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Preface 

OpenVMS was developed in the 1970s to run on Digital Equipment Corporation's 
32-bit VAX architecture. In the early 1990s Digital developed the 64-bit Alpha RISC 
architecture, and the OpenVMS code base was ported to Alpha. The book Open- 
VMS AXP Internals and Data Structures: Version 1.5 (1994) describes key executive 
components of an early version of OpenVMS Alpha. 

The present book describes the memory management subsystem of OpenVMS Alpha 
Version 7.3 and the system services that create, control, and delete virtual address 
space and sections. It emphasizes system data structures and their manipulation by 
paging and swapping routines. It also describes management of dynamic memory, such 
as nonpaged pool, and support for nonuniform memory access (NUMA) platforms. 

This book updates the memory management part of the Version 1.5 volume, as Open- 
VMS Alpha Internals: Scheduling and Process Control (1997), updated the scheduling 
and process control part. Neither update is wholly independent of the Version 1.5 vol- 
ume. Thus, to expand on topics mentioned here, chapters in this book refer to chapters 
in any of the three books. References to chapters within this book are by number, for 
example, Chapter 1. References to chapters in the preceding books are by title, for 
example, Chapter Synchronization Techniques. 

For conceptual background on internals topics not covered in this book, consult the 
Version 1.5 book and the Scheduling and Process Control volume. Although details 
such as data structure layouts will likely have changed since previous versions, much 
of the conceptual foundation of OpenVMS is unchanged. 

This book describes some features of the Alpha architecture, but presupposes knowl- 
edge of other features. The Alpha Architecture Reference Manual describes the 
architecture in detail. 

Conventions 
A number of conventions are used throughout the text and figures of this volume. 

During the life of the VAX VMS operating system, the exact form of its name has 
changed several times: from VAX/VMS Version 1.0 to VAX VMS Version 5.0 to Open- 
VMS VAX Version 5.5. In describing the evolution of VMS algorithms and discussing 
the foundation of the OpenVMS Alpha operating system, this book refers to the 
OpenVMS VAX operating system by whichever name is appropriate for the version 
referenced. 

The term executive refers to those parts of the operating system that are loaded into 
and that execute from system space. The executive includes the system base images, 
SYS$BASE_IMAGE.EXE and SYS$PUBLIC_VECTORS.EXE, and a number of other 
loadable executive images. Because there is no need to distinguish different types of 
executive image, this book generally shortens the term loadable executive image to 
executive image. 
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The terms system and Open VMS system describe the entire OpenVMS software pack- 
age, including privileged processes, utilities, and other support software as well as the 
executive itself. The OpenVMS system consists of many different components, each a 
different file. Components include the system base images, executive images, device 
drivers, command language interpreters, and utility programs. 

The source modules from which these components are built and their listings are 
organized by facility. Each facility is a directory on a source or listing medium contain- 
ing sources and command procedures to build one or more components. The facility 
[DRIVER], for example, contains sources for most of the device drivers. The facility 
[SYSBOOT] contains sources for the secondary bootstrap program, SYSBOOT. The 
facility [SYS] contains the sources that  make up the base images and many executive 
images. 

This book identifies a [SYS] facility source module only by its file name. It identifies a 
module from any other facility by facility directory name and file name. For example, 
[SYSGEN]SYSGEN refers to the source for the system generation utility (SYSGEN). 

Closely related routines and modules often have names that  differ by only the last few 
characters. For brevity, this volume refers to two such routines by enclosing the last 
few characters in square brackets. For example, the name MMG$DALCSTXSCAN[1] 
refers to routines MMG$DALCSTXSCAN and MMG$DALCSTXSCAN1. 

Almost all source modules are built so as to produce object modules and listing files of 
the same file name as the source module. Thus, a reference in this book to a source 
module name identifies the file name of the listing file as well. In a case where the two 
names differ, the text explicitly identifies the name of the listing file. Appendix Use of 
Listing and Map Files discusses how to locate a module in the source listings. 

This book identifies a macro from SYS$LIBRARY:LIB.MLB by only its name, for 
instance, $PHDDEF. The macro library of all other macros is specified. 

Ported from VAX VMS, many OpenVMS Alpha executive routines have JSB-type entry 
points. That is, they were originally written to be entered with a VAX 5ss instruction 
rather than a VAX CALLS or CALLG instruction. Typically this was done for performance 
reasons at a time when most of the executive was written in VAX MACRO and the 
rest in VAX BLISS. On an Alpha CPU, however, there is little difference in the code 
generated for a MACRO-32 5ss instruction and for a MACRO-32 CALLS instruction. 

As part of adding support for high-level language device drivers and other sys- 
tem code, a standard call-type entry point has been added for each JSB-type entry 
point. An added call-type entry point has the string _STD in its name; for example, 
MMG$CREPAG_64 and MMG_STD$CREPAG_64 are the two entry points of a per- 
page routine called by system services such as $CRETVA and $CRETVA_64. New 
routines typically have only one entry point, a standard call-type entry point with a 
name that  does not include the string _STD. 

The unmodified terms process control block and PCB refer to the software data struc- 
ture used by the executive. The data structure that  contains a process's hardware 
context, the hardware privileged context block (HWPCB), is always called the HWPCB. 
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The term inner access modes means those access modes with more privilege. The te rm 
outer access modes means those with less privilege. Thus, the innermost access mode 
is kernel and the outermost mode is user. 

The term S Y S G E N  parameter refers to a system cell tha t  can be altered by a system 
manager  to affect system operation. Traditionally, these parameters  were altered 
through either the SYSGEN utility or SYSBOOT, the secondary bootstrap program. 
Although they can also now be altered through the SYSMAN utility or AUTOGEN 
command procedure, this volume continues to use the traditional term S Y S G E N  
parameter. SYSGEN parameters  include both dynamic parameters ,  which can be 
changed on the running system, and static parameters ,  whose changes do not take 
effect until the next system boot. These parameters  are referred to by their pa ramete r  
names ra ther  than by the symbolic names of the global locations where their values 
are stored. Appendix S Y S G E N  Parameters and Their Locations relates parameter  
names to their corresponding global locations. 

The terms byte index, word index, longword index, and quadword index derive from 
methods of VAX operand access tha t  use context-indexed addressing modes. That  is, 
the index value is multiplied by 1, 2, 4, or 8 (for bytes, words, longwords, or quadwords, 
respectively) as part  of operand evaluation, to calculate the effective address of the 
operand. Although the Alpha architecture does not include these addressing modes, 
the concept of context indexing is relevant to various OpenVMS Alpha data structures 
and tables. 

A term in small capital letters refers to the formal name of an argument  to an Open- 
VMS system service, for example, the LOGNAM argument.  

A bit field is sometimes described by its start ing and ending bit numbers within angle 
brackets; for example, the interrupt  priority level of the processor, in the processor 
status bits <12:8>, is contained in bits 8 through 12. 

Unless otherwise noted, numbers in the text are decimal. 

The term KB refers to a kilobyte, 1,024 bytes; the term MB, to a megabyte, 1,048,576 
bytes; the term GB to a gigabyte, 1,024 MB; and the term TB, a terabyte, to 1,024 GB. 

Three conventions are observed for lists: 

�9 In lists like this one, where no order or hierarchy exists, list elements are indicated 
by leading round bullets. Sublists without hierarchy are indicated by dashes. 

�9 Lists tha t  indicate an ordered set of operations are numbered. Sublists tha t  
indicate an ordered set of operations are lettered. 

�9 Numbered lists with the numbers enclosed in circles indicate a correspondence 
between the list elements and numbered items in a figure or example. 

Several conventions are observed for figures. In all diagrams of memory, the lowest 
virtual address appears at the top of the page and addresses increase toward the 
bottom of the page. Thus, the direction of stack growth is depicted upward from 
the bottom of the page. In diagrams that  display more detail, such as bytes within 
longwords, addresses increase from right to left. That  is, the lowest addressed byte (or 
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bit) in a longword is on the r ight-hand side of a figure and the most significant byte (or 
bit) is on the left-hand side. 

Each field in a data structure layout is represented by a rectangle. In many figures, 
the rectangle contains the last part  of the name of the field, excluding the structure 
name, data type designator, and leading underscore. A rectangle the full width of the 
diagram generally represents a longword regardless of its depth. A field smaller than  
a longword is represented in proportion to its size; for example, bytes and words are 
quarter- and half-width rectangles. A quadword is generally represented by a full- 
width rectangle with a short horizontal line segment midway down each side. In some 
figures, a rectangle the full width of the diagram represents a quadword. In these 
figures, bit position numbers above the top rectangle show numbers from 0 to 63 to 
indicate that  the rectangle represents a quadword. 

For example, Figure 2.5 shows the layout of the fixed part  of the process header (PHD). 
The rectangle labeled SIZE represents the word PHD$W_SIZE; the rectangle labeled 
WSLIST, the longword PHD$L_WSLIST; and the rectangle labeled NEXT_REGION_ 
ID, the quadword PHD$Q_NEXT_REGION_ID. 

In almost all data structure figures, the data structure's full-width rectangles represent  
longwords aligned on longword boundaries. In a few data structures, a horizontal row 
of boxes represents fields whose sizes do not total a longword. Without this practice, 
most of the fields in this kind of structure would be split into two part-width rectangles 
in adjoining rows, because they are unaligned longwords. 

Some data structures have alternative definitions for fields or areas within them. A 
field with multiple names is represented by a box combining the names separated by 
slash (/) characters. An area with multiple layouts is shown as a rectangle with a 
dashed line separating the alternative definitions. For example, in Figure 2.18, fields 
PFN$L_FLINK and PFN$L_SHRCNT are two names for the same field. Figure 2.18 
also shows an example of alternative definitions for an area; the quadword at PFN$Q_ 
BAK is also divided into the longword PFN$L_PHD and PFN$L_COLOR_BLINK. 

A data structure field containing the address of another data structure in the same 
figure is represented by a bullet connected to an arrow pointing to the other structure. 
Where possible, the arrow points to the rightmost end of the field, tha t  is, to bit 0. 
A field containing a value used as an index into that  or another data structure is 
represented by an x connected to an arrow pointing to the indexed location. 

Two conventions indicate elisions in a data structure layout. A specific amount  of 
space is shown as a rectangle whose sides contain dots. Text within the rectangle 
indicates the amount  of space it represents. Field PHD$Q_PAL_RSVD in Figure 2.5, 
for example, represents 48 bytes. 

An indeterminate amount of space, often unnamed, representing omitted and unde- 
scribed fields, is indicated by a rectangle whose sides are intersected by short parallel 
horizontal lines. For example, Figure 2.1, which identifies only the PCB fields related 
to memory management,  contains seven sets of omitted fields among the labeled fields. 
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In a typical figure that represents a code flow, such as Figure 4.1, time flows down- 
ward. Each different environment in which the code executes is represented by a 
column in the figure. The headings above the columns identify the environment 
characteristics, for example, "Kernel Thread Context" or "Kernel Mode". 

A code flow figure represents only the events in the code most relevant to the current 
discussion. A description of code within a routine begins with the routine's name in 
bold-face type followed by text lines describing the routine's actions. When one routine 
calls another, the routine nesting is shown by indents. A lightning bolt represents 
an exception or interrupt. A diamond represents a branch test. An arrow indicates a 
transfer of control, typically from one routine to another. 
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Chapter 1 
Fundamentals and Overview 

One must  have a good memory to be able to keep 
the promises one makes. 

Friedrich Wilhelm Nietzsche, Human, All Too Human 

Virtual memory support for the OpenVMS Alpha operating system is based upon 
Alpha architectural features. It is designed to provide 

�9 Maximum compatibility with OpenVMS VAX memory management 

�9 Access to the larger Alpha address space 

Support for memory shared among multiple OpenVMS instances running on a 
Galaxy platform 

�9 Support for efficient operation of platforms with nonuniform memory access 

This chapter describes the Alpha memory management architecture and provides an 
overview of OpenVMS Alpha memory management. Sections 1.1-1.11 describe the 
fundamental concepts of memory management and the architectural mechanisms that 
underlie it. Sections 1.12-1.14 give an overview of OpenVMS management of virtual 
and physical memory. 

1.1 Overview 
Physical memory is the real memory supplied by the hardware. A virtual memory 
environment supports software that has memory requirements greater than the 
available physical memory. An individual process can require more physical memory 
than is available, or the total requirements of multiple processes can exceed available 
physical memory. A virtual memory system simulates real memory by transparently 
moving the contents of memory to and from block-addressable mass storage, usually 
disks. 

An Alpha processor and the executive cooperate to support virtual memory. As used 
here, the term processor includes both the CPU hardware and its privileged architec- 
ture library (PALcode) address translation code. 



Fundamentals and Overview 

In normal operation, the processor interprets all instruction and operand addresses as 
virtual addresses (addresses in virtual memory) and translates virtual addresses to 
physical addresses (addresses in physical memory) as it executes instructions. 

This execution time translation capability enables the executive to execute an image 
in whatever physical memory is available. It also enables the executive and an Alpha 
processor in combination to restrict access to selected areas of memory, a capability 
known as memory protection. 

The term memory management describes not only virtual memory support but also 
the ways in which the executive exploits this capability. Memory management i s  
fundamentally concerned with the following issues: 

Movement of code and data between mass storage and physical memory as re- 
quired to simulate a virtual memory larger than the physical one 

Support of memory areas in which individual processes can run without interfer- 
ence from others, areas in which system code can be shared but not modified by its 
users, and areas in which application code and data can be shared 

Arbitration among competing uses of physical memory to optimize system opera- 
tion and allocate memory equitably 

1.2 Physical Memory Configurations 
On a uniprocessor system, all the physical memory is associated with one CPU. Some 
of the physical memory is permanently occupied by executive code and data, and the 
rest is available for system processes and user applications. 

A symmetric multiprocessing (SMP) system is a hardware platform with two or more 
CPUs. Each can access all the physical memory and execute instructions indepen- 
dently of the others. As in a uniprocessor system, some of the physical memory is 
permanently occupied by a single copy of executive code and data, and the rest is 
available for other uses. Each CPU executes a different thread of execution, for exam- 
ple, an interrupt service routine or a kernel thread of some process. Executive code 
allocates physical memory, coordinates scheduling of the CPUs, and when necessary, 
synchronizes their operations. 

OpenVMS Alpha introduced support for Galaxy systems in Version 7.2. In a Galaxy 
system, multiple copies of OpenVMS execute within one multiprocessor computer. 
Each copy is called an instance. The system manager assigns each instance some 
of the computer's resources, in particular, memory, CPUs, and I/O peripherals. The 
system manager can reassign resources among the instances as needs change. With 
OpenVMS Alpha Version 7.3, only CPUs can be reassigned. 

The term soft partitioning describes this type of software-controlled separation of com- 
puting resources. In contrast, hard partitioning is a physical separation of computing 
resources by hardware-enforced barriers. 



1.2 Physical ,Memory Configurations 

An instance ,can be a uniprocessor or an SMP system. In each instance, some physical 
memory is occupied by executive code and data, and the rest is available for other uses. 
Some physical memory is shared among all the instances for Galaxywide system data 
structures. Applications running on multiple instances can create Galaxywide global 
sections in shared memory. Executive code synchronizes its own access to executive 
Galaxywide data and provides mechanisms for applications to synchronize their  access 
to Galaxywide sections. 

Figure 1.1 shows a simple representation of a Galaxy platform's CPUs and memory, 
which have been divided into three instances. Instance 0, for example, is a three- 
member SMP system. The executive occupies some of its private memory, and the rest 
is available for other uses. The three instances all share memory for executive data, 
and applications running on them can share global sections in shared memory. 

Figure 1.1 Example Galaxy Configuration 
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Some newer platforms are made up of hardware components called system building 
blocks (SBBs). Each SBB can have CPUs, memory, and I/O adapters. The components 
within an SBB have similar access characteristics. On Alphaserver GS160 and GS320 
systems, for example, the SBB is called a quad building block (QBB). On these systems 
a CPU can access physical memory in its own QBB more quickly than other memory. 
This phenomenon is called nonuniform memory access (NUMA). 

The system manager can configure the CPUs into a single SMP system running one 
OpenVMS instance or into a Galaxy system running multiple instances. In either 
case, if a single instance runs on multiple SBBs, the executive differentiates between 
memory local to a SBB and nonlocal memory to improve performance. For example, 
if a process is assigned to a particular SBB, the executive attempts to allocate its 
physical memory from memory local to that  SBB. Section 1.7 describes another way in 
which OpenVMS supports NUMA platforms. 



F u n d a m e n t a l s  a n d  O v e r v i e w  

A software grouping of hardware components with similar access characteristics is 
called a resource affinity domain (RAD). For example, on an Alphaserver GS160 or 
GS320 system, a RAD corresponds to a QBB. Figure 1.2 shows the CPUs and memory 
of an example GS160 configuration. The system manager has configured it as a 
Galaxy system running four OpenVMS instances. Instances 0 and 1 each correspond 
to a QBB. Instance 2, however, has CPUs and memory from QBB 2 and QBB 3 and 
thus makes use of two RADs. Instance 3's CPUs and memory are all from QBB 3. 

F i g u r e  1.2 Example GS160 Configuration 
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1.3 Virtual Memory Concepts 
Virtual memory is implemented so that  each process has its own address space. Some 
of the address space is private to a process, and some of it is common to all processes. 
Executive code and data occupy the common virtual memory, which is called system 
space. Virtual memory can be larger than physical memory. 

Support for virtual memory enables a process to execute an image that  only partly 
resides in physical memory at any given time. Only the portion of virtual address 
space actually in use need occupy physical memory. This enables the execution of 
images larger than the available physical memory. It also makes it possible for parts 
of different processes' images and address spaces to be resident simultaneously even 
when they are in the same address range. Address references in an image built for a 
virtual memory system are independent of the physical memory in which the image 
actually executes. 
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Physical memory consists of byte-addressable storage locations eight bits (one byte) 
long. Physical address space is the set of all physical addresses tha t  identify unique 
physical memory storage locations and I/O space locations. A physical address can be 
t ransmi t ted  by the processor over the processor-memory interconnect, typically to a 
memory controller. 

During normal  operations, an instruction accesses memory using the vir tual  address 
of a byte. The processor t ransla tes  the vir tual  address to a physical address using 
information provided by the operating system. The set of all possible vir tual  addresses 
is called vir tual  memory, or vir tual  address space. 

Virtual address space and physical memory are divided into units  called pages. Virtual 
and physical pages are the same size. Each page is a group of contiguous bytes tha t  
s tar ts  on an address boundary tha t  is a multiple of the page size in bytes. The page is 
the unit  of address translation. An entire vir tual  page is always mapped to an entire 
physical page; addresses within one vir tual  page t rans la te  to addresses within the 
same physical page. The vir tual  page is also the unit  of memory protection. Each 
vir tual  page has protection at t r ibutes  specifying which access modes can read and 
write tha t  page. 

Memory management  is always enabled on an Alpha processor. The CPU hardware  
treats  all instruction-generated addresses as virtual. Note, however, tha t  kernel  mode 
code can access a physical address directly by executing the instruction CALL_PAL STQP 
or CALL_PAL LDQP. 

The CPU hardware  at tempts  to t rans la te  vir tual  addresses to physical addresses using 
a hardware  component called a t ranslat ion buffer (TB). A TB is a cache of previously 
t ransla ted addresses. Because a TB can be accessed and searched faster  than  a page 
table, address t ranslat ion is first a t tempted through a TB lookup. If the TB does 
not include this part icular  translation,  PALcode must  access a set of software data  
s tructures called page tables to load the t ranslat ion into the TB. 

Each process has its own set of page tables. Page tables provide a complete association 
of virtual  to physical pages. A page table consists of page table entries (PTEs), each of 
which associates one page of vir tual  address space with its physical location, either in 
memory or on a mass storage medium. 

A PTE contains a bit called the valid bit, which, when set, means  tha t  the vir tual  
page currently occupies some page of physical memory. A PTE whose valid bit is set 
contains the number  of the physical page occupied by the vir tual  page. The physical 
page number,  called a page frame number,  consists of all the bits of the physical page's 
address except for those tha t  specify the byte within the page. When a reference is 
made to a vir tual  address whose PTE valid bit is set, the processor uses the page frame 
number  to t ransform the vir tual  address into a physical address. This t ransformation 
is called vir tual  address translation.  

When a reference is made to a vir tual  address whose PTE valid bit is clear, the 
processor cannot perform address t ranslat ion and instead generates  a translat ion- 
not-valid exception, more commonly known as a page fault. The page fault  exception 
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service routine, called the page fault handler,  examines the PTE to determine the 
physical location of the invalid page. 

�9 If the page is on disk, the page fault handler  obtains an available page of physical 
memory, stores its page frame number  in the PTE, and initiates I/O to read  the 
virtual  page into it from mass storage. When this occurs, the process is said to be 
faulting the page in. 

When the I/O completes successfully, the page fault handler  sets the PTE valid 
bit and dismisses the exception. With the vir tual  page now valid, control r e tu rns  
to the instruction whose previous execution triggered the page fault, and it is 
reexecuted. 

�9 If the page is a demand zero page, a data  page tha t  is initialized to all zeros, the 
page fault exception service routine allocates a page of memory, zeros it, stores 
its page frame number  in the PTE, sets the PTE valid bit, and dismisses the 
exception. 

�9 If the invalid page is still cached in physical memory, the page fault handle r  simply 
updates the PTE. 

Reading a vir tual  page into memory or creating a demand zero page in response to an 
a t tempted access is called demand paging. 

The set of a process's valid virtual  pages is called its working set. The executive 
limits the number  of pages of physical memory a process can use at once by set t ing a 
maximum size for its working set. When this limit has been reached and the process 
incurs a page fault, the page fault handler  selects one of the process's vir tual  pages to 
remove from its working set. When this occurs, the process is said to be fault ing the 
page out. Removing one virtual  page from a process's working set to make room for 
another  is called replacement paging. 

The mass storage location from which a vir tual  page is read is called its backing 
store. A common example of backing store is a set of blocks in an image file. If  the 
vir tual  page is guaranteed not to change ( that  is, it contains code or read-only data), 
the page fault handler  need not write the page to mass storage when it is faulted out 
(thus saving the I/O) and can reread it from the image file as often as required. Thus, 
the backing store file remains the image file. If, however, the vir tual  page contains 
writable data, the page is faulted in once from the image and later  faulted out to page 
file backing store, from which any subsequent  faults will be satisfied. 

The sections tha t  follow discuss how these concepts are implemented by the Alpha 
architecture and OpenVMS Alpha. 
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1.4 Virtual and Physical Pages 
The Alpha architecture supports a page size of 8 KB, 16 KB, 32 KB, or 64 KB. Each 
of the CPUs supported by OpenVMS Alpha Version 7.3, however, has a page size of 8 
KB (8,192 bytes). For simplicity, therefore, this volume describes virtual addresses and 
address translation in terms of a page size of 8 KB. 

In contrast, the VAX architecture supports a single page size, 512 bytes. To dist inguish 
the two architectures'  pages, the term pagelet identifies a VAX page, or a 512-byte unit  
of memory. 

Each page is a group of 8 K contiguous bytes s tar t ing on an 8 KB address boundary. 
The first page starts at address 0, the second at address 200016 (or 81921o), the third 
at address 400016 (or 1638410), and so on. 

Each physical page has an identifying number  called a page frame number (PFN). 
A PFN is simply the portion of the physical address that  specifies the physical page, 
namely, all but the low-order bits that  specify the byte offset within the page. Typi- 
cally, PFNs start  at 0 and increase toward higher numbers. OpenVMS, however, does 
not require that  PFNs start  at 0 or that  physical memory be contiguous. 

Each virtual page has an identifying number called a virtual page number (VPN). A 
VPN is the portion of the virtual address that  specifies the virtual page, namely, all 
but the low-order bits that  specify the byte offset within the page. 

Although all Alpha CPUs to date have a page size of 8 KB, OpenVMS memory man- 
agement is adaptable to other page sizes. The console subsystem passes the page size 
to the executive during system initialization, and the executive defines various global 
cells accordingly. The following is a list of the most common of these cells and their  
contents for a page size of 8 KB: 

�9 MMG$GL_PAGE_SIZEmSize of page in bytes (0000200016) 

�9 MMG$GL_VPN_TO_VA (also known as MMG$GL_BWP_WIDTH)--Number  of 
bits to shift left to derive the virtual address from a VPN (0000000D16) 

�9 MMG$GL_VA_TO_VPN--Number of bits to shift right to derive the VPN from 
a virtual address (expressed as a negative number  to indicate a right shii~) 
(FFFFFFF316) 

�9 MMG$GL_BWP_MASK~Mask of set bits corresponding to the byte offset, or byte 
within page, field in a virtual address (00001FFF16) 

Executive routines use these and similar cells as parameters  for page size dependent  
code. An application program can determine the page size by requesting the Get 
System Information ($GETSYI) system service to return information about i tem SYI$_ 
PAGESIZE. 
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1.5 Virtual Addresses and Page Tables 
In the Alpha architecture, a virtual address is represented as a 64-bit unsigned 
integer. An Alpha virtual address is divided into five parts whose sizes and start ing 
bit positions can vary with page size. Figure 1.3 shows the parts of a virtual address 
on a system with a page size of 8 KB. 

The processor translates a virtual address to a physical address using a three-level 
hierarchy of page tables. Each level field diagramed in Figure 1.3 indexes a different 
level of page table, and each is used in translating the virtual address. An Alpha page 
table of any level is one page long, and each PTE in it is eight bytes long. The value in 
a level field is thus multiplied by 8 to select a PTE. 

Figure  1.3 Parts  of  an Alpha Virtual  Address  

63 43 42 33 32 23 22 13 12 0 

Sign extension bits Level 1 Level 2 Level 3 Byte within page 

A level 3 page table (L3PT) contains 1,024 L3PTEs (8,192/8 = 1,024), each of which can 
map a page of code or data. A level 2 page table (L2PT) contains 1,024 L2PTEs, each 
of which can map an L3PT. A level 1 page table (L1PT) contains 1,024 L1PTEs, each of 
which can map an L2PT. Figure 1.4 shows the relations among the three levels of page 
table. 

Each process has its own L1, L2, and L3 page tables; it shares some L2 and L3 page 
tables with other processes. The page table base (PTBR) processor register contains 
the PFN of the L1PT associated with the current process. The PTBR is part of the 
hardware privileged context and is swapped with process context. 

The Alpha architecture supports a sparse virtual address space. Whether a particular 
virtual page is defined is independent of the state of its neighboring pages. Unlike the 
VAX architecture, the Alpha architecture has no page table length registers and does 
not require multiple physically contiguous page tables. Moreover, holes in the virtual 
address space need not be represented by page tables, and the architecture permits 
those L2PTs and L3PTs that  exist to be pageable. These characteristics reduce the 
memory needed for page tables. 

Figure 1.5 illustrates the basic steps of address translation for an example virtual 
address whose three level fields contain the values L1, L2, and L3. These steps are as 
follows: 

1. The PTBR points to the L1PT. 

2. The contents of the level 1 field in the virtual address, L1, index the L1PT to select 
an L1PTE, which contains the PFN of an L2PT. 
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3. The contents of the level 2 field in the virtual address, L2, index the L2PT to select 
an L2PTE, which contains the PFN of an L3PT. 

4. The contents of the level 3 field in the virtual address, L3, index the L3PT to select 
an L3PTE, which, if its valid bit is set, contains the PFN of the page containing 
the code or data at that  virtual address. 

~ If the L3PTE is valid, the contents of the byte within page field, B, are concate- 
nated with the PFN to form the target physical address. 

Otherwise, a memory management  exception occurs to notify the operating system 
that  the translation cannot be completed. 

Section 1.10 covers virtual address translation in more detail. 
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F i g u r e  1.5 E x a m p l e  o f  A d d r e s s  T r a n s l a t i o n  

Virtual Address IS I LIIL2IL3 ] B I 

PTBR 63 LIPT 0 63 L2PT 0 63 L3PT 0 Code or Data Page 

L 1 - 8  !IL~ t-e: 
bytes L~e8 L3PTE = 1 Byte s 

L1PTE = I 1_2PTE : ' ]~r.-Target ' ] ]Address 

Although instruction execution generates 64-bit vir tual  addresses, a par t icular  proces- 
sor implements a smaller virtual address whose size is a function of the processor's 
page size. A page table on a system with a page size of 8 KB contains 1,024 PTEs. 
On such a system, each level field in a vir tual  address identifies one of 1,024 PTEs 
and thus is ten bits wide (1,024 = 21~ Byte offset, or byte within page, is 13 bits 
wide (8,192 = 213). Thus, a virtual address on a system with an 8 KB page with a 
three-level page table has only 43 bits of significance; the high 21 bits are simply sign 
extension bits. 

Table 1.1 shows the sizes of the virtual  address parts  for the possible page sizes. Each 
number  in the column Virtual Address Bits is calculated as the byte offset bits plus 
three times the number  of level bits. Each number  in the column Physical Address 
Bits is calculated as the byte offset bits plus 32, the size of a page frame number. 

Table  1.1 Ef fec t s  o f  P a g e  S i ze  on  A l p h a  V ir tu a l  A d d r e s s e s  

Byte Maximum Size Virtual Physical  
Page Offset Level of Virtual Address Address 
Size Bits Bits Address Space Bits Bits 

8 KB 13 10 8 TB 43 45 

16 KB 14 11 128 TB 47 46 

32 KB 15 12 2,048 TB 51 47 

64 KB 16 13 32,768 TB 55 48 

On a system with an 8 KB page, a correct 64-bit vir tual  address therefore has identical 
values in bits <63:43>, and the values of these sign extension bits are the same as the 
value of bit 42, the high bit of the level fields (see Figure 1.3). Thus, correct vir tual  
addresses must  be either in the range 0 to 000003FF FFFFFFFF16 or the range 
FFFFFC00 0000000016 to F F F F F F F F  FFFFFFFF16.  

10 
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Addresses in the range 00000400 0000000016 to FFFFFBFF FFFFFFFF16 are illegal. 
This address range is known as the gap. The processor generates an access violation 
if an at tempt  is made to access an address in this range. The gap represents an 
inherently unreachable portion of the virtual address space, addresses in which 
bits <63:43> are not the same as bit 42. The gap exists because there are only 43 
significant bits in a virtual address, given an 8 KB page and a three-level page table, 
yet there are 64 bits available for expressing a virtual address. 

1.6 Virtual Address Space 
Each process has its own virtual address space and page tables. Virtual address space 
is divided into the following parts: 

�9 System space 

�9 Process-private space 

�9 Page table space 

The executive is mapped into the same address range in each process's address space 
and is shared among all processes. That  address range is called system space. The 
page tables that  map system space are shared in each process's page table space. 
When the executive builds L1PTs for new processes, it initializes the L1PTEs tha t  map 
system space to the same value in each L1PT. As a result, the L2PTs and thus the 
L3PTs that  map system space are the same physical pages for every process. 

The nonshared part  of virtual address space is called process-private space. Each 
process can access only system space and its own process-private space; it is thereby 
protected against references to its process-private space from other processes. 

All the kernel threads within a process share the same address space. One kernel 
thread at a time executes on a processor. (On a symmetric multiprocessing system, 
each processor can be executing a different kernel thread from the same process.) 
When a kernel thread is placed into execution, its process's page tables become the 
working page tables for that  processor. 

Process page tables are mapped into the same virtual address range, called page table 
space, in each process's address space. Some of this range maps process-private space, 
and some maps system space. The page tables that  map process-private space are 
typically process-private, and the page tables that  map system space are shared. 

In early versions of OpenVMS Alpha, page table space was used only by PALcode. The 
executive mapped each process's page tables into system space as well and accessed 
them using system space addresses. 

OpenVMS Alpha Version 7.0 and subsequent releases access page tables only through 
page table space. This change removes prior limits to the growth of process address 
space, enabling a process to use a much larger process-private virtual address space. 
The change, however, removes the double mapping by which the executive could access 
process-private page tables from outside the context of that  process. The executive 
must  now use another mechanism in those cases where such access is required. 

11 
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Section 1.6.1 describes the organization of virtual address space in more detail, and 
Section 1.6.2 discusses page table space. 

1.6.10penVMS Alpha Virtual Address Space Layout 
Figure 1.6, not to scale, shows OpenVMS Alpha virtual address space. 

A key initial design goal of OpenVMS Alpha memory management  was maximum 
compatibility with VAX VMS. OpenVMS Alpha virtual  address space was initially 
based upon VAX VMS virtual address space. The VAX architecture defines a 32-bit 
virtual address space. 

The low half of the VAX virtual address space (addresses between 0 and 7FFFFFFF16) 
is called process-private space. This space is further divided into two equal pieces 
called P0 space and P1 space. Each is 1 GB long. The P0 space range is from 0 to 
3FFFFFFF16. P0 space starts at 0 and expands toward increasing addresses. The P1 
space range is from 4000000016 to 7FFFFFFF16. P1 space starts at 7FFFFFFF16 and 
expands toward decreasing addresses. 

The upper half of the VAX virtual address space is called system space and is shared 
by all processes. The lower half of system space (the addresses between 8000000016 
and BFFFFFFF16) is called SO space. SO space begins at 8000000016 and expands 
toward increasing addresses. Although the original VAX architecture specified that  
the upper half of system space, S1 space, was undefined and reserved, the architecture 
has since been modified to permit SO space to expand to FFFFFFFF16. The expanded 
address range results in 2 GB of system space. 

OpenVMS Alpha P0 and P1 virtual address space ranges are identical to their 
VAX counterparts. OpenVMS Alpha defines the combined S0/S1 space as 
FFFFFFFF 8000000016 to FFFFFFFF FFFFFFFF16. 

The Alpha 64-bit addresses for P0, P1, and S0/S1 ranges are sign-extended versions 
of the VAX 32-bit ones. Because the Alpha LDL instruction sign-extends in loading a 
longword from memory into a quadword register, P0, P1, and S0/S1 addresses can be 
stored as longwords in memory. (An Alpha instruction requires its address operands 
to be in registers.) These three virtual address ranges are 32-bit addressable spaces. 
Although they are part  of the overall 64-bit Alpha address space, because of their 
addressability they are known as 32-bit space. 

Defining system space at the high end of address space rather  than at 
00000000 8000000016 had the advantage of maximizing compatibility of the initial 
OpenVMS Alpha port. Moreover, it leaves the low end of address space free for 
process-private use, and it enables the L3PTEs that  map system space to be mapped 
by a shared L2PT rather  than by a process-private one. (On a system with an 8 KB 
page, an L2PT maps 8 GB. Thus a single L2PT would map P0, P1, and system space if 
system space were mapped at 00000000 8000000016.) 

12 
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Figure  1.6 Vir tua l  Address  Space 

OpenVMS Alpha Version 7.0 added support for additional virtual address space ranges 
to exploit Alpha's 64-bit addressing capability and to enable a process to map a very 
large process-private address space: 

13 
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* A shared virtual address range called $2 space is adjacent to S0/S1 space and 
extends toward lower addresses. 

�9 A process-private virtual address range called P2 space is adjacent to P1 space and 
extends toward higher addresses. 

The $2 and P2 ranges can only be accessed with 64-bit addresses. Although the 
entire 64-bit address space includes P0, P1, and S0/S1 space as well, the $2 and P2 
ranges in particular are referred to as 64-bit space because of their distinctive 64-bit 
addressability. 

The size of $2 space is determined at boot time rather than being fixed; its size de- 
pends on its contents, which include the PFN database and the global page table. The 
base address of $2 space can therefore vary from boot to boot. MMG$GQ_SYSTEM_ 
VIRTUAL_BASE contains the $2 space base address. 

Because the upper bound of P2 space is the lower bound of $2 space, constraining $2 
space to be no larger than necessary leaves the maximum amount of virtual space for 
application use in P2 space. The maximum size of P2 space is a function of the size 
of $2 space. MMG$GQ_PROCESS_SPACE_LIMIT contains a value 1 higher than the 
highest possible P2 space address. 

Page table space, described further in Section 1.6.2, consists of both process-private 
and shared memory. Its address range varies. Accessing it requires 64-bit addressing. 

Figure 1.7 shows the relations among the levels of page table that  map process-private 
and system space. For simplicity, it omits page table address space. 

1.6.2 Page Table Space 
In early versions of OpenVMS Alpha, a process's process-private page tables were part 
of a data structure called a process header (see Section 1.12.3) and double-mapped in 
32-bit system space as well as in page table space. The maximum size of a process 
header is computed during system initialization, and enough system space is reserved 
for each resident process to have a maximum-sized process header. Mapping process- 
private page tables in this way does not scale to support many processes with a 64-bit 
address space. The maximum possible page table space for a single process is 8 GB 
long, clearly dwarfing the combined S0/S1 space in which all processes' process-private 
page tables had been double-mapped. 

In OpenVMS Alpha Version 7.0, therefore, the process-private page tables were re- 
moved from system space and mapped only in page table space. The shared page 
tables were also mapped only in page table space. A consequence of removing this 
double mapping is that  the page tables are no longer accessible via 32-bit system space 
addresses or from outside the owning process's context. Although most references to 
process-private page tables are made by the memory management subsystem from the 
context of that  process, additional support was required to minimize the impact on 
kernel mode code referring to page tables from outside process context or using 32-bit 
addressing. Section 1.12.3 describes one aspect of this support, the system page table 
window. 
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Page table space is unique in not only being mapped by page tables but also consisting 
of them. The operating system creates page table space by selecting its virtual address 
range and initializing the corresponding LIPTE to map the LIPT itself. During system 
initialization the operating system selects a virtual address range for this space that  
meets the following constraints: 

�9 It is a virtual address range not otherwise in use. 

It is as large as the number of bytes that  are mapped by one LIPTE. On a system 
with an 8 KB page size this address space is 2 0000000016 bytes, or 8 GB, long. 

�9 It begins on a boundary that  is a multiple of its size in bytes. 

It is at an address range higher than process-private space and lower than system 
space so that  there is a single dividing line, within page table space, between the 
process-private and shared address spaces. 

The operating system initializes the LIPTE corresponding to the base of this virtual 
address range with the PFN of the L1PT, valid bit set, kernel mode read and write 
enabled, and all other bits zero. The operating system then records the base of the 
corresponding virtual address in MMG$GQ_PT_BASE and also loads it into the 
virtual page table base (VPTB) processor register. The VPTB contains the virtual (not 
physical) address of the base of page table space. 

Whenever a new process is created, the operating system allocates and initializes an 
LIPT for it. The system then initializes the appropriate L1PTE in the process's L1PT 
to map the LIPT and thereby the page table virtual address space. Because page table 
virtual address space is mapped by the same L1PTE in each process's L1PT, page table 
space occupies the same address range in each process's virtual address space. 

Figure 1.8 shows the organization of page table space on a system with an 8 KB page. 
In the figure, m is a function of the L1PTE selected for self-mapping and represents the 
high-order part of the resulting virtual address; n is equivalent to m + 1. MMG$GQ_ 
SHARED_VA_PTES contains the address of the dividing line between process-private 
and system space. 

The self-mapped LIPT creates a page tablehierarchy that  is shifted one level up from 
its use in a normal page table. Because the self-mapped L1PT is pointed to by an 
L1PTE, and an L1PTE maps an L2PT, the self-mapped L1PT becomes an L2PT as 
well. Because the self-mapped L1PT is pointed to by an L2PTE, it is also an L3PT. 
Mapped by an L2PTE in the shifted hierarchy, each normal L2PT becomes an L3PT, 
and the normal L3PTs become the data pages, the target of virtual address translation. 
The shifted hierarchy maps page table space. 

Page table space contains a linear array of all possible L3PTEs for a given process 
address space, including process-private, page table, and system address space. In this 
address space, any L3PTE can be located by using the concatenated level 1, level 2, 
and level 3 parts of a virtual address as a single linear index. The linear layout and 
single index eliminate the necessity for the L1PTE and L2PTE accesses in many cases. 
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Seen as a l inear array of L3PTEs, on a system with an 8 KB page size, page table 
space consists of 1 ,024 ,  1,024 L3PTs. Figure 1.8 consists of L3PTs tha t  map  P0, P1, 
and P2 space, followed by L3PTs tha t  map page table space, and finally by L3PTs tha t  
map $2 space and S0/S1 space. Seen as the s tandard  page table hierarchy, page table 
space includes 1 L1PT, 1,023 L2PTs, and 1 ,023 ,  1,024 L3PTs. 

Figure 1.9 shows the t ransformation of the page table hierarchy of Figure 1.7 into 
page table space. Each page table in Figure 1.9 has two labels: one identifying its use 
in mapping page table vir tual  address space (PTVAS), and the other, in parentheses ,  
identifying its normal use in mapping any other vir tual  address. The page table 
containing the L1PTE is not only the L1PT but  is now also an L2PT (and an L3PT and 
a data  page). The page table vir tual  address space L3PTs it maps are normally used 
as L2PTs. The page table space data  pages are normally used as L3PTs. 
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Figure 1.9 Transforming the Page Table Hierarchy into Page Table Space 
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1.7 Virtual Addressing on a NUMA System 
In the case of an SMP system with multiple RADs, OpenVMS optionally replicates 
system space code in physical memory local to each RAD. Having multiple copies 
improves the performance of executive code and images installed resident. This 
replication requires RAD-specific system PTEs: each RAD's system space PTEs must  
map its own copy of the code and data. 

To facilitate this mapping, the Alpha architecture has been enhanced to support 
separate physical page table structures for system and process-private space. A new 
processor register, the virtual address boundary (VIRBND) register, contains the lowest 
virtual address in shared address space, the address of the self-mapping L1PTE. 
Another new processor register, the system page table base register (SYSPTBR), 
contains the PFN of the L1PT that  maps system space addresses. 

Each RAD has its own LIPT to map system space and its own L2PT and L3PTs to 
map the RAD-specific copy of system code. An L1PTE mapping system space data 
that  is not RAD-specific is identical to its counterparts in all the other RADs' L1PTs. 
Similarly, an L2PTE that  maps system space data is identical to its counterparts in 
all the other RADs. L2PTs and L3PTs that  map system space data are not replicated. 
Chapter 2 contains further details. 

On a NUMA system, the basic steps of address translation, described in Section 
1.5, include a comparison of the virtual address to be translated and the contents of 
VIRBND: 

* If the address is less than VIRBND, the address of the L1PT to be used is con- 
tained in the PTBR. 

�9 If the address is equal to or greater than VIRBND, the address of the L1PT to be 
used is contained in the SYSPTBR. 

System space replication is controlled at boot time through SYSGEN parameter  RAD_ 
SUPPORT: when bit 0 (RIH$V_RAD_ENABLE) is set to enable general RAD support, 
bit 2 (RIH$V_SYSTEM_REPL) must also be set to enable system space replication. 

1.8 PTE Contents 
Figure 1.10 shows the architectural definition of a valid PTE, which contains the 
following fields: 

Bit 0 in the PTE is set to indicate that  the virtual page is valid and that  the 
processor can interpret bits <63:32> as a PFN. 

Each of the fault-on bits, when set, causes the hardware or PALcode to trigger an 
exception when the page is referenced in a particular way. Chapter 2 describes 
how OpenVMS uses the fault-on bits. 
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Figure 1.10 Valid Page Table Entry 
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Bit 4, the address space match bit, is set in a PTE tha t  maps a page shared  at  the 
same address range in all processes' address spaces. System space address  ranges 
are mapped at the same place in all processes' address spaces and are shared.  The 
executive therefore sets the address space match bit in the L2PTEs and L3PTEs 
tha t  map system space. Section 1.11.1 explains the purpose of this bit. 

The Alpha architecture includes support  for a feature called a granular i ty  hint  
region. A granular i ty  hint  region is made up of a number  of physically and vir- 
tually contiguous pages that  are t reated as a unit  during address translat ion.  A 
nonzero value in bits <6:5>, the granular i ty  hint  bits, identifies the page as belong- 
ing to a granular i ty  hint  region. Section 1.11.3 provides fur ther  information about 
granular i ty  hint  regions. 

Bit 7, if set, indicates tha t  no TB miss memory barr ier  is required. This bit is 
architecturally reserved for hardware  and is currently used on EV6 platforms 
when bit NO_MB is set in the MMG_CTLFLAGS SYSGEN parameter .  Under  
these circumstances, the operating system sets bit 7 in certain PTEs, for example, 
PTEs for process-private pages accessed from a single-threaded process and PTEs 
for pages permanent ly  mapped into system space. Section 1.10.2 explains how 
setting this bit in a PTE can improve performance. 

Bits <15:8> of the PTE are the protection bits for the vir tual  page. The Alpha 
architecture provides two bits for each access mode: a read enable (raRE, where m 
symbolizes access mode) and a write enable (mWE). The first, if set, enables read 
references to the page from tha t  mode. The other enables write references. If a 
write enable bit is set but the corresponding read enable is not, the operation of 
the processor is undefined. In other words, access to the page may be allowed or 
may cause an access violation, depending on the part icular  system. 

The OpenVMS executive uses only a subset  of the possible combinations of pro- 
tections tha t  the architecture provides. For compatibility with OpenVMS VAX 
applications, it uses only those combinations tha t  implement  protections consistent 
with the VAX architecture. These combinations obey the following rules: 

If a given access mode has write access to a part icular  page, then tha t  access 
mode also has read access to tha t  page. 
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If a given access mode can read a particular page, then all more privileged 
access modes can read the same page. 

If a given access mode can write a part icular page, then all more privileged 
access modes can write the same page. 

The architecture reserves bits <31:16> for use by the executive, which mainta ins  a 
modify bit in one of them. (Because the architecturally defined Alpha PTE has no 
modify bit, the operating system is responsible for recording whether  a page has 
been modified.) 

OpenVMS Alpha use of the reserved bits is explained further  in Chapters  2 and 4. 

The maximum amount of space addressable on any processor, whether  physical 
memory or I/O space, is limited by the 32-bit PFN field. Thus, the maximum 
architecturally defined physical address space is 2 32 pages. The architectural  
maximum number of bytes of physical address space varies with page size, as 
shown in Table 1.1. On processors with 8 KB pages, the architectural max imum is 
32 TB. 

1.9 Translation Buffer 
A translation buffer (TB) is a CPU hardware component that  caches the results  of 
recent successful virtual address translations of valid pages. Each TB entry has an 
associated valid bit; when the bit is set, the entry represents a valid t ranslat ion tha t  
the CPU can use. Each TB entry caches one translation: a VPN and, minimally, 
its corresponding PFN, address space match, and protection bits. To simplify the 
hardware and software, only information from valid PTEs is cached. An a t tempted 
translation that  results in a page fault is not cached; however, after the page is read in 
from backing store, the faulting instruction will be reexecuted and then the valid PTE 
will be cached. 

Like a physical memory cache, a TB is a relatively small amount of memory tha t  the 
CPU can access more quickly than physical memory. 

In the course of fetching instructions and the operands they reference, the CPU 
accesses the TB to get mapping information for a part icular page containing an 
instruction or an operand. For an instruction to be fetched and then executed, the TB 
must contain mapping information for the code and all data pages referenced by tha t  
instruction. 

The CPU's access to the TB is purely associative and does not involve the page table 
hierarchy or page table space. Thus, for the CPU to access a code or data page, the 
TB must contain mapping information from L3PTEs. The contents of L1PTEs and 
L2PTEs are not directly relevant to the CPU's operation. 

Consider, however, an instruction that  refers to an L2PT or L3PT as data  using its 
page table space address. For such an instruction to execute, the TB must  contain 
mapping information for the page of page table space. Although this situation is more 
complex to describe, the concept is the same as accessing a code or data page not in 
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page table space: the CPU needs mapping information in the TB from an L3PTE 
tha t  maps the code or data  page in order to execute the instruction. In terms of the 
s tandard  page table hierarchy, tha t  mapping information comes from an L1PTE or 
L2PTE. In page table space terms, the mapping information comes from one of the 
quadwords in the page table space, each of which is an L3PTE. 

The size and organization of a TB are CPU-specific. Some CPUs have both an in- 
struction s t ream TB (ITB) and a data  s t ream TB (DTB). The ITB caches t rans la t ions  
performed as the result  of instruction fetches. The DTB caches t ranslat ions performed 
as the result  of loading or storing memory operands. The information in each type of 
TB entry can be different. For example, on some CPUs, the ITB does not include the  
fault-on bits. On such CPUs, therefore, no TB entry is made for a page whose fault- 
on-execute bit is set. Instead, it is always the PALcode's responsibility to generate  this  
fault. 

Because there are considerably fewer TB entries than  vir tual  pages, a one-to-one 
mapping between vir tual  pages and TB entries is impossible. When all the TB entr ies  
are in use and another  t ranslat ion must  be cached, one of the entries must  be replaced 
with the new translation. 

The architecture defines a processor register related to TB use called t ranslat ion 
buffer check (TBCHK). The operating system can execute the instruction CALL_PAL 

MFPR, specifying the TBCHK register and a vir tual  address to determine whether  the 
t ranslat ion for a part icular  virtual  page is cached in the TB. The presence of a TB 
entry for a page indicates the page has been referenced recently and may therefore not  
be a good candidate to remove from a process working set. OpenVMS makes this check 
as par t  of its page replacement algorithm. 

Section 1.10 describes the TB's role in address translation,  and Section 1.11, addit ional  
TB features. 

1.10 Virtual Address Translation 
The sections tha t  follow build on the simplified description of address t ranslat ion in 
Section 1.5. 

1.10.1 Translation Using the Translation Buffer 
Section 1.5 describes indexing the page table hierarchy with a vir tual  address's level 
fields to locate the L3PTE that  maps tha t  virtual  address. In practice, performing 
physical memory references is too slow to do every address t ranslat ion tha t  way. 
Instead, an Alpha CPU transla tes  addresses through TB lookups. 

If a vir tual  address to be t rans la ted  is represented in the TB (a hit), the CPU ha rdware  
tests the cached PTE information to determine whether  the reference should be 
allowed: 
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1. The CPU tests the access mode and intended type of reference against  the pro- 
tection bits to determine whether  the reference is legal. For this purpose, an 
instruction fetch is considered a read. 

If the protection on the page prohibits the access, the CPU generates an exception 
called an access violation. 

2. If the protection bits allow the access, the CPU checks the intended reference 
against the fault-on bits. For this purpose, an instruction fetch is considered an 
at tempted execution. If the corresponding fault-on bit is set, the CPU invalidates 
the TB entry and generates a fault-on-read, fault-on-write, or fault-on-execute 
exception, as appropriate. (The TB entry is invalidated on the presumption that  
the exception service routine will alter the PTE to clear the fault-on bit so that  
the instruction can reexecute without faulting. Having altered a valid PTE, 
the exception service routine would otherwise have to request the invalidation 
explicitly.) 

3. If the access is allowed and no fault-on exception need be generated, the CPU 
forms the physical address by concatenating the PFN in the TB entry with the 
low-order bits of the virtual address, the byte offset within page. 

If a virtual address to be translated is not present in the TB (a miss), the CPU 
dispatches to the PALcode TB miss routine, described in the next section. 

1.10.2 TB Miss PALcode Routine 
After a TB miss, the CPU hardware extracts the concatenated level 1, level 2, and 
level 3 fields of the address and multiplies them by 8, the size of a PTE, to form an 
offset into the array of L3PTEs in the page table virtual address space. It adds the 
offset to the contents of the vtxrB to form the page table space virtual address of the 
L3PTE that  maps the virtual address to be translated. It then dispatches to the TB 
miss PALcode routine. 

In general, the routine tries to access the L3PTE using its page table space virtual 
address, but if that  results in another TB miss, the page table hierarchy is used 
instead. The routine then creates a TB entry for the original virtual address so that  
the CPU can execute the instruction. 

In detail, the TB miss PALcode routine proceeds as follows: 

1. It tries to fetch the contents of the L3PTE using its page table space virtual 
address. 

2. If the fetch causes another TB miss, the PALcode routine continues with step 8. 
Otherwise, it now has the L3PTE contents. 

3. The routine tests the valid bit in the L3PTE contents, and if the bit is set, it 
continues with step 5. 
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4. If the valid bit is clear, the routine tests the intended reference to the target 
virtual address and the mode from which it is being made against the protection 
bits in the L3PTE. If the page is protected against the intended reference, the 
routine generates an access violation. This test enables the legality of an intended 
reference to an invalid page to be checked without having to fault the page into 
memory. 

If the protection permits the intended access, the routine generates a page fault 
exception and exits. 

5. For an L3PTE whose valid bit is set, the routine loads a TB entry with information 
from the L3PTE. The CPU hardware will check the intended access against the 
protection when the instruction is reexecuted. 

6. The routine must then execute a memory barrier (MB) instruction or take some 
other CPU-specific action to ensure ordering between its fetching the PTE and 
other software's fetching data from the page. Without this ordering, it is possible 
for stale data to be prefetched from the page under certain circumstances. Con- 
sider, for example, a page accessed by multiple threads on an SMP system that  
has just  been read into memory by one CPU to satisfy a page fault. When the I/O 
completes on that  CPU, an MB is done, after which the operating system sets the 
valid bit in the PTE. Without the ordering, a thread on another CPU could access 
stale data using the newly valid PTE. See Chapter Synchronization Techniques for 
information on read and write ordering. 

The TB miss PALcode routine on EV6 tests bit 7 in the PTE, prior to taking action 
to ensure ordering. If the bit is set, indicating that  no ordering is necessary, the 
routine performs no ordering action. By default the bit is clear and the routine 
executes an MB. 

Use of bit 7 is not implemented in earlier CPUs. Instead their TB miss PALcode 
routines always perform a CPU-specific ordering action. 

7. The routine exits. 

8. If the fetch of the L3PTE caused a TB miss, a double TB miss PALcode routine 
is entered to load the TB so that  the fetch in step 1 can be completed. In other 
words, the double TB miss routine must  load the TB with mapping information 
for the page table space page containing the L3PTE that  maps the original virtual 
address. 

In terms of the shifted page table hierarchy, the entry corresponds to the L3PTE 
that  maps the page table page containing the target L3PTE (recall that  in the 
shifted page table hierarchy, the target L3PTE is a quadword in a data page). In 
terms of the standard page table hierarchy, the entry to be loaded corresponds to 
the L2PT that  maps the target L3PTE. 

The double TB miss routine takes the following steps: 

a. It indexes the page table hierarchy using the level fields in the target L3PTE 
address. The level 1 field is irrelevant because of the self-mapping in page 
table space: that  field simply selects an LIPTE that  contains the PFN of the 
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L1PT itself. The routine gets the PFN of the LIPT more quickly from either 
the PTBR register or the SYSPTBR register, depending on the faulted virtual 
address and the contents of the VIRBND register. 

It extracts the level 2 field from the target L3PTE address, multiplies by 8, 
and adds the result to the PTBR contents to calculate the physical address of 
the L2PTE. (Recall that  the L1PT and the L2PT are one and the same for page 
table space.) This L2PTE maps the L3PT page containing the target L3PTE. 

b. The routine physically fetches the L2PTE and tests its valid bit. Physically 
fetching the L2PTE without checking for residence is safe because the L1PT 
must be resident. 

If the L2PTE valid bit is clear, the routine also tests that  the L2PTE 
permits kernel mode read access. If it does not, the routine generates an 
access violation. If it does, the routine generates a page fault exception. 

If the L2PTE valid bit is set, the PFN in it identifies the page containing 
the L3PT. The routine calculates the physical address of the L3PTE that  
maps the page table space page containing the target L3PTE. 

c. It physically fetches that  L3PTE and makes the tests just  described to deter- 
mine whether the L3PTE is valid or whether a page fault or access violation 
exception should be generated. 

d. If the L3PTE valid bit is set, the PFN in it identifies the page table page 
containing the target L3PTE. The routine loads a TB entry with information 
from the L3PTE, thereby loading the target L2PTE. 

The double TB miss routine exits and returns control to step 1, having loaded 
the TB with the information (the target L2PTE) necessary for the fetch in step 
1 to succeed. That TB entry enables any of the 1,024 L3PTEs in the same page 
table space page to be fetched with one virtual memory reference. 

When the PALcode TB miss routine exits, the CPU retries its translation of the 
address that  incurred the TB miss. This time the TB contains an entry representing 
the virtual address. Using data from the entry, the CPU checks the intended reference 
against the fault-on bits, calculates the target physical address, and executes the 
instruction. 

The Alpha Architecture Reference Manual contains further details of the architecturally 
defined address translation mechanism. 

1.10.3 Address Translation Exceptions 
Before dispatching to any memory management exception service routine (access 
violation, translation-not-valid, or fault-on), PALcode loads the following exception 
parameter information into registers: 

�9 R4--The exact virtual address whose attempted reference caused the exception 
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�9 R5--The  memory management  flag quadword, whose possible values are 

00000000 0000000016 for a faulting data  read 

m 00000000 0000000116 for a faulting instruction fetch 

80000000 0000000016 for a faulting data  write 

The saved program counter (PC) field in the exception stack frame (see Chapter  
Interrupts, Exceptions, and Machine Checks) contains the address of the instruct ion 
the fetching of which failed or the address of the instruction tha t  incurred the fault.  

1,11 Translation Buffer Features 
The following sections provide additional information on the t ranslat ion buffer. 

1.11.1 Invalidating TB Entries 
The contents of a TB entry that  represents  a valid t ransla t ion can remain valid unt i l  
they are superseded by a later t ranslat ion of a different vir tual  address tha t  maps  
to the same TB entry. The operating system is responsible, therefore, for flushing 
no longer correct entries from the TB. For example, it must  invalidate a TB ent ry  
corresponding to a no longer valid PTE that  maps a page being deleted or removed 
from a process's working set. 

Because all processes have the same virtual  address range, all TB entries are process- 
specific. In theory, the entire TB would have to be invalidated when process context 
is swapped. However, in practice, a TB entry tha t  represents  a physical page shared  
at the same virtual  address in all processes need not be invalidated. The L3PTE 
mapping such a page has the address space match bit set to indicate it maps a v i r tual  
address whose t ranslat ion is the same in any process context. When process context 
is swapped, the swap privileged context (SWPCTX) PALcode routine invalidates only 
entries whose address space match bits are clear. Moreover, as described in Section 
1.11.2, the use of address space numbers  fur ther  reduces the need for TB invalidations. 

On a multiprocessor system, each CPU has its own TB. Although each CPU executes 
a different process, it is possible for a part icular  page to be represented in mult iple 
processors' TBs, for example, a system space page shared by all processes. When the 
operating system changes the L3PTE of a valid page whose address space match bit is 
set, it is responsible for invalidating the page in all processors' TBs. 

More precisely, each CPU executes a different kernel  thread. On a multiprocessor 
system, multiple CPUs could be executing multiple kernel  threads of the same process. 
Thus, even a process-private page accessed from different kernel threads  could be in 
multiple processors' TBs. When the operating system changes the L3PTE of a valid 
page in a mul t i threaded process, it is responsible for invalidating the page in all 
processors' TBs. 
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The operating system can invalidate one or more TB entries by executing the CALL_PAL 

MTPR instruction with one of the following possible processor registers specified: 

�9 TBIA--TB invalidate all 

�9 TBISD--TB invalidate a single DTB entry 

�9 TBISI--TB invalidate a single ITB entry 

�9 TBIS--TB invalidate a single TB entry from both the ITB and DTB 

�9 TBIAP--TB invalidate all process entries (those whose address space match bits 
are clear) 

A CPU implementation is allowed to flush more entries than the register specifies. 

Chapter 5 describes OpenVMS use of these processor registers. 

OpenVMS uses the fault-on-execute bit to minimize TB invalidations on a system with 
both an ITB and a DTB. It sets the fault-on-execute bit in a page faulted as the result 
of anything but an instruction fetch. Any later a t tempt  to execute an instruction from 
the page results in a fault-on-execute exception. The exception service routine clears 
the fault-on-execute bit and returns. If no instruction is executed from the page, the 
fault-on-execute bit remains set. If, when the page is removed from the working set, 
the fault-on-execute bit is still set, there cannot be a TB entry for the page in the 
ITB, and the executive needs to invalidate only the DTB. If, however, the fault-on- 
execute bit is clear when the page is removed from the working set, the executive must  
invalidate both the DTB and the ITB. 

1.11.2 Address Space Numbers 
The architecture includes support for a feature called address space number  (ASN). 
Each TB entry is tagged with a number identifying the address space whose address 
translation the TB entry represents. (TB entries for pages whose address space match 
bits are set are not tagged in this way.) The processor register ASN is par t  of hardware  
privileged context on a CPU that  supports this feature. The current ASN is an implicit 
input for all TB lookups, invalidation of single TB entries, and examination of the 
TBCHK register. 

On a CPU that  supports ASNs, the SWPCTX PALcode routine does not invalidate 
TB entries. Instead, the operating system ensures that  unique ASNs are assigned 
to different kernel threads and invalidates all process-private TB entries if it must  
recycle ASNs. Use of ASNs can increase the usefulness of the TB as a cache by 
making it possible for entries to remain cached across multiple executions of a kernel 
thread on a particular CPU. 

ASN is a CPU-specific designation; although each member of an SMP system uses 
the same numeric range of ASNs, the members do not use the same set of ASNs: a 
particular ASN on one CPU typically does not represent the same virtual address 
space as tha t  ASN on another CPU. Because ASNs are CPU-specific and because 
multiple kernel threads of a process can execute concurrently on multiple CPUs, an 
ASN is associated with each hardware privileged context block (HWPCB) ra ther  than 
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with each process or address space. Chapter  Scheduling contains fur ther  information 
on the executive's handling of ASNs. 

1.11.3 Granularity Hint Regions 
An Alpha t ranslat ion buffer optionally supports a feature called a granular i ty  hint, 
by means of which one TB entry can represent  a group of physically and virtually 
contiguous pages with identical PTE characteristics (protection, validity, and fault- 
on bits), known as a granular i ty  hint  region. Use of granular i ty  hints  improves 
performance by increasing the number  of apparent  TB entries and thus  reducing TB 
misses. The number  of pages in a group specified by one TB entry is specified in bits 
<6:5> of the PTE of each page in the group. The bits are as follows: 

�9 Bit value 00--1-page region 

�9 Bit value 01--8-page region 

�9 Bit value 10--64-page region 

�9 Bit value 11--512-page region 

If the TB holds an entry for any vir tual  page in the group, the CPU uses tha t  entry to 
t ransla te  any vir tual  address in the entire group. The details of a par t icular  TB, such 
as how many entries support  granular i ty  hints, vary with CPU type. 

A granular i ty  hint  region must  be on a natural ly  aligned boundary. For example, 
a granular i ty  hint  region of 64 pages must  be on a physical and vir tual  64-page 
boundary. For the operating system to make use of granular i ty  hints,  it must  reserve 
blocks of physical memory and vir tual  address space early in system initialization to 
ensure that  the address constraints can be met. 

By default OpenVMS allocates one or more granular i ty  hint  regions in system space 
for each of the following purposes: 

�9 Base and executive images' nonpaged code 

�9 Base and executive images' nonpaged data  

�9 S0/S1 space executive data  (see Section 1.6.1 for a description of the various 
address spaces) 

�9 Resident images' code 

�9 Resident images' data  

It creates additional granular i ty  hint  regions wherever  possible, such as for the PFN 
database tha t  describes memory. 

The appropriate granular i ty  hint  bits as well as the address space match bit are set in 
each of the L3PTEs tha t  map these regions. 

Applications can also create granular i ty  hint  regions (see Chapter  3). 

Chapters  2 and The Modular Executive provide more information on granular i ty  hint  
regions. 
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1.12 Virtual Memory 
This section summarizes OpenVMS Alpha use of each of the virtual  address spaces 
and the data structures associated with those uses. 

1.12.1 Use of Virtual Address Spaces 
The various address spaces are used differently, created at different times, and have 
different protections. 

Virtual address space is created (and recreated) at different times during system 
operation. System space is formed once and mapped in each process's address space. 
Process-private address space is created for each process and mapped only when tha t  
process is current. 

S0/S1 space contains the executive, systemwide data structures, and any images 
installed permanently resident by the system manager. The highest virtual page in 
S0/S1 space is left invalid for error detection. For example, to differentiate 64-bit 
calling standard descriptors from 32-bit descriptors, the former have a longword of 
FFFFFFFF16, or -1 ,  at offset 4, the address field location in a 32-bit descriptor. If 
a 64-bit descriptor is passed to a routine expecting a 32-bit descriptor, the routine's 
a t tempt  to access FFFFFFFF FFFFFFFF16 will cause an access violation ra ther  than 
incorrect results or corrupted data. Consult the OpenVMS Calling Standard for more 
information on calling standard descriptors. 

Actually, the highest 64 KB of S0/S1 space are left invalid regardless of page size. The 
system page table window (see Section 1.12.3) occupies the part  of S0/S1 space just  
below the invalid 64 KB. Leaving the high 64 KB of S0/S1 space invalid aligns the 
system page table window on a granulari ty hint boundary. 

$2 space contains systemwide data structures accessed by 64-bit pointers, in particular, 
the PFN database, global page table, and lock management  lock ID and resource hash 
tables. 

SYSBOOT and other initialization routines load executive images into S0/S1 space, 
form the dynamic memory pools, and initialize the other parts of system space. Chap- 
ters Bootstrap Processing and Operating System Initialization and Shutdown describe 
the formation and initialization of system space in detail. Even after initialization 
is over, S0/S1 space can expand upward to its maximum size of 2 GB, and $2 space 
can expand downward to the address in MMG$GQ_SYSTEM_VIRTUAL_BASE. The 
architecture does not require that  page tables be physically contiguous, and it permits 
a sparse mapping. Expansion of system space during normal operation is described in 
Chapter The Modular Executive. Individual PTEs can be altered to create, delete, or 
modify particular pages of system space. 

P1 space contains the process stacks and permanent  process control information 
maintained by the executive. It also contains address space used on the process's 
behalf by inner access mode components such as Record Management  Services, the file 
system, and a command language interpreter. 
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When a process is created, its P1 space is created in several stages, as described in 
Chapters Process Creation and Process Dynamics. The global cell CTL$GL_CTLBASVA 
contains the address that  is the boundary between the permanent and temporary 
portions of P1 space. The parts of P1 space below this address, namely, the user stack 
and a possible replacement image I/O section, are recreated by the image activator 
when it activates an executable image. P1 space can expand toward lower addresses 
during image execution as a result of system services requested explicitly by the image 
or implicitly on its behalf. 

P0 space maps whatever images the user activates. By default an image is linked to a 
base address of 1000016. 1000016, or 64 KB, is the size of the largest potential Alpha 
page. This leaves VPN 0 invalid, regardless of page size, to help catch errors such as 
references through uninitialized pointers. 

The image activator creates address space for the image and every shareable image 
that  it references. As the image activator processes images, it creates process sections 
for the image sections it encounters. (A process section can also be created dynamically 
in response to a system service request.) A process section is a group of contiguous 
virtual pages with the same characteristics, such as writability and shareability. 

During image execution the image activator creates additional P0 address space as 
necessary to activate images requested through the Run-Time Library procedure 
LIB$FIND_IMAGE_SYMBOL. 

P0 and P1 space can be dynamically allocated at run time through various system 
services and Run-Time Library routines. 

P2 space can contain user data accessed through 64-bit pointers. It can be dynamically 
allocated at run time through various system services and Run-Time Library routines. 
In addition, an image can contain demand zero data sections based in P2 space. 
Although code can theoretically execute in P2 space, OpenVMS does not currently 
support activating code sections there. 

P0 space and the nonpermanent parts of P1 and P2 space are deleted at image run- 
down and recreated with each new image run. 

Chapter Image Activation and Exit describes the image activator and the memory 
management system services it requests to map the sections of an image. Chapter 3 
describes those system services as well as others an image can request to create, map, 
and delete address space. 

Appendix Size of System and P1 Virtual Address Spaces describes the layout of system 
and P1 space in more detail. 

Different areas of virtual address space have different protections. The protection 
codes on most system space data pages prohibit access from all but kernel and exec- 
utive modes. S0/S1 space pages occupied by executive code allow any access mode to 
execute code in them. The protection on P2 space pages is specified indirectly to the 
system service that  creates it. It usually allows read and write access from user mode. 
Certain parts of P1 space are protected against access from outer access modes. The 
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protection on P0 space pages is specified indirectly to the system service tha t  creates 
it. It usually allows read access from user  mode and sometimes write access as well. 

1.12.2 Virtual Memory Regions 
From the first release of VAX/VMS, process-private vir tual  address space was divided 
into regions. Initially, regions corresponded one-for-one to the page tables defined by 
the VAX architecture: 

�9 The program region, corresponding to P0 space 

�9 The control region, corresponding to P1 space 

A significant aspect to this division is tha t  a section in vir tual  memory mus t  be 
contained within a single region; a section cannot cross a region boundary. Address 
space within a region can be expanded contiguously to existing address space. In the 
program region, address space expands upward  to higher addresses; in the control 
region, downward to lower addresses. 

In OpenVMS Alpha Version 7.0, the concept of vir tual  region was extended and formal- 
ized. OpenVMS defines three process-permanent  regions--program, control, and 64-bit 
program (P2) regions--and enables an application to define additional regions within 
them. A user-defined region must  be within a single one of the process-permanent  
regions and cannot overlap another user-defined region. A region is identified by its ID 
and has at t r ibutes  such as size, protection, and expansion direction. 

Defining a region is a low-overhead operation tha t  enables an application to reserve 
contiguous vir tual  address space for a given region's maximum needs without  having 
to create all the address space for that  region at once. When the application requests  
a system service to create or expand address space, it identifies the region. This gives 
the application better  control of a virtual  address region, with no conflicting allocations 
and deallocations by code such as run-t ime libraries running in the same process. With 
the traditional 32-bit system services, the application can only implicitly identify the 
program or control region; the newer 64-bit system services accept a region ID. 

1.12.3 Virtual Address Space Data Structures 
The major data  s tructures tha t  describe vir tual  address space are 

�9 Process section table (PST) 

�9 Region descriptor entries (RDEs) 

�9 Page tables 

�9 System page table window 

The executive builds a data  s tructure called a process header  (PHD) to record memory 
management  data  about the process. The PHD contains the PST, which has  one 
process section table entry (PSTE) to describe each process section created in tha t  
process's address space. A PSTE contains information necessary to resolve a page fault 
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for a page in the section. The PTE for an invalid page tha t  is par t  of a process section 
contains a pointer to the section's PSTE. 

Chapter  2 contains more information on the PST. 

An RDE describes a region. RDEs for the process-permanent  regions are defined 
within the PHD. RDEs for user-defined regions are allocated dynamically. Chapter  2 
contains more information on RDEs, and Chapter  3 describes the services tha t  create 
and delete regions. 

During system initialization, the shared page tables tha t  map system space are 
created. OpenVMS double-maps the L3PTs tha t  map S0/S1 space so tha t  those L3PTs 
can be accessed using 32-bit pointers. These double-mapped page tables are referred 
to as the system page table (SPT) window. The SPT window provides compatibility for 
a device driver ported from OpenVMS VAX tha t  allocates a system page table entry 
and accesses it using a 32-bit pointer. 

Chapter  2 describes page tables in fur ther  detail. 

1.13 Physical Memory 
The OpenVMS Alpha system allocates some pages of physical memory permanently,  for 
example, the pages that  contain the SPT or the system base images. More typically, 
the system allocates a physical page of memory for a part icular  need, such as a vir tual  
page in a process's address space, and deallocates the page when it is no longer needed. 

This section summarizes  the OpenVMS Alpha management  of physical memory and 
its associated data  structures.  

1.13.1 Physical Memory Data Structures 
OpenVMS Alpha Version 7.1 and later  versions support noncontiguous physical mem- 
ory. OpenVMS records what  memory is present  in several forms. A structure called 
the SYI memory map lists the s tar t ing PFN and size of each memory segment. A user  
can access this information through the $GETSYI system service, which re turns  it in a 
form called a physical memory map (PMM) structure.  

A database called the PFN database records significant information about each physi- 
cal page, such as whether  it is currently in use and for what  purpose. 

Chapter  2 contains detailed descriptions of data  s tructures related to physical memory. 

The pages of physical memory allocated to a process are called its working set. A 
structure within the PHD called the working set list represents  just  those pages in 
a compact form. (In contrast, L3PTEs describing valid pages are scattered among 
those describing invalid pages in process-private L3PTs.) The working set list is briefly 
described in Chapter  2 and in more detail in Chapter  5. 
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Physical pages available for allocation are linked together into a list called the free 
page list. A page is allocated from the front of the list and generally deallocated to the 
back of the list. At allocation a physical page is associated with a virtual page: the 
PFN of the physical page is placed in the PTE corresponding to the virtual page, and 
the contents of the virtual page are read into the physical page from mass storage. 
The physical page retains its virtual contents until it is allocated for a new use. Even 
when the physical page is removed from a process's working set and the valid bit 
in the virtual page's PTE is cleared, the PTE still contains the physical page's PFN. 
Until the physical page is reused, it is possible to resolve a fault for the virtual page 
by removing the physical page from the free page list and setting the PTE valid bit 
again. A page fault resolved in this manner  without the need for mass storage I/O is 
sometimes called a soft page fault. 

When a physical page that  has been modified is removed from a process's working 
set, the page is inserted at the back of another list, called the modified page list. The 
modified page list differs from the free page list in that  a physical page on the modified 
page list cannot be reused until its contents are writ ten to backing store, for example, 
a page file or the section file to which the virtual page belongs. Once the swapper has 
written the contents of the modified page to backing store, the swapper moves the page 
to the back of the free page list. (Acting in this capacity, the swapper is referred to as 
the modified page writer.) 

While a physical page is on either the modified or free page list, a page fault for its 
virtual page can be resolved as a soft page fault without I/O. Thus these lists act as 
systemwide caches of recently used virtual pages. 

When the system has no current process to run, the executive removes a page from 
the free page list that  has no more ties to a virtual page, for example, a page whose 
contents have been deleted, and zeros it. Afterward, it inserts the page into a list of 
similar pages called the zeroed page list, from which demand zero pages and certain 
other types of virtual page are allocated. Zeroing an 8 KB or larger page when the 
system would otherwise be idle reduces the overhead incurred to allocate a page of all 
zeros. Chapter Scheduling provides further details. 

1.13.2 Sharing Physical Memory 
The page is the unit of sharing. Because system space addresses are mapped into each 
process's address space, the physical memory occupied by system pages is shared by all 
processes. However, on a NUMA system with replicated system space, only processes 
in the same RAD share replicated system space code pages; all processes in all RADs 
share system space data pages. 

In addition, multiple processes' PTEs can map the same physical pages to enable the 
processes to share physical memory. For example, multiple processes using the same 
command language interpreter can share the read-only pages of the image. (However, 
each process needs a private copy of its writable data pages.) Sharing physical pages 
makes more efficient use of memory and reduces the number of page faults that  
require mass storage I/O. 
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Multiple processes share physical memory through a mechanism called a global 
section. All the pages of a global section have the same attr ibutes.  A global section 
resembles a process section and is dealt  with similarly by the page fault handler.  

Several data  s t ructures  are associated with global sections: 

�9 Global section table 

�9 Global section descriptors 

�9 Global page table 

The global section table (GST) is analogous to a process section table and contains a 
global section table entry (GSTE) for each global section. Like a PSTE, a GSTE has  
information necessary to resolve a page fault for a page in the section. 

A global section descriptor (GSD) identifies a par t icular  global section by name and 
associates the name with a GSTE. A GSD contains information used to determine 
whether  a part icular  process is allowed to access the global section. 

The global page table (GPT) contains global PTEs (GPTEs) tha t  serve as templates  for 
the process PTEs tha t  map global pages. Unlike other PTEs, GPTEs are not accessed 
in the course of t rans la t ing  virtual  addresses; they are only accessed by memory 
management  routines. 

When multiple processes are mapped to a global section, all processes can potentially 
benefit from each other's page faults. When process A incurs a page fault for a global 
page not in its working set, if the page is not valid it is read in from its backing store. 
After the page fault completes, the GPTE is modified to show tha t  the global page 
is valid. If process B then incurs a page fault for tha t  page, the page fault handler  
copies the information from the GPTE to B's PTE and resolves the fault as a soft fault 
without  the need for I/O. 

OpenVMS Alpha also supports memory-resident  global sections. Once made valid, all 
the pages of a memory-resident  global section are permanent ly  resident. Pe rmanen t ly  
resident pages are not listed in the process's working set, and they do not require 
backing store. Optionally, the page tables tha t  map a global section can be shared as 
well, saving memory and backing store. 

Chapter  2 contains more details on these da ta  s t ructures  as well as those tha t  describe 
memory-resident  sections. Chapter  3 describes the system services tha t  create, map, 
and delete global sections. Chapter  4 discusses global page faults. 

In an SMP system, multiple CPUs share all of physical memory, executing one copy, 
or instance, of OpenVMS. Processes running on the different CPUs can share physical 
memory through global sections just  as they can on a single CPU. 

On a Galaxy platform, multiple instances of OpenVMS can execute cooperatively. On 
current  platforms, all instances have access to the same physical memory. Software 
parti t ions the memory and assigns it to individual instances of the operating system. 
Each instance thus has private physical memory for its copy of the operating system 
and for the processes tha t  run on it. 
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The system manager  can apportion some of the physical memory to be shared by all 
the instances. Processes running on the multiple instances can map memory-resident  
Galaxywide shared sections and share access to application data. Like memory- 
resident sections, Galaxywide section pages are not listed in a process's working set 
and do not require backing store. Optionally, the page tables tha t  map a Galaxywide 
section can be shared as well, saving memory and backing store. 

1.13.3 Managing Physical Memory 
Physical memory is used in the following ways: 

�9 Permanently, by pages occupied by the system base images and the nonpageable 
sections of executive images (may be replicated on a NUMA system) 

�9 Permanently, by systemwide nonpageable data structures (for example, system 
context stacks, the PFN database, and nonpaged pool) 

�9 Permanently, by images other than executive images that  have been installed 
resident in system space, for example LIBOTS.EXE and LIBRTL.EXE 

�9 Permanently, by pages within memory-resident global sections 

�9 Permanently, by pages reserved for memory-resident global sections 

�9 Dynamically, by pages on the free, modified, and zeroed page lists 

�9 Dynamically, by pages in processes' working sets 

�9 Dynamically, by pages in the system working set, namely, pageable sections of 
executive images and pageable system data (although much of the executive is 
nonpageable, some executive images have pageable image sections) 

The executive apportions physical memory among these uses based on 

�9 SYSGEN parameters  that  specify various minimum and maximum limits, such as 
the sizes of the free and modified page lists and the systemwide maximum process 
working set size 

�9 Process quotas and limits tha t  specify process-specific minimum and maximum 
working set sizes 

�9 Statistics and measurements  that  describe the current environment, such as the 
size of the free page list and the rate at which a particular process has been page 
faulting recently 

Hewlett-Packard Company recommends that  memory-resident sections be registered 
in the Reserved Memory Registry so that  AUTOGEN can tune the system to exclude 
permanently resident pages from its SYSGEN parameter  calculations. Chapter 2 has 
more information on the Reserved Memory Registry. 
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1.14 Software Memory Management Mechanisms 
This section provides an overview of the mechanisms by which physical and virtual  
memory are managed. OpenVMS Alpha memory management  is based upon VAX 
VMS memory management.  Recent OpenVMS Alpha releases, however, have added 
mechanisms designed to improve performance of applications using very large amounts  
of memory. 

VAX VMS memory management  mechanisms are best introduced from a historical 
perspective. Historically, the system has had two basic mechanisms to control its 
allocation of physical memory to processes" paging and swapping. Several auxiliary 
mechanisms, such as automatic working set limit adjustment  and swapper tr imming,  
supplement these fundamental  ones. 

1.14.1 Comparison of Paging and Swapping 
The executive uses both paging and swapping to make efficient use of available 
physical memory. The page fault handler executes in the context of the process tha t  
incurs a page fault. It supports programs with virtual address spaces larger than  
physical memory. The swapper enables a system to support more active processes 
than can fit into physical memory at one time. The swapper's responsibilities are more 
global and systemwide than those of the page fault handler. Table 1.2 compares the 
page fault handler  and the swapper in its role as working set swapper. 

1.14.2 Original Design 
An important  goal of the initial release of the VAX/VMS operating system was to 
provide an environment for a variety of applications, including real-time, batch, and 
time-sharing, on a family of VAX processors with a wide range of performance and 
capacity. The memory management  subsystem was designed to adjust to the changing 
demands of t ime-sharing loads and to meet the more predictable performance required 
by real-time processes. 

The major problems common to virtual memory systems that  concerned the original 
designers were the following: 

�9 The negative effect that  one heavily paging process has on others' performance 

�9 The high cost of start ing a process tha t  has to fault all its pages into memory 

�9 The high I/O load imposed by paging 

VAX/VMS support of virtual memory was designed to address these problems. With 
some modifications, the original design remains intact in the OpenVMS Alpha operat- 
ing system. 
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Table 1.2 Comparison of Paging  and Swapping  

Differences 

Paging Swapping 

The page fault handler moves pages in 
and out of process working sets. 

The page fault handler is an exception 
service routine that executes in the 
context of the process incurring the page 
fault. 

The unit of paging is the page, although 
the page fault handler attempts to read 
more than one page (a page cluster) with 
a single disk read. 

Page read requests for process pages are 
queued to the driver according to the 
base priority of the process incurring the 
page fault. I 

Paging supports images with very large 
address spaces. 

The swapper moves entire processes in and out of 
physical memory. 

The swapper is a separate process that is awak- 
ened from hibernation periodically and as needed 
by components that detect a need for swapper 
action. 

The unit of swapping is the process or, actually, 
the pages of the process currently in its working 
set. 

Swapper I/O requests are queued according to 
the value of the SYSGEN parameter SWP_PRIO. 
Modified page write requests are queued according 
to the SYSGEN parameter MPW PRIO. 1 

Swapping supports a large number of concurrently 
active processes. 

Similarities 

The page fault handler and swapper work from a common database. The most important 
structures used for both paging and swapping are the process page tables, the working set list, 
and the PFN database. 

The page fault handler and swapper do conventional I/O, using a shortcut into the normal 
Queue I/O Request ($QIO) system service mechanism. 

Both attempt to maximize the number of blocks read or written with a given I/O request. The 
page fault handler reads clusters of pages. The swapper attempts to inswap or outswap the 
entire working set in one or a few I/O requests. The modified page writer writes clusters of 
pages. 

iT his consideration has meaning for few mass storage device drivers. The priority at which an I/O 
request is queued to many drivers is largely irrelevant because they handle most requests immediately 
by queuing them to the device, which is likely to reorder them based on considerations such as disk head 
position. 

The original VAX/VMS designers chose to have a process page agains t  itself, for the 
most  part ,  r a the r  t han  against  other  processes. This minimizes the r isk of page 

37 



Fundamentals and Overview 

fault th rash ing  among processes and also enables more predictable performance for a 
real-time process. 

A process is created with a working set quota tha t  limits its maximum use of physical 
memory. The default and maximum sizes of each process's working set are specified at 
process creation. As a process executes and faults pages, they are read into memory 
from backing store and added to the process's working set. When the process's working 
set grows to its maximum size, a subsequent  page fault must  be a replacement  page 
fault, requir ing that  a page first be removed from the working set. In this manner ,  the 
process pages against  itself. 

Unlike some virtual  memory architectures,  nei ther  the VAX nor the Alpha archi tecture  
includes a reference bit in each PTE by means  of which less recently referenced pages 
can be identified. Instead, the executive uses the order of working set list entr ies to 
determine length of residence. The working set list, which describes the pages in the 
process's working set, is a ring buffer with a pointer to the entry most recently added 
to the working set. In general, the page most likely to be removed from the working 
set is the one following the most recently added, tha t  is, the oldest. 

Although this working set replacement algorithm is simple to implement  and has low 
CPU overhead, its selection of a page to be removed is not optimal and may cause more 
page faults. For those reasons, the original algorithm has been enhanced. Chapter  5 
describes the current  algorithm. 

To minimize the performance impact of this algorithm, the executive caches pages 
removed from a working set so tha t  they can be faulted back into it without  the need 
for mass storage I/O; the executive inserts a page removed from a working set at the 
tail of the free page list or the modified page list, depending on whether  the page 
had been modified. When a process needs a physical page of memory, for example, to 
fault a nonresident  page, the executive allocates the physical page at  the head of the 
free page list. Thus an unmodified page is cached for a length of t ime proportional 
to the size of the free page list and the frequency with which pages are allocated 
from it. When the modified page list grows beyond a certain size or the free page list 
shrinks below a certain size, the executive writes modified pages to their  backing store, 
typically a page file, and then inserts them at the tail of the free page list. A modified 
page is thus cached while it is on both the modified and free page lists. 

As previously noted, the working set replacement  algorithm typically removes the 
oldest page in the working set ra ther  than  the least recently used. The page list 
caches, however, make it possible to fault the page back in as the newest  page in the 
working set with little overhead. Because the working set list thereby tends to become 
somewhat ordered by use, the page list caches considerably improve the performance 
of the working set list replacement algorithm, bringing it close to tha t  possible with 
a least-recently-used algorithm but with less overhead. (Note tha t  a heavily paging 
process can affect others indirectly by causing the page lists to turn  over more rapidly, 
thus reducing their  effectiveness as caches for the other processes.) 
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The executive provides services by which a process can exercise some control over its 
working set list: it can lock and unlock selected pages into its working set and purge 
its working set of pages in a specified address range. At image exit, the executive 
deletes P0 space and the nonpermanent  par ts  of P1 and P2 space, thereby removing 
these pages from the working set. Before a process executes a new image, the exec- 
utive purges the working set of no longer needed pages, such as command language 
interpreter  code and data. 

The VAX/VMS system was designed to manage memory by both paging and swapping. 
Paging occurs in response to process page fault exceptions and results  in moving 
virtual  pages into and out of physical memory. Swapping, which occurs in response 
to events detected by the executive, results in moving whole working sets into and 
out of physical memory. Swapping all of a process's working set minimizes the t ime 
to reactivate the process and the number  of I/O operations required to remove its 
pages from memory and to read them back in. Swapping makes  it possible for more 
processes to coexist even when their  working sets cannot all fit into memory at  once. 

Processes in certain long-lasting wait  states are more likely to be outswapped than  
computable processes. When an outswapped process becomes computable, it is even- 
tually inswapped. Chapter  6 describes the relation between process scheduling states 
and the swapper 's  selection of inswap and outswap candidates. A privileged process 
can prevent  itself from being swapped. 

To reduce the I/O overhead of paging, the executive reads and writes multiple pages at  
a time in units  called clusters. A page fault cluster size is defined for each pageable 
entity, for example, an image section or a process page table. When a page is faulted, 
the executive tries to read a cluster's worth of pages. It writes modified pages in 
clusters also, to reduce I/O overhead. A SYSGEN paramete r  specifies the number  of 
modified pages wri t ten to a page file at once. Within this larger cluster, the modified 
page wri ter  groups related vir tual  pages so tha t  they can be faulted back in as a 
cluster. Chapter  4 describes both types of clustering. 

Simply deferring the writ ing of modified pages reduces I/O overhead to some extent: 
some pages are deleted before they are written; some pages are faulted in from the 
modified page list and modified again before they are written. 

In VAX/VMS Version 1, the following characteristics of the memory managemen t  
subsystem could be controlled by SYSGEN parameters  and process authorizat ion 
limits: 

�9 The minimum sizes of the free and modified page lists 

�9 The maximum size the modified page list could grow before the system began to 
write its pages to a page file 

�9 The maximum number  of concurrently resident processes 

�9 For each process, a default and maximum working set size 
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As processes were created, used free pages, and faulted pages, the free page list 
would shrink and the modified page list would grow. If the free page list sh runk  too 
low, the swapper would write modified pages and, if necessary, outswap a process. 
If the modified page list grew too large, the swapper would write modified pages. 
Occasionally, the swapper would have to write the entire modified page list, or flush 
it, in order to force specific pages out of memory. A process could alter its working set 
size from its default to its maximum through a system service to use tha t  many  more 
pages. Its working set size would be reset to its default at image exit. 

1.14.3 Auxiliary Mechanisms 
VAX/VMS Version 2 added a mechanism called automatic working set limit adjust- 
ment, by which a process's working set size was altered in response to its page fault  
rate. The working set of a heavily faulting process grew so as to reduce its page fault  
rate. The working set of a process that  incurred very few page faults was shrunk.  
With expansion considered the more significant part  of the mechanism, it was trig- 
gered at quan tum end, based on the idea tha t  a process tha t  could not execute even for 
a quantum did not need its working set limit adjusted. Chapter  5 describes automatic  
working set limit adjustment.  

VAX/VMS Version 2 also employed an enhancement  to the VAX architecture tha t  made 
it possible to test whether  a page had been referenced recently enough so tha t  its PTE 
was in the TB cache and thus not a candidate to be removed from the working set. 
The Alpha architecture also supports this capability through the TBCHK processor 
register. 

In VAX/VMS Version 3, automatic working set limit adjustment  was enhanced to 
permit a heavily faulting process to grow beyond its normal maximum working set 
if the free page list was sufficiently large. An alternative mechanism for reclaiming 
physical pages was added, called swapper trimming. The basic idea was tha t  when the 
swapper process detected that  the free page list had shrunk too low, it could reclaim 
memory from the working sets of processes expanded in times of plenty. If more 
memory was needed, it could either outswap a process or shrink a process working set 
as low as the SYSGEN parameter  SWPOUTPGCNT. This added considerable flexibility 
to the original design; by altering this and several other parameters,  a system manager  
could tune the system to favor swapping over paging, or vice versa. 

VAX/VMS Version 4 refined swapper trimming, correcting a failure to reclaim memory 
from a low-priority compute-bound process whose working set had expanded when the 
system was lightly loaded. As a result of the pixscan mechanism, described in Chapter  
Scheduling, the refinement was not always effective. 

In VAX VMS Version 5 there were several changes to the modified page writer, the 
most significant being that  it no longer flushed the modified page list to force specific 
pages out of memory. Instead, it could be requested to search the list for selected pages 
and write them, leaving the rest of the pages as cache. Swapper t r imming was fur ther  
refined to reclaim memory more quickly from certain kinds of processes, in some 
cases by outswapping rather  than  t r imming them. Chapters 5, 6, and Scheduling give 
further details of these proactive memory reclamation mechanisms. 
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Based on VAX VMS Version 5, the OpenVMS Alpha operating system uses these same 
mechanisms. 

1.14.4 Very Large Memory Support 
As the cost of physical memory has dropped, systems have been configured with 
more and more memory. OpenVMS Alpha has been extended to improve performance 
for applications such as database applications that  can benefit by using very large 
amounts of memory (VLM). 

In systems with limited physical memory, the mechanisms that  limit per-process use 
ensure fair and equal access to a scarce resource. On a memory-rich system, however, 
intended to service VLM applications, such memory limits constrain performance of 
the VLM applications. 

Extensions in support of VLM include 

�9 Support for a 64-bit virtual address space 

�9 Memory-resident global sections for large caches, to decrease time to access data 

�9 Shared page tables for memory-resident global sections, to reduce application 
startup and shutdown time as well as memory needs 

�9 Larger working set lists 

�9 Reserved Memory Registry, to reserve and preallocate memory for memory-resident 
global sections so that  they may occupy granulari ty hint regions 

Chapters 2, 3, and 5 provide additional information. 

1.15 Further Information 

Chapter 2, for a description of the data structures used by the memory manage- 
ment subsystem 

Chapter 3, for a description of the system services that  an image requests to alter 
a process's virtual address space 

Chapter 4, for a discussion of the translation-not-valid fault (page fault) handler, 
the exception service routine that  responds to page faults and brings virtual  pages 
into memory 

Chapter 5, for a description of the working set list and the mechanisms tha t  alter, 
shrink, and expand it 

Chapter 6, for an examination of the swapper process, a system process tha t  
manages physical memory by writing modified pages, shrinking process working 
sets, and swapping processes 

Chapter 7, for a description of the various pools from which virtual memory is 
allocated for t ransient  needs, such as creation of dynamic data structures 
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Alpha Architecture Reference Manual, Part II A, Chapter 3, for information on 
OpenVMS Alpha memory management support (http://www.digitalpressbooks.com/) 

Digital Technical Journal 8, no. 2 (1996), "OpenVMS for 64-Bit Addressable 
Virtual Memory" (http://www.research.compaq.com]wrl/DECarchives/DTJ/) 

Digital Technical Journal 9, no. 4 (1997), "OpenVMS Alpha 64-Bit Very Large 
Memory Design" (http://www.research.compaq.com/wrl/DECarchives/DTJ/) 

OpenVMS Alpha Partitioning and Galaxy Guide 
(http://www.openvms.compaq.com:8000/, order no. AA-REZQC-TE) 

OpenVMS Alpha Guide to Upgrading Privileged-Code Applications 
(http://www.openvms.compaq.com:8000/, order no. AA-QSBGD-TE) 

OpenVMS Calling Standard (http://www.openvms.compaq.com:8000/, order no. 
AA-QSBBD-TE) 
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Chapter 2 
Memory Management Data Structures 

�9 . . b u t  t h e r e ' s  one  g r e a t  a d v a n t a g e  i n  it ,  t h a t  one ' s  
m e m o r y  w o r k s  b o t h  w a y s .  

L e w i s  C a r r o l l ,  Through the Looking Glass 

This chapter  describes data  s t ructures  used by the memory managemen t  subsystem. 
These include the following: 

�9 Structures that  describe process vir tual  memory 

�9 Page tables tha t  help implement  vir tual  memory 

�9 Structures  tha t  describe granular i ty  hint  regions 

�9 Structures  tha t  describe the state of physical memory 

�9 Structures tha t  enable processes to share memory through global pages and 
sections 

�9 Structures tha t  describe the state of page and swap files 

The other memory management  chapters discuss how the routines tha t  compose the 
memory management  subsystem use these structures.  

2.1 Process Data Structures 
Much memory management  information about a process is mainta ined in its process 
header  (PHD). The PHD includes a list of valid vir tual  process pages (the working 
set list), a description of the sections tha t  make up the process-private address space 
(process section table), and a description of the pe rmanen t  regions in P0, P1, and P2 
space. 

The process control block (PCB) is the key da ta  s t ructure  tha t  represents  a process. 
The kernel th read  block (KTB) is the key data  s t ructure  tha t  represents  a kernel  
thread. A process is created with an initial kernel  thread,  tha t  is, an execution context, 
and optionally can create additional kernel  threads.  The PCB and KTB contain some 
information related to memory management .  
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The PHD, PCB, and KTB are all allocated in system space. When a process is created, 
a PCB and KTB are allocated for it from nonpaged pool. A region of system space 
called the balance set slots contains space for the PHDs of the maximum number  of 
resident processes. When a process is created, a slot is reserved for its PHD. If  the 
process is outswapped, its PHD may be outswapped as well, but  the PCB and KTB 
remain resident. 

Region descriptor entries (RDEs) describe reserved regions of process-private v i r tual  
memory. 

The PCB, KTB, RDEs, and PHD are described in the sections tha t  follow. 

A process's page tables describe its address space and the state of its vir tual  pages. 
Section 2.3 discusses page tables. 

2.1.1 Process Control Block and Kernel Thread Block 
A PCB is allocated for the life of the process and remains  in nonpaged pool whe the r  the 
process is resident  or outswapped. When a process is outswapped, the PCB remains  
as the representat ion of the existence of tha t  process and must  contain all information 
tha t  the swapper  requires to inswap the process. 

Figure 2.1 shows the PCB and KTB fields related to memory management .  The KTB 
was designed to overlay the PCB. That  is, each s t ructure  is sparse, with some fields 
designated KTB fields and others PCB fields. This overlay enables the initial thread 's  
KTB to occupy the same memory as the PCB. In Figure 2.1 the KTB fields are shaded. 

The longwords STS and STS2 are unusual  in tha t  they each represent  fields in both 
the PCB and the KTB. Some STS and STS2 bits are processwide and are par t  of 
PCB$L_STS and PCB$L_STS2. Others are kernel-thread-specific and are par t  of 
KTB$L_STS and KTB$L_STS2. All the s ta tus  bits related to memory m a n a g e m e n t  
are par t  of the PCB status  fields. 

PCB$L_STS contains several s tatus bits relevant  to memory management :  

�9 PCB$V_RES, when set, means tha t  the process ( that  is, its PHD and its working 
set) is resident  in memory. 

�9 PCB$V_PSWAPM, when set, means tha t  the process has disabled outswapping of 
itself. 

�9 PCB$V_PHDRES, when set, means tha t  the process's PHD is resident. (When a 
process is outswapped, its header  may remain  in memory.) 

�9 PCB$V_DISAWS, when set, means tha t  the process has disabled automatic  work- 
ing set limit adjustment.  

PCB$L_STS2 contains two status bits related to memory management :  

�9 PCB$V_PHDLOCK, when set, means tha t  the process has one or more pages 
locked in memory through one of the Lock Pages in Memory ($LCKPAG or $LCK- 
PAG_64) system services. The PHD of such a process may not be outswapped. 
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2.1 Process Data Structures 

PCB and KTB (Shaded) Fields Related to Memory Management  

PCB$V_FREDLOCK, when set, means that  the process has created more than 
16 additional kernel threads and its PHD has been expanded by more than one 
FRED page to accommodate them. Because the additional floating-point register 
and execution data structure (FRED) pages are accessed physically by code that  
does not hold the MMG or SCHED spinlock, the PHD of such a process may not be 
outswapped. Chapter Kernel Threads describes FRED structures. 

PCB$L_APTCNT only has meaning for an outswapped process; the swapper records 
in it the number of PHD and page table pages outswapped in the process's swap slot. 
Page table pages that  map buffer objects (see Section 2.6) are not outswapped and thus 
not included in this count. 
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PCB$L_GPGCNT contains the number  of global pages in the process's working set, 
and PCB$L PPGCNT, the number of process-private pages. The sum of these two 
fields is the number  of physically resident pages, the size of the process's working 
set. Note tha t  this sum does not include pages of memory-resident global sections, 
PFN-mapped sections, and Galaxywide sections to which the process is mapped. 

When a process is newly created, PCB$L_WSSWP is cleared to signal the swapper 
that  the process's initial pages come from the shell (see Chapter  Process Creation). 
The field has a different use later in the life of the process: when a process is 
outswapped, PCB$L_WSSWP contains its mass storage location. If the process has 
been outswapped in one extent, PCB$L_WSSWP contains a page file index (see Section 
2.9.2) identifying the swap file and the start ing virtual block number. The high bit 
of PCB$L_SWAPSIZE is set to indicate such a process; the low 31 bits of PCB$L_ 
SWAPSIZE contain its outswapped size in pages. If the process is outswapped in more 
than one extent, PCB$L_WSSWP contains the address of a page and swap file map- 
ping window block (PFLMAP), a data structure that  lists the locations and sizes of the 
extents. Chapter  6 describes the PFLMAP and process swapping. 

PCB$L_PHD, and KTB$L_PHD contain the address of the PHD, if PCB$V_PHDRES 
in PCB$L_STS is set. 

On a nonuniform memory access (NUMA) platform with resource affinity domain 
(RAD) support enabled (RIH$V_RAD_ENABLE set in SYSGEN parameter  R A D  
SUPPORT), PCB$L_HOME_RAD and KTB$L_HOME_RAD record the number  of 
the RAD associated with the process, the one to which most of its physical memory 
belongs. The default va lue , -1 ,  means no RAD is associated with the process. 

PCB$Q_BUFOBJ_LIST is the listhead for buffer object descriptors. Each buffer 
object descriptor describes a buffer object, a piece of address space used for certain 
kinds of I/O. Section 2.6 contains further information on buffer objects and their 
descriptors. PCB$L_BUFOBJ_CNT is the number  of buffer object and PFN-locked 
pages left in memory aider the process has been outswapped. Chapter 6 contains 
further information. 

PCB$A_FREWSLE_CALLOUT, if nonzero, is the procedure value of a procedure to 
be called when a page is selected for removal from the process's working set. The 
procedure is called with arguments identifying the process and the page, and with the 
contents of PCB$L_FREWSLE_PARAM. Chapter 5 gives further information. 

PCB$Q_KEEP_IN_WS and PCB$Q_KEEP_IN_WS2 delimit the virtual address range 
whose pages should not be removed from the working set list. Executive code uses 
these fields to keep particular pages in the working set temporarily. Chapter 5 con- 
tains further details. 

KTB$L_SWP_SEQ and KTB$L_SWP_KT are used by the code that  selects a process to 
outswap (see Chapter 6). 
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2.1.2 Region Descriptor Entries 
A virtual region is a reserved range of process-private virtual address space. (The 
term virtual region is usually shortened to region.) Identified by its ID, a region 
has attributes such as size, protection, owner access mode, permanence, expansion 
direction, and whether address space within it can be mapped by shared page tables. 

OpenVMS defines three process-permanent regions: the program region in P0 space, 
the control region in P1 space, and the program region in P2 space. The P0 and P1 
space regions can be accessed with 32-bit addresses sign-extended to 64 bits. The P2 
space region can only be accessed with 64-bit addresses. An application can create 
additional regions. It can also create address space within a region and later expand 
within that  region. If an application has not explicitly deleted regions it created, they 
are typically deleted at image rundown. Permanent  regions, however, which can be 
created by inner access mode code, survive image rundown. 

The three process-permanent regions occupy all the P0, P1, and P2 address space 
unused by application-defined, or dynamic, regions. Thus they may shrink as dynamic 
regions are created and expand as dynamic regions are deleted. 

Each region is described by an RDE. RDEs are process-private data structures; each 
process has its own set of RDEs. The RDEs for the process-permanent regions are 
created within the PHD, as shown in Figure 2.2. The RDE for the program region, for 
example, begins at offset PHD$Q_P0_RDE. 

When a user requests the Create Virtual Region ($CREATE_REGION_64) system 
service to create a new virtual region, a dynamic RDE for it is allocated from the P1 
space variable-length pool. As shown in Figure 2.2, RDE$PS_VA_LIST_FLINK and 
RDESPS_VA_LIST_BLINK link a dynamic RDE into a list of all dynamic RDEs within 
the same part  of process-private address space. 

RDE$PS_VA_LIST_FLINK and RDE$PS_VA_LIST_BLINK in each of the three perma- 
nent RDEs form the listheads for these lists of dynamic RDEs. The P0 and P2 space 
lists are ordered in ascending order by start ing virtual address. The P1 space list is 
ordered in descending order. 

Figure 2.3 shows the layout of an RDE and the array of RDE listheads. 

RDE$W_SIZE, RDE$B_TYPE, and RDE$B_SUBTYPE form the s tandard dynamic 
data structure header. 

A dynamic RDE is linked through RDE$L_TABLE_LINK into an RDE list correspond- 
ing to the low-order four bits of its region ID. A 16-1ongword array of such listheads 
begins at CTL$A_REGION_TABLE. This array speeds the lookup of a dynamic RDE 
with a particular region ID. Figure 2.3 shows an example of a process that  has created 
two dynamic regions. 
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Figure  2.2 Proces s -Permanent  RDEs in the PHD 
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RDE$Q_REGION_ID contains the ID associated with the region. The process- 
permanent  regions have IDs VA$C_P0, VA$C_P1, and VA$C_P2. PHD$Q_NEXT_ 
REGION_ID contains the ID of the next dynamic region to be created. It is initialized 
to 16 at process creation. When a new dynamic region is assigned the ID stored in 
PHD$Q_NEXT_REGION_ID, the latter is incremented. The application identifies the 
region by its ID in subsequent memory management  system service requests. 

RDE$L_FLAGS describes various characteristics of the region, for example, whether  
it expands toward ascending or descending addresses, in which virtual address space 
it exists, whether its page tables are shared, and whether to expand it automatically 
after an access violation. A shared page table region can map only memory-resident or 
Galaxywide global sections. 

RDE$R_REGPROT contains a structure that  identifies the access mode tha t  created 
the region and the access mode that  owns it. Only the owner and more privileged 
modes can delete a region. The low-order four bits specify the access mode of the 
owner. The next four bits specify the least privileged mode allowed to create address 
space. 

RDE$PQ_START_VA contains the lowest possible address in the region. RDE$PS_ 
START_VA is the name for the low 32 bits of this field. RDE$Q_REGION_SIZE (alias 
RDE$L_REGION_SIZE) contains the size of the region. RDE$PQ_FIRST_FREE_VA 
(alias RDE$PS_FIRST_FREE_VA) contains the virtual address of the next available 
page in the region. 
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Figure  2.3 Layout  of  an RDE 
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In previous versions PHD$L_FREPOVA contained the virtual address corresponding to 
the first available unmapped page in P0 space. PHD$L_FREPOVA is now an alias for 
the field RDE$PS_FIRST_FREE_VA in the program region RDE. Similarly, PHD$L_ 
FREP1VA is now an alias for RDE$PS_FIRST_FREE_VA in the control region RDE. 

RDEs are accessed only from process context. Accesses to them are synchronized with 
the inner mode semaphore (see Chapter Kernel Threads) and IPL 2 execution. 

2.1.3 Process Header 
Much important process-specific memory management information about a process is 
contained in its PHD. Shown in Figure 2.4, a PHD consists of a fixed part and several 
variable-length substructures: 

�9 The working set list describes the subset of process-private pages that are cur- 
rently valid. It also describes global pages that are valid in the process's page 
tables. 

�9 The process section table (PST) contains entries that associate the process sections 
created in the process's address space with the corresponding sections in the files 
where the pages originate. 
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�9 The BAK array contains information about the pages of the PHD itself, which the 
swapper uses when it outswaps the PHD. 

�9 In the case of a process with multiple kernel threads, an inner mode semaphore 
data structure synchronizes inner mode execution of the threads and an array 
containing FREDs. 

F i g u r e  2.4 D i s c r e t e  P o r t i o n s  of  the  P r o c e s s  H e a d e r  

Contains pointers to variable _ . r -  
portions of the process header L 
Describes pages in the 

i 

process header itself L 

Describes valid page table - - - I  
entries L 
Describes pages in section F 
files -L 
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working set list and process ~ 1  
section table L 
Synchronizes inner mode V 

I 

execution of multiple kernel -L 
threads 

Contains floating-point 
register and execution data 
for kernel threads 

Fixed Portion of Process Header 

Process Header BAK Array 

Working Set List 

Process Section Table 

Empty Pages 

Inner Mode Semaphore 

FRED Pages 

The maximum sizes of these substructures  are fixed by SYSGEN parameters ,  but  
their  actual sizes vary in response to process needs. Pointers or indexes in the fixed 
portion of the PHD locate each substructure.  Although the substructures  vary in 
size, the balance set slots in which PHDs reside are of fixed size to simplify memory 
management  code, as described in Section 2.8.3. The size of a balance set slot in pages 
is stored in global location SWP$GL_BSLOTSZ. 

The dynamic growth area of the PHD must  accommodate the growth of both the PST 
and the working set list. Expansion in either of these can result  in moving the PST to 
higher addresses in the PHD. Section 2.1.3.3 describes PST/working set list expansion. 

The PHD has several unusual  characteristics tha t  dist inguish it from other data  
structures: 

�9 The PHD is swappable. 

When a process is outswapped, its PHD may be outswapped as well. When later  
inswapped, the PHD is likely to be placed in a different balance set slot at a 
different system space address. Section 2.8.1 describes balance set slots. 

�9 The PHD is referenced using addresses in two different address regions. 
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The PHD is located in system space so tha t  the swapper  and other memory 
management  code can access it. 

The PHD is also mapped in P1 space and accessed through global pointer 
CTL$GL_PHD. This P1 window to the PHD is at a fixed vir tual  address range 
and remains  the same across outswaps and inswaps. The exact location of the win- 
dow varies with system version; its size varies with several SYSGEN parameters .  
Chapter  6 contains more information on the double mapping of the PHD. 

�9 The PHD is described by the process's working set list and is, in fact, locked into 
the working set because none of the PHD is pageable. PHD pages are the only 
pages with system virtual  addresses tha t  are par t  of a process working set. 

The swappabili ty of the PHD results  in several different methods for synchronizing 
access to fields within it. Because a PHD can be inswapped to a different balance set 
slot than  it last occupied, accesses to a PHD tha t  use its system space address must  
be synchronized against  swapper interference. Accesses from a kernel  th read  to its 
own PHD can be made with the SCHED spinlock held to block any rescheduling and 
possible swapping of the process. Holding the MMG spinlock is another  way to block 
swapping. 

Alternatively, executive code tha t  runs in process context can access the PHD through 
the P1 window and thus avoid the need for blocking possible movement  of the PHD to 
a different balance set slot. 

The sections tha t  follow describe the fixed par t  of the PHD and its memory manage- 
ment  substructures.  

2.1.3.1 Fixed Part of the PHD 
In addition to the pointers and indexes tha t  locate variable-length par ts  of the PHD, 
the fixed area  contains cells for process accounting information and several process 
quotas and limits. As described in Section 2.1.2, the fixed area of the PHD contains 
the RDEs for the three process-permanent  regions. 

Figure 2.5 shows the detailed layout of the fixed par t  of the PHD. Specific fields in 
the PHD are described, where appropriate,  in this and the other memory managemen t  
chapters. 

The hardware  privileged context block (HWPCB), the area in which the privileged 
register context of the initial kernel  th read  is saved, is in the fixed par t  of the PHD. 
This par t  of the PHD also contains space to save the contents of the initial kernel  
thread's floating-point registers when it is not current.  In effect, it is a FRED page for 
the initial kernel thread. 
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Figure 2.5 Layout of Fixed Part  of the Process  Header  (PHD) 
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(continued) 
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F i g u r e  2.5 (continued) Layout  of  F i x e d  Part  o f  the  P r o c e s s  H e a d e r  (PHD) 
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2.1.3.2 Working Set List 
Another memory management data structure located in the PHD is the working set 
list. The working set list describes the subset of process-private and global pages that 
are currently valid. Pages described in a process's working set list are P0, P1, P2, page 
table, or PHD pages. Its capacity to describe pages limits the number of physical pages 
the process can occupy with the exception of memory-resident and Galaxywide global 
section pages or PFN-mapped section pages, which are not included in the working set 
list. 

The page fault handler and swapper use the working set list to determine which 
virtual page to discard (to mark invalid) when it is necessary to remove a physical 
page from the process. The swapper also uses the working set list to determine which 
virtual pages need to be written to the swap file when the process is outswapped. 

Although the working set list currently remains in the PHD, it may move in a future 
release. For that reason, a process's working set list is generally located through the 
pointer CTL$GQ_WSL, which currently points to the working set list within the P1 
space mapping of the PHD. 
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Chapter 5 describes the organization and use of the working set list and the layout of 
a working set list entry (WSLE). 

2.1.3.3 Process Section Table 
The process section table (PST) is also located in the PHD. It contains process section 
table entries (PSTEs). 

A PSTE describes the association between a contiguous portion of virtual address 
space and a contiguous portion of a file. Both these portions are known as sections and 
consist of pages with identical characteristics, for example, protection, owner access 
mode, writability, and file location. Virtual address space is largely managed in units 
of sections. 

When an image is activated (see Chapter Image Activation and Exit), the file contain- 
ing the image is opened and a process section is created for each process-private image 
section. Although each image section is mapped separately, the image file is opened 
only once, and the image's sections page using the same assigned channel and window 
control block. 

A process section is also created when 

�9 A process opens a file and requests a system service that  creates and maps a 
process-private section, for example, the Create and Map Private Disk File Section 
($CRMPSC_FILE_64) system service or the Create and Map Section ($CRMPSC) 
system service, to map the file or some part of it into its address space 

* A shareable image is activated that  is not shared (that is, one that  has not been 
installed with the/SHARED qualifier through the Install utility) 

�9 A shared image is activated that  has a copy-on-reference section 

PSTEs enable the memory management subsystem to keep track of process pages in 
different sections, potentially in different files on different mass storage devices. 

Figure 2.6 shows the location of the PST within the PHD. PHD$L_PST_BASE_ 
OFFSET contains the byte offset from the beginning of the PHD to the base of the 
PST, its high-address end. 

Each PSTE within the table is 40 (symbolically, SEC$C_LENGTH) bytes long and is 
located through a longword index from the base of the PST. The first PSTE has an 
index of 1, and the second an index of 2. Successive PSTEs are at lower addresses. 
Since all references to a PSTE are relative to PHD$L_PST_BASE_OFFSET, the PST 
can be moved within the PHD without requiring changes in process PTEs that  contain 
process section table indexes or in PSTEs. 

The following operations compute the address of a particular PSTE: 

1. Add the contents of PHD$L_PST_BASE_OFFSET to the address of the PHD. The 
result is the address of the base of the PST. 

2. Multiply the process section table index by the length of a PSTE. 
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F i g u r e  2.6 P r o c e s s  Sec t ion  Table 

3. Subtract the result from the address of the base of the PST. 

Allocating or deleting a PSTE is synchronized by executing at IPL 2 and holding the 
inner mode semaphore (see Chapter Kernel Threads). 

A PST is organized into a variable number of linked lists of PSTEs. Figure 2.6 shows a 
typical PST with free and allocated PSTEs; the allocated PSTEs are shaded. The index 
in PHD$L_PST_LAST is the largest index of any entry ever allocated and is thus a 
"high-water mark." 

All the process sections that  page from the same section file using the same assigned 
channel are linked together. The entries are linked together through the backward 
and forward link index fields of each entry. 
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When a section is deleted, the PSTE tha t  mapped the section is placed on the list 
of free entries so that  it can be reused. The index PHD$L_PST_FREE points to the 
most recent addition to the free list. If no entry has been deleted, PHD$L_PST_FREE 
contains zero. The first longword in a PSTE on the free list contains the index to 
the previous element on the free list. When a section is created, the PSTE allocation 
routine first checks the free list. If there is no free PSTE, a new one is created from 
the expansion region between the working set list and the PST, and PHD$L_PST_ 
LAST is modified. 

The executive at tempts to keep the working set list and PST virtually adjacent, partly 
to simplify and shorten manipulation of the PHD during outswap and inswap and 
partly to minimize the chances of wasting physical memory for part ial  pages of both. 
When the executive must  expand the working set list into the area already occupied by 
the PST or vice versa, it allocates space from the existing empty page area (see Figure 
2.6). Then it moves the entire PST into the allocated space at higher addresses and 
stores the byte offset of the new base address in PHD$L_PST_BASE_OFFSET. 

The longword at PHD$L_PST_BASE_MAX specifies the maximum size of the PST. 
This longword points to the high-address end of the empty page area. It contains a 
byte offset from the beginning of the PHD. 

Room is reserved in the PHD for the maximum PST and working set list, specified by 
the SYSGEN parameters  PROCSECTCNT and WSMAX. It is possible for the PST to 
grow larger than PROCSECTCNT specifies, at the expense of the working set list. 

Figure 2.7 shows the layout of a section table entry. A section table entry in the 
system header describes a global section and is called a global section table entry 
(GSTE; see Section 2.7.2). Field names within a section table entry are defined by the 
STARLET.MLB macro $SECDEF and begin with SEC$. 

The first longword in the PSTE has two names: in a PSTE, SEC$L_CCB contains the 
address of the channel control block (CCB) on which the section file has been opened; 
in a GSTE, SEC$L_GSD contains the address of the global section descriptor (GSD) for 
that  section. 

SEC$L_SECXFL and SEC$L_SECXBL contain indexes of the previous and next 
section table entry. These link an entry in use into a list of others that  page using the 
same CCB. They also link all free entries together. 

SEC$L_PFC contains the page fault cluster for this section, the number  of section 
pages that  the page fault handler at tempts  to read in together when a page fault 
occurs. 

SEC$L_WINDOW is the address of the window control block (WCB) that  describes 
the locations of the section file on a mass storage volume. The WCB points to the unit  
control block (UCB) for the volume. 

SEC$L_VBN specifies the starting virtual, or file-relative, block number  (VBN) of the 
section file at which the pages in this section begin. 

SEC$L_FLAGS contains flag bits that  describe the section. 
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Figure 2.7 Layout of a Process/Global Section Table Entry (PSTE/GSTE) 
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SEC$L_REFCNT contains the number  of PTEs tha t  refer to the section. 

SEC$L_UNIT_CNT contains the number  of units in the section. A PFN-mapped 
section is measured in units of physical pages. Any other type of section is measured 
in 512-byte pagelets. A pagelet is the size of a mass storage block. Note tha t  a section 
file can occupy an arbitrary number  of blocks or pagelets but a section must  be created 
as a number  of pages. If the number  of blocks in a section file is not an integral 
multiple of blocks per page, the last page in the section is said to be partial. 

For a process-private section, SEC$L_UNIT_CNT is initially related to SEC$L_ 
REFCNT. If the section has no partial  pages, then SEC$L_UNIT_CNT is initial- 
ized as an integral multiple of SEC$L_REFCNT. On a system with an 8 KB page size, 
SEC$L_UNIT_CNT would be SEC$L_REFCNT multiplied by 16. If the section ends 
with a page not completely backed up by section file blocks, SEC$L_UNIT_CNT is less 
than an integral multiple of SEC$L_REFCNT. For a global section, SEC$L_REFCNT 
is the number  of PTEs that  refer to the section's units from all the processes tha t  have 
mapped it. For either type of section, SEC$L_REFCNT is reduced when a process 
deletes pages in its address space tha t  map the section. 

SEC$L_VPX contains the start ing virtual  page number  at which the section's pages 
are mapped in the address space. 

Most fields in a PSTE are initialized when the section is created and not modified 
subsequently. SEC$L_REFCNT is modified as the process deletes section pages from 
its address space. It is modified with the MMG spinlock held, since it can be accessed 
from process context and also by I/O postprocessing code. 

The following steps locate a virtual page in a section file through information in the 
PSTE: 

1. Subtract  the section's start ing virtual  page number  from the virtual  page number  
of the faulting page to get the page offset into the section. 
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2. Multiply the page offset by the number  of pagelets per page. 

3. Add the contents of SEC$L_VBN to the block offset computed in step 2 to get the 
VBN of the vir tual  page within the file. 

In page fault ing from a section file or wri t ing a modified page back to a section 
file, the executive checks whether  the section file has a page's worth of blocks 
beginning at tha t  VBN. It compares the contents of SEC$L_UNIT_CNT, the 
number  of pagelets (and therefore blocks) in the section file, to the sum of t ha t  
VBN and the number  of blocks in a page. If the section does not have enough 
blocks, the executive t ransfers  only as many  blocks as exist in the section file for 
tha t  vir tual  page and zeros the rest  of the page. 

4. Use the mapping information in the WCB to t ransform the VBN to a logical block 
number  on a mass storage volume. 

2.1.3.4 Process Header Page BAK Array 
In OpenVMS versions prior to Version 7.0, information about each PHD page was 
stored in four PHD page arrays. 

Two of the arrays  contained reference counts for each L3PT page. Sizing these ar rays  
as a function of the size of the PHD, which previously contained the page tables, was 
straightforward. Now tha t  the page tables have been removed from the confines of the 
PHD and their  maximum lengths are not fixed, describing them with a fixed-size a r ray  
is not viable. Instead, the reference counts have been moved to the PFN database  (see 
Sections 2.5.3.16 and 2.5.3.17). 

Two of the arrays  saved information about each PHD page in the working set, namely, 
their  working set list position and backing store. Information was recorded in these 
two arrays at outswap of a process and was used during inswap. The working set list 
information is reconstructed at inswap (see Chapter  6). 

The BAK array  is the only one left in the PHD. While a PHD is resident, the backing 
store location of each of its pages is stored in the PFN database.  When the PHD is 
outswapped, both the physical pages and the balance set slot it occupied are released 
for other uses. The PHD BAK array records the backing store information for each 
PHD page, which would otherwise be lost. Note tha t  it does not include information 
about page table pages, which are no longer par t  of the PHD. The backing store 
location of a page table page in a page file is stored in the PTE tha t  maps tha t  page 
table page. 

The BAK array  begins at offset PHD$Q_BAK_ARRAY, following the fixed par t  of the 
PHD. It has a quadword element for each of the maximum number  of pages in the 
PHD. 
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2.1.3.5 Array of FREDs 
A FRED consists of a HWPCB followed by space in which the floating-point registers 
can be saved at context switch, plus several other fields. 

The FRED for the initial kernel thread in a process is contained in the fixed part  of 
the PHD. The FREDs of subsequent kernel threads are contained in a part  of the PHD 
expanded when multithreading is initiated in a process. Each FRED occupies 512 
bytes. 

The PHD is expanded by one or more physically contiguous pages, depending on 
the number of kernel threads requested. The maximum number of expansion pages 
possible, stored in SWP$GW_FREDPTE, is based on the maximum number of kernel 
threads supported, PCB$K_MAX_KT_COUNT. In Version 7.3, PCB$K_MAX_KT_ 
COUNT is 256. 

PHD$L_FRED_OFF contains the longword offset from the beginning of the PHD to 
the FRED array in the expansion pages. The array is indexed by the low part  of the 
kernel thread ID. The process's inner mode semaphore occupies the first 512-byte 
block. Chapter Kernel Threads contains further information. 

2.2 System Header and System PCB 
The executive maintains two data structures for itself that are analogous to process 
structures: the system PCB and system header. Using these, the page fault handler 
can treat page faults of system pages almost identically to page faults for process 
pages. 

The system PCB, whose address is in MMG$AR_SYSPCB, contains a base priority 
used for I/O requests for page faults of system space pages and global pages. It also 
has a pointer to the system header, parallel to the PHD pointer in any process PCB. 

The system header, whose address is in MMG$GL_SYSPHD, occupies part  of the 
granularity hint region for systemwide writable data (see Section 2.4). As shown in 
Figure 2.8, the system header contains a working set list and a section table. 

Its working set list governs page replacement for pageable system pages from pageable 
sections in executive images and paged pool. (Although much of the executive is 
nonpageable, some executive images contain pageable image sections.) These are all 
described in the system working set list. Its size in pagelets is determined by the 
SYSGEN parameter SYSMWCNT. Unlike other working set lists, the system working 
set list does not expand or contract in response to system page fault rate. Once the 
system working set fills, replacement paging is required. Changes to the system 
working set list are synchronized by the MMG spinlock. 

For consistency with the process working set list, the system working set list is also 
located through a pointer, which is named MMG$GQ_SYSWSL. 

The backing store for pageable writable executive data and page file global sections is 
within page files. 
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F i g u r e  2.8 System Header Containing the System Working Set List and the 
Global Section Table 
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The section table in the system header contains entries for sections in files that  
contain pageable system pages and for global sections. The SYSGEN parameter  
GBLSECTIONS specifies the number of entries in the section table. 

Although the system header, like any other PHD, has space to describe three process- 
permanent regions, it does not describe any process-private space. The P1 and P2 
RDEs are unused. The P0 space RDE represents allocatable S0/S1 space, insofar 
as PHD$PQ_P0_FIRST_FREE_VA contains the virtual address of the next available 
unmapped page of S0/S1 space. 

2.3 Page Tables 
As shown in Figure 1.7, each process has its own page table hierarchy, beginning with 
its own level 1 page table (L1PT). The hierarchy includes process-private level 2 page 
tables (L2PTs) that  map process-private level 3 page tables (L3PTs) and shared L2PTs 
that  map shared L3PTs. A process that  maps a memory-resident global section with 
shared page tables potentially has a process-private L2PT that  maps both process- 
private and shared L3PTs. 

The sections that  follow describe process-private and shared page tables, system space 
page tables on a platform with replicated system space, and page table entry (PTE) 
formats. 

2.3.1 Process-Private Page Tables 
When a process is created, the executive allocates and initializes a page of physical 
memory for use as the process's LIPT. It zeros most of the LIPTEs and initializes 
several valid LIPTEs: 

�9 An LIPTE at offset 0 to map a process-private L2PT for P0 and P1 space and some 
of P2 space 
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�9 An LIPTE to map the page table virtual address space 

One or more LIPTEs,  at the end of the LIPT, to map one or more shared L2PTs 
for system space 

A process's LIPT is permanently locked into the process's working set list and is 
outswapped and inswapped with the process header. 

The executive also creates a process-private L2PT for the process. This L2PT maps the 
L3PTs that  map the process's P0, P1, and some of P2 space. On a system with an 8 KB 
page size, the first 256 L2PTEs are sufficient to map the entire 1 GB of P0 space and 1 
GB of P1 space. This L2PT is nonpageable and permanently locked into the process's 
working set list. 

The executive also creates some P1 space for the process and an L3PT to map the P1 
space. This L3PT is permanently locked into the process's working set because some of 
the pages it maps are nonpageable. 

As additional P0, P1, or P2 virtual address space is created for the process, the 
executive creates additional pageable L3PTs as necessary. If the process creates P2 
space that  cannot be mapped by the L2PT that  maps P0 and P1 space, the executive 
creates additional pageable L2PTs as necessary. 

2.3.2 System Space Page Tables 
During system initialization, console software allocates and initializes page tables for 
the primary bootstrap program, APB. The secondary bootstrap program, SYSBOOT, 
uses the same page tables during its execution. 

SYSBOOT is responsible for initializing system space. It sizes system space based on 
the sum of the maximum size of S0/S1 space and the following: 

�9 The value of the GBLPAGES SYSGEN parameter  

�9 The value of the S2_SIZE SYSGEN parameter  

�9 The value of the MAXBOBS2 SYSGEN parameter  

�9 The size of the PFN database 

�9 The size of the lock management  database 

SYSBOOT allocates a physical page to become the shared L2PT that  maps S0/S1 space 
and part  of $2 space and zeros it. It initializes the last L1PTE in the current L1PT 
with the L2PT's PFN. The ASM bit is set in the L1PTE. 

SYSBOOT creates S0/S1 space beginning at location FFFFFFFF 8000000016 and going 
toward higher addresses. It creates as much as is needed for executive images; data 
structures such as the balance set slots and error log message buffers; and nonpaged 
pool. 
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Beginning at the lowest possible $2 space address and going toward higher addresses, 
SYSBOOT creates as much $2 space as is needed for the PFN database and global 
page table. Subsequent expansion of $2 space begins at the high end of $2 space and 
goes toward lower addresses. 

SYSBOOT also double-maps the current L1PT into $2 space, storing its address in 
MMG$GQ_SYSTEM_L1PT. This will be the system context L1PT to be used when no 
thread is executable. 

SYSBOOT allocates physical pages of memory for the page tables that  map the system 
space it is creating and stores their PFNs in the appropriate PTEs. Because the Alpha 
architecture supports a sparse address space and does not require page tables that  
map virtually contiguous address regions to be physically contiguous, additional L3PTs 
and L2PTs can be allocated after system initialization as additional S0/S1 or $2 system 
space is needed. 

Chapters Bootstrap Processing and Operating System Initialization and Shutdown 
describe the bootstrap sequence in detail. 

System space is shared by all processes. The ASM bit is set in all L1PTEs, L2PTEs, 
and L3PTEs that  map system space. When a new process is created, the shared PTEs 
in the system LIPT are copied to the new process's L1PT so that  the new process maps 
the shared L2PTs that  map S0/S1 and $2 space. 

Figure 2.9 shows part  of the page table hierarchies of two independent processes. Each 
L1PT maps a process-private L2PT and process-private L3PTs for P0 and P1 space, 
but each maps a shared L2PT and shared L3PTs for system space. For simplicity, the 
figure omits the shared L2PT and L3PT that  map the lower end of $2 space. 

When a shared L3PT is allocated to accommodate system space expansion, a PTE in a 
shared L2PT is updated to map the new L3PT. Because each process maps that  shared 
L2PT, each process automatically has access to the new system space. 

When, however, a shared L2PT is allocated to accommodate $2 space expansion, a PTE 
in each process-private L1PT must be updated to map the new L2PT. (S0/S1 expansion 
cannot exceed a single L2PT.) The update is performed asynchronously, as needed: 
when an access violation accessing system space occurs, the exception handler  checks 
whether the attempted access was to $2 space not currently mapped by the current  
process's L1PT. If so and if the space is mapped by the system L1PT, the exception 
handler updates the current process's L1PT and dismisses the exception. 

The page tables that  map system space are not pageable. 

Section 2.3.4 summarizes how system space page tables differ on a system with 
replicated system space. 
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2.3.3 S0/S1 Page Table Window 
In OpenVMS versions prior to Version 7.0, the S0/S1 page table self-mapped itself to 
be accessible through system space addresses. For example, memory management  
routines altering S0/S1 PTEs in response to system space page faults accessed them 
through system space virtual addresses. That self-mapping had the following disad- 
vantage: because it self-mapped through an L2PTE, it wasted 6 MB of system space 
on a system with an 8 KB page. 

In OpenVMS Version 7.0 and later versions, the level 2 self-mapping has been elim- 
inated. Memory management routines access S0/S1 and $2 page tables using 64-bit 
page table space addresses. 

OpenVMS, however, also double-maps into S0/S1 space the L3PTs that  map S0/S1 
space. The double mapping enables pre-Version 7.0 device drivers that  referenced 
S0/S1 space L3PTEs with 32-bit addresses to execute on Version 7.0 and later versions 
without source changes. 

The global cell MMG$GL_SPTBASE continues to contain the system virtual address 
of the S0/S1 L3PTs. In releases of OpenVMS prior to Version 7.0, in which the only 
system space was S0/S1 space, the L3PTs that  mapped system space were called the 
system page table (SPT), a name taken from the VAX architecture. Thus, the term 
S P T  window refers to the double-mapped S0/S1 L3PTs. 

Figure 2.10 shows the SPT window. Basically, up to 256 S0/S1 L3PTEs are copies 
of the L2PTEs that  map S0/S1 space L3PTs. This enables the S0/S1 L3PTs to be 
accessed using S0/S1 addresses. The shaded areas in the figure represent those two 
sets of PTEs. 

The left-hand part of the figure shows a process's L1PT. The last L1PTE maps 8 GB 
that includes S0/S1 space. That L1PTE points to an L2PT whose last 256 L2PTEs 
map S0/S1 space L3PTs. The figure shows the 768th and the last L2PTE each pointing 
to an S0/S1 L3PT. 

The next part of the figure shows those two L3PTs. The upper one, in this example 
contained in PFN 1000, maps the lowest 1,024 pages of S0/S1 space. The lower one, in 
this example, PFN 2012, maps the highest 1,024 pages of S0/S1 space. 

The highest page of S0/S1 space is deliberately made not accessible (see Chapter 1). To 
make the size of the no-access space consistent regardless of page size, 64 KB is made 
inaccessible. The L3PTEs that  map the rest of S0/S1 space are simply copied from the 
L2PTEs that  map S0/S1 space L3PTs. 

As a consequence of this double mapping, any reference to an S0/S1 space L3PTE 
made using its S0/S1 space address accesses the real L3PTE. Whenever memory 
management code expands S0/S1 space such that  a new L3PT is allocated, it copies 
the contents of the newly used L2PTE to the corresponding L2PTE that  maps the SPT 
window. 
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Figure  2.10 SPT Window 

2.3 Page Tables 

2.3.4 Replicated System Space Page Tables 
As discussed in Chapter 1, on a NUMA platform OpenVMS optionally replicates a part  
of system space in physical memory local to each RAD. The system manager  enables 
replication by setting bits 0 and 2 (RIH$V_RAD ENABLE and RIH$V_SYSTEM_ 
REPL) in SYSGEN parameter  RAD_SUPPORT. 

During system initialization, after executive and resident images have been loaded, 
OpenVMS calculates the number of physical pages needed for each RAD's replication 
as the sum of the following: 

�9 1 for an L1PT 

�9 1 for an L2PT to map some of S0/S1 space 

�9 SYSGEN parameter  GH_EXEC_CODE, the size of the executive image code huge 
page (see Section 2.4) 
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SYSGEN parameter  GH_RES_CODE, the size of the resident  image code huge 
page 

�9 L3PTs to map the executive and resident  image code huge pages 

OpenVMS checks that  there is enough physical memory to accommodate system repli- 
cation for each RAD and allocates tha t  many  physically contiguous pages from memory 
local to each RAD. It double-maps each RAD's L1PT into $2 space. It initializes each 
RAD's L1PT by copying the base RAD's L1PT and replacing the self-map L1PTE and 
the L1PTE tha t  maps the two huge pages. 

It initializes each RAD's L2PT by copying the base RAD's S0/S1 L2PT and replacing 
the L2PTEs tha t  map the two huge pages. It initializes the L3PTs tha t  map the two 
huge pages and copies the contents of the two code huge pages to the pages allocated 
for this RAD's use. The PFN of the RAD's L1PT is stored in the SYSPTBR processor 
register of each CPU in tha t  RAD. 

When OpenVMS creates a new process's L IPT  on such a system, it initializes only 
the L1PTEs tha t  map process-private space. The RAD-specific L1PT will map system 
space. 

Figure 2.11 shows a slightly simplified version of the page table hierarchy of Figure 2.9 
on a NUMA platform with replicated system space. Each process has its L1PT to map 
process-private space. Each RAD has its own L1PT to map system space. Each L1PTE 
that  maps S0/S1 space points to a RAD-specific L2PT. Each valid RAD-specific L2PTE 
points to a RAD-specific L3PT tha t  maps RAD-specific copies of system space code. 

Expansion of system space has to be reflected in each RAD's page tables. When a 
shared L3PT is allocated to accommodate system space expansion, as described in 
Section 2.3.2, each RAD's L2PT is updated to map the new L3PT. If a shared L2PT 
is allocated to accommodate system space expansion, each RAD's L1PT is updated to 
map the new L2PT. 

2.3.5 PTE Formats 
Chapter  1 describes the architecturally defined bits in a valid PTE: bits <15:0> and 
bits <63:32>. This section describes the bits reserved to software and the various 
formats possible for a PTE that  describes an invalid page. Although the three fault-on 
bits are architecturally defined, their  use is operating-system-specific and is described 
here. 

Figure 2.12 shows the various forms of valid and invalid PTE tha t  can appear  in an 
L3PT. The shaded bits in each PTE are ei ther  reserved or bits whose contents are 
irrelevant for tha t  form of PTE. 

The fault-on-write bit enables OpenVMS to mainta in  a modify bit for a writable vir tual  
page. The state of the modify bit determines on which transi t ion list a page is placed 
when it is faulted out of the working set. OpenVMS sets the fault-on-write bit in the 
L3PTE of a writable page when it is faulted with read intent. After the page becomes 
valid, if any a t tempt  is made to write it, the processor generates  a fault-on-write 
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exception. The exception service rout ine clears the fault-on-write bit  and sets the  
modify bit in the L3PTE, which is wi th in  the bits reserved to software. In cont ras t ,  
when a wri table  page is faulted with  wri te  intent ,  the modify bit in its L3PTE is set  
when the page fault  I/O completes. Chapte r  4 describes in more detail  how the modify 
bit is mainta ined.  

The executive uses fault-on-execute to restr ict  access to t r ans la ted  image pages t h a t  
the Transla ted Image Env i ronment  (TIE) facility identifies as no-execute. These are 
image pages tha t  contain VAX instructions.  Any a t t emp t  to execute ins t ruc t ions  from 
such a page resul ts  in a fault-on-execute exception. The exception service rout ine  
signals an access violation to the TIE's condition handler.  Chap te r  Translated Image 
Environment describes the use of this mechan ism in more detail. Chap te r  1 describes 
an addit ional  use of the fault-on-execute bit. 

Section 2.4.3 describes the use of the fault-on-read bit. 

Bits <31:16> are reserved for software. The executive defines a number  of them:  

�9 Bit 16 in a valid PTE is the window bit. When  set in an L3PTE, it means  t h a t  
the vi r tual  page is a double mapping  of a physical  page. When the v i r tua l  page 
is deleted, the PFN database  for the physical  page should not be altered. This  
bit is also set in an L2PTE for an L3PT tha t  is a shared  page table or t ha t  m a p s  
memory-res ident  global sections or window pages. This bit is set in an L I P T E  for 
an L2PT tha t  maps  shared page tables. 

�9 Bit 20 in a valid PTE is the modify bit. When  set, it means  tha t  the v i r tua l  page 
has been modified and not yet been wr i t ten  to backing store. 

�9 Bits <29:28> specify how the page should be copied when  a process's address  space 
is cloned dur ing  a Portable Opera t ing  Sys tem Interface (POSIX) fork operat ion.  

�9 Bit 30, when set, specifies tha t  no execution access to the page is permit ted.  The 
TIE facility identifies a VAX image page containing un t r ans l a t ed  code as no- 
execute. The executive sets the fault-on-execute bit as well so tha t  an a t t e m p t e d  
instruct ion fetch from such a page tr iggers an exception. 

�9 Bit 31 always contains zero. In previous versions, it was used to d is t inguish  PTE 
contents from the sys tem space vir tual  address  of a PTE or GPTE, whose bit  31 
was set. 

Note tha t  the valid bit, protection bits, owner access mode bits, copy character is t ic  
bits, and bits 7 (no TB miss MB required) and 31 have the same mean ing  in all forms 
of PTE. 

The owner access mode bits record the access mode tha t  owns tha t  page. The executive 
allows a process to modify the characterist ics of a v i r tua l  page or delete it from an 
access mode equal to or more privileged than  the page's owner access mode. 
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A PTE for an invalid page contains either the location of the page or a pointer to 
further information about the page. The page fault handler  uses the type bits, bits 16 
and 20, in the invalid PTE to distinguish the different forms of invalid PTE. These are 
described in the sections that  follow. Chapter  4 describes the processing of page faults 
for various types of invalid PTE. 

One form of invalid PTE not pictured in Figure 2.12 is a null page, a quadword of zero. 
A PTE with a zero protection code disallows any access to the page by any mode. This 
form of PTE describes an unmapped page of address space. 

2.3.5.1 PTE Containing a Process Section Table Index 
The PTE of each page in a process section contains the index of the PSTE describing 
that  section. The PSTE has information about the location of the file mapped into the 
process address space and about the mapping between virtual file blocks and section 
pages. 

The PSTE also contains control bits that  are copied to the PTE of each page in the 
section: 

�9 Bit PTE$V_CRF (bit 48) is set to indicate the page is copy-on-reference. 

�9 Bit PTE$V_DZRO (bit 49) is set to indicate the page is demand zero. 

�9 Bit PTE$V_WRT (bit 50) is set to indicate the page is writable. 

In addition, bit PTE$V_PARTIAL_SECTION (bit 19) is set in a PTE that  maps a page 
not entirely backed by a section file. With page size not equal to disk block size, any 
section file whose block count is not an integral multiple of pages has a last page with 
this attribute. 

Section 2.1.3.3 describes the PST organization and the layout of the PSTE. 

2.3.5.2 PTE Containing a Page File Page Number 
With OpenVMS Version 7.3, the system manager  can install up to 254 page files. A 
process can page in any or all of them and is no longer limited to four page files, as it 
was in prior versions. 

When a virtual page has been faulted out to a page file, its PTE contains the number  
of the page within the page file and an eight-bit number start ing at bit PTE$V_PGFLX 
(bits <63:56>) indicating the page file in which the page is located. The eight-bit 
number is an index into the page-and-swap-file vector. Section 2.9.2 contains more 
information on the page-and-swap-file vector, and Chapter 4 discusses how page file 
backing store is assigned. 

2.3.5.3 PTE Containing a Global Page Table Index 
The PTE of an invalid process page mapped to a global page contains an index into 
the global page table, where an associated global PTE contains the information used to 
locate the page. Section 2.7.4 describes the contents of global PTEs. 
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2.3.5.4 PTE of a Page in Transition 

When a physical page is removed from a process working set, it is not discarded but 
put on the free or modified page list. The invalid virtual page, still associated with the 
physical page, is called a transition page. Its PTE contains a PFN, but the valid bit 
is clear. The two type bits are also clear. Retaining the connection to a physical page 
enables the executive to fault the virtual page back into the working set with minimal 
overhead until the physical page is reallocated for another use. 

Another type of transition page is a virtual page in t ransi t  between mass storage 
and physical memory. When a process faults a page not in memory, the page fault 
handler allocates a physical page and requests an I/O operation to read the virtual 
page from its backing store. While the I/O request is in progress, the virtual page has 
a transition PTE. 

Yet another type of transition page is a page in a Galaxywide demand zero memory- 
resident section that  has not yet been zeroed. When a process first accesses a page 
mapped by such an invalid L3PTE, it will trigger a page fault. The page fault excep- 
tion service routine will recognize that  this is an uninitialized page in a Galaxywide 
global section and zero it. 

A transition page is described further by its physical page's record in the PFN database 
(see Section 2.5.3). In particular, the PFN$L_PAGE_STATE field in the PFN database 
record (see Section 2.5.3.6) identifies the state of the page and distinguishes among the 
different types of transition page. 

2.3.5.5 PTE of a Demand Zero Page 
One form of transition PTE has a zero in the PFN field. This zero indicates a special 
form of page called a demand-allocate, zero-fill page, or demand zero page for short. 
A demand zero page is a writable page of address space, created on demand instead 
of being read in from backing store, and zeroed. When a page fault occurs for such a 
page, the page fault handler first tries to allocate a physical page from the zeroed page 
list. If the zeroed page list is empty, the page fault handler  must  allocate a physical 
page from the free page list and fill the page with zeros. In either case, it then inserts 
the PFN into the PTE, sets the valid and modify bits, and dismisses the exception. 

2.3.5.6 System Space PTEs 
For the most part, system space L3PTEs can take on the same formats as valid and 
invalid process-private L3PTEs (see Figure 2.12). One exception is that  an invalid 
system space L3PTE cannot have the global page table index format. 

Additionally, invalid system space L3PTEs that  are unused and available for allocation 
are linked together in a list. The L3PTEs themselves contain information: a pointer to 
the next group of free L3PTEs and the number of free L3PTEs in this group. Section 
2.3.6 shows the contents of L3PTEs used in this way. 

The MMG spinlock synchronizes changes to system space PTEs. 
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2.3.6 Available System Space 
As previously described, SYSBOOT defines the initial size and layout of S0/S1 and $2 
space, based on SYSGEN parameters  and other values. Additional space is created 
during normal system operation by creating additional L3PTEs, a page's worth  at  a 
time. Code running in kernel mode calls various executive routines to allocate and 
map pages of system space. 

Unused and available L3PTEs tha t  map system space are kept in ei ther  of two lists: 
the one for S0/S1 space or the one for $2 space. These lists facilitate a search for 
available system space PTEs: examining list elements is quicker than  scanning all 
the PTEs for adjacent free ones. The elements on each list are groups of system space 
L3PTEs. The listheads are LDR$GQ_FREE_SOSI_PT and LDR$GQ_FREE_S2_PT. 
Each points to the first element on its list. Figure 2.13 shows the form of the list, with 
free L3PTEs shaded. 

Each element on the list represents  a group of adjacent available system space 
L3PTEs. The smallest  group contains one L3PTE. A single available L3PTE con- 
tains, in bits <63:19>, a pointer to the next group. Bit 16 is set to identify the L3PTE 
as the sole member  of its group. 

Two L3PTEs are required to describe an element consisting of a group of two or more 
adjacent available L3PTEs. The first L3PTE points to the next group of free L3PTEs; 
the second contains the number  of L3PTEs in this group. 

The low-order 16 bits of each free L3PTE, which include protection code bits and the 
valid bit, must  be zero so that  the L3PTE appears  to map an invalid page with all 
access prohibited. 

A group of free L3PTEs is identified by its quadword index from the beginning of page 
table space (that is, its PTE number). The quadword index of the next e lement  is 
stored in bits <63:19> of the L3PTE. For example, if LDR$GQ_FREE_SOSl_PT<63:19> 
contains 10016, the first L3PTE available for allocation is at offset (10016 * 8) from the 
base of page table space. The number  of L3PTEs in tha t  group is at offset (10016 * 8) 
+ C16. 

The MMG spinlock synchronizes allocation from and deallocation to the lists of avail- 
able system space L3PTEs. 

This list format is also used for free global page table entries (see Section 2.7.4). 

Chapter The Modular Executive describes some of the routines by which system space 
L3PTEs are allocated and deallocated. 
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2.4 Granularity Hint Regions and Huge Pages 

List of Available System Space L3PTEs 

2.4 Granularity Hint Regions and Huge Pages 
An Alpha translation buffer (TB) supports granulari ty hints, by which a single TB 
entry can represent a group of pages that  are virtually and physically contiguous. 
The total number  of TB entries and the number  that  can represent a group of pages 
are CPU-dependent. Chapter 1 describes the role of the TB in address translation. 
During system initialization, physical memory and system address space are reserved 
for granulari ty hint regions. 
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2.4.1 Uses of Granularity Hint Regions 
During system initialization, OpenVMS creates one or more granularity hint regions 
for several specific uses. The term huge page refers to the granularity hint region or 
regions associated with each of these particular uses. A huge page consists of more 
than one granularity hint region if it requires more physical pages than can be mapped 
by one TB entry. Each huge page is described by a data structure called a loader huge 
page descriptor (see Section 2.4.2). 

By default OpenVMS creates the following huge pages: 

�9 Base and executive images' nonpaged code (LDRHP$K_CODE) 

�9 Base and executive images' nonpaged user-read data (LDRHP$K_DATA) 

Nonpaged dynamically allocated executive-read S0/S1 space data (LDRHP$K_ 
EXEC_DATA) 

�9 Code of images installed resident (LDRHP$K_RES_CODE) 

�9 User-read data of images installed resident (LDRHP$K_RES_DATA) 

One granularity hint region is always created for nonpaged dynamically allocated sys- 
tem data. Whether other regions are created depends on various SYSGEN parameters, 
including the flags in the SYSGEN parameter LOAD_SYS_IMAGES. 

In conjunction with nonzero values for SYSGEN parameters GH_EXEC_CODE and 
GH_EXEC_DATA, bit 1 of LOAD_SYS IMAGES, SGN$V_EXEC_SLICING, when set, 
specifies that  base and executive images should be loaded with their nonpaged code 
sections in the code huge page and their data in a data huge page. The SYSGEN 
parameter GH_EXEC_CODE specifies the size of the code huge page, and GH_EXEC_ 
DATA, the size of the data huge page. The default value for GH_EXEC_CODE is 512 
pages, and for GH_EXEC_DATA, 128 pages. Chapter The Modular Executive describes 
how executive images are loaded sliced into huge pages. 

Regardless of whether executive image slicing is enabled, a data huge page is allocated. 
Its size is based on various SYSGEN parameters, including the initial size of nonpaged 
pool, the size of the error log allocation buffers, and the size of the system header. At 
the end of system initialization, unused space in the executive image code and data 
huge pages is released. 

The code sections of images installed resident, such as LIBOTS and LIBRTL, are 
loaded into another huge page, whose size is based on the SYSGEN parameter GH_ 
RES_CODE. Their data is stored in a huge page whose size is based on GH_RES_ 
DATA. The default value for GH_RES_CODE is 512 pages, and for GH_RES_DATA, 
zero pages. Chapter Image Activation and Exit describes the use and installation of 
resident images. 

By default, at the end of system initialization, some or all unused pages in the resident 
image huge page code region are released to the free page list. The contents of the 
SYSGEN parameter GH_RSRVPGCNT specify how many pages are to be left available 
for mapping images installed resident after system initialization is complete. By 
default its value is zero. 
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On a NUMA platform with RAD support and system space replication enabled (bits 
RIH$V_RAD_ENABLE and RIH$V_SYSTEM_REPL set in SYSGEN parameter RAD_ 
SUPPORT), each RAD has its own copy of the executive and resident image code huge 
pages (see Section 2.3.4). When system space replication is enabled, unused space in 
both the executive and resident image code sections is not released. 

Provision is made for a huge page in $2 space containing nonpaged dynamically 
allocated kernel data. In OpenVMS Versions 7.0 and 7.1, the PFN database occupied 
this page. In Version 7.2 and later versions, the PFN database is mapped by its 
own granularity hint regions (see Section 2.5.3), and this huge page is currently not 
created. 

In addition to these huge pages, one or more granularity hint regions are created to 
map each memory-resident global section. Furthermore, granularity hint regions can 
be created dynamically, for example, in response to a request to create a PFN-mapped 
section (see Chapter 3). The number of granularity hint regions possible is limited 
only by the availability of contiguous physical memory and virtual address space with 
the required alignment. 

2.4.2 Loader Huge Page Descriptors 
Each huge page is described by a nonpaged pool data structure called a loader huge 
page descriptor (LDRHP) and a bitmap that reflects allocations within the huge 
page. Six LDRHPs are allocated together, followed by six bitmaps. The LDRHPs are 
accessed by page type, defined symbolically by the $LDRHPDEF macro, for example, 
LDRHP$K_EXEC_DATA. 

Each bitmap begins on a quadword boundary. The starting address of these struc- 
tures is recorded in LDR$GQ_HPDESC. Once SYSINIT begins to execute, access to 
these structures and bitmaps is synchronized with the base image mutex, EXE$GQ_ 
BASIMGMTX. Figure 2.14 shows the layout of these structures. 

LDRHP$Q_TYPE identifies the type of huge page: read-only image sections, writable 
image sections, or systemwide writable data. LDRHP$Q_SIZE contains the size of the 
huge page in bytes; LDRHP$Q_PA, its starting physical address; and LDRHP$Q_VA, 
its starting virtual address. 

