in favor of swapper working set tr imming.
The rationale for this change is explained at the end of this list.

Second, even if a meaningful interval has not elapsed for computing a page fault
rate, the process's working set limit will be shrunk, whatever its page fault rate
and whatever the value of PFRATL, if all the following are true:

The process has had a pixscan priority boost in its last 32 execution quantums
(PCB$L_PIXHIST is nonzero). Chapter Scheduling describes the pixscan
mechanism. That the process had a pixscan boost implies tha t it is a low-
priority process.

Note, however, that in a mult i threaded process, each kernel thread has its own
priority; PCB$L_PIXHIST is therefore not necessarily representative of the
process as a whole. For the working set list of a mult i threaded process to be
shrunk, the additional condition must be met that no other kernel thread in
this process is current.

m The free page list contains fewer than GROWLIM pages.

The process's working set limit is larger than WSQUOTA.

Its working set limit will be decreased by the smaller of WSDEC, converted to
pages, and the amount by which its working set limit exceeds WSQUOTA. This
mechanism reclaims working set growth beyond WSQUOTA, which is regarded as
temporary growth to be permitted only when sufficient memory is available.

The actual working set limit adjustment is accomplished by a kernel mode AST
that requests the $ADJWSL system service. The AST parameter passed to this
AST is the amount of previously determined increase or decrease. This step
is required because the system service must be called from process context (at
IPL 0) and SCH$QEND is executing in system context in response to the IPL$_
TIMERFORK software timer interrupt.

336

5.5 Proactive Memory Reclamation from Periodically Waking Processes

Two problems are inherent in the quantum-end scheme of automatic working set limit
adjustment: processes that are compute-intensive will reach quantum end many times,
and images that have been writ ten to be efficient with respect to page faults (and incur
a low page fault rate) will qualify for working set limit reduction, because their page
fault rate is lower than PFRATL. In both these cases, working set limit reduction
is not desirable. In contrast, swapper t r imming (summarized in Section 5.2.3 and
detailed in Chapter 6) selects processes start ing with those that are less likely to need
large working sets.

Working set limit reduction based on page fault rate at quantum end is disabled by
setting the default value of PFRATL to zero. Consequently, swapper t r imming and the
image exit reset are the primary methods used to reduce working set limit. In contrast
to automatic working set limit reduction, swapper t r imming shrinks the working set
limit (and size) only when free pages are needed. The executive also uses automatic
working set limit adjustment at quantum end to reclaim extensions from the working
sets of low-priority processes.

5.5 Proactive Memory Reclamation from Periodically Waking
Processes

Proactive memory reclamation, also known as the ticker, is enabled when the low bit
of SYSGEN parameter MMG_CTLFLAGS is set, as it is by default. If enabled, the
mechanism becomes active only when the free page list is less than twice FREEGOAL
and modified page writing would not make up the difference. The mechanism reduces
the working set size of long-waiting processes and periodically waiting processes with
normal (non-real-time) priorities.

The Synchronize ($SYNCH) and Hibernate ($HIBER) system services as well as
the event flag wait services, such as Wait for Logical OR of Event Flags ($WFLOR),
are responsible for implementing the policy of proactive memory reclamation from
periodically waking processes. Each of the services checks whether the mechanism is
active, whether the kernel thread being waited has a normal priority, and whether the
process has accumulated 30 seconds of wait time (PCB$L_ACC_WAITIME) since the
last time its execution history was checked. In the case of a mult i threaded process,
each kernel thread must have a normal priority and be in HIB, LEF, or CEF state. If
all the conditions are met, each service procedure calls EXE$CHK_WAIT_BHVR, in
module RSE.

EXE$CHK_WAIT_BHVR takes the following steps:

,

,

It checks whether the process has any outstanding direct I/O and, if so, returns
immediately. Direct I/O completion is typically fast and is likely to change the
process's scheduling state.

It checks whether the process has a high ratio of wait time to execution time since
this routine was last called to check this process. If the process's accumulated CPU
time is at least 1 percent of its wait time, the routine continues with step 5.

337

Working Set List Dynamics

1

,

,

It tests whether the process has disabled automatic working set adjustment
(PCB$V_DISAWS in PCB$L_STS is set) or whether the executive is deleting this
process and its address space (PHD$V_NO_WS_CHNG in PHD$L_FLAGS is set).
If either is true, EXE$CHK_WAIT_BHVR continues with step 5.

Holding the MMG spinlock, it tries to reduce the process's working set size by 25
percent. It does not alter the working set limit.

It copies the accumulated CPU time from PHD$L_CPUTIME to P C B $ L
CPUTIME_REF for use the next time EXE$CHK_WAIT_BHVR is executed. It
clears PCB$L_ACC_WAITIME and returns.

5.6 Lock Pages in Working Set System Services
A process requests these system services to lock a virtual page into its process working
set and thus prevent page faults from occurring on references to the page. Locking
a page into the working set guarantees tha t when a kernel thread of the process is
current, the locked page is always valid. These services have obvious benefit for time-
critical applications and other situations in which a program must access code or data
without incurring a page fault.

These system services are also requested by process-based kernel mode routines to
ensure the validity of code and data pages accessed above IPL 2. Page faults at
IPLs above 2 are prohibited; if one occurs, the page fault handler generates the fatal
bugcheck PGFIPLHI.

Pages locked into a process working set do not necessarily remain resident in physical
memory when no kernel threads of the process are current; the entire working set
might be outswapped. To guarantee residency of the pages, a process must request
either the $LCKPAGL64] system service or both the $LKWSETL64] and the Set
Process Swap Mode ($SETSWM) system services.

$LKWSET is the traditional service for locking pages into the working set list. $LK-
WSET_64, added in OpenVMS Alpha Version 7.0, enables a process to lock a page
whose address cannot be expressed in 32 bits.

5.6.1 $LKWSET System Service
The $LKWSET system service procedure, EXE$LKWSET in module SYSLKWSET,
executes in kernel mode. It takes the following steps"

1. It creates and initializes scratch space on the stack and raises IPL to 2.

,

1

It tests the accessibility of the INADR argument and maximizes the ACMODE argu-
ment with the mode of the service requestor.

If necessary and possible, EXE$LKWSET increases the working set limit to have
sufficient extra dynamic entries to accommodate the pages to be locked and a page
table page for each such page.

338

5.6 Lock Pages in Working Set System Services

If the process has disabled working set limit adjustment, or if its working set
limit is already larger than its quota, no increase is possible. As a result,
MMG$LCKULKPAG may be able to lock only a limited number of pages.

4. EXE$LKWSET calls MMG$CREDEL, in module SYSCREDEL, specifying
MMG$LCKULKPAG, in module SYSLKWSET, as the per-page service-specific
routine. Chapter 3 describes the memory management stack scratch space, the
actions of MMG$CREDEL, and its invocation of the specified service-specific
routine.

5. When MMG$CREDEL returns, EXE$LKWSET restores the previous IPL and
returns to its requestor with the status from MMG$CREDEL.

To lock a page into the working set, MMG$LCKULKPAG, with its alternative entry
point MMG_STD$LCKULKPAG, takes the following steps:

1. It tests whether the page is readable from the system service requestor's access
mode. If the page is inaccessible, it returns the error status SS$_ACCVIO, which
becomes the status returned by the system service.

It acquires the MMG spinlock, raising IPL to IPL$_MMG.

It examines the L3PTE that maps the page. If the page or any of the higher level
page table pages is not valid, MMG$LCKULKPAG stores the address of the page
to be locked in PCB$Q_KEEP_IN_WS, releases the MMG spinlock, faults the page,
resets PCB$Q_KEEP_IN_WS to -1 , and continues with step 2.

It compares the page owner access mode with the mode of the system service
requestor. If the page is owned by a more privileged mode, the requestor is not
allowed to alter its state, and MMG$LCKULKPAG releases the MMG spinlock and
returns the error status SS$_PAGOWNVIO.

It tests whether the window bit is set in the L3PTE and, if so, immediately returns
the success status SS$_WASSET. A virtual page whose L3PTE's window bit is set
is always valid and is not described by a WSLE, so no further action is appropriate.

MMG$LCKULKPAG examines the PFN$L_PAGE_STATE field in the page's PFN
database record to determine if the page type is process or read-only global. If
either, it continues with step 7. If the page is a writable global page from a
memory-resident or Galaxywide global section, it immediately returns the success
status SS$_WASSET. A virtual page from such a global section is always valid and
is not described by a WSLE, so no further action is appropriate.

If the page is not one of these types, it releases the MMG spinlock and returns
the error status SS$_NOPRIV; a process is not permitted to lock any other type
of page into its working set. In particular, it may not lock global writable pages
because when a process is outswapped, the swapper must be able to remove global
writable pages from the working set. The removal avoids any ambiguity at inswap
concerning the location of the most recent copy of a global writable page.

,

,

,

,

,

339

Working Set List Dynamics

,

111

9 1

10.

11.

12.

13.

14.

15.

MMG$LCKULKPAG gets the working set list index (WSLX) for a process page
from its PFN$L_WSLX field. WSLX information is not kept for a global page;
instead, MMG$LCKULKPAG must scan the process's working set list to locate the
entry for the page.

MMG$LCKULKPAG examines the WSLE. If the page is already locked into the
working set, the routine releases the MMG spinlock and returns the success status
SS$_WASSET.

Otherwise, it checks whether the page has been locked into memory and, if so,
continues with step 10. If not, it checks that PHD$L_EXTDYNWS is at least 2
(to allow for the page table page as well as the page being locked). This ensures
that the process will have enough dynamic WSLEs after the page is locked into
its working set. If not, it releases the MMG spinlock and returns the error status
SS$_LKWSETFUL.

It sets the WSL$V_WSLOCK bit in the WSLE of the newly locked page.

If the page has already been locked into memory, it is within the user-locked
region of the working set list, and MMG$LCKULKPAG continues with step 12.
More typically, it must reorganize the working set list, pictured in Figure 5.2, so
that the locked page's entry is in the user-locked region of the working set list,
following the PHD$L_WSLOCK pointer. MMG$LCKULKPAG accomplishes this
reorganization by exchanging the newly locked WSLE with the entry pointed to by
PHD$L_WSDYN and incrementing PHD$L_WSDYN to point to the next entry in
the list. If PHD$L_WSDYN pointed to a valid WSLE, it exchanges the contents
of the PFN$L_WSLX_QW fields for the two valid pages; otherwise, it updates the
PFN$L_WSLX_QW field for the newly locked page.

MMG$LCKULKPAG increments PFN$W_PT_LCK_CNT in the PFN database
record for the page table page mapping the locked page. If this is the first locked
page mapped by this page table and the page maps no window pages, it also
increments PHD$L_PTCNTLCK, the number of page table pages mapping locked
WSLEs.

It checks that PHD$L_WSNEXT is still pointing into the dynamic part of the
working set list (and not at the former PHD$L_WSDYN, which is now in the
user-locked region), moving it if necessary to point to the same WSLE as PHD$L_
WSLAST.

It recalculates PHD$L_EXTDYNWS.

It releases the MMG spinlock and returns to MMG$CREDEL.

340

5.6 Lock Pages in Working Set System Services

5.6.2 $LKWSET_64 System Service
The SLKWSET_64 system service procedure, EXE$LKWSET_64 in module SYS_
LKWSET_64, executes in kernel mode. $LKWSET_64 resembles the $LKWSET
system service, but all its address and length arguments are 64 bits. Thus it can be
used to lock pages from P0, P1, or P2 space. EXE$LKWSET_64 takes the following
steps:

1. It checks the number of arguments with which the service was requested and,
if incorrect, returns either the error status SS$_INSFARG or SS$_TOO_MANY_
ARGS.

2. It checks that output arguments are accessible and, if not, returns the error status
SS$_ACCVIO.

3. It maximizes the ACMODE argument.

4. It rounds down the START_VA_64 argument to the nearest page boundary. It rounds
up the LENGTH_64 to an integral number of pages large enough to include the
rounded-down start ing address and the ending address implied by the original
START_VA_64 and LENGTH_64 a rguments .

It raises IPL to 2 to block AST delivery.

EXE$LKWSET_64 determines the address of the RDE corresponding to the START_
VA64 argument. If none corresponds, it returns error status SS$_ACCVIO or SS$_
NOT_PROCESS_VA, depending on the argument 's value.

If necessary and possible, EXE$LKWSET_64 increases the working set limit to
have sufficient extra dynamic entries to accommodate the pages to be locked and
the maximum number of page tables to map them. A P0 or P1 space page could
need an additional L3PT; a P2 space page could need an additional L2PT and
L3PT.

If the process has disabled working set limit adjustment, or if its working set limit
is already larger than its quota, no increase is possible. As a result, only a limited
number of pages may be locked.

EXE$LKWSET_64 loops, calling MMG_STD$LCKULKPAG for each page (see
Section 5.6.1). If the region's addresses are ascending, it begins with the lowest
address in the range to be locked. If the addresses descend, it begins with the
highest address.

It stores return information in the RETURN_VA_64 and RETURN_LENGTH_64 argu-
ments.

10. EXE$LKWSET_64 returns the status from MMG_STD$LCKULKPAG to its re-
questor.

~

6.

.

m

11

341

Working Set List Dynamics

5.7 Lock Pages in Memory System Services
The operations of the $LCKPAGL64] system service are similar to those of the $LK-
WSETL64] system service. However, the $LCKPAGL64] service guarantees perma-
nent residency for the specified virtual address range in addition to performing an
implicit working set lock of those pages. The pages remain resident until the pro-
cess specifies them in an unlock page system service request. Because this operation
permanently allocates a system resource, physical memory, it requires the privilege
PSWAPM.

$LCKPAG is the traditional service for locking pages into the working set list. $LCK-
PAG_64, added in OpenVMS Alpha Version 7.0, enables a process to lock a page whose
address cannot be expressed in 32 bits.

5.7.1 $LCKPAG System Service
Executing in kernel mode, the $LCKPAG system service procedure, EXE$LCKPAG
in module SYSLKWSET, tests whether the current security persona has the privilege
PSWAPM and, if not, returns the error status SS$ NOPRIV. It raises IPL to 2 and
increases the working set limit as necessary and possible.

It calls MMG$CREDEL, specifying MMG$LCKULKPAG as the per-page service-
specific routine. MMG$LCKULKPAG is called with a flag that specifies the page is to
be locked into memory rather than into the working set.

Although the results of requesting the $LKWSET and the $LCKPAG services are
similar, the following differences exist:

The WSLE of a page locked into memory has the WSL$V_PFNLOCK bit set rather
than the WSL$V_WSLOCK bit.

The PHD of a process that maps a page locked into memory must be locked into
memory itself to ensure the residency of the page table page mapping the locked
page.

�9 A global writable page that is not permanently resident can be locked into memory,
although it cannot be explicitly locked into the working set.

�9 In locking a global page into memory, MMG$LCKULKPAG increments PFN$L_
GBL_LCK_CNT in its physical page's PFN database record.

If this is the first time a particular global page is locked into memory or if this
is a process page not in use as a buffer object, MMG$LCKULKPAG increments
MMG$GL_PFNLOCK_PAGES to indicate one more PFN-locked page, and decre-
ments PFN$GL_PHYPGCNT to indicate one less page of physical memory avail-
able for general use. MMG$LCKULKPAG then calls EXE$CHKFLUPAGES, in
module MEMORYALC, to confirm that enough physical memory remains available
for general use.

342

5.8 Unlock Pages System Services

EXE$CHKFLUPAGES subtracts the minimum sizes of the free and modified page
lists from PFN$GL_PHYPGCNT and checks that the result is large enough to
accommodate a reasonably large inswap. If not, it re turns an error. In response
to the error, MMG$LCKULKPAG decrements MMG$GL_PFNLOCK_PAGES;
increments PFN$GL_PHYPGCNT; if the page is global, decrements PFN$L_GBL_
LCK_CNT; and returns the error status SS$_LCKPAGFUL. That error is passed
back to the service requestor.

5.7.2 $LCKPAG_64 System Service
The $LCKPAG_64 system service procedure, EXE$LCKPAG_64 in module SYS_
LKWSET_64, resembles EXE$LKWSET_64 (see Section 5.6.2) with the following
significant differences:

�9 EXE$LCKPAG_64 tests whether the current security persona has the privilege
PSWAPM and, if not, returns the error status SS$_NOPRIV.

�9 It calls MMG_STD$LCKULKPAG with a flag that specifies the page is to be locked
into memory rather than into the working set.

5.8 Unlock Pages System Services
These system services unlock pages from either the working set or physical memory.

$ULWSET and $ULKPAG are the traditional services for unlocking pages from the
working set list and memory. $ULWSET_64 and $ULKPAG_64, added in OpenVMS Al-
pha Version 7.0, enable a process to unlock pages whose addresses cannot be expressed
in 32 bits.

5.8.1 $ULWSET and $ULKPAG System Services
The two 32-bit system service procedures are EXE$ULWSET and EXE$ULKPAG,
both in SYSLKWSET. Both, executing in kernel mode, call MMG$CREDEL with
MMG$LCKULKPAG as the per-page service-specific routine. Both execute at IPL 0;
working set t r imming and adjustment do not interfere with unlocking pages.

MMG[_STD]$LCKULKPAG is called with one flag that specifies the operation is an
unlock and a second flag that specifies whether the page is to be unlocked from the
working set or from memory. It takes the following steps to unlock each page:

1. Its first steps are identical to steps 1 through 7 described for MMG$LCKULKPAG
in Section 5.6.1.

, MMG$LCKULKPAG examines the WSLE. If the page is not locked into the
working set, the routine releases the MMG spinlock and returns the success status
SS$_WASCLR.

343

Working Set List Dynamics

3. If the page is a global page being unlocked from memory, MMG$LCKULKPAG
decrements PFN$L_GBL_LCK_CNT. If the count goes to zero or if this is a process
page being unlocked from memory, it decrements MMG$GL_PFNLOCK_PAGES,
and if the page is not in use as a buffer object, it also increments PFN$GL_
PHYPGCNT.

4. Otherwise, depending on the operation requested, it clears the appropriate WSLE
bit (WSL$V_WSLOCK or WSL$V_PFNLOCK).

5. If one of the lock bits is still set, it goes on to step 7. Otherwise, it decrements
PHD$L_WSDYN and swaps the WSLE of the page being unlocked with the one
pointed to by PHD$L_WSDYN, thus making the unlocked WSLE the first one in
the dynamic region. If PHD$L_WSDYN pointed to a valid WSLE, it exchanges
the contents of the PFN$L_WSLX_QW fields for the two valid pages; otherwise, it
updates the PFN$L_WSLX_QW field for the newly unlocked page.

MMG$LCKULKPAG decrements PFN$W_PT_LCK_CNT in the PFN database
record of the page table page mapping the locked page. If the count goes to -1
and PFN$W PT_WIN_CNT is a l so-1 , it also decrements PHD$L_PTCNTLCK, the
number of page table pages mapping locked WSLEs.

6. It recalculates PHD$L_EXTDYNWS.

7. It releases the MMG spinlock and returns to MMG$CREDEL.

5.8.2 $ULWSET_64 and $ULKPAG_64 System Services
The two 64-bit system service procedures are EXE$ULWSET_64 and EXE$ULKPAG_
64, both in SYS_LKWSET_64. Their argument validation resembles that of
EXE$LKWSET_64 (see Section 5.6.2).

Each loops, calling MMG_STD$LCKULKPAG once per page with one flag tha t specifies
the operation is an unlock and a second flag that specifies whether the page is to be
unlocked from the working set or from memory.

Section 5.8.1 describes MMG_STD$LCKULKPAG's actions to unlock pages.

5.9 Purge Working Set System Services
A process requests these system services to remove all virtual pages in a specified
address range from its working set. A process might request this service if a certain
set of routines or data were no longer required. By voluntarily removing entries
from the working set, a process can exercise some control over the working set list
replacement algorithm, increasing the chances for frequently used pages to remain in
the working set.

OpenVMS requests this service on behalf of a process when it requests the $PRO-
CESS_AFFINITY or $PROCESS_CAPABILITIES service to change its home resource
affinity domain (RAD) and sets CAP$M_PURGE_WS_IF_NEW_RAF in the FLAGS

argument.

344

5.9 Purge Working Set System Services

$PURGWS is the traditional service for removing pages from the working set list.
$PURGE_WS, added in OpenVMS Alpha Version 7.0, enables a process to remove
pages from address ranges that cannot be expressed in 32 bits.

The executive uses the $PURGWS system service as part of the image startup se-
quence (see Chapter Image Activation and Exit) to ensure that a program starts its
execution without unnecessary pages such as command language interpreter command
processing routines in its working set.

5.9.1 SPURGWS System Service
The $PURGWS system service procedure, EXESPURGWS in module SYSPURGWS,
runs in kernel mode. It takes the following steps:

1. It creates and initializes the stack scratch space and raises IPL to 2.

2. It calls MMG$CREDEL (see Chapter 3), specifying PURGWSPAG, in module
SYSPURGWS, as the per-page service-specific routine.

3. EXE$PURGWS returns the status from MMG$CREDEL to its requestor.

PURGWSPAG immediately calls MMG$PURGWSSCN, in module SYSPURGWS,
which takes the following steps:

1. It acquires the MMG spinlock, raising IPL to IPL$_MMG.

2. It scans the dynamic region of the working set list, examining each WSLE.

If the WSLE is not valid or is locked into the working set or memory, or if
the address of the associated virtual page does not fall within the boundaries
specified by the system service requestor, MMG$PURGWSSCN goes on to the
next entry.

Otherwise, MMG$PURGWSSCN calls MMG$FREWSLX_64, described in
Section 5.3.5, to take steps to release the WSLE and change the state of the
page.

3. When MMG$PURGWSSCN reaches the end of the dynamic region, it releases the
MMG spinlock, restoring the entry IPL, and returns.

5.9.2 SPURGE_WS System Service
The $PURGE_WS system service procedure, EXESPURGE_WS in module SYS_
PURGWS_64, runs in kernel mode.

It takes the following steps:

1. It rounds down the START_VA_64 argument to the nearest page boundary. It rounds
up the LENGTH_64 to an integral number of pages large enough to include the
rounded-down starting address and the ending address implied by the original
START_VA_64 and LENGTH_64 arguments.

2. It raises IPL to 2 to block AST delivery.

345

Working Set List Dynamics

3. It calls MMG_STD$PURGWSPAG_64, in module SYSPURGWS, which initializes
the arguments to call MMG$PURGWSSCN, described in Section 5.9.1.

4. EXE$PURGE_WS restores the previous IPL and re turns SS$_NORMAL.

5.10 Keeping a Page in the Working Set List
Occasionally it is desirable or necessary to fault a page into the working set and have
it remain valid, perhaps for improved or more predictable performance. Code executing
in kernel mode at elevated IPL, however, has a different concern. Because a page fault
at IPL 3 or above results in a PGFIPLHI fatal bugcheck, a code thread executing at
elevated IPL must ensure the residency of all code, data, and linkage section pages it
accesses.

The issues related to the residency of part icular pages in process and system working
set lists include

�9 Specifying the pages of interest

�9 For elevated IPL execution, ensuring tha t all relevant pages are resident

�9 Keeping the pages in the working set

This section summarizes the first issue briefly; its focus is on the others.

Specifying the part icular pages generally requires identifying the s tar t ing and ending
addresses symbolically or identifying the s tar t ing address symbolically and specifying
the length of the area of interest. How simple these steps are depends on whether the
area of interest contains data, code, and its associated linkage section, or all three.
It also depends on whether the language in which the source modules are wri t ten
supports such capabilities.

In general, data pages are easier to specify and can be identified through da ta cell
names at the beginning and end of the data. The organization of code wri t ten in any
language cannot be taken for granted: a compiler may reorder code, convert routine
invocations to in-line code, and so on. This makes it difficult to identify the boundaries
of code to be made resident. Moreover, the linkage section associated with the code
must also be made resident.

A number of events can lead to replacement paging or the removal of pages from a
process's working set list:

�9 Execution in the process's context of a code thread of any access mode tha t incurs
page faults, whether mainline code running in one or multiple kernel threads, a
procedure in a shareable image, inner access mode service (Record Management
Services, system service, or command language interpreter callback), AST thread,
or condition handler

�9 Execution of a code thread tha t directly locks an invalid page into memory or the
working set list or indirectly locks buffer pages by request ing direct I/O operations

346

5.10 Keeping a Page in the Working Set List

�9 Quantum-end automatic working set limit adjustment of a process with a current
kernel thread

�9 Swapper trimming of a process with no current kernel threads

�9 Proactive memory reclamation from the working set of a process with long-waiting
kernel threads or a periodically waking kernel thread about to go into a wait

For a kernel thread to fault a page into its process's working set list and have it
remain there, it must either ensure that the page is not a candidate for replacement
paging or prevent all the events previously listed that lead to replacement paging.

The most straightforward measure, available in any access mode, is to lock the page
with the $LKWSETL64] system service. As a result, the page's WSLE is placed in
the user-locked region of the working set list and is not a candidate for replacement
paging. The page remains in the working set list regardless of the scheduling state of
kernel threads in the process and throughout any outswap and inswap. The only page
type for which this mechanism fails is a global writable page. The executive prohibits
locking global writable pages into the working set list to avoid ambiguity at inswap
concerning the location of the most recent version of the page. To ensure the residency
of a global writable page, a process must lock the page into memory. Note that locking
a global page into memory does not prevent process page faults for it.

For kernel mode code, typically the issue is one of preventing any page fault during
elevated IPL execution. Kernel mode code, whether running as part of an image or as
part of the executive, may be able to request the $LKWSETL64] system service to lock
pages into a process working set list. The $LKWSETL64] system service, however,
cannot be used to lock pages into the system working set list.

Code that runs at elevated IPL must also make its associated linkage section and any
other data resident. Another issue for elevated IPL code is that the compiler may
generate calls to Run-Time Library or other language support routines. These routines
must also be made resident and furthermore must be appropriate for execution in
kernel mode at elevated IPL.

OpenVMS Alpha provides two sets of MACRO-32 macros to facilitate locking P0 and
P1 space code and linkage section pages into the working set list. One set is for use
with image code intended to be locked for the duration of the image's execution. The
other set is for use with code to be locked and unlocked. The two sets of macros should
not be mixed in one image.

The first set consists of the macros $LOCKED_PAGE_START and $LOCKED_PAGE
END, which delimit the area to be locked by creating special program sections
(PSECTs) for the code and its associated linkage section, and the macro $LOCKED_
PAGE_INIT, which should be invoked from within initialization code in the image to
generate the appropriate $LKWSET requests.

The other set of macros consists of $LOCK_PAGE and $UNLOCK_PAGE, which
delimit the code to be locked. These macros can be invoked multiple times within an
image. All delimited code is placed into a separate PSECT, and the linkage section
associated with that code is also placed into a separate PSECT. Code generated by the

347

Working Set List Dynamics

$LOCK_PAGE macro makes $LKWSET requests for both the code and linkage section
areas, and code generated by the $UNLOCK_PAGE macro makes the corresponding
$ULWSET requests.

These macros are described in more detail in OpenVMS MACRO-32 Porting and User's
Guide. Both sets of macros are primarily intended for elevated IPL execution. Care
must be taken to ensure that the delimited code does not call Run-Time Library or
other procedures. The MACRO-32 compiler for OpenVMS Alpha generates calls to
routines to emulate certain VAX instructions. An image that uses these macros must
link against the system base image (using the/SYSEXE qualifier) to resolve references
to emulation routine symbols with the routines supplied in a nonpageable executive
image. These macros may not be suitable for all applications.

Example 5.1 shows an example of how to lock code and linkage section PSECTs from a
C program.

Example 5.1 Locking C Code and Linkage into the Working Set
$
$ CC /OBJECT=TEST /list=test /machine SYS$INPUT:

#pragma module test_code "vl. 0"

/*

// Define the references to the linkage and code psects
*/

#pragma extern_model save
#pragma extern_model strict_refdef "$$C$LINKAGE_BEGIN" noshr
void *linkage_begin ;
#pragma extern_model restore

#pragma extern_model save
#pragma extern_model strict_refdef " C$LINKAGE_END" noshr
void *ulinkage_end ;
#pragma extern_model restore

#pragma extern_model save
#pragma extern_model strict refdef "$$C$CODE_BEGIN" shr
void *code_begin ;
#pragma extern_model restore

#pragma extern_model save
#pragma extern_model strict_refdef " C$CODE_END" shr
void *code_end ;
#pragma extern_model restore

#include <stdio.h>

void test routine()
{
printf("Test Routine") ;
)

main (void)
{
int *ip;

348

5.10 Keeping a Page in the Working Set List

Example 5.1 (continued) Locking C Code and Linkage into the Working Set

printf("The addresses of the linkage section are:\n");
printf(" begin: %08p end: %08p\n",

&linkage_begin, &linkage_end) ;

printf("The addresses of the code section are:\n");
printf(" begin: %08p end: %08p\n",

& code_begin, & code_end) ;

printf("The address of main(linkage) is: %08p\n", main);
printf("The address of test_routine(linkage) is %08p\n", test_routine) ;

Ip = (int*) &main;
printf("The address of main(code) is: %08p\n", (void *) ip[2]);

ip = (int*) &test_routine ;
printf("The address of test_routine(code) is %08p\n", (void *) ip[2]) ;

return 1 ;
}

$
$ LINK /MAP=TEST_CODE /CROSS/FULL/EXE=TEST_CODE TEST -

+ SYS$INPUT:/OPT
!
! Match code and linkage section psect attributes

psect= $$C$CODE_BEGIN, PIC,CON, REL,LCL, SHR, EXE,NOWRT,NOVEC, MOD
psect= C$CODE_END, PIC,CON,REL,LCL, SHR, EXE,NOWRT,NOVEC, MOD
psect=$$C$LINKAGE_BEGIN,NOPIC,CON, REL,LCL,NOSHR,NOEXE,NOWRT,NOVEC,MOD
psect= C$LINKAGE_END, NOPIC, CON, REL, LCL, NOSHR, NOEXE, NOWRT, NOVEC, MOD
S
$

The example program creates variables in specifically named PSECTs. The linker
collects PSECTs with identical attr ibutes into the same image section; it orders the
PSECTs alphabetically by their names. The PSECT names specified by the program
are names that will sort before and after the s tandard C compiler code and linkage
section PSECT names. The example specifies linker options to give the delimiting
PSECTs attr ibutes identical to those of the s tandard C compiler code and linkage
section PSECTs.

The result is that the variables are at the beginning and end of the code and linkage
section image sections, and their addresses can be supplied as start ing and ending
addresses to the $LKWSET service.

In OpenVMS versions prior to OpenVMS Version 7.0, kernel mode code used bit
PHD$V_NO_WS_CHNG as an alternative mechanism. The general sequence was
to raise IPL to 2, set the bit, and fault the page or pages into the working set list.
Setting this bit blocked swapper trimming, automatic working set limit adjustment,
and proactive memory reclamation. This bit still exists, but with limited use: it is set
only by process deletion code that runs after the process has been reduced to a single
kernel thread, and it is tested only by the routines tha t initiate swapper t r imming
and automatic working set limit adjustment. Because this mechanism does not block

349

Working Set List Dynamics

working set replacement paging, it could not be extended to a process with multiple
kernel threads.

The PHD$V_NO_WS_CHNG mechanism has been superseded by a mechanism tha t
involves fields PCB$Q_KEEP_IN_WS and PCB$Q_KEEP_IN_WS2. These fields are
initialized to an invalid process address , -1 , and reset to that value after use. Kernel
mode code records in these fields the start ing and ending addresses of a range of
virtually contiguous addresses that must remain in the working set. It then faults
the page or pages into the working set, acquires the MMG spinlock to prevent further
changes to the working set, and writes -1 to the fields to reset them. Use of the fields
is synchronized through the inner mode semaphore (see Chapter Kernel Threads);
only one kernel thread at a time can hold the semaphore and use them. Use of this
mechanism is reserved to Hewlett-Packard Company; any other use is unsupported.

MMG$FREWSLE, the routine that removes entries from the working set list (see Sec-
tion 5.3.1), reads these fields: if a page to be removed from the working set falls within
the addresses in these fields, it leaves that page in the working set. MMG$FREWSLE
is used for replacement paging, swapper trimming, automatic working set limit re-
duction, and proactive memory reclamation. Typically, it does not execute holding the
inner mode semaphore. Two different methods are used to synchronize its reading the
fields with a kernel thread's writing them:

�9 Acquiring the MMG spinlock

MMG$FREWSLE executes holding the MMG spinlock. Kernel mode code that uses
the PCB$Q_KEEP_IN_WS mechanism, such as MMG$LCKULKPAG (see Section
5.6.1), can acquire the MMG spinlock before writing the fields to block concurrent
execution by MMG$FREWSLE.

Testing bit PHD$V_FREWSLE_ACTIVE in PHD$L_FLAGS

MMG$FREWSLE sets bit PHD$V_FREWSLE_ACTIVE and executes a memory
barrier before reading PCB$Q_KEEP_IN_WS and PCB$Q_KEEP_IN_WS2 and
clears the bit when done. MMG$IOLOCK, for example, called to lock a direct
I/O buffer into memory (see Chapter I! 0 System Services), uses this method. It
first writes the PCB fields and then tests whether the process has multiple kernel
threads and, if so, executes a memory barrier and tests PHD$V_FREWSLE_
ACTIVE. If the bit is set, it spins waiting for it to be cleared by MMG$FREWSLE
before faulting the page into the working set.

Use of this mechanism is reserved to Hewlett-Packard Company; any other use is
unsupported.

None of these alternatives is suitable for keeping pages in the system working set list,
pages such as paged pool or pageable data in executive images. The $LKWSETL64]
system service rejects an at tempt to lock system pages. The PCB$Q_KEEP_IN_WS
mechanism is also not suitable because multiple threads of execution executing kernel
mode code in multiple processes could concurrently a t tempt to lock system pages, and
there is nothing to serialize their uses of the fields.

350

5.10 Keeping a Page in the Working Set List

For kernel mode code that needs to fault S0/S1 space pages into the system working
set list and have them remain there, two routines are provided. (Currently, all uses
of $2 space are nonpageable.) The routine MMG$LOCK_SYSTEM_PAGES, in module
LOCK_SYSTEM_PAGES, can lock pages into the system working set. For each page
to be locked, the routine takes the following steps:

1. It faults the page.

2. It acquires the MMG spinlock.

3. It tests whether the page is still valid and, if not, releases the spinlock and returns
to step 1.

4. It increments PFN$L_SHRCNT in the PFN database record for the physical page
occupied by the virtual page, gets the WSLX from the PFN$L_WSLX_QW field,
and sets the WSL$V_WSLOCK bit in the WSLE in the system working set list.

5. It releases the MMG spinlock.

When the caller no longer requires the pages to be resident, it calls MMG$UNLOCK
SYSTEM_PAGES, in module LOCK_SYSTEM_PAGES, which clears the WSL$V_
WSLOCK bit and decrements the PFN$L_SHRCNT field for each page.

Locking many pages into a working set list is not always possible or desirable. In
cases where elevated IPL execution is not an issue, a process can do the following to
minimize page faults once the desired pages are in the working set:

�9 Reduce the chance of swapper tr imming by entering the DCL command SET
WORKING_SET/QUOTA=authquota and/EXTENT=authquota, where authquota
is the authorized normal maximum working set limit. Unless the process is about
to be outswapped, this prevents first-level swapper trimming by ensuring that the
working set limit is not above the authorized maximum limit. A process about to
be outswapped may have its working set size reduced to SWPOUTPGCNT.

�9 Disable automatic working set limit adjustment and second-level swapper trim-
ming by entering the DCL command SET WORKING_SET/NOADJUST. This
also blocks proactive memory reclamation from a process whose kernel thread or
threads are classified as periodically waking.

�9 Lock itself into the balance set by requesting the Set Process Swap Mode
($SETSWM) system service in case, as a result of its execution characteristics,
it is classified as a long-waiting process and becomes subject to proactive memory
reclamation.

* Do not enable multiple kernel threads in the process and do execute a constrained
sequence of already resident code that touches already resident data and linkage
section pages. In general, such code must block AST delivery, cause no exceptions,
signal no conditions, and call no procedures outside the address space already
resident.

351

Working Set List Dynamics

5.11 Relevant Source Modules
Source modules described in this chapter include

[C LIUTL] SETMISC .B32
[LIB]UAFDEF.SDL
[LIB]WSLDEF.SDL
[LOGIN] INITUSER.B32
[SYS] LOCK_SYSTEM_PAGES.MAR
[SYS] PAGEFAULT.MAR
[SYS]PHDUTL.MAR
[SYS]RSE.MAR
[SYS] SYS_LKWSET_64. C
[SYS] SYS_PURGWS_64. C
[SYS]SYSADJWSL.MAR
[SYS] SYSLKWSET.MAR
[SYS]SYSPURGWS.MAR
[SYS] TB I_RO UTINE S. MAR
[SYSBOOT]SYSBOOT64.B64

352

Chapter 6
The Swapper

A t i m e to c a s t a w a y s t o n e s a n d a t i m e to g a t h e r s t o n e s t o g e t h e r . . .

Ecclesiastes 3:5

The amount of physical memory on the system is not a hard limit to the number of
processes in the system. The OpenVMS Alpha operating system effectively extends
physical memory by keeping a subset of active processes resident. It maximizes the
number of such processes by limiting the number of pages that each process has in
memory at any given time. Processes not resident in memory reside on mass storage
in swap files; that is, they are outswapped.

The swapper process is the systemwide physical memory manager. Its responsibilities
include maintaining an adequate supply of physical memory and ensuring that the
highest priority computable kernel threads are resident in memory.

This chapter summarizes the top-level flow through the swapper process and concen-
trates on its inswap and outswap operations. Chapter 4 describes how the swapper
writes modified pages to their backing store.

6.1 Overview
This section reviews some basic swapper concepts.

6.1.1 Swapper Responsibilities
The swapper has several main responsibilities:

�9 Ensuring that the balance set contains the most important processes

�9 Maintaining a minimum free page list size

�9 Maintaining a maximum modified page list size

Its first responsibility is to ensure that the currently resident kernel threads are the
highest priority computable kernel threads in the system. When a nonresident kernel
thread becomes computable, the swapper must bring its process back into memory if
the kernel thread's priority and the available memory allow.

353

The Swapper

The swapper maintains the number of free pages (the sum of pages on the free and ze-
roed page lists) above the threshold established by the SYSGEN parameter FREELIM.
Free physical pages are needed for resolving page faults and inswapping processes
with computable kernel threads. The swapper reclaims memory to keep the number
of free pages above FREELIM by means of four operations, described in more detail in
subsequent sections:

�9 The swapper deletes process headers (PHDs) of already deleted processes.
It outswaps any PHDs and page tables that are associated with previously
outswapped process bodies and that are eligible for outswap.

2. It calls the modified page writer routine to write modified pages.

3. It shrinks the working sets of one or more resident processes.

, If necessary, the swapper selects an eligible process for outswap, shrinks its
working set, and removes that process from memory. The table that determines
outswap selection also determines the order in which processes are selected for
working set reduction.

The swapper stops reclaiming pages when the number of free pages exceeds the
SYSGEN parameter FREEGOAL.

The swapper ensures that there are fewer pages on the modified page list than the
threshold established by the SYSGEN parameter MPW_HILIMIT. When the modified
page list grows above this limit, the swapper calls the modified page writer routine
to write the contents of some modified pages to their backing store and to move the
physical pages to the free page list.

6.1.2 System Events That Trigger Swapper Activity
The swapper spends its idle time hibernating. Executive components that detect a
need for swapper activity wake the swapper by calling routine SCH$SWPWAKE, in
module RSE. In addition, SCH$SWPWAKE is called once a second from system timer
code.

SCH$SWPWAKE performs a series of checks to determine whether there is a real
need for the swapper to run. If so, it awakens the swapper. If not, it simply returns.
Performing these checks in SCH$SWPWAKE rather than in the swapper process itself
avoids the overhead of two needless context switches.

Table 6.1 lists the system events that trigger a possible need for swapper activity, the
module containing the routine that detects each need, and the action the swapper
takes in response.

354

6.1 Overview

Table 6.1 Events That May Cause the Swapper to Be Awakened

System
Event

Routine Name Swapper
(Module) Action

Kernel thread that is
outswapped becomes
computable

Quantum end

Modified page list
exceeds upper limit

Free page list drops
below low limit

Balance set slot of
deleted process becomes
available

PHD reference count
goes to zero

Powerfail recovery

System timer subroutine
executes once a second

SCH$CHSE
(RSE)

SCH$QEND
(RSE)

MMG$DALLOCPFN,
MMG$INS PFNH/T
(ALLOCPFN)

MMG$REM_PFN[H]
(ALLOCPFN)

DELETE_IN_SYS_
CONTEXT
(SYSDELPRC)

MMG$DECPHDREF[1]
(PAGEFAULT)

EXE$RESTART
CONT
(POWERFAIL)

EXE$TIMEOUT
(TIMESCHDL)

The swapper attempts to make its
process resident.

The swapper may be able to perform an
outswap previously blocked by initial
quantum flag setting or kernel thread
priority.

The swapper writes modified pages.

The swapper increases the free page
count, taking the steps summarized in
Section 6.1.1.

The swapper can delete the PHD and
may be able to perform a previously
blocked inswap.

The swapper can outswap a PHD
and page tables to join the previously
outswapped process body.

The swapper queues a power recovery
AST to any process that requested one.

The swapper is awakened if there is any
work for it.

The swapper can be awakened in another, more indirect way: clearing the cell t ha t
contains the modified page list high l imit so t ha t a subsequent tes t for w h e t h e r
the list size exceeds its high l imit will fail. The rout ine MMG$PURGE_MPL, in
module WRTMFYPAG, uses this method. This routine, called to reques t the wr i t ing of
modified pages, is described in Chap te r 4.

6.1.3 Swapper Implementation
The swapper is implemented as a separa te process whose single kernel t h r ead has a
priori ty of 16, the lowest real- t ime priority. I t is selected for execution like any other
kernel t h r ead in the system.

The swapper executes ent i re ly in kernel mode. All swapper code resides in sys tem
space. Except for some ini t ial izat ion code, all swapper code is in module SWAPPER.
The swapper ' s s tack and almost all its da ta are also in sys tem space. The swapper

355

The Swapper

has one page of P1 space to eliminate the need for a number of special-case checks for
swapper process context.

With the removal of process page tables from system space in OpenVMS Alpha Version
7.0, the swapper has no vir tual access to another process's page tables. In the course
of inswap and outswap, it therefore temporari ly adopts the address space of the ta rge t
process to access its page tables. That all its code and most of its data are in system
space enables the swapper to access them from any set of process page tables.

The swapper serves as a convenient process context for several system functions.
In particular, during system initialization it performs those initialization tasks tha t
require process context and must be performed prior to the creation of any other
process, for example, initializing paged pool and creating the SYSINIT process. Chap-
ter Operating System Initialization and Shutdown describes these functions of the
swapper.

In addition, the file system uses the swapper as a process context for the execution of
certain asynchronous system trap (AST) procedures. Clusterwide file system cache co-
herency and volume locking are implemented through system-owned file system locks
(see Chapter Lock Management and Appendix Lock and Resource Use by OpenVMS
Components). When one VMScluster node's lock blocks a second node's progress, the
second requests execution of a blocking routine on the first. Running in system context
on the first node, the blocking routine queues an AST to the swapper process. Running
in process context on the first node, the AST procedure can request s tandard system
services to convert the associated lock to a less restrictive mode or dequeue it.

6.2 Swapper Use of Memory Management Data Structures
Chapter 2 describes the memory management data s t ructures used by both the page
fault handler and the swapper. The discussion here reviews those s tructures and adds
descriptions of the s tructures used exclusively by the swapper.

6.2.1 Process-Private Structures
The information used by the swapper in managing the details of inswapping or
outswapping is contained in the following structures:

�9 Working set list of the process to be outswapped or inswapped

�9 Process-private page tables

�9 Process header BAK array

The working set list describes the portion of a process's vir tual address space tha t mus t
be wri t ten to the swap file or otherwise dealt with when the process is outswapped.
When the process is inswapped, the working set list describes the process pages in the
swap file. The swapper 's scan of the working set list at outswap is discussed in Section
6.5.

356

6.2 Swapper Use of Memory Management Data Structures

The working set list does not supply the swapper with all the information necessary
to outswap a process. Other information about a virtual page is contained in its page
table entry (PTE) or in the page frame number (PFN) database record for that physical
page. Each working set list entry (WSLE) effectively points to a PTE that contains
a PFN. When outswapping, the swapper copies the PTE contents to a quadword
array called the swapper map (see Section 6.2.2). It then inserts the contents of the
PFN$Q_BAK field for this physical page into the PTE, dissociating the process from
the physical memory that its virtual page occupied.

In the course of outswapping, the swapper links the process's level 2 page tables
(L2PTs) and level 3 page tables (L3PTs) together using first the PFN$Q_BAK array
elements and then the PTEs that map the page tables (see Section 6.5.3.5).

PHD pages are also part of a process's working set. These pages reside in system
space; system space level 3 page table entries (L3PTEs) map the balance set slot in
which the PHD resides. As part of outswapping, the swapper dissociates the PHD
pages from their L3PTEs so that it can reuse the balance set slot. Thus, unlike those
of process pages, PHD pages' L3PTEs are not available to hold these pages' backing
store addresses while they are outswapped.

Instead, when a process is outswapped, the contents of the PFN$Q_BAK field for each
PHD page currently in the working set are stored in the corresponding array element
in the PHD page BAK array (see Chapter 2). When the process is inswapped, the PHD
page array can be scanned and the BAK contents copied from the array back into the
PFN$Q_BAK fields of the PFN database records for the physical pages that contain
the PHD.

Entries representing the process's page tables can be scattered throughout the working
set list. As the swapper scans the working set list to prepare the process body for
outswap, it links the page tables into lists through the low longwords of their PFN$Q_
BAK fields: each page table's PFN$Q_BAK contains the working set list position, or
WSLX, of the next page table in the list.

The swapper follows the chains in preparing the page tables for outswap and, subse-
quently, in reestablishing the process's page tables after inswap. Sections 6.5.3.5 and
6.6.3 have more information.

6.2.2 Swapping I/O Data Structures
At system initialization, the swapper allocates physical pages for the swapper map
and system space L3PTEs to map it. The swapper map is an array of quadwords
whose address is stored in the global cell SWP$GL_MAP. The number of quadwords in
the array is the number of pages equivalent to the value of the SYSGEN parameter
WSMAX, which is in units of pagelets.

The swapper map is a pseudo page table. It describes the working set of a process to
be outswapped or inswapped. Each entry represents one page in the working set. The
swapper map can describe only one outswap or one inswap operation at a time.

357

The Swapper

At outswap, for each page in the working set, the swapper reads the PTE that maps
it and stores the PFN of that page in an element of the swapper map. It passes the
address of the beginning of the swapper map to the I/O system as the system virtual
address of the L3PTE that maps the first page of the I/O buffer. The swap image
is output from these pages to the swap file. Thus, the swapper map transforms a
collection of virtually noncontiguous pages into virtually contiguous pages that can be
transferred in one or more I/O requests.

At inswap, the swapper allocates physical pages of memory for the working set being
inswapped and records their PFNs in the swapper map. It passes the address of the
beginning of the swapper map to the I/O system as the system virtual address of the
L3PTE that maps the first page of the I/O buffer. The swap image is input into these
pages. As the swapper rebuilds the process's working set list and page tables, it copies
the PFN from each swapper map entry to the appropriate system or process PTE.

Like the page fault handler, the swapper makes standard I/O requests. During system
initialization, it allocates an I/O request packet (IRP) to be used for swap I/O. Because
most disk drivers execute as kernel processes (see Chapter Software Interrupts), the
swapper also allocates a kernel process block and physical memory for a kernel process
stack. The preallocation prevents any possible deadlock when an outswap is requested
to free memory because there are not enough free pages.

To perform an inswap or outswap, the swapper initializes some of the IRP fields that
will be interpreted in a special manner by the I/O postprocessing routine. It then calls
one of the swapper I/O entry points in module SYSQIOREQ (EXE$BLDPKTSWPR
or EXE$BLDPKTSWPW) that fills in an appropriate function code and queues the
packet to the appropriate disk driver. Tables 4.2 to 4.4 show how the IRP is used by
the swapper for its I/O activities.

As described in Chapter 4, the swapper also uses preallocated IRPs for modified page
writing.

Certain swapper operations complete asynchronously. The swapper maintains two bits
in the cell SCH$GL_SIP as signals of ongoing operation: when set, SCH$V_SIP means
that an inswap or outswap is in progress and is described by the swapper map; when
set, SCH$V_MPW means that modified page writes are in progress.

6.2.3 Swap File Data Structures
The system maintains a page file control block for each page and swap file in the sys-
tem. Figure 2.31 shows the layout of this data structure and describes its fields. Both
page and swap files can be used for swapping if SYSGEN parameter NOPGFLSWP is
clear. If it is set, only swap files can be used for swapping. By default it is clear.

During system initialization, the SYSINIT process opens the primary swap file
SYS$SPECIFIC:[SYSEXE]SWAPFILE.SYS, if it exists, and initializes its page file
control block. When any additional swap file is installed (with the SYSGEN command
INSTALL), SYSGEN initializes its page file control block.

358

6.2 Swapper Use of Memory Management Data Structures

In early versions of VAX VMS, the executive required that there be a swap slot large
enough to outswap the process at its current size, up to the maximum of its authorized
quota. When a process was created, space for its working set was assigned in the first
swap file with enough free space. When the process working set grew too large for the
swap space, a replacement swap slot was allocated. When the working set limit was
adjusted at image reset, a smaller swap slot was allocated. Each swap slot consisted of
virtually contiguous blocks within a single swap file.

In VAX VMS Version 5, swap space allocation changed considerably, reflecting the
fact that processes are outswapped relatively infrequently and that they are typically
outswapped with shrunken working sets. Swap space is not assigned until a process is
selected for outswap, subsequent to any swapper trimming. The executive attempts to
allocate virtually contiguous space in a single swap or page file. If that fails, however,
it allocates multiple file extents in a number of swap and page files. (A file extent is a
group of consecutively numbered logical blocks.) This approach requires less dedicated
swap file space than did early VAX VMS versions and results in less fragmentation of
swap and page files. The overhead of allocating and deallocating seldom-used swap
space has been eliminated.

Based on VAX VMS Version 5, the OpenVMS Alpha executive allocates swap space in
a similar manner; the one difference is that swap space is allocated in units of pages
rather than disk blocks.

When a process is outswapped, its process control block (PCB) remains resident.
In particular, two fields in the PCB of an outswapped process contain information
necessary to inswap the process: PCB$L_WSSWP, the location of its swap space, and
PCB$L_SWAPSIZE, the low 31 bits of which represent the swap space's size in pages.

The value in PCB$L_WSSWP has several interpretations, depending on the value in
PCB$L_SWAPSIZE:

�9 When a process is first created, its PCB$L_WSSWP is zeroed to indicate to the
swapper that this process must be initialized from the shell.

�9 The high-order bit set in PCB$L_SWAPSIZE indicates that the swap space consists
of a single extent. The upper byte of PCB$L_WSSWP is a longword index into
the page-and-swap-file vector (see Figure 2.31). The indexed element of the array
contains the address of the page file control block that describes the process's swap
file. The other three bytes specify the starting page number of the swap space.

�9 If the high-order bit of PCB$L_SWAPSIZE is clear, PCB$L_WSSWP contains
the system virtual address of a nonpaged pool data structure called a page file
map (PFLMAP). Whenever the swap space consists of more than one extent, the
swapper allocates a PFLMAP and initializes one pointer for each extent.

Figure 6.1 shows the layout of a PFLMAP. PFLMAP$L_PAGECNT is the total number
of pages described in all the PFLMAP's pointers. PFLMAP$W_SIZE and P F L ~ . P $ B _
TYPE are the standard dynamic data structure fields. A PFLMAP has space for
64 pointers. PFLMAP$B_ACTPTRS is the number of pointers actually in use. The
pointers begin at offset P F L ~ $ Q _ P T R .

359

The Swapper

Figure 6.1 Layout of a Page File Map (PFLMAP)

PAGECNT
(reserved)

AOTPTRS I TYPE I SIZE

PTR
m

F
ACTPTRS mapping pointers

Each pointer is a quadword. Its first longword contains a swap file index and start ing
page number, just like the contents of PCB$L_WSSWP for a single-extent swap space.
The second longword contains the number of pages in the extent. Bit 31 is set in the
second longword of the last pointer to flag it as the end.

In the case of a single-extent swap space, PCB$L_SWAPSIZE contains the size of the
slot, with bit 31 set to indicate it is the only pointer. Thus, the executive can treat the
quadword beginning at PCB$L_WSSWP as a pointer with the same form as one in a
PFLMAP.

Figure 6.2 shows the relations among the data structures involved in swap file use and
also the structure of a single-extent swap space. The upper byte of PCB$L_WSSWP
indexes the page-and-swap-file vector array element that contains the address of the
page file control block for that swap file. The page file control block field PFL$L_
WINDOW contains the address of the window control block (WCB) describing the
location of the swap file on a mass storage medium. The field WCB$L_ORGUCB
contains the address of the unit control block (UCB) for that device.

Within the swap file, the process's slot begins at the page whose number is in the low
three bytes of PCB$L_WSSWP. It must contain room for the PHD, process-private
page tables, and the process body (the P0, P1, and P2 space pages belonging to the
process). The total size of the swap space is contained in PCB$L_SWAPSIZE. It is the
smallest multiple of system cell SWP$GW_SWPINC large enough to accommodate the
process's working set size, which is the sum of PCB$L_PPGCNT and PCB$L_GPGCNT,
its process-private and global page counts. During system initialization, SWP$GW_
SWPINC is set to the same value as the modified page write cluster factor, SYSGEN
parameter MPW_WRTCLUSTER.

The field PCB$L_APTCNT contains the number of pages of space reserved for the PHD
and page tables. This field has no meaning for a resident process; the swapper calcu-
lates its value when scanning the working set list of a process about to be outswapped.
They are positioned in the following order: PHD pages, level 1 page table (LIPT),
L2PTs, and L3PTs.

360

6.3 Swapper Main Loop

Figure 6.2 S w a p Fi le D a t a b a s e

UCB ~ PFL

Identifies
device

containing
swap file

ORGUCB WINDOW

T T

L__

pages L

i

PHD
(Fixed part, working set list,

process section table)

Active Page Tables

Process Body (P0, P1, and P2 pages)

Swap File

MMG$GPQ_PAGE_SWAP_VECTOR
I-

Page--and-Swap-
File Vector

-t

A •

STS I PCB$V_RES = 0

APTCNT I

SWAPSIZE
Bit 31 = 1

T T

PCB$L_SWAPSIZE
pages

6.3 Swapper Main Loop
The swapper does not determine why it was awakened. Every time it is awakened, it
tends to all the tasks for which it is responsible. The main loop of the swapper consists
of the following steps:

1. It calls local routine BALANCE, which tests the number of free pages.

If there are sufficient free pages, but there are deleted PHDs to clean up,
BALANCE calls local routine OUTSWAP to clean up a deleted PHD.

361

The Swapper

m If there are insufficient free pages and the size of the modified page list is
large enough, BALANCE requests the writing of modified pages to make up
the deficit; otherwise, it calls OUTSWAP, which may trigger the shrinking of
process working sets in addition to cleaning up a deleted PHD and possibly
outswapping a process.

Section 6.3.1 describes BALANCE in more detail.

2. The swapper calls the modified page writer routine, MMG$WRTMFYPAG, in
module WRTMFYPAG, which initiates modified page writing in response to any
pending requests. For example, if the size of the modified page list exceeds its
current upper limit, modified pages are writ ten until the size of the list falls below
the SYSGEN parameter MPW_LOWAITLIMIT. Chapter 4 describes the modified
page writer.

3. The swapper calls local routine SWAPSCHED to identify the highest priority
computable outswapped kernel thread. If there is none, 8WAPSCHED returns.
Otherwise, it calculates the size of that process's working set and tests whether
there are enough free pages to accommodate it without reducing the number of
free pages below its minimum, SYSGEN parameter FREELIM.

n If there are enough pages, SWAPSCHED calls local routine INSWAP (see
Section 6.6) to initiate the inswap.

If there are not enough pages, SWAPSCHED calls local routine OUTSWAP (see
Section 6.3.3) to make up the free page deficit.

Section 6.3.2 discusses SWAPSCHED in more detail.

4. Because the swapper is a system process that executes fairly frequently, it is a
convenient vehicle for testing whether a powerfail recovery has occurred and, if
so, notifying all processes that have requested power recovery AST notification
through the Set Power Recovery AST ($8ETPRA) system service. This mechanism
is currently unused because of lack of hardware support for powerfail recovery.

5. Finally, the swapper puts itself into the hibernate state, after checking its wake
pending flag. If any thread of execution, including the swapper itself in one of its
routines, has requested swapper activity since the swapper began execution, the
hibernate is skipped and the swapper goes back to step 1.

6.3.1 The BALANCE Routine
Figure 6.3 shows the basic decisions and flow of the B A I J ~ C E routine. In the figure,
FREECNT refers to the contents of SCH$GL_FREECNT, the sum of the number
of pages on the free and zeroed page lists, and MFYCNT refers to the contents of
8CH$GL_MFYCNT, the number of pages on the modified page list. The numbers in
the figure correspond to those in the following list:

362

6.3 Swapper Main Loop

BALANCE takes the following steps:

O BALANCE acquires the MMG and SCHED spinlocks, raising interrupt priority
level (IPL) to IPL$_MMG.

e It subtracts the desired size of the free page list, the SYSGEN parameter FREE-
GOAL, from the number of free pages (the contents of SCH$GL_FREECNT). It
stores the difference in R3 as its working copy of the free page deficit. If the
number of free pages is larger than FREEGOAL, BALANCE goes on to step 6.

