

Macmillan Computer Science Series
Consulting Editor
Professor F. H. Sumner, University of Manchester

S. T. Allworth and R. N. Zobel, Introduction to Real-time Software Design,
second edition
Ian O. Angell and Gareth Griffith, High-resolution Computer Graphics Using
FORTRAN 77
Ian O. Angell and Gareth Griffith, High-resolution Computer Graphics Using
Pascal
M. Azmoodeh, Abstract Data Types and Algorithms
C. Bamford and P. Curran, Data Structures, Files and Databases
Philip Barker, Author Languages for CAL
A. N. Barrett and A. L. Mackay, Spatial Structure and the Microcomputer
R. E. Berry, B. A. E. Meekings and M. D. Soren, A Book on C, second edition
G. M. Birtwistle, Discrete Event Modelling on Simula
B. G. Blundell, C. N. Daskalakis, N. A. E. Heyes and T. P. Hopkins, An
Introductory Guide to Silvar Lisco and HILO Simulators
B. G. Blundell and C. N. Daskalakis, Using and Administering an Apollo
Network
T. B. Boffey, Graph Theory in Operations Research
Richard Bornat, Understanding and Writing Compilers
Linda E. M. Brackenbury, Design of VLSI Systems-A Practical Introduction
J. K. Buckle, Software Configuration Management
W. D. Burnham and A. R. Hall, Prolog Programming and Applications
J. C. Cluley, Interfacing to Microprocessors
J. C. Cluley, Introduction to Low Level Programming for Microprocessors
Robert Cole, Computer Communications, second edition
Derek Coleman, A Structured Programming Approach to Data
Andrew J. T. Colin, Fundamentals of Computer Science
Andrew J. T. Colin, Programming and Problem-solving in Algol 68
S.M. Deen, Fundamentals of Data Base Systems
S. M. Deen, Principles and Practice of Database Systems
Tim Denvir, Introduction to Discrete Mathematics for Software Engineering
P. M. Dew and K. R. James, Introduction to Numerical Computation in Pascal
M. R. M. Dunsmuir and G. J. Davies, Programming the UNIX System
D. England et al., A Sun User's Guide
K. C. E. Gee, Introduction to Local Area Computer Networks
J. B. Gosling, Design of Arithmetic Units for Digital Computers
M.G. Hartley, M. Healey and P. G. Depledge, Mini and Microcomputer
Systems
Roger Hutty, Z80 Assembly Language Programming for Students
Roland N. Ibbett, The Architecture of High Performance Computers
Patrick Jaulent, The 68000-Hardware and Software
P. Jaulent, L. Baticle and P. Pillot, 68020-30 Microprocessors and their
Coprocessors
J. M. King and J.P. Pardoe, Program Design Using JSP-A Practical
Introduction
E. V. Krishnamurthy, Introductory Theory of Computer Science
V. P. Lane, Security of Computer Based Information Systems
Graham Lee, From Hardware to Software-an introduction to computers

continued overleaf

A.M. Lister and R. D. Eager, Fundamentals of Operating Systems, fourth
edition
Tom Manns and Michael Coleman, Software Quality Assurance
G. P. McKeown and V. J. Rayward-Smith, Mathematics for Computing
Brian Meek, Fortran, PL/1 and the Algols
A. Mével and T. Guéguen, Smalltalk-80
Barry Morrell and Peter Whittle, CP/M 80 Programmer's Guide
Derrick Morris, System Programming Based on the PDP11
Y. Nishinuma and R. Espesser, UNIX-First contact
Pim Oets, MS-DOS and PC-DOS-A Practical Guide, second edition
Christian Queinnec, LISP
E. J. Redfern, Introduction to Pascal for Computational Mathematics
Gordon Reece, Microcomputer Modelling by Finite Differences
W. P. Salman, O. Tisserand and B. Toulout, FORTH
L. E. Scales, Introduction to Non-Linear Optimization
Peter S. Sell, Expert Systems-A Practical Introduction
A. G. Sutcliffe, Human-Computer Interface Design
Colin J. Theaker and Graham R. Brookes, A Practical Course on Operating
Systems
M. R. Tolhurst et al., Open Systems Interconnection
J-M. Trio, 8086-8088 Architecture and Programming
M. J. Usher, Information Theory for Information Technologists
B. S. Walker, Understanding Microprocessors
Peter J. L. Wallis, Portable Programming
Colin Walls, Programming Dedicated Microprocessors
I. R. Wilson and A. M. Addyman, A Practical Introduction to Pascal-with
BS6192, second edition

Non-series
Roy Anderson, Management, Information Systems and Computers
I. 0. Angell, Advanced Graphics with the IBM Personal Computer
J. E. Bingham and G. W. P. Davies, A Handbook of Systems Analysis, second
edition
J. E. Bingham and G. W. P. Davies, Planning for Data Communications
B. V. Cordingley and D. Chamund, Advanced BASIC Scientific Subroutines
N. Frude, A Guide to SPSS/PC+
Barry Thomas, A PostScript Cookbook

MS-DOS and PC-DOS
A Practical Guide

Pim Oets

Second Edition

M
MACMILLAN

© Pim Oets 1985, 1988

All rights reserved. No reproduction, copy or transmission of this
publication may be made without written permission.

No paragraph of this publication may be reproduced, copied or
transmitted save with written permission or in accordance with the
provisions of the Copyright Act 1956 (as amended), or under the
terms of any licence permitting limited copying issued by the
Copyright Licensing Agency, 33-4 Alfred Place, London WC1E 7DP.

Any person who does any unauthorised act in relation to this
publication may be liable to criminal prosecution and civil claims
for damages.

First edition 1985
Second edition 1988

Authorised English Language translation and revision of
Handleiding MS-DOS/PC-DOS, Third Edition, 1987
by Pim Oets
published by Uitgeverij Pim Oets, 1001 ZD Amsterdam,
The Netherlands

Translated by Arlette Eype

Published by
MACMILLAN EDUCATION LTD
Houndmills, Basingstoke, Hampshire RG21 2XS
and London
Companies and representatives throughout the world

British Library Cataloguing in Publication Data

Oets, Pim
MS-DOS and PC-DOS :a practical guide.
2nd ed.-(Macmillan computer science series).
1. IBM PC microcomputer systems. Operating systems : PC-DOS
2. Microcomputer systems. Operating systems : MS-DOS
I. Title
005.4'469

ISBN 978-0-333-45440-4 ISBN 978-1-349-09893-4 (eBook)
DOI 10.1007/978-1-349-09893-4

MS-DOS is a trademark of Microsoft Corporation,
Bellevue, 98009 Washington, USA.
IBM, PC XT, PC AT and PS/2 are trademarks of International
Business Machines Corporation, 33432 Florida, USA.

CONTENTS

INTRODUCTION

1: OPERATING THE COMPUTER

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

Loading the system (1)
The keyboard (1) .
Commands •
Correcting a mistake .
Asking for the system version - VER
Asking for the label - VOL
Clearing the screen - CLS
Entering and changing date and time (1)
Function keys . • • • .

2: STORAGE MEDIA

2.1 Types and sizes
2.2 Displaying the directory - DIR
2.3 Checking (1) - CHKDSK
2.4 Duplicating (1) - DISKCOPY
2.5 Comparing (1) - DISKCOMP .
2.6 Formatting - FORMAT
2.7 Entering and changing a label
2.8 Transferring the system

3: FILES •.....

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12

Utilities and system files
Creating a text file - COPY CON:
Reproducing (1) - TYPE
Renaming - REN • . . .
Reproducing (2) - MORE •
Verifying - VERIFY . .
Copying (1) - COPY ..
Comparing (2) - COMP .
Deleting - DEL or ERASE
Checking (2) - CHKDSK
Reconstructing - RECOVER
Protecting - ATTRIB

4: CHARACTERS AND SYMBOLS

4.1 The ASCII table
4.2 Control instructions
4.3 Reproducing (3) - DEBUG
4.4 Tracing - FIND ...
4.5 The keyboard (2) ...•
4.6 The extended character set

9

13

14
16
17
18
19
19
19
20
22

25

26
28
32
34
37
38
42
44

47

48
50
51
52
54
54
55
60
61
62
64
65

67

68
70
72
73
74
75

6 MS-DOS AND PC-DOS - A PRACTICAL GUIDE

5: USING A HARD DISK •••

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9

Installing . • . •
Loading the system (2)
Creating a sub-directory - MD
Removing a sub-directory - RD • • • • • •
Navigating - CD
Displaying the map - TREE
Creating a path - PATH • • . . . •
Disguising a sub-directory - SUBST
Duplicating (2) - BACKUP, RESTORE

6: WORKING WITH EDLIN

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15

Closing - E or 0
Re-opening • • • • • • • • •
The .BAK file ••••••••
Inserting - I • • • • • • • •
Reproducing - L or P .
Editing keys ••...•••
The active line
Editing • . . • • • • • • • • •
Searching - S . • • . • . • .
Searching and replacing - R
Erasing - D • • • • • • • • •
Writing away - W • • • • •
Appending - A . • • • • • • •
Copying - C or M
Reading in - T

7: DEVICE DRIVERS

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9

The screen .
The printer
Remote control - CTTY
The CONFIG.SYS file
Installing a RAM disk
Entering and changing date and time (2)
The keyboard (3) ••••.
The screen dump • • • • • •
Concurrent printing - PRINT

8: STREAMLINING THE SYSTEM

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10

Redirecting input and output • .
Sorting - SORT . . • • . • • .
The pipeline
The batch program
Comments and interruptions
The AUTOEXEC.BAT file
The condition
The jump •
Variables
The prompt •.•

79

80
82
83
85
86
88
90
91
92

95

97
98
99

100
• 102

. • 104
. 106

107
112
113
114
116

. 116
117
117

• 119

120
122
124
126
128

• 130
. 132

135
136

139

140
142
144
145
146
148
149
150

• 151
152

CONTENTS 7

9: THE BASIC FACTOR 155

9.1 Opening 156
9.2 Clearing the screen . . 157
9.3 Closing 157
9.4 Contact with the screen 158
9.5 The key bar 159
9.6 Contact with the printer 159
9.7 Calculating . 160
9.8 Creating variables 162
9.9 The loop 163
9.10 Driving the printer . . 164
9.11 Creating a program 166
9.12 Loading and running a program 167

10: NEW OR VARIANT VERSIONS 169

10.1 Eight steps to PC-DOS 3.30 171
10.2 Sound and speed 172
10.3 The keyboard (4) 173
10.4 Comparing (3) - FC 174
10.5 The interrupt function - BREAK 176
10.6 Copying (2) - XCOPY 176
10.7 Replacing - REPLACE 178
10.8 Expanding the path - APPEND 179
10.9 Duplicating (3) - BACKUP, RESTORE 180
10.10 The 3.5-inch disk drive 181

11: ERROR MESSAGES 183

INDEX OF COMMANDS • • • • • • • • • 199

INDEX OF NAMES AND CONCEPTS • • . • • • • • • 203

INTRODUCTION

This book is designed to meet two different purposes. First, it aims to lend
a helping hand to those who have just begun to use a computer under the con
trol of MS-DOS or PC-DOS. Second, it is intended to be a useful source of
information and reference for advanced users. As a result, the book can only
be a compromise in certain respects.

When the text is intended to help beginners find their way through the
jungle of terms and commands, step-by-step explanations are given, beginning
with the simplest operations. In addition, the importance of not over-esti
mating the background knowledge of the beginner has been continually kept in
mind. Clear examples, straightforward definitions of all terms and names,
and where necessary copious cross-references are given throughout the text.

On the other hand, when the text is intended to provide reference mate
rial for the more advanced user, the various commands and procedures are
discussed in much greater detail, including lesser-known facilities and
applications. In addition, a clear table of contents and detailed indexes
are provided.

In order to meet these aims, it was decided to divide the book into chapters
dealing with a specific subject or topic. For instance, chapter 3 comprises
explanations and commands that mainly refer to creating and manipulating
files; this chapter is therefore called Files.

By reading each chapter from beginning to end, the beginner can easily
become familiar with the most important terms and procedures with regard to
the particular topic. The advanced user may in tum consult the table of
contents or the index to find the chapter or section in which a certain term
or command is discussed. To meet this goal, and also for some other practi
cal reasons, it was necessary to ignore some procedures and commands that
are mainly relevant to programmers.

The various types, makes and configurations of the computer systems under
MS-DOS and PC-DOS provide another problem. For instance, finding appropriate
examples or terms for explanatory remarks becomes complicated because of the
differences between hard disks and floppy disks.

To solve this problem, we have chosen the following method of working. In
the first four chapters, the examples are based on the presumed presence of
two floppy disk drives, and from the fifth chapter, they are based on a
floppy disk and a hard disk. This is not relevant to beginners who have a
computer with two floppy disk drives. They may skip chapter 5 until they are
ready to deal with chapter 6, when they will presumably be familiar enough
with the subject matter to overcome the difference in drives.

If the beginner owns a computer with a hard disk, some problems may be
met when going through the first four chapters. By reading chapter 5 first,
these problems can easily be resolved.

Another problem is the plethora of different versions of MS-DOS and PC-DOS
that have been put on the market over the past years. This is a result of
both the technical as well as the commercial history of the operating sys
tem. In short, it boils down to the following.

10 MS-DOS AND PC-DOS - A PRACTICAL GUIDE

It all began in 1976. The American microprocessor manufacturer Intel Corpo
ration introduced its newest and most advanced product, the 8086 chip. A few
years later, the 8086 was joined by a somewhat simpler offspring, the 8088.

The next phase began in the late seventies. Probably stimulated by the
success of the Apple II, the giant computer corporation IBM decided to
develop its own type of microcomputer. The Intel 8088 was chosen as the
heart of the machine. The company approached the new company Microsoft which
was mainly concentrating on software for microcomputers and working very
successfully on its adjustments to the popular programming language BASIC.

In its tum Microsoft contacted a small company named Seattle Computer
Products which had already completed a prototype of an operating system for
the 8086 and 8088 chips, naming them 86-DOS and SCP-DOS respectively. Micro
soft obtained the rights to the system and hired Tim Paterson, the actual
designer of the system, for a period of one year. IBM agreed to this.

When the IBM Personal Computer came on the market, its operating system
turned out to bear the name IBM Personal Computer DOS, or DOS for short, the
version being 1.00. Although the contents, structure and name of PC-DOS were
owned by IBM, Microsoft had reserved the right to supply third parties, in
particular the manufacturers of so-called compatibles, with similar versions
of the original system of Tim Paterson.

These varieties are collectively known as MS-DOS (for Microsoft DOS).
Although some computer manufacturers add their own set of utilities, the
compatible PC-DOS and MS-DOS versions in fact function similarly.

Seven new versions have been introduced since the original version of PC
DOS appeared, each of which has been considerably improved and extended with
respect to the preceding version. The development and introduction of the
various MS-DOS versions coincided with these events.

The first revised PC-DOS version was launched in the summer of 1982 and
named 1.10. The main change was that it supported double-sided disk drives.
Later that year, the first revised version of MS-DOS, numbered 1.25, was
introduced. It was almost identical to the PC-DOS 1.10.

Coinciding with the launching in March 1983 of the IBM PC XT (for Exten
ded), a PC with a built-in hard disk, PC-DOS version 2.00, was introduced.
It included a large number of new features. In the autumn of 1983, together
with IBM's PC Jr, a further improved version, PC-DOS 2.10, came into circu
lation, soon to be followed by the almost identical MS-DOS version 2.11.

In the summer of 1984 IBM then introduced a new type of computer, the PC
AT (for Advanced Technology), which was based on a new microprocessor, the
Intel 80286. As might be expected, a new version of the operating system was
simultaneously released named PC-DOS 3.00, and subsequently, in the spring
of 1985 a further advanced version, PC-DOS 3.10, which included all the
necessary facilities for use in networks.

The sixth version was the PC-DOS version 3.20, shortly afterwards repla
ced by 3.21. The latter was put on the market in March 1986 on the occasion
of the introduction of the PC Convertible. The main novelty of that computer
was its small size of disk drive, namely 3.5 inches, with a capacity of 720
Kb. This new version of PC-DOS had especially been designed for this. In the
meantime, MS-DOS versions 3.20 and 3.21 were launched as well.

The latest version of PC-DOS is 3.30. It came into existence in April
1987, along with an entirely new series of IBM microcomputers: the PS/2
range. By the end of that same year, Compaq Computer Corporation introduced
its 386/20 series, accompanied by version 3.31 of Compaq's brand of MS-DOS.
And that is the situation at the time of writing.

INTRODUCTION 11

Microsoft and IBM have been wise enough to make all the successive versions
of the operating system 'upward compatible'. This means that each version
contains all the elements of its preceding versions.

In PC-DOS 3.30, for instance, all successively developed facilities of
the versions 1.00, 1.10, 2.00, 2.10, 3.00, 3.10 and 3.20/3.21 have been
included, improved if necessary, and regularly supplemented with new ele
ments. Likewise, MS-DOS 3.31 includes the facilities collected from all its
preceding versions.

In other words, if a certain version of the system is suitable for a cer
tain type of computer, all the preceding versions will be suitable as well.
However, this does not apply to the latest versions. Indiscriminately using
different versions may even lead to damage to files and should therefore be
avoided.

The principle of 'upward compatibility' has made it possible to base this
book on some sort of common denominator of all these versions. This results
in an emphasis on the MS-DOS versions 2.11 and 3.10, and the PC-DOS versions
3.00 and 3.10. Owners of older versions, for instance PC-DOS 1.10 or MS-DOS
1.25, will certainly find some useful information in this book, in particu
lar in the first four chapters, but the rest of this book is not specifi
cally meant for them.

Chapters 1 to 9 are useful for owners of the 2.00 version or higher. If a
certain facility has only been introduced in one of the level-3 versions,
this fact is explicitly stated. Chapter 10 deals with the improvements and
additions that have only been introduced with versions 3.20, 3.21, 3.30 and
3.31 of MS-DOS and PC-DOS.

Chapter 10, as its title suggests, not only deals with new, but also with
variant commands of the system. This implies that there are some minor dif
ferences between the various versions. Although it is impractical to list
them all, let alone discuss them, there are many general points to make.
Where it is of particular interest, new and/or different versions will be
discussed in more detail.

The so-called 'error messages' have been assembled in the final chapter
of this book, in alphabetical order and with a few comments.

Further to the above, it is appropriate to caution the beginner.
Even under the control of modern operating systems like PC-DOS or MS-DOS,

much can go wrong. To begin with, technical failures may occur. Therefore,
it is vital that the environment is not subjected to fluctuations, that
dust, smoke, magnetic and electrostatic objects are excluded, and that the
equipment is not subjected to knocks, shocks or vibrations.

In the second place, we as users may be at fault. Fortunately, the oper
ating system has been subjected to many tests during its development,
therefore the chances of mistakes being the system's fault are remote. How
ever, every user has to pass on commands and lines of text repeatedly, and
a typing error is easily made: we may omit an essential character or strike
the wrong key.

Therefore, it must be borne in mind that we should not skip a single step
and that each letter, each number and each punctuation mark, including
spaces, have a certain significance to the computer which is not necessarily
the same as in common speech. For, as we will see on the first page of the
first chapter, a computer is a dumb thing, merely consisting of electronics,
screws and air. It does not have a brain that can sense what we may have
meant.

If this was not so, there would have been no reason to write this book.

1: OPERATING THE COMPUTER

According to experts, a computer is an electronic instrument capable of exe
cuting programs of arithmetical and logical operations without human inter
vention. However, when we switch on a computer, at first nothing in particu
lar seems to happen. After a few seconds a message may appear on the monitor
screen, but tapping keys has no effect at all. Why is this?

To understand the reason, we must realise that a computer is no more than
a machine - a mindless device full of screws, wires, switches and air. It is
able to perform all kinds of intricate operations, provided that we prescri
be step by step what it has to do and that we use the right codes. It requi
res specialised knowledge as well as an enormous amount of work to feed the
necessary instructions into the computer yourself. Therefore these instruc
tions are available in fixed sets, ready for use.

In computer jargon, such a set of instructions is known as an Operating
System (OS), or a Disk Operating System (DOS).

Which operating system a manufacturer chooses for his computer depends on
various factors, but in the first place on the desired method for storing
data. Until the middle of the seventies, data was stored on punch cards or
paper slips. This dld not change until the American company IBM introduced a
method to store data on disks by means of electromagnetism - the present
disks or floppy dlsks.

The result of this new storing method was that the operating systems had
to be extended by instructions and procedures for the use of such dlsks and
their accommodation, the so-called disk drives. Consequently, the operating
system became a Disk Operating System.

Not only the disk drives, but the other parts and accessories of the com
puter as well, should be able to be switched on and used. We may think of
the keyboard, a mouse, the monitor, a printer or a plotter, a joystick for
those who love games, a modem, etc.

In the second place, the choice of the operating system depends on the
built-in microprocessor, known as the chip: the miniature electronic cir
cuit, operating as CPU (Central Processing Unit).

In August 1981, when IBM introduced the Personal Computer, abbreviated to
PC, the company turned out to have used a chip that was known as Intel 8088.
IBM offered no less than three different operating systems for this computer
but the cheapest one was finally chosen, probably because the operating sys
tems had to be acquired separately. This became IBM's own Personal Computer
DOS, or in short, PC-DOS - version 1.00.

This first IBM PC-model was followed by numerous new versions and types.
Moreover, time and again new or improved facilities were developed. These
developments resulted in new, improved and extended versions of PC-DOS.

At the same time, attracted by the success of the PC, other manufacturers
put similar equipment, known as compatibles, on the market. Together with
the developers of PC-DOS, the American software company Microsoft made an
arrangement for a similar version of the operating system. This resulted in
a counterpart of the PC-DOS which was called MS-DOS, for Microsoft-DOS.

In Chapter 10 (page 169) we will discuss the results of this muddle of
versions as well as the similarities and differences we may meet.

14 MS-DOS AND PC-DOS - A PRACTICAL GUIDE

1.1: Loading the system (1)

The operating system is usually supplied on a disk which we recognise by a
label stating DOS among other things.

In order to operate the computer, some of the data on the system disk
has to be put into the computer's memory. In other words, we have to load
the system. We start this procedure by placing the system disk in drive A.

The entrance of a disk drive is a horizontal or a vertical slot that we
usually find next to or under the monitor. If there is only one slot, it is
automatically drive A. If there are two or more, however, drive A is the one
on the left or the one on the top. The way we put the disk in the slot is of
vital importance. The label has to point in our direction and has to be on
the left in a vertical drive and on top in a horizontal drive.

Provided that we hold the disk between the thumb and forefinger of the
right hand, with the thumb on the label, we can hardly go wrong.

The next step is to tum on the machine. The switch is usually located on
the side or back of the machine.

After switching on - with IBM computers it takes some time - we usually
hear a bell or a beep. A number of mysterious lines should then appear on
the screen, followed by a text such as:

Microsoft MS-DOS version 3.21
Copyright 1981, 1986 Microsoft Corp.

If the computer is not equipped with a calendar and clock installation, we
then receive the request to enter the date:

Current date is Tue 1-01-1980
Enter new date:

How to do this will be described on page 20. We will skip that for now and
strike the key marked RETURN or ENTER or showing a broken arrow pointing to
the left. We shall refer to this key as the RETURN key. Also see page 16.

Then we are asked to enter the time in the same way:

Current time is 0:02:10.39
Enter new time:

How to enter the time will also be described on page 20, but for now we just
strike the RETURN key.

If we are working with PC-DOS, the IBM version of the operating system, we
see the date and time messages first, and then the message about the iden
tity. For instance:

The IBM Personal Computer DOS
Version 3.20 (C)Copyright International Business

(C)Copyright Microsoft Corp 1981, 1

OPERATING THE COMPUTER 15

Anyhow, in each case we will see the following symbol:

A>

The operating system has now been loaded. The A with a bracket (or, on some
models, a colon) is known as the prompt. It is an invitation to act.

The underline (or the small block) is the cursor. It marks the place on
the screen where our input will be shown.

It may happen that when we try to load the system, either nothing appears on
the screen or we see the following message:

Non-System disk or disk error
Replace and strike any key when ready

This is a so-called error message, in this case meaning that the computer
has not been able to recognise the contents on the disk as the system.

There may be four reasons for the error message:

- maybe we put the disk in the drive incorrectly;
- or maybe we put in the wrong disk. In both cases we should try again.
- maybe the machine is not suitable for this version of the system;
- maybe there is something wrong with the disk itself. In these two cases

we should consult the dealer.

What will happen when we tum on the machine when there is no system disk in
drive A depends on the brand, type and design.

If we have a computer with a so-called hard disk or fixed disk on which
the system has been placed (how to do this will be explained on pages 44 and
81), then we see a prompt with a different letter, usually a C. Thus:

C>

This letter is the symbol for the hard disk. For the rest, this prompt func
tions in the same way as a prompt with an A or any other letter.

If we work with an IBM computer that does not have a hard disk, and we start
the computer without a system disk in drive A, we are automatically confron
ted with the computer language BASIC, which is built into the machine. This
is shown by the following message:

The IBM Personal Computer BASIC
Version C3.00 Copyright IBM Corp. 1981, 1985
65536 Bytes free
Ok

This is a leftover from the old times of the computer, when it was not a
matter of course that disk drives were present. A cassette recorder had to
be used as a medium of storage. The first models of the IBM PC were there
fore equipped with a special means of access for it. Hence the letter C (for
cassette) that follows the word Version in the message.

If we do not want to work with cassette BASIC, we have to put a system
disk in drive A after all and start a RESET procedure (see page 18), or we
have to tum the machine off and tum it on again.

16 MS-DOS AND PC-DOS - A PRACTICAL GUIDE

1.2: The keyboard (1)

As soon as the operating system has been loaded, we can use the keyboard as
if we were sitting in front of an electronic typewriter. The position of the
keys is practically the same. It is referred to as QWERTY, after the first
six letter keys in the second row.

Let's type something. For instance:

A>qwerty <RET>

In this book, underlining (as above) will be used to indicate what must be
typed on the keyboard to have it appear on the screen.

A term between angle brackets < > indicates further action to be taken.
So, <RET> means that we should press the RETURN key. This is the key marked
with the term RETURN or ENTER, or with a broken arrow pointing to the left.

The result of pressing this key is that whatever has been typed is passed
on to the processor. If it has any meaning, it will be processed. In this
example this is obviously not the case, for the system replies with the
following error message:

Bad command or file name

Let's have a closer look at the keyboard. The keys indicated by SHIFT, or
showing a hollow arrow pointing up, are the keys to type capital letters.
They usually can be found at the left- and right-hand side of the row of
letters right above the space bar.

Most computers working under MS-DOS or PC-DOS have a block of keys with
the figures 0 to 9, plus a number of arithmetic symbols, just like a calcu
lator, at the right-hand side of the keyboard. This keypad is intended to
simplify typing figures. To do so, however, we should first press the NUM
LOCK key.

If we do not press the NUM LOCK key, the keys of the block of figures
have a different function. With certain programs they can be used to steer
the cursor. We can identify them by the terms HOME, END, PG UP (for Page
Up), PG DN (for Page Down) and four keys showing arrows pointing left,
right, up and down.

In addition to the above-mentioned keys we find various other special
keys; for instance, the key marked SCROLL LOCK and/or BREAK, ESC (for
Escape), CTRL (for Control), ALT (for Alternate), TAB (for Tabulate), INS
(for Insert) and DEL (for Delete). We will come across a number of these
special keys further on in this book.

On the far left or along the top of the keyboard, there are a number of
keys marked Fl, F2 etc. In a certain operating system or other program these
keys may be given a certain prescribed function - hence the indication
'function keys'. See also page 22.

Finally, IBM computers and most compatibles are equipped with a special
key marked PRT SC (which means Print Screen). If we strike this key together
with one of the SHIFT keys, the printer will produce a copy of the charac
ters that are on the screen at that moment, assuming that the printer is
connected to the computer and turned on.

OPERATING THE COMPUTER 17

1.3: Commands

Loading the operating system means that it is being stored in the computer's
memory. Consequently, any valid command issued by us will be processed by
the system.

A command is a code that is transmitted to the central processing unit of
the computer by means of the system. We may compare this unit to a switching
panel with the keys on the keyboard acting as the controls. It receives the
characters we type, checks the order and then converts them into instruc
tions.

The operating system is also known as an interface. This term may be best
described as an electronic gateway. The prompt offers us access to this
gateway. It indicates the line on the screen where we are to type our com
mand. This is the command line. The system cannot process more than 128
characters on the command line, i.e one line and a half. So the maximum
length of a command is 128 characters, including spaces.

When we have finished typing a command, we pass it on by striking the
RETURN key. The ingenious thing about the system is that the commands are
combinations of key strokes which form English verbs or concepts, such as
DATE, FORMAT or DISKCOPY. This helps us to memorise the commands.

For the computer, however, these key strokes only mean an instruction to
throw a few switches.

For some commands, the system disk is no longer needed in drive A after
having loaded the system, as the following experiment will prove. We take
the disk out of drive A and we type:

A>b: <RET>

As we see, the result is that the prompt is no longer an A, but a B and a
bracket pointing to the right. Thus:

B>

Now B has become the active drive instead of A. In other words: the drive to
which our commands will apply from now on.

We reverse this situation as follows:

B>a: <RET>

A>

Note that a colon directly follows the letter of the drive to be activated.

If the computer is equipped with a hard disk, we usually have to state this
by means of the letter C. Thus:

A>c: <RET>

C>

18 MS-DOS AND PC-DOS - A PRACTICAL GUIDE

1.4: Correcting a mistake

How do we remove meaningless characters from the command line, or in gene
ral, typing errors?

The first way, as we saw on page 16, is to pass them on to the computer
by tapping the RETURN key and then walt and see what happens. Thus:

A>qwerty <RET>
Bad command or file name

A>

Although the system usually replies with the above error message and a new
prompt, the characters may have a meaning for the computer and will start a
certain procedure or mess up a program in operation. So this method is
rather risky.

The second method is to adopt a RESET procedure. It consists of striking the
CTRL, AL T and DEL keys at the same time. The result is that the memory is
emptied and the operating system reloaded.

Some computers have a special RESET button. When we use this button, we
get the same result as striking the three keys mentioned above.

However, we should be very cautious with RESET procedures. In this exam
ple we are only dealing with a few characters on the screen, but we could -
as a result of emptying the memory - lose hours of intensive work.

The third method consists of removing the characters from the screen. To do
so we have to use a key on the upper right of the keyboard, showing an arrow
pointing to the left. This key can usually be found on the right of the top
row of the keyboard. We shall refer to this key as 'backspace key'.

In the absence of this key we can also use another key to be found on the
left of the keyboard which is marked CTRL (for Control). By holding it down
and striking an ordinary letter key, we give the system a so-called control
instruction.

The meaning of the instruction depends on the letter chosen, as we will
see on page 70.

An example is the control instruction AH, or the combination of the CTRL
key and the H key. As a result of this instruction the character to the left
of the cursor will disappear, in this case the y. Thus:

A>qwert_

The fourth method is the most practical one: striking the ESC key. A back
slash will then be displayed after the characters that have been typed to
indicate that the system will ignore the characters in question. Thus:

A>qwerty\

The cursor is now at the beginning of the next line and we may try again.

OPERATING THE COMPUTER 19

1.5: Asking for the system version - VER

Now it is time to have a real instruction carried out by the operating sys
tem. We can, for instance, let it check the version of the system we are
dealing with. Instead of starting a RESET procedure in order to reload the
operating system (see page 18), we may type the following, simple command:

A>ver <RET>

As a result we see something like:

MS-DOS Version 3.21

A>

1.6: Asking for the label - VOL

Another simple instruction we can give to the system is to trace down the
label of a disk. Such a label can be used to find the contents of the disk
in question quickly. To do so we use the term VOL, for Volume. An example:

A>vol <RET>

Volume in drive A is SYS(3_21)

If the disk in question has no label, we receive the following message:

Volume in drive A has no label

A>

1.7: Clearing the screen- CLS

If we want to clear the screen after we have finished our work or inspec
tion, we can do so by using the command CLS, for Clear Screen. Thus:

A>cls <RET>

The result is that all the characters disappear from the screen as if by
magic, while the cursor takes up position in the top left-hand comer.

20 MS-DOS AND PC-DOS - A PRACTICAL GUIDE

1.8: Entering and changing date and time (1)

It is practical, but not necessary, to enter the date when loading the sys
tem.

Current date is Tue 1-01-1980
Enter new date:

Suppose that it is 7 December 1988. This is entered in figures in the follo
wing manner: first the month (12), then the day (07), and finally the year
(1988), separated by hyphens (-). Thus:

Current date is Tue 1-01-1980
Enter new date: 12-07-1988

The computer itself will work out that 7 December is a Wednesday. We do not
have to add that information. Furthermore, we may leave out the 0 in 07 and
the 19 in 1988:

Enter new date: 12-7-88

Apart from a hyphen, a slash or full stop may be used. If we use the full
stop, we type:

Enter new date: 12.7.88 <RET>

When we have made a typing error and we notice it before we have hit the
RETURN key, we can correct this by tapping the backspace key or using the
instruction AH (see page 18).

In case we did not correct the mistake, the system will respond with the
following error message:

Invalid date
Enter new date:

We then have to type the date again, or we can forget about it and tap the
RETURN key.

The time comes next:

Current time is 0:02:10.39
Enter new time:

Entering the time is not necessary either, but usually it is practical.
Let's assume that it is 3 minutes past eight in the evening. We enter

this in figures. First the hour (20), then the number of minutes (03), and
finally the number of seconds, separated by a colon or full stop. We may
leave out the hundredths of a second. Thus:

Enter new time: 20.03 <RET>

OPERATING THE COMPUTER 21

The system's visiting card we saw on page 14 will now appear, followed by
the prompt.

If we have not entered a date when we loaded the system, or if we want to
use a different date for whatever reason at a later stage, then we can
change or enter it at any time. In that case we type the DATE command in its
bare form. Thus:

A>date <RET>

We may also use capitals, but typing lower case is of course easier.
In our case the system's answer is:

Current date is Wed 12-7-1988
Enter new date:

Note that the day of the week (Wed, for Wednesday) has automatically been
added to the date.

We now have the opportunity to enter a new date just as we did on the pre
vious page. If we decide not to and just strike the RETURN key, the date
remains unchanged.

To save time, we can combine the command directly with the desired new date,
for instance 16 December 1988:

A>date 12.16.88 <RET>

A>

The prompt indicates that there have not been any problems and that we may
give another command.

If we have not entered the time when we loaded the system, or if we want to
enter a different time for whatever reason at a later stage, then we can
change or enter it at any time. In that case we start the proceedings as
follows:

A>time <RET>
Current time is 20:47:56.03
Enter new time:

Note that the hundredths of a second are automatically added to the time
after the full stop.

We can now enter a new time, just as we did on the previous page. If we de
cide not to and just strike the RETURN key, the time remains unchanged.

In order to make things easier, we may combine this command, too, with the
desired new time, for instance 5 past 11 in the morning:

A>time 11.05 <RET>

A>

22 MS-DOS AND PC-DOS - A PRACTICAL GUIDE

1.9: Function keys

Most computers using the MS-DOS or PC-DOS system have a keyboard with a
fairly large number of special keys, as we saw on page 16.

Some of these keys can be recognised by a term such as INS or DEL or by
arrows pointing left, right, up or down. Others only have a number, such as
F1, F2 etc.

All these special keys have a certain, prescribed function but in order
to avoid the term 'function keys' causing confusion, we shall call the first
type editing keys. See page 104.

The second type, the numbered keys, will be considered the actual func
tion keys. The function of the keys marked F1 to F4 is to reproduce the last
command line issued, so that we simply can repeat the command or make cor
rections in it.

We must imagine that a line of characters, which we have passed on to the
computer by striking the RETURN key, is not only processed, in other words
will result in a reaction from the computer, but is also temporarily stored
in a part of the computer's memory specially reserved for this. This part of
the memory is known as a buffer.

Storage in the buffer is ended as soon as we pass on a new command line
or after we tum off the computer or when we start a RESET procedure (see
page 18).

As long as the command line is stored in the buffer, we can reproduce it on
the screen entirely or partially by means of the first four function keys.

An example: assume we have loaded the system, that we have omitted to
enter the date and that we have done so at a later stage by using a DATE
command (see page 20). We have not typed any commands or taken any other
action since then.

When we strike the F3 key, the last command we gave to the system will
immediately appear on the screen.

For instance:

A>date 12-16-88

If we now tap the RETURN key, the command will be executed as if we have
just typed it ourselves, as an experiment will prove.

When we strike the F1 key instead of the F3 key, only the first letter of
the command line will appear on the screen:

A>d

Hitting the key a second time will provide us with the second letter and so
on, until we have enough or until the whole line is on the screen:

A>date 12-16-88

The same effect can be achieved by striking the key on the numerical pad
marked with an arrow pointing to the right.

OPERATING THE COMPUTER 23

The F2 key can be used to reproduce a part of the command line up to a
specific place.

Suppose that we appear to have made a mistake; that the date is not 16
but 17 December. We can correct this error in several ways.

The first method is to strike the F3 key and then to tap the backspace
key or to type an AH instruction (see page 18) in order to erase the last
four characters from the screen. We then type the correct numeral and final
ly we tap the F3 key again. The result:

A>date 12-17-88

The second method is to tap the F1 key nine times, then to type a 7 and use
the F3 key again. Once again we see:

A>date 12-17-88

The third method, however, is the most efficient one. If we tap the F2 key
immediately followed by a 6, we see, as soon as we release the key, the
following on the screen:

A>date 12-1

If we now type a 7 and then tap the F3 key, we have only had to tap four
keys to correct the error:

A>date 12-17-88

Using the F4 key will result in the opposite: the command line is reproduced
from a certain point.

To demonstrate, we tap the F4 key immedlately followed by a 1. At first
nothing appears on the screen, but as soon as we tap the F3 key, we see:

A>l7-BB

This does not seem to be of much use. But suppose we have made a typing
error, for instance:

A>date 13-17-88 <RET>

The system's answer is:

Invalid date
Enter new date:

If we now tap the F4 key followed by a 7, and finally use the F3 key, this
will all result in the following:

Invalid date
Enter new date: 12-17-88

Now we only have to strike the RETURN key.