LDRHP$Q_SLICE_SIZE contains the granularity of allocation, or slice, from this huge 
page. On current Alpha implementations, the granularity of allocation is 8 KB for the 
image code page and systemwide data page and 512 bytes for the image data page. 
LDRHP$Q_FREE_SLICES contains the number of available slices left in the huge 
page. LDRHP$Q_USED_SLICES contains the number of slices in the page that are in 
use. LDRHP$Q_STARTUP_PAGES contains the number of pages in use in the huge 
page at the end of system initialization. The contents of this field in the code huge 
page are used to determine how many pages to release to the free list. 
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Figure 2.14 Layout of Huge Page Data Structures 
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The bitmap, whose starting virtual address is in LDRHP$Q_BITMAP_VA, has one bit 
per slice. If the value of the bit is 1, the slice is available; if 0, it has been allocated. 
The size in bytes of the bitmap is in LDRHP$Q_BITMAP_SIZE. LDRHP$Q_NEXT_ 
SLICE contains the number of the first free slice. 

LDRHP$Q_FLAGS describes the state of the huge page. Currently, two flags are 
defined: 

�9 LDRHP$V_ALLOC_FAIL, when set, means an attempt to allocate a slice from this 
huge page has failed. 

�9 LDRHP$V_RELEASED, when set, means that  unused pages of the huge page have 
been released to the free list. 

2.4.3 Contents of PTEs Mapping Granularity Hint Regions 
As described in Chapter 1, a nonzero value in bits <6:5>, the granularity hint bits, 
identifies the page as belonging to a granularity hint region and specifies the number 
of pages in the region. 

On a system without replicated system space, OpenVMS sets the fault-on-read bit 
in each L3PTE that  maps pages in the granularity hint regions containing executive 
nonpaged code and resident image code sections. The executive sets all mRE bits for 
these pages, which can contain mode of caller system service procedures and Run- 
Time Library procedures. That the protection bits enable read access means that  
any mode can fetch and execute instructions from these pages. The set fault-on-read 
bit, however, causes data fetches to fault. This mechanism blocks undesirable read 
accesses to these pages. 
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On a system without replicated system space, after all resident  images have been 
installed, some or all of the unused physical pages tha t  were par t  of a code huge page 
are released to the free page list. The system space L3PTEs tha t  mapped them are 
zeroed. Even though the L3PTE tha t  mapped such a page is zeroed, the g ranu la r i ty  
hint  feature permits  vir tual  addresses to be t rans la ted  to physical addresses wi th in  the 
released page. If the TB holds an entry for any valid vir tual  page in the g ranu la r i ty  
hint  region, the CPU uses tha t  entry to t rans la te  any vir tual  address in the ent i re  
region, which still includes the released pages. 

Once on the free page list, a released page can be reallocated for another  use and 
mapped by some other L3PTE. Such a page can have two mappings: one, for example,  
in process-private space, and the other through the system space address range  for the 
granular i ty  hint  region. If one process tries to read from a page reallocated to another  
process by using its former system vir tual  address, the set fault-on-read bit causes 
the CPU to generate a fault-on-read exception. If the system space L3PTE is null, the 
exception service routine advances the program counter in the exception s tack f rame 
past  the instruction tha t  incurred the exception and dismisses the exception. If  the 
L3PTE is not null, the service routine interprets  the instruction, fetches the data ,  and 
re turns  it. Chapter  3 describes another  method by which the contents of these pages 
can be accessed as data. 

If a process tries to execute from such a page, nei ther  the protection nor fault-on bits 
will block its execution of whatever  random contents the page might have. 

On a system with replicated system space, unused pages are not released. 

2.5 Data Structures Describing Physical Memory 
OpenVMS mainta ins  information about physical memory in several kinds of da ta  
structures: 

�9 Configuration of the memory in physical memory maps and page frame number  
(PFN) memory maps (see Section 2.5.1) 

�9 Reservations of physical memory for specific application purposes in reserved 
memory descriptors (see Section 2.5.2) 

�9 Current  state of each page of memory available to OpenVMS in the PFN da tabase  
(see Section 2.5.3) 

The actual amount  of memory under  OpenVMS control and available for it to allocate 
is not necessarily all the physical memory present  on the system. Several factors can 
reduce this amount: 

�9 Memory reserved by the console software for its code and data  and for PALcode 

�9 The PHYSICAL_MEMORY SYSGEN paramete r  

�9 Memory reserved for application use through the Reserved Memory Registry (see 
Section 2.5.2) 
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The PHYSICAL_MEMORY SYSGEN parameter specifies the amount of available 
memory that  OpenVMS is allowed to use. Its default value, -1, allows OpenVMS to 
use all available memory, apart from that  reserved by the console and the Reserved 
Memory Registry. A value lower than the actual amount of memory present enables 
smaller memory configurations to be tested on a larger system and also enables custom 
applications to use the upper part of memory. 

In addition to the data structures previously listed, OpenVMS records some informa- 
tion about physical memory in system global cells. Following are some global cells tha t  
describe physical memory sizes and their contents: 

MMG$GL_MEMSIZE--the actual number of physical pages in the system, includ- 
ing console pages, any pages reserved through the PHYSICAL_MEMORY SYSGEN 
parameter, and any pages reserved through the Reserved Memory Registry file 

MMG$GL_PHYPGCNT--the number of physical pages in the system, excluding 
any reserved through the PHYSICAL_MEMORY SYSGEN parameter 

PFN$GL_PHYPGCNT--the number of fluid pages in the system, those not commit- 
ted to permanent or long-term use 

Section 2.5.3 describes several cells related to sizing the PFN database. 

2.5.1 Memory Configuration 
At boot time, the console determines the memory configuration and passes its findings 
as well as its own memory use to OpenVMS through a data structure called the 
hardware restart  parameter block (HWRPB). Because physical memory is not required 
to start  at PFN 0 or be contiguous, the console describes each group of contiguous 
pages by its starting page number and number of pages. Chapter Bootstrap Processing 
provides more details on the HWRPB and associated structures. 

Using the information provided by the console, SYSBOOT initializes system cells and 
builds data structures to describe the memory accessible to this system: 

On every system, it describes memory in an array of physical memory map (PMM) 
descriptors. 

On a system with noncontiguous physical memory or a Galaxy node, SYSBOOT 
describes memory in an array of PFN memory map (PMAP) structures. 

On every system, memory is described by an array of PMMs. Each PMM describes 
a contiguous set of pages with a common owner. PMM contents are returned to 
application code in response to a Get System Information ($GETSYI) request that  
specifies the item code SYI$_PFN_MEMORY_MAP. Through this information, an 
application can determine, for example, which pages, if any, have been excluded from 
OpenVMS use through the PHYSICAL_MEMORY SYSGEN parameter. 
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Figure 2.15 $GETSYI Physical Memory Map (PMM) Array 
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Figure 2.15 shows the PMM array. 

MMG$GL_SYI_PFN MEMORY_MAP points to the longword that  immediately pre- 
cedes the nonpaged pool PMM array. The longword contains the number of PMMs 
that  follow. PMM$L_START_PFN and PMM$L_PFN_COUNT have the same meaning 
as the corresponding PMAP fields. PMM$W_LENGTH contains 12, the size of each 
PMM, and PMM$W_FLAGS describes the state of the memory. 

On a Galaxy instance or a system with noncontiguous physical memory, a PMAP 
array is allocated from nonpaged pool. MMG$GL_PFN MEMORY_MAP contains the 
number of valid PMAPs in the array. The longword following it contains the address 
of the array. MMG$GL_MAX_MEM_FRAGMENTS contains the maximum number 
of PMAPs in the array. The valid PMAPs are at the beginning of the array; the 
invalid PMAPs are zeroed. On a non-Galaxy system with contiguous physical memory, 
MMG$GL_PFN_MEMORY_MAP contains zero. 

The macro VALID_PFN tests whether a given PFN represents a page of memory or the 
number of a nonexistent page. The macro generates code that  scans the PMAP array 
to determine whether the page exists. The macro returns TRUE if the page has a PFN 
database entry. 

Figure 2.16 shows the PMAP array. PMAP$L_START_PFN contains the number of the 
first PFN in the group, and PMAP$L_PFN_COUNT, the number of PFNs. 

On a Galaxy system, PMAPs are also used to describe I/O space that  is private to 
this instance. MMG$GL IO_MEMORY_MAP and the following longword describe the 
array of I/O PMAPs. 
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F i g u r e  2.16 P F N  Memory Map (PMAP) A r r a y  
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2.5.2 Reserved Memory Descriptors 
A system manager or similarly privileged user runs the System Manage- 
ment (SYSMAN) utility to build a Reserved Memory Registry file, called 
SYS$SYSTEM:VMS$RESERVED_MEMORY.DATA. The file describes physical mem- 
ory to be reserved for use by demand zero memory-resident global sections and by 
privileged kernel mode applications. 

Memory reserved through entries in this file is not included in AUTOGEN's calculation 
of fluid page count, ensuring a better-tuned system. AUTOGEN uses fluid page count 
to size the system page file, maximum number of processes, and maximum working 
set size. Additionally, the Reserved Memory Registry enables a memory-resident 
global section to be created from one or more chunks of contiguous aligned memory 
suitable for granularity hints. This kind of allocation is possible only during system 
initialization, while large chunks of contiguous physical pages are still unused. Note 
that  physical contiguity is not guaranteed: bad pages of memory or gaps in physical 
memory, for example, may result in a reservation that  occupies several noncontiguous 
segments of physical memory. 

Each entry in the file is identified by a name and, optionally, a UIC group number. 
Memory for an entry can be preallocated at system initialization or allocated later 
when the section is actually created. Preallocated memory can be zeroed on demand 
when each page is first accessed or through a combination of the idle loop and code 
that  creates memory-resident global sections. An entry describing a memory-resident 
global section can specify that  the section is mapped by shared page tables, in which 
case memory is also reserved for the page tables. 

An entry can request allocation in the memory of a particular RAD; a reservation can 
be extended into multiple RADs. 

During system initialization, OpenVMS reads the Reserved Memory Registry file and 
attempts to act on each record in it. First, it builds one or more reserved memory 
descriptors (RMDs) for each record. A record that  describes a section mapped by 
shared page tables requires a second RMD for the page table memory. A reservation 
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that  requested allocation in multiple, specific RADs has a record and thus an RMD for 
each requested RAD. 

OpenVMS then attempts to process the RMDs. For each RMD, it reduces the system's 
fluid page count, PFN$GL_PHYPGCNT, by the size of the reservation. It checks 
whether the sum of the fluid page count and the minimum number of modified and 
free pages is large enough to accommodate a maximum-size outswapped process. If 
not, it sets RMD$V_RESERVE_ERROR in RMD$L_FLAGS and writes the value SS$_ 
INSFLPGS in RMD$L_ERROR_STATUS. It outputs the RMD name and size with the 
error message 

%RESMEMINIT-I-ALLOCFAIL, Fluid page check failed on reservation 

It restores the previous value of PFN$GL_PHYPGCNT. Then it continues with the 
next RMD because there may be sufficient memory on the system to satisfy other, 
smaller requests. 

If an RMD describes a section to be preallocated, OpenVMS tries to allocate contiguous 
aligned memory of the specified size from the RAD requested, if any. If that  RAD has 
no memory, OpenVMS tries to allocate memory without regard to RAD. 

�9 If it could allocate no contiguous pages anywhere, it sets RMD$V_RESERVE_ 
ERROR in RMD$L FLAGS and writes the value SS$_INSFRPGS in RMD$L_ 
ERROR_STATUS. It outputs the RMD name and size with the error message 

%RESMEMINIT-I-ALLOCFAIL, Failed to allocate PFNs for reservation 

and restores the previous value of PFN$GL_PHYPGCNT. 

If it was partially successful, it records the number of pages allocated in RMD$L_ 
PFN_COUNT and creates a new RMD and inserts it in the list aider the current 
one. The new RMD is identical to the current one except that  the number of pages 
already allocated is subtracted from the new RMD$L_PFN_COUNT. 

While processing the new RMD, OpenVMS may create another new RMD if it is 
unable to allocate enough contiguous physical memory. 

If it was partially or completely successful, it initializes the PFN database record 
for each page, setting its type to PFN$C_UNKNOWN. 

In either case, it continues with the next RMD. 

Figure 2.17 shows the layout of an RMD. As shown in the figure, RMDs are linked 
together into a list whose head is MMG$GL_RES_MEM_FLINK and MMG$GL_ 
RES_MEM_BLINK. The list is ordered by UIC group and name. Access to the list is 
synchronized with the MMG spinlock. RMDs are allocated from nonpaged pool. 

RMD$PS_FLINK and RMD$PS_BLINK link the RMD into the list. RMD$W_SIZE, 
RMD$B_TYPE, and RMD$B_SUBTYPE form the standard dynamic data structure 
header. 
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RMD$L_FLAGS records choices made when the Reserved Memory Registry entry was 
created, for example, whether the reservation is for a group or system global section. 
It also describes the state of the entry, for example, whether pages have been zeroed 
and whether they are in use. 

In the case of an allocated reservation, RMD$L_FIRST_PFN contains the s tar t ing 
PFN. 

RMD$L_PFN_COUNT contains the number of PFNs in this reservation, and RMD$L_ 
IN_USE_COUNT, the number currently in use. 

If RMD$V_RESERVE_ERROR is set, RMD$L_ERROR_STATUS records the error 
status resulting from the last at tempt to allocate pages for this reservation. 

During the zeroing of a preallocated section, RMD$L_ZERO_PFN records the number  
of the next page to be zeroed. 

RMD$T_NAME contains an ASCII counted string identifying the reserved memory. 
RMD$L_GROUP contains the UIC group code. 

RMD$L_RAD contains the number of the RAD requested for allocation. 

For further information on the Reserved Memory Registry, consult the Open VMS 
System Manager's Manual, Volume 1: Essentials. 

2.5.3 PFN Database 
The PFN database contains information about each page of physical memory. It 
includes pages reserved for use by the console subsystem or for memory-resident global 
sections but excludes memory reserved through the PHYSICAL_MEMORY SYSGEN 
parameter. 

The fact that  this information must be accessible while the page is in use means that  
it cannot be stored in the page itself. In addition, the caching strategy for the free 
and modified page lists requires physical page information to be accessible even when 
pages are not currently active and valid. 

During system initialization, SYSBOOT determines the range of PFNs present on the 
system and records the highest PFN in MMG$GL_MAX_NODE_PFN. It also deter- 
mines the maximum PFN possible on the system, because on a Galaxy platform there 
may be shared memory not yet known to this system, and records it in MMG$GL_ 
MAXPFN. If the PHYSICAL_MEMORY SYSGEN parameter  has been used to re- 
serve memory for customer use, the highest PFNs are reserved for customer use and 
subtracted from MMG$GL MAX_NODE_PFN. 

It calculates the size of the PFN database needed to describe pages from PFN 0 to the 
contents of MMG$GL_MAXPFN. 
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F i g u r e  2.17 Layout  of  a R e s e r v e d  M e m o r y  D e s c r i p t o r  (RMD) 

MMG$GL_RES_MEM_FLINK 
MMG$GL_RES_MEM_BLINK 

RMD Flags 

Bit Meaning 
0 Allocated 
1 In use 
2 Should be zeroed 
3 Has been zeroed 
4 Freed 
5 Group global section 
6 Page tables 
7 Global section 
8 Error during boot 

o 

RMD RMD 

FLINK 

'"'"........ 

BLINK 

SUBTYPE ! TYPE I 

FLAGS 

SIZE 

FIRST_PFN 

PFN_COUNT 

ZERO_PFN 

IN_USE_COUNT / ERROR_STATUS 

GROUP 

RAD 

(reserved) 

�9 NAME (44 bytes) " i i 

SYSBOOT creates enough $2 space for the entire database, allocates physical memory 
for PFN records to describe instance-local memory (pages from PFN 0 to MMG$GL_ 
MAX_NODE_PFN), and zeros that memory. To the extent possible, it allocates the 
physical memory as granularity hint regions. In each PFN record for a PFN that 
exists, SYSBOOT initializes the type to PFN$C_UNKNOWN. 

Because physical memory can be noncontiguous, the database may have physical gaps 
but can still be accessed virtually as an array of records from PFN 0 to MMG$GL_ 
MAXPFN. 

The OpenVMS Alpha PFN database consists of one 40-byte record, or structure, 
for each page of physical memory. Its starting address is stored in cell PFN$PQ__ 
DATABASE, and access to it is synchronized by the MMG spinlock. Each field in the 
record contains a specific item of information about that physical page of memory. 
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Figure 2.18 shows the layout of the Alpha PFN database record. To save space, many 
bytes within it have multiple uses. The quadword name PFN$Q_BAK, for example, is 
also called PFN$Q_BAK_PRVPFN to represent an alternative use. Furthermore, as 
shown, that  quadword can also be made up of two longwords, one with two uses. 

Table 2.1 summarizes the information in each PFN database record. In listing the 
names of the fields in each record, the table omits the prefix PFN$x_, where x identifies 
the data type. 

Although the OpenVMS VAX PFN database contains the same basic information, 
its organization is quite different: it consists of multiple arrays, each containing a 
different type of information with an element for each page. 

Typically, executive code accesses more than one kind of information about a particular 
page when it accesses the PFN database. Thus, to make cache hits more likely and 
to improve performance, the OpenVMS Alpha PFN database is organized as a set of 
records, each one holding different types of information about the same page. 

The page frame number of a physical page is the index of its record in the PFN 
database; that  is, information about a particular page is located by indexing the 
PFN database with the PFN of that  page. To transform a PFN into the address of 
its PFN database record, the OpenVMS Alpha system provides a macro called PFN_ 
TO_ENTRY for use by kernel mode code. This transformation currently consists of 
multiplying the size of each record by the page's PFN and adding that  offset to the 
base address of the PFN database. 

An example of the use of this macro in MACRO-32 code follows: 

PFN_TO_ENTRY - ;Get PFN database record address 
PFN = R0,- ;PFN of interest (input) 
ENTRY = RI5 ;Address of its record (output) 

EVAX_LDQ R2, PFN$Q_BAK (RI5) ;Get backing store information 
MOVL PFN$L_PAGE_STATE (RI5) , R3 ;Get page state information 

An example of the use of this macro in C code follows" 

/* Get MMG protected info about PFN */ 

pfn = pte_contents.pte$v_pfn; 
entry = pfn_to_entry (pfn); 
wslx = entry->pfn$1_wslx_qw; 
wsle = *(ctl$gq_wsl + wslx); 

Most of the information in a PFN record for a page relates to the current virtual use of 
that physical page. For a physical page that has no connection to a virtual page, the 
only meaningful information is found in the PFN$L_FLINK, PFN$L_BLINK, PFN$L_ 
PAGE_STATE, PFN$L_COLOR_FLINI~ and PFN$L_COLOR_BLINK fields. 

The sections that follow describe the various lists on which a PFN can be found and 
the fields that make up each PFN record. 
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Table  2.1 P F N  D a t a b a s e  R e c o r d  F i e l d s  

Contents Name Size Comments  

Forward link FLINK Longword 

Global share count SHRCNT Longword 

Backward link BLINK Longword 

Working set list index W S L X _ Q W  Longword 

Global lock count G B L _ L C K _  Longword 
CNT 

Physical page state PAGE_ Longword 
and type STATE 

PFN of mapping page PT_PFN Longword 
table 

Page table space index PTE_INDEX Quadword 
of PTE 

Reference count REFCNT Word 

Address of associated PHD Longword 
PHD 

Forward link in page COLOR_ Longword 
color list FLINK 

Backward link in page COLOR_ Longword 
color list BLINK 

Backing store address BAK Quadword 

Private PFN listhead BAK_ Quadword 
link PRVPFN 

Swap file page number SWPPAG Word 

Buffer object reference BO_REFC Word 
count 

I]O error status IOSTS Word 

Page table count of PT_VAL_ Word 
valid WSLEs CNT 

Page table count of PT_LCK_ Word 
locked WSLEs CNT 

Page table count of PT_WIN_ Word 
window pages CNT 

Figure 2.19; overlays SHRCNT 

Overlays FLINK 

Figure 2.19; overlays WSLX_QW, 
GBL_LCK_CNT 

Overlays BLINK, GBL_LCK_CNT 

Overlays BLINK, WSLX_QW 

Figure 2.21 

Partially overlays PTE_INDEX 

Overlays COLOR_FLINK, BAK, BAK_ 
PRVPFN 

Overlays PHD, BAK, BAK_PRVPFN 

Overlays BAK, BAK_PRVPFN 

Figure 2.22; overlays BAK_PRVPFN, 
PHD, COLOR_FLINK, COLOR_ 
BLINK 

Overlays BAK, PHD, COLOR_FLINK, 
COLOR_BLINK 

Overlays BO_REFC, IO_STS 

Overlays SWPPAG, IO_STS 

Overlays SWPPAG, BO_REFC 
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Figure  2.18 Layout  of  a P F N  D a t a b a s e  R e c o r d  

FLINK / SHRCNT 

BLINK / WSLX_QW / GBL_LCK_CNT 

PAGE_STATE 

PT_PFN 

PTE_INDEX (6 bytes) 

REFCNT 

BAK / BAK_PRVPFN 
PHD / COLOR_FLINK 

COLOR_BLINK 

PT_VAL_CNT SWPPAG / BO_REFC / IO_STS 

PT_WlN_CNT PT_LCK_CNT 

2.5.3.1 PFN Lists 
A physical page tha t  is available to OpenVMS and tha t  is not occupied by a valid 
virtual  page is commonly in one of five lists: the free, modified, bad, untested,  or 
zeroed page list. Note that  preallocated memory registered in the Reserved Memory 
Registry is not on any list, nor is memory reserved to the console. 

The heads of these lists are in an array of longwords tha t  begins at global location 
PFN$AL_HEAD. Their list tails are in the ar ray  PFN$AL_TAIL. Each ar ray  has  eight 
elements: the first for the free page list, the second for the modified page list, the third 
for the bad page list, the fourth for the untes ted  page list, and the last for the zeroed 
page list. The fifth, sixth, and seventh elements are unused. The arrays are indexed 
by the PFN$V_LOC bits in the PFN$L_PAGE_STATE field. 

A third longword array, PFN$AL_COUNT, is also indexed by page type. An ent ry  
typically contains the number  of pages in the corresponding list. 

These page lists must  all be doubly linked because a page is often removed from 
the middle of the list. The links cannot exist in the pages themselves because the 
contents of each page must  be preserved. The forward link (FLINK) and backward  
link (BLINK) fields in a PFN database record implement  the links for each page. The 
PFN$L_FLINK field contains the PFN of the successor page, and the PFN$L_BLINK 
field that  of the predecessor page. 

A zero in one of the link fields indicates the end of the list ra ther  than  being a pointer  
to physical page 0. This is one reason tha t  physical page 0 cannot be used in any 
dynamic function. Another reason is tha t  the representat ion of invalid demand  zero 
PTEs assumes tha t  a PFN of zero can never appear  in an invalid PTE (see Figure 
2.12). However, it can be used by a system vir tual  page tha t  is always resident.  
Physical page 0 is usually in an area of memory reserved for the console subsystem. 
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Figure 2.19 shows an example of pages on the free page list, along with thei r  cor- 
responding PFN$L_FLINK and PFN$L_BLINK fields. The PFN$L_PAGE_STATE 
location bits for each page contain zero, indicating tha t  the physical page is on the free 
page list. The PFNs are hexadecimal. 

The number  of pages on the zeroed list is in cell MMG$GQ_ZEROED_LIST_COUNT. 
The SYSGEN paramete r  ZERO_LIST_HI specifies the maximum number  of pages on 
this list. The list serves as a source of demand zero pages tha t  have already been 
zeroed. When there is no computable kernel  th read  to execute, the idle loop removes 
from the free page list a page tha t  has no connection to any vir tual  page and clears it. 
After clearing the entire page, the idle loop inserts  it on the zeroed page list. 

2.5.3.1.1 Colored and RAD-Specific Page Lists 
Since OpenVMS Version 6.1, there may be multiple free and zeroed page lists. That  
release added support  for a feature known as page coloring. 

Historically, OpenVMS has allocated PFNs randomly in response to processes' demand 
paging. Consequently, program execution results  in random access to physical memory 
as references cross page boundaries. For some applications, less random references 
improve performance. Performance can suffer, for example, if a loop crosses page 
boundaries and addresses in two of the pages in the loop have the same cache index: 
executing code in one of those sections would cause the other to be removed from 
cache. 

Figure 2.19 Example of Free Page List Showing Linkage Method 

Free Page List 
PFNSAL_HEAD I - ~  

PFN$AL_TAIL I - ~  

Subscript 
Number 
(PFN) 

28 

42 

128 11 ,2 I 

FUNK BUNK PAGE_STATE 
Field Field Location Bits 

Rest of PFN 
Record 

11 

42 

28 

0 

5 0 0 
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Page coloring is a technique for addressing such cache thrashing problems and the 
resulting performance loss. Page coloring classifies allocatable pages by the low-order 
bits of their PFN. The SYSGEN parameter  PFN_COLOR_COUNT, whose default value 
is 1, specifies how many classifications should exist. The number of classifications 
determines the number of low-order PFN bits used to classify pages. The default value 
of 1 effectively disables page coloring. 

The only pages classified this way are unencumbered free pages (pages with no ties 
to virtual pages, that  is, with no backing store connections) and zeroed pages. The 
classification is used when a physical page is being allocated in response to demand 
paging: instead of allocating the next available page from the free page list, a page 
whose color matches the faulting virtual address is allocated. 

On a NUMA platform with RAD support enabled (RIH$V_RAD_ENABLE set in 
SYSGEN parameter  RAD_SUPPORT), free and zeroed pages are classified by RAD 
instead of by color. The classification is used when a physical page is being allocated 
in response to demand paging: instead of allocating the next available page from the 
free page list, a page may be allocated from the RAD associated with the process, for 
example. The number of classifications is the maximum number of RADs present on 
the platform. 

At system initialization, on a non-NUMA platform, the value of PFN_COLOR_COUNT 
is rounded up, if necessary, to a power of 2. On a NUMA platform, the maximum num- 
ber of RADs is rounded up, if necessary, to a power of 2. That many free and zeroed 
page listheads and tails are allocated from nonpaged pool. PFN$AL_COLOR_HEAD 
and PFN$AL_COLOR_TAIL are eight-longword arrays corresponding to PFN$AL_ 
HEAD and PFN$AL_TAIL for pages to which coloring has been applied. The arrays 
must  be large enough to cover all possible values of the page state location bits (see 
Section 2.5.3.6.1) to which page coloring might be applied. Currently only the entries 
corresponding to free and zeroed pages are used. Rather than containing PFNs, each 
entry contains a pointer to an array of longwords indexed by page color. 

An unencumbered free page is inserted not only at the head of the standard free page 
list but also onto the free page list corresponding to its color or its RAD, through 
PFN$L_COLOR_FLINK and PFN$L_COLOR_BLINK. Similarly, a zeroed page is 
inserted onto both the zeroed page list and the zeroed page list corresponding to its 
color. 

Figure 2.20 shows the free page list of Figure 2.19 sorted onto free page lists corre- 
sponding to their page colors. The figure assumes that  all pages are unencumbered, 
that  the value of PFN_COLOR_COUNT is 4, and that  therefore the low-order two bits 
of the PFN are the color value. The PFNs are hexadecimal. 
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Figure 2.20 Example of Colored Page Lists 

PFN$AL_COLOR_HEAD I 

PFN$AL_COLOR_TAIL I 

Free Page Lists Sorted by Color 
28 

5 

42 

o 

0 

0 

2.5.3.1.2 Untested Page List 
On some Alpha systems, the console tests all of memory before passing control to the 
OpenVMS bootstrap program. The time to test all pages on a system that  supports 
a very large memory may be prohibitively long. On such systems some of the testing 
is therefore left to the operating system, to enable the system to become operational 
sooner. 

On such systems, a flag in the SYSGEN parameter MMG_CTLFLAGS controls when 
OpenVMS performs testing of memory beyond that  needed to boot the system. If 
MMG$V_BOOTIME_MEMTEST is 1, all previously untested memory is tested in 
EXE$INIT (see Chapter Operating System Initialization and Shutdown). By default 
the flag is 0 and memory testing is deferred; untested memory is put on the untested 
page list. The idle loop performs deferred memory testing, placing a tested page 
on either the free page list or the bad page list. Deferred memory testing is also 
performed when necessary, for example, when allocating a physical page that  has not 
yet been tested. 

2.5.3.1.3 Private PFN Lists 
In addition to the lists previously described, a page can be on a private PFN list. This 
mechanism enables a kernel mode application to manage a list of PFNs, perhaps for 
a system space cache that  must occupy a fixed amount of physical memory. Such an 
application would call MMG_STD$ESTABLISH_FREEPFN_LIST, in module MEM_ 
ALLOC, to create the list and populate it with free PFNs. The routine allocates a 
private PFN (PRVPFN) listhead from nonpaged pool and links it into a list of such 
listheads at MMG$GL_PRVPFN_FLINK and MMG$GL_PRVPFN_BLINK. The kernel 
mode application is responsible for synchronizing access to its private PFN list and for 
returning PFNs from the list in response to a request from OpenVMS when memory is 
scarce. 
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2.5.3.2 PFN$L_FLINK and PFN$L_BLINK Fields 
These fields link a page into the mas ter  flee, modified, mas ter  zeroed, bad, untested,  
or a private PFN page list. The PFN$L_FLINK field contains the PFN of the successor 
page, and the PFN$L_BLINK field tha t  of the predecessor page. 

2.5.3.3 PFN$L_SHRCNT Field 
PFN$L_SHRCNT, the share count field in a PFN database  record, counts the number  
of process-private PTEs tha t  are mapped to a par t icular  global page. When the share 
count for a par t icular  page goes from 0 to 1, the PFN$W_REFCNT field is incremented. 
Fur ther  additions to the share count do not affect the reference count. 

As the global page is removed from the working set of each process mapped to the 
page, the share count is decremented. When the share count finally reaches zero, the 
PFN$W_REFCNT field for the page is also decremented. 

In the case of a global page mapped only by a shared page table, the share count is 1, 
regardless of how many processes are mapped to the global section. 

Because a physical page with a nonzero share count cannot be on one of the page lists, 
the forward and backward link fields are not needed for such a page. The PFN$L_ 
SHRCNT field overlays the PFN$L_FLINK field. 

Process-private page table pages also use the PFN$L_SHRCNT field as a reference 
count for the page table page. The count includes all valid or t ransi t ion PTEs in the 
page, excluding window pages. When this count goes from zero to nonzero, the page 
table page is dynamically locked into the process working set. Chapter  4 describes the 
share count in further  detail. 

2.5.3.4 PFN$L_WSLX_QW Field 
The working set list index field, PFN$L_WSLX_QW, for a valid page contains a 
quadword index from the beginning of the working set list to the WSLE for tha t  page. 
The PFN$L_WSLX_QW field is used, for example, during the deallocation of a page 
of memory. If the virtual  page is valid, the WSLE that  describes it must  be altered. 
Without the contents of the PFN$L_WSLX_QW field, it would be necessary to search 
the working set list to locate the WSLE. 

In OpenVMS versions prior to Version 7.0, the WSLX was a longword index from the 
beginning of the PHD. The meaning of this field changed to reflect the fact tha t  a 
WSLE is now a quadword. Basing the index on the beginning of the working set list 
ra ther  than  the beginning of the PHD facilitates the possible removal of the working 
set list from the PHD in some future release. 

Because a physical page in a working set is not on one of the page lists, the PFN$L_ 
FLINK and PFN$L_BLINK fields are not needed for such a page. The PFN$L_WSLX_ 
QW field overlays the PFN$L_BLINK field. 
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2.5.3.5 PFN$L_GBL_LCK_CNT Field 
The PFN$L_GBL_LCK_CNT field for a global page counts the number of t imes the 
page has been locked into memory. The field is initialized to 0. 

In prior versions, this information was kept in the PFN$L_WSLX field. In OpenVMS 
Version 7.0, the PFN$L_GBL_LCK_CNT field was added as an overlay of the PFN$L_ 
WSLX_QW field to formalize the additional use of the field. 

2.5.3.6 PFN$L_PAGE_STATE Field 
The PFN$L_PAGE_STATE field, shown in Figure 2.21, indicates the state, type, and 
location of a physical page. 

F i g u r e  2.21 C o n t e n t s  o f  P F N $ L _ P A G E _ S T A T E  F i e l d  

31 

(reserved) 

19 18 17 16 15 14 13 12 11 10 9 8 7 4 2 0 
ILocation of Page I Page Type 

I I (See table) I (res') (See table) 

Buffer object Code Type 
Collided page 0 

1 
Report event on I/O completion 2 

3 

Code Location 
0 Free page list 
1 Modified page list 
2 Bad page list 
3 Release pending or 

on untested memory 
list 

4 Page read error 
5 Write in progress 

by modified page 
writer 

6 Read in progress by 

i i i i I 

~ ~ _  Ba~--d pL~ag e 

Delete PFN contents 
Saved modify bit from PTE 

m Unavailable page 
m SWPPAG contents valid 
Top-level page table 

Within a PHD 
Shared memory page 

page fault handler 
7 Zeroed page list 
8 On private PFN list - -  Zeroed shared memory global section page 

9-14 (reserved) 
15 Active 

Process 
System or shared 
memory PFNLST 
Global read-only 
Global writable or 
shared memory 
region 
Process page table 
Global page table 
('reserved) 
Unknown 

As shown in the figure, bits <2:0> of this field identify the type of virtual page that 
occupies the corresponding physical page, for example, whether it is a process or 
system page or page table page. The page fault handler, swapper, and other parts of 
the executive take actions dependent on page type. 

The sections that follow describe the location codes and status bits in the page state 
field. 

2.5.3.6.1 Page State Location Codes 
Bits <7:4> contain the page location code, indicating, for example, whether the page is 
on the free page list or valid in a working set. 

Several page location codes require further explanation: 

�9 Release pending means that the virtual page has been removed from a working set 
but still has a nonzero reference count. When the reference count is decremented 
to zero at I/O completion, the physical page will be placed on the free or modified 
page list. 

91 



Memory Management Data Structures 

An untested page is one not yet tested by console or operating system. Because 
there is no overlap in the code that  deals with release pending and untested pages, 
PFN$C_RELPEND and PFN$C_UNTESTED have the same numeric value. This 
conserves space in the page state field. Section 2.5.3.1 has further information on 
untested pages. 

Page read error means that  a nonrecoverable I/O error occurred during an a t tempt  
to read the virtual page from its backing store into the physical page. During 
postprocessing of the I/O request, when the error is noted, this code is stored in the 
PFN$L_PAGE_STATE field, and the I/O error status is stored in PFN$W_IO_STS. 
Consequently, when the page is later refaulted, the page fault handler  will signal 
a page read error exception, passing the I/O error status in bits <15:0> of the first 
argument  of the signal array. 

Write in progress means that  the modified page writer has initiated I/O to write 
the page to its backing store. 

Read in progress means that  the page fault handler  has initiated I/O to read the 
page from its backing store. 

A page on the zeroed page list is a free page that  was completely zeroed when the 
system would otherwise have been idle. Such a page can be allocated as a demand 
zero page, as a page most of whose contents are zero (for example, an L1PT page), 
or as a section page only partly represented on disk. 

A page on a private PFN list is being managed by a kernel mode application 
independently of OpenVMS. Section 2.5.3.1 has further information. 

2.5.3.6.2 Page State Status Bits 
The PFN$L_PAGE_STATE field has a number of status bits. 

The buffer object bit (PFN$V_BUFOBJ), when set, means the page is part  of a buffer 
object or is a page table page that  maps a buffer object (see Section 2.6). 

The collided page bit (PFN$V_COLLISION) is set when a page fault occurs for a 
virtual page that  is already being read in from its backing store (one whose location 
bits show it as read in progress). This can happen, for example, if multiple kernel 
threads from the same or different processes fault the same page. It can also happen 
if a kernel thread in a page fault wait is interrupted for asynchronous system trap 
(AST) delivery and then reexecutes the instruction that  triggered the page fault. When 
I/O completes for a page with this bit set, I/O postprocessing code clears the bit and 
reports the system event collided page available for all kernel threads in the collided 
page wait state. Chapter Scheduling describes system events. Collided pages are 
discussed briefly in Chapter  4. 

The bad page bit (PFN$V_BADPAG) is set when an uncorrectable memory error occurs 
trying to access the page in memory. The page will be put onto the bad page list when 
it is deallocated. 
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The report event bit (PFN$V_RPTEVT) is set when an a t tempt  is made to delete a 
vir tual  page tha t  cannot be deleted immediately, for example, because the modified 
page writer  is wri t ing the page to its backing store. The executive places the kernel  
thread  into a page fault wait. When the modified page writer 's  I/O completes, it 
reports a page fault completion system event. When the kernel  thread  is placed back 
into execution, the page deletion proceeds. 

The delete contents bit (PFN$V_DELCON) is set to indicate tha t  the connection be- 
tween a physical page and its vir tual  contents should be severed. When the reference 
count of a physical page whose delete contents bit is set becomes zero, the PFN$L_ 
PT_PFN and PFN$Q_PTE_INDEX fields in its PFN database record are cleared. The 
physical page is then put  at the front of the free page list, where it will be reused 
before pages tha t  are still associated with vir tual  pages. Such a page is also put  on the 
free page list corresponding to its color. 

The saved modify bit (PFN$V_MODIFY) is set to indicate a modified page tha t  has 
not yet been wri t ten to its backing store. It determines whether  a physical page is put  
on the free page list or the modified page list when the page's reference count reaches 
zero. The modify bit is set under  a number  of circumstances, including the following: 

* On the first a t tempt  to write to a writable vir tual  page, the executive sets the 
modify bit in its PTE. When a vir tual  page is removed from a working set, the 
modify bit in its PTE is logically ORed into the saved modify bit in the PFN$L_ 
PAGE_STATE field for the physical page. The modify bit must  be recorded in the 
PFN$L_PAGE_STATE field because tha t  bit in an invalid PTE has another  use as 
the TYP1 bit. 

�9 When a page is used as a direct I/O read buffer, the executive routine tha t  locks 
down pages, MMG$IOLOCK, in module IOLOCK, sets the modify bit in its PTE. 
When the page is removed from the process's working set, the OR operation 
described in the previous item sets the modify bit in PFN$L_PAGE_STATE. 

�9 When a copy-on-reference page is faulted into a working set, the executive sets the 
modify bit in the PFN$L_PAGE_STATE field of the physical page. Thus, even if 
the virtual  page is not modified while it is valid, when the page is removed from 
the working set, the physical page is inserted into the modified list. This ensures 
tha t  it will be wri t ten to page file backing store, from where it will be read on a 
subsequent  page fault. 

�9 When a demand zero page is faulted into a process's working set, the modify bit in 
PFN$L_PAGE_STATE is set. 

* When a buffer object is created, the modify bit is set in PFN$L_PAGE_STATE for 
each of its pages. 

The unavailable page bit (PFN$V_UNAVAILABLE), when set, means the page is not 
available for the operating system to use. Typically, it means tha t  the page is in a 
memory region reserved for the console subsystem's use. 
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The swap page valid bit (PFN$V_SWPPAG_VALID) is set by the swapper to indicate 
that  the contents of PFN$W_SWPPAG represent a swap file page number. Chapter 6 
has further details. 

The top-level page table bit (PFN$V_TOP_LEVEL_PT) is set to indicate that  the 
page is the most significant page table in the hierarchy and further that  its PFN$L_ 
PHD field identifies the PHD of the process associated with this page table hierarchy. 
Currently, with a three-level hierarchy, this bit is set for a PFN containing an L1PT. 
Memory management code tests this bit to determine whether it has reached the top of 
the hierarchy following the pointer (PFN$L_PT_PFN) from one page table to the page 
table that  maps it. 

The balance slot (PFN$V_SLOT) bit is set to indicate that  the page is part  of some 
process's PHD. Historically, all PHD pages had a page type of process page table 
(PFN$C_PPGTBL), even those that  were not page tables. To minimize code changes, 
PHD pages continue to have this page type, as do actual page table pages. The value 
of this bit distinguishes the two types. 

The shared memory page bit (PFN$V_SHARED) and the zeroed shared memory page 
bit (PFN$V_ZEROED) describe pages in a Galaxywide section. 

2.5.3.7 PFN$L_PT_PFN and PFN$Q_PTE_INDEX Fields 
When assigning a physical page to a new use, the executive examines the PTE that  
maps it to determine whether the page is a transition page and still pointed to by a 
PTE associated with its previous use. If the field contents are not zero, the executive 
must take steps to sever the connection between the physical page and its previous 
use. The term back pointer is used to refer to the location of the PTE that  maps a 
physical page. 

In versions prior to OpenVMS Version 7.0, PFN$L_PTE contained the system virtual 
address of the PTE mapping the PFN. Furthermore, with process-private page tables 
mapped in system space, the PTE address itself was enough to locate the PHD, given 
fixed-size balance set slots. 

With page tables mapped only in page table space, unique specification of a PTE is 
more complex: the process associated with the PTE may not be current at the time 
memory management code needs to examine the PTE. PFN$Q_PTE_INDEX and 
PFN$L_PT_PFN replace PFN$L_PTE and enable the PTE to be located. 

PFN$L_PT_PFN contains the PFN of the page table page with the PTE that  maps this 
PFN. The PFN$Q_PTE_INDEX field contains the quadword index from the base of 
page table space to the PTE containing this PFN. 

To locate the PTE when the process is current, memory management code simply 
uses the contents of PFN$Q_PTE_INDEX to index the current page table space. To 
locate the PTE when the process is not current, memory management code takes the 
following steps: 

1. It maps the PFN in PFN$L_PT_PFN into system space. 

2. It multiplies PFN$Q_PTE_INDEX by 8. 
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3. It indexes the mapped page using the low-order bits of the product in step 2 as a 
byte offset into the page. 

There are several instances, most notably within the modified page writer, when it is 
necessary to obtain a PHD address from a physical page's PFN. To do this, memory 
management code iterates the preceding steps, traversing the PFN$L_PT_PFN links 
from a lower level page table up to the next level page table, until it reaches one 
with the PFN$V_TOP_LEVEL_PT bit set. That page table page's PFN database field 
PFN$L_PHD contains the address of the PHD. 

If no virtual page is mapped to a physical page, its PFN$Q_PTE_INDEX field contains 
zero. The PFN$Q_PTE_INDEX field for a non-copy-on-reference global page contains 
the index of the global PTE from the beginning of the global page table. The PFN$L_ 
PT_PFN for a global page contains the number of the global page table page. 

A page that  is part of a buffer object (see Section 2.6) is not assigned to another use 
until the buffer object is deleted. The page remains associated with the buffer object 
across process outswap and inswap. For that  reason, no attempt is made to keep 
correct PFN$L_PT_PFN information. Instead, the PCB of the process that  created the 
buffer object is stored in its PFN$L_PT_PFN field. If the page is used for direct I/O, 
I/O completion code will be able to locate the PHD address from the PCB to unlock the 
PHD. 

2.5.3.8 PFN$L_PHD Field 
This field is used only for a PFN that  is a top-level page table. It contains the system 
virtual address of the PHD belonging to the process whose top-level page table it is. 

During deletion of the PHD, the swapper uses this field to record the balance set slot 
index (see Section 2.8.2) corresponding to the PHD. 

This field overlays PFN$Q_BAK, PFN$Q_BAK_PRVPFN, and PFN$L_COLOR_ 
FLINK, which are unused for a top-level page table page. 

2.5.3.9 PFN$W_REFCNT Field 
The PFN$W_REFCNT field counts the number of reasons a physical page should 
retain its current contents. For instance, the count is incremented if a page is in a 
process working set; is part of a direct I/O buffer with I/O in progress; or is part  of a 
buffer object or a page table page mapping a buffer object. The field is initialized to 
zero. 

I/O completion and working set replacement use the same mechanism to decrement the 
reference count. When the reference count goes to zero, the physical page is released 
to the free or modified page list, depending on the saved modify bit in its PFN$L_ 
PAGE_STATE field. Manipulations of the reference count are illustrated and described 
in greater detail in Chapter 4. 
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2.5.3.10 PFN$L_COLOR_FLINK and PFN$L_COLOR_BLINK fields 
These fields link an unencumbered free page (one with no connection left to a v i r tua l  
page) into a colored free or zeroed page list. Such a page has no valid BAK contents;  
thus these links overlay the PFN$Q_BAK field as well as the PFN$BAK_PRVPFN 
field. 

On a NUMA platform with RAD support enabled, these fields link an unencumbered  
free page into a RAD-specific free or zeroed page list. 

2.5.3.11 PFN$Q_BAK Field 
The PFN$Q_BAK field contains the backing store location for the vir tual  page occu- 
pying a physical page. When a physical page is assigned to another  use, the PTE, if 
any, tha t  currently maps the page must  be updated.  The executive replaces informa- 
tion about the location of the virtual  page in memory (the PFN of the physical page 
tha t  contains it) with information about its location in mass storage copied from the 
PFN$Q_BAK field. 

Figure 2.22 shows the possible contents of a PFN$Q_BAK field. The shaded bits in 
each form are either reserved or bits whose contents are i rrelevant  for tha t  form of 
backing store information. 

Before a demand zero or copy-on-reference page is assigned actual page file backing 
store, the system page file index field contains FF16 to indicate no assigned page file. 
In addition, the field can contain zero. 

2.5.3.12 PFN$Q_BAK_PRVPFN Field 
PFN$Q_BAK_PRVPFN is used only for a page managed through a private PFN list. It 
contains the address of the PRVPFN listhead used to manage  the page. 

2.5.3.13 PFN$W_SWPPAG Field 
The swap file page number  field, PFN$W_SWPPAG, supports the outswap of a process 
with read I/O in progress. When such an outswap occurs, the swapper sets bit PFN$V_ 
SWPPAG_VALID in PFN$L_PAGE_STATE and records in PFN$W_SWPPAG the page 
offset in the process body part  of the swap slot into which the locked down page should 
be written. 

When the swapper I/O is completed, the locked page is marked  release pending. When 
the original I/O is completed, the I/O postprocessing routine sees tha t  the page is in 
the release pending state and has the saved modify bit set, and inserts the page on the 
modified page list. The modified page writer  checks the PFN$V_SWPPAG_VALID bit 
and, if it is nonzero, diverts a modified page from its normal backing store address  to 
the designated location in the swap file. 

Because a physical page in a buffer object or a page table page tha t  maps a buffer 
object cannot be outswapped, this field is not needed to describe such a page. The 
PFN$W_BO_REFC field and PFN$W_IO_STS overlay the PFN$W_SWPPAG field. 
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2.5.3.14 PFN$W_BO_REFC Field 
Another form of reference count is kept for buffer object pages (see Section 2.6). The 
buffer object reference count field, PFN$W_BO_REFC, counts the number  of buffer 
objects mapping the page. The field is initialized t o - 1 .  When the reference count 
for a particular buffer object page goes f r o m - 1  to 0, its PFN$W_REFCNT field is 
incremented. Fur ther  additions to the buffer object reference count do not affect the 
PFN reference count. For a page table page that  maps one or more buffer objects, 
PFN$W_BO_REFC contains the number of buffer object pages mapped by the page 
table page. 

Because a physical page in a buffer object or a page table page that  maps a buffer 
object cannot be outswapped, the PFN$W_SWPPAG field is not needed to describe such 
a page. The PFN$W_BO_REFC field overlays the PFN$W_SWPPAG and PFN$W_IO_ 
STS fields. 

2.5.3.15 PFN$W_IO_STS Field 
This field is used only for a page that  incurs an I/O processing error during an a t tempt  
to fault it in from backing store or inswap it. The I/O error status is recorded in it. 
Section 2.5.3.6.1 has additional information. 

The PFN$W_IO_STS field overlays the PFN$W_SWPPAG and PFN$W_BO_REFC 
fields. 

2.5.3.16 PFN$W_PT_VAL_CNT Field 
This field is used only for page table pages. It contains the number of valid working 
set list entries mapped by that  page table page. A value o f - 1  for this field means the 
page maps no such pages or is not a page table. 

Prior to OpenVMS Version 7.0, this information was kept in the PHD PTWSLEVAL 
array. 

Chapter 4 contains further information. 

2.5.3.17 PFN$W_PT_LCK_CNT Field 
This field is used only for page table pages. It contains the number of locked pages 
mapped by that  page table page. A value o f - 1  for this field means the page table page 
maps no such pages or is not currently in use as a page table. 

Prior to OpenVMS Version 7.0, this count was included in the PHD PTWSLELCK 
array. 

Chapter 4 contains further information. 

2.5.3.18 PFN$W_PT_WlN_CNT Field 
This field is used only for page table pages. It contains the number of window pages 
and memory-resident global section pages mapped by that  page table page. A window 
page is a virtual page that  is a double mapping of a physical page. For example, a 
virtual page in a section mapped by PFN is a window page. A value o f - 1  for this field 
means the page table page maps no such pages or is not currently in use as a page 
table. 
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In the case of a shared L3PT mapping shared global section pages, PFN$W_PT_WIN_ 
CNT counts the number  of pages of global section mapped. In the case of a process- 
private L2PT mapping shared L3PTs, PFN$W_PT_WIN_CNT counts the number  of 
shared L3PTs mapped by this L2PT. 

Prior to OpenVMS Version 7.0, this count was included in the PHD PTWSLELCK 
array. 

Chapter 4 contains further information. 

2.6 Buffer Objects 
A buffer object is a special kind of I/O buffer. When a buffer object is created, the 
pages that  compose it are locked into physical memory and may be mapped in process- 
private space, system space, or both, depending on how the buffer object was created. 
A system buffer object, new with OpenVMS Version 7.3, is mapped only in system 
space. An ordinary buffer object consists of process-private pages. A global buffer 
object consists of global pages. Typically, a very large global buffer object is not 
double-mapped in system space. 

I/O can be initiated to or from the buffer with minimal overhead using the Perform 
Fast I/O ($IO_PERFORM) system service; in particular, there is no need to probe the 
buffer or lock its pages into memory. The body, PHD, and page tables of a process with 
I/O in progress to a buffer object can all be swapped. Although an L3PT page table 
page that  maps a buffer object is locked in memory, it is not locked into the process's 
working set. 

A buffer object is created when a process requests the Create Buffer Object ($CRE- 
ATE_BUFOBJ_64) system service (see Chapter 3), specifying an existing process- 
private address range to be mapped as a buffer object. 

Each buffer object is described by a nonpaged pool data structure called a buffer object 
descriptor (BOD), shown in Figure 2.23. All the BODs for buffer objects created by a 
particular process are linked together in a list whose head is in the process's PCB$Q_ 
BUFOBJ_LIST field. The listhead for system buffer object BODs is in the system 
PCB. 

BODs enable the memory management  subsystem to keep track of the buffer objects 
the process created and their associated system virtual addresses. When an image 
exits, the executive examines the process's BOD list and deletes buffer objects that  still 
exist. 

BOD$L_FLINK and BOD$L_BLINK link a BOD into the PCB list of others by the 
same process. 

BOD$W_SIZE and BOD$B_TYPE are the standard dynamic data structure header 
fields. A BOD has a type of DYN$C_BOD. 

BOD$L_ACMODE contains the owner access mode of the buffer object. 
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Figure 2.23 Layout of a Buffer Object Descriptor (BOD) 
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BOD$L_SEQNUM contains a sequence number  identifying the buffer object. 

BOD$L_REFCNT contains the number  of references to the buffer object and the num- 
ber of reasons the buffer should not be deleted. Creat ing a buffer object establishes 
the reference count as 1. The reference count is incremented when an I/O reques t  is 
processed tha t  uses the buffer and decremented when the I/O completes. 

BOD$L_FLAGS contains flag bits tha t  describe the section: 

�9 BOD$V_DELPEN, when set, means tha t  a request  to delete the buffer object has 
been made and tha t  its deletion is pending. 

�9 BOD$V_NOQUOTA, when set, means tha t  the buffer object creation was requested 
from an inner access mode with flag CBO$V_EXMAXLIM set to specify tha t  limit 
checking is to be bypassed. 

�9 BOD$V_NOSVA, when set, means the buffer is not double-mapped in system 
space. 

�9 BOD$V_S2_WINDOW, when set, means the buffer is double-mapped in $2 space. 

�9 BOD$V_SYSBUFOBJ, when set, means  the buffer is mapped only in system space 
and is a system buffer. Record Management  Services (RMS) uses a system buffer 
object to map global buffer descriptors and the s t ructures  tha t  synchronize access 
to them. 

BOD$L_PID contains the internal  ID of the process tha t  created the buffer object. 

BOD$L_PAGCNT contains the number  of pages in the buffer object. 
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BOD$PQ_BASEPVA contains the process virtual address at which the buffer object is 
mapped. 

If BOD$V_NOSVA is clear, the buffer is double-mapped into system space. BOD$PQ_ 
BASESVA contains the system virtual address at which the buffer object is mapped. 

If BOD$V_S2_WINDOW is clear, the buffer is mapped into S0/S1 space, and BOD$PQ_ 
VA_PTE contains the system virtual address of the SPT window PTE that  maps the 
first page of the buffer object. If BOD$V_S2_WINDOW is set, the buffer is mapped 
into $2 space, and BOD$PQ_VA_PTE contains the page table space address of the PTE 
that  maps the first page of the buffer object. 

SYSGEN parameter  MAXBOBMEM limits the amount  of physical memory buffer 
objects can consume. 

2.7 Data Structures for Global Pages 
The t rea tment  of global pages is somewhat different from that  of process-private 
pages; the executive must  keep additional systemwide data to describe global pages 
and sections. The sections that  follow describe these data structures. 

2.7.1 Global Section Descriptor 
Global sections are created by various OpenVMS system services, for example, Create 
and Map Section ($CRMPSC), Create Permanent  Global Demand Zero Section ($CRE- 
ATE GDZRO), and Create Permanent  Global Disk File Section ($CREATE_GFILE). 
Such services can be requested directly from a user image or indirectly through the 
Install utility. 

A special type of global section, new with OpenVMS Version 7.1, is a memory-resident 
global section. The pages of such a section do not page and are not backed up by a 
section file. The global pages are permanently valid. Like any other global section, a 
memory-resident global section is described by a GSD. 

Optionally, a process can map memory-resident global sections with shared page 
tables, thereby using the same L3PTs as other processes to map the global section. 
Those shared page tables themselves make up a type of global section called a global 
page table section, which like any other global section, is described by a GSD. Thus a 
memory-resident global section with shared page tables is described by two GSDs. 

Figure 2.24 shows the layout of a GSD. A GSD associates the global section name to 
its GSTE. The information in the GSD is only used when some process a t tempts  to 
map to or delete the section. The page fault handler does not use this data  structure. 

GSD$L GSDFL and GSD$L_GSDBL link a GSD into one of several GSD lists main- 
tained by the system. All system global section descriptors are linked into one 
list, whose listhead is formed by global cells EXE$GL_GSDSYSFL and EXE$GL_ 
GSDSYSBL. Group global section descriptors (independent of group number) are 
linked into the other list, at EXE$GL_GSDGRPFL and EXE$GL_GSDGRPBL. Note 

101 



Memory Management Data Structures 

Figure  2.24 Layout  of  a Global  S e c t i o n  D e s c r i p t o r  (GSD) 

Regular GSD 

GSDFL 

GSDBL 

(reserved)J TYPE I 
HASH 

, ,  

PCBUIC 

FILUIC 

PROT 
GSTX 

IDENT 

ORB 

SIZE 

IPID/RELATED_GSTX 
,, 

FLAGS 
. . . . .  GSDNAM 

(up to 44 characters) 

$ 

.,,,.,"" 

a �9 

: i 

Extended GSD for Map-by-PFN 
Global Section 

Regular GSD 

BASEPFN 
PAGES 

REFCNT 
PFNGSDNAM 

(up to 44 characters) 

that a GSD for a global page table section is not linked to any of these GSD lists except 
immediately prior to its deletion. 

When a request is made to delete a global section to which processes are still mapped, 
its GSD is removed from its current list and inserted into a list of delete-pending 
GSDs, the listhead of which is at EXE$GL_GSDDELFL and EXE$GL_GSDDELBL. 

GSDs representing Galaxywide shared sections are linked to separate lists: EXE$GL_ 
GLXGRPFL and EXE$GL_GLXGRPBL for group sections, and EXE$GL_GLXSYSFL 
and EXE$GL_GLXSYSBL for system sections. 

The mutex EXE$GL_GSDMTX (see Chapter Synchronization Techniques) serializes 
access to all these GSD lists. 

GSD$W_SIZE and GSD$B_TYPE are the standard dynamic data structure fields. 

GSD$L_HASH contains a hashed representation of the global section name. Compar- 
ing hash values rather than section names speeds up a search for a global section with 
a particular name. 

GSD$L_PCBUIC is the user identification code (UIC) from the software PCB of the 
creating process. GSD$L_FILUIC is the UIC of the owner of the section file. 

GSD$L_PROT is currently unused. Information about the protection on the global 
section is stored in the object rights block associated with the global section. 

GSD$L_GSTX contains the global section table index (GSTX) for the section's GSTE. 
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GSD$L_IDENT contains the version identification of the global section. The value is 
specified by the requestor of the system service that  created the global section. In the 
case of a global section created for image installed/SHARE, the Install utility gets the 
information from the image header of the image being installed. 

GSD$L_ORB contains the address of the associated object rights block (ORB). In the 
case of a section that  maps a file, the global section shares the ORB associated with 
the open file. 

When a process requests that  a global section be deleted, its internal process ID is 
copied to GSD$L_IPID. If the global section is writable, when all its modified pages 
have been written, the modified page writer queues an AST to that  process to perform 
the cleanup and deletion of the global section. 

For a memory-resident global section with shared page tables, GSD$L_RELATED_ 
GSTX contains the index of the GSTX of the related global page table section. 

GSD$L_FLAGS contains flags that  describe the section. They are based on the ones in 
the GSTE (see Figure 2.7). 

GSD$T_GSDNAM contains a counted ASCII string that  is the section's name. 

A PFN-mapped global section has no associated GSTE; its pages are not paged. Such a 
section has an extended GSD, as shown in Figure 2.24. In the extended GSD, GSD$L_ 
BASEPFN contains the starting PFN of the section. GSD$L_PAGES specifies its size 
in pages. GSD$L_REFCNT specifies how many PTEs map to this section. GSD$T_ 
PFNGSDNAM, rather than GSD$T_GSDNAM, contains the section name. 

2.7.2 Global Section Table Entries 
The section table in the system header serves a second purpose. When a global section 
is created, a section table entry that  describes the global section file is allocated from 
the section table in the system header. Because of this use, the system header's section 
table is usually called the global section table (GST). 

The layout of a GSTE is nearly identical to the layout of a PSTE. Figure 2.7 illustrates 
both kinds of section table entry. 

A GSTE is accessed in a similar way to a PSTE, with a positive index from the bottom 
of the GST (see Section 2.1.3.3). The GSTX in the GSD is such an index, associating a 
GSD with a GSTE. 

When a memory-resident global section with shared page tables is created, two GSTEs 
are created: one for the global section itself, and one for the related global page table 
section. 

Allocation and deletion of GSTEs are synchronized by the MMG spinlock. 
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2.7.3 Global Page Table 
Like other L3PTs, the global page table (GPT) describes the state of the pages it maps. 
Unlike the others, the GPT is not accessed by the TB miss PALcode routine to load 
an entry into the translat ion buffer. It is only accessed by OpenVMS Alpha memory 
management  routines. The GSD mutex synchronizes allocation and deallocation of 
global page table entries (GPTEs). The MMG spinlock synchronizes modification of 
GPTEs allocated to a global section. 

The global page table is located at the low-address end of $2 space, allocated dur- 
ing system initialization. Its initial size depends upon the SYSGEN parameter  
GBLPAGES, the number  of expected global pagelets. (Historically, the parameter  
was defined in terms of VAX pages. To facilitate application porting and maximize 
cross-platform compatibility, the units of the parameter  continue to be pagelets.) 
MMG$GQ._MAX_GPTE contains the address of the highest  GPTE. 

Free GPTEs are maintained in a list whose structure is described in Section 2.3.6. The 
listhead for free GPTEs is MMG$GQ__FREE_GPT. 

Each global page is mapped by one GPTE. When a process maps a portion of its 
address space to a global section, its process-private PTEs tha t  map the section are 
initialized to the GPTX form of PTE (see Figure 2.12). A global section is mapped by a 
set of contiguous GPTEs, one for each global page plus two additional GPTEs. The two 
additional GPTEs, one at the beginning of the set and one at the end, are cleared and 
serve as stoppers to limit modified page write clustering (see Chapter 4). 

During system operation, GPTEs are allocated when an image is ins ta l led/SHARE or 
an application creates a global section. If there are insufficient GPTEs to map a new 
global section, the system manager  can increase the value of GBLPAGES, which is 
dynamic. A subsequent a t tempt  to create a global section would result  in expanding 
the GPT if all the following are true: 

* Expanding it by the necessary number  of GPTEs doesn't increase its size over the 
value of GBLPAGES. 

* There is sufficient free $2 address space contiguous with the existing GPT. 

* Decreasing fluid pages by the growth of the GPT leaves a result  larger than  four 
times the largest swap image. 

GPT pages are created as demand zero pages. Once faulted, each remains resident 
unless the GPT is contracted by tha t  page. (This is a change from earlier versions, in 
which global page table pages were pageable.) The GPT can be contracted by one or 
more pages under the following circumstances: 

�9 Global pages are deleted and GPTEs thus deallocated. 

* One or more pages of GPT at the high-address end map no global pages. 

�9 The system manager  has reduced GBLPAGES, and the current  size of the GPT is 
larger. 
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The executive locates a specific GPTE in the GPT using a G F I ~  as a quadword context 
index from the contents of MMG$GQ_GPT_BASE, the cell tha t  contains the s ta r t ing  
address of the GPT. 

The process-private PTE tha t  maps the first page of a global section contains the GPTX 
of the GPTE tha t  maps the first page in the global section. Each successive process- 
private PTE contains the next higher GPTX, so tha t  each PTE effectively points to the 
GPTE tha t  maps tha t  part icular  page in the global section. 

The relation between process-private PTEs and GPTEs is shown in Figure 2.25. In the 
figure, the first M GPTEs are in use for other sections, and the global section shown is 
mapped by N + 2 GPTEs beginning with GPTE M + 2. GPTE M + 1, GPTE M + 2, and 
GPTE M + 2 + N + 1 are stoppers. 

Figure  2.25 Relat ion  B e t w e e n  Process -Pr ivate  PTEs and GPTEs 
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When a process first accesses an invalid global section page, it incurs a page fault. 
Determining tha t  the invalid page is a global page, the page fault handler  indexes the 
GPT with the GPTX to locate the GPTE tha t  describes the global page. 

2.7.4 Global Page Table Entries 
Each page in every type of global section is described by a GPTE. Even pages in 
memory-resident  global sections with shared page tables are described by GPTEs. 
This simplifies the memory management  code and enables a process to map the 
global section using process-private page tables, perhaps to obtain read-only access. 
Moreover, each global page table section is itself described by GPTEs. 
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GPTEs are restricted to the following forms of PTE, i l lustrated in Figure 2.26. The 
shaded bits in each GPTE are either reserved or bits whose contents are irrelevant for 
that  form of GPTE. 

�9 The GPTE can be valid, indicating that  the global page is in at least one process 
working set or that  it is a valid page in a memory-resident global section. 

�9 The GPTE can indicate a page in some transition state. The corresponding 
PFN$L_PAGE_STATE field identifies the transition state. 

�9 For a global page in a global section file, the GPTE contains a global section table 
index. 

�9 The GPTE can indicate a demand zero page in a global page-file section. 

�9 The GPTE can indicate a global page-file section page that  has been created and is 
in use. 

Note that  there are no protection bits in a GPTE. When a global section is mapped, the 
executive determines values for the protection bits based on section flags, the access 
mode from which the section is mapped, and the FLAGS argument  to the system service 
that  maps the section. 

When a global page is faulted in, the bits shown in Figure 2.26 labeled Global and 
Global Write are incorporated into the PFN$L_PAGE_STATE field for the physical 
page and the entry corresponding to the page in the working set lists of processes tha t  
have mapped to it. 

Invalid GPTEs that  are unused and available for allocation are linked together in a 
list from listhead MMG$GQ_FREE_GPT. The organization of the list is the same as 
that  of free system page table entries (see Section 2.3.5.6). 

2.7.5 Relations among Global Section Data Structures 
Figure 2.27 shows the relations among the GSD, GSTE, and GPTEs for a given section 
on a system with a page size of 8 KB (for simplicity, the figure omits the stopper 
GPTEs): 

The central shaded structure is the GSTE (see Figure 2.7 for its layout) within the 
GST. The first longword in the GSTE points to the GSD. 

The virtual page number field (which contains J in Figure 2.27) contains the GP ' I~  
of the first GPTE that  maps this section. 

The global section consists of K pages and, in this example, none of them is partial.  
That is, the number of mass storage blocks in the section is an integral multiple 
of the number  of blocks per page. Given a system with a page size of 8 KB, the 
SEC$L_UNIT_CNT field in the GSTE therefore contains the number of pages in 
the section multiplied by 16, the number of mass storage blocks per page. 

�9 The GSD contains a GSTX that  locates the GSTE. 
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�9 The original form of each GPTE contains the same GSTX found in the GSD. 
When any given GPTE is either valid or in transition, the GSTX is stored in the 
corresponding PFN database record PFN$Q_BAK field. Note that  a GPTE for a 
global page-file section contains a page file backing store address. 

The allocation and initialization of global section data structures are described along 
with the create and map global section system services in Chapter 3. 

Figure  2.27 Relat ions  a m o n g  Global Sect ion  Data  Structures  

2.7.6 Global Shared Page Table Sections 
To map a memory-resident global section using shared page tables, a process first 
creates a shared page table region by requesting the $CREATE_REGION_64 service. 
This ensures that  the global section can be mapped starting at a suitable virtual 
address, one mapped by the first L3PTE in an L3PT. 

If the memory-resident global section has not already been created, the process then 
requests either the Create Permanent  Global Demand Zero Section ($CREATE_ 
GDZRO_64) system service or the Create and Map to Global Demand Zero Section 
($CRMPSC_GDZRO_64) system service to create and map the section as well as the 
global page table section. To map the sections, another process would request either 
the Map to Global Section ($MGBLSC_64) system service or the $CRMPSC_GDZRO_ 
64 system service. 

Figure 2.28 shows part of the page table hierarchies of two independent processes. 
Each L1PT maps a process-private L2PT and process-private L3PTs for P0 and P1 
space, and each also maps a shared L3PT that  maps a memory-resident global section. 
For simplicity, the figure shows only one shared data page and omits the shared L2PTs 
and L3PTs that  map system space. 
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2.8 Data Structures for Swapping 
The swapper and page fault handler both reference page tables, described in Section 
2.3. In addition, the following three data structures are used primarily by the swapper 
but also indirectly by the page fault handler: 

�9 Balance set slots 

�9 PHD reference count array 

�9 Process index array 

The SYSGEN parameter BALSETCNT, whose global cell name is SGN$GL_ 
BALSETCT, specifies the number of elements in each array. 

2.8.1 Balance Set Slots 
A balance set slot is a piece of system virtual address space reserved for a PHD. The 
number of balance set slots defines the maximum number of concurrently resident 
processes. 

When the system is initialized, an amount of system virtual address space equal to 
the size of a PHD times BALSETCNT is allocated. The location of the beginning of 
the balance set slots is stored in global cell SWP$GL_BALBASE. The size of a PHD in 
pages is stored in global location SWP$GL_BSLOTSZ. 

Figure 2.29 shows this area. Appendix Size of System and P1 Virtual Address Spaces 
describes the calculations performed by SYSGEN to determine the size of the PHD. 

Figure 2.29 Balance  Set Slots Containing Process  Headers  
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2.8.2 Ba lance  Set Slot Ar rays  

As shown in Figure 2.30, the system maintains two arrays describing each process 
with a PHD stored in a balance set slot. Both arrays are indexed by the balance set 
slot number occupied by the resident process. The balance set slot number is stored in 
the fixed portion of the PHD at offset PHD$L_PHVINDEX. Entries in the first array 
contain the number of references to each PHD. Entries in the second array contain an 
index into a longword array that points to the PCB for each PHD. 

Global cell PHV$GL_REFCBAS_LW contains the starting address of the longword 
reference count array. Each of its e lements counts the number of reasons that the cor- 
responding PHD cannot be removed from memory. Chapter 4 lists the circumstances 
under which an element is incremented and decremented. A value o f - 1  in a reference 
count array element means that the corresponding balance set slot is not in use. 
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Global cell PHV$GL_PIXBAS contains the s tar t ing address of the process index word 
array. Each of its elements contains an index into the longword array, based at the 
global pointer SCH$GL_PCBVEC. An element in the longword PCB vector contains 
the address of the PCB of the process with tha t  process index. Figure 2.30 i l lustrates 
how the address of a PHD is t ransformed into the address of the PCB for tha t  process, 
using the entry in the process index array. 

A value of 0 in the process index ar ray  entry means  tha t  the corresponding balance set 
slot is not in use. A value o f - 1  in a process index ar ray  entry means  tha t  the process 
whose PHD used tha t  balance set slot has been deleted and its PHD can be deleted to 
reclaim physical memory as well as the balance set slot. 

If the PHD address is known, the balance set slot index can be calculated or obtained 
from PHD$L_PHVINDEX. By using this as an index into the process index array, the 
longword index into the PCB vector is found. The ar ray  element in the PCB vector is 
the address of the PCB, whose PCB$L_PHD entry points back to the balance set slot. 
Chapter  Process Creation contains a more detailed description of the PCB vector and 
its use by the Create Process ($CREPRC) system service. 

2.8.3 Comment on Equal-Size Balance Set Slots 
In the original VAX/VMS design, a fixed amount  of vir tual  address space was reserved 
for each balance set slot, despite the fact tha t  PHDs would vary in size a great  deal 
because of differences in section count, working set list size, and vir tual  address size. 

This design simplified memory management  code and ensured tha t  if a free balance set 
slot were available, its size would be sufficient to inswap any process. It also simplified 
keeping track of the state of PHD pages with fixed-length PHD page arrays. 

Another reason for this choice was tha t  it enabled easy calculation of an associated 
PHD address from a PFN for a private page. PFN$L_PTE contained the system space 
vir tual  address of the PTE mapping tha t  page. (Recall tha t  page tables were par t  of 
the PHD.) From that,  it was easy to identify which PHD contained the PTE. 

Although the last reason no longer holds because the page tables have been removed 
from the PHD, the balance set slots remain equal-size. 

2.9 Data Structures Describing the Page and Swap Files 
Page and swap files are used by the memory management  subsystem to save physical 
page contents and process working sets. Page files are used to save the contents of 
modified pages that  are not in physical memory. With OpenVMS Version 7.3, the 
use of page files is recommended, but not absolutely necessary, on a system with 
enough memory to accommodate all modified pages. The crash dump is wri t ten to 
the pr imary page file when the system crashes and there is no dump file (see Chapter  
Error Handling). 
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Swap files save the working sets of processes tha t  are not in the balance set. On 
today's large memory systems, there is typically little or no swapping. However, on a 
system tha t  allows very large working sets and tha t  occasionally has a load of many  
processes, swapping is likely to occur. When it does, having at least  one swap file is 
desirable, because a swap file is typically less f ragmented than  a page file. Moreover, 
after several large processes are outswapped into a page file, the page file may  be 
sufficiently full to hinder  modified page write clustering. 

If there is insufficient space in the swap files, or if there are no swap files, a process 
can be outswapped to a page file unless SYSGEN pa rame te r  NOPGFLSWP is set, 
inhibiting swapping to page files. 

OpenVMS keeps t rack of total page and swap file usage in the following global cells: 

MMG$GQ_PAGEFILE_PAGES, total number  of pages in all installed page files 

MMG$GQ_PAGEFILE_ALLOCS, total number  of pages allocated from all instal led 
page files 

MMG$GQ_PAGEFILE_REFS, count of all pages to be backed by page files 

MMG$GQ_SWAPFILE_PAGES, total number  of pages in all installed swap files 

MMG$GQ_SWAPFILE_ALLOCS, total number  of pages allocated from all instal led 
swap files 

The subsections tha t  follow discuss the data  s t ructures  tha t  describe page and swap 
files, except for the page file map (PFLMAP) structure,  described in Chapter  6. 

2.9.1 Page File Control Blocks 
Each page and swap file in use is described by a data  s t ructure  called a page file 
control block (PFL). A page or swap file can be placed in use ei ther  automatical ly 
during system initialization or manual ly  through SYSGEN commands. In ei ther  
case, code in module [SYSINI]INITPGFIL allocates a PFL from nonpaged pool and 
initializes it. 

In addition, each page and swap file is described by two bitmaps: 

�9 The storage bi tmap has one bit for each page in the file. A value of 1 means  the 
mass storage blocks equivalent  to one page of memory are free; a value of 0 means  
the page is in use. (Although the unit  typically associated with a file is a mass  
storage block, page and swap files are also described in terms of their  capacity to 
hold pages of memory.) 

�9 Each bit in the directory bi tmap represents  16 bits in the storage bi tmap tha t  
are aligned on a 16-bit boundary. A value of 1 in a directory bit means all the 
corresponding bits in the storage bi tmap are 1; a value of 0 means some or all of 
them are 0. 

bi tmap first to allocate pages, ra ther  than  the storage bitmap, Scanning the directory 
improves performance. 
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Initializing the PFL includes the following operations: 

1. The file is opened and a special window control block is built to describe all the 
file's extents. The special WCB, called a cathedral  window, ensures tha t  the 
memory management  subsystem does not have to take a window turn  (see Chapter  
I/O System Services), which could lead to a system deadlock. 

2. The address of the WCB is stored in the PFL. 

3. The sizes of the storage and directory bitmaps are calculated. If the combined sizes 
of the bitmaps are less than a page of memory, they are allocated from nonpaged 
pool. Otherwise, they are allocated from $2 space. Both bitmaps are initialized to 
all rs .  

4. The address of the PFL is stored in an available slot in the page-and-swap-file 
vector. The slot number  is the index tha t  identifies tha t  page or swap file. If the 
PFL represents a page file, it is also linked into one of four page file lists. Section 
2.9.2 contains more details. 

Figure 2.31 shows the layout of a PFL. 

PFL$W_SIZE and PFL$B_TYPE are the s tandard dynamic data s tructure fields. 
PFL$L_POOLBYTES contains the size of the nonpaged pool request. 

PFL$L_PFC is the number  of pages to try to cluster on a page read; it sets an upper 
limit on modified page writer clustering (see Chapter  4). It is the min imum of 1,024 
and SYSGEN parameter  MPW_WRTCLUSTER. 

PFL$L_WINDOW is the address of the WCB tha t  describes the mapping extents 
of the file, which enable file-relative, or virtual, block numbers to be converted to 
volume-relative, or logical, block numbers.  

Generally, PFL$L_VBN contains zero; in the case of a primary page file in use as a 
crash dump file, it contains a number  that  reserves enough blocks in the page file to 
contain the dump. If the dump has already been analyzed, one page's worth of blocks 
is reserved. If there is a valid unanalyzed dump in the file, PFL$L_VBN contains the 
size of the dump in blocks rounded up to the next multiple of one page's worth of mass 
storage blocks. Chapter  Error Handling discusses use of the primary page file as a 
dump file. 

PFL$L_VBN has an additional use for a page file larger than  FFFFFF16 pages. 
When installing such a file, SYSGEN divides it into segments of FFFFFF16 blocks. It 
initializes a PFL for each segment, plus one for the last partial segment. PFL$L_VBN 
indicates the star t ing virtual block number  of each segment. A page in a segment  is 
represented by the combination of page file index and a page number  relative to the 
start  of the segment. The page number  is thus  small enough to fit into the page file 
page number  portion of a page file backing store PTE. To calculate the actual backing 
store address, the page file page number  is multiplied by the blocks per page and then 
added to the contents of the associated PFL$L_VBN. 

When installing a swap file larger than  FFFFFF16 pages, SYSGEN similarly divides it 
into segments of FFFFFF16 pages. 
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F i g u r e  2.31 P a g e  and  S w a p  F i l e  D a t a b a s e  
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Note that the PFL contains a WCB field, virtual block number field, and page fault 
cluster factor field at the same relative offsets they are in a section table entry. 
Because all fields are present and at the same offsets, page file and section file I/O 
requests can be processed by common code, independent of the data structure that 
describes the file being read or written. 
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PFL$L_FREPAGCNT is the actual number  of pages that  can be accommodated by the 
free blocks in the page file. This field is not decremented until the modified page wri ter  
actually assigns space to a particular virtual page. It is incremented whenever a page 
file page is released, either because its virtual page is being deleted or its contents are 
known to be obsolete. (That is, when a page previously assigned space in a page file is 
placed into the modified page list, its backing store copy can no longer be regarded as 
good.) 

PFL$L_BITMAPSIZ is the length of the storage bitmap in bytes, and PFL$L_ 
BITMAP_QUADS, its length in quadwords. If the bitmap is allocated from $2 space, 
its size in pages is stored in PFL$L_S2PAGES; otherwise, the field contains 0. PFL$Q_ 
BITMAP contains the address of the start  of the storage bitmap. 

PFL$Q_BITMAP_DIR contains the address of the s tar t  of the directory bitmap. 
PFL$Q_DIR_QUADS contains its size in quadwords. PFL$L_STARTBYTE identi- 
fies the directory bitmap quadword at which the next scan for free blocks should begin. 
A negative value means that  the directory bitmap is all zeros, indicating a fragmented 
page file, and that  the storage bitmap has to be scanned, s tar t ing at the quadword tha t  
is the complement of the negative value. 

PFL$Q_LAST_DIR_QUAD contains the initial value of the last directory quadword. 

PFL$L_DIR_CLUSTER is an eight-longword array that  describes the directory bi tmap 
and indicates the degree of fragmentation of available space in the file. The first 
element counts the number of set bits in the directory bitmap. The second element 
records the number  of pairs of bits that  are set within each directory quadword. The 
third element counts the number of groups of four adjacent set bits, and so on through 
the seventh element, which counts the number  of quadwords equal t o - 1 .  The eighth 
element is unused. The counts are initialized when the file is installed and updated as 
pages are allocated and deallocated. 

A directory quadword o f - l ,  for example, has 64 single bits, 32 pairs, 16 groups of four, 
eight groups of eight, four groups of 16, two groups of 32, and one group of 64. Such a 
quadword would be represented in each of the seven different counters. 

PFL$L_MAX_ALLOC_EXPO contains the largest index into this array of the nonzero 
element whose group size represents a cluster less than or equal to PFL$L_PFC. For 
example, a PFL$L_PFC value of 64 pages is represented by four adjacent directory 
bits, and thus PFL$L_MAX_ALLOC_EXPO is 2. 

PFL$L_CUR_ALLOC_EXPO contains the index currently being used for this page 
file. Initially, it has the same value as PFL$L_MAX_ALLOC_EXPO. When the file 
becomes full or fragmented and there are no more groups of the size corresponding to 
PFL$L_MAX_ALLOC_EXPO, PFL$L_CUR_ALLOC_EXPO is decremented. If the file 
becomes more full or fragmented and there are no more groups corresponding to tha t  
size, PFL$L_CUR_ALLOC_EXPO is decremented again. As pages are deallocated and 
the directory counters updated, PFL$L_CUR_ALLOC_EXPO can be incremented to 
reflect availability of the next larger group. Keeping track of the largest group in this 
manner  prevents fruitless scans of the  directory bitmap. 
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PFL$L_MINFREPAGCNT is the "low-water mark" for the file and represents the 
smallest number of pages free during the use of the file. 

PFL$L_PGFLX is the index number of the page-and-swap-file vector entry that  con- 
tains the address of the PFL. 

PFL$L_FLAGS contains bits describing the state of the file. 

PFL$L_REFCNT contains the number of pages used in the file for paging or swapping. 

PFL$L_MAXVBN is the mask applied to a PTE with a page file backing store address. 
For either type of file, it contains the value FFFFFF16. 

If the bitmaps were allocated from nonpaged pool, the storage bitmap begins at offset 
PFL$L_BITMAPLOC. The directory bitmap follows it. 

Chapter 4 describes the use of page files, and Chapter 6, of swap files. 

2.9.2 Page-and-Swap-File Vector 
Pointers to the PFLs are stored in a nonpaged pool array called the page-and-swap- 
file vector. The array contains 255 longwords and can accommodate pointers to 254 
files, the maximum number of page and swap files that  can be in use on the system. 
SYSGEN parameters SWPFILCNT and PAGFILCNT are obsolete as of OpenVMS 
Version 7.3; a maximum-size array is always allocated. A header precedes the array. 
The macro $PTRDEF defines symbolic names for the fields in the header. 

A page or swap file is identified by an index number indicating the position of its PFL 
address in this array. Addresses of swap file PFLs are stored at the beginning of the 
array, and addresses of page file PFLs, at the end of the array. 

During system initialization, the routine EXE$INIT, in module INIT (see Chapter 
Operating System Initialization and Shutdown), allocates and initializes the page-and- 
swap-file vector. 

It initializes PTR$L_INFO_LONG0 to 0 and PTR$L_INFO_LONG1 to 255 to indicate 
no page or swap files have been installed. When a swap file is installed, OpenVMS 
increments PTR$L_INFO_LONG0; when a page file is installed, OpenVMS decrements 
PTR$L_INFO_LONG1. Each longword identifies the most recently used slot number 
for files of that  type. The third longword of the header contains the size of the data 
structure, a type value of DYN$C_PTR, and a subtype value of DYN$C_PFL. PTR$L_ 
PTRCNT contains the number of elements in the array. The array begins at the next 
longword. 

EXE$INIT stores the address of the structure in MMG$GPQ_PAGE_SWAP_VECTOR. 
Figure 2.31 shows the use of the page-and-swap-file vector data area to point to PFLs. 
EXE$INIT initializes each pointer with the address of the null page file control block, 
the contents of MMG$AR_NULLPFL. For the most part, this address serves as a zero 
value, indicating that  no page or swap file with this index is in use. 
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A PFL for a page file is also linked into one of four circular lists, in descending order 
of its free space: 

1. Page files that  have at least one cluster's (PFL$L_PFC) worth of adjacent pages 

2. Page files that  do not have even one cluster's worth of adjacent pages but do have 
set bits in the directory bitmap 

3. Page files that  do not have set bits in the directory bitmap but do have set bits in 
the storage bitmap 

4. Page files that  are full or being deinstalled 

A four-longword array at MMG$GA_PAGE_FILES contains the current positions in 
each list. Pages are allocated from the first PFL found, beginning with the first list. 
After pages are allocated from a PFL, the pointer into its list is moved to the next PFL 
in the list, to enable more even page file use. Chapter  4 has additional details. 

The SYSINIT process (see Chapter Operating System Initialization and Shutdown) 
places in use SYS$SPECIFIC:[SYSEXE]PAGEFILE.SYS, the primary page file, if it 
exists. (Any page file installed at a later stage of system initialization or operation is 
not considered a primary page file, even if it is the first page file installed.) SYSINIT 
builds a PFL and places its address in the page-and-swap-file vector. The first page 
file installed has an index value of 254. Additional page files have decreasing index 
values. 

SYSINIT also installs SYS$SPECIFIC:[SYSEXE]SWAPFILE.SYS, if it exists, as the 
primary swap file. (A swap file installed at a later stage is not a pr imary swap file, 
even if it is the first one.) The first swap file installed has index 1. If there is no swap 
file, index 1 points to the null PFL. Additional swap files have increasing index values. 

Any additional page and swap files are placed in use by SYSGEN in response to the 
commands INSTALL/PAGEFILE and INSTALL/SWAPFILE. Installing page files other 
than the primary one on different disks allows for balancing the paging load. A system 
with alternative swap files can support a greater  number of processes or processes 
with larger working sets. 

An inactive page or swap file can be removed from use. After a privileged user enters 
the SYSGEN command DEINSTALL to initiate the removal of a page or swap file, no 
new allocations are made from it. However, the actual removal from use is deferred 
until the file is inactive and PFL$L_REFCNT has gone to zero. 

2.10 Swapper and Modified Page Writer Page Table Arrays 
The I/O subsystem enables an image to make a direct I/O request (direct memory 
access transfer) to a virtually contiguous buffer. There is no requirement tha t  pages in 
a buffer be physically contiguous, only virtually contiguous. This capability is called 
scatter-read/gather-write or, more simply, scatter/gather. 
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2.10.1 Direct I/O and Scatter/Gather 
A combination of hardware and I/O subsystem software supports I/O to and from 
physically noncontiguous pages. The manner  in which this is supported varies with 
processor type and I/O adapter type. 

Regardless of the manner  of the support, a direct I/O request typically involves locking 
the pages of a virtually contiguous buffer into memory. The I/O locking mechanism 
brings each page into the working set of the requesting process, makes it valid, and 
increments that  page's reference count in its PFN database record to reflect the 
pending read or write. The buffer is generally described in the I/O request packet 
(IRP) through three fields: 

�9 IRP$L_SVAPTE has traditionally contained the system virtual address of the first 
PTE that  maps the buffer. 

�9 IRP$L_BOFF and IRP$L_BCNT are used to calculate how many PTEs are required 
to map the buffer. 

A driver processes this I/O request in a manner  suitable to the processor and I/O 
adapter. Typically, the PFNs of the buffer are copied into I/O adapter map registers. 
After the requested I/O operation is complete, I/O postprocessing code accesses these 
fields to decrement each PFN's reference count. 

As of OpenVMS Version 7.0, process PTE addresses are no longer in system space 
and are thus inaccessible when that  process is not current. Consequently, the exact 
meaning of IRP$L_SVAPTE has changed. In order for existing device drivers to 
work with minimal or no change, however, IRP$L_SVAt~E continues to point to a 
nonpageable system space address at which the PTE contents are accessible. 

The I/O subsystem implements two techniques: 

�9 PTE copy method 

�9 PTE window method 

The former is used for relatively small buffers, the latter for larger buffers. These 
techniques make the change in page table location t ransparent  to most device drivers. 

In the PTE copy method, PTE contents are copied into a data structure called a direct 
I/O buffer map (DIOBM). DIOBMs vary in length. An embedded DIOBM in the IRP 
can accommodate the contents of nine PTEs. If necessary, a secondary DIOBM can be 
allocated instead. 

In the PTE window method, the page table pages that  map the buffer are double- 
mapped into 32-bit system space. This method has the relatively high overhead of 
PTE allocation and translation buffer invalidation of the system space addresses but 
can support very large buffers. 

The I/O subsystem chooses between the two techniques based on the contents of 
IOC$GL_DIOBM_PTECNT_MAX, which contains a value derived from performance 
testing. If the buffer has more pages than the contents of that  cell, the PTE window 
method is used. Otherwise, the PTE copy method is used. 
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The OpenVMS Alpha Guide to Upgrading Privileged-Code Applications contains 
further information. 

2.10.2 Swapper I/0 
The swapper is presented with a more difficult problem. It must  write a collection of 
process pages to disk that  are not virtually contiguous. 

During system initialization, a piece of nonpaged 32-bit system space is allocated for 
the swapper's use. The space contains one quadword for each entry in the largest 
possible working set that  could be swapped (the minimum of WSMAX and 64 K pages). 
This system space is known as the swapper map. The starting address of the swapper 
map is stored in global cell SWP$GL_MAP. 

As described in Chapter 1, the swapper is an independent process, scheduled like any 
other. Its code, however, is part of an executive image loaded into system space. The 
swapper temporarily adopts the address space of the process being swapped when it 
needs to access the process's page tables. This enables it to keep running from system 
space while accessing the page table space of the process being swapped. 

When the swapper scans the working set list of the process being outswapped, it copies 
the PFNs in every valid PTE to successive entries in its swapper map. The swapper 
stores the address of the base of the swapper map in the field IRP$L_SVAPTE before 
the IRP is passed to the driver. (The swapper can exercise this control because it 
builds a portion of its own IRP.) The swapper map looks just  like any other page table 
to the hardware/software combination that  implements scatter/gather I/O. 

What the swapper has succeeded in doing is making pages that  were not virtually 
contiguous into pages that  appear to be virtually contiguous. At the same time that  
each PTE is processed, any special actions based on the type of page are also taken 
care of. The whole operation of outswap and the complementary steps taken when the 
process is swapped back into memory are discussed in Chapter 6. 

The swapper map supports only one use at a time. When an inswap or outswap 
operation is in progress, the swap-in-progress flag (SCH$V_SIP), in location SCH$GL_ 
SIP, is set to indicate its use. 

2.10.3 Modified Page Writer PTE Arrays 
The modified page writer, in its at tempt to write many pages to backing store with a 
single write request (so-called modified page write clustering), is faced with a problem 
similar to that  of the swapper. The modified page writer must  build a table of PTEs 
just  as the swapper does. 

Unlike the swapper, which can perform only one swap operation at a time, the modified 
page writer can perform concurrent multiple modified page writes. The SYSGEN 
parameter MPW_IOLIMIT specifies its maximum number of concurrent I/O operations. 
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When the modified page writer is building an I/O request, it can encounter three 
different types of page: 

�9 Pages bound for a swap file (PFN$V_SWPPAG_VALID set) are writ ten individually. 

Pages bound for a section file are not necessarily virtually contiguous; these pages 
will be written as a group only if they are virtually contiguous. 

Pages on the modified page list that  are to be written to a particular page file may 
not only be noncontiguous within one process address space but may also belong to 
several processes. It is these pages that  the modified page writer must  cluster so 
they appear virtually contiguous. 

During system initialization, the modified page writer's initialization routine, 
MPW$INIT in module WRTMFYPAG, allocates nonpaged pool to build I/O maps. It al- 
locates MPW_IOLIMIT number of structures and links them into a lookaside list. Each 
structure is large enough for an IRP and two arrays, each of MPW_WRTCLUSTER 
elements. One array is a quadword array, and the other is a longword array. 

When modified pages are written, the first array is filled with PTEs containing PFNs 
in a manner  analogous to the way in which the swapper map is used. The longword 
array contains an index into the PHD vector for each page in the map. In this way, 
each page that  is put into the map and written to its backing store location is related 
to the PHD containing the PTE that  maps this page. The operation of the modified 
page writer, including its clustered writes to a page file, is discussed in detail in 
Chapter 4. 

2.11 Relevant Source Modules 
Source modules described in this chapter include 

[LIB]BODDEF.SDL 
[LIB]GSDDEF.SDL 
[LIB]LDRHPDEF.SDL 
[LIB]PCBDEF.SDL 
[LIB]PFLDEF.SDL 
[LIB]PFNDEF.SDL 
[LIB]PHDDEF.SDL 
[LIB]PTEDEF.SDL 
[LIB]RDEDEF.SDL 
[LIB]RMDDEF.SDL 
[LIB] SYSPARDE F. SDL 
[STARLET] PMMDEF.SDL 
[STARLET] SECDEF.SDL 
[STARLET]VADEF.SDL 
[SYS]ALLOCPFN.MAR 
[SYS]INIT.C 
[SYS] INIT_PFL B ITMAP. C 
[SYS]INITPGFIL.MAR 
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[SYS] LD R_INIT_ME M. B64 
[SYS] PAGE_FILE.C 
[SYS] RE S_ME M_INIT. C 
[SYS] SYSTEM_REPLICATE.C 
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Chapter 3 
Memory Management System Services 

A place for everything and everything in its place. 

Isabella Mary Beeton, The Book of Household Management 

This chapter describes those system services tha t  affect process-private vir tual  address 
space and several related others: 

�9 $CREATE_REGION_64, which assigns characteristics to an area of a given size 

�9 $CRETVA and $CRETVA_64, which create demand zero pages in P0, P1, and P2 
space 

�9 $EXPREG and $EXPREG_64, which create demand zero pages at the next avail- 
able address within a specified virtual  address region 

�9 Various create and map section services tha t  create a process-private or global 
section tha t  maps the blocks of a file or part icular  pages of physical address space 
to a portion of process-private address space 

�9 Various create and map section services tha t  create and map memory-resident  or 
Galaxywide global sections 

�9 $MGBLSC, $MGBLSC_64, and $MGBLSC_GPFN_64, which map to an existing 
global section 

�9 $DELTVA and $DELTVA_64, which delete P0, P1, or P2 pages 

�9 $CNTREG, which deletes the upper end of P0 space or the lower end of P1 space 

�9 $DGBLSC, which marks  a global section for deletion when no more processes are 
mapped to it 

�9 $DELETE_REGION_64, which deletes a given region 

�9 $CREATE_BUFOBJ and $CREATE_BUFOBJ_64, which create a buffer object 

�9 $DELETE_BUFOBJ, which deletes a buffer object 

�9 Services tha t  re turn  information about address space, such as $GET_REGION_ 
INFO, $GETSECI, and $FIND_GPAGE_64 
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�9 $SETSWM, which enables or disables process swapping 

$SETPRT and $SETPRT_64, which change the protection on pages of virtual  
address space 

�9 $SETFLT and $SETFLT_64, which set the fault-on-execute bit for a page 

�9 $COPY_FOR_PAGE, which reads data from a page with fault-on-read set 

Chapter 4 describes the Update Section File on Disk ($UPDSEC) and Update Global 
Section File on Disk ($UPDSEC_64) system services, which write the contents of all 
modified pages in a section to their backing store. It also describes the Fault  Page 
($FAULT_PAGE) system service, requested to fault a set of pages prior to their  use. 
Chapter 5 describes the system services that  control a process's working set list. 

3.1 Common Characteristics of Memory Management 
System Services 

This chapter describes several types of memory management  system services. The 
original system services accept only 32-bit address arguments and have been sup- 
plemented with 64-bit services that  take 64-bit address arguments. The latter have 
names ending in _64 to indicate that  they accept 64-bit addresses by reference. For 
example, $CRETVA is the original system service requested to create virtual address 
space. It continues to be used, but to create P2 space, an application must request 
$CRETVA_64. This chapter uses the term 32-bit services to refer to the original ser- 
vices and the term 64-bit services for the services whose names end in _64 or services 
that  can affect P2 space. 

When 64-bit support was provided for $CRMPSC, that  complex system service was 
split into a number of new services. $CRMPSC both creates and maps various types 
of process and global sections. The new services deal with either process or global 
sections, but not both. Generally, three new services are provided for each type of 
section: one to create the section if it does not already exist and then to map it, one 
simply to create the section, and one simply to map an existing section. The names 
of many of the new services end in _64, for example, $CRMPSC_PFN_64, but those 
without address arguments do not, for example, $CREATE_GPFN. 

A process's ability to use the services described in this chapter may be limited by 
access mode, process quotas, limits, privileges, and SYSGEN parameters.  

The level 3 page table entry (L3PTE) associated with each page of virtual address 
space contains an owner field (see Figure 2.12) that  specifies which access mode 
owns the page. The memory management  system service checks the owner field to 
determine whether the service's requestor has an access mode at least as privileged 
as the owner mode of the page and thus is able to manipulate the page in the desired 
fashion. 

In general, a process is only permitted to affect P0, P1, and P2 address space, not 
system space, with these services. The only exception is when a process uses the 
buffer object services to double-map process-private address space into system space. 
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Almost all the memory management  system services accept a desired virtual address 
range as one or more input arguments. Many of the services can partly succeed, that  
is, affect only a portion of the specified address range. A system service indicates 
partial success by returning an error status and the address range for which the 
operation completed. 

3.1.1 Common Characteristics of the 32-Bit System Services 
Many of the 32-bit memory management  system services have similar structures and 
sequences and similar arguments. The input range for a 32-bit service is specified 
by the address of a two-longword array, the INADR argument. The first longword is 
the starting address, and the second, the address of the last byte to be created. The 
RETADR argument is the address of a two-longword array that  receives the addresses 
of the starting and ending bytes actually created. The ACMODE argument specifies the 
owner of the address space, the least privileged mode that  can access it. 

Each 32-bit system service first executes code generated by a MACRO-32 macro that  
tests whether enough arguments have been supplied and, if not, returns the error 
status SS$_INSFARG to the requestor. 

Each service validates its arguments. A typical service makes the following checks: 

It tests the accessibility of the INADR and RETADR arguments. 

It maximizes the ACMODE argument with the mode of the service requestor. 

It tests the starting and ending addresses and, if either is a system space address, 
returns the error status SS$_NOPRIV. 

The service then explicitly creates scratch space on the stack to record information 
about the service request. 

The macro $MMGDEF defines symbolic offsets into this scratch space, which is pointed 
to by the frame pointer (FP) register while the system service procedure is executing. 
Figure 3.1 shows the layout of the scratch space on the stack. Some fields are used by 
only a few system services; others are common to all. 

MMG$L_MMG_FLAGS contains flag bits associated with the operation. Some of 
the 64-bit services use these same flags, passing them to inner mode routines as an 
argument. 

* Bit MMG$V_CHGPAGFIL in this longword, when set, means page file quota 
should be charged for the operation. 

�9 Bit MMG$V_NOWAIT_IPL0, when set, means that  a memory management routine 
should return with an error status rather than waiting at interrupt priority level 
(IPL) 0 for I/O completion. 

Bit MMG$V_NO_OVERMAP, when set, means that  address space to be created 
may not overlap existing address space. 
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F i g u r e  3.1 Layout  of  Scratch Space  on the Stack 

PGFLCNT 

PAGCNT / EFBLK 

VFYFLAGS 

SVSTARTVA 

PAGESUBR 

SAVRETADR 

CALLEDIPL 

PER_PAGE 

ACCESS_MODE 

MMG_FLAGS 
F P .  V.L 

T T 

Bit MMG$V_PARTIAL_FIRST, when set, means that  the first page to be mapped 
is only partially backed by section file (see Section 3.6.1.1, step 12). 

Bit MMG$V_PARTIAL_LAST, when set, means that  the last page to be mapped is 
only partially backed by section file (see Section 3.6.1.1, step 12). 

Bit MMG$V_NO_IRP_DELETE, when set, means that  an I/O request packet 
created by the $UPDSEC system service is currently in use and should not be 
deallocated to nonpaged pool. 

Bit MMG$V_DELPAG_NOP, when set, means that  not all pages in the specified 
region could be deleted. 

Bit MMG$V_CLUSTER_DEL, when set, means that  the per-page deletion routine 
(see Section 3.10.2) can delete a whole cluster of pages at once. 

Bit MMG$V_WINDOW, when set, means that  the page is part  of a memory- 
resident global section or a section mapped by page frame number (PFN). 

Bit MMG$V_SHARED_L3PTS, when set, means that  the page is part  of a memory- 
resident global section that  is mapped with shared page tables. 

Bit MMG$V_RWAST_AT_IPL0, when set, means that  the per-page deletion routine 
(see Section 3.10.2) should wait the kernel thread at IPL 0 rather  than IPL 2. 
The bit is set by the $DELTVA and $DELTVA_64 system services. The IPL 0 wait 
enables Extended QIO Processor (XQP) kernel mode asynchronous system traps 
(ASTs) to be delivered, preventing a deadlock in certain circumstances. 

MMG$L_ACCESS_MODE contains the access mode associated with the operation, the 
maximized ACMODE argument. 
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MMG$L_PER_PAGE is the per-page processing context area. It contains one defined 
flag, MMG$V_DELGBLDON. When set, the bit means that  global pages in the range 
have already been deleted. 

MMG$L_CALLEDIPL records the IPL from which the service was requested, typically 
0. 

MMG$L_SAVRETADR contains the value of the optional service RETADR argument.  

MMG$L_PAGESUBR contains the procedure value of the executive routine tha t  
performs the requested service on a single page. 

MMG$L_SVSTARTVA saves the start ing virtual address specified by the service 
requestor. 

MMG$L_VFYFLAGS contains the section flags passed as an argument  to a service 
such as $CRMPSC and verified by the service. 

MMG$L_PAGCNT and MMG$L_EFBLK are two names for the same field. MMG$L_ 
PAGCNT, used by services related to buffer objects, contains the number of pages in 
a buffer object being created or deleted. MMG$L_EFBLK contains the number  of the 
end-of-file block for a section file. 

MMG$L_PGFLCNT contains the number of pages of page file quota that  have been 
reserved against the job's quota for this request. 

After creating and initializing the scratch space on the stack, a 32-bit memory man- 
agement system service takes the following steps: 

1. It performs argument  validation. 

2. It raises IPL to 2 to block the delivery of an AST. In addition to blocking process 
deletion, this prevents the execution of AST code that  could cause unexpected 
changes to the page tables, working set list, region descriptor entries (RDEs), and 
other data structures. 

3. If appropriate, it checks page ownership to ensure that  a less privileged access 
mode is not at tempting to alter the properties of pages owned by a more privileged 
access mode. 

4. It calls the routine MMG$CREDEL, in module SYSCREDEL, passing it the 
procedure value of a per-page service-specific routine to accomplish the desired 
action of the system service. MMG$CREDEL performs general page processing 
and calls the per-page routine for each page in the desired range. 

5. It reprobes write accessibility of any output arguments.  

6. It returns the address range actually affected by MMG$CREDEL's actions in the 
optional RETADR argument.  

7. It restores the entry IPL and returns to its requestor. 

In some cases, step 4 in that  sequence is replaced by calling a routine that  affects all 
pages in the desired range. 
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MMG$CREDEL takes the following steps: 

1. It tests the s tar t ing and ending addresses of the range and, if ei ther  is in system 
space, re turns  the error s tatus SS$_NOPRIV. 

2. It initializes MMG$L_PAGESUBR and MMG$L_SVSTARTVA in the scratch space 
and loads registers with information such as process control block (PCB) address,  
process header  (PHD) address, page count, s tar t ing vir tual  address, and ending 
virtual  address. 

3. MMG$CREDEL calls the per-page routine. Unless the routine re turns  an  error  
status,  MMG$CREDEL continues to call it, once per page. 

4. If the per-page routine re turns  the s ta tus  SS$_REGISFULL, MMG$CREDEL 
converts it to SS$_VASFULL. 

5. When an error occurs or there are no more pages, MMG$CREDEL re turns  to its 
caller with a s ta tus  code and the address of the last  affected page. 

3.1.2 Common Characteristics of the 64-Bit System Services 
The 64-bit system services have a common s t ructure  and sequence and similar  argu- 
ments. They do not explicitly use scratch space on the stack. 

A 64-bit service typically takes the following steps: 

1. It performs a rgument  validation, for example: 

These services are writ ten in C and must  explicitly test  whether  too few or too 
many arguments  have been supplied. Each checks the number  of a rguments  
and, if incorrect, re turns  either the error s ta tus  SS$_INSFARG or SS$_TOO_ 
MANY ARGS. 

It checks tha t  output arguments  are accessible and, if not, re turns  the error  
s tatus SS$_ACCVIO. 

If the service has a FLAGS argument ,  it checks tha t  only valid flags were set in 
the a rgument  and, if not, re turns  the error s ta tus  SS$_IVSECFLG. 

It maximizes the ACMODE argument .  

2. It raises IPL to 2 to block AST delivery. 

3. If appropriate, it checks page ownership. 

4. It loops, calling a per-page service-specific routine, typically the same routine as its 
32-bit counterpart .  

5. It reprobes write accessibility of any output  arguments .  

6. It re turns  the address range actually affected in the RETURN_VA_64 and RETURN_ 
LENGTH_64 arguments .  

7. It restores the entry IPL and re turns  to its requestor. 

128 



3.2 Virtual Address Region Creation 

3.2 Virtual Address Region Creation 
The Create Virtual Region ($CREATE_REGION_64) system service is requested to 
create a region within process-private address space. Chapter 2 discusses regions and 
the RDEs that  describe them. 

Service arguments  include the desired length, protection, and flags that  specify 
whether the region is in P0, P1, or P2 space; whether  its allocation is to be ascending 
or descending; whether  address space within it should be created automatically in 
response to an access violation; whether  it should be permanent;  and whether  its space 
is capable of being mapped with shared page tables. Only memory-resident global 
sections and Galaxywide global sections are mapped into such a region. 

The service creates a region with the requested characteristics, assigns an ID to it, and 
returns its ID and address. 

The $CREATE_REGION_64 system service procedure, EXE$CREATE_REGION_64 in 
module SYS_REGIONS, runs in kernel mode. EXE$CREATE_REGION_64 takes the 
following steps: 

1. It calculates the number of PTEs in a page table page and the number  of bytes 
mapped by an L3PT. 

2. In addition to making the checks described in Section 3.1.2, it validates its argu- 
ments as follows" 

a. It checks that  REGION_PROW is valid, returning SS$_IVPROTECT if not. 

b. It maximizes the create and owner access mode fields in the REGION_PROW 
argument  with that  of the requestor. It checks that  the owner mode is less or 
equally privileged to the creator mode, returning SS$_IVREGPROT if not. 

c. It checks that  the LENGTH_64 argument  is nonzero and a multiple of the size of 
a page, returning the error status SS$_LEN_NOTPAGMULT if not. 

d. If VA$V_SHARED_PTS in the FLAGS argument  is clear, EXE$CREATE_ 
REGION_64 checks that  the optional START_VA_64 argument,  if supplied, is on 
a page-aligned boundary and returns the error status SS$_VA_NOTPAGALGN 
if not. 

e. If VA$V_SHARED_PTS in the FLAGS argument  is set, indicating tha t  the 
region can be mapped by shared page tables, EXE$CREATE_REGION_64 
checks that  the START_VA_64 argument  is a multiple of the number  of bytes 
mapped by one L3PT. On a system with an 8 KB page size, an L3PT maps 8 
MB. It also rounds up the LENGTH_64 argument  to such a multiple. 

f. It calculates the address of the process-permanent RDE corresponding to the 
specified address space. 

g. It checks that  the LENGTH_64 argument  can be expressed in the number  of 
significant address bits for the system's page size and page table hierarchy, for 
example, 43 bits for a page size of 8 KB and a three-level page table. If not, it 
returns the error status SS$_VASFULL. 
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h. If the START_VA_64 argument  was supplied, it checks tha t  the sum of the START_ 
VA_64 and LENGTH_64 arguments  can be expressed in tha t  number  of bits, 
re turning SS$_VASFULL if not. It also checks tha t  the START_VA_64 and the 
sum of START_VA_64 and LENGTH_64 are within the process-permanent region 
specified in the FLAGS argument,  re turning SS$_VA_IN_USE if not. 

3. It raises IPL to 2. 

4. It allocates an RDE from the P1 allocation region and initializes it with infor- 
mation from the service arguments.  It initializes RDE$Q_REGION_ID from the 
contents of PHD$Q_NEXT_REGION_ID and increments them. 

5. If the argument  START_VA_64 was not specified, it determines the al ignment re- 
quirement  for the star t ing address. 

- -  For a region without shared page tables, the s tar t ing address merely needs to 
be page-aligned. 

- -  For a region with shared page tables, EXE$CREATE_REGION_64 first at- 
tempts a 512-page alignment so that  the shared pages can potentially be 
mapped as a 512-page granular i ty  hint  region. 

It scans the list of user-defined RDEs within the specified process-permanent 
region, looking for an unused piece of address space with at least the specified 
al ignment and size. If it fails to find one and this is a shared page table region, it 
tries again, shrinking the desired alignment to the next smaller granular i ty  hint  
region size, 64 pages, and then, if necessary, to eight pages, and finally to one page. 

If it fails to find an unused piece with single-page al ignment tha t  is large enough, 
it deallocates the RDE and returns  SS$_VA_IN USE to its requestor. 

6. If START_VA_64 was specified, it scans the list of user-defined RDEs within the 
specified process-permanent region, which are ordered by virtual address. It looks 
for the place at which the new RDE should be inserted. 

- -  If the address range of the new RDE overlaps the range of an existing user- 
defined RDE, EXE$CREATE_REGION_64 deallocates the new RDE and 
returns  the error status SS$_VA_IN_USE to its requestor. 

- -  If there is overlap with the process-permanent region, it adjusts tha t  region so 
tha t  it ends where the new one begins. 

7. It inserts the RDE into the list and also at the front of the region ID list (see 
Figures 2.2 and 2.3). 

8. It lowers IPL. 

9. It records peak page file use and virtual size statistics, and stores re turn informa- 
tion about the newly created RDE in the RETURN_VA_64, RETURN_REGION_ID_64, and 
RETURN_LENGTH_64 arguments.  It re turns SS$_NORMAL to its requestor. 
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3.3 Process-Private Virtual Address Space Creation 
Among the most basic memory management  services are those that  create process- 
private virtual address space: $CRETVA, $CRETVA_64, $EXPREG, $EXPREG_ 
64, the various create and map section services, $MGBLSC, $MGBLSC_64, and 
$MGBLSC_GPFN_64. The image activator requests some of these services during 
image activation, as described in Chapter Image Activation and Exit. An image can 
request these services directly to alter process-private address space. 

P0, P1, and part  of P2 space are described by a single process-private level 2 page 
table (L2PT). Additional P2 space requires additional L2PTs. Each space is described 
by level 3 page tables (L3PTs), with an L3PTE for each page of address space. 

Creating address space typically requires adding page table pages and modifying the 
RDE of the affected region as well as initializing L3PTEs to map the new address 
space. It may also require initializing one or more L2PTEs. 

In the case of address space associated with a process-private section file, creating 
address space also involves allocating and initializing a process section table entry 
(PSTE). Chapter 2 describes page tables, PTEs, process sections, and PSTEs. 

There are several limits on the amount of process-private virtual address space that  
can be created: 

�9 A process's working set limit can constrain the size of tha t  process's address space. 
When a process tries to expand its address space, the executive checks whether  
there is enough room in the dynamic working set list for the fluid working set 
(PHD$L_WSFLUID, initialized from the SYSGEN parameter  MINWSCNT), plus 
the worst-case number of page table pages required to map it, to allow the process 
to perform useful work. If this check succeeds, the virtual address space creation 
can proceed. Otherwise, if the process's working set limit is smaller than its quota, 
the working set limit is increased. If the working set limit cannot be increased, the 
virtual address space creation fails with the error status SS$_INSFWSL. Chapter  
5 describes working set limits, quotas, and expansion. 

Note that  pages from memory-resident and Galaxywide global sections are not 
represented in a process's working set list. Shared L3PTs that  map a memory- 
resident or Galaxywide global section are also not represented in the working set 
list. 

* Another constraint on the total size of the process address space is page file quota. 
Each demand zero page, copy-on-reference (CRF) section page, and process-private 
page table page is charged against the job's page file quota, JIB$L_PGFLCNT. 
(Although the page file quota is externally represented as pagelets, the quota is 
internally maintained in pages.) 

Pages from PFN-mapped sections, memory-resident global sections, Galaxywide 
global sections, read-only sections, and writable non-CRF sections do not require 
page file quota. Shared L3PTs that  map a memory-resident or Galaxywide global 
section also do not require page file quota. 
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In versions prior to Version 7.3, creation of address space with page file backing 
store was limited because a process could page in only four files and the form 
of invalid PTE that  describes a page file page was limited to a 20-bit number. 
OpenVMS recorded how many pages of pageable address space a process had 
created to ensure this limit was not reached. 

Such accounting is no longer necessary. As of Version 7.3, page file backing store 
is not assigned until modified pages are being written out. Assigned backing store 
is represented by an eight-bit page file index and a 24-bit page number. Thus, in 
each page file, a process could have a theoretical maximum of 2 24 pages of pageable 
address space that  requires page file backing store (for example, demand zero or 
copy-on-reference sections). 

In versions prior to Version 7.0, the SYSGEN parameter  VIRTUALPAGECNT 
controlled the total number of L3PTEs mapping P0 and P1 space that  any process 
could have. A limit was required because process page tables were mapped as part  
of a fixed-length PHD. With the removal of the page tables from system space, 
OpenVMS Version 7.0 and later releases place no such limits. The parameter  is 
obsolete but still exists to provide compatibility to applications that  determine 
their actions from the value of the parameter. It is set to the maximum value. 
System services no longer reference VIRTUALPAGECNT. 

In OpenVMS Version 7.0 and later, address space checks are made against 
PHD$Q_FREE_PTE_COUNT, which contains the number of unused process- 
private virtual pages. It is initialized from the contents of MMG$GQ_PROCESS_ 
VA_PAGES, the number of pages of process-private address space between zero 
and the base of page table space, excluding the gap (see Chapter 1). 

3.4 Demand Zero Virtual Address Space Creation 
The simplest form of address space creation is the creation of a series of demand 
zero pages through the $CRETVA, $CRETVA_64, $EXPREG, or $EXPREG_64 system 
services. The services initialize PTEs, that  is, create address space, to map the demand 
zero pages. A demand zero page is not itself created until the first time the process 
accesses it. These services do not create process sections, that  is, they initialize PTEs 
with no corresponding PSTE. 

For the $EXPREG and $EXPREG_64 system services, PTEs to map demand zero pages 
are initialized beginning at the first free address in the designated process-private 
address region. 

For the $CRETVA and $CRETVA_64 system services, PTEs are initialized to map the 
specified address range. If any pages already exist in the requested range, they must  
be deleted first. 

These system services can partly succeed, that  is, a number of pages smaller than 
the number originally requested may be mapped. After several pages have already 
been successfully mapped, the service can run into one of the limits to address space 
creation. 

132 



3.4 Demand Zero Virtual Address Space Creation 

3.4.1 $CRETVA System Service 
The Create Virtual Address Space ($CRETVA) system service procedure, 
EXE$CRETVA in module SYSCREDEL, runs in kernel mode. It has an alterna- 
tive entry point, MMG$CRETVA_K, called from code already in kernel mode, such as 
image activator routines and EXE$PROCSTRT in module PROCSTRT. The alternative 
entry point has additional arguments that  enable the caller to specify the protection 
of the new address space, whether the new space may overlap existing space, and the 
contents of the copy characteristic and no-execute bits in each L3PTE. 

EXE$CRETVA takes the following steps: 

1. It creates and initializes the scratch space on the stack. 

2. It validates its arguments (see Section 3.1.1). 

3. It constructs template L3PTE contents for the new pages (see Figure 2.12). 

The template L3PTE indicates a demand zero page, with owner access mode 
the less privileged of the requesting access mode and the ACMODE argument.  
In the case of a normal system service request, the L3PTE has protection bits 
enabling read and write access to the owner mode. In the case of entry through 
MMG$CRETVA_K, the protection, copy characteristic, and no-execute bits are 
specified by the caller. 

4. EXE$CRETVA raises IPL to 2 to block AST delivery while it is modifying the PHD. 

5. It determines in which region of process-private address space the address range 
lies. It checks whether the access mode from which the service was requested is 
allowed to create pages in this region and, if not, returns the error status SS$_ 
NOPRIV. 

6. It rounds the starting and ending addresses down to an Alpha page boundary and 
calculates the desired page count based on the difference between them. 

7. It checks that  the address range is entirely within a region and that  there is no 
overlap with already existing space. If either is false, EXE$CRETVA continues 
with step 10. 

8. Typically the process is requesting the creation of address space within a region 
just beyond the end of what has already been defined. As an optimization for this 
common case, EXE$CRETVA calls MMG$TRY_ALL_64 (see Section 3.4.1.1) to test 
further whether the entire space can be created. 

If the entire address space cannot be created, EXE$CRETVA proceeds with step 
10. 

9. If none of the limits to growth of the process's virtual address space has been 
reached, EXE$CRETVA calls MMG$FAST_CREATE_64, in module SYSCREDEL. 
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MMG$FAST_CREATE_64 and its alternative entry point, MMG_STD$FAST_ 
CREATE_64, determine the starting address in page table space of the first new 
PTE. The routine loops, initializing four L3PTEs in each iteration. Creating the 
address space in this manner is significantly faster than creating it one page at a 
time through MMG$CREPAG_64. 

EXE$CRETVA continues with step 11. 

10. If any of the limits to virtual address space growth described in Section 3.3 pre- 
vents creation of the entire space, EXE$CRETVA creates it one page at a time, 
stopping when the limit is reached. Page-by-page creation is also necessary 
if the specified address space overlaps already existing space, since the exist- 
ing pages must first be deleted. In either of these cases, EXE$CRETVA calls 
MMG$CREDEL, specifying MMG$CREPAG_64 (see Section 3.4.1.2) as the per- 
page service-specific routine. 

11. EXE$CRETVA returns any unused page file quota, records peak page file use 
and virtual size statistics, and stores return information in the optional RETADR 

argument. 

12. If the process has any deleted sections to be cleaned up, it calls 
MMG$DALCSTXSCN, in module PHDUTL, to check whether any process section 
table entries can be deallocated (see Section 3.9.2). 

13. It restores the IPL at entry and returns to its requestor. 

3.4.1.1 MMGLSTD]$TRY_ALL_64 Routine 
MMG$TRY_ALL_64 and its alternative entry point, MMG_STD$TRY_ALL_64, in 
module SYSCREDEL, test whether there is enough free space in the region, enough 
process-private address space (PHD$Q_FREE_PTE_COUNT), enough room in the 
dynamic working set list, and enough page file quota (see Section 3.3). 

If all tests pass, it adjusts RDE$Q_REGION_SIZE, RDE$PQ_FIRST_FREE_VA, 
and PHD$Q_FREE_PTE_COUNT and charges against reserved page file quota. If 
necessary, it initializes L2PTEs to map new L3PT pages for the address space being 
created. It returns a status indicating its findings. 

3.4.1.2 MMGLSTD]$CREPAG_64 Routlne 
MMG$CREPAG_64, with its alternative entry point, MMG_STD$CREPAG_64, in mod- 
ule SYSCREDEL, is the per-page service-specific routine for the $CRETVA, $CRETVA_ 
64, $CRMPSC_FILE_64, $CRMPSC_GDZRO_64, $CRMPSC_GPFN_64, $CRMPSC_ 
PFN_64, $EXPREG, $EXPREG_64, $MGBLSC_GPFN_64, and $MGBLSC_64 system 
services. 

It is used when the entire page creation request cannot be performed as a single 
operation, possibly because the new pages would overlap existing address space that  
must be deleted first or because the process lacks enough quota and only part  of the 
request can be satisfied. 

134 



3.4 Demand Zero Virtual Address Space Creation 

MMG$CREPAG_64 is called with arguments that  include the L3PTE contents for the 
new page, the address of the RDE for the region to contain the new space, and the 
total number of pages to create. 

MMG$CREPAG_64 takes the following steps: 

�9 It tests whether the space required by the pages to be mapped is beyond the 
limit of the region's defined address space. If the pages are within the limit, 
MMG$CREPAG_64 continues with step 5. 

, Otherwise, it calls the local routine EXPANDCHK_64 (see Section 3.4.1.3) to check 
whether the region can accommodate the entire creation request and to create any 
necessary page table pages. 

, If the entire creation request can now be satisfied, MMG$CREPAG_64 continues 
with step 6. 

. Otherwise, it calls EXPANDCHK_64 to expand the region by a single page. 
MMG$CREPAG_64 returns any errors from EXPANDCHK_64 to its caller. If 
the expansion was successful, MMG$CREPAG_64 continues with step 6. 

. It calls MMG_STD$ADD_PTS, in module SYS_CREDEL_64, to create any page 
table pages necessary to map the page being created. 

, MMG$CREPAG_64 tests whether the page to be created already exists. If it 
does and the service requestor specified no address overmap, MMG$CREPAG_64 
returns the status SS$_VA_IN_USE to its caller, which returns it as the system 
service status. (The image activator specifies the NO_OVERMAP flag when it 
requests the $CRETVA system service.) 

, If the page already exists but overmap is allowed, MMG$CREPAG_64 calls 
MMG$DELPAG_64 (see Section 3.10.2), to delete the virtual page. If the dele- 
tion is successful, MMG$CREPAG_64 continues at step 1. Otherwise, it continues 
at step 10. 

, If page file quota does not need to be charged, MMG$CREPAG_64 continues with 
step 9. Otherwise, it must charge the page against the process's reserved page file 
quota. 

If no more reserved page file quota is left, MMG$CREPAG_64 tries to reserve more 
quota from the process's job page file quota, JIB$L_PGFLCNT. 

If the charge cannot be made, MMG$CREPAG_64 adjusts RDE$PQ_FIRST_FREE_ 
VA, RDE$Q_REGION_SIZE, and PHD$Q_FREE_PTE_COUNT to show expansion 
up to but not including the page that  could not be mapped. It returns the error 
status SS$_EXQUOTA. 

9. It stores the requested value into the L3PTE. 

I0. It returns to its caller. 
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3.4.1.3 EXPANDCHK_64 Routine 
EXPANDCHK_64, in module SYSCREDEL, is called with arguments that include the 
RDE address, the number of bytes to expand, and the starting virtual address. It 
takes the following steps: 

I. It tests whether there is enough free process-private address space (PHD$Q_ 
FREE_PTE_COUNT) and, if not, returns the error status SS$_VASFULL. 

2. Otherwise, it charges PHD$Q_FREE_PTE_COUNT to account for the pages to be 
created. 

3. It tests whether there is enough free space left in the region. If not, it restores the 
charge against PHD$Q_FREE_PTE_COUNT and returns the error status SS$_ 
REGISFULL. 

Otherwise, it updates RDE$PQ_FIRST_FREE_VA to account for the expanded 
address space within the region. 

It calls either MMG_STD$ADD_PTS or MMG_STD$ADD_L2PTS, in module SYS_ 
CREDEL_64, to create any necessary page table pages. 

To create a page table page, each of these routines initializes a demand zero 
PTE and charges the process's page file quota. MMG_STD$ADD_PTS creates 
L3PTs and any necessary L2PTs as demand zero pages. If the process has 
insufficient resources for the charge, each routine returns error status SS$_ 
EXPGFLQUOTA; in response, EXPANDCHK_64 returns both SS$_EXQUOTA and 
SS$_EXPGFLQUOTA to its caller. 

The MMG_STD$ADD_L2PTS routine is called to add any necessary L2PTs for 
memory-resident and Galaxywide global sections with shared L3PTs. Such sections 
are created through services such as $CRMPSC_GDZRO_64. 

EXPANDCHK_64 then checks whether there is enough room in the dynamic 
working set list for the fluid working set (PHD$L_WSFLUID, initialized from 
the SYSGEN parameter MINWSCNT), plus the worst-case number of page table 
pages required to map it, to allow the process to perform useful work. If this 
check succeeds, the virtual address space creation can proceed. Otherwise, if 
the process's working set limit is smaller than its quota, the working set limit is 
increased. 

If the working set limit cannot be increased, it restores RDE$PQ_FIRST_FREE_VA 
and PHD$Q_FREE_PTE_COUNT to their previous values and returns the error 
status SS$_INSFWSL. 

, 

D 

~ 

7. Otherwise, it returns SS$_NORMAL. 
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3.4.2 $CRETVA_64 System Service 
The Create Virtual Address Space ($CRETVA_64) system service procedure, 
EXE$CRETVA_64 in module SYS_CREDEL_64, runs in kernel mode. It resembles 
the $CRETVA system service, but its arguments include a region ID, and all its ad- 
dress arguments are 64 bits. Thus it can be used to create address space in P0, P1, or 
P2 space, either in a process-private region or a user-created one. 

EXE$CRETVA_64 takes the following steps: 

1. In addition to making the checks described in Section 3.1.2, it validates its argu- 
ments as follows" 

a. It confirms that  the LENGTH_64 argument is nonzero and an integral number  of 
pages and, if not, returns the error status SS$_LEN_NOTPAGMULT. 

b. It checks that  the START_VA_64 argument, if specified, is on a page boundary 
and, if not, returns the error status SS$_VA_NOTPAGALGN. 

2. It constructs template L3PTE contents for the new pages (see Figure 2.12). 

The template L3PTE indicates a demand zero page, with owner access mode the 
less privileged of the requesting access mode and the ACMODE argument. The 
L3PTE has protection bits enabling read and write access to the owner mode. 

3. EXE$CRETVA_64 raises IPL to 2 to block AST delivery while it examines and 
possibly modifies RDEs. 

4. It locates the RDE corresponding to the REGION_ID_64 argument. If there is none, it 
lowers IPL and returns the error status SS$_IVREGID. 

5. If that  region is intended for memory-resident and Galaxywide global sections, it 
returns the error status SS$_NOSHPTS. A process may not create process-private 
address space to be mapped in such a region. A page table shared by multiple 
processes only maps global pages that  are shared by multiple processes. 

EXE$CRETVA_64 checks whether the access mode from which the service was 
requested is allowed to create pages in this region and, if not, lowers IPL and 
returns the error status SS$_IVACMODE. 

6. It checks whether the starting address is within the space reserved for the region 
and, if not, lowers IPL and returns the error status SS$_PAGNOTINREG. 

7. It calls MMG_STD$TRY_ALL_64 (see Section 3.4.1.1), to test whether the entire 
space can be created. If the entire address space cannot be created or if some of it 
overlaps existing address space, EXE$CRETVA_64 proceeds with step 9. 

8. If none of the limits to growth of the process's virtual address space has been 
reached, EXE$CRETVA_64 calls MMG_STD$FAST_CREATE_64 (see Section 
3.4.1), to create the entire address space. EXE$CRETVA_64 continues with step 
10. 
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1 

10. 

If any of the limits to virtual address space growth prevents creation of the entire 
space, EXE$CRETVA_64 creates it one page at a time, stopping when the limit 
is reached. Page-by-page creation is also necessary if the specified address space 
overlaps already existing space, since the existing pages must  first be deleted. In 
either of these cases, EXE$CRETVA_64 loops, calling MMG_STD$CREPAG_64 (see 
Section 3.4.1.2) until the routine returns an error status or all pages are done. 

EXE$CRETVA_64 returns any unused reserved page file quota, records peak page 
file use and virtual size statistics, and stores return information in the RETURN_VA_ 
64 and RETURN_LENGTH_64 arguments. It lowers IPL and returns SS$_NORMAL to 
its requestor. 

3.4.3 $EXPREG System Service 
The Expand Program/Control Region ($EXPREG) system service is very similar to 
the $CRETVA system service. Its name is based on the early VAX/VMS use of the 
term region" an architecturally defined portion of virtual address space, such as the 
P0 or P1 space region. In a VAX/VMS region, address space could be created only 
densely. The Alpha service actually creates new demand zero address space at the 
next available address in the region rather than changing the boundaries of the region. 

The $EXPREG system service procedure, EXE$EXPREG in module SYSCREDEL, runs 
in kernel mode. It has an alternative entry point, MMG$EXPREG, called from code 
already in kernel mode, such as EXE$ALOPIIMAG in module MEMORYALC. The 
alternative entry point enables the caller to specify the protection of the new space. 

EXE$EXPREG selects the RDE corresponding to the region to be expanded and uses 
the contents of RDE$PQ_FIRST_FREE_VA as one end of the address range. 

It converts its PAGCNT argument, the number of pagelets by which the region is to be 
expanded, to a number of physical pages, rounding up if necessary. It adds the number  
of bytes corresponding to that  many physical pages to the end of the address range to 
form the new end of the address region. 

It forms template L3PTE contents for the new page as EXE$CRETVA does (see Section 
3.4.1). 

As an optimization, EXE$EXPREG first checks whether the entire address space 
can be created. If so, EXE$EXPREG creates it all at once rather than page by page, 
calling the routine MMG$FAST_CREATE_64 (see Section 3.4.1). Otherwise, it calls 
the routine MMG$CREDEL, specifying MMG$CREPAG_64 (see Section 3.4.1.2) as the 
per-page service-specific routine. 
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3.4.4 $EXPREG_64 System Service 
The Expand Virtual Address Space ($EXPREG_64) system service procedure, 
EXE$EXPREG_64 in module SYS_CREDEL_64, runs  in kernel  mode. It resembles the 
$EXPREG system service, but its a rguments  include a region ID, and all its address 
arguments  are 64 bits. Thus it can be used to create new demand zero address space 
at the next available address in P0, P1, or P2 space, ei ther in a process-permanent  
region or a user-created one. It is very similar to the $CRETVA_64 system service. 

EXE$EXPREG_64 selects the RDE corresponding to the region to be expanded and 
uses the contents of RDE$PQ_FIRST_FREE_VA as one end of the address range. 

It checks tha t  its LENGTH_64 argument ,  the number  of bytes by which the region is to 
be expanded, is an integral  number  of pages, re turn ing  the SS$_LEN_NOTPAGMULT 
error s ta tus  if not. 

It forms template L3PTE contents for the new page as EXE$CRETVA does (see Section 
3.4.1). 

As an optimization, EXE$EXPREG_64 checks whether  the entire address space can 
be created. If so, EXE$EXPREG_64 creates it all at  once ra ther  than  page by page, 
calling the routine MMG_STD$FAST_CREATE_64 (see Section 3.4.1). Otherwise, it 
loops, calling MMG_STD$CREPAG_64 (see Section 3.4.1.2) until  the routine re turns  
an error s tatus or all pages are done. 

3.4.5 Automatic Address Space Expansion 
A special form of P1 space expansion occurs when a request  for user  stack space 
exceeds the remaining size of the user  stack. OpenVMS can detect such a request  
made implicitly through an access violation. 

In addition to the access violation exception service routine, several other executive 
software routines can also detect the need to expand the user stack: 

�9 The AST delivery in terrupt  service routine (see Chapter  ASTs), when it is unable 
to copy AST-related information from the kernel  stack to the user  stack 

�9 The Adjust Outer  Mode Stack Pointer ($ADJSTK) system service 

�9 The exception dispatching routine, EXE$EXCEPTION in module EXCEPTION, 
when it is unable to copy the exception context area onto the user  stack (see 
Chapter  Condition Handling) 

These routines call EXE$EXPANDSTK, in module SYSADJSTK, to try to expand 
the user stack. EXE$EXPANDSTK is also called by the access violation exception 
service routine, EXE$ACVIOLAT in module EXCEPTION, for an access violation tha t  
occurred in user mode. EXE$EXPANDSTK checks tha t  

�9 An a t tempt  to access an empty page occurred ra ther  than  a protection violation 

The inaccessible address is in P1 space and less than  the high end of the user  
stack 
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If these conditions are true, EXE$EXPANDSTK requests the $CRETVA_64 system ser- 
vice to expand P1 space from its current low-address end to the specified inaccessible 
address. For the usual case, one in which a program requires more user stack space 
than requested at link time, the expansion typically occurs one page at a time. 

Because this automatic expansion cannot be disabled on a process-specific or sys- 
temwide basis, a runaway program that  uses stack space without returning it is not 
aborted immediately. Instead, the program runs until it reaches one of the limits to 
growth of virtual address space described in Section 3.3. 

Another side effect of automatic expansion occurs when a program makes a possibly 
incorrect reference to an arbitrary P1 address lower than the top of the user stack. 
Rather than exiting with some error status, the program will probably continue to 
execute (aider the creation of many demand zero pages). 

If the stack expansion fails for any reason, the process is notified in a way that  depends 
on the caller of EXE$EXPANDSTK: 

The $ADJSTK system service can fail with one of the error codes returned by the 
$CRETVA system service. 

An attempt to deliver an AST to a process with insufficient user stack space results 
in an AST delivery fault (SS$_ASTFLT) condition reported to the process. 

If the user stack cannot be expanded in response to a P1 space length violation, 
EXE$ACVIOLAT checks whether this is a multithreaded process. If so, and if the 
faulting virtual address was within a DECthreads guard page or a kernel thread's 
yellow stack zone, it reports an SS$_STKOVF exception to the process. Otherwise, 
an access violation fault is reported to the process. 

If there is not enough user stack to report an exception, EXE$EXCEPTION first 
tries to reset the user stack pointer to the high-address end of the stack. If that  
fails, EXE$EXCEPTION requests the $CRETVA system service in an at tempt to 
recreate the address space. If that  fails, EXE$EXCEPTION bypasses the normal 
condition handler search and reports the exception directly to the last chance 
handler. Typically, this handler aborts the currently executing image. Chapter 
Condition Handling contains more details. 

In OpenVMS Version 7.0 and later versions, the concept of stack expansion has been 
broadened to include potential expansion of any process region created with the 
characteristic expand-on-access-violation. EXE$ACVIOLAT calls EXE$EXPANDSTK 
for any user mode access violation. 

If the faulting virtual address is not in P1 space, EXE$EXPANDSTK checks whether 
the region flag RDE$V_EXPAND_ON_ACCVIO is set. If not, an access violation 
is reported to the process. If the region has the characteristic, EXE$EXPANDSTK 
requests the $CRETVA_64 system service to extend the region from its current end to 
the faulting virtual address. 
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3.5 Process and Global Sections 
The system services tha t  create and map sections are an al ternat ive method of creat ing 
address space, one tha t  enables a process to associate a portion of its address space 
with a specified portion of a file. The section may be specific to a process (called a 
process-private section, or simply, a process section) or it may be a global section, 
shared among several processes. 

Table 3.1 summarizes  the different types of section tha t  can be created through these 
services, and the source of and backing for their  pages. In addition to these types of 
section, a process can create demand zero pages backed by a page file through the 
system services $CRETVA, $CRETVA_64, $EXPREG, and $EXPREG_64. 

The original Create and Map Section system service, $CRMPSC, enables a process 
to create many different types of section, both process and global. If the section does 
not exist, $CRMPSC creates it and then maps to it; if the section does exist and the 
process is allowed to map it, $CRMPSC maps the section. A new version of $CRMPSC 
was required to support  64-bit addresses. For simplicity, multiple 64-bit services were 
created: each 64-bit service is typically specific to a type of section. In the case of 
64-bit services for global sections, there is a service to create a par t icular  kind of global 
section, one to map tha t  type of section, and another  to both create and map it. 

A global section is characterized by whether  it is pe rmanen t  or temporary. A tem- 
porary section is automatically deleted when no more processes are mapped to it. A 
permanent  global section must  be deleted explicitly through the $DGBLSC system 
service. Creating a permanent  section requires PRMGBL privilege. The name space 
for global sections can be systemwide or specific to a UIC group. A security persona 
must  have SYSGBL privilege to create a systemwide section. 

In addition to section files, a process can create and map other types of section: 

A security persona with PFNMAP privilege can map vir tual  address space to a 
specific range of physical addresses. Typically, a process uses this capability to 
access a physical page in I/O space to communicate with a par t icular  I]O device. 

A process can also create global page-file sections, demand zero global sections 
whose pages are backed by a page file. 

In OpenVMS Version 7.0 and later  versions, a security persona holding the r ights 
identifier VMS$MEM_RESIDENT_USER can create a memory-resident  demand 
zero global section. Optionally, a memory-resident  demand zero global section can 
be mapped with shared L3PTs. 
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Table 3.1 S e c t i o n  Types  and B a c k i n g  S tore  

Section Source of Backing 
Type/Attribute Contents Store System Service 

Process-Private Sections 

Demand zero Demand zero Section file 
page 

Section file Copy-on-reference Page file 

Read-only Section file Section file 

Writable (and not 
copy-on-reference) 

PFN-mapped 

Section file Section file 

Physical page or None 
I/O space 

$CRMPSC, 
$CRMPSC_FILE_64 

$CRMPSC, 
$CRMPSC_FILE_64 

$CRMPSC, 
$CRMPSC_FILE_64 

$CRMPSC, 
$CRMPSC_FILE_64 

$CRMPSC, 
$CRMPSC_PFN_64 

Global Sections 

None Memory-resident 
demand zero 

Galaxywide 
demand zero 

Demand zero 

Page-file 

Copy-on-reference 

Read-only 

Writable (and not 
copy-on-reference) 

PFN-mapped 

Demand zero 
page 

Demand zero 
page 

Demand zero 
page 

Demand zero 
page 

Section file 

Section file 

Section file 

Physical page or 
I/O space 

None 

Section file 

Page file 

Page file 

Section file 

Section file 

None 

$CREATE_GDZRO, $CRMPSC_ 
GDZRO_64 

$CREATE_GDZRO, $CRMPSC_ 
GDZRO_64 

$CRMPSC, 
$CREATE_GFILE, 
$CRMPSC GFILE_64 

$CRMPSC, 
$CREATE_GPFILE, 
$CRMPSC_GPFILE_64 

$CRMPSC, 
$CREATE_GFILE, 
$CRMPSC_GFILE_64 

$CRMPSC, 
$CREATE_GFILE, 
$CRMPSC_GFILE_64 

$CRMPSC, 
$CREATE_GFILE, 
$CRMPSC_GFILE_64 

$CRMPSC, 
$CREATE_GPFN, 
$CRMPSC_GPFN_64 
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�9 A security persona having SHMEM privilege and running in a Galaxy instance 
can create a memory-resident demand zero global section in shared memory, called 
a Galaxywide global section. A Galaxywide global section can be accessed by 
processes running on multiple OpenVMS instances and optionally be mapped with 
shared L3PTs. 

The map global section system services are another way to create address space, one 
that  enables a process to map a portion of its address space to an already existing 
global section. 

The image activator (see Chapter Image Activation and Exit) requests the $CRMPSC 
and $MGBLSC system services to map portions of process address space to sections in 
image files and to previously installed global sections. 

When the image activator opens a file, it does so specifying that  all extents of the file 
should be mapped. However, an image may open a file itself and then itself request 
the $CRMPSC or $MGBLSC system service; in that  case, the window control block 
(WCB) might not contain a complete description of the file. 

The memory management  subsystem cannot take a window turn (see Chapter  I / 0  
System Services for information on WCBs and window turns) on pages within a 
section. It therefore requires that  the WCB describe all the extents of the mapped file. 
Such a WCB is called a cathedral window or a cathedral WCB. 

Because the WCB occupies nonpaged pool, its extension is charged against  the job's 
buffered I/O byte count quota, JIB$L_BYTCNT. Because the quota charge persists 
until the section is deleted, this charge is also made against the job's JIB$L_BYTLM, 
which limits the maximum charge against JIB$L_BYTCNT. When a job has insuffi- 
cient JIB$L_BYTCNT for a request, the executive checks that  the request is not larger 
than JIB$L_BYTLM before placing the kernel thread in resource wait. Charging the 
WCB extension against JIB$L_BYTLM prevents placing the kernel thread into what  
might otherwise be a never-ending resource wait. 

3.6 Process-Private Sections 
The $CRMPSC system service creates a process-private or global section and maps 
it into process-private address space. The particular actions it takes are determined 
by the options or flags with which the service is requested. The Open VMS System 
Services Reference Manual describes the system service arguments  and shows which 
flags can be used together. The 64-bit services $CRMPSC_FILE_64 and $CRMPSC_ 
PFN_64 also create process-private sections and map them into process-private address 
space. 

The sections that  follow describe creation of a process-private section backed by section 
file or page file and creation of a PFN-mapped process-private section. 

Section 3.7 and its subsections describe creation of global sections. 
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3.6.1 Creation of a Process-Private Section Backed by a File 
To create a process-private section the system service must  validate the arguments;  al- 
locate and initialize a PSTE to describe the section and connect it to its associated file, 
if any; determine start ing and ending virtual addresses of the section; and initialize 
L3PTEs to describe a page in a section file. 

3.6.1.1 $CRMPSC and Process-Private Section File Creation 
The $CRMPSC system service procedure, EXE$CRMPSC in module SYSCRMPSC, 
runs in kernel mode. When requested to map a process-private section, it takes the 
following steps: 

In addition to making the argument  validation checks described in Section 3.1.1, 
EXE$CRMPSC checks the INADR argument:  unless the SEC$V_EXPREG flag was 
specified in the FLAGS argument,  it confirms that  the start ing address is on an 
Alpha page boundary and that  the ending address is one byte less than a page 
boundary. (It takes into account the possibility that  the addresses have been 
specified in reverse order.) If the addresses are not correct, it returns the error 
status SS$_INVARG. 

2. It creates and initializes the scratch space on the stack. 

0 It calls MMG$VFY_SECFLG, in module SYSDGBLSC, to test the compatibility of 
the flags in the FLAGS argument  with each other. If the flags are incompatible, if 
the system service requestor specified the flag SEC$V_SHMGS, or if the argument  
is absent, it returns the error status SS$_IVSECFLG. 

, EXE$CRMPSC then confirms that  the CHAN argument  was supplied. (The re- 
questor must  have already opened the section file on the specified channel.) It 
confirms that  the specified channel has been assigned; tha t  its associated device 
is directory-structured, files-oriented, and random access; and that  a file is open 
on the channel. In case of error, it returns the error status SS$_NOTFILEDEV or 
SS$_IVCHNLSEC. 

0 If the WCB does not map the entire file, EXE$CRMPSC remaps the file with a 
cathedral WCB (see Section 3.5). It copies the end-of-file virtual block number  
from the file control block to MMG$L_EFBLK. 

6 0  If the section to be mapped is a copy-on-reference section, EXE$CRMPSC sets bit 
MMG$V_CHGPAGFIL in MMG$L_MMG_FLAGS as a signal that  the section must  
be charged against the job's page file quota. 

m It checks that  the PAGCNT argument  is positive and, if not, returns the error s tatus 
SS$_ILLPAGCNT. 

, 

9. 

It raises IPL to 2 to block AST delivery. 

Prior to allocating a PSTE, it calls MMG$DALCSTXSCN (see Section 3.9.2) to 
check whether  any PSTEs can be deallocated. A section table entry cannot always 
be deallocated synchronously on request. For example, if direct I/O is in progress 
to pages in the section, those pages cannot be deleted and hence the section cannot 
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be. After the I/O completes, a subsequent call to MMG$DALCSTXSCN will result  
in deallocation of the section table entry. 

Unless the section is copy-on-reference and demand zero (a section probably being 
mapped from an image file), EXE$CRMPSC allocates a PSTE (see Figure 2.7) and 
initializes it. (A copy-on-reference demand zero section does not need a PSTE; its 
page faults require no I/O from a section file.) 

When the process section is being created as a part  of image activation (see 
Chapter Image Activation and Exit), the original source for much of the data  stored 
in the PSTE is an image section descriptor in the image file. 

a. EXE$CRMPSC copies the SEC$V_WRT, SEC$V_DZRO, and SEC$V_CRF bits 
from the FLAGS to SEC$L_FLAGS. 

bO It stores in SEC$L_WINDOW the address of the WCB from the channel control 
block (CCB) or from the PSTE to which the CCB points. Recall tha t  if multiple 
sections are mapped from the same file, there is one PSTE for each section but 
only one CCB and one WCB. 

c. It checks that  the file has been opened in a manner  consistent with the section 
flags: if the section is writable but not copy-on-reference, the file must  have 
been opened for write access. If the file was opened for write access, then 
EXE$CRMPSC sets SEC$V_WRT in SEC$L_FLAGS. If the file was not opened 
for write access, but SEC$V_WRT is set, EXE$CRMPSC sets SEC$V_CRF so 
that  the section will be created as copy-on-reference with backing store in a 
page file. 

d. It copies the VBN argument  to SEC$L_VBN. If the VBN argument  is 0, its 
default, EXE$CRMPSC replaces it with 1. 

6 .  It copies the PAGCNT argument,  if present, to SEC$L_UNIT_CNT after checking 
that  the file contains at least that  many blocks between SEC$L_VBN and its 
end-of-file. If the argument  is absent, it initializes SEC$L_UNIT_CNT to the 
difference between the end-of-file block and SEC$L_VBN. 

If this is the first section mapped on this file, it stores the section offset 
in CCB$L_WIND and the index in the PSTE forward and backward links. 
Otherwise, it inserts the PSTE into the chain of other PSTEs paging on tha t  
channel. 

g o 

h. 

It clears SEC$L_VPX, the virtual page index. 

It initializes SEC$L_REFCNT to 1 and sets the section table entry flag SEC$V_ 
INPROG to ensure that  the section is not inadvertently deleted before its PTEs 
are initialized. If the system service cannot complete, it may place the kernel 
thread into a wait state at IPL 0. If the process were deleted at that  point, 
the Delete Process ($DELPRC) system service would be able to detect such a 
section by the set SEC$V_INPROG flag and decrement the biased reference 
count. 
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11. 

12. 

13. 

i. It converts the section pagelet fault cluster argument,  PFC, to a page fault 
cluster value and stores the minimum of tha t  and 127 in SECSL_PFC. 

EXE$CRMPSC forms a template L3PTE for the section's pages (see Figure 2.12). 
The L3PTE has both type bits set; the section table index in bits <47:32> (or zero 
for a copy-on-reference demand zero section); and the WRT, CRF, and DZRO bits 
copied from the section flags. It calculates the page owner mode and protection 
bits based on MMGSL_ACCESS_MODE, the writable flag in SEC$L_FLAGS, and 
the input section flags specifying the mode allowed to write the section pages. 

If the SEC$V_EXPREG flag was specified in the FLAGS system service argument,  
it calculates the start ing and ending addresses to map based on the pagelet count 
multiplied by 512 and the contents of RDESPQ_FIRST_FREE_VA in the P0 or P1 
space RDE, whichever is appropriate. 

If the SEC$V_EXPREG flag was not specified, it determines the address of 
the RDE corresponding to the INADR argument.  If that  region is intended for 
memory-resident and Galaxywide global sections, it returns the error status SS$_ 
NOSHPTS. A process may not create process-private address space to be mapped 
with a shared page table. EXE$CRMPSC checks whether the access mode from 
which the service was requested is allowed to create pages in this region and, if 
not, returns the error status SS$_NOPRIV. It calculates the actual and useful 
address ranges to be mapped, based on the INADR a n d  PAGCNT arguments  and, 
depending on the section type, number  of blocks in the section file. 

Regardless of the value of the SEC$V_EXPREG flag, an integral number  of Alpha 
pages will be mapped. If the pagelet count does not represent an integral number  
of pages, the page at the high-address end of the section will be only partly 
occupied by the section. Its L3PTE will have the PTESV_PARTIAL_SECTION bit 
set. Either MMGSV_PARTIAL_FIRST or MMG$V_PARTIAL_LAST in MMG$L_ 
MMG_FLAGS is set, indicating that  the first or last page to be mapped is partial. 
Which is partial depends on the order of mapping, which depends on how the 
address range was specified in the INADR argument.  

EXE$CRMPSC determines whether  the section must  be mapped one page at a 
time: 

- -  If the new address space does not already exist, is entirely within a region, 
and can all be created without hit t ing any of the limits to growth described in 
Section 3.3, EXE$CRMPSC adjusts RDE$PQ_FIRST_FREE_VA and initializes 
the section's L3PTEs. It then increases SECSL_REFCNT by the number  of 
pages just  mapped. If the section is not an integral number  of physical pages, 
EXE$CRMPSC sets PTESV_PARTIAL_SECTION in the L3PTE that  maps the 
page with the highest address. 

- -  If the section to be mapped is copy-on-reference or demand zero, or if the space 
to be created overmaps existing space or cannot all be created, EXE$CRMPSC 
calls MMG$CREDEL, described in Section 3.1.1, specifying MAPSECPAG_RDE 
(see Section 3.6.1.2) as the per-page routine. 
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14. EXE$CRMPSC calculates the starting virtual page number of the section and 
stores it in SEC$L_VPX. 

15. It decrements SEC$L_REFCNT to remove the extra reference, unnecessary now 
that  the reference count reflects the mapped L3PTEs, and clears the SEC$V_ 
INPROG flag. 

16. If PHD$V_DALCSTX in PHD$L_FLAGS is set, indicating one or more sections to 
be deallocated, it calls MMG$DALCSTXSCN (see Section 3.9.2) to deallocate them. 

17. EXE$CRMPSC returns any unused page file quota, records peak page file use 
and virtual size statistics, and stores return information in the optional RETADR 

argument. 

18. It returns to its requestor. 

3.6.1.2 MAPSECPAG_RDE Routine for a Process Section 
MAPSECPAG_RDE is called with a number of arguments, including the L3PTE 
contents for the new page, number of pages in the section, number of pages to be 
mapped, addresses of the section table entry and RDE, and flags that  control its 
actions. 

For a process section, it takes the following steps: 

1. Within initialization code, executed only once, MAPSECPAG RDE sets the NO_ 
OVERMAP flag in MMG$L_MMG_FLAGS if it is set in MMG$L_VFYFLAGS. It 
minimizes the requested number of pages to be mapped with the number of pages 
in the section. For a section file section being mapped in reverse order (from high 
address to low) whose highest address page is partial, it maps the first page with 
PTE$V_PARTIAL_SECTION set. It increments SEC$L_REFCNT. 

It replaces its own address in MMG$L_PAGESUBR so as to bypass the initializa- 
tion code the next time it is entered. 

2. MAPSECPAG_RDE increments the section table entry's reference count to reflect 
that  one more L3PTE maps a page in that  section. 

3. It calls MMG$CREPAG_64, described in Section 3.4.1.2, which stores the template 
L3PTE contents into the next L3PTE and charges against job page file quota. 

4. MAPSECPAG_RDE returns to its caller, MMG$CREDEL, which continues to call 
it until there are no more pages to be mapped or until one of the limits to growth 
is reached. 

For a section file section being mapped in forward order (from low address to high) 
whose highest address page is partial, MAPSECPAG_RDE maps the last page with 
PTE$V_PARTIAL_SECTION set. 
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3.6.1.3 $CRMPSC_FILE_64 System Service 
The Create and Map Private Disk File Section ($CRMPSC_FILE_64) system service 
procedure, EXE$CRMPSC_FILE_64 in module SYS_CRMPSC_64, runs  in kernel  
mode. It resembles the $CRMPSC system service requested to create a file section, bu t  
its a rguments  include a region ID, and all its address a rguments  are 64 bits. Thus  it 
can be used to create a file section in P0, P1, or P2 space, ei ther  in a default  region or 
a user-created one. 