O If the number of free pages is smaller than FREEGOAL, BALANCE tests whether
modified page writing is already in progress. If it is, BALANCE checks whether
enough modified pages are being written to make up the difference between the
number of free pages and SYSGEN parameter FREEGOAL. (The number of free
pages will be replenished to a target size of FREEGOAL pages.)

If so, it continues with step 6.

If not, it continues with step 8.

O If modified page writing is not in progress, BALANCE tests whether the modified
page list contains as many pages as the SYSGEN parameter MPW_THRESH.
If the threshold has been reached, BALANCE further tests that the difference
between the list's current size and its low limit (the SYSGEN parameter MPW_
LOLIMIT) is large enough to satisfy the deficit. That is, the modified page list
must contain enough pages to pass both tests before the swapper can replenish the
free page list from it. If the modified page list is not large enough, BALANCE goes
to step 8.

O If the modified page list is large enough, BALANCE calls MMG$PURGE_MPL, in
module WRTMFYPAG, to request that enough pages be written from the modified
page list to make up the free page deficit. (Chapter 4 describes MMG$PURGE_
MPL and the modified page writer.) BALANCE releases the spinlocks and returns.

O BALANCE tests whether there are any PHDs belonging to deleted processes from
which to reclaim memory and, if so, clears R3 and continues with step 8.

@ If there are no deleted PHDs, BALANCE tests bit 1 in SYSGEN parameter MMG_
CTLFLAGS to see if the mechanism known as trolling is enabled. If trolling is
enabled, BALANCE tests whether there are fewer free pages than FREEGOAL
and whether enough time has elapsed since the last troll attempt. If both are true,
it initializes R3 to 1 to indicate that OUTSWAP should troll for a suitable process
to outswap proactively.

Q BALANCE tests and sets SCH$V_SIP in SCH$GL_SIP. If the swapper already has
an inswap or outswap in progress, BALANCE releases the spinlocks and returns.

O If no swap I/O is in progress, BALANCE transfers to routine OUTSWAP, with R13
a copy of R3 and SWP$GB_ISWPRI set to zero. Section 6.3.3 discusses OUTSWAP
and the meaning of its arguments.

363

The Swapper

Figure 6.3 BALANCE Operations

Acquire MMG and
SCHED spinlocks

.....

R3 (the page deficit) =
FREECNT- FREEGOAL

4 Y

N

4 N

364

Request modified page
write to make up

page deficit
R3=0

Modified page writing
. in progress? j

pages being written
to make up deficit~

Deleted PHDs to clean up"

Trolling enabled?

F R E E C N T < F R E E G O A I
and enough time elapsed

since last troll?/

7 Y

R3= 1

,J

8
Y

LI . . .

Release MMG and
SCHED spinlocks

RSB

6.3 Swapper Main Loop

6.3.2 The SWAPSCHED Routine and Selection of Inswap Process
To select the outswapped process with the highest priority computable kernel thread,
SWAPSCHED takes the following steps:

1. It acquires the MMG spinlock.

2. It tests and sets bit SCH$V_SIP in SCH$GL_SIP. If the bit was already set,
indicating that the swapper map is in use, SWAPSCHED releases the spinlock and
returns.

Otherwise, it acquires the SCHED spinlock to synchronize access to the scheduling
database.

3. It selects the highest priority nonempty computable outswap (COMO) queue. It
removes a kernel thread from that queue, if one exists, to inswap its process.

The scheduling subsystem maintains 64 quadword listheads for COMO kernel
threads, one for each software priority (see Chapter Scheduling). These queues are
identical to the 64 queues of the computable resident (COM) kernel threads. The
steps taken by the swapper to decide which kernel thread to inswap parallel those
taken by the rescheduling interrupt service routine (see Chapter Scheduling) to
select the next kernel thread for execution.

4. If there is no COMO kernel thread, SWAPSCHED clears SCH$V_SIP, releases the
spinlocks, and returns.

5. If a COMO kernel thread exists and there are enough pages for its working set,
SWAPSCHED calls INSWAP to read the kernel thread's process into memory.

6. If a COMO kernel thread exists but there are insufficient pages for its working
set, SWAPSCHED attempts an optimization aimed at minimizing swapping on
systems with more compute-bound processes than can fit into available memory. It
makes two checks. One is whether the kernel thread's priority is no higher than
the SYSGEN parameter DEFPRI, the default kernel thread priority. The other is
whether less time than the SYSGEN parameter SWPRATE (a time interval with
a default value of 5 seconds) has elapsed since the last inswap of a process with a
kernel thread priority as low as DEFPRI. If both are true, SWAPSCHED abandons
the inswap.

Otherwise, it sets SWP$GB_ISWPRI to the priority of the inswap kernel thread
and R13 to the complement of the free page deficit and calls OUTSWAP to reclaim
enough memory for the inswap.

Whenever enough pages become available, the swapper executes the INSWAP routine
(see Section 6.6.2) to initiate reading the outswapped process with the highest priority
kernel thread into memory. Later, after the inswap I/O request completes, the swapper
rebuilds the working set list and process page tables. The swapper calls routine
SCH$CHSEP, in module RSE, to change the state of the newly inswapped process's
kernel threads. Section 6.6 describes these steps in more detail. The newly inswapped
kernel thread will be scheduled when the processor (or a member of a symmetric

365

The Swapper

multiprocessing system) is available and the kernel th read is the highest priority
computable resident kernel thread.

6.3.3 The OUTSWAP Routine
The swapper executes the OUTSWAP routine to perform one or more tasks related
to memory reclamation. OUTSWAP is entered with the MMG and SCHED spinlocks
held. It has one explicit argument , the contents of R13, the desired function:

�9 A value of 0 means OUTSWAP is to free a deleted PHD or outswap a PHD and
page tables to join their outswapped process body.

�9 A value of 1 means tha t OUTSWAP is to outswap a suitable process proactively.

�9 A value of 8000000016 means OUTSWAP is to free a balance set slot, ei ther
by outswapping a PHD and page tables or, less immediately, by outswapping a
process body.

�9 Any other negative value is the complement of the free page deficit tha t OUTSWAP
is to make up in any way possible.

OUTSWAP has one implicit argument , SWP$GB_ISWPRI, which contains zero or
the priority of the inswap candidate. SCH$OSWPSCHED, called by OUTSWAP,
compares this priority to that of certain kernel threads to determine if they are
suitable candidates for shrinking or outswapping. Because an internal priority of
zero represents the highest priority, when SWP$GB_ISWPRI is zero all those kernel
threads are considered suitable. Section 6.4 provides details on the selection of shr ink
and outswap candidates.

OUTSWAP takes the following steps:

1. If R13 contains the value 1, OUTSWAP continues with step 7.

2. Otherwise, it first a t tempts to reclaim memory by releasing the PHD of a previ-
ously deleted process or by outswapping the PHD and page tables of a previously
outswapped process. It scans the PHD reference count ar ray for a suitable header.

3. If OUTSWAP finds a PHD with a zero reference count, it tests the corresponding
PHV$GL_PIXBAS array element.

If it con ta ins -1 , the process has been deleted and the swapper can release its
PHD slot and its L1PT

In routine DELPHD, the swapper dissociates the process from all assigned
page files. DELPHD scans the system space L3PTEs tha t map the slot, re-
leases any valid pages to the free page list, and deallocates any page file back-
ing store associated with any invalid pages. When done, it calls MMG$DINS_
PRCPGFLS, in module PAGEFILE, in case a pending page file deinstallat ion
can be carried out now tha t all page file backing store associated with the
process has been released.

366

6.3 Swapper Main Loop

DELPHD inserts the LIPT into the free page list. It invalidates all t ranslat ion
buffer (TB) entries to remove stale translations representing the deleted PHD
slot. It clears the PHV$GL_PIXBAS array element and changes the PHD
reference count t o - 1 . It returns to OUTSWAP, which returns to its caller.

If the corresponding PHV$GL_PIXBAS array element contains a positive
value, the process has been outswapped and its PHD and page tables can be
outswapped as well, as described in Section 6.5.4.2. After the I/O is initiated,
control returns to OUTSWAP's caller.

4. If the PHD has a nonzero reference count and belongs to an outswapped process,
OUTSWAP determines whether the page tables map any pages locked in memory
by testing bits PCB$V_PHDLOCK and PCB$V_FREDLOCK in PCB$L_STS2. If
so, the PHD and page tables cannot be outswapped, and OUTSWAP returns to step
2 to scan for another PHD.

If the page tables map no locked pages, OUTSWAP usually records the slot number
of the process and returns to step 2 to continue the scan, in case there is a deleted
PHD to clean up. To avoid always picking the same slot to outswap, one time in
eight OUTSWAP does not record the slot number of the first candidate.

5. After scanning all the slots without finding one that contains the PHD of a
deleted process, OUTSWAP checks whether it has found a PHD belonging to
an outswapped process. If so, it takes the steps described in Section 6.5.4.1 to
at tempt to sever all the connections between the PHD, page tables, and mem-
ory so the PHD and page tables can be outswapped. If the reference count goes
to zero, outswap of the PHD and page tables is initiated and control re turns to
OUTSWAP's caller.

If the reference count does not go to zero, the page tables probably map modified
pages, which must be writ ten first. OUTSWAP calls MMG$PURGE_MPL, in mod-
ule WRTMFYPAG, to request that any modified pages mapped by that process's
page tables be writ ten when modified page writing is initiated.

OUTSWAP returns to step 2, to scan for another PHD.

6. If OUTSWAP scans all the balance set slots without finding a PHD to release or
outswap, it tests R13.

If the argument is zero, OUTSWAP returns to its caller.

If the argument is negative, OUTSWAP continues with the next step.

7. OUTSWAP calls SCH$OSWPSCHED, in module OSWPSCHED. Depending on the
contents of R13, SCH$OSWPSCHED may shrink one or more working sets, select
a process to outswap, or both. Unless the process has disabled automatic working
set limit adjustment or is a real-time process, its working set limit is shrunk with
its working set. Section 6.4 describes its operations.

367

The Swapper

.

Whenever SCH$OSWPSCHED shrinks a working set, it checks whether the free
page deficit has been made up. If the deficit has not yet been made up, it makes
checks similar to those previously described to determine whether writ ing the
modified page list is appropriate and whether it would satisfy the deficit. If it
would, SCH$OSWPSCHED calls MMG$PURGE_MPL to request tha t enough
modified pages be writ ten to make up the free page deficit.

When SCH$OSWPSCHED selects a process to outswap, it first shrinks the pro-
cess's working set. In previous OpenVMS versions, the process's working set was
shrunk to its normal maximum working set quota (WSQUOTA). As of OpenVMS
Version 7.2, SCH$OSWPSCHED tries to shrink the working set to the number of
pages represented by SYSGEN parameter SWPOUTPGCNT (which is in units of
pagelets).

This change in behavior reduces the amount of physical memory needed to inswap
a process and thus the maximum number of fluid physical pages that OpenVMS
must maintain to inswap. Previously, OpenVMS had to maintain enough fluid
pages to inswap a process with a working set list whose size was the number of
pages represented by WSMAX. On a system with a large value for WSMAX, this
requirement could severely limit the use of physical memory, resulting in failures
to expand nonpaged pool, the lock ID table, and the system page table.

If the deficit has still not been made up by shrinking the process or if a balance
set slot is needed for a process to be inswapped, SCH$OSWPSCHED then allocates
swap space for the process's working set and reports a SWPOUT scheduling event
to change the process's kernel threads' scheduling states from resident ones to
outswapped ones.

If SCH$OSWPSCHED returns with an identified outswap candidate, OUTSWAP
takes the steps described in Section 6.5 to outswap that process. After initiating
the I/O to outswap the process body, OUTSWAP returns to its caller. Later, after
the process body outswap I/O completes, the process header may be outswapped as
well.

If SCH$OSWPSCHED returns without an identified outswap candidate,
OUTSWAP simply returns to its caller.

6.4 Selection of Shrink and Outswap Processes
When the swapper needs physical memory or a balance set slot, it calls the routine
SCH$OSWPSCHED. The swapper specifies that it needs a certain number of pages
of memory, tha t it needs a balance set slot, or that a suitable process, if any, should
be swapped proactively. SCH$OSWPSCHED can shrink the working sets of selected
processes, select a process to be outswapped, or perform both operations.

When bit 1 of SYSGEN parameter MMG_CTLFLAGS is set, the mechanism known as
trolling is enabled. As its first and possibly only action, SCH$OSWPSCHED searches
for a suitable process to outswap proactively. The search is driven by the TROLL table,
described in Section 6.4.1. Section 6.4.2 describes how this table is used.

368

6.4 Selection of Shrink and Outswap Processes

If bit 1 of MMG_CTLFLAGS is clear, or if the trolling routine found no suitable process
to outswap, SCH$OSWPSCHED searches more extensively for processes to shrink or
swap. Its search is also table-driven. Section 6.4.1 describes the OSWPSCHED table,
and Section 6.4.3, how the table is used.

If SCH$OSWPSCHED is entered to troll or to free a balance set slot, it at tempts to
shrink a suitable process's working set to the number of pages represented by the
SYSGEN parameter SWPOUTPGCNT.

If SCH$OSWPSCHED is entered to reduce the free page deficit, it can perform two lev-
els of shrinking: in first-level trimming, it shrinks an extended working set back to the
normal maximum working set limit (WSQUOTA); in second-level trimming, it at tempts
to shrink a working set to the number of pages represented by SWPOUTPGCNT. Be-
fore performing any second-level trimming, it performs first-level tr imming of all
suitable processes. (Chapter 5 describes the distinction between working set size,
limit, and quota.)

Whenever it gains free pages from shrinking a working set, it checks whether there
are enough pages on the free and modified page lists to satisfy the swapper's need.
If enough pages are available, SCH$OSWPSCHED returns. If SCH$OSWPSCHED
selects a process to be outswapped, it returns to the swapper, which is responsible for
the actual outswap.

6.4,1 The OSWPSCHED and TROLL Tables
This section describes both the traditional OSWPSCHED table and the table used by
the trolling routine. Because the table that drives the trolling routine is a subset of
the OSWPSCHED table, the OSWPSCHED table is described first.

The OSWPSCHED table is divided into sections, each specifying one or more res-
ident kernel thread scheduling states and a set of conditions associated with each
state. Table 6.2 lists the individual entries and sections in the OSWPSCHED table.
States in the same section are considered equivalent. Selection of shrink and outswap
candidates depends on the factors named in the column heads of Table 6.2.

A kernel thread in the scheduling state computable to be scheduled (COM TBS) is
a computable class-scheduled thread whose class has run out of quantum. Chapter
Scheduling describes scheduling states, class scheduling, and the TBS and other state
queues.

369

The Swapper

Table 6.2 O S W P S C H E D Table

Initial
Quan- Long Dor-

State I/O Priority turn Wait mant Flags

SUSP No n/a n]a n/a n/a Swap
buffered (SWAPASAP)

SUSP Buffered n]a n/a n/a n/a Second
(SWPOGOAL) 2

COM n/a n/a n/a n/a Yes First only (LVLI_
TRIM)

HIB n/a n/a n/a Yes n/a Second 2

LEF No direct n/a n/a Yes n/a Second 2

CEF No direct n/a n/a n/a n/a Second 2

HIB n/a n/a n/a No n]a Second 2

LEF No direct n/a n/a No n/a Second 2

COM n/a Yes 1 Yes n]a No First only
TBS

FPG n/a Yes n/a n]a n]a

COLPG n/a Yes n/a n/a n/a

MWAIT n/a n/a n/a n/a n/a

CEF Direct Yes Yes n/a n/a

LEF Direct Yes Yes n/a n/a

1This constraint is not present in the OSWPSCHED table; however, it is present in the algorithm and
thus shown here.

2This flag is obsolete, but still present.

370

6.4 Selection of Shrink and Outswap Processes

Table 6.2 (continued) O S W P S C H E D Table

Initial
Quan- Long Dor-

State I/O Priority tum Wait mant Flags

PFW rga Yes Yes rda n/a

COM rga Yes I Yes rda No

I This constraint is not present in the OSWPSCHED table; however, it is present in the algorithm and
thus shown here.

In general, SCH$OSWPSCHED scans the scheduling queues in the order shown in
the State column. It checks whether any kernel thread in that state queue satisfies
the conditions in the second through sixth columns. If a kernel thread satisfies those
conditions, its process may be a candidate for shrinking and possibly for swapping.

In the case of a multithreaded process, each kernel thread must meet the schedul-
ing state constraints in the table for the process to be suitable for being shrunk or
outswapped. As SCH$OSWPSCHED scans the table, it keeps track of how many ker-
nel threads in each multithreaded process it has encountered in scheduling queues on
this pass of the table so that it can determine if all threads meet the constraints.

The conditions in the table entries discriminate among kernel threads, based on their
likelihood of becoming computable in a short while and the effects of shrinking or
swapping their processes. When the system needs to reclaim physical memory, process
working sets extended in times of plentiful memory are shrunk first.

In general, the intent is to prevent the outswap of a process with a kernel thread tha t
is about to become computable when the only reason for the swap is to bring a process
with a kernel thread of equal priority into memory. Overall system performance may
be improved by shrinking processes rather than swapping them. However, a process
with kernel threads in some states may be affected less by being swapped than by
having its working set limit reduced.

Descriptions of the various conditions follow:

I/O. A table entry in this column can specify No direct, Direct, No buffered,
Buffered, and n/a.

When a kernel thread is in a local event flag (LEF) or common event flag (CEF)
scheduling state, and its process has an outstanding direct I]O request, there is a
high probability that the kernel thread is waiting for the direct I/O to complete.
If so, the kernel thread will soon become computable and thus be a less desirable
shrink or outswap candidate. SCH$OSWPSCHED therefore distinguishes between
kernel threads with and without outstanding I/O requests.

371

The Swapper

Suspension affects all kernel threads in a process. A suspended kernel thread, by
default, can receive kernel and executive ASTs. To prevent a suspended process
from being outswapped and one of its kernel threads then becoming computable
again as the result of buffered I/O completion, the table distinguishes between
suspended kernel threads with and without outstanding buffered I/O requests.

In this column, n/a means that the existence of either type of outstanding I/O
request is irrelevant. No test is made for either.

Priority. A table entry in this column can specify Yes or n/a.

Yes in this column means that SCH$OSWPSCHED compares the priority of the
highest priority computable kernel thread in a process to be inswapped with that
of any kernel thread whose process may be shrunk or outswapped. A process
with a kernel thread that is computable or likely to be computable soon is not
considered a candidate, unless the kernel thread's priority is less than or equal to
that of the potential inswap process, stored in global location SWP$GB_ISWPRI.
(The swapper zeros SWP$GB_ISWPRI before calling SCH$OSWPSCHED to make
up a free page list deficit.)

In this column, n/a means no test is made.

Initial Quantum. A table entry in this column can specify Yes or n/a.

Yes in this column means that SCH$OSWPSCHED rejects a process that is in
its initial memory residency quantum. A process with a kernel thread likely to
become computable soon is not considered a candidate for second-level tr imming
or outswapping if it is within its initial memory residency quantum. If SWP$GB_
ISWPRI is less than or equal to 47, indicating the inswap candidate is real-time,
the constraint is ignored. The intent is to leave the process in memory long enough
to do useful work, after the system has expended the overhead of inswapping it.
This reduces the possibility of swap thrashing, a condition in which the system
spends more time swapping in and out than in process execution.

In this column, n/a means that SCH$OSWPSCHED does not test whether the
process is in its initial quantum.

Long Wait. A table entry in this column can specify Yes, No, or n/a.

Either Yes or No in this column means that SCH$OSWPSCHED determines
whether a kernel thread has been waiting in an LEF or hibernate (HIB) state
longer than the SYSGEN parameter LONGWAIT. Yes means that for a kernel
thread to be a candidate, it must be in a long wait. A kernel thread that has been
waiting a long time is likely to wait longer still; one that has been waiting a short
time is more likely to become computable soon. For example, a kernel thread
waiting for terminal input longer than a LONGWAIT interval is likely to remain
in LEF longer still.

No in this column means that the kernel thread must not have been waiting a long
time; n/a means that SCH$OSWPSCHED does not test for this condition.

Dormant. A table entry in this column can specify Yes, No, or n/a.

372

6.4 Selection of Shrink and Outswap Processes

Either Yes or No in this column means tha t SCH$OSWPSCHED determines
whether a computable kernel thread is dormant , tha t is, one whose priority is less
than or equal to the SYSGEN paramete r DEFPRI and tha t has been on a COM
or COMO queue for longer than the SYSGEN paramete r DORMANTWAIT. Yes
in this column means tha t the kernel th read must be dormant to be a candidate.
A process with dormant kernel threads is considered a very good candidate to be
shrunk. An example of such a process is one with a compute-bound kernel th read
with a priority too low to get CPU time.

This condition expedites the shrinking and outswap of a process such as a low-
priority batch job. While the process's kernel th read or threads run at n ight on
a lightly loaded system, its working set is expanded and it can acquire extensive
physical memory, but once interactive users log in, the process's kernel th reads
cannot get CPU time.

No in this column means the kernel thread must not be dormant to be a candidate;
n/a means tha t SCH$OSWPSCHED does not test for this condition.

This older mechanism for dealing with dormant kernel threads persists in case the
system manager has disabled the newer, preferred mechanism: the combination
of PIXSCAN priority boost and quantum-end working set tr imming. Chapter 5
contains information on quantum-end tr imming, and Chapter Scheduling describes
the PIXSCAN mechanism.

When SCH$OSWPSCHED finds a candidate process, its subsequent action depends on
the flags shown in the last column and described in Section 6.4.3.

In addition to conditions imposed by the table entries, there are several implicit
constraints on the suitability of a part icular process to be shrunk or outswapped:

�9 A process cannot be outswapped if it has locked itself into the balance set.

�9 The working set limit of a process tha t has disabled automatic working set adjust-
ment cannot be reduced, although its working set may be reduced.

�9 The working set limit of a real-time process cannot be shrunk below WSQUOTA,
although its working set may be reduced.

�9 If the executive is deleting the process and its address space (bit PHD$V_NO_WS_
CHNG in PHD$W_FLAGS), the working set cannot be shrunk or outswapped.

�9 If the executive has temporari ly blocked movement of the PHD (by set t ing bit
PHD$V_LOCK_HEADER in PHD$L_FLAGS), the process cannot be swapped.

�9 A process tha t is already outswapped cannot be shrunk or outswapped.

The TROLL table consists of three entries within one section. Its first entry specifies
the SUSP scheduling state. Its other two entries are HIB and LEF, with the LONG-
WAIT flag set for each. The actual order of these two entries varies, depending on
which queue had the longest wait ing kernel thread the last t ime the trolling routine
executed.

373

The Swapper

6.4.2 Trolling
Trolling is triggered by a combination of circumstances, including fewer pages on the
free page list than FREEGOAL (see Section 6.3.1). The trolling routine, TROLLER, in
module OSWPSCHED, looks for a process to outswap proactively, tha t is, before the
swapper needs a balance set slot to accommodate a process to be inswapped.

In the case of a mult i threaded process, each kernel thread must meet the schedul-
ing state constraints in the table for the process to be suitable for being sh runk
or outswapped. As TROLLER scans the table, it keeps track of how many kernel
threads in each mult i threaded process it has encountered in scheduling queues on this
invocation.

TROLLER takes the following steps:

1. It first tests whether the free page list has fewer pages than FREELIM. If so, the
test for whether a kernel thread has been wait ing a long enough time will be based
on half the value of the LONGWAIT parameter.

2. Scanning the SUSP wait queue, it tests each kernel thread's process to check tha t
the process has not locked itself into the balance set and that the executive has set
neither PHD$V_LOCK_HEADER nor PHD$V_NO_WS_CHNG in PHD$L_FLAGS.
If all these constraints are met, TROLLER has found a candidate to outswap and
continues with step 5.

3. If TROLLER failed to find a process with suspended kernel threads to outswap, it
scans the HIB and LEF wait queues. Which one it scans first depends on which
had the longest waiting kernel thread the last t ime TROLLER executed. A suitable
kernel thread in either scheduling state must have been waiting long enough and
must meet the constraints just listed.

4. If it processes the entire TROLL table and finds no candidate, it re turns a failure
status to SCH$OSWPSCHED.

5. When it finds a candidate to outswap, TROLLER reduces the process's working
set, but not its limit, to the number of pages represented by SWPOUTPGCNT.

6. It allocates swap space for the outswap candidate.

7. TROLLER scans both the HIB and LEF wait queues to determine the longest
waiting swappable kernel thread in either state and calculates how soon tha t
kernel thread could meet the LONGWAIT constraint TROLLER established at its
entry.

8. It recalculates the next time at which the trolling routine should be entered as
the later of 5 seconds from the current time and the time at which the oldest
swappable HIB or LEF kernel thread will have waited long enough to meet the
LONGWAIT constraint. Because the trolling routine is automatically entered every
time SCH$OSWPSCHED is, the result of this calculation represents a max imum
interval between trolls.

374

6.4 Selection of Shrink and Outswap Processes

, If necessary, it switches the second and third entries in the TROLL table so tha t
the queue that currently has the oldest kernel thread will be scanned first on
TROLLER's next execution.

10. It returns to SCH$OSWPSCHED with the address of the PCB of the outswap
candidate.

SCH$OSWPSCHED clears PCB$V_RES in PCB$L_STS for that process, reports a
SWPOUT event for the process to change its scheduling state, resets the swap failure
count, and returns the process's PCB address to OUTSWAP.

6.4.3 Passes Through the OSWPSCHED Table
SCH$OSWPSCHED scans the scheduling database looking for processes to be shrunk
or outswapped. The search for a candidate process is table-driven.

SCH$OSWPSCHED makes two passes through the table. On its first pass, it poten-
tially traverses all sections of the table, performing first-level tr imming (to WSQUOTA)
of any candidate processes.

If, however, it has been entered with a request to outswap a process to free a balance
set slot, it shrinks the working set of the first candidate process that has not locked
itself into the balance set to the number of pages represented by SWPOUTPGCNT,
selects that process as an outswap candidate, and returns its PCB address to the
swapper. If the process is a real-time process or one that has disabled automatic
working set limit adjustment, its working set size is reduced but its limit is not
changed.

If SCH$OSWPSCHED has been entered to satisfy a free page deficit, it continues
reclaiming memory from working sets that had been extended until it reaches the
end of the table, reclaims enough free pages to satisfy the deficit, or finds a process to
be outswapped. A suitable outswap candidate is one whose kernel threads meet the
scheduling state and conditions of a table entry that includes the SWAPASAP flag and
that has not locked itself into the balance set.

If SCH$OSWPSCHED reaches the end of the table without satisfying the deficit or
locating an outswap candidate, it makes a second pass through the table, starting its
scan at the beginning of the table. If it has been entered to satisfy a free page deficit,
it performs second-level trimming.

In second-level swapper trimming, SCH$OSWPSCHED can scan each section of the
table twice. In scanning the table, it ignores any entry that has the LVLI_TRIM flag
set. First, if the entry contains the SWPOGOAL flag, SCH$OSWPSCHED shrinks
the working set of a process selected by this entry (unless the process has disabled
automatic working set adjustment). The working set is reduced, if possible, to the
number of pages represented by SWPOUTPGCNT. If the process is a real-time process
or one that has disabled automatic working set limit adjustment, its working set size
is reduced but its limit is not changed.

375

The Swapper

If the deficit is not satisfied, SCH$OSWPSCHED continues scanning through processes
selected by the table section. When it gets to the end of the section, it res tar t s at the
beginning of the section, looking for a process to outswap. When SCH$OSWPSCHED
gets to the end of the section for the second time, it goes to the next section. The
pass ends when the deficit is satisfied or a process is found to outswap. If outswap-
ping a process does not satisfy the deficit, eventually the swapper will reexecute the
OUTSWAP and SCH$OSWPSCHED routines.

The swapper mainta ins a swap failure counter tha t records the number of t imes it has
failed to locate a candidate to shr ink or swap. This count is mainta ined across calls of
SCH$OSWPSCHED. It is intended to loosen the constraints in si tuations where the
normal conditions have failed to produce candidates. When this count reaches a value
equal to SWPFAIL, the swapper ignores certain constraints when selecting a process
to shr ink or outswap: it ignores the initial quan tum condition for all processes and the
priority constraint for all processes except COM ones. The counter is reset each t ime
an outswap candidate is successfully located.

When the swapper scans a series of processes in a par t icular scheduling queue, the
scan begins with the least recently queued entry (at the tail of the queue). This
s tar t ing point ensures tha t the longer a process has been in a wait queue, the more
chance it has of being shrunk or swapped. (A process is inserted into a wait queue at
the front of the list, unlike most queues.)

To determine whether all kernel threads of a mul t i threaded process meet the table
entry contstraints, SCH$OSWPSCHED keeps track of how many kernel threads in
each mul t i threaded process it has encountered in scheduling queues on this pass of the
table:

1. It increments SWP$L_SEQ_NUMBER at the beginning of each pass through the
OSWPSCHED table.

2. The first time in a pass through a table tha t it encounters any of a process's kernel
threads, it records SWP$L_SEQ_NUMBER in PCB$L_SWP_SEQ and copies the
number of kernel threads in the process to PCB$L_SWP_KT.

3. For each kernel thread it encounters, it records SWP$L_SEQ_NUMBER in
KTB$L_SWP_SEQ to indicate tha t it has encountered this kernel thread on
this table pass. If the kernel thread is a suitable candidate, it decrements PCB$L_
SWP_KT.

4. When PCB$L_SWP_KT is decremented to zero, all the kernel threads of the
process meet the constraints and the process is a suitable candidate to be sh runk
or outswapped.

376

6.50utswap Operation

6.50utswap Operation
Outswap is described before inswap because it is easier to explain inswap in terms
of what the swapper puts into the swap file. The swapper does not remove processes
from the balance set indiscriminately. In general, unless trolling is enabled, the
swapper tries to satisfy the free page deficit first by shrinking working sets, deleting
or outswapping PHDs and page tables, and writing modified pages. The swapper
outswaps a process if one of the following conditions is true:

�9 Trolling is enabled, and an existing process's kernel threads meet the trolling
constraints.

�9 The steps just described fail to free enough pages.

�9 SCH$OSWPSCHED encounters a process whose kernel threads meet the con-
straints of a table entry with the SWAPASAP flag.

�9 The system needs a balance set slot (PHD slot).

6.5.1 Selection of an Outswap Candidate
As described in Section 6.4, the outswap selection is driven by an ordered table of
scheduling states and associated conditions. The swapper selects a process less likely
to benefit from remaining in memory. Once a candidate is selected, the swapper
allocates swap space and prepares the working set of that process for outswap.

6.5.2 Allocation of Swap Space
Section 6.2.3 describes how the swapper calculates the amount of swap space needed.
To allocate the space, the swapper calls MMG_STD$ALLOC_SWAP_SPACE, in module
PAGE_FILE. MMG_STD$ALLOC_SWAP_SPACE first allocates a PFLMAP from
nonpaged pool.

Looking for possibly large quantities of available swap space can be time-consuming.
MMG_STD$ALLOC_SWAP_SPACE uses the PFL$L_DIR_CLUSTER array in each
PFL (see Figure 2.31) to minimize the effort. As described in Chapter 2, each array el-
ement represents a number of adjacent set bits in the directory bitmap. The elements
represent increasing powers of 2: the first element counts the number of adjacent set
bits; the second element, the number of pairs of adjacent set bits; the third element,
the number of groups of four adjacent set bits; and so on.

The maximum number of adjacent bits represented is 26 , or 64. Since each bit in
the directory bitmap represents 16 bits in the storage bitmap, a count in this cluster
entry represents 1,024 adjacent free pages. Descending array elements represent
occurrences of 512, 256, and so on, pages.

To avoid costly but possibly futile scans of the bitmaps, the swapper calculates the
minimum acceptable swap space extent as the total space needed, split into the
maximum possible number of extents. It rounds the result up to the next power of 2.

377

The Swapper

It then begins to scan the page-and-swap-file vector (see Figure 2.31). If SYSGEN
parameter NOPGFLSWP is zero, it can examine both page and swap file PFLs;
otherwise, it can examine only swap file PFLs.

In each PFL it examines, it looks at the PFL$L_DIR_CLUSTER array entry that
represents the minimum acceptable extent. (As described in Chapter 2, each array
entry represents a number of set bits in the directory bitmap for that file. Each set bit
represents 16 adjacent set bits in the storage bitmap.) If that array entry is nonzero,
it records in the PFLMAP the index of the PFL in the page-and-swap-file vector and
the size of that minimum extent.

It continues to record minimum extents from that PFL in the PFLMAP until it has
accounted for all the set bits or until it has accumulated enough extents for the needed
swap space. If it has accounted for all the set bits but not accumulated enough extents,
it goes on to the next PFL.

Once MMG_STD$ALLOC_SWAP_SPACE has accumulated enough extents, it then
calls MMG_STD$ALLOC_PAGSWP_PAGES, in module PAGE_FILE, potentially once
for each extent, passing it the PFL index, the total size of the swap space needed, and
the size of that extent.

Each time MMG_STD$ALLOC_PAGSWP_PAGES is called, it locates the available
cluster that would satisfy the minimum extent size in the specified PFL. Start ing with
that cluster, it allocates as much contiguous space as it can, up to the total size of the
swap space.

MMG_STD$ALLOC_SWAP_SPACE initializes a mapping pointer in the PFLMAP to
correspond to the space allocated from that PFL, condensing the equivalent extents
into the one mapping pointer. If the total space has not yet been allocated, it calls
MMG_STD$ALLOC_PAGSWP_PAGES to allocate from the next file.

6.5.30utswap of the Process Body
The swapper outswaps the process body (P0, P1, and P2 pages) separately from the
PHD and page tables for the following reasons:

�9 Fields in the PHD and page tables (most notably WSLEs and PTEs) are modified
as the working set list is processed.

�9 The PHD and page tables may not be swappable at the same time as the body
because of outstanding I/O, pages on the modified page list, or some other reason.

Even though the PHD and page tables are outswapped separately, space in the swap
file is reserved for them at the beginning of the swap slot.

378

6.50utswap Operation

6.5.3.1 Scanning the Working Set List
To prepare the process body for outswap, the swapper scans the process's working set
list. I t mus t examine each page in the working set list to de te rmine if any special
action is required. The swapper looks at a combinat ion of the page type (found in the
WSLE as well as the PFN$L_PAGE_STATE field in the P F N da tabase record) and the
valid bit.

A page in the working set can be in one of the following th ree states:

* The page is valid.

. The page is cur rent ly being read into memory. The swapper t r ea t s page reads like
any other I/O in progress when swapping a process.

. The process PTE contains a global page table index (GPTX), and the indexed global
page table en t ry (GPTE) indicates a t rans i t ion state. The swapper handles global
pages in a special m a n n e r when ou tswapping a process.

Table 6.3 lists all combinations of page type, s tate , and valid bit se t t ing tha t the
swapper encounters and the action it takes for each. Several combinat ions are dis-
cussed fu r ther in the following sections. One type of page not discussed fu r the r is a
page locked into memory, one whose WSLE P F N L O C K bit is set. Apar t from se t t ing
PCB$V_PHDLOCK in the process's PCB$L_STS2 as an indicat ion t ha t its PHD and
page tables cannot be outswapped, the swapper ignores such pages; they r ema in in
memory, and no other action is required.

Table 6.3 Scan of Working Set List of Outswap Process

Page
Page Type Validity
WSLE<3:I> L3PTE Action of Swapper for This Page

Process page Valid

Process page Transition

System page n/a

Outswap page. If there is outstanding I/O and the page is
being modified, store in its PFN record the number of the
swap file page where the updated page contents should be
written when the I]O completes. If the page is part of a
buffer object, decrement its page table's share count.

(Page state = Read in Progress)
Treat as page with I/O in progress. Special action may be
taken at inswap or by the modified page writer.
(Page state = Read Error)
Drop from working set. No other transition states are
possible for a page in the working set.

It is impossible for a system page to be in a process work-
ing set. The swapper generates the fatal IVWSETLIST
bugcheck.

379

The Swapper

Table 6.3 (continued) Scan of Working Set List of Outswap Process

Page
Page Type Validity
WSLE<3:I> L3PTE Action of Swapper for This Page

Global Transition
read-only

Global Valid
read-only

Global n/a
writable

Page table n/a
page

If the process L3PTE contains a GP'I~, then the global page
table must contain a transition L3PTE. The page is dropped
from the process working set.

If share count = 1, then outswap. If share count > 1, drop
from working set unless the page is locked in the working
set. It is highly likely that a process can fault such a page
later without I/O. This check avoids multiple copies of the
same page in the swap file.

Drop from working set. At inswap, it would be difficult to
determine whether the page in memory is more up-to-date
than the swap file copy.

Not part of the process body. However, in the single scan of
the working set list the swapper builds chains of L2 and L3
page tables for later processing.

The basic step the swapper takes as it scans the working set list is to add a description
of each swappable page to its swapper map. As a result of this pseudo page table, the
virtually noncontiguous pages in the process's working set appear virtually contiguous
to the I/O system (see Figures 6.5 and 6.8).

To access the process-private page tables of the process being outswapped, the swapper
switches hardware context, temporari ly adopting tha t process's address space. This
change in behavior is required because, as of OpenVMS Alpha Version 7.0, process-
private page tables are mapped only in process-private address space.

For each page in the working set, the swapper performs the following steps:

1. It locates the PTE tha t maps the page from the virtual page number in the WSLE.

2. It determines any special action, based on page validity and page type.

, For a process body page to be outswapped, it copies the PFN from the L3PTE to
the swapper map.

, It records the modify bit (logical OR of the L3PTE modify bit and PFN$L_PAGE_
STATE field saved modify bit) in the WSLE.

, For a valid process page, it sets the delete contents bit in the PFN$L_PAGE_
STATE field. This bit causes the page to be placed at the head of the free page list
when its reference count goes to zero (normally, when the swap write completes).

6. It updates page table reference counts (see Chapter 4).

380

6.50utswap Operation

Note that the swapper does not explicitly restore each process body L3PTE to the
contents of its physical page's PFN$Q_BAK field. The contents will be replaced when
the page is released (after the swap write completes and all other references to the
page are eliminated).

6.5.3.2 Pages Within Buffer Objects
If the swapper encounters a page whose reference count is greater than 1, it checks
whether bit PFN$V_BUFOBJ is set in PFN$L_PAGE_STATE. If so, the page is par t
of a buffer object. The swapper changes the page's state to release pending and
decrements the share count and PFN$W_PT_VAL_CNT of the page table page tha t
maps it so that the PHD and page tables can be released. It increments PCB$L_
BUFOBJ_CNT, the number of buffer object and PFN-locked pages.

6.5.3.3 Pages with Direct gO in Progress
If, in the swapper's scan of the working set list, it encounters a modified page with
outstanding I/O, it stores in the page's PFN$W_SWPPAG field the location in the swap
file where that page belongs and sets PFN$V_SWPPAG_VALID in PFN$L_PAGE_
STATE. The page will be swapped along with the rest of the process body to reserve a
place for it in the swap file.

If the I/O operation is a write (from memory to mass storage) and the page was not
otherwise modified, the contents currently being writ ten to the swap file are good. The
page will be inserted into the free page list when the I/O operation completes.

If the I/O operation is a read (or if it is a write and some other action has caused the
page to be modified), the physical page will be placed into the modified page list when
the I/O completes. The modified page writer takes special action for a modified page
whose PFN$V_SWPPAG_VALID bit is set. That is, it writes the page to the swap file
page whose number is in PFN$W_SWPPAG rather than to its normal backing store
address.

6.5.3.4 Global Pages
Global pages are also given special t rea tment at outswap. A writable global page is
dropped from the working set before the process is outswapped. The task of determin-
ing whether the contents that are swapped are up-to-date when the process is brought
back into memory is more complicated than simply refaulting the page (often without
I/O) when the process is swapped back into memory.

A global read-only page is swapped only if its global share count is 1. In all other
cases, the page is typically dropped from the working set and must be refaulted (most
likely without I/O) after the process is inswapped. (Global read-only pages, however,
that are locked into the working set are not dropped from it.) Global transition pages
are also dropped from the working set.

381

The Swapper

6.5.3.5 PHD Pages and Page Table Pages
As the swapper scans the working set list, it records the locations of all the process-
private page tables it encounters so that it can process them later without rescanning
the working set list. It builds one list of all L3PTs other than those mapping buffer
objects and another list of all L2PTs. These page table pages remain resident while
the process body is outswapped so that they can be updated to reflect pages written
to the swap file and any pages dropped from the working set list. The swapper also
builds one list of all L3PTs that map buffer objects; these page table pages will remain
resident.

At the beginning of the working set list scan, the swapper clears PHD$L_L3PT_WSLX,
PHD$L_L2PT_WSLX, and PHD$L_BUFOBJ_WSLX, the listheads for the three lists.
When the swapper encounters the first page table of each type, it stores the WSLX of
that page table in the appropriate listhead.

When it encounters the second page table of a particular type, it stores the WSLX of
that page table in the low longword of the first page table's PFN$Q_BAK. This scheme
takes advantage of the fact that there is no useful information in the low longword of
the BAK field for page table pages. The WSLX of any subsequent page table is stored
in the low longword of the previous page table's PFN$Q_BAK.

When the swapper has scanned the entire working set list, it clears the low longword
of the last page table's PFNSQ_BAK to terminate the list.

During the final preparation for header outswap, the PFNSQ_BAK field for a page
table page is written to the PTE that maps that page table. This enables the page
table linkage to survive outswap and inswap.

The swapper increments PCB$L_APTCNT for the LIPT, each L2PT, and each L3PT
that does not map a buffer object. For each L3PT that maps a buffer object, it incre-
ments PCB$L_BUFOBJ_CNT. It updates page table reference counts (see Chapter 4)
for the page table page that maps each page table page.

For each PHD page it finds in the working set list, it increments PCB$L_APTCNT and
subtracts the PHD address from the virtual address stored in the WSLE, converting
it to an offset from the beginning of the PHD. If the PHD is outswapped, it will most
likely be inswapped to a different balance set slot, and any PHD virtual address stored
in a WSLE would have to be recalculated. It is not necessary to record the locations of
PHD pages: they are the first pages locked into the working set list.

6.5.3.6 Example of a Process Outswap
Figures 6.4 to 6.6 show some of the cases the swapper encounters while it is scanning
the process's working set list. The key information about each page is a combination
of the L3PTE validity and the page type. The order of the scan is defined by the order
of the working set list. Note that the example is simplified; in particular, it omits the
LIPT and L2PTs.

382

6.50utswap Operation

Figure 6.4 shows excerpts from the working set list, the process page tables, and
the associated PFN database records before the swapper begins its working set scan.
Figure 6.5 shows the modified working set list and the swapper map after the working
set list scan but before the I/O request is initiated. Figure 6.6 shows the state of the
L3PTEs after the swap write has completed and the physical pages have been released.

In these figures, the term VA_PTE represents the combination of PFN database fields
PFN$L_PT_PFN and PFN$Q_PTE_INDEX, and the term WSLX stands for the PFN
database field PFN$L_WSLX_QW.

Figure 6.4 Example Working Set List before O u t s w a p Scan

63 Working Set List o

Fixed Part

GRO

PPG

GRW

PPG

PT

PT

WSLE 1

WSLE 2

WSLE 3

WSLE 4

WSLE 5

WSLE 6

VPN = Y

VPN = Z

VPN = W

VPN = X

VPN = S

VPN = T

PFN Database Records
WSLX VA_PTE BAK LOC PAGTYP Other

VPN W

VPN X

VPN Y

VPN Z

VPN S

VPN T

63 Process Page Tables 0

Valid, PFN = B

Valid, PFN = D

Valid, PFN = A

Valid, PFN = C

Valid, PFN = E

Valid, PFN = F

PTE W

PTE X

PTE Y

PTE Z

PTE Q

PTER

GPTE Q

GPTE R

SWP$GL_MAP 63 Global Page Table 63 Swapper Map 0 I
< I]

0

Valid, PFN = A

Valid, PFN = B

WSLE 1 is a global read-only page. The VPN field of the WSLE locates the L3PTE.
The PFN field of the L3PTE locates the PFN database record associated with this

383

The Swapper

1

physical page. In particular, the share count for this page is 1. (This process is the
only process that currently has this page in its working set.) The swapper writes
this page out as part of the swap image for this process. Thus, PFN A is the first
page in the swapper's map (see Figure 6.5). It marks the page for deletion.

When the outswap I/O completes, the swapper will clear PFN$L_PT_PFN and
PFN$Q_PTE_INDEX and place the page at the head of the free page list (see
Figure 6.6).

WSLE 2 is a process page that also has I/O in progress (a reference count of 2.)
This page will be swapped; its PFN is shown in the swapper's map.

F igure 6.5 Example Working Set List after O u t s w a p Scan

63 Working Set List 0

Fixed Part

VPN = Y GRO

VPN = Z PPG

VPN = W

VPN = X PPG

VPN = S PT

VPN = T PT

WSLE 1

WSLE 2

WSLE 3

WSLE 4

WSLE 5

WSLE 6

PFN Database Records
WSLX VA_PTE BAK LOC PAGTYP Other

I - I I~P~ol I ~s~ I I ACT I I~F~I I, SHRCNT=I I PFNA
I - !1 ' !1 ~s~x I! ACT ! ! ~ ! 1 s,,cN~=~ I PFN B

I WS,E= II PTE Z I I PGFLX I I Ac~ I I I I REFCNT=2 I PFN c

l ws ,~ , l l P~X I! PS~X I! ,c~ !! PP~l PF, D

VPN W

VPN X

VPN Y

VPN Z

VPN S

VPN T

63 Process Page Tables 0

Valid, PFN = B

Valid, PFN = D

Valid, PFN = A

Valid, PFN = C

Valid, PFN = E

Valid, PFN = F

PTEW

PTE X

PTE Y

PTE Z

PTE Q

PTER

GPTE Q

GPTE R

SWPSGL_MAP 63 Global Page Table 63 Swapper Map 0 , ,
< I I

o

Valid, PFN = A

Valid, PFN = B

Valid, PFN = A

Valid, PFN = C

Valid, PFN = D

384

6.50utswap Operation

Figure 6.6 C h a n g e s after Swapper ' s Write C o m p l e t e s

63 Working Set List o

Fixed Part

VPN = Y GRO

VPN = Z PPG

VPN = W GRW

VPN = X PPG

VPN = S PT

VPN = T PT

WSLE 1

WSLE 2

WSLE 3

WSLE 4

WSLE 5

WSLE 6

PFN Database Records
WSLX VA_PTE BAK LOC PAGTYP Other

I - I I ~ ~ II ~ x II ~c~l I ~ 1 I s . ~ o ~ - ~ l ~ ~

I ~u~ II o II I 1 ~ 1 1 ~ I ~ . ~

VPN W

VPN X

VPN Y

VPN Z

VPN S

VPN T

63 Process Page Tables 0

Valid, PFN = B

Valid, PFN = D

Valid, PFN = A

Valid, PFN = C

Valid, PFN = E

Valid, PFN = F

PTEW

PTE X

PTE Y

PTE Z

PTE Q

PTER

GPTE Q

GPTE R

63 Global Page Table 0 63 Swapper Map

Translation, PFN = A

Valid, PFN = B

SWP$GL_MAP
o . I

- - I J

If the page was previously modified (if either the L3PTE modify bit or saved modify
bit in PFN$L_PAGE_STATE is set), the address in the swap file where the page
belongs is stored in the PFN$W_SWPPAG field and bit PFN$V_SWPPAG_VALID
is set in PFN$L_PAGE_STATE. A set PFN$V_SWPPAG_VALID bit causes the
page to be placed into the modified page list when it is released. If the process is
still outswapped when the modified page writer writes this page, the page will be
written to the page reserved for it in the swap file.

385

The Swapper

The page is marked for deletion. If the I/O is still outs tanding when the outswap
completes, the page state is changed to release pending. Later, when the I/O
completes and the PFN$L_REFCNT reaches zero, the page will be placed at the
head of the free page list and its PFN$L_PT_PFN and PFN$Q_PTE_INDEX fields
cleared.

3. WSLE 3 is a global writable page. The page is dropped from the process working
set (see Figure 6.5); the process L3PTE contents are replaced with the GPTX of
GPTE R, and the share count for PFN B is decremented. Notice tha t PFN B is not
included in the swapper map.

4. WSLE 4 is an ordinary process page. The page is added to the swapper map
(PFN D) and it is marked for deletion. The deletion will actually occur after the
swapper's write operation completes.

5. WSLE 5 is a process L3PT tha t does not map a buffer object. The swapper links it
into the list at PHD$L_L3PT_WSLX. Its PFN is not included in the swapper map
because it is not par t of the process body.

6. WSLE 6 is also a process L3PT tha t does not map a buffer object. It is also
linked into the L3PT list, but the low longword of its PFN$Q_BAK field contains 0
because it is the last L3PT in the list.

6.5.40utswap of the Process Header and Page Tables
The PHD and page tables are not outswapped until after the process body has been
successfully wri t ten to the swap file. Before they can be outswapped, ties between
physical pages and the process page tables must be severed, including pages tha t
were in the working set and wri t ten to the swap file and also pages tha t are in some
transit ion state, notably pages on the free and modified page lists.

6.5.4.1 Partial Outswap
After the process body has been outswapped, the PHD and page tables can be
outswapped if the PHD reference count is zero. The PHD reference count (see Fig-
ure 2.30) represents the number of reasons (transition pages, active page table pages,
and so on) the page tables and thus the PHD cannot be outswapped.

The swapper checks the PHD reference count. If the reference count is zero, the
swapper outswaps the PHD and tables immediately, taking the steps in Section 6.5.4.2.
If the reference count is nonzero, the header and page tables cannot be outswapped.
This circumstance of a body outswap not being followed immediately by the outswap of
the header and page tables is referred to as a part ial outswap.

Later in a subsequent invocation of OUTSWAP (see Section 6.3.3), when the swapper
locates a PHD from a partially outswapped process, it takes whatever actions are
required to remove the ties tha t bind the PHD and page tables to physical memory.
First, it eliminates any transit ion PTEs whose physical pages are on the free page list.

386

6.50utswap Operation

It locates a transition PTE by scanning the free page list for a process or process
page table page mapped by the page table hierarchy defined by the LIPT associated
with the PHD being examined. It starts its scan at the back of the list with the
most recently queued entries, on the assumption that the transition pages are more
frequently in the back half of the list. (Pages associated with deleted virtual address
space are placed at the front of the list.)

Whenever it finds such a page, it calls MMG$DEL_CONTENTS_PFN, in module
ALLOCPFN, which restores the backing store information in the physical page's
PFN$Q_BAK field to the process PTE, reinitializes the PFN database record to indicate
the page is not attached to any virtual page, moves the page from its current location
to the head of the free page list, and decrements the corresponding page table page
share count.

Because the free page list is only one of several transition states, the scan of the free
page list may not free the PHD for removal. Pages may be in some other transition
state. A page in a transition state that represents some form of I/O in progress (release
pending, read in progress, write in progress) is left alone because there is nothing that
the swapper can do until the I/O completes. After the free page list is scanned, if the
process still has transition pages, the swapper calls MMG$PURGE_MPL to request
that all modified pages be written that are in the PHD or that are mapped by this
process's page tables. A modified page written to its backing store is released to the
free page list. Later, aider the pages have been selectively purged from modified page
list, the swapper will scan the free page list again.

If the swapper succeeds in releasing a PHD with the previously described free page list
scan, it can take the steps described in the next section to outswap the PHD.

6.5.4.2 Preparing the Process Header and Page Tables for Outswap
Once the reference count for the PHD reaches zero, it can be outswapped and the
balance set slot freed. The outswap of the PHD and page tables is similar to the
outswap of a process body, in that the PFNs corresponding to the PHD and page table
pages are inserted into the swapper map to form a virtually contiguous transfer for
the I/O subsystem. The PHD pages are first, followed by the L1PT, the L2PTs, and the
L3PTs. Any L3PT pages that map buffer objects are omitted.

There are several differences, however, between the outswap of a PHD and page tables
and the outswap of a process body. When a process body is outswapped, the header
that maps that body is still resident. When the swapper's write completes and each
physical page is being deleted, the contents of the PFN$Q_BAK field in the PFN
database record for each page are restored to the process L3PTE.

PHD pages are mapped by system space PTEs for that balance set slot. The system
space PTEs are not available to hold the PFN$Q_BAK field contents because they will
be used by the next occupant of this balance set slot. Instead, the PHD page BAK
array (see Section 6.2.1) serves this purpose. As the PHD is processed for outswap,
the contents of the PFN$Q_BAK field for each active header page are stored in the
corresponding PHD page BAK array element.

387

The Swapper

Lower level page table pages are mapped by upper level page table pages. The swap-
per stores the PFN$Q_BAK field contents in the PTE that maps a page table page.
This records the forward links in the L3PT and L2PT chains for use during inswap
processing.

Routine RELPHD, in the SWAPPER module, prepares the PHD to be outswapped.
Before calling it, the swapper switches to the mapping context of the outswapped
process so that its page tables can be accessed. It does this by storing the contents
of the outswapped process's page table base register (PTBR), the current kernel stack
pointer, and the current address space number (ASN) in an alternative hardware
privileged context block (HWPCB) and switching context to that HWPCB.

RELPHD takes the following steps"

1. It scans the list of L3PTs that map buffer objects. For each one it finds, it updates
the reference counts of the page table page that maps it (see Chapter 4).

2. It scans the list of L3PTs that do not map buffer objects. For each one it finds,
it updates the reference counts of the page table page that maps it. It stores the
contents of PFN$Q_BAK into the PTE that maps the page table page. It stores
the PFN occupied by the L3PT in the swapper map. It clears PFN$L_PT_PFN and
PFN$Q_PTE_INDEX of the associated PFN to sever the connection between that
PFN and the PTE that mapped it.

It scans the list of L2PTs, taking the same actions for each L2PT. The L3PTs must
be processed first, while the L2PTs that map them are still valid.

3. It scans the system space L3PTEs that map the balance set slot. For each valid
one, it stores the PFN$Q_BAK contents of the associated PFN into the correspond-
ing PHD BAK array element and clears the PFN$L_PT_PFN and PFN$Q_PTE_
INDEX fields to sever the connection between that PFN and the system space
L3PTE.

4. It copies the local event flags from the PHD to the PCB (see Chapter Event Flags).

5. It stores the index of the PHD slot in PCB$L_PHD and clears PCB$V_PHDRES in
PCB$L_STS as indications that the process no longer has a resident PHD. It also
clears KTB$Q_PHYPCB and KTB$L_VTRPCB in the initial kernel thread's KTB to
indicate that the hardware PCB address must be recalculated after the process is
inswapped.

6. It stores the PFN of the LIPT in the swapper map and clears the PFN's PFN$L_
PT_PFN and PFN$Q_PTE_INDEX fields.

7. It switches back to the address space of the swapper process and queues a write
request to outswap the PHD and page tables.

Once the header and page tables are successfully outswapped, routine RELEASE_
PROCESS_HEADER, in module SWAPPER, runs. It reinitializes the system space
L3PTEs that mapped the PHD and flushes stale translations from the translation
buffer. It releases each outswapped header and page table page to the front of the
free page list, reinitializing its PFN database record. It initializes the PHD reference

388

6.6 Inswap Operation

count t o - 1 and clears the PHV$GL_PIXBAS element corresponding to the slot. If the
process has a single kernel thread, it clears PCB$L_PHD. Otherwise, it clears KTB$L_
PHD, KTB$L_VIRPCB, and KTB$Q_PHYPCB for each kernel thread. The balance set
slot is now available for further use.

6.6 Inswap Operation
The inswap is exactly the opposite of the outswap operation. The swapper brings the
PHD, active page tables, and process body back into physical memory. It then uses the
contents of the working set list to rebuild the process page tables, an operation that
primarily involves updating each valid PTE to reflect the new PFN used by that PTE.
As each page is processed, the swapper can resolve any special case that existed when
the process was outswapped.

6.6.1 Selection of an Inswap Candidate
As described in Section 6.3.2, the swapper selects a process for inswap, much as the
scheduling subsystem selects a candidate for execution. The following processes are
candidates for inswap:

�9 Newly created processes

�9 Processes with a kernel thread in some outswapped wait state that was just made
computable

�9 Processes that were outswapped with a kernel thread in the computable state

The process with the highest priority COMO kernel thread is the one selected for
inswap.

6.6.2 Preparation for Inswap
Before inswapping a process, the swapper must locate a free balance set slot for the
process's PHD and allocate pages of physical memory for its working set. In the case
of a partial outswap, it is possible that the PHD and page tables will not have been
swapped in the time between the outswap and subsequent inswap of the process body.
In the corresponding partial inswap, the swapper need not allocate a balance set slot
and bring the PHD and page tables into memory because they are already resident.

In routine SWAPSCHED, the swapper calculates the number of pages required as
the sum of PCB$L_PPGCNT and PCB$L_GPGCNT. If the PHD and page table pages
are still resident, SWAPSCHED subtracts the number of header and page table pages
(PCB$L_APTCNT) from the number of pages to be allocated. SWAPSCHED also
subtracts PCB$L_BUFOBJ_CNT, the number of buffer object pages, and pages locked
in memory. It tests whether the number of free pages is large enough for the required
number of pages to be allocated. If not, it calls OUTSWAP, specifying the number
of free pages to be reclaimed. Sometime later, aider the outswap is completed, the
swapper will try to inswap again, selecting a candidate from the highest priority
COMO queue.