The longer we operate the system, the more we will need methods to save key
strokes. Then we will realise how useful these function keys can be.

2: STORAGE MEDIA

It is characteristic for a computer that it not only can execute a large
number of prescribed instructions very rapidly, but also that it can store,
temporarily or permanently, such instructions as well as their results and
other data. For this purpose, the computer is equipped with various facili
ties. We will discuss four of these briefly.

The first type of storage forms a permanent part of the machine. It is known
as RAM, for Random Access Memory, i.e. the computer's working memory, and
consists of a collection of so-called memory chips. Storing a great number
of instructions into RAM is part of loading the system (see page 14).

Although RAM is an inextricable part of the computer, its contents are
anything but permanent. Everything that has been stored in the working memo
ry will vanish into thin air as soon as we start a RESET procedure (see page
18), or tum off the computer. That is why the operating system has to be
reloaded again. Therefore, we should consider RAM as a casual facility.

The second type is also a permanent part of the computer. It is the so-cal
led ROM, for Read-Only Memory. Just like RAM, ROM consists of a collection
of chips. Technically speaking, ROM also belongs to the working memory of
the computer as the name indicates, but there are vital differences with
RAM. Firstly, it is not a volatile facility. It is not a temporary but a
permanent storage of instructions which means that it is not affected by a
RESET procedure or by turning off the machine. Secondly, we cannot change
its contents.

The ROM chips are placed into the computer by the manufacturer. They con
tain a number of basic instructions and information we always need, such as
the form of the letters and figures that are shown on the screen. With the
PC's and PS/2's of IBM, the heart of the computer language BASIC is built-in
in the memory in a similar way, that is, also by means of the ROM chip (see
pages 15 and 155).

All the computer codes and instructions stored in ROM are usually indi
cated by the term BIOS or ROM BIOS. BIOS is an abbreviation of Basic Input/
Output System.

The third type of storage is the disk. A dlsk is neither a permanent part of
the computer, nor a volatile medium. Switching on or off the computer does
not influence its contents.

If we want to operate, alter or erase the contents of a disk, we have to
take a number of accurately prescribed steps in the right order, as we will
see further on in this chapter and in chapter 3.

Finally we distinguish the hard disk, also known as fixed disk, as a storage
medium. In fact, this is a combination of the previous facilities.

For a start, the fixed disk, as the name indicates, is a permanent part
of the computer just like RAM. In addition, a fixed dlsk adds extra ROM to
the computer's memory containing certain operating instructions. Moreover,
the contents of a fixed dlsk are, just like the floppy disk, not affected by
a RESET procedure or switching off the computer.

26 MS-DOS AND PC-DOS - A PRACTICAL GUIDE

2.1: Types and sizes

The computer's disk drive in which we insert the disk somewhat reminds us of
a record player, and the disk of the record. An ingenious device searches
the contents of the disk, just like a record, and transfers the data it
finds to another place where it will be interpreted and displayed. A record
player usually needs an amplifier and a loudspeaker to reproduce the data. A
computer, on the other hand, needs a central processing unit (CPU) and a
monitor or a printer.

Another feature of both records and disks is that there is quite a number
of different types and sizes. Just as it is possible that a record does not
function properly if we mix up the playing speeds, we have to be aware of
the similarities and differences of the disks.

For a start, we distinguish three different sizes. In the first place, the
classical size, with a diameter of 8 inches (20 em) which was introduced by
IBM in the seventies as a revolutionary novelty. However, we will hardly
ever come across this type in personal computers, and therefore it may be
left out of consideration.

In the second place, we are dealing with a size of disk that was used
over the past years in the major part of PC brands and types, and is conse
quently considered the standard disk: the flexible disk, better known as the
floppy disk, with a diameter of 5.25 inches (about 14 em). This type is
again divided into different types of density. See next page.

In the last place, there is a disk that is not flexible but packed in
a small hard plastic box with the practical size of 3.5 inch, that is, near
ly 9 em. This has been developed by the Japanese electronics firm Sony and
used for several PC's on a small scale over the past years. However, now
that IBM has adopted this size for its entire PS/2 line, it might become the
new standard type.

In this chapter, we regard a disk as a floppy disk with a diameter of
5.25 inches. The commands and parameters relating to the 3.5-inch disk in
particular will be discussed on page 181.

Apart from similarities between records and disks, there are essential dif
ferences. In the first place, the data stored on a record is irrevocably
laid down in the material. The only alterations we can insert are scratches
and other damage. The contents of a disk, on the other hand, can be erased
or replaced by something else, if desired. In this respect, a floppy disk or
hard disk can be compared with a sound tape or cassette.

Another difference, equally important though less obvious, is the way in
which the data is stored on the surface. The contents of the data on a re
cord are stored in two grooves: on the A side and on the B side. These
grooves run in the form of a spiral from the edge to the middle of the re
cord. The contents on a disk are divided into a certain number of circular
fields: the so-called tracks. These tracks usually (though not always) take
up two sides of the disk: side 0 and side 1.

A disk normally has 40 or 80 tracks per side, numbered 0 to 39, or 0 to
79. These tracks are in tum divided into sectors, sometimes eight, but
usually nine or fifteen, numbered from 1 to 9 or 1 to 15.

STORAGE MEDIA 27

Each sector has a restricted space for a specific amount of information:
usually 512 characters, legible for the computer, or rather 512 bytes (see
page 32). A calculation shows that the storage capacity of a normal, double
sided disk containing nine sectors per track amounts to two times forty
times nine times 512 bytes, that is, over 360 Kb.

However, dividing the sizes is not the end of it. We are also dealing
with the type of drive and with the question of maximum storage capacity of
each type of drive.

In the first types of disk drives, only one side of the disk could be
filled since it was merely equipped with a single read and write head. In
addition, the capacity was rather restricted. This type of disk drive will
not be discussed in this book for at the time IBM had put its first PC on
the market, the evolution had developed to twice the density. Disks with the
standard size (5.25 inches) were suited for this purpose. They are referred
to as SSDD disks (for single-sided, double-density).

In the course of 1982, the PC's of IBM and its competitors were equipped
with a new type of disk drive which had a double read-and-write head. This
new type required standard disks that could contain data on both sides.
These disks were called DSDD (for double-sided, double-density).

But it is even more complicated. Dependent on the version of the opera
ting system, a varying number of sectors per track can be added to the disk.
Version 1 of the system did not have a choice; the number was eight. The
versions 2 and 3 of PC-DOS and MS-DOS were increased to nine, but it re
mained possible to divide the disk into eight sectors per track.

In 1984 two new types of disk drives with an increased storage capacity were
introduced. In the first place, the DSQD-type (for double-sided, quad-densi
ty), which could contain four times the capacity to a maximum of 720 Kb, and
in the second place, the HD type (for High-Density) or HC (for High capaci
ty), with a storage capacity of no less than 1.2 Mb.

Disks with 80 instead of 40 tracks could be used in these two types of
disk drives. Moreover, in the HC-type the number of sectors per track was
increased from 9 to 15. In these two types of disk drives, the normal disks
can be read, but it is not reliable to fill them. In order to use the maxi
mum storage capacity, special (and more expensive) HC-disks are needed.

This last type of disk drive was chosen by IBM to become a new type of
PC, the so-called PC AT, which was put on the market in the autumn of 1984.
As a result of the success of this type, as well as of the compatible compu
ters based on this type, it has in fact become a new standard.

Looking at the types of 5.25-inch disks, the different types of drives, and
the maximum storage capacities, we can compile the following survey:

SS drive DS drive QD drive HC drive
8 sect. 9 sect. 8 sect. 9 sect.

SSDD disk 160 Kb 180 Kb 160 Kb 180 Kb 160 Kb 180 Kb

DSDD disk 160 Kb 180 Kb 320 Kb 360 Kb 320 Kb 360 Kb

DSQD disk 160 Kb 180 Kb 320 Kb 360 Kb 720 Kb 1.2 Mb

HC disk 160 Kb 180 Kb 320 Kb 360 Kb 720 Kb 1.2 Mb

28 MS-DOS AND PC-DOS - A PRACTICAL GUIDE

2.2: Displaying the directory - DIR

If we want to check whether something has been stored on a disk, and if so,
whether the system can decipher the directory, we may use the DIR command,
for Directory.

Suppose we want to have the directory of the system disk in drive A dis
played. Assuming that drive A is the active drive (see page 17), we then
type the following command:

A>dir <RET>

As a result, a summary like the following appears on the screen:

Volume in drive A has no label
Directory of A:\

ANSI SYS 1709 9-16-87 12:00p
APPEND EXE 5794 9-16-87 12:00p
ASSIGN COM 1530 9-16-87 12:00p
ATTRIB EXE 10656 9-16-87 12:00p
BACKUP COM 30048 9-16-87 12:00p
CHKDSK COM 11923 9-16-87 12:00p
COMMAND COM 25332 9-16-87 12:00p
COMP COM 4183 9-16-87 12:00p
DEBUG COM 16000 9-16-87 12:00p
DISKCOMP COM 5848 9-16-87 12:00p
DISKCOPY COM 6264 9-16-87 12:00p
EDLIN COM 7495 9-16-87 12:00p
FIND EXE 6403 9-16-87 12:00p
FORMAT COM 13643 9-16-87 12:00p
GRAFTABL COM 6208 9-16-87 12:00p
GRAPHICS COM 7576 9-16-87 12:00p
JOIN EXE 9612 9-16-87 12:00p
LABEL COM 2346 9-16-87 12:00p
MODE COM 15159 9-16-87 12:00p
MORE COM 282 9-16-87 12:00p
PRINT COM 8995 9-16-87 12:00p
RECOVER COM 5369 9-16-87 12:00p
REPLACE EXE 13886 9-16-87 12:00p
RESTORE COM 35720 9-16-87 12:00p
SHARE EXE 8664 9-16-87 12:00p
SORT EXE 1946 9-16-87 12:00p
SUBST EXE 10552 9-16-87 12:00p
TREE COM 3540 9-16-87 12:00p
X COPY EXE 11216 9-16-87 12:00p

29 File(s) 47104 bytes free

A>

In the same way we can display the directory of a disk in drive B:

STORAGE MEDIA 29

A>dir b: <RET>

If we want to see the contents of a hard disk, and assuming that C is the
indication of the drive in question, we type:

A>dir c: <RET>

We act in the same way if, for instance, drive B is the active drive instead
of drive A. If we want to display the directory of the disk in drive A in
such a situation, we type:

B>dir a: <RET>

it concerns the directory of the disk in drive C, the command will be:

B>dir c: <RET>

As we can see on page 28, the displayed directory of a floppy disk or hard
disk is made up of five columns.

The first column contains all kinds of mysterious names such as ANSI,
ASSIGN, and ATTRIB. These are file names.

The second column shows terms such as COM, EXE and SYS, which are the ex
tensions belonging to the file names. In the next chapter, on page 48 and
page 53, we will explain what files are and what is the meaning and purpose
of these extensions.

In the third column we find the size of each file, expressed in the num
ber of bytes (see page 32).

The fourth column indicates the date on which the file was created. If no
date was entered after the loading proceedings, a standard date is included
in this column, for instance 1-01-80.

The fifth column shows the time at which the file in question was
created. An 'a' following the time indicates AM, meaning morning, and a 'p'
PM, for afternoon. 12:01a therefore means one minute past midnight.

The end of the directory is marked by a specification of the number of files
on the disk in question and the available storage, in this case 72528 bytes.
What this means will be explained on page 32.

If there are no files on the disk, or rather, if the directory is empty, we
receive the following message:

File not found

If there is no disk in the drive indicated, or if the disk in question can
not be read by the computer, for instance because the system cannot decipher
the contents or because the disk in question has not been formatted yet (see
page 38), we will see the following error message:

Disk error reading drive B
Abort, Retry, Fail? _

Then we have, as we will also see on page 185, to type an 'r' if we have
forgotten to insert the disk in the drive, or an 'a' if we want the prompt
to appear on the screen again.

If

30 MS-DOS AND PC-DOS - A PRACTICAL GUIDE

If there are so many files on the disk that the directory would fill more
than one screen, we could add an extra condition to the DIR command in order
to gain a clear view.

In the first place, we could add a slash and a 'p' (for page):

A>dir/p <RET>

In computerese, such an optional addition is called a parameter.
As a result of adding this parameter, the display will stop as soon as

the entire screen is filled:

Volume in drive A has no label
Directory of A:\

ANSI SYS 1709 9-16-87 12:00p
APPEND EXE 5794 9-16-87 12:00p
ASSIGN COM 1530 9-16-87 12:00p
ATTRIB EXE 10656 9-16-87 12:00p
BACKUP COM 30048 9-16-87 12:00p
CHKDSK COM 11923 9-16-87 12:00p
COMMAND COM 25332 9-16-87 12:00p
COMP COM 4183 9-16-87 12:00p
DEBUG COM 16000 9-16-87 12:00p
DISKCOMP COM 5848 9-16-87 12:00p
DISKCOPY COM 6264 9-16-87 12:00p
EDLIN COM 7495 9-16-87 12:00p
FIND EXE 6403 9-16-87 12:00p
Strike a key when ready

After striking a key the next series of names are displayed.

Another way to slow down the display of names is to add the parameter /w
(for wide). Thus:

A>dir/w <RET>

The result is that the names of the files are divided into five columns. The
rest of the information such as the date, time and size is not displayed, as
appears from the following example:

Volume in drive A has no label
Directory of A:\

ANSI SYS APPEND COM
BACKUP COM CHKDSK COM
DEBUG COM DISKCOMP COM
FIND EXE FORMAT COM
JOIN EXE LABEL COM
PRINT COM RECOVER COM
SHARE EXE SORT EXE
X COPY EXE

ASSIGN
COMMAND
DISKCOPY
GRAFTABL
MODE
REPLACE
SUBST

29 File(s) 47104 bytes free

COM ATTRIB EXE
COM COMP COM
COM EDLIN COM
COM GRAPHICS COM
COM MORE COM
EXE RESTORE COM
EXE TREE COM

STORAGE MEDIA 31

If we are only Interested ln the files on the disk ln drive A beginning with
the letter R, we type the following command:

A>dir r*.* <RET>

As a result, we see the following list:

RECOVER
REPLACE
RESTORE

COM 5369
EXE 13886
COM 35720

3 File(s)

9-16-87 12:00p
9-16-87 12:00p
9-16-87 12:00p

47104 bytes free

The command to display the files that have a name of four or less letters,
regardless of the extension:

A>dir ????.* <RET>

In this case the result is:

ANSI
COMP
FIND
JOIN
MODE
MORE
SORT
TREE

SYS 1709
COM 4183
EXE 6403
EXE 9612
COM 15159
COM 282
EXE 1946
COM 3540

8 File(s)

9-16-87 12:00p
9-16-87 12:00p
9-16-87 12:00p
9-16-87 12:00p
9-16-87 12:00p
9-16-87 12:00p
9-16-87 12:00p
9-16-87 12:00p

47104 bytes free

In order to display the files without an extension, if any, we type:

A>dir *· <RET>

In this case nothing happens, for we see:

File not found

Note that all examples of commands Include a full stop. This is essential
even though it is not Included ln the listing of the directory. The full
stop is the link between the actual file name and its extension.

Also note that we used two special characters ln the previous commands,
namely the asterisk (*) and the question mark.

In computerese, such characters used ln this way are known as wildcards.
This term originates from card games ln which certain cards, such as the
joker, represent a changing or undefined value.

In these examples the asterisk and the question mark are used as such
wildcards. The asterisk symbolises a string or series of numbers and letters
of an undetermined length. The question mark replaces a single, undefined
character.

When we use a command relating to various files at the same time, we may,
as is shown ln the above examples, replace the common part of the file names
by wildcards. The system automatically flnds the file names to which the
formula relates and the ones that do not match.

32 MS-DOS AND PC-DOS - A PRACTICAL GUIDE

2.3: Checking (1) - CHKDSK

We need not concern ourselves with the technology, but we have to know that
a computer distinguishes the values 0 and 1 for all data and instructions.
These two values are known as bits - an abbreviation of binary digits.

The letters of the alphabet, numerals, punctuation marks and instructions
are all converted into a string of eight bits, or to be more exact, into
seven bits, ordered in accordance with the system prescribed by the ASCII
table (see page 68), plus an extra bit for verification purposes. Such a
string of eight bits is called a byte. The size of the computer's memory
and the storage capacity of a floppy disk and a hard disk equals the number
of bytes (or characters) that can be stored maximally. Memory and storage
capacity are measured in units named K or Kb (for kilobyte, or 1024 bytes)
and M or Mb or Meg (for megabyte, or over a million bytes).

An A4-sized sheet of paper can contain about 60 lines of an average of 75
characters, including spaces, that is, 4500 characters in total. In other
words, 4500 bytes, or over 4 Kb.

By means of the CHKDSK command (for Check Disk) we can obtain an on-screen
survey of the available storage capacity and the way it is divided. For
instance, if we want to inspect the capacity of the disk in drive A, we type
the following command:

A>chkdsk <RET>

If we want to know what is on the disk in drive B, the command is:

A>chkdsk b: <RET>

In the case of a disk of a standard size, the following may be the result:

362496 bytes total disk space
328704 bytes in 12 user files

33792 bytes available on disk

655360 bytes total memory
618496 bytes free

The first line indicates the total capacity of the disk in question: in this
case 362496 bytes, or 360 Kb. This number can be larger or smaller, depen
dent on the type of the drive we are using (see page 27) and the way in
which the disk has been formatted (see page 38).

The second line of the survey reveals the number of files stored (see
page 47) and their total capacity, and the third line indicates the availa
ble storage capacity on the disk in question.

The penultimate line shows the number of bytes of the total memory. This
number concerns the RAM, that is, the computer's own working memory (see
page 25). In this example it amounts to 640 Kb.

From the last line we may understand that there are still 618496 bytes
available in the working memory for us to use.

STORAGE MEDIA

The heading of the survey may sometimes look like this:

Volume TEST DISK created Dec 19 1988 1:18p

362496 bytes total disk space
0 bytes in 1 hidden files

362496 bytes available on disk

33

This means that the disk was given a label on the date stated, in this exam
ple TEST DISK. On page 42 we will see how this is done.

Note that the survey includes the message 0 bytes in 1 hidden files. This
indicates the presence of the label on the floppy disk or hard disk (see
page 42).

It is possible that the survey contains a different message with regard to
the hidden files, for instance:

38912 bytes in 2 hidden files

In this case the hidden files take up 38912 bytes.
The two files have been stored on the floppy disk or hard disk, but have

not been included in the directory (see page 28). This usually concerns sys
tem files, that is, the files containing the part of the system needed for
loading. We will further discuss this subject on page 48.

If we want to know the names of the hidden files and whether they are
indeed the system files, we add the parameter /v (for verbose) to the CHKDSK
command. Thus:

A>chkdsk/v <RET>

If it concerns the disk in drive B, we type:

A>chkdsk b:/v <RET>

In both cases the result is that a series of file names is displayed on the
screen. For instance:

And so on.

A:\IBMBIO.COM
A:\IBMDOS.COM
A: \ANSI. SYS
A:\ASSIGN.COM
A:\ATTRIB.EXE
A:\BACKUP.COM
A:\CHKDSK.COM
A:\COMMAND.COM

The first two names are the hidden files: in this example IBMBIO.COM
and IBMDOS.COM. The names could also have been IO.SYS and MSDOS.SYS.

If the floppy disk (or hard disk) contains so-called bad sectors (see page
41), we would receive another additional message, for instance:

5120 bytes in bad sectors

34 MS-DOS AND PC-DOS - A PRACTICAL GUIDE

2.4: Duplicating (1) - DISKCOPY

It is advisable to make a copy of the entire system disk first and to store
the original in a safe place. If anything happens to the copy, we still have
the original disk.

Our working method is as follows. We put the system disk in drive A and
type the following formula exactly as it is shown here:

A>diskcopy a: b: <RET>

If we make a typing error, we can correct it by means of the methods we
learned on page 18, either the third or the fourth method.

Note that we first typed a: after the term DISKCOPY in order to indicate the
source drive, and then b: to indicate the target drive. The result is:

Insert source diskette in drive A:

Insert target diskette in drive B:

Strike any key when ready

The disk to be copied should now be inserted in drive A. In this case we
want to copy the system disk itself, so there is no need to change it.

Next, we put a blank disk in drive B. If we have done this, we strike any
key to indicate that the procedure may start.

Whatever is shown on the screen depends on the type of drive. Some old types
only are single sided, which results in only half of the disk's capacity
being used (see page 27). We then see:

Copying 1 side(s)

But if the drive, like almost all drives nowadays, can fill double-sided
disks, the message is:

Copying 2 side(s)

If the target disk has not been formatted yet (see page 38), we also see:

Formatting while copying

A few seconds later, we should see the following message, showing that the
command has been carried out properly:

Copy complete

The system then asks:

Copy another (Y/N)?_

STORAGE MEDIA 35

If we want the system to make a second copy, we type a 'y', for yes:

Copy another (Y/N)?y <RET>

As a result, we again see:

Insert source diskette in drive A:

Insert target diskette in drive B:

Strike any key when ready

If we have finished, in other words, if we no longer need the DISKCOPY pro
cedure, we type an 'n' , for no. Thus:

Copy complete

Copy another (Y/N)?~ <RET>

A>

Drive B now contains an exact copy of the disk in drive A. We remove the
original from drive A and store it in a safe place.

DISKCOPY also works the other way around, that is, from drive B to drive A.
To demonstrate, we leave the copy of the system disk we have just made in

drive B. We insert a blank disk in drive A and this time we first type:

A>b: <RET>

B>

Now drive B is the active drive. Next, we type:

B>diskcopy b: a: <RET>

If we want to maintain drive A as the active drive, we may combine these
commands in the following way:

A>b:diskcopy b: a: <RET>

Note that the command is preceded by a 'b' and a colon. In this way we in
form the computer that drive A must remain the active drive, even though the
code of the DISKCOPY program is on the disk in drive B.

Consequently, the instructions have now been adapted:

Insert source diskette in drive B:

Insert target diskette in drive A:

Strike any key when ready

The procedure is otherwise the same.

36 MS-DOS AND PC-DOS - A PRACTICAL GUIDE

It may be necessary to use a DISKCOPY procedure to copy a single-sided disk
in a double-sided drive (see page 27). For instance, because the copy is
needed for a computer with single-sided drives (see page 27). In that case,
we have to warn the operating system in advance by adding the parameter /1
to the command. Thus:

A>diskcopy a: b:/1 <RET>

The procedure is otherwise the same as on the previous pages. If there is
only one disk drive, for instance if the space of a B drive is taken up by a
hard disk, the DISKCOPY procedure is slightly different.

First, we insert the disk to be copied in the available drive (by defini
tion, drive A), and next we type the following command. Thus:

A>diskcopy <RET>

Or, if we want to copy a single-sided disk in a drive meant for double-sided
disks:

A>diskcopy/1 <RET>

In both cases the system's answer is:

Insert source diskette in drive A:

Strike any key when ready

If we then strike a key, as requested, we see after a few seconds, the usual
messages. And as soon as the contents of the disk have been adopted in the
working memory, we will see:

Insert target diskette in drive A:

Strike any key when ready

We then remove the disk from the drive and replace it by a blank disk, and
strike a key. The result is:

Insert source diskette in drive A:

Strike any key when ready

Subsequently, we put the original disk in the drive again and repeat this
exchange a number of times until we receive the message that the procedure
has been completed:

Copy complete

Copy another (Y/N)?_

Another method to copy all or part of the contents of a disk is the COPY •. •
command. See page 55.

Since the introduction of the system's 3.2 and 3.3 versions, we can also
use a command called XCOPY. We will review it on page 178.

STORAGE MEDIA 37

2.5: Comparing (1) - DISKCOMP

Almost all versions of MS-DOS amd PC-DOS provide us with the possibility to
check whether a DISKCOPY procedure has been accomplished without any errors.
In other words, whether each byte of the copy corresponds with the original.
In order to find this out, we type:

A>diskcomp a: b: <RET>

In both cases we see the following instructions:

Insert first diskette in drive A:

Insert second diskette in drive B:

Strike any key when ready

Now we have to insert one of the disks to be compared in drive A, and the
other disk in drive B before striking any key.

As soon as this procedure has been completed, which may take a while, we may
receive a message like:

Diskettes compare ok

Compare more diskettes (Y/N)?

By typing a 'y' or an 'n', we can indicate whether or not we want to compare
another disk.

If the procedure results in having found a difference between the two disks,
we may expect a message like:

Compare error(s) on
Track 04, Side 0

If such messages follow each other rapidly, it is obvious that we are deal
ing with two disks of different contents. In that case it is advisable to
break off the procedure by means of the AC or A <BREAK> control instruction.

If we only have one drive, the command is:

A>diskcomp <RET>

Insert first diskette in drive A:

Strike any key when ready

Then we insert the first disk in the drive and strike any key. What happens
is largely the same as in the DISKCOPY procedure (see the previous page).

38 MS-DOS AND PC-DOS - A PRACTICAL GUIDE

2.6: Formatting - FORMAT

Before we can store data on a disk, the disk has to be equipped with a kind
of electronic map or blueprint first. The computer then knows how the drive
has to operate. Such a procedure is called formatting, or initialising the
disk. The command to bring about such a procedure is FORMAT.

In the course of our using the system, we will have to use it rather
often; in any case each time we want to use a new disk, or if we have to
clear or repair a disk that has been used before.

However, we have to be very cautious with the FORMAT command. The compu
ter does not distinguish a used disk from an empty one. If we make an error
in the formula of the command, the entire contents of a disk may be removed
irrevocably.

Let's perform an experiment. We insert a copy of the system disk in drive A
and a blank disk in drive B. Next, we type:

A>format b: <RET>

The result of this command is that the FORMAT program is stored in the com
puter's memory, i.e. is loaded, which is confirmed by the following message:

Insert new diskette for drive B:
and strike ENTER when ready

For reasons of safety, we remove the copy of the system disk from drive A
and strike the ENTER key, i.e. the RETURN key.

We receive the following confirmation that the procedure is in operation:

Formatting •••

At the same time we usually hear a strange ticking noise from the drive. The
screen may also show the term 'head' or 'cylinder' or both, invariably fol
lowed by a number rapidly increasing.

As soon as the formatting procedure has been completed, we are to receive
the following confirmation:

Formatting .•• Format Complete

This is followed by a calculation of the total and still-available storage
capacity of the disk. If we are working with a normal double-sided drive and
a DSDD disk, we see:

362496 bytes total disk space
362496 bytes available on disk

Then the system will ask whether we want to format another disk:

Format another (Y/N)?

STORAGE MEDIA 39

Now we can indicate whether we want to format a second disk in the same
drive. If so, we type a 'y' (for yes). As a result, we are again asked to
insert a disk in drive B. Striking the RETURN key will start the procedure:

Insert new diskette for drive B:
and strike ENTER when ready

On the other hand, if we type an 'n' (for no), the prompt appears on the
screen again. Thus:

Format another (Y/N)?n

A>

If we only have one disk drive, for instance if the computer is equipped
with a hard disk, we have to restrict the procedure to the available drive.
By definition, this is drive A. In that case the command has to be:

A>format <RET>

Insert new diskette for drive A:
and strike ENTER when ready

After this instruction on the screen, we have to replace the system disk by
the blank disk. If we forget to change the disks, or if we accidentally
strike the RETURN key, the system disk will be formatted so that the con
tents are erased irrevocably. This is the reason why we should always work
with a copy of the system disk instead of the original.

For the rest, the procedure results in the same series of messages as on
the previous page, for instance:

Formatting ••• Format Complete
Format another (Y/N}?_

Just like a floppy disk, a hard disk has to be formatted - as we will see on
page 81. Normally, the supplier of the computer has taken care of this. If
not, and a DIR command will prove this (see page 28}, we have to do it our
selves. In that case we type:

A>format c: <RET>

This results in a message like:

Press ENTER to begin formatting drive C.

Should we ever receive such a message on the screen when this is certainly
not our intention, we immediately have to give a ·<BREAK> or ·c instruction
(see page 71) in order to prevent the FORMAT procedure from being started by
accident. Fortunately, most recent versions of the system give us a warning
like the following:

WARNING, ALL DATA ON NON-REMOVABLE DISK WILL BE LOST!
Proceed with Format (Y/N)?

40 MS-DOS AND PC-DOS - A PRACTICAL GUIDE

Sometimes it is necessary to format a disk for less than the maximum storage
capacity, for instance 8 sectors per track, in a standard, double-sided type
of drive, in order to guarantee the usability under any version of the sys
tem, including the !-versions.

Assuming that we have a B drive at our disposal, the formula is:

A>format b:/8 <RET>

If we want to format the disk for 180 Kb, for instance because it has to be
used in a different computer with a single-sided drive, we have to add the
parameter /1 to the FORMAT command. Thus:

A>format b:/1 <RET>

We may also combine the previous parameters so that we restrict the storage
capacity of the disk to one single side, with eight sectors per track:

A>format b:/1/8 <RET>

As usual, we see:

Insert new diskette for drive B:
and strike ENTER when ready

At the end of the procedure, we see the following statement:

160256 bytes total disk space
160256 bytes available on disk

Format another (Y/N)?_

If we work on a computer with 8 High Capacity drive (see page 26), for in
stance an IBM PC AT, or 8 similar type, the FORMAT procedure will be carried
out in the usual way. Thus:

A>format <RET>

The calculation and capacity at the end of the procedure look like this:

1213952 bytes total disk space
1213952 bytes available on disk

A parameter only available in the 3-versions of the system is I 4. If we work
on a computer with a QD or HC drive (see page 26), we can arrange that a
normal disk in this drive is adapted for a storage capacity of 360 Kb,
instead of 1.2 Mb, by adding the aforementioned parameter to the command:

A>format/4 <RET>

This possibility may come in handy if we do not have an HC disk at our dis
posal.

However, we have to remember that a disk formatted by means of this com
mand may not always be read reliably in a standard drive.

STORAGE MEDIA 41

A formatting procedure is usually the only way out when we are confronted
with a damaged floppy or hard disk that can no longer be read by the compu
ter. Should something llke that be the case, then this will sooner or later
be shown in some kind of error message (see page 183 and subsequently).

We first have to make a copy of the disk in question by means of a DISK
COPY procedure (see page 34) since a FORMAT procedure would result in era
sing the contents from a floppy disk or hard disk irrevocably. After this,
we store the copy in a safe place.

Next we start a FORMAT procedure in the usual way. Thus:

A>format b: <RET>

If we only have one disk drive, for instance because the computer has a hard
disk, we restrict the procedure - as always - to the available drive. Thus:

A>format <RET>

In both cases the rest of the procedure is carried out in a similar way:

Insert new diskette for drive A:
and strike ENTER when ready

During the formatting procedure, the damaged parts or bad sectors are fenced
off, so to speak. Anything we store on the disk in a later stage will be
carefully routed around the fence.

After completion of the procedure, we see a message llke the following:

362496 bytes total disk space
4096 bytes in bad sectors

358400 bytes available on disk

Format another (Y/N)?_

Note that the message '4096 bytes in bad sectors' is added to the survey.
This means that we can use the disk in a normal way, though with the

available storage capacity reduced by the number of bytes stated. The amount
of space finally available is stated in the last line.

The survey produced by a CHKDSK command (see page 32) will give us a
confirmation llke the following:

A>chkdsk b: <RET>

A>

362496 bytes total disk space
4096 bytes in bad sectors

358400 bytes available on disk

655360 bytes total memory
618496 bytes free

On the repaired disk we can now put the contents of the copy we made at the
beginning of this procedure and stored safely. To do so we have to start a
COPY •.• procedure (see page 55).

42 MS-DOS AND PC-DOS - A PRACTICAL GUIDE

2.7: Entering and changing a label

The FORMAT procedure enables us to give a disk a so-called volume label.
Thls can be a description of the contents of the disk ln question, a name, a
code or anything else. The system automatically adds the date and tlme.

If we want to give a disk such a label, we have to Inform the system of
our Intention ln advance. We do so by adding the parameter /v (for volume)
to the formula of the FORMAT command. Thus:

A>format b:/v <RET>

The procedure ls lnitlally identical to that on the previous pages. But then
the following message appears on the screen:

Volume label (11 characters, ENTER for none)?

We should, however, realise that (ln the system's 2-versions) we can only
change or remove the label by reformatting the disk. Therefore, we should
think carefully about the formula of the label.

Another handicap ls that the label may not contain more than 11 charac
ters, numerals or punctuation marks, while the same rules apply as ln naming
files (see page 53).

If we decide not to add a label after all, we just hit the RETURN key.

Suppose we want to give our disk the label TEST DISK. As soon as we have
passed it on to the system by hitting the RETURN key, the prompt appears on
the screen again - without further statements. If we then give a DIR com
mand, the result ls as follows:

Volume in drive B is TEST DISK
Directory of B:\

File not found

A>

If we give a CHKDSK command instead of a DIR command (see page 32), the
screen will show us the label as well as the date and tlme when it was crea
ted. For Instance:

A>chkdsk b: <RET>

Volume TEST DISK created Dec 17 1988 16:39

362496 bytes total disk space
0 bytes in 1 hidden files

362496 bytes available on disk

655360 bytes total memory
618496 bytes free

STORAGE MEDIA 43

Note that the survey contains the statement '0 bytes in 1 hidden files'.
This message shows that the label is included as an entry in the direc

tory, with the same status ('hidden') as the system files (see page 48).
However, it has no meaning at all - hence the size of 0 bytes.

If we do not want to display the directory, we can type the command VOL (see
page 19) instead of a DIR or CHKDSK command. Thus:

A>vol b: <RET>

The reply will then be restricted to the following:

Volume in drive B is TEST DISK

If the disk has not been given a label, we receive the following message:

Volume in drive B has no label

A>

In the 2-versions of the system, we could create a label by means of the
FORMAT procedure in the way described on the previous page, but we could not
change or erase it just like that.

This has changed with the introduction of the 3-versions of MS-DOS and
PC-DOS. From now on, the label of any disk, regardless of its type, can be
added, changed or erased again at any time.

To demonstrate, we insert a formatted disk in drive B. In order to give
it the label VARIANT, for instance, we type the following command, assuming
that the system disk is in drive A:

A>label b:variant <RET>

A>

Now we can check by means of a VOL or CHKDSK instruction whether the label
has indeed been created:

Volume VARIANT created Dec 19 1988 1:39p

If we want to erase the label from a disk in drive B, we type:

A>label b: <RET>

The following answer appears on the screen:

Volume label (11 characters, ENTER for none)?

We only have to strike the RETURN key again so that the prompt appears on
the screen again. If we then, by way of trial, give the VOL command, the
label turns out to have been erased:

A>vol b: <RET>

Volume in drive B has no label

44 MS-DOS AND PC-DOS - A PRACTICAL GUIDE

2.8: Transferring the system

The previous pages explained the meaning of the FORMAT procedure. One faci
lity has been left aside, namely to provide a disk with the system files at
the same time as it is formatted. In other words, to provide it with the two
'hidden files' and the COMMAND.COM file.

The parameter /s is used with the FORMAT command to format a disk and to
transfer the system on to it at the same time. Assuming that the system disk
is in drive A and the disk to be formatted in drive B, we type:

A>format b:/s <RET>

At first the procedure is otherwise the same, for we see:

Insert new diskette for drive B:
and strike ENTER when ready

Even after we strike the RETURN key, the procedure is the same as usual:

Formatting ... Format Complete

But then this message appears:

System transferred

And next, a survey like the following:

362496 bytes total disk space
60416 bytes used by system

302080 bytes available on disk

Format another (Y/N)?_

The electronic blueprint on the disk now has a different form - a number of
tracks and sectors have been reserved for (and subsequently taken up by) the
system files: 60416 bytes in total, as the survey shows. From the survey it
also appears that this space has been taken from the available storage capa
city.

We may now carry out an experiment. We replace the system disk in drive A
by the disk we just formatted. Next, we carry out a RESET procedure (see
page 18). It turns out that the system can be loaded without any problem.

If we then give a DIR command, we see:

A>dir <RET>

Volume in drive A has no label
Directory of A:\

COMMAND COM 25332 9-17-87 12:00p
1 File(s) 302080 bytes free

STORAGE MEDIA 45

If we only have one drive, for instance if we have an AT-type computer with
a hard disk, the procedure will be carried out as follows. Assuming that the
system disk is in drive A and the disk to be formatted in drive B, we type:

A>format/s <RET>

As expected, the system's answer is:

Insert new diskette for drive A:
and strike ENTER when ready

Next, we replace the system disk by the blank disk to be formatted and
strike the RETURN key. The procedure will then also be the same as usual,
finally resulting in this message:

System transferred

1228800 bytes total disk space
60416 bytes used by system

1168384 bytes available on disk

If desired, we may combine the parameter Is with lv (see page 42). As a
result, the disk is given a label at the same time. Thus:

A>format b:/slv <RET>

Or, if we only have one drive:

A>format/s/v <RET>

In both cases we receive the usual messages:

Formatting .•• Format Complete
System transferred

Volume label (11 characters, ENTER for none)?

It may sometimes be necessary to transfer only the system files to a disk,
for instance to a disk with a ready-to-use program in which the designer or
manufacturer has not included system files for reasons of copyright, but who
has reserved the necessary space.

In that case, a FORMAT procedure with the parameter Is cannot be used,
since it would erase the contents of the disk entirely. In such a situation
(but only then) we have to give a different command. Assuming that our sys
tem disk is in drive A and the disk to be transferred in drive B, we type:

A>sys b: <RET>

The only on-screen result is:

System transferred

However, the disk does not contain the indispensable COMMAND.COM file yet.
To get that on the disk as well, we have to COPY it (see page 55).

3: FILES

In the previous chapter we saw how to prepare a floppy disk or hard disk for
storing data and how to check whether this has been done, and if so, how
much space is still available. In addition, we have learned the meaning of
bits and bytes, kilobytes and megabytes. But how can the computer make sense
out of the thousands of bytes on all those sides, tracks and sectors?

The answer is that this is precisely the main task of the operating sys
tem. It uses a list of files to keep track of what has been stored, where
and when.

A file is a collection of one or more bytes, with a minimum of one and a
maximum of 32 Mb, that is, more than 32 million bytes.