EXE$CRMPSC_FILE_64 takes the following steps" 

1. In addition to making the checks described in Section 3.1.2, it validates its argu-  
ments  as follows: 

a. If the START_VA_64 a rgument  was omitted and the flag SEC$V_EXPREG was 
clear, it re turns  the error s ta tus  SS$_IVSECFLG. 

b. It rounds the FAULT_CLUSTER argument ,  if specified, up to a page boundary. 

c. It checks that  the FILE_OFFSET 64 and LENGTH_64 arguments  are mult iples  of 
the size of a disk block, re turning the error s ta tus  SS$_OFF_NOTBLKALGN 
or SS$_LEN_NOTBLKMULT if not. 

d. It checks tha t  the START VA_64 argument ,  if specified, is aligned on a page 
boundary, re turning the error s tatus SS$_VA_NOTPAGALGN if not. 

e. It confirms that  the specified channel has been assigned; tha t  its associated 
device is directory-structured, files-oriented, and random access; and tha t  a 
file is open on the channel. In ease of error, it re turns  the error s ta tus  SS$_ 
NOTFILEDEV or SS$ IVCHNLSEC. 

f. If the WCB does not map the entire file, EXE$CRMPSC_FILE_64 remaps  the 
file with a cathedral  WCB (see Section 3.5). It copies the end-of-file vir tual  
block number  from the file control block to MMGSL_EFBLK. 

2. t t  raises IPL to 2 to block AST delivery. 

3. It determines the address of the RDE corresponding to the REGION_ID_64 argument ,  
re turning the error s ta tus  SS$_IVREGID if the ID is invalid. If tha t  region is 
intended for memory-resident  and Galaxywide global sections, it re turns  the error  
s tatus SS$_NOSHPTS. It checks whether  the access mode from which the service 
was requested is allowed to create pages in this region and, if not, re turns  the 
error s ta tus  SS$_NOPRIV. 

4. If the section is demand zero and copy-on-reference, EXE$CRMPSC_FILE_64 
reduces the number  of pagelets to be mapped to the number  of pagelets between 
the FILE_OFFSET_64 a rgument  and the end-of-file. 

5. For a section tha t  is not demand zero copy-on-reference, it allocates a PSTE (see 
Figure 2.7) and initializes it, as described in Section 3.6.1.1. (A copy-on-reference 
demand zero section does not need a PSTE; its page faults require no I/O from a 
section file.) 
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6. It forms a template L3PTE for the section's pages (see Figure 2.12). The L3PTE 
has both type bits set; the section table index in bits <47:32> (or zero for a demand 
zero copy-on-reference section); and the WRT, CRF, and DZRO bits copied from 
the section flags. It calculates the page owner mode and protection bits based 
on the maximized access mode and the writable flag in SEC$L_FLAGS. The 
$CRMPSC_FILE_64 service differs from the $CRMPSC service in that  there is no 
input argument to specify access mode allowed to write the section: if the section 
is writable, the mode allowed to read determines the mode allowed to write. 

7. If the SEC$V_EXPREG flag was specified in the FLAGS system service argument,  
EXE$CRMPSC_FILE_64 calculates the starting and ending addresses to map 
based on the LENGTH_64 argument and the contents of RDE$PQ_FIRST_FREE_VA 
in the RDE corresponding to the REGION_ID_64 argument. If that  address range 
intersects with the gap (see Chapter 1), it moves the address range. 

If the SEC$V_EXPREG flag was not specified, it calculates the address based on 
the START_VA_64 and LENGTH_64 arguments. If the address range is not entirely 
within the specified region, it deallocates the PSTE and returns the error status 
SS$_PAGNOTINREG to its requestor. 

Regardless of the value of the SEC$V_EXPREG flag, an integral number of Alpha 
pages will be mapped. If the LENGTH_64 does not represent an integral number of 
pages, the page at the high-address end of the section will be only partly occupied 
by the section. Its L3PTE will have the PTE$V_PARTIAL_SECTION bit set. 

8. EXE$CRMPSC FILE_64 determines whether the section must  be mapped one 
page at a time and maps it: 

- -  If the new address space does not already exist, is entirely within a region, 
and can all be created without hitting any of the limits to growth described in 
Section 3.3, it adjusts RDE$PQ_FIRST_FREE_VA and initializes the section's 
L3PTEs. It then increases SEC$L_REFCNT by the number of pages just  
mapped. If the section is not an integral number of physical pages, it sets 
PTE$V_PARTIAL_SECTION in the L3PTE that  maps the page with the 
highest address. 

- -  If the section to be mapped cannot all be created at once, it loops, calling 
MMG_STD$CREPAG_64 (see Section 3.4.1.2) until the routine returns an error 
status or all pages are done. On each successful return, EXE$CRMPSC_FILE_ 
64 increments SEC$L_REFCNT. When the section is completely mapped, it 
decrements SEC$L_REFCNT to remove the extra reference added at PSTE 
initialization. 

If MMG_STD$CREPAG_64 returns the error status SS$_ABORT, which means 
an overmapped page had to be deleted but a wait would have been required, 
EXE$CRMPSC_FILE_64 deletes the address space it created and repeats the 
loop, recreating the address space. 

9. If PHD$V_DALCSTX in PHD$L_FLAGS is set, indicating the need to deallocate 
one or more overmapped and thus deleted sections, it calls MMG$DALCSTXSCN 
(see Section 3.9.2) to deallocate them. 
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10. It lowers IPL to 0. 

11. It returns any unused reserved page file quota, records peak page file use and 
virtual size statistics, and stores return information in the optional RETURN_VA_64 
argument. 

12. If MMG_STD$CREPAG_64 returned an error status, EXE$CRMPSC_FILE_64 
passes that  status back to its requestor; otherwise, it returns SS$_CREATED. 

3.6.2 PFN-Mapped Process Section Creation 
To create a PFN-mapped section the system service must  validate the arguments, 
determine starting and ending virtual addresses of the section, and initialize L3PTEs 
to describe the range of PFNs to be mapped. No PSTE is needed to describe the 
section. 

The PFN fields in these L3PTEs contain the requested physical page numbers. The 
window bit is set in each L3PTE to indicate that  the virtual page is PFN-mapped. 
The valid bit is set. These pages do not count against the process's working set. They 
cannot be paged, swapped, or locked into the process's working set. Moreover, no 
record is maintained in the PFN database that  such pages are PFN-mapped. 

3.6.2.1 $CRMPSC and PFN-Mapped Process Section Creation 
The $CRMPSC system service enables a security persona with PFNMAP privilege to 
map a portion of its virtual address space to a specific range of physical addresses. 
Although the primary purpose of this feature is to map process-private address space 
to I/O addresses, it is also used to map specific physical memory pages. When such a 
section is larger than one page, it maps physically contiguous pages. 

Requested to create a PFN-mapped section, EXE$CRMPSC takes the following steps: 

1. In addition to making the argument validation checks described in Section 3.1.1, 
EXE$CRMPSC checks the INADR argument: unless the SEC$V_EXPREG flag was 
specified in the FLAGS argument, it confirms that  the starting address is on an 
Alpha page boundary and that  the ending address is one byte less than a page 
boundary. (It takes into account the possibility that  the addresses have been 
specified in reverse order.) If the addresses are not correct, it returns the error 
status SS$_INVARG. 

2. It creates and initializes the scratch space on the stack. 

3. It calls MMG$VFY_SECFLG, in module SYSDGBLSC, to test the compatibility of 
the FLAGS arguments with each other. If the flags are incompatible, if the system 
service requestor specified the flag SEC$V_SHMGS, or if the argument is absent, 
it returns the error status SS$_IVSECFLG. 

4. EXE$CRMPSC checks whether the CHAN argument is present, indicating an 
opened file, which would be incompatible with a PFN-mapped section. If so, it 
returns the error status SS$_IVSECFLG. 

150 



, 

. 

3.6 Process-Private Sections 

If SEC$V_WRT was specified in the FLAGS argument and if this system is a Galaxy 
instance, EXE$CRMPSC checks whether this is a request to map instance-private 
memory. If not, it returns the error status SS$_INVPFN; only private memory can 
be mapped writable. 

It checks that  the PAGCNT argument is positive and, if not, returns the error status 
SS$_ILLPAGCNT. (Note that  for a PFN-mapped section, the PAGCNT argument  
specifies a number of pages, not pagelets.) 

7. It raises IPL to 2 to block AST delivery. 

, 

, 

10. 

11. 

It calls MMG_STD$SEC_PRIVCHK, in module SYSCRMPSC, to check whether  
the current security persona has the privileges necessary to create a PFN-mapped 
section and, if not, returns the error status SS$_NOPRIV. 

It calls MMG$DALCSTXSCN (see Section 3.9.2), to deallocate any process section 
whose reference count has gone to zero. 

EXE$CRMPSC forms a template L3PTE (see Figure 2.12) for pages in the section. 
The L3PTE has the valid and window bits set. EXE$CRMPSC calculates its page 
owner mode and protection bits based on MMG$L_ACCESS_MODE, the writable 
flag in SEC$L_FLAGS, and the bits in the FLAGS argument specifying the mode 
allowed to write the section pages. 

If the SEC$V_EXPREG flag is clear, EXE$CRMPSC continues with step 15. If 
both the SEC$V_EXPREG and the undocumented SEC$V_GRANHINT flags were 
set in the FLAGS system service argument, it determines which, if any, granulari ty 
hint value is appropriate for the input PFN, input starting virtual address, section 
size, and state of the region in which the section is to be mapped. The input PFN 
is specified by the VBN argument, which is named for its more typical use. 

Chapter 1 describes how granularity hint regions improve translation buffer (TB) 
performance. 

It first tries a 512-page granularity hint region. If that  cannot be made to work, 
possibly because the input PAGCNT argument is too much smaller than the gran- 
ularity hint region size, it tries a 64-page region, and then an eight-page region. 
As part of testing for a granularity hint region, EXE$CRMPSC tries to expand 
the region in which the section is to be mapped, checking that  the new address 
space is entirely within the virtual address region and can all be created without 
hitting any of the limits to growth described in Section 3.3. If the expansion is 
unsuccessful, EXE$CRMPSC continues with step 16. 

If the expansion is successful, EXE$CRMPSC adjusts RDE$PQ_FIRST_FREE_VA. 
Note that  it may expand the virtual address region so as to align the start ing 
virtual address on a granularity hint region boundary suitable for the input PFN 
and length, and it may require that additional PFNs be mapped to align the 
starting physical virtual address on a corresponding boundary. 

It incorporates as many pages as possible into granularity hint regions and maps 
them one region at a time, as described in step 14. It continues with step 17. 
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12. If the SEC$V_EXPREG flag was set but  the SEC$V_GRANHINT flag was clear 
(or if an optimal granulari ty hint  region could not be formed in the previous step), 
EXE$CRMPSC calculates the start ing and ending section addresses based on the 
page count and contents of RDE$PQ_FIRST_FREE_VA in the P0 or P1 space RDE, 
depending on the INADR argument.  

13. If the address space to be created overmaps existing space or cannot all be created, 
EXE$CRMPSC continues with step 16. If the address space to be created does 
not overmap existing address space and it can all be created, the routine checks 
whether  the PFN-mapped section meets the requirements  for a granular i ty  hint  
region: 

The page count must  be 8, 64, or 512. 

The start ing virtual and physical addresses must  be aligned multiples of the 
page count. 

It calculates the appropriate granulari ty hint  value, making it zero if the section 
does not meet the requirements for a granulari ty hint  region. 

14. EXE$CRMPSC inserts the granulari ty hint value into the template L3PTE and 
then initializes all the section's L3PTEs. For each L3PT containing those L3PTEs, 
it takes the following steps: 

a. It tests whether the L3PT is still valid and, if not, faults it in. 

b. It acquires the MMG spinlock and confirms that  the L3PT is still valid. If not, 
it releases the MMG spinlock, refaults the page, and reacquires the spinlock. 

c. If the L3PT did not previously map any window pages or locked pages, 
EXE$CRMPSC increments PHD$L_PTCNTLCK to indicate one more locked 
page table page. 

d. It sets PTE$V_WINDOW in the L2PTE that  maps this L3PT and locks the 
L3PT into the process's working set list by setting WSLX$V_PFNLOCK in its 
working set list entry. 

e. It adds the number  of PFN-mapped pages to the L3PT's PFN$W_PT_WIN_ 
CNT. 

f. It releases the MMG spinlock. 

It continues with step 17. 

15. If the SEC$V_EXPREG flag was clear, EXE$CRMPSC determines the address 
of the RDE corresponding to the INADR argument.  If that  region is intended 
for memory-resident and Galaxywide global sections, it returns the error s tatus  
SS$_NOSHPTS. It checks whether the access mode from which the service was 
requested is allowed to create pages in this region and, if not, returns the error 
status SS$_NOPRIV. It calculates the actual and useful address ranges to be 
mapped, based on the INADR and PAGCNT arguments.  
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To varying extents, it incorporates pages into granulari ty hint  regions: 

If the SEC$V_GRANHINT flag was clear, it continues with step 13. 

- -  If the SEC$V_GRANHINT flag was set and the INADR range was specified in 
ascending order, it incorporates as many pages as possible into granulari ty 
hint  regions and maps them one region at a time, as described in step 14, and 
continues with step 17. 

If the SEC$V_GRANHINT flag was set but the INADR range was specified in 
reverse order, it continues with step 13. 

16. EXE$CRMPSC calls MMG$CREDEL (see Section 3.1.1), specifying MAPSECPAG_ 
RDE (see Section 3.6.2.2) as the per-page routine. 

17. If PHD$V_DALCSTX in PHD$L_FLAGS is set, indicating one or more sections to 
be deallocated, EXE$CRMPSC calls MMG$DALCSTXSCN (see Section 3.9.2) to 
deallocate them. 

18. EXE$CRMPSC records peak virtual size statistics and stores re turn information in 
the optional RETADR argument.  

19. It restores the IPL at entry and returns to its requestor. 

3.6.2.2 MAPSECPAG_RDE Routine for a PFN-Mapped Section 
MAPSECPAG_RDE is called with a number  of arguments,  including the L3PTE 
contents for the new page, number of pages in the section, number  of pages to be 
mapped, address of the RDE, and flags that  control its actions. 

Called to create a PFN-mapped section page, MAPSECPAG_RDE takes the following 
steps" 

1. Within initialization code, executed only once, MAPSECPAG_RDE sets the NO_ 
OVERMAP flag in MMG$L_MMG_FLAGS if it is set in MMG$L_VFYFLAGS. 
It minimizes the number of pages requested in the PAGCNT argument  with the 
number of pages in the address range specified by the INADR argument.  It replaces 
its own address in MMG$L_PAGESUBR so as to bypass the initialization code the 
next time it is entered. 

2. MAPSECPAG_RDE calls MMG$CREPAG_64 (see Section 3.4.1.2), which stores the 
template L3PTE contents into the next L3PTE. 

3. MAPSECPAG_RDE calculates the contents of the next L3PTE by incrementing 
or decrementing the PFN value from the current PTE, depending on the order of 
mapping. 

4. It returns to its caller, MMG$CREDEL, which continues to call it until there are 
no more pages to be mapped or until one of the limits to growth is reached. 
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3.6.2.3 $CRMPSC_PFN_64 System Service 
The Create and Map Private Page Frame Section ($CRMPSC_PFN_64) system service 
is requested to create and map a PFN-mapped section. It resembles the $CRMPSC 
system service requested to create a PFN-mapped section, but its arguments  include a 
region ID, and all its address arguments  are 64 bits. Thus, it can be used to create a 
PFN-mapped section in P0, P1, or P2 space, either in a process-permanent region or a 
user-created one. 

The requestor specifies section name, ident, protection, first PFN to be mapped, region 
ID, relative page number, number  of pages in the section, access mode, number  of 
pages to be mapped, and section flags. The requestor has not opened a section file to 
be mapped so does not specify channel number. The requestor does not specify page 
fault cluster; such a section incurs no page faults. 

The $CRMPSC_PFN_64 system service procedure, EXE$CRMPSC_PFN_64 in module 
SYS_CRMPSC_64, runs in kernel mode. 

It takes the following steps" 

1. In addition to making the checks described in Section 3.1.2, it validates its argu- 
ments as follows: 

a. If only seven arguments  were passed, omitting START_VA_64, and if the flag 
SEC$V_EXPREG was clear, it re turns the error s tatus SS$_IVSECFLG. 

b. It sets the flag SEC$V_PFNMAP in the FLAGS argument  in case it was clear. 

C. It checks that  the PAGE_COUNT argument  is nonzero and smaller than the max- 
imum amount  of physical memory, returning the error s tatus SS$_ILLPAGCNT 
if not. 

d. It checks that  the START_VA_64 argument,  if specified, is aligned on a page 
boundary, returning the error status SS$_VA_NOTPAGALGN if not. 

e. If SEC$V_WRT was specified in the FLAGS argument  and if this system is a 
Galaxy instance, EXE$CRMPSC_PFN_64 checks whether  this is a request to 
map instance-private memory. If not, it returns the error s tatus SS$_INVPFN; 
only private memory can be PFN-mapped writable. 

f. If the SEC$V_EXPREG flag was clear, EXE$CRMPSC_PFN_64 confirms tha t  
the START_VA_64 argument  is within the specified region, re turning the error 
status SS$_PAGNOTINREG if not. 

2. It raises IPL to 2 to block AST delivery. 

3. It determines the address of the RDE corresponding to the REGION_ID_64 argument,  
returning the error status SS$_IVREGID if the ID is invalid. If that  region is 
intended for memory-resident and Galaxywide global sections, it re turns the error 
status SS$_NOSHPTS. It checks whether  the access mode from which the service 
was requested is allowed to create pages in this region and, if not, returns the 
error s tatus SS$_NOPRIV. 
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It calls MMG_STD$SEC_PRIVCHK, in module SYSCRMPSC, to check whether  
the current security persona has the privileges necessary to create a PFN-mapped 
section and, if not, returns the error status SS$_NOPRIV. 

EXE$CRMPSC_PFN_64 forms a template L3PTE for pages in the section. The 
L3PTE has the valid and window bits set and the starting PFN. EXE$CRMPSC_ 
PFN_64 calculates its page owner mode and protection bits based on the maxi- 
mized access mode. If the section is writable, the mode allowed to read determines 
the mode allowed to write. 

If both the SEC$V_EXPREG and the undocumented SEC$V_GRANHINT flags 
were set in the FLAGS argument, EXE$CRMPSC_PFN_64 determines which, if 
any, granularity hint value is appropriate for the input PFN, input starting virtual 
address, section size, and state of the region in which the section is to be mapped. 

It first tries a 512-page granularity hint region. If that  cannot be made to work, 
possibly because the input PAGE_COUNT argument is too much smaller than the 
granularity hint region size, it tries a 64-page region, and then an eight-page 
region. As part of testing for a granularity hint region, EXE$CRMPSC_PFN_64 
tries to expand the region in which the section is to be mapped, checking that  
the new address space is entirely within the virtual address region and can all be 
created without hitting any of the limits to growth described in Section 3.3. If the 
expansion is unsuccessful, EXE$CRMPSC_PFN_64 continues with step 7. 

If the expansion is successful, EXE$CRMPSC_PFN_64 adjusts RDE$PQ_FIRST_ 
FREE_VA. Note that it may expand the virtual address region so as to align 
the starting virtual address on a granularity hint region boundary suitable for the 
input PFN and length, and it may require that  additional PFNs be mapped to align 
the starting physical virtual address on a corresponding boundary. It continues 
with step 9. 

If the expansion in step 6 was unsuccessful or if SEC$V_EXPREG was clear, 
EXE$CRMPSC_PFN_64 rounds the starting and ending addresses down to an 
Alpha page boundary and calculates the desired page count based on the difference 
between them. It checks that  the address range is entirely within the specified 
region and does not overlap with already existing space. If both are true, it 
continues with the next step. Otherwise, it continues with step 13. 

EXE$CRMPSC_PFN_64 tries to expand the region in which the section is to be 
mapped, checking that the new address space can all be created without hitting 
any of the limits to growth described in Section 3.3. If expansion is unsuccessful, 
EXE$CRMPSC_PFN_64 continues with step 13. 

If the expansion is successful, EXE$CRMPSC adjusts RDE$PQ_FIRST_FREE_VA 
and continues with step 11. 

If the SEC$V_GRANHINT flag was set, and the region grows toward ascending 
addresses, it incorporates as many pages as possible into granularity hint regions 
and maps them one granularity hint region at a time, as described in step 12. It 
continues with step 14. 
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10. If the SEC$V_GRANHINT flag was set but the region grows toward descending 
addresses, it continues with step 11. 

11. EXE$CRMPSC_PFN_64 checks whether  the PFN-mapped section meets the 
requirements for a granulari ty hint region: 

The page count must  be 8, 64, or 512. 

The start ing virtual and physical addresses must  be aligned multiples of the 
page count. 

EXE$CRMPSC_PFN_64 calculates the appropriate granulari ty hint  value, making 
it zero if the section does not meet the requirements to become a granular i ty  hint  
region. 

12. EXE$CRMPSC_PFN_64 inserts the granulari ty hint value into the template  
L3PTE and then initializes all the section's L3PTEs, incrementing the PFN for 
each new virtual page. For each L3PT containing those L3PTEs, it takes the 
following steps: 

a. It tests whether the L3PT is still valid and, if not, faults it in. 

b. It acquires the MMG spinlock and confirms that  the L3PT is still valid. If not, 
it releases the MMG spinlock, refaults the page, and reacquires the spinlock. 

c. If the L3PT did not previously map any window pages or locked pages, 
EXE$CRMPSC_PFN_64 increments PHD$L_PTCNTLCK to indicate one 
more locked page table page. 

d. It sets PTE$V_WINDOW in the L2PTE that  maps this L3PT and locks the 
L3PT into the process's working set list by setting WSLX$V_PFNLOCK in its 
working set list entry. 

e. It adds the number of PFN-mapped pages to the L3PT's PFN$W_PT_WIN_ 
CNT. 

f. It releases the MMG spinlock. 

It continues with step 14. 

When the section must  be mapped one page at a time, EXE$CRMPSC_PFN_64 
calls MMG_STD$CREPAG_64 (see Section 3.4.1.2), passing it the state of the 
SEC$V_NO_OVERMAP flag as well as MMG$V_NOWAIT_IPL0. EXE$CRMPSC_ 
PFN_64 loops, calling MMG_STD$CREPAG_64 until the routine returns an error 
status or all pages are done. 

If MMG_STD$CREPAG_64 returns the error status SS$_ABORT, which means 
an overmapped page had to be deleted but a wait would have been required, 
EXE$CRMPSC_PFN_64 deletes the address space it created and repeats the loop, 
recreating the address space. 

If PHD$V_DALCSTX in PHD$L_FLAGS is set, indicating the need to deallocate 
one or more overmapped and thus deleted sections, it calls MMG$DALCSTXSCN 
(see Section 3.9.2) to deallocate them. 

13. 

14. 

156 



3.7 Global Section Creation and Mapping 

15. It lowers IPL to 0. 

16. It records peak page file use and virtual size statistics, and stores re turn  informa- 
tion in the RETURN_VA 64 and RETURN_LENGTH_64 arguments.  

17. If MMG_STD$CREPAG_64 returned an error status, EXE$CRMPSC_PFN_64 
passes tha t  status back to its requestor; otherwise, it returns SS$_CREATED. 

3.7 Global Section Creation and Mapping 
$CRMPSC and various other system services enable a process to create a global section 
or, if the section already exists, to map to it. The Install utility requests the $CRMPSC 
system service to create one or more global sections when an image is installed with 
the /SHARED qualifier. 

The creation of a global section is similar to the creation of a process section except 
that  additional data structures are involved. Chapter 2 shows the layouts of these 
data structures and describes them and their interrelations in more detail. 

�9 A global section descriptor (GSD; see Figure 2.24), which enables subsequent map 
global section system service requests to determine whether  the named section 
exists and to locate its global section table entry (GSTE). 

�9 A GSTE (see Figure 2.7), analogous to the PSTE but part  of the system header 
rather  than of a PHD. 

�9 Global page table entries (GPTEs), each of which describes the state of one global 
page in the section. GPTEs are used by the page fault handler  when a process 
incurs a page fault for a global page. They are not used in address translation. 

Each process has its own page table space and, in general, its own page tables to map 
process-private space. Typically, when a process maps to a global section, its L3PTEs 
that  describe the specified address range are initialized with global page table indexes 
(GPTXs; see Figure 2.25). 

Like a process-private section, a global section can consist of specific pages of memory 
or I/O address space. Creation of a global PFN-mapped section requires the PFNMAP 
privilege. The only data structure necessary to describe a global PFN-mapped section 
is a special form of GSD (see Figure 2.24). There are no GPTEs nor is there a GSTE. 
When a process maps to such a section, its L3PTEs are initialized with the valid and 
window bits set and PFNs based on GSD$L_BASEPFN. 

Another type of global section is a demand zero section whose pages are backed in a 
page file. This type of section is called a global page-file section. Record Management  
Services (RMS) uses this type of section to implement global buffers on a file. The 
dynamic SYSGEN parameter  GBLPAGFIL specifies the maximum number  of page file 
pages that  can be put to this use. 
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Another type of global section, new with OpenVMS Version 7.1, is a memory-resident 
global section. The pages of such a section do not page and are not backed up by a 
section file. Once initialized, the global pages are permanent ly  valid. When a process 
maps to a memory-resident global section, any L3PTEs that  map already valid pages 
of global section are initialized as valid. Once such pages are valid in a process's page 
table, they remain valid until deleted from the process's address space. They are not 
listed in the working set list and do not count against working set or page file quotas. 
A memory-resident global section is writable by definition. 

Optionally, multiple processes can map memory-resident global sections with shared 
page tables, using the same L3PTs to map the global section. Shared L3PTs are 
permanently valid and not listed in the working set list. They do not count against  
working set quotas or page file quotas. Figure 2.28 shows shared page tables mapping 
a shared page. Use of shared page tables saves not only memory but also the time 
to map the section. For more flexibility, shared page tables can be created tha t  give 
read-only access, enabling more reader processes to share page tables while fewer 
writer processes map with private page tables. 

For optimum performance, the system manager  registers a memory-resident global 
section in the Reserved Memory Registry (see Chapter 2) with the/ALLOCATE and 
/PAGE_TABLES qualifiers. These make it possible for granulari ty hint regions to be 
created for both the global section and its shared page tables. 

On an OpenVMS Galaxy platform, a memory-resident global section can be created 
in memory shared among all the instances. Such a global section is referred to as 
a Galaxywide global section and as a shared memory global section. Galaxywide 
shared memory is reserved for various uses through the Galaxy Configuration utility. 
Through the utility the system manager  can reserve a portion of shared memory for 
global sections but cannot apportion it to particular global sections. 

Optionally, processes can map a Galaxywide global section with shared page tables and 
use the same L3PTs to map the section. 

3.7.1 Creating Global Sections with $CRMPSC 
Requested to create or map a global section, the $CRMPSC system service procedure, 
EXE$CRMPSC, takes the following steps: 

I As described in Section 3.6.1.1, it initializes scratch space on the stack, determines 
the actual and useful ranges to be mapped, and tests the compatibility of the flags 
in the FLAGS argument.  It examines the FLAGS argument  to determine what  type 
of global section is to be created and what  further checks are required: 

If a global section is to be mapped and the requestor specified a value for the 
RELPAG argument,  the RETADR argument  must  also have been specified. 

If a PFN-mapped section or global page-file section is to be created, the CHAN 
argument  should not be present. 
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- -  If a section file section is to be created, the CHAN argument must  be present, 
the file must have been opened, and the WCB must  map the entire file. If the 
section already exists, the CHAN argument need not be present. 

If the section is to be copy-on-reference, EXE$CRMPSC sets bit MMG$V_ 
CHGPAGFIL in MMG$L_MMG_FLAGS. 

2. It locks the GSD mutex for write access, raising IPL to 2. The GSD mutex syn- 
chronizes access to both the systemwide and group GSD lists. 

3. EXE$CRMPSC calls MMG$DALCSTXSCN1 (see Section 3.9.2) to check the global 
(system) section table for any sections to be deleted. 

4. It calls MMG_STD$GSDSCAN, in module SYSDGBLSC, to find the GSD, if any, 
that  corresponds to the GSDNAM argument. MMG_STD$GSDSCAN attempts 
logical name translation of the GSDNAM argument, as described in the Open VMS 
Programming Concepts Manual. If the translation fails, it uses the string specified 
by the service requestor as the global section name. 

MMG_STD$GSDSCAN scans the group or systemwide GSD list, depending on the 
type of section. In scanning the group list, it first compares the current security 
persona's UIC group code with the high word of GSD$L_PCBUIC. If they are 
equal, it then compares the global section names. Because a character string 
comparison is relatively lengthy, the routine first confirms that  one is necessary by 
requiring that  the hash values and the character string lengths be the same for the 
target section name and the one in the candidate GSD. If they are not the same, 
the global section names cannot be. 

If the names match, MMG_STD$GSDSCAN checks the match control information 
specified in the IDENT argument against GSD$L_IDENT. If there is a version 
incompatibility, MMG_STD$GSDSCAN continues to scan the list until it reaches 
the end or finds a match. 

Multiple versions of a global section with different version identifications and 
match control information can be installed. If a newer one were installed last and 
had match control specifying upward compatibility (match less or equal), it could 
be used with executables linked against it or earlier versions. If it had match 
control specifying no upward compatibility (match equal), an executable linked 
against an earlier version would not match; EXE$CRMPSC would continue to scan 
the list and find the earlier one. 

5. If MMG_STD$GSDSCAN locates a matching GSD, EXE$CRMPSC is being re- 
quested to map to an existing section, and it transfers control to EXE$MGBLSC, 
at step 7 in the description in Section 3.8.1. 

6. If no match is found, EXE$CRMPSC is being requested to create a new section. It 
calls MMG_STD$SEC_PRIVCHK, in module SYSCRMPSC, to check whether the 
current security persona has the privileges necessary to create the type of section 
specified by its FLAGS argument and, if not, unlocks the GSD mutex and returns 
the error status SS$_NOPRIV. 
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EXE$CRMPSC allocates paged pool for a GSD. The size of the GSD depends on 
whether the global section is PFN-mapped. If pool is unavailable, it unlocks the 
GSD mutex and returns the error status SS$_GSDFULL. 

It begins to initialize the GSD, copying the section name to GSD$T_GSDNAM, 
storing the hash value in GSD$L_HASH, and clearing GSD$L_IPID. 

If the section is PFN-mapped, EXE$CRMPSC clears GSD fields irrelevant to this 
type of section and copies the VBN argument to GSD$L_BASEPFN, the section 
name to GSD$T_PFNGSDNAM, and the contents of the PAGCNT argument to 
GSD$L_PAGES. (Note that for a PFN-mapped section, the PAGCNT argument 
specifies a number of pages, not pagelets.) 

EXE$CRMPSC initializes GSD$L_FLAGS from the section flags and access mode. 

EXE$CRMPSC calls MMG$INIT_ORB, in module SYSCRMPSC, which takes the 
following steps: 

a. It stores the current security persona's UIC in GSD$L_PCBUIC and clears 
GSD$L_FILUIC. 

b. It sets GSD$L_PROT to FFFF16, a no-access protection mask. Protection 
information in the object rights block (ORB) is used instead of GSD$L_PROT. 

c. If the section is to map a file, MMG$INIT_ORB stores the address of the ORB 
associated with the open file in GSD$L_ORB. If there is no ORB associated 
with the file, MMG$INIT_ORB returns the error status SS$_ABORT. Oth- 
erwise, MMG$INIT_ORB copies ORB$L_OWNER into GSD$L_FILUIC and 
initializes the ACL mutex in the ORB. 

If the section is a PFN-mapped or global page-file section, MMG$INIT_ORB 
allocates an ORB from paged pool and initializes it, copying the current 
security persona's UIC to ORB$L_OWNER; bits from the PROW argument to 
ORB$L_SYS_PROT, ORB$L_GRP_PROT, ORB$L_OWN_PROT, and ORB$L_ 
WOR_PROT; and the current security persona's class information, if any, 
to ORB$R_MIN_CLASS and ORB$R_MAX_CLASS. If pool for the ORB is 
unavailable, MMG$INIT_ORB returns the error status SS$_INSFMEM. 

If MMG$INIT_ORB returns an error status, EXE$CRMPSC deallocates the GSD, 
unlocks the GSD mutex, and returns the error status to the system service re- 
questor. 

EXE$CRMPSC initializes GSD$L_IDENT from the IDENT argument. 

If the section is PFN-mapped, EXE$CRMPSC continues with step 26. 

Otherwise, it allocates a GSTE from the system header. If none is available, it 
deallocates the ORB and GSD, unlocks the mutex, and returns the error status 
SS$_SECTBLFUL. 

160 



16. 

17. 

18. 

19. 

20. 

21. 

22. 

23. 

24. 

25. 

26. 

3.7 Global Section Creation and Mapping 

EXE$CRMPSC takes most of the same steps to initialize a GSTE as for a PSTE 
(see steps 10a through 10i in Section 3.6.1.1). One additional step required for 
a global section is making the WCB a "shared" one if it is not already. This 
chiefly involves returning the byte count quota charged for it to the appropriate 
job, setting WCB$V_SHRWCB in WCB$B_ACCESS, and incrementing WCB$L_ 
REFCNT to indicate one more reason the file should not be closed. 

Also, between clearing the virtual page index and setting the section reference 
count to 1, it executes a memory barrier instruction. The memory barrier ensures 
that  another processor cannot see a nonzero reference count without also seeing 
a zero virtual page index. The zero virtual page index prevents the section table 
entry from being used to map a global section before it is fully initialized. 

It stores the GSTE index in GSD$L_GSTX. 

If the section is a section file section rather than a global page-file section, it copies 
the file owner UIC to GSD$L_FILUIC. 

If the section is a global page-file section, it updates MMG$GL_GBLPAGFIL, the 
number of pages of page file that  can be used for this purpose, to reflect any change 
in the dynamic SYSGEN parameter GBLPAGFIL. It subtracts the section's page 
count from MMG$GL_GBLPAGFIL. 

If mapping this section would exceed the allowed global page file count, 
EXE$CRMPSC deallocates the GSD, ORB, and GSTE; unlocks the mutex; and 
returns the error status SS$_EXGBLPAGFIL. 

It converts the number of pagelets in the section to pages and allocates a set of 
contiguous GPTEs, one for each global page plus two additional GPTEs, one at the 
beginning of the set and one at the end. The two additional GPTEs are cleared to 
serve as stoppers, limits to modified page write clustering (see Chapter 4). 

If there are insufficient GPTEs, EXE$CRMPSC deallocates the data structures it 
built, restores the page file charge, unlocks the mutex, and returns the error status 
SS$_GPTFULL. 

It zeros the beginning stopper GPTE and calculates the virtual page number of the 
second GPTE (skipping the stopper GPTE) and stores that  in SEC$L_VPX. 

It forms template PTE contents for the GPTEs (see Figure 2.26). 

It then loops, initializing GPTEs with the template PTE contents. 

If necessary, it sets PTE$V_PARTIAL_SECTION in the highest GPTE to indicate 
that  the page will be only partly occupied by global section data. 

It zeros the end stopper GPTE. 

It inserts the GSD at the front of the group or systemwide list, enabling a more 
recently installed global section to supersede an earlier one (see step 4). 
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27. The global section has been created. It transfers control to EXE$MGBLSC (at step 
11 in the description in Section 3.8.1) to map it into the process's virtual address 
space as an existing section. 

3.7.2 $CREATE_GFILE System Service 
The Create Permanent  Global Disk File Section ($CREATE_GFILE) system service 
procedure, EXE$CREATE_GFILE in module SYS_GBLSEC_64, runs in kernel mode. 

EXE$CREATE_GFILE takes the following steps" 

1. In addition to making the checks described in Section 3.1.2, it validates its argu- 
ments as follows: 

a. If the FAULT_CLUSTER argument  was specified, it rounds it up to an integral 
number  of pages. 

b. It checks the FLAGS argument  to confirm that  

SEC$V_DZRO and SEC$V_CRF are not both specified 

If SEC$V_DZRO is set, SEC$V_WRT is as well 

If any condition is false, it returns the error status SS$_IVSECFLG. Otherwise, 
it sets the flags SEC$V_PERM and SEC$V_GBL in case they were clear. It 
stores the maximized access mode in SEC$V_AMOD. If the section is writable, 
the mode allowed to read determines the mode allowed to write. 

2. It calls local routine $CREATE_GFILE_INT (see Section 3.7.3) to create the 
section. EXE$CREATE_GFILE returns any error status to its requestor. 

3. If $CREATE_GFILE_INT returns SS$_NORMAL, the section already exists and 
was not created. EXE$CREATE_GFILE locks the GSD mutex, raising IPL to 2; 
decrements the section reference count, which had been incremented; and unlocks 
the mutex. It returns SS$_DUPLNAM to its requestor. 

4. EXE$CREATE_GFILE calls MMG_STD$CHKPRO_AUDIT, in module 
SYSCRMPSC, to check whether the current security persona's creation of the 
global section needs to be audited. 

5. EXE$CREATE_GFILE calls MMG_STD$DELGBLWCB (see Section 3.9.4) to close 
any open files associated with temporary global sections whose reference counts 
have gone to zero and to delete their WCBs. 

6. If an audit is necessary, EXE$CREATE_GFILE lowers IPL to 0 and performs the 
actual audit of the global section creation. 

7. It acquires the MMG spinlock, decrements the section reference count, which had 
been incremented, and releases the spinlock. It returns SS$_CREATED to its 
requestor if the section was created or an error status from MMG_STD$CHKPRO_ 
AUDIT. 
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3.7.3 $CREATE_GFILE_INT Routine 
$CREATE_GFILE_INT, in module SYS_GBLSEC_64, performs much of the work of 
the $CREATE_GFILE and $CRMPSC_GFILE_64 system services. 

It takes the following steps: 

. It checks that  the FILE_OFFSET_64 and LENGTH_64 arguments  are multiples of the 
size of a disk block, returning the error status SS$_OFF_NOTBLKALGN or SS$_ 
LEN_NOTBLKMULT if not. 

, It confirms that  the specified channel has been assigned; that  its associated device 
is directory-structured, files-oriented, and random access; and that  a file is open 
on the channel. In case of error, it returns the error status SS$_NOTFILEDEV, 
SS$_IVCHNLSEC, or SS$_IVCHAN. 

, If the WCB does not map the entire file, $CREATE_GFILE_INT remaps the file 
with a cathedral WCB (see Section 3.5). It copies the end-of-file virtual block 
number from the file control block to MMG$L_EFBLK. 

4. It locks the GSD mutex for write, raising IPL to 2. 

5. It calls MMG_STD$DALCSTXSCN (see Section 3.9.2) to check the global (system) 
section table for any sections to be deleted. 

6. It calls MMG_STD$GSDSCAN (see Section 3.7.1) to find the GSD, if any, tha t  
corresponds to the GSDNAM argument.  

7. If MMG_STD$GSDSCAN returns an error status other than SS$_NOSUCHSEC, 
$CREATE_GFILE_INT unlocks the mutex, calls MMG_STD$DELGBLWCB (see 
Section 3.9.4) to close any open files associated with temporary global sections 
whose reference counts have gone to zero and to delete their WCBs, and returns 
the error status to its caller. 

, Otherwise, $CREATE_GFILE_INT checks that  the global section ident is positive 
and, if not, unlocks the mutex, calls MMG_STD$DELGBLWCB, and returns the 
error status SS$_IVSECIDCTL to its caller. 

, If the section already exists, it checks whether the section is a PFN-mapped, 
page-file, or memory-resident section and, if so, unlocks the mutex, calls MMG_ 
STD$DELGBLWCB, and returns the error status SS$_GBLSEC_MISMATCH. 

It checks that  the requesting access mode is allowed to map the section and, if not, 
unlocks the mutex, calls MMG_STD$DELGBLWCB, and returns the error status 
SS$_NOPRIV. 

It determines the address of the GSTE, acquires the MMG spinlock, and incre- 
ments SEC$L_REFCNT to prevent section deletion. It releases the MMG spinlock. 
With the section's deletion blocked, $CREATE_GFILE_INT can safely unlock the 
GSD mutex. It returns SS$_NORMAL to its caller. 

163 



Memory Management System Services 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

21. 

22. 

If the section does not already exist, it calls MMG_STD$SEC_PRIVCHK, in module 
SYSCRMPSC, to check whether the current security persona has the privileges 
necessary to create a section file global section and, if not, unlocks the mutex, calls 
MMG_STD$DELGBLWCB, and returns the error status SS$_NOPRIV. 

It allocates paged pool for a GSD. If pool is unavailable, it unlocks the GSD mutex, 
calls MMG_STD$DELGBLWCB, and returns the error status SS$_GSDFULL. 

It initializes the GSD, copying the section name to GSD$T_GSDNAM, storing the 
hash value in GSD$L_HASH, and clearing GSD$L_IPID. It initializes GSD$L_ 
FLAGS from the section flags and access mode. 

It calls MMG_STD$INIT_ORB (see Section 3.7.1) to allocate and initialize an 
ORB that  describes the protection on the GSD. If it returns an error status, 
$CREATE_GFILE_INT deallocates the GSD, unlocks the mutex, calls MMG_ 
STD$DELGBLWCB, and returns the error status to its caller. 

It checks whether the IDENT_64 argument is greater than SEC$K_MATLEQ 
and, if so, deallocates the GSD and ORB, unlocks the mutex, calls MMG_ 
STD$DELGBLWCB, and returns the error status SS$_IVSECIDCTL to its caller. 

It allocates a GSTE from the system header. If none is available, it deallocates the 
GSD and ORB, unlocks the mutex, calls MMG_STD$DELGBLWCB, and returns 
the error status SS$_SECTBLFUL. 

$CREATE_GFILE_INT takes most of the same steps to initialize a GSTE as for 
a PSTE for a process section (see steps 10a through 10i in Section 3.6.1.1). One 
additional step required for a global section is making the WCB a shared one if it 
is not already. This chiefly involves returning the byte count quota charged for it 
to the appropriate job, setting the bit WCB$V_SHRWCB in WCB$B_ACCESS, and 
incrementing WCB$L_REFCNT to indicate one more reason the file should not be 
closed. 

It stores the GSTE index in GSD$L_GSTX. 

It copies the section flags from the GSD to the GSTE. 

It copies the file owner UIC to GSD$L_FILUIC. 

It calculates the number of pages to be mapped based on the LENGTH_64 argument 
and actual number of blocks in the section file to be mapped. 

It sanity checks that  the number of pages can be represented as a positive 32-bit 
number and, if not, returns SS$_GPTFULL to its caller. 

It allocates a set of contiguous GPTEs, one for each global page plus two additional 
GPTEs, one at the beginning of the set and one at the end. The two additional 
GPTEs are cleared and serve as stoppers, limits to modified page write clustering 
(see Chapter 4). 

If there are insufficient GPTEs, $CREATE_GFILE_INT unlocks the mutex, deallo- 
cates the data structures it built, calls MMG_STD$DELGBLWCB, and returns the 
error status SS$_GPTFULL. 
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It updates performance cells (PMS$GL_GBLPAGCNT and PMS$GL_ 
GBLPAGMAX). 

It zeros the beginning stopper GPTE and calculates the virtual page number of the 
second GPTE (skipping the stopper GPTE) and stores that  in SEC$L_VPX. 

It forms template PTE contents for the GPTEs (see Figure 2.26). 

It then loops, initializing GPTEs with the template PTE. 

If necessary, it sets PTE$V_PARTIAL_SECTION in the highest GPTE to indicate 
that  the page will be only partly occupied by global section data. 

It zeros the end stopper GPTE. 

It inserts the GSD at the front of the group or systemwide list. 

It unlocks the mutex and returns SS$_CREATED to its caller. 

3.7.4 $CRMPSC_GFILE_64 System Service 
The Create and Map Global Disk File Section ($CRMPSC_GFILE_64) system service 
procedure, EXE$CRMPSC_GFILE_64 in module SYS_GBLSEC_64, runs in kernel 
mode. 

EXE$CRMPSC_GFILE_64 takes the following steps" 

1. It validates the arguments with which it was requested, making the same checks 
as EXE$CREATE_GFILE (see Section 3.7.2), with the following additions" 

- -  If the START_VA_64 argument was omitted or contains zero, and the flag SEC$V_ 
EXPREG was clear, it returns the error status SS$_IVSECFLG. 

- -  It checks that  the START_VA_64 is aligned on a page boundary, returning the 
error status SS$_VA_NOTPAGALGN if not. 

- -  It checks that  the SECTION_OFFSET_64, LENGTH_64, and MAP_LENGTH_64 argu- 
ments are multiples of the size of a disk block, returning the error status SS$_ 
OFF_NOTBLKALGN or SS$_LEN_NOTBLKMULT if not. 

2. It sets the flag SEC$V_GBL in case it was clear. 

3. It calls local routine $CREATE_GFILE_INT (see Section 3.7.3) to create the section 
if it does not exist. EXE$CRMPSC_GFILE_64 returns any error status to its 
requestor. 

4. It calls MMG_STD$CHKPRO_AUDIT to check access to the file. 

5. If access is allowed, EXE$CRMPSC_GFILE_64 determines how much of the section 
to map: if the MAP_LENGTH_64 argument was omitted, it calculates the difference 
between the length of the created section and the SECTION_OFFSET_64 argument. It 
calls $MGBLSC GFILE_INT (see Section 3.8.2.1) to map the section. 

6. EXE$CRMPSC_GFILE_64 acquires the MMG spinlock, decrements the section 
reference count, which had been incremented, and releases the spinlock. 

165 



Memory Management System Services 

7. If the section was created, it records peak page file use and virtual size statistics, 
and stores return information in the RETURN_VA_64 argument.  

8. It returns to its requestor the status from $CREATE_GFILE_INT or, if there  was a 
mapping error, the error status from $MGBLSC_GFILE_INT. 

3.7.5 $CREATE_GPFILE System Service 
The Create Permanent  Global Page File Section ($CREATE_GPFILE) system service 
is requested to create a demand zero global section whose backing store is the page 
file. The requestor specifies section name, ident, length, access mode, and section 
flags. Section protection is specified by the requestor ra ther  than being derived from 
a section file. The requestor does not open a section file so does not specify channel 
number  or offset into the file. The requestor does not specify page fault cluster; its 
value is determined by the SYSGEN parameter  PFCDEFAULT. 

The $CREATE_GPFILE system service procedure, EXE$CREATE_GPFILE in module 
SYS_GBLSEC_64, runs in kernel mode. It resembles EXE$CREATE_GFILE (see 
Section 3.7.2), with the following major differences: 

There are no output arguments  to validate. 

There is no need to check the channel argument  or remap the section file. 

The section flags set automatically by EXE$CREATE_GPFILE are SEC$V_PERM, 
SEC$V_GBL, SEC$V_DZRO, SEC$V_WRT, and SEC$V_PAGFIL. 

It calls $CREATE_GPFILE_INT (see Section 3.7.6). 

3.7.6 $CREATE_GPFILE_INT Routine 
$CREATE_GPFILE_INT, in module SYS_GBLSEC_64, performs much of the work of 
the $CREATE_GPFILE and $CRMPSC_GPFILE_64 system services. 

It resembles $CREATE_GFILE_INT (see Section 3.7.3), with the following major 
differences: 

�9 If a global section has already been created with matching name and ident, it 
must  be a page file section for a successful match. If not, $CREATE_GPFILE_INT 
returns the error status SS$_GBLSEC_MISMATCH. 

�9 The GSTE is initialized with a zero SEC$L_WINDOW. 

�9 If the system manager  has changed SYSGEN parameter  GBLPAGFIL, $CREATE_ 
GPFILE_INT records the new value in MMG$GL_LAST_GBLPAGFIL and updates 
MMG$GL_GBLPAGFIL, the number of available pages of global page file, by the 
difference between the old and new value. 

�9 It checks that  there are enough available pages of global page file for the new 
global section, returning SS$_EXGBLPAGFIL to its caller if not. 

�9 It charges the section's pages against MMG$GL_GBLPAGFIL. 
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* The prototype GPTE has its type 0 and type I bits clear (see Figure 2.26). 

3.7.7 $CRMPSC_GPFILE_64 System Service 
The Create and Map Global Page File Section ($CRMPSC_GPFILE_64) system service 
is requested to create a demand zero global section whose backing store is the page 
file and map to it. The requestor specifies section name, ident, length, access mode, 
and section flags. Section protection is specified by the requestor rather  than being 
derived from a section file. The requestor does not open a section file so does not 
specify channel number or offset into the file. The requestor does not specify page 
fault cluster; its value is determined by the SYSGEN parameter PFCDEFAULT. 

The $CRMPSC_GPFILE_64 system service procedure, EXE$CRMPSC_GPFILE_64 in 
module SYS_GBLSEC_64, runs in kernel mode. It resembles EXE$CRMPSC_GFILE_ 
64 (see Section 3.7.4), with the following major differences: 

There is no need to check the channel argument or remap the section file. 

The section flags set automatically by EXE$CRMPSC_GPFILE_64 are SEC$V_ 
GBL, SEC$V_DZRO, SEC$V_WRT, and SEC$V_PAGFIL. 

EXE$CRMPSC_GPFILE_64 checks that the START_VA_64 and SECTION_OFFSET_64 
arguments are page-aligned, returning the error status SS$_VA_NOTPAGALGN or 
SS$_OFF_NOTPAGALGN if not. It checks that  the LENGTH_64, and MAP_LENGTH_ 
64 arguments are page multiples, returning SS$_LEN_NOTPAGMULT if not. 

It calls $CREATE_GPFILE_INT and $MGBLSC_GPFILE_INT (see Sections 3.7.6 
and 3.8.2.2). 

3.7.8 $CREATE_GPFN System Service 
The Create Permanent Global Page Frame Section ($CREATE_GPFN) system service 
is requested to create a PFN-mapped global section with no backing store. The re- 
questor specifies section name, ident, protection, length, access mode, starting PFN, 
and section flags. The requestor has not opened a section file to be mapped so does 
not specify a channel argument or file offset. The requestor does not specify page fault 
cluster; such a section incurs no page faults. 

The $CREATE_GPFN system service procedure, EXE$CREATE_GPFN in module 
SYS_GPFN_64, runs in kernel mode. 

EXE$CREATE_GPFN takes the following steps: 

~ In addition to making the checks described in Section 3.1.2, it validates its argu- 
ments as follows: 

a ~  It sets the flags SEC$V_PFNMAP, SEC$V_PERM, and SEC$V_GBL in the 
FLAGS argument in case they were clear. 
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b. It checks that  the PAGE_COUNT argument  is nonzero and is smaller than  the 
maximum amount of physical memory, and that  the start ing and ending PFNs 
can be expressed with 32 bits, returning the error status SS$_ILLPAGCNT if 
any test fails. 

c. It checks that  the protection code is valid, re turning SS$_IVPROTECT if not. 

d. If SEC$V_WRT was specified in the FLAGS argument  and if this system is a 
Galaxy instance, it checks whether  this is a request to map instance-private 
memory. If not, it returns the error status SS$_INVPFN; only private memory 
can be PFN-mapped writable. 

It calls local routine $CREATE_GPFN_INT (see Section 3.7.9) to create the section. 
EXE$CREATE_GPFN returns any error status to its requestor. 

If $CREATE_GPFN_INT returns SS$_NORMAL, the section already exists and 
was not created. EXE$CREATE_GPFN locks the GSD mutex, decrements GSD$L_ 
REFCNT, which had been incremented, and unlocks the mutex. It returns SS$_ 
DUPLNAM to its requestor. 

EXE$CREATE_GPFN calls MMG_STD$CHKPRO_AUDIT to audit the section 
creation. 

EXE$CREATE_GPFN locks the GSD mutex, decrements GSD$L_REFCNT, which 
had been incremented, and unlocks the mutex. It returns SS$_CREATED to its 
requestor. 

3.7.9 $CREATE_GPFN_INT Routine 
$CREATE_GPFN_INT, in module SYS_GPFN_64, performs much of the work of the 
$CREATE_GPFN and $CRMPSC_GPFN_64 system services. 

It takes the following steps: 

1. It locks the GSD mutex for write, raising IPL to 2. 

2. It calls MMG_STD$DALCSTXSCN1 (see Section 3.9.2) to check the global (system) 
section table for any sections to be deleted. 

3. It calls MMG_STD$GSDSCAN (see Section 3.7.1) to find the GSD, if any, that  
corresponds to the GSDNAM argument.  

4. If MMG_STD$GSDSCAN returns an error status other than SS$_NOSUCHSEC, 
$CREATE_GPFN_INT unlocks the mutex and returns the error status to its caller. 

5. Otherwise, $CREATE_GPFN_INT performs an additional sanity check on the 
global section ident: it confirms that  the ident is positive and, if not, unlocks the 
mutex and returns the error status SS$_IVSECIDCTL to its caller. 

6. If the section already exists, it checks whether  the section is a PFN-mapped 
section and, if not, unlocks the mutex and returns the error status SS$_GBLSEC_ 
MISMATCH. 
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It checks that  the requesting access mode is allowed to map the section and, if not, 
unlocks the mutex and returns the error status SS$_NOPRIV. 

Otherwise, it increments GSD$L_REFCNT to prevent section deletion. With the 
section's deletion blocked, $CREATE_GPFN_INT can safely unlock the GSD mutex. 
It returns SS$_NORMAL to its caller. 

If the section does not already exist, $CREATE_GPFN_INT calls MMG_STD$SEC_ 
PRIVCHK, in module SYSCRMPSC, to check whether the current security per- 
sona has the privileges necessary to create the type of section specified by its 
FLAGS argument and, if not, unlocks the mutex and returns the error status SS$_ 
NOPRIV. 

It allocates paged pool for an extended GSD. If pool is unavailable, it unlocks the 
GSD mutex and returns the error status SS$_GSDFULL. 

It initializes the GSD, copying the section name to GSD$T_GSDNAM, storing 
the hash value in GSD$L_HASH, and clearing GSD$L_IPID. It clears GSD fields 
irrelevant to this type of section and copies the START_PFN argument to GSD$L_ 
BASEPFN, the section name to GSD$T_PFNGSDNAM, and the contents of the 
PAGE_COUNT argument to GSD$L_PAGES. It initializes GSD$L_FLAGS from the 
section flags and access mode. 

It calls MMG_STD$INIT_ORB (see Section 3.7.1) to allocate and initialize an ORB 
that describes the protection on the GSD. If it returns an error status, $CREATE_ 
GPFN_INT deallocates the ORB and GSD, unlocks the mutex, and returns the 
error status to its caller. 

It checks that  the IDENT_64 argument is greater than SEC$K_MATLEQ and, if not, 
deallocates the GSD and ORB, unlocks the mutex, and returns the error status 
SS$_IVSECIDCTL to its caller. 

Otherwise, it increments GSD$L_REFCNT to prevent section deletion, unlocks the 
mutex, and returns the success status SS$_CREATED to its caller. 

3.7.10 $CRMPSC_GPFN_64 System Service 
The Create and Map Global Page Frame Section ($CRMPSC_GPFN_64) system service 
is requested to create and map a PFN-mapped global section. The requestor specifies 
section name, ident, protection, first PFN to be mapped, region ID, relative page 
number, number of pages in the section, access mode, number of pages to be mapped, 
and section flags. 

The $CRMPSC_GPFN_64 system service procedure, EXE$CRMPSC_GPFN_64 in 
module SYS_GPFN_64, runs in kernel mode. 

EXE$CRMPSC_GPFN_64 takes the following steps: 

169 



Memory Management System Services 

1. It validates the arguments with which it was requested, making the same checks 
as EXE$CREATE_GPFN (see Section 3.7.8), with the following additions: 

- -  If the START_VA 64 argument was omitted and the flag SEC$V_EXPREG was 
clear, EXE$CRMPSC_GPFN_64 returns the error status SS$_IVSECFLG. 

- -  It tests the accessibility of the region ID argument, returning the error status 
SS$_ACCVIO if it is not accessible. 

- -  It checks that  the START_VA_64 is aligned on a page boundary, returning the 
error status SS$_VA_NOTPAGALGN if not. 

2. It calls $CREATE_GPFN_INT (see Section 3.7.9) to create the global section. If it 
returns an error status, EXE$CRMPSC_GPFN_64 returns the error status to its 
requestor. 

3. Otherwise, it calls $MGBLSC_GPFN_INT (see Section 3.8.3.1) to perform the 
mapping. 

4. EXE$CRMPSC_GPFN_64 locks the GSD mutex for write, decrements the extra 
section reference added by $CREATE_GFPN_INT, and unlocks the mutex. 

5. If the mapping succeeded, it records peak virtual size statistics, and stores return 
information in the RETURN_VA_64 and RETURN_LENGTH_64 arguments. If the output 
arguments are inaccessible, it returns SS$_ACCVIO to its requestor. 

6. Otherwise, it returns to its requestor the status from $MGBLSC_GPFN_INT. 

3.7.11 $CREATE_GDZRO System Service 
The Create Permanent Global Demand Zero Section ($CREATE_GDZRO) system 
service is requested to create a permanent, memory-resident, demand zero global 
section without backing store, either in local memory or in Galaxywide shared memory. 

The requestor specifies section name, ident, length, access mode, and section flags. 
Section protection is specified by the requestor rather  than being derived from a 
section file. Optionally, the requestor can specify in which resource affinity domain 
(RAD) the system service should create the global section. 

The $CREATE_GDZRO system service procedure, EXE$CREATE_GDZRO in module 
SYS_GDZRO_64, runs in kernel mode. It resembles EXE$CREATE_GPFN (see Section 
3.7.8), with the following major differences" 

If the requestor specified a RAD, EXE$CREATE_GDZRO checks that  RAD support 
is enabled and returns error status SS$_BADRAD if not. If RAD support is 
enabled, it checks that the requestor specified a single RAD and one that  actually 
exists, returning SS$_BADRAD if not. 

It sets the flags SEC$V_DZRO, SEC$V_PERM, SEC$V_WRT, SEC$V_GBL, and 
SEC$V_MRES in case they were clear. 

If the request is to create a Galaxywide section (if SEC$V_SHMGS is set), it checks 
that  the service was requested from IPL 0, returning SS$_BADPARAM if not. 
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If the request is to create a memory-resident section, it calls $CREATE_GDZRO_ 
INT (see Section 3.7.12). 

If the request is to create a Galaxywide section, it calls $CREATE_SHMGS_INT 
(see Section 3.7.13). 

It returns the number  of bytes tha t  had been reserved for the global section in 
argument  RESERVED_LENGTH_64, if present. 

3.7.12 $CREATE_G DZRO_INT Routine 
$CREATE_GDZRO_INT, in module SYS_GDZRO_64, performs much of the work of 
the $CREATE_GDZRO and $CRMPSC_GDZRO_64 system services when either is 
requested to create a memory-resident section. 

It takes the following steps: 

1. If the requestor specified in which RAD the global section should be allocated, 
$CREATE_GDZRO_INT checks that  there is memory associated with that  RAD, 
returning error status SS$_BADRAD if not. 

2. It validates system service arguments,  as described in Section 3.1.2. 

3. It locks the GSD mutex for write, raising IPL to 2. 

4. It calls MMG_STD$DALCSTXSCN (see Section 3.9.2) to check the global (system) 
section table for any sections to be deleted. 

5. It calls MMG_STD$GSDSCAN (see Section 3.7.1) to find the GSD, if any, that  
corresponds to the GS_NAME_64 argument.  

6. If MMG_STD$GSDSCAN returns an error status other than SS$_NOSUCHSEC, 
$CREATE_GDZRO_INT unlocks the mutex and returns the error status to its 
caller. 

7. Otherwise, it checks that  the IDENT_64 argument  is positive and, if not, unlocks the 
mutex and returns the error status SS$_IVSECIDCTL to its caller. 

8. If the section already exists, it checks whether the section is a demand zero 
memory-resident or Galaxywide global section and, if not, unlocks the mutex and 
returns the error status SS$_GBLSEC_MISMATCH. 

It checks that  the requesting access mode is allowed to map the section and, if not, 
unlocks the mutex and returns the error status SS$_NOPRIV. 

Otherwise, it increments GSD$L_REFCNT to prevent section deletion. With the 
section's deletion blocked, it can safely unlock the GSD mutex. It returns SS$_ 
NORMAL to its caller. 

9. If the section does not already exist, $CREATE_GDZRO_INT calls MMG_ 
STD$SEC_PRIVCHK, in module SYSCRMPSC, to check whether the current 
security persona has the privileges necessary to create the type of section specified 
by its FLAGS argument  and, if not, unlocks the mutex and returns the error status 
SS$_NOPRIV. 
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10. If the section to be created is a memory-resident section, $CREATE_GDZRO_INT 
makes an additional check for the rights identifier VMS$MEM_RESIDENT_USER. 
If the persona does not hold this identifier, it unlocks the mutex and returns the 
error status SS$_NOMEMRESID. 

11. It allocates paged pool for a GSD. If pool is unavailable, it unlocks the GSD mutex 
and returns the error status SS$_GSDFULL. 

12. It initializes the GSD, copying the section name to GSD$T_GSDNAM, storing 
the hash value in GSD$L_HASH, and clearing GSD$L_IPID. It clears GSD fields 
irrelevant to this type of section and initializes GSD$L_FLAGS from the section 
flags and access mode. 

13. It checks that  the LENGTH_64 argument, converted to pagelets, fits within 32 bits 
and, if not, deallocates the GSD, unlocks the mutex, and returns the error status 
SS$_ILLPAGCNT. 

14. It checks that  the IDENT_64 argument is valid and, if not, deallocates the GSD, 
unlocks the mutex, and returns the error status SS$_IVSECIDCTL. 

15. $CREATE_GDZRO_INT allocates a GSTE from the system header. If none is 
available, it deallocates the GSD, unlocks the mutex, and returns the error status 
SS$_SECTBLFUL. 

Otherwise, it initializes the GSTE: 

a. It copies the FLAGS argument to SEC$L_FLAGS and sets section flag SEC$V_ 
WRT unless the section is a shared page table read-only section. 

b. It checks that  the number of pagelets to be mapped is nonzero and, if not, 
deallocates the GSTE and GSD, unlocks the mutex, and returns SS$_LEN_ 
NOTPAGMULT to its caller. 

c. It stores the number of pagelets to be mapped in SEC$L_UNIT_CNT. 

d. It clears SEC$L_WINDOW. 

e. It stores the section offset in the GSTE forward and backward links and clears 
SEC$L_VPX, the virtual page index. 

f. Before setting the section reference count to 1, $CREATE_GDZRO_INT exe- 
cutes a memory barrier instruction to ensure another processor cannot see a 
nonzero reference count without also seeing a zero virtual page index. The zero 
virtual page index prevents the section table entry from being used to map a 
global section while it is not fully initialized. 

g. It sets SEC$V_INPROG in SEC$L_FLAGS to indicate section initialization is 
in progress. 

16. $CREATE_GDZRO_INT copies the IDENT_64 argument to GSD$L_IDENT and 
initializes GSD$L_FLAGS from the section flags and access mode. 
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It calls MMG_STD$INIT_ORB (see Section 3.7.1) to allocate and initialize an ORB 
that  describes the protection on the GSD. If it returns an error status, $CREATE_ 
GDZRO_INT deallocates the ORB, GSD, and GSTE; unlocks the mutex; and 
returns the error status to its caller. 

It calls MMG_STD$USE_RES_MEM, in module MEM_ALLOC, iteratively to locate 
all the reserved memory descriptors (RMDs), if any, associated with this global 
section. A global section with memory reserved in multiple RADs has an RMD for 
each RAD. $CREATE_GDZRO_INT continues to call MMG_STD$USE_RES_MEM, 
accumulating reserved pages, until that  routine returns an error status. 

MMG_STD$USE_RES_MEM takes the following steps: 

a. If a matching RMD exists, but its pages are already in use, MMG_STD$USE_ 
RES_MEM returns the error status SS$_RESERVEDMEMUSED. 

b. If a matching RMD exists, its pages are not in use, and its pages were pre- 
allocated, it checks that  the requested page count is less than or equal to 
the number reserved, returning the error status SS$_MRES_PFNSMALL if 
not. Otherwise, it zeros the pages if they were not already zeroed, stores the 
requested page count in RMD$L_IN_USE_COUNT, sets RMD$V_IN_USE in 
RMD$L_FLAGS, and returns SS$_NORMAL and the address of the RMD. 

c. If a matching RMD exists but its pages were not preallocated, MMG_ 
STD$USE_RES_MEM compares the requested page count to the number 
reserved. If the request is larger, it checks whether the difference would 
reduce the system fluid page count (PFN$GL_PHYPGCNT) too much and re- 
turns the error status SS$_INSFLPGS if so. Otherwise, it reduces the fluid 
page count by the requested page count, stores the requested page count in 
RMD$L_IN_USE_COUNT, sets RMD$V_IN_USE in RMD$L_FLAGS, and 
returns SS$_NORMAL and the address of the RMD. 

d. If no matching RMD exists, the routine checks whether the requested page 
count would reduce the fluid page count too much and returns the error 
status SS$_INSFLPGS if so. Otherwise, it reduces the fluid page count by the 
requested page count and returns SS$_NORMAL. 

If MMG_STD$USE_RES_MEM returns SS$_RESERVEDMEMUSED but enough 
pages have been reserved for the global section, $CREATE_GDZRO_INT continues. 
Otherwise, $CREATE_GDZRO_INT returns any reserved memory, deallocates the 
GSD and GSTE, unlocks the mutex, and returns the error status to its caller. 

If MMG_STD$USE_RES_MEM returns any other error status, $CREATE_ 
GDZRO_INT returns any reserved memory, deallocates the GSD and GSTE, 
unlocks the mutex, and returns the error status to its caller. 

If the RMD pages were preallocated, $CREATE_GDZRO_INT sets SEC$V_MRES_ 
ALLOC in both the GSD and GSTE flags. 
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20. 

21. 

22. 

23. 

24. 

It calls MMG_STD$USE_RES_MEM again, this time to locate an RMD for shared 
page tables for the global section. MMG_STD$USE_RES_MEM takes the steps 
previously described, with the exception that it returns SS$_NORESERVEDMEM 
if there is no RMD for a shared page table reservation. 

If a shared page table RMD exists, $CREATE_GDZRO_INT allocates paged pool 
for a GSD to describe the shared page table global section. If the allocation fails, 
it calls MMG_STD$RETURN_RES_MEM, in module MEM_ALLOC, to indicate 
the memory is no longer being used, deallocates the GSD and GSTE, unlocks the 
mutex, and returns SS$_GSDFULL to its caller. 

Otherwise, $CREATE_GDZRO_INT initializes the shared page table global section 
GSD with information from the global section GSD. It sets SEC$V_SHARED_PTS 
and, if the system service FLAGS bit SEC$V_READ_ONLY_SHPT is clear, also 
sets SEC$V_WRT in the shared page table GSD$L_FLAGS. It copies the global 
section's SEC$V_RAD_HINT flag. It links the two GSDs together by storing the 
global section index of the global section in the shared page table GSD's GSD$L_ 
RELATED_GSTX. 

It checks that the global section and the shared page table global section are both 
preallocated or both not. If they differ, it calls MMG_STD$RETURN_RES_MEM, 
deallocates the GSDs and GSTE, unlocks the mutex, and returns SS$_MRES_ 
INCON to its caller. 

It allocates and initializes a GSTE for the shared page table global section and 
stores its index number in the global section's GSD$L_RELATED_GSTX. If the 
GSTE allocation fails, it calls MMG_STD$RETURN_RES_MEM to release any 
memory reserved for the global section or shared page table global section, deallo- 
cates the GSDs and GSTE, unlocks the mutex, and returns SS$_MRES_INCON to 
its caller. 

$CREATE_GDZRO_INT allocates enough GPTEs to map the global section plus 
two stopper GPTEs. If it is unable to allocate them, it calls MMG_STD$RETURN_ 
RES_MEM, deallocates the GSDs and GSTE, unlocks the mutex, and returns SS$_ 
GPTFULL to its caller. 

Otherwise, it calculates the global page table index corresponding to the first 
page of the section and records it in GSTE$L_VPX. It updates global page table 
performance cells, PMS$GL_GBLPAGCNT and PMS$GL_GBLPAGMAX. 

If there is an associated shared page table global section, it repeats the actions of 
the previous step in preparation for mapping that section. 

It allocates and initializes an $2 space L3PTE to map the shared page table pages 
one at a time so that it can initialize their L3PTEs. 

It zeros the first and last GPTEs allocated for the global section and initializes the 
rest of them: 

If this is a preallocated section, each GPTE is valid and contains the PFN 
associated with that page. If the reservation is described by multiple RMDs, 
$CREATE_GDZRO_INT stripes the allocation across the RMDs, allocating the 
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largest possible chunk in each tha t  is a granulari ty hint  multiple (512, 64, 8, 
or 1). It returns any unused memory. 

If the pages of the section are allocated on demand, each GPTE has its valid 
bit clear, and its type 0, type 1, write, and demand zero bits set. The GPTE 
contains the GSTE index and a type of PFN$C_GBLWRT. Figure 2.26 shows 
the format of the section table index form of GPTE. 

In the course of initializing GPTEs, $CREATE_GDZRO_INT increments PFN$L_ 
SHRCNT to 1 for the PFN occupied by the GPT page. If the section's pages 
are preallocated, it confirms that  the current  page type of each PFN is PFN$C_ 
UNKNOWN, generating the fatal bugcheck INCONMMGST if not. It also initial- 
izes the PFN database record of each PFN: 

PFN$L_SHRCNT is 1, and PFN$L_WSLX_QW is 0, that  is, a memory-resident 
page is not part  of any working set list. 

Page type is PFN$C_GBLWRT, and page state is PFN$C_ACTIVE. 

- -  PFN$Q_PTE_INDEX and PFN$L_PT_PFN describe the GPTE that  maps this 
page. 

PFN$W_REFCNT is 1. 

PFN$Q_BAK contains the index of the associated GSTE. 

25. If there is an associated shared page table global section, it repeats most of 
the actions of the previous step to map that  section, with the following major 
differences and additional actions: 

a. One difference is that  if the shared page table pages were not preallocated, 
$CREATE_GDZRO_INT must  allocate them and initialize their  PFN database 
records. If the allocation fails, it places the kernel thread into a free page wait 
until a free page is available. 

It records the allocated PFNs in the GPTEs that  map the shared page table 
section. Each GPTE has a set valid bit and a PFN; the rest of its fields are 
zero. The GPTEs simply record what  memory has been allocated; the shared 
page tables will eventually be mapped through process-private L2PTEs (see 
Section 3.8.2.3). 

b. $CREATE GDZRO_INT determines the page owner mode and protection bits 
to insert in the shared L3PTEs, based on the section's owner mode. 

c. It initializes PFN$W_PT_WIN_CNT in the PFN database record of each 
shared page table to 1 less than the number of shared L3PTEs in that  page, 
the number  of pages mapped by that  shared page table page. A value o f - 1  in 
PFN$W_PT_WIN_CNT represents a count of zero. 

d. It maps each shared page table temporarily in $2 space and initializes each of 
the L3PTEs in it. Each L3PTE contains protection and owner mode determined 
in step 2. If the memory-resident global section's pages are preallocated, each 
L3PTE contains the corresponding PFN and a set valid bit. If MMG$M_NO_ 
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MB is set in the MMG_CTLFLAGS SYSGEN parameter ,  it sets PTE$V_NO_ 
MB in each L3PTE. In addition, each L3PTE contains the granular i ty  hint  bits 
corresponding to the physical and vir tual  memory alignment.  If the memory- 
resident section's pages are not preallocated, each L3PTE contains a set type 0 
bit and the global section page index. 

It zeros any L3PTEs in the page table page tha t  do not map global section 
pages. 

e. It deallocates the $2 space L3PTE. 

26. It inserts the global section GSD onto the group or system list. 

27. It unlocks the GSD mutex. 

28. It re turns  SS$_CREATED or SS$_CREATED_SHPT to its caller, depending on 
whether  the section has an associated shared page table global section. 

3.7.13 $CREATE_SHMGS_INT Routine 
$CREATE_SHMGS_INT, in module SYS_GDZRO_64, creates a Galaxywide section. 
The $CREATE_GDZRO and $CRMPSC_GDZRO_64 system services call it when 
requested with flag SEC$V_SHMGS set. 

In contrast  to a memory-resident  global section, a Galaxywide section is not described 
by RMDs. Because the instances of a Galaxy do not necessarily share mass storage, a 
common reserved memory registry cannot be relied on. 

A Galaxywide global section must  be created on each instance from which a process 
will map to the section. Creating the section requires creating a Galaxywide shared 
memory region, initializing data  s tructures in shared memory to describe the region, 
and initializing global section data  s tructures to describe the section. If the shared 
memory region is larger than  127 pages, a second shared memory region is created for 
shared page tables. 

If the shared memory region has already been created by another  instance, $CREATE_ 
SHMGS_INT establishes this instance's connection to it and initializes the global 
section data  structures.  

$CREATE_SHMGS_INT takes the following steps: 

~ It checks tha t  the system is a Galaxy instance with shared memory support, 
re turning error s tatus SS$_INV_SHMEM if not. 

, It takes out an exclusive lock on a clusterwide resource whose name begins with 
the string "MMG$SEC_". If SEC$V_SYSGBL was not specified, the resource name 
includes the UIC group code of the current  security persona. 

This prevents multiple processes on one or more clustered Galaxy instances from 
creating a system Galaxywide section at the same time or more than  one process 
in the same UIC group from creating a group Galaxywide section at the same time. 

Subsequent  error re turns  dequeue the lock. 
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3. $CREATE_SHMGS_INT takes the same steps as $CREATE_GDZRO_INT to 
validate service arguments and to create a GSD and GSTE (see steps 1 through 17 
in Section 3.7.12). 

4. It allocates enough GPTEs to map the section pages and two stopper pages. If 
there are insufficient free GPTEs and the global page table cannot be expanded, it 
releases all resources and returns the error status SS$_GPTFULL. 

5. It faults in the global page table pages. 

6. It calculates the G F I ~  corresponding to the first GPTE and records it in SEC$L_ 
VPX. 

7. It updates global page table performance cells, PMS$GL_GBLPAGCNT and 
PMS$GL_GBLPAGMAX. 

8. It calls GLX$SHM_REG_CREATE, in module [GALAXY]GLX_SHM_REG, to cre- 
ate a shared memory region, preferably in the RAD, if any, specified on the call 
to $CREATE_SHMGS_INT. The region's name is the string "GLX$', concate- 
nated with the global section name, $, and either the string "SYSGBL" or the 
hexadecimal representation of the UIC group code. 

If another Galaxywide shared memory region of the same name but different 
ident or different access mode already exists, $CREATE_SHMGS_INT releases 
all resources, and returns error status SS$_DUPLNAM, SS$_IDMISMATCH, or 
SS$_WRONGACMODE to its caller. 

If a region of the same name and characteristics but a different length exists, 
$CREATE_SHMGS_INT deallocates the GPTEs, reallocates GPTEs for the existing 
length, faults them into memory again, and recalls GLX$SHM_REG_CREATE. 

GLX$SHM_REG_CREATE initializes the GPTEs as writable invalid transition 
PTEs. Each physical page will be zeroed later when it is first referenced. 

9. $CREATE_SHMGS_INT initializes the GSD and GSTE to reflect the access mode, 
ident, and flags of the actual Galaxywide section, which may have been created by 
another instance. It sets SEC$V_MRES_ALLOC in both the GSD and GSTE flags. 

10. It temporarily maps a page of P1 space to the first physical page of the Galaxywide 
section. This will serve as a signal to image rundown that  the process has begun 
to map this section. The signal is necessary because $CREATE_SHMGS_INT must  
drop IPL to 0, leaving the process vulnerable to deletion. 

11. It unlocks the GSD mutex, lowers IPL to 0, and calls EXE$DISTRIBUTE_ 
PROFILE, in module SYSOBJSUB, either to create an ORB for the section on 
this instance based on its already defined security profile or to propagate the 
security profile of a newly created section to the other Galaxy instances in the 
cluster. 

12. It relocks the GSD mutex for write, raising IPL to 2, and unmaps the P1 space 
page. 
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13. If the section is larger than 127 pages, $CREATE_SHMGS_INT creates a shared 
page table section to map the Galaxywide global section: 

a. It allocates paged pool for a shared page table section GSD. If pool is not 
available, it continues with step 14: the Galaxywide section exists but must  be 
mapped by private page tables on this instance. 

b. It initializes the GSD by copying information from the Galaxywide section 
GSD and from its arguments. It sets SEC$V_SHARED_PTS and, if the flags 
argument bit SEC$V_READ_ONLY_SHPT is clear, also sets SEC$V_WRT in 
the shared page table GSD$L_FLAGS. It stores the Galaxywide section's index 
in the shared page table GSD$L_RELATED_GSTX. 

c. It temporarily allocates an $2 L3PTE to map a page of shared page table 
during initialization. 

d. $CREATE_SHMGS_INT allocates and initializes a GSTE to describe the 
shared page table section. If allocation fails, it deallocates the shared page 
table GSD and continues with step 14. 

e. It allocates GPTEs to map the shared page table section plus two stoppers. If 
allocation fails, it deallocates the shared page table section's GSD and GSTE 
and continues with step 14. It updates global page table performance cells, 
PMS$GL_GBLPAGCNT and PMS$GL_GBLPAGMAX. 

f. It touches each global page table page that  maps the shared page table section 
to fault it into memory. 

g. It calls GLX$SHM_REG_CREATE to create a shared memory region, prefer- 
ably in the RAD, if any, specified on the call to $CREATE_SHMGS_INT, 
to contain the shared page table section. The region's name is the string 
~GLXSHPT$', concatenated with the global section name, $, and either the 
string "SYSGBL" or the group UIC code represented as a hexadecimal string. 
If it returns SS$_NOWAIT because the Galaxy lock that  synchronizes access 
to the shared memory data structures is locked, $CREATE_SHMGS_INT re- 
peats its at tempt to create a Galaxywide region. If any other error occurs, it 
deallocates the shared page table section resources and continues with step 14. 

h. $CREATE_SHMGS_INT calculates the page owner mode and protection bits 
based on the region's access mode. If the section is writable, the mode allowed 
to read determines the mode allowed to write. 

i. It records the allocated PFNs in the GPTEs that  map the shared page table 
section. Each GPTE has a set valid bit and a PFN; the rest of its fields are 
zero. The GPTEs simply record what memory has been allocated; the shared 
page tables will eventually be mapped through process-private L2PTEs (see 
Section 3.8.2.3). 
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14. 

15. 

16. 

j. It maps each shared page table temporarily in $2 space and initializes each of 
the L3PTEs in it. Each L3PTE contains protection and owner mode determined 
in step 2 and the corresponding PFN. If the L3PTE maps a page already in use 
on another instance, the routine sets the valid bit in the L3PTE; otherwise, 
it leaves it clear. When a process first accesses a page mapped by such an 
invalid L3PTE, it will page fault. The page fault exception service routine will 
recognize that  this is an uninitialized page in a Galaxywide global section and 
zero it. 

It zeros any L3PTEs in the page table page that  do not map global section 
pages. 

k. It deallocates the $2 space L3PTE. 

It inserts the Galaxywide section GSD into either the Galaxywide group or system 
global section list. 

It unlocks the GSD mutex. 

It dequeues the lock and returns the success status SS$_REMOTE if the section 
was created by another instance, SS$_CREATED_SHPT if the section and shared 
page table section were created, or SS$_CREATED if only the section was created. 

3.7.14 $CRMPSC_GDZRO_64 System Service 
The Create and Map to Global Demand Zero Section ($CRMPSC_GDZRO_64) service is 
requested to create and map either a memory-resident global section or a Galaxywide 
global section. The requestor specifies section name, ident, protection, section length, 
region ID, section offset, access mode, section flags, and optionally the map length. 
Optionally, the requestor can specify in which RAD the system service should create 
the global section. 

The $CRMPSC_GDZRO_64 system service procedure, EXE$CRMPSC_GDZRO_64 in 
module SYS_GDZRO_64, runs in kernel mode. 

It resembles EXE$CRMPSC_GPFN_64 (see Section 3.7.10), with the following major 
differences: 

If the requestor specified a RAD, EXE$CRMPSC_GDZRO_64 checks tha t  RAD 
support is enabled and returns the error status SS$_BADRAD if not. If RAD 
support is enabled, it checks that  the requestor specified a single RAD and one 
that  actually exists, returning SS$_BADRAD if not. 

It sets the flags SEC$V_DZRO, SEC$V_PERM, SEC$V_WRT, SEC$V_GBL, and 
SEC$V_MRES in case they were clear. 

If the request is to create a Galaxywide section (if SEC$V_SHMGS is set), it checks 
that  the service was requested from IPL 0, re turning SS$_BADPARAM if not. 
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If the request is to create a memory-resident section, it calls $CREATE_GDZRO_ 
INT (see Section 3.7.12). If that  routine returns an error status, EXE$CRMPSC_ 
GDZRO_64 returns the error status to its requestor. Otherwise, it calls 
$MGBLSC_GDZRO_INT (see Section 3.8.2.3) to perform the mapping. 

If the request is to create a Galaxywide section, it calls $CREATE_SHMGS_INT 
(see Section 3.7.13). If that routine returns an error status, EXE$CRMPSC_ 
GDZRO_64 returns the error status to its requestor. Otherwise, it calls 
$MGBLSC_GDZRO_INT (see Section 3.8.2.3) to perform the mapping. 

It returns the number of bytes that  had been reserved for the global section 
in argument RESERVED_LENGTH_64, if present, and if the request is to create a 
memory-resident section. 

3.8 Mapping a Global Section 
The map global section system services can be considered a special case of the create 
and map section system services, one in which the global section already exists. Each 
of these services maps a range of process addresses to the named global section. Each 
usually has no effect on the global section database other than to include the latest 
mapping in various reference counts. 

When a process maps to a global section backed by a file rather than a PFN-mapped 
section, each of its process L3PTEs in the designated range is initialized with a GPTX 
(see Figures 2.12 and 2.25). A GPTX is a pointer to the GPTE that  records the current 
state of the global page. 

3.8.1 $MGBLSC System Service 
The Map Global Section ($MGBLSC) system service procedure, EXE$MGBLSC in 
module SYSCRMPSC, runs in kernel mode. It takes the following steps: 

, 

e 

e 

, 

It creates and initializes scratch space on the stack. In addition to making the 
argument validation checks described in Section 3.1.1, EXE$MGBLSC checks the 
INADR argument: unless the SEC$V_EXPREG flag was specified in the FLAGS 
argument, it confirms that  the starting address is on an Alpha page boundary 
and that  the ending address is one byte less than a page boundary. (It takes into 
account the possibility that  the addresses have been specified in reverse order.) If 
the addresses are not correct, it returns the error status SS$_INVARG. 

It calls MMG$VFY_SECFLG, in module SYSDGBLSC, to test the compatibility of 
the section flags with each other. If the flags are incompatible or if the requestor 
specified SEC$V_SHMGS, it returns the error status SS$_IVSECFLG. 

It locks the GSD mutex for write access to synchronize access to the GSD lists, 
raising IPL to 2. 

It calls MMG$DALCSTXSCN1 (see Section 3.9.2) to check the global (system) 
section table for any sections to be deleted. 
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3.8 Mapping a Global Section 

It calls MMG_STD$GSDSCAN (see Section 3.7.1) to scan the GSD list for the 
specified global section. 

If the section is not found, EXE$MGBLSC unlocks the GSD mutex and returns 
MMG_STD$GSDSCAN's error status to the system service requestor. 

If the global section is mapped to a file, EXE$MGBLSC calculates the address of 
its GSTE from GSD$L_GSTX and the contents of PHD$L_PST_BASE_OFFSET in 
the system header. 

If the section is memory-resident, EXE$MGBLSC unlocks the GSD mutex and 
returns SS$_GBLSEC_MISMATCH to its requestor. 

If the section is copy-on-reference, it sets MMG$V_CHGPAGFIL in MMG$L_ 
MMG_FLAGS so that  the section pages will be charged against the process's page 
file quota. 

It compares the section access mode with the mode bits in MMG$L_ACCESS_ 
MODE to determine if the system service requestor is allowed to map the section. 
If not, EXE$MGBLSC unlocks the GSD mutex and returns the error status SS$_ 
NOPRIV. 

If the section is not PFN-mapped, it acquires the MMG spinlock, increments 
SEC$L_REFCNT so that the section cannot inadvertently be deleted before its 
pages are mapped into the process's address space, and releases the MMG spinlock. 

If the section is PFN-mapped, EXE$MGBLSC increments GSD$L_REFCNT to pre- 
vent section deletion. (Recall that  a PFN-mapped global section has no associated 
GSTE.) 

With the section's deletion blocked, EXE$MGBLSC can safely unlock the GSD 
mutex. 

If the SEC$V_EXPREG flag was specified in the FLAGS system service argument, 
EXE$MGBLSC calculates the starting and ending section addresses based on 
the RELPAG argument, the section page count (GSD$L_PAGES for a PFN-mapped 
section or SEC$L_UNIT_CNT multiplied by pagelets per page for all others), and 
contents of RDE$PQ_FIRST_FREE_VA from either the P0 or P1 RDE. The INADR 

argument simply identifies in which process-private region the section is to be 
created. 

If the SEC$V_EXPREG flag was not specified, EXE$MGBLSC determines the 
address of the RDE in which the starting address falls. It checks whether the 
region is a shared page table region and, if so, continues with step 19, returning 
error status SS$_NOSHPTS. It checks whether the access mode from which the 
service was requested is allowed to create pages in this region and, if not, continues 
with step 19, returning error status SS$_NOPRIV. 

EXE$MGBLSC calculates the virtual address range to be mapped based on the 
RELPAG argument (in units of pages or pagelets, depending on section type), the 
section page count (GSD$L_PAGES for a PFN-mapped section or SEC$L_UNIT_ 
CNT multiplied by pagelets per page for all others), and the INADR argument. 
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In either case, an integral number of Alpha pages will be mapped. If the pagelet 
count does not represent an integral number  of pages, the highest address page 
of the section will be only partly occupied by the section. Its L3PTE will have the 
PTE$V_PARTIAL_SECTION bit set. 

13. EXE$MGBLSC forms a template L3PTE for pages in the section. 

If the section is PFN-mapped, the L3PTE has the valid and window bits set, 
and its PFN is based upon the contents of GSD$L_BASEPFN. (The L3PTE 
that  maps the lowest address page of the section will have tha t  PFN.) 

If the section is backed by a section file, the L3PTE has the type 0 bit set and 
the type 1 bit clear to indicate a global page, and its GP'I~ is based upon the 
contents of SEC$L_VPX. (The L3PTE that  maps the lowest address page of the 
section will have that  GPTX.) 

EXE$MGBLSC calculates the L3PTE protection bits based on MMG$L_ACCESS_ 
MODE, the writable flag in SEC$L_FLAGS, and the input section flags specifying 
the mode allowed to write the section pages. 

14. It tests whether the current security persona has the necessary access (read, write, 
or execute) to the section based on the persona's access rights list and the ORB 
associated with the section. 

If the persona does not have the desired access, EXE$MGBLSC continues with 
step 19, returning the error status from the access check. 

If the persona does have access, EXE$MGBLSC also calls security auditing code, 
which checks whether a successful access should be audited, and if so, builds a 
message to be logged before the service exits. 

15. EXE$MGBLSC determines whether the address space into which the section will 
be mapped overmaps existing space and whether the section is a PFN-mapped 
section. 

If no space will be overmapped, if the number of pages in the section is equal to 
the number of pages to be mapped, if the section is not a PFN-mapped section, 
and if all pages can be created, EXE$MGBLSC acquires the MMG spinlock, 
increases the section's reference count by the number  of pages to be mapped, 
and releases the MMG spinlock. It initializes each of the process's L3PTEs by 
inserting the appropriate GPTX along with the template L3PTE. 

If the space to be created overmaps existing space or cannot all be created, or 
if the section is a PFN-mapped section, EXE$MGBLSC calls MMG$CREDEL, 
specifying MAPSECPAG_RDE (see Section 3.6.1.2) as the per-page routine. 

16. If PHD$V_DALCSTX in PHD$L_FLAGS is set, indicating there are global sections 
to be deallocated, EXE$MGBLSC calls MMG$DALCSTXSCN (see Section 3.9.2). 

17. EXE$MGBLSC returns any unused page file quota, records peak page file use 
and virtual size statistics, and stores return information in the optional RETADR 

argument.  
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18. 

19. 

20. 

21. 

It decrements the section reference count to remove the extra reference, unneces- 
sary now that  the reference count reflects the mapped PTEs. 

It calls MMG$DELGBLWCB (see Section 3.9.4) to close open files associated with 
temporary global sections whose reference counts have gone to zero and to delete 
their WCBs. 

It calls a security audit routine, which may log successful access to the section. 

It returns to its requestor. 

3.8.2 $MGBLSC_64 System Service 
The Map to Global Section ($MGBLSC_64) system service procedure, EXE$MGBLSC_ 
64 in module SYS_GBLSEC_64, runs in kernel mode. 

EXE$MGBLSC_64 takes the following steps: 

1. In addition to making the checks described in Section 3.1.2, it validates its argu- 
ments as follows: 

a. If the START_VA_64 argument was omitted and the flag SEC$V_EXPREG was 
clear, it returns the error status SS$_IVSECFLG. If the START_VA_64 argument  
was nonzero and the flag SEC$V_EXPREG was set, it returns the error status 
SS$_IVSECFLG. 

b. It maximizes the ACMODE argument. There is no input argument to specify 
access mode allowed to write the section: if the section is writable, the mode 
allowed to read determines the mode allowed to write. 

c. It checks that  the START_VA 64, SECTION_OFFSET 64, and  LENGTH_64 argu- 
ments are multiples of the size of a page, returning the error status SS$_VA_ 
NOTPAGALGN, SS$_OFF_NOTPAGALGN, or SS$_LEN_NOTPAGMULT if 
not. 

It locks the GSD mutex, raising IPL to 2. 

3. It calls MMG_STD$DALCSTXSCN (see Section 3.9.2) to check the global (system) 
section table for any sections to be deleted. 

4. It calls MMG_STD$GSDSCAN (see Section 3.7.1) to find the GSD, if any, that  
corresponds to the GS_NAME_64 and IDENT_64 arguments. 

5. If MMG_STD$GSDSCAN returns an error status, EXE$MGBLSC_64 unlocks the 
mutex, calls MMG_STD$DELGBLWCB (see Section 3.9.4), and returns the error 
status to its caller. 

6. Otherwise, EXE$MGBLSC_64 performs an additional sanity check on the global 
section ident: it confirms that  the ident is positive and, if not, unlocks the mutex, 
calls MMG_STD$DELGBLWCB, and returns the error status SS$_IVSECIDCTL to 
its caller. 

, 
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7. Examining the GSD flags, EXE$MGBLSC_64 tests whether the section is a PFN- 
mapped one. If so, it unlocks the mutex, calls MMG_STD$DELGBLWCB, and 
returns the error status SS$_GBLSEC_MISMATCH to its requestor. 

8. EXE$MGBLSC_64 compares the section access mode with the requestor's mode to 
determine if the system service requestor is allowed to map the section. If not, it 
unlocks the mutex, calls MMG_STD$DELGBLWCB, and returns the error status 
SS$_NOPRIV to its requestor. 

9. It calculates the address of the GSTE. It acquires the MMG spinlock, increments 
the section's SEC$L_REFCNT to prevent its deletion, and releases the MMG 
spinlock. Having incremented the section reference count, it can unlock the GSD 
mutex. 

10. It calls MMG_STD$CHKPRO_AUDIT to check access to the file. If access is not 
allowed, it decrements the reference count and returns an error status to its 
requestor. 

11. EXE$MGBLSC_64 calls a routine to map the section, depending on the section 
type: 

If it is a disk file section, it calls $MGBLSC_GFILE_INT (see Section 3.8.2.1). 

If it is a page file section, it calls $MGBLSC_GPFILE_INT (see Section 3.8.2.2). 

If it is a memory-resident section, it calls $MGBLSC_GDZRO_INT (see Section 
3.8.2.3). 

12. If any pages were mapped, EXE$MGBLSC_64 records peak page file use and 
virtual size statistics, and stores return information in the RETURN_VA_64, START_ 
VA_64, and RETURN LENGTH_64 arguments .  

13. It calls a security audit routine, which may log successful access to the section. 

14. If an output argument was inaccessible, it returns SS$_ACCVIO; otherwise, it 
returns to its requestor the status from the mapping routine. 

3.8.2.1 $MGBLSC_GFILE_INT Routine 
$MGBLSC_GFILE_INT, in module SYS_GBLSEC_64, performs much of the work of 
the $MGBLSC_64 and $CRMPSC_GFILE_64 system services. It is entered at IPL 2. 
It is called with information derived from the service arguments as well as pointers to 
the GSTE and GSD. 

$MGBLSC_GFILE_INT takes the following steps: 

1. It determines the address of the RDE corresponding to the REGION_ID_64 argument,  
returning the error status SS$_IVREGID if the ID is invalid. If that  region is 
intended for memory-resident and Galaxywide global sections, it returns the error 
status SS$_NOSHPTS. It checks whether the access mode from which the service 
was requested is allowed to create pages in this region and, if not, returns the 
error status SS$_NOPRIV. 

2. It checks that  the SECTION_OFFSET_64 is within the global section, returning the 
error status SS$_OFFSET_TOO_BIG if not. 
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3. It calculates how many bytes of section there are between SECTION_OFFSET_64 and 
the section's end, minimizes that  with the LENGTH_64 argument, and transforms 
that  into a count of pages to be mapped. The count includes a partial page if 
SECTION_OFFSET_64 is not an integral number of pages. 

4. If the SEC$V_EXPREG flag was specified in the FLAGS argument, $MGBLSC_ 
GFILE_INT calculates the starting and ending addresses to map based on the 
LENGTH_64 argument and the contents of RDE$PQ_FIRST_FREE_VA in the RDE 
corresponding to the REGION_ID_64 argument. If that  address range intersects with 
the gap (see Chapter 1), $MGBLSC_GFILE_INT moves the address range. 

If the SEC$V_EXPREG flag was not specified, $MGBLSC_GFILE_INT calculates 
the address based on the START_VA_64 and LENGTH_64 arguments. If the address 
range is not entirely within the specified region, it returns the error status SS$_ 
PAGNOTINREG to its caller. 

5. $MGBLSC_GFILE_INT forms a template L3PTE for the section's pages (see 
Figure 2.12). The L3PTE has the type 0 bit set, the global page table index in 
bits <47:32>, and the WRT, CRF, and DZRO bits copied from the section flags. 
It calculates the page owner mode and protection bits based on the access mode 
information passed from its caller, the writable flag in SEC$L_FLAGS, and the 
protection specified when the global section was created. 

If the caller is trying to write to the section but its protection prohibits write 
access, $MGBLSC_GFILE_INT returns SS$_NOPRIV to its caller. 

If the new address space does not already exist, is entirely within a region, and 
can all be created without hitting any of the limits to growth described in Section 
3.3, $MGBLSC_GFILE_INT adjusts RDE$PQ_FIRST_FREE_VA. It increases the 
section's reference count by the number of pages to be mapped. It initializes the 
section's L3PTEs. 

If the space to be created overmaps existing space or cannot all be created at once, 
$MGBLSC_GFILE_INT loops, calling MAPSECPAG_RDE (see Section 3.6.1.2) once 
per page until the routine returns an error status or all pages are done. On each 
successful return, $MGBLSC_GFILE_INT increments the section's reference count. 

If PHD$V_DALCSTX in the process's PHD$L_FLAGS is set, indicating there 
are process sections to be deallocated, $MGBLSC_GFILE_INT calls MMG_ 
STD$DALCSTXSCN (see Section 3.9.2). 

8. It returns to its caller. 

3.8.2.2 $MGBLSC_GPFILE_INT Routine 
$MGBLSC_GPFILE_INT, in module SYS_GBLSEC_64, performs much of the work 
of the $MGBLSC_64 and $CRMPSC_GPFILE_64 system services. It is called with 
information derived from the service arguments as well as pointers to the GSTE and 
GSD. 

. 

. 
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It resembles $MGBLSC_GFILE_INT (see Section 3.8.2.1), with the following major 
differences: 

�9 The section offset for a global section must  be an integral number  of pages. 

�9 Mapping a global page file section does not take process page file quota. 

3.8.2.3 $MGBLSC_GDZRO_INT Routine 
$MGBLSC_GDZRO_INT, in module SYS_GDZRO_64, performs much of the work 
of the $MGBLSC_64 and $CRMPSC_GDZRO_64 system services. It is called with 
information derived from the service arguments as well as pointers to the GSTE and 
GSD. It maps an existing memory-resident global demand zero section or a Galaxywide 
global section. 

It resembles $MGBLSC_GFILE_INT (see Section 3.8.2.1), with the following major 
differences: 

�9 If the global section has an associated shared page table global section and the 
global section is being mapped into a shared page table region, the state of the 
SEC$V_WRT flag specified by the service requestor must  match that  state of the 
global section: if SEC$V_WRT is set, the GSTE flag SEC$V_READ_ONLY_SHPT 
must  be clear, and vice versa. Otherwise, $MGBLSC_GDZRO_INT returns the 
error status SS$_IVSECFLG to its caller. 

�9 If the global section is being mapped into a shared page table region, $ M G B L S C  
GDZRO_INT checks that  the SECTION_OFFSET_64 and LENGTH_64 arguments are 
multiples of the number of bytes mapped by an L3PTE. If not, it returns the error 
status SS$_OFF_NOTPAGALGN or SS$_LEN_NOTPAGMULT. 

It also checks that  if the START_VA_64 argument  was supplied, its value is a multiple 
of the number of bytes mapped by an L3PTE. If not, it returns the error status 
SS$_VA_NOTPAGALGN. 

�9 If the SEC$V_EXPREG flag was specified in the FLAGS argument,  $MGBLSC_ 
GDZRO_INT calculates the start ing and ending addresses to map. It aligns the 
contents of RDE$PQ_FIRST_FREE_VA in the RDE corresponding to the REGION 
ID_64 argument  to a multiple of the number of pages mapped by an L3PTE to form 
the starting address. It adds the LENGTH 64 argument  to form the ending address. 

�9 In the case of a section mapped with shared page tables, the maximized AC- 
MODE argument  must  match the global section's SEC$V_ACMODE bits. If not, 
$MGBLSC_GDZRO_INT returns the error status SS$_IVACMODE. 

�9 $MGBLSC_GDZRO_INT forms a template PTE for the section's pages. In the case 
of a section with shared page tables, the template PTE maps a shared page table 
rather  than a section page. 

It calculates the page owner mode and protection bits based on the access mode 
information passed from its caller, SEC$V_WRT, and the protection specified when 
the global section was created. 
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If the section is memory-resident in instance-private memory and has preallocated 
pages, $MGBLSC_GDZRO_INT determines the best possible granulari ty hint  bits 
with which it can be mapped. (Granularity hint  regions in shared memory are not 
currently supported.) If SEC$V_EXPREG is set, it may round down the s tar t ing 
virtual address to be able to form a larger granulari ty hint  region. If all the section 
cannot be mapped at once or if it overmaps existing space, the routine clears the 
granulari ty hint bits and does not round down the start ing address. It sets the 
valid bit. If MMG$M_NO_MB is set in the MMG_CTLFLAGS SYSGEN parameter  
and the current process has only one kernel thread, it sets PTE$V_NO_MB in the 
template PTE. The PFN in each PTE will be copied from the corresponding GPTE. 

If the section is memory-resident but does not consist of preallocated pages, the 
routine leaves the valid bit clear and sets the type 0 bit. Each L3PTE will have a 
GPTX inserted. 

In the case of a Galaxywide section, the PTE contents depend on whether  the page 
being mapped has already been zeroed. If so, the PTE's valid and modify bits are 
set. If MMG$M_NO_MB is set in the MMG_CTLFLAGS SYSGEN parameter  and 
the current process has only one kernel thread, PTE$V_NO_MB is also set. If the 
page has not been zeroed, the valid bit, type 0, and type 1 bits are cleared so tha t  
the page looks like an invalid transition page. The PFN in each PTE is copied from 
the corresponding GPTE. 

If the section is mapped with shared page tables, it initializes the template PTE as 
any other L2PTE would be: kernel mode read and write enabled, executive mode 
read enabled, PTE$V_NOX set, and kernel mode as owner. 

In mapping a section with shared page tables, $MGBLSC_GDZRO_INT increments 
the shared page table section's reference count by the number  of shared page table 
pages. It increments the PFN$W_PT_WIN_CNT for each associated L2PT by the 
number of shared page table pages it maps. 

In mapping a memory-resident section without shared page tables, it increments 
the PFN$W_PT_WIN_CNT for each associated L3PT by the number of section 
pages it maps. 

3.8.3 $MGBLSC_GPFN_64 System Service 
The Map Global Page Frame Section ($MGBLSC_GPFN_64) system service is re- 
quested to map an existing PFN-mapped global section. The requestor specifies section 
name, ident, region ID, relative page number, page count, access mode, and section 
flags. The requestor has not opened a section file to be mapped so does not specify 
channel number. The requestor does not specify page fault cluster; such a section 
incurs no page faults. 

The $MGBLSC_GPFN_64 system service procedure, EXE$MGBLSC_GPFN_64 in 
module SYS_GPFN_64, runs in kernel mode. It resembles EXE$MGBLSC_64, with 
the following major differences: 
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�9 The section flags set automatically by EXE$MGBLSC_GPFN_64 are SEC$V_GBL 
and SEC$V_PFNMAP. 

�9 It checks that  the PAGECOUNT and RELATIVE_PAGE arguments can be represented 
as a positive 32-bit number, returning error status SS$_ILLPAGCNT or SS$_ 
ILLRELPAG if not. 

�9 If a global section has already been created with matching name and ident, it must  
be a PFN-mapped section for a successful match. If not, EXE$MGBLSC_GPFN_64 
returns the error status SS$_GBLSEC_MISMATCH. 

�9 It calls $MGBLSC_GPFN_INT (see Section 3.8.3.1). 

3.8,3,1 $MGBLSC_GPFN_INT Routine 
$MGBLSC_GPFN_INT, in module SYS_GPFN_64, performs much of the work of the 
$MGBLSC_GPFN_64 and $CRMPSC_GPFN_64 system services. It is called with 
information derived from the service arguments as well as a pointer to the GSD. 
It resembles $MGBLSC_GFILE_INT (see Section 3.8.2.1), with the following major 
differences: 

�9 $MGBLSC_GPFN_INT is not entered with the address of a GSTE because a 
PFN-mapped global section does not have an associated GSTE. 

�9 It is entered with a relative page argument  ra ther  than with a section offset. It 
checks that  the relative page number is within the section, returning the error 
status SS$_ILLRELPAG if not. 

�9 It calculates how many pages there are between the relative page number and 
the end of the section to determine the maximum number of pages that  can be 
mapped. 

�9 The template L3PTE it forms has the valid and window bits set and a PFN derived 
from the GSD$L_BASEPFN field and the RELATIVE_PAGE argument.  

�9 There is no code path to initialize all the process's L3PTEs at once. $MGBLSC_ 
GPFN_INT loops, calling MMG_STD$CREPAG_64 (see Section 3.4.1.2) once per 
page until the routine returns an error status or all pages are done. 

3.9 Global Section Deletion 
Deleting a global section is more complex than creating one because the section must  
be reduced from one of many states to nonexistence. In addition, global writable pages 
must  be written to their backing store before a global section can be fully deleted. 
To avoid stalling the kernel thread requesting the service until all associated I/O 
completes, the final steps in the deletion of a global section are often deferred to a time 
after the system service request and return. 
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The actual section deletion cannot occur until  the reference count in the GSTE, the 
count of process-private PTEs mapped to the section, goes to zero. If the reference 
count is zero when the $DGBLSC service is requested, the global section is deleted. 
More commonly, however, global section deletion occurs later as a side effect of virtual 
address deletion, which itself might occur as a result of image exit or process deletion. 

3.9.1 $DGBLSC System Service 
The Delete Global Section ($DGBLSC) system service procedure, EXE$DGBLSC in 
module SYSDGBLSC, runs in kernel mode. It takes the following steps: 

1. It creates and initializes scratch space on the stack. 

2. It calls MMG$VFY_SECFLG to test the compatibility of the specified section flags. 

3. It calls MMG_STD$GSDSCAN (see Section 3.7.1) to locate the GSD for the speci- 
fied global section. MMG_STD$GSDSCAN returns at IPL 2 with the GSD mutex 
locked for write access. If the section does not exist, it unlocks the mutex and 
returns the error status SS$_NOSUCHSEC. 

4. It confirms that  the process's current security persona has PRMGBL privilege 
and, if the section to be deleted is a system global section, SYSGBL privilege. 
If the requestor specified SEC$V_SHMGS in the FLAGS, EXE$DGBLSC also 
checks for SHMEM privilege. If the security persona lacks a necessary privilege, 
EXE$DGBLSC returns the error status SS$_NOPRIV. Otherwise, it audits the use 
of privilege, as appropriate. 

5. If the global section is a PFN-mapped section, EXE$DGBLSC confirms that  the 
process's current security persona has PFNMAP privilege, unlocking the mutex 
and returning the error status SS$_NOPRIV if not. A PFN-mapped section is 
described solely by a GSD; there are no GSTE, GPTEs, or section reference count. 
The section can be deleted immediately. EXE$DGBLSC deallocates the ORB and 
GSD to paged pool. It continues with step 8. 

6. If the global section is not a PFN-mapped section, EXE$DGBLSC checks whether  
it is a Galaxywide global section. If not, it removes the GSD from its current  list 
and inserts it on the delete pending list, at global location EXE$GL_GSDDELFL. 
In either case, it clears the global section's permanent  flag, SEC$V_PERM in 
GSD$L_FLAGS and, if there is an associated GSTE, in SEC$L_FLAGS as well. 
This step changes the section to a temporary global section that  can be deleted 
when its reference count becomes zero. 

Q If the section is a memory-resident section, EXE$DGBLSC checks whether  the 
section has an associated shared page table section. If so, it clears SEC$V_PERM 
in the shared page table section's GSD$L_FLAGS and SEC$L_FLAGS. 

If the reference count in the GSTE is zero, the section can be deleted now; 
EXE$DGBLSC sets PHD$V_DALCSTX in the system header PHD$L_FLAGS 
as a signal for MMG$DALCSTXSCN. 
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8. It calls MMG$DALCSTXSCN (see Section 3.9.2) in case this section or any other 
can be deleted now. 

9. It unlocks the GSD mutex. 

10. It calls MMG$DELGBLWCB (see Section 3.9.4). 

11. It restores the IPL at entry and returns to its requestor. 

3.9.2 MMGLSTD]$DALCSTXSCN and MMGLSTD]$DALCSTXSCN1 
Routines 

MMG$DALCSTXSCN and its alternative entry point, MMG_STD$DALCSTXSCN, in 
module PHDUTL, are called to locate and deal with deletable section table entries, in 
both the global section and process section tables. Section deletion cannot occur until  
the section reference count goes to zero, generally as the result  of virtual address space 
deletion or modified page writing. 

A scan for deletable PSTEs or GSTEs is initiated from many of the services described 
in this chapter whenever virtual address space has been deleted, either explicitly or as 
a side effect of overmapping virtual address space (see Section 3.10.3). 

MMG$DALCSTXSCN is entered at IPL 2 in kernel mode, with the address of a 
process header (PHD) whose section table should be scanned. In the case of deleted 
global sections, it is entered with the address of the system header and with the GSD 
mutex locked. 

At the alternative entry point MMGLSTD]$DALCSTXSCN1, the routine first gets the 
address of the system header and then merges with MMG$DALCSTXSCN. 

MMG$DALCSTXSCN takes the following steps: 

1. It tests and clears PHD$V_DALCSTX, re turning immediately if the bit was already 
clear. 

2. It scans the list of section table entries, re turning when it reaches the end of the 
list. It examines each entry's reference count, skipping to the next one if the count 
is nonzero. 

3. If the reference count is zero, MMG$DALCSTXSCN tests whether  the section is 
permanent  and, if so, continues with step 2. 

4. If the section has a zero reference count and is not permanent ,  it tests whether  the 
section is a global section. If it is, MMG$DALCSTXSCN calls MMG$DELGBLSEC 
(see Section 3.9.3) to delete it and then continues with step 2. 

5. If the section is a process-private section, MMG$DALCSTXSCN checks whether  it 
is the only one still mapped from its section file. 

If so, it restores the address of the WCB to CCB$L_WIND and inserts the 
section table entry into the free entry list. 
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If there are other sections still mapped, it removes this one from the chain, 
inserts it into the free entry list, and, if necessary, adjusts CCB$L_WIND to 
point to a section table entry other than  the one being deleted. 

In either case, it continues with step 2. 

3.9.3 MMG[_STD]$DELGBLSEC Routine 
MMG$DELGBLSEC and its alternative entry point, MMG_STD$DELGBLSEC, in 
module SYSDGBLSC, are called by MMG$DALCSTXSCN to delete a temporary global 
section whose reference count has gone to zero, that  is, one with no pages mapped by 
any process. 

~ 

~ 

. 

MMG$DELGBLSEC checks whether  this is a memory-resident section. If so, and 
if the section has an associated shared page table section, it gets the address of the 
associated section's GSD, clears its GSD$L_RELATED_GSTX, and inserts it into 
the delete pending list so it can be cleaned up first. It continues with step 3. 

If the section is not memory-resident or has no associated shared page table 
section, it removes the GSD from its current  list, which could be the group or 
systemwide list or the delete pending list, and inserts it into the delete pending list 
so tha t  no more processes can map to it. 

Start ing with SEC$L_UNIT_CNT, the number  of pagelets in the section, it calcu- 
lates the number  of pages in the section. 

4. It gets the start ing GPTX from the GSTE. 

, 

~ 

. 

If this section is a Galaxywide global section, MMG$DELGBLSEC reads the GPTE 
to get its PFN and then gets the shared memory region ID from the PFN database. 
It calls GLX$SHM_REG_DELETE, in module [GALAXY]GLX_SHM_REG, to delete 
the shared memory region. 

If GLX$SHM_REG_DELETE returns an error s tatus other than  SS$_ 
NOBREAK or SS$_NOWAIT, MMG$DELGBLSEC generates a fatal DEL- 
GBLSEC bugcheck. 

If it returns the error status SS$_NOWAIT, indicating spinlock time out, 
MMG$DELGBLSEC calls it again. 

If it returns SS$_NOBREAK or a success status,  MMG$DELGBLSEC contin- 
ues with step 12. 

If this section is not a Galaxywide global section, MMG$DELGBLSEC acquires the 
MMG spinlock, raising IPL to IPL$_MMG. 

It scans the section's GPTEs to determine the state of the global pages. Processing 
done in this scan eliminates references to these GPTEs from the PFN database 
records of both valid memory-resident global section pages and transit ion pages. It 
also reduces pointless modified page writing of pages from a page file global section 
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o 

o 

10. 

tha t  is being deleted. If MMG$DELGBLSEC reaches the last GPTE ra ther  than  
one of the end conditions in the following list, it continues with step 10. 

If it finds a valid page, it confirms tha t  the page is a memory-resident section 
page, crashing the system with a DELGBLSEC bugcheck if not. It checks 
that  the physical page's PFN$L_SHRCNT and PFN$W_REFCNT are both 1, 
crashing the system with a DELGBLSEC bugcheck if not. It then stores the 
contents of PFN$Q_BAK in the GPTE, resett ing it to the invalid form, and 
reinitializes the page's PFN record fields. 

If the page is not from a preallocated memory-resident section, 
MMG$DELGBLSEC inserts the page at the head of the free page list. 

In either case, it calls MMG_STD$DECPTREF_GPT to decrement the reference 
count on the global page table page. 

If it finds a transition page on the free page list, it calls MMG$DEL_PFNLST, 
in module ALLOCPFN, to delete the page's virtual contents. The PFN is 
moved from its current  position on the free page list to the head of the list, so 
that  it can be reallocated before pages whose contents might still be useful. Its 
PFN record fields are reinitialized. 

If it finds a global page-file section page on the modified page list, it clears 
the saved modify bit in the physical page's PFN$L_PAGE_STATE field and 
calls MMG$DEL_PFNLST as described. It continues its scan of the section's 
GPTEs. 

If it finds a transition page on the modified page list tha t  is not part  of a 
global page-file section, the page must  be wri t ten to its backing store before the 
section is deleted, and MMG$DELGBLSEC goes to step 8. 

If it finds a transition page tha t  is not part  of a global page-file section and 
that  is not on the free or modified page list, the page is being wri t ten to 
its backing store. That I/O must  complete before the section is deleted, and 
MMG$DELGBLSEC goes to step 9. 

It requests the modified page writer  to perform a selective purge of the modified 
page list to write this section's global pages to their  backing store and release them 
(see Chapter 4). 

It releases the MMG spinlock, restoring IPL to 2, stores the process ID of the 
current process in GSD$L_IPID as the target  of an eventual cleanup AST. It sets 
PHD$V_DALCSTX in the system header so tha t  MMG$DALCSTXSCN and thus  
MMG$DELGBLSEC will be called again some time later, possibly when modified 
page writ ing is complete. It returns.  

If MMG$DELGBLSEC has scanned all the GPTEs for the section and found none 
for whose I/O it must  wait, it scans the GPTEs again, this time to decrement the 
global page table page reference count and to release page file backing store. 

If it finds a global page in a page file, it deallocates that  page, decrements the 
global page table page reference count, and clears the GPTE. 
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If it finds a demand zero global page, it simply decrements the global page 
table reference count and clears the GPTE. When an entire page of GPTEs 
is freed, the global page table page can be unlocked from the system working 
set. 

11. It releases the MMG spinlock, setting IPL to 2. 

12. It deallocates the GPTEs. 

13. It tests whether the global section is a memory-resident section. If so, it resets this 
global section's RAD in the global section RAD array (RIH$PQ_GBLSEC_RADS) to 
-1. It calls MMG_STD$RETURN_RES_MEM, in module MEM_ALLOC, to return 
reserved memory pages and update the RMD. It continues with step 16. 

14. It tests whether a file is open on the section. If not, this was a global page- 
file section, and MMG$DELGBLSEC adds its page count back to MMG$GL_ 
GBLPAGFIL. It continues with step 16. 

15. If there is a file open, and if this is a shared WCB, it decrements the reference 
count in the WCB. If the count is now zero, it inserts the WCB into a queue of 
delete pending WCBs. 

16. It removes the GSD from the delete pending list and deallocates the GSD and ORB 
to paged pool, unless the ORB is still in use for an open section file. 

17. It deallocates the GSTE. 

18. If the section just  deleted was a shared page table section, MMG$DELGBLSEC 
continues with step 1 to delete the associated memory-resident section. 

19. It allocates nonpaged pool, forms it into an AST control block, queues a normal 
kernel mode AST to the current process, and returns to its caller. The specified 
AST procedure is GSD_CLEAN_AST. 

GSD_CLEAN_AST, in module SYSDGBLSC, executes as a normal kernel mode AST 
procedure in the context of the process that  requested the system service that  triggered 
MMG$DELGBLSEC, possibly but not necessarily the process that  requested deletion 
of the global section. Its enqueuing can be requested from MMG$DELGBLSEC or the 
modified page writer, and also by the routines that  decrease section reference count, 
MMG$SUBSECREF and MMG$DECSECREF in module PHDUTL, when a temporary 
global section's reference count goes to zero. It takes the following steps: 

1. GSD_CLEAN_AST tests whether the process is being deleted or already has this 
procedure active. If either is true, it returns. 

2. It requests the Clear AST ($CLRAST) system service so that  a subsequent kernel 
mode AST can be delivered. 

3. If PHD$V_DALCSTX in the system header is set, it locks the GSD mutex, calls 
MMG$DALCSTXSCN (see Section 3.9.2) and unlocks the mutex. 

4. It calls MMG$DELGBLWCB (see Section 3.9.4) to close the section file. 

5. It returns. 
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3.9.4 MMGLSTD]$DELGBLWCB Routine 
MMG$DELGBLWCB and its alternative entry point, MMG_STD$DELGBLWCB, in 
module SYSDGBLSC, are called to close an open file associated with a temporary 
global section whose reference count has gone to zero and to delete the WCB. It takes 
the following steps: 

1. It makes several consistency checks, returning immediately if it is executing within 
a kernel thread that  owns any mutexes, has kernel mode AST delivery disabled, 
has an active kernel mode AST, or if the file system impure area in this process is 
not yet initialized. Its subsequent processing requires delivery of a kernel mode 
AST, IPL 0 execution, and file system processing. 

It removes a WCB from the delete pending list, returning if there is none. 

It checks that  the job has enough open file quota so that  a deduction can be made 
from it. If not, MMG$DELGBLWCB inserts the WCB back on the delete pending 
list and returns. 

It finds an available channel control block and stores in it the address of the unit  
control block on which the file represented by the WCB is open; the address of the 
WCB; and an indication that  the channel has been assigned in kernel mode. 

It locks the I/O database mutex for write; increments the unit's reference count, 
which will be decremented in the next step; and unlocks the I/O database mutex. 

It lowers IPL to 0 and requests the Deassign Channel ($DASSGN) system service, 
the actions of which result in closing the file. 

It raises IPL back to 2 and continues with step 2. 

, 

, 

, 

, 

, 

, 

3.10 Virtual Address Space Deletion 
Page deletion is generally more complicated than page creation. Creation involves 
taking the process from one known state (the address space does not yet exist) to 
another known state (for example, the process-private PTEs contain demand zero 
L3PTEs). Page deletion must deal with initial conditions that  include all possible 
states of a virtual page. 

Page creation may first require that  the specified pages be deleted to put the process 
page tables into their known state. Thus, page deletion is often an integral part  of 
page creation. 

A process deletes part of its address space by requesting the $DELTVA, $DELTVA_64, 
or $CNTREG system service. 

A page that  has I/O in progress cannot be deleted until the I/O completes. A kernel 
thread trying to delete such a page may be placed in one of several wait states, 
depending on the page type and state, for example: 
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A kernel thread trying to delete a page in the write-in-progress transition state is 
placed into a page fault wait state (with a request that  a system event be reported 
when I/O completes) until the page write completes. 

A page in the read-in-progress transition state is faulted, with the result that  the 
kernel thread is placed into page fault wait. 

Additional tests are required when a kernel thread deletes a global page with 
I/O in progress because there is no way to determine if the process deleting the 
page is also responsible for the I/O. Hence, if the process has any direct I/O in 
progress, the kernel thread may be placed into a resource wait for the resource 
RSN$_ASTWAIT until its direct I/O completes. 

Section 3.10.2 has further details. 

3.10.1 $DELTVA System Service 
A process requests the Delete Virtual Address Space ($DELTVA) system service to 
delete process-private address space. Service arguments are the range to be deleted 
and, optionally, the actual range deleted and the access mode associated with the 
request. 

The $DELTVA system service procedure, EXE$DELTVA in module SYSCREDEL, runs 
in kernel mode. EXE$DELTVA takes the following steps: 

1. It creates and initializes the scratch space on the stack. 

2. It tests the accessibility of the INADR argument and maximizes the ACMODE argu- 
ment with the mode of the service requestor. 

3. It sets flag MMG$V_CLUSTER_DEL in MMG$L_FLAGS. 

4. It raises IPL to 2. 

5. It locates the RDE corresponding to the INADR argument's ending address. If there 
is none, it picks either the P0 or P1 RDE, depending on the value of the ending 
address. If that  region is one with shared page tables, it returns the error status 
SS$_NOSHPTS. A process may not delete process-private address space that  could 
be mapped by a shared page table. 

6. EXE$DELTVA tests whether the service was requested from IPL 0 and whether 
the region is a process-permanent region. If both are true, it sets MMG$V_ 
RWAST_AT_IPL0 to enable MMG$DELPAG_64, the per-page service-specific 
routine, to wait the kernel thread at IPL 0 if a wait is necessary. Section 3.10.2 
has further details. 

7. If the range to be deleted crosses the boundary between defined and undefined 
address space in the region, it adjusts the ending address to be within the defined 
address space. 

8. It calls MMG$CREDEL (see Section 3.1.1), specifying MMG$DELPAG_64 as the 
per-page service-specific routine. 
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, 

10. 

11. 

12. 

13. 

If contiguous address space was deleted, it calls CHECK_CONTRACT_64 (see 
Section 3.10.3) to contract the region and account for now empty page tables tha t  
will be deleted. 

Otherwise, if a page within the range could not be deleted, it calls CHECK_ 
CONTRACT_64_l (see Section 3.10.3) to contract the region page by page. 
CHECK_CONTRACT_64_l simply alters the input a rguments  for CHECK_ 
CONTRACT_64 to ensure tha t  contraction is checked one page at  a time. 

It restores the IPL at entry. 

EXE$DELTVA records peak page file use and vir tual  size statistics, and stores 
re turn  information in the optional RETADR argument .  

It executes an instruction memory barr ier  to flush any instructions tha t  might  
have been prefetched from the deleted address space. 

It re turns  to its requestor. 

3.10.2 MMG[_STD]$DELPAG_64 Routine 
When a virtual  page is deleted, all process and system resources associated with the 
page must  be returned.  These can include the following: 

�9 A physical page of memory for a valid or t ransi t ion page 

�9 A page file page for a page whose backing store address indicates already allocated 
blocks 

�9 A working set list entry for a page in a process working set list 

�9 Page file quota for a page with a page file type backing store 

Deleting a process-private section page results in decrementing the reference count in 
the PSTE (see Figure 2.7). If the reference count goes to zero, the PSTE itself can be 
released. Deleting a global section page results in decrementing the reference count in 
the GSTE. If the reference count goes to zero, the GSTE itself can be released. 

In addition, a valid or modified page with a section file backing store address ra the r  
than  a page file backing store address must  have its latest  contents wri t ten back to 
the section file. (The contents of a page with a page file backing store address are 
unimpor tant  after the virtual  page is deleted and do not have to be saved before the 
physical page is reused.) 

Deleting the contents of a physical page means  tha t  the PFN$Q_PTE__INDEX and 
PFN$L_PT_PFN fields in its PFN database record are cleared, destroying all ties 
between the physical page and any process-private virtual  address. In addition, the 
page is placed at the head of the free page list, so tha t  it can be reallocated before 
other pages whose contents might still be useful. 
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MMGLSTD]$DELPAG_64, in module SYSCREDEL, is the per-page service-specific 
routine for the $DELTVA, $DELTVA_64, and $CNTREG system services. Its argu- 
ments  include the address to be deleted, the RDE address, the address of memory 
management  flags (MMG$L_FLAGS in the case of entry from $DELTVA and $CNT- 
REG), and the number  of pages to be deleted. 

It takes the following steps: 

1. It gets the address of the L3PTE that  maps the specified virtual  address and, if 
necessary, faults the page table page into the process's working set list. It acquires 
the MMG spinlock, raising IPL. 

2. It examines the L3PTE that  maps the page to be deleted. 

3. If the L3PTE contains zero, the page is a null page and has already been deleted. 
If the page is a demand zero L3PTE, it zeros the L3PTE and restores page file 
quota deducted for it. 

If MMG$V_CLUSTER_DEL is clear, indicating only one page is to be deleted at  
a time, MMG$DELPAG_64 returns to its caller after releasing the MMG spinlock 
and restoring the previous IPL. 

If MMG$V_CLUSTER_DEL is set, MMG$DELPAG_64 at tempts  to delete a cluster 
of similar pages, as many as the lesser of pages in the delete range and pages 
mapped by the same L3PT. It continues deleting, by clearing the L3PTE and 
incrementing JIB$L_PGFLCNT, until it has reached the maximum or found an 
L3PTE that  is not zero or a demand zero PTE. It releases the MMG spinlock and 
returns.  

4. If the page is neither a null nor a demand zero page, and its valid bit is clear, 
MMG$DELPAG_64 performs a sanity check tha t  the NO_MB bit is clear in the 
PTE. If not, it generates the fatal bugcheck INCONMMGST. 

If the PTE valid bit is set or the NO_MB bit is clear, MMG$DELPAG_64 compares 
the requestor access mode with that  of the page owner. If the access mode is 
insufficiently privileged, it releases the MMG spinlock and returns the error s tatus  
SS$_PAGOWNVIO. 

5. Otherwise, it determines the type of the virtual  page, based on the valid and type 
bits in the L3PTE tha t  maps it. 

6. If the page is in a page file, MMG$DELPAG_64 deallocates the occupied page 
of page file, restores job page file quota, clears the L3PTE, releases the MMG 
spinlock, and returns.  

7. If the page is from a demand zero process section, MMG$DELPAG_64 releases 
the MMG spinlock, lowers IPL, touches the page to fault it into the working set, 
and continues with step 1. Fault ing it into the working set first ensures tha t  an 
untouched demand zero page backed by a section file will be writ ten back to it as 
all zeros. Handling it in this way minimizes the need for complex code to handle a 
relatively rare case. 
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8. If the page is an invalid page from a read-only or copy-on-reference process section, 
MMG$DELPAG_64 tests MMG$V_CLUSTER_DEL to see whether  a cluster of 
pages can be deleted. If so, it a t tempts  to delete a cluster of pages. The cluster 
size is the minimum of the number  of pages in the delete range, pages mapped by 
the same L3PT, and the contents of MMG$GL_CLONE_CLUMP. (The intent  is to 
constrain the maximum amount  of time the memory management  spinlock is held.) 
For each valid page it encounters, it removes the page from the working set list, 
releases the PFN, invalidates the TB, and clears the L3PTE. It continues, clearing 
L3PTEs, until it has reached the maximum count or a page that  cannot be deleted 
in this cluster, for example, a page from another section. It adjusts the section 
reference count and, if the section is copy-on-reference, JIB$L_PGFLCNT as well, 
by the number of pages deleted. It releases the MMG spinlock and returns.  

, ,  

9. If the page is an invalid page from any other type of process section, or if page 
deletion clustering is not allowed, MMG$DELPAG_64 decrements the section ref- 
erence count. If the page is copy-on-reference, MMG$DELPAG_64 also increments 
the job page file quota. It clears the L3PTE, releases the MMG spinlock, and 
returns. 

10. If the page is any other type of transition page, MMG$DELPAG_64 examines the 
page's PFN$L_PAGE_STATE location bits to determine its actions: 

Free page list. MMG$DELPAG_64 calls MMG$DEL_PFNLST, in module 
ALLOCPFN, to delete the page's virtual contents and modify the L3PTE. The 
PFN is moved from its current position on the free page list to the head of 
the list. Its PFN record is reinitialized. PFN$V_DELCON is set in the page's 
PFN$L_PAGE_STATE field. The PTE is reinitialized with its backing store 
contents. MMG$DELPAG_64 continues with step 2 to delete the virtual page 
in its new state. 

Modified page list. If the page has page file backing store, MMG$DELPAG_ 
64 clears the saved modify bit in the page's PFN$L_PAGE_STATE field so 
that  the page, when deleted, will be inserted into the free page list, and calls 
MMG$DEL_PFNLST, as just  described. The PTE is reinitialized with its 
backing store contents. MMG$DELPAG_64 continues with step 2 to delete the 
virtual page in its new state. 

If the page is a section page, MMG$DELPAG_64 releases the MMG spinlock, 
lowers IPL, touches the page to fault it into the working set, and continues 
with step 1. Handling the page this way simplifies MMG$DELPAG_64's 
subsequent steps to write the page to its section file. 

Read-in-progress or release pending. MMG$DELPAG_64 releases the MMG 
spinlock, lowers IPL, touches the page to fault it into the working set, and 
continues with step 1. 

Write-in-progress. The I/O must  complete before the page can be deleted. 
MMG$DELPAG_64 releases the MMG spinlock and places the kernel thread 
into a page fault wait at the IPL of the caller. When the kernel thread is 
resumed, MMG$DELPAG_64 raises IPL to 2 and continues with step 1. 
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- -  Page read error. MMG$DELPAG_64 continues with the next step. 

- -  Active. MMG$DELPAG_64 continues with the next step. 

11. If the page is valid (or a transit ion page tha t  is active or tha t  incurred a page read 
I/O error), MMG$DELPAG_64 examines the page's PFN$L_PAGE_STATE field, the 
window bit in the PTE, and other memory management  data s tructures as needed, 
to determine its actions: 

- -  PFN-mapped section page. MMG$DELPAG_64 tests whether  the process has 
direct I/O in progress. If not, it clears the valid, fault-on-read, fault-on-write, 
and NO_MB bits in the L3PTE. It decrements PFN$W_PT_WIN_CNT for the 
L3PT that  maps the section page to indicate one less reason for tha t  page table 
page to be locked into the working set list. If the count transit ions t o - 1 ,  it 
decrements PHD$L_PTCNTLCK, clears the L2PTE PTE$V_WINDOW bit, and 
clears WSL$V_PFNLOCK in the L3PT working set list entry. It invalidates 
any possible TB entry and clears the entire L3PTE. (Note tha t  if the page 
being deleted is part  of a PFN-mapped granulari ty hint  region, the granular i ty  
hint  bits are cleared in all other L3PTEs that  map pages in the granular i ty  
hint  region.) It releases the MMG spinlock and returns.  

If the process has direct I/O in progress, its I/O must  complete before this page 
can be deleted. When direct I/O is in progress to a typical process page, its 
PFN$W_REFCNT field is incremented. Thus a value larger than  1 indicates 
I/O in progress. A PFN-mapped page may have other processes mapped to 
it, some of which could be doing I/O to it, so its REFCNT value is not precise 
enough to determine whether  the page is in use as an I/O buffer for this 
process. Furthermore,  a page mapped by PFN may be one without any PFN 
database to examine. 

If bit MMG$V_NOWAIT_IPL0 in MMG$L_MMG_FLAGS is set (as it would be 
if the page were being deleted as a side effect of creating a process section tha t  
overmapped the page), the kernel thread cannot wait at IPL 0 for the I/O to 
complete, and MMG$DELPAG_64 releases the MMG spinlock and returns  the 
error status SS$_ABORT to its caller. Otherwise, it releases the MMG spinlock 
and places the kernel thread into a resource wait  for resource RSN$_ASTWAIT 
(effectively, wait for an I/O completion) at IPL 0. When the kernel thread is 
placed back into execution, MMG$DELPAG_64 raises IPL to 2 and resumes at 
step 1. 

- -  Galaxywide section page. MMG$DELPAG_64 determines the address of the 
shared memory section descriptor and, from that,  the GSTX. 

If the page is not mapped by a shared page table, it checks whether  I/O is in 
progress to the section and whether  the process has direct I/O outstanding. If 
so, the I/O must  complete before the page can be deleted. It releases the MMG 
spinlock and places the kernel thread into a wait  on RSN$_ASTWAIT. When 
the kernel thread is resumed, MMG$DELPAG_64 continues with step 1. If 
no I/O is outstanding, MMG$DELPAG_64 checks whether  the page is part  of 
a buffer object. If so, it releases the MMG spinlock and returns SS$_VA_IN_ 
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USE. Otherwise, it decrements the global section reference count and continues 
as for a PFN-mapped page. 

If the page is mapped by a shared page table, MMG$DELPAG_64 must  check 
whether all the pages mapped by that  shared L3PT can be deleted: it is not 
possible to alter an L3PTE in a shared page table. It checks whether  any pages 
are part  of a buffer object and, if so, unlocks the MMG spinlock and returns 
SS$_VA_IN_USE. It checks whether the process has any outstanding direct I/O 
in progress and, if so, places the kernel thread into a wait  for it to complete. 
(Checking the PFN$W_REFCNT of all pages mapped by the shared L3PT is a 
lengthy operation and would not uniquely associate any pending I/O with this 
process in any case.) 

Once all the I/O is complete, MMG$DELPAG_64 dissolves any granulari ty hint  
region that  includes the L3PT. It decrements PFN$W_PT_WIN_CNT for the 
L2PT that  maps the L3PT. It reduces the section reference count for both the 
Galaxywide section and the shared page table section. It clears the L2PTE 
that  mapped the shared L3PT and invalidates any possible TB entry for the 
shared L3PT. If the process is multi threaded, MMG$DELPAG_64 invalidates 
all translation buffer entries on the system, because other threads of the 
process might be current on other processors. Otherwise, it merely invalidates 
all process-private TB entries on this processor. It releases the MMG spinlock 
and returns. 

Memory-resident section page. MMG$DELPAG_64 gets the GSTX from the 
PFN$Q_BAK information. It checks whether the page's reference count is 
elevated and whether the process has direct I/O outstanding. If both are true, 
I/O is presumed to be in progress to the page. The I/O must  complete before 
the page can be deleted. It releases the MMG spinlock and places the kernel 
thread into a wait on RSN$_ASTWAIT. When the kernel thread is resumed, 
MMG$DELPAG_64 continues with step 1. 

If the reference count is elevated but no direct I/O is outstanding, 
MMG$DELPAG_64 checks whether  the page is part  of a buffer object. If 
so, it releases the MMG spinlock and returns SS$_VA_IN_USE. If not, it 
checks whether the section is mapped with shared page tables. If so, it takes 
the actions described previously for deleting Galaxywide global section pages 
mapped by a shared page table. 

If the section is not mapped with shared page tables and if only one page is 
being deleted, MMG$DELPAG_64 decrements the global section reference 
count and continues as for a PFN-mapped page. If more pages are being 
deleted and MMG$V_CLUSTER_DEL is set, it a t tempts  to delete a cluster 
of pages. The cluster size is the minimum of the number  of pages in the 
delete range, pages mapped by the same L3PT, and the contents of MMG$GL_ 
CLONE_CLUMP. It continues, clearing L3PTEs and invalidating TB entries, 
until it has reached the maximum count or a page that  is not part  of this global 
section. It adjusts the section reference count and PFN$W_PT_WIN_CNT. 
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Permanently locked in the working set. MMG$DELPAG_64 simply releases 
the MMG spinlock and returns a success code. Such a page cannot be deleted 
until the process is deleted or outswapped. 

Process-locked page. MMG$DELPAG_64 releases the MMG spinlock; calls 
MMG$LCKULKPAG, in module SYSLKWSET (described in Chapter 5) to 
unlock the page; and then resumes at step 1. 

I/O buffer page. If the PFN$W_REFCNT field for this page contains a value 
larger than 1, the page is in use as an I/O buffer. MMG$DELPAG_64 tests 
whether the page is part of a buffer object (see Section 3.12) and, if so, re- 
leases the MMG spinlock and returns the error status SS$_VA_IN_USE to its 
caller. If the page is not part of a buffer object, MMG$DELPAG tests against  
MMG$V_NOWAIT_IPL0 as previously described and either returns an error 
status or places the kernel thread into a wait until the I/O completes. 

Unmodified page and modified page with page file backing store. 
MMG$DELPAG_64 calls MMG$REL_PFN, in module ALLOCPFN, which 
sets the PFN$V_DELCON bit and clears the saved modify bit in the PFN$L_ 
PAGE_STATE field so the page's contents will be deleted when it is inserted 
into the free page list. It clears the valid, modify, fault-on-execute, and fault- 
on-write bits in the L3PTE; invalidates any possible TB entry; and removes the 
page from the working set list. MMG$DELPAG_64 decrements its PFN$W_ 
REFCNT field. 

It deallocates the associated physical page, as a result of which the L3PTE 
once again contains a backing store format, and then resumes with step 1, 
deleting the page as an invalid unmodified page-file section page. 

Modified page backed by a section file. MMG$DELPAG_64 calls MMG$WRT_ 
PGS_BAK, in module SYSUPDSEC (see Chapter 4), to write the page to its 
backing store. The page's modify bit is cleared and its state is changed to write 
in progress. When the I/O completes, MMG$DELPAG_64 calls MMG$REL_ 
PFN and decrements PFN$W_REFCNT. If the count transitions to zero, 
MMG$DELPAG_64 deallocates the associated physical page as previously 
described and resumes with step 1. If the count is still positive, it must  place 
the kernel thread into a wait. 

Valid and unmodified page. MMG$DELPAG 64 decrements PFN$W_REFCNT, 
calls MMG$REL_PFN, and either waits the kernel thread for I/O to complete 
or deallocates the page. It resumes with step 1. 

12. If the page is an invalid global page, MMG$DELPAG_64 examines the associated 
GPTE to determine the page type and validity of the master page. 

If the global page is in transition and is a Galaxywide section page, one that  
has not yet been zeroed, MMG$DELPAG_64 treats the page as it does a valid 
L3PTE representing a Galaxywide section page. 
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If the global page is an invalid memory-resident page, for example, one that  
has not yet been zeroed, MMG$DELPAG_64 treats the page as it does a valid 
L3PTE representing a memory-resident page. 

If the master  page is a demand zero page or a page in a global page-file section, 
MMG$DELPAG_64 decrements the global section reference count and clears 
the process L3PTE. It releases the MMG spinlock and returns. 

If the global page is in transition being faulted from its backing store, 
MMG$DELPAG_64 tests and sets MMG$V_DELGBLDON in the memory 
management  flags. If the bit was already set, it continues with the next step. 
Otherwise, MMG$DELPAG_64 must  free the process's working set list entry 
associated with the global page. It calls a routine within the Purge Working 
Set ($PURGWS) system service to remove that  page and any other global pages 
in the address range being deleted from the working set list and to change the 
PFN database accordingly. It resumes with step 1. 

If the global page is valid or in transition and has an elevated PFN$W_ 
REFCNT, MMG$DELPAG_64 tests whether  the page is part  of a global buffer 
object. If the page is part  of a system global buffer object and the reference 
count is 1, the page may be deleted. If the global buffer page is not par t  of a 
system global buffer object, MMG$DELPAG_64 releases the MMG spinlock and 
returns SS$_VA_IN_USE. 

If the page is not part  of a global buffer object, it has I/O in progress. If the 
process has outstanding direct I/O, the direct I/O may be to the global page 
that  the process is trying to delete. MMG$DELPAG_64 therefore places the 
kernel thread into a resource wait, as previously described, until the I/O 
completes. It resumes with step 1. 

If the process has no outstanding direct I/O, MMG$DELPAG_64 continues with 
the next step. 

If the global page is valid with no I/O in progress, or invalid and in a section 
file, or a transition page with no I/O in progress, MMG$DELPAG_64 examines 
its PFN$Q_BAK field to determine the type of section. If the section is demand 
zero, it continues with the next step. If the section is copy-on-reference, it first 
increments the job page file quota. For any type of section that  is not demand 
zero, MMG$DELPAG_64 decrements the global section reference count, clears 
the process PTE, releases the MMG spinlock, and continues at step 1. 

If the global page is invalid and a page from a demand zero writable section, 
MMG$DELPAG_64 allocates a physical page and maps it temporarily to zero 
it. MMG$DELPAG_64 initializes the page's PFN database record, storing the 
address of the global table entry in PFN$Q_PTE_INDEX and setting PFN$L_ 
PAGE_STATE global writable and active. It decrements the global section's 
reference count and calls MMG$INCPTREF, in module PAGEFAULT, to lock 
the global page table page. MMG$DELPAG_64 then inserts the page onto the 
modified page list, clears the process L3PTE, releases the MMG spinlock, and 
returns. 
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These steps ensure that  an untouched demand zero page backed by a global 
section file will be written back to it as all zeros. This requirement is sim- 
ilar to that  for a demand zero page in a writable process section. However, 
MMG$DELPAG_64 takes these steps rather than fault the page in first as it 
does a process-private page, for better performance in a more common case. 

3.10.3 [MMG_STD$]CH ECK_CONTRACT_64 and 
[M MG_STD$]CH EC K_CONTRACT_64_1 Routines 

CHECK_CONTRACT_64 or one of its alternative entry points, MMG_STD$CHECK_ 
CONTRACT_64 and MMG_STD$CHECK_CONTRACT_64_l, in module SYSCREDEL, 
takes the following steps" 

1. CHECK_CONTRACT_64 calls MMG$DALCSTXSCN (see Section 3.9.2) to see if 
any process sections can be deleted. 

If this system has mapped any Galaxywide shared memory, CHECK_CONTRACT_ 
64 locks the GSD mutex for write, calls MMG$DALCSTXSCN to see if any global 
sections can be deleted, and unlocks the mutex. 

CHECK_CONTRACT_64 initializes PHD$PQ_PT_NO_DELETE1 and PHD$PQ_ 
PT_NO_DELETE2 to prevent the asynchronous deletion of any L2PTs that  map 
the deleted range so that  it can scan them without holding the MMG spinlock the 
entire time. 

It checks whether one end of the range to be deleted is the same address as the 
end of the defined address space in the region. If not, the range must  be deleted 
one page at a time, and it continues with step 6. 

It calls MMG STD$DELETE_PTS, in module SYS_CREDEL_64, to delete now 
empty L2PTs and L3PTs that  map the deleted address range, starting from the last 
defined space in the region. MMG_STD$DELETE_PTS examines each associated 
L1PTE" 

It skips any L1PTE containing zero. 

If the L1PTE contains the demand zero form of PTE, it clears it, decrements 
PHD$L_PTCNTMAX to indicate one less (L2) page table, and increments 
JIB$L_PGFLCNT to return charges against page file quota. 

In any other case, it examines each PTE in the page of the L2PT mapped by 
that  L1PTE. It deletes an empty L3PT by clearing the demand zero L2PTE 
and adjusting PHD$L_PTCNTMAX and JIB$L_PGFLCNT. 

CHECK_CONTRACT_64 adjusts PHD$Q_FREE_PTE_COUNT by the number of 
pages being deleted and RDE$PQ_FIRST_FREE_VA by the number of bytes of 
address space deleted. 
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Beginning with the page tables that  map the last defined page in the region, based 
on the contents of RDE$PQ_FIRST_FREE_VA, it scans for a nonzero L3PTE. It 
begins with the L1PTE that  maps that  page, skipping it if it contains zero and 
going on to the next. When it finds a nonzero L1PTE, it scans the PTEs in that  
L2PT until it finds a nonzero one. It then scans the PTEs in that  L3PT, until 
it finds a nonzero one. The nonzero L3PTE corresponds to what  is now the last 
defined page in the region. 

It adjusts RDE$PQ_FIRST_FREE_VA to reflect the new end of the region. 

It clears PHD$PQ_PT_NO_DELETE1 and PHD$PQ_PT_NO_DELETE2 to permit 
asynchronous page table deletion. 

It calls MMG$EXTRADYNWS, in module SYSADJWSL, to recalculate the number 
of fluid working set list entries available to the process, given the number of page 
tables that  have just  been deleted. 

3.10.4 $DELTVA_64 System Service 
The Delete Virtual Address Space ($DELTVA_64) system service is requested to delete 
virtual address space. It resembles the $DELTVA system service, but its arguments 
include a region ID, and all its address arguments are 64 bits. Thus it can be used 
to delete virtual address space in P0, P1, or P2 space, either in a default region or a 
user-created one. 

The $DELTVA_64 system service procedure, EXE$DELTVA_64 in module SYS_ 
CREDEL_64, runs in kernel mode. It resembles EXE$DELTVA with the following 
major differences: 

�9 It checks that  the address range to be deleted lies within defined space in the 
specified region. 

�9 It loops through the pages to be deleted, calling MMG_STD$DELPAG_64 (see 
Section 3.10.2) until it returns an error status or all pages are done. 

3.10.5 $CNTREG System Service 
The Contract Region ($CNTREG) system service procedure, EXE$CNTREG in module 
SYSCREDEL, runs in kernel mode. The $CNTREG system service is a special case of 
the $DELTVA system service. EXE$CNTREG simply converts the requested number 
of pagelets into a P0 or P1 page range and merges with EXE$DELTVA at step 7 in the 
description in Section 3.10.1. 

Use of the $CNTREG system service is reserved to Hewlett-Packard Company. Any 
other use is unsupported. 
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3.11 Virtual Address Region Deletion 
The Delete Virtual Region ($DELETE_REGION_64) system service is requested to 
delete a particular region. Its arguments include the ID of the region to be deleted and 
the access mode associated with the request. 

The $DELETE_REGION_64 system service procedure, EXE$DELETE_REGION_64 in 
module SYS_REGIONS, runs in kernel mode. EXE$DELETE_REGION_64 takes the 
following steps: 

1. In addition to making the checks described in Section 3.1.2, it checks that  the 
region to be deleted is a user-defined one, returning SS$_IVREGID if not. 

2. It raises IPL to 2. 

3. It locates the RDE corresponding to the REGION_ID 64 argument. If there is none, it 
returns the error status SS$_IVREGID. 

4. It checks that  the access mode from which the service is requested is at least 
as privileged as that  of the owner of the region, returning the error status SS$_ 
NOPRIV if not. 

5. It calculates how many pages are in the region. If there are none, it removes the 
RDE from its two lists, deallocates it to P1 pool, and returns SS$_NORMAL to its 
requestor. 

If there are pages in the region, it loops, calling MMG_STD$DELPAG_64 (see 
Section 3.10.2) to delete them. If the region grows in an ascending direction, it 
deletes the high-address pages first. If the region grows in a descending direction, 
it deletes the low-address pages first. 

It continues until MMG_STD$DELPAG_64 returns an error status or all pages are 
deleted. If no pages were deleted, EXE$DELETE_REGION_64 returns the error 
status from MMG_STD$DELPAG_64. 

Otherwise, it calculates how many pages were deleted and the starting and ending 
addresses of the deleted pages. It executes an instruction memory barrier (see 
Chapter Synchronization Techniques) in case instructions were deleted that  might 
have been prefetched. 

8. It calls MMG STD$CHECK_CONTRACT_64 (see Section 3.10.3) or M M G  
STD$CHECK_CONTRACT_64_l, depending on whether a contiguous range of 
pages was deleted or whether there was at least one page that  could not be 
deleted, to contract the region. 

9. If MMG_STD$DELPAG_64 returned an error status, EXE$DELETE_REGION_64 
returns that  error status to its requestor along with the starting address and 
number of bytes deleted. 

10. Otherwise, it removes the RDE from its two lists, deallocates it to P1 pool, and 
returns SS$_NORMAL to its requestor along with the starting address and number 
of bytes deleted. 

, 
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3.12 Buffer Object Creation and Deletion 
A buffer object is a special kind of I/O buffer. The pages that  make up a buffer object 
are locked into physical memory and may be doubly mapped in system space as well 
as process-private space. Multiple I/O requests can be initiated to or from an existing 
buffer object with less overhead than with the s tandard I/O mechanisms, direct and 
buffered I/O. 

The pages of a s tandard direct I/O buffer are probed and locked into memory when 
the I/O request is initiated. The PFN$W_REFCNT in the PFN database record of each 
page is incremented to lock the page. The page table pages that  map the buffer pages 
are locked into the process's working set and into memory, and the process's header 
cannot be outswapped. When the I/O request completes, for each page of the buffer, 
PFN$W_REFCNT is decremented, and page table pages are unlocked. 

Buffered I/O is initiated to or from a buffer allocated in nonpaged pool. On output, 
data is copied from the user's buffer to the pool buffer. On input, data is copied from 
the pool buffer to the user's buffer. 

In contrast, the pages of a buffer object are probed only once and the pages are locked 
only once, at buffer creation. The L3PT pages that  map the buffer object in process- 
private address space are locked into memory. Because the buffer object pages have a 
process-private mapping, there is no need to copy data between a process buffer and a 
system buffer. Tests for buffer object pages in the swapper make it possible to outswap 
a process body and header even though I/O may be in progress to its buffer object. 

The pseudo terminal driver, [PTD]SYS$FTDRIVER, uses the buffer object mech- 
anism. A process interacts with this driver through system services (in the 
privileged shareable image [PTD]PTD$SERVICES_SHR.EXE) that  create and 
manage the process's buffer objects. The DECwindows terminal class driver, 
[DECW$XTERMINAL]DECW$XTDRIVER.EXE, also uses the buffer object mecha- 
nism. 

OpenVMS Version 7.0 added several I/O system services that  enable an application 
to use buffer objects for disk and tape I/O transfers: Set Up Fast  I/O ($IO_SETUP), 
Perform Fast  I/O ($IO_PERFORM), and Clean Up Fast  I/O ($IO_CLEANUP). Typi- 
cally, an application creates one or more buffer objects, requests $IO_SETUP to make 
its buffer objects known and to define other information for the I/O requests, and 
calls $IO_PERFORM repeatedly to do multiple transfers into or from the buffer ob- 
jects. When all I/O is done, the application calls $IO_CLEANUP and then deletes the 
buffer objects. Consult the Open VMS System Services Reference Manual for additional 
information on these services. 

Use of the $CREATE_BUFOBJ system service is reserved to Hewlett-Packard 
Company. Any other use is unsupported. Use of the $CREATE_BUFOBJ_64 and 
$DELETE_BUFOBJ system services, however, is supported. 
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An image creates a buffer object by requesting the $CREATE_BUFOBJ or $CREATE_ 
BUFOBJ_64 system service. (Actually, a user's image should not directly request 
$CREATE_BUFOBJ; it may, however, request a pseudo terminal system service that  
requests $CREATE_BUFOBJ.) The system service creates a data structure called a 
buffer object descriptor (BOD; see Chapter 2) that  contains the process-private and 
system space addresses of the buffer. 