389

The Swapper

If the number of free pages is large enough, SWAPSCHED calls INSWAP to inswap
the process body and, if necessary, the PHD and page tables. If the PHD has been
outswapped, INSWAP scans the PHD reference count array for a balance set slot with
a negative reference count. If it fails to find one, it calls OUTSWAP (see Section 6.3.3),
specifying that a process should be outswapped to free a balance set slot. Sometime
later, after the outswap is completed, the swapper will try to inswap again, selecting a
candidate from the highest priority COMO queue.

If INSWAP finds a free balance set slot, it zeros the PHD reference count for that slot,
stores the low word of the process's ID in the corresponding PHV$GL_PIXBAS array
element, and stores in PCB$L_PHD the byte offset of the slot from the beginning of
the balance set slot area.

It then allocates as many free physical pages as required to accommodate the process's
working set. If the process has a home resource affinity domain (RAD), it allocates
pages from that RAD's memory. If the process does not have a home RAD, but this is
a nonuniform memory access (NUMA) platform and RAD support enabled, INSWAP
tests bit RIH$V_SPECIAL in parameter RAD_SUPPORT.

�9 If the bit is clear, INSWAP uses the default allocation method, selecting the next
RAD in the round-robin with both memory and CPU.

* If the bit is set, INSWAP uses the method specified for swapper allocation, allocat-
ing from the current RAD, the base RAD, or the next RAD in the round-robin. If
home RAD allocation was specified, because the process has no home RAD, it uses
the next RAD in the round-robin.

The RAD from which the pages are allocated becomes the process's home RAD.

INSWAP updates the PFN database record for each page by incrementing the page's
reference count and setting its state to active. It initializes a swapper map entry with
the PFN of each allocated page.

INSWAP records the PCB of the inswap process in SWP$GL_INPCB and resets the
swap failure count. It initiates the inswap I/O.

6.6.3 Inswap of the Process Header and Page Tables
After the inswap I/O completes, routine SETUP, in module SWAPPER, executes.

If the PHD and page tables were outswapped, SETUP must reestablish them in
memory before the process body can be reconstructed. SETUP must adjust any process
data tied to a specific balance set slot (that is, specific system virtual or physical
addresses) to reflect the PHD's new location.

SETUP takes the following steps:

g It adds the address of the beginning of the balance set slots to the contents of
PCB$L_PHD, which were the byte offset of the slot.

390

0

11

6.6 Inswap Operation

It tests PCB$V_PHDRES in PCB$L_STS to see whether the PHD and page tables
remained resident. If so, it switches to the mapping context of the inswapped
process so that it can access the process's page tables (see Section 6.5.4.2) and
continues with step 8. It continues to run in the mapping context of the inswapped
process until the final processing of the inswap (see Section 6.6.4.5).

Otherwise, it must reestablish the PHD in the balance set slot and reinitialize the
page tables. The swapper does this work in local routine FILLPHD, called from
SETUP. FILLPHD takes the following steps:

a. It initializes each system space L3PTE that maps a PHD page in the balance
set slot with the PFN from the swapper map, a protection of ERKW, and set
valid, fault-on-execute, no-execute, and address space match bits. If MMG$V_
NO_MB is set in the MMG_CTLFLAGS SYSGEN parameter, it also sets the
no-TB-miss-memory-barrier-required bit (see Chapter 1) in the L3PTE.

b. It updates the PFN database record for that page of memory with backing
store information from the PHD BAK array.

c. The PHD pages are at the beginning of the process's swap image. FILLPHD
can identify any empty pages from data in the BAK array. Empty pages can
result from a gap between the process section table and working set list and
from empty entries at the end of the working set list.

FILLPHD locates the LIPT as the first page in the swap image following the
PHD. The L2PTs and L3PTs immediately follow.

To reinitialize the page tables, FILLPHD first stores the PFN of the LIPT in
PHD$Q_PTBR, recording the base of the process's page table hierarchy. It
stores the PFN in the L1PTE that self-maps the L1PT (see Figure 1.9).

It switches to the mapping context of the inswapped process so that it can
access the process's page tables as it initializes them (see Section 6.5.4.2). It
continues to run in the mapping context of the inswapped process until the
final processing of the inswap (see Section 6.6.4.5). It initializes the PFN
database for the L1PT.

f. It processes the L2PTs, following the chain from PHD$L_L2PT_WSLX. It
determines the virtual address of each one from the WSLE and then the virtual
address of the L1PTE that maps it. It initializes the L1PTE with the next PFN
from the swapper map, a protection of ERKW, and set valid, fault-on-execute,
and no-execute bits. If MMG$V_NO_MB is set in the MMG_CTLFLAGS
SYSGEN parameter, it also sets the no-TB-miss-memory-barrier-required bit.
It initializes the PFN database for the L2PT pages.

g. It processes the L3PTs in the same manner.

h. It processes the list of buffer object pages and pages locked in memory, mod-
ifying the PFN database field PFN$L_PT_PFN for each to reflect the actual
location of the page table that maps the page and updating the page table's
page table reference counts (see Chapter 4).

d ,

e.

391

The Swapper

1

m

1

Q

~

.

10.

11.

12.

SETUP copies the local event flags from the PCB to the PHD (see Chapter Event
Flags).

It stores the index of the slot in PHD$GL_PHVINDEX.

It sets PCB$V_PHDRES in PCB$L_STS as an indication that the PHD is resident.

SETUP sets PHD$V_NOACCVIO in PHD$L_FLAGS as an indication that the
header has just been inswapped, possibly to a different balance set slot, and that
the first reference the process makes to another balance set slot could be the result
of a swap at an inopportune time. Chapter 4 describes how the page fault handler
tests and clears this bit.

If soft RAD affinity support is enabled (bit RIH$V_AFFINITY set in SYSGEN
parameter RAD_SUPPORT), it sets KTB$V_SOFT_RAD_AFFINITY in the pri-
mary kernel thread's KTB$L_FLAGS, and CPB$V_SOFT_RAD_AFFINITY in its
KTB$L_CAPABILITIES, KTB$L_PERMANENT_CAPABILITIES, and KTB$L_
CAPABILITY. It clears KTB$L_SRA_SKIP_COUNT.

Soft RAD affinity is a mechanism that biases a process to run on CPUs in its home
RAD. Running on a particular CPU and RAD to select the next process to run, the
scheduling subsystem skips over processes from other RADs. There is, however, a
maximum number of times a process can be skipped before being run. A CPU that
would otherwise go idle runs an off-RAD process.

If necessary, SETUP recalculates the physical address of the HWPCB and stores it
in PCB$Q_PHYPCB, and stores the HWPCB's virtual address in the initial kernel
thread's KTB$Q_VIRPCB.

If this is a process with multiple kernel threads, it stores the address of the PHD
in each thread's KTB$L_PHD, stores the addresses of its HWPCB in KTB$Q_
PHYPCB and KTB$L_VIRPCB, and stores the addresses of the process's L1PT in
each thread's HWPCB.

If soft RAD affinity support is enabled, it initializes the other threads' KTBs as in
step 8. It also stores the home RAD in each thread's KTB$L_HOME_RAD.

It initializes PCB$L_PRVCPU t o - 1 to ensure that when any kernel thread in the
process is next executed, it is assigned a new address space number. This step
eliminates the need to flush stale process-private translation buffer entries.

SETUP initializes the P1 PTEs that double-map the PHD pages.

This P1 mapping provides invariant addresses for the nonpageable part of the
PHD. The system space mapping is subject to change with outswap and inswap: if
the header is outswapped, it is likely to be inswapped into a different balance set
slot. Chapter 2 describes the conventions for accessing the PHD.

The P1 window to the PHD has the following implications:

The physical pages that are doubly mapped are not kept track of through
reference counts. However, these header pages are a permanent part of the
process working set.

392

6.6 Inswap Operation

- - The P1 page table page that maps these pages must also be a permanent
member of the process working set.

6.6.4 Rebuilding the Process Body
After the PHD and the page tables are in a known state, the process body can be
restored to the state it was in before the process was outswapped.

6.6.4.1 Rebuilding the Working Set List and Process Page Tables
Rebuilding the process body involves scanning both the swapper map and the process
working set list. Recall that at outswap the processing of each page was determined by
a combination of page type and validity. On inswap, the key to the processing of each
page is the contents of the PTE, located by the virtual address field in the WSLE. An
approximation of swapper activity for each page is as follows:

1. The swapper locates the L3PTE from the virtual address in the WSLE.

2. In the usual case, the original contents of the L3PTE are stored in the PFN$Q_
BAK field, and the PFN from the swapper map entry is inserted into the now valid
L3PTE.

3. If, for some reason, a copy of the page already exists in memory (for example, if the
page was locked into memory with the SLCKPAGL64] system service), that copy
is put into the process working set. The duplicate page from the swapper map is
released to the front of the free page list.

At inswap, the swapper determines what action to take for each particular page in the
working set list from the contents of the L3PTE. Table 6.4 details the different cases
the swapper can encounter.

Table 6.4 R e b u i l d i n g t h e W o r k i n g Set Lis t a n d t h e P r o c e s s P a g e Tables

Type of Page Table Entry Action of Swapper for This Page

L3PTE is valid. Page was not released at outswap. If the page
was locked into memory, or is part of a buffer
object, no action is required.

Fault transition page into process working set.
Release duplicate page that was just inswapped.

L3PTE indicates a transition page, prob-
ably because of outstanding I/O when
process was outswapped.

393

The Swapper

Table 6.4 (continued) Rebui ld ing the Working Set List and the Proces s
Page Tables

Type of Page Table Entry Action of Swapper for This Page

L3PTE contains a GP'I~. Page must be
global read-only because global read/write
pages were dropped from the working set
at outswap time.

L3PTE contains a page file index or a
process section table index.

Swapper action is based on the contents of the
GPTE:
�9 If the GPTE is valid, copy the PFN in

the GPTE to the process L3PTE and
release the duplicate page.

�9 If the GPTE indicates a transition page,
make the GPTE valid, add that
physical page to the process working
set, and release the duplicate page.

�9 If the GPTE indicates a GSTX,
keep the page just inswapped and
make it the master page in the
GPTE as well as the slave page in the
process L3PTE.

These are the usual contents for a page that
did not have outstanding I/O or other page
references when the process was outswapped.
The PFN in the swapper map is inserted into
the process page table. Its PFN database record
is initialized.

If the v i r tual address field represen ts a sys tem space address , the WSLE describes
a page in the PHD. The swapper m u s t calculate the new sys tem vi r tua l address
corresponding to t ha t page and modify the WSLE.

If the v i r tua l address field represen ts a page table space address , the WSLE describes
a process-private page table page. If its W S L E $ V _ P F N L O C K bit is set, the page table
page maps window pages or page table pages t h a t map window pages, and the swapper
has to adjus t the PFN's window count or share count:

For an L3PT, the swapper scans the L3PTEs for those mapp ing a P F N - m a p p e d
page, a memory- res iden t page, or a Galaxywide section page. For each such
page, the swapper inc rements the L3PT's PFN$W_PT_WIN_CNT. When the count
t rans i t ions f r o m - 1 to 0, if PFN$W_PT_LCK_CNT is s t i l l - 1 , indicat ing the L3PT
maps no pages locked in the working set or in memory, the swapper inc rements
PHD$L_PTCNTLCK, the n u m b e r of locked page table pages.

For an L2PT, the swapper scans the L2PTEs for those mapp ing memory- res iden t
shared L3PTs. For each such page, the swapper inc rements the L2PT's PFN$W_
PT_WIN_CNT. When the count t rans i t ions f r o m - 1 to 0, if PFN$W_PT_LCK_CNT
is s t i l l - 1 , the swapper inc rements PHD$L_PTCNTLCK, the n u m b e r of locked page
table pages.

394

6.6 Inswap Operation

Regardless of the state of the WSLE$V_PFNLOCK bit, the swapper must increment
the PFN$L_SHRCNT in the page table page tha t maps each L2PT and L3PT in the
working set list. When the share count t ransi t ions from 0 to 1, the swapper locks the
mapping page table page into the working set list, increments PHD$L_PTCNTACT to
indicate another active page table page, and increments the PHD's entry in the a r ray
at PHV$GL_REFCBAS_LW, the number of reasons the PHD should remain in memory.

6.6.4.2 Pages with I/O in Progress when Outswap Occurred
Pages tha t had I/O in progress when the process was outswapped were wri t ten to the
swap file anyway to reserve space. If the page was previously unmodified, it would
have been put into the free page list when both the swap write and the outs tanding
write operation completed. If the page was previously modified, it would have been
put into the modified page list when both the swap write and the outs tanding wri te
operation completed (because bit PFN$V_SWPPAG_VALID was set).

In either case, it is possible for the process to be inswapped before one of these physical
pages is reused. The swapper uses the physical page tha t is already contained in the
process L3PTE (as a transit ion page) and releases the duplicate physical page from the
swapper map to the front of the free page list.

In the case of a page on the free page list, this decision is simply one of convenience.
For a page on the modified page list, the contents of the page in the swap image are
out-of-date, and the swapper must use the physical page that is already in memory.

6.6.4.3 Resolution of Global Read-Only Pages
The only type of global page tha t can be in the swap file is a global read-only page tha t
had a share count of 1 when the process was outswapped (or a page tha t was explicitly
locked). All other global pages were dropped from the process working set before the
process was outswapped.

There are two cases tha t the swapper can find when rebuilding the process page
tables. At inswap, the process L3PTE for a global read-only page always contains a
GPTX. The swapper 's t r ea tment of the page is determined by the contents of the GPTE
indexed by the GPTX:

�9 If no other process has mapped the global page, the GPTE contains a GSTX. The
swapper stores the PFN from the swapper map in both the process L3PTE and the
GPTE.

�9 If some other process referenced the global page while this process was
outswapped, the GPTE can indicate a valid or a transit ion page. In ei ther case,
the swapper releases the duplicate page to the free page list and stores the PFN
from the GPTE in the process PTE. If the page is in transition, the swapper makes
it valid.

395

The Swapper

6.6.4.4 Example of an Inswap Operation
Figures 6.7 to 6.9 show an inswap operation that illustrates some of the special cases
the swapper encounters when inswapping a process body. Note that this example is
not related to the outswap example shown in Figures 6.4 to 6.6. In this example the
process body has been outswapped, but not the PHD and page tables. In these figures,
the term VA_PTE represents the combination of PFN database fields PFN$L_PT_PFN
and PFN$Q_PTE_INDEX, and the term WSLX stands for the PFN database field
PFN$L_WSLX_QW.
Figure 6.7 Working Set List and Swapper Map before Phys ica l Page Alloca-

t ion

63 Working Set List o

Fixed Part

VPN = X GRO

VPN = W PPG

VPN = Y GRO

VPN = Z PPG

63 Process Page Tables o

WSLE 1

WSLE 2

WSLE 3

WSLE 4

PFN Database Records
WSLX VA_PTE BAK LOC PAGTYP Other

VPN W

VPN X

VPN Y

VPN Z

PSTX

GPTX = T

GPTX = S

PFN = A

PTEW

PTE X

PTE Y

PTE Z

GPTE S

GPTET

SWP$GL_MAP 63 Global Page Table 63 Swapper Map o< !' --~ o

Valid, PFN = B

GSTX

Figure 6.7 shows the state of the PHD and page tables after the process has been
selected to be inswapped.

Figure 6.8 shows that four physical pages have been allocated to contain the four
working set pages that the example describes. Figure 6.9 shows the rebuilt process
page tables and the PFN database changes that result from rebuilding the working set
and process page tables.

�9 WSLE 1 locates virtual page number X. This L3PTE contains a GP'I~. The refer-
enced GPTE (GPTE T) contains a GSTX, indicating that the GPTE is not valid.

396

6.6 Inswap Operation

PFN D is inserted into the L3PTE. The swapper also inserts PFN D into the
GPTE, sets the GPTE valid bit (see Figure 6.9), and updates the PFN database
record for physical page D to reflect its new state.

2. WSLE 2 is a process page mapped by L3PTE W (see Figure 6.8). This L3PTE
contains a process section table index. The L3PTE is updated to contain PFN C,
and the PSTX is stored in the PFN$Q_BAK field for that page (see Figure 6.8).
Other PFN record fields are updated accordingly.

F igure 6.8 Working Set List and S w a p p e r Map after P h y s i c a l P a g e Al loca-
t ion

VPN W

VPN X

VPN Y

VPN Z

63 Working Set List o

Fixed Part

VPN = X

VPN = W

VPN = Y

VPN = Z

I

GRO

PPG

GRO

PPG

63 Process Page Tables 0

PSTX

GPTX = T

GPTX = S

PFN = A

WSLE 1

WSLE 2

WSLE 3

WSLE 4

PTEW

PTE X

PTE Y

PTE Z

PFN Database Records
WSLX VA_PTE BAK LOC PAGTYP Other

, ,

I ~ ' ,~ I P~ z I I P~F~X I I F . ~ I [I PF.

I o II] l , o t l l 1 PF~~

I ~ I!]1"0~11 I PF~ o

GPrE S

G P ~ T

SWPSGL._MAP 63 Global Page Table 0 63 Swapper Map 0 !
< I I

Valid, PFN = B

GSTX

Valid, PFN = D

Valid, PFN = C

Valid, PFN = E

Valid, PFN = F

Q

1

WSLE 3, which locates L3PTE Y, is exactly like the first, as far as the process data
is concerned. However, the GPTE (GPTE S) is valid, indicating that another copy
of this page already exists. This could occur only if another process had faulted the
page while this process was outswapped.

The duplicate page (PFN E) is released to the front of the free page list. The
process L3PTE is altered to contain the physical page that already exists (PFN B),
and the share count for that page is incremented (from 3 to 4).

WSLE 4 resembles WSLE 2. However, the process L3PTE indicates a transition
page. This implies that the header in this example was never outswapped.

397

The Swapper

The action taken here is similar to step 3, where a duplicate global page was
discovered. The page just read (PFN F) is released to the head of the free page
list. The transition page (PFN A) is faulted back into the process working set by
removing the page from the free page list, changing its state to active, and setting
the valid bit in the L3PTE.

F i g u r e 6.9 Working Set List and Rebuilt Page Tables

6.6.4.5 Final Processing of the Inswap Operation
After the working set list has been scanned and the process page tables rebuilt,
several other steps must be taken before the process is executable. After switching
back to its own address space, the swapper calls local routine SETAST_CONTEXT.
The swapper then invalidates the translation buffer to remove any stale translations of
the balance set slot. As soon as the swapper releases the MMG and SCHED spinlocks,
the computable kernel threads of the inswapped process are eligible to be scheduled.

SETAST_CONTEXT takes these steps:

, It sets the resident bit, PCB$V_RES, and the initial quantum bit, PCB$V_
INQUAN, in PCB$L_STS.

, It calculates contents for the AST summary register (ASTSR) and stores them in
the HWPCB. (ASTs may have been queued to the process while it was outswapped.
The HWPCB, which contains a copy of the ASTSR, was not available while the
header was not resident.)

398

,

,

,

.

6.7 Relevant Source Modules

If the process has multiple kernel threads, SETAST_CONTEXT must do this for
each kernel thread. Each kernel thread has its own set of AST queues and its own
HWPCB.

Additionally, SETAST_CONTEXT must take into account the queues in the PCB
of ASTs that require the inner mode semaphore. It first checks whether the inner
mode semaphore is currently owned by any kernel thread. If not, it determines
the highest priority AST that requires the inner mode semaphore, identifies for
which kernel thread it was intended, and modifies the inner mode semaphore to
reflect that kernel thread as owner. It updates the ASTSR copy of the inner mode
semaphore's owner to reflect the state of the PCB queues. Chapter Kernel Threads
describes the inner mode semaphore, the different sets of AST queues, and AST
delivery in a mult i threaded process.

Each kernel thread gets a new quantum in KTB$L_QUANT and, optionally, a new
thread quantum in KTB$L_TQUANT.

SETAST_CONTEXT calls SCH$CHSEP to change each kernel thread's scheduling
state as appropriate, for example, to COM from COMO or to HIB from HIBO.

It clears bit PCB$V_PHDLOCK in PCB$L_STS2 (see Section 6.5.3.1).

It deallocates the process's swap space and clears PCB$L_WSSWP and PCB$L_
SWAPSIZE to show that the process has no swap space allocated.

7. It clears SCH$V_SIP in SCH$GL_SIP.

6.7 Relevant Source Modules
Source modules described in this chapter include

[LIB]PFLMAPDEF.SDL
[SYS]OSWPSCHED.MAR
[SYS] SWAPPER.MAR
[SYS] SWAPPER_INIT.MAR

399

This Page Intentionally Left Blank

Chapter 7
Pool Management

In this bright little package, now isn't it odd?
You've a dime's worth of something known only to God!

Edgar Albert Guest, The Package of Seeds

The OpenVMS Alpha operating system creates and uses many data structures in the
course of its work. Although it creates some of them at system initialization, it creates
most when they are needed and destroys them when their useful life is finished. It
maintains distinct areas of virtual address memory, called pools, in which it allocates
and deallocates dynamic data structures. Each pool has different characteristics. This
chapter describes these memory areas, their uses, and their allocation and deallocation
algorithms.

Section 7.1 summarizes the various pools. Section 7.2 discusses dynamic data struc-
tures. Section 7.3 describes the structures and mechanisms of the variable-length
pools, and Section 7.4, those of the fixed-length pools. Subsequent sections describe the
various pools in detail.

7.1 Summary of Pool Areas
Almost all executive data structures created after system initialization are volatile;
they are allocated on demand and deaUocated when no longer needed. These data
structures typically have a common header format (see Section 7.2). Their memory
requirements vary in a number of ways:

Pageabi l i tynData structures accessed by code running at interrupt priority level
(IPL) 2 or below can be pageable; data structures accessed at higher IPLs cannot.

Virtual location--Some data structures are local to one process, mapped in process-
private address space; others must be mapped in system space, accessible to
multiple processes and to system context code.

Physical location--Some data structures are accessed by I/O adapters and must be
in addresses within I/O bus and adapter physical addressing limits.

401

Pool Management

On a nonuniform memory access (NUMA) platform, such as an AlphaServer
GS160, some physical memory is local to the CPU. The CPU can access local
memory in its own resource affinity domain (RAD) more quickly than nonlocal
memory.

�9 Protection--Many dynamic data structures are created and modified only by kernel
mode code, but some data structures are accessed by outer modes.

The executive provides different storage areas to meet the memory requirements of
dynamic data structures, based on two different allocation schemes: variable-length
allocation and fixed-length allocation.

There are several pools of storage for variable-length allocation:

�9 A nonpageable system space pool, known as nonpaged pool

�9 Under some circumstances, a nonpageable system space pool called bus-
addressable pool (BAP)

�9 On a NUMA system, multiple sections of nonpaged pool in different sections of
physical memory

�9 A pageable system space pool, known as paged pool

�9 A pageable process-private space pool, known as the process allocation region

The executive also provides lookaside lists of fixed-length packets. A lookaside list is a
linked list of equal-size packets, each of which is ready for allocation through a quick
unlinking operation. Lookaside lists enable faster allocation and deallocation of the
most frequently used sizes and types of storage. Throughout this chapter, packet refers
to a preformed, fixed-length allocation, and block refers to a variable-length allocation.

The executive provides the following lookaside lists:

�9 Nonpaged pool lookaside lists, with element sizes start ing from 64 bytes and going
up to 8,192 bytes in 64-byte increments

�9 A kernel process block (KPB) lookaside list out of nonpaged pool

�9 On a NUMA system, multiple sets of nonpaged pool lookaside lists in different
sections of physical memory

�9 An $2 space list of nonpageable 256-byte packets for lock management resource
blocks and lock blocks

�9 A process quota block (PQB) lookaside list out of paged pool

�9 A process-private kernel request packet (KRP) lookaside list out of P1 space for
each process

402

The pool areas are summar ized in Table 7.1.

Table 7.1 C o m p a r i s o n of Di f f erent Poo l Areas

7.1 Summary of Pool Areas

System Space

Nonpaged Pool Variable-Length Region

Protection

Synchronization technique

Type of list

Allocation

Minimum request size

Characteristics

ERKW

POOL spinlock

Variable-length blocks; singly linked absolute list

Multiple of 64 bytes; mask is EXE$M_NPAGGRNMSK 1

1 byte

Nonpageable; expandable; RAD-specific

Bus-Addressable Pool Variable-Length Region

Protection

Synchronization technique

Type of list

Allocation

Minimum request size

Characteristics

ERKW

POOL spinlock

Variable-length blocks; singly linked absolute list

Multiple of 64 bytes; mask is EXE$M_NPAGGRNMSK 1

1 byte

Nonpageable; expandable

Nonpaged Pool Lookaside Lists

Protection

Synchronization technique

Type of list

Allocation

Minimum request size

Characteristics

ERKW

Load-locked/store-conditional mechanism

Fixed-length packets; singly linked absolute list

Multiple of 64 bytes; mask is EXE$M_NPAC~RNMSK 1

1 byte

Nonpageable; packets are initially allocated out of the non-
paged pool variable-length region and deallocated to these lists;
RAD-specific

Bus-Addressable Pool Lookaside Lists

Protection

Synchronization technique

Type of list

Allocation

Minimum request size

ERKW

Load-locked/store-conditional mechanism

Fixed-length packets; singly linked absolute list

Multiple of 64 bytes; mask is EXE$M_NPAGGRNMSK 1

1 byte

1See Section 7.3 for a description of allocation masks.

403

Pool Management

Table 7.1 (continued) C o m p a r i s o n o f D i f f e r e n t P o o l A r e a s

System Space

Bus-Addressable Pool Lookaside Lists

Characteristics Nonpageable; packets are initially allocated out of the bus-
addressable pool variable-length region and deallocated to
these lists

Nonpaged Pool KPB Lookaside List

Protection

Synchronization technique

Type of list

Allocation

Minimum request size

Characteristics

ERKW

Load-locked/store-conditional mechanism

Fixed-length packets; singly linked absolute list

KPB$C_LENGTH

KPB$C_LENGTH

Nonpageable; packets are initially allocated out of the non-
paged pool variable-length region and deallocated to this
list

$2 Space Lock Management Lookaside List

Protection

Synchronization technique

Type of list

Allocation

Standard request size

Characteristics

ERKW

LCKMGR spinlock

Fixed-length packets; doubly linked absolute list

256 bytes

RSB$C_LENGTH and LKB$C_LENGTH

Nonpageable; expandable

Paged Pool

Protection

Synchronization technique

Type of list

Allocation

Minimum request size

Characteristics

ERKW

EXE$GL_PGDYNMTX mutex

Variable-length blocks; singly linked absolute list

Multiple of 16 bytes; mask is EXE$M_PAGGRNMSK 1

1 byte

Pageable

Paged Pool PQB Lookaside List

Protection

Synchronization technique

Type of list

ERKW

Self-relative queue operations

Fixed-length packets; doubly linked self-relative queue

1See Section 7.3 for a description of allocation masks.

404

Table 7.1 (continued)

7.2 Dynamic Data Structures

C o m p a r i s o n of D i f f erent Poo l Areas

System Space

Paged Pool PQB Lookaside List

Allocation

Minimum request size

Characteristics

PQB$C_LENGTH

PQB$C_LENGTH

Pageable; PQBs are initially allocated out of paged pool and
deallocated to this list

Process-Private Space

Process Allocation Region

Protection

Synchronization technique

Type of list

Allocation

Minimum request size

Characteristics

UREW

Access mode and IPL

Variable-length blocks; singly linked absolute list

Multiple of 16 bytes; mask is EXE$M_PIGRNMSK I

1 byte

Pageable; expandable into P0 space

P1 Space KRP Lookaside List

Protection

Synchronization technique

Type of list

Allocation

Minimum request size

Characteristics

URKW

Access mode and absolute queue operations

Fixed-length packets; doubly linked absolute queue

CTL$C_KRP_SIZE

CTL$C_KRP_SIZE

Pageable

X See Section 7.3 for a description of allocation masks.

7.2 Dynamic Data Structures
Traditionally, most dynamic data s tructures have the common header format shown in
Figure 7.1"

For a data s t ructure allocated from 32-bit space, the first two longwords are
available to link the data s t ructure into a list or queue.

The third longword contains the size, type, and (optional) subtype fields at byte
offsets 8, 10, and 11.

405

Pool Management

Figure 7.1 Format of Dynamic Data Structures

[FLINK]

[BLINK]

[SUBTYPE] TYPE SIZE

i

SIZE
bytes
long

Figure 7.2 Format of Dynamic Data Structures

SIZE
bytes -
long

- - [LINK]

MBO

- - SIZE m

[SUBTYPE] ! TYPE MBO

- - SIZE - -

- - [FLINK] - -

- - [BLINK] - -

SIZE
- b y t e s

long

Figure 7.2 shows two alternative header formats. Like the traditional header format,
these formats have size, type, and subtype fields in standard locations. The chief
differences are the must-be-one (MBO) field at the same offset as the traditional size
and a new 64-bit size field. Because data structures are always an even number of
bytes, the MBO field enables the System Dump Analyzer (SDA) and other code to
distinguish the traditional header format from the newer ones.

A 64-bit size can describe an arbitrarily large structure. Moreover, it facilitates
address arithmetic with 64-bit structure addresses.

An additional difference is that 64-bit links are recommended. This minimizes recod-
ing if a structure is moved to 64-bit space. The first format can be used for structures
inserted into a singly linked list, and the second for doubly linked lists.

When a dynamic data structure is deallocated to the variable-length list, the size field
specifies how much storage is being returned. For fixed-length packet deallocations,
the size field selects the lookaside list into which the packet will be placed. Note,
however, that the standard pool deallocation routines assume the traditional format
and expect the size to be in the word at offset 8.

406

7.2 Dynamic Data StrUctures

The type field enables system components to distinguish different data structures
and to confirm that a piece of dynamic storage contains the expected data structure
type. Codes that have numeric values greater than or equal to DYN$C_SUBTYPE
are subtypable codes. Each subtypable code refers to a generic function. Different
data structures related to the same generic function have the same value in the type
field but different values in the subtype field. The subtype field is at offset xxx$B_
SUBTYPE within a subtypable data structure.

For example, the system block (SB) and the path block (PB) are data structures used
by system communication services (SCS). Both structures have the value DYN$C_SCS
in their type field; the SB has the value DYN$C_SCS_SB in its subtype field, whereas
the PB has the value DYN$C_SCS_PB in its subtype field.

The SDA utility uses the type, subtype, and size fields to produce a formatted display
of a dynamic data structure and to determine the portions of variable-length pool that
are in use.

The macro $DYNDEF defines the possible values for the type and subtype fields. Table
7.2 lists type values.

Table 7.2 D a t a S t r u c t u r e Type D e f i n i t i o n s

Symbolic Name Code Structure Type

DYN$C_ADP 1 Adapter control block

DYN$C_ACB 2 AST control block

DYN$C_AQB 3 ACP queue block

DYN$C_CEB 4 Common event block

DYN$C_CRB 5 Controller request block

DYN$C_DDB 6 Device data block

DYN$C_FCB 7 File control block

DYN$C_FRK 8 Fork block

DYN$C_IDB 9 Interrupt dispatch block

DYN$C_IRP 10 I/O request packet

DYN$C_LOG 11 Reserved

DYN$C_PCB 12 Process control block

DYN$C_PQB 13 Process quota block

DYN$C_RVT 14 Relative volume table

DYN$C_TQE 15 Timer queue entry

DYN$C_UCB 16 Unit control block

DYN$C_VCB 17 Volume control block

DYN$C_WCB 18 Window control block

DYN$C_BUFIO 19 Buffered I/O buffer

407

Pool Management

Table 7.2 (continued) Data Structure Type Def in i t ions

Symbolic Name Code Structure Type

DYN$C_TYPAHD 20

DYN$C_GSD 21

DYN$C_MVL 22

DYN$C_NET 23

DYN$C_KFE 24

DYN$C_MTL 25

DYN$C_BRDCST 26

DYN$C_CXB 27

DYN$C_NDB 28

DYN$C_SSB 29

DYN$C_DPT 30

DYN$C_JPB 31

DYN$C_PBH 32

DYN$C_PDB 33

DYN$C_PIB 34

DYN$C_PFL 35

DYN$C_PFLMAP 36

DYN$C_PTR 37

DYN$C_KFRH 38

DYN$C DCCB 39

DYN$C EXTGSD 40

DYN$C SHMGSD 41

DYN$C_SHB 42

DYN$C_MBX 43

DYN$C IRPE 44

DYN$C_SLAVCEB 45

DYN$C SHMCEB 46

DYN$C_JIB 47

DYN$C_TWP 48

DYN$C RBM 49

DYN$C_VCA 50

DYN$C CDB 51

DYN$C_LPD 52

DYN$C LKB 53

Terminal type-ahead buffer

Global section descriptor

Magnetic tape volume list

Network message block

Known file entry

Mounted volume list entry

Broadcast message block

Complex chained buffer

Network node descriptor block

Logical link subchannel status block

Driver prologue table

Job parameter block

Performance buffer header

Performance data block

Performance information block

Page file control block

Page file mapping window

Pointer control block

Known file resident image header

Data cache control block

Extended global section descriptor

Reserved

Reserved

Mailbox control block

Reserved

Reserved

Reserved

Job information block

Terminal driver write packet ($TTYDEF)

Reserved

Disk volume cache block

X25 low-end system (LES) channel data block

X25 LES process descriptor

Lock block

408

Table 7.2 (continued)

7.2 Dynamic Data Structures

Data Structure Type Def in i t ions

Symbolic Name Code Structure Type

DYN$C_RSB 54

DYN$C LCKRQ 55

DYN$C_RSHT 56

DYN$C_CDRP 57

DYN$C_ERP 58

DYN$C_CIDG 59

DYN$C_CIMSG 60

DYN$C_XWB 61

DYN$C_WQE 62

DYN$C_ACL 63

DYN$C_LNM 64

DYN$C_FLK 65

DYN$C_RIGHTSLIST 66

DYN$C_KFD 67

DYN$C_KFPB 68

DYN$C_CIA 69

DYN$C_PMB 70

DYN$C_PFB 71

DYN$C_CHIP 72

DYN$C_ORB 73

DYN$C_QVAST 74

DYN$C_MVWB 75

DYN$C_UNC 76

DYN$C_DCB 77

DYN$C_VCRP 78

DYN$C_SPL 79

DYN$C_ARB 80

DYN$C_LCKCTX 81

DYN$C BOD 82

DYN$C_FTRD 83

DYN$C DDTM_EVENT 84

DYN$C_DFLB 85

DYN$C_PTC 86

DYN$C_OCB 86

Resource block

Lock manager request packet

Resource hash table

Class driver request packet

Error log packet

CI datagram buffer

CI message buffer

DECnet logical link context block

DECnet work queue block

Access control list queue entry

Logical name block

Fork lock request block

Rights list

Known file directory

Known file pointer block

Compound intrusion analysis block

Page fault monitor control block

Page fault monitor buffer

Internal check protection block

Object rights block

Reserved

Mount verification work buffer

Universal context block

DECnet control block for chained I/O

VAX communication request packet

Spinlock control block

Access rights block

Lock context block

Buffer object descriptor

FTDRIVER read request packet

DDTM event notification block

Dump file locator block

Portable Operating System Interface (POSIX) terminal
control

Object class block (security)

409

Pool Management

Table 7.2 (continued) Data S truc ture Type Def in i t ions

Symbolic Name Code Structure Type

DYN$C_CPCB

DYN$C_HWPCB

DYN$C_GCB

DYN$C_RDPB

DYN$C_RDDB

DYN$C_SCDRP

DYN$C_TQE_ACB

DYN$C_NSAB

DYN$C_DEA

DYN$C_SUBTYPE

DYN$C_SCS

DYN$C_CI
DYN$C_LOADCODE
DYN$C_INIT
DYN$C_CLASSDRV
DYN$C_CLU
DYN$C_PGD
DYN$C_DECW
DYN$C_VWS

DYN$C_DSRV

DYN$C_MP

DYN$C_NSA

DYN$C_CWPS

DYN$C_VP

DYN$C_SHAD

DYN$C_VCC

DYN$C_OVRS

DYN$C_DDTM

DYN$C_SMI

DYN$C_TSRV
DYN$C_LAVC
DYN$C_DECNET
DYN$C_PSX
DYN$C_QMAN

87

88

89

90

91

92

93

94

95

96

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

Common process control block

Hardware privileged context block

Glyph control block

Resource domain pointer block

Resource domain data block

SCSI class driver request packet

Timer queue entry/AST control block

Security audit block

Deaccess audit pending block

Beginning of subtypable codes

SCS control block

CI port structure

Loadable code

Structure set up by INIT

Class driver structure

VMScluster structure

Paged pool structure

DECwindows structure

Reserved

Disk server structure

Multiprocessing-related structure

Nondiscretionary security audit structure

Clusterwide process services

Reserved

Volume shadowing structures

Virtual I/O cache structure

OpenVMS NT registry server

Digital distributed transaction manager structures

System management integrator structure

Tape server structure

VMScluster structure

DECnet structure

POSIX structure

Queue manager structure

410

Table 7.2 (continued)

7.3

Data S t r u c t u r e Type Def in i t i ons

Variable-Length Pools

Symbolic Name Code Structure Type

DYN$C_SM 120

DYN$C_MISC 121

DYN$C_RC 122

DYN$C_IPC 123

DYN$C_FILE_SYSTEM 124

DYN$C_F64 125

DYN$C_FILES_64 126

DYN$C_SECURITY 127

DYN$C_SHRBUFIO 128

DYN$C_LNMC 129

DYN$C_ICC 130

DYN$C_GLX 131

DYN$C_CTD 132

DYN$C_LCK 133

DYN$C_QSRV 134

DYN$C_SYS_EVENT 135

DYN$C_SMCI 136

DYN$C_SPLX 137

DYN$C_WBM 138

Storage manager structure

Miscellaneous type

Redundant array of inexpensive disks (RAID) structure

Interprocess communication services structures

File system structures

Reserved

Reserved

Security structures

Shared memory buffered I/O structures

Logical name cache blocks

Intracluster communications structures

Galaxy structures

Galaxy AST control block

Lock management structures

Reserved

System event notification structures

Shared memory cluster interconnect structures

Spinlock-related extensions

Write bitmap structures

7.3 Variable-Length Pools
Pools tha t permit allocation of variable-length blocks have a common structure. Each
pool has a global location containing the vir tual address of the beginning of the pool
and a l isthead containing the vir tual address of the first unused block in the pool. The
first two longwords of each unused block describe the block. As i l lustrated in Figure
7.3, the first longword in a block contains the address of the next unused block in the
list. The second longword contains the size in bytes of the unused block inclusive of
the first two longwords. Each successive unused block is found at a higher address.
Thus, the unused blocks in each pool area form a singly linked, memory-ordered list.
The shaded areas in the figure represent unused blocks.

All pool areas are initially page-aligned. The allocation routines for the variable-length
pools round the requested size up to the next multiple of 16 or 64 bytes to impose
a granular i ty on both the allocated and unused areas. The granular i ty of nonpaged
and bus-addressable pool allocation is 64 bytes; the granular i ty of the other pools
is 16 bytes. The symbol EXE$M_xxxGRNMSK is a mask tha t indicates allocation

411

Pool Management

Figure 7.3 Layout of Unused Areas in Variable-Length Pools

granularity, where xxx is NPAG for nonpaged and bus-addressable pool, PAG for paged
pool, and P1 for the process allocation region. For increased maintainability, any code
that needs these values should use the symbol rather than a hard-coded value.

Table 7.3 summarizes variable-length allocation listheads and routines. In the table,
all routines are in module MEMORYALC and contents of locations are dynamic unless
marked otherwise.

Each variable-length pool has its own set of allocation and deallocation routines. The
various routines call the lower level routines EXELSTD]$ALLOCATE and EXEL
STD]$DEALLOCATE, in module MEMORYALC, which support the structure common
to the variable-length lists. Each routine has two arguments: the address of the
pool listhead and the size of the data structure to be allocated or deallocated. These
general-purpose routines are also used for several other pools, including symbol table
space of the Digital command language (DCL) interpreter.

7.3.1 Variable-Length Block Allocation
When the low-level allocation routine EXELSTD]$ALLOCATE is called, it searches
from the beginning of the list until it encounters an unused block large enough to
satisfy the request. If the fit is exact, the allocation routine simply adjusts the previous
pointer to point to the next free block. If the fit is not exact, it subtracts the allocated
size from the original size of the block, puts the new size into the remainder of the
block, and adjusts the previous pointer to point to the remainder of the block. That

412

7.3 Variable-Length Pools

is, if the fit is not exact, the low-address end of the block is allocated, and the high-
address end is placed back in the list. The two possible allocation situations (exact
and inexact fit) are i l lustrated in Figure 7.4. The shaded areas in the figure represent
unused blocks.

Table 7.3 Variable-Length Al locat ion Lis theads and Rout ines

System Space

Nonpaged Pool Variable-Length Regions

Beginning address

First free block's address

Expansion area's address

Allocation routines

Deallocation routines

@MMG$GL_NPAGEDYN 1

@EXE$GL_NONPAGED 2

@MMG$GL_NPAGNEXT

EXE$ALONPAGVAR, 3 EXE$ALONONPAGED, 3
EXE$ALONONPAGED_ALN, 3 EXE$ALLOCATE_POOL 4.5

EXE$DEANONPAGED, 3 EXE$DEANONPGDSIZ, 3
EXE$DEALLOCATE_POOL4"S

Bus-Addressable Pool Variable-Length Region

Beginning address

First free block's address

Allocation routine

Deallocation routine

@MMG$GQ_BAP 1

@EXE$GQ_BAP_VARIABLE

EXE$ALLOCATE_POOL4'S

EXE$DEALLOCATE_POOL4,S

Paged Pool

Beginning address

First free block's address

Allocation routine

Deallocation routine

@MMG$GL_PAGEDYN 1

@EXE$GL_PAGED

EXE$ALOPAGED

EXE$DEAPAGED

Process-Private Space

Process Allocation Region

First free block's address

Allocation routines

Ca~TL$GQ_ALLOCREG, Ca~TL$GQ_POALLOC

EXE$ALOPIIMAG, EXE$ALOP1PROC,
EXE$ALOPOIMAG

I The static contents of this location are recorded during system initialization.

2The listhead for a per-RAD nonpaged pool is in its dynamically allocated LSTHDS structure (see Section
7.5.1).

3This routine is in module MEMORYALC_DYN.

4EXE$ALLOCATE_POOL and EXE$DEALLOCATE_POOL operate on nonpaged pool or bus-addressable
pool, depending on input arguments.

5This routine is in module MEMORYALC_POOL.

413

Pool Management

Table 7.3 (continued) Variable -Length Al locat ion L i s t h e a d s and R o u t i n e s

Process-Private Space

Process Allocation Region

Deallocation routine EXE$DEAP1

The first part of Figure 7.4 (Initial Condition) shows a section of paged pool;
MMG$GL_PAGEDYN, which points to the beginning of paged pool; and EXE$GL_
PAGED, which points to the first available block of paged pool. In this example, allo-
cated blocks of memory are identified only by the total number of bytes in use, with no
indication of the number and size of the individual data structures within each block.

The second part of Figure 7.4 (80 Bytes Allocated) shows the structure of paged pool
after the allocation of an 80-byte block. Note that the discrete portions of 96 bytes
and 48 bytes in use and the 80 bytes that were allocated are now combined to show a
224-byte block of paged pool in use.

The third part of Figure 7.4 (48 Bytes Allocated) shows an alternative scenario, the
structure of paged pool after the allocation of a 48-byte block. The 48 bytes were taken
from the first unused block large enough to contain it. Because this allocation was not
an exact fit, an unused 32-byte block remains.

7.3.2 Variable-Length Block Deallocation
When a block is deallocated, it must be inserted into the list according to its address.
EXELSTD]$DEALLOCATE follows the unused area pointers until it encounters a
block whose address is higher than the address of the block to be deallocated. If the
deallocated block is adjacent to another unused block, the two blocks are merged into
a single unused area.

This merging, or agglomeration, can occur at the end of the preceding unused block or
at the beginning of the following block (or both). Because merging occurs automatically
as a part of deallocation, there is no need for any externally triggered routine to
consolidate pool fragmentation.

Figure 7.5 shows three sample deallocations, two of which illustrate merging. The first
part of the figure (Initial Condition) shows an area of paged pool containing logical
name blocks for three logical names: ADAM, GREGORY, and ROSAMUND. These
three logical name blocks are bracketed by two unused portions of paged pool, one 64
bytes long, the other 176 bytes long.

The second part of Figure 7.5 (ADAM Deleted) shows the result of deleting the logical
name ADAM. Because the logical name block was adjacent to the high-address end of
an unused block, the blocks are merged. The size of the deallocated block is simply
added to the size of the unused block. No pointers need to be adjusted.

414

Figure 7.4

7.3 Variable-Length Pools

Examples of Variable-Length Block Allocation

The structure shown in the third part of Figure 7.5 (GREGORY Deleted) shows an
alternative scenario, the result of deleting the logical name GREGORY. The pointer in
the unused block of 64 bytes is altered to point to the deallocated block; a new pointer
and size longword are created within the deallocated block.

The fourth part of Figure 7.5 (ROSAMUND Deleted) shows the result of deleting the
logical name ROSAMUND. In this case, the deallocated block is adjacent to the low-
address end of an unused block, so the blocks are merged. The pointer to the next
unused block that was previously in the adjacent block is moved to the beginning of
the newly deallocated block. The pointer in the unused block of 64 bytes is altered

415

Pool Management

Figure 7.5 Examples of Variable-Length Block Deallocat ion

to point to the merged block. The following longword is loaded with the size of the
merged block (240 bytes).

416

7.4 Fixed-Length Lists

7.4 Fixed-Length Lists
Fixed-length lists, also known as lookaside lists, consist of fixed-length packets avail-
able for allocation. Fixed-length lists expedite the allocation and deallocation of the
most commonly used sizes and types of storage. In contrast to variable-length alloca-
tion, fixed-length allocation is very simple. There is minimal overhead searching for a
sufficiently large block of free memory to accommodate a specific request.

The OpenVMS Alpha operating system uses both doubly linked lists and a type of
singly linked list for fixed-length packet lists. It uses two types of doubly linked lists:

�9 Each element of an absolute queue contains the addresses of the previous and
next elements in the list. Some absolute queues have longword addresses and can
only contain elements within 32-bit address space, whereas others have quadword
addresses.

�9 Each element of a self-relative queue contains the displacements to the previous
and next elements in the list. Self-relative queues currently used for lookaside lists
have longword displacements, limiting the pool from which elements are formed to
4 GB.

The Alpha architecture implements queue insertions and removals through privileged
architecture library (PALcode) routines. While PALcode routines automatically provide
synchronization, the CPU overhead to call them is high enough that alternatives have
been created:

�9 The mechanism for the singly linked lookaside lists provides an efficient way to
insert and remove packets atomically without using PALcode routines.

�9 The routines that allocate and deallocate from quadword absolute queues rely
on higher-level synchronization by their callers and directly modify forward and
backward links.

Table 7.4 summarizes fixed-length allocation listheads and routines. In the table,
each routine is in module MEMORYALC and contents of locations are dynamic unless
marked otherwise.

Table 7.4 F ixed-Length Al locat ion Lis theads and Rout ines

System Space

Nonpaged Pool Lookaside Lists

Type of list Singly linked absolute list

417

Pool Management

Table 7.4 (continued) F i x e d - L e n g t h A l l o c a t i o n L i s t h e a d s a n d R o u t i n e s

System Space

Nonpaged Pool Lookaside Lists

Listhead address

Allocation routines

Deallocation routines

EXE$GS_NPP_BASE_LSTHDS + LSTHDS$Q_
LISTHEADS + l isthead_offset (see Figures 7.9 and 7.11) 1"2

EXE [_STD] $ALONONPAGED, 3 EXE [_STD] $ALLOCBUF,
EXE [_STD] $ALLOCxyz,4 EXE$ALLOCATE_POOL s

EXE$DEANONPAGED, 3 EXE$DEANONPGDSIZ, 3
EXE$DEALLOCATE_POOLS

Bus-Addressable Pool Lookaside Lists

Type of list

Listhead address

Allocation routine

Deallocation routine

Singly linked absolute list

EXE$GS_BAP_BASE_LSTHDS + LSTHDS$Q_
LISTHEADS + l isthead_offset (see Figure 7.9) 1'2

EXE$ALLOCATE_POOL 5

EXE$DEALLOCATE_POOLS

$2 Space Lock Management Lookaside List

Type of list

Listhead address

Allocation routine

Deallocation routine

Doubly linked absolute list

LCK$AR_POOLZONE_REGION (see Figure 7.8)

EXE$POOL[ZONE]_ALLOCATE 6

EXE$POOL[ZONE]_DEALLOCATE ~

KPB Lookaside List

Type of list

Listhead address

Allocation routine

Deallocation routine

Singly linked absolute list

IOC$GQ_KPBLAL

EXE$KP_ALLOCATEKPB7

EXE$KP_DEALLOCATE_KPB7

1The address of the lookaside listhead for a specific size is static. Given the packet size, this address can
be computed using the formula listhead_offset = (packet_size~4016) * 8.

2The listheads for a per-RAD nonpaged pool are in its dynamically allocated LSTHDS structure (see
Section 7.5.1).

3This routine is in module MEMORYALC_DYN.

4xyz is the name of a data structure, such as PCB (process control block) or JIB (job information block).

5This routine is in module MEMORYALC_DYN_64.

6This routine is in module POOL_ZONES.

7This routine is in module KERNEL_PROCESS.

418

7.4 Fixed-Length Lists

Table 7.4 (continued) F i x e d - L e n g t h Al loca t ion L i s t h e a d s and R o u t i n e s

System Space

PQB Lookaside List

Type of list

Listhead address

Self-relative queue

EXE$GQ_PQBIQ

Process-Private Space

KRP Lookaside List

Type of list

Beginning address

First free block's address

Last free block's address

Absolute queue

Ca~TL$A_KRP

C~TL$GL_KRPFL

~TL$GL_KRPBL

7.4.1 Doubly Linked Lookaside Lists
Insertion and removal of an element from the head or tail of a queue through PALcode
routines are atomic:

�9 For an absolute queue, each such modification is atomic with respect to any other
threads of execution on the same processor.

�9 For a self-relative queue, each such modification is atomic with respect to all other
threads of execution on all members of a symmetric multiprocessing (SMP) system.

Chapter Synchronization Techniques contains further information on queues and
synchronizing access to them.

Figure 7.6 (Initial Condition) shows the general form of a fixed-length list that is either
a self-relative queue or an absolute queue.

A packet is allocated by removing the first element from the front of the list (see
Figure 7.6, Packet Removed from Head). A packet is deallocated by inserting it at the
back of the list (see Figure 7.6, Packet Inserted at Tail).

7.4.2 Singly Linked Lookaside Lists
Shown in Figure 7.7, this newer type of lookaside list is singly linked and absolute.
Its listhead is a natural ly aligned quadword. The first longword of the list contains
the address of the first packet, or zero if the list is empty. The second longword is a
sequence number used in synchronizing access to the list. Packets are always allocated
from and deallocated to the front of this kind of list. The first longword of each packet
contains the address of the next packet in the list; the first longword of the last packet
contains zero.

419

Pool Management

Figure 7.6

Listhead

F i x e d - L e n g t h P a c k e t A l l o c a t i o n and D e a l i o c a t i o n f rom a Q u e u e

Initial Condltlon

=k ~.- =1- --!; t,~ ::: =i= : '~

First Packet Last Packet
in Queue in Queue

(Head) (Tail)

Packet Removed from Head

Usthead

New Head
of Queue

Removed
Packet

Packet Inserted at Tall

Usthead

"k ~.:
A | j !

Former Tail Inserted Packet
(New Tail)

Figure 7.7

A

v

Sequence Number

Sing ly L inked L o o k a s i d e List

First Packet
in Queue
(Head)

=; o

Last Packet
in Queue

(T~l)

Routines EXE$LAL_REMOVE_FIRSTLAND_COUNT] and EXE$LAL_INSERT_
FIRSTLAND_COUNT], in module LOOK_ASIDE_LIST, allocate and deallocate pack-
ets from this list. The insertions and removals are atomic with respect to all threads
of execution on all SMP system members without the use of a spinlock.

420

7.4 Fixed-Length Lists

7.4.2.1 Singly Linked List Deallocation
To deallocate a packet, EXE$LAL_INSERT_FIRST and EXE$LAL_INSERT_FIRST_
AND_COUNT take the following steps:

I. Each routine copies the address of the first packet in the list from the listhead to
the forward link of the packet being deallocated.

2. It executes a memory barrier (MS) instruction to ensure that the first write is
visible before the next write.

3. It executes a load-locked instruction (LDL_5) to refetch the address of the first
packet from the listhead.

4. If that address has changed, it restarts the insertion at step 1. Otherwise, it
conditionally stores (STL_C) the address of the packet being deallocated in the
listhead.

If the store operation fails, another thread of execution has interrupted this one (or
accessed the list concurrently on another SMP system member); in that case, each
routine restarts the insertion at step 1.

5. If the store operation succeeds, EXE$LAL_INSERT_FIRST_AND_COUNT incre-
ments the packet counter associated with this lookaside list.

6. Each routine returns to its caller.

7.4.2.2 Singly Linked List Allocation
Because the store-conditional instruction will fail if a memory reference occurs between
the load and the store, allocating a packet is somewhat more complex than deallocating
one. To allocate a packet, EXE$LAL_REMOVE_FIRST and EXE$LAL_REMOVE_
FIRST_AND_COUNT take the following steps"

1. Each routine loads both the sequence number and address of the first packet in the
list. If the list is empty, it re turns a failure s tatus to its caller.

2. It executes an ~m instruction to ensure the first read is visible before the next.

3. It loads the address of the second packet in the list from the forward link of the
first.

4. It executes a load-locked (5DQ_L) instruction to refetch the sequence number and
address of the first packet. If either has changed, it res tar ts the removal at step 1.

5. It forms the new contents of the listhead as the incremented sequence number and
address of the second packet.

6. It conditionally stores (STQ_C) these contents. If the store operation fails, it res tar ts
the removal at step 1.

7. If the store operation succeeds, the routine confirms tha t the forward pointer of
the packet just allocated is the same as the address it loaded in step 3. If the
addresses are the same, EXE$LAL_REMOVE_FIRST_AND COUNT decrements
the packet counter associated with this lookaside list.

421

Pool Management

If the addresses are not the same, it generates the fatal bugcheck BADQHDR. This
sanity check has a high probability of detecting the unlikely event that between
steps 1 and 3, 2 3i other accesses occurred to the list (so that the sequence number
wrapped around to itself) and the first packet in the list at step 1 was again the
first packet in the list at step 4.

8. Each routine returns to its caller with the address of the allocated packet.

7.4.3 Pool Zone Lookaside Lists
A mechanism new with OpenVMS Alpha Version 7.2 enables a kernel mode component
to create its own system space pool. The pool consists of one or more zones. Each
page of each zone is divided into fixed-size packets, and each zone can have a different
packet size. The pages that make up a zone are not required to be physically or
virtually contiguous. This mechanism was added primarily to create lookaside lists in
$2 space.

7.4.3.1 Pool and Zone Creation
To create the pool, the component creates a data structure to describe the pool. The
structure consists of a POOLZONE_REGION structure plus a POOLZONE substruc-
ture for each zone. The structure may be allocated from nonpaged pool or created
as part of an executive image. The component initializes the POOLZONE_REGION
header with the number of zones and the addresses of page allocation and dealloca-
tion routines for that pool. The component then calls EXE$POOLZONE_CREATE, in
module POOL_ZONES, once for each zone, starting with the smallest packet size and
continuing in order by packet size.

EXE$POOLZONE_CREATE is passed a pointer to the POOLZONE_REGION struc-
ture, the packet size, initial region size in pages, and maximum region size. It allocates
and maps physical pages of memory for the initial zone size, using the page allocation
routine specified in the POOLZONE_REGION structure. The page allocation routine
can, for example, call MMG_STD$ALLOC_SYSTEM_VA_MAP, in module SYSVA_
ALLOC, which performs these tasks, making the appropriate changes to the memory
management database.

EXE$POOLZONE_CREATE initializes a POOLZONE_PAGE data structure at the
beginning of each page of memory and links each POOLZONE_PAGE into the front
of a listhead in its zone's POOLZONE structure. It splits each page into fixed-size
packets. It clears the longword that contains the standard SIZE, TYPE, and SUBTYPE
fields in each packet; optionally fills the packet with the pool poison deallocation
pattern (see Section 7.15); and links the packet into a listhead in the POOLZONE_
PAGE structure.

422

7.4 Fixed-Length Lists

7.4.3.2 Data Structures

Figure 7.8 shows the pool zone data structures and their relationships. These da ta
structures are defined only by a C header file, and their field names are lowercase.
The POOLZONE_REGION structure is typically allocated from nonpaged pool and
includes one POOLZONE structure for each zone in the pool.

In the POOLZONE_REGION structure, type, subtype, and size have the typical
meanings. Type and subtype are component-specific. Lock management code, for
example, uses a type of DYN$C_LCK and a subtype of DYN$C_LCK_POOLZONE.
Fields zonepage_alloc_rtn and zonepage_dealloc_rtn contain addresses of routines
within the kernel mode component that allocate and deallocate physical pages and
their mappings. The field zone_count contains the number of POOLZONEs tha t follow.

In the POOLZONE structure, zonepage_flink and zonepage_blink form a queue list-
head for POOLZONE_PAGEs that are part of this zone. Field packet_size contains
the size in bytes of packets in this zone. Field max_pages is the maximum number of
POOLZONE_PAGEs in this zone. Field free_count is the number of available packets
in this zone.