The actual contents of a file are determined by the number, the order and
the meaning of the stored bytes. These contents may be anything, like a
normal text we can read, varying from a single character to, for instance,
the contents of this manual. In that case we are dealing with a text file.

The contents of a file may also consist of a large or small program. In
other words, a series of instructions, defined in accordance with the funda
mentals of a so-called computer language like Pascal or BASIC (see page
155). If that is the case, we refer to this file as the program file.

Finally, a file may consist of data stored in a certain pattern by means
of a database management program like PC-File, or dBASE. In that case we
refer to it as a data file.

We have created a file (of any type) as soon as we have thought of a name
and have passed it on to the operating system. The number and type of cha
racters used in the file name is somewhat restricted (see page 53), but in
principle we are free to choose.

After receiving the name, the system includes it in the directory (see
page 28), and automatically adds the date and time of creation, as well as a
reference to the so-called File Allocation Table, known to programmers as
the FAT. This is, so to speak, the map or electronic blueprint we discussed
in the previous chapter. In this map, the system precisely registers where
each file has been stored on the floppy disk or hard disk. In other words,
on which sides, tracks and sectors the series of bytes are.

Then the system locates the first empty track and sector on the disk
indicated and reserves this space for the file to be stored by making a note
in the FAT.

As soon as the storing procedure is completed, the system finishes the
bookkeeping by determining the size in bytes of the file that we have just
created.

When the floppy disk or hard disk is equipped with the electronic map, we
can display its contents by giving a CHKDSK command (see page 32) or display
part or the entire directory by giving a DIR command (see page 28).

In this chapter we will learn how to create a file ourselves and how, if
desired, to change, reproduce, copy, print, or erase a file. In other words,
how to manipulate a file. In addition, we will learn what to do when a file,
or even the entire directory of a disk, turns out to be mixed up. To be more
precise, when the FAT's bookkeeping is a mess.

48 MS-DOS AND PC-DOS - A PRACTICAL GUIDE

3.1: Utilities and system files

Let's take another look at the directory of our system disk. We see that the
list contains a rather varied collection. Most file names appear to have the
extension .COM or .EXE, but there is a number of file names ending with .SYS
as well. In most cases (though not in all), the manufacturer of the computer
has been kind enough to provide the main files on the system disk with the
appropriate date and time.

In any case, this collection of files forms the operating system. In
fact, we should add, in a wider sense; for we do not need most of these
files to start the computer and to carry out a large number of instructions.

To demonstrate, we carry out the following experiment. We erase all files
from a copy of the system disk, apart from COMMAND.COM. How to do this will
be explained on page 61. Next, we insert this reduced system disk in drive A
and start a RESET procedure (see page 18). As a result, the computer acts as
usual, as if there is nothing wrong. We even can use the keyboard and give
commands such as CLS, DATE, DIR, TIME, VER and VOL as if nothing has hap
pened. On the other hand, if we give commands such as CHKDSK, DISKCOMP,
DISKCOPY, FORMAT or SYS, the system does not recognise them.

The reason for this derives from the design of the operating system. We
have to imagine that the operating system consists of a centre surrounded by
a certain number of sections. These sections are formed by the files that we
just erased from the disk, such as ANSI.SYS, ASSIGN.COM, ATTRIB.EXE,
BACKUP.COM etc. These files appear not to be essential to the computer's
functioning, for the system is loaded anyway. They do, however, perform a
certain supplementary or special task. Hence the indication utilities. We
might also call them utility programs. Dependent on the operations we have
to carry out, we will use certain utilities more often than others.

In order to use a utility like CHKDSK, the file CHKDSK.COM has to be on
the system disk. We can find this out by means of a fairly simple method. We
only have to transfer a copy of CHKDSK.COM to our reduced disk. As a result,
the CHKDSK command will be in operation again.

In a similar way we can ascertain that it is essential that the files
FORMAT.COM or CHKDSK.COM are on the disk in order to carry out the FORMAT
or CHKDSK command. Since these utilities operate more or less independently
of the actual operating system, we can store them on disks other than the
system disk and activate them.

As stated above, the directory of the system disk sometimes indicates that
the utilities have been given the same date and time. In this way we can see
that the files in question are of the same sort. Or rather, that they are
part of the same version of the system. It is not advisable to use utilities
of different versions of the system indiscriminately, since this involves
the risk of a breakdown.

The operating system in the narrower sense of the term, i.e. the centre of
the system, that is, without the utilities, consists of three files. Only
COMMAND. COM is viewed in the directory. As a result of a technical little
trick in the FAT (see page 47), the other two files remain hidden in DIR
commands. This explains the term hidden files we saw on page 33.

FILES 49

COMMAND.COM contains, among other things, the instructions to process every
thing we pass on to the computer through the keyboard, and the program code
for the commands DATE and TIME we saw in the previous chapter, as well as
the commands COPY, COPY CON:, DEL, DIR, ERASE and TYPE in this chapter.

Loading the system largely means that both the hidden files and the COM
MAND.COM file are stored in the computer's memory. This is why the aforemen
tioned commands, unlike the commands to operate the utilities, can be car
ried out without the system disk.

There is the possibility of displaying the two hidden files, as we saw on
page 33. For this purpose, we have to give a CHKDSK command, followed by the
parameter /v (for verbose). Thus:

A>chkdsk/v <RET>

Assuming that the system disk is in drive A, the result is:

Directory A:\
A:\IO.SYS
A:\MSDOS.SYS
A:\COMMAND.COM

This is followed by the file names of the utilities, if any, plus the data
we saw on page 32. For instance:

362496 bytes total disk space
38912 bytes in 2 hidden files

188416 bytes in 31 user files
135168 bytes available on disk

655360 bytes total memory
618496 bytes free

In this example we see that the hidden files are named IO.SYS and MSDOS.
SYS.

If we work with a recent or an IBM version of the operating system, we re
ceive a message like the following:

And so on.

Directory A:\
A:\IBMBIO.COM
A:\IBMDOS.COM
A:\ANSI.SYS
A:\ASSIGN.COM
A:\ATTRIB.EXE
A:\BACKUP.COM
A:\BASIC.COM
A:\BASICA.COM
A:\CHKDSK.COM
A:\COMMAND.COM
A:\COMP.COM
A:\DISKCOPY.COM

Conclusion: the hidden files are called IBMBIO.COM and IBMDOS.COM.

50 MS-DOS AND PC-DOS - A PRACTICAL GUIDE

3.2: Creating a text file - COPY CON:

There are several ways in which we can create a file ourselves. Mostly, we
will use the utility EDLIN to do so (see page 95), or a word-processing pro
gram, but there is an alternative, fast method to create draft and other
small files.

Let's use this method to create a file named NOTES. We do not need an
extension. We type the following command:

A>copy con: notes <RET>

If we want the file to be on the disk in drive B, we type:

A>copy con: b:notes <RET>

As we can see on the screen, the cursor has moved to the beginning of the
next line, ready to process whatever we type. We can use the keyboard more
or less like a typewriter.

At the end of each line, text or no text, we have to strike the RETURN
key. The cursor will then be placed at the beginning of the next line.

We can correct typing errors by means of the backspace key or the ·H
instruction (see page 18). If we want to delete a whole line of text, we can
hit the ESC key (see page 18). If we want to stop the procedure for any
reason, we have to type the ·c or ·<BREAK> instruction (see page 71).

As soon as we have finished, we give the • z instruction or strike the F6
key, in both cases followed by tapping the RETURN key.

After having completed the file, we should see the following text on the
screen, provided that this is what we have typed:

A>copy con: b:notes
It is advisable to enter the date and time when
loading the system, so that we later can check
when a file like this was created.
·z

1 File(s) copied

A>

A DIR command shows that the text has indeed reached the disk:

A>dir b: <RET>

Volume in drive B has no label
Directory of B:\

NOTES 134 12-17-88 10:17a
1 File(s) 361472 bytes free

A>

FILES 51

3.3: Reproducing (1) - TYPE

There are several ways to reproduce the contents of a file on the screen.
One of them is the TYPE procedure.

For instance, if we want to see the NOTES file we created on the previous
page, we use the TYPE command as follows:

A>type b:notes <RET>

Immediately the contents of the file start passing the screen:

It is advisable to enter the date and time when
loading the system, so that we later can check
when a file like this was created.

As soon as the end of the file has been reached, the prompt will appear on
the screen again:

A>

Using this method, we can reproduce the contents of every type of file, but
only in the case of a text flle are we certain that we will see a legible
text, as a few experiments will prove.

If desired, for instance, in order to study a specific part of the file, we
can interrupt a TYPE procedure. To do so, we use the control instruction
A<NUM LOCK> (see page 71), which results in the flow of text stopping.

After striking any key, the flow will start again.

If we want to stop a TYPE procedure for any reason, we have to give the
control instruction AC or A<BREAK> (see page 71).

If the file in question is not found in the indicated drive, we receive the
following message:

File not found

A>

We can also use a TYPE procedure if we want to print the contents of a file
on paper. In that case we add the control instruction AP or A <PRT SC> (see
page 71) to the actual command, before striking the RETURN key. Thus:

A>type b:notes <.P> <RET>

Assuming that the printer is connected to the computer, it will operate im
mediately after issuing the command.

In order to break off the contact with the printer, we have to give a AP or
A <PRT SC> instruction again immediately after printing.

52 MS-DOS AND PC-DOS - A PRACTICAL GUIDE

3.4: Renaming - REN

Suppose we are not happy with the name NOTES of our file and prefer to call
it TEXT. For this purpose we have to type the following command:

A>ren b:notes text <RET>

A>

Note that we first type the old name, then a space and finally the new name.
We need not indicate the drive before the new name.

The rules for naming files (see next page) also apply for this procedure.

There is no confirmation that the command has been carried out. In order to
check whether the change has been adopted, we have to give a DIR command:

A>dir b: <RET>

Volume in drive B has no label
Directory of B:\

TEXT

A>

134
1 File(s)

12-17-88 10:17a
361472 bytes free

Note that the file's size, date and time entries have not been changed.

Suppose we have written three flies, named NOTES.l, NOTES.2 and NOTES.3, and
we want to give them all TEXT as a new name, along with the relevant nume
ral, thus: TEXT.l, TEXT.2 and TEXT.3.

Obviously, we can rename them one by one. But we can also use the wild
card symbols which were introduced on page 31. In that case we only need a
single command:

A>ren b:notes.? text.? <RET>

Should we want to, we can in the same way rename .COM and .EXE files as
well, but the extensions themselves may never be changed.

Suppose we want to change the CHKDSK command because we keep making mis
takes in typing it and that we prefer to shorten the name to the letter C.
In that case we maintain the extension and change the actual name:

A>ren chkdsk.com c.com <RET>

In this command we may also use the wildcards. As a result, we come up with
the following, concise formula of the command:

A>ren ch*.* c.* <RET>

FILES 53

The restricted space reserved on the disk for the directory is the reason
why file names are allowed only to have a limited length. This length is
restricted to a maximum of eight characters for the actual file name, plus
another three characters for a possible extension.

The name and the extension can be made up of any letters and numerals. We
need not make a distinction between capitals and lower case, since the sys
tem automatically converts all letters into capitals in the directory.

In addition to letters and numerals, we can also use a number of other
characters on the keyboard, namely I @ # $ % A & () - { } ' and ·. It is
not permitted to use the space, full stop, comma, colon,-semi-colon and the
signs * + [] ? I \ < > and I, since these signs have a specific signifi
cance for the system.

Extensions are not compulsory, but some have a specific meaning for the
computer and it goes without saying that we have to be aware of this.

The most important standard extensions, plus their meanings, are:

.BAK - for Back up file. Only plays a part in editing text files. See
page 99 .

. BAS - for Basic file. A program file created in the BASIC computer lan
guage. See page 155 .

. BAT - for Batch file. A program file made up of commands from the opera
ting system. If we intend to use such a .BAT program, we need not
type the extension. See page 145 .

• C - for C file. A program file created in the C computer language •

. COM - for Command file. A program file made up of computer codes which
can be executed at any time. In order to activate a .COM program,
we need not type the extension .

. DOC - for Document file. A text file in so-called ASCII characters. See
page 68 .

. EXE - for Executable command file. Like .COM, a program file made up of
machine language which can be executed at any time - hence the
term. In order to activate an .EXE program, we need not type the
extension .

• OVR - for Overlay file. Usually a part of an application program .

. PAS - for Pascal file. A program file created in the Pascal computer
language •

• SYS - for System file, a file containing the system codes. See pages 48
and 126 .

. TXT - for Text file. Like .DOC, a text file in ASCII signs. See page 68 •

. $$$ - a temporary, damaged or empty file. It is automatically created in
certain situations and it usually disappears again without trace.
See the example on page 97.

54 MS-DOS AND PC-DOS - A PRACTICAL GUIDE

3.5: Reproducing (2) - MORE

A disadvantage of a TYPE procedure (see page 51) is that a file flows on the
screen rapidly, and that we have to be very quick in striking two keys (the
CTRL key and the NUM LOCK key) in order to interrupt the flow of data.

Instead of TYPE, we may also use the MORE command. However, the MORE.COM
file has to be on the d1sk in the active drive.

Suppose we want to take another look at our TEXT file on the d1sk in
drive B, but in parts. In that case we type the command as follows:

A>more <b: text <RET>

The result of the command is that the contents of the file appear on the
screen in blocks of 23 lines, that is, in the size of the screen. As long as
we have not reached the end of the file, each block of llnes is followed by:

--- More ---

Striking any key suffices to have the next series of lines appear on the
screen, and so on, until we have seen the whole text, or we break off the
procedure through the control instruction ·c or ·<BREAK> (see page 71).

3.6: Verifying - VER

It often happens that something is sent from the computer's memory to a
floppy d1sk or hard dlsk. An example is the procedure in which we create a
text file (see page 50). If we want to be absolutely sure that the created
text has been stored on the dlsk without the slightest error or failure, we
have to use a command that verifies such a transaction byte by byte, namely:

A>verify on <RET>

Should there be a failure or anything else wrong, we receive an error mes
sage.

The command to verify remains in operation until we tum off the compu
ter, or start a RESET procedure, or give a command to the contrary. This is:

A>verify off <RET>

If we do not know whether VERIFY is on or off, we use the bare form of the
command to find out. Thus:

A>verify <RET>

VERIFY is off

FILES 55

3.7: Copying (1) -COPY

The use of the DISKCOPY command (see page 34) has several disadvantages. In
the first place, it is rather a slow procedure. In the second place, it does
not enable us to copy separate files.

Fortunately, the system is equipped with the COPY program, which overcomes
both disadvantages: it works fast and offers us the possibility to make a
selection of one or more files that we wish to copy.

Assume the system disk is in drive ~ and a blank, formatted disk in
drive B. In order to make an exact copy of the files on the system disk to
the disk in drive B, we type the following command:

A>copy a:*.* b:/v <RET>

Note that we use the asterisk - one of the wildcard symbols we learned to
use on page 31.

Also note that we added the parameter /v (for verify) to the formula. This
causes an automatic verification that the copy is identical to the original
file. In that case, a VERIFY command (see previous page) is unnecessary.

Since the source drive is the active drive also, as the prompt indicates, we
may leave out a: in the formula. Thus:

A>copy *·* b:/v <RET>

A:COMMAND.COM
A:ANSI.SYS
A:ASSIGN.COM

And so on. We can follow the proceedings on the screen as each file is
copied. At the end of the procedure, we receive a message concerning the
number of files copied:

31 File(s) copied

A>

The command for the same procedure in the reverse direction is:

A>copy b:*.* a:/v <RET>

Or, because A is known as the active drive:

A>copy b:*.*/v <RET>

If we only have one drive, we can use exactly the same commands.
First, the system considers the drive as drive A, and adopts the files in

it, stores them in the memory, then considers the drive as drive B and fi
nally transfers these files to this drive.

56 MS-DOS AND PC-DOS - A PRACTICAL GUIDE

The COPY commands we became acquainted with on the previous pages are re
lated to each other. The basic form is the COPY command that results in a
duplicate of one file. In order to copy the TEXT file from the disk in drive
A to the disk in drive B, for instance, we type the following formula:

A>copy b:text a: <RET>

This results in a similar answer:

1 File(s) copied

A>

In the actual COPY command, we first state the source, in this case drive B,
and second the place of destination, that is, drive A. As we saw on the
previous page, we may leave out the reference to the active drive (a:) in
the formula of the command.

In addition, we may also add the parameter /v to the formula in this
form, in order to check that the copy and the original are identical. Thus:

A>copy b:text/v <RET>
1 Fi1e(s) copied

A>

However, we have to be careful with the COPY command. If there is already a
file bearing the same name on the disk in the target drive, the command is
carried out nevertheless.

Even if the two files differ in size, date and time, the contents of the
file are replaced by the contents of the copied file at the place of desti
nation - without any warning in advance.

In such a situation, and if we want to make a copy of a file on the same
disk, we have to give a special command so that the copy is given a differ
ent name. For example:

A>copy b:text a:test/v <RET>
1 File(s) copied

A>

As we may check by means of a simple method, both the date and time of the
copy tum out to be identical to the original. So it is not relevant when
the COPY procedure takes place.

If we want to copy a file and add the date and time of the procedure, we
add a plus sign to the formula:

A>copY b:text a:test+/v <RET>
B:TEXT

1 File(s) copied

A>

It is also possible to alter only the date and time entries of a file. The
command to do so is the following:

FILES

A>copy b:text+,, b: <RET>
1 File(s) copied

A>

57

Note that in this case the plus sign is followed by two commas. This tells
the system that we are not dealing with a command to join copies together,
in which we also use plus signs (see the following).

Suppose that we want to combine TEXT and NOTES into one file on the disk in
drive A and copy it on to the disk in drive B. Assuming that we want to name
it DUET, we type the following formula:

A>copy text+notes b:duet/v <RET>

In this case, we may use a wildcard symbol to abbreviate the command since
neither of the file names contains an extension.

A>copy * b:duet/v <RET>
1 File(s) copied

A>

This command in fact means: copy all the files without an extension on the
disk in drive A and join them together to one new file named DUET on drive B
and compare the contents with those of the original files.

If we then give a DIR command, we see that a new file named DUET has
indeed been added to the disk in drive B:

A>dir b: <RET>

Volume in drive B has no label
Directory of B:\

NOTES
DUET

A>

134 12-17-88 10:17a
267 12-18-88 2:34p

2 File(s) 360448 bytes free

Note that the size of DUET is 267 bytes, rather than exactly twice the size
of NOTES.

A TYPE command finally shows us the contents of DUET:

A>type b:duet <RET>
It is advisable to enter the date and time when
loading the system, so that we later can check
when a file like this was created.
It is advisable to enter the date and time when
loading the system, so that we later can check
when a file like this was created.

A>

58 MS-DOS AND PC-DOS - A PRACTICAL GUIDE

COPY procedures are not restricted to the transfer of a file (or a number of
files) from one disk to another. The source can also be another part of our
computer, for instance the screen and the destination can be a printer, or a
modem.

An example of this was given on page 50, when we created our NOTES file
by means of a COPY command. In this, the source was not a floppy disk or
hard disk, but the console, symbolised by the term CON:, or rather the com
bination of keyboard and screen.

In that example, the command was:

A>copy con: b:notes <RET>

The contents of the file immediately appear on the screen again, as in a
TYPE-procedure:

It is advisable to enter the date and time when
loading the system, so that we later can check
when a file like this was created.

1 File(s) copied

A>

Note that the text ends with '1 File(s) copied', and that the indication ·z
is no longer displayed. This indication has been converted into a symbol we
cannot see, the so-called end-of-file symbol.

In order to achieve the reverse, that is, the transfer from a file on a
floppy disk or hard disk to the screen, we only have to turn around the
order of the two terms in the formula of the command:

A>copy b:notes con: <RET>

The result is the same as that of a TYPE command. The difference, however,
is that a COPY command enables us to use wildcards in the formula (see page
31).

For instance, if we want to have a look at the contents of the files
NOTES.1, NOTES.2 and NOTES.3 on the disk in drive B, the following formula
would suffice:

A>copy b:notes.* con: <RET>

In order to print a file on paper, we can use a COPY command as well. In
stead of CON: we type the indication PRN: (for Printer). Thus:

A>copy b:notes prn: <RET>

Assuming that the printer is connected to the computer and that it is turned
on, the text of the file will be printed on paper.

We can also skip a stage. Suppose we want to write a piece of text, a small
letter or anything else without storing it in a file. In that case we can
combine the COPY CON: command with the term PRN:. Then the formula is:

A>copy con: prn: <RET>

FILES 59

If we start proceedings as we did on page 50, the same will then appear on
the screen. However, nothing Is stored now. The text we pass on to the com
puter by striking the RETURN key Is immediately printed on paper. The mach
ine is in fact working like a telex.

While working on the computer, we have become acquainted with several terms
from the vocabulary of the central processing unit. We now know that the
term for the channel to which a printer can be connected Is PRN:. This Is an
agreement, once made. And there are more agreements like this.

A list of agreements with regard to the input and output channels that are
in operation under PC-DOS and MS-DOS looks like this:

CON: - for Console. The combination of screen and keyboard, also known
as the terminal. This Is both an input channel (keyboard) and an
output channel (screen).

PRN: - for Printer. The type of printer Is not relevant.

LPT1:, LPT2: and LPT3: - for Line printer. The three channels for paral
lel output. In computerese, these are referred to as Centronics
parallel ports. These channels are only suited for printers.

COM1: and COM2: - for Communications. These are two channels for serial
input and output, also known as RS232 ports. They may also be
used for a modem, a device which enables the computer to communi
cate with other computers.

NUL: - the so-called Nul device. A non-existent channel, designed for
avoiding the results of a command. At the indication of this
channel as source or destination, the system simulates the proce
dure without actual transport of data taking place.

We can compose some standard formulas for input or output transactions, in
the same way as the COPY commands we have met so far. These are:

1: COPY CON: [x:](file)
2: COPY CON: PRN:
3: COPY CON: COMa:
4: COPY CON: NUL:

5: COPY [x:]<file> CON:
6: COPY [x:](file> PRN:
7: COPY [x:](file) COMa:
8: COPY [x:](file) NUL:

9: COPY COMa: [x:]<file>
10: COPY COMa: PRN:
11: COPY COMa: CON:
12: COPY COMa: NUL:

= output from keyboard to disk
= output from keyboard to printer
= output from keyboard to serial channel
= output from keyboard to the nul device

= output from disk to screen
= output from disk to printer
= output from disk to serial channel
= output from disk to the nul device

= input from serial channel to disk
= input from serial channel to printer
= input from serial channel to screen
= input from serial channel to nul device

In this summary '[x:]' refers to a disk drive, if any, and '<file>' to the
name of a file, 'a' to the numeral 1 or 2, and 'serial channel' to a desti
nation or a source that is connected to a serial channel.

60 MS-DOS AND PC-DOS - A PRACTICAL GUIDE

3.8: Comparing (2) - COMP

We have now acquired enough information to test the COMP procedure (for Com
pare). Its function is to check whether or not two files are identical. To
do so, we first type the following:

A>comp <RET>
Enter primary file name

Suppose we want to compare the files TEST, on the diskette in drive A, and
TEXT, on the diskette in drive B. We then proceed as follows:

Enter primary file name
test <RET>
Enter 2nd file name or drive id
b:text <RET>

We could have typed the formula of the command as follows:

A>comp test b:text <RET>

In any case, we get the opportunity to insert the disk(s) with the files in
question in the indicated drive(s). As soon as this has been done, striking
any key will start the procedure.

Insert diskette(s) with files to compare
and strike any key when ready

If the files are not the same size (in bytes), we receive this message:

Files are different sizes

If the sizes are the same, the files are compared with each other, byte by
byte. If the contents are identical, we receive the message:

Files compare ok

If there turns out to be a difference, we see something like:

Compare error at offset B73
File 1 = 3F
File 2 = 07

The procedure is automatically halted as soon as ten differences are found:

10 Mismatches - aborting compare

But whatever the results, we are always asked:

Compare more files (Y/N)?

FILES 61

3.9: Deleting - DEL or ERASE

ERASE and DEL (for Delete) are drastic and therefore dangerous commands.
Their task is to remove one or more files from a floppy disk or hard disk.
The two commands function exactly the same.

An example: suppose we want to remove the file TEXT from the disk in
drive A. In that case we type:

A>erase text <RET>

Or, saving us two key strokes:

A>del text <RET>

The action is not confirmed - only a new prompt appears. By means of a DIR
command, we can ascertain that the file in question has been removed from
the directory of the disk in drive A.

By using wildcards (see page 31) in the DEL or ERASE command, we can remove
two or more files at the same time.

For instance, if we want to remove the files without an extension from
the disk in drive B, we type:

A>del b:*. <RET>

If we want to delete all files, regardless of the name or the extension, we
give the following command:

A>de1 b:*.* <RET>

After this command the system is concerned to know if we are sure, asking:

Are you sure (Y/N)?_

Now the command will only be executed if we type a 'Y' or 'y'. Checking the
results by means of DIR command shows that nothing is left on the disk:

A>dir b: <RET>
File not found

DEL and ERASE commands are dangerous because they are irreversible. The
operating system has no instruments to revoke such a command.

Nevertheless, a deleted file is not immediately removed from the disk.
The bytes (see page 32) remain in the tracks and sectors (see page 26) until
they are overwritten by the contents of another file.

There are utilities available which can reconstruct a file deleted by
accident. An example is QU (for Quick Unerase), part of the so-called Norton
utilities.

It is sensible to add such a utility to the operating system and have it
at your disposal every time you might need it.

62 MS-DOS AND PC-DOS - A PRACTICAL GUIDE

3.10: Checking {2) - CHKDSK

As we have already seen on page 42, the CHKDSK command not only shows the
available storage space of a disk, but also the label, if any, and the date
and time it was created.

CHKDSK has even more to offer. Let's submit our disk with NOTES and the
other files we created to a CHKDSK command. The result could be as follows:

A>chkdsk b: <RET>

A>

362496 bytes total disk space
23552 bytes in 3 hidden files
23729 bytes in 7 user files

5120 bytes in bad sectors
310095 bytes available on disk

655360 bytes total memory
630784 bytes free

We can extend a CHKDSK command with a request to check whether a certain
file is cut into two or more parts on the disk. To achieve this, we type:

A>chkdsk b:notes <RET>

Initially we see a listing such as the one above. Next, we are provided with
the information requested:

B:\NOTES
contains 2 non-contiguous blocks.

A>

We may use wildcard symbols in the formula of the command (see page 31).

If we want to check all files on the disk in drive B, we type:

A>chkdsk b:*.* <RET>

'Non-contiguous' means that a file is stored on the disk (invisible to us)
in two or more parts.

If there are many non-contiguous files on a disk, we run the risk that
the computer may literally lose track. Therefore, it is advisable to trans
fer the files to another disk regularly. In order to so, we use the COPY •. •
command, because it copies the files one by one and strings them together
again.

If we check the disk of destination in the same way, we see:

All specified file(s) are contiguous.

FILES 63

In the 1-versions of the system (these days hardly ever used), the CHKDSK
program automatically corrected all the storage errors and other inconsis
tencies found in the FAT (see page 47). Usually we dld not notice this pro
cess, or we saw something like:

23748 bytes disk space freed

CHKDSK in the 2- and 3-versions of the system provides us with two more
options.

First, we can order CHKDSK to report any error or uncertainty so that we
can decide what to do with it ourselves. In that case we should add the
parameter /f (for fix) to the command:

A>chkdsk b:*.*/f <RET>

It is possible that we receive a message like the following:

B:\NOTES
Contains invalid cluster, file truncated

This means that a part or link of the file is damaged beyond repair. CHKDSK
has cut off the file at that point and corrected the data in the FAT.

Normally, another message follows, for instance:

008 lost clusters found in 002 chains
Convert lost clusters to files (Y/N)?

In other words, a number of bytes have been found on the disk which are not
mentioned in the FAT and which are probably parts of the damaged (truncated)
and cut off file.

If we type a 'y', CHKDSK will convert each block ('chain) into a provi
sional file with the name FILExxxx.CHK, in which xxxx is a number like 0001.
Such a provisional file is included in the directory. By means of a TYPE
command we can check whether it can be used again.

On the other hand, if we type an 'n', CHKDSK will take no action.

In the second place, as we saw on page 33, we may add the parameter /v to a
CHKDSK command.

As a result of this, we are first shown all the files on the disk in
question, including the hidden files, if any, followed by more detailed in
formation on the various errors and inconsistencies found on the disk.

Unlike the other formulas of the CHKDSK command, we can redirect the in
formation received in this form to a separate file or printer channel (see
page 140). For instance:

A>chkdsk b:*.*/v >lptl: <RET>

Assuming a printer is connected to the computer and working, it will print
the information.

If we suspect that a disk is damaged, it is wise to give a CHKDSK command
followed by the parameter /v first, to get a round-up of the problems that
we may face. After that, we repeat the CHKDSK command, but this time with
the parameter /f. At that time, we will know where and how to act.

64 MS-DOS AND PC-DOS - A PRACTICAL GUIDE

3.11: Reconstructing - RECOVER

By means of the utility RECOVER, we can reconstruct a damaged file more
rapidly than by CHKDSK (see previous pages).

Assume that our NOTES file on the disk in drive B has been damaged. We
have to give the following command:

A>recover b:notes <RET>

The first reaction from the computer is:

Press any key to begin recovery of the
file(s) on drive B:

As soon as we strike any key to start the procedure, RECOVER is going to
check the file sector by sector. The sectors that prove to be undamaged are
stored in a temporary file. Damaged sectors are left aside but are marked as
bad sectors in the FAT (see page 47).

Once all the sectors have been checked, RECOVER converts the temporary
file into a final one, giving it the name we have chosen. Next, we receive
as message like this:

1157 of 1157 bytes recovered

A>

We may include wildcards in the command, but only the first file to which
the formula applies will be recovered. This may save us, however, some time
if the file name is long and difficult.

RECOVER may also come in handy when CHKDSK is useless, for instance when the
FAT is irreparably damaged. In that case (and only then) we merely indicate
the drive. Thus:

A>recover b: <RET>

At first, the procedure is the same. Then a message like this follows:

7 fi1e(s) recovered

A>

If we display the directory of the disk in question by means of a DIR com
mand, the files turn out to have been given new names, namely FILExxxx.REC,
in which xxxx is a number like 0001, plus the date and the time of this pro
cedure.

What remains of the original directory is the size of the files in bytes.
Now we must try to find out which file is which, using TYPE commands, and to
give each file its old name back, using REN commands. If there are a great
number of files involved, this job is no fun.

FILES 65

3.12: Protecting files - ATTRIB

In the 2-versions of the system, for instance, PC-DOS version 2.10, or MS
DOS version 2.11, we can only protect files on a disk against accidental
damage or erasure by means of closing the small, square notch on the right
side of the disk. And there is no way to protect flies on a hard disk.

With the introduction of the 3-versions of MS-DOS and PC-DOS, however, we
have a facility at our disposal to protect any flie on both a floppy disk
and a hard disk against damage or destruction - with the exception of a
FORMAT procedure. This facility consists of a utility called ATTRIB (for
Attribute).

Suppose we want to provide the flie NOTES on the disk in drive B with such
a protection. Assuming that the ATTRIB.EXE file is on the system disk in
drive A, we type the following command:

A>attrib +r b:notes <RET>

A>

We now can TYPE the file, or COPY it. If we try to erase the file, however,
it turns out to have become Impervious:

A>del b:notes <RET>
Access denied

Note that the command includes the letter 'r' preceded by a plus sign.

In a similar way, we can cancel the protection of the file by typing •-•
instead of '+'. Thus:

A>attrib -r b:notes <RET>

If we want to be informed on the status of a flie, in other words, whether
is it protected or not, we type the following command:

A>attrib b:notes <RET>

This may result in an 'R' (for Read only) on the screen:

R B:\NOTES

If the file is not protected, the 'R' is not shown. Thus:

B:\NOTES

By means of wildcards (see page 31) we can check, add or remove the protec
tion of several flies at the same time. For instance:

A>attrib b:*.* <RET>

4: CHARACTERS AND SYMBOLS

As we mentioned on page 32, all instructions, texts and data we pass on to
the computer have to be converted into zeros and ones in accordance with a
specific coding system, before the CPU (see page 13) can do anything with
them. Such a system consisting of no more than two values is called a binary
system. In the binary system, the numeral 2 is represented by 10, 3 by 11, 4
by 100, 5 by 101, 6 by 110, 7 by 111, 8 by 1000, 9 by 1001, 10 by 1010, etc.

The use of the binary system in telecommunication is not new. In the 19th
century the Morse code came into fashion when telegraphy was introduced.
This was a method to convert the letters A to Z and the numerais 0 to 9 into
a combination of short and long electric pulses. The well-known distress
signal SOS, for instance, consists of three short pulses (meaning the letter
S), three long pulses (the letter 0), and again three short puises.

For a very long time, the Morse code was an adequate method to send mes
sages by means of electronics, but it also involved some disadvantages.
Punctuation marks were left aside, no distinction was made between capitais
and lower case, and some characters needed no less than five pulses. When
teletype machines like the telex and later printing machines of the bigger
computer systems were introduced, the Morse code was no longer adequate.

Initially a chaos of various coding systems arose, with the result that
machines of different makes were hardly or not at all compatible. Between
1968 and 1977 this chaos came to an end when the ANSI (for American National
Standards Institute) designed and developed a standard system named ASCII
(American Standard Code for Information Interchange). Since then, it has
been adopted by most of the manufacturers of telexes and computers.

The ASCI I system consists of a list of 128 codes, from 0000000 (that is,
0 in the decimal system) to 1111111 (that is, 128). This list contains, of
course, all the letters in the alphabet, both in capitais and in lower case,
as well as the numerais 0 to 9, plus a large number of punctuation marks,
but also various codes for certain instructions, such as the instruction to
the printer to pull in a new sheet of paper (FF, for form feed), or the in
struction to position the printer head on the next line (LF, for line feed).

In the middle of the seventies, when we were starting to work with early
types of microcomputers, every letter or instruction had to be passed on to
the computer very accurately in groups of seven zeros and ones. Fortunately,
we do not have to do this anymore. The operating system is equipped with
some sort of intermediate code, based on the hexadecimal system. The first
ten numerals (0-9) are the same as in the decimal system. The value 10 is
represented by the letter A, 11 by B, 12 by C, 13 by D, 14 by E and 15 by F.

If we continue counting, the figures will consist of two numbers begin
ning with a ' 1 ', like in the decimal system. For instance, 16 in the decimal
system is 10 in the hexadecimal system, 17 is 11, 18 is 12 and so on, up to
25 which is 19. Next, we see the letters again: 26 is lA, 27 is 1B, 28 is
1C, 29 is 10, 30 is lE, and 31 is lF. The next hexadecimal number is 20
which is 32 in the decimal system. If we look up the decimal number 128, we
will find the value 7F.

In this way, all 128 codes from the ASCII system are defined by a hexa
decimal figure consisting of two characters. In other words, whatever code
from this list of 128 we wish to pass on, we only need two key strokes.

68 MS-DOS AND PC-DOS - A PRACTICAL GUIDE

4.1: The ASCII table

dec. hex. binary symb. name dec. hex. binary symb. name
00 00 0000000 A@ NUL 30 lE 0011110 RS

01 01 0000001 -A SOH 31 lF 0011111 us
02 02 0000010 -B STX 32 20 0100000 SP

03 03 0000011 -c ETX 33 21 0100001

04 04 0000100 -o EOT 34 22 0100010

05 05 0000101 AE ENQ 35 23 0100011 #

06 06 0000110 AF ACK 36 24 0100100 $

07 07 0000111 AG BEL 37 25 0100101 %

08 08 0001000 AH BS 38 26 0100110 &

09 09 0001001 -I HT 39 27 0100111

10 OA 0001010 AJ LF 40 28 0101000

11 OB 0001011 AK VT 41 29 0101001

12 oc 0001100 -L FF 42 2A 0101010 *
13 OD 0001101 AM CR 43 2B 0101011 +

14 OE 0001110 AN so 44 2C 0101100

15 OF 0001111 -o SI 45 20 0101101

16 10 0010000 -p OLE 46 2E 0101110

17 11 0010001 -o DCl 47 2F 0101111 I
18 12 0010010 AR DC2 48 30 0110000 0

19 13 0010011 -s DC3 49 31 0110001 1

20 14 0010100 AT DC4 50 32 0110010 2

21 15 0010101 -u NAK 51 33 0110011 3

22 16 0010110 -v SYN 52 34 0110100 4

23 17 0010111 -w ETB 53 35 0110101 5

24 18 0011000 -x CAN 54 36 0110110 6

25 19 0011001 -y EM 55 37 0110111 7

26 lA 0011010 -z SUB 56 38 0111000 8

27 lB 0011011 A[ESC 57 39 0111001 9

28 lC 0011100 A\ FS 58 3A 0111010

29 lD 0011101 -] GS 59 3B 0111011

CHARACTERS AND SYMBOLS 69

dec. hex. binary symb. name dec. hex. binary symb. name
60 3C 0111100 < 94 5E 1011110

61 3D 0111101 95 5F 1011111

62 3E 0111110 > 96 60 1100000

63 3F 0111111 ? 97 61 1100001 a

64 40 1000000 @ 98 62 1100010 b

65 41 1000001 A 99 63 1100011 c

66 42 1000010 B 100 64 1100100 d

67 43 1000011 c 101 65 1100101 e

68 44 1000100 D 102 66 1100110 f

69 45 1000101 E 103 67 1100111 g

70 46 1000110 F 104 68 1101000 h

71 47 1000111 G 105 69 1101001 i

72 48 1001000 H 106 6A 1101010 j

73 49 1001001 I 107 6B 1101011 k

74 4A 1001010 J 108 6C 1101100 1

75 4B 1001011 K 109 6D 1101101 m

76 4C 1001100 L 110 6E 1101110 n

77 40 1001101 M 111 6F 1101111 0

78 4E 1001110 N 112 70 1110000 p

79 4F 1001111 0 113 71 1110001 q

80 50 1010000 p 114 72 1110010 r

81 51 1010001 Q 115 73 1110011 s

82 52 1010010 R 116 74 1110100 t

83 53 1010011 s 117 75 1110101 u

84 54 1010100 T 118 76 1110110 v

85 55 1010101 u 119 77 1110111 w

86 56 1010110 v 120 78 1111000 X

87 57 1010111 w 121 79 1111001 y

88 58 1011000 X 122 7A 1111010 z

89 59 1011001 y 123 7B 1111011 {

90 5A 1011010 z 124 7C 1111100 I
91 5B 1011011 125 7D 1111101 }

92 5C 1011100 \ 126 7E 1111110

93 50 1011101] 127 7F 1111111 DEL

70 MS-DOS AND PC-DOS - A PRACTICAL GUIDE

4.2: Control instructions

When we take a close look at the ASCII table, the first thing that strikes
us is that the first 33 codes, with the decimal values 0 to 32, and the last
one with the decimal value 127 are followed by a term of 2 or 3 letters.