The $IO_SETUP system service increments the reference count associated with the 
buffer object. The $IO_CLEANUP system service decrements the reference count. 

When an image deletes a buffer object by requesting the $DELETE_BUFOBJ system 
service, if the reference count is nonzero, the buffer object is merely marked for 
deletion. Its actual deletion is deferred until the reference count is decremented to 
zero. 

Chapter 4 provides additional information on the transitions of buffer object pages and 
their page tables. 

3.12.1 $CREATE_BUFOBJ System Service 
The Create Buffer Object ($CREATE_BUFOBJ) system service procedure, 
EXE$CREATE_BUFOBJ in module SYSLKWSET, runs in kernel mode. The service is 
requested with the following arguments: 

INADR, RETADR, and  ACMODE--The standard memory management service argu- 
ments 

FLAGS--Flags, for inner mode requestors only, to specify that limit checking is to be 
bypassed or that the RETADR argument addresses should contain the system space 
addresses 

�9 CREBUF HANDLE--The address of a two-longword array to receive the buffer handle 
of the created buffer object 

A buffer handle identifies the buffer object in subsequent I/O, $IO_SETUP, and 
$DELETE_BUFOBJ requests. The first longword of a buffer handle contains the 
address of the BOD. The second longword contains a sequence number, copied from 
BOD$L SEQNUM, which is used to validate the buffer handle itself. 

A buffer object created through this service must be in 32-bit process-private address 
space and is always doubly mapped in S0/S1 space. 

EXE$CREATE_BUFOBJ takes the following steps: 

1. It creates and initializes scratch space on the stack. 

. It tests the accessibility of the INADR argument and maximizes the ACMODE argu- 
ment with the mode of the service caller. 

, If the service was requested from user mode, EXE$CREATE_BUFOBJ checks 
whether the current security persona has the rights identifier VMS$BUFFER_ 
OBJECT_USER. If not, it returns the error status SS$_NOBUFOBJID. 
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If a user requestor specified either flag CBO$V_RETSVA or CBO$V EXMAXLIM, 
EXE$CREATE_BUFOFJ returns the error status SS$_NOPRIV. 

It raises IPL to 2 to block AST delivery. 

It determines the number of pages the buffer object is to contain and adds that  
count to PMS$GL_BUFOBJ_PAGES_SOS1. 

It tests that the CREBUF_HANDLE is writable and, if not, restores the previous value 
of PMS$GL_BUFOBJ_PAGES_SOS1 and returns the error status SS$_ACCVIO. 

It allocates nonpaged pool for a BOD, charging the pool against the process's byte 
count quota and limit. 

It initializes the BOD, copying the process ID to BOD$L_PID and the access mode 
to BOD$L_ACMODE, and links it to the tail of the PCB list at PCB$Q_BUFOBJ_ 
LIST. 

It allocates system page table entries (SPTEs) to map the buffer into system 
space and stores the address of the first SPTE in BOD$PQ_VA_PTE and the 
corresponding starting system virtual address in BOD$PQ_BASESVA. 

It increments the master buffer object sequence number and stores that number in 
BOD$L_SEQNUM. 

EXE$CREATE_BUFOBJ calls MMG$CREDEL (see Section 3.1.1), specifying 
LCKBUFOBJPAG (see Section 3.12.2) as the per-page service-specific routine. 

When MMG$CREDEL returns, EXE$CREATE_BUFOBJ checks whether the 
buffer object contains all requested pages. If not, it reduces PMS$GL_BUFOBJ_ 
PAGES_SOS1 and deallocates unused SPTEs. 

If the requestor specified flag CBO$V_EXMAXLIM, EXE$CREATE_BUFOBJ sets 
BOD$V_NOQUOTA to indicate that system limits need not be checked. 

If the requestor specified flag CBO$V_RETSVA, it calculates the ending system 
virtual address of the buffer to store in the RETADR argument. 

It records peak page file use and virtual size statistics, and stores return informa- 
tion in the optional RETADR argument. 

If the current value of PMS$GL_BUFOBJ_PAGES_SOS1 is a peak value, 
EXE$CREATE_BUFOBJ records it in PMS$GL_BUFOBJ_SOSI_PEAK. Similarly, 
if appropriate, it updates PMS$GL_BUFOBJ_PAGES_PEAK. 

It increments BOD$L_REFCNT and stores the buffer handle in the requestor's 
CREBUF_HANDLE argument. 

It restores the IPL at entry. 

It returns to its requestor, passing any error status from LCKBUFOBJPAG. 
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3.12.2 [MMG_STD$]LCKBUFOBJPAG Routine 
LCKBUFOBJPAG, in module SYSLKWSET, is the per-page service-specific routine for 
$CREATE_BUFOBJ. The $CREATE_BUFOBJ_64 system service uses its alternative 
entry point, MMG_STD$LCKBUFOBJPAG. 

LCKBUFOBJPAG takes the following steps: 

1. It tests that  the process-private page is writable from the requesting access mode 
and, if not, returns the error status SS$_ACCVIO, which is returned to the service 
requestor. 

2. It calculates the address of the L3PTE that  maps the page and acquires the MMG 
spinlock, raising IPL to IPL$_MMG. 

3. It tests whether the page is valid. If not, it releases the spinlock, touches the page 
to fault it, and resumes with step 2. 

LCKBUFOBJPAG makes several consistency tests on the page, for example, 
checking that  its owner mode is not more privileged than the maximized access 
mode, the page is a process page or a global writable page, and the page is not 
a PFN-mapped page. In the case of a system buffer object, the page must  no t  be 
a process page. If any test fails, LCKBUFOBJPAG returns an appropriate error 
status, which is passed back to the service requestor. 

If the page is part of a Galaxywide section, it calculates the address of the SHM_ 
DESC structure that  describes the section and increments its buffer object refer- 
ence count. If the reference count transitions from 0 to 1, it also locks the section 
for I/O. It does not modify the PFN database record for the page because the PFN 
database for pages in Galaxywide shared memory is common to all Galaxy in- 
stances, and the page is not necessarily part of a buffer object on other instances. 
LCKBUFOBJPAG continues with step 16. 

If the page is not part of a Galaxywide section, it tests and sets PFN$V_BUFOBJ 
in the physical page's PFN$L_PAGE_STATE. If the bit was already set, it in- 
crements PFN$W_BO_REFC for the buffer object page and continues with step 
15. 

Otherwise, it checks whether the page is a memory-resident global section page. If 
so, the page is already locked in physical memory, and it is therefore unnecessary 
to update physical memory use statistics. LCKBUFOBJPAG continues with step 
11. 

If the page was not already locked in memory, LCKBUFOBJPAG increments 
PMS$GL_BUFOBJ_PAGES. 

It tests whether the page has already been locked into memory (a nonzero P F N $ L  
GBL_LCK_CNT for a global writable page or a set WSL$V_PFNLOCK for a 
process page) and, if so, continues with step 11. 
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It decrements PFN$GL_PHYPGCNT, the fluid page count, and checks whether  the 
count is still high enough. If so, it continues with step 11. If not, it increments 
PFN$GL_PHYPGCNT, clears PFN$V_BUFOBJ, decrements PMS$GL_BUFOBJ_ 
PAGES, and returns the error status SS$_INSFLPGS to its caller. 

If this is the first lock of the page, it increments PFN$W_BO_REFC (to zero) and 
increments the page's PFN$W_REFCNT. 

If this is a global page, it continues with step 15. 

It modifies the PFN database record for the page table page tha t  maps this buffer 
object page and increments PFN$W_BO_REFC. If this is the first buffer object 
page mapped by this page table page, it also sets the modify and buffer object bits 
in PFN$L_PAGE_STATE and increments PFN$W_REFCNT. 

It stores an illegal address containing the process index in the buffer object page's 
PFN$L_PT_PFN as a troubleshooting aid. (Correct t rea tment  of a buffer object 
page should never result in access of this field.) 

It sets the modify bit in the buffer object page's PFN$L_PAGE_STATE. 

Unless BOD$V_NOSVA is set, it initializes the SPTE that  doubly maps the buffer 
object page with the PFN, kernel mode read and write enabled, kernel mode owner, 
valid address space match, modify, no-execute, fault-on-execute, and window bits 
set. 

It increments BOD$L_PAGCNT to show that  another page has been added to the 
buffer object. 

It releases the MMG spinlock and returns. 

3.12.3 $CREATE_BUFOBJ_64 System Service 
The Create Buffer Object ($CREATE_BUFOBJ_64) system service procedure, 
EXE$CREATE_BUFOBJ_64 in module SYS_LKWSET_64, runs in kernel mode. It 
resembles the $CREATE_BUFOBJ system service, but all its address arguments  are 
64 bits. Thus it can be used to create a buffer object in P0, P1, or P2 space. By default 
the service double-maps the process buffer in $2 space. 

Its FLAGS argument  includes the bits 

�9 CBO$V_SVA_32, to specify that  the buffer be doubly mapped in S0/S1 space 

�9 CBO$V_NOSVA, to specify that  no system space mapping be created 

�9 CBO$V_SYSBUFOBJ, to specify that  the buffer be mapped only in system space 

EXE$CREATE_BUFOBJ_64 is very similar to EXE$CREATE_BUFOBJ, with the 
following major differences" 

�9 EXE$CREATE_BUFOBJ_64 rounds up the START_VA_64 argument  to the next page 
boundary and rounds down LENGTH_64. 
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If the requestor set the FLAGS argument CBO$V_SYSBUFOBJ, it checks that  the 
service was requested from executive or kernel mode, returning SS$_BADPARAM 
if not. 

By default it adds the buffer object pages to PMS$GL_BUFOBJ_PAGES_S2 rather  
than PMS$GL_BUFOBJ_PAGES SOS1. It checks the size of the buffer object 
against a limit set by SYSGEN parameter MAXBOBMEM, returning error status 
SS$_EXBUFOBJLIM if the buffer object is too large. It allocates L3PTEs that  map 
S2 space to double-map the buffer and records their page table space address in 
BOD$PQ_VA_PTE. It sets BOD$V_S2_WINDOW in BOD$L_FLAGS. 

If the requestor set the FLAGS argument CBO$V_SVA_32, EXE$CREATE_ 
BUFOBJ_64 double-maps the buffer in S0/S1 space, as EXE$CREATE_BUFOBJ 
does. 

If the requestor set the FLAGS argument CBO$V_NOSVA, EXE$CREATE_ 
BUFOBJ_64 does not double-map the buffer into system space. It initializes 
BOD$PQ_VA_PTE and BOD$PQ_BASESVA t o - 1  and sets BOD$V_NOSVA. 

If the requestor set the FLAGS argument CBO$V_SYSBUFOBJ, it inserts the BOD 
at the tail of the system PCB. 

3.12.4 $DELETE_BUFOBJ System Service 
The Delete Buffer Object ($DELETE_BUFOBJ) system service procedure, 
EXE$DELETE_BUFOBJ in module SYSLKWSET, runs in kernel mode. The ser- 
vice is requested with the address of a buffer handle describing the buffer object to be 
deleted. 

EXE$DELETE_BUFOBJ takes the following steps: 

1. It probes accessibility of the buffer handle and in case of error returns the error 
status SS$_BADPARAM to its requestor. 

2. It fetches the contents of the buffer handle, namely the BOD address and sequence 
number. 

3. It acquires the MMG spinlock, raising IPL to IPL$_MMG. 

4. It checks the following: 

--- The BOD is actually linked into the process's BOD list at PCB$Q_BUFOBJ_ 
LIST. In the case of a system buffer object, it checks that  the BOD is linked 
into the system PCB BOD list. 

- -  The sequence number matches that  in the BOD. 

- -  The BOD address is actually a nonpaged pool address. 

BOD$B_TYPE contains DYN$C_BOD. 

The requesting process's ID is the same as BOD$L_PID. 
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- -  The access mode from which the service was requested is at least as privileged 
as the creator of the buffer object. 

If any consistency check fails, EXE$DELETE_BUFOBJ releases the MMG spinlock 
and returns either SS$_BADPARAM or SS$_NOPRIV. 

It tests and sets BOD$V_DELPEN in BOD$L_FLAGS. Once BOD$V_DELPEN 
is set, no further I/O can be initiated to this buffer object. If the bit was already 
set, EXE$DELETE_BUFOBJ releases the spinlock and returns the error s ta tus  
SS$_BADPARAM. 

It decrements BOD$L_REFCNT and, if the count is still positive, indicating 
outstanding I/O requests in progress, releases the MMG spinlock, restores the byte 
count quota and limit charged for the BOD, and returns. 

If the reference count is zero, EXE$DELETE_BUFOBJ changes the state of the 
buffer object pages, one page at a time. 

For a buffer mapped in system space, the common case, it takes the following 
steps: 

a. If BOD$V_S2_WINDOW is set, indicating the buffer object is mapped in $2 
space, it determines the address of the shared L3PTE that  maps that  buffer 
page. Otherwise, it indexes into the system page table window to get the 
address of the SPTE that  maps that  buffer page. 

Regardless of which system space the virtual page is in, if it is invalid, 
EXE$DELETE_BUFOBJ generates a fatal PAGNTRNVAL bugcheck. 

b. If the virtual page is valid, it clears the L3PTE and flushes any cached transla- 
tion from the TB. 

It examines the physical page's PFN database record and tests whether the 
page is a Galaxy shared memory page. If not, it continues with step d. If so, it 
determines the address of the shared memory section descriptor corresponding 
to this page and decrements its buffer object reference count. If the count 
transitions to zero, it calls GLX$SHM_REG_DECREF to decrement the I/O 
reference count for that  shared memory region. 

d. For a page that  is not a Galaxy shared memory page, EXE$DELETE_BUFOBJ 
decrements the physical page's PFN$W_BO_REFC. If the count transitions to 
zero, it checks whether this a memory-resident section page. If so, it continues 
with step g. 

If not, it clears PFN$V_BUFOBJ in the page's PFN$L_PAGE_STATE field and 
decrements PMS$GL_BUFOBJ_PAGES to indicate one less physical buffer 
object page. 

If this is a global page, it continues with step f. If this is a process page, 
it calculates the address of the process-private L3PTE that  maps the page 
and then the address of the L2PTE that  maps that  L3PT. It tests whether  
the page table page that  maps the buffer object is valid and, if not, frees a 
working set list entry for it and makes it valid. It decrements the page table 

C. 
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page's PFN$W_BO_REFC. If the reference count is now zero, EXE$DELETE_ 
BUFOBJ clears PFN$V_BUFOBJ in PFN$L_PAGE_STATE for the page and 
decrements its PFN$W_REFCNT. 

e .  

If the buffer object page is in a release pending state, EXE$DELETE_BUFOBJ 
calls MMG_STD$INCPTREF_64, in module PAGEFAULT, to increment the 
PFN$L_SHRCNT of the process page table page that  mapped it. (To allow the 
page table page to be removed from the working set, its PFN$L_SHRCNT was 
decremented even though it continued to map a buffer object page in transi- 
tion.) If the buffer object page is instead in an active state, EXE$DELETE_ 
BUFOBJ tests whether the page is locked into the working set list. If so, it 
continues with step g; if not, with step f. 

For a buffer object page that  is a global page, EXE$DELETE_BUFOBJ tests 
whether  the page is locked in memory (nonzero PFN$L_GBL_LCK_CNT). If so, 
it continues with step g. 

It increments PFN$GL_PHYPGCNT, the system fluid page count, to show one 
more available page. 

g. It decrements the buffer object page's PFN$W_REFCNT. If the count is now 
zero, the page is released to the modified page list. EXE$DELETE_BUFOBJ 
goes on to the next page. 

When all buffer object pages have been processed, EXE$DELETE_BUFOBJ sub- 
tracts the number of buffer object pages from either PMS$GL_BUFOBJ_PAGES_ 
SOS1 or PMS$GL_BUFOBJ_PAGES_S2 and deallocates the system space PTEs 
that  doubly mapped the buffer object. 

For a buffer object mapped only in process-private space, EXE$DELETE_BUFOBJ 
takes most of the same steps as for a buffer object mapped in system space, with 
the following exceptions: 

It does not clear the L3PTE that  mapped each buffer object page and therefore 
no TB invalidate is necessary. 

It does not deallocate system space L3PTEs or update PMS$GL_BUFOBJ_ 
PAGES Sn. 

Regardless of whether the buffer object was mapped in system space, 
EXE$DELETE_BUFOBJ clears BOD$L_SEQNUM and BOD$B_TYPE to en- 
sure invalidity of any subsequent reference to the deleted buffer object through 
its handle, removes the BOD from the PCB queue, and deallocates the BOD to 
nonpaged pool. 

It releases the MMG spinlock, lowering IPL. 

It restores the byte count quota and limit charged against the process for the BOD 
and buffer object pages. 

It returns to its requestor. 
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3.13 Services That Return Information 
OpenVMS provides several services tha t  return memory-management-related informa- 
tion. They are described in the following sections. 

3.13.1 $GET_REGION_INFO System Service 
The Get Information About Specified Region ($GET_REGION_INFO) system service 
is requested to get information about a region within process-private address space, 
a region specified by ID or by virtual address. Its arguments  include a function code 
that  specifies whether  a region ID or virtual address identifies the region, region 
identification, and a buffer in which information is returned. 

The $GET_REGION_INFO system service procedure, EXE$GET_REGION_INFO in 
module SYS_REGIONS, runs in kernel mode. EXE$GET_REGION_INFO takes the 
following steps: 

1. In addition to making the checks described in Section 3.1.2, it validates its argu- 
ments as follows" 

a. If the FUNCTION argument  is invalid, it returns the error status SS$_ 
BADPARAM. 

b. If START_VA_64 was supplied, it checks that  the argument  can be expressed in 
the number of significant address bits for the system's page size and page table 
hierarchy, for example, 43 bits for a page size of 8 KB and a three-level page 
table. If not, it returns the error status SS$_PAGNOTINREG. 

2. Depending on the function code, it locates the region of interest, based on its ID or 
start ing virtual address. The function code can also specify that  the target region 
is the one following the region at the start ing virtual address. If the region was 
not found, EXE$GET_REGION_INFO returns the error status SS$_IVREGID or 
SS$_PAGNOTINREG, depending on the function code. 

3. If the region was found, it copies information from the RDE to the requestor- 
specified buffer and stores the length of the information in the RETURN_LENGTH_64 
argument.  

4. It returns SS$_NORMAL to its requestor. 

3.13.2 $GETSECl System Service 
A process requests the Get Section Information ($GETSECI) system service to get 
information about a particular global page mapped into its address space. Its argu- 
ments include the address of a page in the global section of interest  and an item list 
describing the information to be returned. Use of this undocumented system service is 
reserved to Hewlett-Packard Company. 

Basically, the system service sanity checks the virtual address specified, determines 
the address of the GSTE that  describes the corresponding global section, and returns 
the requested information from the GSTE to the service requestor. 
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The $GETSECI system service procedure, EXE$GETSECI in module SYSPARPRC, 
runs in kernel mode. EXE$GETSECI takes the following steps: 

1. It raises IPL to 2. 

2. It locates the RDE corresponding to the virtual address argument. If none is 
found, EXE$GETSECI returns the error status SS$_NONXPAG to its requestor. 

3. If the address is within a region, but beyond the currently defined space in the 
region, EXE$GETSECI returns the error status SS$_LENVIO. If the address falls 
on a page of nonexistent address space within the defined space in the region, 
EXE$GETSECI returns the error status SS$_ACCVIO. 

4. Otherwise, it determines the address of the L3PTE that  maps the specified virtual 
address and faults the page table page into the process's working set list. 

5. It compares the requestor's access mode to that  of the page owner and, if it is less 
privileged, returns the error status SS$_PAGOWNVIO. The requestor can only get 
information about pages owned by the requesting mode and less privileged modes. 

6. EXE$GETSECI determines the page type and rules out unsuitable pages: 

If the page is a PFN-mapped page, EXE$GETSECI returns the error status 
SS$_PAGTYPVIO. 

If the page is a process-private demand zero page, a process-private section 
page, or a page file page, it returns the error status SS$_NOTINSEC. 

If the page is a transition or valid page, EXE$GETSECI determines the page 
type from the physical page's PFN database record. If the page is anything but 
PFN$C_GLOBAL, PFN$C_GBLWRT, or a Galaxywide section page, it returns 
the error status SS$_NOTINSEC. 

7. For suitable page types, EXE$GETSECI uses the information in the PTE to get 
the corresponding GPTX and GSTX: 

a. For a valid or transition global page, it examines the physical page's PFN 
database record fields PFN$Q_PTE_INDEX, which contains the GPTX, and 
PFN$Q_BAK. If the page is a page file global page, EXE$GETSECI scans all 
the GSTEs, looking for one that includes that GPTX. If the page is not a page 
file global page, PFN$Q_BAK contains the global section index. 

b. For a valid Galaxywide section page, EXE$GETSECI gets the Galaxywide 
shared memory section ID from the physical page's PFN database record 
(SHM_ID$W_INDEX) and indexes the Galaxy shared memory descriptor table 
to get the GSTX. 

c. For an invalid global page that is not a transition page, EXE$GETSECI 
examines the GPTE. If the page is a page file global page, it scans all the 
GSTEs, looking for one that includes that GPTX. If the page is not a page file 
global page, the GPTE contains the GSTX. 

8. EXE$GETSECI calculates the address of the GSTE. 
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If the page is a Galaxywide section page, it adds SEC$L_VPX to the GPTX value 
to transform it into a real index into the GPT. 

It then processes the item list: checking access to each entry and each buffer an 
entry describes, validating item codes, and recording information in buffers. If 
an entry or buffer is inaccessible, EXE$GETSECI returns SS$_ACCVIO to its 
requestor. If an item code is invalid, it re turns SS$_BADPARAM. Information 
that  can be returned includes global section flags, access mode, ident, name, and 
relative page number of the input virtual address. 

3.13.3 $FIND_GPAGE_64 System Service 
A process requests the Find Mapped Global Page ($FIND_GPAGE_64) system service 
to determine the address at which a part icular offset in a named global section is 
mapped in that  process. Its input arguments  include the offset in the global section 
offset, the global section name and ID, flags specifying the global section type, and 
access mode. Use of this undocumented system service is reserved to Hewlett-Packard 
Company. 

Basically, the system service finds the specified global section, calculates the GPTX 
corresponding to the specified offset in that  section, and then scans the process's page 
tables looking for the virtual page that  corresponds to that  GPTX. If it finds such a 
page, it calculates the corresponding virtual address and returns that  to the requestor. 

The $FIND_GPAGE_64 system service procedure, EXE$FIND_GPAGE_64 in module 
SYS_FIND_GPAGE_64, runs in kernel mode. EXE$FIND_GPAGE_64 takes the 
following steps: 

1. In addition to making the checks described in Section 3.1.2, it validates its argu- 
ments as follows" 

a. It checks that  the SECTION_OFFSET_64 argument  and, if present, optional 
arguments  START_VA_64 and LENGTH_64 arguments  are multiples of the size 
of a page, returning the error status SS$_OFF_NOTPAGALGN, SS$_VA_ 
NOTPAGALGN, or SS$_LEN_NOTPAGMULT if not. 

b. It checks that  the START_VA_64 argument  is within process-private space, 
returning the error status SS$_NOSUCHPAG if not. 

c. It minimizes the LENGTH_64 argument  with the difference between START_VA_64 
and the end of process-private space. 

2. It locks the GSD mutex for read access, raising IPL to 2. 

3. It calls MMG_STD$GSDSCAN, in module SYSDGBLSC, to find the GSD, if 
any, that  corresponds to the GS_NAME_64 and IDENT_64 arguments.  Section 3.7.1 
describes MMG_STD$GSDSCAN. If none is found, it unlocks the mutex and 
returns the error status SS$_NOSUCHSEC. 

4. Otherwise, EXE$FIND_GPAGE_64 performs an additional sanity check on the 
global section ident: it confirms that  the ident is positive and, if not, unlocks the 
mutex and returns the error status SS$_IVSECIDCTL to its requestor. 
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Examining the GSD flags, EXE$FIND_GPAGE_64 tests whether  the section is a 
PFN-mapped one. If so, it unlocks the mutex and re turns  the error s ta tus  SS$_ 
GBLSEC_MISMATCH. 

It compares the section access mode with the requestor 's  mode to determine if the 
system service requestor  is allowed to map the section. If not, it unlocks the mutex 
and re turns  the error s tatus SS$_NOPRIV. 

It calculates the address of the GSTE. 

It calls MMG_STD$CHKPRO_AUDIT to check access to the file. If access is not 
allowed, it unlocks the mutex and re turns  an error s ta tus  to its requestor. 

It checks whether  SECTION_OFFSET_64 is within the global section and, if not, 
unlocks the mutex and re turns  the error s ta tus  SS$_OFFSET_TOO_BIG. 

It calculates the GPTX corresponding to the sum of the section offset and the 
GPTX for the first page of the section. 

It unlocks the mutex. 

EXE$FIND_GPAGE_64 establishes an exception handler  for any subsequent  
access violations and scans the process's page tables for a match. It loops through 
the L1PT and, for each nonzero L1PTE, scans the corresponding L2PT. For each 
nonzero L2PTE, it scans the corresponding L3PT looking for a match. It skips any 
L3PTE tha t  is no-access, PFN-mapped,  or a window page. 

If it finds an L3PTE whose valid and type 1 bits are clear, whose type 0 bit is set, 
and whose high 32 bits match the GPTX, it has found the matching page. If the 
page's owner access mode is more privileged than  the maximized access mode, it 
re turns  error s ta tus  SS$_NOPRIV. Otherwise, it calculates the vir tual  address 
tha t  corresponds to tha t  L3PTE and re turns  it and the s ta tus  SS$_NORMAL to its 
requestor. 

For each valid or t ransi t ion L3PTE it finds, it takes the following steps" 

a. It acquires the MMG spinlock, raising IPL to IPL$_MMG. 

b. It confirms tha t  the L3PTE is still a valid or t ransi t ion page. If not, it releases 
the spinlock, lowering IPL, and goes on to the next L3PTE. 

c. In the case of a valid or t ransi t ion L3PTE, any GPTX information is in the 
PFN database ra ther  than  in the L3PTE. EXE$FIND_GPAGE_64 gets the 
G P 2 ~  from PFN$Q_PTE_INDEX in the PFN database record for the PFN 
mapped by tha t  L3PTE. 

d. If the page is a Galaxywide shared memory page (PFN$V_SHARED is set 
in PFN$L_PAGE_STATE), the GPTX in the L3PTE is a section-relative in- 
dex; EXE$FIND_GPAGE_64 adds the GPTX in the shared memory section 
descriptor to it. 

e. It releases the MMG spinlock, lowering IPL. 
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If the page is not a shared memory page, it checks whether  the page type is 
PFN$C_GLOBAL or PFN$C_GBLWRT. If not, it goes on to the next L3PTE. 

It compares the G P 2 ~  to the GPTX of interest. If tha t  matches,  it has found 
the matching page. If the page's owner access mode is more privileged than  
the maximized access mode, it re turns  the error s ta tus  SS$_PAGOWNVIO. 
Otherwise, it calculates the vir tual  address tha t  corresponds to tha t  L3PTE 
and re turns  it and the s tatus SS$_NORMAL to its requestor. 

3.13.4 $GET_VA_RAD_INFOW System Service 
The $GET_VA_RAD_INFOW system service is requested to get per-RAD page counts 
for a specified virtual  address range. Its a rguments  include the s tar t ing vir tual  
address, size of the range in bytes, and the address and size of a buffer in which 
the information is returned.  A size o f - 1  means the vir tual  range ends at the end 
of process-private address space. Use of this system service is reserved to Hewlett- 
Packard Company. Any other use is unsupported.  

The $GET_VA_RAD_INFOW system service procedure, EXE$GET_VA_RAD_INFOW 
in module PTECHECK, runs in kernel mode. It takes the following steps: 

1. It validates its arguments ,  checking tha t  the vir tual  address range is en- 
tirely within process-private address space, and re turns  the error s ta tus  SS$_ 
BADPARAM if not. It confirms that  the re turn  buffer is large enough for a long- 
word array of page counts with an element for each RAD on the system, re turn ing  
SS$_BADPARAM if not. 

2. It checks that  the requestor has write access to the buffer, re turning SS$_ACCVIO 
if not. Otherwise, it clears the buffer. 

3. It raises IPL to 2. 

4. It determines the RDE associated with the beginning par t  of the range. 

5. It determines the lesser of the last virtual  page in tha t  region and the ending 
virtual  address. 

6. It scans the L3PTEs tha t  map tha t  subrange. If the PTE maps a valid or t ransi t ion 
page, it determines the RAD based on the PFN and increments that  RAD's counter  
in the re turn  buffer. 

7. If the ending address of the subrange is less than  the address of the entire vir tual  
range, it determines the RDE associated with the next par t  of the range and 
continues with step 5. 

8. Otherwise, it re turns  to its requestor. 
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3.14 $SETSWM System Service 
A security persona with PSWAPM privilege can lock and unlock its process into the 
balance set by requesting the $SETSWM system service. A process locked into the 
balance set cannot be outswapped. 

The Set Process Swap Mode ($SETSWM) system service procedure, EXE$SETSWM in 
module SYSSETMOD, runs in kernel mode. EXE$SETSWM checks that  the security 
persona has privilege and simply sets (or clears) the PCB$V_PSWAPM bit in PCB$L_ 
STS, the status longword in the software PCB. While setting or clearing the bit, 
EXE$SETSWM holds the SCHED spinlock. 

When the swapper is searching for suitable outswap candidates, a process whose 
PCB$V_PSWAPM bit is set is passed over. 

3.15 Set Page Protection System Services 
A process can alter the protection of a set of pages in its address space by requesting 
either the $SETPRT or the $SETPRT_64 system service. 

3.15.1 $SETPRT System Service 
The Set Protection on Pages ($SETPRT) system service procedure, EXE$SETPRT in 
module SYSSETPRT, runs in kernel mode. It takes the following steps: 

1. It transforms the contents of the PROT argument from a VAX protection encoding 
to the analogous Alpha protection bits. (VAX encoding was used for ease in porting 
VAX code to Alpha.) 

2. It creates and initializes scratch space on the stack. 

3. It tests the accessibility of the INADR argument and maximizes the ACMODE argu- 
ment with the mode of the service requestor. 

4. It raises IPL to 2 to block AST delivery. 

5. It determines the address of the RDE corresponding to the INADR argument. 

6. EXE$SETPRT calls MMG$CREDEL, specifying SETPRTPAG_64 (see Section 
3.15.2) as the per-page service-specific routine. 

7. If necessary, EXE$SETPRT transforms error statuses returned by SETPRTPAG_ 
64 into more traditional ones (SS$_PAGTYPVIO into SS$_NOPRIV and SS$_ 
NOSUCHPAG into SS$_ACCVIO). 

8. If the PRVPRT argument was specified, EXE$SETPRT tests its accessibility and 
returns in it the most recent previous page protection returned from SETPRTPAG_ 
64. 

9. It restores the IPL at entry and returns to its requestor. 
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In general, the operation of this service is straightforward. However, its actions have 
one interesting side effect. If a section page for a read-only section has its protection 
set to writable, the copy-on-reference bit is set. This set bit forces the page to have its 
backing store address changed to the page file when the page is faulted, preventing 
a later attempt to write the modified section pages back to a file to which the process 
may be denied write access. 

3.15.2 [MMG_STD$]SETPRTPAG_64 Routine 
SETPRTPAG_64, with its alternative entry point MMG_STD$SETPRTPAG_64, in 
module SYSSETPRT, is the per-page service-specific routine for the $SETPRT and 
$SETPRT_64 system services. 

It takes the following steps: 

1. It calls MMG_STD$PTEREF_64, in module SVAPTE, to fault in the page table 
page containing the PTE that maps the page whose protection is to be changed. 
MMG_STD$PTEREF_64 takes the following steps: 

a. It confirms that the virtual address is within the current space of the region, 
returning SS$_LENVIO if not. 

b. It gets the address of the L3PTE that  maps the specified virtual address. 

c. It acquires the MMG spinlock, raising IPL, and then checks whether all the 
PTEs involved in translating the specified virtual address are valid. If so, 
it returns the address of the PTE to its caller with the MMG spinlock held, 
ensuring that the state of the L3PT cannot be changed asynchronously. 

d. If some PTEs are invalid, the routine records the address of the L3PTE in 
PCB$Q_KEEP_IN_WS and the starting and ending addresses of the L2PT 
that  maps it in PHD$PQ_PT_NO_DELETE1 and PHD$PQ_PT_NO_DELETE2. 
Recording these addresses enables the L2PT to be faulted into the working set 
list and temporarily locked there, temporarily preventing any of the L3PTs it 
maps from being deleted. 

e. MMG_STD$PTEREF 64 releases the MMG spinlock, lowering IPL to 2. 

f. It faults the L2PT, if necessary. If the L2PTE that  maps the L3PT is null, 
MMG_STD$PTEREF_64 returns SS$_ACCVIO. Otherwise, it then faults the 
L3PT. 

g. It reacquires the MMG spinlock, clears PHD$PQ_PT_NO_DELETE1 and 
PHD$PQ_PT_NO_DELETE2, and stores a - 1  in PCB$Q_KEEP_IN_WS. With 
the L3PT faulted into the working set list and the MMG spinlock held, the 
temporary measures are no longer necessary. 

h. It returns the address of the PTE to its caller, with the MMG spinlock still 
held. 
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If MMG_STD$PTEREF_64 re turned  an error status,  SETPRTPAG_64 re turns  it to 
its caller. Otherwise, SETPRTPAG_64 tests whether  the L3PTE is zero, indicating 
a null page, and, if so, releases the MMG spinlock and re turns  the error s ta tus  
SS$_NOSUCHPAG, which is t ransformed before being re turned  to a $SETPRT 
requestor. 

SETPRTPAG_64 compares the requestor 's  access mode in MMG$L_ACCESS_ 
MODE with tha t  of the page owner. If the access mode is insufficiently privi- 
leged, the routine releases the MMG spinlock and re turns  the error s ta tus  SS$_ 
PAGOWNVIO. 

Otherwise, it determines the type of the vir tual  page, based on the valid and type 
bits in the L3PTE that  maps it. 

If the page is a t ransi t ion or demand zero page tha t  is to become read-only, 
SETPRTPAG_64 releases the MMG spinlock, lowers IPL, touches the page to 
make it valid, and continues at step 1. 

If the page is a demand zero page and will remain writable or is a page file 
page, SETPRTPAG_64 continues with step 5. 

If the page is a process-private section page and the protection change would 
make a writable page read-only, SETPRTPAG_64 continues with step 5. 

If the page is already writable from some mode or is a copy-on-reference page, 
SETPRTPAG_64 continues with step 5. 

If the protection change would make a read-only page writable, SETPRTPAG_ 
64 must  change the page to be a copy-on-reference page: it charges the page 
against  the process's job page file quota and changes the page's backing store 
to a page file. It continues with step 5, also sett ing the copy-on-reference bit in 
the L3PTE. An inability to charge the page against  quota results in an error 
s tatus return.  

If the page is valid, SETPRTPAG_64 checks tha t  it is not a PFN-mapped page 
and tha t  it is a process page. If ei ther is false, it re turns  the error s ta tus  SS$_ 
PAGTYPVIO. 

If the page is a valid process page and the protection change would make a 
writable page read-only, SETPRTPAG_64 continues with step 5, also clearing 
the fault-on-write bit if it was set. 

If the page is a valid process page and the protection change does not make 
a read-only page writable or if the page already has page file backing store, 
SETPRTPAG_64 continues with step 5. 

Otherwise, it changes the PFN$Q_BAK field for the physical page to a page file 
backing store form and decrements the section's reference count. It completes 
changing the page to a copy-on-reference page, taking the same steps as for a 
process-private section page. 

221 



Memory Management System Services 

, 

, 

If the page is a global section page, SETPRTPAG_64 determines the page 
type from the global PTE. If it contains anything but a global section index 
for a copy-on-reference page, SETPRTPAG_64 returns the error status SS$_ 
PAGTYPVIO. Otherwise, it continues. 

It modifies the L3PTE to change the page's protection and, if the page is valid, 
invalidates any cached TB entry for the page. 

It releases the MMG spinlock, restoring the previous IPL of 2, and returns to its 
caller. 

3.15.3 $SETPRT_64 System Service 
The Set Protection on Pages ($SETPRT_64) system service procedure, EXE$SETPRT_ 
64 in module SYS_SETPRT_64, runs in kernel mode. It resembles the $SETPRT 
system service, but all its address arguments are 64 bits. Thus it can be used to 
change the protection of P0, P1, or P2 space pages. 

It takes the following steps: 

1. It validates its arguments. 

o It transforms the contents of the PROT argument from a VAX protection encoding 
to the analogous Alpha protection bits. (VAX encoding is used for consistency with 
the 32-bit service.) 

3. It maximizes the ACMODE argument with the mode of the service requestor. 

. It rounds down the START_VA_64 argument to a page boundary and rounds up the 
LENGTH_64 to an integral number of pages that  includes the user-specified start ing 
and ending addresses. 

5. It raises IPL to 2 to disable AST delivery. 

~ It determines the address of the RDE corresponding to the START_VA_64 argu- 
ment. If the address is not within a region, it returns the error status SS$_ 
PAGNOTINREG or SS$_NOT_PROCESS_VA, whichever is appropriate. 

7. It loops, calling MMG_STD$SETPRTPAG_64 (see Section 3.15.2) until the routine 
returns an error status or all pages are done. 

8. If the protection on any page was changed successfully, EXE$SETPRT_64 con- 
verts the old protection into VAX encoding and records it in the RETURN_PROT_64 
argument if it is accessible. 

o It returns the rounded-down starting address and rounded-up length to its re- 
questor. 
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3.16 Set Fault System Services 
A process can set the no-execute characteristic for each of a group of pages in its 
address space by requesting the undocumented $SETFLT or $SETFLT_64 system 
service. Use of these services is reserved to Hewlett-Packard Company. Any other use 
is unsupported. 

3.16.1 $SETFLT System Service 
The Set Fault  Characteristic ($SETFLT) system service procedure, EXE$SETFLT in 
module SYSSETPRT, runs in kernel mode. It takes the following steps: 

1. It creates and initializes scratch space on the stack. 

2. It performs several consistency checks on the arguments,  returning the error 
status SS$_BADPARAM if the FLAGS argument  specifies anything other than 
no-execute or the error status SS$_ACCVIO if other arguments  are inaccessible. 

3. It maximizes the ACMODE argument  with the mode of the service requestor. 

4. It raises IPL to 2 to block AST delivery. 

5. It determines the address of the RDE corresponding to the INADR argument.  

6. EXE$SETFLT calls MMG$CREDEL (see Section 3.1.1), specifying SETFLTPAG_64 
(see Section 3.16.2) as the per-page service-specific routine. 

7. If necessary, EXE$SETFLT transforms error statuses returned by SETPRTPAG_ 
64 into more traditional ones (SS$_PAGTYPVIO into SS$_NOPRIV and SS$_ 
NOSUCHPAG into SS$_ACCVIO). 

8. If MMG$CREDEL returns successfully, EXE$SETFLT executes an instruction 
memory barrier to flush any instructions that  might have been prefetched from the 
pages whose fault-on-execute bit has just  been set. 

9. It restores the previous IPL and returns to its requestor. 

3.16.2 [MMG_STD$]SETFLTPAG_64 Routine 
SETFLTPAG_64, with its alternative entry point MMG_STD$SETFLTPAG_64, in 
module SYSSETPRT, is the per-page service-specific routine for the $SETFLT and 
$SETFLT_64 system services. 

It takes the following steps: 

. It calls MMG_STD$PTEREF_64 (see Section 3.15.2) to fault in the page table page 
containing the PTE that  maps the page whose no-execute characteristic is to be 
set. MMG_STD$PTEREF_64 returns the address of the PTE to SETFLTPAG_64 
with the MMG spinlock held. 
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2. If MMG_STD$PTEREF_64 re turned  an error status,  SETFLTPAG_64 re turns  it to 
its caller. Otherwise, SETFLTPAG_64 tests whether  the L3PTE is zero, indicating 
a null page, and, if so, releases the MMG spinlock and re turns  the error s ta tus  
SS$_NOSUCHPAG, which is t ransformed before being re turned  to a $SETFLT 
requestor. 

3. SETFLTPAG_64 compares the requestor 's  access mode with tha t  of the page owner. 
If the access mode is insufficiently privileged, it releases the MMG spinlock and 
re turns  the error s tatus SS$_PAGOWNVIO, which is passed back to the system 
service requestor. 

4. Otherwise, it determines the type of the vir tual  page, based on the valid and type 
bits in the L3PTE tha t  maps it. 

If the page is a transit ion or demand zero page, SETFLTPAG_64 releases the 
MMG spinlock, lowers IPL, touches the page to make it valid, and continues at  
step 1. 

If the page is valid, SETFLTPAG_64 checks tha t  it is a process or global 
page and tha t  it is not a PFN-mapped page, re turning the error s ta tus  SS$_ 
PAGTYPVIO if ei ther is false. If both are true, it sets the no-execute and 
fault-on-execute bits in the L3PTE. 

If the page is a global page, a page file page, or a section page, SETFLTPAG_64 
sets the no-execute bit in the L3PTE. 

5. It invalidates any possible TB entry for the page; releases the MMG spinlock, 
lowering IPL; and returns.  

3.16.3 $SETFLT_64 System Service 
The Set Faul t  Characterist ic ($SETFLT_64) system service procedure, EXE$SETFLT_ 
64 in module SYS_SETPRT_64, runs in kernel  mode. It resembles the $SETFLT 
system service, but all its address a rguments  are 64 bits. Thus it can be used to set 
the no-execute characteristic for P0, P1, or P2 space pages. 

Its control flow resembles that  of EXE$SETPRT_64 (see Section 3.15.3), with the 
exception tha t  the per-page routine it calls is MMG_STD$SETFLTPAG_64 (see Section 
3.16.2). 

3.17 $COPY_FOR_PAGE System Service 
A process can read data  from a page whose fault-on-read bit is set by request ing the 
undocumented Copy Faul t  on Read Page ($COPY_FOR_PAGE) system service. The 
service is requested with three arguments:  the number  of bytes to be copied, the 
source vir tual  address, and the destination vir tual  address. As described in Chapter  
1, the executive sets the fault-on-read bit in the SPTEs mapping the granular i ty  hint  
region tha t  contains executive and other installed resident images'  code sections. The 
protection on these pages permits  user  access so tha t  instructions in mode of caller 
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system services and images installed resident can be executed by any access mode. 
Data fetches, in contrast, are blocked by the fault-on-read bit. 

The System Dump Analyzer (SDA) utility and debuggers use this service when they 
are requested to display instructions in system space. This service provides the ability 
to fetch data from system pages set fault-on-read for the few instances in which it is 
required. Use of this service is reserved to Hewlett-Packard Company. Any other use 
is unsupported. 

The $COPY_FOR_PAGE system service procedure, EXE$COPY_FOR_PAGE in module 
COPY_FOR_PAGE, runs in kernel mode. It takes the following steps: 

, It confirms that  the data to be read is in system space, returning the error status 
SS$_BADPARAM if not. 

. It probes the protection on the system page to confirm that the access mode from 
which the service was requested is allowed to read the page and, if not, returns the 
error status SS$_ACCVIO. 

, It probes the output buffer page to confirm that the requesting access mode has 
write access and, if not, returns the error status SS$_ACCVIO. 

4. EXE$COPY_FOR_PAGE examines the SPTE containing the start  of the data. 

If the page is invalid but the fault-on-read bit is set, the SPTE is inconsistent 
and EXE$COPY_FOR_PAGE generates the fatal bugcheck INCONMMGST. 

If the page is valid and the fault-on-read bit is not set, EXE$COPY_FOR_ 
PAGE simply copies the data to the requestor's output buffer. 

If the page is valid and the fault-on-read bit is set, EXE$COPY_FOR_PAGE 
acquires the MMG spinlock, raising IPL, and temporarily double-maps the 
physical page or pages containing the data. The temporary mapping permits 
kernel mode read access and has the fault-on-read bit clear. The alternative to 
the double mapping is temporarily clearing the fault-on-read bit in the original 
SPTE. That alternative would not only make it possible for other threads of 
execution to fetch data from the page but would also require clearing and then 
resetting the bit in each SPTE that  maps any page within the granularity hint 
region. 

EXE$COPY_FOR_PAGE releases the spinlock, lowering IPL. Using the tempo- 
rary mapping of the physical page, it copies the data to the requestor's output 
buffer. It reacquires the spinlock to unmap the page or pages and releases the 
spinlock. 

5. It returns to its requestor. 
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3.18 Relevant Source Modules 
Source modules described in this chapter include 

[LIB]MMGDEF.SDL 
[LIB_H]MMG_FUNCTIONS.H 
[LIB_H]MMG_ROUTINES.H 
[SYS] COPY_FOR_PAGE.B32 
[SYS]PHDUTL.MAR 
[SYS]PTECHECK.C 
[SYS] SVAPTE.MAR 
[SYS] SYS_C RE D E L_64. C 
[SYS]SYS_CRMPSC_64.C 
[SYS] SYS_GB LSE C_64. C 
[SYS] SYS_GDZRO_64. C 
[SYS]SYS_GPFN_64.C 
[SYS] SYS_LKWS ET_64. C 
[SYS] SYS_RE GI ON S. C 
[SYS]SYS_SETPRT_64.C 
[SYS]SYSADJSTK.MAR 
[SYS]SYSCREDEL.MAR 
[SYS]SYSCRMPSC.MAR 
[SYS]SYSDGBLSC.MAR 
[SYS]SYSLKWSET.MAR 
[SYS]SYSSETMOD.MAR 
[SYS]SYSSETPRT.MAR 
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Chapter 4 
Paging Dynamics 

I consider that a man's brain originally is like a little empty 
attic, and you have to stock it with such furniture as you 
choose .... Now, the skillful workman is very careful indeed as 
to what he takes into his brain-attic. He will have nothing but 
the tools which may help him in doing his work, but of these 
he has a large assortment, and all in the most perfect order. It 
is a mistake to think that that little room has elastic walls 
and can distend to any extent. Depend upon it, there comes a 
time when for every addition of knowledge you forget some- 
thing that you knew before. It is of highest importance, there- 
fore, not to have useless facts elbowing out the useful ones. 

Sir Arthur Conan Doyle, A Study in Scarlet 

This chapter 's  subject is paging dynamics, the movement  of pages of code and da ta  
between memory and mass storage. Specifically, it describes the transit ions a page 
makes  as it is faulted into and out of a working set list, and as it moves between its 
backing store and memory. 

Section 4.9 describes the $FAULT_PAGE system service and its effect on page fault 
handling. The service enables an application to fault a set of pages prior to their  use. 

The chapter  also discusses modified page writing, the allocation and use of page files, 
and the operation of the $UPDSEC and $UPDSEC_64 system services. 

4.1 Overview 
A typical vir tual  page begins life as a demand zero page or as a number  of blocks in 
a section file on a mass storage medium. Commonly, a vir tual  page comes from an 
image. A process initiates execution of the image by request ing the Image Activate 
($IMGACT) system service, bet ter  known as the image activator. 

The image activator, described in detail in Chapter  Image Activation and Exit, maps 
the entire image into the process's address space, using the memory management  
system services described in Chapter  3. It initializes data  s t ructures  such as process 
section table entries (PSTEs) and page table entries (PTEs) to associate blocks of 
the image file with the pages they are to occupy. Chapter  2 discusses the memory 
management  data  structures.  
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When an image begins to execute, few of its pages have been read into memory from 
the image file, and most of the level 3 page table entries (L3PTEs) tha t  map the image 
have a clear valid bit. (The image activator did access some pages to relocate and fix 
up address references within the image.) When an image page whose valid bit is clear 
is referenced, a translation-not-valid exception results. 

The processor changes access mode to kernel  and switches to the kernel  stack. It 
dispatches to the translation-not-valid exception service routine, more commonly 
known as the page fault handler. 

The page fault handler  examines the memory management  data  s t ructures  to deter- 
mine what  kind of vir tual  page this is and takes appropriate  actions: 

For example, in the case of a demand zero page, it finds an available entry in the 
process's working set list, allocates a page of zeroed memory, and stores its page 
frame number  (PFN) in the L3PTE with a set valid bit. It dismisses the exception. 
The process reexecutes the instruction whose a t tempted execution caused the page 
fault. This time, with the L3PTE valid bit set, the processor t rans la tes  the vir tual  
address to a physical address and execution continues. 

In the case of a vir tual  page in a mass storage file, the page fault handler  de- 
termines which blocks contain the vir tual  page tha t  tr iggered the fault, finds an 
available entry in the process's working set list, allocates a physical page of mem- 
ory from the free page list, stores its PFN in the L3PTE with a clear valid bit, and 
requests an I/O operation to read those blocks into the allocated page. It places the 
kernel thread into a page fault wait  state. 

When the I/O completes, I/O postprocessing code sets the valid bit in the L3PTE 
and makes the kernel thread computable. When the kernel thread  is placed back 
into execution, it reexecutes the instruction whose a t tempted execution caused the 
page fault. This time, with the L3PTE valid bit set, the processor t rans la tes  the 
virtual  address to a physical address and execution continues. 

Although many steps in page fault handl ing are common to most types of page, some 
depend on page type and state. Section 4.2 describes the common steps in page fault 
handling and serves as a framework for details of type- and state-specific processing 
described in subsequent  sections. 

Faulted in, a page remains valid and in the working set until  removed. Reasons for 
removal include the following: 

�9 Room is required for another  page (see Chapter  5). 

The Purge Working Set ($PURGWS or $PURGE_WS) system service removes it 
(see Chapter  5). 

�9 Swapper t r imming removes it (see Chapter  6). 

�9 Proactive memory reclamation removes it (see Chapter  5). 

�9 Working set limit adjustment  removes it (see Chapter  5). 
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Removed from the working set list, the page is inserted into the modified page list, if it 
has been modified; otherwise, it is inserted into the free page list. Sometime later, the 
swapper, in response to insufficient free pages or an excess of modified pages, wri tes 
modified pages to their  backing store, typically a page file. It then inserts  them into 
the free page list. Acting in this capacity, the swapper  is called the modified page 
writer. 

While the page is on the free or modified page list, it is essentially cached; the page 
fault handler  can resolve a fault for it by simply updat ing the memory m a n a g e m e n t  
data  s t ructures and placing the page back into the process's working set list. Such a 
page fault requires no I/O and is sometimes referred to as a soft page fault or a soft 
fault. 

This chapter  shows how the page fault handler  manipula tes  the various memory 
management  data  s tructures in response to faults for different types of vir tual  page. It 
presents page fault handler  action largely in terms of modifications to da ta  s t ructures  
and state transitions. It also describes the t ransi t ions tha t  a vir tual  page makes  when 
it is removed from a working set list. 

Section 4.3 discusses the transit ions of different kinds of process page. Section 4.5 
covers the transit ions of global pages. Sections 4.6 and 4.7 describe the t ransi t ions  of 
system space pages and global page table pages. 

4.2 Page Fault Handling 
As described in Chapter  1, the t ranslat ion buffer (TB) miss privileged archi tecture li- 
brary (PALcode) routine generates a page fault exception when it detects an a t tempted  
reference to a vir tual  address whose L3PTE valid bit is clear. It also generates  a page 
fault exception if ei ther the level 1 page table entry (L1PTE) or the level 2 page table 
entry (L2PTE) involved in the t ranslat ion is not valid but  otherwise allows kernel  
mode read access. 

The page fault handler  is entered in response to a translation-not-valid fault, described 
in detail in Chapter  1. When it is entered, the stack contains the s tandard  exception 
stack frame, pictured in Chapter  Interrupts, Exceptions, and Machine Checks. The 
page fault is described by the contents of the following registers: 

�9 R4---The fault vir tual  address 

�9 R5--One of the following values: 

80000000 0000000016 for a write da ta  fault 
00000000 0000000016 for a read data  fault 
00000000 0000000116 for a read instruction fault 

The page fault handler  is implemented in a combination of MACRO-64 assembly 
language and MACRO-32: 

�9 SCH$PAGEFAULT, in the MACRO-64 assembly language module SCHEDULER 
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�9 MMG$PAGEFAULT, in the MACRO-32 module PAGEFAULT 

Assembly language is required to save all the scratch registers so they can be restored 
when the exception is dismissed. Forming the canonical kernel stack (see Chapter  
Scheduling) in case the kernel thread must  be placed into a wait state also requires 
assembly language. 

4.2.1 Common Steps in Page Fault Handling 
Figure 4.1 summarizes the main steps in handling a typical fault for a page on a mass 
storage medium. The numbers in the figure are keyed to the explanations tha t  follow: 

O 

e 

@ 

Entered first, SCH$PAGEFAULT saves the scratch registers on the stack and calls 
MMG$PAGEFAULT. 

MMG$PAGEFAULT checks the interrupt  priority level (IPL) at which the page 
fault occurred. If the IPL is higher than 2, it generates the fatal PGFIPLHI 
bugcheck. Page faults above IPL 2 are not allowed for the following reasons: 

Code executes at an elevated IPL to perform a series of synchronized instruc- 
tions. If a page fault occurs, the faulting kernel thread might be removed 
from execution, allowing another kernel thread to execute the same routine or 
access the same protected data structure. The alternative, looping in kernel 
thread context at elevated IPL until the page fault I/O completes, would reduce 
system performance and responsiveness. 

Moreover, any loop at IPL 4 or above would block the I/O postprocessing 
necessary for page fault resolution. On a uniprocessor system, a loop above 
IPL 2 blocks swapper execution and would result in a deadlock if the free page 
list were empty and the page fault required allocation of a page of memory. 

When the system is executing at an IPL higher than 2, it may be running in 
system context. MMG$PAGEFAULT and related routines perform operations 
that  require process context. 

MMG$PAGEFAULT acquires the MMG spinlock, raising IPL to IPL$_MMG. It 
makes an initial determination of what kind of working set list entry (WSLE) 
and page type this page will be, based on the address range in which the faulting 
virtual address falls, as shown in Figure 4.2. Later, it will distinguish among 
process pages that  are process-private, global read-only, and global writable. 

Note that  global page table pages no longer page and thus do not appear in a 
working set list, but the page type bits are in the PFN database records for pages 
occupied by global page table pages. Historically, process-private page tables 
were part  of the process header (PHD), and all the PHD pages had a page type of 
PFN$C_PPGTBL. Now that  process-private page tables are mapped in page table 
space along with system space page tables, pages from the two address regions 
(the PHD pages from system space and the process-private page tables from page 
table space) have a type of PFN$C_PPGTBL. 
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Figure 4.1 
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Figure 4.2 Page Types 
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Indexing the process's page table space with the level fields from the faulting 
virtual address, MMG$PAGEFAULT calculates the addresses of the L1PTE, 
L2PTE, and L3PTE that  map the page (see Figures 1.3 and 1.8). 

Before examining the L3PTE, it determines whether the LIPTE and L2PTE that  
map the page table page containing the L3PTE are themselves valid. If the L1PTE 
is not valid, MMG$PAGEFAULT transforms the fault into one for the L2PT. If the 
L1PTE is valid but the L2PTE is not, it transforms the fault into one for the L3PT. 
These checks avoid the necessity of making the page fault handler  recursive. 

After the page table page has been faulted in, its PTE made valid, and the excep- 
tion dismissed, the instruction that  caused the original fault will reexecute and 
refault. If none of the PTEs are valid, there could be three page faults: one for the 
L2PT, one for the L3PT, and one for the data page. 

Depending on WSLE type, it calls MMG$FREWSLE, in module PAGEFAULT, 
to find room in the working set list for a new page, possibly by removing a page 
from it (see step 4 in Section 4.3.1). A typical process or process page table page 
is described by a WSLE in the process's working set list. Pages from memory- 
resident and Galaxywide global sections, however, are not described by WSLEs. A 
typical system pageable page is described by a WSLE in the system working set 
list. Global page table pages and page tables that  map system space, however, are 
not described by WSLEs. 
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If MMG$FREWSLE returns an error status indicating that  a free WSLE is not 
currently available, MMG$PAGEFAULT acquires the SCHED spinlock, releases 
the MMG spinlock, inserts the kernel thread's kernel thread block (KTB) into the 
appropriate resource wait queue, loads the status SS$_WAIT_CALLERS_MODE 
into R0, and continues with step 11. 

If a free WSLE is available, MMG$PAGEFAULT retests the validity of the L1PTE 
and L2PTE mapping the page table page (one of whose L3PTEs maps the virtual 
address). This is done in case MMG$FREWSLE has removed the L2PT or L3PT 
from the working set. If either is no longer valid, MMG$PAGEFAULT transforms 
the fault into one for that  page table page. After the page table page has been 
faulted in, its PTE made valid, and the exception dismissed, the instruction that  
caused the original fault will reexecute and refault, and the page fault handler will 
fault in the process page. 

It determines the type of page from the PTE contents. Its subsequent actions 
depend on the nature of the invalid page. Figure 2.12 shows the different forms 
of invalid L3PTE, and Chapter 3 describes how most of them are initialized in 
response to various system service requests. 

If necessary, MMG$PAGEFAULT allocates a physical page of memory. (If the 
virtual page is already in memory, for example, occupying a physical page on the 
free page list, this step is unnecessary.) 

If a page of memory is not currently available, MMG$PAGEFAULT acquires the 
SCHED spinlock, releases the MMG spinlock, inserts the KTB into the free page 
wait queue, loads the status SS$_WAIT_CALLERS_MODE into R0, and continues 
with step 11. 

MMG$PAGEFAULT updates the memory management  data structures. 

If the page does not need to be read, perhaps because it is a demand zero page 
or a page faulted from the free page list, MMG$PAGEFAULT releases the MMG 
spinlock, loads the status SS$_NORMAL into R0, and continues with step 11. 

If the page must be read in from a mass storage device, MMG$PAGEFAULT builds 
an I/O request packet (see Section 4.14) that  describes the read to be done, releases 
the MMG spinlock, and queues the request to the driver. 

MMG$PAGEFAULT acquires the SCHED spinlock. Before placing the kernel 
thread into a page fault wait state, it tests whether the faulted page is still in- 
valid. On a symmetric multiprocessing (SMP) system, where MMG$PAGEFAULT 
is running on one processor, concurrent processing and completion of the I/O re- 
quest on another may have already made the page valid. If the page is valid, 
MMG$PAGEFAULT releases the SCHED spinlock, loads the status SS$_NORMAL 
into R0, and continues with step 11. 

If the page is still invalid, it checks whether the page was faulted by user mode 
code running in a multithreaded process. If so, it checks whether an upcall should 
be made to the thread manager and, if so, returns with additional status to 
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SCH$PAGEFAULT (see Chapter Kernel Threads for a description of upcalls and 
user mode thread management). 

If the page is still invalid, but no upcall is necessary, it inserts the KTB into the 
page fault wait queue and loads the status SS$_WAIT_CALLERS_MODE into R0. 

MMG$PAGEFAULT returns to SCH$PAGEFAULT. 

SCH$PAGEFAULT's actions depend on the status from MMG$PAGEFAULT: 

If MMG$PAGEFAULT returned the status SS$_NORMAL, indicating that  
page fault handling is complete, SCH$PAGEFAULT restores the saved scratch 
registers and executes a CALL_PAL REI instruction to dismiss the page fault. 

If MMG$PAGEFAULT returned the status SS$_WAIT_CALLERS_MODE, 
indicating that  the kernel thread must  wait, SCH$PAGEFAULT takes the 
following actions: 

a .  It updates several systemwide data cells to reflect that  this kernel thread 
is no longer current. 

bQ It selects a computable resident kernel thread with whose hardware 
context that  of the waiting kernel thread can be swapped. If none is 
available, it will swap to the system hardware context. 

C. It saves the nonscratch integer registers on the stack and, if the kernel 
thread is using floating-point arithmetic, the floating-point registers in the 
floating-point execution data block (FRED) in the PHD. 

d. It swaps kernel thread context. 

e .  Running in the new kernel thread's context, it releases the SCHED spin- 
lock, restores the new kernel thread's hardware context, and reenters it by 
executing the instruction CALL_PAL REI. 

If MMG$PAGEFAULT returned a status indicating that  an upcall should be 
made, SCH$PAGEFAULT copies the page fault exception frame and some 
additional information about the page fault to the user mode stack. It modifies 
the saved program counter in the exception stack frame on the kernel stack 
and restores the saved scratch registers. It executes a CALL_PAL REI instruction 
to return to user mode and pass control to SCH$PAGEFAULT_UPCALL_JKT, 
in module SCHEDULER (see Chapter Kernel Threads). 

Page read completion occurs as part of I/O postprocessing (see Chapter I / 0  System 
Services) and runs in system context. The I/O postprocessing routine PAGIO, in 
module IOCIOPOST, sets the valid bit in the L3PTE. If the kernel thread was 
placed into a page fault wait, it reports the scheduling event page fault completion 
for the kernel thread to make it computable. Otherwise, if an upcall to a user 
mode thread manager was made, it queues a user mode asynchronous system trap 
(AST) to the process to notify the thread manager of the page fault completion. 
PAGIO's actions are described in more detail in Section 4.11. 
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When the event is reported, if the process is resident and the kernel thread's 
priority is sufficiently high so that  it should preempt, a rescheduling interrupt  
is requested. For simplicity, Figure 4.1 shows this step as occurring in system 
context, although it is more likely to occur in the context of whatever kernel thread 
is current. Section 4.17 describes the various wait states associated with page 
faults. 

The rescheduling interrupt  service routine selects the page faulting kernel thread 
for execution, swaps to its context, and then executes a CALL_PAL REI instruction. 

The kernel thread reexecutes the instruction that caused the page fault, this time 
with the page valid. 

4.2.2 Error Returns to SCH$PAGEFAULT 
MMG$PAGEFAULT can also return several error status values to SCH$PAGEFAULT: 

�9 SS$_ACCVIO 

�9 SS$_PAGRDERR 

�9 SS$_PAGRDERRXM 

If the kernel thread has attempted access to another process's header, 
MMG$PAGEFAULT returns the error status SS$_ACCVIO, in response to which 
SCH$PAGEFAULT restores the scratch registers and transfers to EXE$ACVIOLAT, 
in module EXCEPTION. EXE$ACVIOLAT, described in Chapter Condition Handling, 
simulates an access violation exception to be reported to the access mode that incurred 
the page fault. If the fault occurred in an inner mode, the system may crash. Section 
4.4.2 has further details. 

If the system incurred a hardware error on a previous attempt to read the faulted 
page, MMG$PAGEFAULT determines the access mode in which this page fault oc- 
curred and the mode of the page owner. It returns the error status SS$_PAGRDERR 
when either of the following is true: 

�9 The page fault occurred in user or supervisor mode. 

�9 The page fault occurred in executive or kernel mode and the page is owned by 
executive or kernel mode. 

If the page fault occurred in executive or kernel mode but the page is owned by user 
or supervisor mode, MMG$PAGEFAULT returns the error status SS$_PAGRDERRXM. 
This set of circumstances is called a cross-mode page read error. 

In response to either status, SCH$PAGEFAULT restores the scratch registers and 
transfers to EXE$PAGRDERR, in module EXCEPTION. EXE$PAGRDERR, described 
in Chapter Condition Handling, generates the special condition SS$_PAGRDERR or 
SS$_PAGRDERRXM and reports it to the access mode that incurred the page fault. 
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If no other condition handler  handles ei ther condition, the condition is passed to the 
last chance condition handler  for tha t  mode. For executive mode, the last  chance 
condition handler  is EXE$EXCPTNE, in module EXCEPTION_ROUTINES; for kernel  
mode, the handler  is EXE$EXCPTN, in the same module. 

Each of these handlers  checks whether  the condition is SS$_PAGRDERRXM and, if 
so, requests the Exit ($EXIT) system service, specifying SS$_PAGRDERRXM as the 
reason for exit. Exiting the image from either executive or kernel  mode will cause its 
process to be deleted. In the case of a cross-mode page read error, the process cannot  
continue execution, but the system is not affected. 

For any other type of condition, in particular, SS$_PAGRDERR, the executive mode 
last chance condition handler  generates  the nonfatal  bugcheck SSRVEXCEPT and 
requests the $EXIT system service, causing the process to be deleted. When such con- 
ditions occur in kernel mode, the kernel  mode last chance condition handler  genera tes  
the fatal bugcheck SSRVEXCEPT. In the case of a read error for a page owned by 
kernel mode, system operation may be affected and the executive crashes the system 
ra ther  than  risk system and file integrity. 

4.3 Page Transitions for Process Pages 
This section describes the transit ions of different kinds of process page, which are of 
type PFN$C_PROCESS. Many of the transit ions depend upon the initial location of 
the virtual page and the location of its backing store. 

Initially, a process page is faulted in from a section file on a mass storage medium or 
created on demand as a page of all zeros, a demand zero page. (One other possibility 
is a page in a PFN-mapped section. Such a page remains  valid throughout  its life 
and is thus outside the scope of this chapter.) A page from a section file is fur ther  
characterized by whether  it is read-only or writable. All demand zero pages are 
writable. 

When a read-only page is removed from the working set, there is no need to record its 
current  contents; the page can be refaulted from its original location. When a writable 
modified page is removed from the working set, its current  contents must  be recorded 
to retain the modifications. The term backing store refers to the mass storage location 
of the modified page. 

A writable section page can be characterized by whether  it is copy-on-reference. When 
a process reads or writes a copy-on-reference page, it gets a private copy of the page. 
The backing store for a copy-on-reference page is a page file. The backing store for one 
tha t  is not is its section file. A copy-on-reference page removed from the working set 
list is placed on the modified page list even if it has not been modified. When reducing 
the size of the modified page list, the modified page wri ter  assigns a page file backing 
store location and writes the page to it. Subsequently faulted, the page is read from 
the backing store. This approach simplifies the management  of the page at the cost of 
having to write the page to its backing store even when it has not been modified. 
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Most demand zero pages are created through the Create Virtual Address Space 
($CRETVA and $CRETVA_64), the Expand Program/Control  Region ($EXPREG), 
or the Expand Virtual Address Space ($EXPREG_64) system services. The backing 
store for such pages is a page file. It is also possible, however, for a process to create a 
section of demand zero pages backed by a section file. Chapter  3 describes the system 
services tha t  create various kinds of vir tual  address space. 

The sections tha t  follow describe the transi t ions for several kinds of process page. 
Typically, the first t ransit ion occurs when the page is faulted in from a mass storage 
device. In subsequent  t ransi t ions the page is removed from the working set. It may 
be placed into the free page list, or it may be placed into the modified page list and 
wri t ten to its backing store. During any of these transit ions,  the page may be faulted 
again. 

Section 4.2.1 describes the page fault handling steps common to many types of 
page fault but  omits the details of concomitant memory management  data  s t ructure  
changes. The sections tha t  follow describe the data  s t ructure  changes. 

Section 4.3.1 describes the initial fault and subsequent  t ransi t ions of a process section 
page that  is not copy-on-reference; and Section 4.3.2, of a process section page tha t  is 
copy-on-reference. Section 4.3.3 describes the initial fault  of a demand zero page. Its 
subsequent  transit ions depend on whether  it is a demand zero section page backed 
in a section file or a simple demand zero page backed in a page file. Section 4.3.4 
summarizes  some additional kinds of page fault common to the page types already 
described. 

Section 4.3.5 discusses the transi t ions of a process page tha t  is par t  of a buffer object 
page. 

4.3.1 Process Section Page That Is Not Copy-on-Reference 
An L3PTE for a writable section page, one tha t  is not copy-on-reference, initially 
contains a process section table index (PSTX) with the copy-on-reference bit (PTE$V_ 
CRF) clear. The transit ions tha t  such a page can make are i l lustrated in Figure 4.3. 
The numbers  in the figure are keyed to the explanations tha t  follow. The column on 
the right shows how key PFN information changes as the page moves from one state 
to another. 

For simplicity, clustered reads and writes are ignored here, but  they are discussed in 
Sections 4.10 and 4.12.4. 

O The first t ransi t ion is faulting the page in from the file tha t  contains it. As 
described in Section 4.2.1, MMG$PAGEFAULT locates the L3PTE tha t  maps 
the faulting page and ensures the validity of the page table pages tha t  map it. 
MMG$PAGEFAULT uses three other routines in module PAGEFAULT to perform 
key tasks and update memory management  da ta  s t ructures  accordingly: 

- -  MMG_STD$ININEWPFN_64, in module PAGEFAULT, allocates a page of 
memory and updates  the PFN database tha t  describes it (see Section 4.8.1). 
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- -  MMG_STD$INCPTREF_64, in module PAGEFAULT, increments the share 
count of the page table page that  maps the virtual page in question (see 
Section 4.8.3). 

MMG_STD$MAKE_WSLE_64, in module PAGEFAULT, updates working set 
list information (see Section 4.8.2). In particular, it increments the physical 
page's PFN$W_REFCNT to indicate the page is in a working set list. 

MMG$PAGEFAULT itself also increments the PFN$W_REFCNT field for the 
allocated physical page, bringing the count to 2, to indicate the I/O request about 
to be queued for this page. 

It initializes the L3PTE: 

�9 It inserts the PFN of the allocated page into the L3PTE. 

�9 It leaves the protection, owner, and copy characteristics bits as they were. 

�9 It initializes the type bits to indicate a transition page. 

�9 If the page is writable but was faulted with read intent, it sets the fault-on- 
write bit. 

�9 It sets the fault-on-execute bit either if the no-execute bit was set or if the page 
was faulted with read or write data intent rather than with execute intent. 

Chapter 2 discusses the significance of the fault-on bits and the executive's use of 
them. 

MMG$PAGEFAULT initializes the location bits in the page's PFN$L_PAGE_ 
STATE field to read in progress. It initializes the page's PFN$Q_BAK field from 
the L3PTE's type and partial section bits and bits <63:32>. 

It builds an I/O request packet (IRP; see Section 4.14) that  describes the read to be 
done. From the PSTX in the original L3PTE contents, it locates the corresponding 
PSTE in the PHD. From information in the PSTE, it can calculate which virtual 
blocks in the file contain the virtual page. 

If the last page in the section has the partial section bit set and is in the cluster to 
be read, MMG$PAGEFAULT must  take extra steps. A partial section is one whose 
size in blocks is not an exact multiple of the number of blocks in a page. Thus, 
its last page is not entirely backed by a section file. For this kind of page fault, 
MMG$PAGEFAULT calculates the I/O request byte count such that  the last page's 
contribution to the count includes only those pagelets that  have backing store. It 
temporarily maps the PFN with a reserved system space L3PTE and clears the 
part of the partially backed page that  has no backing store. 

It queues the request to the driver for the device containing the page. 
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Figure 4.3 Page  Transit ions  for a Process  Sect ion  Page  That Is Not  Copy- 
on-Reference  
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Because most of the work was done in response to the initial fault, there is little 
left to do when the page read completes. Holding the MMG spinlock, routine 
PAGIO, in module IOCIOPOST, decrements PFN$W_REFCNT. In the usual  case, 
the reference count remains greater  than  zero. In tha t  case, PAGIO changes 
the PFN$L_PAGE_STATE location bits to active and sets the valid bit in the 
process-private L3PTE. 

If the page is writable, PAGIO tests the fault-on-write bit. If it is clear, indicating 
tha t  the page was faulted with write intent,  PAGIO sets the modify bit in the 
L3PTE. If the process is not mul t i threaded and if MMG$V_NO_MB is set in the 
MMG_CTLFLAGS SYSGEN parameter ,  PAGIO sets the no-TB-miss-memory- 
barrier-required bit (see Chapter  1) in the L3PTE. 

It is, however, possible for PAGIO to decrement  the reference count to zero. This 
can happen if the page was removed from the working set list, for example, 
through swapper  t r imming or automatic working set limit adjustment,  before the 
page read completed. The page would have been put  in the release pending state 
with a reference count of 1. If PAGIO decrements  the reference count to zero, then 
instead of sett ing the valid bit, it inserts the page into the free page list. 

OpenVMS mainta ins  the modify bit. When an a t tempt  is made to write to a page 
tha t  was originally faulted with read intent  and one whose fault-on-write bit is set, 
the processor generates a fault-on-write exception. The exception service routine 
clears the fault-on-write bit in the L3PTE and sets the modify bit. The change is 
not noted at this time in the PFN database.  When a page is faulted with write 
intent, the modify bit is set at the same time as the valid bit. 

A valid page becomes invalid when it is removed from the working set list as a 
result  of any of the conditions listed in Section 4.1. Most of those result  in calling 
MMG$FREWSLE or its al ternative entry point, MMG_STD$FREWSLX_64, in 
module PAGEFAULT. Chapter  5 describes them in detail. Of most relevance to 
this chapter  are the changes to memory management  data  s tructures when a page 
tha t  is not copy-on-reference is removed from the process working set list: 

a .  The modify bit in the L3PTE is saved. The valid, modify, fault-on-write, fault- 
on-execute, and no-TB-miss-memory-barrier-required bits are cleared. Its PFN 
field is unchanged. 

bo The translat ion buffer is invalidated to remove the cached but now obsolete 
contents of the L3PTE. If the page was never executed, only the data  TB is 
invalidated. If the process is mul t i threaded and this is an SMP system, the 
invalidation is done on every CPU on which kernel threads  of the process are 
active. 

C. The saved modify bit from the L3PTE is inserted into the PFN$L_PAGE_ 
STATE field, saving its value. 
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d, The page's PFN$W_REFCNT is decremented. If the reference count goes to 
zero, the page is put into the free or modified page list, according to the setting 
of the saved modify bit in PFN$L_PAGE_STATE. Since the PFN$L_BLINK 
field overlays the PFN$L_WSLX_QW field, inserting the page into the free or 
modified page list supplants the PFN$L_WSLX_QW field contents. The page's 
new location (free or modified page list) is inserted into the PFN$L_PAGE_ 
STATE field. 

e .  Whether or not the reference count goes to zero, the WSLE is zeroed. PFN$W_ 
PT_VAL_CNT for the page table page mapping this page is decremented. If the 
count makes the transition t o -1 ,  PHD$L_PTCNTVAL is also decremented (see 
Section 4.4.1). PCB$L_PPGCNT is decremented to indicate one less process 
page. 

If the reference count (decremented in step 4d) does not go to zero, there is out- 
standing direct I/O for this page. MMG_STD$FREWSLX_64 changes the page's 
PFN$L_PAGE_STATE location bits from active to release pending. 

When direct I/O for the page completes, the I/O postprocessing routine calls MMG_ 
STD$IOUNLOCK_BUF, in module IOLOCK. 

For each page in the I/O buffer, MMG_STD$IOUNLOCK_BUF decrements the 
page's PFN$W_REFCNT. If it goes to zero, MMG_STD$IOUNLOCK_BUF puts the 
page into either the free or the modified page list, based on the setting of the saved 
modify bit, and changes PFN$L_PAGE_STATE accordingly. In a typical direct I/O 
request, the process-private PTEs that  map the buffer are copied to a nonpaged 
pool structure called a direct I/O buffer map (DIOBM) so that  a driver can examine 
them. The L3PTs that  contain the PTEs are not locked into memory. If the buffer, 
however, is too large to be efficiently described in this manner, the L3PTs are 
locked into memory and doubly mapped into system space; they must  be unlocked 
at I/O completion. 

If the L3PTs were locked into memory, MMG_STD$DECPTREF_PFNDB, in 
module PAGEFAULT, is called for each L3PT that  maps I/O buffer pages. It 
decrements the PFN$L_SHRCNT field in the PFN database record for the L3PT 
(incremented when the I/O was initiated) to indicate one less reason for it to 
remain in existence (see Section 4.4.1). 

If the page was placed into the free page list, the next stages in its processing are 
as described in step 9. 

If the page was placed into the modified page list, the modified page writer eventu- 
ally removes the page and writes it to its backing store. A writable page that  is not 
copy-on-reference is written back to the file where it originated. If the page is to 
be backed in a page file, the modified page writer assigns it to a page file, allocates 
space for it, and writes it. 

The modified page writer sets the PFN$L_PAGE_STATE location bits for the page 
to write in progress and clears the saved modify bit. The reference count of 1 
reflects the outstanding I/O operation. 
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Note that  a section containing writable process pages that  are not copy-on- 
reference cannot be produced by the linker. Such a section must  be created with 
the Create and Map Section ($CRMPSC) or Create and Map Private Disk File 
Section ($CRMPSC_FILE_64) system service. 

When the modified page write completes, the page's reference count is decremented 
to zero. Because the saved modify bit is clear, the page is put into the free page 
list. 

A page placed on the free page list normally remains attached to the process 
for some time; that  is, the L3PTE contains its PFN, and the PFN$L_PT_PFN 
and PFN$Q_PTE_INDEX fields in the PFN database record for that  page jointly 
contain the address of the process-private L3PTE. 

When the physical page is allocated for another purpose, several steps must  be 
taken to break the ties between the process virtual page and the physical page 
that  is about to be reused. The routine MMG$DEL_CONTENTS_PFN, in module 
ALLOCPFN, performs those steps: 

a. It locates the L3PTE from the contents of the PFN$L_PT_PFN and PFN$Q_ 
PTE_INDEX fields. 

b. The L3PTE must be altered to reflect the backing store address of the page. 
For a page that  is not copy-on-reference, the routine restores some of the 
L3PTE's contents before the initial page fault, namely, the PSTX from the 
page's PFN$Q_BAK field. It leaves the protection, owner, copy characteristics, 
and no-execute bits as they were. 

c. It calls MMG_STD$DECPTREF_PFNDB, which decrements the PFN$L_ 
SHRCNT field in the PFN database record for the L3PT to indicate one less 
reason for it to remain valid (see Section 4.4.1). 

d. MMG$DEL_CONTENTS_PFN reinitializes the PFN database record for the 
physical page before reallocating it. In particular, it clears PFN$L_PT_PFN 
and PFN$Q_PTE_INDEX, the connection from the PFN database to its for- 
mer process page table. It clears PFN$Q_BAK, the connection to the former 
contents of the page. 

A subsequent fault for the virtual page requires rereading the page from the 
section file. 

4.3.2 Process Section Page That Is Copy-on-Reference 
The more common type of writable process page is a copy-on-reference page. The 
initial value in the L3PTE (START 1 in Figure 4.4) is a PSTX; the copy-on-reference 
bit (PTE$V_CRF) is set. The writable bit (PTE$V_WRT) is usually set. 

Figure 4.4 illustrates the transitions that  such a page makes from its initial page fault 
until it is written to page file backing store. The numbers in the figure are keyed to 
the explanations that  follow. The column on the right shows how key PFN information 
changes as the page moves from one state to another. 
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Many of the transitions that  occur here resemble the case just  described. This section 
notes each transition but elaborates only those areas that  are different. 

O When a page fault occurs, MMG$PAGEFAULT performs the actions described in 
step 1 of Section 4.3.1. It also takes several additional steps: 

a. It initializes PFN$Q_BAK to indicate that  the page will have page file backing 
store but none has been assigned yet. (Section 4.16 provides further details on 
page file allocation.) At this time, all ties to the original section file have been 
broken. When the modified page writer first writes this page to its backing 
store (as it eventually will because the saved modify bit will be set), it will 
assign a page file and allocate blocks in it. 

b. It updates the PFN$L_PAGE_STATE field location bits to the value read in 
progress, with the saved modify bit set. The page's backing store will be a 
page file, not a section file; the copy of the page in the section file must  not be 
modified, yet each of the potentially many copies of the page may be modified. 
Setting the saved modify bit guarantees that  an initial copy of the page will be 
written to the page file when it is first paged out, whether or not it has been 
modified. 

c. If the last page in the section has the partial section bit set in its L3PTE and 
is in the cluster to be read, MMG$PAGEFAULT calculates the I/O request 
byte count accordingly and clears the part of the page without backing store, as 
described in step 1 of Section 4.3.1. In addition, it clears the partial section flag 
in PFN$Q_BAK, because once the page is faulted in, it is no longer partially 
backed; its backing store will be a whole page in a page file. 

After the read completes, PAGIO decrements the reference count of each page in 
the page fault cluster. If the reference count is greater than zero, it updates the 
PFN$L_PAGE_STATE location bits to active and sets the L3PTE valid bit. If the 
reference count is decremented to zero because the page has been removed from 
the working set list, it places the page on the modified page list and changes its 
PFN$L_PAGE_STATE location bits accordingly. 

PAGIO also subtracts the number of pages read from the PSTE's reference count to 
show that  many fewer L3PTEs mapping pages from that  section file. 

This transition is described in Section 4.3.3. 

When the copy-on-reference page is removed from the working set and its reference 
count goes to zero, the page is placed into the modified page list. 

If the page has been modified, its assigned page file backing store, if any, contains 
an obsolete copy. That storage is deallocated, and the page number and page file 
number in PFN$Q_BAK are cleared. 

If the reference count did not go to zero when the page was removed from the 
process working set, the physical page is placed into the release pending state 
until the I/O completes. 

At that  time, the page is put into the modified page list. 

Q 

@ 

0 

0 
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Figure 4.4 Page Transitions for Process and Global Copy-on-Reference 
Pages and for Demand Zero Pages 
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�9 This t ransi t ion is described as t ransi t ion 3 in Section 4.5.3. 

When the modified page wri ter  writes the page to its backing store in a page file, the 
page makes a transi t ion from the modified page list. 

Figure 4.5, the diagram for faults from a page file, shows this transition. The column 
on the right shows how key PFN information changes as the page moves from one 
state to another. The connection between Figure 4.4 and Figure 4.5 is indicated by 
path  C in the two figures. A subsequent  fault  for the page is resolved from a page file. 

The transit ions for a page faulted from a page file (see Figure 4.5) resemble those 
described for a page tha t  is not copy-on-reference (see Figure 4.3). The only difference 
in the PFN data  between the two figures is tha t  the PFN$Q_BAK field value in Figure 
4.5 indicates tha t  the page belongs in a page file, whereas  the PFN$Q_BAK field value 
in Figure 4.3 contains a PSTX. 

The other difference between the two figures is the entry point into the transi t ion 
diagram. A page can s tar t  out in a section file (the L3PTE contains a PSTX) but  a 
page can never s tar t  out in a page file. The entry into Figure 4.5 is from pa th  C in 
Figure 4.4, from one of several initial s tates tha t  eventually result  in the physical page 
contents'  being writ ten to the page file. 

4.3.3 Demand Zero Page 
An L3PTE to map a typical demand zero page is initialized by the $CRETVA, 
$CRETVA_64, $EXPREG, or $EXPREG_64 system service. These services can be 
requested explicitly by an image or implicitly by the system on behalf  of the process, 
for example, as par t  of image activation. Also, a process can request  the $CRMPSC 
or $CRMPSC_FILE_64 system service to create a demand zero section backed by a 
section file. An L3PTE to map such a section has a PSTX with the PTE$V_CRF bit 
clear and the PTE$V_DZRO bit set. Ei ther  type of demand zero page is created the 
first t ime it is faulted. 

Figures 4.4 (START 2) and 4.5 i l lustrate the transit ions of a typical demand zero page, 
one backed in a page file. 

The transit ions of a demand zero section page resemble those in Figure 4.3 except for 
the steps to get to the active and valid state. 

The following description corresponds to step 3 in Figure 4.4 for a simple demand zero 
page and to the entry into Figure 4.3 for a demand zero section page. 

�9 When MMG$PAGEFAULT detects a page fault for a demand zero page, it calls 
MMG_STD$ININEWPFN_DZRO_64, in module PAGEFAULT, to allocate a free 
zeroed page (see Section 4.8.1). It calls MMG_STD$INCPTREF_64, in module 
PAGEFAULT, to increment the share count of the page table page tha t  maps the 
virtual page in question (see Section 4.8.3). It calls MMG_STD$MAKE_WSLE_ 
64 to update  working set list information (see Section 4.8.2). In particular,  it 
increments the physical page's PFN$W_REFCNT to indicate the page is in a 
working set list. 
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MMG$PAGEFAULT makes additional updates to memory management  data  
structures: 

a o  

b. 

C. 

It changes the PFN$L_PAGE_STATE location bits to active. 

It initializes PFN$Q_BAK to indicate tha t  the page will have page file backing 
store but  none has been assigned yet. Assignment of a page file and allocation 
of actual blocks in tha t  file are done later by the modified page writer. 

If the page is a demand zero section page, its backing store is the section file. 
MMG$PAGEFAULT clears the PTE$V_DZRO bit. Once the page has been 
created, it becomes a non-CRF section page. 

It inserts the PFN into the L3PTE associated with the fault, setting the valid 
and modify bits, and leaving the protection, owner, copy characteristics, and 
no-execute bits as they were. If the no-execute bit is set, MMG$PAGEFAULT 
also sets fault-on-execute. If the process is not mult i threaded and if MMG$V_ 
NO_MB is set in the MMG_CTLFLAGS SYSGEN parameter,  it also sets the 
no-TB-miss-memory-barrier-required bit (see Chapter  1) in the L3PTE. 

Subsequent transit ions for a demand zero page are shown in Figure 4.4 and described 
throughout Sections 4.3.1, 4.3.2, and 4.3.4. 

4.3.4 Page Faults out of Transition States 
Figures 4.3, 4.4, and 4.5 show some of the transit ions tha t  can occur when a virtual  
page is faulted while the associated physical page is in the transit ion state. Because 
these types of page fault require no I/O, they are referred to as soft page faults. 

While these changes back to the valid state are straightforward, certain details about 
each fault should be mentioned. Most of the following transit ions are represented in 
the figures by a P within a circle. 

MMG$PAGEFAULT resolves a page fault from the free page list in the following way: 

1. It first removes the page from the list. 

, If appropriate, MMG$PAGEFAULT copies the contents of the page to a page of 
physical memory allocated from the process's home resource affinity domain (RAD). 
All the following conditions must  be true: 

The page is not a global page. 

Its PFN$W_REFCNT is zero. 

This is a nonuniform memory access (NUMA) platform with general RAD 
support, RAD-specific process allocation, and soft fault copy enabled. 

- -  The RAD associated with the page is not the same as the process's home RAD. 

After copying the contents of the page, MMG$PAGEFAULT breaks the page's 
connection with the page table that  mapped it and reinserts the page at the front 
of the free page list. 
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Figure  4.5 Page  Transi t ions  for a Page  Located  in a Page  File  
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Typically, however, MMG$PAGEFAULT instead uses the page jus t  removed from 
the free page list. 

3. It calls MMG_STD$MAKE_WSLE_64 (see Section 4.8.2) to update  the memory 
management  data  s tructures to reflect the fact tha t  the page is in the working set 
list. In particular, it increments the physical page's PFN$W_REFCNT. 

4. MMG$PAGEFAULT changes the page's PFN$L_PAGE_STATE location bits to 
active. 

5. MMG$PAGEFAULT initializes the L3PTE: 

If the page is writable but  has not been modified, it sets the fault-on-write bit 
in the L3PTE. 

If the page is writable and was faulted with write intent,  it sets the modify bit 
in the L3PTE. 

If the process is not mul t i threaded and if MMG$V_NO_MB is set in the MMG_ 
CTLFLAGS SYSGEN parameter ,  it also sets the no-TB-miss-memory-barrier- 
required bit in the L3PTE. 

It sets the fault-on-execute bit in the L3PTE either if the no-execute bit was 
set or if the page was faulted with read or write data  intent.  

It sets the valid bit in the L3PTE. (Recall tha t  a t ransi t ion PTE retains  the 
PFN of the physical page in which the vir tual  page resides.) 

A page fault from the modified page list is resolved in exactly the same way. Figures 
4.3 to 4.5 show tha t  the page was previously modified but  never wri t ten to its backing 
store by re turning the page to its modified state. That  is, the saved modify bit in its 
PFN$L_PAGE_STATE field remains set, causing the page to be put  into the modified 
page list when it is removed from the working set again. 

A page fault from the release pending state is similar to the previous two except tha t  
the page does not have to be removed from a page list and copy on soft page fault is 
not an option. Artistic license is taken in the figures to differentiate physical pages 
tha t  were modified from pages tha t  were not. 

A transi t ion deserving special comment is a page fault tha t  occurs while the modified 
page wri ter  is writ ing the page to its backing store. The saved modify bit is cleared 
before the write begins so tha t  the page will be placed into the free page list when 
the write completes. Although the page has not yet been completely backed up, it is 
assumed tha t  the write will complete successfully. A page fault for the page can thus 
put  it into the active but unmodified state. The only difficulty occurs in the event of 
a write error. The modified page writer 's  I/O completion routine, WRITEDONE in 
module WRTMFYPAG, detects this and resets the saved modify bit. 

In the case of a single-threaded process, a page fault for a process page (type PFN$C_ 
PROCESS) being read in response to a previous page fault results in placing the 
kernel  thread back into a page fault wait  state. This can occur if a kernel  th read  
in page fault wait  is made computable to execute an AST. When the AST procedure 
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completes, control returns to the instruction that  caused the fault. If the page is still 
invalid, the kernel thread is placed back into page fault wait. 

In the case of a multithreaded process, the kernel thread is placed in collided page 
wait. 

4.3.5 Process-Private Buffer Object Page 
A buffer object is a special kind of I/O buffer. The pages that  make up a buffer object 
are locked into physical memory and may be doubly mapped in system space as well 
as process-private space. Because the pages are already locked into memory, there is 
no need for a device driver to lock them when initiating an I/O request and no need for 
the I/O postprocessing routine to unlock them. The implementation of buffer objects 
enables the body and process header of a process with I/O in progress to a buffer object 
to be swapped. 

Chapter 3 details the system services that  create and delete buffer objects, and Chap- 
ter 2 discusses the buffer object descriptor data structure associated with each buffer 
object. 

A process-private buffer object page begins life as a process page, perhaps a demand 
zero page. Its initial transitions therefore are no different from those of that  page 
type. The transitions particular to a buffer object page are illustrated in Figure 4.6. 
The column on the right shows how key PFN information changes as the page moves 
from one state to another. The numbers in the figure are keyed to the explanations 
that follow. 

Figure 4.6 begins with the page already valid, in the process's working set. The Create 
Buffer Object ($CREATE_BUFOBJ or $CREATE_BUFOBJ_64) system service faults it 
into the working set if it is not already valid. 

O The system service locks this page (and any other in the buffer object) into memory 
by incrementing the page's reference count, PFN$W_REFCNT; sets the buffer 
object and saved modify bits in PFN$L_PAGE_STATE; and increments the page's 
PFN$W_BO_REFC to zero. 

Similarly, for the process-private page table page that  maps the buffer object, it 
increments PFN$W_BO_REFC. If this is the first buffer object page mapped by 
this page table, it increments PFN$W_REFCNT and sets the buffer object and 
saved modify bits in PFN$L_PAGE_STATE. 

Optionally, the system service initializes a system space L3PTE to double-map the 
buffer object page. 

�9 When the buffer object page is removed from the working set, for example, as 
a result of replacement paging, the valid and modify bits in the process-private 
L3PTE that  map it are cleared. The page's reference count is decremented to 1, 
and the location bits in PFN$L_PAGE_STATE are set to release pending. The 
share count for the process-private page table page that  maps it is decremented. 
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When the buffer object page is faulted back into the working set, its PFN$L_ 
PAGE_STATE location bits are changed to active and its reference count is incre- 
mented. The share count for the process-private page table page that  maps it is 
incremented. 

When the buffer object is deleted, the Delete Buffer Object ($DELETE_BUFOBJ) 
system service clears the system space L3PTE that  double-maps the page, if any, 
and invalidates any cached entry from the TB. It decrements the buffer object 
page's PFN$W_BO_REFC. Typically, the page is part  of only one buffer object, and 
PFN$W_BO_REFC is now zero. In that  case, the service clears the buffer object 
bit in its PFN$L_PAGE_STATE field and decrements PFN$W_BO_REFC for the 
process-private page table page that  maps the buffer object. If that  goes to zero, it 
clears the buffer object bit in its PFN$L_PAGE_STATE field and decrements the 
page's reference count. Since the former buffer object page is in a release pending 
state, the service increments the page table page's share count. It decrements the 
former buffer object page's reference count. 

If the reference count is now zero, the page is released to the modified page list. 

4.4 Page Transitions for Process-Private Page Table and 
PHD P a g e s  

This section describes the transitions of two kinds of pages of type PFN$C_PPGTBL: 
page table pages and PHD pages. 

4.4.1 Process-Private Page Table Page 
As described in Chapter 2, the LIPT, L2PTs and L3PTs that  map a process's P0, P1, 
and P2 space are mapped in its page table space. They are only accessible from process 
context, except for circumstances in which the executive double-maps a page table page 
into system space to access it when that  process context is not current. 

The L2PT and L3PTs that  map permanent  P1 space are created when the process is 
created. That L2PT is sufficient to map all of P0, P1, and some P2 space. Until an 
image is activated in the process and additional address space created, most of the 
L2PTEs in the permanent  L2PT are zero. When the process requests a system service 
to create address space, the system service initializes the L3PTEs that  map that  space 
and, if necessary, the L2PTEs. 

Many of the transitions of a process page table page resemble those of other demand 
zero pages, described in Section 4.3.3. Some aspects of page table page transitions are 
unique, however. 

Some of the transitions that  such a page can make are illustrated in Figure 4.7. The 
numbers in the figure are keyed to the following explanations. The column on the 
right shows how key PFN information changes as the page moves from one state to 
another. 
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F i g u r e  4.6 P a g e  T r a n s i t i o n s  for  a B u f f e r  Objec t  P a g e  
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For simplicity, some of the transitions shown in Figures 4.4 and 4.5 are omitted here, 
and this section is confined to transitions of process-private L3PTs. 

O When a process faults a page in a region that expands automatically, such as a 
stack page and the page's L3PTE is mapped by a zero L2PTE, the page fault is 
transformed into a fault for the L3PT. 
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When MMG$PAGEFAULT detects a page fault for a process page table page that  
has not yet been created, it takes the following steps: 

a. MMG$PAGEFAULT uses other routines in module PAGEFAULT to perform 
some of the related updates to memory management data structures: 

MMG_STD$ININEWPFN_DZRO_64 allocates a free zeroed page (see 
Section 4.8.1). 

b, 

MMG_STD$INCPTREF_64 increments the share count of the L2PT that  
maps the L3PT (see Section 4.8.3). 

MMG_STD$MAKE_WSLE_64 updates working set list information (see 
Section 4.8.2). In particular, it increments the physical page's PFN$W_ 
REFCNT to indicate the page is in a working set list. 

MMG$PAGEFAULT updates the PFN$L_PAGE_STATE location bits to active. 

C. It inititializes PFN$Q_BAK to indicate that  the page will have page file 
backing store but none has been assigned yet. Assignment to a page file and 
allocation of space in it are done later by the modified page writer. 

d. It inserts the PFN into the L2PTE associated with the fault, setting the valid, 
modify, and fault-on-execute bits, and leaving the protection, owner, copy 
characteristics, and no-execute bits as they were. If the process is not mul- 
tithreaded and if MMG$V_NO_MB is set in the MMG_CTLFLAGS SYSGEN 
parameter, it also sets the no-TB-miss-memory-barrier-required bit in the 
L2PTE. 

e .  Finally, MMG$PAGEFAULT returns the status SS$_NORMAL to 
SCH$PAGEFAULT. 

Control returns to the system service, which initializes L3PTEs, for example, to 
map a section. When done, the system service returns. 

If none of the process pages mapped by the L3PT is made valid, the process 
page table page can be removed from the working set as a result of replacement 
paging. MMG$FREWSLE increments the PHD's entry in the array at PHV$GL_ 
REFCBAS_LW, the number of reasons the PHD should remain in memory, to 
account for the page table page as a transition page. Decrementing the page's 
reference count to zero, it inserts the page into the modified page list. It also 
decrements PCB$L_PPGCNT and clears the WSLE that  was associated with the 
page. 

It decrements the L2PT's PFN$W_PT_VAL_CNT and, if the L2PT maps no more 
valid WSLEs, it decrements PHD$L_PTCNTVAL. 

The modified page writer eventually removes the page from the modified page list, 
assigns it a page file, and writes it to allocated space in the page file. 

�9 When the write completes, the page is placed into the free page list. 
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When the process later tries to access a page mapped by this L3PT, it incurs a page 
fault. MMG$PAGEFAULT calculates the virtual address of the L3PTE mapping 
the target address and discovers that  the L3PT is not valid. It transforms the fault 
for the target address into one for the L3PT. 

In Figure 4.7, the fault is shown as happening before the physical page containing 
the L3PT is reallocated for another use. MMG$PAGEFAULT faults the page 
from the free page list, updates the data structures that  describe the page, and 
returns the status SS$_NORMAL to SCH$PAGEFAULT. When SCH$PAGEFAULT 
dismisses the exception, the instruction that  attempted access to a page mapped by 
this L3PT is reexecuted. 

When MMG$PAGEFAULT processes the first page fault for a page mapped by this 
L3PT, it and its associated routines take the following actions: 

a.  MMG_STD$INCPTREF_64 increments the share count for the L3PT to indi- 
cate that  it maps one more valid page. If this is the first valid page mapped 
by the page table page (that is, if the share count makes the transition from 
0 to 1), it locks the WSLE for the page table page into the process's working 
set list by setting the WSL$V_WSLOCK bit and also increments PHD$L_ 
PTCNTACT, the number of active page table pages for the process, and the 
PHD's entry in the array at PHV$GL_REFCBAS_LW. 

b. When updating the data structures related to the working set list, such as 
the WSLE for the faulted page, MMG_STD$MAKE_WSLE_64 also increments 
PFN$W_PT_VAL_CNT for the page table page to indicate one more valid entry 
in the process's working set list mapped by that  page table page. If the count 
makes the transition f rom-1  to 0, it also increments PHD$L_PTCNTVAL, the 
number of page table pages that  map valid WSLEs. 

Whenever the process faults another page mapped by this L3PT, the L3PT's share 
count and PFN$W_PT_VAL_CNT are incremented. 

Whenever one of the pages mapped by this L3PT is removed from the working set, 
MMG$FREWSLE decrements PFN$W_PT_VAL_CNT to indicate the L3PT maps 
one less valid page. When the count makes the transition t o - 1 ,  the page table 
page is dead, and MMG$FREWSLE also decrements PHD$L_PTCNTVAL. 

Once the page table page is dead, its WSLE is a candidate for reuse by a page 
being newly faulted into the working set. While the page table page describes 
transition pages, however, the WSLE cannot be reused. To free the WSLE, 
MMG$FREWSLE severs all ties between the transition pages on the free page 
list and the page table page, moves those pages to the head of the free page list, 
and requests a selective purge of the modified page list (see Section 4.12). Chapter 
5 contains further information on how a dead page table page is removed from the 
working set. 

As the contents of each page are deleted, MMG_STD$DECPTREF_PFNDB is 
called to update the data structures describing the L3PT. It decrements the share 
count for the L3PT to indicate one less reason for it to remain valid. 
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When the share count makes  the transi t ion from 1 to 0, MMG_STD$DECPTREF_ 
PFNDB takes the following additional steps: 

a. It decrements the PHD's entry  in the ar ray  at PHV$GL_REFCBAS_LW, the 
number  of reasons the PHD should remain in memory. If tha t  count goes to 
zero, MMG_STD$DECPTREF_PFNDB wakes the swapper  process to outswap 
the PHD. 

b, It locates the WSLE for the page table and clears its WSL$V_WSLOCK bit to 
unlock it from the process's working set list. 

C. It decrements PHD$L_PTCNTACT, the number  of active page table pages for 
the process. 

The L3PT page is removed from the working set list and placed on the modified 
page list. Eventually, it is wri t ten to its backing store and placed on the free 
page list. When the L3PT page is allocated for another  use, its connections to the 
L2PT must  be severed: the backing store location of the L3PT is stored in the 
L2PTE, and the L2PT's share count is decremented. If the share count is now zero, 
the L2PT's WSLE is unlocked from the working set list, PHD$L_PTCNTACT is 
decremented to indicate one less active page table page, and the PHD reference 
count is decremented. 

4.4.2 Process Header Page 
Historically, a process's page tables were a pageable par t  of its PHD. Unlike other 
system space pages, PHD pages belonged to the associated process and were listed in 
its working set list. A process was therefore not allowed to fault a page in another  
process's PHD. 

A specific check for this circumstance was added to MMG$PAGEFAULT. When it 
determined that  a page fault for a system space page was within the balance set slots, 
if one process was trying to fault a page in another  process's PHD, it t ransformed the 
page fault into an access violation. It used the page fault exception parameters  as 
access violation parameters  (see Section 4.2.2). 

To eliminate the possibility tha t  the process had been outswapped after faulting the 
page table in its PHD's previous balance set slot and tha t  it was now trying to access 
it in the new balance set slot, MMG$PAGEFAULT also tested and cleared bit PHD$V_ 
NOACCVIO in PHD$L_FLAGS, which had been set by the swapper  at inswap. If 
the bit was set, MMG$PAGEFAULT dismissed the page fault so tha t  the faulting 
instruction could reexecute, recalculating the page table address. 

With the page tables removed from the PHD as of OpenVMS Version 7.0, all the pages 
of the header  are nonpageable, and MMG$PAGEFAULT's check is largely superfluous, 
except for one part icular  case: A FRED page or expansion PHD page is created by 
first storing the demand zero format in its PTE and then touching it to materialize the 
page and lock it into the working set. Between those two steps, if the kernel thread 
of another  process were to fault the newly created page, it would incur an access 
violation. 
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4.5 Page Transitions for Global Pages 
The transitions of global pages, which are of types PFN$C_GLOBAL and PFN$C_ 
GBLWRT, resemble those of process pages. A major difference, however, is the pres- 
ence of both a global page table entry (GPTE) and potentially multiple process-private 
L3PTEs that  refer to the same page. 

Page transitions for memory-resident global section pages are described in Section 
4.5.5. 

4.5.1 Global Read-Only Page 
This section assumes much of the detail shown earlier in Figure 4.3 and focuses on an 
example in which two processes map the same global page. Figure 4.8 illustrates the 
transitions that  occur for a global read-only page in an already created section that  is 
mapped by two processes. The column on the right shows how key PFN information 
changes as the page moves from one state to another. In the figure, the term VA_PTE 
represents the combination of fields PFN$L_PT_PFN and PFN$Q_PTE_INDEX. The 
numbers in the figure are keyed to the explanations that  follow. 

When the global section is initially created, as described in Chapter 3, the data 
structures described in Chapter 2 are initialized. The GPTE for the page represented 
in Figure 4.8 contains a global section table index (GSTX), which locates the global 
section table entry (GSTE) containing information about the global section file. 

O When process A maps the section, each L3PTE representing a page in the section 
is initialized with a global page table index (GPTX), effectively a pointer to the 
associated GPTE. 

e 

O 

When process B maps the section, its L3PTEs contain exactly the same G ~  as 
those in process A's L3t~Es .  

Process B happens to fault the global page first. After reserving an entry in 
process B's working set list, MMG$PAGEFAULT takes the following steps, many of 
which are the same as those taken for a process section page (see step 1 in Section 
4.3.1): 

a. Because process B's L3PTE contains a GPTX, MMG$PAGEFAULT indexes 
the global page table with it to get the GPTE. The GPTE contains a GSTX, 
indicating that  the global page resides on mass storage. 

b. It calls MMG_STD$ININEWPFN_64 to allocate a physical page (see Section 
4.8.1). 

C. MMG_STD$ININEWPFN_64 calls MMG_STD$INCPTREF_64 to update the 
data structures describing the global page table page that  maps the faulted 
page (see Section 4.8.3). 

d, MMG_STD$ININEWPFN_64 calls MMG_STD$MAKE_WSLE_64 to update 
working set list information (see Section 4.8.2). In particular, it increments the 
physical page's PFN$W_REFCNT to indicate the page is in a working set list. 
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e. MMG$PAGEFAULT inserts the PFN of the allocated page into the GPTE, 
leaving the protection, owner, and copy characteristics bits as they were. It 
initializes the type bits to indicate a transition page. 

f. It sets the PFN$L_PAGE_STATE location bits to read in progress. 

g. It stores the GSTX in the PFN$Q_BAK field. 

h. It sets the fault-on-execute bit in B's L3PTE either if the no-execute bit was set 
or if the page was faulted with read data intent. 

MMG$PAGEFAULT initiates a read of the faulted page from its section file. While 
the read is in progress, the GPTE contains a transition PTE but process B's L3PTE 
still contains the GP'I~. The reference count for the page indicates two references: 
one for the read in progress and one because the page is in process B's working set 
(the share count field is nonzero). 

After the read completes, the I/O postprocessing routine PAGIO locates the process- 
private L3PTE through the PTE index and page table PFN stored in the I/O 
request packet. It temporarily maps the process's L3PT into system space. It takes 
the following steps for each page in the page fault cluster: 

a. It decrements the page's reference count. The reference and share counts are 
both 1 at this point. 

b. It changes the PFN$L_PAGE_STATE location bits to active. 

C. It sets the valid bit in the GPTE to record the fact that  this page is physically 
resident and in a process working set. 

d. It inserts the PFN into the process's L3PTE, setting the valid bit. 

PAGIO reports the scheduling event page fault completion for process B's kernel 
thread so that  it becomes computable. 

Section 4.11 contains further details. 

When process A faults the same global page, MMG$PAGEFAULT's initial action is 
the same as it was in step 3, because the L3PTE contains a GPTX. Now, however, 
MMG$PAGEFAULT finds a valid GPTE. Resolution of this page fault is simple and 
requires no I/O. Such a fault is known as a soft page fault. 

Through MMG_STD$MAKE_WSLE_64 and MMG_STD$INCPTREF_64, whose 
actions are described in Sections 4.8.2 and 4.8.3, MMG$PAGEFAULT initializes 
the WSLE for process A, increments its PCB$L_GPGCNT, and increments the 
share count for the global page to 2. 

MMG$PAGEFAULT inserts the PFN from the GPTE into process A's L3PTE, 
leaving the protection, owner, copy characteristics, and no-execute bits as they 
were and setting the valid bit. If the process is not multi threaded and if MMG$V_ 
NO_MB is set in the MMG_CTLFLAGS SYSGEN parameter, it also sets the 
no-TB-miss-memory-barrier-required bit in the L2PTE. 
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Figure 4.8 Page Transitions for a Global Read-Only Page Mapped by Two 
Processes 
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When MMG$FREWSLE removes the global page from process B's working set, 
it invalidates any cached TB entry for that  virtual page and restores process B's 
L3PTE to its previous state (rather than some transition form). MMG$FREWSLE 
retrieves the GPTX from the physical page's PFN$Q_PTE_INDEX field and inserts 
it in process B's L3PTE as a GFI~.  

It decrements the share count for the L3PT to indicate that  it maps one less page. 
It decrements the share count for the global page itself. The share count is still 
positive, and thus the GPTE remains valid. It updates the data structures related 
to process B's working set list, for example, clearing the WSLE. It decrements 
process B's PCB$L_GPGCNT. 

When MMG$FREWSLE removes the global page from process A's working set, it 
restores the process L3PTE as described in step 6. 

It decrements the share count, this time to zero. It therefore clears the valid, 
fault-on-read, fault-on-write, modify, and NO_MB bits in the GPTE to turn it into 
a transition PTE and decrements the page's reference count. A global read-only 
page with a reference count of zero, such as this one, is placed into the free page 
list and its PFN$L_PAGE_STATE location bits are updated accordingly. The other 
PFN database record fields are unchanged. 

When the physical page is reused, the ties must  be broken between the physical 
page and, in this case, the GPTE. None of the processes mapped to this page are 
affected in any way by this step. 

The contents of the PFN$Q_BAK field, a GSTX, are inserted into the GPTE 
located by the contents of PFN$Q_PTE_INDEX. MMG_STD$DECPTREF_PFNDB, 
described in Section 4.4.1, is called to update the data structures describing the 
global page table page that  contains the GPTE. The PFN$Q_PTE_INDEX and 
PFN$L_PT_PFN fields are then cleared, breaking the connection between the 
physical page and the global page table. 

These steps return the process and global page tables to the state following step 2, 
although it is pictured here as a different state to simplify the figure. 

4.5.2 Global Writable Page 
The transitions that  occur for a global writable page, which is of type PFN$C_ 
GBLWRT, are the same as those for a process page that  is not copy-on-reference. 
The only difference between such transitions and those illustrated in Figure 4.3 is that  
the GPTE, not the process-private L3PTE, is affected by the transitions of the physical 
page. 

The process-private L3PTE for a global page contains a GPTX up to the time that  the 
page is made valid. Only then is a PFN inserted into the process L3PTE. As soon as 
the page is removed from the process working set, the GPTX is restored to the process 
L3PTE. All ties to the PFN database are made through the GPTE, which retains the 
PFN while the physical page is in the various transition states. 
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4.5.3 Global Copy-on-Reference Page 
A global copy-on-reference page is shared only in its initial state. As soon as the fault 
occurs, the page is treated exactly like a process page. 

Figure 4.9 illustrates the transitions that occur for a global copy-on-reference page. 
The column on the right shows how key PFN information changes as the page moves 
from one state to another. In the figure, the term VA_PTE represents the combination 
of fields PFN$L_PT_PFN and PFN$Q_PTE_INDEX. The numbers in the figure are 
keyed to the explanations that follow. 

The initial conditions are identical to those in Figure 4.8. After the section is created, 
each of its GPTEs contains a GSTX. In this case, the copy-on-reference bit is set in 
each GPTE. 

F igure  4.9 P a g e  Trans i t ions  for a Global  Copy-on-Reference  P a g e  
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L3PTE contains 
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are, as well. 

Page transitions 

Connection for 
global page 
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In working set 
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! 
. . . . . . . . .  @ . . . . . . . . .  -. 

To Figure 4.4 
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No PFN data 

Read in progress 
z REFCNT = 2 
a_ BAK = PGFLX, 0 or) 

VA_PTE --~ Process B's 
L3PrE 

z Read in progress 
n u" REFCNT = 2 

BAK -- PGFLX, 0 
'=: VA_PTE --* Process A's 

L3PTE 

O Process A maps the page; the GP2~  is stored in its L3PTE. 
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Process B maps the page; the same GPTX is stored in its L3PTE. Up to this point, 
nothing is different from Figure 4.8. 

When process B faults the page, MMG$PAGEFAULT locates the GPTE from the 
GPTX and notes that  the page is located in a global section file and is copy-on- 
reference. MMG$PAGEFAULT, in concert with MMG_STD$ININEWPFN_DZRO_ 
64, MMG_STD$INCPTREF_64, and MMG_STD$MAKE_WSLE_64 (see Sections 
4.8.1 to 4.8.3), allocates a page from the free page list and updates the pert inent  
memory management  data structures as follows: 

a. The GPTE is not altered and retains its GSTX contents. 

bD The PFN$Q_PTE_INDEX and PFN$L_PT_PFN fields get the location of 
process B's L3PTE. 

c. The share count for the page table page containing process B's L3PTE is 
incremented. Section 4.4 details other changes to data structures related to the 
page table page. 

d. The PFN$L_PAGE_STATE type bits for the physical page are set to process 
page. 

e .  An entry in process B's working set list is initialized to describe the faulted 
page. 

f. The PFN$L_WSLX_QW field is set to the index of the WSLE. 

g. PCB$L_PPGCNT is incremented. 

h, The reference count is incremented twice, once for the page's membership in 
the working set and once for the I/O in progress. 

Process B's L3PTE is changed to a transition PTE with the PFN of the al- 
located page. The protection, owner, and copy characteristics bits are left 
as they were. If the page is writable but was faulted with read intent, 
MMG$PAGEFAULT sets the fault-on-write bit. (Code common to several 
page types sets the fault-on-write bit, although it is unnecessary in this case.) 
It sets fault-on-execute either if the no-execute bit was set or if the page was 
faulted with read or write data intent. 

j. The physical page's PFN$Q_BAK is initialized to indicate that  the page will 
have page file backing store but none has been assigned yet. 

k. PFN$Q_BAK is also initialized from the GPTE's type and partial section bits, 
<63:32>. 

The PFN$L_PAGE_STATE location bits are set to read in progress with the 
saved modify bit set. 

Note that  all ties between process B and the global section are broken. The page 
is now treated like a process copy-on-reference page. The two boxes for process B 
within the dotted lines in Figure 4.9 are also pictured within dotted lines in Figure 
4.4. 
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MMG$PAGEFAULT initiates a read of the faulted page. 

O When process A faults the same page, the same steps are taken, this t ime with a 
different physical page. 

Thus, both process A and process B get the same initial copy of the global page from 
the global section file, but from tha t  point on, each process has its own private copy of 
the page to modify. 

0 
e 
0 

4.5.4 Global Page-File Section Page 
A global page-file section provides a way for processes to share global pages without  a 
backing store file. A global page-file section page is initially faulted as a demand zero 
page and from then on is indistinguishable from other global writable pages except 
tha t  its backing store is in a page file. 

Figure 4.10 i l lustrates the transit ions of a global page-file section page. The column on 
the right shows how key PFN information changes as the page moves from one state 
to another. The numbers  in the figure are keyed to the explanations tha t  follow. 

The initial conditions are identical to those in Figure 4.8. The section is created; each 
of its GPTEs contains a zero in the PFN field. 

Process A maps the page; the G F I ~  is stored in its L3PTE. 

Process B maps the page; the same GPTX is stored in its L3PTE. 

When process B faults this page, MMG$PAGEFAULT locates the GPTE from the 
GPTX and notes tha t  the page is demand zero. MMG$PAGEFAULT calls MMG_ 
STD$ININEWPFN_DZRO_64 to allocate a free page from the zeroed page list (see 
Section 4.8.1). 

MMG$PAGEFAULT, in concert with MMG_STD$ININEWPFN_DZRO_64, MMG_ 
STD$INCPTREF_64, and MMG_STD$MAKE_WSLE_64 (see Sections 4.8.1 to 
4.8.3) makes the following modifications to the per t inent  memory managemen t  
data  structures:  

a. The PFN$Q_PTE_INDEX and PFN$L_PT_PFN fields for the allocated page 
locate the GPTE. 

b. The PFN$L_PAGE_STATE type bits for the allocated global page are set to 
global writable. 

c. An entry in process B's working set list is initialized to describe the faulted 
page. 

d. The share count for the page table page containing process B's L3PTE is 
incremented. Section 4.4 details other changes to data  s t ructures  related to the 
page table page. 

e. PCB$L_GPGCNT is incremented. 

f. The share and reference counts for the allocated page are incremented. 
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Figure  4.10 P a g e  Trans i t ions  for a Global  P a g e - F i l e  S e c t i o n  P a g e  
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PFN Data 

The area 
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dotted lines 
is also shown 
in Figure 4.4. 
Many of A's 
transitions are, 
as well. 

Page transitions 
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L3PTE = GPTX 
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In working set 
Modify bit set 

/ 

To Figure 4.4 

Connection for 
page file global page 

Process A 

L3PTE contains 
Global Page Table 

Index (GPTX) 
I 

No change 

L3PTE = GPTX 

! 
No change 

L3PTE = GPTX 

L3PTE is valid 
In working set 
Modify bit set 

To Figure 4.4 

GPTE is Demand Zero 

GPTE = 0 

GPTE = 0 

GPTE is valid 

1 
No change 

GPTE is valid 

Page not in 
physical memon]; 
no PFN data 

No PFN data 

No PFN data 

Active and valid 
REFCNT > 0 
BAK = PGFLX, 0 

Active and valid 
REFCNT > 0 
BAK = PGFLX, 0 
PFNs in A's L3PTE 
and B's L3PTE are 
identical. 

g. Its PFN$L_PAGE_STATE location bits are set to active. 

h. MMG$PAGEFAULT inititializes PFN$Q_BAK to indicate that the page will 
have page file backing store but none has been assigned yet. Assignment to 
a page file and allocation of space in it are done later by the modified page 
writer. 

i. It inserts the PFN into the process-private L3PTE, setting the valid and 
modify bits, and leaving the protection, owner, copy characteristics, and no- 
execute bits as they were. If the no-execute bit is set, MMG$PAGEFAULT 
also sets fault-on-execute. If the process is not multithreaded and if MMG$V_ 
NO_MB is set in the MMG_CTLFLAGS SYSGEN parameter, it also sets the 
no-TB-miss-memory-barrier-required bit. 

j. It inserts the PFN into the GPTE, setting the valid and modify bits and leaving 
the protection, owner, copy characteristics, and no-execute bits as they were. 
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O When process A faults the same page, MMG$PAGEFAULT locates the GPTE from 
the GPTX and finds that  the GPTE is valid. It inserts the PFN, valid, and modify 
bits from the valid GPTE into process A's L3PTE, leaving the protection, owner, 
copy characteristics, and no-execute bits as they were. If the no-execute bit is set, 
MMG$PAGEFAULT also sets fault-on-execute. If the process is not mult i threaded 
and if MMG$V_NO_MB is set in the MMG_CTLFLAGS SYSGEN parameter, it 
also sets the no-TB-miss-memory-barrier-required bit. 

Transitions for a global page-file section page resemble those of a page located in a 
page file (see Figure 4.5). However, for a global page-file section page, the GPTE, not 
the process L3PTE, is affected by the transitions of the physical page. Once the global 
page is removed from a process's working set, the process L3PTE reverts to the GPTX 
form. 

4.5.5 Memory-Resident Global Demand Zero Section Page 
A memory-resident global section is created by the $CREATE_GDZRO or $CRMPSC_ 
GDZRO_64 system service. If the system manager reserved preallocated physical 
pages for the section, its pages are zeroed during system initialization or section 
creation, and valid GPTEs are initialized with the PFNs of the allocated pages. 

Figure 4.11 illustrates the transitions that  occur for a memory-resident global section 
page that  is mapped with shared page tables and that  does not occupy preallocated 
pages. The example is for an 8 MB global section, which can be mapped with a single 
L3PT. 

In the figure, the term VA_PTE represents the combination of fields PFN$L_PT_PFN 
and PFN$Q_PTE_INDEX. The term ShL3PTE refers to a PTE in a shared L3PT, and 
the term ShPT, to a shared page table. The numbers in the figure are keyed to the 
explanations that  follow. The column on the right shows how key PFN information 
changes as the page moves from one state to another. 

When the section is created, pages are allocated for the shared page tables. Each 
shared L3PTE is invalid and contains the GSTX of the global section. Each GPTE that  
maps the memory-resident global section is initialized with a valid bit clear; type 0, 
type 1, writable, and demand zero bits set; and the GSTX (see Figure 2.26). 

O 

@ 

@ 

Process A maps the global section; its L2PTEs are initialized to map the shared 
page tables. 

Process B maps the global section; its L2PTEs are initialized to the same values. 

Process B faults a page in the memory-resident global section. At the first fault 
of a page in such a section, MMG$PAGEFAULT calls MMG_STD$ININEWPFN_ 
DZRO_64 (see Section 4.8.1). Because no WSLE is needed, the process's L3PT 
share count is not incremented, nor is its PFN$W_PT_VAL_CNT or PCB$L_ 
GPGCNT. 
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Figure  4.11 

Page transitions 

4.5 Page Transitions for Global Pages 
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When process A accesses the same page, the page mapped by the shared L3PT is 
already valid. Because the global section page is mapped by a shared page table, 
the page's share count remains unchanged: the page is mapped by exactly one 
L3PTE. 

�9 When process B deletes the virtual address space occupied by the global section, 
its L2PTE is cleared, severing the ties to the shared L3PT. 

�9 When process A deletes the virtual address space occupied by the global section, 
its L2PTE is cleared. 
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The global section and shared page table pages remain valid until the global section is 
deleted. 

4.6 Page Transitions for System Pages 
This section describes page faults for pageable system space pages, which are of type 
PFN$C_SYSTEM: 

�9 Read-only pages from pageable image sections in executive images 

�9 Writable pages from pageable image sections in executive images 

�9 Paged pool pages 

The only pageable image sections in system space are from executive images. Although 
most executive images are nonpageable, some have pageable image sections. In theory, 
the base images, SYS$BASE_IMAGE.EXE and SYS$PUBLIC_VECTORS.EXE, can 
contain pageable code and data. In OpenVMS Alpha Version 7.3, however, they have 
no pageable sections. 

By default, when an executive image is mapped, a section table entry in the system 
section table (which also serves as the global section table) is initialized to describe 
each pageable section in the image. Each system space L3PTE that  maps a page in 
a pageable section has both type bits set to indicate the process section index form 
of invalid L3PTE and contains the index of the section's entry in the system section 
table. Note that  it is possible to disable any paging of executive images by setting the 
SYSGEN parameter  S0_PAGING to a nonzero value. 

If the section is writable, each of its L3PTEs also has the copy-on-reference and 
writable bits set. Chapter The Modular Executive describes the mapping of executive 
images in detail. 

4.6.1 System Page That Is Not Copy-on-Reference 
The transitions for a read-only system section page resemble those described in Section 
4.3.1. This section mainly notes the details that  differ from those for a process section 
page that  is not copy-on-reference. The numbers that  follow correspond to those in 
Figure 4.3. 

O MMG$PAGEFAULT locates an entry in the system working set list for the faulted 
page. It allocates a page from the free page list. There is no need to update data 
structures describing the page table page that  contains the system space L3PTE. 
System space L3PTEs do not page. PFN$W_PT_VAL_CNT is not maintained for 
system space page table pages. The page type stored in the PFN$L_PAGE_STATE 
type bits is system page. 

MMG$PAGEFAULT initializes the page's PFN$Q_BAK field from the L3PTE's type 
and partial section bits and bits <63:32>. It locates the system section table entry 
just  as it would a PSTX and calculates which virtual blocks contain the faulted 
page. 
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O 

After the I/O completes, PAGIO, the I/O postprocessing routine, reports a page 
fault completion event for the kernel thread that  faulted the page. PAGIO sets the 
address space match bit in the L3PTE when setting the valid bit. 

The system working set is not subject to purging, swapper trimming, or working 
set limit adjustment. A page is removed from the system working set list only 
when space is required for another page. Also, unloading an executive image may 
result in deletion of pages. 

On an SMP system, when a page is removed from the system working set list, 
the cached L3PTE contents must  be flushed from the TBs of all members of 
the system. Chapter Symmetric Multiprocessing describes how the processors 
cooperate to perform the invalidation. 

4.6.2 System Page That Is Copy-on-Reference 
The transitions for a copy-on-reference system section page resemble those described 
in Section 4.3.2 and shown in Figure 4.4. 

The page type stored in the PFN$L_PAGE_STATE type bits is system page. 

4.6.3 Demand Zero System Page 
The transitions for a demand zero system page resemble those described in Section 
4.3.3 and shown in the path labeled START 2 in Figure 4.4. 

The page type stored in the PFN$L_PAGE_STATE type bits is system page. 

4.7 Page Transitions for Global Page Table Pages 
In versions of OpenVMS Alpha prior to Version 7.0, global page table pages, which 
are of type PFN$C_GPGTBL, were pageable. They no longer page in the system 
working set list. Once faulted into memory, they are locked in memory, typically for 
the duration of the system boot. 

The L3PTEs that  map the global page table initially have the demand zero page form 
of invalid PTE. A nonresident page of global page table may be faulted into memory 
when one of its GPTEs is allocated for a global section being created. The page table 
page is locked in memory and is not represented by a WSLE. 

The page type stored in the PFN$L_PAGE_STATE type bits is global page table page. 
The share count for the global page table page is incremented once, for the first GPTE 
that  maps a global section page. 

A page table page can be deleted when it no longer maps any global pages, in the 
unlikely event tha t  it is at the high address end of the global page table and the 
system manager  has dynamically decreased the GBLPAGES SYSGEN parameter  from 
its value at system boot. 
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4.8 Page Fault Support Routines 
Several support  routines are used in most types of page faults. These are described in 
the sections tha t  follow. 

4.8.1 MMG_STD$1NINEWPFN_64 and 
MMG_STD$1NINEWPFN_DZRO_64 

MMG_STDSININEWPFN_64 and MMG_STDSININEWPFN_DZRO_64, in module 
PAGEFAULT, allocate a page of available physical memory. The la t ter  ensures  tha t  
the page is zeroed first. Their a rguments  include the address of the vir tual  page tha t  
was faulted, the address of the PTE tha t  maps it, and the address of the working set 
list in which the vir tual  page is entered. 

As described in Chapter  2, there can be multiple free page lists. On a non-NUMA 
platform, there are free and zeroed page lists for each page color. Instead of allocating 
the next available page from the free page list, a page whose color matches the fault ing 
virtual  address is allocated. 

On a NUMA platform with RAD support  enabled, there are free and zeroed page lists 
for each RAD. Pages can be allocated by several different methods: 

�9 A page from the next RAD in the round-robin sequence (RIH$C_RANDOM_RAD) 

�9 A page from the same RAD as the CPU on which the allocation code is executing 
(RIH$C_CURRENT_RAD) 

�9 A page from the same RAD as the process for which it is being allocated (RIH$C_ 
HOME RAD) 

�9 A page from the base RAD, the one on which OpenVMS booted (RIH$C_BASE_ 
RAD) 

A method can be specified for process pages, system pages, global pages, and pages 
allocated by the swapper  for inswap. SYSGEN paramete r  RAD_SUPPORT, whose 
fields are defined by macro $RIHDEF, has fields to specify an allocation method for 
each of these categories. If bit RIH$V_SPECIAL in it is clear, default allocation 
methods are used: 

�9 RIH$C HOME_RAD for process pages 

�9 RIH$C_CURRENT_RAD for system pages 

�9 RIH$C_RANDOM_RAD for global pages 

�9 RIH$C_RANDOM_RAD for swapper allocation 

In addition, when a global section is created by the $CRMPSC_GDZRO_64 or $CRE- 
ATE_GDZRO system service, it can be associated with a specific RAD to override the 
allocation method in use for other global sections. 

For any method tha t  specifies a par t icular  RAD, if no free memory on tha t  RAD is 
available at  the time of allocation, the page is allocated from another  RAD. 
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MMG_STD$ININEWPFN_64 allocates a page of physical memory from the free page 
list specified by the allocation method for the page type, the free page list of the 
appropriate color, or the front of the only free page list. Alternative entry point MMG_ 
STD$ININEWPFN_DZRO_64 allocates from the appropriate zeroed page fist; if a 
zeroed page of the right color or RAD is unavailable, it zeros a free page. 

If this is a process page, it stores the location of the L3PTE in the PFN$L_PT_PFN 
and PFN$Q_PTE_INDEX fields of that  page's PFN database record and a type code of 
process page in PFN$L_PAGE STATE. 

If this is a process page table page, it stores the location of the process-private L2PTE 
that  maps the L3PT in PFN$L_PT_PFN and PFN$Q_PTE_INDEX and initializes the 
L3PT page's PFN$L_PAGE_STATE type bits to process page table. 

If this is a global page, it stores in PFN$L_PT_PFN and PFN$Q_PTE_INDEX the 
location of the GPTE, rather than that  of a process-private L3PTE, and a type code of 
global page in PFN$L_PAGE_STATE. 

If the page is a memory-resident global section page or a global page table page, 
neither of which is listed in a working set list, it initializes PFN$W_REFCNT and 
PFN$L_SHRCNT to 1. Otherwise, it calls MMG_STD$MAKE_WSLE_64. 

4.8.2 MMG_STD$MAKE_WSLE_64 
MMG_STD$MAKE_WSLE_64, in module PAGEFAULT, updates data structures 
related to the working set list. Its arguments include the address of the virtual page 
that  was faulted, the address of the PTE that  maps it, and the address of the working 
set list in which the virtual page is entered. The WSLE to be used already has the 
type bits that  describe the page. 

It initializes the WSLE with the virtual address of the page being faulted and sets its 
valid bit. 

If this is a process page, it stores the index of the WSLE in the PFN$L_WSLX_QW 
field of the PFN database record for the physical page and increments its PFN$W_ 
REFCNT field to indicate that  the contained virtual page is in a working set list. It 
increments the L3PT's PFN$W_PT_VAL_CNT to indicate another valid WSLE mapped 
by this page. If this is the first, it increments PHD$L_PTCNTVAL (see Section 4.4). 
It increments the field PCB$L_PPGCNT to indicate one more process page in the 
working set. 

If this is a process page table page, MMG_STD$MAKE_WSLE stores the index of the 
WSLE in the PFN$L_WSLX_QW field of the PFN database record for the page table 
page and increments its reference count to indicate that  the page table page is in a 
working set list. 

It increments PFN$W_PT_VAL_CNT of the page table page that  maps the page being 
faulted. If that  page table page previously mapped no valid WSLEs, it increments 
PHD$L_PTCNTVAL to indicate the process has one more page table that  maps valid 
WSLEs. It increments PCB$L_PPGCNT. 
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If this is a global page, MMG_STD$MAKE_WSLE_64 increments the share count for 
the page and, if the count makes the transition from 0 to 1, its reference count as well. 
Working set list index (WSLX) information is not kept for a global page. It increments 
the process's L3PT's PFN$W_PT_VAL_CNT to indicate another valid WSLE mapped 
by this page. If this is the first, it increments PHD$L_PTCNTVAL (see Section 4.4.1). 
It increments the process's PCB$L_GPGCNT to indicate one more global page in the 
working set. It calls MMG_STD$INCPTREF_64 to lock the process page table that  
maps the global page into the working set list. 

If this is a system page, MMG_STD$MAKE_WSLE_64 stores the index of the WSLE in 
the PFN$L_WSLX_QW field of the PFN database record for the page. If this is a global 
page table page, it clears PFN$L_WSLX_QW, because global page table pages are not 
entered in the system working set list. In either case, it increments its reference count 
to indicate that  the page is in a working set list and PCB$L_PPGCNT in the system 
PCB. 

4.8.3 MMG_STD$1NCPTREF_64 
MMG_STD$INCPTREF_64 is called with the address of the PTE that  maps the virtual 
page that was faulted to lock the associated page table page into memory. 

It first determines whether the page table is process-private, system, or global. 

For a process-private or global page table page, it identifies the PFN that  the page 
table page occupies and increments PFN$L_SHRCNT. If the share count had pre- 
viously been zero, it locks the page table page's WSLE into the working set list by 
setting its WSL$V_WSLOCK bit, increments PHD$L_PTCNTACT to indicate another 
active page table page, and increments the PHD reference count (the PHD's entry at 
the PHV$GL_REFCBAS_LW array). 

In the case of a system page, it simply returns: system page table pages do not page. 

4.9 $FAULT_PAGE System Service 
The Fault Page ($FAULT_PAGE) system service enables an application to initiate page 
faults prior to actual use of the pages. Because the application is not placed into a 
wait state, it continues to execute during the I/O to fault the pages into memory. 

Its arguments are the starting virtual address to be faulted, the number of bytes to be 
faulted, and the desired page fault cluster size in bytes. 

The system service procedure, EXE$FAULT_PAGE in module SYSSETPRT, runs in 
the mode of the service requestor. It takes the following steps: 

1. It establishes EXE$SIGTORET as a condition handler so that  any error signaled 
by MMG$PAGEFAULT is returned as an error status to the service's requestor 
(see Chapter Condition Handling). 
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It adjusts its input  arguments,  if necessary, and copies them to the low general 
registers tha t  are preserved as part  of an exception stack frame. In particular, it 
passes the desired cluster size. 

3. At a known location, it tries to access the first page in the first cluster. 

, 

If the page is invalid, a page fault occurs. MMG$PAGEFAULT allocates 
physical memory and working set list entries for the desired cluster's worth of 
pages. It initiates the I/O but does not place the process into page fault  wait  
during the I/O. Instead, it modifies the exception stack frame to record the 
number of bytes in the I/O request and to advance the program counter so tha t  
control will re turn  to the instruction following the page fault. EXE$FAULT_ 
PAGE begins the next cluster at the page following the I/O buffer. 

If the page is valid, no page fault occurs, and the next cluster begins at the 
next page. 

EXE$FAULT_PAGE loops, accessing the first page in the next cluster unti l  there 
are no more clusters. 

5. It returns to its requestor. 

4.10 Page Read Clustering 
To make reading and writing as efficient as possible, MMG$PAGEFAULT implements  
a feature called clustering. It checks whether  pages adjacent to the virtual page being 
faulted are located in the same file in adjacent virtual blocks. If so, it requests a 
multiple-page read so that  a cluster of pages will be brought into the working set 
at one time. One N-page request has less CPU and I/O overhead than N one-page 
requests. The special SYSGEN parameter  NOCLUSTER determines whether  page 
fault clustering is enabled. Its default value of zero enables clustering. 

This section discusses clustering in page read I/O. 

The modified page writer and the Update Section File on Disk system services also 
cluster their write operations, both to make their writes as efficient as possible and to 
allow subsequent clustered reads for the pages tha t  are being written. Section 4.12.4 
summarizes clustering by the modified page writer, and Section 4.13, by the Update 
Section File on Disk system services. 

Table 4.1 indicates the limit to which the object of each type of memory management  
I/O request  is clustered and what  determines tha t  limit. For example, when read- 
ing a page from a page file, MMG$PAGEFAULT tries to read SYSGEN parameter  
PFCDEFAULT pages. 

When MMG$PAGEFAULT determines that  a read is required to satisfy a page fault, 
it a t tempts  to identify a cluster of pages to be read at once. The manner  in which this 
cluster is formed depends on the initial state of the faulting PTE, as described in the 
next sections. 

271 



Paging Dynamics 

4.10.1 Terminating Conditions for Clustered Reads 
Beginning with the PTE of the faulting page, MMG$PAGEFAULT scans adjacent PTEs 
in the direction of higher virtual addresses, checking for adjacent virtual  pages tha t  
have the same backing store location. It continues until  it reaches the desired cluster 
size or until it reaches one of the following other terminat ing conditions: 

It encounters a type of PTE different from tha t  of the original faulting PTE (see 
Section 4.10.2). 

* The page table pages that map the next PTE are themselves not valid. 

Another WSLE is not available. (Each page in the cluster must  be added to the 
working set.) 

* No physical page is available. 

The scan is initially made toward higher virtual  addresses because programs typi- 
cally execute sequentially toward higher virtual  addresses and these pages are more 
likely to be needed soon. If that  scan does not form a cluster of at least two pages, 
MMG$PAGEFAULT scans for pages at lower virtual  addresses on the assumption tha t  
pages at lower virtual addresses but near the faulting page are likely to be needed 
soon. 

4.10.2 Matching Conditions During the Page Table Scan 
The match criterion for adjacent PTEs depends on the form of the initial PTE: 

* If the original PTE contains a PSTX, successive PTEs must  contain exactly the 
same PSTX. 

* If the original PTE contains a page file page number, successive PTEs must contain 
PTEs with the same page file index and successively increasing (or decreasing) 
page numbers. 

�9 If the original PTE contains a GPTX, successive PTEs must contain successively 
increasing (or decreasing) indexes. In addition, the GPTEs must all contain exactly 
the same GSTX. 

Table  4.1 Clus ter  Factor  in I/O R e q u e s t s  I s sued  by M e m o r y  M a n a g e m e n t  

Type of I/O Request Cluster Factor 

Process Page Read 

Page in section file pfc/PFCDEFAULT 1 

1The cluster factor for a private or global section can be specified at link time or when the cluster 
is mapped by explicitly declaring a cluster factor (pfc). If it is unspecified, the SYSGEN parameter 
PFCDEFAULT is used. 
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4.10 Page Read Clustering 

Clus ter  F a c t o r  in I/O R e q u e s t s  I s s u e d  by M e m o r y  
M a n a g e m e n t  

T y p e  o f  I/O Request Cluster Factor 

Process Page R e a d  

Page in page file 

Page table page 

$FAULT_PAGE-induced fault  

PFCDEFAULT 2 

PAGTBLPFC 2 

Clus ter  a r g u m e n t  

System Page Read 

Sys tem section page 3 

Paged pool page 

SYSPFC 2 

PFCDEFAULT 2 

Global Page Read 

Global page 

Global copy-on-reference page 

$FAULT_PAGE-induced fault  

p f c / P F C D E F A U L T  1 

p f c / P F C D E F A U L T  1 

Clus ter  a r g u m e n t  

Modified Page W r i t e  

To page file 

To private section file 

To global section file 

To swap file 
(set bit PFN$V_SWPPAG) 

MPW_WRTCLUSTER 2 

MPW_WRTCLUSTER 2 

MPW_WRTCLUSTER 2 

1 

Update Section File on Disk System Service Write 

Priva te  section 

Global section 

MPW_WRTCLUSTER 2 

MPW_WRTCLUSTER 2 

Swapper I/O 

Swapper  I/O n/a 

1The cluster factor for a private or global section can be specified at link time or when the cluster 
is mapped by explicitly declaring a cluster factor (pfc). If it is unspecified, the SYSGEN parameter 
PFCDEFAULT is used. 

2This is a SYSGEN parameter. 

3pageable executive routines originate in executive image sections, described by section table entries in 
the system header. 
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4.10.3 Maximum Cluster Size for Page Read 
The maximum number of pages that  can make up a cluster is a function of the type of 
page being read: 

�9 The cluster factor for process page table pages is taken from PHD$L_PGTBPFC. 
The default value of this field is the special SYSGEN parameter  PAGTBLPFC, 
whose default value is 16 pagelets, resulting in a cluster factor of one page. 
Increasing this value is likely to have a negligible effect on most systems. 

�9 The cluster factor for pages read from a page file is taken from the PFL$L_PFC 
field of the page file control block (see Figure 2.31). The usual contents of this field 
are the value of SYSGEN parameter  MPW_WRTCLUSTER. 

The cluster factor for pages read from a process or global section file is taken from 
the SEC$L_PFC field of the process or global section table entry (see Figure 2.7). 
This field usually contains zero, in which case the default page fault cluster is 
used. Jus t  as for clustered reads from the page file, this default is taken from 
PHD$L_DFPFC. 

There are two methods by which the cluster factor of a process or global section 
can be controlled. At link time, the page fault cluster factor in an image section 
descriptor can be set to nonzero through the linker cluster option and its PFC 

argument: 

CLUSTER = cluster-name, [base-address] , pfc, file-spec[ .... ] 

Second, the page fault cluster factor for a section mapped through the $CRMPSC 
system service can be specified through the optional PFC argument. The page fault 
cluster factor for a section created through the $CREATE_GFILE, $CRMPSC_ 
FILE_64, or $CRMPSC_GFILE_64 system service can be specified through the 
optional FAULT CLUSTER argument 

4.11 Page Read Completion 
The I/O postprocessing routine IOC$IOPOST, in module IOCIOPOST, detects page 
read completion when the flags IRP$V_PAGIO and IRP$V_FUNC in IRP$L_STS are 
both set. 

Page read completion is not reported to the faulting kernel thread in the normal 
fashion with a special kernel mode AST because none of the postprocessing has to be 
performed in the context of the faulting kernel thread. Holding the MMG spinlock, the 
I/O postprocessing routine PAGIO performs the postprocessing needed. It performs the 
following steps for each page in the page fault cluster that  was successfully read: 

1. PAGIO decrements the reference count in the page's PFN database record, indicat- 
ing that  the read in progress has completed. 

2. If the reference count is now zero, it puts the page into the free or modified page 
list, depending on the value of the saved modify bit, and continues with the next 
page. 
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3. If the reference count is nonzero, it sets the location bits in PFN$L_PAGE_STATE 
to active. 

4. It sets the valid bit in the L3PTE. If the page is writable and was faulted with 
write intent,  it sets the modify bit in the L3PTE to avoid the need for a modify 
fault. If the process is not mult i threaded,  if MMG$V_NO_MB is set in the MMG_ 
CTLFLAGS SYSGEN parameter ,  and if this is a process-private address,  it also 
sets the no-TB-miss-memory-barrier-required bit in the L3PTE. For an S0/S1 space 
page, it also sets the address space match bit. 

5. If the page is a global page tha t  is not copy-on-reference, the valid bit set in step 
4 was actually in the GPTE. In this case, the process (slave) L3PTE must  also be 
altered: PAGIO inserts  the PFN, part ial  section, type 0, global, global write, and 
valid bits from the GPTE into the slave L3PTE. If appropriate,  it sets the modify 
bit in the slave L3PTE. 

6. If the page is a process page table, PAGIO decrements  the PHD reference count to 
indicate tha t  the I/O is complete (PHV$GL_REFCBAS_LW array  element). 

After processing the pages tha t  were read successfully, PAGIO tests whether  an I/O 
error occurred. If so, it takes the following steps for the page tha t  incurred the error: 

1. PAGIO decrements the reference count in the page's PFN database record, indicat- 
ing tha t  the read in progress has completed. 

2. It changes the page's PFN$L_PAGE_STATE location bits to read error, set t ing the 
delete-contents bit and clearing the saved modify bit. 

3. It records the I/O error s tatus in PFN$W_SWPPAG. When the process la ter  
refaults this page, MMG$PAGEFAULT will r e tu rn  SS$_PAGRDERR to 
SCH$PAGEFAULT, which will generate  a condition to report the actual I/O error 
to the access mode tha t  incurred the page fault (see Section 4.2.2). 

4. If the vir tual  page is a copy-on-reference page, PAGIO restores its backing store 
location to the physical page's PFN$Q_BAK field. If the error occurred on the 
last page of the transfer,  and tha t  page was part ial ly backed, it clears the par t ia l  
section flag in PFN$Q_BAK. 

5. If the page's reference count is now zero and the process is memory-resident,  
PAGIO releases the page to the free page list. If the process is outswapped, PAGIO 
inserts the page into the bad page list instead. When the process is inswapped, the 
page will be removed from the bad page list. 

After tending to the individual pages, PAGIO determines whether  the pages are from 
a copy-on-reference section. If so, it subtracts  the number  of pages read from the 
section's reference count. 

PAGIO tests whether  an upcall to a user  mode thread  manager  was made when the 
kernel thread  faulted this page. If so, it t ransforms the IRP into a user  mode AST 
control block (ACB) for the thread manager  and queues an AST to it (see Chapter  
Kernel Threads for a description of upcalls and user  mode thread management) .  
Otherwise, it reports the scheduling event page fault completion for the page fault ing 
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kernel thread so that  it is made computable. The priority increment value is zero; that  
is, there is no boost to the kernel thread's scheduling priority. If any of the pages just  
read were collided pages, it also makes kernel threads in the collided page wait state 
computable. Collided pages are discussed in Section 4.17.3. 

If an error occurred and more of the transfer remains to be done, PAGIO updates the 
IRP to describe the rest of the transfer (excluding any pages already done and the page 
that  incurred the error) and requeues the IRP to the device driver. 

4.12 Modified Page Writing 
Once a second as well as in response to particular events, the executive checks whether 
any of the swapper's tasks need to be performed and wakes it if necessary; one such 
task is writing pages from the modified page list to mass storage. 

The modified page writer, MMG$WRTMFYPAG, in module WRTMFYPAG, is 
a subroutine of the swapper process. Within its main loop, the swapper calls 
MMG$WRTMFYPAG to form a cluster of modified pages that  have the same back- 
ing store and request a write I/O operation. Writing multiple modified pages together 
makes more efficient both the write to backing store and any subsequent refault into 
memory. 

At completion of the write I/O operation, the modified page writer's special kernel mode 
AST routine is entered to place the pages into the free page list and, if appropriate, to 
initiate the writing of more modified pages. 

4.12.1 Requesting the Modified Page Writer 
During system operation other executive routines request the writing of modified 
pages by invoking the routine MMG$PURGE_MPL, in module WRTMFYPAG, with 
arguments identifying the requested operation and its scope. The possible operations 
are 

�9 Writing pages within a virtual address range (an SVAPTE request) 

�9 Writing pages mapped by a particular page table page (a PAGE_TABLE request) 

�9 Writing pages to shrink the modified list to a target size (called a MAINTAIN 
request) 

* Writing all pages backed by section files (an OPCCRASH request) 

Modified page writing is requested in a number of circumstances: 

�9 When the modified page list has exceeded its high limit, defined by the SYSGEN 
parameter MPW_HILIMIT (MAINTAIN) 

�9 When the free page list is below its low limit, defined by the SYSGEN parameter  
FREELIM, and can be replenished by writing modified pages (MAINTAIN) in 
preference to outswapping a resident process 
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When particular modified pages must be written to their backing store (SVAPTE 
and PAGE_TABLE) 

When the OPCCRASH image, running during system shutdown, must write all 
pages in the list that  are backed by section files to their backing store (OPC- 
CRASH) 

Originally, the modified page list was sometimes emptied, or flushed, during normal 
operations. In VAX VMS Version 5, the flushing was replaced by selective purging, 
that  is, writing all modified pages whose PTEs fall within a specified system virtual 
address range (the SVAPTE request). 

For selective purging of process-private space modified pages, in OpenVMS Alpha, the 
PTEs of interest are L2PTEs or L3PTEs. In OpenVMS Alpha Version 7.0 and later 
releases, each process's page tables are mapped in the same process-private virtual 
address range; an SVAPTE request must therefore include the process's page table 
base register (PR$_PTBR) contents to identify which process's pages are to be written. 
For global and other shared PTEs, the PR$_PTBR recorded is the primary processor's 
hardware privileged context block (HWPCB) PR$_PTBR. For selective purging of 
writable global pages, the PTEs of interest are GPTEs. 

Selective purging is requested under the following circumstances" 

When a process body has been outswapped but its PHD, whose slot is needed, 
cannot be outswapped because some of its L2 or L3PTEs map transition pages on 
the modified page list (an SVAPTE request; see Chapter 6) 

When a writable global section with transition pages still on the modified page list 
is deleted (an SVAPTE request; see Chapter 3) 

When a process needs to reuse a WSLE that describes a dead page table page, one 
that  is now inactive but still maps transition pages on the modified page list (an 
SVAPTE or PAGE_TABLE request; see Chapter 5) 

The modified page writer may be requested multiple times before it is actually called 
by the swapper. MMG$PURGE_MPL therefore stores the requested command with 
the highest rank in MPW$GL_STATE; from low to high rank, the ordering is MAINT_ 
STATE (from the MAINTAIN command), SELECTIVE (from the SVAFrE and PAGE_ 
TABLE commands), and CRASH_STATE (from the OPCCRASH command). It records 
information about each request: 

�9 For an SVAPTE request, MMG$PURGE_MPL increments MPW$GL_REQCNT, 
the number of outstanding SVAPTE requests. It checks whether there is already 
a request outstanding to purge this page table and, if not, stores the low and high 
SVAPTE addresses and corresponding PR$_PTBR contents in a 32-entry table 
beginning at local symbol MPW$GQ_SVAPTE. It summarizes the page table base 
registers for which SVAPTE requests have been made in MPW$GQ_PTBR_MASK 
by setting the bit corresponding to the low eight bits of the address. Use of this 
summary mask is described in Section 4.12.2. 
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Unless this request is the result of shrinking a process's working set list 
(MPW$V_NO_MPL_FLUSH is set in MPW$GL_FREWFLGS), it clears SCH$GL_ 
MFYLOLIM and SCH$GL_MFYLIM. 

For a PAGE_TABLE request, MMG$PURGE_MPL increments MPW$GL_PT_ 
REQCNT, the number of outstanding PAGE_TABLE requests. It checks whether  
there is already a request outstanding to purge this page table and, if not, stores 
the PFN of the page table in a 32-1ongword array beginning at local symbol 
MPW$GQ_PT. Unless this request is the result of shrinking a process's working 
set list (MPW$V_NO_MPL_FLUSH is set in MPW$GL_FREWFLGS), it clears 
SCH$GL_MFYLOLIM and SCH$GL_MFYLIM. 

In response to a MAINTAIN request, MMG$PURGE_MPL records the target  
size in SCH$GL_MFYLOLIM and SCH$GL_MFYLIM. (If a previous MAINTAIN 
request has been made, MMG$PURGE_MPL uses the lesser of its target size and 
the current target size.) It clears MPW$GL_REQCNT, MPW$GL_PT_REQCNT, 
and MPW$GQ_PTBR_MASK. 

For an OPCCRASH request, MMG$PURGE_MPL clears MPW$GL_REQCNT, 
SCH$GL_MFYLOLIM, and SCH$GL_MFYLIM so that  all pages on the modified 
page list will be flushed. 

Once modified page writing to shrink the list (MAINTAIN) is initiated, the modified 
page writer continues writing modified pages until the size of the list is at or below 
the contents of SCH$GL_MFYLOLIM. The modified page writer typically compares 
the target modified page list size with the value of the SYSGEN parameter MPW_ 
LOLIMIT and uses the larger as a target size. Chapter 6 describes the calculation of 
the target modified page list size for the different circumstances in which the swapper 
initiates modified page writing. 

When an SVAPTE, PAGE_TABLE, or OPCCRASH request initiates modified page 
writing to purge or flush the list, both the lower and upper limits for the modified page 
list are set to zero. For an SVAFrE request, the modified page writer scans the entire 
list and writes all pages whose PTE addresses fall within the specified range. For 
an OPCCRASH request, the modified page writer scans the entire list and writes all 
pages not backed by a page file. For a PAGE_TABLE request, the modified page writer 
scans the target page table for PTEs indicating modified pages and writes those pages 
to their backing store. 

Before the modified page writer exits, it restores its two limits to the values contained 
in the SYSGEN parameters MPW_HILIMIT and MPW_LOLIMIT. 

4.12.2 Operation of the Modified Page Writer 
Called by the swapper, the modified page writer initiates the writing of modified pages. 
The modified page writer forms a cluster and queues an I/O request. When the I/O 
request completes, the modified page writer's special kernel mode AST routine is 
entered. After performing necessary processing on the pages that  have been written, it 
checks whether more modified pages must be written and, if so, forms another cluster. 
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At the completion of tha t  request, the special kernel mode AST routine may queue yet 
another request. 