Field misses records allocation at tempts when the zone initially has no available
packets. Field hits records allocation at tempts when the zone does have available
packets. Fields expansions and failures record successful and failed a t tempts to
expand the zone. The field not lstpage, which is maintained only by the monitor
version of SYSTEM_PRIMITIVES (see Section 7.13), is the number of failures to find
a packet on the first page in the POOLZONE_PAGE queue. Field empty_pages counts
the number of pages in the zone from which no packets have been allocated.

In the POOLZONE_PAGE structure, zonepage flink and zonepage blink link the page
into the associated zone's queue. Fields freequeue_flink and freequeue_blink form
the listhead of available packets in this page. Field zone contains the address of the
page's associated POOLZONE structure. Field packet_size contains the size in bytes
of this page's packets. Field packet_count contains the number of packets on this
POOLZONE_PAGE, and field free_count, the number of available packets.

Field hits records the number of successful allocations from this page. Field relinks
records the number of times this POOLZONE_PAGE has been moved from its position
on the POOLZONE_PAGE list. A page with no available packets is moved to the
end of the POOLZONE_PAGE list. When a packet is deallocated to such a page, it is
moved to the front of the POOLZONE_PAGE list. Field relinks is maintained only by
the monitor version of SYSTEM_PRIMITIVES (see Section 7.13).

The rest of the page is divided into packets of size packet_size. Field first_packet is
the offset of the first packet in the page.

423

zone-count-
POOLZONES

zone-count 4

s ~ ~ y p e

packet-size I I t freequeue-flink

POOUONE POOUONE-PAGE

type

freequeue-blink / e q q v j
- zonepage-flink

- zonepage-blink - size

,:" free-count packet-size -/

-
- zonepage-flink

zonepage-blink -

POOUONE I Le
I 11.. . failures I I POOUONE

not1 stpa*

1 packet-count -4
t free-count 4

fistgacket
(packet-size bytes)

Packet M
Packet +
Packet b.

; (0 to (packet-size - 1) bytes);

7.4 Fixed-Length Lists

7.4.3.3 Allocation and Zone Expansion
To allocate a packet, a kernel mode component calls EXE$POOLZONE_ALLOCATE or
EXE$POOL_ALLOCATE, both in module POOL_ZONES.

EXE$POOLZONE_ALLOCATE is passed the addresses of the POOLZONE_REGION
and the POOLZONE structures. It checks whether the zone has any free pages and, if
not, expands the zone by allocating and initializing another POOLZONE_PAGE. Thus
the zone can be expanded, up to its maximum number of pages.

EXE$POOLZONE_ALLOCATE then checks whether the first page in that pool zone
has any free packets and, if so, removes the first packet from the list and returns
its address to its caller. If not, it checks the next POOLZONE_PAGE in that zone,
continuing until it finds one with a free packet. When it removes the last packet from
a POOLZONE_PAGE, it removes the POOLZONE_PAGE from the list and reinserts it
at the end of the list, to shorten the search for a free packet on subsequent allocations.

EXE$POOL_ALLOCATE is passed the address of the POOLZONE_REGION structure
and the number of bytes to be allocated. It examines the POOLZONE substructures
to find the first zone whose packet size is large enough to accommodate the request.
It calls EXE$POOLZONE_ALLOCATE to allocate a packet from that list, optionally
records the allocation in the nonpaged pool history buffer (see Section 7.15.2), and
optionally checks that the packet's poison pat tern is intact (see Section 7.15).

7.4.3.4 Deallocation
To deallocate a packet, a kernel mode component calls either EXE$POOLZONE_
DEALLOCATE or EXE$POOL_DEALLOCATE, both in module POOL_ZONES.

EXE$POOLZONE_DEALLOCATE is passed the addresses of the POOLZONE struc-
ture and the packet. It rounds the packet address back to the page boundary to
form the address of the associated POOLZONE_PAGE structure and inserts the
packet on its free list. If the page previously had no free packets, EXE$POOLZONE_
DEALLOCATE removes the POOLZONE_PAGE from the POOLZONE_PAGE queue
and reinserts it at the front of the queue.

EXE$POOL_DEALLOCATE is passed the address of the packet to be deallocated. It
rounds the address back to a page boundary to form the address of the associated
POOLZONE_PAGE structure and follows its pointer to the POOLZONE structure.
Optionally, it records the deallocation in the nonpaged pool history buffer (see Section
7.15.2). Optionally, it fills the packet with the pool poison deallocation pat tern (see
Section 7.15). It calls EXE$POOLZONE_DEALLOCATE to deallocate the packet.

7.4.3.5 Fleclamatlon
EXE$POOLZONE_PURGE, in module POOL_ZONES, deallocates POOLZONE_
PAGEs from which no packets have been allocated. It is called with pointers to a
POOLZONE_REGION, POOLZONE, and a target number of POOLZONE_PAGEs to
reclaim. It scans the POOLZONE_PAGE queue for a POOLZONE_PAGE all of whose
packets are available. It calls the page deallocation routine specified by ZONEPAGE_
REGION field zonepage_dealloc_rtn.

425

Pool Management

7.5 Nonpaged Pool
Nonpaged dynamic memory, commonly known as nonpaged pool, contains data struc-
tures used by components that typically run in system context, such as unit control
blocks and I/O request packets. These parts of the operating system can only access
system space. Furthermore, they execute at IPLs above 2, where page faults are not
permitted.

Nonpaged dynamic memory also contains data structures that are shared by multiple
processes and that may be accessed above IPL 2. Nonpaged pool is the most heavily
used of the pool areas.

The protection on nonpaged pool is ERKW, allowing it to be read from executive and
kernel modes but written only from kernel mode.

Nonpaged pool consists of a variable-length list and a number of fixed-length lookaside
lists. The lookaside lists provide for the most frequently allocated nonpaged pool data
structures. Section 7.5.4 discusses allocation in detail.

The OpenVMS Alpha executive provides 128 (IOC C NUMLISTS, defined by
$NPOOL_DATADEF) lookaside lists for packets ranging in size from 64 to 8,192
(IOC C MAXLISTPKT) bytes in increments of 64 bytes. These lookaside lists are of
the singly linked absolute type. Section 7.5.1 describes these lists in more detail.

In the case of a NUMA system, each RAD with memory can have its own variable-
length and fixed-length nonpaged pool lists. Section 7.6 provides further details.

In addition to the traditional type of nonpaged pool, certain systems also have a
bus-addressable nonpaged pool (see Section 7.7).

A nonpaged pool allocation routine attempting to service a request first rounds up the
requested size to the next multiple of 64 (EXE$M_NPAGGRNMSK + 1) and checks the
listhead corresponding to the requested size. If there is no packet on that list or if the
requested size is larger than 8,192 bytes, the allocation routine allocates pool from the
variable-length list. Thus, all packets on nonpaged pool lookaside lists originate in the
nonpaged pool variable-length region.

A nonpaged pool deallocation routine does not return pool directly to the variable-
length list. Rather, the deallocation routine inserts it into the lookaside list corre-
sponding to the packet's size unless the size is larger than 8,192 bytes.

Packets do not remain on the lookaside lists forever. They are either consumed by
later allocation requests or returned to the variable-length list through a process called
pool reclamation. When there is no packet on a request size's corresponding list and
there is insufficient memory in the nonpaged pool variable-length region, the executive
initiates pool reclamation. It also initiates pool reclamation periodically to ensure
sufficient memory on the nonpaged pool variable-length list. Section 7.5.6 describes
nonpaged pool reclamation.

When a nonpaged pool request cannot be satisfied even aider pool reclamation, the
executive attempts to expand nonpaged pool. Section 7.5.7 describes nonpaged pool
expansion.

426

7.5 Nonpaged Pool

In addition to nonpaged pool lookaside lists, the executive provides a lookaside list of
KPBs, used primarily by device driver fork processes. KPBs, initially allocated from
nonpaged pool, are deallocated to the KPB lookaside list. The KPB allocation routine
attempts to allocate a KPB from this list as a faster alternative to general nonpaged
pool allocation. Each KPB points to an associated kernel process stack. Allocation
and initialization of a kernel process stack is a time-consuming process. Maintaining
the KPBs on a separate lookaside list allows the executive to reuse KPBs and their
associated stacks. Chapter Software Interrupts describes kernel processes and KPBs.

7.5.1 Data Structures
The implementation of nonpaged pool has been generalized to enable special pool types
to be created. OpenVMS Version 7.2 added support for bus-addressable nonpaged pool
(BAP). As part of the generalization, various system cells that described nonpaged
pool were moved to data structures, and new routines used these data structures to
determine their actions. For compatibility, the original nonpaged pool allocation and
deallocation routines are still provided.

BAP and the base RAD's nonpaged pool are each described by an NPOOL and a
LSTHDS data structure. These structures are static, created during compilation of
module SYSTEM_DATA_CELLS. Figure 7.9 shows these structures and the relation-
ship between them.

This section describes the fields common to the structures for both types of pool, as well
as fields specific to the nonpaged pool NPOOL. Section 7.7.1 describes fields specific to
BAP, and Section 7.6.1 describes extensions for support of per-RAD nonpaged pool.

In the nonpaged pool NPOOL structure, NPOOL$PS_RINGBUF contains the address
of the pool history ring buffer, and NPOOL$L_RINGBUFCNT, the number of pool
history buffers in it. NPOOL$PS_NEXTNPH contains a pointer to the next history
buffer to be used. The standard nonpaged pool ring buffer records both nonpaged and
bus-addressable pool history, as well as pool zone history. Section 7.15.2 contains more
information.

In each type of NPOOL structure, NPOOL$PS_POOL_MAP contains the address of
a list of descriptors of segments that make up this pool. NPOOL$L_POOL_MAP_
SIZE contains the size of the list in bytes, and NPOOL$L_POOL_MAP_SEGMENTS,
the number of descriptors in it. Each descriptor consists of four quadwords" the
first contains the address of the segment; the second, its size in bytes; the third, the
address of the end of the segment; and the fourth, a longword with the number of the
associated RAD.

In the nonpaged pool structure, NPOOL$L_BAP_POOL_DATA contains the address of
the BAP NPOOL structure.

NPOOL$AR_LSTHDS points to a block containing one or more addresses of LSTHDS
structures. This indirection enables the same code to be used in systems that have
per-RAD nonpaged pool and those that do not.

427

Pool M a n a g e m e n t

Figure 7.9

EXE$GS_NPP_NPOOL

Nonpaged and Bus-Addressable Pool Data Structures

Nonpaged Pool NPOOL
ON_RAD_DEALLOC
TOTAL_DEALLOC

-- PER_POOL_DIAG --
RINGBUF
NEXTNPH

RINGBUFCNT
(reserved) (100 bytes)

- LSTHDS
MAX_LSTHDS
GPAN_MASK

NUM_LOOKASIDE
VARIABLE_LIST

POOL_MAP
POOL_MAP_SIZE

POOL_MAP_SEGMENTS
: NPP POOL DATA /

P(~L_DA-TA /

' ' I -
Nonpaged Pool LSTHDS

(reserved)
VARALLOCBYTES

VARIABLELI ST_ UNUSED
VARIABLELIST

(reserved)
EXPANSIONS

(reserved)
LISTAT'I'EMPTS

LISTFAILS
LISTDEALLOCS

PAD
POOLTYPE

: NPOOL_DATA
(reserved) (16 bytes)

LISTHEADS
(129 quadwords)

EXE$GS_N PP_BASE_LSTHDS

POOL_FLAGS ~ (reserved) (16 bytes) ;
BA P P----POO~DATA . I LISTCOONTERS [: I

[(129 quadwords)

[B_us-Addresuble Pool NPOOL Bus--Addreuable Pool LSTHDS
EXE$GS_BAP_NPOO-'~. _I[~1" EXE$GS_BAP_BASE_LSTHDS

LSTHDS - ~

T T

NPOOL$L_GRAN_MASK specifies the granularity of allocation for this pool. It is
initialized to EXE$M_NPAGGRNMSK for both types of pool.

NPOOL$L_NUM_LOOKASIDE specifies the number of lookaside lists for this pool. It
is initialized to IOC_C_NUMLISTS for both types of pool.

NPOOL$PS_VARIABLE_LIST contains the address of the listhead for the variable-
length pool of this type but is not used.

A LSTHDS structure contains the actual nonpaged pool lookaside lists. Figure 7.10
shows the array of lookaside lists and an example lookaside list.

LSTHDS$AR_LISTATTEMPTS, LSTHDS$AR_LISTFAILS, and LSTHDS$AR_
LISTDEALLOCS point to statistics buffers, which are described in Section 7.14,
along with LSTHDS$L_VARALLOCBYTES.

428

Figure 7.10 Nonpaged Pool Lookaside Lists

LSTHDS

LISTHEADS

....."""1

l �9 ..

T ...

""" ,,,.,

Sequence Number

Sequence Number

Sequence Number

Sequence Number

Sequence Number

Sequence Number

Sequence Number

l~irst entry
dummy)

, ,

Last entry

7.5 Nonpaged Pool

. . . . ~ 0

First Packet Last Packet
in Queue in Queue
(Head) (Tail)

LSTHDS$PS_VARIABLELIST contains the address of the variable-length listhead for
this type of pool.

LSTHDS$L_EXPANSIONS records the number of times this pool has been expanded.

LSTHDS$L_POOLTYPE identifies the pool, either MMG$K_POOLTYPE_NPP or
MMG$K_POOLTYPE_BAP.

LSTHDS$PS_NPOOL_DATA points to the associated NPOOL structure.

LSTHDS$Q_LISTHEADS is an array of 129 (IOC C NUMLISTS + 1) lookaside list-
heads (see Figure 7.10). For both BAP and the base RAD's nonpaged pool, this array is
created as a zeroed array of longwords during compilation of module SYSTEM_DATA_
CELLS. The extra entry enables one-based indexing of the array as a function of the
packet size. The lookaside lists are not prepopulated at system initialization. Instead,
when a block of pool is deallocated, if its size corresponds to a lookaside list size, the
block is inserted on that lookaside list.

LSTHDS$Q_LISTCOUNTERS is a corresponding array of counters. Each element
in the array is the count of packets on the corresponding lookaside list. The counts
are not necessarily precise because some lookaside list insertions and removals do not
update the counts and because the counts are not kept atomically. Used during pool
reclamation, the counters are self-correcting.

429

Pool Management

7.5.2 Uses of Nonpaged Pool
Nonpaged pool is created during early stages of system initialization. The following
executive data structures are allocated from nonpaged pool:

�9 Buffered I/O buffers

�9 I/O data structures, such as I/O request packets, unit control blocks, controller
request blocks, adapter control blocks, window control blocks, file control blocks,
class driver data blocks, and class driver request packets

�9 Synchronization data structures, such as common event blocks and dynamic
spinlocks

�9 Process data structures, such as process control blocks, job information blocks, and
kernel thread blocks

�9 Kernel process blocks

�9 Other miscellaneous systemwide data structures, such as timer queue entries

7.5.3 Initialization
SYSGEN parameters NPAGEDYN and NPAGEVIR specify the size of nonpaged pool.
NPAGEDYN is the initial size of nonpaged pool in bytes. NPAGEVIR is the maximum
size, in bytes, to which it can expand.

New with OpenVMS Alpha Version 7.3, parameter NPAGECALC allows for automatic
calculation of NPAGEDYN. Its default value at initial system boot is 1, but running
AUTOGEN changes it to 0. The SYSGEN or SYSBOOT USE DEFAULT command
changes it back to 1.

During system initialization, if SYSGEN parameter NPAGECALC is 1, SYSBOOT cal-
culates default values for these parameters based on the amount of physical memory.
The default calculated value for NPAGEDYN is 512 KB plus 1 page per 128 pages of
memory, up to a maximum of 128 MB. The default value for NPAGEVIR is 8 MB plus
1 page for each 32 pages of memory, up to a maximum of 256 MB. Both parameters
are rounded down to a number representing an integral number of pages.

As described in Section 7.7, SYSBOOT may adjust the initial and maximum sizes of
nonpaged pool to include BAP.

SYSBOOT also adjusts the initial size of nonpaged pool if per-RAD pool is needed
on this system. If bit RIH$V_RAD_POOL (bit 6) is set in SYSGEN parameter RAD_
SUPPORT, SYSBOOT rounds up parameter NPAGERAD, the number of bytes to
reserve for nonbase-RAD pool, to an integral number of pages and subtracts it from
the initial size of nonpaged pool. It then adjusts the initial size to a minimum of 4 MB.

SYSBOOT allocates a slice of the nonpaged system data huge page for the initial size
of nonpaged pool (see Chapter 1). SYSBOOT also reserves enough virtual address
space contiguous to this region for nonpaged pool to expand to its maximum size.

430

7.5 Nonpaged Pool

SYSBOOT initializes the nonpaged pool variable-length list and the global locations
EXE$GL_NONPAGED, MMG$GL_NPAGEDYN, and MMG$GL_NPAGNEXT.

Later in system initialization, INI$INITIALIZE_POOL, in module MEMORYALC_
POOL, initializes the NPOOL structure that describes nonpaged pool. In particular, it
fills in a pool map descriptor to describe the initial nonpaged pool segment.

7.5.4 Allocation
A number of routines in module MEMORYALC allocate traditional nonpaged pool.
Some of these routines, such as EXE[_STD]$ALLOCPCB or EXE[_STD]$ALLOCTQE,
allocate pool for a particular type of data structure, filling in its size and type.
Some routines, intended for use only within process context, conditionally place
the kernel thread into a resource wait (see Section 7.5.8 and Chapter Schedul-
ing) for resource RSN$_NPDYNMEM if pool is unavailable. All these routines call
EXE$ALONONPAGED, in module MEMORYALC_DYN, the general traditional non-
paged pool allocation routine.

Another general nonpaged pool allocation routine is EXE$ALLOCATE_POOL, in
module MEMORYALC_POOL. It can also allocate BAP or pool local to a specific RAD.
It is called with arguments specifying pool type, requested size, RAD, and alignment.

Because allocation from and deallocation to a lookaside list are so much faster than the
equivalent operations involving the variable-length list, EXE[_STD]$ALONONPAGED
and EXE$ALLOCATE_POOL check to determine whether a requested block can be
allocated from one of the lookaside lists. Each allocates requests from the variable-
length list only if the requested size is larger than 8,192 (IOC_C_MAXLISTPKT) bytes
or if the lookaside list corresponding to the requested size is empty.

A consumer of nonpaged pool must use an appropriate executive procedure for al-
location and deallocation. Direct allocation from or deallocation to a nonpaged pool
lookaside list is not allowed. That is, directly manipulating a lookaside list through
the EXELAL_REMOVE_FIRST/EXELAL_INSERT_FIRST routines or through the
load-locked/store-conditional mechanism is not allowed.

EXELSTD]$ALONONPAGED and EXE[_STD]$ALONPAGVAR are entry points to the
same procedure, EXE$ALONONPAGED_INT in module MEMORYALC_DYN, which
allocates nonpaged pool by performing the following steps:

1. If per-RAD pool is in use, it calls EXE$ALLOCATE_POOL with pool type MMG$K_
POOLTYPE_NPP, to allocate a block of the requested size from this system's per-
RAD nonpaged pool. Section 7.6.3 describes how EXE$ALLOCATE_POOL handles
RAD-specific requests. (The traditional routines can allocate only base RAD pool.)
EXE$ALONONPAGED_INT returns the status from EXE$ALLOCATE_POOL and
the address of the packet, if any, to its caller.

2. Otherwise, it rounds up the requested size to the nearest multiple of 64 (EXE$M_
NPAGGRNMSK + 1).

3. If the rounded value of the requested size is larger than 8,192 bytes, it proceeds
with step 5.

431

Pool Management

4. It calls EXE$LAL_REMOVE_FIRST_AND_COUNT (described in Section 7.4) to
allocate the first packet from the lookaside list corresponding to the requested size.
If a packet was successfully allocated, EXE$ALONONPAGED_INT returns to its
caller with a success status and the address of the packet. Otherwise, it continues.

5. If the current IPL is greater than IPL$_POOL and system initialization has
completed (BOOSTATE$V_SWAPPER flag in EXE$GL_STATE is set), it returns to
its caller with the error status SS$_INSFMEM. Otherwise, it continues. Allocating
from the variable-length list at above IPL$_POOL is permissible only during
system initialization.

6. It calls EXE$ALONPAGVAR_INT, in module MEMORYALC_DYN, to allo-
cate a nonpaged pool block of the requested size and returns the status from
EXE$ALONPAGVAR_INT and the address of the packet, if any, to its caller.

EXE$ALONPAGVAR_INT allocates pool only from the variable-length list. It performs
the following steps:

1. It rounds the request size up to a multiple of 64 (EXE$M_NPAGGRNMSK + 1).

2. It increments PMS$GL_NPAGDYNREQ, which tracks the number of allocation
requests for variable-length pool (see Table 7.5).

3. It acquires the POOL spinlock, raising IPL to IPL$_POOL.

4. It calls the lower level routine EXE$ALLOCATE, described in Section 7.3.

5. EXE$ALONPAGVAR_INT releases the POOL spinlock, restoring the previous IPL.
If EXE$ALLOCATE succeeded, EXE$ALONPAGVAR_INT returns the size and
address of the allocated block.

6. If the allocation failed, it checks whether pool reclamation was already per-
formed for this request. If not, it calls EXE$RECLAIM_POOL_AGGRESSIVE,
in module MEMORYALC_POOL (see Section 7.5.6). Upon return from
EXE$RECLAIM_POOL_AGGRESSIVE, regardless of whether pool was reclaimed,
EXE$ALONPAGVAR_INT retries pool allocation beginning with step 3.

7. If pool reclamation was already attempted for this request, it instead calls
EXE$EXTENDPOOL, in module MEMORYALC_POOL, to attempt pool expansion
(see Section 7.5.7).

If the expansion succeeds, EXE$ALONPAGVAR_INT repeats the allocation at-
tempt. If pool expansion fails because pool has been expanded to its maximum
size, it calls EXE$FLUSHLISTS, in module MEMORYALC_DYN (see Section
7.5.6).

If, despite the expansion and flushing effort, the nonpaged pool request cannot be
satisfied, EXE$ALONPAGVAR_INT increments PMS$GL_NPAGDYNREQF and
updates PMS$GL_NPAGDYNFPAGES (see Table 7.5) and returns the error status
SS$_INSFMEM to its caller.

432

7.5 Nonpaged Pool

Since nonpaged pool allocation granularity is 64 (EXE$M_NPAGGRNMSK + 1) bytes
and nonpaged pool begins at a page boundary, all nonpaged pool packets and blocks
are guaranteed to be at least 64-byte aligned.

A consumer requiring greater than 64-byte alignment can call either the rou-
tine EXE$ALONONPAGED_ALN, in module MEMORYALC_DYN, or the routine
EXE$ALLOCATE_POOL, in module MEMORYALC_POOL. Each attempts nonpaged
pool allocation to the specified alignment constraint.

To allocate traditional nonpaged pool, EXE$ALLOCATE_POOL takes the following
steps:

1. If the requested size is 0, the monitor version (see Section 7.13) generates the fatal
bugcheck BADALORQSZ.

2. EXE$ALLOCATE_POOL determines the address of the LSTHDS for this pool type
and RAD.

If the caller specified alignment requirements, EXE$ALLOCATE_POOL continues
with step 10.

Otherwise, if the requested size is smaller than 8,192 (IOC C MAXLISTPKT)
bytes, it tries to remove a packet from the lookaside list corresponding to that size
and pool type. If successful, it returns to its caller.

If the request is larger or the lookaside list was empty, it acquires the POOL
spinlock to synchronize access to the variable-length list associated with this pool
type.

It calls EXE_STD$ALLOCATE to allocate pool from the variable-length list.

It releases the POOL spinlock.

If the pool was allocated successfully, EXE$ALLOCATE_POOL returns to its caller.

If the request cannot be allocated, EXE$ALLOCATE_POOL tries one after another
of the following techniques, reattempting the pool allocation each time:

- - Aggressive pool reclamation from lookaside lists (see Section 7.5.6)

- - Flushing the lookaside lists (see Section 7.5.6)

- - Expanding pool (see Section 7.5.7)

If all these attempts to regain pool are unsuccessful, EXE$ALLOCATE_POOL
returns error status SS$_INSFMEM to its caller.

10. If the caller requested a specific alignment and if the request is smaller than 8,192
bytes, EXE$ALLOCATE_POOL makes three attempts to remove a packet from the
corresponding lookaside list that meets the requested alignment and that does not
cross a page boundary.

11

,

,

,

11

,

9.

433

Pool Management

11. If the lookaside list allocation failed or the request is too large, it calls STD_
ALLOCATE_ALN, in module MEMORYALC, which allocates a block from the
variable-length list tha t meets the requested alignment and that does not cross a
page boundary.

If STD_ALLOCATE_ALN is unsuccessful, EXE$ALLOCATE_POOL at tempts to
reclaim pool as described in step 9.

Sections 7.6.3 and 7.7.3 describe how EXE$ALLOCATE_POOL handles RAD-specific
and bus-addressable pool allocations.

7.5.5 Deallocation
To deallocate nonpaged pool, a consumer of nonpaged pool calls EXELSTD]$DEA-
NONPAGED or EXE[_STD]$DEANONPGDSIZ, in module MEMORYALC_
DYN, or EXE$DEALLOCATE_POOL, in module MEMORYALC_POOL. EXE[_
STD]$DEANONPGDSIZ is used to deallocate a pool block larger than 64 KB or a
block with one of the new header formats shown in Figure 7.2.

EXE[_STD]$DEANONPAGED tests whether per-RAD pool is in use. If so, it calls
EXE$DEALLOCATE_POOL and returns. Otherwise, it determines the size of the
block being returned and calls EXE$DEANONPGDSIZ.

EXE[_STD]$DEANONPGDSIZ returns the deallocated block either to one of the
lookaside lists or to the variable-length region, performing the following steps:

1. If per-RAD pool is in use, it calls EXE$DEALLOCATE_POOL and returns.

.

,

,

Q

If per-RAD pool is not in use, the monitor version of the routine (see Section 7.13)
tests that the size being returned is nonzero and that the start ing address is on
a pool allocation granulari ty boundary. If either is false, it generates the fatal
BADDALRQSZ bugcheck.

It rounds up the deallocation request size to a multiple of 64 (EXE$M_
NPAGGRNMSK + 1).

If the rounded deallocation size is less than or equal to 8,192 (IOC C
MAXLISTPKT) bytes, it determines the appropriate listhead and calls EXE$LAL_
INSERT_FIRST_AND_COUNT to return the deallocated packet to the front of tha t
list. It then returns to its caller.

If the rounded deallocation size is larger than 8,192 bytes, EXE$DEANONPGDSIZ
acquires the POOL spinlock, raising IPL to IPL$_POOL; calls
EXE$DEALLOCATE_POOL, the lower level routine described in Section 7.3;
and then releases the POOL spinlock, restoring the previous IPL.

EXE$DEALLOCATE_POOL is called with arguments tha t include pool type and RAD.
It returns the deallocated block either to one of the lookaside lists or to the variable-
length region for that pool type and RAD. It determines the address of the appropriate
LSTHDS.

434

7.5 Nonpaged Pool

If the packet is smaller than 8,192 bytes, EXE$DEALLOCATE_POOL inserts it on
the listhead appropriate to the pool type and size. Otherwise, it acquires the POOL
spinlock, calls EXE_STD$DEALLOCATE to deallocate the pool to the appropriate
variable-length list, and releases the spinlock.

7.5.6 Reclamation
Also called adaptive nonpaged pool management, pool reclamation simplifies system
management by automatically adapting to varying workloads, thereby eliminating a
number of SYSGEN parameters used with the earlier style of pool management.

As previously described, nonpaged pool deallocation routines insert a packet on a
lookaside list rather than returning it to the variable-length list. Returning a packet
to a lookaside list enables faster allocation of packets of that size. On a running
system, however, the demanded allocation sizes are somewhat unpredictable. As more
packets are put on lookaside lists, remaining space on the variable-length list gets
smaller. Without a process for reclaiming space from unused lookaside list packets,
nonpaged pool exhaustion or excessive fragmentation can occur, slowing down or
preventing further allocation.

Through a process called nonpaged pool reclamation, packets from nonpaged pool
lookaside lists are moved to the associated nonpaged pool variable-length list. Recla-
mation can be gentle or aggressive. The executive performs gentle reclamation pe-
riodically. It performs aggressive reclamation when an allocation request cannot be
satisfied from either the appropriate lookaside list or the associated variable-length
list.

Reclamation is not possible if there are no packets on any of the lookaside lists.

Three SYSGEN parameters control reclamation:

�9 NPAG_AGGRESSIVE, the percentage of packets remaining on a list after aggres-
sive reclamation, by default 50

�9 NPAG_GENTLE, the percentage of packets remaining on a list after gentle recla-
mation, by default 85

�9 NPAG_INTERVAL, the number of seconds between gentle reclamations, by default
3O

Nonpaged pool reclamation is initiated by calling either EXE$RECLAIM_POOL_
GENTLE or EXE$RECLAIM_POOL_AGGRESSIVE, in module MEMORYALC_POOL.

EXE$RECLAIM_POOL_GENTLE is called every NPAG_INTERVAL seconds as a
repeating system timer routine (see Chapter Time Support). Because NPAG_GENTLE
is a dynamic parameter, EXE$RECLAIM_POOL_GENTLE examines it each time it
is entered. If NPAG_INTERVAL is negative, it resets the timer interval to 1 minute
and simply returns. This enables the system manager to disable nonpaged pool
reclamation temporarily and later reenable it by changing NPAG_INTERVAL to a
positive number. Otherwise, it recalculates the next timer interval from the current
value of NPAG_GENTLE and, if less than 1 second, modifies it to be 1 second.

435

Pool Management

Each time EXE$RECLAIM_POOL_GENTLE is entered, it reclaims pool from two
lookaside lists in one LSTHDS structure. It divides the set of lists in the structure
in half. Entered the first time, it reclaims pool from the first lookaside list in each
half, namely, the listhead at array index 1 and the listhead at array index 1 plus the
quotient of IOC C NUMLISTS and 2. The next time it is entered, it reclaims pool
from the listheads at index 2 and index 2 plus the quotient of IOC_C_NUMLISTS and
2.

After processing all the lookaside lists in one LSTHDS, EXE$RECLAIM_POOL_
GENTLE continues with lookaside lists in another LSTHDS if one exists:

�9 A NUMA system with multiple RADs may have multiple sections of nonpaged pool,
each with its own LSTHDS.

�9 A system with separate BAP has a LSTHDS to describe it.

Every time EXE$RECLAIM_POOL_GENTLE processes all the lookaside lists in all
the LSTHDSs, it calls EXE$KP_RECLAIM_KPB, in module KERNEL_PROCESS,
to reclaim one KPB if there are at least two on the lookaside list. Chapter Software
Interrupts describes KPBs and KPB reclamation.

EXE$RECLAIM_POOL_AGGRESSIVE is called by EXE$ALONPAGVAR_INT and
EXE$ALLOCATE_POOL when either routine determines that there is insufficient
space in a nonpaged pool variable-length list to satisfy a request. It reclaims pool from
each nonempty lookaside list associated with that variable-length list. If the pool is
not BAP, it also calls EXE$RECLAIM_KPB to reclaim a KPB.

EXE$RECLAIM_POOL_GENTLE and EXE$RECLAIM_POOL_AGGRESSIVE both
call EXE$TRIM_POOL_LIST, in module MEMORYALC_POOL, to do the actual recla-
mation. EXE$TRIM_POOL_LIST is called with the packet size to be trimmed, the
percent of packets to remain on the list, and the address of the LSTHDS containing
the listheads.

EXE$TRIM_POOL_LIST takes the following steps"

1. It calculates the index of the lookaside listhead corresponding to the packet size.

2. It sets a time limit of one quarter the value of the SMP_SPINWAIT SYSGEN
parameter. This sets an effective time limit for gentle reclamation of one half the
value of SMP_SPINWAIT.

3. It acquires the POOL spinlock, raising IPL to IPL$_POOL, to synchronize access
to the variable-length list.

4. It reads the counter array element corresponding to tha t listhead to determine how
many packets are in the list and calculates how many should remain on the list
after trimming.

5. It removes a packet from the list and calls EXE_STD$DEALLOCATE to return it
to the variable-length list associated with that LSTHDS.

It continues returning packets to pool until one of the following occurs:

It has t r immed the list to the desired percentage.

436

7.5 Nonpaged Pool

The time limit has elapsed.

There are no more packets on the list.

This unlikely circumstance occurs only if the counter contains a larger number
of packets than are actually on the list. The counter is not necessarily accu-
rate because it is possible for kernel mode code to remove a packet from the
list without decrementing the counter and because the counts are not kept
atomically.

6. It updates the counter array element, releases the POOL spinlock, and returns.

EXE$FLUSHLISTS is called by EXE$ALONPAGVAR_INT when both reclamation and
pool expansion have failed to produce enough nonpaged pool to satisfy the current
request. It performs much the same operations as the reclaim-pool routines and
EXE$TRIM_POOL_LIST, with the following differences:

~ It removes all packets from lookaside lists whose packets are as large as or larger
than the requested allocation size.

, It sets an execution time limit of two thirds the value of the SMP_SPINWAIT
SYSGEN parameter. Aider deallocating 100 packets, it checks whether the time
limit has elapsed. If so, it returns a failure status. If not, it continues deallo-
cating packets until there are no more, the time limit elapses, or a large enough
piece of now-available pool has been agglomerated to satisfy the request. (Recall
that EXE$DEALLOCATE maintains the variable-length list as an ordered list,
agglomerating adjacent blocks as necessary to reduce fragmentation.)

The intent of limiting the time spent flushing the lists is to minimize the possibility
of spinwait timeouts when a routine holding a spinlock tries to allocate nonpaged
pool.

, After having reclaimed pool from all lookaside lists that are large enough without
agglomerating a large enough packet, EXE$FLUSHLISTS calls EXE_STD$KP_
RECLAIM_KPB to return available kernel process blocks. It then calls SCS_
STD$URGENT_RECLAMATION, in module [CLUSTER]SCSFASTPATH, to try to
reclaim BAP.

7.5.7 Expansion
Dynamic nonpaged pool expansion creates additional nonpaged pool as it is needed.
At system initialization, SYSBOOT allocates space in the nonpaged system data huge
page for the initial size of nonpaged pool and reserves enough contiguous virtual
address space for nonpaged pool to expand up to NPAGEVIR pages. When an attempt
to allocate nonpaged pool fails, the pool can be expanded by allocating more physical
memory for it and altering the system page table accordingly. Note that expanded pool
is not within the nonpaged system data huge page, although it is virtually contiguous
to it.

437

Pool Management

When pool reclamation does not yield sufficient space to satisfy an allocation request,
EXE$ALONPAGVAR_INT, EXE$ALONPAGED_ALN, and EXE$ALLOCATE_POOL
call EXE$EXTENDPOOL, in module MEMORYALC_POOL, to attempt to expand pool.
EXE$EXTENDPOOL calls EXE$EXTEND_NPP, also in module MEMORYALC_POOL,
specifying that nonpaged pool should be expanded by four pages.

To synchronize allocation of physical memory and alteration of the system page table,
EXE$EXTEND_NPP must acquire the MMG spinlock.

EXE$EXTEND_NPP first checks whether the current CPU already holds the MMG
spinlock. If not, it checks whether it can acquire it: if it was entered from an interrupt
service routine running above IPL$_SYNCH, the MMG spinlock's IPL, or is running
on a CPU that owns any higher ranking spinlock, it cannot acquire the MMG spinlock.
If either is true, it creates an IPL$_QUEUEAST fork process to expand nonpaged pool
at some later time and returns an allocation failure status to its caller.

Whether running in the environment of the original allocation request or in the fork
process, EXE$EXTEND_NPP then confirms that sufficient reserved virtual address
is left for the requested expansion and calls EXE_STD$CHKFLUPAGES, in module
MEMORYALC, to check that the physical pages can be allocated without reducing the
number of physical pages available to processes below the minimum required. Pool
expansion must leave sufficient available physical pages to accommodate the sum of
the following:

�9 Space to inswap a reasonably large process, that is, the least of the following:

Maximum theoretically possible swap image SWP$GL_SWAP_IMAGE_SIZE_
MAX (6 4 K - 1)

Four times SYSGEN parameter SWPOUTPGCNT in pages

SYSGEN parameter WSMAX in pages

�9 The modified page list low limit (SYSGEN parameter MPW_LOLIMIT)

�9 The free page list low limit (SYSGEN parameter FREELIM)

If the memory sufficiency check fails, EXE$EXTEND_NPP attempts to broadcast a
message to the operator's console, logs an expansion failure event (see Section 7.14),
and returns the error status SS$_INSFMEM to its caller.

If the check succeeds, EXE$EXTEND_NPP calls MMG_STD$ALLOC_PFN_MAP_
SYSTEM_VA, in module SYSVA_ALLOC, to allocate and map physical memory. It
updates the page frame number (PFN) database for the allocated pages and places
their PFNs in the next available system space level 3 page table entries (L3PTEs),
beginning with the one corresponding to the address in MMG$L_NPAGNEXT. In each
L3PTE it sets the valid, address space match, and modify bits.

If any expansion occurred, EXE$EXTEND_NPP acquires the POOL spinlock, calls
EXE_STD$DEALLOCATE to add the new virtual pages to nonpaged pool, adds a
descriptor for them to the nonpaged pool map, logs an expansion success event (see
Section 7.14), and releases the POOL spinlock. If EXE$EXTEND_NPP acquired the
MMG spinlock, it releases that spinlock also.

438

7.5 Nonpaged Pool

If any expansion occurred, it updates MMG$L_NPAGNEXT and reports that the
resource RSN$_NPDYNMEM is available for any waiting kernel threads.

Nonpaged pool expansion provides a degree of dynamic system tuning. The penalty for
undersizing NPAGEDYN is the increased overhead in allocating requests that cause
expansion. An additional penalty is the performance loss associated with not having
the expanded pages within a huge page (and thus its granularity hint region). Chapter
1 explains how huge pages improve system performance.

The penalties for oversizing NPAGEVIR are one quadword (the L3PTE) for each
unused page and one associated unusable page of system virtual address space. If
NPAGEVIR is too small, kernel threads may be placed into a resource wait state,
waiting for nonpaged pool to become available.

Less dynamic than nonpaged pool expansion, the AUTOGEN facility can adjust
SYSGEN parameters that govern the initial size of nonpaged pool according to a given
system's workload, as outlined in Section 7.14.

Nonpaged pool expands, but it does not contract. No mechanism returns PFNs from
nonpaged pool to the free page list. The nonpaged pool region returns to its original
size only at the next bootstrap, if NPAGEDYN has not changed.

7.5.8 Synchronization
As described in Section 7.4.2, the load-locked/store-conditional mechanism synchro-
nizes accesses to nonpaged pool lookaside lists.

The POOL spinlock serializes access to nonpaged pool variable-length lists. Acquiring
the POOL spinlock raises IPL to IPL$_POOL. The allocation, deallocation, reclamation,
and expansion routines for nonpaged pool acquire and release the POOL spinlock.

Device drivers running at fork level frequently allocate dynamic storage. The POOL
spinlock ranks higher than all fork locks and the MAILBOX spinlock. This allows a
CPU executing a driver fork process to acquire the POOL spinlock while owning the
MAILBOX or any of the IOLOCKx fork locks. However, a CPU executing at device IPL
may not acquire the POOL spinlock because device IPL is higher than IPL$_POOL.

Each nonpaged pool allocation routine that runs in process context, such as EXEL
STD]$ALLOCCEB or EXELSTD]$ALLOCIRP, calls EXE$ALONONPAGED without
acquiring the SCHED spinlock. If this attempt to allocate pool is successful, the
routine has avoided the overhead of SCHED spinlock acquisition and release.

If EXE$ALONONPAGED fails to allocate the pool, the process context nonpaged pool
allocation routine tests bit PCB$V_SSRWAIT in PCB$L_STS. If it is set, the routine
returns a failure status to its caller. Otherwise, it acquires the SCHED spinlock,
raising IPL to IPL$_SCHED and synchronizing access to the scheduling database,
and calls EXE$ALONONPAGED again. If the second allocation attempt fails, the
allocation routine calls a scheduling routine to place the kernel thread into a resource
wait state, waiting for RSN$_NPDYNMEM.

439

Pool Management

A kernel thread in such a wait state will be made computable whenever RSN$_
NPDYNMEM is declared available. In earlier versions of VAX VMS, the resource was
declared available each time nonpaged pool was deallocated. Because resource waits
occur less frequently than deallocations, OpenVMS Alpha reduces overhead by avoid-
ing this declaration at deallocation. Instead, the resource is declared available once a
second by EXE$TIMEOUT, in module TIMESCHDL (see Chapter Time Support). It is
also declared available by EXE$EXTEND_NPP whenever nonpaged pool is expanded.

Code executing as the result of an interrupt at IPL$_SCHED or above typically
deallocates nonpaged pool through routine COMLSTD]$DRVDEALMEM, in module
MEMORYALC.

COMLSTD]$DRVDEALMEM deallocates a packet by simply calling
EXE$DEANONPGDSIZ under any of the following circumstances:

�9 The packet is no larger than 8,192 (IOC_C_MAXLISTPKT) bytes. Such a packet
is returned to the lookaside list. Access to the lookaside list is synchronized using
special instructions.

�9 IPL is below IPL$_POOL.

If COMLSTD]$DRVDEALMEM is called from IPL$_POOL or above, however, it
transforms the block that is to be deallocated into a fork block (see Chapter Software
Interrupts) and requests an IPL$_QUEUEAST software interrupt. The code tha t
executes as the IPL$_QUEUEAST fork process (the saved procedure value in the fork
block) simply calls EXE$DEANONPAGED to deallocate the block. If the block is less
than the size of a fork block, COMLSTD]$DRVDEALMEM generates the nonfatal
bugcheck BADDALRQSZ.

By convention, process context code that allocates a nonpaged pool data structure
executes at IPL 2 or above as long as the data structure's existence is recorded solely
in a temporary process location, such as in a register or on the stack. Running at IPL
2 blocks AST delivery and prevents the possible loss of the pool if the process were to
be deleted.

7.6 Per-RAD Pool
On a NUMA system, each RAD with physical memory may have its own section of
nonpaged pool. The RADs' pool sections are virtually adjacent, but each is made up of
physical memory local to its RAD. This enables code executing on a particular RAD to
allocate nonpaged pool from memory with a faster access time.

7.6.1 Data Structures
Each per-RAD pool section has its own variable-length and lookaside lists and thus
its own LSTHDS structure. The LSTHDS structure is created in $2 space mapped to
physical memory local to the RAD whose pool it describes. In each LSTHDS structure,
LSTHDS$PS_NPOOL_DATA points to the nonpaged pool NPOOL structure.

440

7.6 Per-RAD Pool

As shown in Figure 7.11, the nonpaged pool NPOOL$AR_LSTHDS contains the
address of an array of LSTHDS structure pointers, indexed by RAD. Each entry
contains the address of the corresponding RAD's LSTHDS. The array is in the base
RAD section of nonpaged pool.

NPOOL$L_MAX_LSTHDS contains the highest RAD number for which a nonpaged
pool section has been created.

Figure 7.11 Per-RAD Nonpaged Pool Data Structures

Nonpaged Pool NPOOL
EXE$GS_NPP_NPOOL!

-- LSTHDS

Nonpaged Pool LSTHDS for RAD 0

Nonpaged Pool LSTHDS for RAD 1

Nonpaged Pool LSTHDS for RAD n

Several fields in the nonpaged pool NPOOL support per-RAD pools. NPOOL$L_
ON_RAD_DEALLOC records the number of times a piece of pool is deallocated from
code running on the RAD associated with that pool. NPOOL$L_TOTAL_DEALLOC
records the number of deallocations of per-RAD pool. These counts are kept only by
the monitor version of SYSTEM_PRIMITIVES (see Section 7.13).

LSTHDS$L_RAD identifies the RAD of the physical memory that makes up this pool.

7.6.2 Init ialization
During system initialization, INI$INITIALIZE_POOL, in module MEMORYALC_
POOL, determines how many RADs have memory and the size of their initial nonpaged
pool sections.

Each initial nonpaged pool section is at least one page large. If NPAGERAD is larger,
the size of the initial section is NPAGERAD divided by the number of RADs with
memory and rounded up to an integral number of pages.

441

Pool Management

For each RAD with memory, INI$INITIALIZE_POOL allocates tha t many physical
pages from memory local to the RAD and maps them at the address in MMG$GL_
NPAGNEXT, the next virtual addresses adjacent to existing nonpaged pool. It up-
dates MMG$GL_NPAGNEXT. Initially, all the per-RAD pool is on the variable-length
list. INI$INITIALIZE_POOL adds a descriptor to the nonpaged pool NPOOL pool
map to describe this RAD's initial pool. If this is the monitor version of SYSTEM_
PRIMITIVES, it allocates the three lookaside list statistics arrays from per-RAD pool.

It sets POOL$GL_USING_RAD_POOLS to 1 to indicate that at least one nonbase RAD
pool exists.

7.6.3 Allocation
When per-RAD pool is enabled, by default all allocation is specific to the current
RAD. This improves system performance by enabling all unmodified allocations to
get memory from the RAD on which the allocator is executing. It is also possible to
allocate nonpaged pool local to a specific RAD.

EXE$ALLOCATE_POOL calculates the address of the LSTHDS to be used:

�9 If EXE$ALLOCATE_POOL is called with no RAD specification and there is physi-
cal memory associated with the current RAD, it uses the LSTHDS for the current
RAD.

�9 If there is no memory associated with the current RAD, it uses the LSTHDS for
the RAD from which the system was booted.

�9 If a RAD was specified, it uses that RAD's LSTHDS.

If it cannot remove a packet from the appropriate per-RAD lookaside list to satisfy the
request, it allocates per-RAD variable-length pool.

If enough per-RAD pool is not available, EXE$ALLOCATE_POOL expands that RAD's
pool basically as described in Section 7.5.7. The major difference, however, is that it
allocates physical memory associated with the specified RAD.

If, for some reason, the expansion fails and pool cannot be allocated from the specified
RAD's pool, EXE$ALLOCATE_POOL at tempts allocation from another RAD's pool. If
necessary, it performs aggressive reclamation, flushes the lists, and tries to expand
that RAD's pool. If none of those actions is successful, it goes on to another RAD. If it
cannot allocate pool from any RAD's pool, it returns the error status SS$_INSFMEM
to its caller.

7.6.4 Deallocation
When per-RAD pool is in use, EXE$DEALLOCATE_POOL must determine to which
per-RAD pool a particular block should be deallocated. From the page table entry
(PTE) that maps the beginning of the block, it extracts the PFN and then determines
the RAD of that PFN. Depending on the size of the block, it deallocates the pool to the
appropriate lookaside list or to the variable-length list of that per-RAD pool.

442

7.7 Bus-Addressable Pool

7.7 Bus-Addressable Pool
Bus-addressable pool is nonpageable pool mapped into physically contiguous physical
memory whose address range is within I/O bus and 32-bit adapter physical addressing
limits. A driver for a device or adapter tha t cannot access the maximum possible
physical address range allocates BAP for structures and buffers to be accessed by the
device or adapter.

On a particular system, if all devices and adapters can access all the physical memory,
BAP is merged into nonpaged pool, and requests for BAP are satisfied from the
nonpaged pool variable-length list and lookaside lists.

If a system has a Peripheral Component Interconnect (PCI) adapter and physical
memory addresses above 1 GB, or an Extended Memory Interconnect (XMI) adapter
and physical memory addresses above 4 GB, it needs separate BAP.

In general, BAP is handled in the same manner as nonpaged pool. The routines that
allocate, deallocate, and reclaim are similar to those for nonpaged pool except that
their flow varies with pool type so that they can be used for BAP, s tandard nonpaged
pool, or some future type of pool. Section 7.7.1 describes the data structures related
to BAP; Section 7.7.2, its initialization; and Section 7.7.3, the differences between
allocating bus-addressable and nonpaged pool.

7.7.1 Data Structures
NPOOL$AR_LSTHDS contains zero; there is only one BAP LSTHDS.

NPOOL$Q_PER_POOL_DIAG points to a history buffer that records at tempts to
register requirements for BAP. Each entry contains the minimum and maximum
physical addresses and the minimum and maximum pool requested.

NPOOL$L_POOL_FLAGS contains flags that describe BAP:

�9 NPOOL$V_NOT NPP, when set, means the structure describes something other
than standard nonpaged pool. The flag is set in the NPOOL data structure for
BAP, whether or not the pool is within nonpaged pool.

�9 NPOOL$V_POOL_SEPARATE, when set, means that BAP is not within nonpaged
pool. This bit is meaningful only for the BAP NPOOL$L_POOL_FLAGS field.

�9 NPOOL$V_POOL_WITHIN_NPP, when set, means that BAP is within nonpaged
pool.

�9 NPOOL$V_MINIMUM_MODE, when set, means that system initialization com-
pleted without having initialized any BAP, either internal or external to s tandard
nonpaged pool, but that a later call to EXE$REGISTER_POOL_INFO resulted in
initializing BAP.

443

Pool Management

7.7.2 Initialization
SYSBOOT determines whether BAP is needed on this system
following SYSGEN parameters"

�9 NPAG_BAP_MIN--minimum amount of BAP required

by examining the

�9 NPAG_BAP_MAXmmaximum amount of BAP required

�9 NPAG_BAP_MIN_PA~lowest physical address allowed within BAP

�9 NPAG_BAP_MAX_PA~highest physical address allowed within BAP

By default the first three of these parameters are 0, and NPAG_BAP_MAX_PA is -1.
The parameters are altered indirectly through device drivers calling EXE$REGISTER_
POOL_INFO, in module MEMORYALC_POOL, to specify their needs for BAP.
EXE$REGISTER_POOL_INFO records their needs in cells read by AUTOGEN. The in-
formation recorded is cumulative, with the minimum and maximum physical addresses
representing the lowest and highest addresses registered.

AUTOGEN transforms the cells' contents into values to be used for the SYSGEN
parameters on a subsequent boot.

If the BAP SYSGEN parameters are set to their default values, SYSBOOT does not
create BAP or enlarge nonpaged pool.

If the parameters are not default, SYSBOOT determines whether standard nonpaged
pool could meet the requirements by comparing NPAG_BAP_MIN_PA and NPAG_
BAP_MAX_PA to the range of physical addresses on the system. (Nonpaged pool
expands using free physical pages of memory, so it could theoretically occupy any
physical memory.) If NPAG_BAP_MIN_PA and NPAG_BAP_MAX_PA cover the entire
range of physical memory present, SYSBOOT adjusts NPAGEDYN and NPAGEVIR
by the amount of BAP needed: it adds the value of NPAG_BAP_MIN to NPAGEDYN
and the value of NPAG_BAP_MAX to NPAGEVIR. Merging BAP with nonpaged pool
makes the system more adaptable to pool requests.

If nonpaged pool cannot meet the requirements, SYSBOOT allocates a slice from the
executive data huge page for use as BAP. It stores its address in EXE$GQ_BAP_
VARIABLE. If the slice's physical pages do not meet BAP requirements, SYSBOOT
resets the bus-addressable SYSGEN parameters to their default values and alters
STARTUP_P1 and STARTUP_P3 so as to trigger AUTOGEN to run after system
initialization. This unlikely case can occur when the physical memory configuration
has been altered substantially, particularly on a Galaxy platform. After drivers have
registered requirements for BAP, AUTOGEN reads the requirements, alters the
SYSGEN parameters, and reboots the system.

INI$INITIALIZE_POOL, in module MEMORYALC_POOL, determines whether BAP
is separate and initializes various data structures accordingly. In particular, it sets
NPOOL$V_POOL_SEPARATE or NPOOL$V_POOL_WITHIN_NPP in NPOOL$L_
POOL_FLAGS. If BAP is within nonpaged pool, the bus-addressable NPOOL and
LSTHDS structures are not used.

444

7.7 Bus-Addressable Pool

If BAP is separate, its NPOOL and LSTHDS structures are used in allocating and
deallocating BAP. INI$INITIALIZE also allocates statistics buffers for its lookaside
lists from nonpaged pool.

After system initialization, if a driver registers BAP requirements that cannot be met
by what, if anything, has been initialized, EXE$REGISTER_POOL_INFO tries to
accommodate the request:

If no BAP has been initialized and the requirements can be met by standard
nonpaged pool, EXE$REGISTER_POOL_INFO initializes various structures to
indicate that BAP is within nonpaged pool. It sets NPOOL$V_MINIMUM_MODE
and NPOOL$V_POOL_WITHIN_NPP.

If the requirements cannot be met by standard nonpaged pool, EXE$REGISTER_
POOL_INFO calls EXE_STD$ALONONPAGED_LIM, in module MEMORYALC_
DYN_64, to allocate nonpaged pool occupying pages of physical memory that the
driver's device can access. If successful, EXE$REGISTER_POOL_INFO deallocates
the pool to the bus-addressable variable-length list, fills in a pool map descriptor
entry for it on the bus-addressable list, and removes an entry for it from the appro-
priate nonpaged pool map. It sets NPOOL$V_MINIMUM_MODE and NPOOL$V_
POOL_SEPARATE.

If BAP has been initialized, but the new requirements exceed the maximum pool
size, EXE$REGISTER_POOL_INFO tries to expand BAP with nonpaged pool
occupying suitable physical pages. BAP expansion is most likely to succeed during
the early life of the system, before pool in physical pages that meet the address
constraints is allocated to other uses. Because pool registration usually occurs
early, BAP expansion is likely to succeed.

If successful, EXE$REGISTER_POOL_INFO deallocates the pool to the bus-
addressable variable-length list, removes it from the standard nonpaged pool map,
and fills in a pool map descriptor entry for it on the bus-addressable list.

7.7.3 Al locat ion
A kernel mode component allocates BAP by calling EXE$ALLOCATE_POOL, in
module MEMORYALC_POOL, passing it a pool type of MMG$K_POOLTYPE_BAP, the
request size, and the alignment requirements.

When requested to allocate BAP, EXE$ALLOCATE_POOL takes the steps described in
Section 7.5.4, with the following differences:

1. If BAP has not been initialized and is not within nonpaged pool, EXE$ALLOCATE_
POOL returns SS$_BADPARAM to its caller. (The monitor version generates
the fatal bugcheck BADALORQSZ.) This circumstance can result if SYSGEN
parameters have their default values and no drivers that needed BAP registered
their requirements in previous system boots.

, If BAP has been initialized and is separate from nonpaged pool, pool will be
allocated from a BAP lookaside list or the bus-addressable variable-length list.

445

Pool Management

,

,

If BAP was not created as a separate pool at system initialization, and the re-
quested size and alignment cannot fit on a single page, EXE$ALLOCATE_POOL
checks that the block allocated is physically contiguous. (If BAP was created as
a separate pool, it is guaranteed to be physically contiguous.) If not, it inserts
the block on a holding queue rather than deallocate it immediately and makes
up to nine additional attempts to allocate a physically contiguous block. Before
returning, it deallocates the blocks on the holding queue.

If the request cannot be allocated, EXE$ALLOCATE_POOL tries one after another
of the following techniques, reattempting the pool allocation each time:

Aggressive pool reclamation from lookaside lists (see Section 7.5.6)

Flushing the lookaside lists (see Section 7.5.6)

Expanding traditional pool if BAP is within nonpaged pool (see Section 7.5.7)

If BAP is separate from nonpaged pool, it expands BAP by allocating from
nonpaged pool the request size rounded up to a page boundary. It tries to
allocate pool occupying physical pages that meet the BAP address constraints.
If the attempt fails, it expands nonpaged pool and tries again.

If the attempt succeeds, it deallocates the pool to the BAP variable-length list,
removes that pool segment from the nonpaged pool map, and adds it to the
BAP pool map.

Calling callback routines specified by components that registered use of BAP to
recover previously allocated pool and reflushing the lookaside lists

7.8 Lock Management Lookaside List
During system initialization, LCK$POOLZONE_INIT, in module LOCK_UTILS,
creates a lookaside list in $2 space for use by lock management routines. In particular,
it creates a POOLZONE_REGION data structure (see Figure 7.8), stores its address in
LCK$AR_POOLZONE_REGION, and creates the $2 space pool zone.

Lock management routines allocate resource blocks (RSBs) and lock blocks (LKBs) (see
Chapter Lock Management) from the pool zone's lookaside list.

LCK$POOLZONE_INIT determines the size of the lookaside list packets by taking
the larger of RSB$K_LENGTH and LKB$K_LENGTH and rounding up to the next
32-byte boundary. In OpenVMS Alpha Version 7.3, the size is 256 bytes. It determines
the initial number of pages in the zone by halving the lesser of the number of pages
of physical memory available and the number of pages required to accommodate
LOCKIDTBL and RESHASHTBL packets. The maximum number of pages in the zone
is twice the number required for LOCKIDTBL_MAX packets.

Access to the lookaside list is synchronized with the LCKMGR spinlock. The lock man-
agement routines that allocate and deallocate RSBs and LCKs acquire this spinlock
before calling EXE$POOL_ALLOCATE and EXE$POOL_DEALLOCATE.

446

7.9 Extended File Cache Lookaside Lists

Routine LCK$CHECK_POOLZONE, in module LOCK_UTILS, is responsible for
reclamation from this pool zone. The zone is never sh runk below its initial page
allocation. LCK$CHECK_POOLZONE is called by LCK$CHK_CACHES, which runs
once a second.

LCK$CHECK_POOLZONE determines how many pages are currently in the region
and how many have at least one available packet. It determines the smaller of the
number of empty pages and the number of expansion pages.

1. If the pool zone has not expanded beyond its initial size, no pages are reclaimed.
The routine returns.

2. If there are 10 or fewer empty/expansion pages and if, on average, the zone's pages
have at least one available packet per page, LCK$CHECK_POOLZONE re turns
one empty page.

If there are between 10 and 100 empty/expansion pages, it re turns one empty page.