These terms are abbreviations, meaning:

NUL = null
SOH = start of heading
STX = start of text
ETX = end of text
EOT = end of transmission
ENQ = enquiry
ACK = acknowledge
BEL = bell
BS = backspace
HT = horizontal tabulation
LF = line feed
VT = vertical tabulation
FF = form feed
CR = carriage return
SO = shift out
SI = shift in
DLE = data link escape

DCl = device control 1
DC2 = device control 2
DC3 = device control 3
DC4 = device control 4
NAK = negative acknowledgement
SYN = synchronous idle
ETB = end of transmission block
CAN = cancel
EM = end of medium
SUB = substitute
ESC = escape
FS = file separator
GS = group separator
RS = record separator
US = unit separator
SP = space
DEL = delete

In this list of codes we also see that the column 'symbol' does not state
any symbols we can find on the keyboard. This is due to the fact that these
ASCII codes do not represent a specific character, but an instruction. On
page 18 we have already seen an example: the instruction to place the cursor
one place back and erase the character, if any, from that position.

As we have learned, we can pass on this instruction to the operating
system in two ways. First, by striking the key on the top row that is marked
BS or showing an arrow pointing to the left, and second, by means of a so
called control instruction.

A control instruction consists of striking the CTRL key, keeping it de
pressed, and hitting the relevant character, in this case the capital or
lower case H. Such a control instruction is indicated by a circumflex (a
'hat'), followed by the character in question. Thus: ~H.

If we now look up the ~H symbol in the ASCII table, we see that the cor
responding decimal and hexadecimal values are 08. And indeed, the abbrevia
tion belonging to it is BS.

Another example is ESC, for Escape, which we can find in the ASCII table
with the code having the decimal value 27, and the hexadecimal value 1 B. On
page 18 we have already seen one of its effects. In this example, too, it
concerns an instruction we can pass on to the operating system either by
means of a control instruction (namely ~[), or by a special key (ESC).

A third example is the RETURN key. Striking this key also results in an
instruction to be passed on to the operating system (see page 16). The cor
responding term in the ASCII table is CR (for carriage Return), with the
decimal value 13 and the hexadecimal value OD.

CHARACTERS AND SYMBOLS 71

Control Instructions are Indispensable tools of the operating system. In
general, they serve to make clear to the system that a certain operation has
to be carried out. In the long run we will find out that some of these con
trol Instructions will be used regularly and others hardly ever.

The most important control Instructions are:

AC -the cancel Instruction. Cancels (if possible) the last issued com
mand or ends the current program. The same effect may be achieved by
means of the Instruction A <BREAK> or A <SCROLL LOCK>.

AG -the bell Instruction. Cannot be given from the keyboard directly,
but only as a part of a program file.

AH - the backspace Instruction. Moves the cursor one place back and remo
ves the character from that position. This Instruction may also be
given by means of the key on the top row of the keyboard marked BS
or showing an arrow pointing to the left.

A I - the tab Instruction. Moves the cursor a fixed number of places
(usually eight) to the right. This Instruction may also be given by
means of the key to be found on the left of the keyboard marked with
the term TAB, or showing two arrows pointing In opposite directions.

AJ - the line feed Instruction. Places the cursor on the next line, en
abling us to continue typing a command. The same effect can be ach
ieved by means of the Instruction A <RET>.

AL - the form feed Instruction. Passes on the Instruction that the prin
ter has to Insert a new sheet of paper.

AM -the carriage return Instruction. A remainder of the telex. Nowadays
this Instruction results In the last-issued command being passed on.
The same effect may be achieved by striking the RETURN key.

AP - the print Instruction. Starts or terminates output to the printer of
characters appearing on the screen. The same effect may be achieved
by the Instruction A <PRT SC>.

AS - the pause instruction. Interrupts the flow of characters on the
screen during a TYPE procedure. See page 51. The same effect may be
achieved by the Instruction A<NUM LOCK>.

AZ -the end-of-file Instruction. Tells the operation system when the end
of the file has been reached. See page 50.

A<ALT> - the reset Instruction. Cancels all current procedures,
empties the memory and reloads the system. Actually, this Instruc
tion does not belong In this list since it is not based on the ASCII
system. Instead, it is a BIOS command (see page 25), implemented by
IBM. At the time, IBM decided not to equip its Personal Computer
with a RESET button, but rather to oblige the user to strike three
keys at the same time. All manufacturers of 'IBM compatible' compu
ters have endorsed this decision, although there is also a number of
manufacturers that have added an extra reset button to the computer.

72 MS-DOS AND PC-DOS - A PRACTICAL GUIDE

4.3: Reproducing (3) - DEBUG

On page 67 we saw that all characters we pass on to the computer are first
converted by the system into a hexadecimal number of two characters at the
most. We can demonstrate this by means of a system utility named DEBUG.

To do so, we insert a disk containing the DEBUG.COM file in drive A and a
disk with a copy of our NOTES flle in drive B. Then we type the following:

A>debug b:notes <RET>

The system's answer is a hyphen. This is the DEBUG prompt.
Then we type a D or d, for dump, and strike the RETURN key. As a result,

the following table of values and letters will appear on the screen:

:0100
:OllO
:0120
:0130
:0140
:0150
:0160
:0170

49 74 20 69 73 20 61 64-76 69 73 61 62 6C 65 20
74 6F 20 65 6E 74 65 72-20 74 68 65 20 64 61 74
65 20 61 6E 64 20 74 69-6D 65 20 77 68 65 6E OD
OA 6C 6F 61 64 69 6E 67-20 74 68 65 20 73 79 73
74 65 6D 2C 20 73 6F 20-74 68 61 74 20 77 65 20
6C 61 74 65 72 20 63 61-6E 20 63 68 65 63 6B OD
OA 77 68 65 6E 20 61 20-66 69 6C 65 20 6C 69 6B
65 20 74 68 69 73 20 77-61 73 20 63 72 65 61 74

It is advisable
to enter the dat
e and time when.
.loading the sys
tern, so that we
later can check.
.when a file lik
e this was creat

As we can see, the table consists of three columns. The first indicates the
exact place (the so-called address) of the next line of characters in the
computer's memory. These characters can be found in the second column,
stated in hexadecimal notations. The third column provides us with the
translation in ordinary ASCII characters.

In order to display the next block of characters, we again type a D or d,
followed by striking the RETURN key. In this example the result will be:

:0180 65 64 2E OD OA lA 00 00-00 00 00 00 00 00 00 00
:0190 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
:OlAO 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
:OlBO 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
:OlCO 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
:OlDO 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
:OlEO 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
:OlFO 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

ed ..•..••......

Note that the last character before the zeros take over is lA. This is the
end of file sign we became acquainted with on the previous page.

We can leave the DEBUG program by typing a Q or q (for quit), followed by
the usual stroke of the RETURN key, after which the system prompt reappears.

CHARACTERS AND SYMBOLS 73

4.4: Tracing - FIND

On pages 51, 54 and the previous page we became acquainted with various
methods to display the contents of a file on the screen. These methods are
not adequate if we want to trace a certain character or a string (a series
of characters or a fragment), especially when the file is rather large. In
that case we may better use the FIND utility.

For instance: suppose we want to find the lines in our NOTES file contai
ning the word 'date' (see page 52). Assuming that the FIND.EXE file is on
the disk in drive A, we type the following command:

A>find 'check' b:notes <RET>

Then the following reaction appears on the screen:

---------- b:notes
loading the system so that we later can check
A>

If we also want to know in which line the character or string can be found,
we add the parameter /n to the command. Thus:

A>find/n 'check' b:notes <RET>

---------- b:notes
[2]loading the system so that we later can check
A>

If we do not want to view the line itself but only want to know how many
times the character or string occurs in the file, we add the parameter /c to
the command. Thus:

A>find/c 'check' b:notes <RET>

---------- b:notes: 1
A>

On the other hand, if we want to have the line(s) displayed or counted in
which the character or string does not occur, we add the parameter /v to the
command. Thus:

A>find/c/v 'check' b:notes <RET>

---------- b:notes: 3
A>

By means of a single FIND instruction, whether or not extended with parame
ters, we can even inspect two or more files at the same time. For instance:

A>find/c 'check' b:notes b:alphabet <RET>

74 MS-DOS AND PC-DOS - A PRACTICAL GUIDE

4.5: The keyboard (2)

Both the ASCII system and the keyboard lay-out are of American origin. Con
sequently, the choice and lay-out are based on American standards. But not
all characters are equally important outside the United States. For instan
ce, in the United Kingdom they prefer the £ character on the keyboard, and
in France the cedilla (c;), the dlaresis (..), and the section mark (§).

These characters can be found in the extended character set, as we will
see on the next page, but the use of the AL T key and the numerals on the
numeric keypad is rather time-consuming. That is why IBM and other manufac
turers with branches in Europe have equipped their computer systems with
special versions of the keyboard. For instance, if we work with a PC of
British origin, the keyboard contains the pound sterling symbol on the 3
key, instead of the American II sign.

Moreover, the additional version of MS-DOS or PC-DOS contains a number of
.COM files, such as KEYBFR, KEYBGR, KEYBIT, KEYBSP, and KEYBUK. These files
contain a small program that, once started, takes over the interaction bet
ween the keyboard and the part of the ROM BIOS (see page 25) stating the
effect of every key stroke.

If we want to get the £ sign on the screen after hitting this key, we
first have to install the keyboard. In that case we have to use the KEYBUK
utility, for Keyboard UK. Assuming that the system disk is in drive A and
that it contains the KEYBUK.COM file, we activate the utility as follows:

A>keybuk <RET>

There is no confirmation whatsoever, only the prompt appears again. And in
deed, if we now hit the SHIFT and 3 keys, the £ sign appears on the screen.

Moreover, the system has not forgotten the lay-out according to the origi
nal, American standard. So if we want to see the original (American) result
of a key stroke at a certain point, we need not load the system again.

For we have a so-called toggle, or switch, at our disposal. It is acti
vated by hitting the CTRL key and the AL T key at the same time, followed by
striking the function key Fl. The American keyboard lay-out is put in opera
tion right away. To demonstrate, we press the SHIFT and 3 keys. And again
the American II sign appears instead of the pound sterling symbol.

If we then want to switch to the British keyboard lay-out, we have to hit
the CTRL key and the ALT key again, followed by the F2 key.

We can install a French keyboard lay-out in a similar way as well.
Assuming that the disk containing the KEYBFR.COM is in drive A, we have

to type the following command:

A>keybfr <RET>

And of course, we can install the German, Italian and Spanish keyboard lay
out by means of the KEYBGR, KEYBIT, and KEYBSP utilities, respectively. But
although we can switch between a European and the American keyboard lay-out,
it is not possible to switch from one European keyboard lay-out to another.

CHARACTERS AND SYMBOLS 75

4.6: The extended character set

At the end of the seventies, when IBM started developing the PC, the collec
tion of characters in the ASCII system soon turned out to be inadequate.
Therefore, such international companies as IBM considered it essential to
adopt certain European characters, as we saw on the previous page.

In addition, there was a need for a number of technical and scientific
symbols and various special signs for producing lines, blocks and rasters on
the screen.

This problem was solved by an unofficial extension of the ASCII table
with another 128 characters. This was possible because the binary code of
the first 128 characters only contained 7 units (bits). The eighth bit com
pleting the byte was merely used for control purposes, but when a computer
is used in the normal way, this extra bit is not needed.

IBM made use of this space to double the number of available characters,
so that its total amounted to 256. The extra 128 characters became known as
'the extended character set'. The next two pages show a survey of this set.

Another problem for IBM was the question how these extra characters
should be called up. The answer was the addition of an extra key to the
keyboard, marked with the term ALT, for Alternate. In combination with the
keys on the numeric keypad that can be found on the right of the keyboard,
the AL T key can be used to produce all extra characters of the 'extended
character set' on the screen.

For instance, the decimal value of the £ sign is 156, as the list shows.
Now we hit the ALT key, keep it depressed and type a 1, a 5 and a 6 on the
numeric keypad. As soon as we release the AL T key, the character in question
appears on the screen.

We can also enter such a sign in a text file in a similar way. To demon
strate, we create a file named POUND by means of a COPY CON: procedure (see
page 50). Thus:

A>copy con: b:pound <RET>
the character for the pound sterling is

Once we have reached this stage, we type the £ sign in the way mentioned
above. Then we hit the F6 key or type ·z. Finally we press the RETURN key.

If the instruction has been carried out properly, the disk in drive B
contains the POUND file including the character in question. This can be
ascertained by means of a TYPE procedure:

A>type b:pound <RET>
the character for the pound sterling is £
A>

We should not refer to this set of extra characters as ASCII signs, since
the ANSI bureau had nothing to do with it.

On the other hand, the influence of IBM's Personal Computer and all its
compatibles has become so indispensable that, in practice, this extension of
the ASCII set has become a standard. All other PC manufacturers were wise
enough to adopt this in due course.

76 MS-DOS AND PC-DOS - A PRACTICAL GUIDE

The extended character set

dec. hex. binary symbol dec. hex. binary symbol
128 80 10000000 c 158 9E 10011110 lis

129 81 10000001 u 159 9F 10011111 f

130 82 10000010 e 160 AO 10100000 a
131 83 10000011 a. 161 A1 10100001 f

132 84 10000100 a 162 A2 10100010 6

133 85 10000101 a. 163 A3 10100011 (i

134 86 10000110 a 164 A4 10100100 ii

135 87 10000111 c;: 165 A5 10100101 R

136 88 10001000 e 166 A6 10100110 !!

137 89 10001001 E! 167 A7 10100111 Q

138 BA 10001010 e 168 AB 10101000 1..

139 BB 10001011 i 169 A9 10101001 ..
140 sc 10001100 i 170 AA 10101010 .,

141 BD 10001101 171 AB 10101011 " 142 BE 10001110 A 172 AC 10101100 ~

143 BF 10001111 A 173 AD 10101101

144 90 10010000 t 174 AE 10101110 ((

145 91 10010001 ill 175 AF 10101111))

146 92 10010010 JE 176 BO 10110000 ...

147 93 10010011 0 177 B1 10110001 :;::::
::::::

148 94 10010100 () 178 B2 10110010 I
149 95 10010101 179 B3 10110011 I
150 96 10010110 Q 180 B4 10110100 ,
151 97 10010111 u 181 B5 10110101 ~
152 98 10011000 y 182 B6 10110110 il
153 99 10011001 5 183 B7 10110111 ll

154 9A 10011010 0 184 BB 10111000
"' 155 9B 10011011 ¢ 185 B9 10111001 ~I

156 9C 10011100 £ 186 BA 10111010 II
157 9D 10011101 ¥ 187 BB 10111011 ;]

CHARACTERS AND SYMBOLS 77

dec. hex. binary symbol dec. hex. binary symbol
188 BC 10111100 :!J 222 DE 11011110 I
189 BD 10111101 ll 223 DF 11011111 •
190 BE 10111110 ::1 224 EO 11100000 <X

191 BF 10111111 , 225 E1 11100001 {J

192 co 11000000 L 226 E2 11100010 r
193 C1 11000001 .l. 227 E3 11100011 7r

194 C2 11000010 T 228 E4 11100100 E

195 C3 11000011 ~ 229 E5 11100101 cr

196 C4 11000100 230 E6 11100110 J).

197 C5 11000101 + 231 E7 11100111 T

198 C6 11000110 ~ 232 E8 11101000 t

199 C7 11000111 u 233 E9 11101001 e
200 C8 11001000 1.!: 234 EA 11101010 Cl

201 C9 11001001 rr 235 EB 11101011 6

202 CA 11001010 :!.!: 236 EC 11101100 (X)

203 CB 11001011 1r 237 ED 11101101 ¢

204 cc 11001100 I~ 238 EE 11101110 E

205 CD 11001101 = 239 EF 11101111 n
206 CE 11001110 JL 240 FO 11110000 1r -
207 CF 11001111 ::!:: 241 F1 11110001 ±

208 DO 11010000 .11. 242 F2 11110010 0!:

209 D1 11010001 :;= 243 F3 11110011 :5

210 D2 11010010 lT 244 F4 11110100 r
211 D3 11010011 11 245 F5 11110101 1
212 D4 11010100 1: 246 F6 11110110 -t

213 D5 11010101 F 247 F7 11110111 ""'
214 D6 11010110 248 F8 11111000 0

rr
215 D7 11010111 ~~ 249 F9 11111001 •

216 D8 11011000 .J.. 250 FA 11111010 T

217 D9 11011001 J 251 FB 11111011 .[

218 DA 11011010 r 252 FC 11111100 n

219 DB 11011011 I 253 FD 11111101

220 DC 11011100 • 254 FE 11111110 I

221 DD 11011101 I 255 FF 11111111

5: USING A HARD DISK

A hard disk (also known as a fixed disk or Winchester disk) is a storage
medium that takes up a permanent place in the computer. It may be a standard
part of the computer, as in IBM's PC XT, but it could also be added later.
In that case there are three possibilities: external, in a special box, or
internal, instead of a floppy disk drive, or in the form of a special card
to be inserted in the slots in the system cabinet specially designed.

Whatever the type or make, the hard disk is usually enclosed in a sealed
housing which contains various separate disks plus the relevant recording
heads. It may take the place of a floppy disk drive, or it comes in the form
of a so-called hard disk card.

The main advantage of a hard disk over floppy disks is the enormous
storage capacity. The hard disk of IBM's PC XT and similar machines contain
at least ten and usually twenty or thirty megabytes. In other words, some
thirty to eighty times the data of a floppy disk. The hard disk of the PC AT
and similar machines as well as the new IBM PS/2 version even have a consi
derably larger capacity, varying from 30, 40 and 70 to even 110 megabytes.

Apart from this huge storage capacity, the hard disk offers us the conve
nience of the programs and files we regularly use being permanently availa
ble: we simply store them on the hard disk.

In addition, a computer equipped with a hard disk responds much faster
than a machine with floppy disks, especially when loading and storing files.
Only the so-called RAM disk (see page 128) operates even faster, but with a
RAM-disk we are, on the other hand, defenceless against a breakdown.

A final advantage of a hard disk is that it can save space, provided that
the computer 'boots from drive C'. In other words, if the system can be
loaded from the hard disk (usually indicated by drive C). We will return to
this on page 82. If this is the case and if we work with a kind of PC AT
computer, that is, a big, rather unmanageable machine, it may be practical,
with regard to the space, to place only the keyboard and the screen on the
desk and the system cabinet containing the disk drives and those sort of
things under it, upright, with the power switch within reach.

A disadvantage of the hard disk is that its housing is more vulnerable than
that of a floppy disk. As a result of, for instance, someone bumping against
the system cabinet or a power blackout, a so-called head crash may occur.
This is a collision between a registration head and part of the writing sur
face, which usually causes the stored data to become damaged or lost.

The more the technological ingenuity is developing, the better the disks
will be protected against head crashes, but they will never be avoided
entirely. Therefore, it is essential to copy the contents of the hard disk
regularly. We should bear in mind, however, that there is no simple and
inexpensive method to do this. The procedures provided by the system are
slow and difficult and require a large number of floppy disks.

A sufficient, but yet rather expensive solution is to add a so-called
tape streamer to the machinery. It normally enables us to copy or recon
struct the contents of the entire hard disk in less than ten minutes but it
is almost as expensive as the hard disk itself. Fortunately, prices of these
two facilities are gradually decreasing.

80 MS-DOS AND PC-DOS - A PRACTICAL GUIDE

5.1: Installing

Before we can actually use a hard disk, we have to take a few steps. First,
we have to install the hard disk so that the system can take control, and
next we have to format it so that the system can store data on it.

The procedure to install the hard disk depends on its make and type.
Usually, we need to run a certain program. To install the hard disk in the
PC XT and PC AT, for instance, we have to run the FDISK.COM program that is
supplied with PC-DOS in the versions 2.0 and higher.

If the computer or hard disk is of a different make or type, the dealer
or the instruction manual can no doubt make clear what we have to do.

Let's assume we have a PC XT computer. First, we have to load the system
(see page 14). Assuming that the system disk containing the FDISK.COM file
is in drive A, we type the following command:

A>fdisk <RET>

As a result, the following list appears on the screen:

IBM Personal Computer
Fixed Disk Setup Program Version 3.10
(c) Copyright IBM Corp. 1983, 1985

FDISK Options

Choose one of the following:

1. Create DOS Partition
2. Change Active Partition
3. Delete DOS Partition
4. Display Partition Data

Enter choice: []

Such a list of available options is called a menu. When operating the compu
ter, we will come across such menus regularly.

Fortunately, we do not have to make a choice now. Striking the RETURN key
is enough - FDISK knows what to do.

Should we want to cancel the procedure before FDISK is put into opera
tion, then we must press the ESC key immediately. Moreover, it is advisable
not to experiment with the rest of the options stated on the FDISK menu if
we are not completely familiar with the hard disk.

After the RETURN key has been struck, two different texts can appear on
the screen. The following is the first of the two possibilities:

DOS Partition already created

With this message FDISK indicates that the procedure has already been car
ried out - presumably by the supplier. Then we only have to format the disk.

USING A HARD DISK

The second possibility is:

Create DOS Partition

Do you wish to use the entire fixed disk
for DOS (Y /N)•......•......•.. ? []

81

Again we do not have to worry about the answer. Striking the RETURN key will
do. As a result we see:

System will now restart
Insert DOS diskette in drive A:
Press any key when ready • • •

If the system disk is still in drive A, we can just press any key. The re
sult is that the system is reloaded.

The next step is to format the disk.
In order to start the procedure we type the following command, assuming

that the system disk containing the FORMAT.COM file is in drive A and that
the letter C is the indication of the hard disk:

A>format c: <RET>

We may also add the parameter /s to this command. Thus:

A>format c:/s <RET>

Adding this parameter results in a copy of the system files being transfer
red to the hard disk (see page 44) so that it is no longer necessary to have
a system disk in drive A to load the system.

Press any key to begin formatting drive c:

Should we ever see a message like this when this is not the intention, we
have to stop the procedure immediately by means of a AC or A<BREAK> instruc
tion (see page 71) .

Pressing any other key will start the FORMAT procedure irrevocably. For
about half an hour we see:

Formatting cylinder

Finally, this is followed by a few messages that indicate the end of the
procedure, for instance:

Format complete
System transferred

Next, a survey like the following is displayed:

21317632 bytes total disk space
59930 bytes used by system
55296 bytes in bad sectors

21102406 bytes available on disk

82 MS-DOS AND PC-DOS - A PRACTICAL GUIDE

5.2: Loading the system (2)

On page 25 we became acquainted with the term ROM BIOS as a collective name
for all codes and instructions stored in the computer permanently. It also
includes the instruction, after having turned on the machine or after a
RESET procedure (see page 18), to check whether drive A contains a legible
disk and, if that is the case to trace the presence of the two 'hidden
files' (see page 48) and the COMMAND.COM file.

If this is all found in order, the system is loaded. If not, IBM compu
ters automatically switch to BASIC in the ROM BIOS (see page 25). With other
makes of computers, a message will appear on the screen, usually suggesting
the insertion of a system disk in drive A after all.

When a computer is being equipped with a hard disk of any type, the ROM
BIOS has to be provided with additional instructions at the same time. This
is done by means of an extra ROM chip that can be found on the so-called
controller card of the hard disk. These additional instructions include data
about the hard disk itself, such as the storage capacity.

In addition, they add certain instructions that constitute an interme
diate phase in the loading procedure. These instructions in fact mean the
addition of an extra procedure: if drive A does not contain a usable disk,
the hard disk must be inspected for system files. If they are found, and
this is only possible if the hard disk has been formatted with the /s para
meter (see page 44), then the system will be loaded from the hard disk. In
other words, the computer 'boots from drive C'.

After the date and time messages, a familiar message like the following
may then appear on the screen:

The IBM Personal Computer DOS
Version 3.30 (C)Copyright International Business

(C)Copyright Microsoft Corp 1981, 1

C>

The prompt indicates that the hard disk (drive C) has now become active.

The additions to the ROM BIOS, however, do not alter the fact that drive A
is always being inspected to contain a disk with usable system files first.
This may come in handy, for instance after a crash of the hard disk. Owing
to the fact that it is possible to load the system from drive A, we can
check whether we can save some of the contents of the hard disk.

Or suppose we want to test another version of MS-DOS or PC-DOS. Then we
only have to Insert the disk containing the system in drive A and tum on
the computer or start a RESET procedure.

We have to bear in mind that we cannot simply replace the system files on
the hard disk by those of a more recent version of the system. The problem
is that, in every new version, the system files take up more space than in
the previous one, as the survey on page 000 proves, and the system requires
that the 'hidden files' are stored in the first tracks of the hard disk.

So in that case there is no alternative than to make a copy of the con
tents of the hard disk (see page 92) and then to re-format it.

USING A HARD DISK 83

5.3: Creating a sub-directory - MD

One of the advantages of the hard disk is that we can store a large number
of files, 512 to be exact, but it is obvious that the total size of the
files may not exceed the available storage capacity.

This vast number of files forms at the same time its main disadvantage,
for how are we to keep track of the situation? In order to display sections
of the directory on the screen we can, of course, give a DIR command with
the parameter /p. Thus:

C>dir/p <RET>

If the hard disk contains some hundreds of files, however, we would have to
wade through page after page full of names and other data, before we would
find that one file we were looking for.

There is a method to maintain a clear survey of the contents on the hard
disk. In addition to the normal directory, also known as the main or root
directory, we can create sub-directories that can contain an unlimited num
ber of files.

To create a sub-directory, we first give a MKDIR or MD command (for Make
Directory), followed by a name to a maximum of ten characters.

Let's create a sub-directory by way of experiment and name it DOS. To do
so we type the following:

C>md \des <RET>

Note that we have used a backslash (\) in the formula. This character symbo
lises the root directory. It precedes the name of the sub-directory, in this
example DOS, in order to mark the order, or rather the hierarchy.

At first we see nothing unusual - just the prompt. But if we now call up
the directory of the hard disk, we see:

C>dir <RET>

Volume in drive C has no label
Directory of C:\

COMMAND COM 23612 1-05-87 12:00a
DOS <DIR> 12-21-88 1:11p

2 File(s) 21102406 bytes free

Note that DOS has been given a place in the directory, along with date and
time entries, as if it were a normal file. However, the indication <DIR>
takes up the place of the extension and the size of the file.

When we try to display the file on the screen, it turns out that it is
not a normal file:

C>type des <RET>
File not found

84 MS-DOS AND PC-DOS - A PRACTICAL GUIDE

A sub-directory is handled in about the same way as a disk drive.
For instance, to find out which files are present in a sub-directory, we

have to type the entire designation of the sub-directory:

C>dir\dos <RET>

If the active drive is not C (i.e. the hard disk) but A, for instance, we
have to adjust the command as follows:

A>dir c:\dos <RET>

In both cases the reaction will look something like:

Volume in drive C has no label
Directory of C:\dos

<DIR>
<DIR>

2 File(s)

12-21-88 l:llp
12-21-88 l:llp

21102406 bytes free

Note that the directory just consists of entries both beginning with dots,
followed by <DIR>. Apart from those, the sub-directory is empty.

Transferring files is not different from what we are used to with a normal
disk drive.

For instance, in order to transfer a copy of the NOTES file on the disk in
drive A to the sub-directory of drive C, we type:

A>copy notes c:\dos/v <RET>

If we then take a look at the directory of drive C, it seems that the copied
file has disappeared:

A>dir c: <RET>

Volume in drive C has no label
Directory of C:\

COMMAND COM 23612 1-05-87 12:00a
DOS <DIR> 12-21-88 1:11p

2 File(s) 21102406 bytes free

On the other hand, the amount of 'bytes free' turns out to have decreased.
To find the copy again, we have to address the sub-directory directly:

A>dir c:\dos <RET>

Volume in drive C has no label
Directory of C:\dos

NOTES

<DIR> 12-21-88 1:11p
<DIR> 12-21-88 1:11p

134 12-17-88 10:17a
3 File(s) 21102406 bytes free

USING A HARD DISK 85

Now suppose we want to remove the NOTES file from the sub-directory. If A is
the active drive, we should formulate the command as follows:

A>del c:\dos\notes <RET>

If C is the active drive, we type:

C>del \dos\notes <RET>

Note that we typed the \ symbol twice. The first one was to mark the begin
ning of the chain, the root of the tree so to speak, and the second to sepa
rate the name of the sub-directory, in this case DOS, from the name of the
file in question, in this case NOTES.

We may use wildcard symbols (see page 31). For instance, if we want to re
move all files en bloc from this sub-directory, we can issue the following
command:

A>del c:\dos*.* <RET>

Or, if C is the active drive:

C>del \dos*.* <RET>

As usual we are, in both cases, requested confirmation of the instruction
(see also page 61):

Are you sure (Y/N)?

5.4: Removing a sub-directory - RD

We can remove a sub-directory only if it is empty, in other words, if it
does not contain files. If that is the case, we issue the command RMDIR or
RD (for Remove Directory):

A>rd c:\dos <RET>

Or, if C is the active drive:

C>rd \dos <RET>

In both cases a DIR command shows that the sub-directory has indeed disap
peared.

If we try to remove a sub-directory still containing one or more files, the
following error message appears on the screen:

Invalid path, not directory,
or directory not empty

86 MS-DOS AND PC-DOS - A PRACTICAL GUIDE

5.5: Navigating - CD

In some cases it is impractical, and in other cases even impossible, to
operate from the root directory with files in a sub-directory. In those
cases it is essential to switch to the level of the relevant sub-directory.
To do so, we have to use the CHDIR or CD command (for Change Directory).

Suppose that C is the active drive containing a sub-directory named DOS.
In order to switch to the level of DOS we type:

C>cd \dos <RET>

C>

If A was the active drive instead of C, the formula of the command should
have been the following:

A>cd c:\dos <RET>

A>

The prompt shows that C has not automatically become the active drive. But
issuing a DIR C: instruction proves that the sub-directory DOS has been ac
tivated in drive C. If we transfer a copy of a file in drive A to the hard
disk, it will end up in the sub-directory in question.

In order to switch from drive A to drive C, we have to issue another
instruction as well, either before or after the CD command, namely:

A>c: <RET>

C>

As a result, all files in the sub-directory DOS are at our disposal.

To return to the level of the normal or root directory, we type:

C>cd \ <RET>

C>

Now that we are back at our starting-point, we may use the opportunity to
create a second sub-directory and name it DBASE. This one is used, for in
stance, for our dBASE files.

To achieve this we need the following command:

C>md \dbase <RET>

C>

We have to bear in mind that we cannot rename a sub-directory once we have
given it a name. Therefore, we should choose this name carefully.

USING A HARD DISK 87

We may give a sub-directory a set of sub-directories of its own. The same
also applies to such a sub-sub-directory created in this way, and so on.

For example: suppose we want to extend the sub-directory named DBASE with
a sub-sub-directory named MEMBERS. In that case we have to formulate the
command as follows:

C>md \dbase\members <RET>

Note that we first type a backslash to mark the root directory, then the
name of the directory of the next level, that is, in this case DBASE, and
finally, preceded by a second backslash, the name of the sub-sub-directory,
in this case MEMBERS. To check we type:

C>cd \dbase <RET>

C>dir <RET>

Volume in drive C has no label
Directory of C:\dbase

<DIR>
<DIR>

MEMBERS <DIR>
3 File(s)

12-21-88
12-21-88
12-21-88

21102406 bytes

2:48p
2:48p
2:53p
free

To switch to the level of the sub-directory we have just created, we type:

C>cd \dbase\members <RET>

Checking this again by means of a DIR command, we see:

Volume in drive C has no label
Directory of C:\dbase\members

<DIR> 12-21-88 2:53p
<DIR> 12-21-88 2:53p

2 File(s) 21102406 bytes free

The formula to return to the previous level is:

C>cd .. <RET>

The two dots are considered to symbolise the level in which the sub-direc
tory was created.

To switch from one sub-directory to another, for instance DOS, we type, re
gardless of the active sub-directory at the moment of the instruction:

C>cd \dos <RET>

In order to return to the level of the root directory, we may restrict the
command to the following, as we have already seen on page 86:

C>cd \ <RET>

88 MS-DOS AND PC-DOS - A PRACTICAL GUIDE

If we want to check which sub-directory is the active one, we type:

C>cd <RET>

Assuming that the root directory is now active, the answer is:

C:\

C>

And if the active sub-directory is DOS, for instance, the result is:

C:\dos

C>

5.6: Displaying the map - TREE

No matter how the hard disk is arranged and which (sub-)directory is active,
we can simply check the map, or rather the organisation of the directory.
For this purpose, we use the TREE command.

Assuming that the TREE.COM file is in the root directory, we type the
following two commands to start the TREE procedure:

C>path \ <RET>

C>tree <RET>

The result of the PATH command will be explained on page 90.

If the version of the operating system is 3.0 or higher, we only need to
issue a single command, namely:

C>tree <RET>

If the TREE.COM file is not present in the root directory but in a sub
directory, for instance in DOS, we type:

C>path \dos <RET>

C>tree <RET>

In this case too, one single command will do if we have version 3.0 or
higher. In this example we then type:

C>\dos\tree <RET>

In any case, this results in a survey like the following being displayed on
the screen:

USING A HARD DISK

And so on.

Directory Path Listing for Volume: No Name

Path: Root

Sub-Directories: DOS
DBASE

Path: \DOS

Sub-Directories: None

Path: \DBASE

Sub-Directories: MEMBERS

We may also add the parameter /f to a TREE command. Thus:

C>tree/f <RET>

89

As a result, we not only see a survey like the one above, but the contents
of each separate sub-directory as well, for instance:

And so on.

Directory Path Listing for Volume: No Name

Path: Root

Sub-Directories: DOS
DBASE

Files: ANSI • SYS
APPEND .COM
ASSIGN .COM
ATTRIB .EXE
CHKDSK .COM
COMMAND .COM
COMP .COM
DISKCOMP.COM
DISKCOPY.COM
DRIVER .SYS
EDLIN .COM
EXE2BIN .COM
FDISK .COM
FIND .EXE
FORMAT .COM
GRAFTABL.COM
GRAPHICS.COM

90 MS-DOS AND PC-DOS - A PRACTICAL GUIDE

5.7: Creating a path

But what about the communication between the root directory and a sub-direc
tory or between two sub-directories?

Assume we are working on the level of sub-directory DBASE, and that we
want to operate a program that is in another sub-directory, for instance the
system utility CHKDSK, in a sub-directory with the name DOS. The only way to
activate a program in a different sub-directory is to describe this place
very accurately. In this case the command should be:

C>\dos\chkdsk <RET>

So we have to make clear to the operating system that it has to search in
the sub-directory DOS, while skipping the root directory, in order to start
the program with the same name by means of the CHKDSK command. This is
rather difficult. It would be easier if we could just give the command and
if the system would find its way on its own. This is possible, provided that
we create a path in advance, by means of a PATH instruction.

For example, if we want to instruct the system to find a program file in
either the active sub-directory or the root directory, we create the path in
the following manner:

C>path \ <RET>

And if we want to indicate the sub-directory DOS as a possible place where
it can be found, we type the following command:

C>path \dos <RET>

We may also instruct the system to check both the root directory and a sub
directory, for instance DOS. To do so, we need only one PATH command. We use
a semi-colon to separate the various routes in the formula:

C>path \;\dos <RET>

If we want to know whether a PATH command is already in operation, and if so
which one, we use the basic command. Thus:

C>path <RET>

In this case, the system's answer is:

PATH=\;\DOS

If there is no PATH command in operation, we see:

PATH=\

Besides, a PATH command remains in operation as long as we do not tum off
the computer, or do a RESET (see page 18), or issue another PATH command.

USING A HARD DISK 91

5.8: Disguising a sub-directory - SUBST

We sometimes have to deal with a program that dates back from a time when
sub-directories did not yet exist. Such programs are very well capable of
functioning on a hard disk, and in a sub-directory as well, but it is not
able to trace and address a file in a different sub-directory.

Initially, the only alternative was to gather all necessary files in the
same (sub-)directory, but the introduction of the PC-DOS and MS-DOS version
3.1 provides us with a more elegant solution to the problem, i.e. the SUBST
procedure (for Substitute). It enables us to disguise a sub-directory as a
drive. As a result, WordStar, or any other old-fashioned program, is fooled.

Suppose we have created a sub-directory named TEXTS on the hard disk, and
a second named LETTERS. Assuming that the SUBST.EXE file is in the root
directory, we now give the following commands if we want to disguise these
two sub-directories as drive D and drive E, respectively:

C>subst d: c:\texts <RET>

C>subst e: c:\letters <RET>

There is no confirmation whatsoever, but if we call up the directory of
'drive D' or 'drive E', we are suitably informed.

To find out whether sub-directories have already been disguised as drives,
and if so under which letter, we have to give the basic SUBST command:

C>subst <RET>

In this example the answer is:

D: => C:\TEXTS
E: => C:\LETTERS

In order to cancel a SUBST instruction, we type a SUBST command followed by
the letter of the 'drive' in question, a space and the parameter /d (for
delete). Thus:

C>subst d: /d <RET>

C>subst e: /d <RET>

Disguising a sub-directory is also useful when we are working with a compli
cated structure of three or more (sub-)directories. In that case it saves us
quite some typing if we can replace this long description of routes by a
letter and a colon.