The modified page writer can initiate up to SYSGEN parameter  MPW_IOLIMIT 
concurrent I/O requests. The default value of MPW_IOLIMIT is 4. As described in 
Chapter 2, during system initialization MPW_IOLIMIT nonpaged pool data  s tructures 
are allocated. Each contains an IRP and two arrays that  describe the pages in the 
cluster. These structures are queued to a listhead at MPW$GL_IRPFL and MPW$GL_ 
IRPBL. Figure 4.12 shows the layout of this data structure, known as a modified page 
writer I/O request packet (MPW IRP). 

MMG$WRTMFYPAG proceeds in the following fashion: 

1. It compares the number  of pages on the modified page list to SCH$GL_MFYLIM. 
If there are fewer pages on the list, it simply exits. 

2. It acquires the MMG spinlock, raising IPL to IPL$_MMG. 

3. It sets bit SCH$V_MPW in SCH$GL_SIP to indicate tha t  modified page writ ing 
is in progress. If the bit was already set, MMG$WRTMFYPAG releases the MMG 
spinlock and exits. 

4. Otherwise, it tests whether  this is a request to do selective purging that  includes 
SVAPTE requests and, if so, whether 1 second has elapsed since the previous one. 
If not, it clears SCH$V_MPW in SCH$GL_SIP, releases the MMG spinlock, and 
exits. This test helps limit the time the modified page writer spends scanning the 
modified page list. If the selective purging is limited to PAGE_TABLE requests, 
the modified page writer does not delay them and continues with the next step. 

5. MMG$WRTMFYPAG calls MMG$PURGE_MPL, specifying the default command 
of MAINTAIN to shrink the list to MPW_LOWAITLIMIT pages. 

If a previous SVAPTE or PAGE_TABLE request has been made and not yet 
satisfied, MMG$PURGE_MPL returns immediately. 

If no previous SVAFrE, PAGE_TABLE, or other MAINTAIN requests have 
been made, it changes MPW$GL_STATE to MAINTAIN and stores the larger 
of MPW_LOWAITLIMIT and SCH$GL_MFYLOSV in SCH$GL_MFYLIM and 
SCH$GL_MFYLOLIM. 

If a previous MAINTAIN request has been made, it stores the lesser of the 
previous and current requested limits in SCH$GL_MFYLIM and SCH$GL_ 
MFYLOLIM. 

This step establishes the default for modified page writing if no unsatisfied re- 
quests have been made. 

6. If there are pending PAGE_TABLE requests, MMG$WRTMFYPAG acts on each of 
them by taking the following steps: 

a. It confirms that  the page is still a process page table, that  it maps no valid 
pages, but that  it does map transition pages. If any one of the tests fails, it 
ignores that  page and proceeds with the next PAGE_TABLE request. (After 
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F i g u r e  4.12 L a y o u t  o f  a M o d i f i e d  P a g e  Wri ter  I R P  (MPW IRP)  

IRP 

IRP 
extension 

PTE 
array 

PHV 
index 
array 

DYN$C_ DYN$C_ 
MPWMAP INIT 

RP_BCNT 

IRP_PAGCNT 

IRP_PHVINDX 

(reserved) 

IRP_PTE 
(MPW_WRTCLUSTER quadwords) 

(MPW_WRTCLUSTER Iongwords) 

O--M 

I 

b, 

C. 

do 

the P A G E T A B L E  request was made, the process could have executed and 
faulted in pages mapped by this page table.) 

It maps the page table page into system space and scans its PTEs, looking 
for non-null entries. If it finds a PTE that is not a transition page, this page 
table is not a candidate to be written to a page file, and MMG$WRTMFYPAG 
proceeds with the next page. 

If it finds a transition PTE describing a page on the modified page list, it 
allocates an IRP and processes the page and possibly a cluster of other pages 
mapped by this page table page, following steps 10 through 19. 

It reacquires the MMG spinlock and confirms that the page is still a page table 
page mapping no valid entries. The page's state could have changed while 
MMG was unlocked. If the state has changed, it goes on to the next PAGE_ 
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TABLE request. If the state is unchanged, it continues scanning the page table 
page. 

When all the PAGE_TABLE requests have been processed, if there are pending 
SVAPTE requests, MMG$WRTMFYPAG continues with the next step. Otherwise, 
it continues with step 21. 

7. MMG$WRTMFYPAG removes an MPW IRP from the list. If none is available, it 
continues with step 21. 

8. It scans the modified page list to find a page with which to begin a cluster. Entered 
the first time, it begins with the first page on the list. Subsequently, it typically 
resumes with the page at which the last scan stopped. If that  page is no longer 
on the modified page list, MMG$WRTMFYPAG tries the pages tha t  preceded and 
followed it on the list. If neither of them is still on the list, it selects the first page 
on the list. 

From the page's PFN database, it determines the page type (for example, process, 
system, or global), the virtual address of the PTE that  maps the page, and the 
physical address of the corresponding LIPT. In the case of a process page, it maps 
into system space the page table page containing tha t  PTE. 

Its processing of the modified page depends on the type of request it is performing 
(the value of MPW$GL_STATE): 

If performing a MAINTAIN request, it accepts the page. 

- -  If performing an SVAPTE request, it tests MPW$GQ_PTBR_MASK to see 
whether  the corresponding LIPT address matches any of the requested ranges 
and, if so, whether  the address of the page's PTE falls within tha t  range. If 
not, it goes on to the next page in the list. 

If performing an OPCCRASH request, it accepts the page. 

9. MMG$WRTMFYPAG determines the type of the first page in the cluster from its 
PFN database record PFN$L_PAGE_STATE type bits. 

10. Based on the page type, it gets the address of the relevant PHD, either tha t  of a 
process or of the system. 

11. It examines the PFN$Q_BAK field to determine the type of backing store: page 
file, section file, or swap file page (see Section 4.12.5). 

12. If the backing store is in a page file, MMG$WRTMFYPAG first checks whether  the 
system is shut t ing down. If so, writ ing the page to a page file is pointless, and it 
skips the page. It continues with the next page in the list. 

If the system is not shutt ing down, it then tests whether  this page is a process 
page table page containing all zeros tha t  can be deleted now. If so, it deallocates 
the page's page file backing store, decrements the share count of the next level 
page table page, restores page file quota to the process, removes the page from 
the modified page list, severs its connection to the process's next level page table, 
and inserts it on the zeroed page list. If MMG$WRTMFYPAG is processing PAGE_ 
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13. 

14. 

15. 

16. 

17. 

18. 

19. 

TABLE requests,  it continues at step 6d with the next PTE. Otherwise, it continues 
at step 9 with the next page on the modified page list. 

If the page is not a process page table page tha t  can be deleted now, 
MMG$WRTMFYPAG tests whether  its last  a t tempt  to allocate space in a page 
file failed. If so, it rejects this page as a s tar t ing point and goes on to the next page 
in the modified page list, continuing with step 9. The allocation failure information 
is cleared each time MMG$WRTMFYPAG is called. If the last a t tempt  to allocate 
space in a page file was successful, MMG$WRTMFYPAG allocates a cluster of page 
file pages (see Section 4.12.6). 

Unless the backing store is a swap file page, MMG$WRTMFYPAG tries to form 
a cluster of pages, as described in Section 4.12.5. It scans adjacent PTEs looking 
for t ransi t ion PTEs tha t  map pages on the modified page list, until ei ther  the 
desired cluster size is reached or one of the other te rminat ing  conditions described 
in Section 4.12.4 is reached. 

Except for PAGE_TABLE requests, it scans first toward lower virtual  addresses 
and then toward higher virtual  addresses. This scan begins first toward smaller  
virtual  addresses for the same reason that  the page read cluster routine begins 
toward larger addresses. Given that  the program is more likely to reference higher  
addresses, it would be inefficient to initiate a write operation only to have the page 
immediately faulted and likely modified again. The modified page wri ter  writes 
first those pages with a smaller likelihood of being referenced in the near  future. 

In handling a PAGE_TABLE request, it only scans forward: the goal is to write all 
the modified pages mapped by that  page table. 

When it can no longer cluster, it records the PTEs and their  associated PHD vector 
indexes in the MPW IRP. 

If the cluster is one of page file pages, MMG$WRTMFYPAG updates the PFN$Q_ 
BAK field for each page to show the actual page file page allocated. 

It removes each page from the modified page list, decrementing SCH$GL_ 
MFYCNT to show one less modified page. 

It changes the PFN$L_PAGE_STATE location bits for each page to write in 
progress and also clears the saved modify bit. It increments the reference count 
for each page to reflect the I/O in progress. If the page is a page table page, 
MMG$WRTMFYPAG also increments the PHV$GL_REFCBAS_LW array  element  
corresponding to the PHD. 

It releases the MMG spinlock, fills in the MPW IRP, and queues it to the backing 
store driver. 

MMG$WRTMFYPAG reacquires the MMG spinlock and, if SCH$GL_MFYCNT is 
less than  SCH$GL_MFYLOLIM, goes to step 8 to try to form another  cluster of 
pages to write. 
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20. In local routine MMG$_MPW_END, the modified page writer performs end pro- 
cessing. Depending on the operation performed, the modified page writer may 
declare as available the resource RSN$_MPWBUSY or the resource RSN$_ 
MPLEMFI~. If no modified page write I/O requests are outstanding, it clears 
SCH$V_MPW in SCH$GL_SIP. 

21. The modified page writer releases the MMG spinlock and processes any global 
section descriptors (GSDs) on the delete pending list, possibly queuing a kernel 
mode AST to the creator of each global section. (Writing modified pages to backing 
store may enable the deletion of such global sections.) Chapter 3 describes this 
processing in detail. 

Whenever a modified page write request completes, MMG$WRTMFYPAG's special 
kernel mode AST routine is entered. Section 4.12.3 describes this routine. 

4.12.3 Modified Page Write Completion 
The modified page writer's special kernel mode AST routine, WRITEDONE in module 
WRTMFYPAG, takes the following steps: 

1. It acquires the MMG spinlock, raising IPL to IPL$_MMG. 

. It deallocates the MPW IRP to its own lookaside list. (Holding the MMG spinlock 
blocks any possible allocation from the list, so it is safe for WRITEDONE to 
continue to access IRP fields after deallocating it.) 

3. It examines the characteristics of each page in the cluster: 

a.  If the page is a page table page, it decrements the PHV$GL_REFCBAS_LW 
array element corresponding to that  PHD. 

b o  If the page's backing store was a swap file page, WRITEDONE clears PFN$V_ 
SWPPAG_VALID in the PFN$L_PAGE_STATE field to indicate that  the con- 
tents of PFN$W_SWPPAG are no longer valid. 

C. It decrements the reference count for the page. If the count goes to zero, it 
places the page into the free page list. 

d ,  If the RPTEVT bit in the PFN$L_PAGE_STATE field is set, WRITEDONE 
reports a page fault completion scheduling event for the kernel thread that  
owns the page. This bit is set when deletion of the page has been stalled while 
it is being written to its backing store. 

. If there are pending PAGE_TABLE requests, WRITEDONE processes them, 
rejoining the flow described in Section 4.12.2 at step 7. 

, If SCH$GL_MFYCNT is greater than SCH$GL_MFYLOLIM, WRITEDONE at- 
tempts to form another MPW cluster, rejoining the flow described in Section 4.12.2 
at step 8. 
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4.12.4 Modified Page Write Clustering 
The modified page writer scans the page table that  contains the modified page being 
processed, at tempting to form a cluster of adjacent virtual pages with the same 
backing store. It scans in both directions from the page being processed, except for 
PAGE_TABLE requests, for which the scan is from the beginning of the page table 
page to its end. The terminating conditions for the scan include the following: 

* The PTE does not indicate a transition page. 

�9 The PTE indicates a page in transition, but the physical page is not on the modified 
page list. 

* Bit PFN$V_SWPPAG_VALID in the page's PFN$L_PAGE_STATE field is set. Such 
a page is treated in a special way by the modified page writer. 

* The PFN$Q_BAK field for the first page in the cluster and the page in question 
indicate that  their backing store location is a process or global section file, but the 
section indexes are not the same. 

�9 In the case of a PAGE_TABLE request, the end of the page table page is reached. 

�9 The next page table page is not valid, implying that  there are no transition pages 
in that  page table page. 

In OpenVMS versions prior to Version 7.3, a page that  would need page file backing 
store was assigned to a page file when the virtual page was first faulted into memory. 
Clustering of pages to be written to a page file terminated when a page was reached 
that  was assigned to a different page file than that  of the first page in the cluster. In 
OpenVMS Version 7.3, page file assignment is deferred until a modified page is about 
to be written. 

The maximum size of a modified page write cluster depends on its type (see Section 
4.12.5). 

4.12.5 Backing Store for Modified Pages 
The modified page writer attempts to cluster when writing modified pages to their 
backing store addresses. It encounters three different clustering situations for the 
three possible backing store locations. 

The set bit PFN$V_SWPPAG_VALID in PFN$L_PAGE_STATE indicates that the 
process has been outswapped and this page remained behind, probably as the result 
of an outstanding read request. The modified page writer writes a single page to the 
swap file page whose number is in PFN$W_SWPPAG. It does not attempt to cluster 
because virtually contiguous pages in an I/O buffer are unlikely to be adjacent in the 
outswapped process body. The process body is outswapped with pages ordered as they 
appear in the working set list, not in virtual address order. A description of how the 
PFN$W_SWPPAG field is loaded is found in Chapter 6, where the entire outswap 
operation is discussed. 
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If the backing store address is in a section file, the modified page wri ter  creates a 
cluster up to the value of the SYSGEN paramete r  MPW_WRTCLUSTER. Any of the 
terminat ing conditions listed in the previous section can limit the size of the cluster. 
If the last page in the section is in the cluster and the part ial  section bit is set in its 
L3PTE, the modified page wri ter  calculates the I/O request  byte count such tha t  the 
last page's contribution to the count includes only those pagelets tha t  have backing 
store. 

If the backing store address is in a page file, adjacent pages with page file backing 
store are wri t ten at the same time. The modified page wri ter  a t tempts  to allocate 
MPW_WRTCLUSTER pages in the most appropriate page file. The desired cluster 
factor is reduced to the number  of pages actually allocated. Section 4.12.6 describes 
allocation of space within a page file. 

The cluster created for a write to a page file consists of several smaller clusters, each 
represent ing a series of virtually contiguous pages (see Figure 4.13): 

1. The modified page wri ter  creates a cluster of virtually contiguous pages. 

2. If the desired cluster size has not yet been reached, the modified page list is 
searched until another  page with page file backing store is found. 

Pages virtually contiguous to this page form the second minicluster tha t  is added 
to the eventual  cluster to be wri t ten to the page file. 

The modified page writer  continues in this manner,  building a large cluster tha t  
consists of a series of smaller clusters, until ei ther the cluster size is reached or no 
more pages on the modified page list have page file backing store. Each smaller  
cluster can terminate  on any of the conditions listed in the previous section, or on 
the two terminat ing conditions for the large cluster. 

. 

, 

4.12.6 Page File Space Allocation 
Before the modified page wri ter  searches for more pages to form a cluster bound for a 
page file, it must  determine the maximum size of the write cluster, namely the number  
of contiguous page file pages, up to a maximum of MPW_WRTCLUSTER, tha t  can be 
allocated. 

The modified page writer  calls MMG_STD$ALLOC_PAGSWP_PAGES, in module 
PAGE_FILE, to allocate a cluster of pages in the most appropriate page file. Each 
page file is described by a nonpaged pool da ta  s t ructure called a page file control block 
(PFL). Chapter  2 shows the PFL (see Figure 2.31) and describes its fields. 

MMG_STD$ALLOC_PAGSWP_PAGES takes the following steps: 

1. If there are no PFLs on any of the four lists of page files at  MMG$GA_PAGE_ 
FILES (see Chapter  2), it issues the following message on the console terminal  and 
returns: 

%SYSTEM-W-NOPAGEFILE, no page file installed; system trying 
to continue 
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2. If there are no PFLs on the first three lists, it issues the following message and 
returns: 

%SYSTEM-W-PAGEFILEFULL, all page or swap files are full; 
system trying to continue 

3. Beginning with the first nonzero pointer in the first two lists, it selects the first 
PFL in that  list. It moves the pointer to the next PFL in the list to rotate use of 
page files. 

4. If it had to select a PFL from the second list because there were no page files with 
at least one duster 's  worth of adjacent pages or if fewer than one-fourth of the 
total installed page file pages are flee, it issues the following message: 

%SYSTEM-W-PAGEFRAG, page file filling up; please create more space 

5. If it had to select a PFL from the third list because there were no page files with 
set bits in the directory bitmap or if fewer than one-sixteenth of the total installed 
page file pages are free, it issues the following message: 

%SYSTEM-W-PAGECRIT, page file nearly full; system trying to continue 

Each of the preceding four messages is issued only once between the time the 
system is booted and the time it is shut down. 

6. It tries to allocate the number of pages represented by the file's PFL$L_CUR_ 
ALLOC_EXPO. The field is initialized to represent the minimum of 1,024 and 
SYSGEN parameter MPW_WRTCLUSTER. Its value is expressed as an index into 
the directory quadword counter array at PFL$L_DIR_CLUSTER (see Chapter 2). 

Beginning at the quadword specified by PFL$L_STARTBYTE, MMG_ 
STD$ALLOC_PAGSWP_PAGES scans the directory bitmap for a quadword with 
that  many adjacent bits set. If the starting set bit is bit 0 in a quadword, and the 
adjacent high bits in the preceding quadword are also set, it adjusts the start ing 
directory bit position to begin at the high bits in the preceding quadword. 

7. Starting at the bit position in the storage bitmap corresponding to the start ing 
bit position in the directory bitmap, it checks for adjacent high bits set in the 
preceding cluster. If there are any, it adjusts the final start  bit for the allocation. 

8. It then tries to allocate as many pages as were requested and clears the corre- 
sponding bits in the storage and directory bitmaps. 

9. It updates PFL$L_DIR_CLUSTER, PFL$L_STARTBYTE, and the counters that  
describe the state of the file as well as those that  summarize all files. 

10. It returns the number of pages allocated to its caller. 
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4.12.7 Example of Modified Page Write to a Page File 
Figure 4.13 i l lustrates a sample cluster for wri t ing to a page file. The modified page 
list and fields in the PFN database,  pictured in the upper  r ight-hand corner of the 
figure, are shown as sequential  arrays  to simplify the figure. 

1. The first page on the modified page list is PFN A. The modified page wri ter  
maps into system space the page table page tha t  maps PFN A (A's PFN$L_PT_ 
PFN contents) and starts  with the PTE tha t  maps it (PFN$Q_PTE_INDEX). By 
scanning backward through the page table page, the modified page wri ter  locates 
first PFN F and then PFN H. The L3PTE preceding the one tha t  contains PFN H 
is also a t ransi t ion PTE, but  the page is on the free page list. This page te rminates  
the backward search. 

2. The modified page writer  IRP begins with PFN H, PFN F, and PFN A. The search 
now goes in the forward direction, with each page tha t  has page file backing store 
added to the map up to and including PFN E. Because the next L3PTE is valid, 
the first minicluster is terminated.  
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Figure 4.13 Clustered Write to a Page File 
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3. The next page on the modified page list, PFN B, leads to mapping a different page 
table page and adding a second cluster to the map. This cluster begins with PFN 
G and ends with PFN J. The backward search was terminated with an L3PTE 
containing a section table index. The forward search terminated with a demand 
zero PTE. 

Note that  this second cluster consists of pages belonging to a different process than 
that  of the first cluster. The difference is reflected in the process header vector 
index array, which contains a longword element for each L3PTE in the map (see 
Figure 4.12). 

4. The next page on the modified page list is PFN C. This page belongs in a global 
section file and is skipped during the current scan. 

5. PFN D leads to a third cluster that  is terminated in the backward direction by 
an L3PTE that  contains a GPTX. The search in the forward direction terminates  
when the desired cluster size is reached, even though the next PTE was bound to 
the same page file. The cluster size is either MPW_WRTCLUSTER or the number  
of adjacent pages available in the page file, whichever is smaller. In any case, this 
cluster will be written with a single write request. 

6. Note that  reaching the desired cluster size resulted in leaving some pages on the 
modified page list bound for the same page file, such as PFN I. 

4.13 Update Section File on Disk System Services 
The Update Section File on Disk ($UPDSEC[W] and $UPDSEC_64[W]) system services 
enable a process to write a specified range of pages in a process or global section to 
their backing store in a controlled fashion, without waiting for the modified page writer 
to do the backup. They are especially useful for frequently accessed pages tha t  may 
never be writ ten by the modified page writer because they are always being faulted 
from the modified page list back into the working set before they are backed up. 

These system services are a cross between modified page writing and a normal write 
request. In particular, they resemble modified page writing in that  the services write 
a cluster of adjacent virtual pages to backing store to enable the cluster to be faulted 
in at a later time. In other words, both modified and unmodified pages can be written. 
By default all pages in the range are eligible to be written. 

In the case of global pages, determining which pages have been modified is not feasible. 
The system service runs in the context of one process and can scan its PTEs for set 
modify bits. However, to determine whether  a particular global page has been modified 
requires looking at the PFN database and the PTEs of all processes mapped to this 
page. (The state of the saved modify bit in the GPTE does not necessarily reflect the 
state of the page.) Because there are no back pointers for valid global pages, this 
information is unavailable. Therefore, all pages in a global section are eligible to be 
written to their backing store location, regardless of whether the pages have been 
modified. 
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The default value of 0 in the UPDFLG argument  specifies that  all read/write global 
section pages are to be writ ten to backing store, whether  or not they have been 
modified. A value of 1 specifies that  the requestor is the only or the last process 
having the global section mapped for write access and that,  of the global section pages, 
only the modified ones should be writ ten to the section file on disk. 

As for any I/O request, the requestor can request completion notification with an event 
flag and I/O status block or an AST. 

The cluster factor is the minimum of MPW_WRTCLUSTER and the number  of pages 
in the input range. 

4.13.1 $UPDSEC System Service 
The pages eligible to be written are specified by the INADR argument.  The direction 
of search for pages is determined by the order in which the INADR address range is 
specified. 

The system service procedure EXE$UPDSEC, in module SYSUPDSEC, runs in kernel 
mode. It checks the validity of the input address range, clears the event flag associated 
with the I/O request, charges the process direct I/O quota, and allocates nonpaged pool 
to serve as an extended I/O packet. The pool is used to queue one or more modified 
page write I/O requests and to keep track of how much of the section the service has 
processed. 

EXE$UPDSEC locates the region descriptor entry (RDE) corresponding to the INADR 

argument's start ing address. 

EXE$UPDSEC then calls MMG$CREDEL, in module SYSCREDEL, specifying UP- 
DSECPAG_RDE, in module SYSUPDSEC, as the per-page service-specific routine. 
Chapter 3 describes the actions of MMG$CREDEL and its use of per-page service- 
specific routines. Routines UPDSECQWT_64, PTEPFNMFY, MMG$WRT_PGS_BAK, 
and MMG$UPDSECAST, all in module SYSUPDSEC, are also part  of this system 
service. 

UPDSECPAG_RDE calls UPDSECQWT_64 to form the first cluster and to initialize 
and queue the IRP to the driver for the backing store device. 

UPDSECQWT_64 takes the following steps: 

1. It touches the first page table page that  maps pages in the specified range to fault 
it into the working set list. 

2. It acquires the MMG spinlock, raising IPL to IPL$_MMG. 

3. It scans in the specified direction of the range for the first candidate page to meet 
all the following conditions" 

Its owner access mode is not more privileged than that  of the service requestor. 

It is not part  of a memory-resident section, Galaxy global section, or PFN- 
mapped section. 
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- -  It is a valid or transit ion process or global page. 

- -  It is writable but not copy-on-reference. 

- -  It has been modified. 

4. Having found one candidate page, it calls MMG$WRT_PGS_BAK. 

5. MMG$WRT_PGS_BAK scans the process's page table in the specified direction for 
adjacent pages tha t  have similar characteristics; in particular, the backing store 
for the pages must  be the same. The adjacent pages do not necessarily have to 
have been modified but  they do all have to be valid or transition, tha t  is, resident. 

It tries to form a cluster of up to MPW_WRTCLUSTER pages. In the case of 
process pages, the cluster begins with the first modified page in the range. In the 
case of global pages, if the UPDFLG iS clear, the cluster begins with the first global 
page. By setting the low bit of the UPDFLG parameter,  the requestor can indicate 
that  it is the only process whose modified pages should be written. In tha t  case, 
the process's L3PTEs and the PFN database are used to select candidate pages for 
backing up. Only pages modified by this process can be the beginning pages of a 
cluster. 

The cluster is terminated by failure to meet the constraints previously listed for 
selecting the first page. In addition, any of the following conditions terminate  the 
cluster: 

- -  A page with different backing store 

- -  More than one adjacent unmodified page 

This constraint, new with OpenVMS Alpha Version 7.2, improves performance 
by minimizing the number  of unmodified pages writ ten to backing store. It is 
particularly helpful for large sections with scattered modified pages. 

6. Having formed a cluster, MMGSWRT_PGS_BAK modifies the PFN database 
records for the pages in it. It increments the PFN$W_REFCNT field for each page. 
If the page is on the free or modified page list, it removes it from the list and 
changes its PFN$L_PAGE_STATE location bits to write in progress and clears the 
saved modify bit. If the page was valid, it also clears the modify bit in the PTE. If 
the page is writable from any access mode, it sets the fault-on-write bit in the PTE 
so tha t  a subsequent write can trigger resetting the modify bit. 

7. If the last page in the section is in the cluster and has the PTE$V_PARTIAL_ 
SECTION bit set, MMG$WRT_PGS_BAK calculates the I/O request  byte count 
such tha t  the last page's contribution to the count includes only those pagelets tha t  
have backing store. 

8. It initializes an IRP, releases the MMG spinlock, and queues the I/O request to the 
backing store driver. 
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When the write completes, I/O postprocessing code decrements the PFN$W_REFCNT 
for each page and queues a special kernel mode AST to the kernel thread that  re- 
quested the $UPDSEC system service. The AST routine MMG$UPDSECAST first 
checks whether all the pages requested by the system service call have been written 
or whether another write is required. To perform the check, it calls UPDSECQWT_64, 
which forms another cluster and queues another write request if necessary. If all 
requested pages have been written, MMG$UPDSECAST enters the normal I/O com- 
pletion path involving event flags, I/O status blocks, and user-requested ASTs, thus 
notifying the kernel thread. 

4.13.2 $UPDSEC_64 System Service 
The $UPDSEC_64 system service is requested to write pages in a section to their back- 
ing store. It resembles the $UPDSEC system service, but all its address arguments 
are 64 bits. Thus it can be used to update a section in P0, P1, or P2 space. 

The number of pages written is specified by the LENGTH_64 argument. The direction 
of search for modified pages is determined by whether the starting virtual address's 
region is ascending or descending. 

The $UPDSEC_64 system service procedure, EXE$UPDSEC_64 in module SYS_ 
UPDSEC_64, runs in kernel mode. It resembles EXE$UPDSEC, using the same 
routines: MMG_STD$UPDSECQWT_64, an alternative entry point to UPDSECQWT_ 
64; PTEPFNMFY, MMG$WRT_PGS_BAK, and MMG$UPDSECAST, all in module 
SYSUPDSEC. 

4.14 Input and Output That Support Paging 
There is little special-purpose code in the I/O subsystem to support page and swap 
I/O. MMG$PAGEFAULT and the swapper each build their own IRPs but queue these 
packets to a device driver in the normal fashion. These are the only differences: 

�9 Special Queue I/O Request ($QIO) entry points for page and swap I/O (in module 
SYSQIOREQ) bypass many of the usual $QIO checks to minimize overhead. 

�9 An IRP describing a page or swap request is distinguished from other IRPs by 
a flag in IRP$L_STS. These flags are detected by the I/O postprocessing routine, 
which dispatches to special completion paths for page read and other types of 
memory management I/O. 

Tables 4.2 to 4.4 summarize the I/O requests issued by memory management compo- 
nents. The first table lists the type of paging or swapping I/O, the priority of each such 
request, the relevant process identification, and information about the priority boost 
the process receives at I/O completion. For more information on priority classes and 
boosts, see Chapter Scheduling. 
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4.14 Input and Output That Support Paging 

Summary  of I/O Requests  Issued by Memory Management ,  Part  I 

Type of I/O 
Request 

Pr io r i ty  Process ID Pr io r i t y  
IRP$B_PRI IRP$L_PID Boo st 

Process page read 
Global copy-on- 
reference page read 
Process page table 
read 

System page read 
Global non-copy- 
on-reference page 
read 

Modified page write 

Update section write 

Swapper I/O 

Base priority of fault- 
ing kernel thread 

PID of faulting 0 
kernel thread 

Base priority from PID of faulting 0 
system PCBml6 kernel thread 

MPW_PRIO 1 

Base priority of 
requestor 

SWP_PRIO 1 

PID of swapper e 

PID of requestor 

PID of swapper 

None 3 

2 

None 3 

1This is a SYSGEN parameter. 

2The modified page writer is a subroutine of the swapper process. 

3The swapper is a real-time process and is therefore not subject to priority boosts. 

Tables 4.3 and 4.4 list more information about  each type of I/O request ,  summar i z ing  
the uses to which the memory  m a n a g e m e n t  components  put  several fields in the 
IRP. Some of these fields overlay s t andard  fields tha t  are not  required for the i r  more 
typical uses. Thus the space can be used for s toring other  information needed by these 
components.  The column WCB Source specifies from which memory  m a n a g e m e n t  da ta  
s t ructure  the address  of the window control block (WCB) is obtained. This address  is 
stored in the field IRP$L_WIND. 

In Table 4.3 the columns PARAM_0, PARAM_I, and PARAM_3 describe the contents  
of the IRP fields IRP$Q_PARAM_0, IRP$Q_PARAM_I,  and IRP$Q_PARAM_3 for each 
type of read operat ion requested by the memory  m a n a g e m e n t  subsystem. The PTE 
column identifies the type of PTE tha t  maps  the pages to be read. 

In addit ion to those fields, the contents  of IRP$Q_PARAM_2 record whe the r  
MMG$PAGEFAULT informed a user  mode th read  manage r  of a page fault. A value of 
-1  indicates no upcall was made. Any other  value is the vi r tual  address  of the faul ted 
page and indicates tha t  PAGIO (see Section 4.11) should inform the th read  m a n a g e r  of 
page fault  completion. 
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Table 4.3 Summary  of I/O Requests  Issued by Memory Management ,  Part  II 
(Read Requests)  

Page Type 
WCB 

PTE PARAM_0 PARAM_I PARAM_3 Source 

Process Page Read 
Section file 

Page file 

Page table 

L3PTE -1 0/PSTX 1 0 PSTE 

L3PTE -1 0 0 PFL 

L2PTE or -1 0 0 PFL 2 
L1PTE 

System Page Read 

-1 0 0 SSTE System 
section 3 

Paged pool 

System 
space L3PTE 

System 
space L3PTE 

-1 0 0 PFL 

Global Page Read 
Global GPTE 

Global copy-  L3PTE 
on-reference 

Slave PTE 
address 

Slave 
L3PTE 
index 

0 Page table GSTE 
PFN 

GFI~ 0 GSTE 

1If the page is copy-on-reference, IRP$Q_PARAM_I contains the PSTX. 

2process page tables originate as demand zero pages whose backing store is a page file. 

3pageable executive code originates in executive images, described by section table entries in the system 
header, abbreviated here as SSTE. 

Table 4.4 lists write requests. For Update Section File on Disk I/O, IRP$PQ_ACB64_ 
AST and IRP$Q_ACB64_ASTPRM contain the AST address and parameter  specified by 
the system service requestor. For modified page writer and swapper I/O, IRP$L_IIRP_ 
P1 contains the address of the special kernel mode AST routine. The PTE column 
identifies the type of PTE involved in the I/O request. In most cases it is an L3PTE in 
a process's P0, P1, or P2 page table. In other cases, the PTE is contained in an array 
within an MPW IRP (see Figure 4.12). 

The AST column identifies the procedure that  runs at I/O completion. WRITEDONE, 
the modified page writer's special kernel AST, is described in Section 4.12.3. IODONE, 
the swapper's special kernel AST routine, is described in Chapter  6. 
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Table 4.4 Summary  of I]O Reques t s  Issued by Memory Management ,  Part  
I I I  (Wri te  Requests)  

Type of I]O WCB 
Write Request PTE AST ASTPRM Source 

Modified Page Write 

To page file MPW IRP WRITEDONE 0 PFL 

To private section file MPW IRP WRITEDONE 0 PSTE 

To global section file MPW IRP WRITEDONE 0 GSTE 

To swap file (nonzero MPW IRP WRITEDONE 0 PFL 
SWPPAG) 

Update Section Write 

Private section L3PTE AST address AST argument PSTE 

Global section GPTE AST address AST argument GSTE 

Swapper I/O 

Swapper I/O Swapper IODONE 0 PFL 
map 

4.15 Reference Counts 
Much of the memory  m a n a g e m e n t  subsystem's  activity is asynchronous,  ini t ia ted in 
response to process actions but  completed in other  contexts. The memory  m a n a g e m e n t  
da tabase  keeps t rack of the current  s ta te  of various s t ruc tures  and resources th rough  
reference counts. Cer ta in  count t rans i t ions  t r igger  addit ional  memory  m a n a g e m e n t  
subsys tem activity. This section summar izes  those reference counts and the activities 
t r iggered by their  t ransi t ions.  These counts are ment ioned th roughout  this  and the 
other memory  m a n a g e m e n t  chapters.  

Table 4.5 lists these reference counts wi th  a brief  description of each. The sections tha t  
follow describe each count in more detail. 

Table 4.5 Memory Management  Reference  Counts  

Reference Count Location Meaning 

PFN$L_REFCNT 

PFN$L_SHRCNT for process page table 
page 

Number of reasons the current contents of physi- 
cal page should stay in memory 

Number of valid and transition pages it maps 
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Table 4.5 (continued) Memory  M a n a g e m e n t  Reference  Counts  

Reference Count Location Meaning 

PFN$L_SHRCNT for global page table 
page 

PFN$L_SHRCNT for global page 

PHD$L_PTWSLELCK array element 

PHD$L_PTWSLEVAL array element 

PHD$L_PTCNTACT 

PHD$L_PTCNTLCK 

PHD$L_PTCNTVAL 

PHV$GL_REFCBAS array element 

Number of GPTEs that map global section pages 

Number of L3PTEs that are mapped to it 

Number of locked WSLEs and window PTEs 
mapped by this process page table page 

Number of valid WSLEs mapped by this process 
page table page 

Number of active page table pages with nonzero 
PTEs 

Number of page table pages with non-negative 
PHD$L_PTWSLELCK counts 

Number of page table pages with non-negative 
PHD$L_PTWSLEVAL counts 

Number of reasons the PHD should remain 
resident 

4.15.1 PFN$W_REFCNT 
PFN$W_REFCNT counts the number  of reasons a physical page should re ta in  its 
current  contents. A value of zero means  the associated page is on the free, modified, 
zeroed, or bad page list. 

The count is incremented for the following reasons: 

�9 The associated process-private vir tual  page is added to a working set list. 

* PFN$L_SHRCNT of a global page makes  the t rans i t ion  from 0 to 1, when it is 
placed in a process working set list. 

�9 The associated vir tual  page is being faulted in. 

�9 A page is locked as par t  of a direct I/O buffer wi th  I/O in progress. 

�9 A section page is being wri t ten  to its backing store by the Update  Section File on 
Disk system services or the modified page writer. 

�9 The associated vir tual  page is par t  of a buffer object. 

�9 The associated vir tual  page is a process page table page whose PFN$W_BO_REFC 
is grea ter  t h a n - 1 .  

�9 A page is being outswapped as par t  of a process header  or body. 

�9 A page has  jus t  been inswapped as par t  of a process header  or body. 
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PFN$W_REFCNT is decremented for the following events: 

�9 The associated vir tual  page is removed from a working set list. 

�9 PFN$L_SHRCNT of a global page makes the t ransi t ion from 1 to 0, when it is no 
longer par t  of any process working set list. 

�9 Page fault I/O completes. 

�9 Any other type of direct I/O completes when the buffer pages are unlocked. 

�9 Update  section I/O completes. 

�9 Modified page write I/O completes. 

�9 A buffer object is deleted. 

�9 PFN$W_BO_REFC transit ions t o - 1 ,  indicating tha t  a process page table page no 
longer maps any buffer objects. 

�9 Outswap completes. 

When a page's reference count transit ions from 1 to 0, the page is inserted into the 
free or modified page list, depending on the state of its saved modify bit. 

4.15.2 PFN$L_SHRCNT and PHD$L_PTCNTACT 
As shown in Table 4.5, the meaning of PFN$L_SHRCNT depends on the type of vir tual  
page occupying the physical page. 

4.15.2.1 Process Page Table Pages 
For an L3PT that  maps process-private pages PFN$L_SHRCNT is the number  of valid 
and transi t ion process-private pages it maps (excluding buffer object pages in the 
release pending state). For an L1PT or L2PT tha t  maps process-private page table 
pages, PFN$L_SHRCNT is the number  of valid and transi t ion process-private page 
table pages it maps. A count of zero means the page table page maps no valid and no 
transi t ion pages. 

The count is incremented for the following events: 

�9 A physical page is allocated for a vir tual  page being faulted tha t  is mapped by this 
page table, whether  the page table is an L1PT, L2PT, or L3PT. 

�9 A WSLE is created to map a global page. 

�9 An L3PT tha t  maps a direct I/O buffer too large to be described by a DIOBM is 
locked into memory when a system space window is created to double-map the 
L3PTEs that  describe the buffer. 

�9 A buffer object page in release pending state is faulted and made valid. 

�9 A buffer object page in release pending state is made valid and locked as par t  of 
locking down a direct I/O buffer. 

�9 A buffer object page mapped by tha t  page table page is being deleted (but the 
vir tual  address space tha t  it occupied still exists). 
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�9 An unmodified global demand zero page is materialized ra ther  than faulted in to 
expedite deletion of the page. 

When the share count for a page table page transitions from 0 to 1, the page table 
is considered active. The executive locks it into the process working set by setting 
its WSL$V_WSLOCK bit and increments PHD$L_PTCNTACT to indicate one more 
process page table page mapping valid or transition pages and also increments the 
appropriate PHV$GL_REFCBAS_LW array element. 

The share count is decremented for the following events: 

�9 A global or buffer object page mapped by that  page table page is removed from the 
process working set list. 

�9 Contents of a virtual page mapped by that  page table page are deleted and the 
associated physical page is deallocated. 

�9 An L3PT that  maps a direct I/O buffer too large to be described by a DIOBM is 
unlocked from memory at I/O completion. 

�9 When the process body has been outswapped, each process page is deleted. 

�9 An empty page table is moved from the modified page list to the zeroed page list. 

When the count transitions from 1 to 0, the executive decrements PHD$L_PTCNTACT 
and the appropriate PHV$GL_REFCBAS_LW array element and clears the WSL$V_ 
WSLOCK bit. 

4.15.2.2 Global Pages and Global Page Table Pages 
For a global page table page, PFN$L_SHRCNT is 1 if the global page table page maps 
any global section pages; otherwise, it is 0. Because global page table pages are no 
longer pageable, there is no reason to maintain an accurate count of the number  of 
global pages each global page table page maps. 

For a global page, PFN$L_SHRCNT is the number of L3PTEs that  map to the global 
page. The count is incremented for the following events: 

�9 A WSLE is created to map a global page. 

�9 At inswap, a process is reconnected to a valid global page. 

The count is decremented for the following events: 

�9 A global page is removed from a process's working set. 

�9 After outswap, a process is disconnected from a valid global page. 

�9 Prior to outswap, a process is disconnected from a valid writable global page. 

When the share count for a global page transitions from 0 to 1, the executive incre- 
ments PFN$W_REFCNT to indicate one more reason for the page to remain resident. 
When the count transitions from 1 to 0, the executive decrements PFN$W_REFCNT. 
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4.15.2.3 System Pages 
One other use is made of PFN$L_SHRCNT for system pages. The count records 
the number  of t imes a part icular  page has  been locked into the system working set 
through the routine MMG$LOCK_SYSTEM_PAGES, in module LOCK_SYSTEM_ 
PAGES. When the count transit ions from 0 to 1, the routine sets the WSLE's WSL$V_ 
WSLOCK bit and increments the system header 's  PHD$L_PTCNTACT. 

Such a page is unlocked through routine MMG$UNLOCK_SYSTEM_PAGES, in the 
same module. When the share count t ransi t ions from 1 to 0, the routine clears the 
entry's WSL$V WSLOCK to unlock it from the system working set and decrements  
PHD$L_PTCNTACT. Chapter  5 describes these routines. 

4.15.3 PFN$W_PT_VAL_CNT and PHD$L_PTCNTVAL 
For a page tha t  maps process-private pages, PFN$W_PT_VAL_CNT contains the 
number  of valid pages mapped by tha t  page table page, excluding pages in memory- 
resident global sections. A value o f - 1  means  the page is not a page table page or tha t  
it maps no such pages. This count is only kept  for process-private page tables. In the 
case of the L1PT, its count includes itself. 

The count is incremented for the following events: 

�9 A page mapped by tha t  page table page is faulted into the working set list. 

�9 A transit ion page mapped by tha t  page table page is added to the working set list 
so that  it can be locked as par t  of a direct I/O buffer. 

When the count transit ions f r o m - 1  to 0, the executive increments PHD$L_PTCNTVAL 
to indicate one more process page table page mapping valid pages. 

The count is decremented for the following events: 

�9 A page mapped by tha t  page table page is removed from the working set list. 

�9 A valid, unmodified process page mapped by tha t  page table page is being deleted. 

When the count transit ions from 0 t o - 1 ,  the page table page is considered dead; the 
executive decrements PHD$L PTCNTVAL. 

4.15.4 PFN$W_PT_LCK_CNT and PHD$L_PTCNTLCK 
For a page tha t  maps process-private pages, PFN$W_PT_LCK_CNT contains the 
number  of locked pages mapped by tha t  page table page. A value o f - 1  means  the page 
table page maps no such pages (or is not currently in use as an L3PT). 

The count is incremented when a page mapped by tha t  page table page is locked into 
the working set list or into memory. 

The count is decremented when a page mapped by tha t  page table page is unlocked 
from the working set list or from memory. 
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When either PFN$W_PT_LCK_CNT or PFN$W_PT_WIN_CNT transitions f r o m - 1  to 
0, the executive increments PHD$L_PTCNTLCK to indicate one more process page 
table page mapping locked or window pages. When either count transitions from 0 to 
-1, the executive decrements PHD$L_PTCNTLCK. 

4.15.5 PFN$W_PT_WlN_CNT 
For a page that  maps process-private pages, PFN$W_PT_WIN_CNT contains the 
number of window and memory-resident global section pages mapped by tha t  page 
table page. A window page is a virtual page that  is a double mapping of a physical 
page. For example, a virtual page in a process or global section mapped by PFN is a 
window page. 

For a shared L3PT, PFN$W_PT_WIN_CNT contains the number of pages mapped by 
the shared L3PT. A shared L3PT is counted as a window page for the process-private 
L2PT that  maps it. 

A value o f - 1  in PFN$W_PT_WIN_CNT means the page table page maps no such 
pages (or is not currently in use as a page table). 

The count is incremented for the following events: 

�9 A virtual page is created that  is a window page and that  is mapped by tha t  page 
table page. 

�9 A PFN-mapped section is created and mapped with a granulari ty hint region 

�9 A page of shared L3PT is mapped by that  L2PT. 

�9 A memory-resident section mapped by that  shared L3PT is created. 

The count is decremented for the following events: 

�9 A window page or PFN-mapped page mapped by that  page table page is deleted. 

�9 A page of shared L3PT mapped by that  L2PT is deleted. 

When either PFN$W_PT_LCK_CNT or PFN$W_PT_WIN_CNT transitions f r o m - 1  to 
0, the executive increments PHD$L_PTCNTLCK to indicate one more process page 
table page mapping locked or window pages. When either count transitions from 0 to 
-1,  the executive decrements PHD$L_PTCNTLCK. 

4.15.6 PHV$GL_REFCBAS_LW Array Element 
PHV$GL_REFCBAS_LW contains the address of an array with one element for each 
balance set slot (see Chapter  2). Each element counts the number of reasons the 
current PHD must continue to occupy that  balance set slot, that  is, the number  of 
process page table pages tightly connected to that  PHD slot. A value o f - 1  for an 
element means the corresponding balance set slot does not contain any PHD. A value 
of 0 means that  the slot has been assigned to a process. 
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A PHV$GL_REFCBAS_LW element is incremented for the following reasons: 

�9 PHD$L_IOREFC, the number of process-private buffers locked down for I/O, 
transitions from 0 to 1. 

�9 A process page table page is being faulted in from a page file. 

�9 A process page table page maps valid or transition pages. 

�9 A process page table is being writ ten to a page file by the modified page writer. 

Typically, either MMG$DECPHDREF or MMG$DECPHDREF1, both in module PAGE- 
FAULT, is called to decrement a PHV$GL_REFCBAS_LW element. A PHV$GL_ 
REFCBAS_LW element is decremented for the following events: 

�9 PHD$L_IOREFC, the number of process-private buffers locked down for I/O, 
transitions from 1 to 0. 

�9 Page fault I/O for a process page table page completes. 

�9 A process page table page's PFN$L_SHRCNT transitions to 0, indicating the page 
table maps no valid or transition pages. 

�9 Modified page write I/O for a process page table page completes. 

When the count transitions to 0, the swapper is awakened to clean up the slot so that  
it is available for another process. 

4.16 Use of Page Files 
During system initialization and operation, one or more page files are placed into 
use. In OpenVMS versions prior to Version 7.3, when a process was created, it was 
assigned to a page file, and space in that  page file was reserved for it. When the 
process faulted a copy-on-reference or demand zero page, the page was charged against  
the reserved space. Allocation of particular blocks in the page file was deferred until 
the modified page writer actually prepared to write the page. A process could be 
assigned concurrently to as many as four page files during its lifetime. 

As of OpenVMS Version 7.3, a process is not assigned to particular page files; instead, 
it can page in any installed page file. A virtual page is not associated with a page 
file until the modified page writer allocates space to hold the page. After the page is 
faulted back in, if modified, it can be writ ten to a different page file. 

A PFL (see Chapter 2) describes each page file in use. Space in a page file is managed 
in units the size of an Alpha page. Section 4.12.6 describes the allocation of actual 
pages in the page file. 

When process pages backed by a page file are deleted, MMG_STD$DEALC_PAGSWP_ 
PAGES, in module PAGE_FILE, is called to deallocate the associated page file pages, if 
any. It updates PFL$L_REFCNT, PFL$L_FREPAGCNT, and MMG$GQ_PAGEFILE_ 
ALLOCS to reflect fewer pages in use. It sets the corresponding bits in the storage 
bitmap and, if an entire cluster of pages is newly available, the corresponding bit in 
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the directory bitmap. If the directory bitmap is updated, it updates the PFL$L_DIR_ 
CLUSTER counts accordingly. 

If PFL$L_REFCNT is decreased to zero and a deinstall request is pending, it calls 
MMG_STD$DINSPAGSWPFIL, in module PAGEFILE, to deinstall the page file. 

4,17 Paging and Scheduling 
Page fault handling can influence the scheduling state of kernel threads in several 
ways. If a read is required to satisfy a page fault, the faulting kernel thread is placed 
into a page fault wait state or a collided page wait. If a resource such as physical 
memory is not available, the kernel thread is placed into an appropriate wait state. 
The kernel thread waits with its program counter (PC), processor status (PS), and 
other registers reflecting its state at the time it executed the instruction that  generated 
the page fault. 

Chapter Scheduling describes scheduling, wait states, priority increment classes, 
resource waits, and the reporting of scheduler events. 

4.17.1 Page Fault Wait State 
A kernel thread is placed into page fault wait when a read is required to resolve 
a page fault. The I/O postprocessing routine PAGIO detects that  a page read has 
completed and reports the scheduling event page fault completion for the kernel 
thread. As a result, the kernel thread is removed from the page fault wait state and 
made computable. No priority boost is associated with page fault read completion. 

4.17.2 Free Page Wait State 
If not enough physical memory is available to satisfy a page fault, the faulting ker- 
nel thread is placed into a free page wait state. Whenever a page is deallocated and 
the free page list was formerly empty, routine MMG$DALLOC_PFN, in module AL- 
LOCPFN, checks for kernel threads in this state. It reports the scheduling event 
free page available so that  each kernel thread in the free page wait state is made 
computable. 

MMG$DALLOC_PFN makes no scheduling decision about which kernel thread will get 
the page. There is no first-in/first-out approach to the free page wait state; rather, all 
kernel threads waiting for the page are made computable. The next kernel thread to 
execute will be the highest priority resident computable kernel thread. 
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4.17.3 Collided Page Wait State 
It is possible for a page fault to occur for a page that  is already being read from its 
backing store. If the page is anything but a process page, or if it is a process page of 
a multi threaded process, the page is referred to as a collided page. The collided bit is 
set in the PFN$L_PAGE_STATE field, and the kernel thread is placed into the collided 
page (COLPG) wait state. 

When the page fault I/O is complete, the page read completion code in PAGIO checks 
if the collided bit was set for any page in the cluster just  read. If so, and if the pages 
are not process pages, it reports the scheduling event collided page available for each 
kernel thread in that  wait state. It does not check whether  a kernel thread is wait ing 
for the collided page that  was faulted in. If the pages are process pages, PAGIO reports 
the scheduling event only for kernel threads of the same process. 

The lack of checking has two advantages: 

�9 No special code determines which kernel thread executes first. All kernel threads 
are made computable, and the normal scheduling algorithm selects the kernel 
thread tha t  executes next. 

�9 The probability of a collided page is small. The probability of two different collided 
pages is even smaller. If a kernel thread waiting for another collided page is 
selected for execution, that  kernel thread will incur a page fault and be placed 
back into the collided page wait state. Nothing unusual  occurs, and the operating 
system avoids a lot of special-case code to handle a situation that  rarely, if ever, 
o c c u r s .  

4.17.4 Resource Wait States 
Several types of resource wait are associated with memory management.  A kernel 
thread waiting for one of these resources is placed into the miscellaneous wait  state 
(see Chapter Scheduling) until the resource is available. 

Early versions of the VAX/VMS operating system also could place a process into a 
wait for resource RSN$_SWPFILE (RWSWP). When a process was unable to increase 
its swap file allocation to accommodate a larger working set, it was placed into this 
resource wait until space became available in the swap file. The timing and form of 
swap file allocation changed, and this resource wait is not used by the OpenVMS Alpha 
executive. 

Versions of OpenVMS prior to Version 7.3 could also place a kernel thread into a wait 
for resource RSN$_PGFILE (RWPFF) when it faulted a modified page with page file 
backing store out of its working set and the page file had not been initialized yet. Page 
file assignment is now made when the page is being writ ten from the modified page 
list, and this resource wait is no longer used by the OpenVMS Alpha executive. 
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4.17.4.1 Resource Wait for RSN$_ASTWAIT (RWAST) 
A kernel thread  tha t  faults a page is placed into this wait  when the kernel  th read  has 
no direct I/O quota left against  which the page fault I/O request  can be charged. 

4.17.4.2 Resource Wait for RSN$_NPDYNMEM (RWNPP) 
A kernel  th read  tha t  faults a page is placed into this wait  when MMG$PAGEFAULT is 
unable to allocate nonpaged pool for an IRP for the page fault I/O. 

4.17.4.3 Resource Wait for RSN$_MPWBUSY (RWMPB) 
A kernel  thread  tha t  faults a modified page out of its working set may be placed into 
this wait  when any of the following is true: 

�9 The modified page list contains more pages than  the SYSGEN paramete r  MPW_ 
WAITLIMIT. 

�9 The modified page list contains more pages than  the SYSGEN pa rame te r  MPW_ 
LOWAITLIMIT and the modified page wri ter  is active, writ ing modified pages. 

�9 A page table page tha t  maps no valid pages is being removed from the working 
set list, and modified page writ ing is required to sever the connections between 
the modified page list and transi t ion pages mapped by the page table page (see 
Chapter  5 for more details on dead page table pages). 

The kernel thread is not placed into this wait  unless all the following conditions are 
also true: 

�9 The process holds no mutexes. 

�9 The process is not the swapper process. 

�9 Bit MMG$V_NOWAIT in MMG$GL_FREWFLGS is clear. 

�9 One or more page files have been installed. 

The modified page wri ter  declares the availability of the resource RSN$_MPWBUSY 
in processing a MAINTAIN request  when it has wri t ten enough modified pages so tha t  
the list is left with MPW_LOWAITLIMIT or fewer pages. Also, if the modified page 
list size drops below the current  high limit for the list when a page is faulted from it, 
and if the modified page writer  is not currently active, resource RSN$_MPWBUSY is 
declared available. Otherwise, a process could be hung wait ing for tha t  resource until  
there is enough activity to increase the list size above the limit again. 

4.17.4.4 Resource Wait for RSN$_MPLEMPTY (RWMPE) 
A kernel thread  in RWMPE is wait ing for the modified page writer  to signal tha t  it 
has flushed the modified page list. The only kernel thread currently placed into this 
wait  is one executing the OPCCRASH image, which forces a flush of the modified page 
list prior to stopping the system. 
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4.18 Relevant Source Modules 
Source modules described in this chapter include 

[LIB]RIHDEF.SDL 
[SYS]ALLOCPFN.MAR 
[SYS] EXCEPTION.M64 
[SYS]EXCEPTION_ROUTINES.MAR 
[SYS]IOCIOPOST.MAR 
[SYS]IOLOCK.MAR 
[SYS]PAGE FILE.C 
[SYS] PAGE FAULT. MAR 
[SYS]PAGEFILE.MAR 
[SYS] SCHEDULER.M64 
[SYS] SYS_UPDS E C_64. C 
[SYS] SYSLKWSET.MAR 
[SYS]SYSUPDSEC.MAR 
[SYS] SYSVA_ALLOC.C 
[SYS]WRTMFYPAG.MAR 
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Chapter 5 
Working Set List Dynamics 

"Then you keep moving round, I suppose?" said Alice. 
"Exactly so," said the Hatter, "as the things get used up." 
"But what happens when you come to the beginning again?" 

Alice ventured to ask. 
"Suppose we change the subject," the March Hare interrupted, 

yawning. "I'm getting tired of this. I vote the young lady 
tell us a story." 

Lewis Carroll, Alice's Adventures in Wonderland 

The pages of physical memory in use by a process are called its working set. A da ta  
s tructure called the working set list describes just  those pages in a compact form. 

This chapter  describes the composition of the working set list, the ways in which it 
shrinks and expands to describe a varying number  of pages, and the system services 
by which a process affects its working set and working set list. 

5.1 Overview 
The term working set refers to the vir tual  pages of a process tha t  are current ly valid 
and in physical memory. A valid page is one whose page table entry (PTE) valid bit is 
set. 

As an image is executed in a process, code, data,  and page table pages are faulted into 
the process's working set. Chapter  4 describes the page fault mechanism in detail. 
Execution of asynchronous system t rap (AST) procedures, condition handlers ,  and 
system services tha t  touch pageable process-private space can cause additional faults 
into the working set. The working set continues to grow as code running  in the process 
context faults pages until  the process occupies as much physical memory as it requires 
or is allowed. Each subsequent  page fault requires tha t  a page be removed from the 
working set to make room for the new page. 

The executive mainta ins  a list of working set pages for each process, called the working 
set list. 
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The working set list facilitates 

�9 Selecting a page to remove from the working set when a page needs to be faulted 
in but the process already occupies all the physical memory it is currently allowed, 
or when the process's working set is being shrunk 

�9 Determining which pages to write when a process is outswapped 

�9 Determining which pages to read when a process is inswapped 

Section 5.2 describes the structure and makeup of the working set list. Section 5.3 
gives a detailed description of replacement paging, that  is, removing one virtual  page 
from the working set to make room for another. 

The size of the working set list and the number  of its entries constrain a process's use 
of physical memory. The working set list size varies over the process's lifetime. It can 
be affected by the authorization file entry for an interactive user, SYSGEN parameters ,  
availability of physical memory, and the recent paging history of the process. Section 
5.4 describes these effects, and Section 5.2.3 discusses the capacity of the working set 
list. 

By requesting the following system services, code executing in a process can affect the 
process's working set and working set list: 

�9 Adjust Working Set Limit ($ADJWSL) 

�9 Lock Pages in Working Set ($LKWSET and $LKWSET_64) 

�9 Lock Pages in Memory ($LCKPAG and $LCKPAG_64) 

�9 Unlock Pages from Working Set ($ULWSET and $ULWSET_64) 

�9 Unlock Pages from Memory ($ULKPAG and $ULKPAG_64) 

�9 Purge Working Set ($PURGWS and $PURGE_WS) 

These services are described in later sections of this chapter. 

Section 5.10 explains the means by which a process can prevent the removal of a 
particular page from its working set. 

This chapter is primarily concerned with the process working set list, although some of 
it is equally applicable to the system working set list (see Chapter 2). 

5.2 The Working Set List 
A process's working set includes the process's P0, P1, P2, and page table pages as well 
as the system space pages that  contain its process header (PHD). Each of these pages 
is described by a working set list entry (WSLE). The working set list is self-describing, 
containing WSLEs that  describe the working set list itself as well as the other PHD 
pages. 
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Pages that  are part of a section mapped by page frame number (PFN) are valid for the 
entire time the process maps such pages, and they do not appear in the working set 
list. 

The working set also includes global pages in use by the process, with the exception of 
pages of memory-resident and Galaxywide global sections. These pages are valid for 
the entire time the process maps such pages, and they do not appear in the working 
set list. If a memory-resident or Galaxywide global section is mapped with shared 
page tables, they are valid for the entire time the section is mapped and do not appear 
in the working set list. 

5.2.1 The WSLE 
The format of a valid WSLE is shown in Figure 5.1. Note that  the upper bits are the 
same as the upper bits of a virtual address. This allows the WSLE to be passed as 
a virtual address to several utility routines that  ignore the byte offset bits (WSLE 
control bits). 

F i g u r e  5.1 F o r m a t  o f  a WSLE 

63 12 9 8 7  65  43 

Virtual Address Bits <63:13> 

(reserved)-.~ 
Saved modify bit 

(reserved) 
Page locked into working set 

Page Type Page locked into memory Page 

Value Meaning type 
0 Process page 
1 System page 
2 Global read-only page 
3 Global writable page 
4 Process page table page 
5 Global page table page 

1 0 

Working set list 
entry valid 

As OpenVMS Alpha Version 7.0 expanded the size of a meaningful virtual address to 
64 bits, it expanded the size of a WSLE from a longword to a quadword to accommo- 
date the larger virtual address. 

Although the working set list currently remains in the PHD, it may move in a future 
release. For that  reason, a process's working set list is located through the pointer 
CTL$GQ_WSL, which currently points to the working set list within the P1 space 
mapping of the PHD. 

Table 5.1 shows the meanings of the WSLE control bits. The MACRO-32 macro 
$WSLDEF defines their symbolic values, which begin with the string WSL$V_. 
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T a b l e  5 .1  W S L E  C o n t r o l  B i t s  

F i e l d  N a m e  M e a n i n g  

VALID 

PAGTYP 

PFNLOCK 

WSLOCK 

MODIFY 

When set, this bit indicates that the WSLE is in use. 

This field, a duplicate of the contents of the PFN$L_PAGE_STATE type 
bits, identifies the page type and specifies the action required when the 
page is removed from the working set. 

When set, this bit indicates one of the following types of page locked into 
the working set: 
�9 Page locked into physical memory with the $LCKPAG[_64] system 
service 
�9 Process-private page table that maps pages locked into physical mem- 
ory, window pages, memory-resident global section pages, or Galaxywide 
global section pages 

When set, this bit indicates one of the following types of page locked into 
the working set: 
�9 Permanently locked page 
�9 Page locked with the $LKWSET[_64] system service 
�9 Process-private page table page that maps one or more valid or transi- 
tion pages 

This bit, used when the process is outswapped, records the logical OR of 
the modify bit in the PTE and the saved modify bit in the page's PFN$L_ 
PAGE_STATE field. 

5.2.2 Regions of the Working Set List 
The working set list is divided into three regions: one containing entries for pages 
tha t  are permanent ly  locked; one containing entries for pages locked after process 
creation, chiefly by user request; and one containing dynamic entries. These regions 
are described in more detail later in this section. 

Figure 5.2 shows the fields in the fixed portion of the PHD that  describe the working 
set list. Many of them locate the different regions of the working set list through a 
quadword index from the beginning of the working set list to a part icular  WSLE. (In 
OpenVMS versions prior to Version 7.0, a WSLE was identified through a longword 
index from the beginning of the PHD. The index base was changed to allow for the 
possibility of removing the working set list from the PHD.) For example, the following 
steps compute the address of the end of the working set list from the quadword index 
in PHD$L_WSLAST: 

1. Multiply the contents of PHD$L_WSLAST by 8. 

2. Add the result  to the address of the beginning of the working set list. 
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Three of the fields shown, PHD$L_DFWSCNT, PHD$L_WSQUOTA, and PHD$L_ 
WSEXTENT, do not locate region boundaries but instead represent a number of 
WSLEs. These fields nonetheless contain quadword indexes, providing easier compari- 
son with fields that do locate boundaries. The following steps convert such a field into 
the number of WSLEs it represents: 

1. Subtract the contents of PHD$L_WSLIST from it. 

2. Add 1 to the result. 

This chapter refers to the converted contents of a quadword index field using its field 
name without the PHD$L_ prefix, for example, WSQUOTA. Note that names used in 
this way represent a number of WSLEs, or pages. 

Two of the fields shown, PHD$L_WSSIZE and PHD$L_EXTDYNWS, each contain 
an actual number of WSLEs. This chapter refers to their contents as WSSIZE and 
EXTDYNWS. 

Figure  5.2 Working Set List 
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The permanently locked region of the working set list describes pages that  are forever 
a part of the process working set. Pages whose WSLEs are in this region cannot 
be unlocked and are not candidates for working set replacement. They include the 
following: 

�9 Kernel stack page or pages 

�9 Page containing the P1 pointer area 

PHD pagesmthe fixed portion, the PHD page arrays, the maximum process section 
table, and enough pages for a working set list of as many entries as the SYSGEN 
parameter PQL_DWSDEFAULT, converted from pagelets to pages 

Process-private level 3 page table (L3PT) that  maps the kernel stack, P1 pointer 
area, and P1 window to the PHD (see Chapter 2) 

�9 Process-private level 2 page table (L2PT) that  maps P0 and P1 L3PTs 

�9 Process-private level 1 page table (LIPT) 

The value in PHD$L_WSLIST is a quadword index to the first WSLE in this region. 
Its value is 1. The WSLE with index value 0 is reserved so that  the executive need not 
distinguish a null working set list index from an index of 0. 

The second region contains WSLEs for pages that  are locked by user request, specif- 
ically through the $LKWSET, $LKWSET_64, $LCKPAG, and $LCKPAG_64 system 
services. Pages whose WSLEs are in this region are not candidates for working set 
replacement. PHD expansion pages resulting from working set list growth or creation 
of floating-point register and execution data structure (FRED; see Chapter Kernel 
Threads) pages are locked into this region of the working set list. 

PHD$L_WSLOCK contains the quadword index to the first WSLE in the locked region. 
PHD$L_WSDYN points to the WSLE immediately following the last WSLE in this 
region. To lock a page into the working set list, the executive swaps its WSLE with 
that pointed to by PHD$L_WSDYN and increments PHD$L_WSDYN. Consequently, 
the user-locked region is increased by one WSLE and the dynamic region is decreased 
by one. 

The two locked regions of the working set list are completely filled with valid WSLEs. 
Rather than keep a count of locked pages, the executive can simply calculate the 
difference between the contents of PHD$L_WSDYN and PHD$L_WSLIST. 

The dynamic region begins at the entry identified by the contents of PHD$L_WSDYN. 
PHD$L_WSLAST contains the quadword index for the last WSLE; its contents identify 
the end of the dynamic region. The dynamic region is not necessarily dense; there may 
be empty entries between those specified by PHD$L_WSDYN and PHD$L_WSLAST. 
The dynamic region of the working set list describes process-private and global pages 
that have not been locked into the working set list and process-private page table 
pages. These pages are candidates for working set replacement. 
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The dynamic region is treated as a ring buffer for page replacement. The entry most 
recently inserted into the working set list is pointed to by PHD$L_WSNEXT. The entry 
following it is the point in the ring buffer at which page replacement typically occurs. 
The page replacement algorithm, explained in Section 5.3, is a modified first-in/first-out 
(FIFO) scheme. 

A process-private L2PT or L3PT page that  maps valid, transition, or PFN-mapped 
pages is locked into the dynamic region of the working set list through the WSLOCK 
bit in the WSLE and is not a candidate for working set replacement while locked. Page 
table pages locked in this manner  remain in the dynamic region, although locked, for 
a number of reasons. They are considered dynamic because they are unlocked when 
all the valid, transition, and window pages they map are removed from the working 
set. Leaving them in the dynamic region results in less CPU overhead than  switching 
them into and out of the locked region. Note that  a page table page that  maps only 
buffer object pages is not locked into the working set list. Chapter  3 provides further 
information. 

The dynamic region can also contain entries temporarily locked into it by kernel mode 
code. The virtual pages locked in this way fall within the address range specified 
by fields PCB$Q_KEEP_IN_WS and PCB$Q_KEEP_IN_WS2. Section 5.10 contains 
further information. 

The executive guarantees a minimum size for the dynamic region. Although most 
Alpha instructions generate few memory references, the executive must  ensure that  
an instruction that  references memory can execute. All the pages referenced in an 
instruction must  be valid for the instruction to complete execution. If the dynamic 
region of the working set is too small, an infinite page fault loop could occur during the 
attempted execution of one instruction. An instruction could begin to execute, incur 
a page fault, restart,  incur a different page fault, replace the first faulted page in the 
working set list, restart,  reincur the first page fault, and so on, unable to complete 
execution. More realistically, the dynamic region of the working set should be large 
enough to allow a typical image to make reasonable progress without continual page 
faults. 

5.2.3 Working Set List Parameters 
Three critical parameters  govern working set list dynamics: size, limit, and capacity 
(see Figure 5.3). 

The process's working set size is the number of WSLEs currently in use. No single 
field contains this value; instead, it is the sum of two separately maintained counts, 
PCB$L_PPGCNT and PCB$L GPGCNT. 

The maximum number of WSLEs the process is allowed to use is known as its working 
set limit. It is maintained in a field that  is somewhat confusingly called PHD$L_ 
WSSIZE. Despite its name, it contains the working set limit, not the size (which is the 
sum of the two fields listed in the previous paragraph). 
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The amount of memory allocated to hold the working set list data structure varies 
during the life of a process. The amount of memory currently allocated for the working 
set list (PHD$L_WSLAST minus PHD$L_WSLIST, plus 1 entries) is referred to in this 
chapter as the working set list capacity. When the capacity increases, the working set 
list data structure itself may grow and consume more physical memory. 

Figure  5.3 Working  Set  List  P a r a m e t e r s  

PHD + (8 �9 PHD$L_WSLIST) 

PHD + (8 �9 PHD$L_WSLAST) 

(PCB$L_PPGCNT + PCB$L_GPGCNT) 
WSLEs are in use. 

The process may use up to 
PHD$L_WSSIZE WSLEs. 

m 
Capacity of the 
working set list 

When the working set limit is reduced, the working set list capacity is not necessarily 
altered. The working set list simply becomes more sparsely populated with valid 
WSLEs and more heavily populated with invalid WSLEs. 

Table 5.2 shows process-specific and systemwide working set list parameters, quotas, 
and limits. Note that  for compatibility with OpenVMS VAX, user authorization file 
(UAF) quotas and SYSGEN parameters related to the working set list are typically 
specified externally in units of pagelets and converted to pages for internal use by the 
executive. 

Table 5.2 Working  Set  Lists: Limits  and Quotas  

Description Location or Name Comments 

Working set size in pages PCB$L_PPGCNT + 
PCB$L_GPGCNT 

Cannot grow above working set 
limit; 
Updated each time a page is added 
to or removed from the working set; 
Reduced by proactive memory 
reclamation, swapper trimming, and 
$ADJWSL 
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Table 5.2 (continued) 

5.2 The Working Set List 

Working  Set  Lists: L imi t s  and  Quotas  

Description Location or Name Comments 

Working set limit PHD$L_WSSIZE 

Default working set limit 

Normal maximum working 
set limit (index) 

Extended maximum working 
set limit (index); upper value 
for automatic working set 
limit adjustment 

Upper limit to normal max- 
imum working set limit 
(index) 

Upper limit to extended 
maximum working set limit 
(index) 

Index of first WSLE 

Index of first locked WSLE 

Index of first dynamic WSLE 

PHD$L_DFWSCNT 

PHD$L_WSQUOTA 

PHD$L_WSEXTENT 

PHD$L_WSAUTH 

PHD$L_ 
WSAUTHEXT 

PHD$L_WSLIST 

PHD$L_WSLOCK 

PHD$L WSDYN 

Cannot grow above working set 
capacity; 
Implicitly set by LOGINOUT~; 
Altered by $ADJWSL, by automatic 
working set limit adjustment, image 
exit, and swapper trimming; 
Altered by locking pages, creating 
address space, and requesting direct 
I/O 

Set by LOGINOUT~; 
Altered by DCL command SET 
WORKING_SET/LIMIT 

Set by LOGINOUT~; 
Altered by DCL command SET 
WORKING_SET/QUOTA 

Set by LOGINOUT~; 
Altered by DCL command SET 
WORKING_SET/EXTENT 

Set by LOGINOUT1; 
Cannot be altered 

Set by LOGINOUT1; 
Cannot be altered 

Always 1 

The same for all processes in a 
given system 

Initialized by SHELL; 
Altered by $LKWSETL64], $LCK- 
PAGL64], $ULWSETL64], and 
$ULKPAGL64]; 
Altered by PHD expansion and 
contraction 

1The manner in which a process is created determines how a value for this is defined. It may be defined 
several times during different steps of process creation (see Chapters Process Creation and Process 
Dynamics). 
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Table  5.2 (continued) Working  Set  Lists: L imi t s  and  Q u o t a s  

Description Location or Name Comments 

Index of most recently 
inserted WSLE 

Index of last WSLE (deter- 
mines capacity of list) 

Sufficient number of dynamic 
WSLEs for a process to 
execute without continuous 
faults 

Number of dynamic WSLEs 
excluding both PHD$L_ 
WSFLUID pages and a 
reasonable number of page 
table pages 

Authorized default working 
set limit in pagelets 

Authorized normal maximum 
working set limit in pagelets 

Authorized extended max- 
imum working set limit in 
pagelets 

Systemwide minimum num- 
ber of fluid working set 
pages 

Number of pagelets to which 
the swapper attempts to 
shrink a working set before 
outswapping it 

Systemwide maximum 
working set limit in pagelets 

System working set limit in 
pagelets 

PHD$L_WSNEXT 

PHD$L_WSLAST 

PHD$L_WSFLUID 

PHD$L_EXTDYNWS 

UAF$L_DFWSCNT 

UAF$L_WSQUOTA 

UAF$L_WSEXTENT 

MINWSCNT 

SWPOUTPGCNT 

WSMAX 

SYSMWCNT 

Initialized by SHELL; 
Altered by $ADJWSL; 
Updated each time an entry is 
added to or released from the 
working set; 
May be altered if capacity decreased 
or locked region increased 

Initialized by SHELL; 
May be altered by $ADJWSL, page 
fault handler, image exit, automatic 
working set limit adjustment, 
working set page replacement 

Set by SHELL to the value of 
MINWSCNT 

Updated each time size of dynamic 
working set region is changed 

Converted to pages and copied to 
PHD$L_DFWSCNT 

Converted to pages and copied to 
PHD$L_WSAUTH and PHD$L_ 
WSQUOTA 

Converted to pages and copied to 
PHD$L_WSEXTENT and PHD$L_ 
WSAUTHEXT 

SYSGEN parameter 

SYSGEN parameter 

SYSGEN parameter 

SYSGEN parameter 
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Table  5.2 (continued) 

5.2 The Working Set Llst 

W o r k i n g  Se t  Lists:  L i m i t s  a n d  Q u o t a s  

Description Location or Name Comments  

Default value for working 
set limit default in pagelets 
(used by $CREPRC) 

Minimum value for working 
set limit default in pagelets 
(used by $CREPRC) 

Default value for normal 
maximum working set 
limit in pagelets (used by 
$CREPRC) 

Minimum value for normal 
maximum working set 
limit in pagelets (used by 
$CREPRC) 

Default value for extended 
maximum working set 
limit in pagelets (used by 
$CREPRC) 

Minimum value for extended 
maximum working set 
limit in pagelets (used by 
$CREPRC) 

PQL_DWSDEFAULT 

PQL_MWSDEFAULT 

PQL_DWSQUOTA 

PQL_MWSQUOTA 

PQL_DWSEXTENT 

PQL MWSEXTENT 

SYSGEN parameter 

SYSGEN parameter 

SYSGEN parameter 

SYSGEN parameter 

SYSGEN parameter 

SYSGEN parameter 

During system initialization, enough virtual address space is reserved in each PHD for 
the maximum-size working set list, one with as many entries as the number of pages 
represented by the SYSGEN parameter WSMAX. 

Each process is created with its initial working set limit and working set list capacity 
set to the same value, the process's default working set limit, DFWSCNT (assuming 
that  DFWSCNT is less than or equal to WSMAX converted to pages). For a typical 
interactive process, DFWSCNT is specified by the UAF entry. The executive thus 
initially allocates physical memory for only a relatively small working set list. 

When a process runs an image, it begins faulting pages; the working set size increases, 
growing toward the working set limit. Once it reaches the limit, subsequent page 
faults require the removal of pages from the working set. With the working set limit, 
the executive governs the amount of physical memory a process may use. 

317 



Working Set List Dynamics 

5.2.3.1 Working Set Limit 
During system initialization, the SYSGEN parameters that  affect minimum working 
set limits are adjusted to allow for at least a minimum dynamic working set list 
region. That is, SYSBOOT ensures that  the values of PQL_MWSDEFAULT and PQL_ 
DWSDEFAULT represent a number of pages large enough to accommodate the sum of 
the following: 

�9 The SYSGEN parameter MINWSCNT, the minimum number of fluid pages in the 
working set 

* The worst-case number of L3PT pages to map MINWSCNT pages, namely, MIN- 
WSCNT 

* The maximum PHD 

�9 The kernel stack page or pages 

�9 The minimum number of page tables to map the P1 space defined by the SHELLxx 
module 

The manner  in which a process is created determines how values for WSQUOTA, 
WSEXTENT, and several other working set list paramters are defined. They are 
defined and potentially redefined several times during different steps of process 
creation. In the case of the typical interactive process, the values come from its 
authorization file record and are minimized with WSMAX. Chapters Process Creation 
and Process Dynamics supply further information. 

The process can increase its default working set limit through the Digital command 
language (DCL) command SET WORKING_SET. A running image can increase the 
process's current working set limit by requesting the $ADJWSL system service. The 
executive can increase a process's working set limit through automatic working set 
limit adjustment. These mechanisms are discussed in Section 5.4. 

A programmer with a good understanding of an image's paging behavior can voluntar- 
ily reduce the process's working set limit by requesting the $ADJWSL system service. 
There are several other less direct mechanisms by which the working set limit is 
decreased: 

�9 Automatic working set limit adjustment can reduce the limit (see Section 5.4.3). 

�9 The swapper process can initiate a reduction of the working set limit with a mecha- 
nism known as swapper trimming or working set shrinking. In an effort to acquire 
needed physical memory, the swapper reduces the working sets and working set 
limits of processes in the balance set before actually removing processes from the 
balance set. Process selection is performed by a table-driven, prioritized scheme. 
Chapter 6 describes the conditions that  trigger this mechanism and the criteria by 
which processes are selected. 

* The process's working set limit is also reset at image exit to its default value, 
DFWSCNT (see Chapter Image Activation and Exit). 
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Whenever the executive adjusts the working set limit or locks pages into the working 
set list, it checks that  the dynamic region of the working set list has enough space. 
For a typical process and address space, the executive checks that  the number of 
dynamic WSLEs is at least twice MINWSCNT. In this check, it ignores any working 
set list extension above WSQUOTA, since any extension above quota is subject to 
swapper trimming. To facilitate the check, the executive maintains the field PHD$L_ 
EXTDYNWS, which effectively contains the number of WSLEs in the dynamic region 
of the working set list beyond the sum of the minimum number required and the 
number in use for page tables. 

The executive actually calculates the number of entries to be reserved as the sum of 
MINWSCNT, PHD$L_PTCNTLCK (number of page table pages mapping locked or 
window pages), and the smaller of MINWSCNT and the number of unlocked page table 
pages. 

For example, when a process tries to lock a page into its working set list, the executive 
checks that  PHD$L_EXTDYNWS has a value of at least 2, one entry for the page and 
another for its page table page. 

5.2.3.2 Working Set Size 
A process's working set size increases as it executes code and faults pages into its 
working set. 

The process's working set size decreases as the result of its deleting virtual ad- 
dress space (explicitly or, for example, at image exit) or requesting the $PURGWS 
or $PURGE_WS system service. With a mechanism known as proactive memory recla- 
mation, the executive may reduce the working set size of a long-waiting process or a 
periodically waking process to reclaim memory for a depleted free page list. Proactive 
memory reclamation differs from swapper trimming in that  the former reduces the 
working set size but not the limit. This mechanism and the conditions that  trigger it 
are described in Section 5.5. 

A process's working set size also decreases as an effect of having its working set limit 
decreased below its working set size. 

5.2.3.3 Working Set Capacity 
Whenever the working set limit is increased to a value that  would exceed the working 
set list capacity, the capacity must  grow as well to accommodate the new limit. As 
described in Chapter 2, the working set list capacity is dynamic; it grows toward the 
process section table (PST). When the working set list must expand into the area 
already occupied by the PST, the PST is moved to higher addresses. However, there 
is not always room in the PHD for the expanded working set list. The total space 
available for both the working set list and the PST is determined by the two SYSGEN 
parameters WSMAX and PROCSECTCNT. 

Because a process is allowed to create more than PROCSECTCNT sections, the PST 
can grow into space that  would have been available for the working set list. In that  
case, the working set list capacity can grow no further, and the process must make do 
with its current capacity and a limit no larger than that  capacity. 
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Furthermore, because the working set list contains WSLEs for all the PHD pages in 
physical memory, its size and the size of the PHD are interrelated to a small extent. 
As the working set grows, the working set list in the PHD grows, and more WSLEs are 
required to describe the PHD pages in memory. The size of the PHD is constrained to 
be no larger in pages than half of the process's working set quota. 

This constraint preserves a reasonable number of WSLEs for non-PHD pages. A pro- 
cess with a large value for working set extent and a relatively small value for working 
set quota could have the expansion of its working set limited by this constraint. 

At image exit, in addition to reducing the process's working set limit, the executive 
may reduce the working set list capacity; if possible, the executive resets PHD$L_ 
WSLAST by moving it toward lower addresses past any empty WSLEs. It continues 
until it reaches a valid WSLE or until the working set list capacity is just  equal to the 
working set limit. Additionally, when the executive is scanning the working set list 
to find an entry for a page being faulted, it may move PHD$L_WSLAST in the same 
way, compressing invalid entries at the high-address end of the working set list. The 
executive must strike a balance between spending too much overhead compressing 
empty entries so that  PHD$L_WSLAST is precise and spending too much overhead 
searching for a valid replacement WSLE when the working set list is sparse (see 
Section 5.3.1). 

5.3 Working Set Replacement 
When code executing in a process references an invalid virtual page, the page fault 
handler must take steps to make the page valid. It must  also create a WSLE for 
the page. If there is no room in the working set list for another entry, one must  be 
removed. The page fault handler uses the dynamic region of the working set list to 
determine which virtual page to discard. 

The dynamic region of the working set list can contain unused WSLEs. When the 
working set limit is reduced, the working set list capacity is usually left intact, result- 
ing in a sparse working set list. This makes adding a page to the working set slightly 
more complex. That a WSLE is empty does not necessarily mean the process can make 
use of it; the size of the working set must be less than the working set limit. If the 
process is already at its limit, a nonempty WSLE must  be found whose virtual page 
can be removed from the working set to make room for the new page. 

The executive uses a modified FIFO scheme for its working set list replacement 
algorithm. The entry most likely to have been in the working set list for the longest 
time, the one following that  pointed to by PHD$L_WSNEXT, is the one first considered 
for replacement. 
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5.3.1 Scan of the Working Set List 
When the page fault handler needs an empty WSLE, it calls routine MMG$FREWSLE, 
in module PAGEFAULT. The following steps summarize its flow. Subsequent sections 
describe more details of particular aspects of its flow. 

MMG$FREWSLE scans the dynamic region of the working set list. It begins by 
checking whether the WSLE whose index is in PHD$L_WSNEXT is empty. If not, it 
starts with the next WSLE. 

1. If the WSLE is empty (contents are zero), MMG$FREWSLE checks whether  the 
entry can be used (see Section 5.3.2). If it can be used, it is selected. 

2. If the WSLE is not empty (contents are nonzero) but is an active page table page 
(one that  maps valid or window pages), the WSLE cannot be used. 

3. If the WSLE is not empty but is a process-private page table page that  maps 
no pages at all (its WSLE$V_WSLOCK bit is clear), MMG$FREWSLE makes 
additional checks (see Section 5.3.4) to see whether the WSLE is suitable for reuse. 
If not, the WSLE is skipped. 

If the page table maps no valid or window pages, it may be usable. 
MMG$FREWSLE takes the steps described in Section 5.3.3 to determine whether  
the page table page can be released and its WSLE reused. 

4. If the WSLE is not empty, MMG$FREWSLE makes additional checks (see Section 
5.3.4) to see whether the WSLE is suitable for reuse. If not, the WSLE is skipped. 

5. If the WSLE is selected for reuse and is not empty, MMG$FREWSLE takes the 
actions described in Section 5.3.5. 

6. If the WSLE is not selected, the index is incremented, and the steps in this list are 
repeated until a usable WSLE is found. If the index exceeds the end of the list, it 
is reset to the beginning of the dynamic working set list. 

Once a WSLE is selected for reuse, PHD$L_WSNEXT is updated to contain its quad- 
word index. 

5.3.2 Using an Empty Entry in the Working Set List 
When an empty WSLE is found, MMG$FREWSLE checks whether a page can be 
added to the working set. If there are fewer pages in the working set than WSQUOTA, 
a new physical page may be added to the working set. It may also be possible to add 
physical pages to the working set above WSQUOTA (up to WSEXTENT), depending on 
the size of the free page list. 

The following checks are required for an empty WSLE to be usable: 

, If the working set size (PCB$L_PPGCNT plus PCB$L_GPGCNT) equals the 
working set limit, the empty WSLE may not be used, and a page in the working 
set must be replaced. 
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2. If the working set size has not reached its limit, the size is compared to 
WSQUOTA. If the size is less than  WSQUOTA and there are more than  FREELIM 
pages on the free page list, a new page is allowed into the working set. The empty 
WSLE is used. 

3. If the working set has WSQUOTA or more pages, the number  of pages on the 
free page , s t  is compared to the SYSGEN paramete r  GROWLIM. If there  are 
more than  GROWLIM pages on the free page list, a new page is allowed into the 
working set. The empty WSLE is used. 

Notc ~hat to extend the working set size above WSQUOTA, the working set limit 
must  have been extended above WSQUOTA. For the working set limit to have been 
extended above WSQUOTA, the free page list must  have contained more than  the 
SYSGEN paramete r  BORROWLIM pages. For more information on working set 
limits, BORROWLIM, and automatic working set limit adjustment,  see Section 5.4. 

4. Even if the free page list is below the limit at which another  page could be added 
to the process's working set, a new page can be added if the working set contains 
fewer fluid pages than  PHD$L_WSFLUID: if the size of the working set minus 
locked pages and minus PHD$L_PTCNTMAX is less than  or equal to SYSGEN 
parameter  MINWSCNT, the empty WSLE is used. 

If an empty but unusable WSLE is found at the end of a working set list tha t  has 
reached its limit, the working set list capacity is reduced; PHD$L_WSLAST is reset  to 
point to the last unavailable (nonzero) WSLE in the working set list. 

5.3.3 Releasing a Dead Page Table Page 
MMG$FREWSLE determines whether  a WSLE describing a page table page can 
be reused to describe a page being faulted into the working set list. It first checks, 
however, tha t  the executive is not looping endlessly, trying to remove a WSLE from a 
working set list tha t  contains only nonremovable entries: if it has already tested as 
many page table pages as there are dynamic pages in the working set, tha t  means  
there are no fluid pages in the working set list. It tests whether  it may increase the 
working set limit based on the number  of free pages and the relation between the 
working set limit and WSQUOTA. 

If there are at least BORROWLIM free pages and the limit is less than  WSEX- 
TENT, the limit can be increased up to WSEXTENT. 

�9 If there are fewer than  BORROWLIM free pages and the limit is less than  
WSQUOTA, the limit can be increased up to WSQUOTA. 

If the limit cannot be increased, MMG$FREWSLE simply re turns  without  having freed 
a WSLE. 

If the limit can be increased, MMG$FREWSLE increases it without going over the 
maximum previously determined. If possible, it increases the limit by MINWSCNT 
pages. If tha t  is not possible, it increases the limit by 2 pages. If tha t  is not possible, 
it increases the limit by only 1 page. 
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Having increased the limit, MMG$FREWSLE scans the working set list again for a 
free entry or a WSLE that  describes a page table page that  could be removed from the 
working set list. After retesting as many page table pages as there are dynamic pages, 
it simply returns without having freed a WSLE. 

If it has not already tested too many WSLEs that  describe page tables, it calls SCAN- 
DEADPT to examine the page table page. There are several possible outcomes: 

�9 The WSLE describes a page table page that  maps valid pages and is therefore not 
reusable. 

�9 The WSLE describes a page table page that  maps only free and modified pages and 
can be released from its current use for reuse after the ties between those pages 
and the page table page are severed, that  is, after no virtual pages mapped by the 
page table page are cached in the free or modified page list. 

�9 The WSLE describes a page table page that  maps only free and modified pages 
pages but the working set list contains enough dynamic entries that  this one need 
not be released now. An at tempt is made to leave a page table page in the working 
set list to keep its virtual pages cached on page lists, in case the process refaults 
them. 

SCANDEADPT first determines whether  the process has any dead page table pages. 
A dead page table page is one that  maps no valid or window pages. It checks by 
comparing PHD$L_PTCNTVAL, the number  of page table pages with valid WSLEs, to 
PHD$L_PTCNTACT, the number of active page table pages. If PHD$L_PTCNTACT is 
larger than PHD$L_PTCNTVAL, the difference between them is the number of dead 
page table pages. If there are none, it returns immediately. MMG$FREWSLE skips 
this WSLE and continues its scan of the working set list. 

If there are any dead page table pages, SCANDEADPT checks how full the working 
set list is. It checks whether  the dynamic region of the working set list has at least 
twice MINWSCNT entries, not counting those that  describe dead page table pages or 
page table pages that  map pages locked into memory or into the working set list. If 
so, it has sufficient dynamic entries; the dead page table page scan is postponed, and 
SCANDEADPT returns.  MMG$FREWSLE skips this WSLE and continues its scan of 
the working set list. 

In making this check, SCANDEADPT uses the process's working set limit if one of the 
following is true: 

�9 The working set size is less than MINWSCNT. 

�9 The limit is less than or equal to WSQUOTA and the free page list has at least 
FREELIM pages. 

�9 The limit is greater than WSQUOTA and the free page list has at least GROWLIM 
pages. 

If memory is relatively scarce, the process will not be allowed to expand its working 
set, so SCANDEADPT restricts its test to the dynamic entries in a working set of 
WSQUOTA pages. 
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If there are not sufficient dynamic WSLEs to leave a potentially dead page table page 
in the working set list, SCANDEADPT checks whether this page is a dead page table 
page by examining the PFN database record of the physical page occupied by the 
page table page. If PFN$W_PT_VAL_CNT is non-negative, the page table page maps 
pages in the working set list and cannot be released. SCANDEADPT returns, and 
MMG$FREWSLE goes on to the next WSLE. 

If PFN$W_PT_VAL_CNT is negative, the page table page is dead, and SCANDEADPT 
increments PMS$GL_DPTSCN to indicate one more dead page table scan. It stores the 
working set list index of the dead page table in PHD$L_NEXT. It must  scan each PTE 
within the page table page to determine whether it is a transition PTE. If the page 
table page contains transition PTEs for pages on the free page list, SCANDEADPT 
must modify the PFN database for those pages before the WSLE can be reused. It 
moves each such page to the front of the free page list and sets the delete contents bit 
in the page's PFN$L_PAGE_STATE field. 

If the page table page contains transition PTEs for pages on the modified page list, 
those pages must  be written to their backing store before the page table page can 
be released from the working set list. SCANDEADPT sets the delete contents bit in 
each page's PFN$L_PAGE_STATE field and requests a selective purge of the modified 
page list so that  those pages will be written. If the process's working set is being 
shrunk, SCANDEADPT requests that  pages in a particular address range be purged 
(an SVAPTE request); otherwise, it requests that  pages mapped by this page table 
page be purged (a PAGE_TABLE request). SCANDEADPT checks that  at least one 
page file has been installed and, if not, simply returns. Otherwise, it returns to 
MMG$FREWSLE with a status indicating it should return to its caller to wait. The 
kernel thread is placed into a resource wait for RSN$_MPWBUSY until the modified 
page list is selectively purged. Chapter 4 describes the selective purge mechanism and 
the resource waits. 

If the page table contained transition PTEs only for free page list pages, those pages 
have been released, and SCANDEADPT returns to MMG$FREWSLE with a status 
indicating that  it should reuse this WSLE. 

5.3.4 Skipping WSLEs 
The operating system uses both process-specific criteria and frequency-of-use informa- 
tion maintained by the hardware to modify its strict FIFO page replacement algorithm. 
The working set replacement routine can skip a limited number of WSLEs with par- 
ticular characteristics. The number is specified by the special SYSGEN parameter  
TBSKIPWSL. In addition, it skips entries temporarily locked into the working set by 
kernel mode code. 

The architecture defines a processor register related to translation buffer (TB) use 
called TB check (TBCHK). Kernel mode code can execute the instruction CALL_PAL 
MFPR, specifying the TBCHK register and a virtual address to determine whether the 
translation for a particular virtual page is cached. The presence of a TB entry for 
a page indicates the page has been referenced recently and may therefore be a poor 
candidate to remove from the working set. 
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Additionally, a process can declare a procedure to be notified of every pending removal 
from its working set list. The procedure can return a status indicating that  this page 
is a poor choice. 

Kernel mode software running in process context calls the routine MMG$DECLARE_ 
WSL_PAGER, in module SYSLKWSET, with two arguments. One is the procedure 
value of a routine to be called when a page is about to be removed from that  process's 
working set. The other is a parameter to be passed to that  procedure. Because the 
working set list removal procedure may be called from outside the context of that  pro- 
cess, the procedure must  be within code loaded into system space. MMG$DECLARE_ 
WSL_PAGER stores the procedure value in PCB$A_FREWSLE_CALLOUT and the 
parameter in PCB$L_FREWSLE_PARAM. 

The working set list replacement algorithm works in the following manner. Before a 
valid WSLE is reused, a check is first made to see if a translation for the virtual page 
described by that  WSLE is in the TB. If the translation for that  page is cached in the 
TB, and fewer than TBSKIPWSL entries have been skipped during this scan of the 
working set list, MMG$FREWSLE skips that  WSLE and resumes the search for an 
available WSLE with the next one. Note that  the translation of an address referenced 
by another kernel thread of this process may be cached in the TB of one or more other 
processors. Because the overhead to check the other processors is greater than the 
possible benefit of keeping an active page in the working set list, only the TB of this 
processor is checked. 

If the translation is not cached in the TB, MMG$FREWSLE compares the address 
of the virtual page decribed by the WSLE to the starting and ending addresses in 
PCB$Q_KEEP_IN_WS and PCB$Q_KEEP_IN_WS2. If the address falls within that  
range, MMG$FREWSLE skips that  WSLE and resumes the search for an available 
WSLE with the next one. 

If the translation is not cached in the TB, the virtual page is not within that  range, 
and PCB$A_FREWSLE_CALLOUT is nonzero, MMG$FREWSLE calls the working set 
removal procedure with the specified parameter, the virtual address, a flag, and the 
addresses of the PCB and PHD. Initially the value of the flag is zero. If the procedure 
returns the status SS$_RETRY, MMG$FREWSLE skips that  WSLE and resumes the 
search for an available WSLE with the next one. 

Aider TBSKIPWSL WSLEs have been skipped in this manner, the checks for whether  
the translation is cached in the TB and whether the removal procedure will approve 
are abandoned and the next valid WSLE that  is not within the PCB$Q_KEEP_IN_WS 
range is simply reused. First, however, if there is a working set removal procedure, 
MMG$FREWSLE calls it with a flag value indicating that  the selected page will 
definitely be removed from the working set. 

If the value of TBSKIPWSL is set to zero, the skipping of WSLEs whose translations 
are in the TB is disabled; although the working set removal procedure is still called, it 
is called with the flag value indicating that  the selected page will definitely be removed 
from the working set. The default value of TBSKIPWSL is 8. 
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Use of the working set removal procedure is limited to kernel mode applications and 
is currently intended for support of a graphics subsystem. Accessing its own copy of 
the process's page table, the graphics hardware determines how to treat  a particular 
page based on its valid bit. The device driver for the graphics hardware requests 
notification of working set list removals so it can maintain the copy of the page table. 
If a page selected for removal is currently in use by the graphics hardware, the 
driver's notification routine would indicate that  the page is a poor choice. Use of this 
mechanism is reserved to Hewlett-Packard Company; any other use is unsupported. 

5.3.5 Reusing WSLEs 
The virtual page that  the WSLE represents must  be removed before the WSLE can be 
reused. Typically, the virtual page is valid and must  be made invalid. This section is 
confined to a description of WSLEs representing valid pages. 

For such a page, MMG$FREWSLE takes the following steps: 

, 

1 

, 

, 

It tests whether the page has been modified. If not, it continues with step 2. If the 
page has been modified, MMG$FREWSLE tests whether its backing store is a page 
file and, if so, how full the modified page list is. 

If the modified page list has fewer pages than the SYSGEN parameter  MPW_ 
WAITLIMIT, or if modified page writing is in progress and the list has fewer pages 
than the SYSGEN parameter MPW_LOWAITLIMIT, MMG$FREWSLE proceeds 
with step 2. 

Otherwise, to avoid deadlocks, MMG$FREWSLE checks that  the kernel thread 
does not hold any mutexes, that  it is not the swapper, that  bit MMG$V_NOWAIT 
in MMG$GL_FREWFLGS is clear, and that  at least one page file has been in- 
stalled. If any condition is false, MMG$FREWSLE proceeds with step 2. 

If all are true, it returns a status to the page fault handler indicating that  the 
kernel thread should be placed into a resource wait. The kernel thread is placed 
into the resource wait RSN$_MPWBUSY until the modified page list has dropped 
below MPW_LOWAITLIMIT pages. 

At alternative entry point MMG$FREWSLX_64, the routine clears the valid, 
modify, no-TB-miss-memory-barrier-required, fault-on-execute, fault-on-write, 
and address space match bits in the PTE. If the fault-on-execute bit was set, it 
invalidates any cached copy of the PTE from the data stream translation buffer 
(DTB). If the bit was clear, it invalidates any cached copy from both the instruction 
stream translation buffer (ITB) or the DTB (see Section 5.3.6). 

If the page was modified, it sets the saved modify bit in the page's PFN$L_PAGE_ 
STATE field. 

If the page is a global page, whether read-only or writable, MMG$FREWSLE 
changes the PTE to the global page table index form. 
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It updates  the data  s tructures describing the process-private page table page tha t  
maps the page being removed. It decrements  the share count for the page table 
page to indicate tha t  it maps one less valid or t ransi t ion page. If this was the last  
valid or t ransi t ion page mapped by the page table page (that  is, if the share count 
makes  the transi t ion from 1 to 0), it locates the WSLE for the page table page and 
clears its WSL$V_WSLOCK bit. It also decrements 

n PHD$L_PTCNTACT, the number  of active page table pages for the process 

The PHD reference count, the number  of reasons the PHD should remain  in 
memory, which is kept in the PHD's entry in the array at PHV$GL_REFCBAS_ 
LW (see Chapter  2) 

MMG$FREWSLE decrements the share count for the global page to indicate one 
less process is mapping it. If the count is still nonzero, it proceeds with step 6. If 
the count goes to zero, it clears the valid, modify, fault-on-write, fault-on-execute, 
and address space match bits in the global page table entry (GPTE). 

For a page tha t  is a process page, a global page with a zero share count, or a 
process page table, it decrements the reference count for the page to indicate one 
less reference to it. 

If the reference count goes to zero, MMG$FREWSLE calls MMG$REL_PFN, 
in module ALLOCPFN, to insert  the page at the end of the free or modified 
page list, depending on the state of its saved modify bit. If the page has been 
modified and has an assigned page file backing store, MMG$REL_PFN releases 
its backing store, which has a now-obsolete copy of the page. The PFN$Q_BAK 
field is reset to show unallocated page file backing store. 

If the reference count is nonzero, indicating possible direct or paging I/O in 
progress, MMG$FREWSLE examines the PFN$L_PAGE_STATE field and, if 
the page is active, changes its s tate to release pending. 

For a process page, it also updates  the data  s t ructures  describing the page's page 
table page. It decrements the share count for the page table page to indicate tha t  it 
maps one less valid or transit ion page. If this was the last valid or t ransi t ion page 
mapped by the page table page ( that  is, if the share count makes the t ransi t ion 
from 1 to 0), it locates the WSLE for the page table page and clears its WSL$V_ 
WSLOCK bit. It also decrements PHD$L_PTCNTACT, the number  of active 
page table pages for the process, and the PHD's entry in the ar ray  at PHV$GL_ 
REFCBAS_LW, the number  of reasons the PHD should remain in memory. 

6. MMG$FREWSLE calls MMG_STD$DELWSLEX_64, in module PAGEFAULT. 

MMG_STD$DELWSLEX_64 decrements  PFN$W_PT_VAL_CNT in the PFN 
database  record for the page table page tha t  mapped this page to indicate the 
page table maps one less valid page. If tha t  count goes t o - 1 ,  it also decrements 
PHD$L_PTCNTVAL to indicate one less page table page mapping valid pages. It 
decrements either PCB$L_PPGCNT or PCB$L_GPGCNT, depending on page type. 
It clears the WSLE and returns.  
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7. MMG$FREWSLE returns to its caller. 

5.3.6 TB Invalidation 
As described in Chapter  1, a translation buffer is a CPU component that  caches the 
results of recent successful virtual address translations of valid pages. Each TB entry 
caches one translation: a virtual page number and, minimally, its corresponding PFN, 
address space match, and protection bits. The size and organization of a TB are 
CPU-specific. Some CPUs have both an ITB and a DTB. 

The operating system is responsible for flushing no longer correct entries from the TB. 
For example, it must  invalidate a TB entry corresponding to a no longer valid PTE 
that  maps a page being deleted or removed from a process's working set. It must  also 
invalidate the TB entry for a valid page whose protection is changing. 

A TB entry whose address space match (ASM) bit is set represents a physical page 
shared at the same virtual address in all processes. In practice, only system space 
pages and shared page table space have the ASM bit set. On a symmetric multipro- 
cessing (SMP) system, such a shared page can be represented in multiple processors' 
TBs and must  therefore be invalidated in the TBs of all processors. 

Because a process with a single kernel thread runs on only one processor at a time, 
its process-private TB entries, those with a clear ASM bit, need be invalidated only 
on the TB of the processor on which the kernel thread is running. The kernel threads 
of a mult i threaded process, however, can run on multiple processors. Such a process's 
pages can be represented in multiple processors' TBs and must  therefore be invali- 
dated on all processors on which its kernel threads are currently executing. (Chapter 
Scheduling describes how the assignment of address space numbers to kernel threads 
prevents stale TB entries on processors on which its kernel threads are not currently 
executing.) 

Executive modules typically invalidate TB entries through one of the following macros, 
which are provided for MACRO-32, BLISS, and C: 

�9 TBI_DATA_64--Invalidate a single DTB entry for a page whose fault-on-execute 
bit is still set. 

�9 TBI_SINGLE~Inval idate  a single entry from both the ITB and the DTB. 

�9 TBI_ALL--Invalidate all TB entries. 

Note that  the TBI_SINGLE_64 macro provided by versions prior to OpenVMS Version 
7.0 is no longer available; TBI_SINGLE can now handle a 32-bit or 64-bit address. 

As described in Chapter  1, the executive sets the fault-on-execute bit in the PTE of 
each page faulted as the result of a data fetch. If an at tempt  is made to execute an 
instruction from the page, a fault-on-execute exception occurs. The exception service 
routine clears the fault-on-execute bit. When the fault-on-execute bit is still set for a 
page whose TB entries must be invalidated, the executive invokes the TBI_DATA_64 
macro because there can be no ITB entry for the page. 
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Both TBI_SINGLE and TBI_DATA_64 include an argument to specify the virtual 
address to be invalidated and an argument to specify the address of the PCB associated 
with the process context. Each has an ENVIRON argument whose default value is MP. 
Other values for the ENVIRON argument are THIS_CPU_ONLY, ASSUME_SHARED, 
and ASSUME_PRIVATE. 

If one of these macros is invoked with the ENVIRON argument specified as THIS_ 
CPU_ONLY, the macro merely generates a CALL_PAL MTPR instruction whose processor 
register depends on the macro. (Chapter 1 lists the processor registers associated 
with TB invalidation.) These macros are invoked this way when the virtual address is 
known to be one whose ASM bit is clear and private to a single-thread process or when 
the virtual address is known to be CPU-specific. 

To invalidate a TB entry for a page that  is shared, the executive invokes the appropri- 
ate TB invalidate macro and explicitly specifies the ENVIRON argument as ASSUMED_ 
SHARED. In response, code is generated that  transfers control to the subroutine 
in module TBI_ROUTINES corresponding to the macro, either MMGLSTD]$TBI_ 
SINGLE or MMGLSTD]$TBI_DATA_64. Each of these subroutines tests whether 
SMP is enabled and, if not, merely executes a CALL_PAL MTPR instruction specifying 
the appropriate processor register. If SMP is enabled, each subroutine calls MP_ 
INVALIDATE or MP_INVALIDATE_DATA, in module TBI_ROUTINES. Chapter Sym- 
metric Multiprocessing describes MP_INVALIDATE, MP_INVALIDATE_DATA, and 
the means by which one processor notifies the other members to flush one or all TB 
entries. 

To invalidate a TB entry for a page that  may or may not be shared, the executive calls 
the appropriate TB invalidate macro and specifies the ENVIRON argument as MP or 
implicitly specifies it by omitting the argument. Code is generated that  tests whether 
SMP is enabled and, if not, executes a CALL_PAL MTPR instruction. If SMP is enabled, 
the generated code tests whether the address is actually in shared space (system or 
shared page table space): 

�9 If so, it calls MMG[_STD]$TBI_SINGLE or MMGLSTD]$TBI_DATA_64. 

�9 If not, it tests whether the process has multiple kernel threads. If so, it calls 
MMGLSTD]TBI_SINGLE_THREADS or MMGLSTD]$TBI_DATA_64_THREADS, 
in module TBI_ROUTINES. If the process is single-threaded, it generates a 
CALL_PAL MTPR instruction. 

MMGLSTD]$TBI_SINGLE_THREADS and MMGLSTD]$TBI_DATA_64_THREADS 
call MP_INVALIDATE_THREADS or MP_INVALIDATE_DATA_THREADS, in module 
TBI_ROUTINES. These two subroutines differ from MP_INVALIDATE and MP_ 
INVALIDATE_DATA in that  they notify only those processors on which kernel threads 
of this process are active. 

To invalidate a TB entry for a page that  is not shared, the executive calls the appropri- 
ate TB invalidate macro and explicitly specifies the ENVIRON argument as ASSUMED_ 
PRIVATE. Code is generated that  tests whether the process has multiple kernel 
threads and, if so, transfers control to either MMGLSTD]$TBI_SINGLE_THREADS 
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or MMGLSTD]$TBI_DATA_64_THREADS. If not, the generated code executes a 
CALL_PAL MTPR instruction. 

The OpenVMS Alpha Guide to Upgrading Privileged-Code Applications contains 
further information on the use of the TB invalidate macros. 

5.4 Working Set Limit Adjustment 
The working set limit is the maximum number of WSLEs the process is allowed to 
use. A process's working set limit (see Table 5.2) varies over its lifetime as a result of 
events such as image execution and exit, dynamic working set limit adjustment, and 
swapper trimming. 

The working set limit can be altered with the $ADJWSL system service, described in 
Section 5.4.1. Requested explicitly by the process, the system service can alter the 
working set limit up to WSEXTENT. 

The service can also be requested automatically on behalf of the process, for example, 
when the process tries to expand its address space. The executive checks whether 
after adding page tables to map the new space, the dynamic working set list would 
have enough room for the fluid working set (PHD$L_WSFLUID) plus the worst-case 
number of page table pages required to map it, to allow the process to perform useful 
work. If this check fails, and the process's working set limit is smaller than its quota, 
the executive increases the process's limit. 

Similarly, when a process tries to lock pages into memory or into its working set 
list, explicitly through system service or implicitly through requesting direct I/O, the 
executive checks that  the space left for dynamic WSLEs is sufficient. If not and if the 
limit is smaller than the quota, the executive increases the process's limit. 

The $ADJWSL service is also requested on behalf of the process by the quantum- 
end routine when it performs automatic working set limit adjustment. Through this 
means, the maximum size to which the working set limit can grow is WSQUOTA, un- 
less there are sufficient pages on the free page list (more than the SYSGEN parameter 
BORROWLIM). In that  case, automatic working set limit adjustment can enlarge the 
limit up to WSEXTENT. 

After the working set limit is increased, if there are more than the SYSGEN parameter  
GROWLIM pages on the free page list, the executive allows the process to use the 
extended limit by adding more pages to its working set without removing already valid 
entries. Adding pages to a process's working set decreases the probability that  the 
process will incur a page fault. 

Section 5.4.3 describes the automatic working set limit adjustment mechanism. 
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5.4.1 $ADJWSL System Service 
The $ADJWSL system service is requested to alter the process's working set limit by 
a number of pagelets. Its procedure, EXE$ADJWSL in module SYSADJWSL, runs 
in kernel mode, at interrupt priority level (IPL) 2 and above. EXE$ADJWSL first 
converts its input argument from pagelets to pages, rounding up if necessary. It then 
determines whether the request is to increase or reduce the limit. 

To increase the limit, EXE$ADJWSL first checks whether the process has multiple 
kernel threads. If so, it acquires the MMG spinlock, raising IPL to IPL$_MMG, to 
serialize access to fields such as PHD$L_LAST and PHD$L_WSSIZE with the page 
fault service routine. Although the need to acquire the inner mode semaphore prevents 
more than one kernel thread in a process from executing a memory management 
system service, one kernel thread could be executing EXE$ADJWSL while another 
incurred a page fault. 

EXE$ADJWSL then checks and possibly reduces the size of the increase. The new 
limit must be less than or equal to the value of the SYSGEN parameter WSMAX, 
converted from units of pagelets to pages; less than or equal to the process's ex- 
tended maximum working set limit; and within the system's physical memory capacity 
(available pages minus the minimum size of the free page list). 

If the new working set limit is within the current capacity of the working set list, 
EXE$ADJWSL computes a new value for PHD$L_EXTDYNWS and returns. Other- 
wise, EXE$ADJWSL must call MMG$ALCPHD, in module PHDUTL, to increase the 
working set list capacity. If EXE$ADJWSL acquired the MMG spinlock, it releases it 
and drops IPL to 2 before calling MMG$ALCPHD. 

MMG$ALCPHD tests whether there is a gap between the high-address end of the 
working set list and the low-address end of the PST that is large enough for the 
working set list expansion. If not, it tries to compress enough unused entries from 
the low-address end of the PST to accommodate the expansion. If that  also fails, 
MMG$ALCPHD tries to shift the PST to higher addresses by moving it to as yet 
unused pages of the PHD. As previously described, the PHD cannot be expanded in 
this manner if the number of pages in the nonpageable part of the current PHD is half 
the size of the process's WSQUOTA. 

If expanded working set list pages are created, they must be locked into the working 
set list. It is possible that locking all the expansion pages at once would leave insuf- 
ficient extra dynamic entries in the existing working set list. However, if the working 
set list were partially expanded, the number of dynamic entries would increase, allow- 
ing more expansion pages to be locked. Thus, expanding the working set limit may 
require multiple iterations. 

MMG$ALCPHD returns the number of entries by which it increased the capacity of 
the working set list. If no increase was possible, it returns zero. 

If the process has multiple kernel threads, EXE$ADJWSL reacquires the MMG 
spinlock, raising IPL to IPL$_MMG. 
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If MMG$ALCPHD added any new entries, EXE$ADJWSL changes PHD$L_WSNEXT 
to point to the first of the newly added WSLEs and clears the WSLEs to initialize 
them. It adds the number of new WSLEs to both PHD$L_WSLAST and PHD$L_ 
WSSIZE. It recalculates PHD$L_EXTDYNWS and returns to its requestor. 

To decrease the limit, EXE$ADJWSL first acquires the MMG spinlock, raising IPL to 
IPL$_MMG, to block swapper trimming and possible quantum-end working set limit 
adjustment. It sets MMG$V_NO_MPL_FLUSH in MMG$GL_FREWFLGS to delay 
modified page writing during MMG$SHRINKWS's execution (see Chapter 4). This 
enables multiple requests to accumulate before the modified page list is processed, 
thus improving performance. It calls MMG$SHRINKWS, in module SYSADJWSL. 

MMG$SHRINKWS checks and possibly reduces the size of the decrease. The new limit 
must allow for a dynamic portion of the working set list that can accommodate at least 
SYSGEN parameter MINWSCNT WSLEs plus the number of page tables locked in the 
working set. In addition, PHD$L_EXTDYNWS cannot be reduced below zero. 

MMG$SHRINKWS modifies the working set limit. If the process's working set size 
is already less than or equal to the new limit, it simply returns to EXE$ADJWSL. 
Otherwise, MMG$SHRINKWS repeatedly calls MMG$FREWSLE (see Section 5.3.1), 
in module PAGEFAULT, for each page to be removed from the process's working set. 
The reduced list can be sparse, that is, can contain unused and unusable WSLEs; the 
working set capacity is not necessarily decreased with the working set limit. Control 
returns to EXE$ADJWSL. 

If MMG$FREWSLE generated modified page write requests, EXE$ADJWSL requests 
a modified page flush (see Chapter 4) and changes the kernel thread's state to mis- 
cellaneous wait on resource RSN$_MPWBUSY. If MMG$FREWSLE did not generate 
additional requests, but returned a status from SCANDEADPT indicating the ker- 
nel thread should be stalled, EXE$ADJWSL changes the kernel thread's state to 
miscellaneous wait on the specified resource, for example, RSN$_MPWBUSY. When 
EXE$ADJWSL returns, the system service dispatcher will wait the kernel thread in 
the access mode from which the $ADJWSL request was made. 

EXE$ADJWSL releases the spinlock, recalculates PHD$L_EXTDYNWS, and returns. 

5.4.2 SET WORKING_SET Command 
The DCL command SET WORKING_SET enables the user to alter the default working 
set limit (DFWSCNT), the normal maximum working set limit (WSQUOTA), or the ex- 
tended maximum working set limit (WSEXTENT). None of these can be set to a value 
larger than the authorized extended maximum working set limit (WSAUTHEXT). 
For OpenVMS VAX compatibility, the command's qualifiers are expressed in units of 
pagelets. 

Altering the default limit affects the working set list reset operation performed by 
the routine MMG$IMGRESET, in module PHDUTL, which is called at image exit. 
Altering the normal maximum working set limit affects the maximum working set 
limit when physical memory is not plentiful. It changes the upper limit for future 
$ADJWSL system service requests. 
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With the / [NO]ADJUST qualifier to this command, a user  can also disable or reenable 
automatic working set limit adjustment.  Use of tha t  qualifier sets or clears the process 
control block (PCB) status longword bit PCB$V_DISAWS. 

5.4.3 Automatic Working Set Limit Adjustment 
As described in Section 5.4, the executive adjusts working set limit through an explicit 
$ADJWSL request  or as a side effect of image exit, address expansion, or page locking. 
In addition it also provides automatic working set limit adjus tment  to keep a process's 
page fault ra te  within limits set by one of several SYSGEN parameters .  Note tha t  no 
such adjus tment  takes place for real-time processes or for a process tha t  has disabled 
automatic working set limit adjus tment  through the DCL command SET WORKING_ 
SET/NOADJUST. The executive can also use automatic working set limit ad jus tment  
to reclaim an extension to the working set of a low-priority process. 

Table 5.3 shows the parameters  tha t  control automatic working set limit adjustment .  
All the SYSGEN parameters  listed in this table are dynamic and can be al tered 
without rebooting the system. 

Automatic working set limit adjus tment  takes place as par t  of the quantum-end 
routine (see Chapter  Scheduling). 

Table 5.3 Proces s  and Sys tem P a r a m e t e r s  Used  by Automat i c  Working Set  
Limit  Adjus tment  

Location 
Description or Name Comments 

Total amount of CPU time 
charged to this process 

Amount of CPU time at 
last adjustment check 

Total number of page faults 
for this process 

Number of page faults at 
last adjustment check 

Most recent page fault rate 
for this process 

Process automatic working 
set limit adjustment flag 

PHD$L_CPUTIM 

PHD$L_TIMREF 

PHD$L_ 
PAGEFLTS 

PHD$L_PFLREF 

PHD$L_ 
PFLTRATE 

PCB$V_DISAWS 
in PCB$L_STS 

Updated by interval timer interrupt 
service routine 

Updated by quantum-end routine when 
adjustment check is made; 
Altered when process is placed into a 
wait 

Updated each time this process incurs a 
page fault 

Updated by quantum-end routine when 
adjustment check is made 

Recorded at each adjustment check; 
Compared to PFRATH and PFRATL 

When set, disables adjustment for 
process 
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Table 5.3 (continued) Process  and Sys tem Parameters  Used  by Automat ic  
Working Set Limit  Adjus tment  

Description 
Location 
or Name Comments 

Amount of CPU time 
process must accumulate 
before page fault rate check 
is made 

Lower limit page fault rate 

Number of pagelets by 
which to decrease working 
set limit 

Lower bound in pagelets for 
decreasing working set list 
size 

Upper limit page fault rate 

Number of pagelets by 
which to increase working 
set limit 

Free page list size that 
allows growth of working 
set 

Free page list size that 
allows extension of working 
set limit 

AWSTIME 1 

PFRATL 1 

WSDEC 1 

AWSMIN 1 

PFRATH 1 

WSINC 1 

GROWLIM 1 

BORROWLIM 1 

1This value is a SYSGEN parameter. 

When 0, disables adjustment based on 
page fault rate for entire system 

Also, amount to reclaim from low-priority 
process with extended working set 

Do not adjust if PCB$L_PPGCNT is less 
than or equal to this 

When 0, disables adjustment for entire 
system 

Add new page to working set only if free 
page list has more pages than this value 

Extend working set limit beyond 
WSQUOTA only if free page list has 
more pages than this value; 
When-1 ,  disables working set limit 
extension for entire system 

The quan tum-end  routine, SCH$QEND in module RSE, adjusts  the working set l imit 
in the following steps: 

, It makes  the following checks. If any of these conditions is true,  SCH$QEND 
performs no adjus tment .  

If the kernel  thread 's  priori ty is in the real-t ime range,  ad jus tment  of this 
process is disabled. 

If the user  has  entered the DCL command SET WORKING_SET/NOADJUST,  
PCB$V_DISAWS is set and automat ic  working set l imit ad jus tment  for the 
process has  been disabled. 

If PHD$V_NO_WS_CHNG is set, the executive is delet ing this process and its 
address  space, and ad jus tment  is irrelevant.  
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If the WSINC parameter  is set to zero, the adjustment is disabled on a sys- 
temwide basis. 

2. If the process's kernel thread or threads have not been executing long enough since 
the last adjustment (if the difference between accumulated CPU time, PHD$L_ 
CPUTIM, and the time of the last adjustment at tempt,  PHD$L_TIMREF, is less 
than the SYSGEN parameter  AWSTIME), no adjustment based on page fault rate 
is made. SCH$QEND proceeds with step 5. 

If the process has accumulated enough CPU time, the reference time is updated 
(PHD$L_CPUTIM is copied to PHD$L_TIMREF), and the rate checks are made. 

Between adjustment checks, PHD$L_TIMREF is also altered whenever a kernel 
thread in the process is placed in a wait. As described in Chapter Scheduling, 
when a kernel thread goes into a wait, the SYSGEN parameter  IOTA is charged 
against its quantum. To balance the quantum charge, IOTA is subtracted from 
PHD$L_TIMREF, so that  the last check for adjustment  appears to have taken 
place longer ago than it really did and AWSTIME is more quickly reached. This 
subtraction helps ensure the expansion of the working set limit of a process tha t  is 
faulting heavily. Without it, a process that  undergoes many page fault waits could 
reach quantum end without having accumulated AWSTIME worth of CPU time 
and thus not be considered for automatic working set limit adjustment. 

3. SCH$QEND calculates the current page fault rate. The philosophy for automatic 
working set limit adjustment is based on two premises. If the page fault rate is 
low enough, the system can reclaim physical memory from the process, by reducing 
its working set limit, without harming the process by causing it to fault heavily. If 
the page fault rate is too high, the process can benefit from a larger working set 
limit because it will incur fewer faults without degrading the system. 

4. If the current page fault rate is too high (greater than or equal to PFRATH), 
SCH$QEND checks whether the working set limit should be increased. 

If the working set size is less than 75 percent of the current working set limit, 
the working set limit is not expanded. 

If the current working set limit is below WSQUOTA, it is expanded by WSINC, 
converted to pages. 

If the working set limit is greater than or equal to WSQUOTA, the num- 
ber of pages on the free page list is compared to the SYSGEN parameter  
BORROWLIM. 

If there are BORROWLIM or more pages on the free page list, the working 
set limit is increased by WSINC, converted to pages. It can be increased to a 
maximum limit of WSEXTENT. 

If there are fewer than BORROWLIM pages on the free page list, the working 
set limit is not increased. 

Setting BORROWLIM t o - 1  disables working set limit expansion above 
WSQUOTA for the entire system. 
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Once the working set limit has been expanded, newly faulted pages may be added 
to the working set. The page fault handler  adds pages to the working set above 
WSQUOTA only when there are more than the SYSGEN parameter  GROWLIM 
pages on the free page list. 

SCH$QEND proceeds with step 6. 

If WSDEC is zero, shrinking the working set by automatic working set limit 
adjustment is disabled and no adjustment occurs. If WSDEC is nonzero, two types 
of decrease to the working set limit are possible. 

First, if the current page fault rate is low enough (less than PFRATL), the working 
set limit is shrunk by WSDEC, converted to pages. However, if the contents of 
PCB$L_PPGCNT are less than or equal to AWSMIN, no adjustment  takes place. 
This decision is based on the assumption tha t  many of the pages in the working 
set are global pages and therefore the system will not benefit (and the process may 
suffer) if the working set limit is decreased. 

Note that  PFRATL is zero by default. This default value effectively disables this 
method of working set limit reduction in favor of swapper working set tr imming. 
The rationale for this change is explained at the end of this list. 

Second, even if a meaningful interval has not elapsed for computing a page fault 
rate, the process's working set limit will be shrunk, whatever its page fault rate 
and whatever the value of PFRATL, if all the following are true: 

The process has had a pixscan priority boost in its last 32 execution quantums 
(PCB$L_PIXHIST is nonzero). Chapter Scheduling describes the pixscan 
mechanism. That the process had a pixscan boost implies tha t  it is a low- 
priority process. 

Note, however, that  in a mult i threaded process, each kernel thread has its own 
priority; PCB$L_PIXHIST is therefore not necessarily representative of the 
process as a whole. For the working set list of a mult i threaded process to be 
shrunk, the additional condition must  be met that  no other kernel thread in 
this process is current. 

m The free page list contains fewer than GROWLIM pages. 

The process's working set limit is larger than WSQUOTA. 

Its working set limit will be decreased by the smaller of WSDEC, converted to 
pages, and the amount by which its working set limit exceeds WSQUOTA. This 
mechanism reclaims working set growth beyond WSQUOTA, which is regarded as 
temporary growth to be permitted only when sufficient memory is available. 

The actual working set limit adjustment is accomplished by a kernel mode AST 
that requests the $ADJWSL system service. The AST parameter passed to this 
AST is the amount of previously determined increase or decrease. This step 
is required because the system service must be called from process context (at 
IPL 0) and SCH$QEND is executing in system context in response to the IPL$_ 
TIMERFORK software timer interrupt. 
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Two problems are inherent in the quantum-end scheme of automatic working set limit 
adjustment: processes that  are compute-intensive will reach quantum end many times, 
and images that  have been writ ten to be efficient with respect to page faults (and incur 
a low page fault rate) will qualify for working set limit reduction, because their  page 
fault rate is lower than PFRATL. In both these cases, working set limit reduction 
is not desirable. In contrast, swapper t r imming (summarized in Section 5.2.3 and 
detailed in Chapter 6) selects processes start ing with those that  are less likely to need 
large working sets. 

Working set limit reduction based on page fault rate at quantum end is disabled by 
setting the default value of PFRATL to zero. Consequently, swapper t r imming and the 
image exit reset are the primary methods used to reduce working set limit. In contrast 
to automatic working set limit reduction, swapper t r imming shrinks the working set 
limit (and size) only when free pages are needed. The executive also uses automatic 
working set limit adjustment at quantum end to reclaim extensions from the working 
sets of low-priority processes. 

5.5 Proactive Memory Reclamation from Periodically Waking 
Processes 

Proactive memory reclamation, also known as the ticker, is enabled when the low bit 
of SYSGEN parameter  MMG_CTLFLAGS is set, as it is by default. If enabled, the 
mechanism becomes active only when the free page list is less than twice FREEGOAL 
and modified page writing would not make up the difference. The mechanism reduces 
the working set size of long-waiting processes and periodically waiting processes with 
normal (non-real-time) priorities. 

The Synchronize ($SYNCH) and Hibernate ($HIBER) system services as well as 
the event flag wait services, such as Wait for Logical OR of Event Flags ($WFLOR), 
are responsible for implementing the policy of proactive memory reclamation from 
periodically waking processes. Each of the services checks whether  the mechanism is 
active, whether the kernel thread being waited has a normal priority, and whether  the 
process has accumulated 30 seconds of wait time (PCB$L_ACC_WAITIME) since the 
last time its execution history was checked. In the case of a mult i threaded process, 
each kernel thread must  have a normal priority and be in HIB, LEF, or CEF state. If 
all the conditions are met, each service procedure calls EXE$CHK_WAIT_BHVR, in 
module RSE. 

EXE$CHK_WAIT_BHVR takes the following steps: 

, 

, 

It checks whether  the process has any outstanding direct I/O and, if so, returns 
immediately. Direct I/O completion is typically fast and is likely to change the 
process's scheduling state. 

It checks whether  the process has a high ratio of wait time to execution time since 
this routine was last called to check this process. If the process's accumulated CPU 
time is at least 1 percent of its wait time, the routine continues with step 5. 
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It tests whether  the process has disabled automatic working set adjustment  
(PCB$V_DISAWS in PCB$L_STS is set) or whether  the executive is deleting this 
process and its address space (PHD$V_NO_WS_CHNG in PHD$L_FLAGS is set). 
If either is true, EXE$CHK_WAIT_BHVR continues with step 5. 

Holding the MMG spinlock, it tries to reduce the process's working set size by 25 
percent. It does not alter the working set limit. 

It copies the accumulated CPU time from PHD$L_CPUTIME to P C B $ L  
CPUTIME_REF for use the next time EXE$CHK_WAIT_BHVR is executed. It 
clears PCB$L_ACC_WAITIME and returns. 

5.6 Lock Pages in Working Set System Services 
A process requests these system services to lock a virtual page into its process working 
set and thus prevent page faults from occurring on references to the page. Locking 
a page into the working set guarantees tha t  when a kernel thread of the process is 
current, the locked page is always valid. These services have obvious benefit for time- 
critical applications and other situations in which a program must  access code or data  
without incurring a page fault. 

These system services are also requested by process-based kernel mode routines to 
ensure the validity of code and data pages accessed above IPL 2. Page faults at 
IPLs above 2 are prohibited; if one occurs, the page fault handler  generates the fatal 
bugcheck PGFIPLHI. 

Pages locked into a process working set do not necessarily remain resident in physical 
memory when no kernel threads of the process are current; the entire working set 
might be outswapped. To guarantee residency of the pages, a process must  request  
either the $LCKPAGL64] system service or both the $LKWSETL64] and the Set 
Process Swap Mode ($SETSWM) system services. 

$LKWSET is the traditional service for locking pages into the working set list. $LK- 
WSET_64, added in OpenVMS Alpha Version 7.0, enables a process to lock a page 
whose address cannot be expressed in 32 bits. 

5.6.1 $LKWSET System Service 
The $LKWSET system service procedure, EXE$LKWSET in module SYSLKWSET, 
executes in kernel mode. It takes the following steps" 

1. It creates and initializes scratch space on the stack and raises IPL to 2. 

, 

1 

It tests the accessibility of the INADR argument  and maximizes the ACMODE argu- 
ment with the mode of the service requestor. 

If necessary and possible, EXE$LKWSET increases the working set limit to have 
sufficient extra dynamic entries to accommodate the pages to be locked and a page 
table page for each such page. 
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If the process has disabled working set limit adjustment, or if its working set 
limit is already larger than its quota, no increase is possible. As a result, 
MMG$LCKULKPAG may be able to lock only a limited number of pages. 

4. EXE$LKWSET calls MMG$CREDEL, in module SYSCREDEL, specifying 
MMG$LCKULKPAG, in module SYSLKWSET, as the per-page service-specific 
routine. Chapter 3 describes the memory management  stack scratch space, the 
actions of MMG$CREDEL, and its invocation of the specified service-specific 
routine. 

5. When MMG$CREDEL returns, EXE$LKWSET restores the previous IPL and 
returns to its requestor with the status from MMG$CREDEL. 

To lock a page into the working set, MMG$LCKULKPAG, with its alternative entry 
point MMG_STD$LCKULKPAG, takes the following steps: 

1. It tests whether the page is readable from the system service requestor's access 
mode. If the page is inaccessible, it returns the error status SS$_ACCVIO, which 
becomes the status returned by the system service. 

It acquires the MMG spinlock, raising IPL to IPL$_MMG. 

It examines the L3PTE that  maps the page. If the page or any of the higher level 
page table pages is not valid, MMG$LCKULKPAG stores the address of the page 
to be locked in PCB$Q_KEEP_IN_WS, releases the MMG spinlock, faults the page, 
resets PCB$Q_KEEP_IN_WS to -1 ,  and continues with step 2. 

It compares the page owner access mode with the mode of the system service 
requestor. If the page is owned by a more privileged mode, the requestor is not 
allowed to alter its state, and MMG$LCKULKPAG releases the MMG spinlock and 
returns the error status SS$_PAGOWNVIO. 

It tests whether the window bit is set in the L3PTE and, if so, immediately returns 
the success status SS$_WASSET. A virtual page whose L3PTE's window bit is set 
is always valid and is not described by a WSLE, so no further action is appropriate. 

MMG$LCKULKPAG examines the PFN$L_PAGE_STATE field in the page's PFN 
database record to determine if the page type is process or read-only global. If 
either, it continues with step 7. If the page is a writable global page from a 
memory-resident or Galaxywide global section, it immediately returns the success 
status SS$_WASSET. A virtual page from such a global section is always valid and 
is not described by a WSLE, so no further action is appropriate. 

If the page is not one of these types, it releases the MMG spinlock and returns 
the error status SS$_NOPRIV; a process is not permitted to lock any other type 
of page into its working set. In particular, it may not lock global writable pages 
because when a process is outswapped, the swapper must be able to remove global 
writable pages from the working set. The removal avoids any ambiguity at inswap 
concerning the location of the most recent copy of a global writable page. 

, 

, 

, 

, 

, 
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MMG$LCKULKPAG gets the working set list index (WSLX) for a process page 
from its PFN$L_WSLX field. WSLX information is not kept for a global page; 
instead, MMG$LCKULKPAG must scan the process's working set list to locate the 
entry for the page. 

MMG$LCKULKPAG examines the WSLE. If the page is already locked into the 
working set, the routine releases the MMG spinlock and returns the success status 
SS$_WASSET. 

Otherwise, it checks whether the page has been locked into memory and, if so, 
continues with step 10. If not, it checks that PHD$L_EXTDYNWS is at least 2 
(to allow for the page table page as well as the page being locked). This ensures 
that the process will have enough dynamic WSLEs after the page is locked into 
its working set. If not, it releases the MMG spinlock and returns the error status 
SS$_LKWSETFUL. 

It sets the WSL$V_WSLOCK bit in the WSLE of the newly locked page. 

If the page has already been locked into memory, it is within the user-locked 
region of the working set list, and MMG$LCKULKPAG continues with step 12. 
More typically, it must reorganize the working set list, pictured in Figure 5.2, so 
that the locked page's entry is in the user-locked region of the working set list, 
following the PHD$L_WSLOCK pointer. MMG$LCKULKPAG accomplishes this 
reorganization by exchanging the newly locked WSLE with the entry pointed to by 
PHD$L_WSDYN and incrementing PHD$L_WSDYN to point to the next entry in 
the list. If PHD$L_WSDYN pointed to a valid WSLE, it exchanges the contents 
of the PFN$L_WSLX_QW fields for the two valid pages; otherwise, it updates the 
PFN$L_WSLX_QW field for the newly locked page. 

MMG$LCKULKPAG increments PFN$W_PT_LCK_CNT in the PFN database 
record for the page table page mapping the locked page. If this is the first locked 
page mapped by this page table and the page maps no window pages, it also 
increments PHD$L_PTCNTLCK, the number of page table pages mapping locked 
WSLEs. 

It checks that PHD$L_WSNEXT is still pointing into the dynamic part of the 
working set list (and not at the former PHD$L_WSDYN, which is now in the 
user-locked region), moving it if necessary to point to the same WSLE as PHD$L_ 
WSLAST. 

It recalculates PHD$L_EXTDYNWS. 

It releases the MMG spinlock and returns to MMG$CREDEL. 
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5.6.2 $LKWSET_64 System Service 
The SLKWSET_64 system service procedure, EXE$LKWSET_64 in module SYS_ 
LKWSET_64, executes in kernel mode. $LKWSET_64 resembles the $LKWSET 
system service, but all its address and length arguments  are 64 bits. Thus it can be 
used to lock pages from P0, P1, or P2 space. EXE$LKWSET_64 takes the following 
steps: 

1. It checks the number  of arguments  with which the service was requested and, 
if incorrect, returns either the error status SS$_INSFARG or SS$_TOO_MANY_ 
ARGS. 

2. It checks that  output arguments are accessible and, if not, returns the error status 
SS$_ACCVIO. 

3. It maximizes the ACMODE argument.  

4. It rounds down the START_VA_64 argument  to the nearest  page boundary. It rounds 
up the LENGTH_64 to an integral number  of pages large enough to include the 
rounded-down start ing address and the ending address implied by the original 
START_VA_64 and LENGTH_64 a rguments .  

It raises IPL to 2 to block AST delivery. 

EXE$LKWSET_64 determines the address of the RDE corresponding to the START_ 
VA64 argument.  If none corresponds, it returns error status SS$_ACCVIO or SS$_ 
NOT_PROCESS_VA, depending on the argument 's  value. 

If necessary and possible, EXE$LKWSET_64 increases the working set limit to 
have sufficient extra dynamic entries to accommodate the pages to be locked and 
the maximum number of page tables to map them. A P0 or P1 space page could 
need an additional L3PT; a P2 space page could need an additional L2PT and 
L3PT. 

If the process has disabled working set limit adjustment,  or if its working set limit 
is already larger than its quota, no increase is possible. As a result, only a limited 
number of pages may be locked. 

EXE$LKWSET_64 loops, calling MMG_STD$LCKULKPAG for each page (see 
Section 5.6.1). If the region's addresses are ascending, it begins with the lowest 
address in the range to be locked. If the addresses descend, it begins with the 
highest address. 

It stores return information in the RETURN_VA_64 and RETURN_LENGTH_64 argu- 
ments. 

10. EXE$LKWSET_64 returns the status from MMG_STD$LCKULKPAG to its re- 
questor. 

~ 

6. 

. 

m 

11 
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5.7 Lock Pages in Memory System Services 
The operations of the $LCKPAGL64] system service are similar to those of the $LK- 
WSETL64] system service. However, the $LCKPAGL64] service guarantees perma- 
nent residency for the specified virtual address range in addition to performing an 
implicit working set lock of those pages. The pages remain resident until the pro- 
cess specifies them in an unlock page system service request. Because this operation 
permanently allocates a system resource, physical memory, it requires the privilege 
PSWAPM. 

$LCKPAG is the traditional service for locking pages into the working set list. $LCK- 
PAG_64, added in OpenVMS Alpha Version 7.0, enables a process to lock a page whose 
address cannot be expressed in 32 bits. 

5.7.1 $LCKPAG System Service 
Executing in kernel mode, the $LCKPAG system service procedure, EXE$LCKPAG 
in module SYSLKWSET, tests whether the current security persona has the privilege 
PSWAPM and, if not, returns the error status SS$ NOPRIV. It raises IPL to 2 and 
increases the working set limit as necessary and possible. 

It calls MMG$CREDEL, specifying MMG$LCKULKPAG as the per-page service- 
specific routine. MMG$LCKULKPAG is called with a flag that  specifies the page is to 
be locked into memory rather than into the working set. 

Although the results of requesting the $LKWSET and the $LCKPAG services are 
similar, the following differences exist: 

The WSLE of a page locked into memory has the WSL$V_PFNLOCK bit set rather  
than the WSL$V_WSLOCK bit. 

The PHD of a process that  maps a page locked into memory must be locked into 
memory itself to ensure the residency of the page table page mapping the locked 
page. 

�9 A global writable page that  is not permanently resident can be locked into memory, 
although it cannot be explicitly locked into the working set. 

�9 In locking a global page into memory, MMG$LCKULKPAG increments PFN$L_ 
GBL_LCK_CNT in its physical page's PFN database record. 

If this is the first time a particular global page is locked into memory or if this 
is a process page not in use as a buffer object, MMG$LCKULKPAG increments 
MMG$GL_PFNLOCK_PAGES to indicate one more PFN-locked page, and decre- 
ments PFN$GL_PHYPGCNT to indicate one less page of physical memory avail- 
able for general use. MMG$LCKULKPAG then calls EXE$CHKFLUPAGES, in 
module MEMORYALC, to confirm that  enough physical memory remains available 
for general use. 

342 



5.8 Unlock Pages System Services 

EXE$CHKFLUPAGES subtracts the minimum sizes of the free and modified page 
lists from PFN$GL_PHYPGCNT and checks that  the result  is large enough to 
accommodate a reasonably large inswap. If not, it re turns an error. In response 
to the error, MMG$LCKULKPAG decrements MMG$GL_PFNLOCK_PAGES; 
increments PFN$GL_PHYPGCNT; if the page is global, decrements PFN$L_GBL_ 
LCK_CNT; and returns the error status SS$_LCKPAGFUL. That error is passed 
back to the service requestor. 

5.7.2 $LCKPAG_64 System Service 
The $LCKPAG_64 system service procedure, EXE$LCKPAG_64 in module SYS_ 
LKWSET_64, resembles EXE$LKWSET_64 (see Section 5.6.2) with the following 
significant differences: 

�9 EXE$LCKPAG_64 tests whether  the current security persona has the privilege 
PSWAPM and, if not, returns the error status SS$_NOPRIV. 

�9 It calls MMG_STD$LCKULKPAG with a flag that  specifies the page is to be locked 
into memory rather  than into the working set. 

5.8 Unlock Pages System Services 
These system services unlock pages from either the working set or physical memory. 

$ULWSET and $ULKPAG are the traditional services for unlocking pages from the 
working set list and memory. $ULWSET_64 and $ULKPAG_64, added in OpenVMS Al- 
pha Version 7.0, enable a process to unlock pages whose addresses cannot be expressed 
in 32 bits. 

5.8.1 $ULWSET and $ULKPAG System Services 
The two 32-bit system service procedures are EXE$ULWSET and EXE$ULKPAG, 
both in SYSLKWSET. Both, executing in kernel mode, call MMG$CREDEL with 
MMG$LCKULKPAG as the per-page service-specific routine. Both execute at IPL 0; 
working set t r imming and adjustment do not interfere with unlocking pages. 

MMG[_STD]$LCKULKPAG is called with one flag that  specifies the operation is an 
unlock and a second flag that  specifies whether the page is to be unlocked from the 
working set or from memory. It takes the following steps to unlock each page: 

1. Its first steps are identical to steps 1 through 7 described for MMG$LCKULKPAG 
in Section 5.6.1. 

, MMG$LCKULKPAG examines the WSLE. If the page is not locked into the 
working set, the routine releases the MMG spinlock and returns the success status 
SS$_WASCLR. 
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3. If the page is a global page being unlocked from memory, MMG$LCKULKPAG 
decrements PFN$L_GBL_LCK_CNT. If the count goes to zero or if this is a process 
page being unlocked from memory, it decrements MMG$GL_PFNLOCK_PAGES, 
and if the page is not in use as a buffer object, it also increments PFN$GL_ 
PHYPGCNT. 

4. Otherwise, depending on the operation requested, it clears the appropriate WSLE 
bit (WSL$V_WSLOCK or WSL$V_PFNLOCK). 

5. If one of the lock bits is still set, it goes on to step 7. Otherwise, it decrements 
PHD$L_WSDYN and swaps the WSLE of the page being unlocked with the one 
pointed to by PHD$L_WSDYN, thus making the unlocked WSLE the first one in 
the dynamic region. If PHD$L_WSDYN pointed to a valid WSLE, it exchanges 
the contents of the PFN$L_WSLX_QW fields for the two valid pages; otherwise, it 
updates the PFN$L_WSLX_QW field for the newly unlocked page. 

MMG$LCKULKPAG decrements PFN$W_PT_LCK_CNT in the PFN database 
record of the page table page mapping the locked page. If the count goes to -1  
and PFN$W PT_WIN_CNT is a l so-1 ,  it also decrements PHD$L_PTCNTLCK, the 
number of page table pages mapping locked WSLEs. 

6. It recalculates PHD$L_EXTDYNWS. 

7. It releases the MMG spinlock and returns to MMG$CREDEL. 

5.8.2 $ULWSET_64 and $ULKPAG_64 System Services 
The two 64-bit system service procedures are EXE$ULWSET_64 and EXE$ULKPAG_ 
64, both in SYS_LKWSET_64. Their argument  validation resembles that  of 
EXE$LKWSET_64 (see Section 5.6.2). 

Each loops, calling MMG_STD$LCKULKPAG once per page with one flag tha t  specifies 
the operation is an unlock and a second flag that  specifies whether  the page is to be 
unlocked from the working set or from memory. 

Section 5.8.1 describes MMG_STD$LCKULKPAG's actions to unlock pages. 

5.9 Purge Working Set System Services 
A process requests these system services to remove all virtual pages in a specified 
address range from its working set. A process might request this service if a certain 
set of routines or data were no longer required. By voluntarily removing entries 
from the working set, a process can exercise some control over the working set list 
replacement algorithm, increasing the chances for frequently used pages to remain in 
the working set. 

OpenVMS requests this service on behalf of a process when it requests the $PRO- 
CESS_AFFINITY or $PROCESS_CAPABILITIES service to change its home resource 
affinity domain (RAD) and sets CAP$M_PURGE_WS_IF_NEW_RAF in the FLAGS 

argument.  

344 



5.9 Purge Working Set System Services 

$PURGWS is the traditional service for removing pages from the working set list. 
$PURGE_WS, added in OpenVMS Alpha Version 7.0, enables a process to remove 
pages from address ranges that cannot be expressed in 32 bits. 

The executive uses the $PURGWS system service as part of the image startup se- 
quence (see Chapter Image Activation and Exit) to ensure that a program starts its 
execution without unnecessary pages such as command language interpreter command 
processing routines in its working set. 

5.9.1 SPURGWS System Service 
The $PURGWS system service procedure, EXESPURGWS in module SYSPURGWS, 
runs in kernel mode. It takes the following steps: 

1. It creates and initializes the stack scratch space and raises IPL to 2. 

2. It calls MMG$CREDEL (see Chapter 3), specifying PURGWSPAG, in module 
SYSPURGWS, as the per-page service-specific routine. 

3. EXE$PURGWS returns the status from MMG$CREDEL to its requestor. 

PURGWSPAG immediately calls MMG$PURGWSSCN, in module SYSPURGWS, 
which takes the following steps: 

1. It acquires the MMG spinlock, raising IPL to IPL$_MMG. 

2. It scans the dynamic region of the working set list, examining each WSLE. 

If the WSLE is not valid or is locked into the working set or memory, or if 
the address of the associated virtual page does not fall within the boundaries 
specified by the system service requestor, MMG$PURGWSSCN goes on to the 
next entry. 

Otherwise, MMG$PURGWSSCN calls MMG$FREWSLX_64, described in 
Section 5.3.5, to take steps to release the WSLE and change the state of the 
page. 

3. When MMG$PURGWSSCN reaches the end of the dynamic region, it releases the 
MMG spinlock, restoring the entry IPL, and returns. 

5.9.2 SPURGE_WS System Service 
The $PURGE_WS system service procedure, EXESPURGE_WS in module SYS_ 
PURGWS_64, runs in kernel mode. 

It takes the following steps: 

1. It rounds down the START_VA_64 argument to the nearest page boundary. It rounds 
up the LENGTH_64 to an integral number of pages large enough to include the 
rounded-down starting address and the ending address implied by the original 
START_VA_64 and LENGTH_64 arguments. 

2. It raises IPL to 2 to block AST delivery. 
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3. It calls MMG_STD$PURGWSPAG_64, in module SYSPURGWS, which initializes 
the arguments  to call MMG$PURGWSSCN, described in Section 5.9.1. 

4. EXE$PURGE_WS restores the previous IPL and re turns  SS$_NORMAL. 

5.10 Keeping a Page in the Working Set List 
Occasionally it is desirable or necessary to fault a page into the working set and have 
it remain valid, perhaps for improved or more predictable performance. Code executing 
in kernel  mode at elevated IPL, however, has a different concern. Because a page fault 
at IPL 3 or above results in a PGFIPLHI fatal bugcheck, a code thread  executing at 
elevated IPL must  ensure the residency of all code, data, and linkage section pages it 
accesses. 

The issues related to the residency of part icular  pages in process and system working 
set lists include 

�9 Specifying the pages of interest  

�9 For elevated IPL execution, ensuring tha t  all relevant  pages are resident  

�9 Keeping the pages in the working set 

This section summarizes  the first issue briefly; its focus is on the others. 

Specifying the part icular  pages generally requires identifying the s tar t ing and ending 
addresses symbolically or identifying the s tar t ing address symbolically and specifying 
the length of the area of interest. How simple these steps are depends on whether  the 
area of interest  contains data, code, and its associated linkage section, or all three. 
It also depends on whether  the language in which the source modules are wri t ten  
supports such capabilities. 

In general, data  pages are easier to specify and can be identified through da ta  cell 
names at the beginning and end of the data. The organization of code wri t ten in any 
language cannot be taken for granted: a compiler may reorder code, convert routine 
invocations to in-line code, and so on. This makes it difficult to identify the boundaries 
of code to be made resident. Moreover, the linkage section associated with the code 
must  also be made resident. 

A number  of events can lead to replacement paging or the removal of pages from a 
process's working set list: 

�9 Execution in the process's context of a code thread of any access mode tha t  incurs 
page faults, whether  mainline code running in one or multiple kernel  threads,  a 
procedure in a shareable image, inner access mode service (Record Management  
Services, system service, or command language interpreter  callback), AST thread,  
or condition handler  

�9 Execution of a code thread tha t  directly locks an invalid page into memory or the 
working set list or indirectly locks buffer pages by request ing direct I/O operations 
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�9 Quantum-end automatic working set limit adjustment of a process with a current 
kernel thread 

�9 Swapper trimming of a process with no current kernel threads 

�9 Proactive memory reclamation from the working set of a process with long-waiting 
kernel threads or a periodically waking kernel thread about to go into a wait 

For a kernel thread to fault a page into its process's working set list and have it 
remain there, it must either ensure that  the page is not a candidate for replacement 
paging or prevent all the events previously listed that  lead to replacement paging. 

The most  straightforward measure, available in any access mode, is to lock the page 
with the $LKWSETL64] system service. As a result, the page's WSLE is placed in 
the user-locked region of the working set list and is not a candidate for replacement 
paging. The page remains in the working set list regardless of the scheduling state of 
kernel threads in the process and throughout any outswap and inswap. The only page 
type for which this mechanism fails is a global writable page. The executive prohibits 
locking global writable pages into the working set list to avoid ambiguity at inswap 
concerning the location of the most recent version of the page. To ensure the residency 
of a global writable page, a process must lock the page into memory. Note that  locking 
a global page into memory does not prevent process page faults for it. 

For kernel mode code, typically the issue is one of preventing any page fault during 
elevated IPL execution. Kernel mode code, whether running as part of an image or as 
part of the executive, may be able to request the $LKWSETL64] system service to lock 
pages into a process working set list. The $LKWSETL64] system service, however, 
cannot be used to lock pages into the system working set list. 

Code that runs at elevated IPL must also make its associated linkage section and any 
other data resident. Another issue for elevated IPL code is that  the compiler may 
generate calls to Run-Time Library or other language support routines. These routines 
must also be made resident and furthermore must be appropriate for execution in 
kernel mode at elevated IPL. 

OpenVMS Alpha provides two sets of MACRO-32 macros to facilitate locking P0 and 
P1 space code and linkage section pages into the working set list. One set is for use 
with image code intended to be locked for the duration of the image's execution. The 
other set is for use with code to be locked and unlocked. The two sets of macros should 
not be mixed in one image. 

The first set consists of the macros $LOCKED_PAGE_START and $LOCKED_PAGE 
END, which delimit the area to be locked by creating special program sections 
(PSECTs) for the code and its associated linkage section, and the macro $LOCKED_ 
PAGE_INIT, which should be invoked from within initialization code in the image to 
generate the appropriate $LKWSET requests. 

The other set of macros consists of $LOCK_PAGE and $UNLOCK_PAGE, which 
delimit the code to be locked. These macros can be invoked multiple times within an 
image. All delimited code is placed into a separate PSECT, and the linkage section 
associated with that  code is also placed into a separate PSECT. Code generated by the 
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$LOCK_PAGE macro makes $LKWSET requests for both the code and linkage section 
areas, and code generated by the $UNLOCK_PAGE macro makes the corresponding 
$ULWSET requests. 

These macros are described in more detail in OpenVMS MACRO-32 Porting and User's 
Guide. Both sets of macros are primarily intended for elevated IPL execution. Care 
must be taken to ensure that the delimited code does not call Run-Time Library or 
other procedures. The MACRO-32 compiler for OpenVMS Alpha generates calls to 
routines to emulate certain VAX instructions. An image that uses these macros must 
link against the system base image (using the/SYSEXE qualifier) to resolve references 
to emulation routine symbols with the routines supplied in a nonpageable executive 
image. These macros may not be suitable for all applications. 

Example 5.1 shows an example of how to lock code and linkage section PSECTs from a 
C program. 