If there are more than 100 empty/expansion pages, it re turns 3 percent of the
empty pages.

,

.

7.9 Extended File Cache Lookaside Lists
Extended File Cache (XFC) code creates three $2 space lookaside lists for its own use:

�9 Permanent ly allocated pool--the lesser of 4 MB and 1 percent of physical memory

�9 Dynamically allocated pool that can be reclaimed on demand

�9 Dynamically allocated pool tha t cannot be reclaimed on demand

The POOLZONE_REGION structures (see Figure 7.8) tha t describe these pools are
within the s tructure Xfc$vabAnchor, defined in the SYS$XFCACHE[_MON].EXE
executive image.

During system initialiation, routines XfcMemmgtPermanentAreaIni t and XfcMemmgt-
DynamicAreaInit , in module [XFC]XFC_MEMMGT, create a pool zone in each pool for
each of the following uses:

�9 Permanent ly allocated pool based in physical memory reserved through the Re-
served Memory Registry entry named VCC$MIN_CACHE_SIZE

Barrier s t ructures (BARs), currently unused

Secondary extent cache blocks (SECBs)

Pr imary extent cache blocks (PECBs)

Cache volume blocks (CVBs)

Cache file blocks (CFBs)

I/O statistics collection s tructures (IOSIZEs)

447

Pool Management

�9 Dynamically allocated and reclaimable pool

- - BARs

- - SECBs

- - PECBs

- - IOSIZEs

�9 Dynamically allocated and nonreclaimable pool

- - CVBs

- - CFBs

All the zones in these pools are created with zero initial pages.

7.10 Paged Pool
Paged dynamic memory, commonly known as paged pool, contains data structures that
are used by multiple processes and that are not required to be permanently memory-
resident. Its protection is ERKW, allowing it to be read from executive and kernel
modes but written only from kernel mode.

During system initialization, SYSBOOT reserves system space for paged pool. The
SYSGEN parameter PAGEDYN specifies the size of this area in bytes. By default
paged pool is created as a set of demand zero pages. BOO$INIT_POOL, in module
[SYSBOOT]SYSBOOT, places its starting address in both EXE$GL_PAGED and
MMG$GL_PAGEDYN. System initialization code running in the context of the swapper
process initializes the pool as one data structure encompassing the entire pool. That
initialization incurs a page fault and thus requires process context.

If SYSGEN parameter POOLPAGING is set to zero, BOO$INIT_POOL instead creates
paged pool as permanently allocated pages taken from the nonpaged system data huge
page. A nonpageable paged pool facilitates debugging code whose data structures come
from paged pool.

Process context kernel mode code calls the routine EXELSTD]$ALOPAGED to allocate
paged pool and the routine EXELSTD]$DEAPAGED to deallocate paged pool. These
routines, both in module MEMORYALC, call the lower level variable-length allocation
and deallocation routines described in Section 7.3.

EXELSTD]$DEAPAGED tests that the size being returned is nonzero and that the
starting address is on a pool allocation granularity boundary. If either is false, it
generates the nonfatal BADDALRQSZ bugcheck.

If an allocation request cannot be satisfied, EXELSTD]$ALOPAGED returns to its
caller with a failure status. The caller may return an error, for example, SS$_
INSFMEM, to the user program, or the caller may place the kernel thread into a
resource wait state, waiting for resource RSN$_PGDYNMEM.

448

7.10 Paged Pool

Whenever paged pool is deallocated, EXE[_STD]$DEAPAGED calls SCH$RAVAIL,
in module MUTEX, to declare the availability of paged pool for any wait ing kernel
thread. Chapter Scheduling describes resource waits.

Unused paged pool requires little system overhead: one L3PTE per page of pool and
one corresponding reserved page of system virtual address space. Because paged pool
is created as demand zero L3PTEs (see Chapter 2), it expands on demand through
page faults.

Because this area is pageable, code tha t accesses it must run at IPL 2 or below while
accessing it. Elevated IPL, therefore, cannot be used for synchronizing access to the
paged pool list or to any data structures allocated from it. The EXE$GL_PGDYNMTX
mutex serializes access to the paged pool list. Both EXE[_STD]$ALOPAGED and
EXE[_STD]$DEAPAGED lock this mutex for write access.

By convention, process context code tha t allocates a paged pool data s tructure executes
at IPL 2 as long as the data structure's existence is recorded solely in a temporary
process location, such as in a register or on the stack. Running at IPL 2 blocks AST
delivery and prevents the possible loss of the pool if the process were to be deleted.

The following data structures are located in paged pool:

�9 The shareable logical name tables and logical name blocks

�9 The Fi les- l l Extended QIO Processor (XQP) I/O buffer cache, which is used for
data such as file headers, index file bitmap blocks, directory file data blocks, and
quota file data blocks

�9 Global section descriptors, which are used when a global section is mapped or
unmapped

�9 Mounted volume list entries, which associate a mounted volume name with its
corresponding logical name and unit control block address

�9 Access control list elements, which specify what access to an object is allowed for
different classes of users

�9 Object rights blocks tha t are accessed at IPL 2 and below

�9 Data structures required by the Install utility to describe known images

Any image tha t is installed has a known file entry created to describe it. Some
frequently accessed known images also have their image headers permanent ly
resident in paged pool. These data structures are described in more detail in
Chapter Image Activation and Exit.

�9 PQBs, which are temporarily used during process creation to store the quotas and
limits of the new process

PQBs, initially allocated from paged pool, are not deallocated back to the paged
pool list. Instead, they are queued to a lookaside list, the self-relative queue at
global label EXE$GQ_PQBIQ. Process creation code at tempts to allocate a PQB by
removing an element from this queue as a faster alternative to general paged pool
allocation.

449

Pool Management

7,11 Process Allocation Region
The process allocation region contains variable-length data structures that are used
only by a single process and are not required to be permanent ly memory-resident.
(Process allocation region pages are pageable.) Its protection is UREW, allowing
executive and kernel modes to write it and any access mode to read it.

The process allocation region consists of a P1 space variable-length pool and may
include a P0 space variable-length pool as well. The P0 space allocation pool is useful
only for i~aage-specific data structures tha t do not need to survive image exit. The P1
space pool can be used for both image-specific data structures and data structures tha t
must survive the rundown of an image, such as logical name tables.

During process startup EXE$PROCSTRT reserves P1 address space for the process al-
location region. The SYSGEN parameter CTLPAGES specifies the number of pagelets
in the P1 pool. Free space in the P1 process allocation region is maintained in a singly
linked, memory-ordered list, as described in Section 7.3. EXE$PROCSTRT initializes
the pool and its listhead, CTL$GQ_ALLOCREG. There is no global pointer that locates
the beginning of the process allocation region.

Executive or kernel mode code running in process context calls EXELSTD]$ALO-
P1PROC, EXELSTD]$ALOPIIMAG, or EXELSTD]$ALOPOIMAG to allocate space
from the process allocation region, and EXELSTD]$DEAP1 to deallocate a data
structure to the region. These routines are in module MEMORYALC. When the
data structure must be allocated from the P1 pool, EXELSTD]$ALOP1PROC is
used. When the data structure is image-specific, EXELSTD]$ALOPIIMAG or EXEL
STD]$ALOPOIMAG is used.

EXELSTD]$ALOPIIMAG and EXELSTD]$ALOPOIMAG differ in which region
they first a t tempt the allocation. EXELSTD]$ALOPIIMAG tries the P1 re-
gion first, whereas EXELSTD]$ALOPOIMAG tries the P0 region first. If EXEL
STD]$ALOPIIMAG finds that there is insufficient space, or EXELSTD]$ALOPOIMAG
finds that allocation in the P0 region is disallowed, each at tempts to allocate from the
other region. Neither routine can allocate from P1 space if the P1 process allocation
region reaches a threshold of use specified by the SYSGEN parameter CTLIMGLIM. If
the current image is one that was linked with the NOPOBUFS option, allocation from
P0 space is prevented. If the allocation fails, these routines return the SS$_INSFMEM
error status.

Additionally, EXELSTD]ALOPIIMAG first checks whether a main image has been
activated. If not, it branches to EXE$ALOP1PROC to avoid allocating any P0 space
that might later be necessary for image activation.

The CTLIMGLIM limit does not apply to EXELSTD]$ALOP1PROC. The latter may
allocate space until the P1 allocation region is exhausted. The arithmetic difference
between CTLPAGES and CTLIMGLIM guarantees a minimum number of pagelets
exclusively for EXELSTD]$ALOPIPROC. It only allocates space from the P1 region. If
an allocation fails, it returns the error status SS$_INSFMEM.

450

7.11 Process Allocation Region

Free space in the P0 process allocation region is maintained in a singly linked,
memory-ordered list, as described in Section 7.3. During compilation of the SHELLxxK
module, where x x is the system page size of 8, 16, 32, or 64 KB, the P0 process allo-
cation region listhead, CTL$GQ_POALLOC, is initialized to zero. The image rundown
routine deletes P0 space and zeros the listhead.

If not prevented by the presence of the NOPOBUFS linker option, EXEL
STD]$ALOPIIMAG and EXELSTD]$ALOPOIMAG create and expand the P0 pro-
cess allocation region by calling the routine MMG$EXPREG, in module SYSCREDEL.
This routine functions much like the Expand Program/Control Region ($EXPREG) sys-
tem service. EXELSTD]$ALOPIIMAG and EXELSTD]$ALOPOIMAG expand the P0
region as needed to satisfy allocation requests, but always by at least one virtual page.
Each time one of these routines expands the P0 region, it calls EXE$DEALLOCATE to
link the new space into the free list.

The current image and other executive routines may also expand the P0 virtual
address space for their own purposes. Depending on the sequence of these expansions,
multiple P0 allocation region expansions can result in a noncontiguous P0 allocation
region. Note that this contrasts with the paged, nonpaged, and P1 allocation pools,
which are always virtually contiguous.

EXELSTD]$ALOP1PROC, EXELSTD]$ALOPIIMAG, and EXE[_STD]$ALOPOIMAG
store the address of the appropriate listhead in a register and call EXE$ALLOCATE
to perform the variable-length allocation described in Section 7.3.1. EXE$DEAP1
determines whether the block being deallocated is from the P0 or P1 space pool and
calls EXE$DEALLOCATE with the address of the appropriate listhead.

For a single-threaded process, no special synchronization mechanism is needed for the
process allocation region. However, the allocation and deallocation routines change to
kernel mode and execute at IPL 2, effectively blocking any other mainline or AST code
from executing and perhaps at tempting a simultaneous allocation from or deallocation
to the process allocation region.

In the case of a process with multiple kernel threads, an additional mechanism
is needed to synchronize mutiple kernel threads' allocations and deallocations. In
addition to running at IPL 2, the allocation and deallocation routines lock CTL$GQ_
POOL_MUTEX, a process-private mutex, for write access.

The following data structures are located in the process allocation region:

�9 The process-private logical name tables and logical name blocks

Image control blocks, built by the image activator to describe what images have
been activated in the process

Rights database identifier blocks, which contain Record Management Services
context (internal file and stream identifiers) for the rights database file

A context block in which the Breakthrough ($BRKTHRU) system service maintains
status information as the service asynchronously broadcasts messages to the
terminals specified by the user

451

Pool Management

Process scan context blocks, used by the Process Scan ($PROCESS_SCAN) system
service, described in Chapter Process Control and Communication

There is enough room in the process allocation region for privileged application soft-
ware to allocate process-specific data structures of reasonable size.

7.12 KRP Lookaside List
The KRP lookaside list is a P1 space list for process-private kernel mode data struc-
tures that are not required to be permanent ly memory-resident. The list is a doubly
linked absolute queue, whose listhead contains the addresses of the first and last
blocks in the list. The protection on this storage area is URKW, allowing it to be read
from any mode but modified only from kernel mode.

Address space for this list is defined at compilation time of the S H E L L ~ K module,
which defines the fixed part of P1 space. Two global symbols, CTL$C_KRP_COUNT
and CTL$C_KRP_SIZE, control the number of KRP packets created and the size
of each packet. In OpenVMS Alpha Version 7.3, ten packets of 768 bytes each are
created. Routine EXE$PROCSTRT, in module PROCSTRT, initializes the list, forming
packets and inserting them into the list at CTL$GL_KRPFL and CTL$GL_KRPBL.

A KRP is used as pageable storage, local to a kernel mode subroutine. KRPs should
be used only for temporary storage that is deallocated before the subroutine returns.
The most common use of KRPs is to store an equivalence name returned from a logical
name translation.

Allocation and deallocation to this list is through CALL_PAL INSQUE5 and CALL_PAL
REMQUEL PALcode instructions. There is no need for synchronization other than that
provided by the PALcode operations. Because KRPs are used only for storage local
to the execution of a procedure, a failure to allocate a KRP is very unexpected and
indicates a serious error rather than a temporary resource shortage. Kernel mode
code that is unsuccessful at allocating from this list thus generates the fatal bugcheck
KRPEMPTY.

7.13 Alternative Versions of Modules and Images
Some executive modules and images have alternative versions. An alternative version
might contain code used only for debugging, performance monitoring, or field testing.
For example, module MEMORYALC_DYN is conditionally compiled to produce two
object modules: MEMORYALC_DYN_MIN and MEMORYALC_DYN_MON. Various
other modules in the [SYS] facility, including MEMORYALC_POOL, MEMORYALC,
and MEMORYALC_DYN_64, are conditionally compiled in a similar manner to produce
two versions, one with the _MIN suffix and the other with the _MON suffix. The object
file with the _MON suffix contains additional debugging and performance-monitoring
code that is not present in the _MIN version. The former version is often referred to
as the monitor version. Sections 7.14 and 7.15 describe this additional code.

452

7.14 Collecting Pool Allocation Statistics

MEMORYALC * MON modules are linked into the executive image SYSTEM_
PRIMITIVES.EXE, and MEMORYALC * MIN modules are linked into the execu-
tive image SYSTEM_PRIMITIVES_MIN.EXE. The values of SYSGEN parameters
POOLCHECK and SYSTEM_CHECK determine which image is loaded. If either
is nonzero, SYSBOOT loads SYSTEM_PRIMITIVES.EXE; otherwise, it loads SYS-
TEM_PRIMITIVES_MIN.EXE. After the monitor version is loaded, some, but not all,
checking can be disabled by clearing the POOLCHECK parameter.

If both POOLCHECK and SYSTEM_CHECK are zero at system initialization, SYS-
TEM_PRIMITIVES_MIN.EXE is loaded. Although POOLCHECK is a dynamic
parameter, if it is zero at system initialization, setting it nonzero later has no effect.

7.14 Collecting Pool Allocation Statistics
The executive requires adequate pool space to operate properly. Inadequate pool space
can contribute to poor system performance and, in extreme cases, can cause the system
to become totally unresponsive. The AUTOGEN facility has a feedback mechanism
that, based on data gathered by various operating system components, can adjust
SYSGEN parameter values to a given system's workload.

Many of the pool allocation and expansion routines described in this chapter record
nonpaged and paged pool allocation and failure statistics. (An allocation request that
results in a pool expansion is not classified as a failure; pool expansion is assumed
to be a routine event.) From these statistics, AUTOGEN's feedback mechanism can
calculate new values for the SYSGEN parameters that control the system's paged and
nonpaged pool sizes. The statistics used by AUTOGEN are kept by both versions of
the SYSTEM_PRIMITIVES executive image.

A variable-length list (paged or nonpaged) allocation fails when no sufficiently large
free block is found and, in the case of nonpaged pool, the list cannot be expanded.
The routines that detect the allocation failure keep a total of the number of pages
that fail to be allocated. They collect three categories of statistics for paged pool and
variable-length nonpaged pool:

�9 Total number of allocation attempts

�9 Number of allocation failures

�9 Total number of pages that could not be allocated

Table 7.5 lists the data collected and the routines responsible for updating the data
cells. The program AGEN$FEEDBACK.EXE (part of the MANAGE facility) reads
these data cells during the SAVPARAMS phase of AUTOGEN.COM. See the OpenVMS
System Manager's Manual for a description of AUTOGEN's operational phases and
instructions for running it.

453

Pool Management

Table 7.5 Paged and N o n p a g e d Pool Al locat ion Stat i s t ics

Statistic Location Maintained by

Nonpaged Pool

Number of successful PMS$GL_NPAGDYNEXPS EXE$EXTEND_NPP
expansions

Number of expansion
failures

Number of allocation
attempts

Number of allocation
failures

Unused

Total number of
pages that failed to
be allocated

PMS$GL_NPAGDYNEXPF

PMS$GL_NPAGDYNREQ

PMS$GL_NPAGDYNREQF

PMS$GL_NPAGDYNF

PMS$GL_NPAGDYNFPAGES

EXE$EXTEND_NPP

EXE$ALLOCATE_POOL
EXE$ALONPAGVAR
EXE$ALONONPAGED_ALN
EXE$ALONONPAGED_LIM

EXE$ALLOCATE_POOL
EXE$ALONPAGVAR
EXE$ALONONPAGED_ALN
EXE$ALONONPAGED_LIM

n/a

EXE$ALONPAGVAR
EXE$ALONONPAGED_ALN
EXE$ALO N O NPAGED LIM

Paged Pool

PMS$GL_PAGDYNREQ EXE$ALOPAGED Number of allocation
attempts

Number of allocation
failures

Number of 10-
second intervals with
allocation failures

Total number of
pages that failed to
be allocated

PMS$GL_PAGDYNREQF

PMS$GL_PAGDYNF

PMS$GL_PAGDYNFPAGES

EXE$ALOPAGED

EXE$ALOPAGED

EXE$ALOPAGED

In addition to the data and routines listed in Table 7.5, the routines in the mon-
itor version of SYSTEM_PRIMITIVES record information about nonpaged and
bus-addressable pool lookaside list performance. LSTHDS$AR_LISTATTEMPTS,
LSTHDS$AR_LISTFAILS, and LSTHDS$AR_LISTDEALLOCS each point to
an array of 128 (IOC C NUMLISTS) longwords, a longword for each lookaside
list. LSTHDS$AR_LISTATTEMPTS records at tempts to allocate from each list,
LSTHDS$AR_LISTFAILS records failures to allocate from each list, and LSTHDS$AR_
LISTDEALLOCS records deallocations to each list.

If BAP is separate from nonpaged pool, there are separate statistics arrays for BAP
lookaside lists. If per-RAD pool is in use, each section of pool has its own statistics
arrays.

454

7.15 Detecting Pool Corruption

These routines also record how many bytes of variable-length pool have been allocated
in LSTHDS$L_VARALLOCBYTES.

The pool zone allocation and deallocation routines record statistics in fields in POOL-
ZONE and POOLZONE_PAGE structures. Section 7.4.3.2 describes those fields and
identifies those kept only by the SYSTEM_PRIMITIVES image. This information is
intended for use by the kernel mode component that created the pool zone; AUTOGEN
cannot make use of it.

7.15 Detecting Pool Corruption
Certain pool misuses can lead to obscure problems if left unchecked. The operating
system implements two mechanisms to help troubleshoot pool corruption problems:

Pool poisoning occurs dynamically, as packets or blocks are allocated and deallo-
cated, and can result in timely detection of fatal errors.

�9 Pool history facilitates troubleshooting of problems after a crash has occurred.

Both mechanisms are optional and enabled through SYSGEN parameter
POOLCHECK or SYSGEN parameter SYSTEM_CHECK. They are not permanent ly
enabled because of their effect on system performance.

7.15.1 Pool Poisoning
The pool poisoning mechanism can detect pool misuses such as

�9 Continued use of a block of pool after it is deallocated

�9 Use of uninitialized fields in a block of allocated pool

�9 Use of a block of pool that was not allocated

The mechanism applies to the variable-length pools (paged, nonpaged, and bus-
addressable pool, and the process allocation region) and to the nonpaged pool, bus-
addressable, and pool zone lookaside lists. It involves

�9 Filling deallocated pool with a unique pattern, called the FREE or "poison" pat tern

�9 Checking that the poison pat tern is intact in pool being allocated and generating
the fatal bugcheck POOLCHECK if the pat tern is not intact

�9 Filling allocated pool with a second pattern, called the ALLO pattern

This section describes the POOLCHECK SYSGEN parameter, explains the mecha-
nism's workings, and lists some limits to its ability to detect corruption.

455

Pool Management

7.15.1.1 POOLCHECK Parameter

The dynamic SYSGEN parameter POOLCHECK consists of four eight-bit fields (see
Table 7.6 and Figure 7.12). The fields, whose names begin with PCHECK$B_, are
defined by the macro $POOLCHECKDEF. The bits in the PCHECKSB_FLAGS byte
enable and disable pool filling and most checking, and specify which pools are affected.
The rest of this section describes the individual bits. The PCHECKSB_FREE and
PCHECKSB_ALLO bytes specify the patterns written into pool when the space is
deallocated and allocated. The PCHECKSB_SIZE_TO_CHECK byte controls block or
packet size checking at deallocation.

The default value of POOLCHECK is zero. Note that its value should be changed only
for a specific purpose, such as debugging a device driver; there is a severe performance
penalty when this parameter is nonzero.

Although POOLCHECK is dynamic, in order for the monitor version of SYSTEM_
PRIMITIVES to be loaded, either POOLCHECK or SYSTEM_CHECK must be nonzero
at system initialization.

Table 7.6 P O O L C H E C K P a r a m e t e r F L A G S B i t s

Bit Name Meaning if Set

0 POISON

1 CHECK

2-5

6 DEALLO_
SIZE

P1

Fill with FREE pattern on deallocation

On allocation, check for FREE pattern and fill with ALLO
pattern; enable pool checking

Undefined

Check deallocation size against size allocated (unused)

Perform pool-checking operations for process allocation region
also

F i g u r e 7.12 P O O L C H E C K P a r a m e t e r

ALLO F R E E SIZE_TO_CHECK FLAGS

Bits in PCHECK$B_FLAGS put the mechanism into one of several states"

�9 Do not fill or check blocks

�9 Fill blocks only upon deallocation

�9 Fill blocks upon deallocation; check and fill blocks upon allocation

456

7.15 Detecting Pool Corruption

Bits 0 and 7 enable the filling of blocks during deallocation. Bit 0 enables the
filling, with the PCHECK$B_FREE pattern, of blocks deallocated to the variable-
length paged, nonpaged, and bus-addressable pools, and to the nonpaged pool, bus-
addressable, and pool zone lookaside lists. Bits 0 and 7 together enable the filling of
blocks deallocated to the process allocation region.

When set in combination with the other bits, bit 1 enables the checking and filling of
blocks during allocation. If set with bit 0, it enables the checking and filling, with the
PCHECK$B_ALLO pattern, of blocks allocated from the variable-length paged and
nonpaged pools and from the nonpaged pool lookaside lists. If set with bit 7, it enables
the checking and filling of blocks allocated from the process allocation region.

The PCHECK$B_SIZE_TO_CHECK field determines whether each block or packet size
is checked when it is deallocated:

�9 If PCHECK$B_SIZE_TO_CHECK contains 0, no checking is done.

�9 If PCHECK$B_SIZE_TO_CHECK is 255, all sizes are checked.

�9 Any other value in PCHECK$B_SIZE_TO_CHECK identifies a specific size to be
checked. The value is multiplied by 64 and compared to the size of the block being
deallocated. If the two sizes are equal, the size is checked.

If POOLCHECK is zero but SYSTEM_CHECK is nonzero, pool filling and checking are
done with the default allocation (aaaa) and deallocation patterns (dddd). All pools and
lists are filled and checked.

To check the size, routine CHECK_DEALLOCATION_SIZE, in module MEMORYALC_
POOL_MON, searches the history buffer for the most recent entry for a block or packet
at this address. If one is found and the allocated size in it does not match the size to
be deallocated, the system generates a fatal POOLCHECK bugcheck. Because there
are circumstances in which the size deallocated is intentionally different from the size
allocated, Hewlett-Packard Company recommends that you enable size checking only
when you are looking for a specific problem.

7.15.1.2 Pool-Poisoning Routine
The routine POISON_PACKET, in module MEMORYALC, is called to fill pool space
with a predictable pattern under several circumstances:

�9 Space is deallocated by EXE[_STD]$DEANONPAGED, EXE[_
STD]$DEANONPGDSIZ, EXE[_STD]$DEALLOCATE, EXE$DEALLOCATE_
POOL, in module MEMORYALC_DYN_64, or EXE$POOL_DEALLOCATE.

�9 A pool zone is expanded by EXE$POOLZONE_EXPAND, in module POOL_ZONES.

�9 A deallocated variable-length block is agglomerated with free blocks.

�9 Space is returned to variable-length pool by EXE[_STD]$ALLOCATE as a result of
an inexact fit.

�9 Space is added to variable-length nonpaged pool as a result of pool expansion.

457

Pool Management

The macro $PFREEDEF defines offsets to a free block or packet of pool. Figure 7.13
shows the effects of pool poisoning on a free piece of pool. The shading in the figure
indicates the fields modified by poisoning. The first nine longwords form a header, of
which the first eight typically remain unchanged by pool poisoning:

The first three longwords typically contain the forward pointer to the next free
block; the size of the block, if it is a variable-length block; and the original size,
type, and subtype fields.

When POISON_PACKET is called by EXE[_STD]$DEANONPAGED and EXEL
STD]$DEANONPGDSIZ to poison a packet returning to a lookaside list, the fourth
longword of the header contains the return address of the deallocation routine's
caller. When POISON_PACKET is called by EXE[_STD]$DEALLOCATE, that is,
for a variable-length block or a packet trimmed off a lookaside list, this longword
contains stale data that is still potentially useful in crash dump analysis.

�9 The next two quadwords contain stale data that is unused by POISON_PACKET.

F i g u r e 7.13 Format of Poisoned Pool Space

If enabled by the previously described bits, POISON_PACKET poisons deallocated pool
as follows:

1. If its address is within paged pool or nonpaged pool, it checks that its ending
address is within the pool upper boundary. It touches the beginning and end of the
deallocated pool to catalyze any page fault that would lead to a later PGFIPLHI
bugcheck or any access violation that would lead to a later crash.

2. It calculates a checksum by adding (ignoring any carry) the following:

FREE pattern byte

- - The deallocated block's address

458

7.15 Detecting Pool Corruption

Contents of the longword beginning at PFREE$W_SIZE

Contents of the longword at PFREE$L_DEAL_PC

Contents of the longword beginning at EXE$GQ_BOOTTIME + 1

It stores the checksum in the longword at offset PFREE$L_CHECKSUM of the
block.

Under certain circumstances, it is possible for the contents of memory to be pre-
served from one bootstrap of the operating system to the next. The last longword
used in calculating the checksum enables the checking routine to differentiate
between stale poisoned pool and pool space poisoned during this bootstrap of the
operating system.

3. It initializes the remainder of the space, up to a maximum of 64 KB, with the
FREE pattern.

7.15.1.3 Pool-Checking Routine
The routine CHECK_PACKET, in module MEMORYALC, checks pool space. It is
called by

�9 EXE[_STD]$ALLOCATE, when allocating variable-length pool space from paged
pool, nonpaged pool, or the process allocation region

�9 EXE[_STD]$ALONONPAGED and EXE[_STD]$ALONONPAGED_ALN, when
allocating a lookaside packet

�9 EXE$POOL_ALLOCATE, when allocating a packet from a pool zone lookaside list

�9 EXE$ALLOCATE_POOL, when allocating nonpaged or bus-addressable pool from
a lookaside list

�9 EXE_STD$ALONONPAGED_LIM, when allocating a lookaside list packet whose
physical address is below a caller-specified minimum

CHECK_PACKET calculates the expected checksum using the algorithm described
in Section 7.15.1.2. If the expected checksum does not match that found in the
PFREE$L_CHECKSUM longword, CHECK_PACKET assumes the block is unpoi-
soned and makes no further checks. (Since POOLCHECK is a dynamic SYSGEN
parameter, it is possible that pool poisoning was disabled for a time, resulting in
unpoisoned blocks on the free list. Alternatively, the block may have been poisoned
during a previous bootstrap.)

If the checksum matches, CHECK_PACKET examines the remainder of the block for
the FREE pattern. If the FREE pattern is not intact, it generates the fatal bugcheck
POOLCHECK after pushing a reason code onto the stack. Table 7.7 summarizes these
reason codes.

459

Pool Management

Table 7.7 POOLCHECK B u g c h e c k R eason Codes

Value Meaning

0

1, 2

3

4

5

6

7

Packet is corrupted

Unused

Paged block extends outside of paged pool

Nonpaged block extends outside of nonpaged pool

P1 space allocation attempted at too high an IPL

Block could not be agglomerated

Deallocation and allocation were not the same size

If the FREE pat tern is intact or if the checksum did not match, CHECK_PACKET fills
the entire block (including the first nine longwords) with the ALLO pattern.

7.15.1.4 Constralnts on the Pool-Checklng Mechanism
Some circumstances can circumvent the pool-checking mechanism:

�9 Allocation and deallocation of lookaside list packets by any routine directly, ra ther
than through the appropriate executive routines, bypass the filling and checking
performed by the previously described routines.

�9 Any corruption of pool space that corrupts the third, fourth, or ninth (checksum)
longword effectively disables checking for that block.

�9 Checking occurs only at allocation time. Corruption that occurs aider a block is
allocated is not detected.

�9 When a block being deallocated to variable-length pool is merged with a free
block above or below it, the entire resulting free block is filled. This masks any
corruption that may have previously occurred in an adjacent free block.

�9 The mechanism fills and checks a maximum of 65,500 bytes (64 KB less the
nine-longword header).

Disabling and reenabling pool poisoning with the same FREE pat tern can lead to
false POOLCHECK bugchecks. If EXE$DEALLOCATE concatenates a variable-length
block to the bottom of a poisoned free block while pool poisoning is disabled, only the
top part of the resulting free block contains the FREE pattern. If pool checking is
subsequently enabled with the same FREE pattern and this free block is allocated,
CHECK_PACKET interprets it as being corrupt.

The book Writing OpenVMS Alpha Device Drivers in C provides detailed suggestions
for using pool checking and for analyzing POOLCHECK bugchecks.

460

7.15 Detecting Pool Corruption

7.15.2 Pool History
The pool history mechanism records information about nonpageable pool allocations
and deallocations in a nonpaged pool ring buffer. The information pertains to nonpaged
pool, per-RAD nonpaged pool sections, bus-addressable pool, and pool zone lookaside
lists. If the system crashes as a result of pool corruption, information about the most
recent allocations and deallocations can be displayed using the SDA utility.

The pool history mechanism is enabled by bootstrapping the system with a nonzero
value for either the SYSTEM_CHECK or POOLCHECK SYSGEN parameter. SYS-
TEM_PRIMITIVES.EXE contains the code described in this section.

During system initialization, the executive image's initialization routine, INI$INIT_
MEMORYALC_DYN, in module MEMORYALC_DYN, allocates a block of nonpaged
pool for a pool history ring buffer. The size of the buffer is determined by SYSGEN
parameter NPAG_RING_SIZE, whose default value is 2,048 history buffers. It stores
the address of this block in NPOOL$PS_RINGBUF and NPOOL$PS_NEXTNPH, and
the number of entries in NPOOL$L_RINGBUFCNT.

F igure 7.14 Layout of N o n p a g e d Pool His tory Buffer Entry

-- ADDR - -
PC

RMOD I TYPE ! FUNCTION
SIZE

(resewed) ! CPU I IPL
-- TIME

Function
Value

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

Meaning/Caller
Nonpaged pool Iookaside list allocation
Nonpaged pool variable-length region allocation
EXE$DEANONPAGED nonpaged pool
EXE$DEANONPGDSlZ nonpaged pool
EXE$ALLOCATE_POOL nonpaged pool Iookaside list
EXE$ALLOCATE_POOL aligned nonpaged pool
EXE$DEALLOCATE_POOL nonpaged pool
EXE$DEALLOCATE_POOL nonpaged pool of specified size
EXE$ALLOCATE_POOL bus-addressable Iookaside list
EXE$ALLOCATE_POOL aligned bus-addressable pool
EXE$DEALLOCATE_POOL bus-addressable pool
EXE$DEALLOCATE_POOL bus-addressable pool of specifed size
EXE$POOL_ALLOCATE Iookaside list
EXE$POOL_DEALLOCATE Iookaside list
Failure to allocate bus-addressable pool
EXE$ALLOCATE_POOL nonpaged pool variable-length list
EXE$ALLOCATE_POOL bus-addressable variable-length list
EXE$ALONONPAGED_ALN nonpaged pool
Nonpaged pool expansion
Bus-addressable pool expansion

The layout of a pool history buffer entry is shown in Figure 7.14. The macro
$NPHDEF (defined in module [LIB]NPOOL_DATA) defines the offsets to the fields
in this structure.

Various pool allocation and deallocation routines call procedure UPDATE_RINGBUF,
in module MEMORYALC_DYN_64, as part of their operation. UPDATE_RINGBUF
maintains the nonpaged pool history ring buffer.

461

Pool Management

Each time it is called, UPDATE_RINGBUF updates NPOOL$PS_NEXTNPH to point
to the next available history buffer. If all history buffers have been used, it initializes
NPOOL$PS_NEXTNPH with the contents of IOC$AR_RINGBUF, the beginning of
the history buffer area. UPDATE_RINGBUF synchronizes access to the ring buffer
through a combination of raising to IPL 31 and acquiring a private spinlock.

UPDATE_RINGBUF records the following information in the history buffer:

�9 The return address of the caller of the allocation or deallocation routine

�9 Address of the packet or block being allocated or deallocated

�9 Size, type, and subtype of data structure being allocated or deallocated

�9 A value indicating the type of allocation or deallocation

�9 The ID of the CPU on which it is running

�9 The IPL at which it was entered

�9 The current time

The SDA command SHOW POOL/RING_BUFFER displays information stored in
the history buffers. Note that this command cannot display useful information on a
running system because of the dynamic nature of pool; it is used mainly in crash dump
analysis.

7.16 Relevant Source Modules
Source modules described in this chapter include

[LIB]DYNDEF.SDL
[LIB]NPOOL_DATA.SDL
[LIB]PFREEDEF.SDL
[LIB]POOLCHECKDEF.SDL
[LIB]RIHDEF.SDL
[LIB_H]POOL_ZONES.H
[SYS] LDR_MEM_ALLOC.B64
[SYS] LDR_MEM_INIT.B64
[SYS]LOCK_UTILS.C
[SYS] LOOK_AS IDE_LIST. MAR
[SYS]MEMORYALC.MAR
[SYS] MEMORYALC_DYN.B32
[SYS]MEMORYALC_DYN_64.C
[SYS] MEMORYALC_POOL.C
[SYS]POOL_ZONES.C
[SYS] PROCESS_PAGE_DEFINITIONS.MAR
[SYS] SYSBOOT64.B64
[XFC]XFC_MEMMGT.C
[XFC]XFCDEF.H

462

Appendix A
Selected Acronyms

These acronyms are selected from those tha t appear in this book. This list is not
exhaust ive; for instance, acronyms for facilities, programs, and ins t ruct ions are not
included.

Acronym Meaning
ACB

ACL

ASN

AST

ASTSR

BAP

BAR

BOD

CCB

CEF

CFB

COM

COMO

CRF

CVB

DCL

DIOBM

DTB

AST control block

access control list

address space number

asynchronous system trap

AST summary register

bus-addressable pool

barrier structure

buffer object descriptor

channel control block

common event flag wait (scheduling state)

cache file block

computable (scheduling state)

computable outswapped (scheduling state)

copy-on-reference

cache volume block

Digital command language

direct I/O buffer map

data stream translation buffer

463

Selected Acronyms

Acronym Meaning

FIFO

FP

FRED

GB

GPT

GPTE

GPTX

GSD

GST

GSTE

GSTX

HIB

HIBO

HWPCB

HWRPB

ID

IOSIZE

IPL

IRP

ITB

JIB

KB

KPB

KRP

KTB

L1PT

L1PTE

L2PT

L2PTE

L3PT

L3PTE

first-in/first-out

frame pointer (register)

floating-point register and execution data structure

gigabyte

global page table

global page table entry

global page table index

global section descriptor

global section table

global section table entry

global section table index

hibernate wait (scheduling state)

hibernate wait outswapped (scheduling state)

hardware privileged context block

hardware restart parameter block

identification

I/O statistics collection structure

interrupt priority level

I/O request packet

instruction stream translation buffer

job information block

kilobyte

kernel process block

kernel request packet

kernel thread block

level 1 page table

level 1 page table entry

level 2 page table

level 2 page table entry

level 3 page table

level 3 page table entry

464

Selected Acronyms

Acronym Meaning

LDRHP

LDRIMG

LEF

LKB

MB

MPW IRP

NUMA

ORB

PALcode

PB

PC

PCB

PCI

PFL

PFLMAP

PFN

PHD

PID

PMAP

PMM
PQB

PS

PSECT

PST

PSTE

PSTX

PTBR

PTE

QBB

RAD

RDE

loader huge page descriptor

loader image data block

local event flag wait (scheduling state)

lock block

megabyte, memory barrier

modified page writer I/O request packet

nonuniform memory access

object rights block

privileged architecture library code

path block

program counter (register)

process control block

Peripheral Component Interconnect

page file control block

page/swap file mapping window block

page frame number

process header

process identifier

PFN memory map

physical memory map

process quota block

processor status (register)

program section

process section table

process section table entry

process section table index

page table base register

page table entry

quad building block

resource affinity domain

region descriptor entry

465

Selected Acronyms

Acronym Meaning

RMD

RSB

RVT

SB

SBB

SCS

SECB

SMP

SPT

SPTE

SYSPTBR

TB

TBCHK

TQE

UAF

UCB

VBN

VCB

VIRBND

VLM

VPN

Vt~B

WCB

WSLE

WSLX

XFC

XMI

XQP

reserved memory descriptor

resource block

relative volume table

system block

system building block

system communication services

secondary extent cache block

symmetric multiprocessing

system page table

system page table entry

system page table register

terabyte, translation buffer

translation buffer check (register)

t imer queue entry

user authorization file

unit control block

virtual block number

volume control block

virtual address boundary (register)

very large memory

virtual page number

virtual page table base (register)

window control block

working set list entry

working set list index

Extended File Cache

Extended Memory Interconnect

Extended QIO Processor

466

INDEX

32-bit space
data structures allocated from,

characteristics and use, 405
definition, 12

64-bit space
definition, 14

A
ACB (AST control block)

use in paging upcall, 275
access modes

See also protection
Alpha memory access checking, 23, 24
valid combinations for page protection,

20
virtual page accessing by, protection

code specifies which, 5
access violations

attempting to access virtual address in
gap, 11

exception information, 25
generation, 23, 25
page fault handler emulation of, 235,

255
ACL (access control list) mutex

initialized by MMG$INIT_ORB, 160
adapters

See also UO
map registers, PFNs copied into, 119

adaptive nonpaged pool management
term definition, 435

address space

address space (Cont.)
See also memory management; P0

space; P1 space; P2 space; page
table space; pages; protection;
system space; virtual memory;
virtual pages

physical, characteristics, 5
address space match bit (PTE)

effect on TB invalidation, 328
invalidating shared translation, 329
meaning, 20, 26
OpenVMS Alpha use of, 20
setting, 267, 275

address space number

See A S N
address translation

basic steps, 8 to 9
first attempted through TB lookup, 5
operations, 8 to 9
PFN use by, 5
virtual, 8 to 26
virtual page as unit of, 5

$ADJSTK (Adjust Outer Mode Stack
Pointer system service)

detecting need for user stack expansion,
139

Adjust Outer Mode Stack Pointer system
service

See $ADJSTK
Adjust Working Set Limit system service

See $ADJWSL
$ADJWSL (Adjust Working Set Limit

system service)
operations, 331 to332

AGEN$FEEDBACK.EXE
reading pool allocation statistics, 453

Index-1

ALLOCPFN module
MMG$DALLOC_PFN

deallocating physical pages, 302
reporting free page available, 302

MMG$DEL_CONTENTS_PFN
partial outswap of PHD, 387
releasing process page not copy-on-

reference, 242
MMG$REL_PFN, operations, 327

Alpha architecture

See also access modes; address
translation; HWPCB; instructions;
memory management; PALcode
routines; PTE; TB

access checking, 23
address translation, 8 to 9

arguments
formal name, xxv

ASN (address space number)
associated with HWPCB, 27
characteristics and use, 27 to 28
effect on TB invalidation, 27
increasing usefulness of TB as cache,

27
TB entries identifying, 27

AST (asynchronous system trap)

See also ASTSR
GSD_CLEAN_AST, control flow, 193
kernel thread executing, returned to

page fault wait state, 248
page fault completion upcall, 275
powerfail recovery

notification through, 362
wait state

See resource wai t - RSN$_
ASTWAIT

working set limit adjustment use of,
336

AST control block
See ACB

ASTSR (AST summary register)
recomputing, at process inswap, 398

asynchronous system trap

See AST
AUTOGEN utility

excluding permanently-resident
pages from SYSGEN parameter
calculations, 35

fluid page count use by, 80

automatic working set limit adjustment
See also working set list
affected by DCL command SET

WORKING_SET, 333
conditions that block, 334
decreasing working set limit with, 318
disabling

conditions, 333
PCB$L_STS bit that specifies, 44

normal AST use by, 336
operations, 333 to 337
parameters that control, 333(table) to

334 (table)
quantum-end scheme, problems with,

337
SCH$QEND control flow, 334 to 336
working set size altered by, 40

AWSTIME parameter (SYSGEN)
automatic working set limit adjustment

use of, 335

B
back pointer

term definition, 94
backing store

See also memory management
characteristics and use, 6
for copy-on-reference page, 236
for demand zero page, 237
for modified pages, 121
for non-copy-on-reference page, 236
for page file global sections, 59
for pageable writable executive data,

59
information for PHD pages, 58
information in PFN$Q_BAK field, 96
modified page writing to, clustering

situations for, 284 to 285
modified page written to its, 33
page faults during modified page

writing, 248
restoring, during outswap, 387
term definition, 236
transitions between memory and,

overview, 227 to 229
when allocated for a page, 285

bad page list
doubly linked, 86
listhead location, 86

Index-2

bad page list (Cont.)
pages read with I/O error, 275

BADALORQSZ bugcheck
generated

by EXE$ALLOCATE_POOL, 433
during BAP allocation, 445

BADDALRQSZ bugcheck
generated by

COMLSTD] $DRVDEALMEM, 440
EXE$DEANONPGDSIZ, 434
EXE_STD$DEAPAGED, 448

BADQHDR bugcheck
generated by EXE$LAL_REMOVE_

FIRST, 422
B~CE routine (SWAPPER module)

control flow, 362 to 363
operations, 361 to 362, 364 (fig.)

balance set slots
See also memory management; PHD
arrays

characteristics and use, 111 to 112
location in PHD, 111 (fig.)

characteristics and use, 110
equal-size, 112
identifying occupant of, 112
locking into, privilege enabling, 219
obtaining for PHD of inswap process,

390
page fault handler testing for illegal

PHD access, 255
reference count, 111
releasing, 366, 386
use with PHD, 110 (fig.)
virtual address, 110

BALSETCNT parameter (SYSGEN)
number of entries in swapping data

structures, 110
BAP (bus-addressable pool)

characteristics and use, 443
data structures, 443

contents, 427 (fig.)
granularity, 411
initializing, 444 to 445
pool allocation statistics, 454
using for storage of variable-length

allocation, 402
bit fields

how represented, xxv
blocks

term definition, 402

BOD (buffer object descriptor)
characteristics and use, 99 to 101
field definitions, 99 to 101
initialized by EXE$CREATE_BUFOBJ,

208
layout, 100 (fig.)
overview, 207

BORROWLIM parameter (SYSGEN)
automatic working set limit adjustment

use of, 330, 335
effect on working set limit growth, 322
use when releasing dead page table

page, 322
buffer object descriptor

See BOD
buffer object pages

characteristics and use, 249
doubly mapped in system space, 249
process-private, initial transitions, 249
transitions, 251 (fig.)

control flow, 249 to 250
buffer objects

buffer handles, characteristics and use,
207

characteristics and use, 99 to 101, 206
to 207

creating, 99, 207 to 211
deleting, 211 to 213
described by BODs, 99
descriptors, PCB listhead for, 46
double-mapped into system space, 101
I/O system services that enable use of,

overview, 206 to 207
outswapping pages within, 381
page reference count, PFN database

field, 98
pages, assigning, 95
system, mapping, 99
term definition, 249

buffered I/O
See also I/O
characteristics and use, 206

bugchecks
See also errors
BADALORQSZ

generated by EXE$ALLOCATE_
POOL, 433

generated during BAP allocation,
445

Index-3

bugchecks (Cont.)
BADDALRQSZ

generated by COML
STD] $DRVDEALMEM, 440

generated by EXE$DEANONPGDSIZ,
434

generated by EXE_
STD$DEAPAGED, 448

BADQHDR, generated by EXE$LAL_
REMOVE_FIRST, 422

DELGBLSEC, generated by
MMG$DELGBLSEC, 191, 192

INCONMMGST
generated by $CREATE_GDZRO_

INT, 175
generated by EXE$COPY_FOR_

PAGE, 225
generated by MMG$DELPAG_64,

197
KRPEMPTY, generated by failure to

allocate a KRP, 452
PAGNTRNVAL, generated by

EXE$DELETE_BUFOBJ, 212
PGFIPLHI

generated by page fault handler,
230, 338, 346

generated during pool poisoning,
458

POOLCHECK
generated during pool checking,

460
generated when pool corruption is

detected, 457
generated when pool is poisoned,

455
generated when pool's FREE

pattern not intact, 459
reason codes, 460

SSRVEXCEPT
generated during page fault

handling, 236
bus-addressable pool

See BAP
byte count limit

charged, for section window control
block, 143

byte count quota
charged, for section window control

block, 143
byte index

byte index (Cont.)
term definition, xxv

C
cache

See also memory management; TB
thrashing problems, page coloring effect

on, 88
virtual pages, 229

canonical kernel stack
formed for page fault wait, 230

cathedral window
term definition, 143

CCB (channel control block)
See also UO
PSTE field that points to, 56

channel control block
See CCB

CHECK_CONTRACT_64 routine
(SYSCREDEL module)

control flow, 203 to 204
CHECK_DEALLOCATION_SIZE routine

(MEMORYALC_POOL_MON module)
operations, 457

CHECK_PACKET routine (MEMORYALC
module)

pool poisoning operations, 459 to 460
$CNTREG (Contract Region system

service)
operations, 204

code flow
figures that describe, xxvii

collided page wait state
See COLPG

collided pages
circumstances leading to, 92

COLPG (collided page wait state)
See also kernel thread states; page

faults
characteristics and use, 303
ending, 276
for multithreaded process, 249

COMDRVSUB module
COMLSTD]$DRVDEALMEM,

deallocating pool, synchronization
issues, 440

compatibility
with VAX virtual address regions, 12

Index-4

COMLSTD] $DRVDEALMEM routine
(COMDRVSUB module)

deallocating pool, synchronization
issues, 440

concurrency
See SMP systems

console subsystem
testing physical memory, 89

Contract Region system service
See $CNTREG

control mechanisms
See AST; exceptions

control region
See also address space
definition, 31

conventions
figures, xxv to xxvii
text, xxiii to xxv

copy chacteristics bits (PTE)
meaning, 68

Copy Data from Fault on Read Page
system service

See $COPY_FOR_PAGE
copy-on-reference pages

backing store for, 236
global page transitions, 260(fig.)

control flow, 260 to 262
process-private page transitions, control

flow, 242 to 245
system page transitions, control flow,

266 to 267, 267
term definition, 236
transitions, 243 (fig.)

$COPY_FOR_PAGE (Copy Data from
Fault on Read Page system service)

control flow, 225
COPY_FOR_PAGE module

EXE$COPY_FOR_PAGE, control flow,
225

create and map global section system
services

See $CREATE_GDZRO; $CREATE_
GFILE; $CREATE_GPFILE;
$CREATE_GPFN; $CRMPSC;
$CRMPSC_GDZRO_64;
$CRMPSC_GFILE_64; $CRMPSC_
GPFILE 64; $CRMPSC_GPFN_64

create and map process section system
services

create and map process section system
services (Cont.)

See $CRMPSC; $CRMPSC_FILE_64;
CRMPSC_PFN_64

Create Buffer Object system services
See $CREATE_BUFOBJ; $CREATE_

BUFOBJ_64
Create Virtual Address Space system

services
See $CRETVA; $CRETVA_64

Create Virtual Region system service
See $CREATE_REGION_64

$CREATE_BUFOBJ (Create Buffer Object
system service)

control flow, 207 to 208
operations, 249

$CREATE_BUFOBJ_64 (Create Buffer
Object system service)

operations, 99, 210 to 211, 249
$CREATE_GDZRO (Create Permanent

Global Demand Zero Section system
service)

control flow, 170 to 171
$CREATE_GDZRO_INT routine (SYS_

GDZRO_64 module)
control flow, 171 to 176

$CREATE_GFILE (Create Permanent
Global Disk File Section system
service)

control flow, 162
$CREATE_GFILE_INT routine (SYS_

GBLSEC_64 module)
control flow, 163 to 165

$CREATE_GPFILE (Create Permanent
Global Page File Section system
service)

control flow, 166
$CREATE_GPFILE_INT routine (SYS_

GBLSEC_64 module)
operations, 166 to 167

$CREATE_GPFN (Create Permanent
Global Page Frame Section system
service)

control flow, 167 to 168
$CREATE_GPFN_INT routine (SYS_

GPFN_64 module)
control flow, 168 to 169

$CREATE_REGION_64 (Create Virtual
Region system service)

Index-5

$CREATE_REGION_64 (Create Virtual
Region system service) (Cont.)

control flow, 129 to 130
operations, 129

$CREATE_SHMGS_INT routine (SYS_
GDZRO_64 module)

control flow, 176 to 179
$CRETVA (Create Virtual Address Space

system service)
See also address space; virtual address

space; virtual pages
control flow, 133 to 134
demand zero pages created by, 142

(table)
$CRETVA_64 (Create Virtual Address

Space system service)
control flow, 137 to 138

$CRMPSC (Create and Map Section
system service)

See also global sections; process
sections

creating
global sections, 157 to 162
PFN-mapped process sections, 150

to 153
process sections, 54
process sections, control flow, 144

to 147
functions divided into multiple system

service routines, 124
multiple 64-bit services created to

enhance, 141
original functionality, 141

$CRMPSC_FILE_64 (Create and Map
Private Disk File Section system
service)

control flow, 148 to 150
creating, process sections, 54

$CRMPSC_GDZRO_64 (Create and Map
to Global Demand Zero Section
system service)

operations, 179 to 180
$CRMPSC_GFILE_64 (Create and Map

Global Disk File Section system
service)

control flow, 165 to 166
$CRMPSC_GPFILE_64 (Create and Map

Global Page File Section system
service)

$CRMPSC_GPFILE_64 (Create and Map
Global Page File Section system
service) (Cont.)

operations, 167
$CRMPSC_GPFN_64 (Create and Map

Global Page Frame Section system
service)

control flow, 169 to 170
$CRMPSC_PFN_64 (Create and Map

Private Page Frame Section system
service)

control flow, 154 to 157
operations, 154

cross-mode page read error
handling, 235
term definition, 235

CTL$C_KRP_COUNT symbol
KRP packet control, 452

CTL$C_KRP_SIZE symbol
KRP packet control, 452

CTL$GL_CTLBASVA cell
P1 space boundary address, 30

CTL$GL_KRPBL cell
KRP lookaside listhead, 452

CTL$GL_KRPFL cell
KRP lookaside listhead, 452

CTL$GL_PHD cell
accessing PHD through, 51

CTL$GQ_ALLOCREG cell
process allocation region listhead, 450

CTL$GQ_POALLOC cell
P0 process allocation region listhead,

451
CTLSGQ_POOL_MUTEX cell

locked to synchronize process allocation
region, 451

CTL$GQ_WSL cell
address of working set list, 53, 309

CTLIMGLIM parameter (SYSGEN)
process allocation region allocation

limit, 450
CTLPAGES parameter (SYSGEN)

number of pagelets in P1 pool, 450

D
data stream translation buffer

See DTB
data structures

dynamic

Index-6

data structures
dynamic (Cont.)

header format, 406 (fig.), 406
(table), 406

memory requirements, 401
storage areas for, 402
use by SDA utility, 407

figures that describe, xxvi
global pages, characteristics and field

definitions, 101 to 108
global sections, 157

relations among, 108 (fig.)
located in process allocation region,

451
memory management

swapper use of, 356 to 360
types, 43

nonpaged pool
characteristics and use, 427 to

429
contents, 427 (fig.)

page files, characteristics and field
definitions, 112 to 118

paged pool
characteristics and use, 448 to

450
contents, 449 to 450

per-RAD pool, 441 (fig.)
physical memory, overview, 32 to 33
pool zone

characteristics and use, 423
relations among, 424 (fig.)

process-specific, 43 to 71
swap files, characteristics and field

definitions, 112 to 118
swapping, characteristics and field

definitions, 110 to 112
virtual address space, overview, 31 to

32
[DECW$XTERMINAL] DECW$XTDRIVER.EXE

use of buffer objects by, 206
DEFPRI parameter (SYSGEN)

SWAPSCHED use of, 365
Delete Buffer Object system service

See $DELETE_BUFOBJ
Delete Global Section system service

See $DGBLSC
Delete Virtual Address Space system

services

Delete Virtual Address Space system
services (Cont.)