In the normal ('default') state of the operating system, the number of
drives (both real and artificial) can amount to no more than five, so the
letter E is the last one. How we can increase this number will be explained
on page 127.

92 MS-DOS AND PC-DOS - A PRACTICAL GUIDE

5.9: Duplicating (2) - BACKUP, RESTORE

Should there ever be something wrong with the hard disk, or if we acciden
tally start a FORMAT procedure in spite of all precautions, then this will
show how sensible it was to copy the contents regularly.

But again, the storage capacity is causing a problem. Not only does it
take some sixty floppy disks to back up one 20 Mb hard disk completely, but
also is it time-consuming to copy all files of each directory one by one.
Plus, the size of a file may exceed the storage capacity of a floppy disk.

The most simple solution would be a second hard disk or a tape streamer.
Indeed, a number of users and manufacturers resort to such facilities, but
they are quite expensive.

Less simple is the method IBM and Microsoft offer us via the operating
system. It does take a large number of floppy disks but the copy procedure
itself is carried out more or less automatically.

For this purpose we type the following formula, assuming that a file
named BACKUP.COM or BACKUP.EXE can be reached on drive C, and that drive A
is available for the backup procedure:

C>backup c:*.* a:/s <RET>

The source (in this example c:*.*) and the destination (in this example a:)
must always be explicitly mentioned. The parameter /s tells the BACKUP
program that all subdirectories of the root directory must be copied too.

Next, we see a message like the following on the screen:

Insert backup diskette 01 in drive A:
Warning! Diskette files will be erased
Strike any key when ready

We must then insert a blank, formatted disk in drive A and strike a key. As
soon as we do that, we will see:

*** Backing up files to diskette 01 ***

File after file and directory after directory will be copied, until the disk
is filled to the rim. Then the following message will be displayed:

Insert backup diskette 02 in drive A:
Warning! Diskette files will be erased
Strike any key when ready

We exchange the filled disk for an empty one and strike a key.

*** Backing up files to diskette 02 ***

We continue until a message tells us that the procedure is completed:

Successful backup

USING A HARD DISK 93

In this procedure, we may also make a selection. For instance, should we
just want to make a backup copy of the files in the sub-directory LETTERS,
the correct formula is:

C>backup c:\letters*.* a: <RET>

We may even narrow the procedure down to a certain group of files. If we
want to limit the procedure to the files with the extension .TXT in the sub
directory NOTES, we type the following formula:

C>backup c:\notes*.txt a: <RET>

If we add the parameter /m (for modified), the procedure is limited to the
files that have been created or altered since the previous BACKUP procedure
- provided we use the same set of disks. For instance:

C>backup c:\notes*.txt a:/m <RET>

If we use the parameter /d (for date), followed by a colon and a date, only
the files that have been created and/or altered on or since that date will
be copied. For instance, if we want to copy all files in all directories
created on or after 20 December 1988, we type the following command:

C>backup c:*.* a:/s/d:12-20-88 <RET>

A disadvantage of the BACKUP procedure is that we cannot use the copied
files in a normal way - neither to inspect the contents, nor to alter them.

Should it ever be necessary to restore the contents of the hard disk by
means of our collection of backup copies, hopefully not made too long ago,
we have to start a reverse procedure.

First, we type, assuming we have file named RESTORE.COM or RESTORE.EXE
available on a diskette in drive A, the following command:

A>restore a: c:/s <RET>

As a result, we see:

Insert backup diskette 01 in drive A:
Strike any key when ready

Then we must take out the diskette in drive A, insert the first diskette of
the backup set in drive A and strike a key. If all goes well, we will see:

*** Restoring files from diskette 01 ***

And so on, until the procedure is completed:

Normal completion

If we have to restore just one single file, for instance TEST, and the des
tination is the sub-directory NOTES, the correct formula is:

A>restore a: c:\notes\test <RET>

6: WORKING WITH EDLIN

Every operating system is equipped with a facility that enables the user to
create, store or revise a text file. MS-DOS and PC-DOS are no exception. All
versions are supplied with a utility called EDLIN.COM, which is suitable for
making notes and storing them in a file, composing a letter or writing and
editing a so-called batch program.

However, EDLIN is less suitable to be used as a word processor, in other
words, as a program to write more extensive items such as reports and manu
scripts. Compared with real word processing programs such as WordStar, Word
Perfect and Microsoft Word, EDLIN is too cumbersome.

On the other hand, EDLIN is automatically supplied with the system, and
it is quite instructive to learn how it works.

The main difference between EDLIN and WordStar, WordPerfect and similar
programs is that the latter are so-called screen editors. They are programs
that enable us to move the cursor over the entire surface of the screen -
that is, a total of 25 lines, each of which can contain 80 characters - and
which can carry out a certain instruction on any of these 2000 positions.

EDLIN is merely a line editor, as the name more or less indicates. It is
a program in which the range of the cursor is restricted to one line, and we
can only carry out instructions on the positions on that particular line.
This may sound more complicated than it in fact is, because in view of the
experiences we had with the computer so far - i.e. typing and issuing com
mands, creating a text file with the COPY CON: method (see page 50) - the
range of the cursor was also restricted to one line.

In addition, EDLIN has the possibility of displaying the lines that have
already been passed on to the computer and stored in a file, after which we
can erase, alter or replace them again, if we want to, without affecting the
rest of the contents of the file.

In order to facilitate this possibility, EDLIN is equipped with a number
of tools. In the first place, they include a number of built-in commands
consisting of one single letter. We can use these commands to pass on our
instructions to the program.

The second facility is the automatic numbering of lines in every file we
create in EDLIN. This enables us to indicate accurately which line we wish
to view or correct on the screen.

In the third place, we may use a number of special keys that perform a
specific function which facilitate operations often used, such as recalling
lines and making corrections. They are the function keys we became acquain
ted with on page 22.

In order to manipulate a file any further, for instance to rename, erase
or send it to an input or output channel, we have to use one of the system
facilities that we became acquainted with in the previous chapters. What we
have to do to print a file will be discussed on pages 122 and 17 4.

Let's make a start and, by way of experiment, create a text file named
MEMO with the same contents as the TEXT file on page 50.

Assuming that the EDLIN.COM file is in the root directory of the hard
disk (drive C), and that drive A contains a disk with a sufficiently availa
ble storage capacity, the command to start creating a file is:

96 MS-DOS AND PC-DOS - A PRACTICAL GUIDE

C>edlin a:memo <RET>

This results in the following message on the screen:

New File
*

The asterisk is EDLIN's prompt - that is, the invitation to indicate what we
want EDLIN to do.

To open a new file we type an 'i' (or an 'I'):

*i <RET>
1:*

As a result, we see the signal that we can start entering our text.

Initially we proceed as we did when using the COPY CON: procedure (see page
50). We act as if we were sitting at a typewriter: we strike the RETURN key
at the end of each line. Thus:

*i
l:*It is advisable to enter the date and

The maximum number of characters permitted per line is 128 and the maximum
number of lines is (in theory) 65,535.

*i
l:*It is advisable to enter the date and
2:*time when loading the system, so that
3:*

We can remove a typing error with the BACKSPACE key or the instruction ·H
(see page 18).

Instead of erasing all the characters of a line one by one, we may erase
the whole line by striking the ESC key. A backslash (\) then appears at the
end of the line, to indicate that the line will not be entered into the
computer. The cursor reappears at the start of the next line.

To abandon our writing for any reason, we type ·c or ·<BREAK>.

As soon as we are finished, we hit the F6 key, or we give the instruction
·z, in both cases followed by striking the RETURN key.

Finally, the screen should show the following:

C>edlin a:memo
New File
*i

*

l:*It is advisable to enter the date and
2:*time when loading the system, so that
3:*we later can check when a file like this
4:*was created.
5:*AZ

WORKING WITH EDLIN 97

6.1: Closing - E or Q

There are three ways of concluding our activities under EDLIN.
We employ the first method when we have created a new file and we want to

store it on a disk, or when we have altered a file and we want to save the
updated version. In those cases we type an 'e' (for 'end') immediately after
the prompt, and we hit the RETURN key:

*e <RET>

C>

With a DIR command we can check that our MEMO file has indeed been saved:

C>dir a: <RET>

Volume in drive A has no label
Directory of A:\

MEMO 134 12-24-88 1:19p
1 File(s) 361472 bytes free

The second method can be applied if we have no desire to save our text. In
this case we type a 'q' (for 'quit'):

*g; <RET>

Instead of the system prompt we first see a query as to whether we really
want to throw away this version of our file:

Abort edit (Y/N)?

We have to type a 'y' to get the system prompt back on the screen. By means
of a DIR command we can check whether or not the file has been saved.

The third way to stop is a RESET procedure (see page 18). However, this
should only be used in emergency cases.

Suppose that a RESET procedure was unavoidable. Then the directory of the
disk in drive B shows us that an entry had been reserved for our file:

C>dir a: <RET>

Volume in drive A has no label
Directory of A:

MEMO $$$ 0 12-24-88 1:25p
1 File(s) 362496 bytes free

Note that the extension to the file name is $$$ and that the size of the
file is 0 bytes. That means, the file is empty.

98 MS-DOS AND PC-DOS - A PRACTICAL GUIDE

6.2: Re-opening

We may want to take another look at our MEMO file and edit it. If so, we
need to re-open it. Just as when we were creating it, we type:

C>edlin a:memo <RET>

There are three possible ways in which EDLIN can respond. The first is:

New file

*
In this case we have apparently made a typing error. EDLIN assumes that we
want to open a new file.

We solve the problem by typing a 'q' as soon as the prompt appears. After
that, we can try again.

A second possible response of EDLIN is just the prompt, and the absence of
any message at all:

*
In that case the file is too large for the memory space available. On page
116 we shall see how to find a way out of this situation.

A third possible reaction is:

End of input file
*

This is the one we need. This message means that the requested file has been
loaded into the computer's memory, and that we may now give our next com
mand. If we type an 'i', as we did when creating the file (see page 96), we
see:

*i <RET>
1:*

We get the idea that the first line of the file is empty. It is not. The
cause of the apparent confusion is the real nature of the 'i' command, which
is short for 'insert'. On page 100 we will go into more detail about this
command and how to use it.

If we have no intention of inserting anything, we should type a AC or a
A <BREAK> instruction. The prompt will reappear on the next line:

l:*~C

*
This gives us another chance to get EDLIN to do what we had in mind.

WORKING WITH EDLIN 99

6.3: The .BAK file

Suppose we have created the file MEMO, stored it on the disk, re-opened it
and saved it once more, after which EDLIN is replaced by the regime of the
operating system.

To see what the results of these operations are, we give a DIR command:

C>dir a: <RET>

Volume in drive A has no label
Directory of A:

MEMO
MEMO

BAK 134 12-24-88 1:19p
134 12-24-88 1:40p

3 File(s) 360448 bytes free

We see that in addition to the (revised) MEMO file, there is now a second
file named MEMO, but with the extension .BAK. This is an abbreviation of
Backup file. This .BAK file contains the previous version of the MEMO file -
that is, the way the file was before we opened and saved it a second time.

We need not to go into technical detail of what the computer does, but it
comes down to the following: as soon as we re-open a file, EDLIN loads part
of what was on the disk into memory. This will form the basis for the new
version. Meanwhile, the original version of the file stays on the disk,
without any of the corrections or alterations we may be adding. This version
is given the extension .BAK at the very moment we ask EDLIN to store the
new, updated version.

Thus, if anything goes irrevocably wrong with the file in question, we
can always fall back on this previous version. But first we have to type a
REN command (see page 52) to give this .BAK file another name, or at least a
name without a .BAK extension, because EDLIN will not touch a .BAK file.

While the knowledge that EDLIN automatically keeps a reserve file is very
reassuring, we have to make sure that the size of the file we are working
on, plus its .BAK version, plus some working space, stays well within the
amount of storage room available on the disk.

As a rule of thumb, the file should not be larger than half the storage
room that is available. It is better to restrict the size to a third. This
leaves room for the new .BAK file plus the previous one, if any, which is
erased only after the updated version of the file has been stored.

In any case, we are well advised to keep track of the available storage
room on a disk. In version 1 of the system, we issue a DIR command (see page
28) to find out about the file's size, and a CHKDSK command (see page 32) to
stay informed about the remaining storage room. In versions 2 and 3 of the
system, we can just issue a DIR command.

Apart from that, we should always keep a copy of our file on another
disk. Anything can happen. The original disk may get lost, for instance, or
may even get damaged by an upset cup of tea.

It is a good habit therefore to make a copy of the disk regularly, using
one of the system's copy methods (see pages 34 and 55).

100 MS-DOS AND PC-DOS - A PRACTICAL GUIDE

6.4: Inserting - I

If we want to extend a file by adding a number of lines, we need an 'i' (for
'insert') after re-opening the file. The precise formulation of the command,
however, will depend on the place where we want to add the new lines of
text.

Suppose that we want to add two lines to the start of our MEMO file, for
instance, a title and a blank line. We open the procedure as follows:

C>edlin a:memo <RET>
End of input file
*i <RET>

1:*

Now we have the opportunity to type in a new number 1 line:

l:*About the marking of files <RET>
2:*

To leave the second line blank, we need only hit the RETURN key:

l:*About the marking of files
2:* <RET>
3:*

If we want to leave it at that, we just give a AC or A<BREAK> instruction:

*

l:*About the marking of files
2:*
3:*-c

To see the results of our manipulations, we can type an '1', for 'list',
followed by striking the RETURN key (see page 102). Thus:

*1 <RET>

*

1: About the marking of files
2:
3:*It is advisable to enter the date and
4: time when loading the system, so that
5: we later can check when a file like this
6: was created.

It is quite clear what has happened: the lines 1 and 2 have been added at
the beginning, pushing the original lines down. What had been lines 1 and 2
are now lines 3 and 4.

Note that an asterisk is shown at the beginning of line 3. This is EDLIN's
way of indicating that line 3 is currently selected.

WORKING WITH EDLIN 101

We now have a choice. We can either save our new version with the added
title, in which case we should hit the 'e' and the RETURN key, or we can
tell EDLIN to forget it by typing a 'q' and striking the RETURN key. As we
have seen on page 127, we will be asked to confirm our decision:

Abort edit (Y/N)?

We have to type a 'y' to confirm our decision. If we type an 'n', however,
the EDLIN prompt reappears.

Another option is to carry on inserting text.
Suppose we want to add a few lines at the end of the file. In that case

we should precede the 'i' by the number of the line where we want our text
to be inserted.

Because our file ends after the last additions on line 6, we now want to
start the new text on line 7. Thus:

*7i <RET>
7:*

We type the lines we want to add:

7:* Especially when we have more than one
S:*version of a file and there is a copy of
9:*each version, this procedure can save us

lO:*a lot of time and effort.
11:*

As soon as we have finished, we give a AC or A <BREAK> instruction:

ll:*·c
*

To see what our file now looks like, we type an '1' again and strike the RE
TURN key. We then see:

*1 <RET>

*

1: About
2:

the marking of files

3:
4:
5:
6:
7:
8:
9:

10:

It is advisable to enter the date and
time when loading the system, so that
we later can check when a file like this
was created.

Especially when we have more than one
version of a file and there is a copy of
each version, this procedure can save us
a lot of time and effort.

Note that none of the lines is prefixed by an asterisk. This is because line
11 is now selected, but has not yet been used.

Once again, we have a choice between saving our changes with an 'e' or abor
ting them by typing a 'q'.

102 MS-DOS AND PC-DOS - A PRACTICAL GUIDE

6.5: Reproducing - L or P

It will often be necessary to inspect the contents of an EDLIN file. If we
are under the control of the system, we can use the TYPE command from the
system prompt, as we saw on page 51. But if we are in EDLIN, this command is
not available. Then we can use the instruction 'I' (for 'list') • Thus:

*1 <RET>

Immediately the contents of the file will fill the screen.
In cases where the size of the file is larger than 23 lines, only the

first 23 lines will be displayed - exactly a screenful. For instance:

*1

*

1:*About the marking of files
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:

It is advisable to enter the date and
time when loading the system, so that
we later can check when a file like this
was created.

Especially when we have more than one
version of a file and there is a copy of
each version, this procedure can save us
a lot of time and effort.

Some computer makes are fitted with
a built-in clock and calendar. A battery
ensures that they keep ticking when the
computer is switched off. The operating
system automatically loads the time and
date from the clock and the calendar, so
we don't have to type those in.

A computer not supplied with a built
in clock can have one fitted later. We
then have to buy an expansion card. This
card will usually also provide us with
other facilities, such as extra memory,
or extra input and output channels. Our

In case the active line is not line 1, but for instance line 1 7, we would
see this line together with the eleven preceding and the eleven following
lines (in other words, lines 6 to 28, or up to the end of the file, which
ever comes first).

To see another screen, we should type the next line number, followed by an
'1'. For instance:

*241 <RET>
---24: dealer may be able to give more details.

*

WORKING WITH EDLIN 103

If we do not want to see a file from line 1 but, for instance, from line 10,
we just type the line number followed by an '1':

*101 <RET>

As a result, we see the line we mentioned, followed by the next 22 lines.

To restrict the display to a limited number of lines, for instance to the
lines 13 to 22, we type both numbers, separated by a comma and followed by
an '1'. Thus:

*13,221
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:

<RET>
ensures that they keep ticking when the
computer is switched off. The operating
system automatically loads the time and
date from the clock and the calendar, so
we don't have to type those in.

A computer not supplied with a built
in clock can have one fitted later. We
then have to buy an expansion card. This
card will usually also provide us with
other facilities, such as extra memory,

*
If we want to see the file from the beginning up to some particular line,
for instance line 9, we type just the comma, followed by the number of the
last line requested plus an 'l':

*~ <RET>

*

l:*About the marking of files
2:
3: It is advisable to enter the date and
4: time when loading the system, so that
5: we later can check when a file like this
6: was created.
7: Especially when we have more than one
8: version of a file and there is a copy of
9: each version, this procedure can save us

EDLIN is also equipped with the command 'p' (for 'page'). It produces the
same kind of results as an '1', except for the position of the asterisk.

Using the 'p' command automatically moves the asterisk to the last line
specified. For example:

*11,17p <RET>

*

11: Some computer makes are fitted with
12: a built-in clock and calendar. A battery
13: ensures that they keep ticking when the
14: computer is switched off. The operating
15: system automatically loads the time and
16: date from the clock and the calendar, so
17:*we don't have to type those in.

104 MS-DOS AND PC-DOS - A PRACTICAL GUIDE

6.6: Editing keys

Under the regime of EDLIN, the function keys work in the same way as under
the regime of the system itself (see page 22). Thus, we can use the F3 key
to bring back the entire last-entered command line, or the Fl to bring it
back character by character, etc.

In addition, there are a number of other keys that can be described as
editing keys, and that also work both in EDLIN and in the system itself.

One example is the key marked INS, for Insert. Its task is to add one or
more characters on the command or text line which is in the buffer at that
time. Suppose we type the command to edit our MEMO file and forget to name A
as the source drive. Thus:

C>edlin memo <RET>

The result is that EDLIN will look in vain on drive C (the hard disk) for
the file, and then assume that a new file is required. Hence its response on
the screen will be:

New file
*

We have to strike the 'q' and RETURN keys, followed by a 'y', to get the
system prompt back on the screen.

Our original command to open the file is still in the buffer, however, so
if we hit the F2 key and then type a 'm', we see:

C>edlin

After striking the INS key, we type in the forgotten part of the command:

C>edlin a:

Tapping the F3 key after that gives us the following:

C>edlin a:memo

Hitting the RETURN key is then enough to pass on the modified command to the
system.

Close to the INS key we find a key marked DEL, for Delete. This key has the
opposite effect. Its task is to delete a character or a series of characters
in a command or a text line that is stored in the buffer.

Suppose once again that we want to edit our MEMO file with EDLIN. This time
the file is on the hard disk. However, we accidentally mention 'a' as the
drive:

C>edlin a:memo <RET>

WORKING WITH EDLIN 105

EDLIN will look for the file on the disk in drive A. Not finding it there,
it assumes that a new file is required and responds:

New file

*
Again, we have to hit the 1q1 and RETURN keys, followed by a 1 Y', to get the
system prompt back on the screen.

The command is still in the buffer. Therefore, if we strike the F2 key and
type an 1 a 1 , we will see:

C>edlin

Using the DEL key we can now erase the unwanted part of the command. We hit
this key twice and then we hit the F3 key. The result will be:

C>edlin memo

Once again hitting the RETURN key is sufficient to pass on the modified
command to the system.

Some keyboards are equipped with a group of four keys with arrows. This
group is usually on the right side of the keyboard, in (or next to) the
numeric keypad. If there is a group of keys like this, the backspace key,
that is, the one with an arrow pointing to the left (not to be confused with
the RETURN key), has the same function as the AH instruction (see page 18).
It serves to delete the character to the left of the cursor.

The arrow pointing to the right has the same function as the Fl key. As
long as we hold it down, the contents of the buffer are printed on the
screen, one character at a tbne.

Usually we find on the left side of the keyboard a key marked with the term
TAB or with two arrows pointing in opposite directions. This key will move
the cursor a fixed number of places (usually eight) to the right:

C>edlin memo

This can be useful when typing tables, or writing programs in machine code.

Another key that we may use in editing is the one marked ESC, for Escape. We
press it if we want EDLIN to ignore a command or a text line. For instance:

C>edlin memo\

Note that the backslash follows the last character and that the cursor has
moved to the next line. We can easily find out whether the contents of the
buffer are still intact.

Computers operating under the control of PC-DOS or MS-DOS usually have a
number of additional editing keys marked HOME, END, PG UP and PG DN, apart
from the arrow keys. These have no function under EDLIN. They can only be
used with programs like WordStar, which use the whole screen as a workshop.

106 MS-DOS AND PC-DOS - A PRACTICAL GUIDE

6.7: The active line

Regardless of the phase we are in using EDLIN, there is always one active
line. When we open or re-open a file, for instance, the first line is the
active one. We recognise this line by the asterisk between the number and
the text. Of course, we should not confuse this with the EDLIN prompt.

Suppose we just have re-opened our MEMO file. Striking the RETURN key is
enough to make the next line the active line:

C>edlin a:memo
End of input file
* <RET>

2:*
2:*

If we hit the RETURN key again, the prompt reappears. This enables us to
browse rapidly through the file:

2:*
2:* <RET>

* <RET>
3:*It is advisable to enter the date and
3:* <RET>

* <RET>

*

4:*time when loading the system, so that
4:* <RET>

And so on. If we want to work with the active line and we cannot remember
its number, we only need type a full stop. For example:

* <RET>
4:*time when loading the system, so that
4:*

And if we want to add a line at the end of the file and cannot remember the
number of the last line, we should use the # symbol, followed by the 'i'
instruction. The active line now follows right after the last line of the
file. For instance:

*#i <RET>
24:*

We also have the opportunity to use plus (+) and minus (-) signs to indicate
the position of a line relative to the active line.

For instance, if we want to use an '1' command (see page 102) to show the
thirteen lines preceding the active line, we type:

*-131 <RET>

WORKING WITH EDLIN 107

6.8: Editing

It is when we want to make corrections that we notice just how cumbersome
working with EDLIN can be. Instead of seeing a screen filled with text,
where we can navigate at will with the cursor, we are forced to plod through
a file a line at a time.

Therefore, it is a good habit to have a hard copy (that is, a printed
copy) of a file at hand, and then mark the lines to be altered before
starting on the editing work.

Suppose that we want to make an alteration in line 20 of our MEMO file.
We start off by loading the file. As soon as the EDLIN prompt appears, we
can type the wanted line number. The visible result will be:

C>edlin a:memo
End of input file
*20

20:*then have to buy an expansion card. This
20:*

We may now formulate the text of the line in the way we want it.

As soon as we are ready, we strike the RETURN key and we will see the EDLIN
prompt back on the screen. We can then ask for another line to edit, issue
another command, or do whatever we wish.

If we have called up a specific line and we decide on second thoughts to
make no corrections in it, we can type a AC or A<BREAK> instruction, which
will cause the prompt to reappear immediately:

C>edlin a:memo
End of input file
*20

*

20:*then have to buy an expansion card. This
20:*AC

To save a correction we have made and then to return to the control of the
system, we must type an 1 e 1 •

If, on the other hand, we would prefer to scrap the alterations we have
made, we should type a 1 q 1 • In this case, just as when we opened the file
(see page 96), we first have to confirm our intended course of action:

Abort edit (Y/N)?

We need to type a 1Y1 to have the system prompt reappear.

In the editing process, the function keys Fl to F4 and some editing keys are
essential. On pages 22 and 23 we have seen how we can make use of them under
the control of the operating system itself. The next four pages will des
cribe how we can make effective use of them in EDLIN.

108 MS-DOS AND PC-DOS - A PRACTICAL GUIDE

Let's now try and find out how the function and editing keys work under the
control of EDLIN. Again we call up line 20 of our MEMO file:

C>edlin a:memo
End of input file
*20

20:*then have to buy an expansion card. This
20:*

We can use the F3 key to print out the whole line on the screen:

20:*then have to buy an expansion card. This
20:*then have to buy an expansion card. This

There is little point in doing this if nothing has been changed in the line.
Therefore, we use the F3 key mainly in combination with another key.

If we strike the Fl key, or the key with the arrow pointing to the right,
instead of F3, we see:

20:*then have to buy an expansion card. This
20:*t

As we strike Fl again, EDLIN projects the next letter in the line, and so
on. The moment that the cursor arrives at a wrong character, we can type
another in its place. Then we can use Fl or F3 to complete the line.

We can use the F2 key to reproduce a text line up to (but not including) a
specific character.

For instance, if we want to reproduce the part of the line up to 'expan
sion', we should first hit the F2 key and after that an 'x'. The result is:

20:*then have to buy an expansion card. This
20:*then have to buy an e_

The F4 key can be used to reproduce part of a line from a certain point.

Suppose we only want to see the section of the line starting with the word
'buy'. In that case we first strike the F4 key, then we type a 'b', and
finally we hit the F3 key. As a result, we see:

20:*then have to buy an expansion card. This
20:*buy an expansion card. This_

The F5 key serves to erase (part of) a line from the buffer, or to replace
it with another line, without having to use the RETURN key. In that way we
can edit the line to measure. If for instance, we use the F2 key followed by
a 'c' and then the F5 key, we see:

20:*then have to buy an expansion card. This
20:*then have to buy an expansion @

The '@' means that the rest of the line has been scrapped.

WORKING WITH EDLIN 109

Suppose we want to add something to the line, for instance, between 'buy'
and 'an'. In that case we have to take quite a few steps.

First of all we have to call up the line:

*20 <RET>
20:*then have to buy an expansion card. This
20:*

The first words of the sentence can stay, so we can either hit the F1 key or
the arrow pointing to the right sixteen times. The result is:

20:*then have to buy an expansion card. This
20:*then have to buy _

It would have been easier to hit the F2 key, followed by an 'a', with the
result:

20:*then have to buy an expansion card. This
20:*then h

Note that the cursor was stopped by an earlier 'a'. By hitting the same two
keys again, we would have reached the next 'a' on the line:

20:*then have to buy an expansion card. This
20:*then have to buy _

If we want to add something to the line, we first have to strike the INS
key, to prevent the new text from erasing the existing one at the same
place. After that, we can type in our additional text:

20:*then have to buy an expansion card. This
20:*then have to buy an accessory known as

Tapping the F3 key will automatically add the rest of the line:

20:*then have to buy an expansion card. This
20:*then have to buy an accessory known as

an expansion card. This_

Note that part of the text has now spilled over to the next line.
The reason is that the screen can take a maximum of only 80 (or 40, de

pending on the setting) characters per line (see page 120). Superfluous cha
racters will move to the next line, but EDLIN still regards the whole as one
line.

The next steps involve moving the section of the line from the word 'as' to
an extra line, which we want to insert between lines 20 and 21.

We should first hit the RETURN key, to pass on the new line to EDLIN and
get the prompt back on the far left. Thus:

20:*then have to buy an expansion card. This
20:*then have to buy an accessory known as

an expansion card. This
*

110 MS-DOS AND PC-DOS - A PRACTICAL GUIDE

Next, we have to type the number 21 and an 'i', which is the command to
insert a new line 21 (see page 100):

*21i <RET>
--21:*

By tapping the F3 key we check that the revised line 20 is still in the buf
fer.

As we do not need a whole line, we first strike the ESC key to tell EDLIN
that we do not want the line in this form in memory.

A backslash will appear at the end of the line, to indicate that EDLIN
will ignore the text. The cursor will move down a line, but the contents of
the buffer will not be touched:

*21i
21:*then have to buy an expansion card. This
21:*then have to buy an accessory known as

an expansion card. This\

To scrap the line up to and including the word 'known', we may use the DEL
key, which removes one character from the buffer (in a forward direction)
every time we hit it. However, in this example we would have to use it some
forty times.

Generally, a better way is to hit the F 4 key, type an 'a', strike the F3
key, and finally use the F5 key to send the result to the buffer.

Because there is more than one 'a' in the line, we will have to repeat
the procedure with F4, 'a' and F3, before using the FS key each time to send
the new result to the buffer:

* 21i
21:*then have to buy an expansion card. This
21:*then have to buy an accessory known as

an expansion card. This\
ave to buy an accessory known as an expa

nsion card. This@

In the end, the screen will appear like this:

* 21i
21:*then have to buy an expansion card. This
21:*then have to buy an accessory known as

an expansion card. This\
ave to buy an accessory known as an expa

nsion card. This@

This@

is@

And there we are.

an accessory known as an expansion card.

accessory known as an expansion card. Th

as an expansion card. This@

WORKING WITH EDLIN 111

If we now strike the RETURN key, EDLIN will read this new line as line 21
and return with the prompt for line 22:

22:*

We do not yet have to worry about line 22, so we give a ·c or a ·<BREAK>
instruction to end the procedure. The EDLIN prompt will reappear.

To view lines 20 to 24 in their new form, we type:

*20,241 <RET>

We see the following:

20: then have to buy an accessory known as
an expansion card. This

*

21: as an expansion card. This
22:*card will usually also provide us with
23: other facilities, such as extra memory,
24: or extra input and output channels. Our

Obviously, we still need to clean up line 20, so we load that line again:

*20 <RET>
20:*then have to buy an accessory known as

an expansion card.
20:*

By using the F2 key and the 'a' key four times (more or less the opposite of
what we did with the F4 key and the 'a' on the previous page), we will pro
duce the following result:

20:*then have to buy an accessory known

If we hit the RETURN key, the revised line is put into the buffer. EDLIN's
prompt reappears on the screen.

If we give another '1' command, we see:

*20,241 <RET>

*

20:*then have to buy an accessory known
21: as an expansion card. This
22: card will usually also provide us with
23: other facilities, such as extra memory,
24: or extra input and output channels. Our

Now the lines from 21 on down remain to be reorganised.
We can, of course, use the same procedure to make the lines to measure,

but it is quite a lot of work. A simpler way is to type in the words we need
to reach the required length from the line that follows and to tap the
RETURN key. After that we can load the following line, erase the same words,
append words from the next line, strike the RETURN key, and so on.

Cumbersome is just the right word to describe this process.

112 MS-DOS AND PC-DOS - A PRACTICAL GUIDE

6.9: Searching - S

A useful feature of EDLIN is its find procedure. It enables us to search for
a specific combination of characters (for instance a word, a number, a
phrase or even a series of spaces) in a file.

Suppose we have just re-opened the MEMO file. To find out if the word 'bat
tery' is present in the file, we use the command 's' (for 'search'):

*sbattery <RET>
12:*a built-in clock and calendar. A battery

*
As a result, EDLIN shows us the first location of the word.

Note that the command consists of a solitary 's', immediately followed by
whatever we want found.

We should be careful not to include a space between the 's' and the charac
ters, since that would order EDLIN to search for a space, followed by the
word in question.

The exact formulation of the command is saved in the buffer. Therefore, to
get EDLIN to look if the character sequence can be found elsewhere in the
file, we need only type another 's':

*s <RET>

An 's' command is effective from the active line to the end of the file. As
soon as the sequence of characters is found, the procedure stops. The line
in which the characters have been found becomes the active line.

As with the '1' command (see page 102), we can, if we wish, restrict the
range of the search command to a specific part of the file, for instance
from line 15 to line 25:

*15,25sbattery <RET>

We may instruct EDLIN to repeat a search procedure, until asked to stop. In
that case the 's' should be preceded by a question mark. For instance:

*?sbattery <RET>

If the characters are found, they will be presented as follows:

12: a built-in clock and calendar. A battery
O.K.?

If we answer a 'y', the search is ended and the prompt will reappear on the
screen. If we type an 'n', the procedure is repeated until EDLIN finds the
next occurrence or gets to the end of the file.

WORKING WITH EDLIN 113

6.10: Searching and replacing - R

In addition to the search procedure mentioned on the previous page, EDLIN is
equipped with a facUlty which enables us to find specific characters or
words, or whatever, and replace them by others. The command consists of the
letter 'r' (for 'replace').

Suppose we want to replace the words 'an expansion card' in our MEMO file
by 'a clock card'. In that case we give the following command:

*ran expansionAZa clock <RET>

Note that the division between the characters to be searched for and those
to replace them is marked by the instruction AZ. We can either use just the
F6 key, or type the control instruction AZ.

As a result of this command, EDLIN rapidly scans the file, and it shows
us the first instance, if any, after making the required change. Thus:

21:*then have to buy a clock card. This
*

As with the 's' command, the exact formulation of the command stays in the
buffer. Therefore, to get EDLIN to look if the character sequence can be
found further on in the file again, we need only type another 'r'.

If EDLIN is unable to locate and replace the sequence, we will see on the
screen:

Not found
*

Just as with the find command 's', the replace command can be preceded by
numbers, separated by a comma, to indicate the lines that the search and
replace command refers to. For example:

*18,23ran expansionAZa clock <RET>

We may also add a question mark to the formula if we want the opportunity to
choose whether or not to make the change:

*18,23?ra clockAZan expansion <RET>
21:*then have to buy an expansion card. This

O.K.?

If we type 'y', EDLIN makes the correction final.
If we type an 'n', however, the line will be restored in its original

form, and the program will seek the next occurrence of the expression, if
there is one, and display it, again with the exchange made:

O.K.?!! <RET>
*

114 MS-DOS AND PC-DOS - A PRACTICAL GUIDE

6.11: Erasing - D

The counterpart of the 'i' (for 'insert') command (see page 100) is 'd' (for
'delete'), which we use to remove a line of text.

Suppose we want to remove the blank line we inserted as line 2 (see page
100). We just type the line number, followed by a 'd':

C>edlin a:memo <RET>
End of input file
*2d <RET>
*-

We will not see any confirmation on the screen, just the EDLIN prompt.
To check whether anything has happened, we have to give an '1' command

(see page 102). And indeed, line 2 has been removed. Line 3 has taken its
place and the rest of the text has also moved up one line.

Should we want to erase the active line, we need only type a 'd' on its own.
In this case it is line number 1. Thus:

*d <RET>
*-

By giving an '1' command, we get the file in its present form on the screen:

*1 <RET>

*

1:*It is advisable to enter the date and
2: time when loading the system, so that
3: we later can check when a file like this
4: was created.
5: Especially when we have more than one
6: version of a file and there is a copy of
7: each version, this procedure can save us
8: a lot of time and effort.
9: Some computer makes are fitted with

10: a built-in clock and calendar. A battery
11: ensures that they keep ticking when the
12: computer is switched off. The operating
13: system automatically loads the time and
14: date from the clock and the calendar, so
15: we don't have to type those in.
16: A computer not supplied with a built-
17: in clock can have one fitted later. We
18: then have to buy an accessory known
19: as a clock card. This
20: card will usually also provide us with
21: other facilities, such as extra memory,
22: or extra input and output channels. Our
23: dealer may be able to give more details.

WORKING WITH EDLIN 115

If we wish, we can delete more than one line at a time. To do so, we have to
type the first and the last line numbers of the block, separated by a comma,
and followed by a 'd':

*5,8d <RET>

*
We see that lines 5 to 8 have been removed from the file:

*1 <RET>
l:*It is advisable to enter the date and
2: time when loading the system, so that
3: we later can check when a file like this
4: was created.
5: Some computer makes are fitted with
6: a built-in clock and calendar. A battery
7: ensures that they keep ticking when the
8: computer is switched off. The operating

By omitting the first number, and only typing a comma followed by the number
of the last line to be taken out, we get EDLIN to delete the lines from the
active line up to and including the line that we mentioned:

*.t..l_ <RET>
*

At this point we still have the chance to decide whether or not we want to
store the revised file; that is, without the lines that were deleted. If we
do, we must type an 'e' from the EDLIN prompt:

*e <RET>

To undo the deletions we should type a 'q'. Before EDLIN scraps our changes,
it gives us still another opportunity to think twice:

Abort edit (Y/N)?

Thus, in case we feel we have taken the wrong path, there are several ways
to retrace our steps.

Even if we have stored the new version of our MEMO file, we have a way to
reconstruct its original form, since we still have the .BAK version, which
was stored on disk before the latest changes were made (see page 99).

We cannot, however, edit a .BAK file directly. If we try, we get to see an
error message:

Cannot edit .BAK file--rename file

The safest procedure is to make a copy of the .BAK file, at the same time
giving it a new name, or at least another extension, for instance RESERVE.
We have learned on page 56 how to do it. Now EDLIN accepts the file:

C>edlin a:reserve <RET>
End of input file

*

116 MS-DOS AND PC-DOS - A PRACTICAL GUIDE

6.12: Writing away - W

As mentioned on page 96, there may be times that we want to edit a file and
do not see the 'End of input file' message on the screen.

We can conclude from this that the file in question was too long to fit
in the memory available. In such a situation, we can use a 'w' (for 'write')
to send part of the file, from line 1 up to and including the line number
that we indicate, back to the disk. Let's try this with the MEMO file:

*2lw <RET>
*--

At first sight, nothing has happened. But if we use an '1' command to view
what is left of the file, we see:

*

1: other facilities, such as extra memory,
2: or extra input and output channels. Our
3: dealer may be able to give more details.

Note that the lines left in the memory have been renumbered. So we should
keep close track of which part of the file we are working with.

If we store these lines later, they will be added to what we sent back to
the disk, so nothing will get lost.