Example 5.1 Locking C Code and Linkage into the Working Set 
$ 
$ CC /OBJECT=TEST /list=test /machine SYS$INPUT: 

#pragma module test_code "vl. 0" 

/* 

// Define the references to the linkage and code psects 
*/ 

#pragma extern_model save 
#pragma extern_model strict_refdef "$$C$LINKAGE_BEGIN" noshr 
void *linkage_begin ; 
#pragma extern_model restore 

#pragma extern_model save 
#pragma extern_model strict_refdef " C$LINKAGE_END" noshr 
void *ulinkage_end ; 
#pragma extern_model restore 

#pragma extern_model save 
#pragma extern_model strict refdef "$$C$CODE_BEGIN" shr 
void *code_begin ; 
#pragma extern_model restore 

#pragma extern_model save 
#pragma extern_model strict_refdef " C$CODE_END" shr 
void *code_end ; 
#pragma extern_model restore 

#include <stdio.h> 

void test routine() 
{ 
printf("Test Routine") ; 
) 

main (void) 
{ 
int *ip; 
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Example 5.1 (continued) Locking C Code and Linkage into the Working Set 

printf("The addresses of the linkage section are:\n"); 
printf(" begin: %08p end: %08p\n", 

&linkage_begin, &linkage_end) ; 

printf("The addresses of the code section are:\n"); 
printf(" begin: %08p end: %08p\n", 

& code_begin, & code_end) ; 

printf("The address of main(linkage) is: %08p\n", main); 
printf("The address of test_routine(linkage) is %08p\n", test_routine) ; 

Ip = (int*) &main; 
printf("The address of main(code) is: %08p\n", (void *) ip[2] ); 

ip = (int*) &test_routine ; 
printf("The address of test_routine(code) is %08p\n", (void *) ip[2] ) ; 

return 1 ; 
} 

$ 
$ LINK /MAP=TEST_CODE /CROSS/FULL/EXE=TEST_CODE TEST - 

+ SYS$INPUT:/OPT 
! 
! Match code and linkage section psect attributes 

psect= $$C$CODE_BEGIN, PIC,CON, REL,LCL, SHR, EXE,NOWRT,NOVEC, MOD 
psect= C$CODE_END, PIC,CON,REL,LCL, SHR, EXE,NOWRT,NOVEC, MOD 
psect=$$C$LINKAGE_BEGIN,NOPIC,CON, REL,LCL,NOSHR,NOEXE,NOWRT,NOVEC,MOD 
psect= C$LINKAGE_END, NOPIC, CON, REL, LCL, NOSHR, NOEXE, NOWRT, NOVEC, MOD 
S 
$ 

The example program creates variables in specifically named PSECTs. The linker 
collects PSECTs with identical attr ibutes into the same image section; it orders the 
PSECTs alphabetically by their names. The PSECT names specified by the program 
are names that  will sort before and after the s tandard C compiler code and linkage 
section PSECT names. The example specifies linker options to give the delimiting 
PSECTs attr ibutes identical to those of the s tandard C compiler code and linkage 
section PSECTs. 

The result is that  the variables are at the beginning and end of the code and linkage 
section image sections, and their addresses can be supplied as start ing and ending 
addresses to the $LKWSET service. 

In OpenVMS versions prior to OpenVMS Version 7.0, kernel mode code used bit 
PHD$V_NO_WS_CHNG as an alternative mechanism. The general sequence was 
to raise IPL to 2, set the bit, and fault the page or pages into the working set list. 
Setting this bit blocked swapper trimming, automatic working set limit adjustment,  
and proactive memory reclamation. This bit still exists, but with limited use: it is set 
only by process deletion code that  runs after the process has been reduced to a single 
kernel thread, and it is tested only by the routines tha t  initiate swapper t r imming 
and automatic working set limit adjustment. Because this mechanism does not block 
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working set replacement paging, it could not be extended to a process with multiple 
kernel threads. 

The PHD$V_NO_WS_CHNG mechanism has been superseded by a mechanism tha t  
involves fields PCB$Q_KEEP_IN_WS and PCB$Q_KEEP_IN_WS2. These fields are 
initialized to an invalid process address , -1 ,  and reset to that  value after use. Kernel 
mode code records in these fields the start ing and ending addresses of a range of 
virtually contiguous addresses that  must  remain in the working set. It then faults 
the page or pages into the working set, acquires the MMG spinlock to prevent further 
changes to the working set, and writes -1  to the fields to reset them. Use of the fields 
is synchronized through the inner mode semaphore (see Chapter Kernel Threads); 
only one kernel thread at a time can hold the semaphore and use them. Use of this 
mechanism is reserved to Hewlett-Packard Company; any other use is unsupported. 

MMG$FREWSLE, the routine that  removes entries from the working set list (see Sec- 
tion 5.3.1), reads these fields: if a page to be removed from the working set falls within 
the addresses in these fields, it leaves that  page in the working set. MMG$FREWSLE 
is used for replacement paging, swapper trimming, automatic working set limit re- 
duction, and proactive memory reclamation. Typically, it does not execute holding the 
inner mode semaphore. Two different methods are used to synchronize its reading the 
fields with a kernel thread's writing them: 

�9 Acquiring the MMG spinlock 

MMG$FREWSLE executes holding the MMG spinlock. Kernel mode code that  uses 
the PCB$Q_KEEP_IN_WS mechanism, such as MMG$LCKULKPAG (see Section 
5.6.1), can acquire the MMG spinlock before writing the fields to block concurrent 
execution by MMG$FREWSLE. 

Testing bit PHD$V_FREWSLE_ACTIVE in PHD$L_FLAGS 

MMG$FREWSLE sets bit PHD$V_FREWSLE_ACTIVE and executes a memory 
barrier before reading PCB$Q_KEEP_IN_WS and PCB$Q_KEEP_IN_WS2 and 
clears the bit when done. MMG$IOLOCK, for example, called to lock a direct 
I/O buffer into memory (see Chapter I! 0 System Services), uses this method. It 
first writes the PCB fields and then tests whether the process has multiple kernel 
threads and, if so, executes a memory barrier  and tests PHD$V_FREWSLE_ 
ACTIVE. If the bit is set, it spins waiting for it to be cleared by MMG$FREWSLE 
before faulting the page into the working set. 

Use of this mechanism is reserved to Hewlett-Packard Company; any other use is 
unsupported. 

None of these alternatives is suitable for keeping pages in the system working set list, 
pages such as paged pool or pageable data in executive images. The $LKWSETL64] 
system service rejects an at tempt to lock system pages. The PCB$Q_KEEP_IN_WS 
mechanism is also not suitable because multiple threads of execution executing kernel 
mode code in multiple processes could concurrently a t tempt  to lock system pages, and 
there is nothing to serialize their uses of the fields. 
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For kernel mode code that  needs to fault S0/S1 space pages into the system working 
set list and have them remain there, two routines are provided. (Currently, all uses 
of $2 space are nonpageable.) The routine MMG$LOCK_SYSTEM_PAGES, in module 
LOCK_SYSTEM_PAGES, can lock pages into the system working set. For each page 
to be locked, the routine takes the following steps: 

1. It faults the page. 

2. It acquires the MMG spinlock. 

3. It tests whether the page is still valid and, if not, releases the spinlock and returns 
to step 1. 

4. It increments PFN$L_SHRCNT in the PFN database record for the physical page 
occupied by the virtual page, gets the WSLX from the PFN$L_WSLX_QW field, 
and sets the WSL$V_WSLOCK bit in the WSLE in the system working set list. 

5. It releases the MMG spinlock. 

When the caller no longer requires the pages to be resident, it calls MMG$UNLOCK 
SYSTEM_PAGES, in module LOCK_SYSTEM_PAGES, which clears the WSL$V_ 
WSLOCK bit and decrements the PFN$L_SHRCNT field for each page. 

Locking many pages into a working set list is not always possible or desirable. In 
cases where elevated IPL execution is not an issue, a process can do the following to 
minimize page faults once the desired pages are in the working set: 

�9 Reduce the chance of swapper tr imming by entering the DCL command SET 
WORKING_SET/QUOTA=authquota and/EXTENT=authquota,  where authquota 
is the authorized normal maximum working set limit. Unless the process is about 
to be outswapped, this prevents first-level swapper trimming by ensuring that  the 
working set limit is not above the authorized maximum limit. A process about to 
be outswapped may have its working set size reduced to SWPOUTPGCNT. 

�9 Disable automatic working set limit adjustment and second-level swapper trim- 
ming by entering the DCL command SET WORKING_SET/NOADJUST. This 
also blocks proactive memory reclamation from a process whose kernel thread or 
threads are classified as periodically waking. 

�9 Lock itself into the balance set by requesting the Set Process Swap Mode 
($SETSWM) system service in case, as a result of its execution characteristics, 
it is classified as a long-waiting process and becomes subject to proactive memory 
reclamation. 

* Do not enable multiple kernel threads in the process and do execute a constrained 
sequence of already resident code that  touches already resident data and linkage 
section pages. In general, such code must block AST delivery, cause no exceptions, 
signal no conditions, and call no procedures outside the address space already 
resident. 

351 



Working Set List Dynamics 

5.11 Relevant Source Modules 
Source modules described in this chapter include 

[C LIUTL] SETMISC .B32 
[LIB]UAFDEF.SDL 
[LIB]WSLDEF.SDL 
[LOGIN] INITUSER.B32 
[SYS] LOCK_SYSTEM_PAGES.MAR 
[SYS] PAGEFAULT.MAR 
[SYS]PHDUTL.MAR 
[SYS]RSE.MAR 
[SYS] SYS_LKWSET_64. C 
[SYS] SYS_PURGWS_64. C 
[SYS]SYSADJWSL.MAR 
[SYS] SYSLKWSET.MAR 
[SYS]SYSPURGWS.MAR 
[SYS] TB I_RO UTINE S. MAR 
[SYSBOOT]SYSBOOT64.B64 
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Chapter 6 
The Swapper 

A t i m e  to c a s t  a w a y  s t o n e s  a n d  a t i m e  to g a t h e r  s t o n e s  t o g e t h e r  . . . 

Ecclesiastes 3:5 

The amount of physical memory on the system is not a hard limit to the number of 
processes in the system. The OpenVMS Alpha operating system effectively extends 
physical memory by keeping a subset of active processes resident. It maximizes the 
number of such processes by limiting the number of pages that  each process has in 
memory at any given time. Processes not resident in memory reside on mass storage 
in swap files; that  is, they are outswapped. 

The swapper process is the systemwide physical memory manager. Its responsibilities 
include maintaining an adequate supply of physical memory and ensuring that  the 
highest priority computable kernel threads are resident in memory. 

This chapter summarizes the top-level flow through the swapper process and concen- 
trates on its inswap and outswap operations. Chapter 4 describes how the swapper 
writes modified pages to their backing store. 

6.1 Overview 
This section reviews some basic swapper concepts. 

6.1.1 Swapper Responsibilities 
The swapper has several main responsibilities: 

�9 Ensuring that  the balance set contains the most important processes 

�9 Maintaining a minimum free page list size 

�9 Maintaining a maximum modified page list size 

Its first responsibility is to ensure that  the currently resident kernel threads are the 
highest priority computable kernel threads in the system. When a nonresident kernel 
thread becomes computable, the swapper must bring its process back into memory if 
the kernel thread's priority and the available memory allow. 
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The swapper maintains the number of free pages (the sum of pages on the free and ze- 
roed page lists) above the threshold established by the SYSGEN parameter  FREELIM. 
Free physical pages are needed for resolving page faults and inswapping processes 
with computable kernel threads. The swapper reclaims memory to keep the number  
of free pages above FREELIM by means of four operations, described in more detail in 
subsequent sections: 

�9 The swapper deletes process headers (PHDs) of already deleted processes. 
It outswaps any PHDs and page tables that  are associated with previously 
outswapped process bodies and that  are eligible for outswap. 

2. It calls the modified page writer routine to write modified pages. 

3. It shrinks the working sets of one or more resident processes. 

, If necessary, the swapper selects an eligible process for outswap, shrinks its 
working set, and removes that  process from memory. The table that  determines 
outswap selection also determines the order in which processes are selected for 
working set reduction. 

The swapper stops reclaiming pages when the number of free pages exceeds the 
SYSGEN parameter  FREEGOAL. 

The swapper ensures that  there are fewer pages on the modified page list than the 
threshold established by the SYSGEN parameter  MPW_HILIMIT. When the modified 
page list grows above this limit, the swapper calls the modified page writer routine 
to write the contents of some modified pages to their backing store and to move the 
physical pages to the free page list. 

6.1.2 System Events That Trigger Swapper Activity 
The swapper spends its idle time hibernating. Executive components that  detect a 
need for swapper activity wake the swapper by calling routine SCH$SWPWAKE, in 
module RSE. In addition, SCH$SWPWAKE is called once a second from system timer 
code. 

SCH$SWPWAKE performs a series of checks to determine whether there is a real 
need for the swapper to run. If so, it awakens the swapper. If not, it simply returns. 
Performing these checks in SCH$SWPWAKE rather  than in the swapper process itself 
avoids the overhead of two needless context switches. 

Table 6.1 lists the system events that  trigger a possible need for swapper activity, the 
module containing the routine that  detects each need, and the action the swapper 
takes in response. 
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Table 6.1 Events  That May Cause  the  Swapper  to Be Awakened  

System 
Event 

Routine Name Swapper 
(Module) Action 

Kernel thread that is 
outswapped becomes 
computable 

Quantum end 

Modified page list 
exceeds upper limit 

Free page list drops 
below low limit 

Balance set slot of 
deleted process becomes 
available 

PHD reference count 
goes to zero 

Powerfail recovery 

System timer subroutine 
executes once a second 

SCH$CHSE 
(RSE) 

SCH$QEND 
(RSE) 

MMG$DALLOCPFN, 
MMG$INS PFNH/T 
(ALLOCPFN) 

MMG$REM_PFN[H] 
(ALLOCPFN) 

DELETE_IN_SYS_ 
CONTEXT 
(SYSDELPRC) 

MMG$DECPHDREF[1] 
(PAGEFAULT) 

EXE$RESTART 
CONT 
(POWERFAIL) 

EXE$TIMEOUT 
(TIMESCHDL) 

The swapper attempts to make its 
process resident. 

The swapper may be able to perform an 
outswap previously blocked by initial 
quantum flag setting or kernel thread 
priority. 

The swapper writes modified pages. 

The swapper increases the free page 
count, taking the steps summarized in 
Section 6.1.1. 

The swapper can delete the PHD and 
may be able to perform a previously 
blocked inswap. 

The swapper can outswap a PHD 
and page tables to join the previously 
outswapped process body. 

The swapper queues a power recovery 
AST to any process that requested one. 

The swapper is awakened if there is any 
work for it. 

The swapper  can be awakened  in another,  more indirect  way: clearing the cell t ha t  
contains the  modified page list high l imit  so t ha t  a subsequent  tes t  for w h e t h e r  
the list size exceeds its high l imit  will fail. The rout ine MMG$PURGE_MPL,  in 
module WRTMFYPAG, uses this method.  This routine,  called to reques t  the  wr i t ing  of 
modified pages,  is described in Chap te r  4. 

6.1.3 Swapper Implementation 
The swapper  is implemented  as a separa te  process whose single kernel  t h r ead  has  a 
priori ty of 16, the lowest real- t ime priority. I t  is selected for execution like any  other  
kernel  t h r ead  in the system. 

The swapper  executes ent i re ly  in kernel  mode. All swapper  code resides in sys tem 
space. Except  for some ini t ial izat ion code, all swapper  code is in module SWAPPER. 
The swapper ' s  s tack and almost  all its da ta  are  also in sys tem space. The swapper  
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has one page of P1 space to eliminate the need for a number  of special-case checks for 
swapper process context. 

With the removal of process page tables from system space in OpenVMS Alpha Version 
7.0, the swapper  has no vir tual  access to another  process's page tables. In the course 
of inswap and outswap, it therefore temporari ly adopts the address space of the ta rge t  
process to access its page tables. That  all its code and most of its data  are in system 
space enables the swapper to access them from any set of process page tables. 

The swapper serves as a convenient process context for several system functions. 
In particular, during system initialization it performs those initialization tasks  tha t  
require process context and must  be performed prior to the creation of any other  
process, for example, initializing paged pool and creating the SYSINIT process. Chap- 
ter  Operating System Initialization and Shutdown describes these functions of the 
swapper. 

In addition, the file system uses the swapper as a process context for the execution of 
certain asynchronous system trap (AST) procedures. Clusterwide file system cache co- 
herency and volume locking are implemented through system-owned file system locks 
(see Chapter  Lock Management and Appendix Lock and Resource Use by OpenVMS 
Components). When one VMScluster node's lock blocks a second node's progress, the 
second requests execution of a blocking routine on the first. Running in system context 
on the first node, the blocking routine queues an AST to the swapper process. Running 
in process context on the first node, the AST procedure can request  s tandard  system 
services to convert the associated lock to a less restrictive mode or dequeue it. 

6.2 Swapper Use of Memory Management Data Structures 
Chapter  2 describes the memory management  data  s t ructures  used by both the page 
fault handler  and the swapper. The discussion here reviews those s tructures and adds 
descriptions of the s tructures used exclusively by the swapper. 

6.2.1 Process-Private Structures 
The information used by the swapper in managing the details of inswapping or 
outswapping is contained in the following structures:  

�9 Working set list of the process to be outswapped or inswapped 

�9 Process-private page tables 

�9 Process header  BAK array  

The working set list describes the portion of a process's vir tual  address space tha t  mus t  
be wri t ten to the swap file or otherwise dealt  with when the process is outswapped. 
When the process is inswapped, the working set list describes the process pages in the 
swap file. The swapper 's  scan of the working set list at outswap is discussed in Section 
6.5. 
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The working set list does not supply the swapper with all the information necessary 
to outswap a process. Other information about a virtual page is contained in its page 
table entry (PTE) or in the page frame number (PFN) database record for that  physical 
page. Each working set list entry (WSLE) effectively points to a PTE that  contains 
a PFN. When outswapping, the swapper copies the PTE contents to a quadword 
array called the swapper map (see Section 6.2.2). It then inserts the contents of the 
PFN$Q_BAK field for this physical page into the PTE, dissociating the process from 
the physical memory that  its virtual page occupied. 

In the course of outswapping, the swapper links the process's level 2 page tables 
(L2PTs) and level 3 page tables (L3PTs) together using first the PFN$Q_BAK array 
elements and then the PTEs that  map the page tables (see Section 6.5.3.5). 

PHD pages are also part of a process's working set. These pages reside in system 
space; system space level 3 page table entries (L3PTEs) map the balance set slot in 
which the PHD resides. As part of outswapping, the swapper dissociates the PHD 
pages from their L3PTEs so that  it can reuse the balance set slot. Thus, unlike those 
of process pages, PHD pages' L3PTEs are not available to hold these pages' backing 
store addresses while they are outswapped. 

Instead, when a process is outswapped, the contents of the PFN$Q_BAK field for each 
PHD page currently in the working set are stored in the corresponding array element 
in the PHD page BAK array (see Chapter 2). When the process is inswapped, the PHD 
page array can be scanned and the BAK contents copied from the array back into the 
PFN$Q_BAK fields of the PFN database records for the physical pages that  contain 
the PHD. 

Entries representing the process's page tables can be scattered throughout the working 
set list. As the swapper scans the working set list to prepare the process body for 
outswap, it links the page tables into lists through the low longwords of their PFN$Q_ 
BAK fields: each page table's PFN$Q_BAK contains the working set list position, or 
WSLX, of the next page table in the list. 

The swapper follows the chains in preparing the page tables for outswap and, subse- 
quently, in reestablishing the process's page tables after inswap. Sections 6.5.3.5 and 
6.6.3 have more information. 

6.2.2 Swapping I/O Data Structures 
At system initialization, the swapper allocates physical pages for the swapper map 
and system space L3PTEs to map it. The swapper map is an array of quadwords 
whose address is stored in the global cell SWP$GL_MAP. The number of quadwords in 
the array is the number of pages equivalent to the value of the SYSGEN parameter  
WSMAX, which is in units of pagelets. 

The swapper map is a pseudo page table. It describes the working set of a process to 
be outswapped or inswapped. Each entry represents one page in the working set. The 
swapper map can describe only one outswap or one inswap operation at a time. 
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At outswap, for each page in the working set, the swapper reads the PTE that  maps 
it and stores the PFN of that  page in an element of the swapper map. It passes the 
address of the beginning of the swapper map to the I/O system as the system virtual 
address of the L3PTE that  maps the first page of the I/O buffer. The swap image 
is output from these pages to the swap file. Thus, the swapper map transforms a 
collection of virtually noncontiguous pages into virtually contiguous pages that  can be 
transferred in one or more I/O requests. 

At inswap, the swapper allocates physical pages of memory for the working set being 
inswapped and records their PFNs in the swapper map. It passes the address of the 
beginning of the swapper map to the I/O system as the system virtual address of the 
L3PTE that maps the first page of the I/O buffer. The swap image is input into these 
pages. As the swapper rebuilds the process's working set list and page tables, it copies 
the PFN from each swapper map entry to the appropriate system or process PTE. 

Like the page fault handler, the swapper makes standard I/O requests. During system 
initialization, it allocates an I/O request packet (IRP) to be used for swap I/O. Because 
most disk drivers execute as kernel processes (see Chapter Software Interrupts), the 
swapper also allocates a kernel process block and physical memory for a kernel process 
stack. The preallocation prevents any possible deadlock when an outswap is requested 
to free memory because there are not enough free pages. 

To perform an inswap or outswap, the swapper initializes some of the IRP fields that  
will be interpreted in a special manner  by the I/O postprocessing routine. It then calls 
one of the swapper I/O entry points in module SYSQIOREQ (EXE$BLDPKTSWPR 
or EXE$BLDPKTSWPW) that  fills in an appropriate function code and queues the 
packet to the appropriate disk driver. Tables 4.2 to 4.4 show how the IRP is used by 
the swapper for its I/O activities. 

As described in Chapter 4, the swapper also uses preallocated IRPs for modified page 
writing. 

Certain swapper operations complete asynchronously. The swapper maintains two bits 
in the cell SCH$GL_SIP as signals of ongoing operation: when set, SCH$V_SIP means 
that  an inswap or outswap is in progress and is described by the swapper map; when 
set, SCH$V_MPW means that  modified page writes are in progress. 

6.2.3 Swap File Data Structures 
The system maintains a page file control block for each page and swap file in the sys- 
tem. Figure 2.31 shows the layout of this data structure and describes its fields. Both 
page and swap files can be used for swapping if SYSGEN parameter  NOPGFLSWP is 
clear. If it is set, only swap files can be used for swapping. By default it is clear. 

During system initialization, the SYSINIT process opens the primary swap file 
SYS$SPECIFIC:[SYSEXE]SWAPFILE.SYS, if it exists, and initializes its page file 
control block. When any additional swap file is installed (with the SYSGEN command 
INSTALL), SYSGEN initializes its page file control block. 
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In early versions of VAX VMS, the executive required that  there be a swap slot large 
enough to outswap the process at its current size, up to the maximum of its authorized 
quota. When a process was created, space for its working set was assigned in the first 
swap file with enough free space. When the process working set grew too large for the 
swap space, a replacement swap slot was allocated. When the working set limit was 
adjusted at image reset, a smaller swap slot was allocated. Each swap slot consisted of 
virtually contiguous blocks within a single swap file. 

In VAX VMS Version 5, swap space allocation changed considerably, reflecting the 
fact that  processes are outswapped relatively infrequently and that  they are typically 
outswapped with shrunken working sets. Swap space is not assigned until a process is 
selected for outswap, subsequent to any swapper trimming. The executive attempts to 
allocate virtually contiguous space in a single swap or page file. If that  fails, however, 
it allocates multiple file extents in a number of swap and page files. (A file extent is a 
group of consecutively numbered logical blocks.) This approach requires less dedicated 
swap file space than did early VAX VMS versions and results in less fragmentation of 
swap and page files. The overhead of allocating and deallocating seldom-used swap 
space has been eliminated. 

Based on VAX VMS Version 5, the OpenVMS Alpha executive allocates swap space in 
a similar manner; the one difference is that  swap space is allocated in units of pages 
rather than disk blocks. 

When a process is outswapped, its process control block (PCB) remains resident. 
In particular, two fields in the PCB of an outswapped process contain information 
necessary to inswap the process: PCB$L_WSSWP, the location of its swap space, and 
PCB$L_SWAPSIZE, the low 31 bits of which represent the swap space's size in pages. 

The value in PCB$L_WSSWP has several interpretations, depending on the value in 
PCB$L_SWAPSIZE: 

�9 When a process is first created, its PCB$L_WSSWP is zeroed to indicate to the 
swapper that  this process must  be initialized from the shell. 

�9 The high-order bit set in PCB$L_SWAPSIZE indicates that  the swap space consists 
of a single extent. The upper byte of PCB$L_WSSWP is a longword index into 
the page-and-swap-file vector (see Figure 2.31). The indexed element of the array 
contains the address of the page file control block that  describes the process's swap 
file. The other three bytes specify the starting page number of the swap space. 

�9 If the high-order bit of PCB$L_SWAPSIZE is clear, PCB$L_WSSWP contains 
the system virtual address of a nonpaged pool data structure called a page file 
map (PFLMAP). Whenever the swap space consists of more than one extent, the 
swapper allocates a PFLMAP and initializes one pointer for each extent. 

Figure 6.1 shows the layout of a PFLMAP. PFLMAP$L_PAGECNT is the total number 
of pages described in all the PFLMAP's pointers. PFLMAP$W_SIZE and P F L ~ . P $ B _  
TYPE are the standard dynamic data structure fields. A PFLMAP has space for 
64 pointers. PFLMAP$B_ACTPTRS is the number of pointers actually in use. The 
pointers begin at offset P F L ~ $ Q _ P T R .  
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Figure 6.1 Layout of a Page File Map (PFLMAP) 
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Each pointer is a quadword. Its first longword contains a swap file index and start ing 
page number, just  like the contents of PCB$L_WSSWP for a single-extent swap space. 
The second longword contains the number of pages in the extent. Bit 31 is set in the 
second longword of the last pointer to flag it as the end. 

In the case of a single-extent swap space, PCB$L_SWAPSIZE contains the size of the 
slot, with bit 31 set to indicate it is the only pointer. Thus, the executive can treat  the 
quadword beginning at PCB$L_WSSWP as a pointer with the same form as one in a 
PFLMAP. 

Figure 6.2 shows the relations among the data structures involved in swap file use and 
also the structure of a single-extent swap space. The upper byte of PCB$L_WSSWP 
indexes the page-and-swap-file vector array element that  contains the address of the 
page file control block for that  swap file. The page file control block field PFL$L_ 
WINDOW contains the address of the window control block (WCB) describing the 
location of the swap file on a mass storage medium. The field WCB$L_ORGUCB 
contains the address of the unit control block (UCB) for that  device. 

Within the swap file, the process's slot begins at the page whose number is in the low 
three bytes of PCB$L_WSSWP. It must contain room for the PHD, process-private 
page tables, and the process body (the P0, P1, and P2 space pages belonging to the 
process). The total size of the swap space is contained in PCB$L_SWAPSIZE. It is the 
smallest multiple of system cell SWP$GW_SWPINC large enough to accommodate the 
process's working set size, which is the sum of PCB$L_PPGCNT and PCB$L_GPGCNT, 
its process-private and global page counts. During system initialization, SWP$GW_ 
SWPINC is set to the same value as the modified page write cluster factor, SYSGEN 
parameter MPW_WRTCLUSTER. 

The field PCB$L_APTCNT contains the number of pages of space reserved for the PHD 
and page tables. This field has no meaning for a resident process; the swapper calcu- 
lates its value when scanning the working set list of a process about to be outswapped. 
They are positioned in the following order: PHD pages, level 1 page table (LIPT), 
L2PTs, and L3PTs. 
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Figure  6.2 S w a p  Fi le  D a t a b a s e  

UCB ~ PFL 

Identifies 
device 

containing 
swap file 

ORGUCB WINDOW 

T T 

L__  

pages L 

i 

PHD 
(Fixed part, working set list, 

process section table) 

Active Page Tables 

Process Body (P0, P1, and P2 pages) 

Swap File 

MMG$GPQ_PAGE_SWAP_VECTOR 
I- 

Page--and-Swap- 
File Vector 

-t 

A • 

STS I PCB$V_RES = 0 

APTCNT I 

SWAPSIZE 
Bit 31 = 1 

T T 

PCB$L_SWAPSIZE 
pages 

6.3 Swapper Main Loop 
The swapper does not determine why it was awakened. Every time it is awakened, it 
tends to all the tasks for which it is responsible. The main loop of the swapper consists 
of the following steps: 

1. It calls local routine BALANCE, which tests the number of free pages. 

If there are sufficient free pages, but there are deleted PHDs to clean up, 
BALANCE calls local routine OUTSWAP to clean up a deleted PHD. 
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m If there are insufficient free pages and the size of the modified page list is 
large enough, BALANCE requests the writing of modified pages to make up 
the deficit; otherwise, it calls OUTSWAP, which may trigger the shrinking of 
process working sets in addition to cleaning up a deleted PHD and possibly 
outswapping a process. 

Section 6.3.1 describes BALANCE in more detail. 

2. The swapper calls the modified page writer routine, MMG$WRTMFYPAG, in 
module WRTMFYPAG, which initiates modified page writing in response to any 
pending requests. For example, if the size of the modified page list exceeds its 
current upper limit, modified pages are writ ten until the size of the list falls below 
the SYSGEN parameter  MPW_LOWAITLIMIT. Chapter 4 describes the modified 
page writer. 

3. The swapper calls local routine SWAPSCHED to identify the highest priority 
computable outswapped kernel thread. If there is none, 8WAPSCHED returns. 
Otherwise, it calculates the size of that  process's working set and tests whether  
there are enough free pages to accommodate it without reducing the number  of 
free pages below its minimum, SYSGEN parameter  FREELIM. 

n If there are enough pages, SWAPSCHED calls local routine INSWAP (see 
Section 6.6) to initiate the inswap. 

If there are not enough pages, SWAPSCHED calls local routine OUTSWAP (see 
Section 6.3.3) to make up the free page deficit. 

Section 6.3.2 discusses SWAPSCHED in more detail. 

4. Because the swapper is a system process that  executes fairly frequently, it is a 
convenient vehicle for testing whether a powerfail recovery has occurred and, if 
so, notifying all processes that  have requested power recovery AST notification 
through the Set Power Recovery AST ($8ETPRA) system service. This mechanism 
is currently unused because of lack of hardware support for powerfail recovery. 

5. Finally, the swapper puts itself into the hibernate state, after checking its wake 
pending flag. If any thread of execution, including the swapper itself in one of its 
routines, has requested swapper activity since the swapper began execution, the 
hibernate is skipped and the swapper goes back to step 1. 

6.3.1 The BALANCE Routine 
Figure 6.3 shows the basic decisions and flow of the B A I J ~ C E  routine. In the figure, 
FREECNT refers to the contents of SCH$GL_FREECNT, the sum of the number  
of pages on the free and zeroed page lists, and MFYCNT refers to the contents of 
8CH$GL_MFYCNT, the number  of pages on the modified page list. The numbers in 
the figure correspond to those in the following list: 
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BALANCE takes the following steps: 

O BALANCE acquires the MMG and SCHED spinlocks, raising interrupt priority 
level (IPL) to IPL$_MMG. 

e It subtracts the desired size of the free page list, the SYSGEN parameter  FREE- 
GOAL, from the number of free pages (the contents of SCH$GL_FREECNT). It 
stores the difference in R3 as its working copy of the free page deficit. If the 
number of free pages is larger than FREEGOAL, BALANCE goes on to step 6. 

O If the number of free pages is smaller than FREEGOAL, BALANCE tests whether  
modified page writing is already in progress. If it is, BALANCE checks whether  
enough modified pages are being written to make up the difference between the 
number of free pages and SYSGEN parameter  FREEGOAL. (The number of free 
pages will be replenished to a target size of FREEGOAL pages.) 

If so, it continues with step 6. 

If not, it continues with step 8. 

O If modified page writing is not in progress, BALANCE tests whether the modified 
page list contains as many pages as the SYSGEN parameter  MPW_THRESH. 
If the threshold has been reached, BALANCE further tests that  the difference 
between the list's current size and its low limit (the SYSGEN parameter  MPW_ 
LOLIMIT) is large enough to satisfy the deficit. That is, the modified page list 
must contain enough pages to pass both tests before the swapper can replenish the 
free page list from it. If the modified page list is not large enough, BALANCE goes 
to step 8. 

O If the modified page list is large enough, BALANCE calls MMG$PURGE_MPL, in 
module WRTMFYPAG, to request that  enough pages be written from the modified 
page list to make up the free page deficit. (Chapter 4 describes MMG$PURGE_ 
MPL and the modified page writer.) BALANCE releases the spinlocks and returns. 

O BALANCE tests whether there are any PHDs belonging to deleted processes from 
which to reclaim memory and, if so, clears R3 and continues with step 8. 

@ If there are no deleted PHDs, BALANCE tests bit 1 in SYSGEN parameter  MMG_ 
CTLFLAGS to see if the mechanism known as trolling is enabled. If trolling is 
enabled, BALANCE tests whether there are fewer free pages than FREEGOAL 
and whether enough time has elapsed since the last troll attempt. If both are true, 
it initializes R3 to 1 to indicate that  OUTSWAP should troll for a suitable process 
to outswap proactively. 

Q BALANCE tests and sets SCH$V_SIP in SCH$GL_SIP. If the swapper already has 
an inswap or outswap in progress, BALANCE releases the spinlocks and returns. 

O If no swap I/O is in progress, BALANCE transfers to routine OUTSWAP, with R13 
a copy of R3 and SWP$GB_ISWPRI set to zero. Section 6.3.3 discusses OUTSWAP 
and the meaning of its arguments. 
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Figure 6.3 BALANCE Operations 
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6.3 Swapper Main Loop 

6.3.2 The SWAPSCHED Routine and Selection of Inswap Process 
To select the outswapped process with the highest priority computable kernel thread, 
SWAPSCHED takes the following steps: 

1. It acquires the MMG spinlock. 

2. It tests and sets bit SCH$V_SIP in SCH$GL_SIP. If the bit was already set, 
indicating that  the swapper map is in use, SWAPSCHED releases the spinlock and 
returns. 

Otherwise, it acquires the SCHED spinlock to synchronize access to the scheduling 
database. 

3. It selects the highest priority nonempty computable outswap (COMO) queue. It 
removes a kernel thread from that  queue, if one exists, to inswap its process. 

The scheduling subsystem maintains 64 quadword listheads for COMO kernel 
threads, one for each software priority (see Chapter Scheduling). These queues are 
identical to the 64 queues of the computable resident (COM) kernel threads. The 
steps taken by the swapper to decide which kernel thread to inswap parallel those 
taken by the rescheduling interrupt  service routine (see Chapter Scheduling) to 
select the next kernel thread for execution. 

4. If there is no COMO kernel thread, SWAPSCHED clears SCH$V_SIP, releases the 
spinlocks, and returns. 

5. If a COMO kernel thread exists and there are enough pages for its working set, 
SWAPSCHED calls INSWAP to read the kernel thread's process into memory. 

6. If a COMO kernel thread exists but there are insufficient pages for its working 
set, SWAPSCHED attempts an optimization aimed at minimizing swapping on 
systems with more compute-bound processes than can fit into available memory. It 
makes two checks. One is whether the kernel thread's priority is no higher than 
the SYSGEN parameter  DEFPRI, the default kernel thread priority. The other is 
whether less time than the SYSGEN parameter  SWPRATE (a time interval with 
a default value of 5 seconds) has elapsed since the last inswap of a process with a 
kernel thread priority as low as DEFPRI. If both are true, SWAPSCHED abandons 
the inswap. 

Otherwise, it sets SWP$GB_ISWPRI to the priority of the inswap kernel thread 
and R13 to the complement of the free page deficit and calls OUTSWAP to reclaim 
enough memory for the inswap. 

Whenever enough pages become available, the swapper executes the INSWAP routine 
(see Section 6.6.2) to initiate reading the outswapped process with the highest priority 
kernel thread into memory. Later, after the inswap I/O request completes, the swapper 
rebuilds the working set list and process page tables. The swapper calls routine 
SCH$CHSEP, in module RSE, to change the state of the newly inswapped process's 
kernel threads. Section 6.6 describes these steps in more detail. The newly inswapped 
kernel thread will be scheduled when the processor (or a member of a symmetric 
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multiprocessing system) is available and the kernel  th read  is the highest  priority 
computable resident kernel  thread.  

6.3.3 The OUTSWAP Routine 
The swapper  executes the OUTSWAP routine to perform one or more tasks related 
to memory reclamation. OUTSWAP is entered with the MMG and SCHED spinlocks 
held. It has one explicit argument ,  the contents of R13, the desired function: 

�9 A value of 0 means  OUTSWAP is to free a deleted PHD or outswap a PHD and 
page tables to join their  outswapped process body. 

�9 A value of 1 means  tha t  OUTSWAP is to outswap a suitable process proactively. 

�9 A value of 8000000016 means  OUTSWAP is to free a balance set slot, ei ther  
by outswapping a PHD and page tables or, less immediately, by outswapping a 
process body. 

�9 Any other negative value is the complement of the free page deficit tha t  OUTSWAP 
is to make up in any way possible. 

OUTSWAP has one implicit argument ,  SWP$GB_ISWPRI, which contains zero or 
the priority of the inswap candidate. SCH$OSWPSCHED, called by OUTSWAP, 
compares this priority to that  of certain kernel threads  to determine if they are 
suitable candidates for shrinking or outswapping. Because an internal  priority of 
zero represents  the highest  priority, when SWP$GB_ISWPRI is zero all those kernel  
threads  are considered suitable. Section 6.4 provides details on the selection of shr ink  
and outswap candidates. 

OUTSWAP takes the following steps: 

1. If R13 contains the value 1, OUTSWAP continues with step 7. 

2. Otherwise, it first a t tempts  to reclaim memory by releasing the PHD of a previ- 
ously deleted process or by outswapping the PHD and page tables of a previously 
outswapped process. It scans the PHD reference count ar ray  for a suitable header. 

3. If OUTSWAP finds a PHD with a zero reference count, it tests the corresponding 
PHV$GL_PIXBAS array element. 

If it con ta ins -1 ,  the process has been deleted and the swapper  can release its 
PHD slot and its L1PT 

In routine DELPHD, the swapper dissociates the process from all assigned 
page files. DELPHD scans the system space L3PTEs tha t  map the slot, re- 
leases any valid pages to the free page list, and deallocates any page file back- 
ing store associated with any invalid pages. When done, it calls MMG$DINS_ 
PRCPGFLS, in module PAGEFILE, in case a pending page file deinstallat ion 
can be carried out now tha t  all page file backing store associated with the 
process has been released. 
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DELPHD inserts the LIPT into the free page list. It invalidates all t ranslat ion 
buffer (TB) entries to remove stale translations representing the deleted PHD 
slot. It clears the PHV$GL_PIXBAS array  element and changes the PHD 
reference count t o - 1 .  It returns to OUTSWAP, which returns to its caller. 

If the corresponding PHV$GL_PIXBAS array  element contains a positive 
value, the process has been outswapped and its PHD and page tables can be 
outswapped as well, as described in Section 6.5.4.2. After the I/O is initiated, 
control returns to OUTSWAP's caller. 

4. If the PHD has a nonzero reference count and belongs to an outswapped process, 
OUTSWAP determines whether  the page tables map any pages locked in memory 
by testing bits PCB$V_PHDLOCK and PCB$V_FREDLOCK in PCB$L_STS2. If 
so, the PHD and page tables cannot be outswapped, and OUTSWAP returns  to step 
2 to scan for another PHD. 

If the page tables map no locked pages, OUTSWAP usually records the slot number  
of the process and returns to step 2 to continue the scan, in case there is a deleted 
PHD to clean up. To avoid always picking the same slot to outswap, one time in 
eight OUTSWAP does not record the slot number  of the first candidate. 

5. After scanning all the slots without finding one that  contains the PHD of a 
deleted process, OUTSWAP checks whether  it has found a PHD belonging to 
an outswapped process. If so, it takes the steps described in Section 6.5.4.1 to 
at tempt to sever all the connections between the PHD, page tables, and mem- 
ory so the PHD and page tables can be outswapped. If the reference count goes 
to zero, outswap of the PHD and page tables is initiated and control re turns  to 
OUTSWAP's caller. 

If the reference count does not go to zero, the page tables probably map modified 
pages, which must  be writ ten first. OUTSWAP calls MMG$PURGE_MPL, in mod- 
ule WRTMFYPAG, to request that  any modified pages mapped by that  process's 
page tables be writ ten when modified page writing is initiated. 

OUTSWAP returns to step 2, to scan for another PHD. 

6. If OUTSWAP scans all the balance set slots without finding a PHD to release or 
outswap, it tests R13. 

If the argument  is zero, OUTSWAP returns to its caller. 

If the argument  is negative, OUTSWAP continues with the next step. 

7. OUTSWAP calls SCH$OSWPSCHED, in module OSWPSCHED. Depending on the 
contents of R13, SCH$OSWPSCHED may shrink one or more working sets, select 
a process to outswap, or both. Unless the process has disabled automatic working 
set limit adjustment or is a real-time process, its working set limit is shrunk with 
its working set. Section 6.4 describes its operations. 
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. 

Whenever SCH$OSWPSCHED shrinks a working set, it checks whether  the free 
page deficit has been made up. If the deficit has not yet been made up, it makes 
checks similar to those previously described to determine whether  writ ing the 
modified page list is appropriate and whether  it would satisfy the deficit. If it 
would, SCH$OSWPSCHED calls MMG$PURGE_MPL to request tha t  enough 
modified pages be writ ten to make up the free page deficit. 

When SCH$OSWPSCHED selects a process to outswap, it first shrinks the pro- 
cess's working set. In previous OpenVMS versions, the process's working set was 
shrunk to its normal maximum working set quota (WSQUOTA). As of OpenVMS 
Version 7.2, SCH$OSWPSCHED tries to shrink the working set to the number  of 
pages represented by SYSGEN parameter  SWPOUTPGCNT (which is in units of 
pagelets). 

This change in behavior reduces the amount  of physical memory needed to inswap 
a process and thus the maximum number  of fluid physical pages that  OpenVMS 
must  maintain to inswap. Previously, OpenVMS had to maintain enough fluid 
pages to inswap a process with a working set list whose size was the number  of 
pages represented by WSMAX. On a system with a large value for WSMAX, this 
requirement could severely limit the use of physical memory, resulting in failures 
to expand nonpaged pool, the lock ID table, and the system page table. 

If the deficit has still not been made up by shrinking the process or if a balance 
set slot is needed for a process to be inswapped, SCH$OSWPSCHED then allocates 
swap space for the process's working set and reports a SWPOUT scheduling event 
to change the process's kernel threads'  scheduling states from resident ones to 
outswapped ones. 

If SCH$OSWPSCHED returns with an identified outswap candidate, OUTSWAP 
takes the steps described in Section 6.5 to outswap that  process. After initiating 
the I/O to outswap the process body, OUTSWAP returns to its caller. Later, after 
the process body outswap I/O completes, the process header may be outswapped as 
well. 

If SCH$OSWPSCHED returns without an identified outswap candidate, 
OUTSWAP simply returns to its caller. 

6.4 Selection of Shrink and Outswap Processes 
When the swapper needs physical memory or a balance set slot, it calls the routine 
SCH$OSWPSCHED. The swapper specifies that  it needs a certain number  of pages 
of memory, tha t  it needs a balance set slot, or that  a suitable process, if any, should 
be swapped proactively. SCH$OSWPSCHED can shrink the working sets of selected 
processes, select a process to be outswapped, or perform both operations. 

When bit 1 of SYSGEN parameter  MMG_CTLFLAGS is set, the mechanism known as 
trolling is enabled. As its first and possibly only action, SCH$OSWPSCHED searches 
for a suitable process to outswap proactively. The search is driven by the TROLL table, 
described in Section 6.4.1. Section 6.4.2 describes how this table is used. 

368 



6.4 Selection of Shrink and Outswap Processes 

If bit 1 of MMG_CTLFLAGS is clear, or if the trolling routine found no suitable process 
to outswap, SCH$OSWPSCHED searches more extensively for processes to shrink or 
swap. Its search is also table-driven. Section 6.4.1 describes the OSWPSCHED table, 
and Section 6.4.3, how the table is used. 

If SCH$OSWPSCHED is entered to troll or to free a balance set slot, it at tempts to 
shrink a suitable process's working set to the number of pages represented by the 
SYSGEN parameter  SWPOUTPGCNT. 

If SCH$OSWPSCHED is entered to reduce the free page deficit, it can perform two lev- 
els of shrinking: in first-level trimming, it shrinks an extended working set back to the 
normal maximum working set limit (WSQUOTA); in second-level trimming, it at tempts 
to shrink a working set to the number of pages represented by SWPOUTPGCNT. Be- 
fore performing any second-level trimming, it performs first-level tr imming of all 
suitable processes. (Chapter 5 describes the distinction between working set size, 
limit, and quota.) 

Whenever it gains free pages from shrinking a working set, it checks whether there 
are enough pages on the free and modified page lists to satisfy the swapper's need. 
If enough pages are available, SCH$OSWPSCHED returns. If SCH$OSWPSCHED 
selects a process to be outswapped, it returns to the swapper, which is responsible for 
the actual outswap. 

6.4,1 The OSWPSCHED and TROLL Tables 
This section describes both the traditional OSWPSCHED table and the table used by 
the trolling routine. Because the table that  drives the trolling routine is a subset of 
the OSWPSCHED table, the OSWPSCHED table is described first. 

The OSWPSCHED table is divided into sections, each specifying one or more res- 
ident kernel thread scheduling states and a set of conditions associated with each 
state. Table 6.2 lists the individual entries and sections in the OSWPSCHED table. 
States in the same section are considered equivalent. Selection of shrink and outswap 
candidates depends on the factors named in the column heads of Table 6.2. 

A kernel thread in the scheduling state computable to be scheduled (COM TBS) is 
a computable class-scheduled thread whose class has run out of quantum. Chapter 
Scheduling describes scheduling states, class scheduling, and the TBS and other state 
queues. 
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Table  6.2 O S W P S C H E D  Table  

Initial 
Quan- Long Dor- 

State I/O Priority turn Wait mant  Flags 

SUSP No n/a n]a n/a n/a Swap 
buffered (SWAPASAP) 

SUSP Buffered n]a n/a n/a n/a Second 
(SWPOGOAL) 2 

COM n/a n/a n/a n/a Yes First  only (LVLI_ 
TRIM) 

HIB n/a n/a n/a Yes n/a Second 2 

LEF No direct n/a n/a Yes n/a Second 2 

CEF No direct n/a n/a n/a n/a Second 2 

HIB n/a n/a n/a No n]a Second 2 

LEF No direct n/a n/a No n/a Second 2 

COM n/a Yes 1 Yes n]a No First  only 
TBS 

FPG n/a Yes n/a n]a n]a 

COLPG n/a Yes n/a n/a n/a 

MWAIT n/a n/a n/a n/a n/a 

CEF Direct Yes Yes n/a n/a 

LEF Direct Yes Yes n/a n/a 

1This constraint is not present in the OSWPSCHED table; however, it is present in the algorithm and 
thus shown here. 

2This flag is obsolete, but still present. 
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Table  6.2 (continued) O S W P S C H E D  Table  

Initial 
Quan- Long Dor- 

State I/O Priority tum Wait mant  Flags 

PFW rga Yes Yes rda n/a 

COM rga Yes I Yes rda No 

I This constraint is not present in the OSWPSCHED table; however, it is present in the algorithm and 
thus shown here. 

In general, SCH$OSWPSCHED scans the scheduling queues in the order shown in 
the State column. It checks whether any kernel thread in that  state queue satisfies 
the conditions in the second through sixth columns. If a kernel thread satisfies those 
conditions, its process may be a candidate for shrinking and possibly for swapping. 

In the case of a multithreaded process, each kernel thread must  meet the schedul- 
ing state constraints in the table for the process to be suitable for being shrunk or 
outswapped. As SCH$OSWPSCHED scans the table, it keeps track of how many ker- 
nel threads in each multithreaded process it has encountered in scheduling queues on 
this pass of the table so that  it can determine if all threads meet the constraints. 

The conditions in the table entries discriminate among kernel threads, based on their 
likelihood of becoming computable in a short while and the effects of shrinking or 
swapping their processes. When the system needs to reclaim physical memory, process 
working sets extended in times of plentiful memory are shrunk first. 

In general, the intent is to prevent the outswap of a process with a kernel thread tha t  
is about to become computable when the only reason for the swap is to bring a process 
with a kernel thread of equal priority into memory. Overall system performance may 
be improved by shrinking processes rather than swapping them. However, a process 
with kernel threads in some states may be affected less by being swapped than by 
having its working set limit reduced. 

Descriptions of the various conditions follow: 

I/O. A table entry in this column can specify No direct, Direct, No buffered, 
Buffered, and n/a. 

When a kernel thread is in a local event flag (LEF) or common event flag (CEF) 
scheduling state, and its process has an outstanding direct I]O request, there is a 
high probability that  the kernel thread is waiting for the direct I/O to complete. 
If so, the kernel thread will soon become computable and thus be a less desirable 
shrink or outswap candidate. SCH$OSWPSCHED therefore distinguishes between 
kernel threads with and without outstanding I/O requests. 
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Suspension affects all kernel threads in a process. A suspended kernel thread, by 
default, can receive kernel and executive ASTs. To prevent a suspended process 
from being outswapped and one of its kernel threads then becoming computable 
again as the result of buffered I/O completion, the table distinguishes between 
suspended kernel threads with and without outstanding buffered I/O requests. 

In this column, n/a means that  the existence of either type of outstanding I/O 
request is irrelevant. No test is made for either. 

Priority. A table entry in this column can specify Yes or n/a. 

Yes in this column means that  SCH$OSWPSCHED compares the priority of the 
highest priority computable kernel thread in a process to be inswapped with that  
of any kernel thread whose process may be shrunk or outswapped. A process 
with a kernel thread that  is computable or likely to be computable soon is not 
considered a candidate, unless the kernel thread's priority is less than or equal to 
that  of the potential inswap process, stored in global location SWP$GB_ISWPRI. 
(The swapper zeros SWP$GB_ISWPRI before calling SCH$OSWPSCHED to make 
up a free page list deficit.) 

In this column, n/a means no test is made. 

Initial Quantum. A table entry in this column can specify Yes or n/a. 

Yes in this column means that  SCH$OSWPSCHED rejects a process that  is in 
its initial memory residency quantum. A process with a kernel thread likely to 
become computable soon is not considered a candidate for second-level tr imming 
or outswapping if it is within its initial memory residency quantum. If SWP$GB_ 
ISWPRI is less than or equal to 47, indicating the inswap candidate is real-time, 
the constraint is ignored. The intent is to leave the process in memory long enough 
to do useful work, after the system has expended the overhead of inswapping it. 
This reduces the possibility of swap thrashing, a condition in which the system 
spends more time swapping in and out than in process execution. 

In this column, n/a means that  SCH$OSWPSCHED does not test whether the 
process is in its initial quantum. 

Long Wait. A table entry in this column can specify Yes, No, or n/a. 

Either Yes or No in this column means that  SCH$OSWPSCHED determines 
whether a kernel thread has been waiting in an LEF or hibernate (HIB) state 
longer than the SYSGEN parameter  LONGWAIT. Yes means that  for a kernel 
thread to be a candidate, it must  be in a long wait. A kernel thread that  has been 
waiting a long time is likely to wait longer still; one that  has been waiting a short 
time is more likely to become computable soon. For example, a kernel thread 
waiting for terminal input longer than a LONGWAIT interval is likely to remain 
in LEF longer still. 

No in this column means that  the kernel thread must  not have been waiting a long 
time; n/a means that  SCH$OSWPSCHED does not test for this condition. 

Dormant. A table entry in this column can specify Yes, No, or n/a. 
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Either  Yes or No in this column means  tha t  SCH$OSWPSCHED determines  
whether  a computable kernel  thread  is dormant ,  tha t  is, one whose priority is less 
than  or equal to the SYSGEN paramete r  DEFPRI and tha t  has been on a COM 
or COMO queue for longer than  the SYSGEN paramete r  DORMANTWAIT. Yes 
in this column means  tha t  the kernel  th read  must  be dormant  to be a candidate.  
A process with dormant  kernel  threads  is considered a very good candidate  to be 
shrunk.  An example of such a process is one with a compute-bound kernel  th read  
with a priority too low to get CPU time. 

This condition expedites the shrinking and outswap of a process such as a low- 
priority batch job. While the process's kernel  th read  or threads  run  at  n ight  on 
a lightly loaded system, its working set is expanded and it can acquire extensive 
physical memory, but  once interactive users log in, the process's kernel  th reads  
cannot get CPU time. 

No in this column means  the kernel  thread  must  not be dormant  to be a candidate; 
n/a means  tha t  SCH$OSWPSCHED does not test  for this condition. 

This older mechanism for dealing with dormant  kernel  threads  persists in case the 
system manager  has disabled the newer, preferred mechanism: the combination 
of PIXSCAN priority boost and quantum-end working set tr imming. Chapter  5 
contains information on quantum-end tr imming, and Chapter  Scheduling describes 
the PIXSCAN mechanism. 

When SCH$OSWPSCHED finds a candidate process, its subsequent  action depends on 
the flags shown in the last column and described in Section 6.4.3. 

In addition to conditions imposed by the table entries, there are several implicit 
constraints on the suitability of a part icular  process to be shrunk  or outswapped: 

�9 A process cannot be outswapped if it has locked itself into the balance set. 

�9 The working set limit of a process tha t  has disabled automatic working set adjust- 
ment  cannot be reduced, although its working set may be reduced. 

�9 The working set limit of a real-time process cannot be shrunk  below WSQUOTA, 
although its working set may be reduced. 

�9 If the executive is deleting the process and its address space (bit PHD$V_NO_WS_ 
CHNG in PHD$W_FLAGS), the working set cannot be shrunk  or outswapped. 

�9 If the executive has temporari ly blocked movement  of the PHD (by set t ing bit 
PHD$V_LOCK_HEADER in PHD$L_FLAGS), the process cannot be swapped. 

�9 A process tha t  is already outswapped cannot be shrunk  or outswapped. 

The TROLL table consists of three entries within one section. Its first entry specifies 
the SUSP scheduling state. Its other two entries are HIB and LEF, with the LONG- 
WAIT flag set for each. The actual order of these two entries varies, depending on 
which queue had the longest wait ing kernel  thread the last t ime the trolling routine 
executed. 
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6.4.2 Trolling 
Trolling is triggered by a combination of circumstances, including fewer pages on the 
free page list than  FREEGOAL (see Section 6.3.1). The trolling routine, TROLLER, in 
module OSWPSCHED, looks for a process to outswap proactively, tha t  is, before the 
swapper needs a balance set slot to accommodate a process to be inswapped. 

In the case of a mult i threaded process, each kernel thread must  meet the schedul- 
ing state constraints in the table for the process to be suitable for being sh runk  
or outswapped. As TROLLER scans the table, it keeps track of how many  kernel  
threads in each mult i threaded process it has encountered in scheduling queues on this 
invocation. 

TROLLER takes the following steps: 

1. It first tests whether  the free page list has fewer pages than  FREELIM. If so, the 
test for whether  a kernel thread has been wait ing a long enough time will be based 
on half  the value of the LONGWAIT parameter.  

2. Scanning the SUSP wait  queue, it tests each kernel thread's process to check tha t  
the process has not locked itself into the balance set and that  the executive has set 
neither PHD$V_LOCK_HEADER nor PHD$V_NO_WS_CHNG in PHD$L_FLAGS. 
If all these constraints are met, TROLLER has found a candidate to outswap and 
continues with step 5. 

3. If TROLLER failed to find a process with suspended kernel threads to outswap, it 
scans the HIB and LEF wait  queues. Which one it scans first depends on which 
had the longest waiting kernel thread the last t ime TROLLER executed. A suitable 
kernel thread in either scheduling state must  have been waiting long enough and 
must  meet the constraints just  listed. 

4. If it processes the entire TROLL table and finds no candidate, it re turns  a failure 
status to SCH$OSWPSCHED. 

5. When it finds a candidate to outswap, TROLLER reduces the process's working 
set, but  not its limit, to the number  of pages represented by SWPOUTPGCNT. 

6. It allocates swap space for the outswap candidate. 

7. TROLLER scans both the HIB and LEF wait  queues to determine the longest 
waiting swappable kernel thread in either state and calculates how soon tha t  
kernel thread could meet the LONGWAIT constraint  TROLLER established at its 
entry. 

8. It recalculates the next time at which the trolling routine should be entered as 
the later of 5 seconds from the current  time and the time at which the oldest 
swappable HIB or LEF kernel thread will have waited long enough to meet  the 
LONGWAIT constraint. Because the trolling routine is automatically entered every 
time SCH$OSWPSCHED is, the result  of this calculation represents a max imum 
interval between trolls. 
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, If necessary, it switches the second and third entries in the TROLL table so tha t  
the queue that  currently has the oldest kernel thread will be scanned first on 
TROLLER's next execution. 

10. It returns to SCH$OSWPSCHED with the address of the PCB of the outswap 
candidate. 

SCH$OSWPSCHED clears PCB$V_RES in PCB$L_STS for that  process, reports a 
SWPOUT event for the process to change its scheduling state, resets the swap failure 
count, and returns the process's PCB address to OUTSWAP. 

6.4.3 Passes Through the OSWPSCHED Table 
SCH$OSWPSCHED scans the scheduling database looking for processes to be shrunk 
or outswapped. The search for a candidate process is table-driven. 

SCH$OSWPSCHED makes two passes through the table. On its first pass, it poten- 
tially traverses all sections of the table, performing first-level tr imming (to WSQUOTA) 
of any candidate processes. 

If, however, it has been entered with a request to outswap a process to free a balance 
set slot, it shrinks the working set of the first candidate process that  has not locked 
itself into the balance set to the number of pages represented by SWPOUTPGCNT, 
selects that  process as an outswap candidate, and returns its PCB address to the 
swapper. If the process is a real-time process or one that  has disabled automatic 
working set limit adjustment, its working set size is reduced but its limit is not 
changed. 

If SCH$OSWPSCHED has been entered to satisfy a free page deficit, it continues 
reclaiming memory from working sets that  had been extended until it reaches the 
end of the table, reclaims enough free pages to satisfy the deficit, or finds a process to 
be outswapped. A suitable outswap candidate is one whose kernel threads meet the 
scheduling state and conditions of a table entry that  includes the SWAPASAP flag and 
that  has not locked itself into the balance set. 

If SCH$OSWPSCHED reaches the end of the table without satisfying the deficit or 
locating an outswap candidate, it makes a second pass through the table, starting its 
scan at the beginning of the table. If it has been entered to satisfy a free page deficit, 
it performs second-level trimming. 

In second-level swapper trimming, SCH$OSWPSCHED can scan each section of the 
table twice. In scanning the table, it ignores any entry that  has the LVLI_TRIM flag 
set. First, if the entry contains the SWPOGOAL flag, SCH$OSWPSCHED shrinks 
the working set of a process selected by this entry (unless the process has disabled 
automatic working set adjustment). The working set is reduced, if possible, to the 
number of pages represented by SWPOUTPGCNT. If the process is a real-time process 
or one that  has disabled automatic working set limit adjustment, its working set size 
is reduced but its limit is not changed. 
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If the deficit is not satisfied, SCH$OSWPSCHED continues scanning through processes 
selected by the table section. When it gets to the end of the section, it res tar t s  at the 
beginning of the section, looking for a process to outswap. When SCH$OSWPSCHED 
gets to the end of the section for the second time, it goes to the next section. The 
pass ends when the deficit is satisfied or a process is found to outswap. If outswap- 
ping a process does not satisfy the deficit, eventually the swapper  will reexecute the 
OUTSWAP and SCH$OSWPSCHED routines. 

The swapper  mainta ins  a swap failure counter tha t  records the number  of t imes it has  
failed to locate a candidate to shr ink or swap. This count is mainta ined  across calls of 
SCH$OSWPSCHED. It is intended to loosen the constraints in si tuations where the 
normal conditions have failed to produce candidates. When this count reaches a value 
equal to SWPFAIL, the swapper ignores certain constraints when selecting a process 
to shr ink or outswap: it ignores the initial quan tum condition for all processes and the 
priority constraint  for all processes except COM ones. The counter is reset  each t ime 
an outswap candidate is successfully located. 

When the swapper scans a series of processes in a par t icular  scheduling queue, the 
scan begins with the least recently queued entry (at the tail of the queue). This 
s tar t ing point ensures tha t  the longer a process has been in a wait  queue, the more 
chance it has of being shrunk  or swapped. (A process is inserted into a wait  queue at 
the front of the list, unlike most queues.) 

To determine whether  all kernel threads  of a mul t i threaded process meet  the table 
entry contstraints,  SCH$OSWPSCHED keeps track of how many kernel  threads  in 
each mul t i threaded process it has encountered in scheduling queues on this pass of the 
table: 

1. It increments SWP$L_SEQ_NUMBER at the beginning of each pass through the 
OSWPSCHED table. 

2. The first time in a pass through a table tha t  it encounters any of a process's kernel  
threads,  it records SWP$L_SEQ_NUMBER in PCB$L_SWP_SEQ and copies the 
number  of kernel  threads  in the process to PCB$L_SWP_KT. 

3. For each kernel  thread it encounters,  it records SWP$L_SEQ_NUMBER in 
KTB$L_SWP_SEQ to indicate tha t  it has encountered this kernel  thread  on 
this table pass. If the kernel  thread  is a suitable candidate,  it decrements  PCB$L_ 
SWP_KT. 

4. When PCB$L_SWP_KT is decremented to zero, all the kernel  threads  of the 
process meet the constraints and the process is a suitable candidate to be sh runk  
or outswapped. 
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6.50utswap Operation 
Outswap is described before inswap because it is easier to explain inswap in terms 
of what the swapper puts into the swap file. The swapper does not remove processes 
from the balance set indiscriminately. In general, unless trolling is enabled, the 
swapper tries to satisfy the free page deficit first by shrinking working sets, deleting 
or outswapping PHDs and page tables, and writing modified pages. The swapper 
outswaps a process if one of the following conditions is true: 

�9 Trolling is enabled, and an existing process's kernel threads meet the trolling 
constraints. 

�9 The steps just  described fail to free enough pages. 

�9 SCH$OSWPSCHED encounters a process whose kernel threads meet the con- 
straints of a table entry with the SWAPASAP flag. 

�9 The system needs a balance set slot (PHD slot). 

6.5.1 Selection of an Outswap Candidate 
As described in Section 6.4, the outswap selection is driven by an ordered table of 
scheduling states and associated conditions. The swapper selects a process less likely 
to benefit from remaining in memory. Once a candidate is selected, the swapper 
allocates swap space and prepares the working set of that  process for outswap. 

6.5.2 Allocation of Swap Space 
Section 6.2.3 describes how the swapper calculates the amount of swap space needed. 
To allocate the space, the swapper calls MMG_STD$ALLOC_SWAP_SPACE, in module 
PAGE_FILE. MMG_STD$ALLOC_SWAP_SPACE first allocates a PFLMAP from 
nonpaged pool. 

Looking for possibly large quantities of available swap space can be time-consuming. 
MMG_STD$ALLOC_SWAP_SPACE uses the PFL$L_DIR_CLUSTER array in each 
PFL (see Figure 2.31) to minimize the effort. As described in Chapter 2, each array el- 
ement represents a number of adjacent set bits in the directory bitmap. The elements 
represent increasing powers of 2: the first element counts the number of adjacent set 
bits; the second element, the number of pairs of adjacent set bits; the third element, 
the number of groups of four adjacent set bits; and so on. 

The maximum number of adjacent bits represented is 26 , or 64. Since each bit in 
the directory bitmap represents 16 bits in the storage bitmap, a count in this cluster 
entry represents 1,024 adjacent free pages. Descending array elements represent 
occurrences of 512, 256, and so on, pages. 

To avoid costly but possibly futile scans of the bitmaps, the swapper calculates the 
minimum acceptable swap space extent as the total space needed, split into the 
maximum possible number of extents. It rounds the result up to the next power of 2. 
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It then begins to scan the page-and-swap-file vector (see Figure 2.31). If SYSGEN 
parameter NOPGFLSWP is zero, it can examine both page and swap file PFLs; 
otherwise, it can examine only swap file PFLs. 

In each PFL it examines, it looks at the PFL$L_DIR_CLUSTER array entry that  
represents the minimum acceptable extent. (As described in Chapter 2, each array 
entry represents a number of set bits in the directory bitmap for that  file. Each set bit 
represents 16 adjacent set bits in the storage bitmap.) If that  array entry is nonzero, 
it records in the PFLMAP the index of the PFL in the page-and-swap-file vector and 
the size of that  minimum extent. 

It continues to record minimum extents from that  PFL in the PFLMAP until it has 
accounted for all the set bits or until it has accumulated enough extents for the needed 
swap space. If it has accounted for all the set bits but not accumulated enough extents, 
it goes on to the next PFL. 

Once MMG_STD$ALLOC_SWAP_SPACE has accumulated enough extents, it then 
calls MMG_STD$ALLOC_PAGSWP_PAGES, in module PAGE_FILE, potentially once 
for each extent, passing it the PFL index, the total size of the swap space needed, and 
the size of that  extent. 

Each time MMG_STD$ALLOC_PAGSWP_PAGES is called, it locates the available 
cluster that  would satisfy the minimum extent size in the specified PFL. Start ing with 
that cluster, it allocates as much contiguous space as it can, up to the total size of the 
swap space. 

MMG_STD$ALLOC_SWAP_SPACE initializes a mapping pointer in the PFLMAP to 
correspond to the space allocated from that  PFL, condensing the equivalent extents 
into the one mapping pointer. If the total space has not yet been allocated, it calls 
MMG_STD$ALLOC_PAGSWP_PAGES to allocate from the next file. 

6.5.30utswap of the Process Body 
The swapper outswaps the process body (P0, P1, and P2 pages) separately from the 
PHD and page tables for the following reasons: 

�9 Fields in the PHD and page tables (most notably WSLEs and PTEs) are modified 
as the working set list is processed. 

�9 The PHD and page tables may not be swappable at the same time as the body 
because of outstanding I/O, pages on the modified page list, or some other reason. 

Even though the PHD and page tables are outswapped separately, space in the swap 
file is reserved for them at the beginning of the swap slot. 
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6.5.3.1 Scanning the Working Set List 
To prepare  the  process body for outswap,  the  swapper  scans the  process's working  set  
list. I t  mus t  examine  each page in the  working set list to de te rmine  if any  special 
action is required.  The swapper  looks at  a combinat ion of the  page type (found in the  
WSLE as well as the PFN$L_PAGE_STATE field in the P F N  da tabase  record) and  the  
valid bit. 

A page in the  working set can be in one of the  following th ree  states:  

* The page is valid. 

. The page is cur rent ly  being read  into memory. The swapper  t r ea t s  page reads  like 
any other  I/O in progress when  swapping  a process. 

. The process PTE contains a global page table index (GPTX), and  the indexed global 
page table en t ry  (GPTE) indicates  a t rans i t ion  state.  The swapper  handles  global 
pages in a special m a n n e r  when  ou tswapping  a process. 

Table 6.3 lists all combinations of page type, s tate ,  and  valid bit se t t ing  tha t  the 
swapper  encounters  and the action it takes  for each. Several  combinat ions are  dis- 
cussed fu r ther  in the following sections. One type of page not discussed fu r the r  is a 
page locked into memory, one whose WSLE P F N L O C K  bit is set. Apar t  from se t t ing  
PCB$V_PHDLOCK in the process's PCB$L_STS2 as an indicat ion t ha t  its PHD and 
page tables cannot  be outswapped,  the swapper  ignores such pages; they  r ema in  in 
memory, and no other  action is required.  

Table 6.3 Scan of Working Set  List of  Outswap Process  

Page 
Page  Type Validity 
WSLE<3:I> L3PTE Action of Swapper for This Page 

Process page Valid 

Process page Transition 

System page n/a 

Outswap page. If there is outstanding I/O and the page is 
being modified, store in its PFN record the number of the 
swap file page where the updated page contents should be 
written when the I]O completes. If the page is part of a 
buffer object, decrement its page table's share count. 

(Page state = Read in Progress) 
Treat as page with I/O in progress. Special action may be 
taken at inswap or by the modified page writer. 
(Page state = Read Error) 
Drop from working set. No other transition states are 
possible for a page in the working set. 

It is impossible for a system page to be in a process work- 
ing set. The swapper generates the fatal IVWSETLIST 
bugcheck. 
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Table 6.3 (continued) Scan of  Working Set List of  Outswap  Process  

Page 
Page Type Validity 
WSLE<3:I> L3PTE Action of Swapper for This Page 

Global Transition 
read-only 

Global Valid 
read-only 

Global n/a 
writable 

Page table n/a 
page 

If the process L3PTE contains a GP'I~, then the global page 
table must contain a transition L3PTE. The page is dropped 
from the process working set. 

If share count = 1, then outswap. If share count > 1, drop 
from working set unless the page is locked in the working 
set. It is highly likely that a process can fault such a page 
later without I/O. This check avoids multiple copies of the 
same page in the swap file. 

Drop from working set. At inswap, it would be difficult to 
determine whether the page in memory is more up-to-date 
than the swap file copy. 

Not part of the process body. However, in the single scan of 
the working set list the swapper builds chains of L2 and L3 
page tables for later processing. 

The basic step the swapper takes as it scans the working set list is to add a description 
of each swappable page to its swapper map. As a result  of this pseudo page table, the 
virtually noncontiguous pages in the process's working set appear virtually contiguous 
to the I/O system (see Figures 6.5 and 6.8). 

To access the process-private page tables of the process being outswapped, the swapper  
switches hardware  context, temporari ly adopting tha t  process's address space. This 
change in behavior is required because, as of OpenVMS Alpha Version 7.0, process- 
private page tables are mapped only in process-private address space. 

For each page in the working set, the swapper performs the following steps: 

1. It locates the PTE tha t  maps the page from the virtual  page number  in the WSLE. 

2. It determines any special action, based on page validity and page type. 

, For a process body page to be outswapped, it copies the PFN from the L3PTE to 
the swapper map. 

, It records the modify bit (logical OR of the L3PTE modify bit and PFN$L_PAGE_ 
STATE field saved modify bit) in the WSLE. 

, For a valid process page, it sets the delete contents bit in the PFN$L_PAGE_ 
STATE field. This bit causes the page to be placed at the head of the free page list 
when its reference count goes to zero (normally, when the swap write completes). 

6. It updates page table reference counts (see Chapter  4). 
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Note that  the swapper does not explicitly restore each process body L3PTE to the 
contents of its physical page's PFN$Q_BAK field. The contents will be replaced when 
the page is released (after the swap write completes and all other references to the 
page are eliminated). 

6.5.3.2 Pages Within Buffer Objects 
If the swapper encounters a page whose reference count is greater than 1, it checks 
whether bit PFN$V_BUFOBJ is set in PFN$L_PAGE_STATE. If so, the page is par t  
of a buffer object. The swapper changes the page's state to release pending and 
decrements the share count and PFN$W_PT_VAL_CNT of the page table page tha t  
maps it so that  the PHD and page tables can be released. It increments PCB$L_ 
BUFOBJ_CNT, the number  of buffer object and PFN-locked pages. 

6.5.3.3 Pages with Direct gO in Progress 
If, in the swapper's scan of the working set list, it encounters a modified page with 
outstanding I/O, it stores in the page's PFN$W_SWPPAG field the location in the swap 
file where that  page belongs and sets PFN$V_SWPPAG_VALID in PFN$L_PAGE_ 
STATE. The page will be swapped along with the rest of the process body to reserve a 
place for it in the swap file. 

If the I/O operation is a write (from memory to mass storage) and the page was not 
otherwise modified, the contents currently being writ ten to the swap file are good. The 
page will be inserted into the free page list when the I/O operation completes. 

If the I/O operation is a read (or if it is a write and some other action has caused the 
page to be modified), the physical page will be placed into the modified page list when 
the I/O completes. The modified page writer takes special action for a modified page 
whose PFN$V_SWPPAG_VALID bit is set. That  is, it writes the page to the swap file 
page whose number  is in PFN$W_SWPPAG rather  than to its normal backing store 
address. 

6.5.3.4 Global Pages 
Global pages are also given special t rea tment  at outswap. A writable global page is 
dropped from the working set before the process is outswapped. The task of determin- 
ing whether the contents that  are swapped are up-to-date when the process is brought 
back into memory is more complicated than simply refaulting the page (often without 
I/O) when the process is swapped back into memory. 

A global read-only page is swapped only if its global share count is 1. In all other 
cases, the page is typically dropped from the working set and must  be refaulted (most 
likely without I/O) after the process is inswapped. (Global read-only pages, however, 
that  are locked into the working set are not dropped from it.) Global transition pages 
are also dropped from the working set. 
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6.5.3.5 PHD Pages and Page Table Pages 
As the swapper scans the working set list, it records the locations of all the process- 
private page tables it encounters so that  it can process them later without rescanning 
the working set list. It builds one list of all L3PTs other than those mapping buffer 
objects and another list of all L2PTs. These page table pages remain resident while 
the process body is outswapped so that  they can be updated to reflect pages written 
to the swap file and any pages dropped from the working set list. The swapper also 
builds one list of all L3PTs that  map buffer objects; these page table pages will remain 
resident. 

At the beginning of the working set list scan, the swapper clears PHD$L_L3PT_WSLX, 
PHD$L_L2PT_WSLX, and PHD$L_BUFOBJ_WSLX, the listheads for the three lists. 
When the swapper encounters the first page table of each type, it stores the WSLX of 
that  page table in the appropriate listhead. 

When it encounters the second page table of a particular type, it stores the WSLX of 
that  page table in the low longword of the first page table's PFN$Q_BAK. This scheme 
takes advantage of the fact that  there is no useful information in the low longword of 
the BAK field for page table pages. The WSLX of any subsequent page table is stored 
in the low longword of the previous page table's PFN$Q_BAK. 

When the swapper has scanned the entire working set list, it clears the low longword 
of the last page table's PFNSQ_BAK to terminate the list. 

During the final preparation for header outswap, the PFNSQ_BAK field for a page 
table page is written to the PTE that  maps that  page table. This enables the page 
table linkage to survive outswap and inswap. 

The swapper increments PCB$L_APTCNT for the LIPT, each L2PT, and each L3PT 
that does not map a buffer object. For each L3PT that  maps a buffer object, it incre- 
ments PCB$L_BUFOBJ_CNT. It updates page table reference counts (see Chapter 4) 
for the page table page that  maps each page table page. 

For each PHD page it finds in the working set list, it increments PCB$L_APTCNT and 
subtracts the PHD address from the virtual address stored in the WSLE, converting 
it to an offset from the beginning of the PHD. If the PHD is outswapped, it will most 
likely be inswapped to a different balance set slot, and any PHD virtual address stored 
in a WSLE would have to be recalculated. It is not necessary to record the locations of 
PHD pages: they are the first pages locked into the working set list. 

6.5.3.6 Example of a Process Outswap 
Figures 6.4 to 6.6 show some of the cases the swapper encounters while it is scanning 
the process's working set list. The key information about each page is a combination 
of the L3PTE validity and the page type. The order of the scan is defined by the order 
of the working set list. Note that  the example is simplified; in particular, it omits the 
LIPT and L2PTs. 
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Figure 6.4 shows excerpts from the working set list, the process page tables, and 
the associated PFN database records before the swapper begins its working set scan. 
Figure 6.5 shows the modified working set list and the swapper map after the working 
set list scan but before the I/O request is initiated. Figure 6.6 shows the state of the 
L3PTEs after the swap write has completed and the physical pages have been released. 

In these figures, the term VA_PTE represents the combination of PFN database fields 
PFN$L_PT_PFN and PFN$Q_PTE_INDEX, and the term WSLX stands for the PFN 
database field PFN$L_WSLX_QW. 

Figure  6.4 Example  Working Set  List  before  O u t s w a p  Scan  
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63 Process Page Tables 0 
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SWP$GL_MAP 63 Global Page Table 63 Swapper Map 0 I 
< I ] 
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Valid, PFN = A 

Valid, PFN = B 

WSLE 1 is a global read-only page. The VPN field of the WSLE locates the L3PTE. 
The PFN field of the L3PTE locates the PFN database record associated with this 
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1 

physical page. In particular, the share count for this page is 1. (This process is the 
only process that currently has this page in its working set.) The swapper writes 
this page out as part of the swap image for this process. Thus, PFN A is the first 
page in the swapper's map (see Figure 6.5). It marks the page for deletion. 

When the outswap I/O completes, the swapper will clear PFN$L_PT_PFN and 
PFN$Q_PTE_INDEX and place the page at the head of the free page list (see 
Figure 6.6). 

WSLE 2 is a process page that also has I/O in progress (a reference count of 2.) 
This page will be swapped; its PFN is shown in the swapper's map. 

F igure  6.5 Example  Working Set  List  after O u t s w a p  Scan  
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Figure  6.6 C h a n g e s  after  Swapper ' s  Write C o m p l e t e s  
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If the page was previously modified (if either the L3PTE modify bit or saved modify 
bit in PFN$L_PAGE_STATE is set), the address in the swap file where the page 
belongs is stored in the PFN$W_SWPPAG field and bit PFN$V_SWPPAG_VALID 
is set in PFN$L_PAGE_STATE. A set PFN$V_SWPPAG_VALID bit causes the 
page to be placed into the modified page list when it is released. If the process is 
still outswapped when the modified page writer writes this page, the page will be 
written to the page reserved for it in the swap file. 
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The page is marked  for deletion. If the I/O is still outs tanding when the outswap 
completes, the page state is changed to release pending. Later, when the I/O 
completes and the PFN$L_REFCNT reaches zero, the page will be placed at the 
head of the free page list and its PFN$L_PT_PFN and PFN$Q_PTE_INDEX fields 
cleared. 

3. WSLE 3 is a global writable page. The page is dropped from the process working 
set (see Figure 6.5); the process L3PTE contents are replaced with the GPTX of 
GPTE R, and the share count for PFN B is decremented. Notice tha t  PFN B is not 
included in the swapper map. 

4. WSLE 4 is an ordinary process page. The page is added to the swapper  map 
(PFN D) and it is marked  for deletion. The deletion will actually occur after the 
swapper's write operation completes. 

5. WSLE 5 is a process L3PT tha t  does not map a buffer object. The swapper  links it 
into the list at  PHD$L_L3PT_WSLX. Its PFN is not included in the swapper  map 
because it is not par t  of the process body. 

6. WSLE 6 is also a process L3PT tha t  does not map a buffer object. It is also 
linked into the L3PT list, but the low longword of its PFN$Q_BAK field contains 0 
because it is the last L3PT in the list. 

6.5.40utswap of the Process Header and Page Tables 
The PHD and page tables are not outswapped until  after the process body has been 
successfully wri t ten to the swap file. Before they can be outswapped, ties between 
physical pages and the process page tables must  be severed, including pages tha t  
were in the working set and wri t ten to the swap file and also pages tha t  are in some 
transit ion state, notably pages on the free and modified page lists. 

6.5.4.1 Partial Outswap 
After the process body has been outswapped, the PHD and page tables can be 
outswapped if the PHD reference count is zero. The PHD reference count (see Fig- 
ure 2.30) represents  the number  of reasons (transition pages, active page table pages, 
and so on) the page tables and thus the PHD cannot be outswapped. 

The swapper checks the PHD reference count. If the reference count is zero, the 
swapper outswaps the PHD and tables immediately, taking the steps in Section 6.5.4.2. 
If the reference count is nonzero, the header  and page tables cannot be outswapped. 
This circumstance of a body outswap not being followed immediately by the outswap of 
the header  and page tables is referred to as a part ial  outswap. 

Later  in a subsequent  invocation of OUTSWAP (see Section 6.3.3), when the swapper 
locates a PHD from a partially outswapped process, it takes whatever  actions are 
required to remove the ties tha t  bind the PHD and page tables to physical memory. 
First, it eliminates any transit ion PTEs whose physical pages are on the free page list. 
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It locates a transition PTE by scanning the free page list for a process or process 
page table page mapped by the page table hierarchy defined by the LIPT associated 
with the PHD being examined. It starts its scan at the back of the list with the 
most recently queued entries, on the assumption that the transition pages are more 
frequently in the back half of the list. (Pages associated with deleted virtual address 
space are placed at the front of the list.) 

Whenever it finds such a page, it calls MMG$DEL_CONTENTS_PFN, in module 
ALLOCPFN, which restores the backing store information in the physical page's 
PFN$Q_BAK field to the process PTE, reinitializes the PFN database record to indicate 
the page is not attached to any virtual page, moves the page from its current location 
to the head of the free page list, and decrements the corresponding page table page 
share count. 

Because the free page list is only one of several transition states, the scan of the free 
page list may not free the PHD for removal. Pages may be in some other transition 
state. A page in a transition state that represents some form of I/O in progress (release 
pending, read in progress, write in progress) is left alone because there is nothing that 
the swapper can do until the I/O completes. After the free page list is scanned, if the 
process still has transition pages, the swapper calls MMG$PURGE_MPL to request 
that all modified pages be written that are in the PHD or that are mapped by this 
process's page tables. A modified page written to its backing store is released to the 
free page list. Later, aider the pages have been selectively purged from modified page 
list, the swapper will scan the free page list again. 

If the swapper succeeds in releasing a PHD with the previously described free page list 
scan, it can take the steps described in the next section to outswap the PHD. 

6.5.4.2 Preparing the Process Header and Page Tables for Outswap 
Once the reference count for the PHD reaches zero, it can be outswapped and the 
balance set slot freed. The outswap of the PHD and page tables is similar to the 
outswap of a process body, in that  the PFNs corresponding to the PHD and page table 
pages are inserted into the swapper map to form a virtually contiguous transfer for 
the I/O subsystem. The PHD pages are first, followed by the L1PT, the L2PTs, and the 
L3PTs. Any L3PT pages that  map buffer objects are omitted. 

There are several differences, however, between the outswap of a PHD and page tables 
and the outswap of a process body. When a process body is outswapped, the header 
that  maps that  body is still resident. When the swapper's write completes and each 
physical page is being deleted, the contents of the PFN$Q_BAK field in the PFN 
database record for each page are restored to the process L3PTE. 

PHD pages are mapped by system space PTEs for that  balance set slot. The system 
space PTEs are not available to hold the PFN$Q_BAK field contents because they will 
be used by the next occupant of this balance set slot. Instead, the PHD page BAK 
array (see Section 6.2.1) serves this purpose. As the PHD is processed for outswap, 
the contents of the PFN$Q_BAK field for each active header page are stored in the 
corresponding PHD page BAK array element. 
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Lower level page table pages are mapped by upper level page table pages. The swap- 
per stores the PFN$Q_BAK field contents in the PTE that  maps a page table page. 
This records the forward links in the L3PT and L2PT chains for use during inswap 
processing. 

Routine RELPHD, in the SWAPPER module, prepares the PHD to be outswapped. 
Before calling it, the swapper switches to the mapping context of the outswapped 
process so that  its page tables can be accessed. It does this by storing the contents 
of the outswapped process's page table base register (PTBR), the current kernel stack 
pointer, and the current address space number (ASN) in an alternative hardware 
privileged context block (HWPCB) and switching context to that  HWPCB. 

RELPHD takes the following steps" 

1. It scans the list of L3PTs that  map buffer objects. For each one it finds, it updates 
the reference counts of the page table page that  maps it (see Chapter 4). 

2. It scans the list of L3PTs that  do not map buffer objects. For each one it finds, 
it updates the reference counts of the page table page that  maps it. It stores the 
contents of PFN$Q_BAK into the PTE that  maps the page table page. It stores 
the PFN occupied by the L3PT in the swapper map. It clears PFN$L_PT_PFN and 
PFN$Q_PTE_INDEX of the associated PFN to sever the connection between that  
PFN and the PTE that  mapped it. 

It scans the list of L2PTs, taking the same actions for each L2PT. The L3PTs must  
be processed first, while the L2PTs that  map them are still valid. 

3. It scans the system space L3PTEs that  map the balance set slot. For each valid 
one, it stores the PFN$Q_BAK contents of the associated PFN into the correspond- 
ing PHD BAK array element and clears the PFN$L_PT_PFN and PFN$Q_PTE_ 
INDEX fields to sever the connection between that  PFN and the system space 
L3PTE. 

4. It copies the local event flags from the PHD to the PCB (see Chapter Event Flags). 

5. It stores the index of the PHD slot in PCB$L_PHD and clears PCB$V_PHDRES in 
PCB$L_STS as indications that  the process no longer has a resident PHD. It also 
clears KTB$Q_PHYPCB and KTB$L_VTRPCB in the initial kernel thread's KTB to 
indicate that  the hardware PCB address must  be recalculated after the process is 
inswapped. 

6. It stores the PFN of the LIPT in the swapper map and clears the PFN's PFN$L_ 
PT_PFN and PFN$Q_PTE_INDEX fields. 

7. It switches back to the address space of the swapper process and queues a write 
request to outswap the PHD and page tables. 

Once the header and page tables are successfully outswapped, routine RELEASE_ 
PROCESS_HEADER, in module SWAPPER, runs. It reinitializes the system space 
L3PTEs that  mapped the PHD and flushes stale translations from the translation 
buffer. It releases each outswapped header and page table page to the front of the 
free page list, reinitializing its PFN database record. It initializes the PHD reference 
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count t o - 1  and clears the PHV$GL_PIXBAS element corresponding to the slot. If the 
process has a single kernel thread, it clears PCB$L_PHD. Otherwise, it clears KTB$L_ 
PHD, KTB$L_VIRPCB, and KTB$Q_PHYPCB for each kernel thread. The balance set 
slot is now available for further use. 

6.6 Inswap Operation 
The inswap is exactly the opposite of the outswap operation. The swapper brings the 
PHD, active page tables, and process body back into physical memory. It then uses the 
contents of the working set list to rebuild the process page tables, an operation that  
primarily involves updating each valid PTE to reflect the new PFN used by that  PTE. 
As each page is processed, the swapper can resolve any special case that  existed when 
the process was outswapped. 

6.6.1 Selection of an Inswap Candidate 
As described in Section 6.3.2, the swapper selects a process for inswap, much as the 
scheduling subsystem selects a candidate for execution. The following processes are 
candidates for inswap: 

�9 Newly created processes 

�9 Processes with a kernel thread in some outswapped wait state that  was just  made 
computable 

�9 Processes that  were outswapped with a kernel thread in the computable state 

The process with the highest priority COMO kernel thread is the one selected for 
inswap. 

6.6.2 Preparation for Inswap 
Before inswapping a process, the swapper must  locate a free balance set slot for the 
process's PHD and allocate pages of physical memory for its working set. In the case 
of a partial outswap, it is possible that  the PHD and page tables will not have been 
swapped in the time between the outswap and subsequent inswap of the process body. 
In the corresponding partial inswap, the swapper need not allocate a balance set slot 
and bring the PHD and page tables into memory because they are already resident. 

In routine SWAPSCHED, the swapper calculates the number of pages required as 
the sum of PCB$L_PPGCNT and PCB$L_GPGCNT. If the PHD and page table pages 
are still resident, SWAPSCHED subtracts the number of header and page table pages 
(PCB$L_APTCNT) from the number of pages to be allocated. SWAPSCHED also 
subtracts PCB$L_BUFOBJ_CNT, the number of buffer object pages, and pages locked 
in memory. It tests whether the number of free pages is large enough for the required 
number of pages to be allocated. If not, it calls OUTSWAP, specifying the number 
of free pages to be reclaimed. Sometime later, aider the outswap is completed, the 
swapper will try to inswap again, selecting a candidate from the highest priority 
COMO queue. 
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If the number of free pages is large enough, SWAPSCHED calls INSWAP to inswap 
the process body and, if necessary, the PHD and page tables. If the PHD has been 
outswapped, INSWAP scans the PHD reference count array for a balance set slot with 
a negative reference count. If it fails to find one, it calls OUTSWAP (see Section 6.3.3), 
specifying that  a process should be outswapped to free a balance set slot. Sometime 
later, after the outswap is completed, the swapper will try to inswap again, selecting a 
candidate from the highest priority COMO queue. 

If INSWAP finds a free balance set slot, it zeros the PHD reference count for that  slot, 
stores the low word of the process's ID in the corresponding PHV$GL_PIXBAS array 
element, and stores in PCB$L_PHD the byte offset of the slot from the beginning of 
the balance set slot area. 

It then allocates as many free physical pages as required to accommodate the process's 
working set. If the process has a home resource affinity domain (RAD), it allocates 
pages from that  RAD's memory. If the process does not have a home RAD, but this is 
a nonuniform memory access (NUMA) platform and RAD support enabled, INSWAP 
tests bit RIH$V_SPECIAL in parameter  RAD_SUPPORT. 

�9 If the bit is clear, INSWAP uses the default allocation method, selecting the next 
RAD in the round-robin with both memory and CPU. 

* If the bit is set, INSWAP uses the method specified for swapper allocation, allocat- 
ing from the current RAD, the base RAD, or the next RAD in the round-robin. If 
home RAD allocation was specified, because the process has no home RAD, it uses 
the next RAD in the round-robin. 

The RAD from which the pages are allocated becomes the process's home RAD. 

INSWAP updates the PFN database record for each page by incrementing the page's 
reference count and setting its state to active. It initializes a swapper map entry with 
the PFN of each allocated page. 

INSWAP records the PCB of the inswap process in SWP$GL_INPCB and resets the 
swap failure count. It initiates the inswap I/O. 

6.6.3 Inswap of the Process Header and Page Tables 
After the inswap I/O completes, routine SETUP, in module SWAPPER, executes. 

If the PHD and page tables were outswapped, SETUP must  reestablish them in 
memory before the process body can be reconstructed. SETUP must  adjust any process 
data tied to a specific balance set slot (that is, specific system virtual or physical 
addresses) to reflect the PHD's new location. 

SETUP takes the following steps: 

g It adds the address of the beginning of the balance set slots to the contents of 
PCB$L_PHD, which were the byte offset of the slot. 
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It tests PCB$V_PHDRES in PCB$L_STS to see whether the PHD and page tables 
remained resident. If so, it switches to the mapping context of the inswapped 
process so that  it can access the process's page tables (see Section 6.5.4.2) and 
continues with step 8. It continues to run in the mapping context of the inswapped 
process until the final processing of the inswap (see Section 6.6.4.5). 

Otherwise, it must reestablish the PHD in the balance set slot and reinitialize the 
page tables. The swapper does this work in local routine FILLPHD, called from 
SETUP. FILLPHD takes the following steps: 

a. It initializes each system space L3PTE that  maps a PHD page in the balance 
set slot with the PFN from the swapper map, a protection of ERKW, and set 
valid, fault-on-execute, no-execute, and address space match bits. If MMG$V_ 
NO_MB is set in the MMG_CTLFLAGS SYSGEN parameter, it also sets the 
no-TB-miss-memory-barrier-required bit (see Chapter 1) in the L3PTE. 

b. It updates the PFN database record for that  page of memory with backing 
store information from the PHD BAK array. 

c. The PHD pages are at the beginning of the process's swap image. FILLPHD 
can identify any empty pages from data in the BAK array. Empty pages can 
result from a gap between the process section table and working set list and 
from empty entries at the end of the working set list. 

FILLPHD locates the LIPT as the first page in the swap image following the 
PHD. The L2PTs and L3PTs immediately follow. 

To reinitialize the page tables, FILLPHD first stores the PFN of the LIPT in 
PHD$Q_PTBR, recording the base of the process's page table hierarchy. It 
stores the PFN in the L1PTE that  self-maps the L1PT (see Figure 1.9). 

It switches to the mapping context of the inswapped process so that  it can 
access the process's page tables as it initializes them (see Section 6.5.4.2). It 
continues to run in the mapping context of the inswapped process until the 
final processing of the inswap (see Section 6.6.4.5). It initializes the PFN 
database for the L1PT. 

f. It processes the L2PTs, following the chain from PHD$L_L2PT_WSLX. It 
determines the virtual address of each one from the WSLE and then the virtual 
address of the L1PTE that  maps it. It initializes the L1PTE with the next PFN 
from the swapper map, a protection of ERKW, and set valid, fault-on-execute, 
and no-execute bits. If MMG$V_NO_MB is set in the MMG_CTLFLAGS 
SYSGEN parameter, it also sets the no-TB-miss-memory-barrier-required bit. 
It initializes the PFN database for the L2PT pages. 

g. It processes the L3PTs in the same manner. 

h. It processes the list of buffer object pages and pages locked in memory, mod- 
ifying the PFN database field PFN$L_PT_PFN for each to reflect the actual 
location of the page table that  maps the page and updating the page table's 
page table reference counts (see Chapter 4). 

d ,  

e. 
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SETUP copies the local event flags from the PCB to the PHD (see Chapter Event 
Flags). 

It stores the index of the slot in PHD$GL_PHVINDEX. 

It sets PCB$V_PHDRES in PCB$L_STS as an indication that  the PHD is resident. 

SETUP sets PHD$V_NOACCVIO in PHD$L_FLAGS as an indication that  the 
header has just  been inswapped, possibly to a different balance set slot, and that  
the first reference the process makes to another balance set slot could be the result 
of a swap at an inopportune time. Chapter 4 describes how the page fault handler  
tests and clears this bit. 

If soft RAD affinity support is enabled (bit RIH$V_AFFINITY set in SYSGEN 
parameter RAD_SUPPORT), it sets KTB$V_SOFT_RAD_AFFINITY in the pri- 
mary kernel thread's KTB$L_FLAGS, and CPB$V_SOFT_RAD_AFFINITY in its 
KTB$L_CAPABILITIES, KTB$L_PERMANENT_CAPABILITIES, and KTB$L_ 
CAPABILITY. It clears KTB$L_SRA_SKIP_COUNT. 

Soft RAD affinity is a mechanism that  biases a process to run on CPUs in its home 
RAD. Running on a particular CPU and RAD to select the next process to run, the 
scheduling subsystem skips over processes from other RADs. There is, however, a 
maximum number of times a process can be skipped before being run. A CPU that  
would otherwise go idle runs an off-RAD process. 

If necessary, SETUP recalculates the physical address of the HWPCB and stores it 
in PCB$Q_PHYPCB, and stores the HWPCB's virtual address in the initial kernel 
thread's KTB$Q_VIRPCB. 

If this is a process with multiple kernel threads, it stores the address of the PHD 
in each thread's KTB$L_PHD, stores the addresses of its HWPCB in KTB$Q_ 
PHYPCB and KTB$L_VIRPCB, and stores the addresses of the process's L1PT in 
each thread's HWPCB. 

If soft RAD affinity support is enabled, it initializes the other threads' KTBs as in 
step 8. It also stores the home RAD in each thread's KTB$L_HOME_RAD. 

It initializes PCB$L_PRVCPU t o - 1  to ensure that  when any kernel thread in the 
process is next executed, it is assigned a new address space number. This step 
eliminates the need to flush stale process-private translation buffer entries. 

SETUP initializes the P1 PTEs that  double-map the PHD pages. 

This P1 mapping provides invariant addresses for the nonpageable part  of the 
PHD. The system space mapping is subject to change with outswap and inswap: if 
the header is outswapped, it is likely to be inswapped into a different balance set 
slot. Chapter 2 describes the conventions for accessing the PHD. 

The P1 window to the PHD has the following implications: 

The physical pages that  are doubly mapped are not kept track of through 
reference counts. However, these header pages are a permanent part  of the 
process working set. 
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- -  The P1 page table page that  maps these pages must  also be a permanent  
member of the process working set. 

6.6.4 Rebuilding the Process Body 
After the PHD and the page tables are in a known state, the process body can be 
restored to the state it was in before the process was outswapped. 

6.6.4.1 Rebuilding the Working Set List and Process Page Tables 
Rebuilding the process body involves scanning both the swapper map and the process 
working set list. Recall that  at outswap the processing of each page was determined by 
a combination of page type and validity. On inswap, the key to the processing of each 
page is the contents of the PTE, located by the virtual address field in the WSLE. An 
approximation of swapper activity for each page is as follows: 

1. The swapper locates the L3PTE from the virtual address in the WSLE. 

2. In the usual case, the original contents of the L3PTE are stored in the PFN$Q_ 
BAK field, and the PFN from the swapper map entry is inserted into the now valid 
L3PTE. 

3. If, for some reason, a copy of the page already exists in memory (for example, if the 
page was locked into memory with the SLCKPAGL64] system service), that  copy 
is put into the process working set. The duplicate page from the swapper map is 
released to the front of the free page list. 

At inswap, the swapper determines what  action to take for each particular page in the 
working set list from the contents of the L3PTE. Table 6.4 details the different cases 
the swapper can encounter. 

Table  6.4 R e b u i l d i n g  t h e  W o r k i n g  Set  Lis t  a n d  t h e  P r o c e s s  P a g e  Tables  

Type of Page Table Entry Action of Swapper for This Page 

L3PTE is valid. Page was not released at outswap. If the page 
was locked into memory, or is part of a buffer 
object, no action is required. 

Fault transition page into process working set. 
Release duplicate page that was just inswapped. 

L3PTE indicates a transition page, prob- 
ably because of outstanding I/O when 
process was outswapped. 
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Table 6.4 (continued) Rebui ld ing  the Working Set  List  and the Proces s  
Page  Tables 

Type of Page Table Entry Action of Swapper for This Page 

L3PTE contains a GP'I~. Page must be 
global read-only because global read/write 
pages were dropped from the working set 
at outswap time. 

L3PTE contains a page file index or a 
process section table index. 

Swapper action is based on the contents of the 
GPTE: 
�9 If the GPTE is valid, copy the PFN in 

the GPTE to the process L3PTE and 
release the duplicate page. 

�9 If the GPTE indicates a transition page, 
make the GPTE valid, add that 
physical page to the process working 
set, and release the duplicate page. 

�9 If the GPTE indicates a GSTX, 
keep the page just inswapped and 
make it the master page in the 
GPTE as well as the slave page in the 
process L3PTE. 

These are the usual contents for a page that  
did not have outstanding I/O or other page 
references when the process was outswapped. 
The PFN in the swapper map is inserted into 
the process page table. Its PFN database record 
is initialized. 

If  the  v i r tual  address  field represen ts  a sys tem space address ,  the  WSLE describes 
a page in the PHD. The swapper  m u s t  calculate the new sys tem vi r tua l  address  
corresponding to t ha t  page and modify the WSLE. 

If the  v i r tua l  address  field represen ts  a page table space address ,  the WSLE describes 
a process-private page table page. If  its W S L E $ V _ P F N L O C K  bit is set, the  page table  
page maps  window pages or page table pages t h a t  map  window pages,  and the  swapper  
has  to adjus t  the  PFN's  window count or share  count: 

For an L3PT, the swapper  scans the L3PTEs for those mapp ing  a P F N - m a p p e d  
page, a memory- res iden t  page, or a Galaxywide section page. For each such 
page, the  swapper  inc rements  the L3PT's PFN$W_PT_WIN_CNT.  When  the count  
t rans i t ions  f r o m - 1  to 0, if PFN$W_PT_LCK_CNT is s t i l l - 1 ,  indicat ing the  L3PT 
maps  no pages locked in the working set or in memory, the  swapper  inc rements  
PHD$L_PTCNTLCK,  the n u m b e r  of locked page table pages. 

For an L2PT, the swapper  scans the L2PTEs for those mapp ing  memory- res iden t  
shared  L3PTs. For each such page, the swapper  inc rements  the L2PT's PFN$W_ 
PT_WIN_CNT. When  the count t rans i t ions  f r o m - 1  to 0, if PFN$W_PT_LCK_CNT 
is s t i l l - 1 ,  the  swapper  inc rements  PHD$L_PTCNTLCK,  the  n u m b e r  of locked page 
table pages. 
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Regardless of the state of the WSLE$V_PFNLOCK bit, the swapper  must  increment  
the PFN$L_SHRCNT in the page table page tha t  maps  each L2PT and L3PT in the 
working set list. When the share count t ransi t ions from 0 to 1, the swapper  locks the 
mapping page table page into the working set list, increments  PHD$L_PTCNTACT to 
indicate another  active page table page, and increments  the PHD's entry  in the a r ray  
at PHV$GL_REFCBAS_LW, the number  of reasons the PHD should remain  in memory. 

6.6.4.2 Pages with I/O in Progress when Outswap Occurred 
Pages tha t  had I/O in progress when the process was outswapped were wri t ten  to the 
swap file anyway to reserve space. If the page was previously unmodified, it would 
have been put  into the free page list when both the swap write and the outs tanding 
write operation completed. If the page was previously modified, it would have been 
put  into the modified page list when both the swap write and the outs tanding wri te  
operation completed (because bit PFN$V_SWPPAG_VALID was set). 

In either case, it is possible for the process to be inswapped before one of these physical 
pages is reused. The swapper uses the physical page tha t  is already contained in the 
process L3PTE (as a transit ion page) and releases the duplicate physical page from the 
swapper map to the front of the free page list. 

In the case of a page on the free page list, this decision is simply one of convenience. 
For a page on the modified page list, the contents of the page in the swap image are 
out-of-date, and the swapper must  use the physical page that  is already in memory. 

6.6.4.3 Resolution of Global Read-Only Pages 
The only type of global page tha t  can be in the swap file is a global read-only page tha t  
had a share count of 1 when the process was outswapped (or a page tha t  was explicitly 
locked). All other global pages were dropped from the process working set before the 
process was outswapped. 

There are two cases tha t  the swapper can find when rebuilding the process page 
tables. At inswap, the process L3PTE for a global read-only page always contains a 
GPTX. The swapper 's  t r ea tment  of the page is determined by the contents of the GPTE 
indexed by the GPTX: 

�9 If no other process has mapped the global page, the GPTE contains a GSTX. The 
swapper  stores the PFN from the swapper map in both the process L3PTE and the 
GPTE. 

�9 If some other process referenced the global page while this process was 
outswapped, the GPTE can indicate a valid or a transit ion page. In ei ther  case, 
the swapper releases the duplicate page to the free page list and stores the PFN 
from the GPTE in the process PTE. If the page is in transition, the swapper  makes  
it valid. 
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6.6.4.4 Example of an Inswap Operation 
Figures 6.7 to 6.9 show an inswap operation that illustrates some of the special cases 
the swapper encounters when inswapping a process body. Note that this example is 
not related to the outswap example shown in Figures 6.4 to 6.6. In this example the 
process body has been outswapped, but not the PHD and page tables. In these figures, 
the term VA_PTE represents the combination of PFN database fields PFN$L_PT_PFN 
and PFN$Q_PTE_INDEX, and the term WSLX stands for the PFN database field 
PFN$L_WSLX_QW. 
Figure  6.7 Working Set List and Swapper  Map before Phys ica l  Page  Alloca- 

t ion 
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Figure 6.7 shows the state of the PHD and page tables after the process has been 
selected to be inswapped. 

Figure 6.8 shows that four physical pages have been allocated to contain the four 
working set pages that the example describes. Figure 6.9 shows the rebuilt process 
page tables and the PFN database changes that result from rebuilding the working set 
and process page tables. 

�9 WSLE 1 locates virtual page number X. This L3PTE contains a GP'I~. The refer- 
enced GPTE (GPTE T) contains a GSTX, indicating that the GPTE is not valid. 
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PFN D is inserted into the L3PTE. The swapper also inserts PFN D into the 
GPTE, sets the GPTE valid bit (see Figure 6.9), and updates the PFN database 
record for physical page D to reflect its new state. 

2. WSLE 2 is a process page mapped by L3PTE W (see Figure 6.8). This L3PTE 
contains a process section table index. The L3PTE is updated to contain PFN C, 
and the PSTX is stored in the PFN$Q_BAK field for that page (see Figure 6.8). 
Other PFN record fields are updated accordingly. 

F igure  6.8 Working  Set  List  and  S w a p p e r  Map after  P h y s i c a l  P a g e  Al loca-  
t ion  
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WSLE 3, which locates L3PTE Y, is exactly like the first, as far as the process data 
is concerned. However, the GPTE (GPTE S) is valid, indicating that another copy 
of this page already exists. This could occur only if another process had faulted the 
page while this process was outswapped. 

The duplicate page (PFN E) is released to the front of the free page list. The 
process L3PTE is altered to contain the physical page that already exists (PFN B), 
and the share count for that page is incremented (from 3 to 4). 

WSLE 4 resembles WSLE 2. However, the process L3PTE indicates a transition 
page. This implies that the header in this example was never outswapped. 
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The action taken here is similar to step 3, where a duplicate global page was 
discovered. The page just  read (PFN F) is released to the head of the free page 
list. The transition page (PFN A) is faulted back into the process working set by 
removing the page from the free page list, changing its state to active, and setting 
the valid bit in the L3PTE. 

F i g u r e  6.9 Working Set List and Rebuilt  Page  Tables 

6.6.4.5 Final Processing of the Inswap Operation 
After the working set list has been scanned and the process page tables rebuilt, 
several other steps must be taken before the process is executable. After switching 
back to its own address space, the swapper calls local routine SETAST_CONTEXT. 
The swapper then invalidates the translation buffer to remove any stale translations of 
the balance set slot. As soon as the swapper releases the MMG and SCHED spinlocks, 
the computable kernel threads of the inswapped process are eligible to be scheduled. 

SETAST_CONTEXT takes these steps: 

, It sets the resident bit, PCB$V_RES, and the initial quantum bit, PCB$V_ 
INQUAN, in PCB$L_STS. 

, It calculates contents for the AST summary register (ASTSR) and stores them in 
the HWPCB. (ASTs may have been queued to the process while it was outswapped. 
The HWPCB, which contains a copy of the ASTSR, was not available while the 
header was not resident.) 

398 



, 

, 

, 

. 

6.7 Relevant Source Modules 

If the process has multiple kernel threads, SETAST_CONTEXT must  do this for 
each kernel thread. Each kernel thread has its own set of AST queues and its own 
HWPCB. 

Additionally, SETAST_CONTEXT must  take into account the queues in the PCB 
of ASTs that  require the inner mode semaphore. It first checks whether  the inner 
mode semaphore is currently owned by any kernel thread. If not, it determines 
the highest priority AST that  requires the inner mode semaphore, identifies for 
which kernel thread it was intended, and modifies the inner mode semaphore to 
reflect that  kernel thread as owner. It updates the ASTSR copy of the inner mode 
semaphore's owner to reflect the state of the PCB queues. Chapter Kernel Threads 
describes the inner mode semaphore, the different sets of AST queues, and AST 
delivery in a mult i threaded process. 

Each kernel thread gets a new quantum in KTB$L_QUANT and, optionally, a new 
thread quantum in KTB$L_TQUANT. 

SETAST_CONTEXT calls SCH$CHSEP to change each kernel thread's scheduling 
state as appropriate, for example, to COM from COMO or to HIB from HIBO. 

It clears bit PCB$V_PHDLOCK in PCB$L_STS2 (see Section 6.5.3.1). 

It deallocates the process's swap space and clears PCB$L_WSSWP and PCB$L_ 
SWAPSIZE to show that  the process has no swap space allocated. 

7. It clears SCH$V_SIP in SCH$GL_SIP. 

6.7 Relevant Source Modules 
Source modules described in this chapter include 

[LIB]PFLMAPDEF.SDL 
[SYS]OSWPSCHED.MAR 
[SYS] SWAPPER.MAR 
[SYS] SWAPPER_INIT.MAR 
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Chapter 7 
Pool Management 

In this bright little package, now isn't it odd? 
You've a dime's worth of something known only to God! 

Edgar Albert Guest, The Package of Seeds 

The OpenVMS Alpha operating system creates and uses many data structures in the 
course of its work. Although it creates some of them at system initialization, it creates 
most when they are needed and destroys them when their useful life is finished. It 
maintains distinct areas of virtual address memory, called pools, in which it allocates 
and deallocates dynamic data structures. Each pool has different characteristics. This 
chapter describes these memory areas, their uses, and their allocation and deallocation 
algorithms. 

Section 7.1 summarizes the various pools. Section 7.2 discusses dynamic data struc- 
tures. Section 7.3 describes the structures and mechanisms of the variable-length 
pools, and Section 7.4, those of the fixed-length pools. Subsequent sections describe the 
various pools in detail. 

7.1 Summary of Pool Areas 
Almost all executive data structures created after system initialization are volatile; 
they are allocated on demand and deaUocated when no longer needed. These data 
structures typically have a common header format (see Section 7.2). Their memory 
requirements vary in a number of ways: 

Pageabi l i tynData  structures accessed by code running at interrupt priority level 
(IPL) 2 or below can be pageable; data structures accessed at higher IPLs cannot. 

Virtual location--Some data structures are local to one process, mapped in process- 
private address space; others must be mapped in system space, accessible to 
multiple processes and to system context code. 

Physical location--Some data structures are accessed by I/O adapters and must  be 
in addresses within I/O bus and adapter physical addressing limits. 
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On a nonuniform memory access (NUMA) platform, such as an AlphaServer 
GS160, some physical memory is local to the CPU. The CPU can access local 
memory in its own resource affinity domain (RAD) more quickly than  nonlocal 
memory. 

�9 Protection--Many dynamic data structures are created and modified only by kernel  
mode code, but some data structures are accessed by outer modes. 

The executive provides different storage areas to meet the memory requirements  of 
dynamic data  structures, based on two different allocation schemes: variable-length 
allocation and fixed-length allocation. 

There are several pools of storage for variable-length allocation: 

�9 A nonpageable system space pool, known as nonpaged pool 

�9 Under some circumstances, a nonpageable system space pool called bus- 
addressable pool (BAP) 

�9 On a NUMA system, multiple sections of nonpaged pool in different sections of 
physical memory 

�9 A pageable system space pool, known as paged pool 

�9 A pageable process-private space pool, known as the process allocation region 

The executive also provides lookaside lists of fixed-length packets. A lookaside list is a 
linked list of equal-size packets, each of which is ready for allocation through a quick 
unlinking operation. Lookaside lists enable faster allocation and deallocation of the 
most frequently used sizes and types of storage. Throughout this chapter, packet refers 
to a preformed, fixed-length allocation, and block refers to a variable-length allocation. 

The executive provides the following lookaside lists: 

�9 Nonpaged pool lookaside lists, with element sizes start ing from 64 bytes and going 
up to 8,192 bytes in 64-byte increments 

�9 A kernel process block (KPB) lookaside list out of nonpaged pool 

�9 On a NUMA system, multiple sets of nonpaged pool lookaside lists in different 
sections of physical memory 

�9 An $2 space list of nonpageable 256-byte packets for lock management  resource 
blocks and lock blocks 

�9 A process quota block (PQB) lookaside list out of paged pool 

�9 A process-private kernel request packet (KRP) lookaside list out of P1 space for 
each process 
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The pool areas  are summar ized  in Table 7.1. 

Table 7.1 C o m p a r i s o n  of  Di f f erent  Poo l  Areas  

7.1 Summary of Pool Areas 

System Space 

Nonpaged Pool Variable-Length Region 

Protection 

Synchronization technique 

Type of list 

Allocation 

Minimum request size 

Characteristics 

ERKW 

POOL spinlock 

Variable-length blocks; singly linked absolute list 

Multiple of 64 bytes; mask is EXE$M_NPAGGRNMSK 1 

1 byte 

Nonpageable; expandable; RAD-specific 

Bus-Addressable Pool Variable-Length Region 

Protection 

Synchronization technique 

Type of list 

Allocation 

Minimum request size 

Characteristics 

ERKW 

POOL spinlock 

Variable-length blocks; singly linked absolute list 

Multiple of 64 bytes; mask is EXE$M_NPAGGRNMSK 1 

1 byte 

Nonpageable; expandable 

Nonpaged Pool Lookaside Lists 

Protection 

Synchronization technique 

Type of list 

Allocation 

Minimum request size 

Characteristics 

ERKW 

Load-locked/store-conditional mechanism 

Fixed-length packets; singly linked absolute list 

Multiple of 64 bytes; mask is EXE$M_NPAC~RNMSK 1 

1 byte 

Nonpageable; packets are initially allocated out of the non- 
paged pool variable-length region and deallocated to these lists; 
RAD-specific 

Bus-Addressable Pool Lookaside Lists 

Protection 

Synchronization technique 

Type of list 

Allocation 

Minimum request size 

ERKW 

Load-locked/store-conditional mechanism 

Fixed-length packets; singly linked absolute list 

Multiple of 64 bytes; mask is EXE$M_NPAGGRNMSK 1 

1 byte 

1See Section 7.3 for a description of allocation masks. 

403 



Pool Management 

Table  7.1 (continued) C o m p a r i s o n  o f  D i f f e r e n t  P o o l  A r e a s  

System Space 

Bus-Addressable Pool Lookaside Lists 

Characteristics Nonpageable; packets are initially allocated out of the bus- 
addressable pool variable-length region and deallocated to 
these lists 

Nonpaged Pool KPB Lookaside List 

Protection 

Synchronization technique 

Type of list 

Allocation 

Minimum request size 

Characteristics 

ERKW 

Load-locked/store-conditional mechanism 

Fixed-length packets; singly linked absolute list 

KPB$C_LENGTH 

KPB$C_LENGTH 

Nonpageable; packets are initially allocated out of the non- 
paged pool variable-length region and deallocated to this 
list 

$2 Space Lock Management Lookaside List 

Protection 

Synchronization technique 

Type of list 

Allocation 

Standard request size 

Characteristics 

ERKW 

LCKMGR spinlock 

Fixed-length packets; doubly linked absolute list 

256 bytes 

RSB$C_LENGTH and LKB$C_LENGTH 

Nonpageable; expandable 

Paged Pool 

Protection 

Synchronization technique 

Type of list 

Allocation 

Minimum request size 

Characteristics 

ERKW 

EXE$GL_PGDYNMTX mutex 

Variable-length blocks; singly linked absolute list 

Multiple of 16 bytes; mask is EXE$M_PAGGRNMSK 1 

1 byte 

Pageable 

Paged Pool PQB Lookaside List 

Protection 

Synchronization technique 

Type of list 

ERKW 

Self-relative queue operations 

Fixed-length packets; doubly linked self-relative queue 

1See Section 7.3 for a description of allocation masks. 
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Table 7.1 (continued) 

7.2 Dynamic Data Structures 

C o m p a r i s o n  of  D i f f erent  Poo l  Areas  

System Space 

Paged Pool PQB Lookaside List 

Allocation 

Minimum request size 

Characteristics 

PQB$C_LENGTH 

PQB$C_LENGTH 

Pageable; PQBs are initially allocated out of paged pool and 
deallocated to this list 

Process-Private Space 

Process Allocation Region 

Protection 

Synchronization technique 

Type of list 

Allocation 

Minimum request size 

Characteristics 

UREW 

Access mode and IPL 

Variable-length blocks; singly linked absolute list 

Multiple of 16 bytes; mask is EXE$M_PIGRNMSK I 

1 byte 

Pageable; expandable into P0 space 

P1 Space KRP Lookaside List 

Protection 

Synchronization technique 

Type of list 

Allocation 

Minimum request size 

Characteristics 

URKW 

Access mode and absolute queue operations 

Fixed-length packets; doubly linked absolute queue 

CTL$C_KRP_SIZE 

CTL$C_KRP_SIZE 

Pageable 

X See Section 7.3 for a description of allocation masks. 

7.2 Dynamic Data Structures 
Traditionally, most dynamic data  s tructures have the common header  format shown in 
Figure 7.1" 

For a data  s t ructure allocated from 32-bit space, the first two longwords are 
available to link the data  s t ructure into a list or queue. 

The third longword contains the size, type, and (optional) subtype fields at  byte 
offsets 8, 10, and 11. 
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Figure 7.1 Format of Dynamic Data Structures 

[FLINK] 

[BLINK] 

[SUBTYPE] TYPE SIZE 

i 

SIZE 
bytes 
long 

Figure 7.2 Format of Dynamic Data Structures 

SIZE 
bytes - 
long 

- -  [LINK] 

MBO 

- -  SIZE m 

[SUBTYPE] ! TYPE MBO 

- -  SIZE - -  

- -  [FLINK] - -  

- -  [BLINK] - -  

SIZE 
- b y t e s  

long 

Figure 7.2 shows two alternative header formats. Like the traditional header format, 
these formats have size, type, and subtype fields in standard locations. The chief 
differences are the must-be-one (MBO) field at the same offset as the traditional size 
and a new 64-bit size field. Because data structures are always an even number of 
bytes, the MBO field enables the System Dump Analyzer (SDA) and other code to 
distinguish the traditional header format from the newer ones. 

A 64-bit size can describe an arbitrarily large structure. Moreover, it facilitates 
address arithmetic with 64-bit structure addresses. 

An additional difference is that  64-bit links are recommended. This minimizes recod- 
ing if a structure is moved to 64-bit space. The first format can be used for structures 
inserted into a singly linked list, and the second for doubly linked lists. 

When a dynamic data structure is deallocated to the variable-length list, the size field 
specifies how much storage is being returned. For fixed-length packet deallocations, 
the size field selects the lookaside list into which the packet will be placed. Note, 
however, that  the standard pool deallocation routines assume the traditional format 
and expect the size to be in the word at offset 8. 
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7.2 Dynamic Data StrUctures 

The type field enables system components to distinguish different data structures 
and to confirm that  a piece of dynamic storage contains the expected data structure 
type. Codes that  have numeric values greater than or equal to DYN$C_SUBTYPE 
are subtypable codes. Each subtypable code refers to a generic function. Different 
data structures related to the same generic function have the same value in the type 
field but different values in the subtype field. The subtype field is at offset xxx$B_ 
SUBTYPE within a subtypable data structure. 

For example, the system block (SB) and the path block (PB) are data structures used 
by system communication services (SCS). Both structures have the value DYN$C_SCS 
in their type field; the SB has the value DYN$C_SCS_SB in its subtype field, whereas 
the PB has the value DYN$C_SCS_PB in its subtype field. 

The SDA utility uses the type, subtype, and size fields to produce a formatted display 
of a dynamic data structure and to determine the portions of variable-length pool that  
are in use. 

The macro $DYNDEF defines the possible values for the type and subtype fields. Table 
7.2 lists type values. 

Table 7.2 D a t a  S t r u c t u r e  Type D e f i n i t i o n s  

Symbolic Name Code Structure Type 

DYN$C_ADP 1 Adapter control block 

DYN$C_ACB 2 AST control block 

DYN$C_AQB 3 ACP queue block 

DYN$C_CEB 4 Common event block 

DYN$C_CRB 5 Controller request block 

DYN$C_DDB 6 Device data block 

DYN$C_FCB 7 File control block 

DYN$C_FRK 8 Fork block 

DYN$C_IDB 9 Interrupt dispatch block 

DYN$C_IRP 10 I/O request packet 

DYN$C_LOG 11 Reserved 

DYN$C_PCB 12 Process control block 

DYN$C_PQB 13 Process quota block 

DYN$C_RVT 14 Relative volume table 

DYN$C_TQE 15 Timer queue entry 

DYN$C_UCB 16 Unit control block 

DYN$C_VCB 17 Volume control block 

DYN$C_WCB 18 Window control block 

DYN$C_BUFIO 19 Buffered I/O buffer 
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Table 7.2 (continued) Data Structure  Type Def in i t ions  

Symbolic Name Code Structure Type 

DYN$C_TYPAHD 20 

DYN$C_GSD 21 

DYN$C_MVL 22 

DYN$C_NET 23 

DYN$C_KFE 24 

DYN$C_MTL 25 

DYN$C_BRDCST 26 

DYN$C_CXB 27 

DYN$C_NDB 28 

DYN$C_SSB 29 

DYN$C_DPT 30 

DYN$C_JPB 31 

DYN$C_PBH 32 

DYN$C_PDB 33 

DYN$C_PIB 34 

DYN$C_PFL 35 

DYN$C_PFLMAP 36 

DYN$C_PTR 37 

DYN$C_KFRH 38 

DYN$C DCCB 39 

DYN$C EXTGSD 40 

DYN$C SHMGSD 41 

DYN$C_SHB 42 

DYN$C_MBX 43 

DYN$C IRPE 44 

DYN$C_SLAVCEB 45 

DYN$C SHMCEB 46 

DYN$C_JIB 47 

DYN$C_TWP 48 

DYN$C RBM 49 

DYN$C_VCA 50 

DYN$C CDB 51 

DYN$C_LPD 52 

DYN$C LKB 53 

Terminal type-ahead buffer 

Global section descriptor 

Magnetic tape volume list 

Network message block 

Known file entry 

Mounted volume list entry 

Broadcast message block 

Complex chained buffer 

Network node descriptor block 

Logical link subchannel status block 

Driver prologue table 

Job parameter block 

Performance buffer header 

Performance data block 

Performance information block 

Page file control block 

Page file mapping window 

Pointer control block 

Known file resident image header 

Data cache control block 

Extended global section descriptor 

Reserved 

Reserved 

Mailbox control block 

Reserved 

Reserved 

Reserved 

Job information block 

Terminal driver write packet ($TTYDEF) 

Reserved 

Disk volume cache block 

X25 low-end system (LES) channel data block 

X25 LES process descriptor 

Lock block 
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Table 7.2 (continued) 

7.2 Dynamic Data Structures 

Data Structure  Type Def in i t ions  

Symbolic Name Code Structure Type 

DYN$C_RSB 54 

DYN$C LCKRQ 55 

DYN$C_RSHT 56 

DYN$C_CDRP 57 

DYN$C_ERP 58 

DYN$C_CIDG 59 

DYN$C_CIMSG 60 

DYN$C_XWB 61 

DYN$C_WQE 62 

DYN$C_ACL 63 

DYN$C_LNM 64 

DYN$C_FLK 65 

DYN$C_RIGHTSLIST 66 

DYN$C_KFD 67 

DYN$C_KFPB 68 

DYN$C_CIA 69 

DYN$C_PMB 70 

DYN$C_PFB 71 

DYN$C_CHIP 72 

DYN$C_ORB 73 

DYN$C_QVAST 74 

DYN$C_MVWB 75 

DYN$C_UNC 76 

DYN$C_DCB 77 

DYN$C_VCRP 78 

DYN$C_SPL 79 

DYN$C_ARB 80 

DYN$C_LCKCTX 81 

DYN$C BOD 82 

DYN$C_FTRD 83 

DYN$C DDTM_EVENT 84 

DYN$C_DFLB 85 

DYN$C_PTC 86 

DYN$C_OCB 86 

Resource block 

Lock manager request packet 

Resource hash table 

Class driver request packet 

Error log packet 

CI datagram buffer 

CI message buffer 

DECnet logical link context block 

DECnet work queue block 

Access control list queue entry 

Logical name block 

Fork lock request block 

Rights list 

Known file directory 

Known file pointer block 

Compound intrusion analysis block 

Page fault monitor control block 

Page fault monitor buffer 

Internal check protection block 

Object rights block 

Reserved 

Mount verification work buffer 

Universal context block 

DECnet control block for chained I/O 

VAX communication request packet 

Spinlock control block 

Access rights block 

Lock context block 

Buffer object descriptor 

FTDRIVER read request packet 

DDTM event notification block 

Dump file locator block 

Portable Operating System Interface (POSIX) terminal 
control 

Object class block (security) 
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Table 7.2 (continued) Data  S truc ture  Type Def in i t ions  

Symbolic Name Code Structure Type 

DYN$C_CPCB 

DYN$C_HWPCB 

DYN$C_GCB 

DYN$C_RDPB 

DYN$C_RDDB 

DYN$C_SCDRP 

DYN$C_TQE_ACB 

DYN$C_NSAB 

DYN$C_DEA 

DYN$C_SUBTYPE 

DYN$C_SCS 

DYN$C_CI 
DYN$C_LOADCODE 
DYN$C_INIT 
DYN$C_CLASSDRV 
DYN$C_CLU 
DYN$C_PGD 
DYN$C_DECW 
DYN$C_VWS 

DYN$C_DSRV 

DYN$C_MP 

DYN$C_NSA 

DYN$C_CWPS 

DYN$C_VP 

DYN$C_SHAD 

DYN$C_VCC 

DYN$C_OVRS 

DYN$C_DDTM 

DYN$C_SMI 

DYN$C_TSRV 
DYN$C_LAVC 
DYN$C_DECNET 
DYN$C_PSX 
DYN$C_QMAN 

87 

88 

89 

90 

91 

92 

93 

94 

95 

96 

96 

97 

98 

99 

100 

101 

102 

103 

104 

105 

106 

107 

108 

109 

110 

111 

112 

113 

114 

115 

116 

117 

118 

119 

Common process control block 

Hardware privileged context block 

Glyph control block 

Resource domain pointer block 

Resource domain data block 

SCSI class driver request packet 

Timer queue entry/AST control block 

Security audit block 

Deaccess audit pending block 

Beginning of subtypable codes 

SCS control block 

CI port structure 

Loadable code 

Structure set up by INIT 

Class driver structure 

VMScluster structure 

Paged pool structure 

DECwindows structure 

Reserved 

Disk server structure 

Multiprocessing-related structure 

Nondiscretionary security audit structure 

Clusterwide process services 

Reserved 

Volume shadowing structures 

Virtual I/O cache structure 

OpenVMS NT registry server 

Digital distributed transaction manager structures 

System management integrator structure 

Tape server structure 

VMScluster structure 

DECnet structure 

POSIX structure 

Queue manager structure 
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Table 7.2 (continued) 

7.3 

Data  S t r u c t u r e  Type Def in i t i ons  

Variable-Length Pools 

Symbolic Name Code Structure Type 

DYN$C_SM 120 

DYN$C_MISC 121 

DYN$C_RC 122 

DYN$C_IPC 123 

DYN$C_FILE_SYSTEM 124 

DYN$C_F64 125 

DYN$C_FILES_64 126 

DYN$C_SECURITY 127 

DYN$C_SHRBUFIO 128 

DYN$C_LNMC 129 

DYN$C_ICC 130 

DYN$C_GLX 131 

DYN$C_CTD 132 

DYN$C_LCK 133 

DYN$C_QSRV 134 

DYN$C_SYS_EVENT 135 

DYN$C_SMCI 136 

DYN$C_SPLX 137 

DYN$C_WBM 138 

Storage manager structure 

Miscellaneous type 

Redundant array of inexpensive disks (RAID) structure 

Interprocess communication services structures 

File system structures 

Reserved 

Reserved 

Security structures 

Shared memory buffered I/O structures 

Logical name cache blocks 

Intracluster communications structures 

Galaxy structures 

Galaxy AST control block 

Lock management structures 

Reserved 

System event notification structures 

Shared memory cluster interconnect structures 

Spinlock-related extensions 

Write bitmap structures 

7.3 Variable-Length Pools 
Pools tha t  permit  allocation of variable-length blocks have a common structure.  Each 
pool has a global location containing the vir tual  address of the beginning of the pool 
and a l isthead containing the vir tual  address of the first unused block in the pool. The 
first two longwords of each unused block describe the block. As i l lustrated in Figure 
7.3, the first longword in a block contains the address of the next unused block in the 
list. The second longword contains the size in bytes of the unused block inclusive of 
the first two longwords. Each successive unused block is found at a higher  address. 
Thus, the unused blocks in each pool area  form a singly linked, memory-ordered list. 
The shaded areas in the figure represent  unused blocks. 

All pool areas  are initially page-aligned. The allocation routines for the variable-length 
pools round the requested size up to the next multiple of 16 or 64 bytes to impose 
a granular i ty  on both the allocated and unused areas. The granular i ty  of nonpaged 
and bus-addressable pool allocation is 64 bytes; the granular i ty  of the other pools 
is 16 bytes. The symbol EXE$M_xxxGRNMSK is a mask  tha t  indicates allocation 
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Figure 7.3 Layout of Unused Areas in Variable-Length Pools 

granularity, where xxx is NPAG for nonpaged and bus-addressable pool, PAG for paged 
pool, and P1 for the process allocation region. For increased maintainability, any code 
that needs these values should use the symbol rather than a hard-coded value. 

Table 7.3 summarizes variable-length allocation listheads and routines. In the table, 
all routines are in module MEMORYALC and contents of locations are dynamic unless 
marked otherwise. 

Each variable-length pool has its own set of allocation and deallocation routines. The 
various routines call the lower level routines EXELSTD]$ALLOCATE and EXEL 
STD]$DEALLOCATE, in module MEMORYALC, which support the structure common 
to the variable-length lists. Each routine has two arguments: the address of the 
pool listhead and the size of the data structure to be allocated or deallocated. These 
general-purpose routines are also used for several other pools, including symbol table 
space of the Digital command language (DCL) interpreter. 

7.3.1 Variable-Length Block Allocation 
When the low-level allocation routine EXELSTD]$ALLOCATE is called, it searches 
from the beginning of the list until it encounters an unused block large enough to 
satisfy the request. If the fit is exact, the allocation routine simply adjusts the previous 
pointer to point to the next free block. If the fit is not exact, it subtracts the allocated 
size from the original size of the block, puts the new size into the remainder of the 
block, and adjusts the previous pointer to point to the remainder of the block. That 
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is, if the fit is not exact, the low-address end of the block is allocated, and the high- 
address end is placed back in the list. The two possible allocation situations (exact 
and inexact fit) are i l lustrated in Figure 7.4. The shaded areas in the figure represent  
unused blocks. 

Table 7.3 Variable-Length Al locat ion Lis theads  and Rout ines  

System Space 

Nonpaged Pool Variable-Length Regions 

Beginning address 

First free block's address 

Expansion area's address 

Allocation routines 

Deallocation routines 

@MMG$GL_NPAGEDYN 1 

@EXE$GL_NONPAGED 2 

@MMG$GL_NPAGNEXT 

EXE$ALONPAGVAR, 3 EXE$ALONONPAGED, 3 
EXE$ALONONPAGED_ALN, 3 EXE$ALLOCATE_POOL 4.5 

EXE$DEANONPAGED, 3 EXE$DEANONPGDSIZ, 3 
EXE$DEALLOCATE_POOL4"S 

Bus-Addressable Pool Variable-Length Region 

Beginning address 

First free block's address 

Allocation routine 

Deallocation routine 

@MMG$GQ_BAP 1 

@EXE$GQ_BAP_VARIABLE 

EXE$ALLOCATE_POOL4'S 

EXE$DEALLOCATE_POOL4,S 

Paged Pool 

Beginning address 

First free block's address 

Allocation routine 

Deallocation routine 

@MMG$GL_PAGEDYN 1 

@EXE$GL_PAGED 

EXE$ALOPAGED 

EXE$DEAPAGED 

Process-Private Space 

Process Allocation Region 

First free block's address 

Allocation routines 

Ca~TL$GQ_ALLOCREG, Ca~TL$GQ_POALLOC 

EXE$ALOPIIMAG, EXE$ALOP1PROC, 
EXE$ALOPOIMAG 

I The static contents of this location are recorded during system initialization. 

2The listhead for a per-RAD nonpaged pool is in its dynamically allocated LSTHDS structure (see Section 
7.5.1). 

3This routine is in module MEMORYALC_DYN. 

4EXE$ALLOCATE_POOL and EXE$DEALLOCATE_POOL operate on nonpaged pool or bus-addressable 
pool, depending on input arguments. 

5This routine is in module MEMORYALC_POOL. 
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Table 7.3 (continued) Variable -Length  Al locat ion  L i s t h e a d s  and  R o u t i n e s  

Process-Private Space 

Process Allocation Region 

Deallocation routine EXE$DEAP1 

The first part  of Figure 7.4 (Initial Condition) shows a section of paged pool; 
MMG$GL_PAGEDYN, which points to the beginning of paged pool; and EXE$GL_ 
PAGED, which points to the first available block of paged pool. In this example, allo- 
cated blocks of memory are identified only by the total number  of bytes in use, with no 
indication of the number and size of the individual data structures within each block. 

The second part  of Figure 7.4 (80 Bytes Allocated) shows the structure of paged pool 
after the allocation of an 80-byte block. Note that  the discrete portions of 96 bytes 
and 48 bytes in use and the 80 bytes that  were allocated are now combined to show a 
224-byte block of paged pool in use. 

The third part  of Figure 7.4 (48 Bytes Allocated) shows an alternative scenario, the 
structure of paged pool after the allocation of a 48-byte block. The 48 bytes were taken 
from the first unused block large enough to contain it. Because this allocation was not 
an exact fit, an unused 32-byte block remains. 

7.3.2 Variable-Length Block Deallocation 
When a block is deallocated, it must  be inserted into the list according to its address. 
EXELSTD]$DEALLOCATE follows the unused area pointers until it encounters a 
block whose address is higher than the address of the block to be deallocated. If the 
deallocated block is adjacent to another unused block, the two blocks are merged into 
a single unused area. 

This merging, or agglomeration, can occur at the end of the preceding unused block or 
at the beginning of the following block (or both). Because merging occurs automatically 
as a part  of deallocation, there is no need for any externally triggered routine to 
consolidate pool fragmentation. 

Figure 7.5 shows three sample deallocations, two of which illustrate merging. The first 
part  of the figure (Initial Condition) shows an area of paged pool containing logical 
name blocks for three logical names: ADAM, GREGORY, and ROSAMUND. These 
three logical name blocks are bracketed by two unused portions of paged pool, one 64 
bytes long, the other 176 bytes long. 

The second part  of Figure 7.5 (ADAM Deleted) shows the result of deleting the logical 
name ADAM. Because the logical name block was adjacent to the high-address end of 
an unused block, the blocks are merged. The size of the deallocated block is simply 
added to the size of the unused block. No pointers need to be adjusted. 
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Figure 7.4 

7.3 Variable-Length Pools 

Examples of Variable-Length Block Allocation 

The structure shown in the third part  of Figure 7.5 (GREGORY Deleted) shows an 
alternative scenario, the result of deleting the logical name GREGORY. The pointer in 
the unused block of 64 bytes is altered to point to the deallocated block; a new pointer 
and size longword are created within the deallocated block. 

The fourth part  of Figure 7.5 (ROSAMUND Deleted) shows the result of deleting the 
logical name ROSAMUND. In this case, the deallocated block is adjacent to the low- 
address end of an unused block, so the blocks are merged. The pointer to the next 
unused block that  was previously in the adjacent block is moved to the beginning of 
the newly deallocated block. The pointer in the unused block of 64 bytes is altered 
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Figure  7.5 Examples  of Variable-Length Block Deallocat ion 

to point to the merged block. The following longword is loaded with the size of the 
merged block (240 bytes). 
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7.4 Fixed-Length Lists 
Fixed-length lists, also known as lookaside lists, consist of fixed-length packets avail- 
able for allocation. Fixed-length lists expedite the allocation and deallocation of the 
most commonly used sizes and types of storage. In contrast to variable-length alloca- 
tion, fixed-length allocation is very simple. There is minimal overhead searching for a 
sufficiently large block of free memory to accommodate a specific request. 

The OpenVMS Alpha operating system uses both doubly linked lists and a type of 
singly linked list for fixed-length packet lists. It uses two types of doubly linked lists: 

�9 Each element of an absolute queue contains the addresses of the previous and 
next elements in the list. Some absolute queues have longword addresses and can 
only contain elements within 32-bit address space, whereas others have quadword 
addresses. 

�9 Each element of a self-relative queue contains the displacements to the previous 
and next elements in the list. Self-relative queues currently used for lookaside lists 
have longword displacements, limiting the pool from which elements are formed to 
4 GB. 

The Alpha architecture implements queue insertions and removals through privileged 
architecture library (PALcode) routines. While PALcode routines automatically provide 
synchronization, the CPU overhead to call them is high enough that alternatives have 
been created: 

�9 The mechanism for the singly linked lookaside lists provides an efficient way to 
insert and remove packets atomically without using PALcode routines. 

�9 The routines that  allocate and deallocate from quadword absolute queues rely 
on higher-level synchronization by their callers and directly modify forward and 
backward links. 

Table 7.4 summarizes fixed-length allocation listheads and routines. In the table, 
each routine is in module MEMORYALC and contents of locations are dynamic unless 
marked otherwise. 

Table 7.4 F ixed-Length  Al locat ion Lis theads  and Rout ines  

System Space 

Nonpaged Pool Lookaside Lists 

Type of list Singly linked absolute list 

417 



Pool Management 

Table  7.4 (continued) F i x e d - L e n g t h  A l l o c a t i o n  L i s t h e a d s  a n d  R o u t i n e s  

System Space 

Nonpaged Pool Lookaside Lists 

Listhead address 

Allocation routines 

Deallocation routines 

EXE$GS_NPP_BASE_LSTHDS + LSTHDS$Q_ 
LISTHEADS + l isthead_offset  (see Figures 7.9 and 7.11) 1"2 

EXE [_STD] $ALONONPAGED, 3 EXE [_STD] $ALLOCBUF, 
EXE [_STD] $ALLOCxyz,4 EXE$ALLOCATE_POOL s 

EXE$DEANONPAGED, 3 EXE$DEANONPGDSIZ, 3 
EXE$DEALLOCATE_POOLS 

Bus-Addressable Pool Lookaside Lists 

Type of list 

Listhead address 

Allocation routine 

Deallocation routine 

Singly linked absolute list 

EXE$GS_BAP_BASE_LSTHDS + LSTHDS$Q_ 
LISTHEADS + l isthead_offset  (see Figure 7.9) 1'2 

EXE$ALLOCATE_POOL 5 

EXE$DEALLOCATE_POOLS 

$2 Space Lock Management  Lookaside List 

Type of list 

Listhead address 

Allocation routine 

Deallocation routine 

Doubly linked absolute list 

LCK$AR_POOLZONE_REGION (see Figure 7.8) 

EXE$POOL[ZONE]_ALLOCATE 6 

EXE$POOL[ZONE]_DEALLOCATE ~ 

KPB Lookaside List 

Type of list 

Listhead address 

Allocation routine 

Deallocation routine 

Singly linked absolute list 

IOC$GQ_KPBLAL 

EXE$KP_ALLOCATEKPB7 

EXE$KP_DEALLOCATE_KPB7 

1The address of the lookaside listhead for a specific size is static. Given the packet size, this address can 
be computed using the formula listhead_offset = (packet_size~4016) * 8. 

2The listheads for a per-RAD nonpaged pool are in its dynamically allocated LSTHDS structure (see 
Section 7.5.1). 

3This routine is in module MEMORYALC_DYN. 

4xyz is the name of a data structure, such as PCB (process control block) or JIB (job information block). 

5This routine is in module MEMORYALC_DYN_64. 

6This routine is in module POOL_ZONES. 

7This routine is in module KERNEL_PROCESS. 
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Table 7.4 (continued) F i x e d - L e n g t h  Al loca t ion  L i s t h e a d s  and  R o u t i n e s  

System Space 

PQB Lookaside List 

Type of list 

Listhead address 

Self-relative queue 

EXE$GQ_PQBIQ 

Process-Private Space 

KRP Lookaside List 

Type of list 

Beginning address 

First free block's address 

Last free block's address 

Absolute queue 

Ca~TL$A_KRP 

C~TL$GL_KRPFL 

~TL$GL_KRPBL 

7.4.1 Doubly Linked Lookaside Lists 
Insertion and removal of an element from the head or tail of a queue through PALcode 
routines are atomic: 

�9 For an absolute queue, each such modification is atomic with respect to any other 
threads of execution on the same processor. 

�9 For a self-relative queue, each such modification is atomic with respect to all other 
threads of execution on all members of a symmetric multiprocessing (SMP) system. 

Chapter Synchronization Techniques contains further information on queues and 
synchronizing access to them. 

Figure 7.6 (Initial Condition) shows the general form of a fixed-length list that  is either 
a self-relative queue or an absolute queue. 

A packet is allocated by removing the first element from the front of the list (see 
Figure 7.6, Packet Removed from Head). A packet is deallocated by inserting it at the 
back of the list (see Figure 7.6, Packet Inserted at Tail). 

7.4.2 Singly Linked Lookaside Lists 
Shown in Figure 7.7, this newer type of lookaside list is singly linked and absolute. 
Its listhead is a natural ly aligned quadword. The first longword of the list contains 
the address of the first packet, or zero if the list is empty. The second longword is a 
sequence number used in synchronizing access to the list. Packets are always allocated 
from and deallocated to the front of this kind of list. The first longword of each packet 
contains the address of the next packet in the list; the first longword of the last packet 
contains zero. 
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Figure  7.6 

Listhead 
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Routines EXE$LAL_REMOVE_FIRSTLAND_COUNT] and EXE$LAL_INSERT_ 
FIRSTLAND_COUNT], in module LOOK_ASIDE_LIST, allocate and deallocate pack- 
ets from this list. The insertions and removals are atomic with respect to all threads 
of execution on all SMP system members without the use of a spinlock. 
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7.4.2.1 Singly Linked List Deallocation 
To deallocate a packet, EXE$LAL_INSERT_FIRST and EXE$LAL_INSERT_FIRST_ 
AND_COUNT take the following steps: 

I. Each routine copies the address of the first packet in the list from the listhead to 
the forward link of the packet being deallocated. 

2. It executes a memory barrier (MS) instruction to ensure that the first write is 
visible before the next write. 

3. It executes a load-locked instruction (LDL_5) to refetch the address of the first 
packet from the listhead. 

4. If that address has changed, it restarts the insertion at step 1. Otherwise, it 
conditionally stores (STL_C) the address of the packet being deallocated in the 
listhead. 

If the store operation fails, another thread of execution has interrupted this one (or 
accessed the list concurrently on another SMP system member); in that case, each 
routine restarts the insertion at step 1. 

5. If the store operation succeeds, EXE$LAL_INSERT_FIRST_AND_COUNT incre- 
ments the packet counter associated with this lookaside list. 

6. Each routine returns to its caller. 

7.4.2.2 Singly Linked List Allocation 
Because the store-conditional instruction will fail if a memory reference occurs between 
the load and the store, allocating a packet is somewhat more complex than  deallocating 
one. To allocate a packet, EXE$LAL_REMOVE_FIRST and EXE$LAL_REMOVE_ 
FIRST_AND_COUNT take the following steps" 

1. Each routine loads both the sequence number  and address of the first packet in the 
list. If the list is empty, it re turns  a failure s tatus to its caller. 

2. It executes an ~m instruction to ensure the first read is visible before the next. 

3. It loads the address of the second packet in the list from the forward link of the 
first. 

4. It executes a load-locked (5DQ_L) instruction to refetch the sequence number  and 
address of the first packet. If either has changed, it res tar ts  the removal at step 1. 

5. It forms the new contents of the listhead as the incremented sequence number  and 
address of the second packet. 

6. It conditionally stores (STQ_C) these contents. If the store operation fails, it res tar ts  
the removal at step 1. 

7. If the store operation succeeds, the routine confirms tha t  the forward pointer of 
the packet just  allocated is the same as the address it loaded in step 3. If the 
addresses are the same, EXE$LAL_REMOVE_FIRST_AND COUNT decrements 
the packet counter associated with this lookaside list. 
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If the addresses are not the same, it generates the fatal bugcheck BADQHDR. This 
sanity check has a high probability of detecting the unlikely event that  between 
steps 1 and 3, 2 3i other accesses occurred to the list (so that  the sequence number 
wrapped around to itself) and the first packet in the list at step 1 was again the 
first packet in the list at step 4. 

8. Each routine returns to its caller with the address of the allocated packet. 

7.4.3 Pool Zone Lookaside Lists 
A mechanism new with OpenVMS Alpha Version 7.2 enables a kernel mode component 
to create its own system space pool. The pool consists of one or more zones. Each 
page of each zone is divided into fixed-size packets, and each zone can have a different 
packet size. The pages that  make up a zone are not required to be physically or 
virtually contiguous. This mechanism was added primarily to create lookaside lists in 
$2 space. 

7.4.3.1 Pool and Zone Creation 
To create the pool, the component creates a data structure to describe the pool. The 
structure consists of a POOLZONE_REGION structure plus a POOLZONE substruc- 
ture for each zone. The structure may be allocated from nonpaged pool or created 
as part of an executive image. The component initializes the POOLZONE_REGION 
header with the number of zones and the addresses of page allocation and dealloca- 
tion routines for that  pool. The component then calls EXE$POOLZONE_CREATE, in 
module POOL_ZONES, once for each zone, starting with the smallest packet size and 
continuing in order by packet size. 

EXE$POOLZONE_CREATE is passed a pointer to the POOLZONE_REGION struc- 
ture, the packet size, initial region size in pages, and maximum region size. It allocates 
and maps physical pages of memory for the initial zone size, using the page allocation 
routine specified in the POOLZONE_REGION structure. The page allocation routine 
can, for example, call MMG_STD$ALLOC_SYSTEM_VA_MAP, in module SYSVA_ 
ALLOC, which performs these tasks, making the appropriate changes to the memory 
management database. 

EXE$POOLZONE_CREATE initializes a POOLZONE_PAGE data structure at the 
beginning of each page of memory and links each POOLZONE_PAGE into the front 
of a listhead in its zone's POOLZONE structure. It splits each page into fixed-size 
packets. It clears the longword that  contains the standard SIZE, TYPE, and SUBTYPE 
fields in each packet; optionally fills the packet with the pool poison deallocation 
pattern (see Section 7.15); and links the packet into a listhead in the POOLZONE_ 
PAGE structure. 
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7.4.3.2 Data Structures 

Figure 7.8 shows the pool zone data structures and their  relationships. These da ta  
structures are defined only by a C header file, and their  field names are lowercase. 
The POOLZONE_REGION structure is typically allocated from nonpaged pool and 
includes one POOLZONE structure for each zone in the pool. 

In the POOLZONE_REGION structure, type, subtype, and size have the typical 
meanings. Type and subtype are component-specific. Lock management  code, for 
example, uses a type of DYN$C_LCK and a subtype of DYN$C_LCK_POOLZONE. 
Fields zonepage_alloc_rtn and zonepage_dealloc_rtn contain addresses of routines 
within the kernel mode component that  allocate and deallocate physical pages and 
their mappings. The field zone_count contains the number  of POOLZONEs tha t  follow. 

In the POOLZONE structure, zonepage_flink and zonepage_blink form a queue list- 
head for POOLZONE_PAGEs that  are part  of this zone. Field packet_size contains 
the size in bytes of packets in this zone. Field max_pages is the maximum number  of 
POOLZONE_PAGEs in this zone. Field free_count is the number  of available packets 
in this zone. 

Field misses records allocation at tempts  when the zone initially has no available 
packets. Field hits records allocation at tempts  when the zone does have available 
packets. Fields expansions and failures record successful and failed a t tempts  to 
expand the zone. The field not lstpage, which is maintained only by the monitor 
version of SYSTEM_PRIMITIVES (see Section 7.13), is the number of failures to find 
a packet on the first page in the POOLZONE_PAGE queue. Field empty_pages counts 
the number of pages in the zone from which no packets have been allocated. 

In the POOLZONE_PAGE structure, zonepage flink and zonepage blink link the page 
into the associated zone's queue. Fields freequeue_flink and freequeue_blink form 
the listhead of available packets in this page. Field zone contains the address of the 
page's associated POOLZONE structure. Field packet_size contains the size in bytes 
of this page's packets. Field packet_count contains the number  of packets on this 
POOLZONE_PAGE, and field free_count, the number  of available packets. 

Field hits records the number of successful allocations from this page. Field relinks 
records the number  of times this POOLZONE_PAGE has been moved from its position 
on the POOLZONE_PAGE list. A page with no available packets is moved to the 
end of the POOLZONE_PAGE list. When a packet is deallocated to such a page, it is 
moved to the front of the POOLZONE_PAGE list. Field relinks is maintained only by 
the monitor version of SYSTEM_PRIMITIVES (see Section 7.13). 

The rest of the page is divided into packets of size packet_size. Field first_packet is 
the offset of the first packet in the page. 
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7.4 Fixed-Length Lists 

7.4.3.3 Allocation and Zone Expansion 
To allocate a packet, a kernel mode component calls EXE$POOLZONE_ALLOCATE or 
EXE$POOL_ALLOCATE, both in module POOL_ZONES. 

EXE$POOLZONE_ALLOCATE is passed the addresses of the POOLZONE_REGION 
and the POOLZONE structures. It checks whether  the zone has any free pages and, if 
not, expands the zone by allocating and initializing another POOLZONE_PAGE. Thus 
the zone can be expanded, up to its maximum number  of pages. 

EXE$POOLZONE_ALLOCATE then checks whether  the first page in that  pool zone 
has any free packets and, if so, removes the first packet from the list and returns 
its address to its caller. If not, it checks the next POOLZONE_PAGE in that  zone, 
continuing until it finds one with a free packet. When it removes the last packet from 
a POOLZONE_PAGE, it removes the POOLZONE_PAGE from the list and reinserts it 
at the end of the list, to shorten the search for a free packet on subsequent allocations. 

EXE$POOL_ALLOCATE is passed the address of the POOLZONE_REGION structure 
and the number of bytes to be allocated. It examines the POOLZONE substructures 
to find the first zone whose packet size is large enough to accommodate the request. 
It calls EXE$POOLZONE_ALLOCATE to allocate a packet from that  list, optionally 
records the allocation in the nonpaged pool history buffer (see Section 7.15.2), and 
optionally checks that  the packet's poison pat tern is intact (see Section 7.15). 

7.4.3.4 Deallocation 
To deallocate a packet, a kernel mode component calls either EXE$POOLZONE_ 
DEALLOCATE or EXE$POOL_DEALLOCATE, both in module POOL_ZONES. 

EXE$POOLZONE_DEALLOCATE is passed the addresses of the POOLZONE struc- 
ture and the packet. It rounds the packet address back to the page boundary to 
form the address of the associated POOLZONE_PAGE structure and inserts the 
packet on its free list. If the page previously had no free packets, EXE$POOLZONE_ 
DEALLOCATE removes the POOLZONE_PAGE from the POOLZONE_PAGE queue 
and reinserts it at the front of the queue. 