See $DELTVA; $DELTVA_64
Delete Virtual Region system service

See $DELETE_REGION_64
$DELETE_BUFOBJ (Delete Buffer Object

system service)
control flow, 211 to 213
operations, 250

$DELETE_REGION_64 (Delete Virtual
Region system service)

control flow, 205
DELGBLSEC bugcheck

generated by MMG$DELGBLSEC,
191, 192

DELPHD routine (SWAPPER module)
operations, 366

$DELTVA (Delete Virtual Address Space
system service)

control flow, 195 to 196
$DELTVA_64 (Delete Virtual Address

Space system service)
operations, 204

demand paging
characteristics, 6

demand zero
global section, 157
page

backing store for, 237
created by $CRETVA or $EXPREG,

142 (table)
global section file, deleting, 203
GPT pages created as, 104
process page faults, control flow,

245 to 246
PTE characteristics, 71
system page transitions, control

flow, 267
transitions, 243 (fig.)
zeroed page list identifying, 87

virtual address space, creating, 132 to
140

device drivers
nonpaged pool synchronization, 439

DFWSCNT parameter (SYSGEN)
process default working set limit, 317
setting with SET WORKING_SET

command, 332
$DGBLSC (Delete Global Section system

service)

Index-7

$DGBLSC (Delete Global Section system
service) (Cont.)

control flow, 189 to 190
DIOBM (direct I/O buffer map)

characteristics and use, 119
direct I/O

locking pages into working set list, 330
operations, 119 to 120
outswapping pages with direct I/O in

progress, 381
direct I/O buffer

PTE copy method, 119
PTE window method, 119

unlocking page table pages, 241
direct I/O buffer map

See DIOBM
dormancy

as a condition for outswap and swapper
trimming selection, 372 to 373

methods for handling, 373
DORMANTWAIT parameter (SYSGEN)

use in outswap and swapper trimming
selection, 373

double TB miss PALcode routine
control flow, 24 to 25

double-mapping
advantages of, 64

DTB (data stream translation buffer)
characteristics and use, 22

DYN (data structure type definitions)
name, code, and structure type, 407

(table) to 411(table)
dynamic data structures

header format, 406 (fig.), 406 (table),
406

memory requirements, 401
storage areas for, 402

$DYNDEF macro
defining dynamic data structure type

and subtype field values, 407
symbols and values, 407 (table) to 411

(table)

E
entry points

names, xxiv
errors

See also bugchecks; exceptions; SS$_x
status

errors (Cont.)
cross-mode page read

handling, 235
term definition, 235

page read
handling, 235
term definition, 235

page read error page location code,
meaning, 92

EXCEPTION module
EXE$EXCEPTION

detecting need for user stack
expansion, 139

operations, 140
EXE$EXPANDSTK, operations, 139 to

140
exceptions

See also access violations; page faults
fault-on-read

OpenVMS Alpha handling, 76, 77
ss$ ACCVIO

reported by EXE$ACVIOLAT, 140
SS$_ASTFLT

reported if insufficient user stack
space, 140

SS$_STKOVF
reported by EXE$ACVIOLAT, 140

EXCEPTION_ROUTINES module
EXE$EXCPTN, handling page read

errors, 236
EXE$EXCPTNE, handling page read

errors, 236
EXE$ADJWSL routine (SYSADJWSL

module)
control flow, 331 to 332

EXE$ALLOCATE routine (MEMORYALC
module)

allocating variable-length pool, 412,
412 to 414

EXE$ALLOCATE_POOL routine
(MEMORYALC_POOL module)

allocating
BAP, 445 to 446
nonpaged pool, 431, 433 to 434
per-RAD pool, 431, 442

checking lookaside lists, 431
EXE$ALLOCPCB routine (MEMORYALC

module)
allocating nonpaged pool, 431

Index-8

EXE$ALLOCTQE routine (MEMORYALC
module)

allocating nonpaged pool, 431
EXE$ALONONPAGED routine

(MEMORYALC_DYN module)
checking lookaside lists, 431

EXE$ALONONPAGED_INT routine
(MEMORYALC_DYN module)

control flow, 431 to 432
EXE$ALONPAGVAR_INT routine

(MEMORYALC_DYN module)
control flow, 432

EXE$CHKFLUPAGES routine
(SYSLKWSET module)

operations, 343
EXE$CHK_WAIT_BHVR routine (RSE

module)
proactive memory reclamation, control

flow, 337 to 338
EXE$CNTREG routine (SYSCREDEL

module)
operations, 204

EXE$COPY_FOR_PAGE routine (COPY_
FOR_PAGE module)

control flow, 225
EXE$CREATE_BUFOBJ routine

(SYSLKWSET module)
control flow, 207 to 208

EXE$CREATE_BUFOBJ_64 routine
(SYS_LKWSET_64 module)

operations, 210 to 211
EXE$CREATE_GDZRO routine (SYS_

GDZRO_64 module)
control flow, 170 to 171

EXE$CREATE_GFILE routine (SYS_
GBLSEC_64 module)

control flow, 162
EXE$CREATE GPFILE routine (SYS_

GBLSEC_64 module)
control flow, 166

EXE$CREATE_GPFN routine (SYS_
GPFN_64 module)

control flow, 167 to 168
EXE$CREATE_REGION 64 routine

(SYS_REGIONS module)
control flow, 129 to 130

EXE$CRETVA routine (SYSCREDEL
module)

control flow, 133 to 134

EXE$CRETVA_64 routine (SYS_
CREDEL_64 module)

control flow, 137 to 138
EXE$CRMPSC routine (SYSCRMPSC

module)
global sections, control flow, 158 to

162
PFN-mapped sections, control flow, 150

to 153
process sections, control flow, 144 to

147
EXE$CRMPSC_FILE_64 routine (SYS_

CRMPSC_64 module)
control flow, 148 to 150

EXE$CRMPSC_GDZRO_64 routine (SYS_
GDZRO_64 module)

operations, 179 to 180
EXE$CRMPSC_GFILE_64 routine (SYS_

GBLSEC_64 module)
control flow, 165 to 166

EXE$CRMPSC_GPFILE_64 routine (SYS_
GBLSEC 64 module)

operations, 167
EXE$CRMPSC_GPFN_64 routine (SYS_

GPFN_64 module)
control flow, 169 to 170

EXE$CRMPSC_PFN_64 routine (SYS_
CRMPSC_64 module)

control flow, 154 to 157
EXE$DEALLOCATE routine (MEMO-

RYALC module)
deallocating variable-length pool, 412,

414 to 416
EXE$DEALLOCATE_POOL routine

(MEMORYALC_POOL module)
deallocating nonpaged pool, 434
deallocating per-RAD pool, 442

EXE$DEANONPGDSIZ routine
(MEMORYALC_DYN module)

control flow, 434
EXE$DELETE_BUFOBJ routine

(SYSLKWSET module)
control flow, 211 to 213

EXE$DELETE_REGION_64 routine
(SYS_REGIONS module)

control flow, 205
EXE$DELTVA routine (SYSCREDEL

module)
control flow, 195 to 196

Index-9

EXE$DELTVA_64 routine (SYS_
CREDEL_64 module)

operations, 204
EXE$DGBLSC routine (SYSDGBLSC

module)
control flow, 189 to 190

EXE$EXCEPTION routine (EXCEPTION
module)

detecting need for user stack expansion,
139

operations, 140
EXE$EXCPTN routine (EXCEPTION_

ROUTINES module)
handling page read errors, 236

EXE$EXCPTNE routine (EXCEPTION_
ROUTINES module)

handling page read errors, 236
EXE$EXPANDSTK routine (EXCEPTION

module)
operations, 139 to 140

EXE$EXPREG routine (SYSCREDEL
module)

alternative entry point for, 138
operations, 138

EXE$EXPREG_64 routine (SYS_
CREDEL_64 module)

control flow, 139
EXE$EXTEND_NPP routine (MEMO-

RYALC_POOL module)
operations, 438 to 439

EXE$FAULT_PAGE routine (SYSSETPRT
module)

control flow, 270 to 271
EXE$FIND_GPAGE_64 routine (SYS_

FIND_GPAGE_64 module)
control flow, 216 to 218

EXE$FLUSHLISTS routine (MEMO-
RYALC_DYN module)

nonpaged pool reclamation, 437
EXE$GETSECI routine (SYSPARPRC

module)
control flow, 215 to 216

EXE$GET_REGION_INFO routine (SYS_
REGIONS module)

control flow, 214
EXE$GET_VA_RAD_INFOW routine

(PTECHECK module)
control flow, 218

EXE$GL_GLXGRPBL cell
group section listhead, 102

EXE$GL_GLXGRPFL cell
group section listhead, 102

EXE$GL_GLXSYSBL cell
system section listhead, 102

EXE$GL_GLXSYSFL cell
system section listhead, 102

EXE$GL_GSDDELBL cell
delete-pending GSD list listhead, 102

EXE$GL_GSDDELFL cell
delete-pending GSD list listhead, 102

EXE$GL_GSDGRPBL cell
group global section list listhead, 101

EXE$GL_GSDGRPFL cell
group global section list listhead, 101

EXE$GL_GSDMTX cell
serializing access to GSD lists, 102

EXE$GL_GSDSYSBL cell
system global section list listhead, 101

EXE$GL_GSDSYSFL cell
system global section list listhead, 101

EXE$GL_PAGED symbol
first available block of paged pool, 414

EXE$GL_PGDYNMTX cell
paged pool mutex, 449

EXE$GQ_BASIMGMTX (base image
mutex)

access to LDRHP synchronized by, 75
EXE$GQ_PQBIQ cell

process quota block lookaside listhead,
449

EXE$HIBER_INT routine (SYSPCNTRL
module)

proactive memory reclamation,
operations, 337

EXE$INIT routine (INIT module)
initializing page-and-swap-file vector,

117
EXE$LAL_INSERT_FIRST routine

(LOOK_ASIDE_LIST module)
deallocating packets to lookaside list,

421
EXE$LAL_INSERT_FIRST_AND_COUNT

routine (LOOK_ASIDE_LIST module)
deallocating packets to lookaside list,

421
EXE$LAL_REMOVE_FIRST routine

(LOOK_ASIDE_LIST module)
allocating packets from lookaside list,

421 to 422

Index-lO

EXE$LAL_REMOVE_FIRST_AND_
COUNT routine (LOOK_ASIDE_
LIST module)

allocating packets from lookaside list,
421 to 422

EXE$LCKPAG routine (SYSLKWSET
module)

operations, 342 to 343
EXE$LCKPAG_64 routine (SYS_

LKWSET_64 module)
operations, 343

EXE$LKWSET routine (SYSLKWSET
module)

control flow, 338 to 339
EXE$LKWSET_64 routine (SYS_

LKWSET_64 module)
control flow, 341

EXE$MGBLSC routine (SYSCRMPSC
module)

control flow, 180 to 183
EXE$MGBLSC_64 routine (SYS_

GBLSEC_64 module)
control flow, 183 to 184

EXE$MGBLSC_GPFN_64 routine (SYS_
GPFN_64 module)

operations, 187 to 188
EXE$POOLZONE_ALLOCATE routine

(POOL_ZONES module)
allocating packets from pool zone, 425

EXE$POOLZONE_CREATE routine
(POOL_ZONES module)

creating system space pool, 422
EXE$POOLZONE_DEALLOCATE routine

(POOL_ZONES module)
deallocating packets from pool zone,

425
EXE$POOLZONE_PURGE routine

(POOL_ZONES module)
reclamation of pool zone, 425

EXE$POOL_ALLOCATE routine (POOL_
ZONES module)

allocating packets from pool zone, 425
EXE$POOL_DEALLOCATE routine

(POOL_ZONES module)
deallocating packets from pool zone,

425
EXE$PROCSTRT routine (PROCSTRT

module)
KRP lookaside list initialization, 452

EXE$PROCSTRT routine (PROCSTRT
module) (Cont.)

process allocation region address space
reserved by, 450

EXE$PURGE_WS routine (SYS_
PURGWS_64 module)

control flow, 345 to 346
EXE$PURGWS routine (SYSPURGWS

module)
control flow, 345

EXE$RECLAIM_POOL_AGGRESSIVE
routine (MEMORYALC_POOL
module)

nonpaged pool reclamation, 435 to 436
EXE$RECLAIM_POOL_GENTLE routine

(MEMORYALC_POOL module)
nonpaged pool reclamation, 435 to 436

EXE$REGISTER_POOL_INFO routine
(MEMORYALC_POOL module)

BAP initialization, 445
EXE$SETFLT routine (SYSSETPRT

module)
control flow, 223

EXE$SETFLT_64 routine (SYS_SETPRT_
64 module)

operations, 224
EXE$SETPRT routine (SYSSETPRT

module)
control flow, 219 to 220
side effect, 220

EXE$SETPRT_64 routine (SYS_SETPRT_
64 module)

control flow, 222
EXE$SETSWM routine (SYSSETMOD

module)
operations, 219

EXE$TRIM_POOL_LIST routine
(MEMORYALC_POOL module)

nonpaged pool reclamation, 436 to 437
EXE$ULKPAG routine (SYSLKWSET

module)
operations, 343 to 344

EXE$ULKPAG_64 routine (SYS_
LKWSET_64 module)

operations, 344
EXE$ULWSET routine (SYSLKWSET

module)
operations, 343 to 344

EXE$ULWSET_64 routine (SYS_
LKWSET_64 module)

Index-11

EXE$ULWSET_64 routine (SYS_
LKWSET_64 module) (Cont.)

operations, 344
EXE$UPDSEC routine (SYSUPDSEC

module)
control flow, 290

EXE$UPDSEC_64 routine (SYS_
UPDSEC_64 module)

operations, 292
executive

adequate pool space required by, 453
alternative versions of SYSTEM_

PRIMITIVES, 452 to 453
components, xxiii
contained in S0/S1 space, 29
initializing L1PTEs, 11
mapping into virtual address space, 11
sharing by all processes, 11
term definition, xxiii

executive images
mapping, 266
page faults for, read-only pages in, 266
page transitions for, copy-on-reference

pages in, 267
term definition, xxiii

executive routines
entry points, xxiv

EXE LSTD] $ALONONPAGED routine
(MEMORYALC_DYN module)

alternative entry point to
EXE$ALONONPAGED_INT, 431

EXE LSTD] $ALONPAGVAR routine
(MEMORYALC_DYN module)

alternative entry point to
EXE$ALONONPAGED_INT, 431

EXE LSTD]$ALOPOIMAG routine
(MEMORYALC module)

allocating space from process allocation
region, 450 to 451

EXE LSTD]$ALOPIIMAG routine
(MEMORYALC module)

allocating space from process allocation
region, 450 to451

EXE LSTD]$ALOPIPROC routine
(MEMORYALC module)

allocating space from process allocation
region, 450 to 451

EXE LSTD] $ALOPAGED routine
(MEMORYALC module)

allocating paged pool, 448

EXE LSTD] $DEANONPAGED routine
(MEMORALC_DYN module)

deallocating nonpaged pool, 434
EXELSTD]$DEAP1 routine (MEMO-

RYALC module)
deallocating space from process

allocation region, 450 to 451
EXE LSTD] $DEAPAGED routine

(MEMORYALC module)
deallocating paged pool, 448

Expand Program/Control Region system
service

See $EXPREG
Expand Virtual Address Space system

service
See $EXPREG_64

EXPANDCHK_64 routine (SYSCREDEL
module)

control flow, 136
$EXPREG (Expand Program/Control

Region system service)
alternative entry point for, 138
demand zero pages created by, 142

(table)
operations, 138

$EXPREG_64 (Expand Virtual Address
Space system service)

control flow, 139
Extended File Cache

See XFC

F
facilities

source modules contained in, xxiv
Fault Page system service

See $FAULT_PAGE
fault-on bits (PTE)

meaning, 23
fault-on-execute bit (PTE)

clearing, 240, 249
enabling, through $SETFLT system

service, 223 to 224
exception information, 25
fault generation, 23
faults, OpenVMS handling, 27
OpenVMS use of, 27, 68, 328
set with valid bit, demand zero page,

246

Index-12

fault-on-execute bit (PTE) (Cont.)
setting, 238, 248, 252, 257, 261, 263,

264, 275
fault-on-read bit (PTE)

exception information, 25
fault generation, 23
OpenVMS use of, 76, 77
restricting access to system pages, 224

fault-on-write bit (PTE)
clearing, 240, 291
exception information, 25
fault generation, 23
OpenVMS use of, 66
setting, 238, 248, 261
testing, 240

$FAULT_PAGE (Fault Page system
service)

enabling applications to initiate page
faults, 270 to 271

figures
conventions, xxv to xxvii
that describe data structures, xxvi

FILLPHD routine (SWAPPER module)
inswap of PHD, 391

Find Mapped Global Page system service
See $FIND_GPAGE_64

$FIND_GPAGE_64 (Find Mapped Global
Page system service)

control flow, 216 to 218
fixed-length lists

See also KRP; PQB
allocating, 420 (fig.)
areas, structure and operations, 417 to

425
characteristics and use, 417
deallocating, 420 (fig.)
dynamic data structure deallocation,

406
format, 420 (fig.)

fixed-length packets
compared to variable-length blocks,

417
pool, listhead locations, 417(table)

FLAGS byte (POOLCHECK parameter)
definition and use, 456

floating-point register and execution data
structure

See FRED
fluid page count

fluid page count (Cont.)
characteristics and use, 81, 173

fluid physical pages
minimum required for pool expansion,

438
fork processes

IPL$_QUEUEAST, created to expand
nonpaged pool, 438

FPG (free page wait state)
See also free page list; kernel thread

states
characteristics and use, 302
placing a kernel thread into, 175, 233
removing kernel thread from, 302

FRED (floating-point register and
execution data structure)

array of
characteristics and use, 59
PHD component, 50

creating
during page fault handling, 255
effect on PHD expansion pages in

working set list, 312
PHD component, 51
use during page fault handling, 234

FREE byte (POOLCHECK parameter)
definition and use, 457

free page list
See also BORROWLIM parameter;

FPG; free pages; FREEGOAL
parameter; FREELIM parameter

characteristics and use, 33
doubly linked, 86
insertion of page removed from working

set, 327
listhead location, 86
location of unmodified available pages,

229
maintained by swapper, 354
movement of modified page to, 245
multiple, 87
RAD-specific, use in resolving page

faults, 246
reallocating pages from, 77
releasing granularity hint regions to,

77
resolving page faults from, 246 to 248
sorted by color, 89 (fig.)
sorted by RAD, 89 (fig.)

Index-13

free page list (Cont.)

use as cache, 87 (fig.)
free page wait state

See FPG
free pages

See also BORROWLIM parameter; free
page list; FREEGOAL parameter;
FREELIM parameter

allocated for
global page fault, 256
inswap of process working set, 390
page fault, 268 to 269

page coloring classification effect on, 88
RAD-specific, 88

FREEGOAL parameter (SYSGEN)
B ~ C E use of, 363
swapper use of, 354
TROLLER use of, 374

FREELIM parameter (SYSGEN)
checked before new page is added to

working set list, 322
effect on

modified page writing, 276
nonpaged pool expansion, 438

use by
SCANDEADPT, 323
swapper, 354, 362
TROLLER, 374

G
Galaxy

physical memory
configuration, 3 (fig.)
sharing in, 34 to 35

Galaxy Configuration utility
reserving shared memory, 158

Galaxywide global sections
adding L2PTs to, 136
characteristics and use, 143
conditions for creating, 176
creating, 170, 176 to 179
creating shared page table sections to

map, 178 to 179
deleting virtual pages from, 199
effect on PTE contents, 187
mapping, 158
not described by WSLEs, 232
page file quota not required, 131
pages

Galaxywide global sections
pages (Cont.)

getting information about, 215
not represented in working set list,

131, 309
preventing concurrent creation of, 176
testing validity of pages in, 209

[GALAXY] GLX_SHM_REG module
GLX$SHM_REG_CREATE, operations,

177
GLX$SHM_REG_DELETE, operations,

191
gap

term definition, 11
GBLPAGES parameter (SYSGEN)

effect on
GPT size, 104
system space size, 61

system manager dynamically
decreasing value of, 267

GBLPAGFIL parameter (SYSGEN)
effects of changes to, 161, 166
maximum page file blocks available for

global buffers, 157
GBLSECTIONS parameter (SYSGEN)

number of entries in system header
section table, 60

Get Information About Specified Region

See $GET_REGION_INFO
Get Section Information system service

See $GETSECI
$GETSECI (Get Section Information

system service)
control flow, 215 to 216

$GET_REGION_INFO (Get Information
About Specified Region system
service)

control flow, 214
$GET_VA_RAD_INFOW system service

operations, 218
GH_EXEC_CODE parameter (SYSGEN)

size of executive image code huge page,
65, 74

GH_EXEC_DATA parameter (SYSGEN)
size of executive image data huge page,

74
GH_RES_CODE parameter (SYSGEN)

size of resident image code huge page,
65, 74

Index-14

GH_RES_DATA parameter (SYSGEN)
size of resident image data huge page,

74
GH_RSRVPGCNT parameter (SYSGEN)

appropriateness determined by
LDRHP$Q_STARTUP_PAGE S,
75

number of pages reserved for mapping
images, 74

global buffers
maximum page file blocks available for,

157
global demand zero sections

See also global sections
pages, page transitions, control flow,

264 to 266
global page table

See GPT
global page table entry

See GPTE
global page table index

See GPTX
global page table pages

characteristics and use, 267
determining, based on faulting virtual

address, 230 (fig.)
page transitions, 267

global page-file sections
See also global sections
creating, 157
pages

page transitions, control flow, 262
to 264

transitions, 263 (fig.)
global pages

See also global sections
count of process PTEs that map to a

particular, PFN$L_SHRCNT field,
90

creating, overview, 256
data structures, characteristics and

field definitions, 101 to 108
Galaxywide sections

getting information about, 215
not represented in working set list,

131
getting information about, 214 to 216
included in working set, 309
locked in memory reference count, 91

global pages (Cont.)
memory-resident

creating, 264
transitions, 265 (fig.)

outswapping, 381
page transitions

control flow, 256 to 266
copy-on-reference page, control

flow, 260 to 262
demand zero section page, control

flow, 264 to 266
page-file section page, control flow,

262 to 264
read-only page, control flow, 256

to 259
writable page, control flow, 259

PFN$L_SHRCNT meaning, 298
protection change prohibited, 221, 222
read-only

page transitions, control flow, 256
to 259

resolution during inswap rebuild,
395

transitions, 258 (fig.)
whether outswapped, 379 (table),

380 (table)
read/write, action at outswap, 379

(table), 380(table)
reading, I/O request descriptions, 292

(table)
removal from working set, 326
writable

cannot be locked in working set,
342

locking into memory, 347
global section descriptor

See GSD
global section table

See GST
global section table entry

See GSTE
global section table index

See GSTX
global sections

See also global page-file sections; global
pages; GSD; GSTE; memory
management; memory-resident
global sections

backing store, 142 (table)

Index-15

global sections (Cont.)

characteristics and use, 34
checking access to, 181, 182, 184

files, 163, 185
memory-resident, 171
PFN-mapped, 169

creating, 157 to 162
backed by a file, 158 to 167
group, 141
overview, 141 to 143, 143
PFN-mapped, 157
system, 141

data structures
associated with, 34
relations among, 108 (fig.)
required for creating, 157

deleting, 188 to 194
complexity, 188
side effect of virtual address

deletion, 189
temporary, 191

demand zero
creating, 166 to 167
memory-resident, creating, 170 to

171, 171 to 176
Galaxywide, 158

adding L2PTs to, 136
characteristics and use, 143
conditions for creating, 176
creating, 170, 176 to 179
creating shared page table sections

to map, 178 to 179
deleting virtual pages from, 199
effect on PTE contents, 187
mapping, 158
not described by WSLEs, 232
page file quota not required, 131
pages not represented in working

set list, 131, 309
pages, getting information about,

215
preventing concurrent creation of,

176
testing validity of pages in, 209

locating, 216 to 218
mapping

by GPTES, 104
using shared page tables, 108

mapping to, 180 to 188
memory-resident

global sections
memory-resident (Cont.)

characteristics and use, 34, 101,
158

creating, 101
described by two GSTEs, 103
granularity hint regions mapping,

75
mapping, 158
not described by WSLEs, 232
page file quota not required, 131
pages described by GPTEs, 105
pages not included in working set,

309
registering in Reserved Memory

Registry, 35, 158
Reserved Memory Registry effect

on, 80
names, logical name translation of, 159
pages not included in working set, 309
PFN-mapped

creating, 167 to 168, 169 to 170
page file quota not required, 131
pages, 103

read-only, page file quota not required,
131

shared memory, 158
SMP systems use of, 34
system services that create, 101
types, 142 (table)
version compatibility checks, 159
writable non-CRF, page file quota not

required, 131
GLX$SHM_REG_CREATE routine

([GALAXY] GLX_SHM_REG module)
operations, 177

GLX$SHM_REG_DELETE routine
([GALAXY] GLX_SHM_REG module)

operations, 191
GPT (global page table)

characteristics and use, 34, 104 to 105
circumstances under which can be

contracted, 104
index

PTE containing, characteristics, 70
use, 256

location, 104
pages, created as demand zero pages,

104
synchronizing access to, 104

Index-16

GPT (global page table) (Cont.)
virtual location, 105

GPTE (global page table entry)
See also global sections
allocated at global section creation, 161
allocation method, 411
characteristics and use, 104 to 106
formats, 107 (fig.)
forms of PTE, 106
GSD and GSTE relations with,

108(fig.)
GSTX contained in, 256
how located, 105
initialized at global section creation,

161, 165
initializing, 174
invalid global section file, 161, 165
list of unused, 106
memory-resident section page, 175
no protection bits in, 106
original form, contents, 106
process PTEs and, 105 (fig.)
recording allocated PFNs in, 175
shared memory page table section, 178
shared memory section, 177

GPTX (global page table index)
GSTE field that contains, 106
use in locating GPTE, 105

granularity hint bits (PTE)
characteristics and use, 76
meaning, 20
OpenVMS Alpha use of, 28
PFN-mapped process section page, 152,

155, 156
supported by TB, 28

granularity hint region
See also huge pages
characteristics and use, 28
components, 20
creating for

memory-resident sections, 175
nonpaged dynamically allocated

system data, 74
PFN-mapped global sections, 174
PFN-mapped sections, 151
shared page table region, 130

executive use of, 28
mapping

memory-resident global sections,
75

granularity hint region
mapping (Cont.)

PFN database, 75
PFN-mapped process section,

incorporating pages into, 153,
155

PFN-mapped, deleting virtual pages
from, 199

releasing unused space, 77
requirements for a PFN-mapped

process section, 152, 156
system space, purposes, 28
testing for, 151, 155
uses, 74

GROWLIM parameter (SYSGEN)
automatic working set limit adjustment

use of, 330, 336
effect on working set growth, 322
use by SCANDEADPT, 323

GS 160 system
physical memory configuration, 4(fig.)

GSD (global section descriptor)
characteristics and use, 34, 101 to 103
delete pending list, processing, 283
extended, characteristics and use, 103
field definitions, 101 to 103
GSTE and GPTE relations with, 108

(fig.)
GSTE field that points to, 56
initialized by $CREATE_GFILE_INT,

164
initializing, 169
layout, 102 (fig.)
linking, 174
location of address in GSTE, 106

GSD mutex
owned during

contracting of virtual address
region, 203

demand zero global section
creation, 171

Galaxywide global section creation,
177

global section address determina-
tion, 216

global section creation, 159, 162,
163

global section deletion, 189, 190,
193

global section mapping, 180, 183

Index-17

GSD mutex
owned during (Cont.)

PFN-mapped global section
creation, 168, 170

GSD$L_RELATED_GSTX field
index of linked global sections, 174

GSD_CLEAN_AST routine (SYSDG-
BLSEC module)

control flow, 193
GST (global section table)

characteristics and use, 34
GSTE location within, 106
system header component, 60(fig.)

GSTE (global section table entry)
See also global sections
asynchronous deletion

during demand zero global section
creation, 171

during global section creation, 159
during global section deletion, 193
during global section file creation,

163
during global section mapping,

180, 182, 183, 185
during PFN-mapped global section

creation, 168
during PFN-mapped global section

deletion, 190
operations, 190 to 191

characteristics and use, 34, 56, 103
created for executive image sections,

266
field names defined by $SECDEF

macro, 56
for memory-resident global sections,

103
GSD and GPTE relations with,

108(fig.)
initializing, 172
location within GST, 106
synchronizing access to, 103

GSTX (global section table index)
GPTE contains, 256
GPTE field that contains, 106
GSD field that contains, 106
PFN field that contains, 106

H
hardware privileged context block

hardware privileged context block (Cont.)
See HWPCB

hardware restart parameter block
See HWRPB

hole
See null page

huge pages
See also granularity hint region
characteristics and use, 74 to 77
code sections of resident images loaded

into, 74
data

allocating, 74
size, 74
SYSGEN parameter that affects,

74
data structures, layout, 76(fig.)
LDRHP describing, 75
per-RAD image code, 75
releasing unused pages in, 74
$2 space, 75
slice, term definition, 75
SYSGEN parameters that affect, 74

HWPCB (hardware privileged context
block)

ASN associated with, 27
FRED component, 59
PHD component, 51

HWRPB (hardware restart parameter
block)

characteristics and use, 78

I/O
See also adapters; AST; device drivers;

$QIO; resource wait
buffered, characteristics and use, 206
paging, mechanisms, 292 to 295
scatter/gather operations, 119 to 120
swapper

handling pages with I/O in
progress at outswap, 395

overview, 120
I/O adapters

See adapters
I/O database

data structures, swapper use of, 358
mutex, owned during updates to unit

reference count, 194

Index-18

I/O request packet
See IRP

I/O requests
memory management, 292 (table)

cluster factor, 272 (table), 273
(table)

read requests, 293 (table)
write requests, 294 (table)

outstanding, as a condition for outswap
and swapper trimming selection,
371

I/O system
swapping techniques, 119 to 120

choosing, 119
I/O system services

enabling use of buffer objects, overview,
206 to 207

Image Activator system service
See $IMGACT

image rundown
address space deletion at, 30

image sections
mapping, 54
process sections created by image

activator, 30
$IMGACT (Image Activator system

service)
See also image rundown
P0 space created by, 30

INCONMMGST bugcheck
generated by

$CREATE GDZRO INT, 175
EXE$COPY_FOR_PAGE, 225
MMG$DELPAG_64, 197

INI$INITIALIZE_POOL routine
(MEMORYALC_POOL module)

initializing
BAP, 444
NPOOL structure, 431
per-RAD pool, 441

INIT module
EXE$INIT, initializing page-and-swap-

file vector, 117
initialization

See system initialization
inner access mode

term definition, xxv
inner mode semaphore

data structure, PHD component, 50

inner mode semaphore (Cont.)
synchronizing access to

PCB$Q_KEEP_IN_WS, 350
PCB$Q_KEEP_IN_WS2, 350
PSTEs, 55
RDEs, 49

input/output
See I/O

instances
characteristics and use, 3
term definition, 2

instruction memory barrier
executed after GSTE initialization,

161, 172
instruction stream translation buffer

See ITB
instructions

See also Alpha architecture
LDL, allowing addresses to be stored as

longwords, 12
MB, TB miss PALcode routine use of,

24
inswap

See also swapper
data structures after process selected

for, 396 (fig.)
final processing, 398 to 399
operations, 389 to 399
PHD and page tables, 390 to 393
physical pages allocated for, 397 (fig.)
preparing for, 389 to 390
processes

selecting, 365 to 366, 389
with home RADs, 390

rebuilt process page tables, 398(fig.)
INSWAP routine (SWAPPER module)

preparation for inswap, 390
internal process identifier

See IPID
interrupt priority level

See IPL
IOC$GL_DIOBM_PTECNT_MAX cell

effect on I/O subsystem direct I/O, 119
IOC$IOPOST routine (IOCIOPOST

module)
page read completion detection by, 274

IOCIOPOST module
IOC$IOPOST

Index-19

IOCIOPOST module
IOC$IOPOST (Cont.)

page read completion detection by,
274

PAGIO
global read-only page, I/O

completion, 257
page read completion, control flow,

274 to 276
page read completion, operations,

234
process copy-on-reference page, I/O

completion, 243
process page not copy-on-reference,

I/O completion, 240
system page not copy-on-reference,

I/O completion, 267
IOLOCK module

MMG$IOLOCK, PFN$L_PAGE_STATE
field modify bit set by, 93

MMG_STD$IOUNLOCK_BUF,
releasing direct I/O buffer pages,
241

IOTA parameter (SYSGEN)
automatic working set limit adjustment

use of, 335
$IO_PERFORM (Perform Fast I/O) system

service
initiating I/O to or from the buffer

object, 99
IPID (internal process identifier)

for global section to be deleted, GSD
location, 103

IPL (interrupt priority level)
maximum for page fault, 230

IPL 6
fork process, deallocating pool,

synchronization issues, 440
IPL 8

locking pages in working set, 339
IPL 11

acquiring POOL spinlock raised IPL to,
439

IPL$_POOL
See IPL 11

IPL$_QUEUEAST
See IPL 6

IRP (I/O request packet)
See also ACB; device drivers; $QIO

IRP (I/O request packet) (Cont.)
built by MMG$PAGEFAULT, 238
initialized by swapper, 358
use in paging upcall, 275

IRP$L_BCNT field
use in direct I/O buffer mapping, 119

IRP$L_BOFF field
use in direct I/O buffer mapping, 119

IRP$L_SVAPTE field
address of swapper map, 120
meaning, 119
use in direct I/O buffer mapping, 119

IRP$V_FUNC bit (IRP$L_STS field)
detecting page read completion with,

274
IRP$V_PAGIO bit (IRP$L_STS field)

detecting page read completion with,
274

ITB (instruction stream translation buffer)
characteristics and use, 22

K
kernel mode

innermost access mode, xxv
kernel process block

See KPB
kernel request packet

See KRP
kernel stack

canonical, formed for page fault wait,
230

kernel thread block
See KTB

kernel thread states
See also COLPG; FPG; MWAIT; PFW
process, characteristics during page

deletion, 194
swapper driven by table of, 369
transitions

from outswapped to resident, 399
from resident to outswapped, 368,

399
kernel threads

See also multithreaded processes;
processes

page fault effect on, 249
page tables when placed into execution,

11

Index-20

kernel threads (Cont.)
quantum, initial, as a condition for

outswap and swapper trimming
selection, 372

running on multiple processors, 328
sharing same virtual address space, 11
synchronizing inner mode execution of,

50
KPB (kernel process block)

lookaside list, 417 (table), 427
KRP (kernel request packet)

lookaside list, 417 (table)
allocating, 452
characteristics and use, 452
deallocating, 452

packet control
CTL$C_KRP_COUNT symbol, 452
CTL$C_KRP_SIZE symbol, 452

KRPEMPTY bugcheck
generated by failure to allocate a KRP,

452
KTB (kernel thread block)

characteristics and use, 44 to 46
memory management, field definitions,

45 (fig.)
overlaying the PCB, 44

KTB$L_HOME_RAD field
number of associated RAD on NUMA

system, 46
KTB$L_PHD field

definition and use, 46
KTB$L_STS field

defimtion and use, 44
KTB$L_STS2 field

definition and use, 44
KTB$L_SWP_KT field

definition and use, 46
KTB$L_SWP_SEQ field

definition and use, 46

L
LIPT (level 1 page table)

allocating for new process, 16
characteristics and use, 8
double-mapped into $2 space, 62
initializing, 11, 16, 60

RAD, 66
locked into process working set list, 61

L1PT (level 1 page table) (Cont.)
outswapped and inswapped with PHD,

61
processor register that locates, 8
RAD use of, 19
self-mapped, 16

L2PT (level 2 page table)
characteristics and use, 8, 61
creating

process-private, 250
shared, 61, 62

initializing RAD, 66
locked into process working set list, 61
mapping system space, 12
outswapped and inswapped with PHD,

61
self-mapped L1PTs becoming, 16

L3PT (level 3 page table)
allocating during system space

expansion, 62, 66
characteristics and use, 8
creating

process-private, 250
shared, 61, 62, 66

double-mapped into S0/S1 space, 64
entries

See L3PTE
initializing

during address space creation, 131
RAD, 66

locked into process working set, 61
low-order bits, 72
normal L2PTs becoming, 16
number in page table space, 17
page table space contained in, 23
removing page from working set list,

255
severing page connections to L2PT, 255

L3PTE (level 3 page table entry)
contents, 72
creating additional system space, 72
demand zero address space, 133, 137,

138, 139
Galaxywide global section page, 186
global section page, 182, 185
initializing, 156
invalid forms, 70 to 71
layout of available, 73 (fig.)
memory-resident global section page,

186

Index-21

L3PTE (level 3 page table entry) (Cont.)
PFN fields in, 150
PFN-mapped process page, 151
PFN-mapped process section page, 152,

155
quadword index, 72
resident memory section, 179
section file page, 146, 149
storage of unused, 72
valid and invalid forms, 69(fig.)

last chance condition handler
used if insufficient user stack, 140

LCK$CHECK_POOLZONE routine
(LOCK_UTILS module)

operations, 447
LCK$POOLZONE_INIT routine (LOCK_

UTILS module)
creating lookaside lists, 446

LCKBUFOBJPAG routine (SYSLKWSET
module)

control flow, 209 to 210
LCKMGR spinlock

synchronizing access to lookaside lists,
446

$LCKPAG (Lock Pages in Memory system
service)

operations, 342 to 343
$LCKPAG_64 (Lock Pages in Memory

system service)
operations, 343

LDL instruction
allowing addresses to be stored as

longwords, 12
LDR$GQ_FREE SOSI_PT cell

listhead for unused L3PTEs, 72
LDR$GQ_FREE S2_PT cell

listhead for unused L3PTEs, 72
LDR$GQ_HPDESC cell

definition and use, 75
LDRHP (loader huge page descriptor)

characteristics and use, 75 to 76
defined by $LDRHPDEF macro, 75
field definitions, 75 to 76
layout, 76 (fig.)

level 1 page table
See L1PT

level 2 page table
See L2PT

level 3 page table

See L3PT

level 3 page table entry
See L3PTE

LIB$FIND_IMAGE_SYMBOL routine
(Run-Time Library)

effect on P0 and P1 space, 30
linker options

NOPOBUFS, constraint on expansion
of process allocation region to P0
space, 451

lists
See fixed-length lists; free page list;

lookaside lists; modified page list;
variable-length lists

$LKWSET (Lock Pages in Working Set
system service)

cannot be used to lock pages in system
working set, 347

control flow, 338 to 339
$LKWSET_64 (Lock Pages in Working Set

system service)
cannot be used to lock pages in system

working set, 347
control flow, 341

loadable executive images

See executive images
loader huge page descriptor

See LDRHP
LOAD_SYS_IMAGES parameter

(SYSGEN)
effect on granularity hint region

creation, 74
lock management system

lock database, effect on size of system
space, 61

Lock Pages in Memory system services
See $LCKPAG; $LCKPAG_64

Lock Pages in Working Set system
services

See $LKWSET; $LKWSET_64
$LOCKED PAGE_END macro

creating PSECTs, 347
$LOCKED_PAGE_INIT macro

generating $LKWSET requests, 347
$LOCKED_PAGE_START macro

creating PSECTs, 347
LOCKIDTBL parameter (SYSGEN)

effect on size of lookaside lists, 446
locking pages

alternatives, 351

Index-22

locking pages (Cont.)
into memory, compared with locking

pages into working set, 342
into working set, 347

C program example, 348 (ex.), 349
(ex.)

delimiting, 347 to 349
operations, 338 to 340

locks (lock management system)
See protection; resource wait;

synchronization
locks used by OpenVMS components

Galaxywide global section, 176
$LOCK_PAGE macro

locking pages during image execution,
347

LOCK_SYSTEM_PAGES module
MMG$LOCK_SYSTEM_PAGES,

control flow, 351
LOCK_UTILS module

LCK$CHECK_POOLZONE, operations,
447

LCK$POOLZONE_INIT, creating
lookaside lists, 446

LONGWAIT parameter (SYSGEN)
TROLLER use of, 374
use in outswap and swapper trimming

selection, 372
longword index

term definition, xxv
longwords

how represented in figures, xxvi
lookaside lists

See also KRP; PQB; pool - nonpaged
allocating request packets directly

from, 431
doubly linked, modifying, 419
flushing, 433
KPB, characteristics and use, 427
KRP, characteristics and use, 452
listhead location, 413 (table), 417

(table)
nonpaged pool, 429 (fig.)
pool zone, 422 to 425
singly linked, 420 (fig.)

allocation, 421 to 422
characteristics and use, 419 to

422
deallocation, 421

term definition, 402

lookaside lists (Cont.)
types, 402
uses of, 430
XFC

routines that create, 447
types, 447
uses, 447 to 448

LOOK_ASIDE_LIST module
EXE$LAL_INSERT_FIRST,

deallocating packets to lookaside
list, 421

EXE$LAL INSERT_FIRST_AND_
COUNT, deaUocating packets to
lookaside list, 421

EXE$LAL_REMOVE_FIRST, allocating
packets from lookaside list, 421 to
422

EXE$LAL_REMOVE_FIRST_AND_
COUNT, allocating packets from
lookaside list, 421 to 422

LSTHDS structure
characteristics and use, 427, 440
contents, 427 (fig.)
field definitions, 428 to 429

LSTHDS$AR_LISTATTEMPTS field
definition and use, 428

LSTHDS$AR_LISTDEALLOCS field
definition and use, 428

LSTHDS$AR_LISTFAILS field
definition and use, 428

LSTHDS$L_EXPANSIONS field
definition and use, 429

LSTHDS$L_POOLTYPE field
definition and use, 429

LSTHDS$L_RAD field
definition and use, 441

LSTHDS$L_VARALLOCBYTES field
definition and use, 428

LSTHDS$PS_NPOOL_DATA field
definition and use, 429, 440

LSTHDS$PS_VARIABLELIST field
definition and use, 429

LSTHDS$Q_LISTCOUNTERS field
definition and use, 429

LSTHDS$Q_LISTHEADS field
definition and use, 429

M
macros

Index-23

macros (Cont.)
identifying, xxiv

MAINTAIN request (modified page writer)
description, 278

Map Global Page Frame Section system
service

See $MGBLSC_GPFN_64
Map Global Section system service

See $MGBLSC
Map to Global Section system service

See $MGBLSC 64
mapping

See also address space
PHD into P1 space, swapper

implications, 392
virtual address space, differences

among different areas, 29
MAPSECPAG_RDE routine (SYSCRMPSC

module)
PFN-mapped process section page,

control flow, 153
process section page, control flow, 147

MAXBOBMEM parameter (SYSGEN)
effect on buffer object resources, 101
use during buffer object creation, 211

MAXBOBS2 parameter (SYSGEN)
effect on size of system space, 61

MB instruction
See also memory barriers
TB miss PALcode routine use of, 24
use while allocating packets from singly

linked lookaside list, 421
memory

address translation, basic steps, 8 to 9
how represented in figures, xxv
maximum addressable, 21
physical

See NUMA; physical memory
protection

Alpha access checking, 23
checking, virtual page as unit of, 5
virtual memory role in, 2

reclaiming, OUTSWAP routine, 366 to
368

requirements, dynamic data structures,
differences among, 401

virtual
See virtual memory

memory barriers

memory barriers (Cont.)
See also MB instruction
executing after GSTE initialization,

161, 172
memory management

See also address space; global sections;
page faults; paging; PFN-
database; pool; swapper; virtual
memory; working set list

adaptability to page sizes, 7
architecture, 7 to 17
auxiliary mechanisms, overview, 40 to

41
data structures

examined by page fault handler,
228

removing non-copy-on-reference
page from working set list,
240 to 241

swapper use of, 356 to 360
types, 43
updating during fault of demand

zero page, 246
updating during fault of global

copy-on-reference page, 261
updating during fault of global

page-file section page, 262 to
263

updating during fault of process
page not copy-on-reference,
237

updating during fault of process
page table page, 252

fundamental issues, 2
I/O requests, 292 (table)

cluster factor, 272 (table), 273
(table)

read requests, 293 (table)
write requests, 294 (table)

original design, 36 to 40
overview, 1 to 2
parameters that control, 39 to 41
reference counts

characteristics and use, 295 to
301

meanings, 295 (table), 296 (table)
resource wait states, characteristics

and use, 303 to 304
sol, ware mechanisms, overview, 36 to

41

Index-24

memory management (Cont.)
system data structures, characteristics

and field definitions, 59 to 72
system services

argument length, 124
32-bit, 124, 125 to 128
64-bit, 124, 128
common characteristics, 124 to

128
operations, 125
overview, 123 to 124
restrictions on use, 124
stack scratch space, layout,

126(fig.)
memory-resident global sections

characteristics and use, 101, 158
creating, 101
described by two GSTEs, 103
granularity hint regions mapping, 75
mapping, 158
not described by WSLEs, 232
on Galaxy platforms, 158
page file quota not required, 131
pages described by GPTEs, 105
pages not included in working set, 309
registering in Reserved Memory

Registry, 158
Reserved Memory Registry effect on,

80
MEMORYALC module

alternative versions, 452
CHECK_PACKET, pool poisoning

operations, 459 to 460
EXE$ALLOCATE, allocating variable-

length pool, 412, 412 to 414
EXE$ALLOCPCB, allocating nonpaged

pool, 431
EXE$ALLOCTQE, allocating nonpaged

pool, 431
EXE$DEALLOCATE, deallocating

variable-length pool, 412, 414 to
416

EXE LSTD]$ALOPOIMAG, allocating
space from process allocation
region, 450 to 451

EXE LSTD]$ALOPIIMAG, allocating
space from process allocation
region, 450 to 451

MEMORYALC module (Cont.)
EXE LSTD] $ALOP 1PROC, allocating

space from process allocation
region, 450 to 451

EXE LSTD] $ALOPAGED, allocating
paged pool, 448

EXELSTD]$DEAP1, deallocating space
from process allocation region, 450
to 451

EXE LSTD] $DEAPAGED, deallocating
paged pool, 448

POISON_PACKET, pool poisoning
operations, 457 to 459

MEMORYALC_DYN module
alternative versions, 452
EXE$ALONONPAGED, checking

lookaside lists, 431
EXE$ALONONPAGED_INT, control

flow, 431 to432
EXE$ALONPAGVAR_INT, control flow,

432
EXE$DEANONPGDSIZ, control flow,

434
EXE$FLUSHLISTS, nonpaged pool

reclamation, 437
EXE LSTD] $DEANONPAGED,

deallocating nonpaged pool, 434
MEMORYALC_DYN_64 module

alternative versions, 452
UPDATE_RINGBUF, recording pool

history, 461 to 462
MEMORYALC_POOL module

alternative versions, 452
EXE$ALLOCATE_POOL

allocating BAP, 445 to 446
allocating nonpaged pool, 431, 433

to 434
allocating per-RAD pool, 431, 442
checking lookaside lists, 431

EXE$DEALLOCATE_POOL
deallocating nonpaged pool, 434
deallocating per-RAD pool, 442

EXE$EXTEND_NPP, operations, 438
to 439

EXE$RECLAIM_POOL_AGGRESSIVE,
nonpaged pool reclamation, 435 to
436

EXE$RECLAIM_POOL_GENTLE,
nonpaged pool reclamation, 435 to
436

Index-25

MEMORYALC_POOL module (Cont.)
EXE$REGISTER_POOL_INFO, BAP

initialization, 445
EXE$TRIM_POOL_LIST, nonpaged

pool reclamation, 436 to 437
INI$INITIALIZE_POOL

BAP initialization, 444
initializing NPOOL structure, 431
initializing per-RAD pool, 441

MEMORYALC_POOL_MON module
CHECK_DEALLOCATION_SIZE,

operations, 457
MEM_ALLOC module

MMG_STD$USE_RES_MEM, control
flow, 173

$MGBLSC (Map Global Section system
service)

control flow, 180 to 183
$MGBLSC_64 (Map to Global Section

system service)
control flow, 183 to 184

$MGBLSC_GDZRO_INT routine (SYS_
GBLSEC_64 module)

operations, 186 to 187
$MGBLSC_GFILE_INT routine (SYS_

GBLSEC_64 module)
control flow, 184 to 185

$MGBLSC_GPFILE_INT routine (SYS_
GBLSEC_64 module)

operations, 185 to 186
$MGBLSC_GPFN_64 (Map Global Page

Frame Section system service)
operations, 187 to 188

$MGBLSC_GPFN_INT routine (SYS_
GPFN_64 module)

operations, 188
MINWSCNT parameter (SYSGEN)

effect on adding page to working set
list, 322

effect on reserved WSLEs in working
set list dynamic region, 319

fluid working set initialized from, 131
minimum number of fluid pages in

working set, 318
use

by SCANDEADPT, 323
during automatic working set limit

adjustment, 332

MINWSCNT parameter (SYSGEN)
use (Cont.)

to determine number of entries in
dynamic region of working set
list, 323

when releasing dead page table
page, 322

miscellaneous wait state
See MWAIT

MMG spinlock
held during

global section creation, 162, 163,
165

global section deletion, 191
global section mapping, 181, 182,

184
L3PTE initialization, 152, 156
locking of pages into working set,

339
lowering of working set limit, 331,

332
MMG$WRTMFYPAG's processing

of PAGE_TABLE requests, 280
MMG$WRTMFYPAG's scan of

modified page list, 279, 282
modified page write I/O completion,

283
nonpaged pool expansion, 438
page I/O completion, process page

not copy-on-reference, 240
page protection changes, 220, 223
page read completion, 274
raising of working set limit, 331
removal of virtual pages from

working set, 345
swapping, 363, 365
$UPDSEC processing, 290
virtual page deletion, 197

synchronizing access to
GPT, 104
GSTE, 103
PFN database, 83
PHD, 51
RMD list, 81
section reference count, 57
system space L3PTEs, 71, 72
system working set list, 59

use by
EXE$CHK_WAIT_BHVR, 338
EXE$COPY_FOR_PAGE, 225

Index-26

MMG spinlock
use by (Cont.)

EXE$DELETE_BUFOBJ, 211
EXE$FIND_GPAGE_64, 217
kernel mode code to prevent

changes to working set, 350
LCKBUFOBJPAG, 209
MMG$FREWSLE, 350
MMG$LOCK SYSTEM_PAGES,

351
page fault handler, 230
swapper, 366

MMG_CTLFLAGS parameter (SYSGEN)
B ~ C E use of, 363
checked when forming template PTE,

187
controlling OpenVMS testing of

memory, 89
effect on no-TB-miss-memory-barrier-

required bit, 240, 246, 248, 252,
263, 264, 275

enabling proactive memory reclama-
tion, 337

SCH$OSWPSCHED routine use of,
368

use during inswap, 391
use of MMG$M_NO_MB in, 175

MMG$ALCPHD routine (PHDUTL
module)

operations, 331 to 332
MMG$AR_NULLPFL cell

null page file control block address, 117
MMG$AR_SYSPCB cell

address of system PCB, 59
MMG$CREDEL routine (SYSCREDEL

module)
control flow, 128
role in memory management system

services, 127
MMG$CREPAG_64 routine (SYSCREDEL

module)
alternative entry point for, 134
control flow, 135

MMG$CRETVA_K routine (SYSCREDEL
module)

alternative entry point for
EXE$CRETVA, 133

MMG$DALCSTXSCN routine (PHDUTL
module)

control flow, 190 to 191

MMG$DALCSTXSCN routine (PHDUTL
module) (Cont.)

operations, 190
MMG$DALCSTXSCN1 routine (PHDUTL

module)
alternative entry point for

MMG$DALCSTXSCN, 190
MMG$DALLOC_PFN routine (AL-

LOCPFN module)
deallocating physical pages, 302
reporting free page available, 302

MMG$DECLARE WSL_PAGER routine
(SYSLKWSET module)

operations, 325
MMG$DELGBLSEC routine (SYSDG-

BLSC module)
control flow, 191 to 193

MMG$DELGBLWCB routine (SYSDG-
BLSC module)

control flow, 194
MMG$DELPAG_64 routine (SYSCREDEL

module)
control flow, 197 to 203

MMG$DEL_CONTENTS_PFN routine
(ALLOCPFN module)

partial outswap of PHD, 387
releasing process page not copy-on-

reference, 242
MMG$EXPREG routine (SYSCREDEL

module)
alternative entry point for

EXE$EXPREG, 138
MMG$FAST_CREATE_64 routine

(SYSCREDEL module)
operations, 134

MMG$FREWSLE routine (PAGEFAULT
module)

control flow, 321
finding room in working set list for new

page, 232
locking pages into working set,

operations, 350
modified working set list replacement

algorithm use, 325
releasing dead page table page, 322 to

324
removing

global read-only page from working
set list, 259

Index-27

MMG$FREWSLE routine (PAGEFAULT
module)

removing (Cont.)
process page table page from

working set list, 252, 254
reusing WSLEs, control flow, 326, 326

to 328
updating memory management data

structures, 240
MMG$FREWSLX_64 routine (PAGE-

FAULT module)
alternative entry point to

MMG$FREWSLE, 326
MMG$GL_BWP_MASK cell

bit mask of offset field bits in virtual
address, 7

MMG$GL_BWP_WIDTH cell
number of bits in a byte-within-page

offset, 7
MMG$GL_IO_MEMORY_MAP cell

I/O PMAP arrays described by, 79
MMG$GL_MAXPFN cell

highest entry in PFN database, 82, 83
MMG$GL_MAX_MEM_FRAGMENTS cell

maximum number of PMAPS in PMAP
array, 79

MMG$GL_MEMSIZE cell
number of physical pages, 78

MMG$GL_PAGEDYN cell
paged pool system space starting

address, 414, 448
MMG$GL_PAGE_SIZE cell

page size, 7
MMG$GL_PFN_MEMORY MAP cell

number of valid PMAPs, 79
MMG$GL_PHYPGCNT cell

number of physical pages, 78
MMG$GL_PRVPFN_BLINK cell

PRVPFN listhead, 89
MMG$GL_PRVPFN_FLINK cell

PRVPFN listhead, 89
MMG$GL_RES_MEM_BLINK cell

RMD listhead, 81
MMG$GL_RES_MEM_FLINK cell

RMD listhead, 81
MMG$GL_SPTBASE cell

SPT system virtual address contained
in, 64

MMG$GL_SYI_PFN_MEMORY MAP cell

MMG$GL_SYI_PFN_MEMORY MAP cell
(Cont.)

address of longword preceding
nonpaged pool PMM array, 79

MMG$GL_SYSPHD cell
address of system header, 59

MMG$GL_VA_TO_VPN cell
number of bits to shift right when

calculating VPN from virtual
address, 7

MMG$GL_VPN_TO_VA cell
number of bits to shift left when

calculating virtual address from
VPN, 7

MMG$GPQ_PAGE_SWAP_VECTOR cell
page-and-swap-file vector array

address, 117
MMG$GQ_GPT_BASE cell

GPT address location, 105
MMG$GQ_PROCESS_SPACE_LIMIT cell

maximum size of P2 space plus 1, 14
MMG$GQ_SHARED_VA_PTE S cell

address of division between process-
private and system space, 16

MMG$GQ_SYSTEM_LIPT cell
address of current LIPT, 62

MMG$GQ_SYSTEM_VIRTUAL_BASE cell
$2 space base address, 14

MMG$GQ_SYSWSL cell
address of system working set, 59

MMG$GQ_ZEROED_LIST_COUNT cell
number of pages on zeroed page list,

87
MMG$1MGRESET routine (PHDUTL

module)
working set limit decreased by, 319
working set limit reset by, 318

MMG$IOLOCK routine (IOLOCK module)
PFN$L_PAGE_STATE field modify bit

set by, 93
MMG$LCKULKPAG routine (SYSLK-

WSET module)
control flow, 339 to 340
unlocking pages from memory, 343 to

344
MMG$LOCK_SYSTEM_PAGES routine

(LOCK_SYSTEM_PAGES module)
control flow, 351

MMG$L_ACCESS_MODE field
definition and use, 126

Index-28

MMG$L_CALLEDIPL field
definition and use, 127

MMG$L_EFBLK field
definition and use, 127

MMG$L_MMG_FLAGS field
definition and use, 125

MMG$L_PAGCNT field
definition and use, 127

MMG$L_PAGESUBR field
definition and use, 127

MMG$L_PER_PAGE field
definition and use, 127

MMG$L_PGFLCNT field
definition and use, 127

MMG$L_SAVRETADR field
definition and use, 127

MMG$L_SVSTARTVA field
definition and use, 127

MMG$L_VFYFLAGS field
definition and use, 127

MMG$PAGEFAULT routine (PAGEFAULT
module)

clustered read, 271 to 272
demand zero page, 245 to 246
errors returned by, 235 to 236
global copy-on-reference page, 261 to

262
global page-file section page, 262 to

264
global read-only page, 256 to 257
memory-resident global demand zero

section page, 264 to 266
page fault handling, common steps,

230 to 234
process page copy-on-reference, 243
process page not copy-on-reference, 237

to 238
process page table page, 251 to 252,

252 to 254
resolving page fault from free page list,

246 to 248
system page not copy-on-reference, 266
testing for outswap, 255

MMG$PURGE_MPL routine (WRTMFY-
PAG module)

operations, 276 to 278
MMG$PURGWSSCN routine

(SYSPURGWS module)
control flow, 345

MMG$REL_PFN routine (ALLOCPFN
module)

operations, 327
MMG$SHRINKWS routine (SYSADJWSL

module)
operations, 332

MMG$TRY_ALL_64 routine (SYSCRE-
DEL module)

operations, 134
MMG$UPDSECAST routine

(SYSUPDSEC module)
operations, 292

MMG$V_CHGPAGFIL bit
definition and use, 125

MMG$V_CLUSTER_DEL bit
definition and use, 126

MMG$V_DELGBLDON bit
definition and use, 127

MMG$V_DELPAG_NOP bit
definition and use, 126

MMG$V_NOWAIT_IPL0 bit
definition and use, 125

MMG$V_NO_IRP_DELETE bit
definition and use, 126

MMG$V_NO_OVERMAP bit
definition and use, 125

MMG$V_PARTIAL_FIRST bit
definition and use, 126

MMG$V_PARTIAL_LAST bit
definition and use, 126

MMG$V_RWAST_AT_IPL8 bit
definition and use, 126

MMG$V_SHARED L3PTS bit
definition and use, 126

MMG$V_WINDOW bit
definition and use, 126

MMG$WRTMFYPAG routine (WRTMFY-
PAG module)

See also modified page writer
called by swapper to initiate modified

page writing, 362
control flow, 279 to 283
operations, 276

MMG$WRT_PGS_BAK routine
(SYSUPDSEC module)

operations, 291
$MMGDEF macro

memory management system service
stack scratch space defined by, 125

Index-29

MMGLSTD]$TBI_DATA_64 routine (TBI_
ROUTINES module)

operations, 329
MM G LSTD] $TB I_DATA_64_THREAD S

routine (TBI ROUTINES module)
operations, 329

MMGLSTD]$TBI_SINGLE routine (TBI_
ROUTINES module)

operations, 329
MMGLSTD]$TBI_SINGLE_THREADS

routine (TBI_ROUTINES module)
operations, 329

MMG_STD$ALLOC_PAGSWP_PAGES
routine (PAGE_FILE module)

allocation of swap space, 378
control flow, 285 to 286

MMG_STD$ALLOC_SWAP_SPACE
routine (PAGE_FILE module)

operations, 377
MMG_STD$CHECK_CONTRACT_64

routine (SYSCREDEL module)
alternative entry point for CHECK_

CONTRACT_64, 203
MMG_STD$CHECK_CONTRACT_64_l

routine (SYSCREDEL module)
alternative entry point for CHECK_

CONTRACT_64, 203
MMG_STD$CREPAG_64 routine

(SYSCREDEL module)
alternative entry point for

MMG$CREPAG_64, 134
MMG_STD$DALCSTXSCN routine

(PHDUTL module)
alternative entry point for

MMG$DALCSTXSCN, 190
MMG_STD$DEALC_PAGSWP_PAGES

routine (PAGE_FILE module)
operations, 301

MMG_STD$DECPTREF_PFNDB routine
(PAGEFAULT module)

process page not copy-on-reference, 241
process page table page, 254 to 255

MMG_STD$DELGBLSEC routine
(SYSDGBLSC module)

alternative entry point for
MMG$DELGBLSEC, 191

MMG_STD$DELGBLWCB routine
(SYSDGBLSC module)

alternative entry point for
MMG$DELGBLWCB, 194

MMG_STD$DELWSLEX_64 routine
(PAGEFAULT module)

operations, 327
MMG STD$FAST_CREATE_64 routine

(SYSCREDEL module)
operations, 134

MMG STD$FREWSLX_64 routine
(PAGEFAULT module)

updating memory management data
structures, 240

MMG_STD$GSDSCAN routine
(SYSDGBLSC module)

operations, 159
MMG STD$INCPTREF_64 routine

(PAGEFAULT module)
control flow, 270

MMG_STD$ININEWPFN_64 routine
(PAGEFAULT module)

control flow, 268 to 269
MMG STD$ININEWPFN_DZRO_64

routine (PAGEFAULT module)
control flow, 268
memory-resident global demand zero

section page, 264
MMG_STD$IOUNLOCK_BUF routine

(IOLOCK module)
releasing direct I/O buffer pages, 241

MMG_STD$LCKBUFOBJPAG routine
(SYSLKWSET module)

alternative entry point for LCKBU-
FOBJPAG, 209

MMG_STD$LCKULKPAG routine
(SYSLKWSET module)

alternative entry point for
MMG$LCKULKPAG, 339

MMG_STD$MAKE_WSLE_64 routine
(PAGEFAULT module)

control flow, 269 to 270
updating data structures for new

WSLE, 254
MMG_STD$PTEREF_64 routine (SVAPTE

module)
control flow, 220

MMG_STD$SETFLTPAG_64 routine
(SYSSETPRT module)

alternative entry point for SETFLT-
PAG_64, 223

MMG_STD$SETPRTPAG_64 routine
(SYSSETPRT module)

Index-30

MMG_STD$SETPRTPAG_64 routine
(SYSSETPRT module) (Cont.)

alternative entry point for SETPRT-
PAG_64, 220

MMG_STD$TRY_ALL_64 routine
(SYSCREDEL module)

operations, 134
MMG_STD$USE_RES_MEM routine

(MEM_ALLOC module)
control flow, 173

modes
See access modes

modified page list
cache, characteristics and use, 38
characteristics and use, 33
doubly linked, 86
flushing, 277
high limit, clearing to wake swapper,

355
insertion of page removed from working

set, 327
listhead location, 86
location of modified available pages,

229
maintained by swapper, 354
page fault from, resolving, 248
selective purging, when requested, 277,

324
size, effect on resource wait, 326
SYSGEN parameter

that specifies low limit, 278
used when shrinking, 279

modified page write
clustering, 284
delaying while lowering working set

limit, 332
I/O request descriptions, 292(table),

294 (table)
to a page file, example, 287, 288 (fig.)
$UPDSEC compared with, 289
when requested, 276 to 277
writing to backing store, 284 to 285

modified page writer
See also MMG$WRTMFYPAG routine
alternative name for swapper, 33, 229
control flow, 278 to 283
I/O completion routine

control flow, 283
operations on write error, 248

IRP listhead, 279

modified page writer (Cont.)