6.13: Appending - A

After creating some room in the memory by saving a section of our MEMO file,
as we just did, we can call up an additional part from the disk with an 'a'
command (for 'append'). Thus:

*a <RET>

EDLIN will then load as much as possible of the file, leaving some open
space for its own operation.

We may also indicate how many lines we want appended. For instance:

*lOOa <RET>

If we see the 'End of input file' message, we know that the first hundred
lines of the file are now in memory, apart from the beginning, which has
been written away to the disk with the 'w' command.

In case no message appears, we must try and append less text, or write
away a larger portion, to make enough space available for the last part.

WORKING WITH EDLIN 117

6.14: Copying - C or M

So far we have not mentioned any command which makes EDLIN duplicate part of
our file. There are two: the 'c', for 'copy', and 'm', for 'move'.

Using the MEMO file, for instance, we may give the following instruction:

*5,8,23,1c <RET>

The first two figures indicate the sequence of lines that we want to copy,
in this case from line 5 to line 8 inclusive.

The next number indicates the place where we want to insert a copy of
this block. In this case the place is line 23, causing the original 23rd
line and the following ones to move up to a higher number, just as when the
'i' command was used (see page 100).

The last figure, in this case 1, indicates the number of copies of the
block we want EDLIN to make.

We may leave any of the numbers out, but not the commas. Leaving out the
first, the second, or the third number makes EDLIN take the active line as
the beginning, the end, or the destination of the block. Leaving out the
last number makes EDLIN copy the block just once.

The 'm' command, for 'move', works in the same way as 'c'. The difference is
that with 'c' a block is copied, leaving the original where it was, and with
'm' the block is moved.

Also, an 'm' command is always executed just once, so we do not need the
last comma and number. An example:

*,23,7m <RET>

This command will move a block of lines from the active line, up to and in
cluding line 23, to the position of line 7.

6.15: Reading in - T

We can use the command 't' (for 'transfer') to add the contents of another
file to the one we are working on.

Suppose we have a file called NOTES on the disk in drive A, and we want
to insert it into the file we are editing. The place of insertion should be
the current line 16. In that case we must type the following command:

*16ta:notes <RET>
*

The original NOTES file is still on the disk in drive A, but its contents
are now also part of the file we are presently working on.

7: DEVICE DRIVERS

As mentioned on page 13, the actual computer consists of the CPU, the Cen
tral Processing Unit. The CPU comprises a board with electronics inside the
computer cabinet, the so-called mother board, containing a large number of
chips. The most important chip is the microprocessor.

All the other parts of the computer should be considered as extra instru
ments and facilities. Examples are the keyboard that operates as a hatch for
our commands, the screen as a projector, the operating memory or RAM as a
workshop and temporary storage, and the external memory, that is, the hard
disk or the floppy disks on which the results of the operations and instruc
tions can be stored. We have discussed most of these parts in some detail.

Besides these indispensable accessories, the computer is equipped with a
number of other extras. We may think of a printer, a colour screen or a
mouse. In computerese, these extra parts and facilities are known as devi
ces. They have in common that they are either the source or the destination
of the data the CPU is processing. In other words, they are the instruments
for the input of data (keyboard, mouse, clock) or for the output (printer,
screen) or for both (disk drives). That is why they are also known as I/0
devices, in which I/0 stands for Input/Output.

The connector between the various devices and the actual computer usually
consists of a so-called adapter or controller.

An example is the colour/graphics adapter. Normally, it has the form of a
rectangular card full of chips and electronics to be inserted in a specially
designed slot in the mother board. This adapter effects the connection and
the use of a colour screen. Another example is the hard disk controller,
which is also a card to be inserted in a slot in the mother board, and which
controls the connection and use of the hard disk.

In order to activate a device in the way desired, it has to be control
led. For this purpose, the accompanying adapter is provided with a kind of
electronic connector or switch that operates as a remote control. This
remote control works by means of a small program that is known as a device
driver. For instance, if we want to instruct the output channel leading to
the printer to get ready for the transport of text to be printed, the rele
vant device driver has to be activated. Such a device driver may therefore
be considered a kind of miniature operating system.

Without realising it, we have already become acquainted with a number of
device drivers when we discussed the input and output channels of the compu
ter (see page 58). In the first place, the driver of the console which we
can activate by means of the term CON:. Second, the driver of the parallel
channel with the activating terms PRN: and LPTl:. And finally, the driver of
the serial channel with the activating terms AUX: and COMl:. These device
drivers constitute a part of the programming code in the ROM BIOS (see page
25) and are therefore inextricably connected to the computer.

Other types of device drivers have to be loaded individually if they are
to perform their tasks. To do so, we have to give the relevant command
during or after the loading procedure.

As a result, a small amount of extra programming codes will be stored, in
addition to the system, in the computer's operating memory, where it esta
blishes a seamless connection with the loaded part of the operating system.

120 MS-DOS AND PC-DOS - A PRACTICAL GUIDE

7.1: The screen

The most conspicuous part of the computer is the screen. At first sight,
there are just two types. In the first place, the monochrome screen that
displays characters in one colour only. Secondly, the colour screen, which
can display characters in several different colours.

Apart from the fact that a monochrome screen can only display one colour,
there is another disadvantage compared to the colour screen: it can only
display text. In other words, the characters from the ASCII table (see page
68) and the extended character set (see page 75).

The only change we can make is in the maximum number of characters on the
screen. We can choose between a screen of 40 characters by 25 lines, or a
screen of 80 characters by 25 lines. The latter is the default, that is, the
normal configuration. If we want to switch between these two configurations
we have to activate a device driver which is present in the MODE.COM file.

For instance, if we want to switch from 80 x 25 to 40 x 25, we type the
following command, assuming that MODE.COM is present in the root directory
of drive C:

C>mode 40 <RET>

Immediately after we have hit the RETURN key, the characters, if any, disap
pear from the screen, and the prompt appears in the top left-hand comer,
but larger than before:

C>

The characters following it appear on the screen in the same size.

If desired, we use the same MODE command to give the instruction to move the
display a bit to the left (l) or to the right (r), possibly preceded by a
test pattern (t). This may be of importance if the screen does not function
properly or if we use a television set as screen.

For instance, if we want to move the display to the left, plus a test to
see whether everything is in order, we type:

C >me>d.e 1 , t <RET>

As a result, the following test pattern appears on the screen:

01234567890123456789012345678

Then we have to answer this question:

De> ye>~ see the ~ightme>st 9?

If we type a 'y', the prompt appears on the screen again.
On the other hand, if we type an 'n', the display moves again, followed

by the same question. And again we can type an 'n', and so on, until the
display is entirely to our satisfaction.

DEVICE DRIVERS 121

To move the display to the right, we start the procedure as follows:

C >mc::>d.e 40, :r, t <RET>

The result:

01234567890123456789012345678

De> yc::>~ see the 1eftmc::>st 0?

The same applies: if we type a 'y' the prompt appears on the screen, if we
type an 'n' we see the test pattern and the question.

We can cancel the 40 x 25 display by means of a RESET procedure (see page
18), or by the reverse command:

C >mc::>d.e 80 <RET>

Immediately after hitting the RETURN key, the prompt appears in the top
left-hand comer of the screen, but now in the normal size.

Apart from characters, the colour screen can also display graphics. This
term includes all visual effects that cannot be regarded as text, such as
arithmetical figures, drawings, diagrams and all characters that are not in
the ASCII table and the extended character set. In that case, however, the
computer has to be equipped with a colour/graphics adapter (see page 119).

The default, or the normal configuration of the screen, is the so-called
text mode. This means that the same characters can be displayed as on a
monochrome screen (see the previous page) but then colours are added.

If we want to maintain the text mode but leave out the colour, we give
the following command:

C>mode bwBO <RET>

At the same time, we can replace the text mode by the graphics mode. To do
so, we type the following:

C>mode bw40 <RET>

We regain the default configuration by typing:

C>mode coSO <RET>

Ever since the introduction of the IBM PC, all kinds of programs like Lotus
1-2-3 have been put on the market in which both text and graphic effects can
be used. In order to enable users of a computer with a monochrome screen to
use such software, numerous companies, of which Hercules Computer Technology
is very well-known, sell special graphics adapters. They enable a normal,
monochrome screen to display graphics.

If the computer is equipped with either a colour /graphics adapter or a
graphics adapter like the one of Hercules, we have to give the following
MODE command to enable the display of graphics:

C>mode co40 <RET>

122 MS-DOS AND PC-DOS - A PRACTICAL GUIDE

7.2: The printer

When we choose a printer, we are confronted with a large number of types and
makes, such as the dot matrix printer, the daisy-wheel printer, the plotter
and the laser-beam printer. The computer, however, distinguishes only two
types, and it depends on the output channel which type we are dealing with.

If we have chosen a printer that can only be connected to the parallel
channel (see page 59), as is usually the case with a dot matrix printer, we
only have to take care of the right printer cable and the right connection
between the two machines. No further installation is needed.

We may also be dealing with a printer that only wishes to receive data
via a so-called serial channel, for instance a daisy-wheel printer. If we
indeed have that type of printer, we have to make clear to the computer that
the output of data should be run via a serial channel instead of a parallel
channel. Such a serial channel is indicated by the terms AUX: or COMl: or
COM2:, as we saw on page 59.

If we want to install a serial channel, we first have to use the MODE
utility we became acquainted with on the previous pages, before we turn on
the printer, since the MODE utility also contains a device driver for these
types of output channels.

Assuming that the MODE.COM file 1s in the root directory on the hard dlsk
(drive C), we begin by typing the following command:

C>mode com1:96,n,8,l,p <RET>

As a result, we should receive a confirmation like the following on the
screen:

Resident portion of MODE installed
COM1:9600,N,8,1,P

C>

Next, we have to give a second MODE command:

C>mode lptl:=coml <RET>

If the COMl channel is already occupied, for instance by a modem, we type:

C>mode lptl:=com2 <RET>

Note that neither COMl nor COM2 is followed by a colon in these formulas.

The following confirmation should then be the result:

LPTl: redirected to COMl

We have to install a serial channel each time we load the system. It may
therefore be obvious that we store the two MODE commands in a AUTOEXEC.BAT
file. On page 148 we will explain how this is done.

DEVICE DRIVERS 123

If the printer is connected to one of the parallel channels, for instance
PRN: or LPT1:, we do not need the MODE utility, as we saw on the previous
page. If we want, we can use it to change the maximum number of characters
on each line that is sent to the printer.

In the standard setting, the system sends 80 characters per line and 6
lines per inch to the printer. If we use paper with a length of 11 inches,
then each sheet contains 66 lines. These values can again be changed into
132 characters per line and/or 8 lines per inch.

Let's assume that the printer is connected to the LPT1: channel and that we
want to change both values. In that case we have to formulate the MODE
command as follows:

C>mode lptl: 132,8 <RET>

The procedure is confirmed by the following message on the screen:

Resident portion of MODE loaded

LPTl: not redirected

LPTl: set for 132

Printer lines per inch set

We have to bear in mind, however, that this setting is only useful if we
have a printer that can print 132 characters per line.

Should we want to change the number of characters per line, but leave the
number of lines per inch the same, we type:

C>mode lptl: 132 <RET>

The system's confirmation is:

LPTl: not redirected

LPTl: set for 132

If it only concerns the number of lines per inch, the formula will be:

C>mode lptl:,B <RET>

The system will then confirm the procedure like this:

LPTl: not redirected

Printer lines per inch set

C>

Each time we turn on the computer we have to reinstall the printer setting.
Therefore, it is preferable to store such a MODE command in a batch program
(see page 145 and subsequent pages).

124 MS-DOS AND PC-DOS - A PRACTICAL GUIDE

7.3: Remote control - CTTY

A rather mysterious device driver is called CTTY (for Change Teletype). It
is not included in a utility file but in the hidden files of the system (see
page 48). This device driver enables us to have our computer controlled by
another console, provided that we have taken the necessary measures in
advance. Distance does not play any part. The control machine may be in the
same room or on the other side of the world.

Let's assume that the computer is connected to a printer with its own key
board by means of a printer cable. First, we have to open a communication
channel between the two machines. Since it concerns two-way communication,
we have to use a serial channel, for instance the COM2: channel.

To establish the technical details of the communication we type the fol
lowing formula, assuming that the MODE.COM file is in the root directory of
drive C:

C>mode com1:96,n,8,1,p <RET>

The various values and letters we include in this formula depend on the
target and the connection. In this case, since the machines are connected by
a direct cable, we can use the highest baud rate (9600, abbreviated to 96).
This results in the confirmation:

COM1:9600,N,8,l,p

Next, we give a second MODE command, as we did with the installation of a
serial printer channel (see the previous pages), namely:

C>mode lptl:=com2 <RET>

Again, this is confirmed:

LPTl: redirected to COM2

As soon as the connections are in order and the channels open, we can trans
fer control to the printer by means of the following command:

C>ctty com2 <RET>

As a result, the prompt is printed on paper and we can use the keyboard of
the printer to type any command.

If we want to return the control to the computer itself, i.e. to the console
or CON, we type:

ctty con <RET>

As a result, the prompt appears on the screen again.

DEVICE DRIVERS 125

Suppose that the machine we want to transfer control to is another computer.
The procedure to be followed is more complicated, for the communication has
to be carried out via the telephone with a so-called auto-answer modem on
either side that can answer the phone automatically. Thus, one modem has to
be connected to the host computer, and another to the remote machine.

If the connection between these machines is in order, we have to write a
batch program. How to do this will be explained on page 145. We could name
it REMOTE.BAT, for instance, containing the following:

mode com2:12,n,B,l,p
ctty com2

The exact letters and numbers in this formula depend on the type of modem
and the kind of connection. Modems sometimes have a baud rate of 300, but
usually 1200 (12) or 2400 (24).

The next step is to tum on the auto-answer modem in a way that it can ans
wer the telephone on the first ring.

Finally, we run the batch program. If MODE.COM is on the disk in drive C,
the following will appear on the screen:

C>remote

C>mode com2:12,n,B,l,p
COM2:1200,N,8,1,p

C>ctty com2

As soon as the CTTY command appears on the screen, the keyboard is out of
operation, although the cursor continues flickering. The function of the
keyboard is taken over by what we may call the 'receive data' line of the
COM2 channel, and that of the screen by the 'send data' line.

There are two ways to restore the keyboard's control. First, to switch
off the computer and immediately tum it on again. Second, to send a command
via the COM2 channel we have just opened, namely:

ctty con <RET>

C>

Let's take a closer look at the remote control computer. In order to enable
it to take control, we have to open a compatible communications channel,
establish the same technical details and then install the modem.

Then we call the first computer, i.e. the host. The modem picks up the
line and makes the actual connection. If all goes well, the prompt will
appear on the screen of the remote control computer. From that moment, we
can type any command on the keyboard.

There are two ways to put an end to the remote control. If we simply hang up
the telephone, the same thing happens to the host's modem on the other side.
In this case we can start the procedure again if we want to.

On the other hand, if we give a CTTY CON command, the program is ended,
resulting in the fact that the host cannot be reached via the modem anymore.

DEVICE DRIVERS 126

7.4: The CONFIG.SYS file

During the loading procedure the operating system searches the directory of
the system disk in drive A or the root directory of the hard disk for the
presence of a file named CONFIG.SYS (a combination of the terms System and
Configuration). It serves to store the so-called installable device drivers
that are connected to the system during the loading procedure.

For instance, suppose we want to provide the computer with a clock and
calendar card so that we do not have to enter the date and time ourselves. A
utility to connect the device driver to the operating system is usually sup
plied together with such a card.

Assuming that the name of the extra utility is CLOCK.SYS and is present
on the system disk or on the hard disk, we create a CONFIG.SYS file by means
of the EDLIN method (see the previous chapter) or the COPY.CON: method
(see page 50). We include the following contents in the file:

device=clock.sys

We include both the CONFIG.SYS file and the CLOCK.SYS file in the system
disk or, if the computer has a hard disk, in the root directory of drive C.

If we now reload the system, the code will be added to the system in the
CLOCK.SYS file driver. With some drivers (though not with all) we receive a
confirmation like:

CLOCK.SYS installed

Anyhow, the clock and calendar card from this example are installed without
a problem. From now on, we always see the right date and time when we are
loading the system, so that we do not have to enter them ourselves.

We may also include some changes to the standard configuration of the system
itself in a CONFIG.SYS file.

An example is the number of files allowed to be concurrently open at the
same time. In the default setting, the system only permits the use of eight
permanent or temporary files at the same time. Five of them are already
reserved for various functions of the system itself, which leaves only three
more files for other tasks. This may be sufficient for relatively simple
programs, but this is not the case for most professional software. Software
like dBASE III, for instance, needs an absolute minimum of 20 concurrently
open files.

Therefore, we have to instruct the system to accept a larger amount, with
a maximum of 20 for versions of the system prior to 3.30, and a maximum of
255 for versions 3.30, 3.31 and later. To do so, we have to add a FILES=
instruction to the CONFIG.SYS file, for instance FILES=20. Assuming that we
want to maintain the CLOCK.SYS instructions we have just included, we put
the following lines in the file:

device=clock.sys
files=20

DEVICE DRIVERS 127

We may also add a specification of the number of buffers to a CONFIG.SYS
file. In the default setting, the operating system reserves two buffers in
the computer's memory, each of 528 bytes. Data and program fragments we
might need again will be stored in these buffers by means of an ingenious
procedure. If we work with a program in which data is often transferred from
and to a floppy disk or hard disk, an increased number of buffers will speed
up work considerably.

The number of buffers allowed amounts to a minimum of 2 and a maximum of
99. A series of experiments, however, has shown that 15 buffers usually is
the right amount, and that the system hardly performs any better with a
greater amount. To give the CONFIG.SYS file the instruction to reserve 15
buffers, we type the following:

buffers=15

We can add the instruction to an already existing CONFIG.SYS file as well.
For instance:

device=clock.sys
files=20
buffers=15

The order of the various instructions is not important.

Another instruction we can safely add to the CONFIG.SYS file is the expan
sion of the number of reserved letters for disk drives. On page 91 we have
already seen that the default, or normal, configuration has a maximum of
five drives, with the letters A to E.

Should we want to increase this maximum to eight, that is, up to and
including H, we must add the the following contents to a CONFIG.SYS file:

lastdrive=h

In this case, too, we may add the instruction to the CONFIG.SYS file:

device=clock.sys
files=20
buffers=15
lastdrive=h

And finally, we can control the ·c and ·<BREAK> instructions in a CONFIG.SYS
file. In the default, or normal setting, the computer every now and then
(i.e. after a short period of time) checks if we have given such an instruc
tion. However, in some cases it may be too late; it would have been better
if the computer had responded to the instruction immediately.

We can instruct the computer to respond to a ·c or ·<BREAK> instruction
immediately by adding the following command to the CONFIG.SYS file:

break=on

To cancel this instruction at a later stage, we need not alter or erase the
CONFIG.SYS file and reload the system. The following command will suffice:

C>break off <RET>

128 MS-DOS AND PC-DOS - A PRACTICAL GUIDE

7.5: Installing a RAM disk

One of the most important additions to the 3-versions of the system is the
special RAMDISK or VDISK (for Virtual Disk) device driver. It enables to
install a RAM disk (or electronic disk, or virtual disk). Such a virtual
disk drive consists of a part of the computer's operating memory, or RAM,
that emulates a normal disk drive, only much faster.

In order to install a RAM disk or virtual disk, we create a CONFIG.SYS
file by means of EDLIN (see the previous chapter) or the COPY CON: proce
dure (see page 50) using the following instruction:

device=vdisk.sys

We may add the instruction to the contents of an already existing CONFIG.SYS
file as well. For instance:

device=clock.sys
files=20
buffers=l5
lastdrive=h
break=on
device=vdisk.sys

Anyhow, if we reload the system, assuming that the VDISK.SYS file is on
the system disk in drive A or in the root directory of drive c, the instruc
tion results in the installation of a RAM disk with a storage capacity of 64
Kb, as the confirmation shows:

VDISK Version 3.3 virtual disk D:
Buffer size: 64 KB
Sector size: 128
Directory entries: 64

Note that the virtual disk in this example has been assigned the letter D.
If the computer is not equipped with a hard disk (which is automatically

named drive C) but with two floppy disk drives, the indication of the vir
tual disk will consist of the first letter that is available, hence the C.

As soon as the loading procedure is finished, we can use the RAM disk as
a normal disk drive. A formatting procedure is not needed. Assuming that the
virtual disk drive has been assigned the letter D, a CHKDSK command will
result in the following information:

Volume VDISK V3.3 created Dec 6, 1984 12:00p

62592 bytes total disk space
0 bytes in 1 hidden files

62592 bytes available on disk

655360 bytes total memory
551184 bytes free

DEVICE DRIVERS 129

If we want to install a RAM disk with a different size, we simply add the
desired size (in kilobytes) to the instruction. So, for a RAM disk with a
storage capacity of 400 Kb we type:

device=vdisk.sys 400

After loading the system, we see the following confirmation on the screen:

VDISK Version 3.3
Buffer size:
Sector size:

virtual disk D:
400 KB
128

Directory entries: 64

It is possible to install two or more RAM disks. All we have to do is put
the necessary number of DEVICE=VDISK.SYS commands in the CONFIG.SYS file.

We may also alter the size of the sectors of any of these virtual disks.
The default value is 128 bytes; the alternatives are 256 and 512.

Moreover, we may alter the capacity of the directory of the virtual disks
(normally 64 files) to any number between 2 and 512.

Now suppose we want to install two virtual disks: one with a storage
capacity of 400 Kb, a sector size of 512 bytes and a maximum of 128 directo
ry entries, and the other with a size of 220 Kb and for the rest the default
values. To accomplish this, we have to include the following commands in the
CONFIG.SYS file:

device=vdisk.sys 400 512 128
device=vdisk.sys 220

After reloading the system, we will see messages like the following on the
screen, assuming that the size of the operating memory is 640 Kb:

VDISK Version 3.3 virtual disk D:
Buffer size: 400 KB
Sector size: 512
Directory entries: 128

VDISK Version 3.3 virtual disk E:
Buffer size adjusted
Sector size adjusted
Directory entries adjusted
Buffer size: 143 KB
Sector size: 128
Directory entries: 64

Note that the 'buffer size' of virtual disk drive E has been 'adjusted' to
143 Kb instead of the 220 Kb wanted. That is because the VDISK program
always leaves a minimum of 64 Kb of operating memory.

If the computer is equipped with an extended or expanded memory, we cannot
use the part of the capacity over 640 Kb for our normal operations. However,
we can install a virtual disk in it. To do so, we have to use the parameter
Je (for extended memory). A correct formula would be, for instance:

device=vdisk.sys 400 128 256/e

130 MS-DOS AND PC-DOS - A PRACTICAL GUIDE

7.6: Entering and changing date and time (2)

The version of PC-DOS or MS-DOS what we are working with is in most cases
designed for use in Europe. If it is, then we can adjust the lay-out of the
keyboard, and in particular the date and time notations, to non-American
conventions and customs. For this purpose, a device driver is available that
we can store in a CONFIG.SYS file by means of an instruction, just like we
did with the examples on the previous pages.

To effect such adjustments, we can follow two routes. The first consists
of creating a CONFIG.SYS file including a COUNTRY instruction, followed by a
code number indicating the convention we want. We may choose a number from
the following list:

country: code: country: code:
United States 001 Great Britain 044

Denmark 045
The Netherlands . . 031 Sweden 046
Belgium 032 Norway 047
France 033 Germany 049
Spain 034 Australia 061
Italy 039 Finland 358
Switzerland 041 Israel 972

Suppose we want to adopt the German system. In that case we create a CONFIG.
SYS file including, in any case, the following command:

country=049

If we now reload the system, the device driver is taken up in the computer's
operating memory and connected to the system.

The result is that the division sign in the date display is a full stop
instead of a hyphen, and that, on entering the date, the system will stick
to the order used in Germany (day-month-year):

Current date is Tue 1.01.1980
Enter new date (dd-mm-yy):

In the display and registration of the time, the original division sign, the
colon, is replaced by the full stop, and the full stop by a comma. Thus:

Current time is 0.00.37,18
Enter new time:

A DIR instruction reveals that the date and time notations in the directory
are organised accordingly. In addition, the time registration follows the
continental 24-hour-system instead of the American 12-hour-system.

By simply replacing COUNTRY=049 by COUNTRY=044 in the CONFIG.SYS file,
we can adopt the British convention. This will result in the following:

DEVICE DRIVERS

Current date is Tue 1-01-1980
Enter new date (dd-mm-yy):

Current time is 0:00:41.26
Enter new time:

131

In a similar way, we can adopt the Belgian, French, Spanish or Italian nota
tion, each resulting in the following:

Current date is Tue 1/01/1980
Enter new date (dd-mm-yy):

Current time is 0:00:39,22
Enter new time:

If we take the Swiss option, we will see:

Current date is Tue 1.01.1980
Enter new date (dd-mm-yy):

Current time is 0.00.40.24
Enter new time:

The results of the Dutch and Finnish notation are:

The Danish:

The Swedish:

Current date is Tue 1-01-1980
Enter new date (dd-mm-yy):

Current time is 0:00:38,20
Enter new time:

Current date is Tue 1/01/1980
Enter new date (dd-mm-yy):

Current time is 0.00.42,28
Enter new time:

Current date is Tue 1980-01-01
Enter new date (yy-mm-dd):

Current time is 0.00.43,30
Enter new time:

And the Israeli notation:

Current date is Tue 1/01/1980
Enter new date (dd-mm-yy):

Current time is 0:00:44.32
Enter new time:

132 MS-DOS AND PC-DOS - A PRACTICAL GUIDE

7.7: The keyboard (3)

To show programmers how a device driver can be connected to the system by
means of a CONFIG.SYS file, IBM and Microsoft supplied PC-DOS and MS-DOS
with an example named ANSI.SYS.

This device driver is an alternative for the normal console driver (see
page 119) taken up in the ROM BIOS, and contains codes corresponding with
the codes of the American National Standards Institute ANSI - hence the
name. As soon as we adopt ANSI.SYS, the normal console driver will automati
cally be out of operation. The result is that we can install both devices in
the way we please.

In order to install the device driver, we follow the same procedure as we
did before. We create a CONFIG.SYS file and include the following command:

device=ansi.sys

If the system disk already contains a CONFIG.SYS file, we simply add the
above instruction by means of EDLIN or the COPY CON: procedure:

device=clock.sys
files=20
buffers=15
lastdrive=h
break=on
device=vdisk.sys 400
country=031
device=ansi.sys

As mentioned before, the order of the commands is of no importance.
If we load the system again, ANSI.SYS, assuming that it is on the system

disk in drive A or in the root directory of the hard disk, takes over con
trol of the keyboard and the screen. Then we are, for instance, capable of
giving function keys a different meaning.

To do so, we have to follow the same procedure as when we operate the
printer by means of BASIC commands, as we will see on page 155 and further:
a combination of passing on certain codes that indicate their meanings, an
ESC symbol for instance.

At first sight, we seem to be confronted with the problem that we cannot
pass on an ESC symbol just llke that, because pressing the ESC key results
in a command being ignored instead of carried out. Now the PROMPT command,
which we will discuss on page 152 in greater detail, turns out to be very
useful, since we can pass on an ESC code by means of the '$' key and 'e'
key. The instruction to give a key a different meaning is the following:

ESC XX "yyy" p

First, we have to pass on the ESC symbol, then the [sign, then the decimal
ASCII value of the character chosen instead of xx, next a semicolon and,
between inverted commas, the character or string in question instead of yyy,
and finally a 'p' (for permanent).

DEVICE DRIVERS 133

Let's, by way of experiment, convert the small 'a' into a small 'b'. The
decimal ASCI I value of a is 97, as the table on page 68 shows. Thus:

C>prompt $e[97;"b"p <RET>

The screen stays empty. No wonder - we have just replaced the actual prompt
by the formula we have just typed. We first have to set this straight:

prompt <RET>

If we now strike the 'a' key, a 'b' should appear on the screen.
We can restore the original setting, in other words, get an 'a' after

striking the 'a' key, in two ways. First, by starting a RESET procedure, and
second, by using the following command, which restores the original situa
tion:

C>prompt $e[97;97p <RET>

Note that we could not just have typed the 'a' in this formula - we have
just replaced it by a 'b'. So we have to describe the 'a' by means of the
decimal ASCII value. We then type:

prompt <RET>

Now everything is back to normal: the prompt reappears and an 'a' is an 'a'.

We can create extra possibilities by giving a combination of keys a specific
meaning, for instance the CTRL key or the AL T key with the function keys, or
the AL T key with a number of ordinary letter keys.

To do so, we have to use the code list included in ANSI.SYS:

key(s): code: key(s): code: key(s): code: key(s): code:

HOME 71 SHIFT+F1 84 CTRL+F1 94 ALT+F1 104
PG UP 73 SHIFT+F2 85 CTRL+F2 95 ALT+F2 105
END 79 SHIFT+F3 86 CTRL+F3 96 ALT+F3 106
PG DN 81 SHIFT+F4 87 CTRL+F4 97 ALT+F4 107
CTRL+HOME 119 SHIFT+F5 88 CTRL+F5 98 ALT+F5 108

SHIFT+F6 89 CTRL+F6 99 ALT+F6 109
F7 65 SHIFT+F7 90 CTRL+F7 100 ALT+F7 110
F8 66 SHIFT+F8 91 CTRL+F8 .. 101 ALT+F8 111
F9 67 SHIFT+F9 92 CTRL+F9 .. 102 ALT+F9 112
FO 68 SHIFT+FO 93 CTRL+FO ••• 103 ALT+FO 113

ALT+1 120 ALT+Q 16 ALT+A 30 ALT+Z 44
ALT+2 121 ALT+W 17 ALT+S 31 ALT+X 45
ALT+3 122 ALT+E 18 ALT+D 32 ALT+C 46
ALT+4 123 ALT+R 19 ALT+F 33 ALT+V 47
ALT+5 124 ALT+T 20 ALT+G 34 ALT+B 48
ALT+6 125 ALT+Y 21 ALT+H 35 ALT+N 49
ALT+7 126 ALT+U 22 ALT+J 36 ALT+M 50
ALT+8 127 ALT+I 23 ALT+K 37
ALT+9 128 ALT+O 24 ALT+L 38 INS 82
ALT+O 129 ALT+P 25 DEL 83

134 MS-DOS AND PC-DOS - A PRACTICAL GUIDE

It is of course not practical to play around with keys that we have to use
very frequently. It is more logical to give the function keys which have no
specific task in the system (F7, FS, F9, FlO) a meaning, or to change the
significance of the keys we hardly ever use.

If we want to use one of the codes from the survey, it always has to be
preceded by a zero and a semi-colon in the command. For instance, if we want
to give the FS key (code number 66) the meaning 'chkdsk b:', we type the
following formula:

C>prompt $e[0;66;"chkdsk b:"p <RET>

prompt <RET>

C>

If we then hit the FS key, we see on the screen:

C>chkdsk b:

If we also add a semi-colon and the decimal ASCII code for the carriage
return function (13) to the formula, we need not press the RETURN key after
the command has been displayed. This code should, however, precede the 'p':

C>prompt $e[0;66;"chkdsk b:";l3p <RET>

prompt <RET>

C>

When we strike the FS key, not only the text appears on the screen - the
command is immediately carried out as well.

If we want to cancel this instruction again, we type:

C>prompt $e[0;66;0;66p <RET>

prompt <RET>

C>

We may assign as many characters to each key as we want, as long as the
total does not take more than 190 bytes, including spaces. If we exceed this
number, the space they take up in RAM would spill over into the space needed
for other things. In that case we will see the following error message:

Out of environment space

To have the keys with an altered meaning permanently at our disposal, it is
advisable to store the formulas for these commands in a AUTOEXEC.BAT file or
in a special batch program. We will return to this in the next chapter.

When the PS/2 version was introduced, all IBM computers, closely followed by
all compatibles, were equipped with two extra function keys: Fll and Fl2.
Not all software on the market takes these keys into consideration.

DEVICE DRIVERS 135

7.8: The screen dump

As we have already seen on page 16, the keyboard provides a special key
marked PRT SC (for Print Screen). Pressing this key together with one of the
SHIFT keys results in the printer producing a copy of the characters at that
moment on the screen, the so-called screen dump - provided, of course, that
the printer is connected to the computer and turned on.

As long as the screen displays only real ASCII signs, this will not cause
any problem. But if it also contains extended characters (see page 75), such
as lines, rasters or technical symbols, the printer will disappoint us. The
special characters will usually be replaced by ordinary numbers and letters,
ruining a beautiful framework, or a scientific formula.

In some cases a device driver which may be included in the files of the
operating system under the name GRAPHICS.COM can be a solution. We activate
it as follows, assuming that the file is to be found in the root directory:

C>graphics <RET>

There is no confirmation whatsoever, but something extra has been stored in
the computer's memory, i.e. a table with the extended characters meant for
the output of data through one of the printer channels.

The instruction only has effect if the printer is able actually to print
such characters after having received the command to do so. This only
applies to printers that accurately abide by the specifications of IBM, such
as the IBM Graphics Printer, and the IBM Proprinter.

With the introduction of the 3-versions of PC-DOS, the device driver
recognises a number of other types of IBM printers. In that case we have to
extend the GRAPHICS command with an addition, depending on the type of prin
ter used, namely:

COLOR! - IBM Personal Computer Color Printer with black ribbon;
COLOR4 - same with RGB (red, green, blue, black) ribbon;
COLORS - same with CMY (cyan, magenta, yellow, black) ribbon;
COMPACT- IBM Personal Computer Compact Printer.

For instance, if we want the IBM Color Printer with a black ribbon to print
a screen displaying extended characters, we type the following formula:

C>graphics colorl <RET>

With printers that just cannot print these extended characters, such as most
daisy-wheel and laser-beam printers, the result remains the same as before.

We may add the parameter /r (for reverse) to the command. For instance:

C>graphics colorl/r <RET>

In that case, everything that is dark or black on the screen will be printed
in black and light will be printed in white. Any colours, solid surfaces or
rasters are printed in a corresponding shade of grey.

136 MS-DOS AND PC-DOS - A PRACTICAL GUIDE

7.9: Concurrent printing - PRINT

With the PRINT command we can instruct the computer to send a number of
files (up to ten) to the printer, while remaining able to carry out other
commands.

For instance, suppose the disk in drive A contains three text files
(TEXT.!, TEXT.2 and TEXT.3) and that we want to have them all printed. Assu
ming that the PRINT.COM file is in the root directory of drive C, we type
the following command:

C>print a:text.l a:text.2 a:text.3 <RET>

Since wildcard symbols (see page 31) are allowed in a PRINT command, we can
abbreviate the command as follows:

C>print a:text.?/p <RET>

The system's first reaction is to ask which device we wish to use:

Name of list device [PRN]:

The default setting is the PRN: channel (see page 59). If this is the one we
want to use, we only have to strike the RETURN key.

If we have already redirected output to a serial channel using the MODE
command (see page 122), this setting will remain intact.

If we want to use another channel, however, we should type it in.

We may receive the following error message:

List output is not assigned to a device

Apparently, we have forgotten to tum on the printer, or we have made a mis
take in typing the channel required. In any case, the procedure is halted.

Apart from the above error message, we can expect another one, namely:

Errors on list device indicate that it may be
off-line. Please check

Now we have to opportunity to check the printer's ON LINE-light. If it is
off, we have to press the ON LINE-button.

As soon as everything appears to be in order, we see a confirming message
such as:

Resident part of PRINT installed

A:TEXT.l is currently being printed
A:TEXT.2 is in queue
A:TEXT.3 is in queue

DEVICE DRIVERS 137

The printer will start operating immediately, while the prompt on the screen
indicates that the system can be instructed to carry out another command. In
other words, we have the opportunity to do something else in the mean time.

If the PRINT command is not entirely completed, we may add one or more files
to the queue. For instance:

C>print a:text.4/p a:text.5/p <RET>

Note that we added the parameter /p (for print) to each filename.

As a result, the same list shown on the previous page returns to the screen,
including the file(s) we have just added with the last command.

If we want to remove one or more files from the list, we give a PRINT com
mand followed by the paremeter /c (for cancel) after each file we want re
moved. For instance:

C>print a:text.2/c a:text.3/c <RET>

Once again we see the list, this time without the files we have just cancel
led.

If we cancel a file while it is being printed, the following message will
appear on the paper:

File cancelled by operator

If we want to see how the PRINT procedure is progressing, we give the basic
command, that is, without any additions. Thus:

C>print <RET>

The system's answer may be:

A:TEXT.l is currently being printed
A:TEXT.4 is in queue
A:TEXT.5 is in queue

If a file cannot be found during a PRINT procedure, it will be removed from
the list.

If we want to end the printing procedure, we have to issue a PRINT command
with the parameter /t (for terminate):

C>print/t <RET>

As a result, the following message is printed:

All files cancelled by operator

On the screen we see:

Print queue is empty

8: STREAMLINING THE SYSTEM

Since the main task of a computer is to speed up time-consuming operations
and to computerise ever-recurrent procedures, we may expect the operating
system to be at our service. And indeed, it is. It provides various gadgets
and devices to carry out all kinds of daily routine jobs in a fixed order
without a problem. This chapter deals with some of these routine actions.

First, we will become acquainted with the computer term I/0 Redirection. In
other words, redirecting input and output. In fact, we have come across this
before. On page 58 we saw various methods we can use to transfer files by
means of COPY commands. On page 122 we saw how to install a serial channel
by means of MODE commands, and how data is rerouted in this procedure.

The difference with these procedures is, however, that we now will see
how we can procure such a redirection by just including a single character
in a command, and how easily these commands can be carried out.

In addition, we will learn the meaning of a pipeline and how to create
one - also by means of a single character.

Subsequently, we will become acquainted with the term 'filter'. This is
an instruction for us to make a selection from an amount of data or to put
such data in alphabetical or numeral order.

However, this is not entirely new to us either. On page 31 we learned how
to work with wildcard symbols; actually, this was our first contact with a
filter. Furthermore, we became acquainted with the MORE command on page 54.
Although this command does not seem to be a filter, it does work as such. On
the other hand, the filter function of the FIND procedure we saw on page 73
has been clear from the start.