EXE$POOL_DEALLOCATE is passed the address of the packet to be deallocated. It 
rounds the address back to a page boundary to form the address of the associated 
POOLZONE_PAGE structure and follows its pointer to the POOLZONE structure. 
Optionally, it records the deallocation in the nonpaged pool history buffer (see Section 
7.15.2). Optionally, it fills the packet with the pool poison deallocation pat tern (see 
Section 7.15). It calls EXE$POOLZONE_DEALLOCATE to deallocate the packet. 

7.4.3.5 Fleclamatlon 
EXE$POOLZONE_PURGE, in module POOL_ZONES, deallocates POOLZONE_ 
PAGEs from which no packets have been allocated. It is called with pointers to a 
POOLZONE_REGION, POOLZONE, and a target  number of POOLZONE_PAGEs to 
reclaim. It scans the POOLZONE_PAGE queue for a POOLZONE_PAGE all of whose 
packets are available. It calls the page deallocation routine specified by ZONEPAGE_ 
REGION field zonepage_dealloc_rtn. 
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7.5 Nonpaged Pool 
Nonpaged dynamic memory, commonly known as nonpaged pool, contains data struc- 
tures used by components that  typically run in system context, such as unit control 
blocks and I/O request packets. These parts of the operating system can only access 
system space. Furthermore, they execute at IPLs above 2, where page faults are not 
permitted. 

Nonpaged dynamic memory also contains data structures that  are shared by multiple 
processes and that  may be accessed above IPL 2. Nonpaged pool is the most heavily 
used of the pool areas. 

The protection on nonpaged pool is ERKW, allowing it to be read from executive and 
kernel modes but written only from kernel mode. 

Nonpaged pool consists of a variable-length list and a number of fixed-length lookaside 
lists. The lookaside lists provide for the most frequently allocated nonpaged pool data 
structures. Section 7.5.4 discusses allocation in detail. 

The OpenVMS Alpha executive provides 128 (IOC C NUMLISTS, defined by 
$NPOOL_DATADEF) lookaside lists for packets ranging in size from 64 to 8,192 
(IOC C MAXLISTPKT) bytes in increments of 64 bytes. These lookaside lists are of 
the singly linked absolute type. Section 7.5.1 describes these lists in more detail. 

In the case of a NUMA system, each RAD with memory can have its own variable- 
length and fixed-length nonpaged pool lists. Section 7.6 provides further details. 

In addition to the traditional type of nonpaged pool, certain systems also have a 
bus-addressable nonpaged pool (see Section 7.7). 

A nonpaged pool allocation routine attempting to service a request first rounds up the 
requested size to the next multiple of 64 (EXE$M_NPAGGRNMSK + 1) and checks the 
listhead corresponding to the requested size. If there is no packet on that list or if the 
requested size is larger than 8,192 bytes, the allocation routine allocates pool from the 
variable-length list. Thus, all packets on nonpaged pool lookaside lists originate in the 
nonpaged pool variable-length region. 

A nonpaged pool deallocation routine does not return pool directly to the variable- 
length list. Rather, the deallocation routine inserts it into the lookaside list corre- 
sponding to the packet's size unless the size is larger than 8,192 bytes. 

Packets do not remain on the lookaside lists forever. They are either consumed by 
later allocation requests or returned to the variable-length list through a process called 
pool reclamation. When there is no packet on a request size's corresponding list and 
there is insufficient memory in the nonpaged pool variable-length region, the executive 
initiates pool reclamation. It also initiates pool reclamation periodically to ensure 
sufficient memory on the nonpaged pool variable-length list. Section 7.5.6 describes 
nonpaged pool reclamation. 

When a nonpaged pool request cannot be satisfied even aider pool reclamation, the 
executive attempts to expand nonpaged pool. Section 7.5.7 describes nonpaged pool 
expansion. 
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In addition to nonpaged pool lookaside lists, the executive provides a lookaside list of 
KPBs, used primarily by device driver fork processes. KPBs, initially allocated from 
nonpaged pool, are deallocated to the KPB lookaside list. The KPB allocation routine 
attempts to allocate a KPB from this list as a faster alternative to general nonpaged 
pool allocation. Each KPB points to an associated kernel process stack. Allocation 
and initialization of a kernel process stack is a time-consuming process. Maintaining 
the KPBs on a separate lookaside list allows the executive to reuse KPBs and their 
associated stacks. Chapter Software Interrupts describes kernel processes and KPBs. 

7.5.1 Data Structures 
The implementation of nonpaged pool has been generalized to enable special pool types 
to be created. OpenVMS Version 7.2 added support for bus-addressable nonpaged pool 
(BAP). As part  of the generalization, various system cells that  described nonpaged 
pool were moved to data structures, and new routines used these data structures to 
determine their actions. For compatibility, the original nonpaged pool allocation and 
deallocation routines are still provided. 

BAP and the base RAD's nonpaged pool are each described by an NPOOL and a 
LSTHDS data structure. These structures are static, created during compilation of 
module SYSTEM_DATA_CELLS. Figure 7.9 shows these structures and the relation- 
ship between them. 

This section describes the fields common to the structures for both types of pool, as well 
as fields specific to the nonpaged pool NPOOL. Section 7.7.1 describes fields specific to 
BAP, and Section 7.6.1 describes extensions for support of per-RAD nonpaged pool. 

In the nonpaged pool NPOOL structure, NPOOL$PS_RINGBUF contains the address 
of the pool history ring buffer, and NPOOL$L_RINGBUFCNT, the number of pool 
history buffers in it. NPOOL$PS_NEXTNPH contains a pointer to the next history 
buffer to be used. The standard nonpaged pool ring buffer records both nonpaged and 
bus-addressable pool history, as well as pool zone history. Section 7.15.2 contains more 
information. 

In each type of NPOOL structure, NPOOL$PS_POOL_MAP contains the address of 
a list of descriptors of segments that make up this pool. NPOOL$L_POOL_MAP_ 
SIZE contains the size of the list in bytes, and NPOOL$L_POOL_MAP_SEGMENTS, 
the number of descriptors in it. Each descriptor consists of four quadwords" the 
first contains the address of the segment; the second, its size in bytes; the third, the 
address of the end of the segment; and the fourth, a longword with the number of the 
associated RAD. 

In the nonpaged pool structure, NPOOL$L_BAP_POOL_DATA contains the address of 
the BAP NPOOL structure. 

NPOOL$AR_LSTHDS points to a block containing one or more addresses of LSTHDS 
structures. This indirection enables the same code to be used in systems that  have 
per-RAD nonpaged pool and those that do not. 
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NPOOL$L_GRAN_MASK specifies the granularity of allocation for this pool. It is 
initialized to EXE$M_NPAGGRNMSK for both types of pool. 

NPOOL$L_NUM_LOOKASIDE specifies the number of lookaside lists for this pool. It 
is initialized to IOC_C_NUMLISTS for both types of pool. 

NPOOL$PS_VARIABLE_LIST contains the address of the listhead for the variable- 
length pool of this type but is not used. 

A LSTHDS structure contains the actual nonpaged pool lookaside lists. Figure 7.10 
shows the array of lookaside lists and an example lookaside list. 

LSTHDS$AR_LISTATTEMPTS, LSTHDS$AR_LISTFAILS, and LSTHDS$AR_ 
LISTDEALLOCS point to statistics buffers, which are described in Section 7.14, 
along with LSTHDS$L_VARALLOCBYTES. 
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Figure 7.10 Nonpaged Pool Lookaside Lists 
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LSTHDS$PS_VARIABLELIST contains the address of the variable-length listhead for 
this type of pool. 

LSTHDS$L_EXPANSIONS records the number  of times this pool has been expanded. 

LSTHDS$L_POOLTYPE identifies the pool, either MMG$K_POOLTYPE_NPP or 
MMG$K_POOLTYPE_BAP. 

LSTHDS$PS_NPOOL_DATA points to the associated NPOOL structure. 

LSTHDS$Q_LISTHEADS is an array of 129 (IOC C NUMLISTS + 1) lookaside list- 
heads (see Figure 7.10). For both BAP and the base RAD's nonpaged pool, this array is 
created as a zeroed array of longwords during compilation of module SYSTEM_DATA_ 
CELLS. The extra entry enables one-based indexing of the array as a function of the 
packet size. The lookaside lists are not prepopulated at system initialization. Instead, 
when a block of pool is deallocated, if its size corresponds to a lookaside list size, the 
block is inserted on that  lookaside list. 

LSTHDS$Q_LISTCOUNTERS is a corresponding array of counters. Each element 
in the array is the count of packets on the corresponding lookaside list. The counts 
are not necessarily precise because some lookaside list insertions and removals do not 
update the counts and because the counts are not kept atomically. Used during pool 
reclamation, the counters are self-correcting. 
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7.5.2 Uses of Nonpaged Pool 
Nonpaged pool is created during early stages of system initialization. The following 
executive data structures are allocated from nonpaged pool: 

�9 Buffered I/O buffers 

�9 I/O data structures, such as I/O request packets, unit  control blocks, controller 
request blocks, adapter control blocks, window control blocks, file control blocks, 
class driver data blocks, and class driver request packets 

�9 Synchronization data structures, such as common event blocks and dynamic 
spinlocks 

�9 Process data structures, such as process control blocks, job information blocks, and 
kernel thread blocks 

�9 Kernel process blocks 

�9 Other miscellaneous systemwide data structures, such as timer queue entries 

7.5.3 Initialization 
SYSGEN parameters NPAGEDYN and NPAGEVIR specify the size of nonpaged pool. 
NPAGEDYN is the initial size of nonpaged pool in bytes. NPAGEVIR is the maximum 
size, in bytes, to which it can expand. 

New with OpenVMS Alpha Version 7.3, parameter NPAGECALC allows for automatic 
calculation of NPAGEDYN. Its default value at initial system boot is 1, but running 
AUTOGEN changes it to 0. The SYSGEN or SYSBOOT USE DEFAULT command 
changes it back to 1. 

During system initialization, if SYSGEN parameter NPAGECALC is 1, SYSBOOT cal- 
culates default values for these parameters based on the amount of physical memory. 
The default calculated value for NPAGEDYN is 512 KB plus 1 page per 128 pages of 
memory, up to a maximum of 128 MB. The default value for NPAGEVIR is 8 MB plus 
1 page for each 32 pages of memory, up to a maximum of 256 MB. Both parameters  
are rounded down to a number representing an integral number of pages. 

As described in Section 7.7, SYSBOOT may adjust the initial and maximum sizes of 
nonpaged pool to include BAP. 

SYSBOOT also adjusts the initial size of nonpaged pool if per-RAD pool is needed 
on this system. If bit RIH$V_RAD_POOL (bit 6) is set in SYSGEN parameter  RAD_ 
SUPPORT, SYSBOOT rounds up parameter NPAGERAD, the number of bytes to 
reserve for nonbase-RAD pool, to an integral number of pages and subtracts it from 
the initial size of nonpaged pool. It then adjusts the initial size to a minimum of 4 MB. 

SYSBOOT allocates a slice of the nonpaged system data huge page for the initial size 
of nonpaged pool (see Chapter 1). SYSBOOT also reserves enough virtual address 
space contiguous to this region for nonpaged pool to expand to its maximum size. 
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SYSBOOT initializes the nonpaged pool variable-length list and the global locations 
EXE$GL_NONPAGED, MMG$GL_NPAGEDYN, and MMG$GL_NPAGNEXT. 

Later in system initialization, INI$INITIALIZE_POOL, in module MEMORYALC_ 
POOL, initializes the NPOOL structure that  describes nonpaged pool. In particular, it 
fills in a pool map descriptor to describe the initial nonpaged pool segment. 

7.5.4 Allocation 
A number of routines in module MEMORYALC allocate traditional nonpaged pool. 
Some of these routines, such as EXE[_STD]$ALLOCPCB or EXE[_STD]$ALLOCTQE, 
allocate pool for a particular type of data structure, filling in its size and type. 
Some routines, intended for use only within process context, conditionally place 
the kernel thread into a resource wait (see Section 7.5.8 and Chapter Schedul- 
ing) for resource RSN$_NPDYNMEM if pool is unavailable. All these routines call 
EXE$ALONONPAGED, in module MEMORYALC_DYN, the general traditional non- 
paged pool allocation routine. 

Another general nonpaged pool allocation routine is EXE$ALLOCATE_POOL, in 
module MEMORYALC_POOL. It can also allocate BAP or pool local to a specific RAD. 
It is called with arguments specifying pool type, requested size, RAD, and alignment. 

Because allocation from and deallocation to a lookaside list are so much faster than the 
equivalent operations involving the variable-length list, EXE[_STD]$ALONONPAGED 
and EXE$ALLOCATE_POOL check to determine whether a requested block can be 
allocated from one of the lookaside lists. Each allocates requests from the variable- 
length list only if the requested size is larger than 8,192 (IOC_C_MAXLISTPKT) bytes 
or if the lookaside list corresponding to the requested size is empty. 

A consumer of nonpaged pool must use an appropriate executive procedure for al- 
location and deallocation. Direct allocation from or deallocation to a nonpaged pool 
lookaside list is not allowed. That is, directly manipulating a lookaside list through 
the EXE$LAL_REMOVE_FIRST/EXE$LAL_INSERT_FIRST routines or through the 
load-locked/store-conditional mechanism is not allowed. 

EXELSTD]$ALONONPAGED and EXE[_STD]$ALONPAGVAR are entry points to the 
same procedure, EXE$ALONONPAGED_INT in module MEMORYALC_DYN, which 
allocates nonpaged pool by performing the following steps: 

1. If per-RAD pool is in use, it calls EXE$ALLOCATE_POOL with pool type MMG$K_ 
POOLTYPE_NPP, to allocate a block of the requested size from this system's per- 
RAD nonpaged pool. Section 7.6.3 describes how EXE$ALLOCATE_POOL handles 
RAD-specific requests. (The traditional routines can allocate only base RAD pool.) 
EXE$ALONONPAGED_INT returns the status from EXE$ALLOCATE_POOL and 
the address of the packet, if any, to its caller. 

2. Otherwise, it rounds up the requested size to the nearest multiple of 64 (EXE$M_ 
NPAGGRNMSK + 1). 

3. If the rounded value of the requested size is larger than 8,192 bytes, it proceeds 
with step 5. 
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4. It calls EXE$LAL_REMOVE_FIRST_AND_COUNT (described in Section 7.4) to 
allocate the first packet from the lookaside list corresponding to the requested size. 
If a packet was successfully allocated, EXE$ALONONPAGED_INT returns to its 
caller with a success status and the address of the packet. Otherwise, it continues. 

5. If the current IPL is greater than IPL$_POOL and system initialization has 
completed (BOOSTATE$V_SWAPPER flag in EXE$GL_STATE is set), it returns to 
its caller with the error status SS$_INSFMEM. Otherwise, it continues. Allocating 
from the variable-length list at above IPL$_POOL is permissible only during 
system initialization. 

6. It calls EXE$ALONPAGVAR_INT, in module MEMORYALC_DYN, to allo- 
cate a nonpaged pool block of the requested size and returns the status from 
EXE$ALONPAGVAR_INT and the address of the packet, if any, to its caller. 

EXE$ALONPAGVAR_INT allocates pool only from the variable-length list. It performs 
the following steps: 

1. It rounds the request size up to a multiple of 64 (EXE$M_NPAGGRNMSK + 1). 

2. It increments PMS$GL_NPAGDYNREQ, which tracks the number of allocation 
requests for variable-length pool (see Table 7.5). 

3. It acquires the POOL spinlock, raising IPL to IPL$_POOL. 

4. It calls the lower level routine EXE$ALLOCATE, described in Section 7.3. 

5. EXE$ALONPAGVAR_INT releases the POOL spinlock, restoring the previous IPL. 
If EXE$ALLOCATE succeeded, EXE$ALONPAGVAR_INT returns the size and 
address of the allocated block. 

6. If the allocation failed, it checks whether pool reclamation was already per- 
formed for this request. If not, it calls EXE$RECLAIM_POOL_AGGRESSIVE, 
in module MEMORYALC_POOL (see Section 7.5.6). Upon return from 
EXE$RECLAIM_POOL_AGGRESSIVE, regardless of whether pool was reclaimed, 
EXE$ALONPAGVAR_INT retries pool allocation beginning with step 3. 

7. If pool reclamation was already attempted for this request, it instead calls 
EXE$EXTENDPOOL, in module MEMORYALC_POOL, to attempt pool expansion 
(see Section 7.5.7). 

If the expansion succeeds, EXE$ALONPAGVAR_INT repeats the allocation at- 
tempt. If pool expansion fails because pool has been expanded to its maximum 
size, it calls EXE$FLUSHLISTS, in module MEMORYALC_DYN (see Section 
7.5.6). 

If, despite the expansion and flushing effort, the nonpaged pool request cannot be 
satisfied, EXE$ALONPAGVAR_INT increments PMS$GL_NPAGDYNREQF and 
updates PMS$GL_NPAGDYNFPAGES (see Table 7.5) and returns the error status 
SS$_INSFMEM to its caller. 
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Since nonpaged pool allocation granularity is 64 (EXE$M_NPAGGRNMSK + 1) bytes 
and nonpaged pool begins at a page boundary, all nonpaged pool packets and blocks 
are guaranteed to be at least 64-byte aligned. 

A consumer requiring greater than 64-byte alignment can call either the rou- 
tine EXE$ALONONPAGED_ALN, in module MEMORYALC_DYN, or the routine 
EXE$ALLOCATE_POOL, in module MEMORYALC_POOL. Each attempts nonpaged 
pool allocation to the specified alignment constraint. 

To allocate traditional nonpaged pool, EXE$ALLOCATE_POOL takes the following 
steps: 

1. If the requested size is 0, the monitor version (see Section 7.13) generates the fatal 
bugcheck BADALORQSZ. 

2. EXE$ALLOCATE_POOL determines the address of the LSTHDS for this pool type 
and RAD. 

If the caller specified alignment requirements, EXE$ALLOCATE_POOL continues 
with step 10. 

Otherwise, if the requested size is smaller than 8,192 (IOC C MAXLISTPKT) 
bytes, it tries to remove a packet from the lookaside list corresponding to that size 
and pool type. If successful, it returns to its caller. 

If the request is larger or the lookaside list was empty, it acquires the POOL 
spinlock to synchronize access to the variable-length list associated with this pool 
type. 

It calls EXE_STD$ALLOCATE to allocate pool from the variable-length list. 

It releases the POOL spinlock. 

If the pool was allocated successfully, EXE$ALLOCATE_POOL returns to its caller. 

If the request cannot be allocated, EXE$ALLOCATE_POOL tries one after another 
of the following techniques, reattempting the pool allocation each time: 

- -  Aggressive pool reclamation from lookaside lists (see Section 7.5.6) 

- -  Flushing the lookaside lists (see Section 7.5.6) 

- -  Expanding pool (see Section 7.5.7) 

If all these attempts to regain pool are unsuccessful, EXE$ALLOCATE_POOL 
returns error status SS$_INSFMEM to its caller. 

10. If the caller requested a specific alignment and if the request is smaller than 8,192 
bytes, EXE$ALLOCATE_POOL makes three attempts to remove a packet from the 
corresponding lookaside list that meets the requested alignment and that does not 
cross a page boundary. 
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11. If the lookaside list allocation failed or the request is too large, it calls STD_ 
ALLOCATE_ALN, in module MEMORYALC, which allocates a block from the 
variable-length list tha t  meets the requested alignment and that  does not cross a 
page boundary. 

If STD_ALLOCATE_ALN is unsuccessful, EXE$ALLOCATE_POOL at tempts  to 
reclaim pool as described in step 9. 

Sections 7.6.3 and 7.7.3 describe how EXE$ALLOCATE_POOL handles RAD-specific 
and bus-addressable pool allocations. 

7.5.5 Deallocation 
To deallocate nonpaged pool, a consumer of nonpaged pool calls EXELSTD]$DEA- 
NONPAGED or EXE[_STD]$DEANONPGDSIZ, in module MEMORYALC_ 
DYN, or EXE$DEALLOCATE_POOL, in module MEMORYALC_POOL. EXE[_ 
STD]$DEANONPGDSIZ is used to deallocate a pool block larger than 64 KB or a 
block with one of the new header formats shown in Figure 7.2. 

EXE[_STD]$DEANONPAGED tests whether  per-RAD pool is in use. If so, it calls 
EXE$DEALLOCATE_POOL and returns. Otherwise, it determines the size of the 
block being returned and calls EXE$DEANONPGDSIZ. 

EXE[_STD]$DEANONPGDSIZ returns the deallocated block either to one of the 
lookaside lists or to the variable-length region, performing the following steps: 

1. If per-RAD pool is in use, it calls EXE$DEALLOCATE_POOL and returns.  

. 

, 

, 

Q 

If per-RAD pool is not in use, the monitor version of the routine (see Section 7.13) 
tests that  the size being returned is nonzero and that  the start ing address is on 
a pool allocation granulari ty boundary. If either is false, it generates the fatal 
BADDALRQSZ bugcheck. 

It rounds up the deallocation request size to a multiple of 64 (EXE$M_ 
NPAGGRNMSK + 1). 

If the rounded deallocation size is less than or equal to 8,192 (IOC C 
MAXLISTPKT) bytes, it determines the appropriate listhead and calls EXE$LAL_ 
INSERT_FIRST_AND_COUNT to return the deallocated packet to the front of tha t  
list. It then returns to its caller. 

If the rounded deallocation size is larger than  8,192 bytes, EXE$DEANONPGDSIZ 
acquires the POOL spinlock, raising IPL to IPL$_POOL; calls 
EXE$DEALLOCATE_POOL, the lower level routine described in Section 7.3; 
and then releases the POOL spinlock, restoring the previous IPL. 

EXE$DEALLOCATE_POOL is called with arguments  tha t  include pool type and RAD. 
It returns the deallocated block either to one of the lookaside lists or to the variable- 
length region for that  pool type and RAD. It determines the address of the appropriate 
LSTHDS. 
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If the packet is smaller than 8,192 bytes, EXE$DEALLOCATE_POOL inserts it on 
the listhead appropriate to the pool type and size. Otherwise, it acquires the POOL 
spinlock, calls EXE_STD$DEALLOCATE to deallocate the pool to the appropriate 
variable-length list, and releases the spinlock. 

7.5.6 Reclamation 
Also called adaptive nonpaged pool management, pool reclamation simplifies system 
management by automatically adapting to varying workloads, thereby eliminating a 
number of SYSGEN parameters used with the earlier style of pool management. 

As previously described, nonpaged pool deallocation routines insert a packet on a 
lookaside list rather than returning it to the variable-length list. Returning a packet 
to a lookaside list enables faster allocation of packets of that  size. On a running 
system, however, the demanded allocation sizes are somewhat unpredictable. As more 
packets are put on lookaside lists, remaining space on the variable-length list gets 
smaller. Without a process for reclaiming space from unused lookaside list packets, 
nonpaged pool exhaustion or excessive fragmentation can occur, slowing down or 
preventing further allocation. 

Through a process called nonpaged pool reclamation, packets from nonpaged pool 
lookaside lists are moved to the associated nonpaged pool variable-length list. Recla- 
mation can be gentle or aggressive. The executive performs gentle reclamation pe- 
riodically. It performs aggressive reclamation when an allocation request cannot be 
satisfied from either the appropriate lookaside list or the associated variable-length 
list. 

Reclamation is not possible if there are no packets on any of the lookaside lists. 

Three SYSGEN parameters control reclamation: 

�9 NPAG_AGGRESSIVE, the percentage of packets remaining on a list after aggres- 
sive reclamation, by default 50 

�9 NPAG_GENTLE, the percentage of packets remaining on a list after gentle recla- 
mation, by default 85 

�9 NPAG_INTERVAL, the number of seconds between gentle reclamations, by default 
3O 

Nonpaged pool reclamation is initiated by calling either EXE$RECLAIM_POOL_ 
GENTLE or EXE$RECLAIM_POOL_AGGRESSIVE, in module MEMORYALC_POOL. 

EXE$RECLAIM_POOL_GENTLE is called every NPAG_INTERVAL seconds as a 
repeating system timer routine (see Chapter Time Support). Because NPAG_GENTLE 
is a dynamic parameter, EXE$RECLAIM_POOL_GENTLE examines it each time it 
is entered. If NPAG_INTERVAL is negative, it resets the timer interval to 1 minute 
and simply returns. This enables the system manager to disable nonpaged pool 
reclamation temporarily and later reenable it by changing NPAG_INTERVAL to a 
positive number. Otherwise, it recalculates the next timer interval from the current 
value of NPAG_GENTLE and, if less than 1 second, modifies it to be 1 second. 
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Each time EXE$RECLAIM_POOL_GENTLE is entered, it reclaims pool from two 
lookaside lists in one LSTHDS structure. It divides the set of lists in the structure 
in half. Entered the first time, it reclaims pool from the first lookaside list in each 
half, namely, the listhead at array index 1 and the listhead at array index 1 plus the 
quotient of IOC C NUMLISTS and 2. The next time it is entered, it reclaims pool 
from the listheads at index 2 and index 2 plus the quotient of IOC_C_NUMLISTS and 
2. 

After processing all the lookaside lists in one LSTHDS, EXE$RECLAIM_POOL_ 
GENTLE continues with lookaside lists in another LSTHDS if one exists: 

�9 A NUMA system with multiple RADs may have multiple sections of nonpaged pool, 
each with its own LSTHDS. 

�9 A system with separate BAP has a LSTHDS to describe it. 

Every time EXE$RECLAIM_POOL_GENTLE processes all the lookaside lists in all 
the LSTHDSs, it calls EXE$KP_RECLAIM_KPB, in module KERNEL_PROCESS, 
to reclaim one KPB if there are at least two on the lookaside list. Chapter  Software 
Interrupts describes KPBs and KPB reclamation. 

EXE$RECLAIM_POOL_AGGRESSIVE is called by EXE$ALONPAGVAR_INT and 
EXE$ALLOCATE_POOL when either routine determines that  there is insufficient 
space in a nonpaged pool variable-length list to satisfy a request. It reclaims pool from 
each nonempty lookaside list associated with that  variable-length list. If the pool is 
not BAP, it also calls EXE$RECLAIM_KPB to reclaim a KPB. 

EXE$RECLAIM_POOL_GENTLE and EXE$RECLAIM_POOL_AGGRESSIVE both 
call EXE$TRIM_POOL_LIST, in module MEMORYALC_POOL, to do the actual recla- 
mation. EXE$TRIM_POOL_LIST is called with the packet size to be trimmed, the 
percent of packets to remain on the list, and the address of the LSTHDS containing 
the listheads. 

EXE$TRIM_POOL_LIST takes the following steps" 

1. It calculates the index of the lookaside listhead corresponding to the packet size. 

2. It sets a time limit of one quarter  the value of the SMP_SPINWAIT SYSGEN 
parameter.  This sets an effective time limit for gentle reclamation of one half the 
value of SMP_SPINWAIT. 

3. It acquires the POOL spinlock, raising IPL to IPL$_POOL, to synchronize access 
to the variable-length list. 

4. It reads the counter array element corresponding to tha t  listhead to determine how 
many packets are in the list and calculates how many should remain on the list 
after trimming. 

5. It removes a packet from the list and calls EXE_STD$DEALLOCATE to return it 
to the variable-length list associated with that  LSTHDS. 

It continues returning packets to pool until one of the following occurs: 

It has t r immed the list to the desired percentage. 
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The time limit has elapsed. 

There are no more packets on the list. 

This unlikely circumstance occurs only if the counter contains a larger number 
of packets than are actually on the list. The counter is not necessarily accu- 
rate because it is possible for kernel mode code to remove a packet from the 
list without decrementing the counter and because the counts are not kept 
atomically. 

6. It updates the counter array element, releases the POOL spinlock, and returns. 

EXE$FLUSHLISTS is called by EXE$ALONPAGVAR_INT when both reclamation and 
pool expansion have failed to produce enough nonpaged pool to satisfy the current 
request. It performs much the same operations as the reclaim-pool routines and 
EXE$TRIM_POOL_LIST, with the following differences: 

~ It removes all packets from lookaside lists whose packets are as large as or larger 
than the requested allocation size. 

, It sets an execution time limit of two thirds the value of the SMP_SPINWAIT 
SYSGEN parameter. Aider deallocating 100 packets, it checks whether the time 
limit has elapsed. If so, it returns a failure status. If not, it continues deallo- 
cating packets until there are no more, the time limit elapses, or a large enough 
piece of now-available pool has been agglomerated to satisfy the request. (Recall 
that EXE$DEALLOCATE maintains the variable-length list as an ordered list, 
agglomerating adjacent blocks as necessary to reduce fragmentation.) 

The intent of limiting the time spent flushing the lists is to minimize the possibility 
of spinwait timeouts when a routine holding a spinlock tries to allocate nonpaged 
pool. 

, After having reclaimed pool from all lookaside lists that are large enough without 
agglomerating a large enough packet, EXE$FLUSHLISTS calls EXE_STD$KP_ 
RECLAIM_KPB to return available kernel process blocks. It then calls SCS_ 
STD$URGENT_RECLAMATION, in module [CLUSTER]SCSFASTPATH, to try to 
reclaim BAP. 

7.5.7 Expansion 
Dynamic nonpaged pool expansion creates additional nonpaged pool as it is needed. 
At system initialization, SYSBOOT allocates space in the nonpaged system data huge 
page for the initial size of nonpaged pool and reserves enough contiguous virtual 
address space for nonpaged pool to expand up to NPAGEVIR pages. When an attempt 
to allocate nonpaged pool fails, the pool can be expanded by allocating more physical 
memory for it and altering the system page table accordingly. Note that  expanded pool 
is not within the nonpaged system data huge page, although it is virtually contiguous 
to it. 

437 



Pool Management 

When pool reclamation does not yield sufficient space to satisfy an allocation request, 
EXE$ALONPAGVAR_INT, EXE$ALONPAGED_ALN, and EXE$ALLOCATE_POOL 
call EXE$EXTENDPOOL, in module MEMORYALC_POOL, to attempt to expand pool. 
EXE$EXTENDPOOL calls EXE$EXTEND_NPP, also in module MEMORYALC_POOL, 
specifying that  nonpaged pool should be expanded by four pages. 

To synchronize allocation of physical memory and alteration of the system page table, 
EXE$EXTEND_NPP must acquire the MMG spinlock. 

EXE$EXTEND_NPP first checks whether the current CPU already holds the MMG 
spinlock. If not, it checks whether it can acquire it: if it was entered from an interrupt 
service routine running above IPL$_SYNCH, the MMG spinlock's IPL, or is running 
on a CPU that  owns any higher ranking spinlock, it cannot acquire the MMG spinlock. 
If either is true, it creates an IPL$_QUEUEAST fork process to expand nonpaged pool 
at some later time and returns an allocation failure status to its caller. 

Whether running in the environment of the original allocation request or in the fork 
process, EXE$EXTEND_NPP then confirms that  sufficient reserved virtual address 
is left for the requested expansion and calls EXE_STD$CHKFLUPAGES, in module 
MEMORYALC, to check that the physical pages can be allocated without reducing the 
number of physical pages available to processes below the minimum required. Pool 
expansion must leave sufficient available physical pages to accommodate the sum of 
the following: 

�9 Space to inswap a reasonably large process, that  is, the least of the following: 

Maximum theoretically possible swap image SWP$GL_SWAP_IMAGE_SIZE_ 
MAX ( 6 4 K -  1) 

Four times SYSGEN parameter SWPOUTPGCNT in pages 

SYSGEN parameter WSMAX in pages 

�9 The modified page list low limit (SYSGEN parameter MPW_LOLIMIT) 

�9 The free page list low limit (SYSGEN parameter FREELIM) 

If the memory sufficiency check fails, EXE$EXTEND_NPP attempts to broadcast a 
message to the operator's console, logs an expansion failure event (see Section 7.14), 
and returns the error status SS$_INSFMEM to its caller. 

If the check succeeds, EXE$EXTEND_NPP calls MMG_STD$ALLOC_PFN_MAP_ 
SYSTEM_VA, in module SYSVA_ALLOC, to allocate and map physical memory. It 
updates the page frame number (PFN) database for the allocated pages and places 
their PFNs in the next available system space level 3 page table entries (L3PTEs), 
beginning with the one corresponding to the address in MMG$L_NPAGNEXT. In each 
L3PTE it sets the valid, address space match, and modify bits. 

If any expansion occurred, EXE$EXTEND_NPP acquires the POOL spinlock, calls 
EXE_STD$DEALLOCATE to add the new virtual pages to nonpaged pool, adds a 
descriptor for them to the nonpaged pool map, logs an expansion success event (see 
Section 7.14), and releases the POOL spinlock. If EXE$EXTEND_NPP acquired the 
MMG spinlock, it releases that spinlock also. 
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If any expansion occurred, it updates MMG$L_NPAGNEXT and reports that the 
resource RSN$_NPDYNMEM is available for any waiting kernel threads. 

Nonpaged pool expansion provides a degree of dynamic system tuning. The penalty for 
undersizing NPAGEDYN is the increased overhead in allocating requests that cause 
expansion. An additional penalty is the performance loss associated with not having 
the expanded pages within a huge page (and thus its granularity hint region). Chapter 
1 explains how huge pages improve system performance. 

The penalties for oversizing NPAGEVIR are one quadword (the L3PTE) for each 
unused page and one associated unusable page of system virtual address space. If 
NPAGEVIR is too small, kernel threads may be placed into a resource wait state, 
waiting for nonpaged pool to become available. 

Less dynamic than nonpaged pool expansion, the AUTOGEN facility can adjust 
SYSGEN parameters that govern the initial size of nonpaged pool according to a given 
system's workload, as outlined in Section 7.14. 

Nonpaged pool expands, but it does not contract. No mechanism returns PFNs from 
nonpaged pool to the free page list. The nonpaged pool region returns to its original 
size only at the next bootstrap, if NPAGEDYN has not changed. 

7.5.8 Synchronization 
As described in Section 7.4.2, the load-locked/store-conditional mechanism synchro- 
nizes accesses to nonpaged pool lookaside lists. 

The POOL spinlock serializes access to nonpaged pool variable-length lists. Acquiring 
the POOL spinlock raises IPL to IPL$_POOL. The allocation, deallocation, reclamation, 
and expansion routines for nonpaged pool acquire and release the POOL spinlock. 

Device drivers running at fork level frequently allocate dynamic storage. The POOL 
spinlock ranks higher than all fork locks and the MAILBOX spinlock. This allows a 
CPU executing a driver fork process to acquire the POOL spinlock while owning the 
MAILBOX or any of the IOLOCKx fork locks. However, a CPU executing at device IPL 
may not acquire the POOL spinlock because device IPL is higher than IPL$_POOL. 

Each nonpaged pool allocation routine that runs in process context, such as EXEL 
STD]$ALLOCCEB or EXELSTD]$ALLOCIRP, calls EXE$ALONONPAGED without 
acquiring the SCHED spinlock. If this attempt to allocate pool is successful, the 
routine has avoided the overhead of SCHED spinlock acquisition and release. 

If EXE$ALONONPAGED fails to allocate the pool, the process context nonpaged pool 
allocation routine tests bit PCB$V_SSRWAIT in PCB$L_STS. If it is set, the routine 
returns a failure status to its caller. Otherwise, it acquires the SCHED spinlock, 
raising IPL to IPL$_SCHED and synchronizing access to the scheduling database, 
and calls EXE$ALONONPAGED again. If the second allocation attempt fails, the 
allocation routine calls a scheduling routine to place the kernel thread into a resource 
wait state, waiting for RSN$_NPDYNMEM. 
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A kernel thread in such a wait state will be made computable whenever RSN$_ 
NPDYNMEM is declared available. In earlier versions of VAX VMS, the resource was 
declared available each time nonpaged pool was deallocated. Because resource waits 
occur less frequently than deallocations, OpenVMS Alpha reduces overhead by avoid- 
ing this declaration at deallocation. Instead, the resource is declared available once a 
second by EXE$TIMEOUT, in module TIMESCHDL (see Chapter  Time Support). It is 
also declared available by EXE$EXTEND_NPP whenever nonpaged pool is expanded. 

Code executing as the result of an interrupt  at IPL$_SCHED or above typically 
deallocates nonpaged pool through routine COMLSTD]$DRVDEALMEM, in module 
MEMORYALC. 

COMLSTD]$DRVDEALMEM deallocates a packet by simply calling 
EXE$DEANONPGDSIZ under any of the following circumstances: 

�9 The packet is no larger than 8,192 (IOC_C_MAXLISTPKT) bytes. Such a packet 
is returned to the lookaside list. Access to the lookaside list is synchronized using 
special instructions. 

�9 IPL is below IPL$_POOL. 

If COMLSTD]$DRVDEALMEM is called from IPL$_POOL or above, however, it 
transforms the block that  is to be deallocated into a fork block (see Chapter Software 
Interrupts) and requests an IPL$_QUEUEAST software interrupt.  The code tha t  
executes as the IPL$_QUEUEAST fork process (the saved procedure value in the fork 
block) simply calls EXE$DEANONPAGED to deallocate the block. If the block is less 
than the size of a fork block, COMLSTD]$DRVDEALMEM generates the nonfatal 
bugcheck BADDALRQSZ. 

By convention, process context code that  allocates a nonpaged pool data structure 
executes at IPL 2 or above as long as the data structure's existence is recorded solely 
in a temporary process location, such as in a register or on the stack. Running at IPL 
2 blocks AST delivery and prevents the possible loss of the pool if the process were to 
be deleted. 

7.6 Per-RAD Pool 
On a NUMA system, each RAD with physical memory may have its own section of 
nonpaged pool. The RADs' pool sections are virtually adjacent, but each is made up of 
physical memory local to its RAD. This enables code executing on a particular RAD to 
allocate nonpaged pool from memory with a faster access time. 

7.6.1 Data Structures 
Each per-RAD pool section has its own variable-length and lookaside lists and thus 
its own LSTHDS structure. The LSTHDS structure is created in $2 space mapped to 
physical memory local to the RAD whose pool it describes. In each LSTHDS structure, 
LSTHDS$PS_NPOOL_DATA points to the nonpaged pool NPOOL structure. 
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As shown in Figure 7.11, the nonpaged pool NPOOL$AR_LSTHDS contains the 
address of an array of LSTHDS structure pointers, indexed by RAD. Each entry 
contains the address of the corresponding RAD's LSTHDS. The array is in the base 
RAD section of nonpaged pool. 

NPOOL$L_MAX_LSTHDS contains the highest RAD number for which a nonpaged 
pool section has been created. 

Figure 7.11 Per-RAD Nonpaged  Pool  Data Structures  

Nonpaged Pool NPOOL 
EXE$GS_NPP_NPOOL! 

-- LSTHDS 

Nonpaged Pool LSTHDS for RAD 0 

Nonpaged Pool LSTHDS for RAD 1 

Nonpaged Pool LSTHDS for RAD n 

Several fields in the nonpaged pool NPOOL support per-RAD pools. NPOOL$L_ 
ON_RAD_DEALLOC records the number of times a piece of pool is deallocated from 
code running on the RAD associated with that pool. NPOOL$L_TOTAL_DEALLOC 
records the number of deallocations of per-RAD pool. These counts are kept only by 
the monitor version of SYSTEM_PRIMITIVES (see Section 7.13). 

LSTHDS$L_RAD identifies the RAD of the physical memory that makes up this pool. 

7.6.2 Init ialization 
During system initialization, INI$INITIALIZE_POOL, in module MEMORYALC_ 
POOL, determines how many RADs have memory and the size of their initial nonpaged 
pool sections. 

Each initial nonpaged pool section is at least one page large. If NPAGERAD is larger, 
the size of the initial section is NPAGERAD divided by the number of RADs with 
memory and rounded up to an integral number of pages. 
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For each RAD with memory, INI$INITIALIZE_POOL allocates tha t  many physical 
pages from memory local to the RAD and maps them at the address in MMG$GL_ 
NPAGNEXT, the next virtual addresses adjacent to existing nonpaged pool. It up- 
dates MMG$GL_NPAGNEXT. Initially, all the per-RAD pool is on the variable-length 
list. INI$INITIALIZE_POOL adds a descriptor to the nonpaged pool NPOOL pool 
map to describe this RAD's initial pool. If this is the monitor version of SYSTEM_ 
PRIMITIVES, it allocates the three lookaside list statistics arrays from per-RAD pool. 

It sets POOL$GL_USING_RAD_POOLS to 1 to indicate that  at least one nonbase RAD 
pool exists. 

7.6.3 Allocation 
When per-RAD pool is enabled, by default all allocation is specific to the current  
RAD. This improves system performance by enabling all unmodified allocations to 
get memory from the RAD on which the allocator is executing. It is also possible to 
allocate nonpaged pool local to a specific RAD. 

EXE$ALLOCATE_POOL calculates the address of the LSTHDS to be used: 

�9 If EXE$ALLOCATE_POOL is called with no RAD specification and there is physi- 
cal memory associated with the current RAD, it uses the LSTHDS for the current 
RAD. 

�9 If there is no memory associated with the current RAD, it uses the LSTHDS for 
the RAD from which the system was booted. 

�9 If a RAD was specified, it uses that  RAD's LSTHDS. 

If it cannot remove a packet from the appropriate per-RAD lookaside list to satisfy the 
request, it allocates per-RAD variable-length pool. 

If enough per-RAD pool is not available, EXE$ALLOCATE_POOL expands that  RAD's 
pool basically as described in Section 7.5.7. The major difference, however, is that  it 
allocates physical memory associated with the specified RAD. 

If, for some reason, the expansion fails and pool cannot be allocated from the specified 
RAD's pool, EXE$ALLOCATE_POOL at tempts allocation from another RAD's pool. If 
necessary, it performs aggressive reclamation, flushes the lists, and tries to expand 
that  RAD's pool. If none of those actions is successful, it goes on to another RAD. If it 
cannot allocate pool from any RAD's pool, it returns the error status SS$_INSFMEM 
to its caller. 

7.6.4 Deallocation 
When per-RAD pool is in use, EXE$DEALLOCATE_POOL must  determine to which 
per-RAD pool a particular block should be deallocated. From the page table entry 
(PTE) that  maps the beginning of the block, it extracts the PFN and then determines 
the RAD of that  PFN. Depending on the size of the block, it deallocates the pool to the 
appropriate lookaside list or to the variable-length list of that  per-RAD pool. 
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7.7 Bus-Addressable Pool 
Bus-addressable pool is nonpageable pool mapped into physically contiguous physical 
memory whose address range is within I/O bus and 32-bit adapter  physical addressing 
limits. A driver for a device or adapter  tha t  cannot access the maximum possible 
physical address range allocates BAP for structures and buffers to be accessed by the 
device or adapter. 

On a particular system, if all devices and adapters can access all the physical memory, 
BAP is merged into nonpaged pool, and requests for BAP are satisfied from the 
nonpaged pool variable-length list and lookaside lists. 

If a system has a Peripheral Component Interconnect (PCI) adapter  and physical 
memory addresses above 1 GB, or an Extended Memory Interconnect (XMI) adapter  
and physical memory addresses above 4 GB, it needs separate BAP. 

In general, BAP is handled in the same manner  as nonpaged pool. The routines that  
allocate, deallocate, and reclaim are similar to those for nonpaged pool except that  
their flow varies with pool type so that  they can be used for BAP, s tandard nonpaged 
pool, or some future type of pool. Section 7.7.1 describes the data structures related 
to BAP; Section 7.7.2, its initialization; and Section 7.7.3, the differences between 
allocating bus-addressable and nonpaged pool. 

7.7.1 Data Structures 
NPOOL$AR_LSTHDS contains zero; there is only one BAP LSTHDS. 

NPOOL$Q_PER_POOL_DIAG points to a history buffer that  records at tempts  to 
register requirements for BAP. Each entry contains the minimum and maximum 
physical addresses and the minimum and maximum pool requested. 

NPOOL$L_POOL_FLAGS contains flags that  describe BAP: 

�9 NPOOL$V_NOT NPP, when set, means the structure describes something other 
than standard nonpaged pool. The flag is set in the NPOOL data structure for 
BAP, whether or not the pool is within nonpaged pool. 

�9 NPOOL$V_POOL_SEPARATE, when set, means that  BAP is not within nonpaged 
pool. This bit is meaningful only for the BAP NPOOL$L_POOL_FLAGS field. 

�9 NPOOL$V_POOL_WITHIN_NPP, when set, means that  BAP is within nonpaged 
pool. 

�9 NPOOL$V_MINIMUM_MODE, when set, means that  system initialization com- 
pleted without having initialized any BAP, either internal or external to s tandard 
nonpaged pool, but that  a later call to EXE$REGISTER_POOL_INFO resulted in 
initializing BAP. 
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7.7.2 Initialization 
SYSBOOT determines whether BAP is needed on this system 
following SYSGEN parameters" 

�9 NPAG_BAP_MIN--minimum amount of BAP required 

by examining the 

�9 NPAG_BAP_MAXmmaximum amount of BAP required 

�9 NPAG_BAP_MIN_PA~lowest physical address allowed within BAP 

�9 NPAG_BAP_MAX_PA~highest physical address allowed within BAP 

By default the first three of these parameters are 0, and NPAG_BAP_MAX_PA is -1. 
The parameters are altered indirectly through device drivers calling EXE$REGISTER_ 
POOL_INFO, in module MEMORYALC_POOL, to specify their needs for BAP. 
EXE$REGISTER_POOL_INFO records their needs in cells read by AUTOGEN. The in- 
formation recorded is cumulative, with the minimum and maximum physical addresses 
representing the lowest and highest addresses registered. 

AUTOGEN transforms the cells' contents into values to be used for the SYSGEN 
parameters on a subsequent boot. 

If the BAP SYSGEN parameters are set to their default values, SYSBOOT does not 
create BAP or enlarge nonpaged pool. 

If the parameters are not default, SYSBOOT determines whether standard nonpaged 
pool could meet the requirements by comparing NPAG_BAP_MIN_PA and NPAG_ 
BAP_MAX_PA to the range of physical addresses on the system. (Nonpaged pool 
expands using free physical pages of memory, so it could theoretically occupy any 
physical memory.) If NPAG_BAP_MIN_PA and NPAG_BAP_MAX_PA cover the entire 
range of physical memory present, SYSBOOT adjusts NPAGEDYN and NPAGEVIR 
by the amount of BAP needed: it adds the value of NPAG_BAP_MIN to NPAGEDYN 
and the value of NPAG_BAP_MAX to NPAGEVIR. Merging BAP with nonpaged pool 
makes the system more adaptable to pool requests. 

If nonpaged pool cannot meet the requirements, SYSBOOT allocates a slice from the 
executive data huge page for use as BAP. It stores its address in EXE$GQ_BAP_ 
VARIABLE. If the slice's physical pages do not meet BAP requirements, SYSBOOT 
resets the bus-addressable SYSGEN parameters to their default values and alters 
STARTUP_P1 and STARTUP_P3 so as to trigger AUTOGEN to run after system 
initialization. This unlikely case can occur when the physical memory configuration 
has been altered substantially, particularly on a Galaxy platform. After drivers have 
registered requirements for BAP, AUTOGEN reads the requirements, alters the 
SYSGEN parameters, and reboots the system. 

INI$INITIALIZE_POOL, in module MEMORYALC_POOL, determines whether BAP 
is separate and initializes various data structures accordingly. In particular, it sets 
NPOOL$V_POOL_SEPARATE or NPOOL$V_POOL_WITHIN_NPP in NPOOL$L_ 
POOL_FLAGS. If BAP is within nonpaged pool, the bus-addressable NPOOL and 
LSTHDS structures are not used. 
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If BAP is separate, its NPOOL and LSTHDS structures are used in allocating and 
deallocating BAP. INI$INITIALIZE also allocates statistics buffers for its lookaside 
lists from nonpaged pool. 

After system initialization, if a driver registers BAP requirements that cannot be met 
by what, if anything, has been initialized, EXE$REGISTER_POOL_INFO tries to 
accommodate the request: 

If no BAP has been initialized and the requirements can be met by standard 
nonpaged pool, EXE$REGISTER_POOL_INFO initializes various structures to 
indicate that BAP is within nonpaged pool. It sets NPOOL$V_MINIMUM_MODE 
and NPOOL$V_POOL_WITHIN_NPP. 

If the requirements cannot be met by standard nonpaged pool, EXE$REGISTER_ 
POOL_INFO calls EXE_STD$ALONONPAGED_LIM, in module MEMORYALC_ 
DYN_64, to allocate nonpaged pool occupying pages of physical memory that the 
driver's device can access. If successful, EXE$REGISTER_POOL_INFO deallocates 
the pool to the bus-addressable variable-length list, fills in a pool map descriptor 
entry for it on the bus-addressable list, and removes an entry for it from the appro- 
priate nonpaged pool map. It sets NPOOL$V_MINIMUM_MODE and NPOOL$V_ 
POOL_SEPARATE. 

If BAP has been initialized, but the new requirements exceed the maximum pool 
size, EXE$REGISTER_POOL_INFO tries to expand BAP with nonpaged pool 
occupying suitable physical pages. BAP expansion is most likely to succeed during 
the early life of the system, before pool in physical pages that meet the address 
constraints is allocated to other uses. Because pool registration usually occurs 
early, BAP expansion is likely to succeed. 

If successful, EXE$REGISTER_POOL_INFO deallocates the pool to the bus- 
addressable variable-length list, removes it from the standard nonpaged pool map, 
and fills in a pool map descriptor entry for it on the bus-addressable list. 

7.7.3 Al locat ion 
A kernel mode component allocates BAP by calling EXE$ALLOCATE_POOL, in 
module MEMORYALC_POOL, passing it a pool type of MMG$K_POOLTYPE_BAP, the 
request size, and the alignment requirements. 

When requested to allocate BAP, EXE$ALLOCATE_POOL takes the steps described in 
Section 7.5.4, with the following differences: 

1. If BAP has not been initialized and is not within nonpaged pool, EXE$ALLOCATE_ 
POOL returns SS$_BADPARAM to its caller. (The monitor version generates 
the fatal bugcheck BADALORQSZ.) This circumstance can result if SYSGEN 
parameters have their default values and no drivers that needed BAP registered 
their requirements in previous system boots. 

, If BAP has been initialized and is separate from nonpaged pool, pool will be 
allocated from a BAP lookaside list or the bus-addressable variable-length list. 
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, 

, 

If BAP was not created as a separate pool at system initialization, and the re- 
quested size and alignment cannot fit on a single page, EXE$ALLOCATE_POOL 
checks that the block allocated is physically contiguous. (If BAP was created as 
a separate pool, it is guaranteed to be physically contiguous.) If not, it inserts 
the block on a holding queue rather than deallocate it immediately and makes 
up to nine additional attempts to allocate a physically contiguous block. Before 
returning, it deallocates the blocks on the holding queue. 

If the request cannot be allocated, EXE$ALLOCATE_POOL tries one after another 
of the following techniques, reattempting the pool allocation each time: 

Aggressive pool reclamation from lookaside lists (see Section 7.5.6) 

Flushing the lookaside lists (see Section 7.5.6) 

Expanding traditional pool if BAP is within nonpaged pool (see Section 7.5.7) 

If BAP is separate from nonpaged pool, it expands BAP by allocating from 
nonpaged pool the request size rounded up to a page boundary. It tries to 
allocate pool occupying physical pages that meet the BAP address constraints. 
If the attempt fails, it expands nonpaged pool and tries again. 

If the attempt succeeds, it deallocates the pool to the BAP variable-length list, 
removes that pool segment from the nonpaged pool map, and adds it to the 
BAP pool map. 

Calling callback routines specified by components that registered use of BAP to 
recover previously allocated pool and reflushing the lookaside lists 

7.8 Lock Management Lookaside List 
During system initialization, LCK$POOLZONE_INIT, in module LOCK_UTILS, 
creates a lookaside list in $2 space for use by lock management routines. In particular, 
it creates a POOLZONE_REGION data structure (see Figure 7.8), stores its address in 
LCK$AR_POOLZONE_REGION, and creates the $2 space pool zone. 

Lock management routines allocate resource blocks (RSBs) and lock blocks (LKBs) (see 
Chapter Lock Management) from the pool zone's lookaside list. 

LCK$POOLZONE_INIT determines the size of the lookaside list packets by taking 
the larger of RSB$K_LENGTH and LKB$K_LENGTH and rounding up to the next 
32-byte boundary. In OpenVMS Alpha Version 7.3, the size is 256 bytes. It determines 
the initial number of pages in the zone by halving the lesser of the number of pages 
of physical memory available and the number of pages required to accommodate 
LOCKIDTBL and RESHASHTBL packets. The maximum number of pages in the zone 
is twice the number required for LOCKIDTBL_MAX packets. 

Access to the lookaside list is synchronized with the LCKMGR spinlock. The lock man- 
agement routines that allocate and deallocate RSBs and LCKs acquire this spinlock 
before calling EXE$POOL_ALLOCATE and EXE$POOL_DEALLOCATE. 
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Routine LCK$CHECK_POOLZONE, in module LOCK_UTILS, is responsible for 
reclamation from this pool zone. The zone is never sh runk  below its initial page 
allocation. LCK$CHECK_POOLZONE is called by LCK$CHK_CACHES, which runs  
once a second. 

LCK$CHECK_POOLZONE determines how many pages are currently in the region 
and how many have at least one available packet. It determines the smaller  of the 
number  of empty pages and the number  of expansion pages. 

1. If the pool zone has not expanded beyond its initial size, no pages are reclaimed. 
The routine returns.  

2. If there are 10 or fewer empty/expansion pages and if, on average, the zone's pages 
have at least one available packet per page, LCK$CHECK_POOLZONE re turns  
one empty page. 

If there are between 10 and 100 empty/expansion pages, it re turns  one empty page. 

If there are more than  100 empty/expansion pages, it re turns  3 percent  of the 
empty pages. 

, 

. 

7.9 Extended File Cache Lookaside Lists 
Extended File Cache (XFC) code creates three $2 space lookaside lists for its own use: 

�9 Permanent ly  allocated pool--the lesser of 4 MB and 1 percent of physical memory 

�9 Dynamically allocated pool that  can be reclaimed on demand 

�9 Dynamically allocated pool tha t  cannot be reclaimed on demand 

The POOLZONE_REGION structures (see Figure 7.8) tha t  describe these pools are 
within the s tructure Xfc$vabAnchor, defined in the SYS$XFCACHE[_MON].EXE 
executive image. 

During system initialiation, routines XfcMemmgtPermanentAreaIni t  and XfcMemmgt- 
DynamicAreaInit ,  in module [XFC]XFC_MEMMGT, create a pool zone in each pool for 
each of the following uses: 

�9 Permanent ly  allocated pool based in physical memory reserved through the Re- 
served Memory Registry entry named VCC$MIN_CACHE_SIZE 

Barrier  s t ructures (BARs), currently unused 

Secondary extent cache blocks (SECBs) 

Pr imary extent cache blocks (PECBs) 

Cache volume blocks (CVBs) 

Cache file blocks (CFBs) 

I/O statistics collection s tructures (IOSIZEs) 
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�9 Dynamically allocated and reclaimable pool 

- -  BARs 

- -  SECBs 

- -  PECBs 

- -  IOSIZEs 

�9 Dynamically allocated and nonreclaimable pool 

- -  CVBs 

- -  CFBs 

All the zones in these pools are created with zero initial pages. 

7.10 Paged Pool 
Paged dynamic memory, commonly known as paged pool, contains data structures that  
are used by multiple processes and that  are not required to be permanently memory- 
resident. Its protection is ERKW, allowing it to be read from executive and kernel 
modes but written only from kernel mode. 

During system initialization, SYSBOOT reserves system space for paged pool. The 
SYSGEN parameter PAGEDYN specifies the size of this area in bytes. By default 
paged pool is created as a set of demand zero pages. BOO$INIT_POOL, in module 
[SYSBOOT]SYSBOOT, places its starting address in both EXE$GL_PAGED and 
MMG$GL_PAGEDYN. System initialization code running in the context of the swapper 
process initializes the pool as one data structure encompassing the entire pool. That 
initialization incurs a page fault and thus requires process context. 

If SYSGEN parameter POOLPAGING is set to zero, BOO$INIT_POOL instead creates 
paged pool as permanently allocated pages taken from the nonpaged system data huge 
page. A nonpageable paged pool facilitates debugging code whose data structures come 
from paged pool. 

Process context kernel mode code calls the routine EXELSTD]$ALOPAGED to allocate 
paged pool and the routine EXELSTD]$DEAPAGED to deallocate paged pool. These 
routines, both in module MEMORYALC, call the lower level variable-length allocation 
and deallocation routines described in Section 7.3. 

EXELSTD]$DEAPAGED tests that  the size being returned is nonzero and that  the 
starting address is on a pool allocation granularity boundary. If either is false, it 
generates the nonfatal BADDALRQSZ bugcheck. 

If an allocation request cannot be satisfied, EXELSTD]$ALOPAGED returns to its 
caller with a failure status. The caller may return an error, for example, SS$_ 
INSFMEM, to the user program, or the caller may place the kernel thread into a 
resource wait state, waiting for resource RSN$_PGDYNMEM. 
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Whenever paged pool is deallocated, EXE[_STD]$DEAPAGED calls SCH$RAVAIL, 
in module MUTEX, to declare the availability of paged pool for any wait ing kernel 
thread. Chapter  Scheduling describes resource waits. 

Unused paged pool requires little system overhead: one L3PTE per page of pool and 
one corresponding reserved page of system virtual address space. Because paged pool 
is created as demand zero L3PTEs (see Chapter  2), it expands on demand through 
page faults. 

Because this area is pageable, code tha t  accesses it must  run at IPL 2 or below while 
accessing it. Elevated IPL, therefore, cannot be used for synchronizing access to the 
paged pool list or to any data structures allocated from it. The EXE$GL_PGDYNMTX 
mutex serializes access to the paged pool list. Both EXE[_STD]$ALOPAGED and 
EXE[_STD]$DEAPAGED lock this mutex for write access. 

By convention, process context code tha t  allocates a paged pool data  s tructure executes 
at IPL 2 as long as the data structure's existence is recorded solely in a temporary 
process location, such as in a register or on the stack. Running at IPL 2 blocks AST 
delivery and prevents the possible loss of the pool if the process were to be deleted. 

The following data structures are located in paged pool: 

�9 The shareable logical name tables and logical name blocks 

�9 The Fi les- l l  Extended QIO Processor (XQP) I/O buffer cache, which is used for 
data such as file headers, index file bitmap blocks, directory file data blocks, and 
quota file data blocks 

�9 Global section descriptors, which are used when a global section is mapped or 
unmapped 

�9 Mounted volume list entries, which associate a mounted volume name with its 
corresponding logical name and unit  control block address 

�9 Access control list elements, which specify what  access to an object is allowed for 
different classes of users 

�9 Object rights blocks tha t  are accessed at IPL 2 and below 

�9 Data structures required by the Install utility to describe known images 

Any image tha t  is installed has a known file entry created to describe it. Some 
frequently accessed known images also have their image headers permanent ly  
resident in paged pool. These data structures are described in more detail in 
Chapter  Image Activation and Exit. 

�9 PQBs, which are temporarily used during process creation to store the quotas and 
limits of the new process 

PQBs, initially allocated from paged pool, are not deallocated back to the paged 
pool list. Instead, they are queued to a lookaside list, the self-relative queue at 
global label EXE$GQ_PQBIQ. Process creation code at tempts  to allocate a PQB by 
removing an element from this queue as a faster alternative to general paged pool 
allocation. 

449 



Pool Management 

7,11 Process Allocation Region 
The process allocation region contains variable-length data structures that  are used 
only by a single process and are not required to be permanent ly  memory-resident. 
(Process allocation region pages are pageable.) Its protection is UREW, allowing 
executive and kernel modes to write it and any access mode to read it. 

The process allocation region consists of a P1 space variable-length pool and may 
include a P0 space variable-length pool as well. The P0 space allocation pool is useful 
only for i~aage-specific data structures tha t  do not need to survive image exit. The P1 
space pool can be used for both image-specific data structures and data structures tha t  
must  survive the rundown of an image, such as logical name tables. 

During process startup EXE$PROCSTRT reserves P1 address space for the process al- 
location region. The SYSGEN parameter  CTLPAGES specifies the number  of pagelets 
in the P1 pool. Free space in the P1 process allocation region is maintained in a singly 
linked, memory-ordered list, as described in Section 7.3. EXE$PROCSTRT initializes 
the pool and its listhead, CTL$GQ_ALLOCREG. There is no global pointer that  locates 
the beginning of the process allocation region. 

Executive or kernel mode code running in process context calls EXELSTD]$ALO- 
P1PROC, EXELSTD]$ALOPIIMAG, or EXELSTD]$ALOPOIMAG to allocate space 
from the process allocation region, and EXELSTD]$DEAP1 to deallocate a data 
structure to the region. These routines are in module MEMORYALC. When the 
data structure must  be allocated from the P1 pool, EXELSTD]$ALOP1PROC is 
used. When the data structure is image-specific, EXELSTD]$ALOPIIMAG or EXEL 
STD]$ALOPOIMAG is used. 

EXELSTD]$ALOPIIMAG and EXELSTD]$ALOPOIMAG differ in which region 
they first a t tempt  the allocation. EXELSTD]$ALOPIIMAG tries the P1 re- 
gion first, whereas EXELSTD]$ALOPOIMAG tries the P0 region first. If EXEL 
STD]$ALOPIIMAG finds that  there is insufficient space, or EXELSTD]$ALOPOIMAG 
finds that  allocation in the P0 region is disallowed, each at tempts  to allocate from the 
other region. Neither routine can allocate from P1 space if the P1 process allocation 
region reaches a threshold of use specified by the SYSGEN parameter  CTLIMGLIM. If 
the current image is one that  was linked with the NOPOBUFS option, allocation from 
P0 space is prevented. If the allocation fails, these routines return the SS$_INSFMEM 
error status. 

Additionally, EXELSTD]ALOPIIMAG first checks whether  a main image has been 
activated. If not, it branches to EXE$ALOP1PROC to avoid allocating any P0 space 
that  might later be necessary for image activation. 

The CTLIMGLIM limit does not apply to EXELSTD]$ALOP1PROC. The latter may 
allocate space until the P1 allocation region is exhausted. The arithmetic difference 
between CTLPAGES and CTLIMGLIM guarantees a minimum number of pagelets 
exclusively for EXELSTD]$ALOPIPROC. It only allocates space from the P1 region. If 
an allocation fails, it returns the error status SS$_INSFMEM. 
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Free space in the P0 process allocation region is maintained in a singly linked, 
memory-ordered list, as described in Section 7.3. During compilation of the SHELLxxK 
module, where x x  is the system page size of 8, 16, 32, or 64 KB, the P0 process allo- 
cation region listhead, CTL$GQ_POALLOC, is initialized to zero. The image rundown 
routine deletes P0 space and zeros the listhead. 

If not prevented by the presence of the NOPOBUFS linker option, EXEL 
STD]$ALOPIIMAG and EXELSTD]$ALOPOIMAG create and expand the P0 pro- 
cess allocation region by calling the routine MMG$EXPREG, in module SYSCREDEL. 
This routine functions much like the Expand Program/Control Region ($EXPREG) sys- 
tem service. EXELSTD]$ALOPIIMAG and EXELSTD]$ALOPOIMAG expand the P0 
region as needed to satisfy allocation requests, but always by at least one virtual  page. 
Each time one of these routines expands the P0 region, it calls EXE$DEALLOCATE to 
link the new space into the free list. 

The current image and other executive routines may also expand the P0 virtual  
address space for their own purposes. Depending on the sequence of these expansions, 
multiple P0 allocation region expansions can result in a noncontiguous P0 allocation 
region. Note that  this contrasts with the paged, nonpaged, and P1 allocation pools, 
which are always virtually contiguous. 

EXELSTD]$ALOP1PROC, EXELSTD]$ALOPIIMAG, and EXE[_STD]$ALOPOIMAG 
store the address of the appropriate listhead in a register and call EXE$ALLOCATE 
to perform the variable-length allocation described in Section 7.3.1. EXE$DEAP1 
determines whether the block being deallocated is from the P0 or P1 space pool and 
calls EXE$DEALLOCATE with the address of the appropriate listhead. 

For a single-threaded process, no special synchronization mechanism is needed for the 
process allocation region. However, the allocation and deallocation routines change to 
kernel mode and execute at IPL 2, effectively blocking any other mainline or AST code 
from executing and perhaps at tempting a simultaneous allocation from or deallocation 
to the process allocation region. 

In the case of a process with multiple kernel threads, an additional mechanism 
is needed to synchronize mutiple kernel threads'  allocations and deallocations. In 
addition to running at IPL 2, the allocation and deallocation routines lock CTL$GQ_ 
POOL_MUTEX, a process-private mutex, for write access. 

The following data structures are located in the process allocation region: 

�9 The process-private logical name tables and logical name blocks 

Image control blocks, built by the image activator to describe what  images have 
been activated in the process 

Rights database identifier blocks, which contain Record Management  Services 
context (internal file and stream identifiers) for the rights database file 

A context block in which the Breakthrough ($BRKTHRU) system service maintains 
status information as the service asynchronously broadcasts messages to the 
terminals specified by the user 
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Process scan context blocks, used by the Process Scan ($PROCESS_SCAN) system 
service, described in Chapter Process Control and Communication 

There is enough room in the process allocation region for privileged application soft- 
ware to allocate process-specific data structures of reasonable size. 

7.12 KRP Lookaside List 
The KRP lookaside list is a P1 space list for process-private kernel mode data  struc- 
tures that  are not required to be permanent ly  memory-resident. The list is a doubly 
linked absolute queue, whose listhead contains the addresses of the first and last 
blocks in the list. The protection on this storage area is URKW, allowing it to be read 
from any mode but modified only from kernel mode. 

Address space for this list is defined at compilation time of the S H E L L ~ K  module, 
which defines the fixed part  of P1 space. Two global symbols, CTL$C_KRP_COUNT 
and CTL$C_KRP_SIZE, control the number  of KRP packets created and the size 
of each packet. In OpenVMS Alpha Version 7.3, ten packets of 768 bytes each are 
created. Routine EXE$PROCSTRT, in module PROCSTRT, initializes the list, forming 
packets and inserting them into the list at CTL$GL_KRPFL and CTL$GL_KRPBL. 

A KRP is used as pageable storage, local to a kernel mode subroutine. KRPs should 
be used only for temporary storage that  is deallocated before the subroutine returns.  
The most common use of KRPs is to store an equivalence name returned from a logical 
name translation. 

Allocation and deallocation to this list is through CALL_PAL INSQUE5 and CALL_PAL 
REMQUEL PALcode instructions. There is no need for synchronization other than  that  
provided by the PALcode operations. Because KRPs are used only for storage local 
to the execution of a procedure, a failure to allocate a KRP is very unexpected and 
indicates a serious error rather  than a temporary resource shortage. Kernel mode 
code that  is unsuccessful at allocating from this list thus generates the fatal bugcheck 
KRPEMPTY. 

7.13 Alternative Versions of Modules and Images 
Some executive modules and images have alternative versions. An alternative version 
might contain code used only for debugging, performance monitoring, or field testing. 
For example, module MEMORYALC_DYN is conditionally compiled to produce two 
object modules: MEMORYALC_DYN_MIN and MEMORYALC_DYN_MON. Various 
other modules in the [SYS] facility, including MEMORYALC_POOL, MEMORYALC, 
and MEMORYALC_DYN_64, are conditionally compiled in a similar manner  to produce 
two versions, one with the _MIN suffix and the other with the _MON suffix. The object 
file with the _MON suffix contains additional debugging and performance-monitoring 
code that  is not present in the _MIN version. The former version is often referred to 
as the monitor version. Sections 7.14 and 7.15 describe this additional code. 
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MEMORYALC * MON modules are linked into the executive image SYSTEM_ 
PRIMITIVES.EXE, and MEMORYALC * MIN modules are linked into the execu- 
tive image SYSTEM_PRIMITIVES_MIN.EXE. The values of SYSGEN parameters 
POOLCHECK and SYSTEM_CHECK determine which image is loaded. If either 
is nonzero, SYSBOOT loads SYSTEM_PRIMITIVES.EXE; otherwise, it loads SYS- 
TEM_PRIMITIVES_MIN.EXE. After the monitor version is loaded, some, but not all, 
checking can be disabled by clearing the POOLCHECK parameter. 

If both POOLCHECK and SYSTEM_CHECK are zero at system initialization, SYS- 
TEM_PRIMITIVES_MIN.EXE is loaded. Although POOLCHECK is a dynamic 
parameter, if it is zero at system initialization, setting it nonzero later has no effect. 

7.14 Collecting Pool Allocation Statistics 
The executive requires adequate pool space to operate properly. Inadequate pool space 
can contribute to poor system performance and, in extreme cases, can cause the system 
to become totally unresponsive. The AUTOGEN facility has a feedback mechanism 
that, based on data gathered by various operating system components, can adjust 
SYSGEN parameter values to a given system's workload. 

Many of the pool allocation and expansion routines described in this chapter record 
nonpaged and paged pool allocation and failure statistics. (An allocation request that  
results in a pool expansion is not classified as a failure; pool expansion is assumed 
to be a routine event.) From these statistics, AUTOGEN's feedback mechanism can 
calculate new values for the SYSGEN parameters that  control the system's paged and 
nonpaged pool sizes. The statistics used by AUTOGEN are kept by both versions of 
the SYSTEM_PRIMITIVES executive image. 

A variable-length list (paged or nonpaged) allocation fails when no sufficiently large 
free block is found and, in the case of nonpaged pool, the list cannot be expanded. 
The routines that  detect the allocation failure keep a total of the number of pages 
that  fail to be allocated. They collect three categories of statistics for paged pool and 
variable-length nonpaged pool: 

�9 Total number of allocation attempts 

�9 Number of allocation failures 

�9 Total number of pages that  could not be allocated 

Table 7.5 lists the data collected and the routines responsible for updating the data 
cells. The program AGEN$FEEDBACK.EXE (part of the MANAGE facility) reads 
these data cells during the SAVPARAMS phase of AUTOGEN.COM. See the OpenVMS 
System Manager's Manual for a description of AUTOGEN's operational phases and 
instructions for running it. 

453 



Pool Management 

Table 7.5 Paged  and N o n p a g e d  Pool  Al locat ion Stat i s t ics  

Statistic Location Maintained by 

Nonpaged Pool 

Number of successful PMS$GL_NPAGDYNEXPS EXE$EXTEND_NPP 
expansions 

Number of expansion 
failures 

Number of allocation 
attempts 

Number of allocation 
failures 

Unused 

Total number of 
pages that failed to 
be allocated 

PMS$GL_NPAGDYNEXPF 

PMS$GL_NPAGDYNREQ 

PMS$GL_NPAGDYNREQF 

PMS$GL_NPAGDYNF 

PMS$GL_NPAGDYNFPAGES 

EXE$EXTEND_NPP 

EXE$ALLOCATE_POOL 
EXE$ALONPAGVAR 
EXE$ALONONPAGED_ALN 
EXE$ALONONPAGED_LIM 

EXE$ALLOCATE_POOL 
EXE$ALONPAGVAR 
EXE$ALONONPAGED_ALN 
EXE$ALONONPAGED_LIM 

n/a 

EXE$ALONPAGVAR 
EXE$ALONONPAGED_ALN 
EXE$ALO N O NPAGED LIM 

Paged Pool 

PMS$GL_PAGDYNREQ EXE$ALOPAGED Number of allocation 
attempts 

Number of allocation 
failures 

Number of 10- 
second intervals with 
allocation failures 

Total number of 
pages that failed to 
be allocated 

PMS$GL_PAGDYNREQF 

PMS$GL_PAGDYNF 

PMS$GL_PAGDYNFPAGES 

EXE$ALOPAGED 

EXE$ALOPAGED 

EXE$ALOPAGED 

In addition to the data and routines listed in Table 7.5, the routines in the mon- 
itor version of SYSTEM_PRIMITIVES record information about nonpaged and 
bus-addressable pool lookaside list performance. LSTHDS$AR_LISTATTEMPTS, 
LSTHDS$AR_LISTFAILS, and LSTHDS$AR_LISTDEALLOCS each point to 
an array of 128 (IOC C NUMLISTS) longwords, a longword for each lookaside 
list. LSTHDS$AR_LISTATTEMPTS records at tempts  to allocate from each list, 
LSTHDS$AR_LISTFAILS records failures to allocate from each list, and LSTHDS$AR_ 
LISTDEALLOCS records deallocations to each list. 

If BAP is separate from nonpaged pool, there are separate statistics arrays for BAP 
lookaside lists. If per-RAD pool is in use, each section of pool has its own statistics 
arrays. 
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These routines also record how many bytes of variable-length pool have been allocated 
in LSTHDS$L_VARALLOCBYTES. 

The pool zone allocation and deallocation routines record statistics in fields in POOL- 
ZONE and POOLZONE_PAGE structures. Section 7.4.3.2 describes those fields and 
identifies those kept only by the SYSTEM_PRIMITIVES image. This information is 
intended for use by the kernel mode component that  created the pool zone; AUTOGEN 
cannot make use of it. 

7.15 Detecting Pool Corruption 
Certain pool misuses can lead to obscure problems if left unchecked. The operating 
system implements two mechanisms to help troubleshoot pool corruption problems: 

Pool poisoning occurs dynamically, as packets or blocks are allocated and deallo- 
cated, and can result in timely detection of fatal errors. 

�9 Pool history facilitates troubleshooting of problems after a crash has occurred. 

Both mechanisms are optional and enabled through SYSGEN parameter  
POOLCHECK or SYSGEN parameter  SYSTEM_CHECK. They are not permanent ly  
enabled because of their effect on system performance. 

7.15.1 Pool Poisoning 
The pool poisoning mechanism can detect pool misuses such as 

�9 Continued use of a block of pool after it is deallocated 

�9 Use of uninitialized fields in a block of allocated pool 

�9 Use of a block of pool that  was not allocated 

The mechanism applies to the variable-length pools (paged, nonpaged, and bus- 
addressable pool, and the process allocation region) and to the nonpaged pool, bus- 
addressable, and pool zone lookaside lists. It involves 

�9 Filling deallocated pool with a unique pattern,  called the FREE or "poison" pat tern  

�9 Checking that  the poison pat tern is intact in pool being allocated and generating 
the fatal bugcheck POOLCHECK if the pat tern is not intact 

�9 Filling allocated pool with a second pattern, called the ALLO pattern 

This section describes the POOLCHECK SYSGEN parameter,  explains the mecha- 
nism's workings, and lists some limits to its ability to detect corruption. 
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7.15.1.1 POOLCHECK Parameter 

The dynamic SYSGEN parameter POOLCHECK consists of four eight-bit fields (see 
Table 7.6 and Figure 7.12). The fields, whose names begin with PCHECK$B_, are 
defined by the macro $POOLCHECKDEF. The bits in the PCHECKSB_FLAGS byte 
enable and disable pool filling and most checking, and specify which pools are affected. 
The rest of this section describes the individual bits. The PCHECKSB_FREE and 
PCHECKSB_ALLO bytes specify the patterns written into pool when the space is 
deallocated and allocated. The PCHECKSB_SIZE_TO_CHECK byte controls block or 
packet size checking at deallocation. 

The default value of POOLCHECK is zero. Note that  its value should be changed only 
for a specific purpose, such as debugging a device driver; there is a severe performance 
penalty when this parameter is nonzero. 

Although POOLCHECK is dynamic, in order for the monitor version of SYSTEM_ 
PRIMITIVES to be loaded, either POOLCHECK or SYSTEM_CHECK must  be nonzero 
at system initialization. 

Table  7.6 P O O L C H E C K  P a r a m e t e r  F L A G S  B i t s  

Bit Name Meaning if Set 

0 POISON 

1 CHECK 

2-5 

6 DEALLO_ 
SIZE 

P1 

Fill with FREE pattern on deallocation 

On allocation, check for FREE pattern and fill with ALLO 
pattern; enable pool checking 

Undefined 

Check deallocation size against size allocated (unused) 

Perform pool-checking operations for process allocation region 
also 

F i g u r e  7.12 P O O L C H E C K  P a r a m e t e r  

ALLO F R E E  SIZE_TO_CHECK FLAGS 

Bits in PCHECK$B_FLAGS put the mechanism into one of several states" 

�9 Do not fill or check blocks 

�9 Fill blocks only upon deallocation 

�9 Fill blocks upon deallocation; check and fill blocks upon allocation 
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Bits 0 and 7 enable the filling of blocks during deallocation. Bit 0 enables the 
filling, with the PCHECK$B_FREE pattern, of blocks deallocated to the variable- 
length paged, nonpaged, and bus-addressable pools, and to the nonpaged pool, bus- 
addressable, and pool zone lookaside lists. Bits 0 and 7 together enable the filling of 
blocks deallocated to the process allocation region. 

When set in combination with the other bits, bit 1 enables the checking and filling of 
blocks during allocation. If set with bit 0, it enables the checking and filling, with the 
PCHECK$B_ALLO pattern, of blocks allocated from the variable-length paged and 
nonpaged pools and from the nonpaged pool lookaside lists. If set with bit 7, it enables 
the checking and filling of blocks allocated from the process allocation region. 

The PCHECK$B_SIZE_TO_CHECK field determines whether each block or packet size 
is checked when it is deallocated: 

�9 If PCHECK$B_SIZE_TO_CHECK contains 0, no checking is done. 

�9 If PCHECK$B_SIZE_TO_CHECK is 255, all sizes are checked. 

�9 Any other value in PCHECK$B_SIZE_TO_CHECK identifies a specific size to be 
checked. The value is multiplied by 64 and compared to the size of the block being 
deallocated. If the two sizes are equal, the size is checked. 

If POOLCHECK is zero but SYSTEM_CHECK is nonzero, pool filling and checking are 
done with the default allocation (aaaa) and deallocation patterns (dddd). All pools and 
lists are filled and checked. 

To check the size, routine CHECK_DEALLOCATION_SIZE, in module MEMORYALC_ 
POOL_MON, searches the history buffer for the most recent entry for a block or packet 
at this address. If one is found and the allocated size in it does not match the size to 
be deallocated, the system generates a fatal POOLCHECK bugcheck. Because there 
are circumstances in which the size deallocated is intentionally different from the size 
allocated, Hewlett-Packard Company recommends that  you enable size checking only 
when you are looking for a specific problem. 

7.15.1.2 Pool-Poisoning Routine 
The routine POISON_PACKET, in module MEMORYALC, is called to fill pool space 
with a predictable pattern under several circumstances: 

�9 Space is deallocated by EXE[_STD]$DEANONPAGED, EXE[_ 
STD]$DEANONPGDSIZ, EXE[_STD]$DEALLOCATE, EXE$DEALLOCATE_ 
POOL, in module MEMORYALC_DYN_64, or EXE$POOL_DEALLOCATE. 

�9 A pool zone is expanded by EXE$POOLZONE_EXPAND, in module POOL_ZONES. 

�9 A deallocated variable-length block is agglomerated with free blocks. 

�9 Space is returned to variable-length pool by EXE[_STD]$ALLOCATE as a result of 
an inexact fit. 

�9 Space is added to variable-length nonpaged pool as a result of pool expansion. 
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The macro $PFREEDEF defines offsets to a free block or packet of pool. Figure 7.13 
shows the effects of pool poisoning on a free piece of pool. The shading in the figure 
indicates the fields modified by poisoning. The first nine longwords form a header, of 
which the first eight typically remain unchanged by pool poisoning: 

The first three longwords typically contain the forward pointer to the next free 
block; the size of the block, if it is a variable-length block; and the original size, 
type, and subtype fields. 

When POISON_PACKET is called by EXE[_STD]$DEANONPAGED and EXEL 
STD]$DEANONPGDSIZ to poison a packet returning to a lookaside list, the fourth 
longword of the header contains the return address of the deallocation routine's 
caller. When POISON_PACKET is called by EXE[_STD]$DEALLOCATE, that  is, 
for a variable-length block or a packet trimmed off a lookaside list, this longword 
contains stale data that  is still potentially useful in crash dump analysis. 

�9 The next two quadwords contain stale data that is unused by POISON_PACKET. 

F i g u r e  7.13 Format of Poisoned Pool Space 

If enabled by the previously described bits, POISON_PACKET poisons deallocated pool 
as follows: 

1. If its address is within paged pool or nonpaged pool, it checks that its ending 
address is within the pool upper boundary. It touches the beginning and end of the 
deallocated pool to catalyze any page fault that  would lead to a later PGFIPLHI 
bugcheck or any access violation that would lead to a later crash. 

2. It calculates a checksum by adding (ignoring any carry) the following: 

FREE pattern byte 

- -  The deallocated block's address 
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Contents of the longword beginning at PFREE$W_SIZE 

Contents of the longword at PFREE$L_DEAL_PC 

Contents of the longword beginning at EXE$GQ_BOOTTIME + 1 

It stores the checksum in the longword at offset PFREE$L_CHECKSUM of the 
block. 

Under certain circumstances, it is possible for the contents of memory to be pre- 
served from one bootstrap of the operating system to the next. The last longword 
used in calculating the checksum enables the checking routine to differentiate 
between stale poisoned pool and pool space poisoned during this bootstrap of the 
operating system. 

3. It initializes the remainder of the space, up to a maximum of 64 KB, with the 
FREE pattern. 

7.15.1.3 Pool-Checking Routine 
The routine CHECK_PACKET, in module MEMORYALC, checks pool space. It is 
called by 

�9 EXE[_STD]$ALLOCATE, when allocating variable-length pool space from paged 
pool, nonpaged pool, or the process allocation region 

�9 EXE[_STD]$ALONONPAGED and EXE[_STD]$ALONONPAGED_ALN, when 
allocating a lookaside packet 

�9 EXE$POOL_ALLOCATE, when allocating a packet from a pool zone lookaside list 

�9 EXE$ALLOCATE_POOL, when allocating nonpaged or bus-addressable pool from 
a lookaside list 

�9 EXE_STD$ALONONPAGED_LIM, when allocating a lookaside list packet whose 
physical address is below a caller-specified minimum 

CHECK_PACKET calculates the expected checksum using the algorithm described 
in Section 7.15.1.2. If the expected checksum does not match that  found in the 
PFREE$L_CHECKSUM longword, CHECK_PACKET assumes the block is unpoi- 
soned and makes no further checks. (Since POOLCHECK is a dynamic SYSGEN 
parameter, it is possible that pool poisoning was disabled for a time, resulting in 
unpoisoned blocks on the free list. Alternatively, the block may have been poisoned 
during a previous bootstrap.) 

If the checksum matches, CHECK_PACKET examines the remainder of the block for 
the FREE pattern. If the FREE pattern is not intact, it generates the fatal bugcheck 
POOLCHECK after pushing a reason code onto the stack. Table 7.7 summarizes these 
reason codes. 
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Table 7.7 POOLCHECK B u g c h e c k  R eason  Codes  

Value Meaning 

0 

1, 2 

3 

4 

5 

6 

7 

Packet is corrupted 

Unused 

Paged block extends outside of paged pool 

Nonpaged block extends outside of nonpaged pool 

P1 space allocation attempted at too high an IPL 

Block could not be agglomerated 

Deallocation and allocation were not the same size 

If the FREE pat tern is intact or if the checksum did not match, CHECK_PACKET fills 
the entire block (including the first nine longwords) with the ALLO pattern. 

7.15.1.4 Constralnts on the Pool-Checklng Mechanism 
Some circumstances can circumvent the pool-checking mechanism: 

�9 Allocation and deallocation of lookaside list packets by any routine directly, ra ther  
than through the appropriate executive routines, bypass the filling and checking 
performed by the previously described routines. 

�9 Any corruption of pool space that  corrupts the third, fourth, or ninth (checksum) 
longword effectively disables checking for that  block. 

�9 Checking occurs only at allocation time. Corruption that  occurs aider a block is 
allocated is not detected. 

�9 When a block being deallocated to variable-length pool is merged with a free 
block above or below it, the entire resulting free block is filled. This masks any 
corruption that  may have previously occurred in an adjacent free block. 

�9 The mechanism fills and checks a maximum of 65,500 bytes (64 KB less the 
nine-longword header). 

Disabling and reenabling pool poisoning with the same FREE pat tern can lead to 
false POOLCHECK bugchecks. If EXE$DEALLOCATE concatenates a variable-length 
block to the bottom of a poisoned free block while pool poisoning is disabled, only the 
top part  of the resulting free block contains the FREE pattern. If pool checking is 
subsequently enabled with the same FREE pattern and this free block is allocated, 
CHECK_PACKET interprets it as being corrupt. 

The book Writing OpenVMS Alpha Device Drivers in C provides detailed suggestions 
for using pool checking and for analyzing POOLCHECK bugchecks. 
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7.15.2 Pool History 
The pool history mechanism records information about nonpageable pool allocations 
and deallocations in a nonpaged pool ring buffer. The information pertains to nonpaged 
pool, per-RAD nonpaged pool sections, bus-addressable pool, and pool zone lookaside 
lists. If the system crashes as a result of pool corruption, information about the most 
recent allocations and deallocations can be displayed using the SDA utility. 

The pool history mechanism is enabled by bootstrapping the system with a nonzero 
value for either the SYSTEM_CHECK or POOLCHECK SYSGEN parameter. SYS- 
TEM_PRIMITIVES.EXE contains the code described in this section. 

During system initialization, the executive image's initialization routine, INI$INIT_ 
MEMORYALC_DYN, in module MEMORYALC_DYN, allocates a block of nonpaged 
pool for a pool history ring buffer. The size of the buffer is determined by SYSGEN 
parameter NPAG_RING_SIZE, whose default value is 2,048 history buffers. It stores 
the address of this block in NPOOL$PS_RINGBUF and NPOOL$PS_NEXTNPH, and 
the number of entries in NPOOL$L_RINGBUFCNT. 

F igure  7.14 Layout  of  N o n p a g e d  Pool  His tory  Buffer  Entry  

--  ADDR - -  
PC 

RMOD I TYPE ! FUNCTION 
SIZE 

(resewed) ! CPU I IPL 
-- TIME 

Function 
Value 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

Meaning/Caller 
Nonpaged pool Iookaside list allocation 
Nonpaged pool variable-length region allocation 
EXE$DEANONPAGED nonpaged pool 
EXE$DEANONPGDSlZ nonpaged pool 
EXE$ALLOCATE_POOL nonpaged pool Iookaside list 
EXE$ALLOCATE_POOL aligned nonpaged pool 
EXE$DEALLOCATE_POOL nonpaged pool 
EXE$DEALLOCATE_POOL nonpaged pool of specified size 
EXE$ALLOCATE_POOL bus-addressable Iookaside list 
EXE$ALLOCATE_POOL aligned bus-addressable pool 
EXE$DEALLOCATE_POOL bus-addressable pool 
EXE$DEALLOCATE_POOL bus-addressable pool of specifed size 
EXE$POOL_ALLOCATE Iookaside list 
EXE$POOL_DEALLOCATE Iookaside list 
Failure to allocate bus-addressable pool 
EXE$ALLOCATE_POOL nonpaged pool variable-length list 
EXE$ALLOCATE_POOL bus-addressable variable-length list 
EXE$ALONONPAGED_ALN nonpaged pool 
Nonpaged pool expansion 
Bus-addressable pool expansion 

The layout of a pool history buffer entry is shown in Figure 7.14. The macro 
$NPHDEF (defined in module [LIB]NPOOL_DATA) defines the offsets to the fields 
in this structure. 

Various pool allocation and deallocation routines call procedure UPDATE_RINGBUF, 
in module MEMORYALC_DYN_64, as part of their operation. UPDATE_RINGBUF 
maintains the nonpaged pool history ring buffer. 
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Each time it is called, UPDATE_RINGBUF updates NPOOL$PS_NEXTNPH to point 
to the next available history buffer. If all history buffers have been used, it initializes 
NPOOL$PS_NEXTNPH with the contents of IOC$AR_RINGBUF, the beginning of 
the history buffer area. UPDATE_RINGBUF synchronizes access to the ring buffer 
through a combination of raising to IPL 31 and acquiring a private spinlock. 

UPDATE_RINGBUF records the following information in the history buffer: 

�9 The return address of the caller of the allocation or deallocation routine 

�9 Address of the packet or block being allocated or deallocated 

�9 Size, type, and subtype of data structure being allocated or deallocated 

�9 A value indicating the type of allocation or deallocation 

�9 The ID of the CPU on which it is running 

�9 The IPL at which it was entered 

�9 The current time 

The SDA command SHOW POOL/RING_BUFFER displays information stored in 
the history buffers. Note that  this command cannot display useful information on a 
running system because of the dynamic nature  of pool; it is used mainly in crash dump 
analysis. 

7.16 Relevant Source Modules 
Source modules described in this chapter include 

[LIB]DYNDEF.SDL 
[LIB]NPOOL_DATA.SDL 
[LIB]PFREEDEF.SDL 
[LIB]POOLCHECKDEF.SDL 
[LIB]RIHDEF.SDL 
[LIB_H]POOL_ZONES.H 
[SYS] LDR_MEM_ALLOC.B64 
[SYS] LDR_MEM_INIT.B64 
[SYS]LOCK_UTILS.C 
[SYS] LOOK_AS IDE_LIST. MAR 
[SYS]MEMORYALC.MAR 
[SYS] MEMORYALC_DYN.B32 
[SYS]MEMORYALC_DYN_64.C 
[SYS] MEMORYALC_POOL.C 
[SYS]POOL_ZONES.C 
[SYS] PROCESS_PAGE_DEFINITIONS.MAR 
[SYS] SYSBOOT64.B64 
[XFC]XFC_MEMMGT.C 
[XFC]XFCDEF.H 
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Appendix A 
Selected Acronyms 

These acronyms are selected from those tha t  appear  in this  book. This list is not  
exhaust ive;  for instance,  acronyms for facilities, programs,  and ins t ruct ions  are  not  
included. 

Acronym Meaning 
ACB 

ACL 

ASN 

AST 

ASTSR 

BAP 

BAR 

BOD 

CCB 

CEF 

CFB 

COM 

COMO 

CRF 

CVB 

DCL 

DIOBM 

DTB 

AST control block 

access control list 

address space number 

asynchronous system trap 

AST summary register 

bus-addressable pool 

barrier structure 

buffer object descriptor 

channel control block 

common event flag wait (scheduling state) 

cache file block 

computable (scheduling state) 

computable outswapped (scheduling state) 

copy-on-reference 

cache volume block 

Digital command language 

direct I/O buffer map 

data stream translation buffer 
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Selected Acronyms 

Acronym Meaning 

FIFO 

FP 

FRED 

GB 

GPT 

GPTE 

GPTX 

GSD 

GST 

GSTE 

GSTX 

HIB 

HIBO 

HWPCB 

HWRPB 

ID 

IOSIZE 

IPL 

IRP 

ITB 

JIB 

KB 

KPB 

KRP 

KTB 

L1PT 

L1PTE 

L2PT 

L2PTE 

L3PT 

L3PTE 

first-in/first-out 

frame pointer (register) 

floating-point register and execution data structure 

gigabyte 

global page table 

global page table entry 

global page table index 

global section descriptor 

global section table 

global section table entry 

global section table index 

hibernate wait (scheduling state) 

hibernate wait outswapped (scheduling state) 

hardware privileged context block 

hardware restart parameter block 

identification 

I/O statistics collection structure 

interrupt priority level 

I/O request packet 

instruction stream translation buffer 

job information block 

kilobyte 

kernel process block 

kernel request packet 

kernel thread block 

level 1 page table 

level 1 page table entry 

level 2 page table 

level 2 page table entry 

level 3 page table 

level 3 page table entry 
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Selected Acronyms 

Acronym Meaning 

LDRHP 

LDRIMG 

LEF 

LKB 

MB 

MPW IRP 

NUMA 

ORB 

PALcode 

PB 

PC 

PCB 

PCI 

PFL 

PFLMAP 

PFN 

PHD 

PID 

PMAP 

PMM 
PQB 

PS 

PSECT 

PST 

PSTE 

PSTX 

PTBR 

PTE 

QBB 

RAD 

RDE 

loader huge page descriptor 

loader image data block 

local event flag wait (scheduling state) 

lock block 

megabyte, memory barrier 

modified page writer I/O request packet 

nonuniform memory access 

object rights block 

privileged architecture library code 

path block 

program counter (register) 

process control block 

Peripheral Component Interconnect 

page file control block 

page/swap file mapping window block 

page frame number 

process header 

process identifier 

PFN memory map 

physical memory map 

process quota block 

processor status (register) 

program section 

process section table 

process section table entry 

process section table index 

page table base register 

page table entry 

quad building block 

resource affinity domain 

region descriptor entry 
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Selected Acronyms 

Acronym Meaning 

RMD 

RSB 

RVT 

SB 

SBB 

SCS 

SECB 

SMP 

SPT 

SPTE 

SYSPTBR 

TB 

TBCHK 

TQE 

UAF 

UCB 

VBN 

VCB 

VIRBND 

VLM 

VPN 

Vt~B 

WCB 

WSLE 

WSLX 

XFC 

XMI 

XQP 

reserved memory descriptor 

resource block 

relative volume table 

system block 

system building block 

system communication services 

secondary extent cache block 

symmetric multiprocessing 

system page table 

system page table entry 

system page table register 

terabyte, translation buffer 

translation buffer check (register) 

t imer queue entry 

user authorization file 

unit control block 

virtual block number 

volume control block 

virtual address boundary (register) 

very large memory 

virtual page number 

virtual page table base (register) 

window control block 

working set list entry 

working set list index 

Extended File Cache 

Extended Memory Interconnect 

Extended QIO Processor 
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INDEX 

32-bit space 
data structures allocated from, 

characteristics and use, 405 
definition, 12 

64-bit space 
definition, 14 

A 
ACB (AST control block) 

use in paging upcall, 275 
access modes 

See also protection 
Alpha memory access checking, 23, 24 
valid combinations for page protection, 

20 
virtual page accessing by, protection 

code specifies which, 5 
access violations 

attempting to access virtual address in 
gap, 11 

exception information, 25 
generation, 23, 25 
page fault handler emulation of, 235, 

255 
ACL (access control list) mutex 

initialized by MMG$INIT_ORB, 160 
adapters 

See also UO 
map registers, PFNs copied into, 119 

adaptive nonpaged pool management 
term definition, 435 

address space 

address space (Cont.) 
See also memory management; P0 

space; P1 space; P2 space; page 
table space; pages; protection; 
system space; virtual memory; 
virtual pages 

physical, characteristics, 5 
address space match bit (PTE) 

effect on TB invalidation, 328 
invalidating shared translation, 329 
meaning, 20, 26 
OpenVMS Alpha use of, 20 
setting, 267, 275 

address space number 

See A S N  
address translation 

basic steps, 8 to 9 
first attempted through TB lookup, 5 
operations, 8 to 9 
PFN use by, 5 
virtual, 8 to 26 
virtual page as unit of, 5 

$ADJSTK (Adjust Outer Mode Stack 
Pointer system service) 

detecting need for user stack expansion, 
139 

Adjust Outer Mode Stack Pointer system 
service 

See $ADJSTK 
Adjust Working Set Limit system service 

See $ADJWSL 
$ADJWSL (Adjust Working Set Limit 

system service) 
operations, 331 to332 

AGEN$FEEDBACK.EXE 
reading pool allocation statistics, 453 
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ALLOCPFN module 
MMG$DALLOC_PFN 

deallocating physical pages, 302 
reporting free page available, 302 

MMG$DEL_CONTENTS_PFN 
partial outswap of PHD, 387 
releasing process page not copy-on- 

reference, 242 
MMG$REL_PFN, operations, 327 

Alpha architecture 

See also access modes; address 
translation; HWPCB; instructions; 
memory management; PALcode 
routines; PTE; TB 

access checking, 23 
address translation, 8 to 9 

arguments 
formal name, xxv 

ASN (address space number) 
associated with HWPCB, 27 
characteristics and use, 27 to 28 
effect on TB invalidation, 27 
increasing usefulness of TB as cache, 

27 
TB entries identifying, 27 

AST (asynchronous system trap) 

See also ASTSR 
GSD_CLEAN_AST, control flow, 193 
kernel thread executing, returned to 

page fault wait state, 248 
page fault completion upcall, 275 
powerfail recovery 

notification through, 362 
wait state 

See resource wai t -  RSN$_ 
ASTWAIT 

working set limit adjustment use of, 
336 

AST control block 
See ACB 

ASTSR (AST summary register) 
recomputing, at process inswap, 398 

asynchronous system trap 

See AST 
AUTOGEN utility 

excluding permanently-resident 
pages from SYSGEN parameter 
calculations, 35 

fluid page count use by, 80 

automatic working set limit adjustment 
See also working set list 
affected by DCL command SET 

WORKING_SET, 333 
conditions that block, 334 
decreasing working set limit with, 318 
disabling 

conditions, 333 
PCB$L_STS bit that specifies, 44 

normal AST use by, 336 
operations, 333 to 337 
parameters that control, 333(table) to 

334 (table) 
quantum-end scheme, problems with, 

337 
SCH$QEND control flow, 334 to 336 
working set size altered by, 40 

AWSTIME parameter (SYSGEN) 
automatic working set limit adjustment 

use of, 335 

B 
back pointer 

term definition, 94 
backing store 

See also memory management 
characteristics and use, 6 
for copy-on-reference page, 236 
for demand zero page, 237 
for modified pages, 121 
for non-copy-on-reference page, 236 
for page file global sections, 59 
for pageable writable executive data, 

59 
information for PHD pages, 58 
information in PFN$Q_BAK field, 96 
modified page writing to, clustering 

situations for, 284 to 285 
modified page written to its, 33 
page faults during modified page 

writing, 248 
restoring, during outswap, 387 
term definition, 236 
transitions between memory and, 

overview, 227 to 229 
when allocated for a page, 285 

bad page list 
doubly linked, 86 
listhead location, 86 

Index-2 



bad page list (Cont.) 
pages read with I/O error, 275 

BADALORQSZ bugcheck 
generated 

by EXE$ALLOCATE_POOL, 433 
during BAP allocation, 445 

BADDALRQSZ bugcheck 
generated by 

COMLSTD] $DRVDEALMEM, 440 
EXE$DEANONPGDSIZ, 434 
EXE_STD$DEAPAGED, 448 

BADQHDR bugcheck 
generated by EXE$LAL_REMOVE_ 

FIRST, 422 
B~CE routine (SWAPPER module) 

control flow, 362 to 363 
operations, 361 to 362, 364 (fig.) 

balance set slots 
See also memory management; PHD 
arrays 

characteristics and use, 111 to 112 
location in PHD, 111 (fig.) 

characteristics and use, 110 
equal-size, 112 
identifying occupant of, 112 
locking into, privilege enabling, 219 
obtaining for PHD of inswap process, 

390 
page fault handler testing for illegal 

PHD access, 255 
reference count, 111 
releasing, 366, 386 
use with PHD, 110 (fig.) 
virtual address, 110 

BALSETCNT parameter (SYSGEN) 
number of entries in swapping data 

structures, 110 
BAP (bus-addressable pool) 

characteristics and use, 443 
data structures, 443 

contents, 427 (fig.) 
granularity, 411 
initializing, 444 to 445 
pool allocation statistics, 454 
using for storage of variable-length 

allocation, 402 
bit fields 

how represented, xxv 
blocks 

term definition, 402 

BOD (buffer object descriptor) 
characteristics and use, 99 to 101 
field definitions, 99 to 101 
initialized by EXE$CREATE_BUFOBJ, 

208 
layout, 100 (fig.) 
overview, 207 

BORROWLIM parameter (SYSGEN) 
automatic working set limit adjustment 

use of, 330, 335 
effect on working set limit growth, 322 
use when releasing dead page table 

page, 322 
buffer object descriptor 

See BOD 
buffer object pages 

characteristics and use, 249 
doubly mapped in system space, 249 
process-private, initial transitions, 249 
transitions, 251 (fig.) 

control flow, 249 to 250 
buffer objects 

buffer handles, characteristics and use, 
207 

characteristics and use, 99 to 101, 206 
to 207 

creating, 99, 207 to 211 
deleting, 211 to 213 
described by BODs, 99 
descriptors, PCB listhead for, 46 
double-mapped into system space, 101 
I/O system services that enable use of, 

overview, 206 to 207 
outswapping pages within, 381 
page reference count, PFN database 

field, 98 
pages, assigning, 95 
system, mapping, 99 
term definition, 249 

buffered I/O 
See also I/O 
characteristics and use, 206 

bugchecks 
See also errors 
BADALORQSZ 

generated by EXE$ALLOCATE_ 
POOL, 433 

generated during BAP allocation, 
445 
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bugchecks (Cont.) 
BADDALRQSZ 

generated by COML 
STD] $DRVDEALMEM, 440 

generated by EXE$DEANONPGDSIZ, 
434 

generated by EXE_ 
STD$DEAPAGED, 448 

BADQHDR, generated by EXE$LAL_ 
REMOVE_FIRST, 422 

DELGBLSEC, generated by 
MMG$DELGBLSEC, 191, 192 

INCONMMGST 
generated by $CREATE_GDZRO_ 

INT, 175 
generated by EXE$COPY_FOR_ 

PAGE, 225 
generated by MMG$DELPAG_64, 

197 
KRPEMPTY, generated by failure to 

allocate a KRP, 452 
PAGNTRNVAL, generated by 

EXE$DELETE_BUFOBJ, 212 
PGFIPLHI 

generated by page fault handler, 
230, 338, 346 

generated during pool poisoning, 
458 

POOLCHECK 
generated during pool checking, 

460 
generated when pool corruption is 

detected, 457 
generated when pool is poisoned, 

455 
generated when pool's FREE 

pattern not intact, 459 
reason codes, 460 

SSRVEXCEPT 
generated during page fault 

handling, 236 
bus-addressable pool 

See BAP 
byte count limit 

charged, for section window control 
block, 143 

byte count quota 
charged, for section window control 

block, 143 
byte index 

byte index (Cont.) 
term definition, xxv 

C 
cache 

See also memory management; TB 
thrashing problems, page coloring effect 

on, 88 
virtual pages, 229 

canonical kernel stack 
formed for page fault wait, 230 

cathedral window 
term definition, 143 

CCB (channel control block) 
See also UO 
PSTE field that points to, 56 

channel control block 
See CCB 

CHECK_CONTRACT_64 routine 
(SYSCREDEL module) 

control flow, 203 to 204 
CHECK_DEALLOCATION_SIZE routine 

(MEMORYALC_POOL_MON module) 
operations, 457 

CHECK_PACKET routine (MEMORYALC 
module) 

pool poisoning operations, 459 to 460 
$CNTREG (Contract Region system 

service) 
operations, 204 

code flow 
figures that describe, xxvii 

collided page wait state 
See COLPG 

collided pages 
circumstances leading to, 92 

COLPG (collided page wait state) 
See also kernel thread states; page 

faults 
characteristics and use, 303 
ending, 276 
for multithreaded process, 249 

COMDRVSUB module 
COMLSTD]$DRVDEALMEM, 

deallocating pool, synchronization 
issues, 440 

compatibility 
with VAX virtual address regions, 12 
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COMLSTD] $DRVDEALMEM routine 
(COMDRVSUB module) 

deallocating pool, synchronization 
issues, 440 

concurrency 
See SMP systems 

console subsystem 
testing physical memory, 89 

Contract Region system service 
See $CNTREG 

control mechanisms 
See AST; exceptions 

control region 
See also address space 
definition, 31 

conventions 
figures, xxv to xxvii 
text, xxiii to xxv 

copy chacteristics bits (PTE) 
meaning, 68 

Copy Data from Fault on Read Page 
system service 

See $COPY_FOR_PAGE 
copy-on-reference pages 

backing store for, 236 
global page transitions, 260(fig.) 

control flow, 260 to 262 
process-private page transitions, control 

flow, 242 to 245 
system page transitions, control flow, 

266 to 267, 267 
term definition, 236 
transitions, 243 (fig.) 

$COPY_FOR_PAGE (Copy Data from 
Fault on Read Page system service) 

control flow, 225 
COPY_FOR_PAGE module 

EXE$COPY_FOR_PAGE, control flow, 
225 

create and map global section system 
services 

See $CREATE_GDZRO; $CREATE_ 
GFILE; $CREATE_GPFILE; 
$CREATE_GPFN; $CRMPSC; 
$CRMPSC_GDZRO_64; 
$CRMPSC_GFILE_64; $CRMPSC_ 
GPFILE 64; $CRMPSC_GPFN_64 

create and map process section system 
services 

create and map process section system 
services (Cont.) 

See $CRMPSC; $CRMPSC_FILE_64; 
CRMPSC_PFN_64 

Create Buffer Object system services 
See $CREATE_BUFOBJ; $CREATE_ 

BUFOBJ_64 
Create Virtual Address Space system 

services 
See $CRETVA; $CRETVA_64 

Create Virtual Region system service 
See $CREATE_REGION_64 

$CREATE_BUFOBJ (Create Buffer Object 
system service) 

control flow, 207 to 208 
operations, 249 

$CREATE_BUFOBJ_64 (Create Buffer 
Object system service) 

operations, 99, 210 to 211, 249 
$CREATE_GDZRO (Create Permanent 

Global Demand Zero Section system 
service) 

control flow, 170 to 171 
$CREATE_GDZRO_INT routine (SYS_ 

GDZRO_64 module) 
control flow, 171 to 176 

$CREATE_GFILE (Create Permanent 
Global Disk File Section system 
service) 

control flow, 162 
$CREATE_GFILE_INT routine (SYS_ 

GBLSEC_64 module) 
control flow, 163 to 165 

$CREATE_GPFILE (Create Permanent 
Global Page File Section system 
service) 

control flow, 166 
$CREATE_GPFILE_INT routine (SYS_ 

GBLSEC_64 module) 
operations, 166 to 167 

$CREATE_GPFN (Create Permanent 
Global Page Frame Section system 
service) 

control flow, 167 to 168 
$CREATE_GPFN_INT routine (SYS_ 

GPFN_64 module) 
control flow, 168 to 169 

$CREATE_REGION_64 (Create Virtual 
Region system service) 
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$CREATE_REGION_64 (Create Virtual 
Region system service) (Cont.) 

control flow, 129 to 130 
operations, 129 

$CREATE_SHMGS_INT routine (SYS_ 
GDZRO_64 module) 

control flow, 176 to 179 
$CRETVA (Create Virtual Address Space 

system service) 
See also address space; virtual address 

space; virtual pages 
control flow, 133 to 134 
demand zero pages created by, 142 

(table) 
$CRETVA_64 (Create Virtual Address 

Space system service) 
control flow, 137 to 138 

$CRMPSC (Create and Map Section 
system service) 

See also global sections; process 
sections 

creating 
global sections, 157 to 162 
PFN-mapped process sections, 150 

to 153 
process sections, 54 
process sections, control flow, 144 

to 147 
functions divided into multiple system 

service routines, 124 
multiple 64-bit services created to 

enhance, 141 
original functionality, 141 

$CRMPSC_FILE_64 (Create and Map 
Private Disk File Section system 
service) 

control flow, 148 to 150 
creating, process sections, 54 

$CRMPSC_GDZRO_64 (Create and Map 
to Global Demand Zero Section 
system service) 

operations, 179 to 180 
$CRMPSC_GFILE_64 (Create and Map 

Global Disk File Section system 
service) 

control flow, 165 to 166 
$CRMPSC_GPFILE_64 (Create and Map 

Global Page File Section system 
service) 

$CRMPSC_GPFILE_64 (Create and Map 
Global Page File Section system 
service) (Cont.) 

operations, 167 
$CRMPSC_GPFN_64 (Create and Map 

Global Page Frame Section system 
service) 

control flow, 169 to 170 
$CRMPSC_PFN_64 (Create and Map 

Private Page Frame Section system 
service) 

control flow, 154 to 157 
operations, 154 

cross-mode page read error 
handling, 235 
term definition, 235 

CTL$C_KRP_COUNT symbol 
KRP packet control, 452 

CTL$C_KRP_SIZE symbol 
KRP packet control, 452 

CTL$GL_CTLBASVA cell 
P1 space boundary address, 30 

CTL$GL_KRPBL cell 
KRP lookaside listhead, 452 

CTL$GL_KRPFL cell 
KRP lookaside listhead, 452 

CTL$GL_PHD cell 
accessing PHD through, 51 

CTL$GQ_ALLOCREG cell 
process allocation region listhead, 450 

CTL$GQ_POALLOC cell 
P0 process allocation region listhead, 

451 
CTLSGQ_POOL_MUTEX cell 

locked to synchronize process allocation 
region, 451 

CTL$GQ_WSL cell 
address of working set list, 53, 309 

CTLIMGLIM parameter (SYSGEN) 
process allocation region allocation 

limit, 450 
CTLPAGES parameter (SYSGEN) 

number of pagelets in P1 pool, 450 

D 
data stream translation buffer 

See DTB 
data structures 

dynamic 
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data structures 
dynamic (Cont.) 

header format, 406 (fig.), 406 
(table), 406 

memory requirements, 401 
storage areas for, 402 
use by SDA utility, 407 

figures that describe, xxvi 
global pages, characteristics and field 

definitions, 101 to 108 
global sections, 157 

relations among, 108 (fig.) 
located in process allocation region, 

451 
memory management 

swapper use of, 356 to 360 
types, 43 

nonpaged pool 
characteristics and use, 427 to 

429 
contents, 427 (fig.) 

page files, characteristics and field 
definitions, 112 to 118 

paged pool 
characteristics and use, 448 to 

450 
contents, 449 to 450 

per-RAD pool, 441 (fig.) 
physical memory, overview, 32 to 33 
pool zone 

characteristics and use, 423 
relations among, 424 (fig.) 

process-specific, 43 to 71 
swap files, characteristics and field 

definitions, 112 to 118 
swapping, characteristics and field 

definitions, 110 to 112 
virtual address space, overview, 31 to 

32 
[DECW$XTERMINAL] DECW$XTDRIVER.EXE 

use of buffer objects by, 206 
DEFPRI parameter (SYSGEN) 

SWAPSCHED use of, 365 
Delete Buffer Object system service 

See $DELETE_BUFOBJ 
Delete Global Section system service 

See $DGBLSC 
Delete Virtual Address Space system 

services 

Delete Virtual Address Space system 
services (Cont.) 

See $DELTVA; $DELTVA_64 
Delete Virtual Region system service 

See $DELETE_REGION_64 
$DELETE_BUFOBJ (Delete Buffer Object 

system service) 
control flow, 211 to 213 
operations, 250 

$DELETE_REGION_64 (Delete Virtual 
Region system service) 

control flow, 205 
DELGBLSEC bugcheck 

generated by MMG$DELGBLSEC, 
191, 192 

DELPHD routine (SWAPPER module) 
operations, 366 

$DELTVA (Delete Virtual Address Space 
system service) 

control flow, 195 to 196 
$DELTVA_64 (Delete Virtual Address 

Space system service) 
operations, 204 

demand paging 
characteristics, 6 

demand zero 
global section, 157 
page 

backing store for, 237 
created by $CRETVA or $EXPREG, 

142 (table) 
global section file, deleting, 203 
GPT pages created as, 104 
process page faults, control flow, 

245 to 246 
PTE characteristics, 71 
system page transitions, control 

flow, 267 
transitions, 243 (fig.) 
zeroed page list identifying, 87 

virtual address space, creating, 132 to 
140 

device drivers 
nonpaged pool synchronization, 439 

DFWSCNT parameter (SYSGEN) 
process default working set limit, 317 
setting with SET WORKING_SET 

command, 332 
$DGBLSC (Delete Global Section system 

service) 

Index-7 



$DGBLSC (Delete Global Section system 
service) (Cont.) 

control flow, 189 to 190 
DIOBM (direct I/O buffer map) 

characteristics and use, 119 
direct I/O 

locking pages into working set list, 330 
operations, 119 to 120 
outswapping pages with direct I/O in 

progress, 381 
direct I/O buffer 

PTE copy method, 119 
PTE window method, 119 

unlocking page table pages, 241 
direct I/O buffer map 

See DIOBM 
dormancy 

as a condition for outswap and swapper 
trimming selection, 372 to 373 

methods for handling, 373 
DORMANTWAIT parameter (SYSGEN) 

use in outswap and swapper trimming 
selection, 373 

double TB miss PALcode routine 
control flow, 24 to 25 

double-mapping 
advantages of, 64 

DTB (data stream translation buffer) 
characteristics and use, 22 

DYN (data structure type definitions) 
name, code, and structure type, 407 

(table) to 411(table) 
dynamic data structures 

header format, 406 (fig.), 406 (table), 
406 

memory requirements, 401 
storage areas for, 402 

$DYNDEF macro 
defining dynamic data structure type 

and subtype field values, 407 
symbols and values, 407 (table) to 411 

(table) 

E 
entry points 

names, xxiv 
errors 

See also bugchecks; exceptions; SS$_x 
status 

errors (Cont.) 
cross-mode page read 

handling, 235 
term definition, 235 

page read 
handling, 235 
term definition, 235 

page read error page location code, 
meaning, 92 

EXCEPTION module 
EXE$EXCEPTION 

detecting need for user stack 
expansion, 139 

operations, 140 
EXE$EXPANDSTK, operations, 139 to 

140 
exceptions 

See also access violations; page faults 
fault-on-read 

OpenVMS Alpha handling, 76, 77 
ss$ ACCVIO 

reported by EXE$ACVIOLAT, 140 
SS$_ASTFLT 

reported if insufficient user stack 
space, 140 

SS$_STKOVF 
reported by EXE$ACVIOLAT, 140 

EXCEPTION_ROUTINES module 
EXE$EXCPTN, handling page read 

errors, 236 
EXE$EXCPTNE, handling page read 

errors, 236 
EXE$ADJWSL routine (SYSADJWSL 

module) 
control flow, 331 to 332 

EXE$ALLOCATE routine (MEMORYALC 
module) 

allocating variable-length pool, 412, 
412 to 414 

EXE$ALLOCATE_POOL routine 
(MEMORYALC_POOL module) 

allocating 
BAP, 445 to 446 
nonpaged pool, 431, 433 to 434 
per-RAD pool, 431, 442 

checking lookaside lists, 431 
EXE$ALLOCPCB routine (MEMORYALC 

module) 
allocating nonpaged pool, 431 
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EXE$ALLOCTQE routine (MEMORYALC 
module) 

allocating nonpaged pool, 431 
EXE$ALONONPAGED routine 

(MEMORYALC_DYN module) 
checking lookaside lists, 431 

EXE$ALONONPAGED_INT routine 
(MEMORYALC_DYN module) 

control flow, 431 to 432 
EXE$ALONPAGVAR_INT routine 

(MEMORYALC_DYN module) 
control flow, 432 

EXE$CHKFLUPAGES routine 
(SYSLKWSET module) 

operations, 343 
EXE$CHK_WAIT_BHVR routine (RSE 

module) 
proactive memory reclamation, control 

flow, 337 to 338 
EXE$CNTREG routine (SYSCREDEL 

module) 
operations, 204 

EXE$COPY_FOR_PAGE routine (COPY_ 
FOR_PAGE module) 

control flow, 225 
EXE$CREATE_BUFOBJ routine 

(SYSLKWSET module) 
control flow, 207 to 208 

EXE$CREATE_BUFOBJ_64 routine 
(SYS_LKWSET_64 module) 

operations, 210 to 211 
EXE$CREATE_GDZRO routine (SYS_ 

GDZRO_64 module) 
control flow, 170 to 171 

EXE$CREATE_GFILE routine (SYS_ 
GBLSEC_64 module) 

control flow, 162 
EXE$CREATE GPFILE routine (SYS_ 

GBLSEC_64 module) 
control flow, 166 

EXE$CREATE_GPFN routine (SYS_ 
GPFN_64 module) 

control flow, 167 to 168 
EXE$CREATE_REGION 64 routine 

(SYS_REGIONS module) 
control flow, 129 to 130 

EXE$CRETVA routine (SYSCREDEL 
module) 

control flow, 133 to 134 

EXE$CRETVA_64 routine (SYS_ 
CREDEL_64 module) 

control flow, 137 to 138 
EXE$CRMPSC routine (SYSCRMPSC 

module) 
global sections, control flow, 158 to 

162 
PFN-mapped sections, control flow, 150 

to 153 
process sections, control flow, 144 to 

147 
EXE$CRMPSC_FILE_64 routine (SYS_ 

CRMPSC_64 module) 
control flow, 148 to 150 

EXE$CRMPSC_GDZRO_64 routine (SYS_ 
GDZRO_64 module) 

operations, 179 to 180 
EXE$CRMPSC_GFILE_64 routine (SYS_ 

GBLSEC_64 module) 
control flow, 165 to 166 

EXE$CRMPSC_GPFILE_64 routine (SYS_ 
GBLSEC 64 module) 

operations, 167 
EXE$CRMPSC_GPFN_64 routine (SYS_ 

GPFN_64 module) 
control flow, 169 to 170 

EXE$CRMPSC_PFN_64 routine (SYS_ 
CRMPSC_64 module) 

control flow, 154 to 157 
EXE$DEALLOCATE routine (MEMO- 

RYALC module) 
deallocating variable-length pool, 412, 

414 to 416 
EXE$DEALLOCATE_POOL routine 

(MEMORYALC_POOL module) 
deallocating nonpaged pool, 434 
deallocating per-RAD pool, 442 

EXE$DEANONPGDSIZ routine 
(MEMORYALC_DYN module) 

control flow, 434 
EXE$DELETE_BUFOBJ routine 

(SYSLKWSET module) 
control flow, 211 to 213 

EXE$DELETE_REGION_64 routine 
(SYS_REGIONS module) 

control flow, 205 
EXE$DELTVA routine (SYSCREDEL 

module) 
control flow, 195 to 196 
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EXE$DELTVA_64 routine (SYS_ 
CREDEL_64 module) 

operations, 204 
EXE$DGBLSC routine (SYSDGBLSC 

module) 
control flow, 189 to 190 

EXE$EXCEPTION routine (EXCEPTION 
module) 

detecting need for user stack expansion, 
139 

operations, 140 
EXE$EXCPTN routine (EXCEPTION_ 

ROUTINES module) 
handling page read errors, 236 

EXE$EXCPTNE routine (EXCEPTION_ 
ROUTINES module) 

handling page read errors, 236 
EXE$EXPANDSTK routine (EXCEPTION 

module) 
operations, 139 to 140 

EXE$EXPREG routine (SYSCREDEL 
module) 

alternative entry point for, 138 
operations, 138 

EXE$EXPREG_64 routine (SYS_ 
CREDEL_64 module) 

control flow, 139 
EXE$EXTEND_NPP routine (MEMO- 

RYALC_POOL module) 
operations, 438 to 439 

EXE$FAULT_PAGE routine (SYSSETPRT 
module) 

control flow, 270 to 271 
EXE$FIND_GPAGE_64 routine (SYS_ 

FIND_GPAGE_64 module) 
control flow, 216 to 218 

EXE$FLUSHLISTS routine (MEMO- 
RYALC_DYN module) 

nonpaged pool reclamation, 437 
EXE$GETSECI routine (SYSPARPRC 

module) 
control flow, 215 to 216 

EXE$GET_REGION_INFO routine (SYS_ 
REGIONS module) 

control flow, 214 
EXE$GET_VA_RAD_INFOW routine 

(PTECHECK module) 
control flow, 218 

EXE$GL_GLXGRPBL cell 
group section listhead, 102 

EXE$GL_GLXGRPFL cell 
group section listhead, 102 

EXE$GL_GLXSYSBL cell 
system section listhead, 102 

EXE$GL_GLXSYSFL cell 
system section listhead, 102 

EXE$GL_GSDDELBL cell 
delete-pending GSD list listhead, 102 

EXE$GL_GSDDELFL cell 
delete-pending GSD list listhead, 102 

EXE$GL_GSDGRPBL cell 
group global section list listhead, 101 

EXE$GL_GSDGRPFL cell 
group global section list listhead, 101 

EXE$GL_GSDMTX cell 
serializing access to GSD lists, 102 

EXE$GL_GSDSYSBL cell 
system global section list listhead, 101 

EXE$GL_GSDSYSFL cell 
system global section list listhead, 101 

EXE$GL_PAGED symbol 
first available block of paged pool, 414 

EXE$GL_PGDYNMTX cell 
paged pool mutex, 449 

EXE$GQ_BASIMGMTX (base image 
mutex) 

access to LDRHP synchronized by, 75 
EXE$GQ_PQBIQ cell 

process quota block lookaside listhead, 
449 

EXE$HIBER_INT routine (SYSPCNTRL 
module) 

proactive memory reclamation, 
operations, 337 

EXE$INIT routine (INIT module) 
initializing page-and-swap-file vector, 

117 
EXE$LAL_INSERT_FIRST routine 

(LOOK_ASIDE_LIST module) 
deallocating packets to lookaside list, 

421 
EXE$LAL_INSERT_FIRST_AND_COUNT 

routine (LOOK_ASIDE_LIST module) 
deallocating packets to lookaside list, 

421 
EXE$LAL_REMOVE_FIRST routine 

(LOOK_ASIDE_LIST module) 
allocating packets from lookaside list, 

421 to 422 
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EXE$LAL_REMOVE_FIRST_AND_ 
COUNT routine (LOOK_ASIDE_ 
LIST module) 

allocating packets from lookaside list, 
421 to 422 

EXE$LCKPAG routine (SYSLKWSET 
module) 

operations, 342 to 343 
EXE$LCKPAG_64 routine (SYS_ 

LKWSET_64 module) 
operations, 343 

EXE$LKWSET routine (SYSLKWSET 
module) 

control flow, 338 to 339 
EXE$LKWSET_64 routine (SYS_ 

LKWSET_64 module) 
control flow, 341 

EXE$MGBLSC routine (SYSCRMPSC 
module) 

control flow, 180 to 183 
EXE$MGBLSC_64 routine (SYS_ 

GBLSEC_64 module) 
control flow, 183 to 184 

EXE$MGBLSC_GPFN_64 routine (SYS_ 
GPFN_64 module) 

operations, 187 to 188 
EXE$POOLZONE_ALLOCATE routine 

(POOL_ZONES module) 
allocating packets from pool zone, 425 

EXE$POOLZONE_CREATE routine 
(POOL_ZONES module) 

creating system space pool, 422 
EXE$POOLZONE_DEALLOCATE routine 

(POOL_ZONES module) 
deallocating packets from pool zone, 

425 
EXE$POOLZONE_PURGE routine 

(POOL_ZONES module) 
reclamation of pool zone, 425 

EXE$POOL_ALLOCATE routine (POOL_ 
ZONES module) 

allocating packets from pool zone, 425 
EXE$POOL_DEALLOCATE routine 

(POOL_ZONES module) 
deallocating packets from pool zone, 

425 
EXE$PROCSTRT routine (PROCSTRT 

module) 
KRP lookaside list initialization, 452 

EXE$PROCSTRT routine (PROCSTRT 
module) (Cont.) 

process allocation region address space 
reserved by, 450 

EXE$PURGE_WS routine (SYS_ 
PURGWS_64 module) 

control flow, 345 to 346 
EXE$PURGWS routine (SYSPURGWS 

module) 
control flow, 345 

EXE$RECLAIM_POOL_AGGRESSIVE 
routine (MEMORYALC_POOL 
module) 

nonpaged pool reclamation, 435 to 436 
EXE$RECLAIM_POOL_GENTLE routine 

(MEMORYALC_POOL module) 
nonpaged pool reclamation, 435 to 436 

EXE$REGISTER_POOL_INFO routine 
(MEMORYALC_POOL module) 

BAP initialization, 445 
EXE$SETFLT routine (SYSSETPRT 

module) 
control flow, 223 

EXE$SETFLT_64 routine (SYS_SETPRT_ 
64 module) 

operations, 224 
EXE$SETPRT routine (SYSSETPRT 

module) 
control flow, 219 to 220 
side effect, 220 

EXE$SETPRT_64 routine (SYS_SETPRT_ 
64 module) 

control flow, 222 
EXE$SETSWM routine (SYSSETMOD 

module) 
operations, 219 

EXE$TRIM_POOL_LIST routine 
(MEMORYALC_POOL module) 

nonpaged pool reclamation, 436 to 437 
EXE$ULKPAG routine (SYSLKWSET 

module) 
operations, 343 to 344 

EXE$ULKPAG_64 routine (SYS_ 
LKWSET_64 module) 

operations, 344 
EXE$ULWSET routine (SYSLKWSET 

module) 
operations, 343 to 344 

EXE$ULWSET_64 routine (SYS_ 
LKWSET_64 module) 
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EXE$ULWSET_64 routine (SYS_ 
LKWSET_64 module) (Cont.) 

operations, 344 
EXE$UPDSEC routine (SYSUPDSEC 

module) 
control flow, 290 

EXE$UPDSEC_64 routine (SYS_ 
UPDSEC_64 module) 

operations, 292 
executive 

adequate pool space required by, 453 
alternative versions of SYSTEM_ 

PRIMITIVES, 452 to 453 
components, xxiii 
contained in S0/S1 space, 29 
initializing L1PTEs, 11 
mapping into virtual address space, 11 
sharing by all processes, 11 
term definition, xxiii 

executive images 
mapping, 266 
page faults for, read-only pages in, 266 
page transitions for, copy-on-reference 

pages in, 267 
term definition, xxiii 

executive routines 
entry points, xxiv 

EXE LSTD] $ALONONPAGED routine 
(MEMORYALC_DYN module) 

alternative entry point to 
EXE$ALONONPAGED_INT, 431 

EXE LSTD] $ALONPAGVAR routine 
(MEMORYALC_DYN module) 

alternative entry point to 
EXE$ALONONPAGED_INT, 431 

EXE LSTD]$ALOPOIMAG routine 
(MEMORYALC module) 

allocating space from process allocation 
region, 450 to 451 

EXE LSTD]$ALOPIIMAG routine 
(MEMORYALC module) 

allocating space from process allocation 
region, 450 to451 

EXE LSTD]$ALOPIPROC routine 
(MEMORYALC module) 

allocating space from process allocation 
region, 450 to 451 

EXE LSTD] $ALOPAGED routine 
(MEMORYALC module) 

allocating paged pool, 448 

EXE LSTD] $DEANONPAGED routine 
(MEMORALC_DYN module) 

deallocating nonpaged pool, 434 
EXELSTD]$DEAP1 routine (MEMO- 

RYALC module) 
deallocating space from process 

allocation region, 450 to 451 
EXE LSTD] $DEAPAGED routine 

(MEMORYALC module) 
deallocating paged pool, 448 

Expand Program/Control Region system 
service 

See $EXPREG 
Expand Virtual Address Space system 

service 
See $EXPREG_64 

EXPANDCHK_64 routine (SYSCREDEL 
module) 

control flow, 136 
$EXPREG (Expand Program/Control 

Region system service) 
alternative entry point for, 138 
demand zero pages created by, 142 

(table) 
operations, 138 

$EXPREG_64 (Expand Virtual Address 
Space system service) 

control flow, 139 
Extended File Cache 

See XFC 

F 
facilities 

source modules contained in, xxiv 
Fault Page system service 

See $FAULT_PAGE 
fault-on bits (PTE) 

meaning, 23 
fault-on-execute bit (PTE) 

clearing, 240, 249 
enabling, through $SETFLT system 

service, 223 to 224 
exception information, 25 
fault generation, 23 
faults, OpenVMS handling, 27 
OpenVMS use of, 27, 68, 328 
set with valid bit, demand zero page, 

246 
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fault-on-execute bit (PTE) (Cont.) 
setting, 238, 248, 252, 257, 261, 263, 

264, 275 
fault-on-read bit (PTE) 

exception information, 25 
fault generation, 23 
OpenVMS use of, 76, 77 
restricting access to system pages, 224 

fault-on-write bit (PTE) 
clearing, 240, 291 
exception information, 25 
fault generation, 23 
OpenVMS use of, 66 
setting, 238, 248, 261 
testing, 240 

$FAULT_PAGE (Fault Page system 
service) 

enabling applications to initiate page 
faults, 270 to 271 

figures 
conventions, xxv to xxvii 
that describe data structures, xxvi 

FILLPHD routine (SWAPPER module) 
inswap of PHD, 391 

Find Mapped Global Page system service 
See $FIND_GPAGE_64 

$FIND_GPAGE_64 (Find Mapped Global 
Page system service) 

control flow, 216 to 218 
fixed-length lists 

See also KRP; PQB 
allocating, 420 (fig.) 
areas, structure and operations, 417 to 

425 
characteristics and use, 417 
deallocating, 420 (fig.) 
dynamic data structure deallocation, 

406 
format, 420 (fig.) 

fixed-length packets 
compared to variable-length blocks, 

417 
pool, listhead locations, 417(table) 

FLAGS byte (POOLCHECK parameter) 
definition and use, 456 

floating-point register and execution data 
structure 

See FRED 
fluid page count 

fluid page count (Cont.) 
characteristics and use, 81, 173 

fluid physical pages 
minimum required for pool expansion, 

438 
fork processes 

IPL$_QUEUEAST, created to expand 
nonpaged pool, 438 

FPG (free page wait state) 
See also free page list; kernel thread 

states 
characteristics and use, 302 
placing a kernel thread into, 175, 233 
removing kernel thread from, 302 

FRED (floating-point register and 
execution data structure) 

array of 
characteristics and use, 59 
PHD component, 50 

creating 
during page fault handling, 255 
effect on PHD expansion pages in 

working set list, 312 
PHD component, 51 
use during page fault handling, 234 

FREE byte (POOLCHECK parameter) 
definition and use, 457 

free page list 
See also BORROWLIM parameter; 

FPG; free pages; FREEGOAL 
parameter; FREELIM parameter 

characteristics and use, 33 
doubly linked, 86 
insertion of page removed from working 

set, 327 
listhead location, 86 
location of unmodified available pages, 

229 
maintained by swapper, 354 
movement of modified page to, 245 
multiple, 87 
RAD-specific, use in resolving page 

faults, 246 
reallocating pages from, 77 
releasing granularity hint regions to, 

77 
resolving page faults from, 246 to 248 
sorted by color, 89 (fig.) 
sorted by RAD, 89 (fig.) 
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free page list (Cont.) 

use as cache, 87 (fig.) 
free page wait state 

See FPG 
free pages 

See also BORROWLIM parameter; free 
page list; FREEGOAL parameter; 
FREELIM parameter 

allocated for 
global page fault, 256 
inswap of process working set, 390 
page fault, 268 to 269 

page coloring classification effect on, 88 
RAD-specific, 88 

FREEGOAL parameter (SYSGEN) 
B ~ C E  use of, 363 
swapper use of, 354 
TROLLER use of, 374 

FREELIM parameter (SYSGEN) 
checked before new page is added to 

working set list, 322 
effect on 

modified page writing, 276 
nonpaged pool expansion, 438 

use by 
SCANDEADPT, 323 
swapper, 354, 362 
TROLLER, 374 

G 
Galaxy 

physical memory 
configuration, 3 (fig.) 
sharing in, 34 to 35 

Galaxy Configuration utility 
reserving shared memory, 158 

Galaxywide global sections 
adding L2PTs to, 136 
characteristics and use, 143 
conditions for creating, 176 
creating, 170, 176 to 179 
creating shared page table sections to 

map, 178 to 179 
deleting virtual pages from, 199 
effect on PTE contents, 187 
mapping, 158 
not described by WSLEs, 232 
page file quota not required, 131 
pages 

Galaxywide global sections 
pages (Cont.) 

getting information about, 215 
not represented in working set list, 

131, 309 
preventing concurrent creation of, 176 
testing validity of pages in, 209 

[GALAXY] GLX_SHM_REG module 
GLX$SHM_REG_CREATE, operations, 

177 
GLX$SHM_REG_DELETE, operations, 

191 
gap 

term definition, 11 
GBLPAGES parameter (SYSGEN) 

effect on 
GPT size, 104 
system space size, 61 

system manager dynamically 
decreasing value of, 267 

GBLPAGFIL parameter (SYSGEN) 
effects of changes to, 161, 166 
maximum page file blocks available for 

global buffers, 157 
GBLSECTIONS parameter (SYSGEN) 

number of entries in system header 
section table, 60 

Get Information About Specified Region 

See $GET_REGION_INFO 
Get Section Information system service 

See $GETSECI 
$GETSECI (Get Section Information 

system service) 
control flow, 215 to 216 

$GET_REGION_INFO (Get Information 
About Specified Region system 
service) 

control flow, 214 
$GET_VA_RAD_INFOW system service 

operations, 218 
GH_EXEC_CODE parameter (SYSGEN) 

size of executive image code huge page, 
65, 74 

GH_EXEC_DATA parameter (SYSGEN) 
size of executive image data huge page, 

74 
GH_RES_CODE parameter (SYSGEN) 

size of resident image code huge page, 
65, 74 
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GH_RES_DATA parameter (SYSGEN) 
size of resident image data huge page, 

74 
GH_RSRVPGCNT parameter (SYSGEN) 

appropriateness determined by 
LDRHP$Q_STARTUP_PAGE S, 
75 

number of pages reserved for mapping 
images, 74 

global buffers 
maximum page file blocks available for, 

157 
global demand zero sections 

See also global sections 
pages, page transitions, control flow, 

264 to 266 
global page table 

See GPT 
global page table entry 

See GPTE 
global page table index 

See GPTX 
global page table pages 

characteristics and use, 267 
determining, based on faulting virtual 

address, 230 (fig.) 
page transitions, 267 

global page-file sections 
See also global sections 
creating, 157 
pages 

page transitions, control flow, 262 
to 264 

transitions, 263 (fig.) 
global pages 

See also global sections 
count of process PTEs that  map to a 

particular, PFN$L_SHRCNT field, 
90 

creating, overview, 256 
data structures, characteristics and 

field definitions, 101 to 108 
Galaxywide sections 

getting information about, 215 
not represented in working set list, 

131 
getting information about, 214 to 216 
included in working set, 309 
locked in memory reference count, 91 

global pages (Cont.) 
memory-resident 

creating, 264 
transitions, 265 (fig.) 

outswapping, 381 
page transitions 

control flow, 256 to 266 
copy-on-reference page, control 

flow, 260 to 262 
demand zero section page, control 

flow, 264 to 266 
page-file section page, control flow, 

262 to 264 
read-only page, control flow, 256 

to 259 
writable page, control flow, 259 

PFN$L_SHRCNT meaning, 298 
protection change prohibited, 221, 222 
read-only 

page transitions, control flow, 256 
to 259 

resolution during inswap rebuild, 
395 

transitions, 258 (fig.) 
whether outswapped, 379 (table), 

380 (table) 
read/write, action at outswap, 379 

(table), 380(table) 
reading, I/O request descriptions, 292 

(table) 
removal from working set, 326 
writable 

cannot be locked in working set, 
342 

locking into memory, 347 
global section descriptor 

See GSD 
global section table 

See GST 
global section table entry 

See GSTE 
global section table index 

See GSTX 
global sections 

See also global page-file sections; global 
pages; GSD; GSTE; memory 
management; memory-resident 
global sections 

backing store, 142 (table) 
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global sections (Cont.) 

characteristics and use, 34 
checking access to, 181, 182, 184 

files, 163, 185 
memory-resident, 171 
PFN-mapped, 169 

creating, 157 to 162 
backed by a file, 158 to 167 
group, 141 
overview, 141 to 143, 143 
PFN-mapped, 157 
system, 141 

data structures 
associated with, 34 
relations among, 108 (fig.) 
required for creating, 157 

deleting, 188 to 194 
complexity, 188 
side effect of virtual address 

deletion, 189 
temporary, 191 

demand zero 
creating, 166 to 167 
memory-resident, creating, 170 to 

171, 171 to 176 
Galaxywide, 158 

adding L2PTs to, 136 
characteristics and use, 143 
conditions for creating, 176 
creating, 170, 176 to 179 
creating shared page table sections 

to map, 178 to 179 
deleting virtual pages from, 199 
effect on PTE contents, 187 
mapping, 158 
not described by WSLEs, 232 
page file quota not required, 131 
pages not represented in working 

set list, 131, 309 
pages, getting information about, 

215 
preventing concurrent creation of, 

176 
testing validity of pages in, 209 

locating, 216 to 218 
mapping 

by GPTES, 104 
using shared page tables, 108 

mapping to, 180 to 188 
memory-resident 

global sections 
memory-resident (Cont.) 

characteristics and use, 34, 101, 
158 

creating, 101 
described by two GSTEs, 103 
granularity hint regions mapping, 

75 
mapping, 158 
not described by WSLEs, 232 
page file quota not required, 131 
pages described by GPTEs, 105 
pages not included in working set, 

309 
registering in Reserved Memory 

Registry, 35, 158 
Reserved Memory Registry effect 

on, 80 
names, logical name translation of, 159 
pages not included in working set, 309 
PFN-mapped 

creating, 167 to 168, 169 to 170 
page file quota not required, 131 
pages, 103 

read-only, page file quota not required, 
131 

shared memory, 158 
SMP systems use of, 34 
system services that create, 101 
types, 142 (table) 
version compatibility checks, 159 
writable non-CRF, page file quota not 

required, 131 
GLX$SHM_REG_CREATE routine 

([GALAXY] GLX_SHM_REG module) 
operations, 177 

GLX$SHM_REG_DELETE routine 
([GALAXY] GLX_SHM_REG module) 

operations, 191 
GPT (global page table) 

characteristics and use, 34, 104 to 105 
circumstances under which can be 

contracted, 104 
index 

PTE containing, characteristics, 70 
use, 256 

location, 104 
pages, created as demand zero pages, 

104 
synchronizing access to, 104 
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GPT (global page table) (Cont.) 
virtual location, 105 

GPTE (global page table entry) 
See also global sections 
allocated at global section creation, 161 
allocation method, 411 
characteristics and use, 104 to 106 
formats, 107 (fig.) 
forms of PTE, 106 
GSD and GSTE relations with, 

108(fig.) 
GSTX contained in, 256 
how located, 105 
initialized at global section creation, 

161, 165 
initializing, 174 
invalid global section file, 161, 165 
list of unused, 106 
memory-resident section page, 175 
no protection bits in, 106 
original form, contents, 106 
process PTEs and, 105 (fig.) 
recording allocated PFNs in, 175 
shared memory page table section, 178 
shared memory section, 177 

GPTX (global page table index) 
GSTE field that contains, 106 
use in locating GPTE, 105 

granularity hint bits (PTE) 
characteristics and use, 76 
meaning, 20 
OpenVMS Alpha use of, 28 
PFN-mapped process section page, 152, 

155, 156 
supported by TB, 28 

granularity hint region 
See also huge pages 
characteristics and use, 28 
components, 20 
creating for 

memory-resident sections, 175 
nonpaged dynamically allocated 

system data, 74 
PFN-mapped global sections, 174 
PFN-mapped sections, 151 
shared page table region, 130 

executive use of, 28 
mapping 

memory-resident global sections, 
75 

granularity hint region 
mapping (Cont.) 

PFN database, 75 
PFN-mapped process section, 

incorporating pages into, 153, 
155 

PFN-mapped, deleting virtual pages 
from, 199 

releasing unused space, 77 
requirements for a PFN-mapped 

process section, 152, 156 
system space, purposes, 28 
testing for, 151, 155 
uses, 74 

GROWLIM parameter (SYSGEN) 
automatic working set limit adjustment 

use of, 330, 336 
effect on working set growth, 322 
use by SCANDEADPT, 323 

GS 160 system 
physical memory configuration, 4(fig.) 

GSD (global section descriptor) 
characteristics and use, 34, 101 to 103 
delete pending list, processing, 283 
extended, characteristics and use, 103 
field definitions, 101 to 103 
GSTE and GPTE relations with, 108 

(fig.) 
GSTE field that points to, 56 
initialized by $CREATE_GFILE_INT, 

164 
initializing, 169 
layout, 102 (fig.) 
linking, 174 
location of address in GSTE, 106 

GSD mutex 
owned during 

contracting of virtual address 
region, 203 

demand zero global section 
creation, 171 

Galaxywide global section creation, 
177 

global section address determina- 
tion, 216 

global section creation, 159, 162, 
163 

global section deletion, 189, 190, 
193 

global section mapping, 180, 183 

Index-17 



GSD mutex 
owned during (Cont.) 

PFN-mapped global section 
creation, 168, 170 

GSD$L_RELATED_GSTX field 
index of linked global sections, 174 

GSD_CLEAN_AST routine (SYSDG- 
BLSEC module) 

control flow, 193 
GST (global section table) 

characteristics and use, 34 
GSTE location within, 106 
system header component, 60(fig.) 