MAINTAIN request, 278
OPCCRASH request, 278
operations, 276
page table arrays, 118 to 121
PAGE_TABLE request, 278
requesting, 276 to 278
SCH$GL_SIP, indication of in-progress

writes, 279
SVAPTE request, 277
writing process page not copy-on-

reference, 241
modified page writer I/O request packet

See MPW IRP
modify bit (GPTE)

setting, 263, 275
modify bit (PTE)

See also saved modify bit
clearing, 240, 291
meaning, 21, 68
saving in PFN database, 240
set by software, 66
setting, 240, 248, 252, 263, 264, 275

MPW IRP (modified page writer I/O
request packet)

layout, 280 (fig.)
MPW$GL_IRPBL cell

MPW IRP listhead, 279
MPW$GL IRPFL cell

MPW IRP listhead, 279
MPW$GL STATE cell

highest pending modified page write
request, 277

MPW$GL SVAPTELOW cell
address of lowest PTE for modified

page list purge, 281
MPW$INIT routine (WRTMFYPAG

module)
operations, 121

MPW_HILIMIT parameter (SYSGEN)
effect on modified page writing, 276
swapper use of, 354

MPW_IOLIMIT parameter (SYSGEN)
maximum number of concurrent I/O

operations, 120
maximum number of concurrent page

writes, 279
MPW_LOLIMIT parameter (SYSGEN)

B ~ C E use of, 363

Index-31

MPW_LOLIMIT parameter (SYSGEN)
(Cont.)

effect on nonpaged pool expansion, 438
modified page list low limit, 278

MPW_LOWAITLIMIT parameter
(SYSGEN)

default low limit for modified page list,
279

effect on placing kernel thread into
RSN$_MPWBUSY state, 304

effect on removing a modified page from
working set, 326

swapper use of, 362
MPW_THRESH parameter (SYSGEN)

B ~ C E use of, 363
MPW_WAITLIMIT parameter (SYSGEN)

effect on placing kernel thread into
RSN$_MPWBUSY state, 304

effect on removing a modified page from
working set, 326

MPW_WRTCLUSTER parameter
(SYSGEN)

effect on size of swap space, 360
maximum size of modified page write

cluster, 285
minimum size for $UPDSEC cluster,

290
target size for

modified page write cluster, 114,
285

$UPDSEC cluster, 291
multiprocessor systems

See SMP systems
multithreaded processes

automatic working set limit adjustment
in, 336

COLPG wait for page fault, 249
invalidating translation buffer entries

for, 200
kernel threads running on multiple

processors, 328
meeting scheduling state constraints in

OSWPSCHED table, 371
TROLL table, 374

page fault effect on, 249
page fault handling upcall, 233, 234

MWAIT (miscellaneous wait state)
See also kernel thread states; resource

wait
placing a kernel thread into, 233

N
naming conventions

entry points, xxiv
no-execute bit (PTE)

meaning, 68
no-TB-miss-memory-barrier-required bit

(PTE)
clearing, 240
OpenVMS Alpha use of, 20
setting, 240, 246, 248, 252, 263, 264,

275
NOCLUSTER parameter (SYSGEN)

determining if page fault clustering is
enabled, 271

nonpaged dynamic memory
See pool- nonpaged

nonpaged pool
See pool- nonpaged

nonuniform memory access
See NUMA

NOPOBUFS linker option
constraint on expansion of process

allocation region to P0 space, 451
NOPAGEFILE (console error message)

page fault allocation, 285
NOPGFLSWP parameter (SYSGEN)

inhibits swapping to page files, 113
swapper use of, 358

NPAGECALC parameter (SYSGEN)
allowing for automatic calculation of

NPAGEDYN SYSGEN parameter,
430

NPAGEDYN parameter (SYSGEN)
controlling nonpaged pool, 430
effect on nonpaged pool expansion, 439
NPAGECALC parameter allows for

automatic calculation of, 430
NPAGERAD parameter (SYSGEN)

effect of SYSGEN parameter RAD_
SUPPORT on, 430

effect on size of initial per-RAD pool
section, 441

NPAGEVIR parameter (SYSGEN)
controlling nonpaged pool, 430, 437
effect on nonpaged pool expansion, 439

NPAG_AGGRESSIVE parameter
(SYSGEN)

controlling nonpaged pool reclamation,
435

Index-32

NPAG_BAP_MAX parameter (SYSGEN)
effect on BAP initialization, 444

NPAG_BAP_MAX_PA parameter
(SYSGEN)

effect on BAP initialization, 444
NPAG_BAP_MIN parameter (SYSGEN)

effect on BAP initialization, 444
NPAG_BAP_MIN_PA parameter

(SYSGEN)
effect on BAP initialization, 444

NPAG_GENTLE parameter (SYSGEN)
controlling nonpaged pool reclamation,

435
NPAG_INTERVAL parameter (SYSGEN)

controlling nonpaged pool reclamation,
435

$NPHDEF macro
defines offset in pool history buffer,

461
NPOOL structure

characteristics and use, 427
contents, 427 (fig.)
field definitions, 427 to 428
initializing, 431

NPOOL$AR_LSTHDS field
definition and use, 427, 441, 443

NPOOL$L_BAP_POOL_DATA field
definition and use, 427

NPOOL$L_GRAN_MASK field
definition and use, 428

NPOOL$L_MAX_LSTHDS field
definition and use, 441

NPOOL$L_NUM_LOOKASIDE field
definition and use, 428

NPOOL$L_ON_RAD_DEALLOC field
definition and use, 441

NPOOL$L_POOL_FLAGS field
definition and use, 443

NPOOL$L_POOL_MAP_SEGMENTS field
definition and use, 427

NPOOL$L_POOL_MAP_SIZE field
definition and use, 427

NPOOL$L_RINGBUFCNT field
definition and use, 427

NPOOL$L_TOTAL_DEALLOC field
definition and use, 441

NPOOL$PS_NEXTNPH field
definition and use, 427

NPOOL$PS_POOL_MAP field
definition and use, 427

NPOOL$PS_RINGBUF field
definition and use, 427

NPOOL$PS_VARIABLE_LIST field
definition and use, 428

NPOOL$Q_PER_POOL_DIAG field
definition and use, 443

null page
term definition, 70

NUMA (nonuniform memory access)
accessing physical memory, 402
characteristics and use, 3
image code huge pages for RADs, 75
multiple sections of nonpaged pool on,

436
page table hierarchy on, 67(fig.)
per-RAD pool on, 426, 440
physical memory configuration on

GS160 system, 4
physical memory sharing on, 33
recording number of associated RAD,

46
storage for variable-length allocation

on, 402
virtual address translation, overview,

19
NUMA platforms

allocating pages, 268

O
object modules

names, xxiv
object rights block

See ORB
OPCCRASH request (modified page

writer)
description, 278

OpenVMS Alpha executive
See executive

OpenVMS Alpha listings
names, xxiv

OpenVMS Alpha operating system
See also address space; executive
address space, characteristics and use,

29 to 31
components, xxiv

ORB (object rights block)
allocated from paged pool, 449
GSD field containing address of, 103

OSWPSCHED module

Index-33

OSWPSCHED module (Cont.)
SCH$OSWPSCHED

operations, 367 to 368, 371
OSWPSCHED table processing,

375 to 376
TROLLER, control flow, 374 to 375

OSWPSCHED table
characteristics and definitions, 369 to

373
entries and sections, 370(table), 371

(table)
multithreaded processes meeting

scheduling state constraints in,
371

processing to find outswap candidate,
375 to 376

outer access mode
term definition, xxv

outswap
See also PCB$L_SWAPSIZE; PCB$L_

WSSWP; swapper
disabling, PCB$L_STS bit that

specifies, 44
example, 383 (fig.), 384 (fig.), 385 (fig.)
global pages, 381
number of pages, PCB field that

specifies, 45
operations, 377 to 389
pages with direct I/O in progress, 381
pages within buffer objects, 381
PHD and page tables, 382, 386 to 389

partial, 386 to 387
preparing page tables for, 357
preparing PHD for, 387 to 389
process body, 378 to 386
processes, PCB fields that describe, 46
selecting process for, 377

OUTSWAP routine (SWAPPER module)
control flow, 366 to 368

P
P0 space

created by image activator, 30
definition, 12
deleted at image rundown, 30
OpenVMS Alpha use of, 30
program region, 47
protections on, 30

P1 space

P1 space (Cont.)
control region, 47
creating, by executive, 61
definition, 12
deleted at image rundown, 30
mapping PHD into, swapper

implications, 392
OpenVMS Alpha use of, 29
protections on, 30

P2 space
64-bit program space, 47
definition, 14
deleted at image rundown, 30
OpenVMS Alpha use of, 30
protections on, 30

packets

See also fixed-length packets
fixed-length, compared to variable-

length blocks, 417
term definition, 402

page cluster size
reducing paging I/O overhead with, 39

page coloring
characteristics and use, 88
classifications, 88
free page list, example, 89(fig.)

page fault handler

See also page faults; MMG$PAGEFAULT
routine

implementation, 229
term definition, 228
working set list use by, 53
working set size affected by, 317

page fault wait state

See PFW
page faults

See also memory management; page
fault handler; page transitions;
paging; swapper; working set list

characteristics, 5
during modified page writing, 248
exception information, 25
exception parameters, 229
faulting

page in, 6
page out, 6

for process pages, 248
from release pending page location,

248

Index-34

page faults (Cont.)

generating, 25
handling

common steps, 230 to 235
initial, 229
on a mass storage medium,

231(fig.)
I/O request descriptions, 292(table),

293 (table)
IPL 2 highest permitted, reasons for,

230
page read completion, operations, 274

to 276
page table, transformed from code or

data page faults, 232, 254
preventing during elevated IPL

execution, 347
rate, effect on working set size, 40
resolving from free page list, 246 to

248
resolving from modified page list, 248
soft, 33, 34

actions that cause, 257
term definition, 229, 246

TB miss PALcode routine generating,
229

page file control block

See PFL
page file map

See PFLMAP
page file quota

charged at virtual address space
creation, 135

constraint on process address space
size, 131

L3PTs that do not require, 131
pages that do not require, 131

page files

See also PFL
assigning, 284
backing store for demand zero pages,

237
backing store, constraint on process

address space, 132
cluster factor, 274
data structures, 112 to 118
deallocating pages in, 301
deinstalling, 118, 302
described by two bitmaps, 113

page files (Cont.)

linking PFLs into circular lists, 118
modified page write to, example, 287,

288 (fig.)
null page file control block, address of,

117
overview of use, 301
page transitions for page located in,

control flow, 245
page, transitions, 247 (fig.)
pr imary

SYSINIT use, 118
PTEs containing a page file page

number, 70
space allocation, 285 to 286
space flee, PFL field that specifies, 116
SYSGEN parameter that inhibits

swapping to, 113
writing modified pages to, 285

page flame number

See PFN
page lists

See also bad page list; free page list;
modified page list; zeroed page list

caches, characteristics and use, 38
doubly linked, 86
listhead locations, 86

page location code
PFN$L_PAGE_STATE field, meaning,

91 t o92
page read cluster

characteristics and use, 271 to 274
formation of, 272
maximum size, 274
operations, 271

page read error
cross-mode

handling, 235
term definition, 235

further processing, 276
handling, 235
PFN database information, 92
processing, control flow, 275
term definition, 235

page replacement algorithm
process-local, virtual memory design

component, reasons for, 37
TB check made by, 22

page table base register

See PTBR

Index-35

page table entry
See PTE

page table space
accessing page tables through, II
accessing requires 64-bit addressing,

14
characteristics and use, 11 to 12, 14

to 17
constraints, 16
constructing, 16 to 17
contains linear array of L3PTEs, 16
contents, 14
initializing, 16
layout, 17 (fig.)
mapping of, 16 to 17
number of L3PTs contained in, 17
process-private page tables mapped

into, 14
shared page tables mapped into, 14
TB miss PALcode routine use of, control

flow, 23 to 25
transforming page table hierarchy into,

18 (fig.)
page tables

See also GPT; LIPT; L2PT; L3PT; SPT
accessing through page table space, 11
aider process selected for inswap, 396

(fig.)
arrays

modified page writer, 118 to 121
swapper, 118 to 121

characteristics and use, 5
creating address space, effect on, 131
global, not described by WSLEs, 232
hierarchy, 8, 109(fig.)

OpenVMS Alpha, 15 (fig.)
transforming into page table space,

18 (fig.)
mapping system space, 11
page faults for, 232, 233
pages

breaking ties to higher-level page
table, 255

cluster factor, 274
creating, 136
dead, identifying, 324
dead, releasing, 322 to 324
dead, term definition, 323

page tables
pages (Cont.)

global, determining, based on
faulting virtual address, 230
(fig.)

global, not described by WSLEs,
232

global, PFN$L_SHRCNT meaning,
298

locked into working set list, 312,
313

number of outswapped PHD and,
PCB field that specifies, 45

outswapping, 382
process, determining, based on

faulting virtual address, 230
(fig.)

process, PFN$L_SHRCNT
meaning, 297 to 298

transitions, 253 (fig.)
updating, page fault handling, 254

preparing, for outswap, 357, 387 to 389
process

formerly pageable part of PHD,
255

I/O request descriptions,
292(table), 293 (table)

page, page transitions, control flow,
250 to 255

pages described by WSLEs, 232
process-private

accessibility, 11
characteristics and use, 60 to 71,

131
hierarchy, 63 (fig.), 67 (fig.)
mapping into page table space, 11,

14
rebuilding, 393 (table), 394 (table),

398 (fig.)
rebuilding, after inswap, 393 to

395
shared page tables relation to, 109

(fig.)
swapper access to, 380

reducing memory needed for, 8
relations among, 9 (fig.)
replicated system

characteristics and use, 65 to 66
hierarchy, 67 (fig.)

Index-36

page tables (Cont.)

sections, that map Galaxywide global
sections, 178 to 179

shared
benefits, 158
Galaxywide section, 178
global section, creating, 174
global section, mapping, 174, 175
global sections mapped with, 309
mapping, 187
mapping into page table space, 14
mapping memory-resident global

sections, 108
not represented in working set list,

131
page file quotea not required, 131
process-private page tables relation

to, 109 (fig.)
region, creating, 108, 129
region, deleting, 191

swapper access to, 356
swapper use of, 357
system

hierarchy, 63 (fig.)
not pageable, 62

virtual address translation use of, 8 to
9

when kernel thread placed into
execution, 11

page transitions

See also page faults
buffer object page, 251 (fig.)
copy-on-reference page, 243(fig.)
demand zero page, 243 (fig.)
global pages

control flow, 256 to 266
copy-on-reference, 260 (fig.)
copy-on-reference, control flow, 260

to 262
demand zero section, control flow,

264 to 266
memory-resident, 265 (fig.)
page-file section, 263 (fig.)
page-file section, control flow, 262

to 264
read-only, 258 (fig.)
read-only, control flow, 256 to 259
writable, control flow, 259

not copy-on-reference page, 239(fig.)
page tables, 230 (fig.)

page transitions (Cont.)

pages located in a page file, control
flow, 245, 247 (fig.)

process page table pages, 253(fig.)
process page table pages, control flow,

250 to 255
process pages

buffer object, control flow, 249 to
250

characteristics and use, 236 to
255

copy-on-reference, control flow, 242
to 245

demand zero, control flow, 245 to
246

in transition state, control flow,
246 to 249

not copy-on-reference, control flow,
237 to 242

system pages
characteristics and use, 266 to

267
copy-on-reference, control flow, 267
demand zero, control flow, 267
not copy-on-reference, control flow,

266 to 267
page type bits

located in
PFN$L_PAGE_STATE, 230
WSLE, 230

page types
identification, 230 (fig.)
transitions

PFN$C_GBLWRT, 259 to 266
PFN$C_GLOBAL, 256 to 259
PFN$C_GPGTBL, 267
PFN$C_PPGTBL, 250 to 255
PFN$C_PROCESS, 236 to 250
PFN$C_SYSTEM, 266 to 267

page write cluster
components of, 285
determining maximum size, 285
formation, 284
size, 284 to 285

factor for $UPDSEC, 290, 291
terminating, conditions that affect, 291
writing to backing store, 284 to 285

page-and-swap-file vector

See also PFL
array, index into, 360

Index-37

page-and-swap-file vector (Cont.)

characteristics and use, 117 to 118
header, symbolic names for fields in,

defined by $PTRDEF macro, 117
PFL address stored in, 114
virtual address, 117

page/swap file mapping window block

See PFLMAP
PAGECRIT (console error message)

page fault allocation, 286
paged dynamic memory

See pool- paged
paged pool

See pool - paged
PAGEDYN parameter (SYSGEN)

size of paged pool, 448
PAGEFAULT module

MMG$FREWSLE
control flow, 321
finding room in working set list for

new page, 232
locking pages into working set,

operations, 350
modified working set list

replacement algorithm use,
325

releasing dead page table page,
322 to 324

removing global read-only page
from working set list, 259

removing process page table page
from working set list, 252, 254

reusing WSLEs, control flow, 326,
326 to 328

updating memory management
data structures, 240

MMG$FREWSLX_64, alternative entry
point to MMG$FREWSLE, 326

MMG$PAGEFAULT
clustered read, 271 to 272
demand zero page, 245 to 246
errors returned by, 235 to 236
global copy-on-reference page, 261

to 262
global page-file section page, 262

to 264
global read-only page, 256 to 257
memory-resident global demand

zero section page, 264 to 266

PAGEFAULT module
MMG$PAGEFAULT (Cont.)

page fault handling, common steps,
230 to 234

process page copy-on-reference,
243

process page not copy-on-reference,
237 to 238

process page table page, 251 to
252, 252 to 254

resolving page fault from free page
list, 246 to 248

system page not copy-on-reference,
266

testing for outswap, 255
MMG_STD$DECPTREF_PFNDB

process page not copy-on-reference,
241

process page table page, 254 to
255

MMG_STD$DELWSLEX_64,
operations, 327

MMG_STD$FREWSLX_64, updating
memory management data
structures, 240

MMG_STD$INCPTREF_64, control
flow, 270

MMG_STD$ININEWPFN 64, control
flow, 268 to 269

MMG_STD$ININEWPFN_DZRO_64
control flow, 268
memory-resident global demand

zero section page, 264
MMG_STD$MAKE_WSLE_64

control flow, 269 to 270
updating data structures for new

WSLE, 254
SCANDEADPT, operations, 323 to 324

PAGEFILE.SYS file
See SYS$SPECIFIC: [SYSEXE]PAGEFILE.SYS

PAGEFILEFULL (console error message)
page fault allocation, 286

PAGEFRAG (console error message)
page fault allocation, 286

pagelet
term definition, 7

pages

Index-38

pages (Cont.)

See also buffer object pages; copy-on-
reference pages; demand zero -
pages; free pages; global pages;
huge pages; modified page writer;
null page; page tables - pages;
physical pages; process pages;
system pages; virtual pages

characteristics, 7
definition, 5
effect of size on virtual addresses, 10

(table)
partial, process sections, 57, 70
size, 5, 7
systemwide cache of recently used

virtual pages, modified and free
page lists used as, 33

untested, characteristics and use, 92
whose WSLEs are in working set list

permanently locked regions, 312
working set

states, 379
swapper operations, 380

PAGE_FILE module
MMG_STD$ALLOC_PAGSWP_PAGES

allocation of swap space, 378
control flow, 285 to 286

MMG_STD$ALLOC_SWAP_SPACE,
operations, 377

MMGSTD$DEALC_PAGSWP_PAGES,
operations, 301

PAGE_TABLE requests (modified page
writer)

description, 278
MMG$WRTMFYPAG control flow, 279

to 281
PAGFILCNT parameter (SYSGEN)

obsolete, 117
paging

See also MMG$PAGEFAULT
demand, 6
dynamics, overview, 227 to 229
I/O, mechanisms, 292 to 295
modified page writer PTE array,

operations, 120 to 121
PFL use by, 285 to 286
reducing I/O overhead, mechanism for,

39
replacement

See replacement paging

paging (Cont.)

scheduling influenced by, 302
swapping compared with, 36, 37 to 37

(table), 39
working set replacement algorithm,

compared with other virtual
memory architectures, 38

PAGIO routine (IOCIOPOST module)
global read-only page I/O completion,

257
page read completion

control flow, 274 to 276
operations, 234

process copy-on-reference page I/O
completion, 243

process page not copy-on-reference I/O
completion, 240

system page not copy-on-reference I/O
completion, 267

PAGNTRNVAL bugcheck
generated by EXE$DELETE_BUFOBJ,

212
PAGTBLPFC parameter (SYSGEN)

default cluster factor for process page
table pages, 274

PALcode routines
See also TB miss; REI
double TB miss, control flow, 24 to 25
implementing queue insertions and

removals, 417, 419
LDQP, accessing physical addresses, 5
STQP, accessing physical addresses, 5
TB miss

control flow, 23 to 25
loading exception parameter

information into registers,
25

partial section bit (GPTE)
setting, 161, 165

partial section bit (PTE)
meaning, 70
setting, 146, 147, 149

PCB (process control block)
characteristics and use, 44 to 46
KTB overlaying, 44
memory management, field definitions,

45 (fig.)
system

See system PCB
PCB$A_FREWSLE_CALLOUT field

Index-39

PCB$A_FREWSLE_CALLOUT field
(Cont.)

characteristics and use, 325
definition and use, 46

PCB$K_MAX_KT_COUNT field
maximum number of kernel threads,

59
PCB$L_ACC_WAITIME field

accumulated wait time, 337
use by EXE$CHK_WAIT_BHVR, 337

PCB$L_APTCNT field
definition and use, 45, 360

PCB$L_BUFOBJ_CNT field
definition and use, 46

PCB$L_FREWSLE_PARAM field
characteristics and use, 325
definition and use, 46

PCB$L_GPGCNT field
definition and use, 46
working set size calculated from, 313

PCB$L_HOME_RAD field
number of associated RAD on NUMA

system, 46
PCB$L_PHD field

definition and use, 46
PCB$L_PIXHIST field

implications in multithreaded
processes, 336

PCB$L PPGCNT field
decrementing, 241
definition and use, 46
incrementing, 269
working set size calculated from, 313

PCB$L STS field
See also PCB$V__x bits
definition and use, 44

PCB$L STS2 field
See also PCB$V_x bits
definition and use, 44

PCB$L_SWAPSIZE field
definition and use, 46
swap space size, 359, 360

PCB$L_WSSWP field
definition and use, 46, 360
swap space location, 359

PCB$Q_BUFOBJ_LIST field
definition and use, 46, 99

PCB$Q_KEEP_IN WS field
definition and use, 46
locking system pages using, 350

PCB$Q_KEEP_IN_WS field (Cont.)
starting address of virtual pages locked

in working set list dynamic region,
313

synchronizing access to, using inner
mode semaphore, 350

PCB$Q_KEEP_IN_WS2 field
definition and use, 46
ending address of virtual pages locked

in working set list dynamic region,
313

locking system pages using, 350
synchronizing access to, using inner

mode semaphore, 350
PCB$V_DISAWS bit (PCB$L_STS field)

definition and use, 44
PCB$V_FREDLOCK bit (PCB$L_STS2

field)
definition and use, 45

PCB$V_PHDLOCK bit (PCB$L_STS2
field)

definition and use, 44
PCB$V_PHDRES bit (PCB$L STS field)

definition and use, 44
PCB$V_PSWAPM bit (PCB$L STS field)

definition and use, 44
PCB$V_RES bit (PCB$L_STS field)

definition and use, 44
PCHECK$B_ALLO field

definition and use, 456, 457
PCHECK$B_FLAGS field

definition and use, 456
PCHECK$B_FREE field

definition and use, 456, 457
PCHECK$B_SIZE_TO_CHECK field

definition and use, 456, 457
per-RAD pool

See pool- per-RAD
Perform Fast I/O system service

See $IO_PERFORM
PFCDEFAULT parameter (SYSGEN)

global page file section page fault
cluster value, 166, 167

PFL (page file control block)
address stored in page-and-swap-file

vector, 114
characteristics and use, 113 to 117
field definitions, 114 to 117
initializing, 114

Index-40

PFL (page file control block) (Cont.)
layout, 115 (fig.)
linking into circular lists, 118
null, address of, 117
paging use of, 285 to 286
use during page file space allocation,

285 to 286
PFL$L_FREPAGCNT field

definition and use, 116
PFL$L_PFC field

cluster factor for page files, 274
PFL$L_WINDOW field

definition and use, 360
PFLMAP (page file map)

field definitions, 359
layout and field definitions, 360 (fig.)
swapper use of, 359

PFLMAP$B_ACTPTRS field
characteristics and use, 359

PFLMAP$B_TYPE field
characteristics and use, 359

PFLMAP$L_PAGECNT field
characteristics and use, 359

PFLMAP$Q_PTR field
characteristics and use, 359

PFLMAP$W_SIZE field
characteristics and use, 359

PFN (page frame number)
characteristics and use, 5
copied into I/O adapter map registers,

119
database

address, 83
as a physical memory data

structure, 32
changes aider inswap, 398 (fig.)
characteristics and components, 82

to 99
effect on size of system space, 61
entry characteristics, 83
field descriptions, 85 (table)
fields that compose, 86 (fig.)
highest entry in, 82, 83
initializing records, 175
mapped by own granularity hint

region, 75
record-oriented, 84
swapper use of, 357
synchronizing access to, 83
SYSBOOT allocates space for, 82

PFN (page frame number) (Cont.)

fields in L3PTEs, 150
free page list, 33
identifying physical page, 7
index into PFN database, 84
list, private

characteristics and use, 89
pages managed independently of

OpenVMS, 92
mapped global section, creating, 157
mapped process section, creating, 150

to 153
modified page list, 33
recording in GPTEs, 175
transforming, 84
zeroed page list, 33

PFN database
See PFN - database

PFN memory map

See PMAP
PFN$AL_COLOR_HEAD field

definition and use, 88
PFN$AL_COLOR_TAIL field

definition and use, 88
PFN$AL_COUNT field

definition and use, 86
PFN$AL_HEAD array

page list listhead locations, 86
PFN$AL_TAIL array

page list tail locations, 86
PFN$C_RELPEND page location code

characteristics and use, 92
PFN$C_UNTESTED page location code

characteristics and use, 92
PFN$GL_PHYPC~NT cell

modified when processing RMDs, 81
number of fluid pages in physical

memory, 78
PFN$L_BLINK (backward link) field

definition and use, 86, 90
free page list, example, 87(fig.)
physical page information, 84

PFN$L_COLOR_BLINK (backward link)
field

definition and use, 96
physical page information, 84

PFN$L_COLOR_FLINK (forward link)
field

definition and use, 96
physical page information, 84

Index-41

PFN$L_FLINK (forward link) field
definition and use, 86, 90
free page list, example, 87(fig.)
physical page information, 84

PFN$L_GBL_LCK_CNT field
definition and use, 91

PFN$L_PAGE_STATE field
bad page status bit, 92
balance slot bit, 94
buffer object status bit, 92
collided page status bit, 92
contents, 91 (fig.)
definition and use, 86, 91 to 94
delete contents status bit, 93
location bits

changing from active, 241
changing to active, 240, 243, 246,

248, 249, 252, 257, 262, 275
changing to read error, 275
changing to read in progress, 238,

243, 257, 261
changing to release pending, 243,

249
changing to write in progress, 241,

282, 291
page location codes, 91 to 92
page read error page, 92
physical page information, 84
read in progress page, 92
release pending page, 91
report event status bit, 93
saved modify status bit, 93
shared memory bit, 94
swap page valid bit, 94
top-level page table bit, 94
transition page types distinguished by,

71
transition state of global page, 106
unavailable page bit, 93
write in progress page, 92
zeroed page list, 92
zeroed shared memory page bit, 94

PFN$L_PHD field
definition and use, 95

PFN$L_PTE field
definition and use, 94

PFN$L_PT_PFN field
contents, 95
definition and use, 94
traversing links of, 95

PFN$L_SHRCNT (share count) field
decrementing, 241, 242, 254, 255, 259,

281
definition and use, 90
for global page table page, 267
incrementing, 238, 245, 249, 250, 252,

254, 257, 261, 262, 270, 395
initialized to 1

for global section page, 269
for memory-resident section page,

269
meaning for

global page, 298
global page table page, 298
process page table page, 297 to

298
system page, 299

PFN$W_REFCNT, effect on, 270, 296,
297

transition from 0 to 1, 298
transition from 1 to 0, 255, 259, 298

PFN$L_WSLX_QW (working set list
index) field

definition and use, 90
PFN$PQ_DATABASE cell

PFN database starting address, 83
PFN$Q_BAK field

clearing when page contents deleted,
242

contents, 97 (fig.)
definition and use, 84, 96, 106
initializing for process page that is

copy-on-reference, 243
initializing for process page that is not

copy-on-reference, 238
swapper use of, 357

PFN$Q_BAK_PRVPFN field
definition and use, 84, 96

PFN$Q_PTE_INDEX field
contents, 95
definition and use, 94

PFN$V SWPPAG_VALID bit (PFN
database)

definition and use, 96
PFN$W_BO_REFC field

decrementing, 250
definition and use, 98
incrementing, 249

PFN$W_IO_STS field
characteristics and use, 92

Index-42

PFN$W_IO_STS field (Cont.)
definition and use, 98

PFN$W_PT_LCK_CNT field
characteristics and use, 299 to 300,

300
decrementing, 344
definition and use, 98
incrementing, 340

PFN$W_PT_VAL_CNT field
characteristics and use, 299
decrementing, 241, 252, 254
definition and use, 98
effect on PHD$L_PTCNTVAL, 269
incrementing, 254, 269, 270
not maintained for system space page

table pages, 266
transition from 1 to 0, 254

PFN$W PT_WIN_CNT field
adjusting, 200
characteristics and use, 300
decrementing, 199, 200
definition and use, 98
incrementing, 152, 156, 175, 187, 394
initializing, 175

PFN$W_REFCNT (reference count) field
actions triggered by decrementing to

zero, 241
characteristics and use, 296 to 297
decrementing, 240, 241, 242, 243, 249,

252, 257, 274, 275, 292
definition and use, 95
incrementing, 238, 241, 245, 248, 249,

250, 256, 261, 270, 282
initialized to 1

for global section page, 269
for memory-resident section page,

269
transition from 1 to 0, 240, 274

PFN$W SWPPAG field
definition and use, 96
I/O error status, 275

PFN-mapped sections
See global sections - PFN-mapped;

process sections - PFN-mapped
PFNMAP (map to specific physical pages

privilege)
accessing physical pages, 141
creating global PFN-mapped section,

157

PFNMAP (map to specific physical pages
privilege) (Cont.)

required to delete PFN-mapped global
section, 189

use by
$CRMPSC to create PFN-mapped

process section, 150
$DGBLSC to delete PFN-mapped

global section, 189
PFN_COLOR_COUNT parameter

(SYSGEN)
number of page coloring classifications,

88
rounding up, at system initialization,

88
PFN TO_ENTRY macro

calculating PFN database record
address, 84 (ex.)

PFRATH parameter (SYSGEN)
automatic working set limit adjustment

use of, 335
PFRATL parameter (SYSGEN)

automatic working set limit adjustment
use of, 336, 337

$PFREEDEF macro
offsets to free pool space defined by,

458
PFW (page fault wait state)

See also kernel thread states; page
faults

characteristics and use, 302
ending, 275
page fault that results in, 248
placing a kernel thread into, 234
wait for I/O completion on page to be

deleted, 195, 198
PGFIPLHI bugcheck

generated
by page fault handler, 230, 338,

346
during pool poisoning, 458

PHD (process header)
accessing through CTL$GL_PHD cell,

51
address contained in PCB and KTB, 46
aider process selected for inswap, 396

(fig.)
balance set slots

arrays, 111 (fig.)
occupant of, 110

Index-43

PHD (process header)
balance set slots (Cont.)

use with, 110 (fig.)
characteristics and use, 14, 49 to 59
checking page fault address in, 255
deleted process, reclaiming memory

from, 366
double-mapped, 50
expanding, 59
fixed area, 51

layout, 52 (fig.), 53 (fig.)
floating-point register save area as

component of, 51
HWPCB contained in, 51
index array, 110 (fig.), 111, 112
inswap, 390 to 393
locating address of, from PFN, 95
mapping into P1 space, swapper

implications, 392
memory residence, PCB$L_STS bit that

specifies, 44
outswap, 382, 386 to 389

disabling, PCB$L_STS bit that
specifies, 44

disabling, PCB$L_STS2 bit that
specifies, 44

distinguished from process body
outswapping, 387

freeing for, 386
information used during, 50
number of outswapped PHD and

page table pages, PCB field
that specifies, 45

outswapped process, reclaiming
memory from, 366

preparing for, 387 to 389
P1 space address of, 51
P1 window to, implications of, 392
page arrays

BAK, characteristics and use, 58
BAK, swapper use of, 357
characteristics and use, 50, 58

PFN field that specifies address of, 95
process memory management data

recorded in, 31
process-specific memory management

data structures, 50 (fig.)
PST as component of, 49

characteristics and field definitions,
54 to 58

PHD (process header)
PST as component of (Cont.)

dynamic growth area effect on, 50
location, 55 (fig.)

reference count array, 110(fig.), 111
reference count, swapper use of, 386
size, 110

relation to working set list, 317
swappability, 50
swapper use of, 354, 356 to 357
synchronizing access to, 51
unusual characteristics, 50 to 51
working set list

as component of, 53 to 54, 308
physical memory pages described

by, 32
PHD BAK array

See PHD - page arrays
PHD$L_DFWSCNT field

definition and use, 311
PHD$L_EXTDYNWS field

definition and use, 311, 319
PHD$L_FRED_OFF field

definition and use, 59
PHD$L_FREPOVA field

virtual address of first unmapped page
in P0 space, 49

PHD$L_FREP1VA field
virtual address of first unmapped page

in P1 space, 49
PHD$L_PGTBPFC field

cluster factor for process page table
pages, 274

PHD$L_PHVINDEX field
balance set slot number, 111

PHD$L_PST_BASE_MAX field
maximum size of PST, 56

PHD$L_PST_BASE_OFFSET field
PST location, 54, 55 (fig.), 56
PSTE references relative to, 54

PHD$L_PST_FREE field
most recent addition to PSTE free list,

56
PHD$L_PST_LAST field

definition and use, 55
largest index of a PSTE, 55(fig.)

PHD$L_PTCNTACT field
characteristics and use, 298
decrementing, 255
incrementing, 254, 270, 395

Index-44

PHD$L_PTCNTACT field (Cont.)
number of active page table pages, 323

PHD$L_PTCNTLCK field
incrementing, 394
process page table page mapping locked

or window pages, 300
PHD$L_PTCNTVAL field

decrementing, 241, 252
incrementing, 254, 269, 270
number of page table pages with valid

WSLEs, 323
process page table page mapping valid

pages, 299
PHD$L_WSDYN field

address of WSLE following last WSLE
in region, 312

dynamic region ring buffer start, 312
PHD$L_WSEXTENT field

definition and use, 311
PHD$L_WSLAST field

index to last WSLE, 312
reset to eliminate empty unusable

WSLE, 322
working set ending address calculated

from, 310
working set list capacity calculated

from, 314
PHD$L_WSLIST field

permanently locked region index, 312
working set list capacity calculated

from, 312
PHD$L_WSLOCK field

locked by user request region index,
312

PHD$L WSNEXT field
index to most recently inserted WSLE,

313
PHD$L_WSQUOTA field

definition and use, 311
PHD$L_WSSIZE field

definition and use, 311
working set limit calculated from, 313

PHD$PQ_P0_FIRST_FREE_VA field
definition and use, 60

PHD$Q_BAK_ARRAY field
location of BAK array, 58

PHD$Q_FREE_PTE_COUNT field
address space checks against, 132
initializing, 132

PHD$Q_NEXT_REGION_ID field

PHD$Q_NEXT_REGION_ID field (Cont.)
definition and use, 48

PHD$V_NOACCVIO bit (PHD$L_FLAGS
field)

swapper setting of, 255
PHD$V_NO_WS_CHNG bit (PHD$L_

FLAGS field)
obsolete for locking system pages, 349

PHDUTL module
MMG$ALCPHD, operations, 331 to

332
MMG$DALCSTXSCN

control flow, 190 to 191
operations, 190

MMG$DALCSTXSCN1
alternative entry point for

MMG$DALCSTXSCN, 190
MMG$IMGRESET

working set limit reset by, 318
working set size decreased by, 319

MMG_STD$DALCSTXSCN
alternative entry point for

MMG$DALCSTXSCN, 190
PHV$GL_PIXBAS cell

See also PHD
starting address of process index array,

112
PHV$GL_REFCBAS_LW array

decrementing, 275
for page table page, 255, 283, 298

incrementing, 270, 282
for active page table page, 395
for page table page, 254, 298
for transition page table page, 252

starting address of reference count
array, 111, 300 to 301

physical address
characteristics, 5
references through PALcode routines, 5

physical address space
characteristics, 5

physical memory
See also memory; pages; physical pages
characteristics and mechanisms, 7 to

28
configuration, 78 to 79

Galaxy system, 2, 3 (fig.)
GS160 system, 4 (fig.)
SMP system, 2

Index-45

physical memory
configuration (Cont.)

uniprocessor system, 2
data structures, overview, 32 to 33, 77

to 78
definition, 1
extensions in support of VLM, 41
factors that reduce amount under

OpenVMS control, 77
managing, overview, 35
noncontiguous, supported, 32
parameters that control management

of, 35
partitioning in Galaxy platforms, 34 to

35
Reserved Memory Registry file that

describes, 80 to 81
sharing

on NUMA system, 33
overview, 33 to 35

testing
by console, 89
by OpenVMS, 89
deferred, 89

unlocking pages from, 343 to 344
use for improved application

performance, 41
physical memory map

See PMM
physical pages

See also pages
allocating, 32

for inswap, 397 (fig.)
on a NUMA platform, 268
page fault handling, 268 to 269
permanently, 438

breaking ties
to virtual pages, 242
with GPTEs, 259

characteristics, 7
deleting, 196
fluid, minimum required for pool

expansion, 438
lists of unoccupied, 86
page coloring classification effect on, 88
PFN database index, 84
RAD replication requirements, 65
section pages, use on Galaxy platform,

35

physical pages (Cont.)

size, 5
state indicated by PFN$L_PAGE_

STATE field, 91
virtual pages mapped to, 5

PHYSICAL_MEMORY parameter
(SYSGEN)

number of reserved pages in physical
memory, 78, 82

physical memory reserved by, 82
reducing amount of physical memory

under OpenVMS control, 78
specifying pages to be excluded from

OpenVMS use, 78
pixscan mechanism

effect of recent boost on automatic
working set limit adjustment, 336

swapper trimming affected by, 40
PMAP (PFN memory map)

array
allocating, 79
layout, 80 (fig.)

PMAP$L_PFN_COUNT field
definition and use, 79

PMAP$L_START_PFN field
definition and use, 79

PMM (physical memory map)
characteristics and use, 32, 78
field definitions, 79
layout, 79 (fig.)

POISON_PACKET routine (MEMORYALC
module)

pool poisoning operations, 457 to 459
pool

See also lookaside lists; process
allocation region

allocation statistics
BAP, 454
categories, 453
collecting, 454 (table)
per-RAD pool, 454
recorded in POOLZONE and

POOLZONE_PAGE structures,
455

use of, 453
areas, differences among, 403(table),

404 (table), 405 (table)
BAP

allocation statistics, 454
characteristics and use, 426

Index-46

pool (Cont.)
checking, 455 to 462

constraints, 460
operations, 459 to 460
POOLCHECK parameter effect on,

456
corruption of, detecting, 455 to 462
expanding, 433
filling, POOLCHECK parameter effect

on, 456
fixed-length packets

compared to variable-length blocks,
417

listhead locations, 417 (table)
structure and operations, 417 to

425
granularity, 411
history

buffer, layout, 461 (fig.)
recording, 461 to462
SDA utility displaying of, 461
SYSGEN parameters that affect,

461
nonpaged

See also reclamation
adaptive management, term

definition, 435
adjusting initial size of, 430
allocating, 431 to434
components of, 426
contraction only after bootstrap-

ping, 439
data structures, 427 to 429, 430
data structures, contents, 427(fig.)
deallocating, 434 to 435
expanding, 437
initializing, 430 to 431
listhead location, 413 (table), 417

(table)
lookaside lists, 429 (fig.)
on NUMA systems, 426, 436
protection, 426
reclamation, 435 to 437
synchronization, 439 to 440
uses of, 430

paged
allocating, 448
data structures located in, 449 to

450
deallocating, 448

pool
paged (Cont.)

expanding, 449
listhead location, 413 (table)
protection, 448
structure and operations, 448 to

450
synchronization, 449

per-RAD
allocating, 442
allocation statistics, 454
characteristics and use, 440
data structures, 440 to 441
data structures, relations among,

441 (fig.)
deallocating, 442
initializing, 441

poisoning
format of poisoned space, 458(fig.)
functions, 455
operations, 457 to459

space required by executive, 453
system space

characteristics and use, 422
creating, 422

term definition, 401
variable-length blocks

allocating, 412 to 414
allocating, example, 415 (fig.)
compared to fixed-length packets,

417
deallocating, 414 to 416
deallocating, example, 416(fig.)
layout, 412 (fig.)
listhead locations, 413 (table)
structure and operations, 411 to

416
zones

allocating packets from, 425
data structures, characteristics and

use, 423
data structures, relations among,

424 (fig.)
deallocating packets from, 425
lookaside lists, 422 to 425
reclamation, 425
routines that create, 447

POOL spinlock
held during

nonpaged pool allocation, 433

Index-47

POOL spinlock
held during (Cont.)

nonpaged pool deallocation, 435
nonpaged pool expansion, 438
nonpaged pool reclamation, 436

serializing access to nonpaged pool
variable-length list, 432, 434, 439

POOLCHECK bugcheck
generated

during pool checking, 460
when pool corruption is detected,

457
when pool is poisoned, 455
when pool's FREE pattern is not

intact, 459
reason codes, 460

POOLCHECK parameter (SYSGEN)
ALLO byte, definition and use, 457
characteristics and use, 455, 456 to 457
effect on loading monitor version of

SYSTEM_PRIMITIVES, 456
effect on recording pool history, 461
field and flag definitions, 456(table),

456 (fig.)
loading alternative versions, 453
SIZE_TO_CHECK byte, definition and

use, 457
$POOLCHECKDEF macro

POOLCHECK fields defined by, 456
POOLPAGING parameter (SYSGEN)

effect on paged pool creation, 448
POOLZONE structure

characteristics and use, 422 to 423
field definitions, 423
pool allocation statistics recorded in,

455
relations with other pool zone data

structures, 424 (fig.)
POOLZONE_PAGE structure

field definitions, 423
listheads for, 423
pool allocation statistics recorded in,

455
relations with other pool zone data

structures, 424 (fig.)
POOLZONE_REGION structure

characteristics and use, 422 to 423
describing XFC lookaside lists, location

of, 447
field definitions, 423

POOLZONE_REGION structure (Cont.)
relations with other pool zone data

structures, 424 (fig.)
POOLZONES module

EXE$POOLZONE_ALLOCATE,
allocating packets from pool zone,
425

EXE$POOLZONE_CREATE, creating
system space pool, 422

EXE$POOLZONE_DEALLOCATE,
deallocating packets from pool
zone, 425

EXE$POOLZONE_PURGE,
reclamation of pool zone, 425

EXE$POOL_ALLOCATE, allocating
packets from pool zone, 425

EXE$POOL_DEALLOCATE,
deallocating packets from pool
zone, 425

PQB (process quota block)
deallocated to lookaside list, 449
lookaside list, 417 (table)

PQL_DWSDEFAULT parameter
(SYSGEN)

adjusted at system initialization, 318
number of entries in working set list,

312
PQL_MWSDEFAULT parameter

(SYSGEN)
adjusted at system initialization, 318

primary page file
See SYS$SPECIFIC: [SYSEXE]PAGE-

FILE.SYS
primary swap file

See SYS$SPECIFIC:[SYSEXEISWAP-
FILE.SYS

priorities
See also IPL
as a condition for outswap and swapper

trimming selection, 372
privileged architecture library code

See PALcode routines
PRMGBL (create permanent global

sections privilege)
required for

permanent global section creation,
141

permanent global section deletion,
189

Index-48

PRMGBL (create permanent global
sections privilege) (Cont.)

use by
$CRMPSC, 141
$DGBLSC, 189

proactive memory reclamation
compared to swapper trimming, 319
effect on working set size, 319
from periodically waking processes,

337 to 338
preventing, 351
SYSGEN parameter that enables, 337

process accounting information
PHD component, 51

process allocation region
allocating, 450 to 451
data structures located in, 451
deallocating, 450 to 451
expanding, 451
listhead location, 413 (table)
memory management, characteristics

and use, 450 to 452
mutex used for synchronizing access to,

451
protection, 450
structure and operations, 450 to 452
synchronization, 451

process body
outswapping, 378 to 386

distinguished from PHD
outswapping, 387

rebuilding, after inswap, 393 to 399
process context

swapper use, 356
process control block

See PCB
process header

See PHD
process header page arrays

See PHD - page arrays
process page table pages

See also page table pages
determining, based on faulting virtual

address, 230 (fig.)
page transitions, control flow, 250 to

255
process page tables

See page tables
process pages

process pages (Cont.)

See also address space; memory
management; pages

determining, based on faulting virtual
address, 230 (fig.)

origins, 236
page faults, wait states, 248
page transitions, characteristics and

use, 236 to 255
process-private page table page, page

transitions, control flow, 250 to
255

reading, I/O request descriptions, 292
(table), 293(table)

types, PFN$C_PROCESS, 248
process pool

See process allocation region
process priorities

See priorities
process quota block

See PQB
process section table

See PST
process section table entry

See PSTE
process sections

See also global sections
backing store, 142 (table)
characteristics and use, 30, 54
creating, 54

backed by a file, 144 to 150
control flow, 144 to 147
overview, 141 to 143, 143

data structures, 54 to 58
deleting section page, 196
partial pages, 57, 70
PFN-mapped

creating, 150 to 153
requirements for a granularity hint

region, 152, 156
PTEs, characteristics and use, 70
types, 142 (table)

process states

See kernel thread states
process-private virtual address space

See also P0 space; P1 space; P2 space;
page table space; process sections

characteristics and use, 11

Index-49

process-private virtual address space
(Cont.)

mapping very large, 13
regions, 31

processes
See also fork processes; kernel threads;

multithreaded processes; PCB
conditions for outswapping, 377
implicit constraints on swapper action,

373
inswap, selecting, 365 to 366, 389
memory management data structures

specific to, 43 to 71
memory residence, PCB$L_STS bit that

specifies, 44
outswap

example, 383 (fig.), 384 (fig.), 385
(fig.)

selecting, 368 to 376
page tables

See page tables
priority

See priorities
quotas

PHD component, 51
shrink, selecting, 368 to 376
states

See kernel thread states
troll, selecting, 368 to 375

PROCSECTCNT parameter (SYSGEN)
maximum PST size, 56, 319
working set list capacity affected by,

319
PROCSTRT module

EXE$PROCSTRT
KRP lookaside list initialization,

452
process allocation region address

space reserved by, 450
program region

definition, 31
protection

See also access modes
memory

Alpha access checking, 23
PTE bits that contain, 20
virtual memory role in, 2

nonpaged pool, 426
paged pool, 448

protection (Cont.)
pages, valid access mode combinations,

20
process allocation region, 450
virtual address space, different areas

distinguished, 30 to 31
virtual page

access controlled by, 5
changing, 219 to 222

protection bits (PTE)
OpenVMS Alpha use of, 20

PRVPFN (private PFN listhead)
characteristics and use, 89

pseudo devices
terminal drivers, use of buffer objects

by, 206
PST (process section table)

maximum size of, PHD field that
specifies, 56

organization, 55
PHD component, 31, 49

characteristics and field definitions,
54 to 58

dynamic growth area effect on, 50
location, 55 (fig.)

working set list increase effect on, 319
working set list kept adjacent to,

reasons for, 56
PSTE (process section table entry)

address computation, 54 to 55
asynchronous deletion

during file section creation, 149
during PFN-mapped process

section creation, 151, 153,
156

during process section creation,
144, 147

during virtual address creation,
134

during virtual address space
contraction, 203

operations, 190 to 191
control bits, 70
creating, 145
field names defined by $SECDEF

macro, 56
initializing fields in, 57
layout, 57 (fig.)
locating virtual pages in section file

through, 57 to 58

Index-50

PSTE (process section table entry) (Cont.)
not required for demand zero address

space, 132
PHD component, 31, 54 to 58
PTE relation to, 70
size and location, 54
synchronizing access to, 55

PSWAPM (change process swap mode
privilege)

locking into balance set enabled by,
219

required, to lock pages in memory, 342
use by

$LCKPAG, 342
$LCKPAG_64, 343
$SETSWM, 219

PTBR (page table base register)
contents, 8
specifying SVAPTE modified page

requests, 277
[PTD] SYS$FTDRIVER

use of buffer objects by, 206
PTE (page table entry)

See also address space; GPTE; L3PTE;
page tables; pages

accessing stale data using, 24
accessing, complexity, 94
address space match bit, 20, 26
bits that specify number of pages in TB

entry group, 28
characteristics and use, 5 to 6
containing

global page table index,
characteristics, 70

page file page number, characteris-
tics, 70

PST index, characteristics, 70
contents, 19 to 21
demand zero page, characteristics, 71
effect on physical page assignment, 94
fault-on-execute bit

exception information, 25
fault generation, 23
faults, OpenVMS handling of, 27
OpenVMS Alpha use of, 27

fault-on-read bit
exception information, 25
fault generation, 23

fault-on-write bit
exception information, 25

PTE (page table entry)
fault-on-write bit (Cont.)

fault generation, 23
forming template, 186
Galaxywide section effect on contents

of, 187
granularity hint bits, 20
initial state of faulting, page read

clustering dependence on, 272
invalid forms, 70 to 71
locating, 94
maximum addressable memory limited

by layout of, 21
modify bit, 21, 66

set for buffer object page, 210
no-TB-miss-memory-barrier-required

bit, OpenVMS Alpha use of, 20
owner field, memory management

system service checking, 124
page in transition, characteristics, 71
process, GPTEs and, 105 (fig.)
software bits, 66 to 68
system services that initialize, 132
transition, locating, 387
valid

Alpha architectural definition of,
2O (fig.)

described in working set list, 49
valid and invalid forms, 69(fig.)
valid bit, meaning, 5
window bit set for PFN-mapped page,

151, 152, 155, 156
PTECHECK module

EXE $GET_VA_RAD_INFOW, control
flow, 218

Purge Working Set system services
See $PURGWS; $PIYRGE_WS

$PURGE_WS (Purge Working Set system
service)

control flow, 345 to 346
effect on working set size, 319

$PURGWS (Purge Working Set system
service)

control flow, 345
effect on working set size, 319

PURGWSPAG routine (SYSPURGWS
module)

control flow, 345

Index-51

O
QBB (quad building block)

characteristics and use, 3
$QIO (Queue I/O Request system service)

special entry points for memory
management requests, 292

quad building block
See QBB

quadword index
term definition, xxv

quadwords
how represented in figures, xxvi

quantum
initial, as a condition for outswap and

swapper trimming selection, 372
Queue I/O Request system service

See $QIO
queues

absolute
element contents, 417
inserting and removing elements,

419
implementing insertions and removals,

417, 419
self-relative

element contents, 417
inserting and removing elements,

419

R
RAD (resource affinity domain)

accessing physical memory on a NUMA
platform, 402

characteristics and use, 4
free page list for, 268
home, inswapping process with, 390
image code huge pages for, 75
L1PT use by, 19, 66
L2PT use by, 66
L3PT use by, 66
nonpaged pool lists for, 426
number of, recorded in PCB$L_HOME_

RAD and KTB L HOME_RAD, 46
physical page allocation, 268
replicating system space, 65
replication requirements, 65
SMP system with multiple, replicating

system space code, 19

RAD (resource affinity domain) (Cont.)
soft affinity, characteristics and use,

392
specifying where global section should

be created, 170, 179
use while resolving page fault from free

page list, 246
zeroed page list for, 268

RAD_SUPPORT parameter (SYSGEN)
effect on SYSGEN parameter

NPAGERAD, 430
enabling RAD support on NUMA

system, 46, 65, 75, 88
physical page allocation use of, 268
system space replication controlled by,

19
RDE (region descriptor entry)

accessed only from process context, 49
allocated from P1 space variable-length

pool, 47
characteristics and use, 32, 47
field definitions, 47 to 49
initializing, 130
layout, 49 (fig.)
PHD component, 51
process-permanent, in the PHD, 48

(fig.)
scanning list of user-defined, 130
synchronizing access to, 49

RDE$L_FLAGS field
definition and use, 48

RDE$L_REGION_SIZE field
definition and use, 48

RDE$L_TABLE_LINK field
definition and use, 47

RDE$PQ_FIRST_FREE_VA field
definition and use, 48

RDE$PQ_START_VA field
definition and use, 48

RDE$PS_FIRST FREE_VA field
definition and use, 48
PHD$L_FREPOVA alias for, in program

region RDE, 49
PHD$L_FREP1VA alias for, in control

region RDE, 49
RDE$PS_START_VA field

definition and use, 48
RDE$PS_VA_LIST_BLINK field

listhead for queue of RDEs, 47
RDE$PS_VA_LIST_FLINK field

Index-52

RDE$PS_VA_LIST_FLINK field (Cont.)
listhead for queue of RDEs, 47

RDE$Q_REGION_ID field
definition and use, 48
initializing, 130

RDE$Q_REGION_SIZE field
alias for RDE$L_REGION_SIZE, 48

RDE$R_REGPROT field
definition and use, 48

RDE$W_SIZE field
definition and use, 47

RDE$W_SUBTYPE field
definition and use, 47

RDE$W_TYPE field
definition and use, 47

read in progress page location code
meaning, 92

read-only global pages
See global pages; global sections

reclamation
from lookaside lists, attempting to

allocate nonpaged pool, 433
gentle compared to aggressive, 435
nonpaged pool, 435 to 437
pool zone, 425
SYSGEN parameters that control, 435

region descriptor entry
See RDE

regions
attributes, 47
creating additional, 47
deleting at image rundown, 47
expanding automatically, 140
process-permanent

characteristics, 47
expanding as dynamic regions are

deleted, 47
location, 47
shrinking as dynamic regions are

created, 47
virtual address, creating, 129 to 130

registers
See PTBR; TBCHK register; VIRBND

register; Vt~B register
REI (return from exception or interrupt)

use in page fault handling, 234
release pending page location code

meaning, 91
page fault from, 248

RELEASE_PROCESS_HEADER routine
(SWAPPER module)

preparing PHD for outswap, 388
RELPHD routine (SWAPPER module)

preparing PHD for outswap, 388
replacement paging

definition, 6
preventing, 344
triggered by, 346 to 347

reserved memory descriptor
See RMD

Reserved Memory Registry
registering memory-resident sections

in, 35
RESHASHTBL parameter (SYSGEN)

effect on size of lookaside lists, 446
residency state

PHD, flag for, 44
resource affinity domain

See RAD
resource availability

See resource wait
resource wait

memory management, characteristics
and use, 303 to 304

RSN$_ASTWAIT
placing a kernel thread in, 304
waiting for global page I/O

completion, 195
waiting for virtual page I]O

completion, 199, 200
RSN$_MPLEMPTY

modified page writer ending, 283
placing a kernel thread in, 304

RSN$ MPWBUSY
ending, 304
modified page writer ending, 283
placing a kernel thread in, 304,

324, 326, 332
RSN$_NPDYNMEM

declared available, 439
placing a kernel thread in, 304,

431, 439
RSN$_PGDYNMEM, placing a kernel

thread in, 448
RSN$_PGFILE, obsolete, 303
RSN$_SWPFILE, obsolete, 303

resources
See resource wait

Index-53

restart parameter block
See HWRPB

return from exception or interrupt

See REI
rights identifiers

VMS$MEM_RESIDENT_USER
required to create memory-resident

demand zero global section,
141

RMD (reserved memory descriptor)
characteristics and use, 81 to 82
creating, 80
layout, 83 (fig.)
list

location, 81
synchronizing access to, 81

locating, 173
processing, 81

RMD$B_SUBTYPE field
definition and use, 81

RMD$B_TYPE field
definition and use, 81

RMD$L_ERROR_STATUS field
definition and use, 82

RMD$L_FIRST_PFN field
definition and use, 82

RMD$L_FLAGS field
definition and use, 82

RMD$L_GROUP field
definition and use, 82

RMD$L_IN_USE_COUNT field
definition and use, 82

RMD$L_PFN_COUNT field
definition and use, 82

RMD$L_RAD field
definition and use, 82

RMD$L_ZERO_PFN field
definition and use, 82

RMD$PS_BLINK field
definition and use, 81

RMD$PS_FLINK field
definition and use, 81

RMD$T_NAME field
definition and use, 82

RMD$W_SIZE field
definition and use, 81

RSE module

RSE module (Cont.)
EXE$CHK_WAIT_BHVR, proactive

memory reclamation, control flow,
337 to 338

SCH$QEND
control flow, 334 to 336

SCH$SWPWAKE, called to awaken
swapper, 354

RSN$_x prefix

See resource wait
RWAST (AST wait)

See resource wai t - RSN$_ASTWAIT
RWMPB (modified page writer busy)

See resource wai t - RSN$_MPWBUSY
RWMPE (modified page list empty)

See resource wai t - RSN$_MPLEMPTY
RWNPG (nonpaged pool)

See resource wai t - RSN$_NPDYNMEM
RWPAG (paged pool)

See resource wai t - RSN$_PGDYNMEM
RWPFF (page file space)

See resource wai t - RSN$_PGFILE

S
SO space

definition, 12
expanding, 12

S0/S1 space
buffers mapped into, 101
creating, by SYSBOOT, 61
definition, 12
double-mapped L3PTs into, 64
eight highest pages inaccessible, 64
expandability, 29
initial size and layout defined by

SYSBOOT, 72
OpenVMS Alpha use of, 29
page table

accessing, 64
characteristics and use, 64
window, 64, 65(fig.)