This chapter will also deal with another filter command, namely SORT. As
the name suggests, we can use it to put the (system-readable) contents of a
text file in alphabetical or numeral order.

This whole structure of redirecting input and output, constructing pipe
lines and using filters will only fully develop if we combine the various
elements. This chapter will provide us with an example of this: cataloguing
a large numer of floppy disks.

Once we have become more familiar with the system and we have begun to
develop a certain routine in our operations, we will be able to find nume
rous other possibilities to use this facility.

In this chapter we will extensively discuss the so-called batch program in
general and the AUTOEXEC.BAT program in particular. This type of program
enables us to have a number of ever-recurrent instructions carried out auto
matically. A nice touch is that we can compose, formulate and activate such
a program relatively easily ourselves.

In fact, we take our first unsteady steps in the field of a programmer,
for although the title of this chapter is rather innocent, it deals with the
computerisation of our work - which just means programming.

To conclude the chapter, we return to the prompt command we already saw on
page 133. It turns out to be able to fulfil an independent function which,
as the name suggests, has a certain link with the system prompt.

140 MS-DOS AND PC-DOS - A PRACTICAL GUIDE

8.1: Redirecting input and output

Redirecting input and output is quite normal in operating systems of the big
('mainframe') computers. In the system of a PC, however, it is not so nor
mal, but the way it works is fairly simple.

To redirect input and output means that we have to indicate from where
the system has to obtain certain information it has to process and where it
has to send it to. We already saw an example of this on page 54 when we dis
cussed the MORE command, namely:

C>more <a:notes <RET>

In fact, the instruction in this formula is: look for the NOTES file on the
disk in drive A, consider it the source and reproduce the contents in sec
tions of 23 lines on the screen. The < sign plays an important role in this
formula: it marks the direction in which the data has to be transferred.

A second example is:

C>type a:notes >prn: <RET>

This command means: look for the contents of the NOTES file on the disk in
drive A to be reproduced but do not send the result to the screen, as is
usual in a TYPE procedure, but send it to the printer. So the > sign marks
the direction of the transfer and the term PRN: marks the destination.

If the printer is properly connected to the computer and turned on, the
contents of the NOTES file will now be printed on paper.

The available redirecting symbols and their meanings are:

> - to the following destination;
»- addition to the following file;
< - from the following source.

Let's take another experiment. Normally, a CHKDSK command provides us with a
survey of the storage capacity on a floppy disk or hard disk. In this exam
ple, however, we add a > sign to the command, followed by a file name, for
instance CHKDSK. TXT and the letter of a drive, such as an A. Thus:

C>chkdsk >a:chkdsk.txt <RET>

There is no confirmation that the instruction has been carried out. Only the
prompt appears on the screen again. If we call up the directory of the disk
in drive A, however, a file named CHKDSK.TXT turns out to be included. Using
a TYPE instruction, we can ascertain that the contents consist of the CHKDSK
information that would otherwise have been displayed on the screen.

In a similar way we can store the directory of a disk in drive A in a file
named DIR.TXT, for instance. Thus:

C>dir a: >dir.txt <RET>

STREAMLINING THE SYSTEM 141

In this case, too, there is no confirmation, and again, a TYPE command shows
that the data has indeed been included in the file stated:

C>type dir.txt <RET>

Volume in drive A has no label
Directory of A:\

NOTES 131 17-12-88 10:17
CHKDSK TXT 307 29-12-88 16:34

2 File(s) 360448 bytes free

Next, we replace the disk in drive A by another and repeat the command, but
this time we add the > > sign instead of the > sign to the formula. Thus:

C>dir a: >>dir.txt <RET>

If we again check the contents of the DIR. TXT file, the data of the second
disk turns out to have just been added to the first one:

C>type dir.txt <RET>

Volume in drive A has no label
Directory of A:\

NOTES 131 17-12-88 10:17
CHKDSK TXT 307 29-12-88 16:34

2 File(s) 360448 bytes free

Volume in drive A is 10605511100
Directory of A:\

DBASE SER 18432 29-07-86
DBASE EXE 133632 4-11-86
SIGNON COM 2752 29-07-86
INITDB BAT 2 29-07-86
CONFIG DB 27 29-07-86
CONFIG SYS 22 29-07-86
CONFI256 DB 97 29-07-86
CONFI256 SYS 128 29-07-86
DBASEINL OVL 27648 29-07-86
DBASE MSG 12420 4-11-86
INSTALL BAT 4608 29-07-86
UNINSTAL BAT 2816 29-07-86
README TXT 845 29-07-86
YN EXE 872 29-07-86
ID EXE 16624 29-07-86
HELP DBS 68608 29-07-86

12:00
11:47
12:00
12:00
12:00
12:00
12:00
12:00
12:00
11:47
12:00
12:00
12:00
12:00
12:00
12:00

16 File(s) 25600 bytes free

C>

In this way, we could add the directory of an almost unlimited number of
disks to the DIR. TXT file. The next page will show the use of this.

142 MS-DOS AND PC-DOS - A PRACTICAL GUIDE

8.2: Sorting - SORT

We may use the SORT utility if we want the contents of a text file sorted in
a certain order.

However, not every file can be tackled with this tool. Its contents must
contain so-called standard input or standard output. This means that the
contents must have been created by a system utility, such as EDLIN. In other
words, it has to consist of reproducible characters from the ASCII table and
the extended character set.

Let's, by way of experiment, try to put the contents of the DIR.TXT file we
have just created in alphabetical order. To do so, we type the following,
assuming that the SORT.EXE file is in the root directory of drive C:

C>sort <dir.txt <RET>

Next, this should result in the following message on the screen:

2 File(s) 360448 bytes free
16 File(s) 25600 bytes free

Directory of A:\
Directory of A:\
Volume in drive A is 10605511100
Volume in drive A has no label

CHKDSK TXT 307 12-29-88 16:34
CONFI256 DB 97 29-07-86 12:00
CONFI256 SYS 128 29-07-86 12:00
CONFIG DB 27 29-07-86 12:00
CONFIG SYS 22 29-07-86 12:00
DBASE EXE 133632 4-11-86 11:47
DBASE MSG 12420 4-11-86 11:47
DBASE SER 18432 29-07-86 12:00
DBASEINL OVL 27648 29-07-86 12:00
HELP DBS 68608 29-07-86 12:00
ID EXE 16624 29-07-86 12:00
INITDB BAT 2 29-07-86 12:00
INSTALL BAT 4608 29-07-86 12:00
NOTES 131 12-17-87 10:17
README TXT 845 29-07-86 12:00
SIGNON COM 2752 29-07-86 12:00
UNINSTAL BAT 2816 29-07-86 12:00
YN EXE 872 29-07-86 12:00

Note that the lines beginning with a space have been moved to the top.
The reason is that the space (the SP symbol) in the ASCII table (see page

68) has a lower value than the letter A.

Suppose we do not only want to take a look at the result of a SORT proce
dure, but also store it in a file named ALPHABET, for instance, we have to
add a second redirecting symbol to the formula as follows:

STREAMLINING THE SYSTEM 143

C>sort <dir.txt >alphabet <RET>

In order to specify a SORT command in greater detail, we may add one or more
parameters, for instance /r, for reverse. This results in the lines being
arranged in a reverse alphabetical order. Thus:

C>sort <dir.txt/r <RET>

To store this data in a file named ALPHABET2, for instance, we type:

C>sort <dir.txt >alphabet2/r <RET>

A second parameter we can add is /+, followed by a specific number. As a
result, the directory is not sorted on the first letter of the line, but on
the letter in the column indicated by the number.

Suppose we want to sort the file names in byte size order, instead of
alphabetical order. A quick count shows that the file size statements start
on the thirteenth column. Therefore, we should type the following formula:

C>sort/+13 <dir.txt <RET>

INITDB BAT 2 29-07-86 12:00
CONFIG SYS 22 29-07-86 12:00
CONFIG DB 27 29-07-86 12:00
CONFI256 DB 97 29-07-86 12:00
CONFI256 SYS 128 29-07-86 12:00
NOTES 131 17-12-88 10:17
CHKDSK TXT 307 29-12-88 16:34
README TXT 845 29-07-86 12:00
YN EXE 872 29-07-86 12:00
SIGNON COM 2752 29-07-86 12:00
UNINSTAL BAT 2816 29-07-86 12:00
INSTALL BAT 4608 29-07-86 12:00
DBASE MSG 12420 4-11-86 11:47
ID EXE 16624 29-07-86 12:00
DBASE SER 18432 29-07-86 12:00
DBASEINL OVL 27648 29-07-86 12:00
HELP DBS 68608 29-07-86 12:00
DBASE EXE 133632 4-11-86 11:47
Directory of A:\
Directory of A:\

16 File(s) 25600 bytes free
2 file(s) 360448 bytes free

Volume in drive A has no label
Volume in drive A is 10605511100

Again we can store this data in a file if we like. Consequently, we have
become acquainted with the procedure to have the system sort the names of
the files on a number of disks in the order of alphabet, size, date or time.

During a SORT procedure two temporary files are created, in which the actual
sorting takes place. Afterwards they are automatically deleted. We have to
make sure that there is enough space on our floppy disk or hard disk contai
ning the SORT.EXE file to store these two temporary files.

144 MS-DOS AND PC-DOS - A PRACTICAL GUIDE

8.3: The pipeline

On the previous pages we met a number of filter procedures and the redirec
ting symbols >, > > and <. If we add the I sign as well, we have all the
instruments at our disposal to make constructions that are known as 'pipes'.

Let's once again face the problem of how to catalogue a number of disks.
We have seen that we need various commands, namely:

C>dir a: >dir.txt <RET>

C>dir a: >>dir.txt <RET>

C>dir a: >>dir.txt <RET>

And so on, until we have catalogued all disks. Then we type for instance:

C>sort/+13 <dir.txt >fi1es.txt <RET>

Finally, the sorted data will be stored in the file named FILES.TXT.

By means of the I sign, we can pass on the data directly so that we need not
create the DIR. TXT file. In that case the command should be:

C>dir b:lsort >>fi1es.txt <RET>

Note the function of the I sign in the command: it fences off the preceding
command, announces the next one and passes on the collected data. This con
stitutes a pipeline.

Once the procedure is finished, we replace the disk in drive A by another
and strike the F3 key (see page 22). As a result, the command reappears on
the screen and is executed when we strike the RETURN key. We repeat this
procedure until we have tackled all the disks we want to have catalogued.

Our second step is to filter the file. We remove the lines containing the
word 'File(s)' from the FILES.TXT file and store the result in a definitive
file named CONTENTS. To do so, we use the FIND command (see page 73) as
follows:

C>find/v 'Fi1e(s)' fi1es.txt >contents <RET>

Finally, we check the result by means of a TYPE or MORE command:

C>more <contents <RET>

Thanks to the possibilities offered by a pipeline procedure, we can combine
the first and second step as follows:

C>dir a:lsortlfind/v 'Fi1e(s)' >>contents <RET>

This command can also be repeated for each disk in drive A by means of the
simple combination of the <F3> and <RETURN> keys.

STREAMLINING THE SYSTEM 145

8.4: The batch program

There is a chance that, in due course, we repeatedly have to formulate and
pass on the same commands to carry out certain procedures. In order to avoid
typing them again and again and to avoid the risk of making typing errors,
we can make use of the fact that the system is capable of storing a number
of commands and executing them automatically. To achieve this, we have to
include these commands in a so-called batch program on the system disk. The
system sees to it that the commands are being executed one by one in the
required order.

For instance, let's assume we have connected a printer to a serial chan
nel, such as the COMl: channel. In that case, we have to type two MODE com
mands very accurately each time we want to use the printer, as we have
already seen on page 122. In this case it seems sensible to include these
two commands in a batch program, which we may call PRINTER.BAT.

To create this file we can either use EDLIN (see page 95) or the COPY
CON: procedure (see page 50). In any case, assuming that the MODE.COM file
is in the root diretory of the hard disk, the contents should be:

mode com1:96,n,B,l,p
mode lptl:=coml

Once the file has been stored we can put it into effect at any time. Assu
ming that it is in the root directory of the hard disk, we then type:

C>printer <RET>

We do not need to type the extension, just like when we invoke .COM and .EXE
files. The text of the commands appears on the screen, directly followed by
the results, as if we had typed and passed on the commands one by one:

C>mode com1:96,n,B,l,p

COM1:9600,N,8,1,P

C>mode lptl:=coml

LPTl: redirected to COMl

As soon as all the commands in the batch program have been carried out, the
prompt reappears on the screen, after which we can take up our work again.

If we want to break off the procedure for any reason, we have to resort to a
·c or ·<BREAK> instruction. On the screen we see:

Terminate batch job (Y/N)?

If we type a 'y', the program will be terminated definitively, after which
the prompt reappears on the screen. However, if we type an 'n', the program
will continue where it left off and carry out the procedure.

146 MS-DOS AND PC-DOS - A PRACTICAL GUIDE

Suppose we are used to correcting and supplementing our NOTES file regularly
and that we want to view it and possibly print it once a day.

In that case it seems sensible that we create a batch program which we
may name MEMO.BAT. The contents must be the following:

more <a:notes
copy a:notes prn:

We may precede it by the commands from our PRINTER.BAT file so that we only
need one batch program. Thus:

mode com1:96,n,8,1,p
mode 1pt1:=com1
more <a:notes
copy a:notes prn:

As soon as this batch program has been stored, we only have to type MEMO in
order to have it operated. First we see how the MODE commands are being
carried out, and next the MORE command appears on the screen:

C>more <a:notes <RET>

This is followed by the first 23 lines of the NOTES files, and so on.
Then the COPY command is displayed, after which the contents of the file

are sent to the printer vla the PRN: channel (see page 59). If the file has
been printed, we see:

1 File(s) copied

8.5: Comments and interruptions

A drawback of the above example is that we receive an error message in those
cases where we have forgotten to insert the disk in drive A or if it does
not contain a file named NOTES, or if we cannot call up the MORE.COM file.
Moreover, the computer can get confused if the printer has not been turned
on or not properly connected to the computer.

In order to overcome such contingencies, the system offers us the possi
bility of adding a REM command (for remark) to the batch program, followed
by a message of no more than 123 characters. We use it to alert ourselves or
someone else using the computer. For instance:

rem - Is the disk with NOTES in drive A?
rem - Is the printer connected?
more <a:notes
copy a:notes prn:

If we start the revised version of the batch program, the two REM messages
will be displayed first:

C>rem - Is the disk with NOTES in drive A?

STREAMLINING THE SYSTEM 147

C>rem - Is the printer connected?

For the rest, the program works exactly the same as it did before.
A disadvantage of this construction is that we have to follow the com

mands that are being carried out on the screen very carefully, so that we
can interrupt the procedure by means of a ~c or ~<BREAK> instruction,
should this be necessary.

However, we can overcome this disadvantage by using the PAUSE command.
This command results in the procedure being halted, and it will only be con
tinued after we strike a key. Let's adjust the program as follows:

rem - Is the disk with NOTES in drive A?
rem - Is the printer connected?
pause
more <a:notes
copy a:notes prn:

If we run the program in this form, the following message, after the REM
messages have been displayed, will appear on the screen:

C>pause
Strike a key when ready . . .

Now we have the opportunity to insert the right disk in drive A or to check
whether the printer is connected. If we then strike a key, the program will
continue where it left off. Should we nevertheless wish to terminate the
program, we have to give a ~c or ~<BREAK> instruction (see page 71).

We have the possibility of combining the PAUSE and REM commands, for we may
extend PAUSE by a text to a maximum of 125 characters. For instance:

pause - Is the disk with NOTES in drive A?
pause - Is the printer connected?

As the program is being executed we see:

C>pause - Is the disk with NOTES in drive A?
Strike a key when ready . . .

Instead of REM, we can also use the ECHO command. The result is exactly the
same, but ECHO has another function as well. If we open the series of com
mands with ECHO OFF, and close it with ECHO ON, we avoid the command for
mulas being displayed one-by-one on the screen as they are carried out.

Between these commands, we should not precede any comment messages by
PAUSE or REM but by ECHO, which, unlike REM and PAUSE, circumvents the
ECHO OFF command. Thus:

echo off
echo Is the disk with NOTES in drive A?
echo Is the printer connected?
pause
more <a:notes
copy a:notes prn:
echo on

148 MS-DOS AND PC-DOS - A PRACTICAL GUIDE

8.6: The AUTOEXEC.BAT file

A special kind of batch program is a file named AUTOEXEC.BAT. In the loading
process, the system not only looks for a CONFIG.SYS file (see page 126) on
the floppy disk in drive A or the hard disk, but also for an AUTOEXEC.BAT
file. And if present, the system automatically puts it into operation.

We can create an AUTOEXEC.BAT file in the same way as any other batch
program. This will be clear when we rename our MEMO.BAT to AUTOEXEC.BAT. If
we now start a RESET procedure, resulting in the system being reloaded, the
file is automatically put into operation, assuming of course that it is in
the root directory of the hard disk, or on the system disk in drive A.

An AUTOEXEC.BAT program suppresses the usual system requests to enter the
date and time. If the computer is not equipped with a clock/calendar device
(see page 126), it is essential to include a DATE and TIME command in an
AUTOEXEC program. For instance:

echo off
date
time
c1s
echo Is the disk with NOTES in drive A?
echo Is the printer connected?
pause
type a:notes >prn:
echo on

As the commands are being carried out we have the opportunity to enter the
date and the time before the first ECHO message is displayed on the screen.
After the system has been loaded, we first see:

Current date is Wednesday 12-30-88
Enter new date (mm-dd-yy):_

As we have seen on page 122, we need to give two MODE commands before we can
work with a printer connected to a serial channel. These two commands can be
included in the AUTOEXEC.BAT file. In our example, this may result in the
following:

echo off
mode com1:96,n,8,1,p
mode 1pt1:=com1
date
time
c1s
echo Is the disk with NOTES in drive A?
echo Is the printer connected?
pause
type a:notes >prn:
echo on

STREAMLINING THE SYSTEM 149

8.7: The condition

By means of the command IF EXIST we require a file to be present on a disk
in a certain drive or in a certain directory. If this condition is not com
plied with, the program will continue in a different way to be further spe
cified.

For instance:

if exist a:notes \more <a:notes
pause - No NOTES have been found. What next?

Note that the IF EXIST command is followed by another command on the same
line. The second command on the line is only carried out if the required
condition is complied with; in this case - if the file in question is pre
sent on the disk. If not, the command on the line following it will be car
ried out, resulting in the following message appearing on the screen:

No NOTES have been found. What next?
Strike a key when ready •

A negative IF EXIST command is also possible. For instance:

if not exist a:notes echo No NOTES
pause What next?

We have the possibility to instruct the system to break off the batch pro
gram as soon as a condition is not complied with; in this case - if the file
in question turns out not to be present on the disk. For this purpose we add
the command EXIT. Thus:

if not exist a:notes exit

If the NOTES file does not appear to be present on the disk as the program
is being run, the system prompt will reappear on the screen immediately.
From that moment, not a single command in the batch program will be carried
out.

Assuming that we have added this last formula, the program has meanwhile
been given the following form.

echo off
date
time
cls
echo Is the disk with NOTES in drive A?
echo Is the printer connected?
pause
if not exist a:notes exit
type a:notes >prn:
echo on

150 MS-DOS AND PC-DOS - A PRACTICAL GUIDE

8.8: The jump

Another utility originating from the world of programming languages, in par
ticular BASIC, is the batch command GOTO. It enables us, usually after an IF
EXIST command, to have the system jump backwards or forwards in the sequence
of commands.

We can determine the destination of the jump with a so-called label, i.e.
a word, a code or whatever, of no more than eight characters, preceded by a
colon. For instance:

echo off
date
time
cls
:change
echo Is the disk with NOTES in drive A?
echo Is the printer connected?
pause
if not exist a:notes goto change
type a:notes >prn:
echo on

If there is no file on the disk in drive A called NOTES, the IF NOT EXIST
condition has indeed been complied with. As a result, the next command on
the same line will be carried out; in this case - perform a jump to the
label called CHANGE.

The next step is that the first command following the label will be dis
played. So again we see:

Is the disk with NOTES in drive A?
Is the printer connected?
Strike a key when ready •

If we fail to insert the right disk in drive A, we get into a vicious circle
with label and commands. Our only way out is a ·c or ·<BREAK> instruction.

It may be that we just wish to get another opportunity to have the disk in
drive A searched for a specific file, for instance because several disks
contain a file with this name.

In that case we have to include the affirmative IF EXIST command in the
program. Thus:

:change
echo Insert a disk with NOTES in drive A
pause
if not exist a:notes goto end
if exist a:notes type a:notes >prn:
goto change
:end
echo on

STREAMLINING THE SYSTEM 151

8.9: Variables

Suppose we want to conclude a batch program with the command to use EDLIN
(see page 95) and open the NOTES file at the same time. Thus:

echo off
:change
echo Is the disk with NOTES in drive A?
pause
if not exist a:notes goto change
ed1in a:notes
echo on

The disadvantage of the program now is that we only can open a file named
NOTES. It would be far more practical if we could change the name of the
program at will, without affecting it.

Well, this is possible. For we may replace the file name in the program
by the symbol of a so-called variable. A more detailed explanation will be
given on page 162. In this example a variable can be included in the form of
the % sign, followed by a numeral from 1 to 9. Consequently, we may change
the second last line of the program as follows:

ed1in a:%1

Assuming that it is named MEMO.BAT and present in the root directory of
drive C, we type the following in order to put the program into operation:

C>memo notes <RET>

or:

C>memo text <RET>

Whatever the name we type, the system will put it in place of the symbol of
the variable as the program is being run.

Another disadvantage is that we are restricted to a specific drive or sub
directory. We would benefit from the use of the variable if we would be able
to include the letter of the drive or the name of the sub-directory in it as
well. And indeed, this is also possible. We simply add a second variable:

edlin %1 %2

As a result of this formula we can put the program into effect by typing:

C>memo a:notes <RET>

or for instance:

C>memo \text \notes <RET>

152 MS-DOS AND PC-DOS - A PRACTICAL GUIDE

8.10: The prompt

A nice touch, but at first sight little more than that, is the capability
offered by version 2 of the system to alter the appearance of the prompt.
Assume we would like to be greeted by:

At your service:_

Getting this done is simplicity itself. We just type the following command:

C>prompt At your service: <RET>

As soon as we strike the RETURN key, the prompt appears in the desired form.

This prompt works the same as usual, the only difference being the form. For
instance, if we want to switch to drive B we type, as usual:

At your service:b: <RET>

The answer shows a drawback of the new prompt since there is no way of know
ing whether the command has been carried out:

At your service:_

If we give a DIR command, however, B has indeed become the active drive.
There is a solution, however. We may supplement the PROMPT command with

one or more special characters that all have a specific significance. These
characters are listed below:

d = the system date
n = the active drive
p = the active sub-directory
t = the system time
v = the system version

b = the symbol I
g = the symbol >
1 = the symbol <
q = the symbol =

= command for a new line
ii = command for backspace (the same as AH)
e = command to pass on an ESC symbol

In order to avoid confusion with the normal characters, we have to precede
all these special characters by a dollar sign ($) in the formula.

This is the solution to the problem we just met:

At your service:prompt ($p) At your service:

STREAMLINING THE SYSTEM 153

As a result, the active drive or sub-directory now opens the prompt line:

(C:\) At your service:_

To make the prompt something really special, we might formulate the command
as follows:

prompt This is $v.$ The system time now is $t.$
The active subdirectory is $p.$_At your service:

Note that as we type this command, the cursor moves to a new line automati
cally when it reaches the right edge of the screen. Nevertheless, the compu
ter still regards the command as one line.

After striking the RETURN key, the prompt in this example will look like:

This is IBM Personal Computer DOS Version 3.30.
The system time is 13:22:43.97.
The active subdirectory is C\.
At your service:

If we have lost or forgotten the details of our latest invention, we can
give the following command:

set <RET>

This results in a mysterious llst like the following. It does, however, con
tain the formula:

PATH=
COMSPEC=C:\COMMAND.COM
PROMPT=This is $v.$ The system time now is $t.$
The active subdirectory is $p.$_At your service:

We may create all kinds of artistic prompts. For instance:

prompt nggggggggggggggggggg
gggggg hhhhhhhhhhhhhhhh$h
hhhhhhhh

One '$n', followed by twenty five times '$g', followed by a space and then
by twenty five times '$h'. The dealer will be quite surprised!

By means of the list on the preceding page and by using our imagination,
we can create all kinds of informative or curious prompts.

A RESET procedure or turning off the computer puts an end to the verbose
prompt. In other words, a prompt we create ourselves lasts only as long as
we are working with the machine. Obviously, we can save the formula in a
batch program (see the previous pages).

However, if we get tired of a prompt we created ourselves, we do not have
to do a RESET to get rid of it. We just type the bare form of the command:

At your service: prompt <RET>

C>

9: THE BASIC FACTOR

Among the files on our system disk we usually find a file named BASIC.COM,
BASICA.COM or GWBASIC.EXE. Strictly speaking, BASIC is not a system utility,
but it is such a useful, and for some operations indispensable, instrument
that we cannot avoid discussing it.

Whatever the name of the file in question, it contains the code of BASIC,
which is a so-called programming language. This indicates a collection of
commands that we can pass on to the computer in various ways and sequences.
There are quite a few other programming languages, such as C, COBOL, and
Pascal. However much they differ in amount, name and capacity of the com
mands, they have the same function: to provide building blocks for programs.

BASIC means Beginner's All-purpose Symbolic Instruction Code. It was de
veloped between 1964 and 1970 under the supervision of the professors John
G. Kemeny and Thomas E. Kurtz on the big 'mainframe' computers of Dartmouth
College, the academic centre of the American state of New Hampshire.

Originally, BASIC was meant as a teaching aid for students who were some
day going to work with real computer languages. But it was not long before
paper tapes containing BASIC code (at the time there were hardly any disks
or none at all) were accepted by other computers.

In 1975 the students Bill Gates and Paul Allen created a concise version
of BASIC for what probably was the very first microcomputer - the MITS
Altair. Both the computer and the MITS version of BASIC became big succes
ses. Later the two teenagers founded their own company, which they called
Microsoft. The company concentrated on the development of BASIC and other
programming languages for various types of microcomputers, and it succeeded.

So, when IBM developed its Personal Computer and wanted to provide it,
like the successful Apple II, with a BASIC version in ROM (see page 25), the
firm approached Microsoft. The rest of the story can be found on page 10.

BASIC enables us to carry out procedures with the computer and the devices
that the operating system is not capable of doing. There are commands, for
instance, to perform calculations, and we can use it to control the printer,
and lots more.

It is a problem, however, that there are dozens of versions of BASIC that
differ from one another in details, and sometimes in essential points. This
results from the fact that the original Dartmouth BASIC was developed in a
government institution with public funds and therefore was 'public domain'.
In other words, it belonged to no one and anyone could make use of it.

After Microsoft's success with a microcomputer-BASIC, numerous software
companies tried to develop similar programming languages, resulting in a
chaos of BASIC dialects. Even Kemeny and Kurtz have entered into business
with their new version named True BASIC. But since most microcomputers con
tain a Microsoft version, it has in fact become the standard.

Our system disk also contains a Microsoft version of BASIC. In this chap
ter we will only discuss the most important built-in possibilities of BASIC,
so that we in any case know how to formulate a command, how to load the
system and how we can write a program ourselves.

Whoever wants to know the ins and outs of programming should buy a intro
ductory book on BASIC and just get started.

156 MS-DOS AND PC-DOS - A PRACTICAL GUIDE

9.1: Opening

We may be confronted with various versions of BASIC, depending on the make,
the type and the version of our operating system.

First, there is the make. If we work with an IBM computer, we are con
fronted with three different types. The first is a version that is perma
nently stored in a part of the computer's memory called ROM (see page 25).
This version is known as Cassette BASIC. To use it, we only have to turn on
the computer, without a disk in the drive(s) (see page 15).

A message like the following may then appear on the screen:

The IBM Personal Computer BASIC
Version C3.20 Copyright IBM Corp. 1981, 1986

65536 Bytes free
Ok

The second version is known as Disk BASIC. It is included on the PC-DOS
system disk in the form of a file named BASIC.COM. It contains a number of
extra commands and facilities not included in Cassette BASIC, but for the
rest the two versions are identical. In order to load Disk BASIC, we insert
the system disk in drive A and type the following command:

A>basic <RET>

If all is well, we see a message like the following:

The IBM Personal Computer BASIC
Version D3.20 Copyright IBM Corp. 1981, 1986

62248 Bytes free
Ok

The third version offered by IBM is Advanced Disk BASIC, abbreviated to
BASICA. Compared with plain BASIC, a number of facilities have been added
such as the capability to process graphic images, but for the rest the two
disk versions of BASIC are identical. To load BASICA, we type:

A>basica <RET>

This results in a message like:

The IBM Personal Computer BASIC
Version A3.20 Copyright IBM Corp. 1981, 1986

62248 Bytes free
Ok

Note that these BASIC versions only work on IBM computers, owing to the fact
that they both need the 'Cassette BASIC' kernel in the IBM PC ROM.

THE BASIC FACTOR 157

Those who do not work with an IBM PC-DOS but with a version of MS-DOS,
usually have a file named GWBASIC.EXE (reputedly from Gee Whiz BASIC) on
the system disk at their disposal. Its contents are largely identical to
IBM's BASICA. Assuming that the GWBASIC.EXE file is present on the disk in
drive A. we load it as follows:

A>gwbasic <RET>

As a result, we see a message like the following:

GW-BASIC 3.20
(C) Copyright Microsoft 1983,1987

62195 Bytes free
Ok

In all versions of BASIC the term 'Ok' is the prompt, i.e. the invitation to
pass on a BASIC command. Note that the cursor does not follow the prompt,
but is on the next line.

A message like '60851 Bytes free' means that once the system and BASIC
have been loaded, 60,851 bytes, that is just about 60 Kb, are available in
the memory to load, write or process programs. This number is not related to
the total capacity of the computer's memory. None of the BASIC versions is
capable of processing more than 64 Kb of data at the same time.

9.2: Clearing the screen

It is sometimes useful to clear the screen and to place the cursor back in
the top left-hand comer. To do so, we type the following command:

c1s <RET>

With some versions of BASIC, we can achieve the same result by a ·<HOME>
instruction. In other words, we keep the CRTL key down and then strike the
HOME key.

9.3: Closing

If we have finished with BASIC and we want to return to the control of the
operating system, we type:

system <RET>

As a result, the DOS prompt will appear on the screen again.

158 MS-DOS AND PC-DOS - A PRACTICAL GUIDE

9.4: Contact with the screen

When using BASIC, much as when using the system (see page 16), we can put
any character we like from the keyboard on the screen and pass it on to the
computer by hitting the RETURN key. There is not much point in this, how
ever, because only the reserved code words have any meaning. Anything else
will be answered with the error message 'Syntax error'. For instance:

september <RET>
Syntax error
Ok

Assume we want the computer to print the word september on the screen. In
that case we have to precede it by the command PRINT and type double quota
tion marks on either side of the word. Thus:

print "september" <RET>
september
Ok

Before we hit the RETURN key, we may correct any typing errors. Just as
under system control, we can use the key on the right, showing an arrow
pointing to the left, to remove the last character from that line.

To erase a whole line we strike the ESC key. And to cancel everything we
have typed after the last 'Ok', we use the instruction ·c or ·<BREAK>.

Instead of the command PRINT, we may also type a question mark, as in:

? 'what day is it today?' <RET>
what day is it today?
Ok

Numerals do not need quotation marks.

We may also use the command to ask for the date or tlme:

? date$ <RET>
12-30-1988
? time$ <RET>
15:21:37
Ok

Note the dollar sign in the terms DATE$ and TIME$.

If we strike the RETURN key after the command PRINT or the question mark, a
blank line will be the result:

? <RET>

Ok

THE BASIC FACTOR 159

9.5: The key bar

The bottom line of the screen usually shows the following:

1LIST 2RUN 3LOAD" 4SAVE" 5CONT 6,"LPT1 7TRON 8TROF

It indicates the functions assigned to the function keys under the control
of BASIC. The significance they had under the control of the operating sys
tem (see page 22) no longer applies.

In cases where we do not want this bar displayed on the screen, we type the
following command:

key off <RET>
Ok

To have the bar reappear on the screen, we type the reverse command:

key on <RET>
Ok

9.6: Contact with the printer

We send data to the printer in much the same way as we send data to the
screen. But instead of PRINT we type LPRINT (for Line Printer). The question
mark command is not permitted. An example:

1print "28 december 1988" <RET>
Ok

Mter striking the RETURN key, only the prompt appears on the screen. The
text we have typed between the quotation marks will be printed, assuming
that the printer is properly connected to the computer and turned on.

Letters have to be enclosed between quotation marks. Numerals may be so en
closed but it is not necessary:

1print 1988 <RET>
Ok

The maximum number of characters we can place on a single line with an
LPRINT command is 132, but a normal-sized printer usually is not able to
handle this number in its default mode of operation.

If we pass on an arithmetic calculation, the result will not appear on the
screen, but on paper.

160 MS-DOS AND PC-DOS - A PRACTICAL GUIDE

9.7: Calculating

Although BASIC is not designed for calculating, it is nevertheless capable
of carrying out a number of arithmetic processes. The following symbols and
their meanings are at our disposal:

sqr
*
I
+

- exponent sign
- negation sign
- square root sign
- multiplication sign
- division sign
- addition sign
- subtraction sign

In calculations the same order as in the above table is maintained. Thus,
exponential functions take precedence over square root which takes prece
dence over multiplication, and so on. If another order of precedence is
needed, we must use brackets to indicate which operation to carry out first.

We use the PRINT command we became acquainted with on page 158 to put the
calculations on the screen. For instance:

print 123+456 <RET>

As soon as we release the RETURN key, BASIC produces the answer:

579
Ok

We may also use the question mark instead of the PRINT command. It saves us
some key strokes.

We shall provide a few examples without much comment. Addition:

? 123+456+789 <RET>
1368

Ok

We may also use negative numerals. For instance:

Subtraction:

? -123+(-456) <RET>
-579

? 987-654 <RET>
333

Ok
? 987-654-321 <RET>

12
Ok

THE BASIC FACTOR

Multiplication:

Division:

? 123*456 <RET>
56088

Ok
? 12*34*56 <RET>

22848

? 987/654 <RET>
1. 509174

Ok

161

We must realise, however, that BASIC rounds off figures after the decimal
point, so the answer could be inaccurate. As a test, we multiply the answer
by the divisor in the above sum. Then we see:

Exponential:

Square root:

? 1.509174*654 <RET>
986.9998

Ok

? 12A2 (RET>
144

Ok
? 1r3 <RET>

1728
Ok
? 1r4 <RET>

20736
Ok
? 12A5 <RET>

248832
Ok

? sqr(144) <RET>
12

Ok
? sqr(12) <RET>
3.464102

Ok

The need for brackets is illustrated by the following examples in which the
same operations will be carried out with the same numbers:

? 987-654-321*5 <RET>
-1272
Ok
? (987-654-321)*5 <RET>

60

162 MS-DOS AND PC-DOS - A PRACTICAL GUIDE

9.8: Creating variables

We may be faced with numbers we do not need immediately, or which we want to
put aside for a while. We can temporarily store these values - for as long
as the computer is under control of BASIC or until we cancel the instruction
- in a sort of parking place called a variable.

Variables are called into existence as soon as we enter their names or
notations into the computer. We have to use letters for the name. capitals
are permitted but lower-case letters are easier to type. BASIC always con
verts them into capitals. No other symbols, no numerals and especially no
quotation marks are allowed.

As soon as a variable is stored, we can call it up at any time for use in
a calculation or in any other operation.

Suppose we want to store the numeral 28 in a variable we name x. In that
case we type the following formula:

let x=28 <RET>
Ok

We may omit the term 'LET'. It saves typing three letters and a space. Thus:

y=l5 <RET>
Ok
z=7 <RET>
Ok

We now have entered three variables, x, y and z, and stored the values 28,
15 and 7 in them. We can check that they have indeed been parked somewhere
in the computer's memory just by asking:

? X <RET>
28

Ok
? x+y+z <RET>

50
Ok
? z-5 <RET>
-2--

0k

We are free to change the contents of a variable at will, either by repla
cing them by a completely different value, or by an arithmetic calculation
on the original. For instance:

x=x+l <RET>
~
? X <RET>

29
Ok

THE BASIC FACTOR 163

9.9: The loop

Apart from just storing a value, there are several other possible uses for
variables. We may, for instance, create a loop. A loop is a situation in
which a variable gets a succession of different values until some prescribed
condition is met.

Supppose we want to have all the numbers from 1 to 20 displayed on the
screen. In that case we type a formula like the following:

for a=1 to 20 : print a : next a <RET>

In BASIC, a colon means a division between commands on the same line.
The first command creates the situation. We create a variable with the

name 'A', store the value 1 in it, set up a counter that can give 'A' a
succession of higher (or lower) values; and we determine that the final
situation is reached as soon as 'A' has the value 20.

With the second command we tell the computer what to do every time 'A'
gets a new value. In this case, print this value on the screen.

The command NEXT is inseparable from the FOR command. We use it to
instruct the counter to give 'A' the next value.

If we want to increase the counter we created by means of the FOR command
with another amount, for instance +2 instead of +1, we have to add a STEP
instruction to the formula:

for a=1 to 20 step 2

As a result, we see odd numbers only.

print a next a <RET>

To reverse the order of the values of 'A', we make the first and last values
change places. In addition, we give the STEP instruction a negative value,
for instance -2:

for a=20 to 1 step -2 : print a : next a <RET>

Next, the numbers 20, 18, 16 etc. will appear on the screen.

To avoid the values of 'A' being printed on a new line, we may supplement
the PRINT command with an extra symbol, like a comma:

for a=1 to 20 : print a, : next <RET>

As a result of the comma, BASIC displays the various numbers one after
another, with an interspace of twelve positions.

We may also add a semi-colon to the PRINT command:

for a=1 to 20 : print a; : next <RET>

which results in an interspace of two positions.

164 MS-DOS AND PC-DOS - A PRACTICAL GUIDE

9.10: Driving the printer

For normal prlntlng work there is no need to make any adjustments to the
printer, apart from some MODE commands (see page 122). We just have to tum
it on and make sure that it has an adequate supply of paper. There is always
a default setting.