GSTE (global section table entry) 
See also global sections 
asynchronous deletion 

during demand zero global section 
creation, 171 

during global section creation, 159 
during global section deletion, 193 
during global section file creation, 

163 
during global section mapping, 

180, 182, 183, 185 
during PFN-mapped global section 

creation, 168 
during PFN-mapped global section 

deletion, 190 
operations, 190 to 191 

characteristics and use, 34, 56, 103 
created for executive image sections, 

266 
field names defined by $SECDEF 

macro, 56 
for memory-resident global sections, 

103 
GSD and GPTE relations with, 

108(fig.) 
initializing, 172 
location within GST, 106 
synchronizing access to, 103 

GSTX (global section table index) 
GPTE contains, 256 
GPTE field that contains, 106 
GSD field that contains, 106 
PFN field that contains, 106 

H 
hardware privileged context block 

hardware privileged context block (Cont.) 
See HWPCB 

hardware restart parameter block 
See HWRPB 

hole 
See null page 

huge pages 
See also granularity hint region 
characteristics and use, 74 to 77 
code sections of resident images loaded 

into, 74 
data 

allocating, 74 
size, 74 
SYSGEN parameter that affects, 

74 
data structures, layout, 76(fig.) 
LDRHP describing, 75 
per-RAD image code, 75 
releasing unused pages in, 74 
$2 space, 75 
slice, term definition, 75 
SYSGEN parameters that affect, 74 

HWPCB (hardware privileged context 
block) 

ASN associated with, 27 
FRED component, 59 
PHD component, 51 

HWRPB (hardware restart parameter 
block) 

characteristics and use, 78 

I/O 
See also adapters; AST; device drivers; 

$QIO; resource wait 
buffered, characteristics and use, 206 
paging, mechanisms, 292 to 295 
scatter/gather operations, 119 to 120 
swapper 

handling pages with I/O in 
progress at outswap, 395 

overview, 120 
I/O adapters 

See adapters 
I/O database 

data structures, swapper use of, 358 
mutex, owned during updates to unit 

reference count, 194 
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I/O request packet 
See IRP 

I/O requests 
memory management, 292 (table) 

cluster factor, 272 (table), 273 
(table) 

read requests, 293 (table) 
write requests, 294 (table) 

outstanding, as a condition for outswap 
and swapper trimming selection, 
371 

I/O system 
swapping techniques, 119 to 120 

choosing, 119 
I/O system services 

enabling use of buffer objects, overview, 
206 to 207 

Image Activator system service 
See $IMGACT 

image rundown 
address space deletion at, 30 

image sections 
mapping, 54 
process sections created by image 

activator, 30 
$IMGACT (Image Activator system 

service) 
See also image rundown 
P0 space created by, 30 

INCONMMGST bugcheck 
generated by 

$CREATE GDZRO INT, 175 
EXE$COPY_FOR_PAGE, 225 
MMG$DELPAG_64, 197 

INI$INITIALIZE_POOL routine 
(MEMORYALC_POOL module) 

initializing 
BAP, 444 
NPOOL structure, 431 
per-RAD pool, 441 

INIT module 
EXE$INIT, initializing page-and-swap- 

file vector, 117 
initialization 

See system initialization 
inner access mode 

term definition, xxv 
inner mode semaphore 

data structure, PHD component, 50 

inner mode semaphore (Cont.) 
synchronizing access to 

PCB$Q_KEEP_IN_WS, 350 
PCB$Q_KEEP_IN_WS2, 350 
PSTEs, 55 
RDEs, 49 

input/output 
See I/O 

instances 
characteristics and use, 3 
term definition, 2 

instruction memory barrier 
executed after GSTE initialization, 

161, 172 
instruction stream translation buffer 

See ITB 
instructions 

See also Alpha architecture 
LDL, allowing addresses to be stored as 

longwords, 12 
MB, TB miss PALcode routine use of, 

24 
inswap 

See also swapper 
data structures after process selected 

for, 396 (fig.) 
final processing, 398 to 399 
operations, 389 to 399 
PHD and page tables, 390 to 393 
physical pages allocated for, 397 (fig.) 
preparing for, 389 to 390 
processes 

selecting, 365 to 366, 389 
with home RADs, 390 

rebuilt process page tables, 398(fig.) 
INSWAP routine (SWAPPER module) 

preparation for inswap, 390 
internal process identifier 

See IPID 
interrupt priority level 

See IPL 
IOC$GL_DIOBM_PTECNT_MAX cell 

effect on I/O subsystem direct I/O, 119 
IOC$IOPOST routine (IOCIOPOST 

module) 
page read completion detection by, 274 

IOCIOPOST module 
IOC$IOPOST 
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IOCIOPOST module 
IOC$IOPOST (Cont.) 

page read completion detection by, 
274 

PAGIO 
global read-only page, I/O 

completion, 257 
page read completion, control flow, 

274 to 276 
page read completion, operations, 

234 
process copy-on-reference page, I/O 

completion, 243 
process page not copy-on-reference, 

I/O completion, 240 
system page not copy-on-reference, 

I/O completion, 267 
IOLOCK module 

MMG$IOLOCK, PFN$L_PAGE_STATE 
field modify bit set by, 93 

MMG_STD$IOUNLOCK_BUF, 
releasing direct I/O buffer pages, 
241 

IOTA parameter (SYSGEN) 
automatic working set limit adjustment 

use of, 335 
$IO_PERFORM (Perform Fast I/O) system 

service 
initiating I/O to or from the buffer 

object, 99 
IPID (internal process identifier) 

for global section to be deleted, GSD 
location, 103 

IPL (interrupt priority level) 
maximum for page fault, 230 

IPL 6 
fork process, deallocating pool, 

synchronization issues, 440 
IPL 8 

locking pages in working set, 339 
IPL 11 

acquiring POOL spinlock raised IPL to, 
439 

IPL$_POOL 
See IPL 11 

IPL$_QUEUEAST 
See IPL 6 

IRP (I/O request packet) 
See also ACB; device drivers; $QIO 

IRP (I/O request packet) (Cont.) 
built by MMG$PAGEFAULT, 238 
initialized by swapper, 358 
use in paging upcall, 275 

IRP$L_BCNT field 
use in direct I/O buffer mapping, 119 

IRP$L_BOFF field 
use in direct I/O buffer mapping, 119 

IRP$L_SVAPTE field 
address of swapper map, 120 
meaning, 119 
use in direct I/O buffer mapping, 119 

IRP$V_FUNC bit (IRP$L_STS field) 
detecting page read completion with, 

274 
IRP$V_PAGIO bit (IRP$L_STS field) 

detecting page read completion with, 
274 

ITB (instruction stream translation buffer) 
characteristics and use, 22 

K 
kernel mode 

innermost access mode, xxv 
kernel process block 

See KPB 
kernel request packet 

See KRP 
kernel stack 

canonical, formed for page fault wait, 
230 

kernel thread block 
See KTB 

kernel thread states 
See also COLPG; FPG; MWAIT; PFW 
process, characteristics during page 

deletion, 194 
swapper driven by table of, 369 
transitions 

from outswapped to resident, 399 
from resident to outswapped, 368, 

399 
kernel threads 

See also multithreaded processes; 
processes 

page fault effect on, 249 
page tables when placed into execution, 

11 
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kernel threads (Cont.) 
quantum, initial, as a condition for 

outswap and swapper trimming 
selection, 372 

running on multiple processors, 328 
sharing same virtual address space, 11 
synchronizing inner mode execution of, 

50 
KPB (kernel process block) 

lookaside list, 417 (table), 427 
KRP (kernel request packet) 

lookaside list, 417 (table) 
allocating, 452 
characteristics and use, 452 
deallocating, 452 

packet control 
CTL$C_KRP_COUNT symbol, 452 
CTL$C_KRP_SIZE symbol, 452 

KRPEMPTY bugcheck 
generated by failure to allocate a KRP, 

452 
KTB (kernel thread block) 

characteristics and use, 44 to 46 
memory management, field definitions, 

45 (fig.) 
overlaying the PCB, 44 

KTB$L_HOME_RAD field 
number of associated RAD on NUMA 

system, 46 
KTB$L_PHD field 

definition and use, 46 
KTB$L_STS field 

defimtion and use, 44 
KTB$L_STS2 field 

definition and use, 44 
KTB$L_SWP_KT field 

definition and use, 46 
KTB$L_SWP_SEQ field 

definition and use, 46 

L 
LIPT (level 1 page table) 

allocating for new process, 16 
characteristics and use, 8 
double-mapped into $2 space, 62 
initializing, 11, 16, 60 

RAD, 66 
locked into process working set list, 61 

L1PT (level 1 page table) (Cont.) 
outswapped and inswapped with PHD, 

61 
processor register that locates, 8 
RAD use of, 19 
self-mapped, 16 

L2PT (level 2 page table) 
characteristics and use, 8, 61 
creating 

process-private, 250 
shared, 61, 62 

initializing RAD, 66 
locked into process working set list, 61 
mapping system space, 12 
outswapped and inswapped with PHD, 

61 
self-mapped L1PTs becoming, 16 

L3PT (level 3 page table) 
allocating during system space 

expansion, 62, 66 
characteristics and use, 8 
creating 

process-private, 250 
shared, 61, 62, 66 

double-mapped into S0/S1 space, 64 
entries 

See L3PTE 
initializing 

during address space creation, 131 
RAD, 66 

locked into process working set, 61 
low-order bits, 72 
normal L2PTs becoming, 16 
number in page table space, 17 
page table space contained in, 23 
removing page from working set list, 

255 
severing page connections to L2PT, 255 

L3PTE (level 3 page table entry) 
contents, 72 
creating additional system space, 72 
demand zero address space, 133, 137, 

138, 139 
Galaxywide global section page, 186 
global section page, 182, 185 
initializing, 156 
invalid forms, 70 to 71 
layout of available, 73 (fig.) 
memory-resident global section page, 

186 
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L3PTE (level 3 page table entry) (Cont.) 
PFN fields in, 150 
PFN-mapped process page, 151 
PFN-mapped process section page, 152, 

155 
quadword index, 72 
resident memory section, 179 
section file page, 146, 149 
storage of unused, 72 
valid and invalid forms, 69(fig.) 

last chance condition handler 
used if insufficient user stack, 140 

LCK$CHECK_POOLZONE routine 
(LOCK_UTILS module) 

operations, 447 
LCK$POOLZONE_INIT routine (LOCK_ 

UTILS module) 
creating lookaside lists, 446 

LCKBUFOBJPAG routine (SYSLKWSET 
module) 

control flow, 209 to 210 
LCKMGR spinlock 

synchronizing access to lookaside lists, 
446 

$LCKPAG (Lock Pages in Memory system 
service) 

operations, 342 to 343 
$LCKPAG_64 (Lock Pages in Memory 

system service) 
operations, 343 

LDL instruction 
allowing addresses to be stored as 

longwords, 12 
LDR$GQ_FREE SOSI_PT cell 

listhead for unused L3PTEs, 72 
LDR$GQ_FREE S2_PT cell 

listhead for unused L3PTEs, 72 
LDR$GQ_HPDESC cell 

definition and use, 75 
LDRHP (loader huge page descriptor) 

characteristics and use, 75 to 76 
defined by $LDRHPDEF macro, 75 
field definitions, 75 to 76 
layout, 76 (fig.) 

level 1 page table 
See L1PT 

level 2 page table 
See L2PT 

level 3 page table 

See L3PT 

level 3 page table entry 
See L3PTE 

LIB$FIND_IMAGE_SYMBOL routine 
(Run-Time Library) 

effect on P0 and P1 space, 30 
linker options 

NOPOBUFS, constraint on expansion 
of process allocation region to P0 
space, 451 

lists 
See fixed-length lists; free page list; 

lookaside lists; modified page list; 
variable-length lists 

$LKWSET (Lock Pages in Working Set 
system service) 

cannot be used to lock pages in system 
working set, 347 

control flow, 338 to 339 
$LKWSET_64 (Lock Pages in Working Set 

system service) 
cannot be used to lock pages in system 

working set, 347 
control flow, 341 

loadable executive images 

See executive images 
loader huge page descriptor 

See LDRHP 
LOAD_SYS_IMAGES parameter 

(SYSGEN) 
effect on granularity hint region 

creation, 74 
lock management system 

lock database, effect on size of system 
space, 61 

Lock Pages in Memory system services 
See $LCKPAG; $LCKPAG_64 

Lock Pages in Working Set system 
services 

See $LKWSET; $LKWSET_64 
$LOCKED PAGE_END macro 

creating PSECTs, 347 
$LOCKED_PAGE_INIT macro 

generating $LKWSET requests, 347 
$LOCKED_PAGE_START macro 

creating PSECTs, 347 
LOCKIDTBL parameter (SYSGEN) 

effect on size of lookaside lists, 446 
locking pages 

alternatives, 351 
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locking pages (Cont.) 
into memory, compared with locking 

pages into working set, 342 
into working set, 347 

C program example, 348 (ex.), 349 
(ex.) 

delimiting, 347 to 349 
operations, 338 to 340 

locks (lock management system) 
See protection; resource wait; 

synchronization 
locks used by OpenVMS components 

Galaxywide global section, 176 
$LOCK_PAGE macro 

locking pages during image execution, 
347 

LOCK_SYSTEM_PAGES module 
MMG$LOCK_SYSTEM_PAGES, 

control flow, 351 
LOCK_UTILS module 

LCK$CHECK_POOLZONE, operations, 
447 

LCK$POOLZONE_INIT, creating 
lookaside lists, 446 

LONGWAIT parameter (SYSGEN) 
TROLLER use of, 374 
use in outswap and swapper trimming 

selection, 372 
longword index 

term definition, xxv 
longwords 

how represented in figures, xxvi 
lookaside lists 

See also KRP; PQB; pool - nonpaged 
allocating request packets directly 

from, 431 
doubly linked, modifying, 419 
flushing, 433 
KPB, characteristics and use, 427 
KRP, characteristics and use, 452 
listhead location, 413 (table), 417 

(table) 
nonpaged pool, 429 (fig.) 
pool zone, 422 to 425 
singly linked, 420 (fig.) 

allocation, 421 to 422 
characteristics and use, 419 to 

422 
deallocation, 421 

term definition, 402 

lookaside lists (Cont.) 
types, 402 
uses of, 430 
XFC 

routines that create, 447 
types, 447 
uses, 447 to 448 

LOOK_ASIDE_LIST module 
EXE$LAL_INSERT_FIRST, 

deallocating packets to lookaside 
list, 421 

EXE$LAL INSERT_FIRST_AND_ 
COUNT, deaUocating packets to 
lookaside list, 421 

EXE$LAL_REMOVE_FIRST, allocating 
packets from lookaside list, 421 to 
422 

EXE$LAL_REMOVE_FIRST_AND_ 
COUNT, allocating packets from 
lookaside list, 421 to 422 

LSTHDS structure 
characteristics and use, 427, 440 
contents, 427 (fig.) 
field definitions, 428 to 429 

LSTHDS$AR_LISTATTEMPTS field 
definition and use, 428 

LSTHDS$AR_LISTDEALLOCS field 
definition and use, 428 

LSTHDS$AR_LISTFAILS field 
definition and use, 428 

LSTHDS$L_EXPANSIONS field 
definition and use, 429 

LSTHDS$L_POOLTYPE field 
definition and use, 429 

LSTHDS$L_RAD field 
definition and use, 441 

LSTHDS$L_VARALLOCBYTES field 
definition and use, 428 

LSTHDS$PS_NPOOL_DATA field 
definition and use, 429, 440 

LSTHDS$PS_VARIABLELIST field 
definition and use, 429 

LSTHDS$Q_LISTCOUNTERS field 
definition and use, 429 

LSTHDS$Q_LISTHEADS field 
definition and use, 429 

M 
macros 
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macros (Cont.) 
identifying, xxiv 

MAINTAIN request (modified page writer) 
description, 278 

Map Global Page Frame Section system 
service 

See $MGBLSC_GPFN_64 
Map Global Section system service 

See $MGBLSC 
Map to Global Section system service 

See $MGBLSC 64 
mapping 

See also address space 
PHD into P1 space, swapper 

implications, 392 
virtual address space, differences 

among different areas, 29 
MAPSECPAG_RDE routine (SYSCRMPSC 

module) 
PFN-mapped process section page, 

control flow, 153 
process section page, control flow, 147 

MAXBOBMEM parameter (SYSGEN) 
effect on buffer object resources, 101 
use during buffer object creation, 211 

MAXBOBS2 parameter (SYSGEN) 
effect on size of system space, 61 

MB instruction 
See also memory barriers 
TB miss PALcode routine use of, 24 
use while allocating packets from singly 

linked lookaside list, 421 
memory 

address translation, basic steps, 8 to 9 
how represented in figures, xxv 
maximum addressable, 21 
physical 

See NUMA; physical memory 
protection 

Alpha access checking, 23 
checking, virtual page as unit of, 5 
virtual memory role in, 2 

reclaiming, OUTSWAP routine, 366 to 
368 

requirements, dynamic data structures, 
differences among, 401 

virtual 
See virtual memory 

memory barriers 

memory barriers (Cont.) 
See also MB instruction 
executing after GSTE initialization, 

161, 172 
memory management 

See also address space; global sections; 
page faults; paging; PFN- 
database; pool; swapper; virtual 
memory; working set list 

adaptability to page sizes, 7 
architecture, 7 to 17 
auxiliary mechanisms, overview, 40 to 

41 
data structures 

examined by page fault handler, 
228 

removing non-copy-on-reference 
page from working set list, 
240 to 241 

swapper use of, 356 to 360 
types, 43 
updating during fault of demand 

zero page, 246 
updating during fault of global 

copy-on-reference page, 261 
updating during fault of global 

page-file section page, 262 to 
263 

updating during fault of process 
page not copy-on-reference, 
237 

updating during fault of process 
page table page, 252 

fundamental issues, 2 
I/O requests, 292 (table) 

cluster factor, 272 (table), 273 
(table) 

read requests, 293 (table) 
write requests, 294 (table) 

original design, 36 to 40 
overview, 1 to 2 
parameters that  control, 39 to 41 
reference counts 

characteristics and use, 295 to 
301 

meanings, 295 (table), 296 (table) 
resource wait states, characteristics 

and use, 303 to 304 
sol, ware mechanisms, overview, 36 to 

41 
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memory management (Cont.) 
system data structures, characteristics 

and field definitions, 59 to 72 
system services 

argument length, 124 
32-bit, 124, 125 to 128 
64-bit, 124, 128 
common characteristics, 124 to 

128 
operations, 125 
overview, 123 to 124 
restrictions on use, 124 
stack scratch space, layout, 

126(fig.) 
memory-resident global sections 

characteristics and use, 101, 158 
creating, 101 
described by two GSTEs, 103 
granularity hint regions mapping, 75 
mapping, 158 
not described by WSLEs, 232 
on Galaxy platforms, 158 
page file quota not required, 131 
pages described by GPTEs, 105 
pages not included in working set, 309 
registering in Reserved Memory 

Registry, 158 
Reserved Memory Registry effect on, 

80 
MEMORYALC module 

alternative versions, 452 
CHECK_PACKET, pool poisoning 

operations, 459 to 460 
EXE$ALLOCATE, allocating variable- 

length pool, 412, 412 to 414 
EXE$ALLOCPCB, allocating nonpaged 

pool, 431 
EXE$ALLOCTQE, allocating nonpaged 

pool, 431 
EXE$DEALLOCATE, deallocating 

variable-length pool, 412, 414 to 
416 

EXE LSTD]$ALOPOIMAG, allocating 
space from process allocation 
region, 450 to 451 

EXE LSTD]$ALOPIIMAG, allocating 
space from process allocation 
region, 450 to 451 

MEMORYALC module (Cont.) 
EXE LSTD] $ALOP 1PROC, allocating 

space from process allocation 
region, 450 to 451 

EXE LSTD] $ALOPAGED, allocating 
paged pool, 448 

EXELSTD]$DEAP1, deallocating space 
from process allocation region, 450 
to 451 

EXE LSTD] $DEAPAGED, deallocating 
paged pool, 448 

POISON_PACKET, pool poisoning 
operations, 457 to 459 

MEMORYALC_DYN module 
alternative versions, 452 
EXE$ALONONPAGED, checking 

lookaside lists, 431 
EXE$ALONONPAGED_INT, control 

flow, 431 to432 
EXE$ALONPAGVAR_INT, control flow, 

432 
EXE$DEANONPGDSIZ, control flow, 

434 
EXE$FLUSHLISTS, nonpaged pool 

reclamation, 437 
EXE LSTD] $DEANONPAGED, 

deallocating nonpaged pool, 434 
MEMORYALC_DYN_64 module 

alternative versions, 452 
UPDATE_RINGBUF, recording pool 

history, 461 to 462 
MEMORYALC_POOL module 

alternative versions, 452 
EXE$ALLOCATE_POOL 

allocating BAP, 445 to 446 
allocating nonpaged pool, 431, 433 

to 434 
allocating per-RAD pool, 431, 442 
checking lookaside lists, 431 

EXE$DEALLOCATE_POOL 
deallocating nonpaged pool, 434 
deallocating per-RAD pool, 442 

EXE$EXTEND_NPP, operations, 438 
to 439 

EXE$RECLAIM_POOL_AGGRESSIVE, 
nonpaged pool reclamation, 435 to 
436 

EXE$RECLAIM_POOL_GENTLE, 
nonpaged pool reclamation, 435 to 
436 

Index-25 



MEMORYALC_POOL module (Cont.) 
EXE$REGISTER_POOL_INFO, BAP 

initialization, 445 
EXE$TRIM_POOL_LIST, nonpaged 

pool reclamation, 436 to 437 
INI$INITIALIZE_POOL 

BAP initialization, 444 
initializing NPOOL structure, 431 
initializing per-RAD pool, 441 

MEMORYALC_POOL_MON module 
CHECK_DEALLOCATION_SIZE, 

operations, 457 
MEM_ALLOC module 

MMG_STD$USE_RES_MEM, control 
flow, 173 

$MGBLSC (Map Global Section system 
service) 

control flow, 180 to 183 
$MGBLSC_64 (Map to Global Section 

system service) 
control flow, 183 to 184 

$MGBLSC_GDZRO_INT routine (SYS_ 
GBLSEC_64 module) 

operations, 186 to 187 
$MGBLSC_GFILE_INT routine (SYS_ 

GBLSEC_64 module) 
control flow, 184 to 185 

$MGBLSC_GPFILE_INT routine (SYS_ 
GBLSEC_64 module) 

operations, 185 to 186 
$MGBLSC_GPFN_64 (Map Global Page 

Frame Section system service) 
operations, 187 to 188 

$MGBLSC_GPFN_INT routine (SYS_ 
GPFN_64 module) 

operations, 188 
MINWSCNT parameter (SYSGEN) 

effect on adding page to working set 
list, 322 

effect on reserved WSLEs in working 
set list dynamic region, 319 

fluid working set initialized from, 131 
minimum number of fluid pages in 

working set, 318 
use 

by SCANDEADPT, 323 
during automatic working set limit 

adjustment, 332 

MINWSCNT parameter (SYSGEN) 
use (Cont.) 

to determine number of entries in 
dynamic region of working set 
list, 323 

when releasing dead page table 
page, 322 

miscellaneous wait state 
See MWAIT 

MMG spinlock 
held during 

global section creation, 162, 163, 
165 

global section deletion, 191 
global section mapping, 181, 182, 

184 
L3PTE initialization, 152, 156 
locking of pages into working set, 

339 
lowering of working set limit, 331, 

332 
MMG$WRTMFYPAG's processing 

of PAGE_TABLE requests, 280 
MMG$WRTMFYPAG's scan of 

modified page list, 279, 282 
modified page write I/O completion, 

283 
nonpaged pool expansion, 438 
page I/O completion, process page 

not copy-on-reference, 240 
page protection changes, 220, 223 
page read completion, 274 
raising of working set limit, 331 
removal of virtual pages from 

working set, 345 
swapping, 363, 365 
$UPDSEC processing, 290 
virtual page deletion, 197 

synchronizing access to 
GPT, 104 
GSTE, 103 
PFN database, 83 
PHD, 51 
RMD list, 81 
section reference count, 57 
system space L3PTEs, 71, 72 
system working set list, 59 

use by 
EXE$CHK_WAIT_BHVR, 338 
EXE$COPY_FOR_PAGE, 225 
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MMG spinlock 
use by (Cont.) 

EXE$DELETE_BUFOBJ, 211 
EXE$FIND_GPAGE_64, 217 
kernel mode code to prevent 

changes to working set, 350 
LCKBUFOBJPAG, 209 
MMG$FREWSLE, 350 
MMG$LOCK SYSTEM_PAGES, 

351 
page fault handler, 230 
swapper, 366 

MMG_CTLFLAGS parameter (SYSGEN) 
B ~ C E  use of, 363 
checked when forming template PTE, 

187 
controlling OpenVMS testing of 

memory, 89 
effect on no-TB-miss-memory-barrier- 

required bit, 240, 246, 248, 252, 
263, 264, 275 

enabling proactive memory reclama- 
tion, 337 

SCH$OSWPSCHED routine use of, 
368 

use during inswap, 391 
use of MMG$M_NO_MB in, 175 

MMG$ALCPHD routine (PHDUTL 
module) 

operations, 331 to 332 
MMG$AR_NULLPFL cell 

null page file control block address, 117 
MMG$AR_SYSPCB cell 

address of system PCB, 59 
MMG$CREDEL routine (SYSCREDEL 

module) 
control flow, 128 
role in memory management system 

services, 127 
MMG$CREPAG_64 routine (SYSCREDEL 

module) 
alternative entry point for, 134 
control flow, 135 

MMG$CRETVA_K routine (SYSCREDEL 
module) 

alternative entry point for 
EXE$CRETVA, 133 

MMG$DALCSTXSCN routine (PHDUTL 
module) 

control flow, 190 to 191 

MMG$DALCSTXSCN routine (PHDUTL 
module) (Cont.) 

operations, 190 
MMG$DALCSTXSCN1 routine (PHDUTL 

module) 
alternative entry point for 

MMG$DALCSTXSCN, 190 
MMG$DALLOC_PFN routine (AL- 

LOCPFN module) 
deallocating physical pages, 302 
reporting free page available, 302 

MMG$DECLARE WSL_PAGER routine 
(SYSLKWSET module) 

operations, 325 
MMG$DELGBLSEC routine (SYSDG- 

BLSC module) 
control flow, 191 to 193 

MMG$DELGBLWCB routine (SYSDG- 
BLSC module) 

control flow, 194 
MMG$DELPAG_64 routine (SYSCREDEL 

module) 
control flow, 197 to 203 

MMG$DEL_CONTENTS_PFN routine 
(ALLOCPFN module) 

partial outswap of PHD, 387 
releasing process page not copy-on- 

reference, 242 
MMG$EXPREG routine (SYSCREDEL 

module) 
alternative entry point for 

EXE$EXPREG, 138 
MMG$FAST_CREATE_64 routine 

(SYSCREDEL module) 
operations, 134 

MMG$FREWSLE routine (PAGEFAULT 
module) 

control flow, 321 
finding room in working set list for new 

page, 232 
locking pages into working set, 

operations, 350 
modified working set list replacement 

algorithm use, 325 
releasing dead page table page, 322 to 

324 
removing 

global read-only page from working 
set list, 259 
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MMG$FREWSLE routine (PAGEFAULT 
module) 

removing (Cont.) 
process page table page from 

working set list, 252, 254 
reusing WSLEs, control flow, 326, 326 

to 328 
updating memory management data 

structures, 240 
MMG$FREWSLX_64 routine (PAGE- 

FAULT module) 
alternative entry point to 

MMG$FREWSLE, 326 
MMG$GL_BWP_MASK cell 

bit mask of offset field bits in virtual 
address, 7 

MMG$GL_BWP_WIDTH cell 
number of bits in a byte-within-page 

offset, 7 
MMG$GL_IO_MEMORY_MAP cell 

I/O PMAP arrays described by, 79 
MMG$GL_MAXPFN cell 

highest entry in PFN database, 82, 83 
MMG$GL_MAX_MEM_FRAGMENTS cell 

maximum number of PMAPS in PMAP 
array, 79 

MMG$GL_MEMSIZE cell 
number of physical pages, 78 

MMG$GL_PAGEDYN cell 
paged pool system space starting 

address, 414, 448 
MMG$GL_PAGE_SIZE cell 

page size, 7 
MMG$GL_PFN_MEMORY MAP cell 

number of valid PMAPs, 79 
MMG$GL_PHYPGCNT cell 

number of physical pages, 78 
MMG$GL_PRVPFN_BLINK cell 

PRVPFN listhead, 89 
MMG$GL_PRVPFN_FLINK cell 

PRVPFN listhead, 89 
MMG$GL_RES_MEM_BLINK cell 

RMD listhead, 81 
MMG$GL_RES_MEM_FLINK cell 

RMD listhead, 81 
MMG$GL_SPTBASE cell 

SPT system virtual address contained 
in, 64 

MMG$GL_SYI_PFN_MEMORY MAP cell 

MMG$GL_SYI_PFN_MEMORY MAP cell 
(Cont.) 

address of longword preceding 
nonpaged pool PMM array, 79 

MMG$GL_SYSPHD cell 
address of system header, 59 

MMG$GL_VA_TO_VPN cell 
number of bits to shift right when 

calculating VPN from virtual 
address, 7 

MMG$GL_VPN_TO_VA cell 
number of bits to shift left when 

calculating virtual address from 
VPN, 7 

MMG$GPQ_PAGE_SWAP_VECTOR cell 
page-and-swap-file vector array 

address, 117 
MMG$GQ_GPT_BASE cell 

GPT address location, 105 
MMG$GQ_PROCESS_SPACE_LIMIT cell 

maximum size of P2 space plus 1, 14 
MMG$GQ_SHARED_VA_PTE S cell 

address of division between process- 
private and system space, 16 

MMG$GQ_SYSTEM_LIPT cell 
address of current LIPT, 62 

MMG$GQ_SYSTEM_VIRTUAL_BASE cell 
$2 space base address, 14 

MMG$GQ_SYSWSL cell 
address of system working set, 59 

MMG$GQ_ZEROED_LIST_COUNT cell 
number of pages on zeroed page list, 

87 
MMG$1MGRESET routine (PHDUTL 

module) 
working set limit decreased by, 319 
working set limit reset by, 318 

MMG$IOLOCK routine (IOLOCK module) 
PFN$L_PAGE_STATE field modify bit 

set by, 93 
MMG$LCKULKPAG routine (SYSLK- 

WSET module) 
control flow, 339 to 340 
unlocking pages from memory, 343 to 

344 
MMG$LOCK_SYSTEM_PAGES routine 

(LOCK_SYSTEM_PAGES module) 
control flow, 351 

MMG$L_ACCESS_MODE field 
definition and use, 126 

Index-28 



MMG$L_CALLEDIPL field 
definition and use, 127 

MMG$L_EFBLK field 
definition and use, 127 

MMG$L_MMG_FLAGS field 
definition and use, 125 

MMG$L_PAGCNT field 
definition and use, 127 

MMG$L_PAGESUBR field 
definition and use, 127 

MMG$L_PER_PAGE field 
definition and use, 127 

MMG$L_PGFLCNT field 
definition and use, 127 

MMG$L_SAVRETADR field 
definition and use, 127 

MMG$L_SVSTARTVA field 
definition and use, 127 

MMG$L_VFYFLAGS field 
definition and use, 127 

MMG$PAGEFAULT routine (PAGEFAULT 
module) 

clustered read, 271 to 272 
demand zero page, 245 to 246 
errors returned by, 235 to 236 
global copy-on-reference page, 261 to 

262 
global page-file section page, 262 to 

264 
global read-only page, 256 to 257 
memory-resident global demand zero 

section page, 264 to 266 
page fault handling, common steps, 

230 to 234 
process page copy-on-reference, 243 
process page not copy-on-reference, 237 

to 238 
process page table page, 251 to 252, 

252 to 254 
resolving page fault from free page list, 

246 to 248 
system page not copy-on-reference, 266 
testing for outswap, 255 

MMG$PURGE_MPL routine (WRTMFY- 
PAG module) 

operations, 276 to 278 
MMG$PURGWSSCN routine 

(SYSPURGWS module) 
control flow, 345 

MMG$REL_PFN routine (ALLOCPFN 
module) 

operations, 327 
MMG$SHRINKWS routine (SYSADJWSL 

module) 
operations, 332 

MMG$TRY_ALL_64 routine (SYSCRE- 
DEL module) 

operations, 134 
MMG$UPDSECAST routine 

(SYSUPDSEC module) 
operations, 292 

MMG$V_CHGPAGFIL bit 
definition and use, 125 

MMG$V_CLUSTER_DEL bit 
definition and use, 126 

MMG$V_DELGBLDON bit 
definition and use, 127 

MMG$V_DELPAG_NOP bit 
definition and use, 126 

MMG$V_NOWAIT_IPL0 bit 
definition and use, 125 

MMG$V_NO_IRP_DELETE bit 
definition and use, 126 

MMG$V_NO_OVERMAP bit 
definition and use, 125 

MMG$V_PARTIAL_FIRST bit 
definition and use, 126 

MMG$V_PARTIAL_LAST bit 
definition and use, 126 

MMG$V_RWAST_AT_IPL8 bit 
definition and use, 126 

MMG$V_SHARED L3PTS bit 
definition and use, 126 

MMG$V_WINDOW bit 
definition and use, 126 

MMG$WRTMFYPAG routine (WRTMFY- 
PAG module) 

See also modified page writer 
called by swapper to initiate modified 

page writing, 362 
control flow, 279 to 283 
operations, 276 

MMG$WRT_PGS_BAK routine 
(SYSUPDSEC module) 

operations, 291 
$MMGDEF macro 

memory management system service 
stack scratch space defined by, 125 
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MMGLSTD]$TBI_DATA_64 routine (TBI_ 
ROUTINES module) 

operations, 329 
MM G LSTD] $TB I_DATA_64_THREAD S 

routine (TBI ROUTINES module) 
operations, 329 

MMGLSTD]$TBI_SINGLE routine (TBI_ 
ROUTINES module) 

operations, 329 
MMGLSTD]$TBI_SINGLE_THREADS 

routine (TBI_ROUTINES module) 
operations, 329 

MMG_STD$ALLOC_PAGSWP_PAGES 
routine (PAGE_FILE module) 

allocation of swap space, 378 
control flow, 285 to 286 

MMG_STD$ALLOC_SWAP_SPACE 
routine (PAGE_FILE module) 

operations, 377 
MMG_STD$CHECK_CONTRACT_64 

routine (SYSCREDEL module) 
alternative entry point for CHECK_ 

CONTRACT_64, 203 
MMG_STD$CHECK_CONTRACT_64_l 

routine (SYSCREDEL module) 
alternative entry point for CHECK_ 

CONTRACT_64, 203 
MMG_STD$CREPAG_64 routine 

(SYSCREDEL module) 
alternative entry point for 

MMG$CREPAG_64, 134 
MMG_STD$DALCSTXSCN routine 

(PHDUTL module) 
alternative entry point for 

MMG$DALCSTXSCN, 190 
MMG_STD$DEALC_PAGSWP_PAGES 

routine (PAGE_FILE module) 
operations, 301 

MMG_STD$DECPTREF_PFNDB routine 
(PAGEFAULT module) 

process page not copy-on-reference, 241 
process page table page, 254 to 255 

MMG_STD$DELGBLSEC routine 
(SYSDGBLSC module) 

alternative entry point for 
MMG$DELGBLSEC, 191 

MMG_STD$DELGBLWCB routine 
(SYSDGBLSC module) 

alternative entry point for 
MMG$DELGBLWCB, 194 

MMG_STD$DELWSLEX_64 routine 
(PAGEFAULT module) 

operations, 327 
MMG STD$FAST_CREATE_64 routine 

(SYSCREDEL module) 
operations, 134 

MMG STD$FREWSLX_64 routine 
(PAGEFAULT module) 

updating memory management data 
structures, 240 

MMG_STD$GSDSCAN routine 
(SYSDGBLSC module) 

operations, 159 
MMG STD$INCPTREF_64 routine 

(PAGEFAULT module) 
control flow, 270 

MMG_STD$ININEWPFN_64 routine 
(PAGEFAULT module) 

control flow, 268 to 269 
MMG STD$ININEWPFN_DZRO_64 

routine (PAGEFAULT module) 
control flow, 268 
memory-resident global demand zero 

section page, 264 
MMG_STD$IOUNLOCK_BUF routine 

(IOLOCK module) 
releasing direct I/O buffer pages, 241 

MMG_STD$LCKBUFOBJPAG routine 
(SYSLKWSET module) 

alternative entry point for LCKBU- 
FOBJPAG, 209 

MMG_STD$LCKULKPAG routine 
(SYSLKWSET module) 

alternative entry point for 
MMG$LCKULKPAG, 339 

MMG_STD$MAKE_WSLE_64 routine 
(PAGEFAULT module) 

control flow, 269 to 270 
updating data structures for new 

WSLE, 254 
MMG_STD$PTEREF_64 routine (SVAPTE 

module) 
control flow, 220 

MMG_STD$SETFLTPAG_64 routine 
(SYSSETPRT module) 

alternative entry point for SETFLT- 
PAG_64, 223 

MMG_STD$SETPRTPAG_64 routine 
(SYSSETPRT module) 
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MMG_STD$SETPRTPAG_64 routine 
(SYSSETPRT module) (Cont.) 

alternative entry point for SETPRT- 
PAG_64, 220 

MMG_STD$TRY_ALL_64 routine 
(SYSCREDEL module) 

operations, 134 
MMG_STD$USE_RES_MEM routine 

(MEM_ALLOC module) 
control flow, 173 

modes 
See access modes 

modified page list 
cache, characteristics and use, 38 
characteristics and use, 33 
doubly linked, 86 
flushing, 277 
high limit, clearing to wake swapper, 

355 
insertion of page removed from working 

set, 327 
listhead location, 86 
location of modified available pages, 

229 
maintained by swapper, 354 
page fault from, resolving, 248 
selective purging, when requested, 277, 

324 
size, effect on resource wait, 326 
SYSGEN parameter 

that specifies low limit, 278 
used when shrinking, 279 

modified page write 
clustering, 284 
delaying while lowering working set 

limit, 332 
I/O request descriptions, 292(table), 

294 (table) 
to a page file, example, 287, 288 (fig.) 
$UPDSEC compared with, 289 
when requested, 276 to 277 
writing to backing store, 284 to 285 

modified page writer 
See also MMG$WRTMFYPAG routine 
alternative name for swapper, 33, 229 
control flow, 278 to 283 
I/O completion routine 

control flow, 283 
operations on write error, 248 

IRP listhead, 279 

modified page writer (Cont.) 

MAINTAIN request, 278 
OPCCRASH request, 278 
operations, 276 
page table arrays, 118 to 121 
PAGE_TABLE request, 278 
requesting, 276 to 278 
SCH$GL_SIP, indication of in-progress 

writes, 279 
SVAPTE request, 277 
writing process page not copy-on- 

reference, 241 
modified page writer I/O request packet 

See MPW IRP 
modify bit (GPTE) 

setting, 263, 275 
modify bit (PTE) 

See also saved modify bit 
clearing, 240, 291 
meaning, 21, 68 
saving in PFN database, 240 
set by software, 66 
setting, 240, 248, 252, 263, 264, 275 

MPW IRP (modified page writer I/O 
request packet) 

layout, 280 (fig.) 
MPW$GL_IRPBL cell 

MPW IRP listhead, 279 
MPW$GL IRPFL cell 

MPW IRP listhead, 279 
MPW$GL STATE cell 

highest pending modified page write 
request, 277 

MPW$GL SVAPTELOW cell 
address of lowest PTE for modified 

page list purge, 281 
MPW$INIT routine (WRTMFYPAG 

module) 
operations, 121 

MPW_HILIMIT parameter (SYSGEN) 
effect on modified page writing, 276 
swapper use of, 354 

MPW_IOLIMIT parameter (SYSGEN) 
maximum number of concurrent I/O 

operations, 120 
maximum number of concurrent page 

writes, 279 
MPW_LOLIMIT parameter (SYSGEN) 

B ~ C E  use of, 363 
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MPW_LOLIMIT parameter (SYSGEN) 
(Cont.) 

effect on nonpaged pool expansion, 438 
modified page list low limit, 278 

MPW_LOWAITLIMIT parameter 
(SYSGEN) 

default low limit for modified page list, 
279 

effect on placing kernel thread into 
RSN$_MPWBUSY state, 304 

effect on removing a modified page from 
working set, 326 

swapper use of, 362 
MPW_THRESH parameter (SYSGEN) 

B ~ C E  use of, 363 
MPW_WAITLIMIT parameter (SYSGEN) 

effect on placing kernel thread into 
RSN$_MPWBUSY state, 304 

effect on removing a modified page from 
working set, 326 

MPW_WRTCLUSTER parameter 
(SYSGEN) 

effect on size of swap space, 360 
maximum size of modified page write 

cluster, 285 
minimum size for $UPDSEC cluster, 

290 
target size for 

modified page write cluster, 114, 
285 

$UPDSEC cluster, 291 
multiprocessor systems 

See SMP systems 
multithreaded processes 

automatic working set limit adjustment 
in, 336 

COLPG wait for page fault, 249 
invalidating translation buffer entries 

for, 200 
kernel threads running on multiple 

processors, 328 
meeting scheduling state constraints in 

OSWPSCHED table, 371 
TROLL table, 374 

page fault effect on, 249 
page fault handling upcall, 233, 234 

MWAIT (miscellaneous wait state) 
See also kernel thread states; resource 

wait 
placing a kernel thread into, 233 

N 
naming conventions 

entry points, xxiv 
no-execute bit (PTE) 

meaning, 68 
no-TB-miss-memory-barrier-required bit 

(PTE) 
clearing, 240 
OpenVMS Alpha use of, 20 
setting, 240, 246, 248, 252, 263, 264, 

275 
NOCLUSTER parameter (SYSGEN) 

determining if page fault clustering is 
enabled, 271 

nonpaged dynamic memory 
See pool- nonpaged 

nonpaged pool 
See pool- nonpaged 

nonuniform memory access 
See NUMA 

NOPOBUFS linker option 
constraint on expansion of process 

allocation region to P0 space, 451 
NOPAGEFILE (console error message) 

page fault allocation, 285 
NOPGFLSWP parameter (SYSGEN) 

inhibits swapping to page files, 113 
swapper use of, 358 

NPAGECALC parameter (SYSGEN) 
allowing for automatic calculation of 

NPAGEDYN SYSGEN parameter, 
430 

NPAGEDYN parameter (SYSGEN) 
controlling nonpaged pool, 430 
effect on nonpaged pool expansion, 439 
NPAGECALC parameter allows for 

automatic calculation of, 430 
NPAGERAD parameter (SYSGEN) 

effect of SYSGEN parameter RAD_ 
SUPPORT on, 430 

effect on size of initial per-RAD pool 
section, 441 

NPAGEVIR parameter (SYSGEN) 
controlling nonpaged pool, 430, 437 
effect on nonpaged pool expansion, 439 

NPAG_AGGRESSIVE parameter 
(SYSGEN) 

controlling nonpaged pool reclamation, 
435 

Index-32 



NPAG_BAP_MAX parameter (SYSGEN) 
effect on BAP initialization, 444 

NPAG_BAP_MAX_PA parameter 
(SYSGEN) 

effect on BAP initialization, 444 
NPAG_BAP_MIN parameter (SYSGEN) 

effect on BAP initialization, 444 
NPAG_BAP_MIN_PA parameter 

(SYSGEN) 
effect on BAP initialization, 444 

NPAG_GENTLE parameter (SYSGEN) 
controlling nonpaged pool reclamation, 

435 
NPAG_INTERVAL parameter (SYSGEN) 

controlling nonpaged pool reclamation, 
435 

$NPHDEF macro 
defines offset in pool history buffer, 

461 
NPOOL structure 

characteristics and use, 427 
contents, 427 (fig.) 
field definitions, 427 to 428 
initializing, 431 

NPOOL$AR_LSTHDS field 
definition and use, 427, 441, 443 

NPOOL$L_BAP_POOL_DATA field 
definition and use, 427 

NPOOL$L_GRAN_MASK field 
definition and use, 428 

NPOOL$L_MAX_LSTHDS field 
definition and use, 441 

NPOOL$L_NUM_LOOKASIDE field 
definition and use, 428 

NPOOL$L_ON_RAD_DEALLOC field 
definition and use, 441 

NPOOL$L_POOL_FLAGS field 
definition and use, 443 

NPOOL$L_POOL_MAP_SEGMENTS field 
definition and use, 427 

NPOOL$L_POOL_MAP_SIZE field 
definition and use, 427 

NPOOL$L_RINGBUFCNT field 
definition and use, 427 

NPOOL$L_TOTAL_DEALLOC field 
definition and use, 441 

NPOOL$PS_NEXTNPH field 
definition and use, 427 

NPOOL$PS_POOL_MAP field 
definition and use, 427 

NPOOL$PS_RINGBUF field 
definition and use, 427 

NPOOL$PS_VARIABLE_LIST field 
definition and use, 428 

NPOOL$Q_PER_POOL_DIAG field 
definition and use, 443 

null page 
term definition, 70 

NUMA (nonuniform memory access) 
accessing physical memory, 402 
characteristics and use, 3 
image code huge pages for RADs, 75 
multiple sections of nonpaged pool on, 

436 
page table hierarchy on, 67(fig.) 
per-RAD pool on, 426, 440 
physical memory configuration on 

GS160 system, 4 
physical memory sharing on, 33 
recording number of associated RAD, 

46 
storage for variable-length allocation 

on, 402 
virtual address translation, overview, 

19 
NUMA platforms 

allocating pages, 268 

O 
object modules 

names, xxiv 
object rights block 

See ORB 
OPCCRASH request (modified page 

writer) 
description, 278 

OpenVMS Alpha executive 
See executive 

OpenVMS Alpha listings 
names, xxiv 

OpenVMS Alpha operating system 
See also address space; executive 
address space, characteristics and use, 

29 to 31 
components, xxiv 

ORB (object rights block) 
allocated from paged pool, 449 
GSD field containing address of, 103 

OSWPSCHED module 
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OSWPSCHED module (Cont.) 
SCH$OSWPSCHED 

operations, 367 to 368, 371 
OSWPSCHED table processing, 

375 to 376 
TROLLER, control flow, 374 to 375 

OSWPSCHED table 
characteristics and definitions, 369 to 

373 
entries and sections, 370(table), 371 

(table) 
multithreaded processes meeting 

scheduling state constraints in, 
371 

processing to find outswap candidate, 
375 to 376 

outer access mode 
term definition, xxv 

outswap 
See also PCB$L_SWAPSIZE; PCB$L_ 

WSSWP; swapper 
disabling, PCB$L_STS bit that 

specifies, 44 
example, 383 (fig.), 384 (fig.), 385 (fig.) 
global pages, 381 
number of pages, PCB field that 

specifies, 45 
operations, 377 to 389 
pages with direct I/O in progress, 381 
pages within buffer objects, 381 
PHD and page tables, 382, 386 to 389 

partial, 386 to 387 
preparing page tables for, 357 
preparing PHD for, 387 to 389 
process body, 378 to 386 
processes, PCB fields that describe, 46 
selecting process for, 377 

OUTSWAP routine (SWAPPER module) 
control flow, 366 to 368 

P 
P0 space 

created by image activator, 30 
definition, 12 
deleted at image rundown, 30 
OpenVMS Alpha use of, 30 
program region, 47 
protections on, 30 

P1 space 

P1 space (Cont.) 
control region, 47 
creating, by executive, 61 
definition, 12 
deleted at image rundown, 30 
mapping PHD into, swapper 

implications, 392 
OpenVMS Alpha use of, 29 
protections on, 30 

P2 space 
64-bit program space, 47 
definition, 14 
deleted at image rundown, 30 
OpenVMS Alpha use of, 30 
protections on, 30 

packets 

See also fixed-length packets 
fixed-length, compared to variable- 

length blocks, 417 
term definition, 402 

page cluster size 
reducing paging I/O overhead with, 39 

page coloring 
characteristics and use, 88 
classifications, 88 
free page list, example, 89(fig.) 

page fault handler 

See also page faults; MMG$PAGEFAULT 
routine 

implementation, 229 
term definition, 228 
working set list use by, 53 
working set size affected by, 317 

page fault wait state 

See PFW 
page faults 

See also memory management; page 
fault handler; page transitions; 
paging; swapper; working set list 

characteristics, 5 
during modified page writing, 248 
exception information, 25 
exception parameters, 229 
faulting 

page in, 6 
page out, 6 

for process pages, 248 
from release pending page location, 

248 
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page faults (Cont.) 

generating, 25 
handling 

common steps, 230 to 235 
initial, 229 
on a mass storage medium, 

231(fig.) 
I/O request descriptions, 292(table), 

293 (table) 
IPL 2 highest permitted, reasons for, 

230 
page read completion, operations, 274 

to 276 
page table, transformed from code or 

data page faults, 232, 254 
preventing during elevated IPL 

execution, 347 
rate, effect on working set size, 40 
resolving from free page list, 246 to 

248 
resolving from modified page list, 248 
soft, 33, 34 

actions that  cause, 257 
term definition, 229, 246 

TB miss PALcode routine generating, 
229 

page file control block 

See PFL 
page file map 

See PFLMAP 
page file quota 

charged at virtual address space 
creation, 135 

constraint on process address space 
size, 131 

L3PTs that  do not require, 131 
pages that  do not require, 131 

page files 

See also PFL 
assigning, 284 
backing store for demand zero pages, 

237 
backing store, constraint on process 

address space, 132 
cluster factor, 274 
data structures, 112 to 118 
deallocating pages in, 301 
deinstalling, 118, 302 
described by two bitmaps, 113 

page files (Cont.) 

linking PFLs into circular lists, 118 
modified page write to, example, 287, 

288 (fig.) 
null page file control block, address of, 

117 
overview of use, 301 
page transitions for page located in, 

control flow, 245 
page, transitions, 247 (fig.) 
pr imary 

SYSINIT use, 118 
PTEs containing a page file page 

number,  70 
space allocation, 285 to 286 
space flee, PFL field that  specifies, 116 
SYSGEN parameter  that  inhibits 

swapping to, 113 
writing modified pages to, 285 

page flame number 

See PFN 
page lists 

See also bad page list; free page list; 
modified page list; zeroed page list 

caches, characteristics and use, 38 
doubly linked, 86 
listhead locations, 86 

page location code 
PFN$L_PAGE_STATE field, meaning, 

91 t o92  
page read cluster 

characteristics and use, 271 to 274 
formation of, 272 
maximum size, 274 
operations, 271 

page read error 
cross-mode 

handling, 235 
term definition, 235 

further processing, 276 
handling, 235 
PFN database information, 92 
processing, control flow, 275 
term definition, 235 

page replacement algorithm 
process-local, virtual memory design 

component, reasons for, 37 
TB check made by, 22 

page table base register 

See PTBR 
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page table entry 
See PTE 

page table space 
accessing page tables through, II 
accessing requires 64-bit addressing, 

14 
characteristics and use, 11 to 12, 14 

to 17 
constraints, 16 
constructing, 16 to 17 
contains linear array of L3PTEs, 16 
contents, 14 
initializing, 16 
layout, 17 (fig.) 
mapping of, 16 to 17 
number of L3PTs contained in, 17 
process-private page tables mapped 

into, 14 
shared page tables mapped into, 14 
TB miss PALcode routine use of, control 

flow, 23 to 25 
transforming page table hierarchy into, 

18 (fig.) 
page tables 

See also GPT; LIPT; L2PT; L3PT; SPT 
accessing through page table space, 11 
aider process selected for inswap, 396 

(fig.) 
arrays 

modified page writer, 118 to 121 
swapper, 118 to 121 

characteristics and use, 5 
creating address space, effect on, 131 
global, not described by WSLEs, 232 
hierarchy, 8, 109(fig.) 

OpenVMS Alpha, 15 (fig.) 
transforming into page table space, 

18 (fig.) 
mapping system space, 11 
page faults for, 232, 233 
pages 

breaking ties to higher-level page 
table, 255 

cluster factor, 274 
creating, 136 
dead, identifying, 324 
dead, releasing, 322 to 324 
dead, term definition, 323 

page tables 
pages (Cont.) 

global, determining, based on 
faulting virtual address, 230 
(fig.) 

global, not described by WSLEs, 
232 

global, PFN$L_SHRCNT meaning, 
298 

locked into working set list, 312, 
313 

number of outswapped PHD and, 
PCB field that  specifies, 45 

outswapping, 382 
process, determining, based on 

faulting virtual address, 230 
(fig.) 

process, PFN$L_SHRCNT 
meaning, 297 to 298 

transitions, 253 (fig.) 
updating, page fault handling, 254 

preparing, for outswap, 357, 387 to 389 
process 

formerly pageable part of PHD, 
255 

I/O request descriptions, 
292(table), 293 (table) 

page, page transitions, control flow, 
250 to 255 

pages described by WSLEs, 232 
process-private 

accessibility, 11 
characteristics and use, 60 to 71, 

131 
hierarchy, 63 (fig.), 67 (fig.) 
mapping into page table space, 11, 

14 
rebuilding, 393 (table), 394 (table), 

398 (fig.) 
rebuilding, after inswap, 393 to 

395 
shared page tables relation to, 109 

(fig.) 
swapper access to, 380 

reducing memory needed for, 8 
relations among, 9 (fig.) 
replicated system 

characteristics and use, 65 to 66 
hierarchy, 67 (fig.) 
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page tables (Cont.) 

sections, that  map Galaxywide global 
sections, 178 to 179 

shared 
benefits, 158 
Galaxywide section, 178 
global section, creating, 174 
global section, mapping, 174, 175 
global sections mapped with, 309 
mapping, 187 
mapping into page table space, 14 
mapping memory-resident global 

sections, 108 
not represented in working set list, 

131 
page file quotea not required, 131 
process-private page tables relation 

to, 109 (fig.) 
region, creating, 108, 129 
region, deleting, 191 

swapper access to, 356 
swapper use of, 357 
system 

hierarchy, 63 (fig.) 
not pageable, 62 

virtual address translation use of, 8 to 
9 

when kernel thread placed into 
execution, 11 

page transitions 

See also page faults 
buffer object page, 251 (fig.) 
copy-on-reference page, 243(fig.) 
demand zero page, 243 (fig.) 
global pages 

control flow, 256 to 266 
copy-on-reference, 260 (fig.) 
copy-on-reference, control flow, 260 

to 262 
demand zero section, control flow, 

264 to 266 
memory-resident, 265 (fig.) 
page-file section, 263 (fig.) 
page-file section, control flow, 262 

to 264 
read-only, 258 (fig.) 
read-only, control flow, 256 to 259 
writable, control flow, 259 

not copy-on-reference page, 239(fig.) 
page tables, 230 (fig.) 

page transitions (Cont.) 

pages located in a page file, control 
flow, 245, 247 (fig.) 

process page table pages, 253(fig.) 
process page table pages, control flow, 

250 to 255 
process pages 

buffer object, control flow, 249 to 
250 

characteristics and use, 236 to 
255 

copy-on-reference, control flow, 242 
to 245 

demand zero, control flow, 245 to 
246 

in transition state, control flow, 
246 to 249 

not copy-on-reference, control flow, 
237 to 242 

system pages 
characteristics and use, 266 to 

267 
copy-on-reference, control flow, 267 
demand zero, control flow, 267 
not copy-on-reference, control flow, 

266 to 267 
page type bits 

located in 
PFN$L_PAGE_STATE, 230 
WSLE, 230 

page types 
identification, 230 (fig.) 
transitions 

PFN$C_GBLWRT, 259 to 266 
PFN$C_GLOBAL, 256 to 259 
PFN$C_GPGTBL, 267 
PFN$C_PPGTBL, 250 to 255 
PFN$C_PROCESS, 236 to 250 
PFN$C_SYSTEM, 266 to 267 

page write cluster 
components of, 285 
determining maximum size, 285 
formation, 284 
size, 284 to 285 

factor for $UPDSEC, 290, 291 
terminating, conditions that affect, 291 
writing to backing store, 284 to 285 

page-and-swap-file vector 

See also PFL 
array, index into, 360 
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page-and-swap-file vector (Cont.) 

characteristics and use, 117 to 118 
header, symbolic names for fields in, 

defined by $PTRDEF macro, 117 
PFL address stored in, 114 
virtual address, 117 

page/swap file mapping window block 

See PFLMAP 
PAGECRIT (console error message) 

page fault allocation, 286 
paged dynamic memory 

See pool- paged 
paged pool 

See pool - paged 
PAGEDYN parameter  (SYSGEN) 

size of paged pool, 448 
PAGEFAULT module 

MMG$FREWSLE 
control flow, 321 
finding room in working set list for 

new page, 232 
locking pages into working set, 

operations, 350 
modified working set list 

replacement algorithm use, 
325 

releasing dead page table page, 
322 to 324 

removing global read-only page 
from working set list, 259 

removing process page table page 
from working set list, 252, 254 

reusing WSLEs, control flow, 326, 
326 to 328 

updating memory management 
data structures, 240 

MMG$FREWSLX_64, alternative entry 
point to MMG$FREWSLE, 326 

MMG$PAGEFAULT 
clustered read, 271 to 272 
demand zero page, 245 to 246 
errors returned by, 235 to 236 
global copy-on-reference page, 261 

to 262 
global page-file section page, 262 

to 264 
global read-only page, 256 to 257 
memory-resident global demand 

zero section page, 264 to 266 

PAGEFAULT module 
MMG$PAGEFAULT (Cont.) 

page fault handling, common steps, 
230 to 234 

process page copy-on-reference, 
243 

process page not copy-on-reference, 
237 to 238 

process page table page, 251 to 
252, 252 to 254 

resolving page fault from free page 
list, 246 to 248 

system page not copy-on-reference, 
266 

testing for outswap, 255 
MMG_STD$DECPTREF_PFNDB 

process page not copy-on-reference, 
241 

process page table page, 254 to 
255 

MMG_STD$DELWSLEX_64, 
operations, 327 

MMG_STD$FREWSLX_64, updating 
memory management data 
structures, 240 

MMG_STD$INCPTREF_64, control 
flow, 270 

MMG_STD$ININEWPFN 64, control 
flow, 268 to 269 

MMG_STD$ININEWPFN_DZRO_64 
control flow, 268 
memory-resident global demand 

zero section page, 264 
MMG_STD$MAKE_WSLE_64 

control flow, 269 to 270 
updating data structures for new 

WSLE, 254 
SCANDEADPT, operations, 323 to 324 

PAGEFILE.SYS file 
See SYS$SPECIFIC: [SYSEXE]PAGEFILE.SYS 

PAGEFILEFULL (console error message) 
page fault allocation, 286 

PAGEFRAG (console error message) 
page fault allocation, 286 

pagelet 
term definition, 7 

pages 
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pages (Cont.) 

See also buffer object pages; copy-on- 
reference pages; demand zero - 
pages; free pages; global pages; 
huge pages; modified page writer; 
null page; page tables - pages; 
physical pages; process pages; 
system pages; virtual pages 

characteristics, 7 
definition, 5 
effect of size on virtual addresses, 10 

(table) 
partial, process sections, 57, 70 
size, 5, 7 
systemwide cache of recently used 

virtual pages, modified and free 
page lists used as, 33 

untested, characteristics and use, 92 
whose WSLEs are in working set list 

permanently locked regions, 312 
working set 

states, 379 
swapper operations, 380 

PAGE_FILE module 
MMG_STD$ALLOC_PAGSWP_PAGES 

allocation of swap space, 378 
control flow, 285 to 286 

MMG_STD$ALLOC_SWAP_SPACE, 
operations, 377 

MMGSTD$DEALC_PAGSWP_PAGES, 
operations, 301 

PAGE_TABLE requests (modified page 
writer) 

description, 278 
MMG$WRTMFYPAG control flow, 279 

to 281 
PAGFILCNT parameter (SYSGEN) 

obsolete, 117 
paging 

See also MMG$PAGEFAULT 
demand, 6 
dynamics, overview, 227 to 229 
I/O, mechanisms, 292 to 295 
modified page writer PTE array, 

operations, 120 to 121 
PFL use by, 285 to 286 
reducing I/O overhead, mechanism for, 

39 
replacement 

See replacement paging 

paging (Cont.) 

scheduling influenced by, 302 
swapping compared with, 36, 37 to 37 

(table), 39 
working set replacement algorithm, 

compared with other virtual 
memory architectures, 38 

PAGIO routine (IOCIOPOST module) 
global read-only page I/O completion, 

257 
page read completion 

control flow, 274 to 276 
operations, 234 

process copy-on-reference page I/O 
completion, 243 

process page not copy-on-reference I/O 
completion, 240 

system page not copy-on-reference I/O 
completion, 267 

PAGNTRNVAL bugcheck 
generated by EXE$DELETE_BUFOBJ, 

212 
PAGTBLPFC parameter (SYSGEN) 

default cluster factor for process page 
table pages, 274 

PALcode routines 
See also TB miss; REI 
double TB miss, control flow, 24 to 25 
implementing queue insertions and 

removals, 417, 419 
LDQP, accessing physical addresses, 5 
STQP, accessing physical addresses, 5 
TB miss 

control flow, 23 to 25 
loading exception parameter 

information into registers, 
25 

partial section bit (GPTE) 
setting, 161, 165 

partial section bit (PTE) 
meaning, 70 
setting, 146, 147, 149 

PCB (process control block) 
characteristics and use, 44 to 46 
KTB overlaying, 44 
memory management, field definitions, 

45 (fig.) 
system 

See system PCB 
PCB$A_FREWSLE_CALLOUT field 

Index-39 



PCB$A_FREWSLE_CALLOUT field 
(Cont.) 

characteristics and use, 325 
definition and use, 46 

PCB$K_MAX_KT_COUNT field 
maximum number of kernel threads, 

59 
PCB$L_ACC_WAITIME field 

accumulated wait time, 337 
use by EXE$CHK_WAIT_BHVR, 337 

PCB$L_APTCNT field 
definition and use, 45, 360 

PCB$L_BUFOBJ_CNT field 
definition and use, 46 

PCB$L_FREWSLE_PARAM field 
characteristics and use, 325 
definition and use, 46 

PCB$L_GPGCNT field 
definition and use, 46 
working set size calculated from, 313 

PCB$L_HOME_RAD field 
number of associated RAD on NUMA 

system, 46 
PCB$L_PHD field 

definition and use, 46 
PCB$L_PIXHIST field 

implications in multithreaded 
processes, 336 

PCB$L PPGCNT field 
decrementing, 241 
definition and use, 46 
incrementing, 269 
working set size calculated from, 313 

PCB$L STS field 
See also PCB$V__x bits 
definition and use, 44 

PCB$L STS2 field 
See also PCB$V_x bits 
definition and use, 44 

PCB$L_SWAPSIZE field 
definition and use, 46 
swap space size, 359, 360 

PCB$L_WSSWP field 
definition and use, 46, 360 
swap space location, 359 

PCB$Q_BUFOBJ_LIST field 
definition and use, 46, 99 

PCB$Q_KEEP_IN WS field 
definition and use, 46 
locking system pages using, 350 

PCB$Q_KEEP_IN_WS field (Cont.) 
starting address of virtual pages locked 

in working set list dynamic region, 
313 

synchronizing access to, using inner 
mode semaphore, 350 

PCB$Q_KEEP_IN_WS2 field 
definition and use, 46 
ending address of virtual pages locked 

in working set list dynamic region, 
313 

locking system pages using, 350 
synchronizing access to, using inner 

mode semaphore, 350 
PCB$V_DISAWS bit (PCB$L_STS field) 

definition and use, 44 
PCB$V_FREDLOCK bit (PCB$L_STS2 

field) 
definition and use, 45 

PCB$V_PHDLOCK bit (PCB$L_STS2 
field) 

definition and use, 44 
PCB$V_PHDRES bit (PCB$L STS field) 

definition and use, 44 
PCB$V_PSWAPM bit (PCB$L STS field) 

definition and use, 44 
PCB$V_RES bit (PCB$L_STS field) 

definition and use, 44 
PCHECK$B_ALLO field 

definition and use, 456, 457 
PCHECK$B_FLAGS field 

definition and use, 456 
PCHECK$B_FREE field 

definition and use, 456, 457 
PCHECK$B_SIZE_TO_CHECK field 

definition and use, 456, 457 
per-RAD pool 

See pool- per-RAD 
Perform Fast I/O system service 

See $IO_PERFORM 
PFCDEFAULT parameter (SYSGEN) 

global page file section page fault 
cluster value, 166, 167 

PFL (page file control block) 
address stored in page-and-swap-file 

vector, 114 
characteristics and use, 113 to 117 
field definitions, 114 to 117 
initializing, 114 
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PFL (page file control block) (Cont.) 
layout, 115 (fig.) 
linking into circular lists, 118 
null, address of, 117 
paging use of, 285 to 286 
use during page file space allocation, 

285 to 286 
PFL$L_FREPAGCNT field 

definition and use, 116 
PFL$L_PFC field 

cluster factor for page files, 274 
PFL$L_WINDOW field 

definition and use, 360 
PFLMAP (page file map) 

field definitions, 359 
layout and field definitions, 360 (fig.) 
swapper use of, 359 

PFLMAP$B_ACTPTRS field 
characteristics and use, 359 

PFLMAP$B_TYPE field 
characteristics and use, 359 

PFLMAP$L_PAGECNT field 
characteristics and use, 359 

PFLMAP$Q_PTR field 
characteristics and use, 359 

PFLMAP$W_SIZE field 
characteristics and use, 359 

PFN (page frame number) 
characteristics and use, 5 
copied into I/O adapter map registers, 

119 
database 

address, 83 
as a physical memory data 

structure, 32 
changes aider inswap, 398 (fig.) 
characteristics and components, 82 

to 99 
effect on size of system space, 61 
entry characteristics, 83 
field descriptions, 85 (table) 
fields that compose, 86 (fig.) 
highest entry in, 82, 83 
initializing records, 175 
mapped by own granularity hint 

region, 75 
record-oriented, 84 
swapper use of, 357 
synchronizing access to, 83 
SYSBOOT allocates space for, 82 

PFN (page frame number) (Cont.) 

fields in L3PTEs, 150 
free page list, 33 
identifying physical page, 7 
index into PFN database, 84 
list, private 

characteristics and use, 89 
pages managed independently of 

OpenVMS, 92 
mapped global section, creating, 157 
mapped process section, creating, 150 

to 153 
modified page list, 33 
recording in GPTEs, 175 
transforming, 84 
zeroed page list, 33 

PFN database 
See PFN - database 

PFN memory map 

See PMAP 
PFN$AL_COLOR_HEAD field 

definition and use, 88 
PFN$AL_COLOR_TAIL field 

definition and use, 88 
PFN$AL_COUNT field 

definition and use, 86 
PFN$AL_HEAD array 

page list listhead locations, 86 
PFN$AL_TAIL array 

page list tail locations, 86 
PFN$C_RELPEND page location code 

characteristics and use, 92 
PFN$C_UNTESTED page location code 

characteristics and use, 92 
PFN$GL_PHYPC~NT cell 

modified when processing RMDs, 81 
number of fluid pages in physical 

memory, 78 
PFN$L_BLINK (backward link) field 

definition and use, 86, 90 
free page list, example, 87(fig.) 
physical page information, 84 

PFN$L_COLOR_BLINK (backward link) 
field 

definition and use, 96 
physical page information, 84 

PFN$L_COLOR_FLINK (forward link) 
field 

definition and use, 96 
physical page information, 84 
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PFN$L_FLINK (forward link) field 
definition and use, 86, 90 
free page list, example, 87(fig.) 
physical page information, 84 

PFN$L_GBL_LCK_CNT field 
definition and use, 91 

PFN$L_PAGE_STATE field 
bad page status bit, 92 
balance slot bit, 94 
buffer object status bit, 92 
collided page status bit, 92 
contents, 91 (fig.) 
definition and use, 86, 91 to 94 
delete contents status bit, 93 
location bits 

changing from active, 241 
changing to active, 240, 243, 246, 

248, 249, 252, 257, 262, 275 
changing to read error, 275 
changing to read in progress, 238, 

243, 257, 261 
changing to release pending, 243, 

249 
changing to write in progress, 241, 

282, 291 
page location codes, 91 to 92 
page read error page, 92 
physical page information, 84 
read in progress page, 92 
release pending page, 91 
report event status bit, 93 
saved modify status bit, 93 
shared memory bit, 94 
swap page valid bit, 94 
top-level page table bit, 94 
transition page types distinguished by, 

71 
transition state of global page, 106 
unavailable page bit, 93 
write in progress page, 92 
zeroed page list, 92 
zeroed shared memory page bit, 94 

PFN$L_PHD field 
definition and use, 95 

PFN$L_PTE field 
definition and use, 94 

PFN$L_PT_PFN field 
contents, 95 
definition and use, 94 
traversing links of, 95 

PFN$L_SHRCNT (share count) field 
decrementing, 241, 242, 254, 255, 259, 

281 
definition and use, 90 
for global page table page, 267 
incrementing, 238, 245, 249, 250, 252, 

254, 257, 261, 262, 270, 395 
initialized to 1 

for global section page, 269 
for memory-resident section page, 

269 
meaning for 

global page, 298 
global page table page, 298 
process page table page, 297 to 

298 
system page, 299 

PFN$W_REFCNT, effect on, 270, 296, 
297 

transition from 0 to 1, 298 
transition from 1 to 0, 255, 259, 298 

PFN$L_WSLX_QW (working set list 
index) field 

definition and use, 90 
PFN$PQ_DATABASE cell 

PFN database starting address, 83 
PFN$Q_BAK field 

clearing when page contents deleted, 
242 

contents, 97 (fig.) 
definition and use, 84, 96, 106 
initializing for process page that  is 

copy-on-reference, 243 
initializing for process page that  is not 

copy-on-reference, 238 
swapper use of, 357 

PFN$Q_BAK_PRVPFN field 
definition and use, 84, 96 

PFN$Q_PTE_INDEX field 
contents, 95 
definition and use, 94 

PFN$V SWPPAG_VALID bit (PFN 
database) 

definition and use, 96 
PFN$W_BO_REFC field 

decrementing, 250 
definition and use, 98 
incrementing, 249 

PFN$W_IO_STS field 
characteristics and use, 92 
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PFN$W_IO_STS field (Cont.) 
definition and use, 98 

PFN$W_PT_LCK_CNT field 
characteristics and use, 299 to 300, 

300 
decrementing, 344 
definition and use, 98 
incrementing, 340 

PFN$W_PT_VAL_CNT field 
characteristics and use, 299 
decrementing, 241, 252, 254 
definition and use, 98 
effect on PHD$L_PTCNTVAL, 269 
incrementing, 254, 269, 270 
not maintained for system space page 

table pages, 266 
transition from 1 to 0, 254 

PFN$W PT_WIN_CNT field 
adjusting, 200 
characteristics and use, 300 
decrementing, 199, 200 
definition and use, 98 
incrementing, 152, 156, 175, 187, 394 
initializing, 175 

PFN$W_REFCNT (reference count) field 
actions triggered by decrementing to 

zero, 241 
characteristics and use, 296 to 297 
decrementing, 240, 241, 242, 243, 249, 

252, 257, 274, 275, 292 
definition and use, 95 
incrementing, 238, 241, 245, 248, 249, 

250, 256, 261, 270, 282 
initialized to 1 

for global section page, 269 
for memory-resident section page, 

269 
transition from 1 to 0, 240, 274 

PFN$W SWPPAG field 
definition and use, 96 
I/O error status, 275 

PFN-mapped sections 
See global sections - PFN-mapped; 

process sections - PFN-mapped 
PFNMAP (map to specific physical pages 

privilege) 
accessing physical pages, 141 
creating global PFN-mapped section, 

157 

PFNMAP (map to specific physical pages 
privilege) (Cont.) 

required to delete PFN-mapped global 
section, 189 

use by 
$CRMPSC to create PFN-mapped 

process section, 150 
$DGBLSC to delete PFN-mapped 

global section, 189 
PFN_COLOR_COUNT parameter 

(SYSGEN) 
number of page coloring classifications, 

88 
rounding up, at system initialization, 

88 
PFN TO_ENTRY macro 

calculating PFN database record 
address, 84 (ex.) 

PFRATH parameter (SYSGEN) 
automatic working set limit adjustment 

use of, 335 
PFRATL parameter (SYSGEN) 

automatic working set limit adjustment 
use of, 336, 337 

$PFREEDEF macro 
offsets to free pool space defined by, 

458 
PFW (page fault wait state) 

See also kernel thread states; page 
faults 

characteristics and use, 302 
ending, 275 
page fault that results in, 248 
placing a kernel thread into, 234 
wait for I/O completion on page to be 

deleted, 195, 198 
PGFIPLHI bugcheck 

generated 
by page fault handler, 230, 338, 

346 
during pool poisoning, 458 

PHD (process header) 
accessing through CTL$GL_PHD cell, 

51 
address contained in PCB and KTB, 46 
aider process selected for inswap, 396 

(fig.) 
balance set slots 

arrays, 111 (fig.) 
occupant of, 110 

Index-43 



PHD (process header) 
balance set slots (Cont.) 

use with, 110 (fig.) 
characteristics and use, 14, 49 to 59 
checking page fault address in, 255 
deleted process, reclaiming memory 

from, 366 
double-mapped, 50 
expanding, 59 
fixed area, 51 

layout, 52 (fig.), 53 (fig.) 
floating-point register save area as 

component of, 51 
HWPCB contained in, 51 
index array, 110 (fig.), 111, 112 
inswap, 390 to 393 
locating address of, from PFN, 95 
mapping into P1 space, swapper 

implications, 392 
memory residence, PCB$L_STS bit that  

specifies, 44 
outswap, 382, 386 to 389 

disabling, PCB$L_STS bit that  
specifies, 44 

disabling, PCB$L_STS2 bit that  
specifies, 44 

distinguished from process body 
outswapping, 387 

freeing for, 386 
information used during, 50 
number of outswapped PHD and 

page table pages, PCB field 
that  specifies, 45 

outswapped process, reclaiming 
memory from, 366 

preparing for, 387 to 389 
P1 space address of, 51 
P1 window to, implications of, 392 
page arrays 

BAK, characteristics and use, 58 
BAK, swapper use of, 357 
characteristics and use, 50, 58 

PFN field that  specifies address of, 95 
process memory management data 

recorded in, 31 
process-specific memory management 

data structures, 50 (fig.) 
PST as component of, 49 

characteristics and field definitions, 
54 to 58 

PHD (process header) 
PST as component of (Cont.) 

dynamic growth area effect on, 50 
location, 55 (fig.) 

reference count array, 110(fig.), 111 
reference count, swapper use of, 386 
size, 110 

relation to working set list, 317 
swappability, 50 
swapper use of, 354, 356 to 357 
synchronizing access to, 51 
unusual characteristics, 50 to 51 
working set list 

as component of, 53 to 54, 308 
physical memory pages described 

by, 32 
PHD BAK array 

See PHD - page arrays 
PHD$L_DFWSCNT field 

definition and use, 311 
PHD$L_EXTDYNWS field 

definition and use, 311, 319 
PHD$L_FRED_OFF field 

definition and use, 59 
PHD$L_FREPOVA field 

virtual address of first unmapped page 
in P0 space, 49 

PHD$L_FREP1VA field 
virtual address of first unmapped page 

in P1 space, 49 
PHD$L_PGTBPFC field 

cluster factor for process page table 
pages, 274 

PHD$L_PHVINDEX field 
balance set slot number, 111 

PHD$L_PST_BASE_MAX field 
maximum size of PST, 56 

PHD$L_PST_BASE_OFFSET field 
PST location, 54, 55 (fig.), 56 
PSTE references relative to, 54 

PHD$L_PST_FREE field 
most recent addition to PSTE free list, 

56 
PHD$L_PST_LAST field 

definition and use, 55 
largest index of a PSTE, 55(fig.) 

PHD$L_PTCNTACT field 
characteristics and use, 298 
decrementing, 255 
incrementing, 254, 270, 395 
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PHD$L_PTCNTACT field (Cont.) 
number of active page table pages, 323 

PHD$L_PTCNTLCK field 
incrementing, 394 
process page table page mapping locked 

or window pages, 300 
PHD$L_PTCNTVAL field 

decrementing, 241, 252 
incrementing, 254, 269, 270 
number of page table pages with valid 

WSLEs, 323 
process page table page mapping valid 

pages, 299 
PHD$L_WSDYN field 

address of WSLE following last WSLE 
in region, 312 

dynamic region ring buffer start, 312 
PHD$L_WSEXTENT field 

definition and use, 311 
PHD$L_WSLAST field 

index to last WSLE, 312 
reset to eliminate empty unusable 

WSLE, 322 
working set ending address calculated 

from, 310 
working set list capacity calculated 

from, 314 
PHD$L_WSLIST field 

permanently locked region index, 312 
working set list capacity calculated 

from, 312 
PHD$L_WSLOCK field 

locked by user request region index, 
312 

PHD$L WSNEXT field 
index to most recently inserted WSLE, 

313 
PHD$L_WSQUOTA field 

definition and use, 311 
PHD$L_WSSIZE field 

definition and use, 311 
working set limit calculated from, 313 

PHD$PQ_P0_FIRST_FREE_VA field 
definition and use, 60 

PHD$Q_BAK_ARRAY field 
location of BAK array, 58 

PHD$Q_FREE_PTE_COUNT field 
address space checks against, 132 
initializing, 132 

PHD$Q_NEXT_REGION_ID field 

PHD$Q_NEXT_REGION_ID field (Cont.) 
definition and use, 48 

PHD$V_NOACCVIO bit (PHD$L_FLAGS 
field) 

swapper setting of, 255 
PHD$V_NO_WS_CHNG bit (PHD$L_ 

FLAGS field) 
obsolete for locking system pages, 349 

PHDUTL module 
MMG$ALCPHD, operations, 331 to 

332 
MMG$DALCSTXSCN 

control flow, 190 to 191 
operations, 190 

MMG$DALCSTXSCN1 
alternative entry point for 

MMG$DALCSTXSCN, 190 
MMG$IMGRESET 

working set limit reset by, 318 
working set size decreased by, 319 

MMG_STD$DALCSTXSCN 
alternative entry point for 

MMG$DALCSTXSCN, 190 
PHV$GL_PIXBAS cell 

See also PHD 
starting address of process index array, 

112 
PHV$GL_REFCBAS_LW array 

decrementing, 275 
for page table page, 255, 283, 298 

incrementing, 270, 282 
for active page table page, 395 
for page table page, 254, 298 
for transition page table page, 252 

starting address of reference count 
array, 111, 300 to 301 

physical address 
characteristics, 5 
references through PALcode routines, 5 

physical address space 
characteristics, 5 

physical memory 
See also memory; pages; physical pages 
characteristics and mechanisms, 7 to 

28 
configuration, 78 to 79 

Galaxy system, 2, 3 (fig.) 
GS160 system, 4 (fig.) 
SMP system, 2 
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physical memory 
configuration (Cont.) 

uniprocessor system, 2 
data structures, overview, 32 to 33, 77 

to 78 
definition, 1 
extensions in support of VLM, 41 
factors that reduce amount under 

OpenVMS control, 77 
managing, overview, 35 
noncontiguous, supported, 32 
parameters that control management 

of, 35 
partitioning in Galaxy platforms, 34 to 

35 
Reserved Memory Registry file that 

describes, 80 to 81 
sharing 

on NUMA system, 33 
overview, 33 to 35 

testing 
by console, 89 
by OpenVMS, 89 
deferred, 89 

unlocking pages from, 343 to 344 
use for improved application 

performance, 41 
physical memory map 

See PMM 
physical pages 

See also pages 
allocating, 32 

for inswap, 397 (fig.) 
on a NUMA platform, 268 
page fault handling, 268 to 269 
permanently, 438 

breaking ties 
to virtual pages, 242 
with GPTEs, 259 

characteristics, 7 
deleting, 196 
fluid, minimum required for pool 

expansion, 438 
lists of unoccupied, 86 
page coloring classification effect on, 88 
PFN database index, 84 
RAD replication requirements, 65 
section pages, use on Galaxy platform, 

35 

physical pages (Cont.) 

size, 5 
state indicated by PFN$L_PAGE_ 

STATE field, 91 
virtual pages mapped to, 5 

PHYSICAL_MEMORY parameter 
(SYSGEN) 

number of reserved pages in physical 
memory, 78, 82 

physical memory reserved by, 82 
reducing amount of physical memory 

under OpenVMS control, 78 
specifying pages to be excluded from 

OpenVMS use, 78 
pixscan mechanism 

effect of recent boost on automatic 
working set limit adjustment, 336 

swapper trimming affected by, 40 
PMAP (PFN memory map) 

array 
allocating, 79 
layout, 80 (fig.) 

PMAP$L_PFN_COUNT field 
definition and use, 79 

PMAP$L_START_PFN field 
definition and use, 79 

PMM (physical memory map) 
characteristics and use, 32, 78 
field definitions, 79 
layout, 79 (fig.) 

POISON_PACKET routine (MEMORYALC 
module) 

pool poisoning operations, 457 to 459 
pool 

See also lookaside lists; process 
allocation region 

allocation statistics 
BAP, 454 
categories, 453 
collecting, 454 (table) 
per-RAD pool, 454 
recorded in POOLZONE and 

POOLZONE_PAGE structures, 
455 

use of, 453 
areas, differences among, 403(table), 

404 (table), 405 (table) 
BAP 

allocation statistics, 454 
characteristics and use, 426 
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pool (Cont.) 
checking, 455 to 462 

constraints, 460 
operations, 459 to 460 
POOLCHECK parameter effect on, 

456 
corruption of, detecting, 455 to 462 
expanding, 433 
filling, POOLCHECK parameter effect 

on, 456 
fixed-length packets 

compared to variable-length blocks, 
417 

listhead locations, 417 (table) 
structure and operations, 417 to 

425 
granularity, 411 
history 

buffer, layout, 461 (fig.) 
recording, 461 to462 
SDA utility displaying of, 461 
SYSGEN parameters that  affect, 

461 
nonpaged 

See also reclamation 
adaptive management, term 

definition, 435 
adjusting initial size of, 430 
allocating, 431 to434 
components of, 426 
contraction only after bootstrap- 

ping, 439 
data structures, 427 to 429, 430 
data structures, contents, 427(fig.) 
deallocating, 434 to 435 
expanding, 437 
initializing, 430 to 431 
listhead location, 413 (table), 417 

(table) 
lookaside lists, 429 (fig.) 
on NUMA systems, 426, 436 
protection, 426 
reclamation, 435 to 437 
synchronization, 439 to 440 
uses of, 430 

paged 
allocating, 448 
data structures located in, 449 to 

450 
deallocating, 448 

pool 
paged (Cont.) 

expanding, 449 
listhead location, 413 (table) 
protection, 448 
structure and operations, 448 to 

450 
synchronization, 449 

per-RAD 
allocating, 442 
allocation statistics, 454 
characteristics and use, 440 
data structures, 440 to 441 
data structures, relations among, 

441 (fig.) 
deallocating, 442 
initializing, 441 

poisoning 
format of poisoned space, 458(fig.) 
functions, 455 
operations, 457 to459 

space required by executive, 453 
system space 

characteristics and use, 422 
creating, 422 

term definition, 401 
variable-length blocks 

allocating, 412 to 414 
allocating, example, 415 (fig.) 
compared to fixed-length packets, 

417 
deallocating, 414 to 416 
deallocating, example, 416(fig.) 
layout, 412 (fig.) 
listhead locations, 413 (table) 
structure and operations, 411 to 

416 
zones 

allocating packets from, 425 
data structures, characteristics and 

use, 423 
data structures, relations among, 

424 (fig.) 
deallocating packets from, 425 
lookaside lists, 422 to 425 
reclamation, 425 
routines that  create, 447 

POOL spinlock 
held during 

nonpaged pool allocation, 433 
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POOL spinlock 
held during (Cont.) 

nonpaged pool deallocation, 435 
nonpaged pool expansion, 438 
nonpaged pool reclamation, 436 

serializing access to nonpaged pool 
variable-length list, 432, 434, 439 

POOLCHECK bugcheck 
generated 

during pool checking, 460 
when pool corruption is detected, 

457 
when pool is poisoned, 455 
when pool's FREE pattern is not 

intact, 459 
reason codes, 460 

POOLCHECK parameter (SYSGEN) 
ALLO byte, definition and use, 457 
characteristics and use, 455, 456 to 457 
effect on loading monitor version of 

SYSTEM_PRIMITIVES, 456 
effect on recording pool history, 461 
field and flag definitions, 456(table), 

456 (fig.) 
loading alternative versions, 453 
SIZE_TO_CHECK byte, definition and 

use, 457 
$POOLCHECKDEF macro 

POOLCHECK fields defined by, 456 
POOLPAGING parameter (SYSGEN) 

effect on paged pool creation, 448 
POOLZONE structure 

characteristics and use, 422 to 423 
field definitions, 423 
pool allocation statistics recorded in, 

455 
relations with other pool zone data 

structures, 424 (fig.) 
POOLZONE_PAGE structure 

field definitions, 423 
listheads for, 423 
pool allocation statistics recorded in, 

455 
relations with other pool zone data 

structures, 424 (fig.) 
POOLZONE_REGION structure 

characteristics and use, 422 to 423 
describing XFC lookaside lists, location 

of, 447 
field definitions, 423 

POOLZONE_REGION structure (Cont.) 
relations with other pool zone data 

structures, 424 (fig.) 
POOLZONES module 

EXE$POOLZONE_ALLOCATE, 
allocating packets from pool zone, 
425 

EXE$POOLZONE_CREATE, creating 
system space pool, 422 

EXE$POOLZONE_DEALLOCATE, 
deallocating packets from pool 
zone, 425 

EXE$POOLZONE_PURGE, 
reclamation of pool zone, 425 

EXE$POOL_ALLOCATE, allocating 
packets from pool zone, 425 

EXE$POOL_DEALLOCATE, 
deallocating packets from pool 
zone, 425 

PQB (process quota block) 
deallocated to lookaside list, 449 
lookaside list, 417 (table) 

PQL_DWSDEFAULT parameter 
(SYSGEN) 

adjusted at system initialization, 318 
number of entries in working set list, 

312 
PQL_MWSDEFAULT parameter 

(SYSGEN) 
adjusted at system initialization, 318 

primary page file 
See SYS$SPECIFIC: [SYSEXE]PAGE- 

FILE.SYS 
primary swap file 

See SYS$SPECIFIC:[SYSEXEISWAP- 
FILE.SYS 

priorities 
See also IPL 
as a condition for outswap and swapper 

trimming selection, 372 
privileged architecture library code 

See PALcode routines 
PRMGBL (create permanent global 

sections privilege) 
required for 

permanent global section creation, 
141 

permanent global section deletion, 
189 
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PRMGBL (create permanent global 
sections privilege) (Cont.) 

use by 
$CRMPSC, 141 
$DGBLSC, 189 

proactive memory reclamation 
compared to swapper trimming, 319 
effect on working set size, 319 
from periodically waking processes, 

337 to 338 
preventing, 351 
SYSGEN parameter  that  enables, 337 

process accounting information 
PHD component, 51 

process allocation region 
allocating, 450 to 451 
data structures located in, 451 
deallocating, 450 to 451 
expanding, 451 
listhead location, 413 (table) 
memory management,  characteristics 

and use, 450 to 452 
mutex used for synchronizing access to, 

451 
protection, 450 
structure and operations, 450 to 452 
synchronization, 451 

process body 
outswapping, 378 to 386 

distinguished from PHD 
outswapping, 387 

rebuilding, after inswap, 393 to 399 
process context 

swapper use, 356 
process control block 

See PCB 
process header 

See PHD 
process header page arrays 

See PHD - page arrays 
process page table pages 

See also page table pages 
determining, based on faulting virtual 

address, 230 (fig.) 
page transitions, control flow, 250 to 

255 
process page tables 

See page tables 
process pages 

process pages (Cont.) 

See also address space; memory 
management; pages 

determining, based on faulting virtual 
address, 230 (fig.) 

origins, 236 
page faults, wait states, 248 
page transitions, characteristics and 

use, 236 to 255 
process-private page table page, page 

transitions, control flow, 250 to 
255 

reading, I/O request descriptions, 292 
(table), 293(table) 

types, PFN$C_PROCESS, 248 
process pool 

See process allocation region 
process priorities 

See priorities 
process quota block 

See PQB 
process section table 

See PST 
process section table entry 

See PSTE 
process sections 

See also global sections 
backing store, 142 (table) 
characteristics and use, 30, 54 
creating, 54 

backed by a file, 144 to 150 
control flow, 144 to 147 
overview, 141 to 143, 143 

data structures, 54 to 58 
deleting section page, 196 
partial pages, 57, 70 
PFN-mapped 

creating, 150 to 153 
requirements for a granularity hint 

region, 152, 156 
PTEs, characteristics and use, 70 
types, 142 (table) 

process states 

See kernel thread states 
process-private virtual address space 

See also P0 space; P1 space; P2 space; 
page table space; process sections 

characteristics and use, 11 
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process-private virtual address space 
(Cont.) 

mapping very large, 13 
regions, 31 

processes 
See also fork processes; kernel threads; 

multithreaded processes; PCB 
conditions for outswapping, 377 
implicit constraints on swapper action, 

373 
inswap, selecting, 365 to 366, 389 
memory management data structures 

specific to, 43 to 71 
memory residence, PCB$L_STS bit that 

specifies, 44 
outswap 

example, 383 (fig.), 384 (fig.), 385 
(fig.) 

selecting, 368 to 376 
page tables 

See page tables 
priority 

See priorities 
quotas 

PHD component, 51 
shrink, selecting, 368 to 376 
states 

See kernel thread states 
troll, selecting, 368 to 375 

PROCSECTCNT parameter (SYSGEN) 
maximum PST size, 56, 319 
working set list capacity affected by, 

319 
PROCSTRT module 

EXE$PROCSTRT 
KRP lookaside list initialization, 

452 
process allocation region address 

space reserved by, 450 
program region 

definition, 31 
protection 

See also access modes 
memory 

Alpha access checking, 23 
PTE bits that contain, 20 
virtual memory role in, 2 

nonpaged pool, 426 
paged pool, 448 

protection (Cont.) 
pages, valid access mode combinations, 

20 
process allocation region, 450 
virtual address space, different areas 

distinguished, 30 to 31 
virtual page 

access controlled by, 5 
changing, 219 to 222 

protection bits (PTE) 
OpenVMS Alpha use of, 20 

PRVPFN (private PFN listhead) 
characteristics and use, 89 

pseudo devices 
terminal drivers, use of buffer objects 

by, 206 
PST (process section table) 

maximum size of, PHD field that 
specifies, 56 

organization, 55 
PHD component, 31, 49 

characteristics and field definitions, 
54 to 58 

dynamic growth area effect on, 50 
location, 55 (fig.) 

working set list increase effect on, 319 
working set list kept adjacent to, 

reasons for, 56 
PSTE (process section table entry) 

address computation, 54 to 55 
asynchronous deletion 

during file section creation, 149 
during PFN-mapped process 

section creation, 151, 153, 
156 

during process section creation, 
144, 147 

during virtual address creation, 
134 

during virtual address space 
contraction, 203 

operations, 190 to 191 
control bits, 70 
creating, 145 
field names defined by $SECDEF 

macro, 56 
initializing fields in, 57 
layout, 57 (fig.) 
locating virtual pages in section file 

through, 57 to 58 

Index-50 



PSTE (process section table entry) (Cont.) 
not required for demand zero address 

space, 132 
PHD component, 31, 54 to 58 
PTE relation to, 70 
size and location, 54 
synchronizing access to, 55 

PSWAPM (change process swap mode 
privilege) 

locking into balance set enabled by, 
219 

required, to lock pages in memory, 342 
use by 

$LCKPAG, 342 
$LCKPAG_64, 343 
$SETSWM, 219 

PTBR (page table base register) 
contents, 8 
specifying SVAPTE modified page 

requests, 277 
[PTD] SYS$FTDRIVER 

use of buffer objects by, 206 
PTE (page table entry) 

See also address space; GPTE; L3PTE; 
page tables; pages 

accessing stale data using, 24 
accessing, complexity, 94 
address space match bit, 20, 26 
bits that  specify number of pages in TB 

entry group, 28 
characteristics and use, 5 to 6 
containing 

global page table index, 
characteristics, 70 

page file page number, characteris- 
tics, 70 

PST index, characteristics, 70 
contents, 19 to 21 
demand zero page, characteristics, 71 
effect on physical page assignment, 94 
fault-on-execute bit 

exception information, 25 
fault generation, 23 
faults, OpenVMS handling of, 27 
OpenVMS Alpha use of, 27 

fault-on-read bit 
exception information, 25 
fault generation, 23 

fault-on-write bit 
exception information, 25 

PTE (page table entry) 
fault-on-write bit (Cont.) 

fault generation, 23 
forming template, 186 
Galaxywide section effect on contents 

of, 187 
granularity hint bits, 20 
initial state of faulting, page read 

clustering dependence on, 272 
invalid forms, 70 to 71 
locating, 94 
maximum addressable memory limited 

by layout of, 21 
modify bit, 21, 66 

set for buffer object page, 210 
no-TB-miss-memory-barrier-required 

bit, OpenVMS Alpha use of, 20 
owner field, memory management 

system service checking, 124 
page in transition, characteristics, 71 
process, GPTEs and, 105 (fig.) 
software bits, 66 to 68 
system services that  initialize, 132 
transition, locating, 387 
valid 

Alpha architectural definition of, 
2O (fig.) 

described in working set list, 49 
valid and invalid forms, 69(fig.) 
valid bit, meaning, 5 
window bit set for PFN-mapped page, 

151, 152, 155, 156 
PTECHECK module 

EXE $GET_VA_RAD_INFOW, control 
flow, 218 

Purge Working Set system services 
See $PURGWS; $PIYRGE_WS 

$PURGE_WS (Purge Working Set system 
service) 

control flow, 345 to 346 
effect on working set size, 319 

$PURGWS (Purge Working Set system 
service) 

control flow, 345 
effect on working set size, 319 

PURGWSPAG routine (SYSPURGWS 
module) 

control flow, 345 
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O 
QBB (quad building block) 

characteristics and use, 3 
$QIO (Queue I/O Request system service) 

special entry points for memory 
management requests, 292 

quad building block 
See QBB 

quadword index 
term definition, xxv 

quadwords 
how represented in figures, xxvi 

quantum 
initial, as a condition for outswap and 

swapper trimming selection, 372 
Queue I/O Request system service 

See $QIO 
queues 

absolute 
element contents, 417 
inserting and removing elements, 

419 
implementing insertions and removals, 

417, 419 
self-relative 

element contents, 417 
inserting and removing elements, 

419 

R 
RAD (resource affinity domain) 

accessing physical memory on a NUMA 
platform, 402 

characteristics and use, 4 
free page list for, 268 
home, inswapping process with, 390 
image code huge pages for, 75 
L1PT use by, 19, 66 
L2PT use by, 66 
L3PT use by, 66 
nonpaged pool lists for, 426 
number of, recorded in PCB$L_HOME_ 

RAD and KTB L HOME_RAD, 46 
physical page allocation, 268 
replicating system space, 65 
replication requirements, 65 
SMP system with multiple, replicating 

system space code, 19 

RAD (resource affinity domain) (Cont.) 
soft affinity, characteristics and use, 

392 
specifying where global section should 

be created, 170, 179 
use while resolving page fault from free 

page list, 246 
zeroed page list for, 268 

RAD_SUPPORT parameter (SYSGEN) 
effect on SYSGEN parameter 

NPAGERAD, 430 
enabling RAD support on NUMA 

system, 46, 65, 75, 88 
physical page allocation use of, 268 
system space replication controlled by, 

19 
RDE (region descriptor entry) 

accessed only from process context, 49 
allocated from P1 space variable-length 

pool, 47 
characteristics and use, 32, 47 
field definitions, 47 to 49 
initializing, 130 
layout, 49 (fig.) 
PHD component, 51 
process-permanent, in the PHD, 48 

(fig.) 
scanning list of user-defined, 130 
synchronizing access to, 49 

RDE$L_FLAGS field 
definition and use, 48 

RDE$L_REGION_SIZE field 
definition and use, 48 

RDE$L_TABLE_LINK field 
definition and use, 47 

RDE$PQ_FIRST_FREE_VA field 
definition and use, 48 

RDE$PQ_START_VA field 
definition and use, 48 

RDE$PS_FIRST FREE_VA field 
definition and use, 48 
PHD$L_FREPOVA alias for, in program 

region RDE, 49 
PHD$L_FREP1VA alias for, in control 

region RDE, 49 
RDE$PS_START_VA field 

definition and use, 48 
RDE$PS_VA_LIST_BLINK field 

listhead for queue of RDEs, 47 
RDE$PS_VA_LIST_FLINK field 
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RDE$PS_VA_LIST_FLINK field (Cont.) 
listhead for queue of RDEs, 47 

RDE$Q_REGION_ID field 
definition and use, 48 
initializing, 130 

RDE$Q_REGION_SIZE field 
alias for RDE$L_REGION_SIZE, 48 

RDE$R_REGPROT field 
definition and use, 48 

RDE$W_SIZE field 
definition and use, 47 

RDE$W_SUBTYPE field 
definition and use, 47 

RDE$W_TYPE field 
definition and use, 47 

read in progress page location code 
meaning, 92 

read-only global pages 
See global pages; global sections 

reclamation 
from lookaside lists, attempting to 

allocate nonpaged pool, 433 
gentle compared to aggressive, 435 
nonpaged pool, 435 to 437 
pool zone, 425 
SYSGEN parameters that control, 435 

region descriptor entry 
See RDE 

regions 
attributes, 47 
creating additional, 47 
deleting at image rundown, 47 
expanding automatically, 140 
process-permanent 

characteristics, 47 
expanding as dynamic regions are 

deleted, 47 
location, 47 
shrinking as dynamic regions are 

created, 47 
virtual address, creating, 129 to 130 

registers 
See PTBR; TBCHK register; VIRBND 

register; Vt~B register 
REI (return from exception or interrupt) 

use in page fault handling, 234 
release pending page location code 

meaning, 91 
page fault from, 248 

RELEASE_PROCESS_HEADER routine 
(SWAPPER module) 

preparing PHD for outswap, 388 
RELPHD routine (SWAPPER module) 

preparing PHD for outswap, 388 
replacement paging 

definition, 6 
preventing, 344 
triggered by, 346 to 347 

reserved memory descriptor 
See RMD 

Reserved Memory Registry 
registering memory-resident sections 

in, 35 
RESHASHTBL parameter (SYSGEN) 

effect on size of lookaside lists, 446 
residency state 

PHD, flag for, 44 
resource affinity domain 

See RAD 
resource availability 

See resource wait 
resource wait 

memory management, characteristics 
and use, 303 to 304 

RSN$_ASTWAIT 
placing a kernel thread in, 304 
waiting for global page I/O 

completion, 195 
waiting for virtual page I]O 

completion, 199, 200 
RSN$_MPLEMPTY 

modified page writer ending, 283 
placing a kernel thread in, 304 

RSN$ MPWBUSY 
ending, 304 
modified page writer ending, 283 
placing a kernel thread in, 304, 

324, 326, 332 
RSN$_NPDYNMEM 

declared available, 439 
placing a kernel thread in, 304, 

431, 439 
RSN$_PGDYNMEM, placing a kernel 

thread in, 448 
RSN$_PGFILE, obsolete, 303 
RSN$_SWPFILE, obsolete, 303 

resources 
See resource wait 
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restart parameter block 
See HWRPB 

return from exception or interrupt 

See REI 
rights identifiers 

VMS$MEM_RESIDENT_USER 
required to create memory-resident 

demand zero global section, 
141 

RMD (reserved memory descriptor) 
characteristics and use, 81 to 82 
creating, 80 
layout, 83 (fig.) 
list 

location, 81 
synchronizing access to, 81 

locating, 173 
processing, 81 

RMD$B_SUBTYPE field 
definition and use, 81 

RMD$B_TYPE field 
definition and use, 81 

RMD$L_ERROR_STATUS field 
definition and use, 82 

RMD$L_FIRST_PFN field 
definition and use, 82 

RMD$L_FLAGS field 
definition and use, 82 

RMD$L_GROUP field 
definition and use, 82 

RMD$L_IN_USE_COUNT field 
definition and use, 82 

RMD$L_PFN_COUNT field 
definition and use, 82 

RMD$L_RAD field 
definition and use, 82 

RMD$L_ZERO_PFN field 
definition and use, 82 

RMD$PS_BLINK field 
definition and use, 81 

RMD$PS_FLINK field 
definition and use, 81 

RMD$T_NAME field 
definition and use, 82 

RMD$W_SIZE field 
definition and use, 81 

RSE module 

RSE module (Cont.) 
EXE$CHK_WAIT_BHVR, proactive 

memory reclamation, control flow, 
337 to 338 

SCH$QEND 
control flow, 334 to 336 

SCH$SWPWAKE, called to awaken 
swapper, 354 

RSN$_x prefix 

See resource wait 
RWAST (AST wait) 

See resource wai t -  RSN$_ASTWAIT 
RWMPB (modified page writer busy) 

See resource wai t -  RSN$_MPWBUSY 
RWMPE (modified page list empty) 

See resource wai t -  RSN$_MPLEMPTY 
RWNPG (nonpaged pool) 

See resource wai t -  RSN$_NPDYNMEM 
RWPAG (paged pool) 

See resource wai t -  RSN$_PGDYNMEM 
RWPFF (page file space) 

See resource wai t -  RSN$_PGFILE 

S 
SO space 

definition, 12 
expanding, 12 

S0/S1 space 
buffers mapped into, 101 
creating, by SYSBOOT, 61 
definition, 12 
double-mapped L3PTs into, 64 
eight highest pages inaccessible, 64 
expandability, 29 
initial size and layout defined by 

SYSBOOT, 72 
OpenVMS Alpha use of, 29 
page table 

accessing, 64 
characteristics and use, 64 
window, 64, 65(fig.) 

S0_PAGING parameter (SYSGEN) 
disabling paging of executive images, 

266 
S1 space 

definition, 12 
$2 space 

base address, 14 
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$2 space (Cont.) 
buffers mapped into, 101 
creating, by SYSBOOT, 62 
definition, 14 
double-mapped L1PT into, 62 
expanding, 62 
GPT location in, 104 
initial size and layout defined by 

SYSBOOT, 72 
OpenVMS Alpha use of, 29 
page table accessing, 64 
PFN database in, 83 
size, 14 

S2_SIZE parameter (SYSGEN) 
effect on size of system space, 61 

saved modify bit (PTE) 
See also modify bit (PTE) 
meaning, 93 

SCANDEADPT routine (PAGEFAULT 
module) 

operations, 323 to 324 
scatter/gather 

I/O operations, 119 to 120 
SCH$GL_MFYLIM cell 

target size of modified page list, 278, 
279 

SCH$GL_MFYLOLIM cell 
target size of modified page list, 279 

SCH$GL_PCBVEC cell 
process index array use, 112 

SCH$GL_SIP field 
SCH$V_MPW bit set while modified 

page writing is in progress, 279 
swapper use of, 358 

SCH$OSWPSCHED routine (OSWP- 
SCHED module) 

operations, 367 to 368, 371 
OSWPSCHED table processing, 375 to 

376 
SCH$PAGEFAULT routine (SCHEDULER 

module) 
control flow, 230 to 234 
errors returned to, 235 to 236 

SCH$QEND routine (RSE module) 
control flow, 334 to 336 

SCH$SWPWAKE routine (RSE module) 
called to awaken swapper, 354 

SCH$V_MPW bit (SCH$GL_SIP field) 
set while modified page writing is in 

progress, 279 

SCH$V_MPW bit (SCH$GL_SIP field) 
(Cont.) 

swapper use of, 358 
SCH$V_SIP bit (SCH$GL_SIP field) 

swapper use of, 358 
SCHED spinlock 

held during 
nonpaged pool synchronization, 

439 
page fault handling, 233 

synchronizing PHD access, 51 
use by 

EXE$SETSWM, 219 
swapper, 363, 365, 366 

SCHEDULER module 
SCH$PAGEFAULT 

control flow, 230 to 234 
errors returned to, 235 to 236 

scheduling 
idle loop, performing deferred memory 

testing, 89 
page fault handling influence on, 302 
queues, swapper scan of, 375 
swapper inswap compared with, 365 

SDA (System Dump Analyzer) 
pool history displayed by, 461 
use of dynamic data structures, 407 

SEC (section table entry data structure) 
field definitions, 56 to 57 

SEC$L_CCB field 
address of CCB, 56 

SEC$L_FLAGS field 
definition and use, 56 

SEC$L_GSD field 
address of GSD, 56 

SEC$L_PFC field 
cluster factor for section file, 274 
definition and use, 56 

SEC$L_REFCNT field 
decrementing for faulted copy-on- 

reference page, 243 
definition and use, 57 
modifying as section pages are deleted, 

57 
relation to SEC$L_UNIT_CNT, 57 

SEC$L_SECXBL field 
definition and use, 56 

SEC$L_SECXFL field 
definition and use, 56 

SEC$L_t[NIT_CNT field 
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SEC$L_UNIT_CNT field (Cont.) 
definition and use, 57 
relation to SEC$L_REFCNT, 57 

SEC$L_VBN field 
definition and use, 56 

SEC$L_VPX field 
definition and use, 57 

SEC$L_WINDOW field 
address of WCB, 56 

$SECDEF macro 
section table entry field names defined 

by, 56 
section files 

cluster factor 
link option, 274 
system service argument, 274 

partial 
term definition, 238 
treatment during page fault, 238, 

243 
VBN, PSTE field that specifies, 58 
writable not copy-on-reference pages, 

242 
writing modified pages to, 285 
writing to backing store, $UPDSEC 

use, 289 
section pages 

backing store for, 236 
not copy-on-reference 

control flow, 237 to 242 
transitions, 239 (fig.) 

use on Galaxy platform, 35 
section table entries 

data structure 
See SEC 

deletable, locating, 190 to 191 
Set Fault Characteristic system services 

See $SETFLT; $SETFLT_64 
Set Process Swap Mode system service 

See $SETSWM 
Set Protection on Pages system services 

See $SETPRT; $SETPRT_64 
SET WORKING_SET command 

See also working set 
characteristics and use, 332 to 333 

SETAST_CONTEXT routine (SWAPPER 
module) 

final processing of inswap, 398 to 399 

$SETFLT (Set Fault Characteristic system 
service) 

control flow, 223 
SETFLTPAG_64 routine (SYSSETPRT 

module) 
control flow, 223 to 224 

$SETFLT_64 (Set Fault Characteristic 
system service) 

operations, 224 
$SETPRT (Set Protection on Pages system 

service) 
See also protection- memory 
control flow, 219 to 220 
side effect, 220 

SETPRTPAG_64 routine (SYSSETPRT 
module) 

control flow, 220 to 222 
$SETPRT_64 (Set Protection on Pages 

system service) 
control flow, 222 

$SETSWM (Set Process Swap Mode 
system service) 

operations, 219 
SETUP routine (SWAPPER module) 

inswap of PHD, 390 to 393 
SGN$GL_BALSETCT cell 

maximum number of concurrently 
resident processes, 110 

share counts (PFN database) 
characteristics and use, 90 

shared memory regions 
characteristics and use, 176 
initializing pages, 179 
naming, 177, 178 

shared page tables 

See page tables - shared 
SHMEM (create/delete objects in shared 

memory privilege) 
creating Galaxywide global sections, 

143 
required for permanent global section 

deletion, 189 
use by $DGBLSC, 189 

shutdown 
effect on modified page writing, 277 

SMP (symmetric multiprocessing) systems 

See also memory management; 
synchronization 

atomic queue modification on, 419 
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SMP (symmetric multiprocessing) systems 
(Cont.) 

invalidating TB on, 240 
physical memory configuration, 2 
physical memory sharing in, 34 
system space replication for multiple 

RADs, 19 
threads accessing stale data, 24 

SMP_SPINWAIT parameter (SYSGEN) 
effect on nonpaged pool reclamation, 

437 
soft page faults 

actions that cause, 257 
characteristics and use, 34 
definition, 33 
page faults resolved as, 33 
term definition, 229, 246 

source modules 
facilities contain, xxiv 
names, xxiv 

spinlocks 
See MMG spinlock; SCHED spinlock 

SPT (system page table) 
See also address space; page tables; 

system space 
accessing, 64 
characteristics and use, 64 
contained in S0/S1 space, 29 
SYSBOOT creating of, 32 
window 

layout, 65 (fig.) 
virtual location, 64 

SPT (system page tablecparen> 
characteristics and use, 61 to 72 

SS$_ABORT error status 
returned by 

EXE$CRMPSC, 160 
MMG$DELPAG_64, 199 
MMG_STD$CREPAG_64, 149, 156 

SS$_ACCVIO error status 
returned by 

EXE$COPY_FOR_PAGE, 225 
EXE$CREATE_BUFOBJ, 208 
EXE$CRMPSC_GPFN_64, 170 
EXE$GETSECI, 215, 216 
EXE $GET_VA_RAD_INFOW, 218 
EXE$LKWSET_64, 341 
EXE$MGBLSC_64, 184 
EXE$SETFLT, 223 

SS$_ACCVIO error status 
returned by (Cont.) 

EXE$SETPRT, 219 
LCKBUFOBJPAG, 209 
memory management system 

services, 128 
MMG$LCKULKPAG, 339 
MMG$PAGEFAULT, 235 
MMG_STD$PTEREF_64, 220 
SETFLTPAG_64, 224 
SETPRTPAG_64, 221 

SS$_ACCVIO exception 
reported by EXE$ACVIOLAT, 140 

SS$_ASTFLT exception 
reported if insufficient user stack space, 

140 
SS$_BADPARAM error status 

returned by 
EXE$ALLOCATE_POOL, 445 
EXE$COPY_FOR PAGE, 225 
EXE$CREATE_BUFOBJ_64, 211 
EXE$CREATE GDZRO, 170 
EXE$CRMPSC_GDZRO_64, 179 
EXE$DELETE_BUFOBJ, 211, 212 
EXE$GETSECI, 216 
EXE$GET_REGION INFO, 214 
EXE$GET_VA_RAD_INFOW, 218 
EXE$SETFLT, 223 

SS$_BADRAD error status 
returned by 

$CREATE_GDZRO_INT, 171 
EXE$CREATE_GDZRO, 170 
EXE$CRMPSC_GDZRO_64, 179 

SS$_CREATED success status 
returned by 

$CREATE_GDZRO_INT, 176 
$CREATE_GFILE_INT, 165 
$CREATE_GPFN_INT, 169 
$CREATE_SHMGS_INT, 179 
EXE$CREATE_GFILE, 162 
EXE$CREATE_GPFN, 168 
EXE$CRMPSC_FILE_64, 150 
EXE$CRMPSC_PFN_64, 157 

SS$_CREATED SHPT success status 
returned by 

$CREATE_GDZRO_INT, 176 
$CREATE_SHMGS_INT, 179 

SS$_DUPLNAM error status 
returned by 

$CREATE_SHMGS_INT, 177 
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SS$_DUPLNAM error status 
returned by (Cont.) 

EXE$CREATE_GFILE, 162 
EXE$CREATE_GPFN, 168 

SS$_EXBUFOBJLIM error status 
returned by 

EXE$CREATE_BUFOBJ_64, 211 
SS$_EXGBLPAGFIL error status 

returned by 
$CREATE_GPFILE_INT, 166 
EXE$CRMPSC, 161 

SS$_EXPGFLQUOTA error status 
returned by 

EXPANDCHK_64, 136 
SS$ EXQUOTA error status 

returned by 
EXPANDCHK_64, 136 
MMG$CREPAG_64, 135 

SS$_GBLSEC_MISMATCH error status 
returned by 

$CREATE_GDZRO_INT, 171 
$CREATE_GFILE_INT, 163 
$CREATE_GPFILE_INT, 166 
$CREATE_GPFN_INT, 168 
EXE$FIND_GPAGE_64, 216 
EXE$MGBLSC, 181 
EXE$MGBLSC_64, 184 
EXE$MGBLSC_GPFN_64, 188 

SS$ GPTFULL error status 
returned by 

$CREATE GDZRO_INT, 174 
$CREATE GFILE_INT, 164 
$CREATE_SHMGS_INT, 177 
EXE$CRMPSC, 161 

SS$_GSDFULL error status 
returned by 

$CREATE_GDZRO, 172 
$CREATE GDZRO_INT, 174 
$CREATE GFILE_INT, 164 
$CREATE_GPFN_INT, 169 
EXE$CRMPSC, 160 

SS$_IDMISMATCH error status 
returned by 

$CREATE_SHMGS_INT, 177 
SS$_ILLPAGCNT error status 

returned by 
$CREATE_GDZRO_INT, 172 
EXE$CREATE_GPFN, 168 
EXE$CRMPSC, 144, 151 
EXE$CRMPSC_PFN_64, 154 

SS$_ILLPAGCNT error status 
returned by (Cont.) 

EXE$MGBLSC_GPFN_64, 188 
SS$_ILLRELPAG error status 

returned by 
EXE$MGBLSC_GPFN_64, 188 
$MGBLSC_GPFN_INT, 188 

SS$_INSFARG error status 
returned by 

32-bit system services, 125 
EXE$LKWSET_64, 341 
memory management system 

services, 128 
SS$_INSFLPGS error status 

returned by 
LCKBUFOBJPAG, 210 
MMG_STD$USE_RES_MEM, 173 

SS$_INSFMEM error status 
returned by 

EXE$ALLOCATE_POOL, 433, 442 
EXE$ALONONPAGED, 432 
EXE$ALONONPAGED_INT, 432 
EXE$ALONPAGVAR_INT, 432 
EXE$ALOPAGED, 448 
EXE$CRMPSC, 160 
EXE$EXTEND_NPP, 438 
EXE LSTD]$ALOP1PROC, 450 
routines allocating space from 

process allocation region, 450 
SS$_INSFWSL error status 

failed address space creation, 131 
returned by 

EXPANDCHK_64, 136 
SS$_INVARG error status 

returned by 
EXE$CRMPSC, 144, 150 
EXE$MGBLSC, 180 

SS$_INVPFN error status 
returned by 

EXE$CREATE_GPFN, 168 
EXE$CRMPSC, 151 
EXE$CRMPSC_PFN_64, 154 

SS$_INV_SHMEM error status 
returned by 

$CREATE_SHMGS_INT, 176 
SS$_IVACMODE error status 

returned by 
EXE$CRETVA_64, 137 
$MGBLSC_GDZRO_INT, 186 

SS$_IVCHAN error status 

Index-58 



SS$_IVCHAN error status (Cont.) 
returned by $CREATE_GFILE_INT, 

163 
SS$_IVCHNLSEC error status 

returned by 
$CREATE_GFILE_INT, 163 
EXE$CRMPSC, 144 
EXE$CRMPSC_FILE_64, 148 

SS$_IVPROTECT error status 
returned by 

EXE$CREATE_GPFN, 168 
EXE$CREATE_REGION_64, 129 

SS$_IVREGID error status 
returned by 

EXE$CRETVA_64, 137 
EXE$CRMPSC_FILE_64, 148 
EXE$CRMPSC_PFN_64, 154 
EXE$DELETE_REGION_64, 205 
EXE$GET_REGION_INFO, 214 
$MGBLSC_GFILE_INT, 184 

SS$_IVREGPROT error status 
returned by EXE$CREATE_REGION_ 

64, 129 
SS$_IVSECFLG error status 

returned by 
EXE$CREATE_GFILE, 162 
EXE$CRMPSC, 144, 150 
EXE$CRMPSC_FILE_64, 148 
EXE$CRMPSC_GFILE_64, 165 
EXE$CRMPSC_GPFN_64, 170 
EXE$CRMPSC_PFN_64, 154 
EXE$MGBLSC, 180 
EXE$MGBLSC_64, 183 
memory management system 

services, 128 
$MGBLSC_GDZRO_INT, 186 

SS$_IVSECIDCTL error status 
returned by 

$CREATE_GDZRO_INT, 171, 172 
$CREATE_GFILE_INT, 163, 164 
$CREATE_GPFN_INT, 168, 169 
EXE$FIND_GPAGE_64, 216 
EXE$MGBLSC_64, 183 

SS$_LCKPAGFUL error status 
returned by EXE$CHKFLUPAGES, 

343 
SS$_LENVIO error status 

returned by 
EXE$GETSECI, 215 
SETPRTPAG_64, 220 

SS$_LEN_NOTBLKMULT error status 
returned by 

$CREATE_GFILE_INT, 163 
EXE$CRMPSC_FILE 64, 148 
EXE$CRMPSC_GFILE_64, 165 

SS$_LEN_NOTPAGMULT error status 
returned by 

$CREATE GDZRO_INT, 172 
EXE$CREATE_REGION_64, 129 
EXE$CRETVA_64, 137 
EXE$CRMPSC_GPFILE_64, 167 
EXE$EXPREG_64, 139 
EXE$FIND_GPAGE_64, 216 
EXE$MGBLSC_64, 183 
$MGBLSC_GDZRO_INT, 186 

SS$_LKWSETFUL error status 
returned by MMG$LCKULKPAG, 340 

SS$_MRES_INCON error status 
returned by $CREATE_GDZRO_INT, 

174 
SS$_MRES PFNSMALL error status 

returned by MMG_STD$USE_RES_ 
MEM, 173 

SS$_NOBREAK error status 
returned by GLX$SHM_REG_DELETE, 

191 
SS$_NOBUFOBJID error status 

returned by EXE$CREATE_BUFOBJ, 
207 

SS$_NOMEMRESID error status 
returned by $CREATE_GDZRO_INT, 

172 
SS$_NONXPAG error status 

returned by EXE$GETSECI, 215 
SS$_NOPRIV error status 

returned by 
32-bit system services, 125 
$CREATE_GDZRO_INT, 171 
$CREATE_GFILE_INT, 163, 164 
$CREATE_GPFN_INT, 169 
EXE$CREATE_BUFOBJ, 208 
EXE$CRETVA, 133 
EXE$CRMPSC, 146, 151, 152, 159 
EXE$CRMPSC_FILE 64, 148 
EXE$CRMPSC PFN 64, 154, 155 
EXE$DELETE_BUFOBJ, 212 
EXE$DELETE_REGION_64, 205 
EXE$DGBLSC, 189 
EXE$FIND_GPAGE_64, 217 
EXE$LCKPAG, 342 
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SS$_NOPRIV error status 
returned by (Cont.) 

EXE$LCKPAG_64, 343 
EXE$MGBLSC, 181 
EXE$MGBLSC_64, 184 
EXE$SETFLT, 223 
EXE$SETPRT, 219 
$MGBLSC_GFILE_INT, 184, 185 
MMG$CREDEL, 128 
MMG$LCKULKPAG, 339 

SS$_NORESERVEDMEM error status 
returned by 

MMG_STD$USE RES_MEM, 174 
SS$ NOSHPTS error status 

returned by 
EXE$CRETVA_64, 137 
EXE$CRMPSC, 146, 152 
EXE$CRMPSC_FILE_64, 148 
EXE$CRMPSC_PFN_64, 154 
EXE$DELTVA, 195 
EXE$MGBLSC, 181 
$MGBLSC_GFILE_INT, 184 

SS$_NOSUCHPAG error status 
returned by 

EXE$FIND_GPAGE_64, 216 
EXE$SETFLT, 223 
EXE$SETPRT, 219 
SETFLTPAG_64, 224 
SETPRTPAG_64, 221 

SS$_NOSUCHSEC error status 
returned by 

EXE$DGBLSC, 189 
EXE$FIND_GPAGE_64, 216 

SS$_NOTFILEDEV error status 
returned by 

EXE$CRMPSC, 144 
EXE$CRMPSC_FILE_64, 148 

SS$_NOTINSEC error status 
returned by EXE$GETSECI, 215 

SS$_NOT PROCESS_VA error status 
returned by 

EXE$LKWSET_64, 341 
EXE$SETPRT_64, 222 

SS$_NOWAIT error status 
returned by 

GLX$SHM_REG CREATE, 178 
GLX$SHM_REG_DELETE, 191 

SS$_OFFSET_TOO_BIG error status 
returned by 

EXE$FIND_GPAGE_64, 217 

SS$_OFFSET_TOO_BIG error status 
returned by (Cont.) 

$MGBLSC_GFILE_INT, 184 
SS$_OFF_NOTBLKALGN error status 

returned by 
$CREATE_GFILE_INT, 163 
EXE$CRMPSC_FILE_64, 148 
EXE$CRMPSC_GFILE_64, 165 

SS$_OFF_NOTFILEDEV error status 
returned by 

$CREATE_GFILE_INT, 163 
SS$_OFF_NOTPAGALGN error status 

returned by 
EXE$CRMPSC_GPFILE_64, 167 
EXE$FIND_GPAGE_64, 216 
EXE$MGBLSC_64, 183 
$MGBLSC_GDZRO_INT, 186 

SS$_PAGNOTINREG error status 
returned by 

EXE$CRETVA_64, 137 
EXE$CRMPSC_FILE_64, 149 
EXE$CRMPSC_PFN_64, 154 
EXE$GET_REGION_INFO, 214 
EXE$SETPRT_64, 222 
$MGBLSC_GFILE_INT, 185 

SS$_PAGOWNVIO error status 
returned by 

EXE$FIND_GPAGE_64, 218 
EXE$GETSECI, 215 
MMG$DELPAG_64, 197 
MMG$LCKULKPAG, 339 
SETFLTPAG_64, 224 
SETPRTPAG_64, 221 

SS$_PAGRDERR error status 
returned by MMG$PAGEFAULT, 235, 

275 
SS$_PAGRDERRXM error status 

returned by MMG$PAGEFAULT, 235 
SS$_PAGTYPVIO error status 

returned by 
EXE$GETSECI, 215 
EXE$SETFLT, 223 
EXE$SETPRT, 219 
SETFLTPAG_64, 224 
SETPRTPAG_64, 221, 222 

SS$_REGISFULL error status 
returned by 

EXPANDCHK_64, 136 
MMG$CREDEL, 128 

SS$_REMOTE success status 
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SS$_REMOTE success status (Cont.) 
returned by $CREATE_SHMGS_INT, 

179 
SS$_RESERVEDMEMUSED error status 

returned by 
MMG_STD$USE_RES_MEM, 173 

SS$_SECTBLFUL error status 
returned by 

$CREATE_GDZRO_INT, 172 
$CREATE_GFILE_INT, 164 
EXE$CRMPSC, 160 

SS$_STKOVF exception 
reported by EXE$ACVIOLAT, 140 

SS$_TOO_MANY_ARGS error status 
returned by 

EXE$LKWSET_64, 341 
memory management system 

services, 128 
SS$_VASFULL error status 

returned by 
EXE$CREATE_REGION_64, 129, 

130 
EXPANDCHK_64, 136 
MMG$CREDEL, 128 

SS$_VA_IN_USE error status 
returned by 

EXE$CREATE_REGION_64, 130 
MMG$CREPAG_64, 135 
MMG$DELPAG_64, 199, 200, 201, 

202 
SS$_VA_NOTPAGALGN error status 

returned by 
EXE$CREATE_REGION_64, 129 
EXE$CRETVA_64, 137 
EXE$CRMPSC_FILE_64, 148 
EXE$CRMPSC_GFILE_64, 165 
EXE$CRMPSC_GPFILE_64, 167 
EXE$CRMPSC_GPFN_64, 170 
EXE$CRMPSC_PFN_64, 154 
EXE$FIND_GPAGE_64, 216 
EXE$MGBLSC_64, 183 
$MGBLSC_GDZRO INT, 186 

SS$_WAIT CALLERS_MODE status 
returned by MMG$PAGEFAULT, 233, 

234 
SS$ WASCLR success status 

returned by MMG$LCKULKPAG, 343 
SS$_WASSET success status 

returned by MMG$LCKULKPAG, 339, 
340 

SS$_WRONGACMODE error status 
returned by $CREATE_SHMGS_INT, 

177 
SSB (system building block) 

characteristics and use, 3 
SSRVEXCEPT bugcheck 

generated during page fault handling, 
236 

stack 
user, expanding automatically, 139 to 

140 
stack scratch space 

defined by $MMGDEF macro, 125 
statistics (pool allocation) 

BAP, 454 
categories, 453 
collecting, 454 (table) 
per-RAD pool, 454 
recorded in POOLZONE and 

POOLZONE_PAGE structures, 
455 

use of, 453 
status codes 

See SS$_x 
storage areas 

dynamic data structures, 402 
SVAFrE modules 

MMG_STD$PTEREF 64, control flow, 
220 

SVAPTE requests (modified page writer) 
description, 277 

swap file page number 
PFN$W_SWPPAG field use, 96 

swap files 
data structures 

characteristics and field definitions, 
112 to 118, 358 to 360 

relations among, 361 (fig.) 
deinstallation, 118 
described by two bitmaps, 113 
primary 

SYSINIT use, 118 
space allocation 

OpenVMS Alpha approach, 359 
VAX VMS Version 5 approach, 359 

space deallocated after process inswap, 
399 

writing modified pages to, 284 
SWAPFILE.SYS 

See SYS$SPECIFIC:[SYSEXE]SWAPFILE.SYS 
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swapper 

See also balance set slots; inswap; 
kernel thread states; memory 
management; modified page writer; 
outswap; page faults; scheduling; 
swapper trimming; swapping 

accessing page tables, 356 
I/O data structures used by, 358 
I/O request descriptions, 292(table), 

294 (table) 
I/O, overview, 120 
implementation, 355 to 356 
initiation of modified page writing, 362 
inswap operations, 358, 389 to 399 
main loop, control flow, 361 to 368 
map 

characteristics and use, 120, 357 
to 358 

IRP field that points to, 120 
one use at a time supported, 120 
outswapping use of, 380 

memory management data structures 
used by, 356 to 360 

modified page writer role, 33 
outswap 

operations, 358, 377 to 389 
preparing page tables for, 357 

overview, 353 to 356 
page table arrays, 118 to 121 
process, characteristics, 120 
responsibilities, 353 to 354 
system events that trigger activities by, 

355 (table) 
trimming 

See swapper trimming 
working set list use by, 53, 356, 357 
working set size affected by, 318 

SWAPPER module 
B ~ C E  

control flow, 362 to 363 
operations, 361 to 362, 364 (fig.) 

DELPHD, operations, 366 
FILLPHD, inswap of PHD, 391 
INSWAP, preparation for inswap, 390 
OUTSWAP, control flow, 366 to 368 
RELEASE_PROCESS_HEADER, 

preparing PHD for outswap, 388 
RELPHD, preparing PHD for outswap, 

388 

SWAPPER module (Cont.) 
SETAST_CONTEXT, final processing of 

inswap, 398 to 399 
SETUP, inswap of PHD, 390 to 393 
SWAPSCHED 

control flow, 365 to 366 
operations, 362 
preparation for inswap, 389 

swapper trimming 
compared to proactive memory 

reclamation, 319 
operations, 369 
OSWPSCHED table processing to find 

outswap candidate, 375 to 376 
preventing, 351 
reclaiming physical pages by, 40 
reducing working set limit with, 318 
term definition, 318 

swapping 

See also inswap; outswap; swapper 
data structures, characteristics and 

field definitions, 110 to 112 
I/O system techniques for, 119 to 120 
paging compared with, 36, 37 to 37 

(table), 39 
preventing, privilege that allows a 

process to, 219 
to page files, SYSGEN parameter that 

inhibits, 113 
SWAPSCHED routine (SWAPPER module) 

control flow, 365 to 366 
operations, 362 
preparation for inswap, 389 

SWP$GB_ISWPRI cell 
priority of inswap process candidate, 

363, 372 
SWP$GL_BALBASE cell 

address of balance set slots, 110 
SWP$GL_BSLOTSZ cell 

size of balance set slot, 50, 110 
SWP$GL_MAP cell 

swapper map address contained in, 
120, 357 

SWP$GW_FREDPTE cell 
maximum number of PHD expansion 

pages, 59 
SWP$GW_SWPINC cell 

unit of swap space allocation, 360 
SWPFAIL parameter (SYSGEN) 
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SWPFAIL parameter (SYSGEN) (Cont.) 
effect on outswap and swapper 

trimming selection, 376 
SWPFILCNT parameter (SYSGEN) 

obsolete, 117 
SWPOUT scheduling event 

reported during process outswap, 368 
SWPOUTPGCNT parameter (SYSGEN) 

effect on working set of outswapped 
process, 351 

target size to shrink working set, 368, 
369, 374, 375 

working set size affected by, 40 
SWPRATE parameter (SYSGEN) 

SWAPSCHED routine use of, 365 
SYI memory map 

characteristics and use, 32 
symmetric multiprocessing 

See SMP systems 
synchronization 

See also fork processes; memory 
barriers; MMG spinlock; SCHED 
spinlock; SMP systems 

KRP lookaside list, 452 
pool 

nonpaged, 439 to 440 
paged, 449 

process allocation region, 451 
SYS$SPECIFIC:[SYSEXE]PAGEFILE.SYS 

(primary page file) 
See also inswap; modified page writer; 

outswap; paging; page faults; page 
files; swapper 

SYSINIT use, 118 
SYS$SPECIFI C: [SYSEXE] SWAPFILE. SYS 

(primary swap file) 
SYSINIT use, 118, 358 

SYS$SYSTEM:VMS$RESERVED_ 
MEMORY.DATA (Reserved Memory 
Registry file) 

creating, 80 
effect on creation of memory-resident 

global sections, 80 
entry characteristics, 80 
OpenVMS use of, during system 

initialization, 80 
SYSADJWSL module 

EXE$ADJWSL, control flow, 331 to 
332 

SYSADJWSL module (Cont.) 
MMG$SHRINKWS, operations, 332 

SYSBOOT (secondary bootstrap program) 
initializing 

BAP, 444 
nonpaged pool, 430 
physical memory, 78 
system space, 61 to 62 

PFN database, allocating space for, 82 
SPT created by, 32 

SYSCREDEL module 
CHECK_CONTRACT_64, control flow, 

203 to 204 
EXE$CNTREG, operations, 204 
EXE$CRETVA, control flow, 133 to 

134 
EXE$DELTVA, control flow, 195 to 

196 
EXE$EXPREG 

alternative entry point for, 138 
operations, 138 

EXPANDCHK_64, control flow, 136 
MMG$CREDEL 

control flow, 128 
role in memory management 

system services, 127 
MMG$CREPAG_64 

alternative entry point for, 134 
control flow, 135 

MMG$CRETVA_K, alternative entry 
point for EXE$CRETVA, 133 

MMG$DELPAG_64, control flow, 197 
to 203 

MMG$EXPREG, alternative entry 
point for EXE$EXPREG, 138 

MMG$FAST_CREATE_64, operations, 
134 

MMG$TRY_ALL_64, operations, 134 
MMG_STD$CHECK_CONTRACT_ 

64, alternative entry point for 
CHECK_CONTRACT_64, 203 

MMG_STD$CHECK_CONTRACT_ 
64_1, alternative entry point for 
CHECK_CONTRACT_64, 203 

MMG_STD$CREPAG_64, alternative 
entry point for MMG$CREPAG_64, 
134 

MMG_STD$FAST_CREATE_64, 
operations, 134 
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SYSCREDEL module (Cont.) 
MMG_STD$TRY_ALL_64, operations, 

134 
SYSCRMPSC module 

EXE$CRMPSC 
global sections, control flow, 158 

to 162 
PFN-mapped sections, control flow, 

150 to 153 
process sections, control flow, 144 

to 147 
EXE$MGBLSC, control flow, 180 to 

183 
MAPSECPAG_RDE 

PFN-mapped process section page, 
control flow, 153 

process section page, control flow, 
147 

SYSDGBLSC module 
EXE$DGBLSC, control flow, 189 to 

190 
GSD_CLEAN_AST, control flow, 193 
MMG$DELGBLSEC, control flow, 191 

to 193 
MMG$DELGBLWCB, control flow, 194 
MMG_STD$DELGBLSEC, al- 

ternative entry point for 
MMG$DELGBLSEC, 191 

MMG_STD$DELGBLWCB, al- 
ternative entry point for 
MMG$DELGBLWCB, 194 

MMG_STD$GSDSCAN, operations, 
159 

SYSGBL (create systemwide global 
sections privilege) 

required for 
creating a system global section, 

141 
deleting a system global section, 

189 
use by 

$CRMPSC, 141 
$DGBLSC, 189 

SYSGEN parameters 
See also specific parameter names; 

SYSBOOT; system initialization 
controlling nonpaged pool reclamation, 

435 
determining size of PHD substructures, 

5O 

SYSGEN parameters (Cont.) 
effect on BAP initialization, 444 
term definition, xxv 
that control automatic working set 

limit adjustment, 333 (table) to 
334 (table) 

SYSINIT process 
page and swap file initialization, 118 
primary swap file opened by, 358 

[SYSINI]INITPGFIL module 
allocating PFL, operations, 113 

SYSLKWSET module 
EXE$CHKFLUPAGES, operations, 343 
EXE$CREATE_BUFOBJ, control flow, 

207 to 208 
EXE$DELETE_BUFOBJ, control flow, 

211 to 213 
EXE$LCKPAG, operations, 342 to 343 
EXE$LKWSET, control flow, 338 to 

339 
EXE$ULKPAG, operations, 343 to 344 
EXE$ULWSET, operations, 343 to 344 
LCKBUFOBJPAG, control flow, 209 to 

210 
MMG$DECLARE_WSL_PAGER, 

operations, 325 
MMG$LCKULKPAG 

control flow, 339 to 340 
unlocking pages from memory, 343 

to 344 
MMG_STD$LCKBUFOBJPAG, 

alternative entry point for 
LCKBUFOBJPAG, 209 

MMG_STD$LCKULKPAG, al- 
ternative entry point for 
MMG$LCKULKPAG, 339 

SYSMAN (System Management utility) 
Reserved Memory Registry file created 

by, 80 
SYSMWCNT parameter (SYSGEN) 

system working set list size determined 
by, 59 

SYSPARPRC module 
EXE$GETSECI, control flow, 215 to 

216 
SYSPCNTRL module 

EXE$HIBER_INT, memory reclama- 
tion, operations, 337 

SYSPTBR (system page table base 
register) 
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SYSPTBR (system page table base 
register) (Cont.) 

PFN of LIPT mapping system space 
addresses, 19 

PFN of RAD's LIPT stored in, 66 
SYSPURGWS module 

EXE$PURGWS, control flow, 345 
MMG$PURGWSSCN, control flow, 345 
PLrRGWSPAG, control flow, 345 

SYSQIOREQ module 
special $QIO entry points, 292 

SYSSETMOD module 
EXE$SETSWM, operations, 219 

SYSSETPRT module 
EXE$FAULT_PAGE, control flow, 270 

to 271 
EXE$SETFLT, control flow, 223 
EXE$SETPRT 

control flow, 219 to 220 
side effect, 220 

MMG_STD$SETFLTPAG_64, 
alternative entry point for 
SETFLTPAG_64, 223 

MMG_STD$SETPRTPAG_64, 
alternative entry point for 
SETPRTPAG_64, 220 

SETFLTPAG_64, control flow, 223 to 
224 

SETPRTPAG_64, control flow, 220 to 
222 

System Dump Analyzer 

See SDA 
system header 

characteristics and use, 59 to 60 
GST, 103 
layout, 60 (fig.) 
section table, number of entries in, 

SYSGEN parameter that specifies, 
60 

system initialization 
See also EXE$INIT routine; SYSBOOT; 

SYSGEN parameters; SYSINIT 
process 

OpenVMS use of Reserved Memory 
Registry during, 80 

swapper I/O operations, 120 
swapper process operations, 356 
system space initialization, 32 

system page table 

See SPT 

system page table base register 
See SYSPTBR 

system pages 
See also address space; pages; PTE; 

system space 
copy-on-reference, page transitions, 

control flow, 267 
demand zero, page transitions, control 

flow, 267 
described by WSLEs, 232 
determining, based on faulting virtual 

address, 230 (fig.) 
locking into system working set list, 

351 
not copy-on-reference, page transitions, 

control flow, 266 to 267 
page transitions, characteristics and 

use, 266 to 267 
PFN$L_SHRCNT meaning, 299 
reading, I/O request descriptions, 292 

(table) 
types, 266 

system PCB 
characteristics and use, 59 

system services 
altering page protection with, 219 to 

222 
I/O, enabling use of buffer objects, 

overview, 206 to 207 
memory management 

argument length, 124 
32-bit, 124, 125 to 128 
64-bit, 124, 128 
common characteristics, 124 to 

128 
operations, 125 
overview, 123 to 124 
stack scratch space, layout, 

126(fig.) 
purging virtual pages from working set, 

344 to 346 
that return memory-management- 

related information, 214 to 218 
that set the no-execute characteristic 

for page faults, 223 to 224 
unlocking pages with, 343 to 344 

system space 
See also SO space; S0/S1 space; S1 

space; $2 space 
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system space (Cont.) 
32-bit, page table pages double-mapped 

into, 119 
buffer objects double-mapped into, 101 
characteristics and use, 11 
code pages, protections on, 30 
data pages, protections on, 30 
defining at high end of virtual address 

space, advantages, 12 
definition, 12 
expandability, 29, 62 
expansion 

mapping L3PT and L2PT during, 
62, 66 

initializing, 32 
by SYSBOOT, 61 to 62 

mapping 
at creation, 29 
by L2PT, 12 

nonpaged pool, listhead location, 413 
(table), 417(table) 

page tables that map, 11 
paged pool, listhead location, 413 

(table) 
PHD located in, 51 
replication, SYSGEN parameter that 

controls, 19 
sharing, by processes, 62 
term definition, 4 

system space L3PTEs 
available, linked list of, 73(fig.) 
invalid, characteristics and use, 71 
synchronizing access to, 71 

system tuning 
automatic working set limit 

adjustment, 333 to 337 
automatic, nonpaged pool expansion 

role in, 439 
free page management, 354 
proactive memory reclamation, 337 to 

338 
system working set list 

distinguished from process working set, 
59 

$LKWSET cannot be used to lock pages 
in, 347 

SYSGEN parameter that determines 
size, 59 

system header component, 59 
types of pages described in, 59 

SYSTEM_CHECK parameter (SYSGEN) 
characteristics and use, 455 
effect on 

loading monitor version of 
SYSTEM_PRIMITIVES, 456 

pool checking, 457 
recording pool history, 461 

loading alternative versions, 453 
SYSTEM_DATA_CELLS module 

nonpaged pool lookaside lists created 
during compilation of, 429 

SYSUPDSEC module 
EXE$UPDSEC, control flow, 290 
MMG$UPDSECAST, operations, 292 
MMG$WRT PGS_BAK, operations, 

291 
UPDSECPAG_RDE, operations, 290 
UPDSECQWT_64, control flow, 290 to 

291 
[SYS] facility 

base image source modules contained 
in, xxiv 

many executive image source modules 
contained in, xxiv 

SYS_CREDEL_64 module 
EXE$CRETVA_64, control flow, 137 to 

138 
EXE$DELTVA_64, operations, 204 
EXE$EXPREG_64, control flow, 139 

SYS_CRMPSC 64 module 
EXE$CRMPSC_FILE_64, control flow, 

148 to 150 
EXE$CRMPSC_PFN_64, control flow, 

154 to 157 
SYS_FIND_GPAGE_64 module 

EXE$FIND_GPAGE_64, control flow, 
216 to 218 

SYS_GBLSEC_64 module 
$CREATE_GFILE INT, control flow, 

163 to 165 
$CREATE_GPFILE INT, operations, 

166 to 167 
EXE$CREATE_GFILE, control flow, 

162 
EXE$CREATE_GPFILE, control flow, 

166 
EXE$CRMPSC_GFILE_64, control 

flow, 165 to 166 
EXE$CRMPSC_GPFILE_64, 

operations, 167 
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SYS_GBLSEC_64 module (Cont.) 
EXE$MGBLSC_64, control flow, 183 

to 184 
$MGBLSC_GFILE_INT, control flow, 

184 to 185 
$MGBLSC_GPFILE_INT, operations, 

185 to 186 
SYS_GDZRO_64 module 

$CREATE_GDZRO_INT, control flow, 
171 to 176 

$CREATE_SHMGS_INT, control flow, 
176 to 179 

EXE$CREATE_GDZRO, control flow, 
170 to 171 

EXE$CRMPSC_GDZRO_64, operations, 
179 to 180 

$MGBLSC_GDZRO_INT, operations, 
186 to 187 

SYS_GPFN_64 module 
$CREATE_GPFN_INT, control flow, 

168 to 169 
EXE$CREATE_GPFN, control flow, 

167 to 168 
EXE$CRMPSC_GPFN_64, control flow, 

169 to 170 
EXE$MGBLSC_GPFN_64, operations, 

187 to 188 
$MGBLSC_GPFN_INT, operations, 

188 
SYS_LKWSET_64 module 

EXE$CREATE_BUFOBJ_64, 
operations, 210 to 211 

EXE$LCKPAG_64, operations, 343 
EXE$LKWSET_64, control flow, 341 
EXE$ULKPAG_64, operations, 344 
EXE$ULWSET_64, operations, 344 

SYS_PURGWS_64 module 
EXE$PURGE_WS, control flow, 345 to 

346 
SYS_REGIONS module 

EXE$CREATE_REGION_64, control 
flow, 129 to 130 

EXE$DELETE_REGION_64, control 
flow, 205 

EXE$GET_REGION INFO, control 
flow, 214 

SYS_SETPRT_64 module 
EXE$SETFLT_64, operations, 224 
EXE$SETPRT_64, control flow, 222 

SYS_UPDSEC_64 module 

SYS_UPDSEC_64 module (Cont.) 
EXE$UPDSEC_64, operations, 292 

T 
TB (translation buffer) 

Alpha operations, 22 to 23 
characteristics and use, 5, 21 to 22, 

328 
contents during retry of address 

translation, 25 
CPU access to, 21 to 22 
entry 

identified by ASN, 27 
invalidating, 26 to 27, 200, 328 to 

330 
macros that invalidate, 328 

granularity hints supported by, 28, 73 
holding entry for virtual pages in 

group, 28 
increasing usefulness as cache, 27 
invalidating, 240 
mapping information in, 21 to 22 
multiprocessor implementation, 26 to 

28 
presence of translations 

checking for, 324 
effect on working set replacement, 

325 
size and organization, 22 
translating virtual addresses to 

physical addresses, 5 
valid bit, meaning, 21 
virtual address translation use of, 22 

to 23 
TB hit 

term definition, 22 
TB invalidate macros 

characteristics and use, 329 
TB lookup 

attempting address translation, 5 
TB miss 

conditions under which page fault 
exceptions are generated, 229 

loading exception parameter 
information into registers, 25 

PALcode routine, control flow, 23 to 25 
term definition, 23 

TBCHK (TB check) register 
characteristics and use, 22 
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TBCHK (TB check) register (Cont.) 
determining usability of a WSLE, 324 

TBI_ALL macro 
invalidating all TB entries, 328 

TBI_DATA_64 macro 
invalidating a single DTB entry, 328 

TBI_ROUTINES module 
MMGLSTD] $TBI_DATA_64, 

operations, 329 
MMG LSTD] $TB I_DATA_64_ 

THREADS, operations, 329 
MMGLSTD]$TBI_SINGLE, operations, 

329 
MMGLSTD]$TBI_SINGLE_THREADS, 

operations, 329 
TBI_SINGLE macro 

invalidating a single entry from ITB 
and DTB, 328 

TBI_SINGLE_64 macro 
obsolete, 328 

TBSKIPWSL parameter (SYSGEN) 
effect on working set replacement 

algorithm, 324 
use when skipping WSLEs, 325 

text 
conventions, xxiii to xxv 

translation buffer 
See TB 

translation buffer check register 
See TBCHK register 

translation-not-valid exception 
See page faults 

TROLL table 
characteristics and use, 373 
multithreaded processes meeting 

scheduling state constraints in, 
374 

TROLLER routine (OSWPSCHED 
module) 

control flow, 374 to 375 
trolling 

characteristics and use, 374 to 375 

U 
UCB (unit control block) 

location, WCB field that specifies, 360 
$ULKPAG (Unlock Pages from Memory 

system service) 
control flow, 343 to 344 

$ULKPAG_64 (Unlock Pages from 
Memory system service) 

operations, 344 
$ULWSET (Unlock Pages from Working 

Set system service) 
control flow, 343 to 344 

$ULWSET_64 (Unlock Pages from 
Working Set system service) 

operations, 344 
unit control block 

See UCB 
Unlock Pages from Memory system 

services 
See $ULKPAG; ULKPAG_64 

Unlock Pages from Working Set system 
services 

See $ULWSET; ULWSET_64 
$UNLOCK_PAGE macro 

locking pages during image execution, 
347 

upcalls 
mechanism in page fault handling, 234 
paging completion, 275 
PAGIO testing for, 275 
used for page fault handling in 

multithreaded processes, 233 
Update Section File on Disk system 

services 
See $UPDSEC; $UPDSEC_64 

UPDATE_RINGBUF routine (MEMO- 
RYALC_DYN_64 module) 

recording pool history, 461 to 462 
$UPDSEC (Update Section File on Disk 

system service) 
control flow, 290 to 292 
I/O request descriptions, 292(table), 

294 (table) 
operations, 289 to 290 

UPDSECPAG_RDE routine (SYSUPDSEC 
module) 

operations, 290 
UPDSECQWT_64 routine (SYSUPDSEC 

module) 
control flow, 290 to 291 

$UPDSEC_64 (Update Section File on 
Disk system service) 

I/O request descriptions, 292(table), 
294 (table) 

operations, 289 to 290, 292 
user mode 
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user mode (Cont.) 
outermost access mode, xxv 

user stack 
expanding automatically, 139 to 140 
recreated to report exception, 140 

Y 

valid bit (GPTE) 
setting, 257, 263, 275 

valid bit (PTE) 
clearing, 240, 249 
meaning, 19 
setting, 240, 243, 248, 252, 257, 263, 

264, 267, 275 
TB miss PALcode routine use of, 24 

valid page 
See also memory management; pages; 

PTE 
term definition, 307 

VALID_PFN macro 
operations, 79 

variable-length blocks 
compared to fixed-length packets, 417 

variable-length lists 
dynamic data structure deallocation, 

406 
pool 

allocating, 412 to 414 
allocating, example, 415 (fig.) 
deallocating, 414 to 416 
deallocating, example, 416(fig.) 
layout, 412 (fig.) 
listhead locations, 413 (table) 
nonpaged, initializing, 430 to 431 
structure and operations, 411 to 

416 
VAX virtual address space 

compatibility of OpenVMS memory 
management with, 12 

VBN (virtual block number) 
section file, PSTE field that specifies, 

58 
very large memory 

See VLM 
VIRBND (virtual address boundary) 

register 
facilitating virtual address translation 

in NUMA system, 19 

VIRBND (virtual address boundary) 
register (Cont.) 

lowest virtual address in system space, 
19 

virtual address 
characteristics and use, 8 to 11 
components, description, 8(fig.) 
definition, 5 
effect of page size on, 10(table) 
expanded in OpenVMS Alpha Version 

7.0, effect of, 309 
illegal values, 11 
sign-extending, 12 
system, translating, 10 (fig.) 

virtual address boundary register 
See VIRBND register 

virtual address space 
See also P0 space; P1 space; P2 space; 

page table space; SO space; S0/S1 
space; $1 space; $2 space; system 
space 

Alpha compared to VAX, 8 
areas, OpenVMS Alpha support of, 12 

to 14 
64-bit space, 14 
characteristics and use, 29 to 31 
components, 11 
contracting, 203 to 204 
control region, definition, 31 
creating, 29 to 30 
data structures, overview, 31 to 32 
definition, 5 
deleting, 194 to 204 

global section deletion side effect 
of, 189 

demand zero, creating, 132 to 140 
expanding, 13 

automatically, 139 to 140 
gap, 11 
layout, 13 (fig.) 
P0 and P1 space ranges, 12 
P2 space, 14 
process-private 

creating, 131 to 140 
definition, 11 
limits on creating, 131 to 132 
mapping, 13, 30 
removing constraints on, 11 

program region, definition, 31 

Index-69 



virtual address space (Cont.) 

protection of different areas, 30 to 31 
regions 

creating, 129 to 130 
deleting, 205 
expanding, 151, 155 
getting information about, 214 

SO and S1 space ranges, 12 
$2 space, 14 
sharing by kernel threads, 11 
system space defined at high end of, 

advantages, 12 
virtual address translation 

characteristics and use, 8 to 26 
on NUMA system, overview, 19 
page table use by, 8 to 9 

virtual block number 
See V B N  

virtual memory 

See also address space; memory 
management; virtual address 
space; virtual pages 

address space, data structures, 
overview, 31 to 32 

characteristics and mechanisms, 4 to 
6 

definition, 5 
original design, 36 to 40 

virtual memory regions 
characteristics and use, 31 

virtual page table base register 

See VPTB register 
virtual pages 

See also pages 
breaking ties to physical pages, 242 
characteristics, 7 
creating, impact on virtual page 

deletion, 194 
deleting, 194 to 204 

complexity, 194 
from granularity hint region, 199 
Galaxywide global sections, 199 
integral part of virtual page 

creation, 194 
fault-on-execute bit of, changing, 223 

to 224 
life of, 227 to 229 
locating through information in PSTE, 

57 to 58 

virtual pages (Cont.) 

locking into memory 
disabling PHD outswap, 44 
operations, 342 to 343 

mapping to physical pages, 5 
null, term definition, 70 
protection code for 

PTE bits that  specify, 20 
valid access mode combinations, 20 

protection of, changing, 219 to 222 
purging from working set, operations, 

344 to 346 
reading, clustering of, 271 to 274 
resources associated with, 196 
size, 5 
specifying type with PFN$L_PAGE_ 

STATE field, 91 
systemwide cache of recently used, 

modified and free page lists used 
as, 33 

transition, 71 
valid, conditions that  invalidate, 228 

virtual regions 
characteristics and use, 47 

VIRTUALPAGECNT parameter 
(SYSGEN) 

obsolete, 132 
VLM (very large memory) 

support, 41 
VMS 

operating system names, xxiii 
VMS$MEM_RESIDENT_USER rights 

identifier 
required to create memory-resident 

demand zero global section, 141, 
172 

VPN (virtual page number) 
identifying virtual page, 7 

VPTB (virtual page table base) register 
contents, 16 

W 
wait duration 

as a condition for outswap and swapper 
trimming selection, 372 

WCB (window control block) 
address, PSTE field that  specifies, 58 
cathedral window, term definition, 143 
location, PFL field that  specifies, 360 
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WCB (window control block) (Cont.) 
making shared, 164 
mapping section files, 143 
PSTE field that  points to, 56 
quota charged, 143 
shared, 161 

WCB$L_ORGUCB field 
definition and use, 360 

window bit (PTE) 
meaning, 68 
set for PFN-mapped page, 150 

window control block 
See WCB 

word index 
term definition, xxv 

working set 
See also automatic working set limit 

adjustment; memory management; 
working set list; WSLE 

characteristics and use, 307 to 308 
components of, 308 
definition, 32 
fluid, term definition, 131 
locking pages in, 338 to 340, 347 
number of global pages in, PCB field 

that specifies, 46 
number of process-private pages in, 

PCB field that specifies, 46 
page removal 

notification procedure, declaration, 
325 

notification procedure, execution, 
325 

pages 
states, 379 
swapper operations, 380 

purging virtual pages from, operations, 
344 to 346 

quota, virtual memory design 
component, operations using, 38 

replacement algorithm 
compared with other virtual 

memory architectures, 38 
limitations of, 38 

shrinking, 367 to 368 
term definition, 318 

size 
automatic working set limit 

adjustment altering of, 40 

working set 
size (Cont.) 

contrasted with limit and capacity, 
313 

decreasing, 319 
growth above working set quota, 

40, 321 
term definition, 313 

term definition, 6, 307 
unlocking pages from, 343 to 344 

working set capacity 
contrasted with size and limit, 313 

working set limit 
adjusting 

$ADJWSL operations, 331 
automatic, operations, 333 to 337 
upper limit, 330 

affected by SET WORKING_SET 
command, 332 

constraint on process address space 
size, 131 

contrasted with size and capacity, 313 
decreasing, 318 

MMG$SHRINKWS, operations, 
332 

disabling automatic adjustment, 333 
growth above working set quota, 321 
increasing, 318 
initial, 317 
reset to default at image exit, 318 
term definition, 313 

working set list 
See also memory management; page 

faults; swapper; system working 
set list; working set; working set 
limit; WSLE 

address in CTL$GQ_WSL, 53 
capacity 

decreasing, 320 
increasing, 319, 331 
initial, 317 
parameters used to calculate, 314 

dynamic region, 312 to 313, 319 
minimum size, 313 

empty WSLE usability checking, 321 
to 322 

expansion, constrained by working set 
quota, 319 

index, PFN$L_WSLX_QW field use, 90 
keeping a page in, 346 to 351 
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working set list (Cont.) 

limit, value stored in PHD$L_WSSIZE, 
313 

limits, 314 to 317(table) 
macros for locking pages into, 347 
maximum size, SYSGEN parameter 

that specifies, 56 
page fault handler use of, 53 
page removal, conditions, 228 
page replacement or removal triggered 

by, 346 to 347 
page residency issues, 346 
pages not represented in, 131, 309 
PHD component, 49, 53 to 54 
PHD fields that describe, 311(fig.) 
physical memory pages described by, 

32 
process control capabilities, 39 
PST kept adjacent to, reasons for, 56 
purpose, 307 to 308 
quotas, 314 to 317(table) 
rebuilding, 393 (table), 394 (table) 

aider inswap, 393 to 395 
regions 

description, 310 to 313 
dynamic region, 312 to 313, 319 
locked by user request region, 312 
permanently locked region, 312 

removing non-copy-on-reference page 
from, 240 

replacement algorithm, concepts and 
operations, 320 to 330 

scanning 
during process body outswap, 

379(table), 380 (table) 
for usable WSLE, control flow, 321 

size 
compared with limit and capacity, 

314 (fig.) 
parameters and dynamics, 313 to 

320 
specifying pages, 346 
swapper use of, 53, 356, 357 
SYSGEN parameters that affect, 314 

to 317 (table) 
system 

synchronizing access to, 59 
system header component, 60(fig.) 

updating data structures related to, 
269 to 270 

working set list entry 

See WSLE 
working set list index 

See WSLX 
working set swapper 

See swapper 
writable global pages 

page transitions, control flow, 259 
write in progress page location code 

meaning, 92 
WRITEDONE routine (WRTMFYPAG 

module) 
modified page write completion special 

kernel mode AST, control flow, 283 
WRTMFYPAG module 

MMG$PURGE MPL, operations, 276 
to 278 

MMG$WRTMFYPAG 
called by swapper to initiate 

modified page writing, 362 
control flow, 279 to 283 
operations, 276 

MPW$INIT, operations, 121 
WRITEDONE, control flow, 283 

WSAUTHEXT process limit 
extended maximum working set limit, 

332 
WSDEC parameter (SYSGEN) 

automatic working set limit adjustment 
use of, 336 

WSEXTENT process limit 
automatic working set limit adjustment 

use of, 330 
effect on using empty entry in working 

set list, 321 
setting with SET WORKING_SET 

command, 332 
use when releasing dead page table 

page, 322 
WSINC parameter (SYSGEN) 

automatic working set limit adjustment 
use of, 335 

WSLE (working set list entry) 
characteristics and field definitions, 

309 to 310 
control bits, meaning, 310(table) 
dead page table, available for reuse, 

254 
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WSLE (working set list entry) (Cont.) 
effect of virtual address expansion on, 

309 
empty, checking usability, 321 to 322 
format, 309 (fig.) 
not for Galaxywide global sections, 232 
not for global page tables, 232 
not for memory-resident global sections, 

232 
not for system page tables, 232 
process or process page table page 

described by, 232 
reusing, 326 to 328 
skipping, replacement candidates, 324 

to 326 
type dependent on address range, 230 
unused, in dynamic region of working 

set list, 320 
usable, scanning for, 321 
zeroed when page released, 241 

WSLX (working set list index) 
characteristics and use, 90 

WSMAX parameter (SYSGEN) 
automatic working set limit adjustment 

use of, 331 
constraint on nonpaged pool expansion, 

438 
PST use affected by, 319 
swapper map size, 357 
working set list size, 56, 317, 368 

WSQUOTA parameter (SYSGEN) 
automatic working set limit adjustment 

use of, 330, 336 
checked before new page is added to 

working set list, 322 
effect on using empty entry in working 

set list, 321 
setting with SET WORKING_SET 

command, 332 
use 

by SCANDEADPT, 323 
when releasing dead page table 

page, 322 
working set quota, 368, 369, 373, 375 

X 
XFC (Extended File Cache) lookaside lists 

location of POOLZONE_REGION 
structures that describe, 447 

XFC (Extended File Cache) lookaside lists 
(Cont.) 

routines that  create, 447 
types, 447 
uses, 447 to448 

Xfc$vacAnchor structure 
location of POOLZONE_REGION 

structures that describe XFC 
lookaside lists, 447 

XfcMemmgtDynamicAreaInit routine 
([XFC]XFC_MEMMGT module) 

creating XFC lookaside lists, 447 
XfcMemmgtPermanentAreaInit routine 

([XFC]XFC_MEMMGT module) 
creating XFC lookaside lists, 447 

[XFC]XFC_MEMMGT module 
XfcMemmgtDynamicAreaInit, creating 

XFC lookaside lists, 447 
XfcMemmgtPermanentAreaInit, 

creating XFC lookaside lists, 447 

Z 
zeroed page list 

allocating global page-file page, 262 
cell containing count, 87 
characteristics and use, 33 
location, 87 
location code, meaning, 92 
multiple, 87 

zeroed pages 
allocated for demand zero page fault, 

268 to 269 
RAD-specific, 88 

ZERO_LIST_HI parameter (SYSGEN) 
maximum number of pages on zeroed 

page list, 87 
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