S0_PAGING parameter (SYSGEN)
disabling paging of executive images,

266
S1 space

definition, 12
$2 space

base address, 14

Index-54

$2 space (Cont.)
buffers mapped into, 101
creating, by SYSBOOT, 62
definition, 14
double-mapped L1PT into, 62
expanding, 62
GPT location in, 104
initial size and layout defined by

SYSBOOT, 72
OpenVMS Alpha use of, 29
page table accessing, 64
PFN database in, 83
size, 14

S2_SIZE parameter (SYSGEN)
effect on size of system space, 61

saved modify bit (PTE)
See also modify bit (PTE)
meaning, 93

SCANDEADPT routine (PAGEFAULT
module)

operations, 323 to 324
scatter/gather

I/O operations, 119 to 120
SCH$GL_MFYLIM cell

target size of modified page list, 278,
279

SCH$GL_MFYLOLIM cell
target size of modified page list, 279

SCH$GL_PCBVEC cell
process index array use, 112

SCH$GL_SIP field
SCH$V_MPW bit set while modified

page writing is in progress, 279
swapper use of, 358

SCH$OSWPSCHED routine (OSWP-
SCHED module)

operations, 367 to 368, 371
OSWPSCHED table processing, 375 to

376
SCH$PAGEFAULT routine (SCHEDULER

module)
control flow, 230 to 234
errors returned to, 235 to 236

SCH$QEND routine (RSE module)
control flow, 334 to 336

SCH$SWPWAKE routine (RSE module)
called to awaken swapper, 354

SCH$V_MPW bit (SCH$GL_SIP field)
set while modified page writing is in

progress, 279

SCH$V_MPW bit (SCH$GL_SIP field)
(Cont.)

swapper use of, 358
SCH$V_SIP bit (SCH$GL_SIP field)

swapper use of, 358
SCHED spinlock

held during
nonpaged pool synchronization,

439
page fault handling, 233

synchronizing PHD access, 51
use by

EXE$SETSWM, 219
swapper, 363, 365, 366

SCHEDULER module
SCH$PAGEFAULT

control flow, 230 to 234
errors returned to, 235 to 236

scheduling
idle loop, performing deferred memory

testing, 89
page fault handling influence on, 302
queues, swapper scan of, 375
swapper inswap compared with, 365

SDA (System Dump Analyzer)
pool history displayed by, 461
use of dynamic data structures, 407

SEC (section table entry data structure)
field definitions, 56 to 57

SEC$L_CCB field
address of CCB, 56

SEC$L_FLAGS field
definition and use, 56

SEC$L_GSD field
address of GSD, 56

SEC$L_PFC field
cluster factor for section file, 274
definition and use, 56

SEC$L_REFCNT field
decrementing for faulted copy-on-

reference page, 243
definition and use, 57
modifying as section pages are deleted,

57
relation to SEC$L_UNIT_CNT, 57

SEC$L_SECXBL field
definition and use, 56

SEC$L_SECXFL field
definition and use, 56

SEC$L_t[NIT_CNT field

Index-55

SEC$L_UNIT_CNT field (Cont.)
definition and use, 57
relation to SEC$L_REFCNT, 57

SEC$L_VBN field
definition and use, 56

SEC$L_VPX field
definition and use, 57

SEC$L_WINDOW field
address of WCB, 56

$SECDEF macro
section table entry field names defined

by, 56
section files

cluster factor
link option, 274
system service argument, 274

partial
term definition, 238
treatment during page fault, 238,

243
VBN, PSTE field that specifies, 58
writable not copy-on-reference pages,

242
writing modified pages to, 285
writing to backing store, $UPDSEC

use, 289
section pages

backing store for, 236
not copy-on-reference

control flow, 237 to 242
transitions, 239 (fig.)

use on Galaxy platform, 35
section table entries

data structure
See SEC

deletable, locating, 190 to 191
Set Fault Characteristic system services

See $SETFLT; $SETFLT_64
Set Process Swap Mode system service

See $SETSWM
Set Protection on Pages system services

See $SETPRT; $SETPRT_64
SET WORKING_SET command

See also working set
characteristics and use, 332 to 333

SETAST_CONTEXT routine (SWAPPER
module)

final processing of inswap, 398 to 399

$SETFLT (Set Fault Characteristic system
service)

control flow, 223
SETFLTPAG_64 routine (SYSSETPRT

module)
control flow, 223 to 224

$SETFLT_64 (Set Fault Characteristic
system service)

operations, 224
$SETPRT (Set Protection on Pages system

service)
See also protection- memory
control flow, 219 to 220
side effect, 220

SETPRTPAG_64 routine (SYSSETPRT
module)

control flow, 220 to 222
$SETPRT_64 (Set Protection on Pages

system service)
control flow, 222

$SETSWM (Set Process Swap Mode
system service)

operations, 219
SETUP routine (SWAPPER module)

inswap of PHD, 390 to 393
SGN$GL_BALSETCT cell

maximum number of concurrently
resident processes, 110

share counts (PFN database)
characteristics and use, 90

shared memory regions
characteristics and use, 176
initializing pages, 179
naming, 177, 178

shared page tables

See page tables - shared
SHMEM (create/delete objects in shared

memory privilege)
creating Galaxywide global sections,

143
required for permanent global section

deletion, 189
use by $DGBLSC, 189

shutdown
effect on modified page writing, 277

SMP (symmetric multiprocessing) systems

See also memory management;
synchronization

atomic queue modification on, 419

Index-56

SMP (symmetric multiprocessing) systems
(Cont.)

invalidating TB on, 240
physical memory configuration, 2
physical memory sharing in, 34
system space replication for multiple

RADs, 19
threads accessing stale data, 24

SMP_SPINWAIT parameter (SYSGEN)
effect on nonpaged pool reclamation,

437
soft page faults

actions that cause, 257
characteristics and use, 34
definition, 33
page faults resolved as, 33
term definition, 229, 246

source modules
facilities contain, xxiv
names, xxiv

spinlocks
See MMG spinlock; SCHED spinlock

SPT (system page table)
See also address space; page tables;

system space
accessing, 64
characteristics and use, 64
contained in S0/S1 space, 29
SYSBOOT creating of, 32
window

layout, 65 (fig.)
virtual location, 64

SPT (system page tablecparen>
characteristics and use, 61 to 72

SS$_ABORT error status
returned by

EXE$CRMPSC, 160
MMG$DELPAG_64, 199
MMG_STD$CREPAG_64, 149, 156

SS$_ACCVIO error status
returned by

EXE$COPY_FOR_PAGE, 225
EXE$CREATE_BUFOBJ, 208
EXE$CRMPSC_GPFN_64, 170
EXE$GETSECI, 215, 216
EXE $GET_VA_RAD_INFOW, 218
EXE$LKWSET_64, 341
EXE$MGBLSC_64, 184
EXE$SETFLT, 223

SS$_ACCVIO error status
returned by (Cont.)

EXE$SETPRT, 219
LCKBUFOBJPAG, 209
memory management system

services, 128
MMG$LCKULKPAG, 339
MMG$PAGEFAULT, 235
MMG_STD$PTEREF_64, 220
SETFLTPAG_64, 224
SETPRTPAG_64, 221

SS$_ACCVIO exception
reported by EXE$ACVIOLAT, 140

SS$_ASTFLT exception
reported if insufficient user stack space,

140
SS$_BADPARAM error status

returned by
EXE$ALLOCATE_POOL, 445
EXE$COPY_FOR PAGE, 225
EXE$CREATE_BUFOBJ_64, 211
EXE$CREATE GDZRO, 170
EXE$CRMPSC_GDZRO_64, 179
EXE$DELETE_BUFOBJ, 211, 212
EXE$GETSECI, 216
EXE$GET_REGION INFO, 214
EXE$GET_VA_RAD_INFOW, 218
EXE$SETFLT, 223

SS$_BADRAD error status
returned by

$CREATE_GDZRO_INT, 171
EXE$CREATE_GDZRO, 170
EXE$CRMPSC_GDZRO_64, 179

SS$_CREATED success status
returned by

$CREATE_GDZRO_INT, 176
$CREATE_GFILE_INT, 165
$CREATE_GPFN_INT, 169
$CREATE_SHMGS_INT, 179
EXE$CREATE_GFILE, 162
EXE$CREATE_GPFN, 168
EXE$CRMPSC_FILE_64, 150
EXE$CRMPSC_PFN_64, 157

SS$_CREATED SHPT success status
returned by

$CREATE_GDZRO_INT, 176
$CREATE_SHMGS_INT, 179

SS$_DUPLNAM error status
returned by

$CREATE_SHMGS_INT, 177

Index-57

SS$_DUPLNAM error status
returned by (Cont.)

EXE$CREATE_GFILE, 162
EXE$CREATE_GPFN, 168

SS$_EXBUFOBJLIM error status
returned by

EXE$CREATE_BUFOBJ_64, 211
SS$_EXGBLPAGFIL error status

returned by
$CREATE_GPFILE_INT, 166
EXE$CRMPSC, 161

SS$_EXPGFLQUOTA error status
returned by

EXPANDCHK_64, 136
SS$ EXQUOTA error status

returned by
EXPANDCHK_64, 136
MMG$CREPAG_64, 135

SS$_GBLSEC_MISMATCH error status
returned by

$CREATE_GDZRO_INT, 171
$CREATE_GFILE_INT, 163
$CREATE_GPFILE_INT, 166
$CREATE_GPFN_INT, 168
EXE$FIND_GPAGE_64, 216
EXE$MGBLSC, 181
EXE$MGBLSC_64, 184
EXE$MGBLSC_GPFN_64, 188

SS$ GPTFULL error status
returned by

$CREATE GDZRO_INT, 174
$CREATE GFILE_INT, 164
$CREATE_SHMGS_INT, 177
EXE$CRMPSC, 161

SS$_GSDFULL error status
returned by

$CREATE_GDZRO, 172
$CREATE GDZRO_INT, 174
$CREATE GFILE_INT, 164
$CREATE_GPFN_INT, 169
EXE$CRMPSC, 160

SS$_IDMISMATCH error status
returned by

$CREATE_SHMGS_INT, 177
SS$_ILLPAGCNT error status

returned by
$CREATE_GDZRO_INT, 172
EXE$CREATE_GPFN, 168
EXE$CRMPSC, 144, 151
EXE$CRMPSC_PFN_64, 154

SS$_ILLPAGCNT error status
returned by (Cont.)

EXE$MGBLSC_GPFN_64, 188
SS$_ILLRELPAG error status

returned by
EXE$MGBLSC_GPFN_64, 188
$MGBLSC_GPFN_INT, 188

SS$_INSFARG error status
returned by

32-bit system services, 125
EXE$LKWSET_64, 341
memory management system

services, 128
SS$_INSFLPGS error status

returned by
LCKBUFOBJPAG, 210
MMG_STD$USE_RES_MEM, 173

SS$_INSFMEM error status
returned by

EXE$ALLOCATE_POOL, 433, 442
EXE$ALONONPAGED, 432
EXE$ALONONPAGED_INT, 432
EXE$ALONPAGVAR_INT, 432
EXE$ALOPAGED, 448
EXE$CRMPSC, 160
EXE$EXTEND_NPP, 438
EXE LSTD]$ALOP1PROC, 450
routines allocating space from

process allocation region, 450
SS$_INSFWSL error status

failed address space creation, 131
returned by

EXPANDCHK_64, 136
SS$_INVARG error status

returned by
EXE$CRMPSC, 144, 150
EXE$MGBLSC, 180

SS$_INVPFN error status
returned by

EXE$CREATE_GPFN, 168
EXE$CRMPSC, 151
EXE$CRMPSC_PFN_64, 154

SS$_INV_SHMEM error status
returned by

$CREATE_SHMGS_INT, 176
SS$_IVACMODE error status

returned by
EXE$CRETVA_64, 137
$MGBLSC_GDZRO_INT, 186

SS$_IVCHAN error status

Index-58

SS$_IVCHAN error status (Cont.)
returned by $CREATE_GFILE_INT,

163
SS$_IVCHNLSEC error status

returned by
$CREATE_GFILE_INT, 163
EXE$CRMPSC, 144
EXE$CRMPSC_FILE_64, 148

SS$_IVPROTECT error status
returned by

EXE$CREATE_GPFN, 168
EXE$CREATE_REGION_64, 129

SS$_IVREGID error status
returned by

EXE$CRETVA_64, 137
EXE$CRMPSC_FILE_64, 148
EXE$CRMPSC_PFN_64, 154
EXE$DELETE_REGION_64, 205
EXE$GET_REGION_INFO, 214
$MGBLSC_GFILE_INT, 184

SS$_IVREGPROT error status
returned by EXE$CREATE_REGION_

64, 129
SS$_IVSECFLG error status

returned by
EXE$CREATE_GFILE, 162
EXE$CRMPSC, 144, 150
EXE$CRMPSC_FILE_64, 148
EXE$CRMPSC_GFILE_64, 165
EXE$CRMPSC_GPFN_64, 170
EXE$CRMPSC_PFN_64, 154
EXE$MGBLSC, 180
EXE$MGBLSC_64, 183
memory management system

services, 128
$MGBLSC_GDZRO_INT, 186

SS$_IVSECIDCTL error status
returned by

$CREATE_GDZRO_INT, 171, 172
$CREATE_GFILE_INT, 163, 164
$CREATE_GPFN_INT, 168, 169
EXE$FIND_GPAGE_64, 216
EXE$MGBLSC_64, 183

SS$_LCKPAGFUL error status
returned by EXE$CHKFLUPAGES,

343
SS$_LENVIO error status

returned by
EXE$GETSECI, 215
SETPRTPAG_64, 220

SS$_LEN_NOTBLKMULT error status
returned by

$CREATE_GFILE_INT, 163
EXE$CRMPSC_FILE 64, 148
EXE$CRMPSC_GFILE_64, 165

SS$_LEN_NOTPAGMULT error status
returned by

$CREATE GDZRO_INT, 172
EXE$CREATE_REGION_64, 129
EXE$CRETVA_64, 137
EXE$CRMPSC_GPFILE_64, 167
EXE$EXPREG_64, 139
EXE$FIND_GPAGE_64, 216
EXE$MGBLSC_64, 183
$MGBLSC_GDZRO_INT, 186

SS$_LKWSETFUL error status
returned by MMG$LCKULKPAG, 340

SS$_MRES_INCON error status
returned by $CREATE_GDZRO_INT,

174
SS$_MRES PFNSMALL error status

returned by MMG_STD$USE_RES_
MEM, 173

SS$_NOBREAK error status
returned by GLX$SHM_REG_DELETE,

191
SS$_NOBUFOBJID error status

returned by EXE$CREATE_BUFOBJ,
207

SS$_NOMEMRESID error status
returned by $CREATE_GDZRO_INT,

172
SS$_NONXPAG error status

returned by EXE$GETSECI, 215
SS$_NOPRIV error status

returned by
32-bit system services, 125
$CREATE_GDZRO_INT, 171
$CREATE_GFILE_INT, 163, 164
$CREATE_GPFN_INT, 169
EXE$CREATE_BUFOBJ, 208
EXE$CRETVA, 133
EXE$CRMPSC, 146, 151, 152, 159
EXE$CRMPSC_FILE 64, 148
EXE$CRMPSC PFN 64, 154, 155
EXE$DELETE_BUFOBJ, 212
EXE$DELETE_REGION_64, 205
EXE$DGBLSC, 189
EXE$FIND_GPAGE_64, 217
EXE$LCKPAG, 342

Index-59

SS$_NOPRIV error status
returned by (Cont.)

EXE$LCKPAG_64, 343
EXE$MGBLSC, 181
EXE$MGBLSC_64, 184
EXE$SETFLT, 223
EXE$SETPRT, 219
$MGBLSC_GFILE_INT, 184, 185
MMG$CREDEL, 128
MMG$LCKULKPAG, 339

SS$_NORESERVEDMEM error status
returned by

MMG_STD$USE RES_MEM, 174
SS$ NOSHPTS error status

returned by
EXE$CRETVA_64, 137
EXE$CRMPSC, 146, 152
EXE$CRMPSC_FILE_64, 148
EXE$CRMPSC_PFN_64, 154
EXE$DELTVA, 195
EXE$MGBLSC, 181
$MGBLSC_GFILE_INT, 184

SS$_NOSUCHPAG error status
returned by

EXE$FIND_GPAGE_64, 216
EXE$SETFLT, 223
EXE$SETPRT, 219
SETFLTPAG_64, 224
SETPRTPAG_64, 221

SS$_NOSUCHSEC error status
returned by

EXE$DGBLSC, 189
EXE$FIND_GPAGE_64, 216

SS$_NOTFILEDEV error status
returned by

EXE$CRMPSC, 144
EXE$CRMPSC_FILE_64, 148

SS$_NOTINSEC error status
returned by EXE$GETSECI, 215

SS$_NOT PROCESS_VA error status
returned by

EXE$LKWSET_64, 341
EXE$SETPRT_64, 222

SS$_NOWAIT error status
returned by

GLX$SHM_REG CREATE, 178
GLX$SHM_REG_DELETE, 191

SS$_OFFSET_TOO_BIG error status
returned by

EXE$FIND_GPAGE_64, 217

SS$_OFFSET_TOO_BIG error status
returned by (Cont.)

$MGBLSC_GFILE_INT, 184
SS$_OFF_NOTBLKALGN error status

returned by
$CREATE_GFILE_INT, 163
EXE$CRMPSC_FILE_64, 148
EXE$CRMPSC_GFILE_64, 165

SS$_OFF_NOTFILEDEV error status
returned by

$CREATE_GFILE_INT, 163
SS$_OFF_NOTPAGALGN error status

returned by
EXE$CRMPSC_GPFILE_64, 167
EXE$FIND_GPAGE_64, 216
EXE$MGBLSC_64, 183
$MGBLSC_GDZRO_INT, 186

SS$_PAGNOTINREG error status
returned by

EXE$CRETVA_64, 137
EXE$CRMPSC_FILE_64, 149
EXE$CRMPSC_PFN_64, 154
EXE$GET_REGION_INFO, 214
EXE$SETPRT_64, 222
$MGBLSC_GFILE_INT, 185

SS$_PAGOWNVIO error status
returned by

EXE$FIND_GPAGE_64, 218
EXE$GETSECI, 215
MMG$DELPAG_64, 197
MMG$LCKULKPAG, 339
SETFLTPAG_64, 224
SETPRTPAG_64, 221

SS$_PAGRDERR error status
returned by MMG$PAGEFAULT, 235,

275
SS$_PAGRDERRXM error status

returned by MMG$PAGEFAULT, 235
SS$_PAGTYPVIO error status

returned by
EXE$GETSECI, 215
EXE$SETFLT, 223
EXE$SETPRT, 219
SETFLTPAG_64, 224
SETPRTPAG_64, 221, 222

SS$_REGISFULL error status
returned by

EXPANDCHK_64, 136
MMG$CREDEL, 128

SS$_REMOTE success status

Index-60

SS$_REMOTE success status (Cont.)
returned by $CREATE_SHMGS_INT,

179
SS$_RESERVEDMEMUSED error status

returned by
MMG_STD$USE_RES_MEM, 173

SS$_SECTBLFUL error status
returned by

$CREATE_GDZRO_INT, 172
$CREATE_GFILE_INT, 164
EXE$CRMPSC, 160

SS$_STKOVF exception
reported by EXE$ACVIOLAT, 140

SS$_TOO_MANY_ARGS error status
returned by

EXE$LKWSET_64, 341
memory management system

services, 128
SS$_VASFULL error status

returned by
EXE$CREATE_REGION_64, 129,

130
EXPANDCHK_64, 136
MMG$CREDEL, 128

SS$_VA_IN_USE error status
returned by

EXE$CREATE_REGION_64, 130
MMG$CREPAG_64, 135
MMG$DELPAG_64, 199, 200, 201,

202
SS$_VA_NOTPAGALGN error status

returned by
EXE$CREATE_REGION_64, 129
EXE$CRETVA_64, 137
EXE$CRMPSC_FILE_64, 148
EXE$CRMPSC_GFILE_64, 165
EXE$CRMPSC_GPFILE_64, 167
EXE$CRMPSC_GPFN_64, 170
EXE$CRMPSC_PFN_64, 154
EXE$FIND_GPAGE_64, 216
EXE$MGBLSC_64, 183
$MGBLSC_GDZRO INT, 186

SS$_WAIT CALLERS_MODE status
returned by MMG$PAGEFAULT, 233,

234
SS$ WASCLR success status

returned by MMG$LCKULKPAG, 343
SS$_WASSET success status

returned by MMG$LCKULKPAG, 339,
340

SS$_WRONGACMODE error status
returned by $CREATE_SHMGS_INT,

177
SSB (system building block)

characteristics and use, 3
SSRVEXCEPT bugcheck

generated during page fault handling,
236

stack
user, expanding automatically, 139 to

140
stack scratch space

defined by $MMGDEF macro, 125
statistics (pool allocation)

BAP, 454
categories, 453
collecting, 454 (table)
per-RAD pool, 454
recorded in POOLZONE and

POOLZONE_PAGE structures,
455

use of, 453
status codes

See SS$_x
storage areas

dynamic data structures, 402
SVAFrE modules

MMG_STD$PTEREF 64, control flow,
220

SVAPTE requests (modified page writer)
description, 277

swap file page number
PFN$W_SWPPAG field use, 96

swap files
data structures

characteristics and field definitions,
112 to 118, 358 to 360

relations among, 361 (fig.)
deinstallation, 118
described by two bitmaps, 113
primary

SYSINIT use, 118
space allocation

OpenVMS Alpha approach, 359
VAX VMS Version 5 approach, 359

space deallocated after process inswap,
399

writing modified pages to, 284
SWAPFILE.SYS

See SYS$SPECIFIC:[SYSEXE]SWAPFILE.SYS

Index-61

swapper

See also balance set slots; inswap;
kernel thread states; memory
management; modified page writer;
outswap; page faults; scheduling;
swapper trimming; swapping

accessing page tables, 356
I/O data structures used by, 358
I/O request descriptions, 292(table),

294 (table)
I/O, overview, 120
implementation, 355 to 356
initiation of modified page writing, 362
inswap operations, 358, 389 to 399
main loop, control flow, 361 to 368
map

characteristics and use, 120, 357
to 358

IRP field that points to, 120
one use at a time supported, 120
outswapping use of, 380

memory management data structures
used by, 356 to 360

modified page writer role, 33
outswap

operations, 358, 377 to 389
preparing page tables for, 357

overview, 353 to 356
page table arrays, 118 to 121
process, characteristics, 120
responsibilities, 353 to 354
system events that trigger activities by,

355 (table)
trimming

See swapper trimming
working set list use by, 53, 356, 357
working set size affected by, 318

SWAPPER module
B ~ C E

control flow, 362 to 363
operations, 361 to 362, 364 (fig.)

DELPHD, operations, 366
FILLPHD, inswap of PHD, 391
INSWAP, preparation for inswap, 390
OUTSWAP, control flow, 366 to 368
RELEASE_PROCESS_HEADER,

preparing PHD for outswap, 388
RELPHD, preparing PHD for outswap,

388

SWAPPER module (Cont.)
SETAST_CONTEXT, final processing of

inswap, 398 to 399
SETUP, inswap of PHD, 390 to 393
SWAPSCHED

control flow, 365 to 366
operations, 362
preparation for inswap, 389

swapper trimming
compared to proactive memory

reclamation, 319
operations, 369
OSWPSCHED table processing to find

outswap candidate, 375 to 376
preventing, 351
reclaiming physical pages by, 40
reducing working set limit with, 318
term definition, 318

swapping

See also inswap; outswap; swapper
data structures, characteristics and

field definitions, 110 to 112
I/O system techniques for, 119 to 120
paging compared with, 36, 37 to 37

(table), 39
preventing, privilege that allows a

process to, 219
to page files, SYSGEN parameter that

inhibits, 113
SWAPSCHED routine (SWAPPER module)

control flow, 365 to 366
operations, 362
preparation for inswap, 389

SWP$GB_ISWPRI cell
priority of inswap process candidate,

363, 372
SWP$GL_BALBASE cell

address of balance set slots, 110
SWP$GL_BSLOTSZ cell

size of balance set slot, 50, 110
SWP$GL_MAP cell

swapper map address contained in,
120, 357

SWP$GW_FREDPTE cell
maximum number of PHD expansion

pages, 59
SWP$GW_SWPINC cell

unit of swap space allocation, 360
SWPFAIL parameter (SYSGEN)

Index-62

SWPFAIL parameter (SYSGEN) (Cont.)
effect on outswap and swapper

trimming selection, 376
SWPFILCNT parameter (SYSGEN)

obsolete, 117
SWPOUT scheduling event

reported during process outswap, 368
SWPOUTPGCNT parameter (SYSGEN)

effect on working set of outswapped
process, 351

target size to shrink working set, 368,
369, 374, 375

working set size affected by, 40
SWPRATE parameter (SYSGEN)

SWAPSCHED routine use of, 365
SYI memory map

characteristics and use, 32
symmetric multiprocessing

See SMP systems
synchronization

See also fork processes; memory
barriers; MMG spinlock; SCHED
spinlock; SMP systems

KRP lookaside list, 452
pool

nonpaged, 439 to 440
paged, 449

process allocation region, 451
SYS$SPECIFIC:[SYSEXE]PAGEFILE.SYS

(primary page file)
See also inswap; modified page writer;

outswap; paging; page faults; page
files; swapper

SYSINIT use, 118
SYS$SPECIFI C: [SYSEXE] SWAPFILE. SYS

(primary swap file)
SYSINIT use, 118, 358

SYS$SYSTEM:VMS$RESERVED_
MEMORY.DATA (Reserved Memory
Registry file)

creating, 80
effect on creation of memory-resident

global sections, 80
entry characteristics, 80
OpenVMS use of, during system

initialization, 80
SYSADJWSL module

EXE$ADJWSL, control flow, 331 to
332

SYSADJWSL module (Cont.)
MMG$SHRINKWS, operations, 332

SYSBOOT (secondary bootstrap program)
initializing

BAP, 444
nonpaged pool, 430
physical memory, 78
system space, 61 to 62

PFN database, allocating space for, 82
SPT created by, 32

SYSCREDEL module
CHECK_CONTRACT_64, control flow,

203 to 204
EXE$CNTREG, operations, 204
EXE$CRETVA, control flow, 133 to

134
EXE$DELTVA, control flow, 195 to

196
EXE$EXPREG

alternative entry point for, 138
operations, 138

EXPANDCHK_64, control flow, 136
MMG$CREDEL

control flow, 128
role in memory management

system services, 127
MMG$CREPAG_64

alternative entry point for, 134
control flow, 135

MMG$CRETVA_K, alternative entry
point for EXE$CRETVA, 133

MMG$DELPAG_64, control flow, 197
to 203

MMG$EXPREG, alternative entry
point for EXE$EXPREG, 138

MMG$FAST_CREATE_64, operations,
134

MMG$TRY_ALL_64, operations, 134
MMG_STD$CHECK_CONTRACT_

64, alternative entry point for
CHECK_CONTRACT_64, 203

MMG_STD$CHECK_CONTRACT_
64_1, alternative entry point for
CHECK_CONTRACT_64, 203

MMG_STD$CREPAG_64, alternative
entry point for MMG$CREPAG_64,
134

MMG_STD$FAST_CREATE_64,
operations, 134

Index-63

SYSCREDEL module (Cont.)
MMG_STD$TRY_ALL_64, operations,

134
SYSCRMPSC module

EXE$CRMPSC
global sections, control flow, 158

to 162
PFN-mapped sections, control flow,

150 to 153
process sections, control flow, 144

to 147
EXE$MGBLSC, control flow, 180 to

183
MAPSECPAG_RDE

PFN-mapped process section page,
control flow, 153

process section page, control flow,
147

SYSDGBLSC module
EXE$DGBLSC, control flow, 189 to

190
GSD_CLEAN_AST, control flow, 193
MMG$DELGBLSEC, control flow, 191

to 193
MMG$DELGBLWCB, control flow, 194
MMG_STD$DELGBLSEC, al-

ternative entry point for
MMG$DELGBLSEC, 191

MMG_STD$DELGBLWCB, al-
ternative entry point for
MMG$DELGBLWCB, 194

MMG_STD$GSDSCAN, operations,
159

SYSGBL (create systemwide global
sections privilege)

required for
creating a system global section,

141
deleting a system global section,

189
use by

$CRMPSC, 141
$DGBLSC, 189

SYSGEN parameters
See also specific parameter names;

SYSBOOT; system initialization
controlling nonpaged pool reclamation,

435
determining size of PHD substructures,

5O

SYSGEN parameters (Cont.)
effect on BAP initialization, 444
term definition, xxv
that control automatic working set

limit adjustment, 333 (table) to
334 (table)

SYSINIT process
page and swap file initialization, 118
primary swap file opened by, 358

[SYSINI]INITPGFIL module
allocating PFL, operations, 113

SYSLKWSET module
EXE$CHKFLUPAGES, operations, 343
EXE$CREATE_BUFOBJ, control flow,

207 to 208
EXE$DELETE_BUFOBJ, control flow,

211 to 213
EXE$LCKPAG, operations, 342 to 343
EXE$LKWSET, control flow, 338 to

339
EXE$ULKPAG, operations, 343 to 344
EXE$ULWSET, operations, 343 to 344
LCKBUFOBJPAG, control flow, 209 to

210
MMG$DECLARE_WSL_PAGER,

operations, 325
MMG$LCKULKPAG

control flow, 339 to 340
unlocking pages from memory, 343

to 344
MMG_STD$LCKBUFOBJPAG,

alternative entry point for
LCKBUFOBJPAG, 209

MMG_STD$LCKULKPAG, al-
ternative entry point for
MMG$LCKULKPAG, 339

SYSMAN (System Management utility)
Reserved Memory Registry file created

by, 80
SYSMWCNT parameter (SYSGEN)

system working set list size determined
by, 59

SYSPARPRC module
EXE$GETSECI, control flow, 215 to

216
SYSPCNTRL module

EXE$HIBER_INT, memory reclama-
tion, operations, 337

SYSPTBR (system page table base
register)

Index-64

SYSPTBR (system page table base
register) (Cont.)

PFN of LIPT mapping system space
addresses, 19

PFN of RAD's LIPT stored in, 66
SYSPURGWS module

EXE$PURGWS, control flow, 345
MMG$PURGWSSCN, control flow, 345
PLrRGWSPAG, control flow, 345

SYSQIOREQ module
special $QIO entry points, 292

SYSSETMOD module
EXE$SETSWM, operations, 219

SYSSETPRT module
EXE$FAULT_PAGE, control flow, 270

to 271
EXE$SETFLT, control flow, 223
EXE$SETPRT

control flow, 219 to 220
side effect, 220

MMG_STD$SETFLTPAG_64,
alternative entry point for
SETFLTPAG_64, 223

MMG_STD$SETPRTPAG_64,
alternative entry point for
SETPRTPAG_64, 220

SETFLTPAG_64, control flow, 223 to
224

SETPRTPAG_64, control flow, 220 to
222

System Dump Analyzer

See SDA
system header

characteristics and use, 59 to 60
GST, 103
layout, 60 (fig.)
section table, number of entries in,

SYSGEN parameter that specifies,
60

system initialization
See also EXE$INIT routine; SYSBOOT;

SYSGEN parameters; SYSINIT
process

OpenVMS use of Reserved Memory
Registry during, 80

swapper I/O operations, 120
swapper process operations, 356
system space initialization, 32

system page table

See SPT

system page table base register
See SYSPTBR

system pages
See also address space; pages; PTE;

system space
copy-on-reference, page transitions,

control flow, 267
demand zero, page transitions, control

flow, 267
described by WSLEs, 232
determining, based on faulting virtual

address, 230 (fig.)
locking into system working set list,

351
not copy-on-reference, page transitions,

control flow, 266 to 267
page transitions, characteristics and

use, 266 to 267
PFN$L_SHRCNT meaning, 299
reading, I/O request descriptions, 292

(table)
types, 266

system PCB
characteristics and use, 59

system services
altering page protection with, 219 to

222
I/O, enabling use of buffer objects,

overview, 206 to 207
memory management

argument length, 124
32-bit, 124, 125 to 128
64-bit, 124, 128
common characteristics, 124 to

128
operations, 125
overview, 123 to 124
stack scratch space, layout,

126(fig.)
purging virtual pages from working set,

344 to 346
that return memory-management-

related information, 214 to 218
that set the no-execute characteristic

for page faults, 223 to 224
unlocking pages with, 343 to 344

system space
See also SO space; S0/S1 space; S1

space; $2 space

Index--65

system space (Cont.)
32-bit, page table pages double-mapped

into, 119
buffer objects double-mapped into, 101
characteristics and use, 11
code pages, protections on, 30
data pages, protections on, 30
defining at high end of virtual address

space, advantages, 12
definition, 12
expandability, 29, 62
expansion

mapping L3PT and L2PT during,
62, 66

initializing, 32
by SYSBOOT, 61 to 62

mapping
at creation, 29
by L2PT, 12

nonpaged pool, listhead location, 413
(table), 417(table)

page tables that map, 11
paged pool, listhead location, 413

(table)
PHD located in, 51
replication, SYSGEN parameter that

controls, 19
sharing, by processes, 62
term definition, 4

system space L3PTEs
available, linked list of, 73(fig.)
invalid, characteristics and use, 71
synchronizing access to, 71

system tuning
automatic working set limit

adjustment, 333 to 337
automatic, nonpaged pool expansion

role in, 439
free page management, 354
proactive memory reclamation, 337 to

338
system working set list

distinguished from process working set,
59

$LKWSET cannot be used to lock pages
in, 347

SYSGEN parameter that determines
size, 59

system header component, 59
types of pages described in, 59

SYSTEM_CHECK parameter (SYSGEN)
characteristics and use, 455
effect on

loading monitor version of
SYSTEM_PRIMITIVES, 456

pool checking, 457
recording pool history, 461

loading alternative versions, 453
SYSTEM_DATA_CELLS module

nonpaged pool lookaside lists created
during compilation of, 429

SYSUPDSEC module
EXE$UPDSEC, control flow, 290
MMG$UPDSECAST, operations, 292
MMG$WRT PGS_BAK, operations,

291
UPDSECPAG_RDE, operations, 290
UPDSECQWT_64, control flow, 290 to

291
[SYS] facility

base image source modules contained
in, xxiv

many executive image source modules
contained in, xxiv

SYS_CREDEL_64 module
EXE$CRETVA_64, control flow, 137 to

138
EXE$DELTVA_64, operations, 204
EXE$EXPREG_64, control flow, 139

SYS_CRMPSC 64 module
EXE$CRMPSC_FILE_64, control flow,

148 to 150
EXE$CRMPSC_PFN_64, control flow,

154 to 157
SYS_FIND_GPAGE_64 module

EXE$FIND_GPAGE_64, control flow,
216 to 218

SYS_GBLSEC_64 module
$CREATE_GFILE INT, control flow,

163 to 165
$CREATE_GPFILE INT, operations,

166 to 167
EXE$CREATE_GFILE, control flow,

162
EXE$CREATE_GPFILE, control flow,

166
EXE$CRMPSC_GFILE_64, control

flow, 165 to 166
EXE$CRMPSC_GPFILE_64,

operations, 167

Index-66

SYS_GBLSEC_64 module (Cont.)
EXE$MGBLSC_64, control flow, 183

to 184
$MGBLSC_GFILE_INT, control flow,

184 to 185
$MGBLSC_GPFILE_INT, operations,

185 to 186
SYS_GDZRO_64 module

$CREATE_GDZRO_INT, control flow,
171 to 176

$CREATE_SHMGS_INT, control flow,
176 to 179

EXE$CREATE_GDZRO, control flow,
170 to 171

EXE$CRMPSC_GDZRO_64, operations,
179 to 180

$MGBLSC_GDZRO_INT, operations,
186 to 187

SYS_GPFN_64 module
$CREATE_GPFN_INT, control flow,

168 to 169
EXE$CREATE_GPFN, control flow,

167 to 168
EXE$CRMPSC_GPFN_64, control flow,

169 to 170
EXE$MGBLSC_GPFN_64, operations,

187 to 188
$MGBLSC_GPFN_INT, operations,

188
SYS_LKWSET_64 module

EXE$CREATE_BUFOBJ_64,
operations, 210 to 211

EXE$LCKPAG_64, operations, 343
EXE$LKWSET_64, control flow, 341
EXE$ULKPAG_64, operations, 344
EXE$ULWSET_64, operations, 344

SYS_PURGWS_64 module
EXE$PURGE_WS, control flow, 345 to

346
SYS_REGIONS module

EXE$CREATE_REGION_64, control
flow, 129 to 130

EXE$DELETE_REGION_64, control
flow, 205

EXE$GET_REGION INFO, control
flow, 214

SYS_SETPRT_64 module
EXE$SETFLT_64, operations, 224
EXE$SETPRT_64, control flow, 222

SYS_UPDSEC_64 module

SYS_UPDSEC_64 module (Cont.)
EXE$UPDSEC_64, operations, 292

T
TB (translation buffer)

Alpha operations, 22 to 23
characteristics and use, 5, 21 to 22,

328
contents during retry of address

translation, 25
CPU access to, 21 to 22
entry

identified by ASN, 27
invalidating, 26 to 27, 200, 328 to

330
macros that invalidate, 328

granularity hints supported by, 28, 73
holding entry for virtual pages in

group, 28
increasing usefulness as cache, 27
invalidating, 240
mapping information in, 21 to 22
multiprocessor implementation, 26 to

28
presence of translations

checking for, 324
effect on working set replacement,

325
size and organization, 22
translating virtual addresses to

physical addresses, 5
valid bit, meaning, 21
virtual address translation use of, 22

to 23
TB hit

term definition, 22
TB invalidate macros

characteristics and use, 329
TB lookup

attempting address translation, 5
TB miss

conditions under which page fault
exceptions are generated, 229

loading exception parameter
information into registers, 25

PALcode routine, control flow, 23 to 25
term definition, 23

TBCHK (TB check) register
characteristics and use, 22

Index-67

TBCHK (TB check) register (Cont.)
determining usability of a WSLE, 324

TBI_ALL macro
invalidating all TB entries, 328

TBI_DATA_64 macro
invalidating a single DTB entry, 328

TBI_ROUTINES module
MMGLSTD] $TBI_DATA_64,

operations, 329
MMG LSTD] $TB I_DATA_64_

THREADS, operations, 329
MMGLSTD]$TBI_SINGLE, operations,

329
MMGLSTD]$TBI_SINGLE_THREADS,

operations, 329
TBI_SINGLE macro

invalidating a single entry from ITB
and DTB, 328

TBI_SINGLE_64 macro
obsolete, 328

TBSKIPWSL parameter (SYSGEN)
effect on working set replacement

algorithm, 324
use when skipping WSLEs, 325

text
conventions, xxiii to xxv

translation buffer
See TB

translation buffer check register
See TBCHK register

translation-not-valid exception
See page faults

TROLL table
characteristics and use, 373
multithreaded processes meeting

scheduling state constraints in,
374

TROLLER routine (OSWPSCHED
module)

control flow, 374 to 375
trolling

characteristics and use, 374 to 375

U
UCB (unit control block)

location, WCB field that specifies, 360
$ULKPAG (Unlock Pages from Memory

system service)
control flow, 343 to 344

$ULKPAG_64 (Unlock Pages from
Memory system service)

operations, 344
$ULWSET (Unlock Pages from Working

Set system service)
control flow, 343 to 344

$ULWSET_64 (Unlock Pages from
Working Set system service)

operations, 344
unit control block

See UCB
Unlock Pages from Memory system

services
See $ULKPAG; ULKPAG_64

Unlock Pages from Working Set system
services

See $ULWSET; ULWSET_64
$UNLOCK_PAGE macro

locking pages during image execution,
347

upcalls
mechanism in page fault handling, 234
paging completion, 275
PAGIO testing for, 275
used for page fault handling in

multithreaded processes, 233
Update Section File on Disk system

services
See $UPDSEC; $UPDSEC_64

UPDATE_RINGBUF routine (MEMO-
RYALC_DYN_64 module)

recording pool history, 461 to 462
$UPDSEC (Update Section File on Disk

system service)
control flow, 290 to 292
I/O request descriptions, 292(table),

294 (table)
operations, 289 to 290

UPDSECPAG_RDE routine (SYSUPDSEC
module)

operations, 290
UPDSECQWT_64 routine (SYSUPDSEC

module)
control flow, 290 to 291

$UPDSEC_64 (Update Section File on
Disk system service)

I/O request descriptions, 292(table),
294 (table)

operations, 289 to 290, 292
user mode

Index-68

user mode (Cont.)
outermost access mode, xxv

user stack
expanding automatically, 139 to 140
recreated to report exception, 140

Y

valid bit (GPTE)
setting, 257, 263, 275

valid bit (PTE)
clearing, 240, 249
meaning, 19
setting, 240, 243, 248, 252, 257, 263,

264, 267, 275
TB miss PALcode routine use of, 24

valid page
See also memory management; pages;

PTE
term definition, 307

VALID_PFN macro
operations, 79

variable-length blocks
compared to fixed-length packets, 417

variable-length lists
dynamic data structure deallocation,

406
pool

allocating, 412 to 414
allocating, example, 415 (fig.)
deallocating, 414 to 416
deallocating, example, 416(fig.)
layout, 412 (fig.)
listhead locations, 413 (table)
nonpaged, initializing, 430 to 431
structure and operations, 411 to

416
VAX virtual address space

compatibility of OpenVMS memory
management with, 12

VBN (virtual block number)
section file, PSTE field that specifies,

58
very large memory

See VLM
VIRBND (virtual address boundary)

register
facilitating virtual address translation

in NUMA system, 19

VIRBND (virtual address boundary)
register (Cont.)

lowest virtual address in system space,
19

virtual address
characteristics and use, 8 to 11
components, description, 8(fig.)
definition, 5
effect of page size on, 10(table)
expanded in OpenVMS Alpha Version

7.0, effect of, 309
illegal values, 11
sign-extending, 12
system, translating, 10 (fig.)

virtual address boundary register
See VIRBND register

virtual address space
See also P0 space; P1 space; P2 space;

page table space; SO space; S0/S1
space; $1 space; $2 space; system
space

Alpha compared to VAX, 8
areas, OpenVMS Alpha support of, 12

to 14
64-bit space, 14
characteristics and use, 29 to 31
components, 11
contracting, 203 to 204
control region, definition, 31
creating, 29 to 30
data structures, overview, 31 to 32
definition, 5
deleting, 194 to 204

global section deletion side effect
of, 189

demand zero, creating, 132 to 140
expanding, 13

automatically, 139 to 140
gap, 11
layout, 13 (fig.)
P0 and P1 space ranges, 12
P2 space, 14
process-private

creating, 131 to 140
definition, 11
limits on creating, 131 to 132
mapping, 13, 30
removing constraints on, 11

program region, definition, 31

Index-69

virtual address space (Cont.)

protection of different areas, 30 to 31
regions

creating, 129 to 130
deleting, 205
expanding, 151, 155
getting information about, 214

SO and S1 space ranges, 12
$2 space, 14
sharing by kernel threads, 11
system space defined at high end of,

advantages, 12
virtual address translation

characteristics and use, 8 to 26
on NUMA system, overview, 19
page table use by, 8 to 9

virtual block number
See V B N

virtual memory

See also address space; memory
management; virtual address
space; virtual pages

address space, data structures,
overview, 31 to 32

characteristics and mechanisms, 4 to
6

definition, 5
original design, 36 to 40

virtual memory regions
characteristics and use, 31

virtual page table base register

See VPTB register
virtual pages

See also pages
breaking ties to physical pages, 242
characteristics, 7
creating, impact on virtual page

deletion, 194
deleting, 194 to 204

complexity, 194
from granularity hint region, 199
Galaxywide global sections, 199
integral part of virtual page

creation, 194
fault-on-execute bit of, changing, 223

to 224
life of, 227 to 229
locating through information in PSTE,

57 to 58

virtual pages (Cont.)

locking into memory
disabling PHD outswap, 44
operations, 342 to 343

mapping to physical pages, 5
null, term definition, 70
protection code for

PTE bits that specify, 20
valid access mode combinations, 20

protection of, changing, 219 to 222
purging from working set, operations,

344 to 346
reading, clustering of, 271 to 274
resources associated with, 196
size, 5
specifying type with PFN$L_PAGE_

STATE field, 91
systemwide cache of recently used,

modified and free page lists used
as, 33

transition, 71
valid, conditions that invalidate, 228

virtual regions
characteristics and use, 47

VIRTUALPAGECNT parameter
(SYSGEN)

obsolete, 132
VLM (very large memory)

support, 41
VMS

operating system names, xxiii
VMS$MEM_RESIDENT_USER rights

identifier
required to create memory-resident

demand zero global section, 141,
172

VPN (virtual page number)
identifying virtual page, 7

VPTB (virtual page table base) register
contents, 16

W
wait duration

as a condition for outswap and swapper
trimming selection, 372

WCB (window control block)
address, PSTE field that specifies, 58
cathedral window, term definition, 143
location, PFL field that specifies, 360

Index-70

WCB (window control block) (Cont.)
making shared, 164
mapping section files, 143
PSTE field that points to, 56
quota charged, 143
shared, 161

WCB$L_ORGUCB field
definition and use, 360

window bit (PTE)
meaning, 68
set for PFN-mapped page, 150

window control block
See WCB

word index
term definition, xxv

working set
See also automatic working set limit

adjustment; memory management;
working set list; WSLE

characteristics and use, 307 to 308
components of, 308
definition, 32
fluid, term definition, 131
locking pages in, 338 to 340, 347
number of global pages in, PCB field

that specifies, 46
number of process-private pages in,

PCB field that specifies, 46
page removal

notification procedure, declaration,
325

notification procedure, execution,
325

pages
states, 379
swapper operations, 380

purging virtual pages from, operations,
344 to 346

quota, virtual memory design
component, operations using, 38

replacement algorithm
compared with other virtual

memory architectures, 38
limitations of, 38

shrinking, 367 to 368
term definition, 318

size
automatic working set limit

adjustment altering of, 40

working set
size (Cont.)

contrasted with limit and capacity,
313

decreasing, 319
growth above working set quota,

40, 321
term definition, 313

term definition, 6, 307
unlocking pages from, 343 to 344

working set capacity
contrasted with size and limit, 313

working set limit
adjusting

$ADJWSL operations, 331
automatic, operations, 333 to 337
upper limit, 330

affected by SET WORKING_SET
command, 332

constraint on process address space
size, 131

contrasted with size and capacity, 313
decreasing, 318

MMG$SHRINKWS, operations,
332

disabling automatic adjustment, 333
growth above working set quota, 321
increasing, 318
initial, 317
reset to default at image exit, 318
term definition, 313

working set list
See also memory management; page

faults; swapper; system working
set list; working set; working set
limit; WSLE

address in CTL$GQ_WSL, 53
capacity

decreasing, 320
increasing, 319, 331
initial, 317
parameters used to calculate, 314

dynamic region, 312 to 313, 319
minimum size, 313

empty WSLE usability checking, 321
to 322

expansion, constrained by working set
quota, 319

index, PFN$L_WSLX_QW field use, 90
keeping a page in, 346 to 351

Index-71

working set list (Cont.)

limit, value stored in PHD$L_WSSIZE,
313

limits, 314 to 317(table)
macros for locking pages into, 347
maximum size, SYSGEN parameter

that specifies, 56
page fault handler use of, 53
page removal, conditions, 228
page replacement or removal triggered

by, 346 to 347
page residency issues, 346
pages not represented in, 131, 309
PHD component, 49, 53 to 54
PHD fields that describe, 311(fig.)
physical memory pages described by,

32
process control capabilities, 39
PST kept adjacent to, reasons for, 56
purpose, 307 to 308
quotas, 314 to 317(table)
rebuilding, 393 (table), 394 (table)

aider inswap, 393 to 395
regions

description, 310 to 313
dynamic region, 312 to 313, 319
locked by user request region, 312
permanently locked region, 312

removing non-copy-on-reference page
from, 240

replacement algorithm, concepts and
operations, 320 to 330

scanning
during process body outswap,

379(table), 380 (table)
for usable WSLE, control flow, 321

size
compared with limit and capacity,

314 (fig.)
parameters and dynamics, 313 to

320
specifying pages, 346
swapper use of, 53, 356, 357
SYSGEN parameters that affect, 314

to 317 (table)
system

synchronizing access to, 59
system header component, 60(fig.)

updating data structures related to,
269 to 270

working set list entry

See WSLE
working set list index

See WSLX
working set swapper

See swapper
writable global pages

page transitions, control flow, 259
write in progress page location code

meaning, 92
WRITEDONE routine (WRTMFYPAG

module)
modified page write completion special

kernel mode AST, control flow, 283
WRTMFYPAG module

MMG$PURGE MPL, operations, 276
to 278

MMG$WRTMFYPAG
called by swapper to initiate

modified page writing, 362
control flow, 279 to 283
operations, 276

MPW$INIT, operations, 121
WRITEDONE, control flow, 283

WSAUTHEXT process limit
extended maximum working set limit,

332
WSDEC parameter (SYSGEN)

automatic working set limit adjustment
use of, 336

WSEXTENT process limit
automatic working set limit adjustment

use of, 330
effect on using empty entry in working

set list, 321
setting with SET WORKING_SET

command, 332
use when releasing dead page table

page, 322
WSINC parameter (SYSGEN)

automatic working set limit adjustment
use of, 335

WSLE (working set list entry)
characteristics and field definitions,

309 to 310
control bits, meaning, 310(table)
dead page table, available for reuse,

254

Index-72

WSLE (working set list entry) (Cont.)
effect of virtual address expansion on,

309
empty, checking usability, 321 to 322
format, 309 (fig.)
not for Galaxywide global sections, 232
not for global page tables, 232
not for memory-resident global sections,

232
not for system page tables, 232
process or process page table page

described by, 232
reusing, 326 to 328
skipping, replacement candidates, 324

to 326
type dependent on address range, 230
unused, in dynamic region of working

set list, 320
usable, scanning for, 321
zeroed when page released, 241

WSLX (working set list index)
characteristics and use, 90

WSMAX parameter (SYSGEN)
automatic working set limit adjustment

use of, 331
constraint on nonpaged pool expansion,

438
PST use affected by, 319
swapper map size, 357
working set list size, 56, 317, 368

WSQUOTA parameter (SYSGEN)
automatic working set limit adjustment

use of, 330, 336
checked before new page is added to

working set list, 322
effect on using empty entry in working

set list, 321
setting with SET WORKING_SET

command, 332
use

by SCANDEADPT, 323
when releasing dead page table

page, 322
working set quota, 368, 369, 373, 375

X
XFC (Extended File Cache) lookaside lists

location of POOLZONE_REGION
structures that describe, 447

XFC (Extended File Cache) lookaside lists
(Cont.)

routines that create, 447
types, 447
uses, 447 to448

Xfc$vacAnchor structure
location of POOLZONE_REGION

structures that describe XFC
lookaside lists, 447

XfcMemmgtDynamicAreaInit routine
([XFC]XFC_MEMMGT module)

creating XFC lookaside lists, 447
XfcMemmgtPermanentAreaInit routine

([XFC]XFC_MEMMGT module)
creating XFC lookaside lists, 447

[XFC]XFC_MEMMGT module
XfcMemmgtDynamicAreaInit, creating

XFC lookaside lists, 447
XfcMemmgtPermanentAreaInit,

creating XFC lookaside lists, 447

Z
zeroed page list

allocating global page-file page, 262
cell containing count, 87
characteristics and use, 33
location, 87
location code, meaning, 92
multiple, 87

zeroed pages
allocated for demand zero page fault,

268 to 269
RAD-specific, 88

ZERO_LIST_HI parameter (SYSGEN)
maximum number of pages on zeroed

page list, 87

Index-73

This Page Intentionally Left Blank

	Front Cover
	OpenVMS Alpha Internals and Data Structures
	Copyright Page
	Table of Contents
	Preface
	Chapter 1. Fundamentals And Overview
	1.1 Overview
	1.2 Physical Memory Configurations
	1.3 Virtual Memory Concepts
	1.4 Virtual and Physical Pages
	1.5 Virtual Addresses and Page Tables
	1.6 Virtual Address Space
	1.7 Virtual Addressing on a NUMA System
	1.8 PTE Contents
	1.9 Translation Buffer
	1.10 Virtual Address Translation
	1.11 Translation Buffer Features
	1.12 Virtual Memory
	1.13 Physical Memory
	1.14 Software Memory Management Mechanisms
	1.15 Further Information

	Chapter 2. Memory Management Data Structures
	2.1 Process Data Structures
	2.2 System Header and System PCB
	2.3 Page Tables
	2.4 Granularity Hint Regions and Huge Pages
	2.5 Data Structures Describing Physical Memory
	2.6 Buffer Objects
	2.7 Data Structures for Global Pages
	2.8 Data Structures for Swapping
	2.9 Data Structures Describing the Page and Swap Files
	2.10 Swapper and Modified Page Writer Page Table Arrays
	2.11 Relevant Source Modules

	Chapter 3. Memory Management System Services
	3.1 Common Characteristics of Memory Management System Services
	3.2 Virtual Address Region Creation
	3.3 Process-Private Virtual Address Space Creation
	3.4 Demand Zero Virtual Address Space Creation
	3.5 Process and Global Sections
	3.6 Process-Private Sections
	3.7 Global Section Creation and Mapping
	3.8 Mapping a Global Section
	3.9 Global Section Deletion
	3.10 Virtual Address Space Deletion
	3.11 Virtual Address Region Deletion
	3.12 Buffer Object Creation and Deletion
	3.13 Services That Return Information
	3.14 $SETSWM System Service
	3.15 Set Page Protection System Services
	3.16 Set Fault System Services
	3.17 $COPY_FOR_PAGE System Service
	3.18 Relevant Source Modules

	Chapter 4. Paging Dynamics
	4.1 Overview
	4.2 Page Fault Handling
	4.3 Page Transitions for Process Pages
	4.4 Page Transitions for Process-Private Page Table and PHD Pages
	4.5 Page Transitions for Global Pages
	4.6 Page Transitions for System Pages
	4.7 Page Transitions for Global Page Table Pages
	4.8 Page Fault Support Routines
	4.9 $FAULT_PAGE System Service
	4.10 Page Read Clustering
	4.11 Page Read Completion
	4.12 Modified Page Writing
	4.13 Update Section File on Disk System Services
	4.14 Input and Output That Support Paging
	4.15 Reference Counts
	4.16 Use of Page Files
	4.17 Paging and Scheduling
	4.18 Relevant Source Modules

	Chapter 5. Working Set List Dynamics
	5.1 Overview
	5.2 The Working Set List
	5.3 Working Set Replacement
	5.4 Working Set Limit Adjustment
	5.5 Proactive Memory Reclamation from Periodically Waking Processes
	5.6 Lock Pages in Working Set System Services
	5.7 Lock Pages in Memory System Services
	5.8 Unlock Pages System Services
	5.9 Purge Working Set System Services
	5.10 Keeping a Page in the Working Set List
	5.11 Relevant Source Modules

	Chapter 6. The Swapper
	6.1 Overview
	6.2 Swapper Use of Memory Management Data Structures
	6.3 Swapper Main Loop
	6.4 Selection of Shrink and Outswap Processes
	6.5 Outswap Operation
	6.6 Inswap Operation
	6.7 Relevant Source Modules

	Chapter 7. Pool Management
	7.1 Summary of Pool Areas
	7.2 Dynamic Data Structures
	7.3 Variable-Length Pools
	7.4 Fixed-Length Lists
	7.5 Nonpaged Pool
	7.6 Per-RAD Pool
	7.7 Bus-Addressable Pool
	7.8 Lock Management Lookaside List
	7.9 Extended File Cache Lookaside Lists
	7.10 Paged Pool
	7.11 Process Allocation Region
	7.12 KRP Lookaside List
	7.13 Alternative Versions of Modules and Images
	7.14 Collecting Pool Allocation Statistics
	7.15 Detecting Pool Corruption
	7.16 Relevant Source Modules

	Appendix A: Selected Acronyms
	Index