However, printers are capable of much more. We have to give the proper
Instructions, as if it were a computer. In fact, it is a computer. A printer
contains a chip that functions as a central processing unit.

Since the printer is provided with a large number of facilities, but not
with its own operating system besides a few switches, we have to control the
printer from the computer. In other words, we have to convert the text to be
processed and printed Into instructions for the printer. And immediately we
run Into difficulties. For a start, how do we pass on the instructions to
the printer? And then there is the problem that a certain instruction is of
significance to the one printer and not to the other.

Apart from some functions that are listed ln the ASCII table (see page
68), there is no standardisation whatsoever. Nevertheless, let's try to flnd
some consistency. First, we take another close look at the ASCII table and
ln particular the control instructions (see page 75).

BASIC enables us to pass on a control instruction, or any other symbol,
directly to the screen or the printer. To do so, we have to use a specific
function, ln this case CHR$. This is the character function.

If we want to have the character corresponding with the decimal value 129
displayed on the screen, we type:

print chr$(129) <RET>

This turns out to be a U. In order to check whether we can print this cha
racter on paper as well, we replace the term PRINT by LPRINT. Thus:

1print chr$(129) <RET>

The one make or type of printer will produce the same character on paper,
the other will not.

Let's return to the actual printer instructions. In principle, they can be
divided Into two types. The first one comprises a single symbol. This klnd
of instruction applies to all types of printer because it is Included ln the
ASCI I table, the only standard that has been recognised.

An example is the llne feed instruction. It is Included ln the ASCII
table under the decimal value 10. Therefore, we may also pass on this
Instruction as follows:

print chr$(10) <RET>

The second group of Instructions consists of a combination of two or more
values. This is where the standardisation lets us down. However, these com
binations do have one thing ln common. They all start with the ESC symbol,
that is, the decimal ASCII value 27.

THE BASIC FACTOR 165

Take for instance the instruction code to print in italics. For IBM and
Epson dot matrix printers it is 'ESC 4'. If we want to pass on this code, we
have to formulate the command as follows:

lprint chr$(27)+"4" <RET>

The codes which are effective for a particular printer are usually listed
somewhere on the back pages of the printer manual under 'Control codes' or
'ASCII codes'.

In any case, it would be wise to look them up and compare them with the
ones below, which apply to the dot matrix printers of IBM and the Epson MX
and FX types. If there are any differences, we simply replace them.

printer function: ASCII code: BASIC formula:
paper length of 11 inches (66 lines)

12 inches (72)
14 inches (84)

prints 3 lines per inch
6 lines per inch (default)
8 lines per inch

10 lines per inch

new line (line feed)
vertical tab
sets vertical tab at 16 lines (max.)
horizontal tab
set at 32 positions (max.)

ESC C
ESC C
ESC C

ESC A
ESC 2
ESC 0
ESC 1

LF
VT
ESC B
HT
ESC D

out-of-paper detector off ESC 8
out-of-paper detector on (default) ESC 9

fresh sheet of paper (form feed) FF
returns print head to start of line CR

condensed mode (132 char. per line) SI
cancels condensed mode DC2

enlarged mode (40 char. per line) SO
cancels enlarged mode DC4

double-strike mode (bold char.) ESC G
cancels double-strike mode ESC H

alternate mode (italics) ESC 4
cancels alternate mode ESC 5

emptying of the buffer CAN

bell or buzzer BEL

cancellation of all instructions ESC @

CHR$(27)+"C"+"66"
CHR$(27)+"C"+"72"
CHR$(27)+"C"+"84"

CHR$(27)+"A"+"24"
CHR$(27)+"2"
CHR$(27)+"0"
CHR$(27)+"1"

CHR$(10)
CHR$(11)
CHR$(27)+"B"+"a"
CHR$(9)
CHR$(27)+"D"+"a"

CHR$(27)+"8"
CHR$(27)+"9"

CHR$(12)
CHR$(13)

CHR$(15)
CHR$(18)

CHR$(14)
CHR$(20)

CHR$(27)+"G"
CHR$(27)+"H"

CHR$(27)+"4"
CHR$(27)+"5"

CHR$(24)

CHR$(7)

CHR$(27)+"@"

166 MS-DOS AND PC-DOS - A PRACTICAL GUIDE

9.11: Creating a program

So far we have only given the computer BASIC instructions, in other words,
commands in the so-called direct mode. For instance:

print "it is now exactly "+time$ <RET>

A direct command is executed as soon as we hit the RETURN key, just as much
as under the control of the operating system.

If we want to write a program file in BASIC, we have to number each line. In
that way we tell the computer that the command should not be executed right
away. Thus:

10 print "it is now exactly "+time$+" hours"
<RET>

To see the result of this program, we type the following:

run <RET>

and immediately we see:

"it is now exactly 5:29:00 hours"
Ok

We may also store this program as a file on a disk. Then we have to think of
a name, for instance TIME. BASIC automatically adds .BAS as the extension.
Assuming that the file has to be stored on the hard disk, the command is:

save "c:time",a <RET>

Note that we ended the formula with a comma and an 'a' (for ASCII). It
ensures that the contents of the program file are stored in normal ASCII
signs (see page 67) and not in the binary code.

In order to prevent BASIC from getting confused about lines or programs that
are already in the computer's memory before we start writing, we should type
the command NEW. Thus:

new <RET>

Let's write a program in which we instruct the printer to accept 12-inch
paper (that is, 72 lines):

10 lprint chr$(27)+"c"+"72" <RET>
20 system <RET>

We call this program 12INCH and store it on the hard disk:

save "c:l2inch",a <RET>

THE BASIC FACTOR 167

9.12: Loading and running a program

The way we load a BASIC program depends on the situation.
If we have addressed the program before and if the contents are still

present in the computer's memory, the command RUN will be enough. Thus:

run <RET>

If a program is on a disk, like TIME (see the previous page), we can address
it as follows:

Ok
load "time" <RET>

As a result, the program is stored in the computer's memory. Next, we give
the command to run it:

Ok
run <RET>

We may combine these two commands as follows:

Ok
load "time",r <RET>

Note that we added a comma and a 'r' (for run) to the instruction.

The following command has the same result:

run "time" <RET>

What are we to do if we are under the system's control?
Assume that both BASIC and our 12INCH program are in the root directory

of the hard disk, and that a printer is properly connected to the computer
and turned on. The fastest way to load the 12INCH program is :

C>basic 12inch <RET>

Note that we omitted the quotation marks in the formula. They are not neces
sary if we address a BASIC program from the system.

In PC-DOS, we have to load BASICA instead of BASIC to be able to use graphic
BASIC commands in our program. Thus:

C>basica 12inch <RET>

On the other hand, if we work with a version of MS-DOS instead of PC-DOS, so
that we are dealing with GWBASIC, we have to type:

C>gwbasic 12inch <RET>

10: NEW OR VARIANT VERSIONS

As we have already mentioned on page 10, MS-DOS is in fact a collective name
for a fairly large number of different versions of the operating system,
which usually differ from each other with regard to certain facilities. Ori
ginally, MS-DOS was developed to the wishes of IBM, and that corporation
added its own utilities as well, such as BACKUP, COMP, MODE, RESTORE and
TREE; but IBM did not acquire the rights of ownership of the actual system.
On the contrary, Microsoft reserved the right to place it at the disposal of
other computer makers, and has indeed made use of this on a large scale.

Some manufacturers simply bought the standard package (in the jargon,
'generic MS-DOS') , others gave Microsoft instructions to include certain
additions or changes, usually to receive copies of the IBM utilities men
tioned above, and other manufacturers added utilities at their own initia
tive. The well-known manufacturer Wang, for instance, adds a version of MS
DOS containing a utility named SYSMODE to its computers, enabling the compu
ter to switch from 'Wang mode' to 'industry standard mode' (which obviously
refers to the way the IBM PC family operates). Otherwise, a software package
like Lotus 1-2-3 will not function.

Now, let's take a look at the growth of PC-DOS, the IBM version of the
operating system. The table on page 171 shows the increase in number and
size of the various utilities. We can see that whenever a new version is put
on the market, new utilities are introduced and the size of already existing
files is significantly increased. Such an increase nearly always involves an
extension of the programming code, as a result of which the utility in ques
tion offers us more facilities, or maybe an error in the design has been
eliminated.

An example is the FORMAT utility. In its original form, the program was
only capable of formatting single-sided disks to a storage capacity of 160
Kb, with the option of storing a copy of the system files on the disk in
question.

The first revised version, which would eventually lead to PC-DOS version
1.10, also included the option to format double-sided disks, to a maximum
capacity of 320 Kb. However, we still had the possibility of working with
single-sided disks. For this purpose, the parameter /1 was added to the
available options.

The second and third revised versions, resulting in the versions 2.00 and
2.10, added the possibility of providing disks with nine instead of eight
sectors per track, so that the capacity of double-sided disks amounted to
360 Kb and that of single-sided disks to 180 Kb.

Moreover, the utility was now capable of formatting a hard disk. We only
needed to specify the drive letter, usually a C, and after striking any key
('Strike any key when ready') , FORMAT would do the rest.

This specific use of the utility sometimes had (and still has) unforeseen
consequences. Those who work with a hard disk usually include the system
utilities on it. It may happen that a disk in drive A needs to be formatted
and that, by accident, we have failed to state the drive letter (or the
colon). Thus:

C>format <RET>

170 MS-DOS AND PC-DOS - A PRACTICAL GUIDE

The result is:

Press any key to begin formatting drive C:

In this case, after striking any key, the hard disk, instead of the desired
disk, will be completely formatted, and at the same time everything stored
on it will be erased irrevocably.

This clear error in the design resulted in two reactions. The first came
from the software designers and publishers Paul Mace and Peter Norton. They
added an UNFORMAT command to their own range of utilities in which, in
nearly all cases, an unintentional format procedure of the hard disk can be
cancelled. Only the contents of the root directory will at all times be
lost. It is therefore advisable to put no files in the root directory other
than COMMAND.COM, CONFIG.SYS and AUTOEXEC.BAT.

The second reaction came from IBM and Microsoft themselves. On the introduc
tion of version 3.00, the following warning will appear on the screen as
soon as the hard disk is liable to be formatted:

WARNING, ALL DATA ON NON-REMOVABLE DISK
DRIVE C: WILL BE LOST!
Proceed with Format (Y/N)?

Moreover, striking any key is not enough to start the procedure, it has to
be the RETURN key ('Strike ENTER when ready').

On the introduction of version 3.20, measures to protect a disk have be
come even more strict. First of all, the bare form of a FORMAT command is no
longer accepted. If we fail to specify the letter of the drive in question,
the procedure will be interrupted, showing the following message:

Drive letter must be specified

But even if we specify the drive in question properly, in this case drive C,
this is not enough. We also have to state the label of the drive, if any:

Enter current Volume Label for drive C:

If we do not enter the label or if we state the wrong label, the procedure
will then be interrupted as well, for we see:

Invalid Volume ID
Format Failure

C>

The introduction of the PC-DOS version 3.00 coincided with the introduction
of the PC AT which is equipped with a disk drive capable of handling floppy
disks with a storage capacity of 1.2 Mb.

In order to format a floppy disk in such a drive, we need not add a spe
cific parameter to the FORMAT command. If we want to provide a disk in this
drive with a different storage capacity, for instance the standard 360 Kb,
we have to use the parameter I 4 as we have already seen on page 40. More
over, all the other parameters included in the system in the previous ver
sions Us, /v, /1 and /8) are still available.

NEW OR VARIANT VERSIONS 171

10.1: Eight steps to PC-DOS 3.30

1.00: 1.10: 2.00: 2.10: 3.00: 3.10: 3.20: 3.30:
IBMBIO.COM 1920 1920 4608 4736 8964 9564 16369 22100
IBMDOS.COM 6400 6400 17152 17024 27920 27760 28477 30159
COMMAND.COM 3231 4959 17664 17792 22042 23210 23791 25307

ANSI.SYS 1664 1664 1641 1651 1651 1678
APPEND.COM 5825
ASSIGN.COM 896 896 988 1509 1536 1561
ATTRIB.EXE 15123 15091 8247 9529
BACKUP.COM 3687 3687 5440 5577 6234 31913
CHKDSK.COM 1395 1720 6400 6400 9275 9435 9832 9850
COMP.COM 1620 1649 2523 2534 3471 3664 4184 4214
COUNTRY.SYS 11285
DEBUG.COM 6049 5999 11904 11904 15237 15552 15799 15897
DISKCOMP.COM 1124 1640 2074 2188 3752 4073 5792 5879
DISKCOPY. COM 1216 2008 2444 2576 4165 4329 6224 6295
DISPLAY.SYS 11290
DRIVER.SYS 1115 1196
EDLIN.COM 2392 2392 4608 4608 7183 7263 7508 7526
EXE2BIN.EXE 1280 1664 1664 2752 2816 3063
FASTOPEN.EXE 3919
FDISK.COM 6177 6369 8076 8173 8173 48216
FIND.EXE 5888 5888 6363 6403 6416 6434
FORMAT.COM 2560 3816 6016 6912 9015 9398 11135 11616
GRAFTABL.COM 1169 1169 1169 6128
GRAPHICS.COM 789 789 3111 3111 3220 3300
JOIN.EXE 15971 8955 8969
KEYB*.COM 10033 12051 15848 9056
KEYBOARD.SYS 19766
LABEL.COM 1260 1826 2346 2377
LINK.EXE 43264 41856 39936 39936 45970 38144 39076
MODE.COM 860 2509 3139 3139 5194 5295 6864 15487
MORE.COM 384 384 320 282 295 313
NLSFUNC.EXE 3060
PRINT.COM 4608 4608 7811 8291 8976 9026
PRINTER.SYS 13590
RECOVER.COM 2304 2304 4066 4050 4297 4299
REPLACE.EXE 11650 11775
RESTORE.COM 4003 4003 5413 5410 6012 34543
SELECT.COM 2079 2084 3826 4163
SHARE.EXE 8544 8304 8580 8608
SORT.EXE 1280 1408 1632 1664 1911 1977
SUBST.EXE 16611 9911 9909
SYS.COM 896 605 1408 1680 3629 3727 4620 4766
TREE.COM 1513 1513 2473 2831 3357 3571
VDISK.SYS 3080 3307 3307 3455
XCOPY.EXE 11200 11247

172 MS-DOS AND PC-DOS - A PRACTICAL GUIDE

10.2: Sound and speed

As we explained on page 169, MS-DOS is in fact a collective name for nume
rous versions of the operating system, and these versions often differ from
each other with regard to various facilities.

An example of an element that differs from manufacturer to manufacturer
is the MODE utility. This utility in fact serves as a storage of all kinds
of device drivers - in other words, programs to control certain parts of the
computer. On pages 120 and 122 we have learned how to install several input
and output channels, as well as how to use and change some of the functions
of the screen.

In some versions of MS-DOS, including Compaq and Tandy, MODE also has
various additional functions. We can use it to control the clicking sound we
hear when tapping the keys. If we want to remove this clicking sound, for
instance, we have to type the following command:

C>mode click=O <RET>

In this formula, following the =, we may use other values varying from 0 (no
sound at all) to 127 (maximum volume).

Nowadays, more and more computers are provided with a microprocessor which
has a variable clock speed. This means that the speed at which data is being
processed can be changed. How to give an instruction to change the speed
usually depends on the arrangements that the manufacturer has made.

With Compaq and certain other brands, we can use the MODE command. For
instance, the lowest speed at which a Compaq computer can function is 4. 77
MHz, i.e. the pace of the original IBM PC. If we want the Compaq to slow
down to this speed, we have to type the following formula:

C>mode speed=common <RET>

Other possibilities are 'fast' (7.14 or 8 MHz), 'high' (12 of 16 MHz), and
'auto' (automatically geared to the maximum speed possible under all circum
stances).

To find out at which speed the computer is set at a given moment, we type
the bare form of the mode command. Thus:

C>mode speed <RET>

Then we see, for instance:

SPEED=COMMON

By pressing the CTRL key, the ALT key and the \ key at the same time (or
·<ALT>\ for short), we can switch between 'common' and 'fast'.

We have to bear in mind, though, that the commands to control the sound
and speed depend on the make and type of computer, and therefore function
only on computers for which the version of the MODE utility is intended.

NEW OR VARIANT VERSIONS 173

10.3: The keyboard (4)

With the introduction of version 3.30 of MS-DOS and PC-DOS we have to use a
different method installing a non-American keyboard from the one that was
described on page 74. The various .COM files beginning with the letters KEYB
(KEYBUK.COM, KEYSP.COM, etc.) have been replaced by one file, named KEYB.
COM. In addition to this file, we have to deal with a file named KEYB.SYS.
These two files determine the effects of every keystroke and, as a result,
replace the instructions in the ROM BIOS in this respect (see page 25).

The command to change the keyboard has to consist of the term KEYB, fol
lowed by the appropriate code number. This code number must be chosen from
the following list:

country: code:
United States 001
Canada (French) ..• 002
Latin America •.•.• 003
The Netherlands ... 031
Belgium•...... 032
France •.•.......•. 033
Spain . • . • . . . • • 034
Italy•. 039
Switzerland •.•.... 041

country: code:
Great Britain 044
Denmark ..•..•••••• 045
Sweden ••.•••••••.• 046
Norway .•.••••••..• 047
Germany . . • • • • • • . • . 049
Australia •..•••••• 061
Finland ..••••••••• 358
Arabic countries •• 785
Israel •••••••••••• 972

Suppose we work with a British keyboard, i.e. a keyboard where the II sign on
the 3-key has to make way for the pound sterling sign. Provided that both
KEYB.COM and KEYB.SYS can be reached from the root directory, the command
should be as follows:

C>keyb 044 <RET>

We may also add a second parameter to the KEYB command, namely a codenumber
from the following list:

character set: code:
United States •.... 001

multilingual 850

For instance:

C>keyb 044,850 <RET>

character set: code:
Portugal .•.••...•• 860
Canada (French) ••• 863
Norway . • . • • . • . • • • • 865

As a result of this parameter, numerous characters with a decimal value of
155 and higher tum out to have been replaced in the extended character set
(see page 75) by other characters.

Making some experiments with the AL T key and the numeric pad (see page
74) will make clear which characters it concerns.

174 MS-DOS AND PC-DOS - A PRACTICAL GUIDE

10.4: Comparing (3) - FC

A very useful tool is the utility FC (for File Compare). It was developed by
Microsoft and added to 'generic MS-DOS', but not adopted by IBM. Instead IBM
developed the COMP program (see page 60). Anxious not to lose 'IBM compati
bility', many computer manufacturers preferred COMP to FC when developing
their own DOS version. Nevertheless, FC has a wider range of features, and
it is more precise with regard to its explanations, as we will see below.

We put FC into operation by typing FC, whether or not followed by one or
more parameters, plus the names of the two files to be compared. By way of
experiment, let's return to the file we created in EDLIN (see page 102 and
subsequently). Assume that we have two versions of this file by the names of
MEMO.BAK and MEMO, both on a diskette in drive A, and that we want to check
whether there are any differences between the two versions, and if so, what
they are. To do so we type the following formula:

C>fc a:memo.bak a:memo <RET>

The result could be the following:

***** a:memo.bak
A computer not supplied with a built

in clock can have one fitted later. We
then have to buy an expansion card. This
card will usually also provide us with
***** a:memo

A computer not supplied with a built
in clock can have one fitted later. We
then have to buy an accessory known
as a clock card. This
card will usually also provide us with

***** a:memo.bak
dealer may be able to give more details.
***** a:memo
dealer may be able to give more details.

C>

Note that FC places the pieces of texts in which the differences occur,
under one another. The list ends by showing the last line of the two com
pared files.

It is possible to have FC number the lines, so that we know exactly where
the differences in the files can be found. To do so, we have to add the
parameter /n (for numbering) to the command. This parameter should precede
the names of the files to be compared. So, in this example the formula
should look like this:

NEW OR VARIANT VERSIONS 175

C>fc /n a:memo.bak a:memo <RET>

Consequently, the result looks like:

***** a:memo.bak
16: A computer not supplied with a built-
17: in clock can have one fitted later. We
18: then have to buy an expansion card. This
19: card will usually also provide us with

***** a:memo
16: A computer not supplied with a built-
17: in clock can have one fitted later. We
18: then have to buy an accessory known
19: as a clock card. This
20: card will usually also provide us with

***** a:memo.bak
22: dealer may be able to give more details.
23: ***** a:memo
23: dealer may be able to give more details.
24: *****

Note that, with this method, we can ascertain that the MEMO file consists of
one more line than MEMO.BAK.

If we only want to see the first and the last line of the blocks of text
containing the difference, we have to add the parameter /a (for abbreviate)
to the formula. Thus:

C>fc /a /n a:memo.bak a:memo <RET>

Now the result is:

***** a:memo.bak
16: A computer not supplied with a built-

19: card will usually also provide us with
***** a:memo

16: A computer not supplied with a built-

20: card will usually also provide us with

***** a:memo.bak
22: dealer may be able to give more details.
23: ***** a:memo
23: dealer may be able to give more details.
24: *****

Provided that the printer is connected properly to the computer, we can get
the list of differences on paper by expanding the command as follows:

C>fc fa fn a:memo.bak a:memo >prn: <RET>

176 MS-DOS AND PC-DOS - A PRACTICAL GUIDE

10.5: The interrupt function - BREAK

In certain circumstances, we may want the computer to react immediately to a
AC or A <BREAK> instruction. In that case, we have to order the computer to
check the keyboard more often to see whether we have typed such an instruc
tion. As we have seen on page 127, this order consists of a BREAK=ON com
mand in the CONFIG.SYS file. If we have not included such a command, we can
still achieve the same effect from the system prompt by typing:

C>break on <RET>

To cancel this command, we just type:

C>break off <RET>

Should we have forgotten what the setting was, we can ask for it by typing:

C>break <RET>

The answer could be:

BREAK is off

C>

10.6: Copying (2) - XCOPY

A very welcome addition to versions 3.20 and higher of MS-DOS and PC-DOS is
the X COPY utility. It can replace most of the COPY and BACKUP /RESTORE
procedures, and it works considerably faster. Moreover, we may supplement an
XCOPY command (like COPY, see page 55), with the parameter /v, to have the
copied data verified.

Suppose we want to transfer a copy of all files in the active sub-direc
tory to the disk in drive A, we type, assuming that the XCOPY.EXE file is in
the root directory of the hard disk:

C>xcopy *·* a:/v <RET>

One of the differences from COPY is that first the following message will
appear on the screen in order to confirm the command:

Reading source file(s) •••

Just as with COPY, the names of the files in question will then appear on
the screen one by one, followed by a message like:

NEW OR VARIANT VERSIONS 177

12 Fi1e(s) copied

Unlike COPY, but just like BACKUP (see page 92), XCOPY is capable of making
a selection from certain dates. For this purpose, we add the parameter /d
(for 'date') to the command, followed by a colon and the date in question.

Suppose we want to transfer all files dating from December 29, 1988 or
later to the disk in drive A. In that case we type the following formula:

C>xcopy *·* a:/d:12-29-88 <RET>

Which form the date in this command should get depends on the COUNTRY
installation (see page 130).

We may combine the /v and /d parameters as in the following example:

C>xcopy *·* a:/v/d:12-29-88 <RET>

We can also instruct the system to ask for our permission for each file to
be copied. To do so we add the parameter /p (for prompt) to the command:

C>xcopy *·* a:/p <RET>

Should we want to combine it with the parameters we used in the above exam
ples, we type the following:

C>xcopy *·* a:/v/p/d:12-29-88 <RET>

As a result, we will get the usual confirmation first:

Reading source fi1e(s) •••

Next, the name of the first appropriate file will appear:

NOTES (Y/N)?_

It enables us to type a 'y' to confirm the command, or an 'n' if we do not
want the file to be copied. After we have given an answer, the next file
name will appear on the screen:

NOTES.BAK (Y/N)?_

And so on.
Also like BACKUP, but unlike COPY, a directory plus all its underlying

sub-directories can be copied by adding the parameter /s (for sub-directo
ries). To copy all files with a .DBF extension from the DBASE sub-directory
and all sub-sub-directories to drive A, for instance, we must type:

C>xcopy \dbase*.dbf a:/s/v <RET>

Finally, we may also add the parameter /m (for modified) to the XCOPY com
mand. In that case, like with BACKUP, only those files will be copied that
have been altered since the last BACKUP or XCOPY procedure. Thus:

C>xcopy *·* a:/v/m <RET>

178 MS-DOS AND PC-DOS - A PRACTICAL GUIDE

10.7: Replacing- REPLACE

The REPlACE procedure, introduced with version 3.20 of PC-DOS and MS-DOS, is
related to the XCOPY procedure we became acquainted with on the previous
pages. By means of this utility, we can automatically have one version of a
specific file (or a group of files) replaced by another (e.g. more recent)
version of the file(s) in question.

The procedure is as follows. Suppose we want to replace all files on the
disk in drive A beginning with the letters NOT by versions with the same
name in the active sub-directory. In that case we type the following com
mand, assuming that the REPIACE.EXE file can be reached on drive C:

C>replace not*.* a: <RET>

The result may be the following:

Replacing A:\NOTES.l

Replacing A:\NOTES.2

Replacing A:\NOTES.3

3 File(s) replaced

C>

A number of practical parameters are available as well. If we add the para
meter /a (for add) to the command, REPlACE will not only replace existing
files but will also add new files to the indicated disk or sub-directory.

We may also add the parameter /d to the REPlACE command. In that case a file
will only be replaced if the corresponding file on the source disk has a
more recent date.

Furthermore, the REPlACE command may be followed by the parameter /p. As a
result, the system will ask for our permission as each file is being tack
led, like with the XCOPY procedure with the parameter /p. For instance:

REPLACE A:\NOTES.l (Y/N)?_

If we add the parameter /r (for read-only), we get a REPlACE of any protec
ted files as well (see page 65). Without this parameter the REPlACE pro
cedure will be interrupted as soon as the system finds a protected file.

The parameter /s (for sub-directories) results in REPlACE searching all sub
directories on the target disk for any files that may apply to the command,
and then replacing those.

Finally, the parameter /w (for wait) results in a pause before a file is
added or replaced. It enables us to change disks regularly.

NEW OR VARIANT VERSIONS 179

10.8: Expanding the path - APPEND

On page 90 we saw how to place a marker in the plethora of sub-directories
by means of the PATH command. One of its disadvantages is that it can only
be used for program files. In other words, files with the extension .BAT,
.COM, or .EXE. With the introduction of versions 3.21 and 3.30 of the sys
tem, however, we can also have the system look for other types of files,
including text files, namely by means of the APPEND utility.

As an example, suppose we want to use EDLIN, in the sub-directory DOS, to
edit the text file NOTES in the sub-directory TEXTS. Without a PATH and/or
an APPEND command in force, we have to formulate the command as follows:

C>\dos\edlin \texts\notes <RET>

Now we put up a signpost by means of the APPEND utility. Assuming it can be
reached from the root directory, we type:

C>append \dos;\texts <RET>

Note that we use a semicolon for a division sign, just as with PATH.

As a result, we can formulate our instruction to the system more concisely:

C>edlin notes <RET>

We may also indicate another drive, for instance A or B, as the place where
the system might find a file. In that case we type:

C>append \dos;\texts\;a:\ <RET>

Should we want to cancel an APPEND instruction, we have to re-issue the com
mand, but this time followed by a space and a single semicolon only. Thus:

C>append ; <RET>

To check whether or not an APPEND instruction is already in force, we can
type the bare form of the instruction. Thus:

C>append <RET>

If an APPEND instruction has already been given, the prompt will appear on
the screen without any further message. If not, the reaction is:

No Append

The SET command we became acquainted with on page 153 will provide us with
an alternative method. The result may be:

COMSPEC=C:\COMMAND.COM
APPEND=\DOS;\TEXTS;\A:

180 MS-DOS AND PC-DOS - A PRACTICAL GUIDE

10.9: Duplicating (3) - BACKUP, RESTORE

With the introduction of version 3.30, the use of BACKUP has improved. For a
start, it is no longer necessary to format a large number of disks before
carrying out a BACKUP procedure. Now we can instruct BACKUP to use new
floppy disks and format them at the same time. To do so, we have to expand
the command with the parameter /f (for format).

As an example, assume we want to make a copy of the entire hard disk
(drive C), using unformatted floppy disks. The command should then be:

C>backup c:*.* a:/f/s <RET>

If we only want to copy, as on page 93, the files dated 20 December 1988 or
later, we type:

C>backup c:*.* a:/f/s/d:l2-20-88 <RET>

In any case, we first see the usual instruction to insert the first disk in
drive A. Immediately after we have hit any key, the FORMAT procedure will be
carried out, ending with:

Format another (Y/N)?

If we type an n, implying that, as far as we are concerned, the BACKUP pro
gram may be loaded, the usual messages appear on the screen:

And so on.

*** Backing up files to drive A: ***
Diskette Number: 01

Another improvement is that we can have BACKUP make a report of the state of
affairs. In that case we have to add the parameter /1 (for log, i.e. report)
to the command. For instance:

C>backup c:*.* a:/s/1 <RET>

As soon as the procedure is put into operation, we first see a series of
messages like the following:

Logging to file C:\BACKUP.LOG

Insert backup diskette 01 in drive A:

After the instruction has been carried out, the root directory of the hard
disk (drive C) contains a file named BACKUP.LOG, consisting of a survey of
all copied files, arranged in accordance with the numbers of the backup
disks. If we want this result printed on paper, we type:

C>copy backup.log prn: <RET>

NEW OR VARIANT VERSIONS 181

10.10: The 3.5-inch disk drive

With the introduction of first the IBM PC Convertible, and then the PS/2
range, a new type of disk drive was put on the market, namely the drive
meant for the use of 3.5-inch disks. We have already mentioned them on page
26. If the manufacturer has equipped the computer with one or more 3.5-inch
drives, we need not do anything special. Apart from the aspects of appea
rance and storage capacity, the use and operation of 3.5-inch drives are
much the same as the normal or high capacity 5.25-inch drives.

The situation is quite different if we decide to install a 3.5-inch drive
instead of, or in addition to, one or more normal disk drives, which in fact
results in two different systems. We have to instruct the operating system
to make a clear distinction between each drive, for instance, when carrying
out a FORMAT or COPY procedure. Moreover, in that case we have to work with
version 3.00 or higher. Older versions are not compatible with this.

Let's assume that drive A in our computer is a normal DSDD or HC drive (see
page 27) and that in drive B, a normal 5.25-inch drive has been replaced by
a 3.5-inch drive. To do this, there are special built-in assembly kits. If
we work with version 3.00, 3.10, 3.20 or 3.21 of the system, we have to
include the following instruction in the CONFIG.SYS file (see page 126):

drivparm=/d:1/f:2

If we work with version 3.30, 3.31 or higher, we are not allowed to use a
DRIVPARM instruction. Instead, we have to include another instruction in the
CONFIG.SYS file, namely the following, assuming that the DRIVER.SYS file
can be reached from the root directory:

device=driver.sys /d:1 /f:2 jc

Or, depending on the capacity of the drive:

device=driver.sys /d:1 /f:3 /c

The parameter /d:1 in both formulas indicates that the instruction concerns
drive B. 0 indicates drive A, 2 drive C, 3 drive D, and so on.

The parameter /f:2 lets the system know that we are dealing with a normal
3.5-inch drive with a capacity of 720 Kb, and /f:7 that we are dealing with
a 3.5-inch drive with a capacity of 1.44 Mb. 0 is a normal 360-Kb drive, and
1 is a HC drive, that is, a PC AT-type drive with a capacity of 1.2 Mb.

The parameter /c (for check) is not necessary but quite useful, since it
instructs the system to check, every time the door of the disk drive in
question has been used, whether a swapping of disks has taken place.

After adding the instruction to the CONFIG.SYS file, we have to carry out a
reset procedure or reload the computer. As a result, the system recognises
drive B in its new role, so that we can carry out all the usual transactions
with a disk in this drive.

11: ERROR MESSAGES

An offence against the rules of the operating system usually results in an
error message on the screen. In some cases, the message is just a warning,
leaving the proceedings uninterrupted. In other cases, the message prompts
us to do something - to hit a key, for instance.

Because of the differences between the various versions of the system, it
is not practical to present a complete survey of the error messages. The
messages most likely to be met are summarised below.

* * *
Access denied

We tried to open a subdirectory as a file, or the file indicated is write
protected. We must first unprotect it.

Allocation error, size adjusted

A CHKDSK message. The problem has automatically been taken care of.

Backup file sequence error

We tried to restore a file that was backed up on more than one disk. We must
first use the disk with the preceding part of the file.

Bad command or file name

The system does not recognise the file name or the command. Perhaps we have
made a typing error, or maybe the file is not on the disk indicated.

Bad or missing Command Interpreter

The disk from which the system has been loaded of is missing, or does not
contain a copy of the COMMAND.COM file. We must reload the system.

Bad Partition Table

The partition table of the hard disk does not have a DOS partition, or it is
invalid. We must run FDISK, create a new partition table, and re-run FORMAT.

Batch file missing

The batch file that was being processed is missing. Perhaps we took away the
disk it was on. In any case, the processing has been aborted.

Cannot CHOIR to root

A CHKDSK message. The root directory cannot be accessed. The disk is proba
bly damaged.

184 MS-DOS AND PC-DOS - A PRACTICAL GUIDE

Cannot CHKDSK a SUBSTed or ASSIGNed drive

A CHKDSK message. CHKDSK cannot access a subdirectory under a SUBST regime.
We should undo the SUBST command and re-run CHKDSK.

Cannot compare file to itself

The indicated file names refer to the same file on the same disk. Perhaps we
have forgotten to specify one of the drive letters.

Cannot edit .BAK file--rename file

EDLIN does not allow a .BAK file to be edited. Should it be necessary, how
ever, then we must rename the file, or at least change the extension.

Cannot execute FORMAT

It is necessary to format the backup disk. But the FORMAT.COM file cannot be
found in either the current directory or via the path we have set up.

Cannot find system files

The hidden system files cannot be found. We have to use another source disk
to re-start the procedure.

Cannot FORMAT nonremovable drive x

The target in this BACKUP command with the /f parameter is a hard disk. To
be able to use the hard disk as a target, we must first prepare it.

Cannot load COMMAND, system halted

The system had to reload COMMAND.COM, but there is too little memory, or
COMMAND.COM cannot be found. We have to reset the system.

Cannot perform a cyclic copy

There is something wrong with the XCOPY command formula. Perhaps the source
and the target directory are related to each other, causing a loop.

Cannot RECOVER Entry, Processing Continued

A CHKDSK message. The problem has automatically been taken care of.

Cannot start COMMAND, exiting

An attempt to load COMMAND.COM failed. Perhaps there is too little memory,
or else we should add or adjust a FILES= command in the CONFIG.SYS file.
We must now reset the system.

Cannot use FASTOPEN for drive x

Probably we typed a wrong drive letter. The FASTOPEN command can only be
used on a hard disk.

ERROR MESSAGES 185

Cannot XCOPY from a reserved device

Cannot XCOPY to a reserved device

Unlike COPY, the XCOPY command can only be used for transactions between
disk drives.

CHOIR .. Failed Trying Alternate Method

A CHKDSK message. A technical problem occurred. We must reset the system and
reload CHKDSK.

Configuration too large for memory

There is too little memory to load COMMAND.COM. We must adjust the FILES=
or BUFFERS= commands in the CONFIG.SYS file and see what happens when
reloading the system.

Content of destination lost before copy

The contents of one of the files to be used in a COPY command have been
overwritten before the procedure had been completed.

Data error reading drive x
Abort, Retry, Fail?

Data error writing drive x
Abort, Retry, Fail?

We are confronted with the problem that data cannot be found, deciphered or
stored on the disk in the drive indicated. Perhaps we have forgotten to
insert the disk in the drive, or maybe we have failed to close the latch of
the drive properly. In that case, we must correct the omission first and
then type an 'r'. In all other cases we must type an 'a', after which the
prompt will reappear and the computer's memory will have been emptied.

Directory is totally empty, no . or .. ,
tree past this point not processed

No proper . and .. entries were found in the subdirectory. Probably at one
time the updating process of the disk directory was interrupted. We must use
the RECOVER utility to try and rescue as many files from the subdirectory
as possible.

Disk boot failure

The operating system failed to load. If it fails a second time, we should
use a copy of the system disk.

Disk error reading drive x
Abort, Retry, Fail?

Disk error writing drive x
Abort, Retry, Fail?

186 MS-DOS AND PC-DOS - A PRACTICAL GUIDE

We are confronted with the problem that data cannot be found, deciphered or
stored on the disk in the drive indicated. Perhaps we have forgotten to
insert the disk in the drive, or maybe we have failed to close the latch of
the drive properly. In that case, we must correct the omission first and
then type an 'r'. In all other cases we must type an 'a', after which the
prompt will reappear and the computer's memory will have been emptied.

Disk error reading FAT x

Disk error writing FAT x

A CHKDSK message. The File Allocation Table indicated is invalid. If both
FAT 1 and FAT 2 appear to be invalid, the disk must be reformatted to make
it usable again.

Disk full. Edits lost

There was not enough room on the disk we indicated to store the file. As a
result, the revised version of the text was lost.

Disk not compatible

The FORMAT command cannot be executed because of the drive type.

Disk not Ready

No disk was found in the drive indicated. Perhaps we did not insert it pro
perly, or we forgot to close the latch.

Disk unsuitable for system disk

Bad sectors were found in the tracks that have been reserved for the system.
The system files will therefore not be copied.

Diskette is not a backup diskette

The BACKUP or RESTORE procedure cannot be executed, since the contents of
the disk were not created during a BACKUP procedure.

Diskette is not last backup diskette

The BACKUP or RESTORE procedure cannot be executed, since the contents of
the disk are not the last of a BACKUP series.

Diskette not compatible

The target disk is not formatted in the same way as the source disk. The
procedure cannot be executed.

Diskette not initialized

The CHKDSK program has not succeeded in finding the FAT or the directory.
Presumably, there is something wrong with the disk. It is advisable to try
and copy the files first.

ERROR MESSAGES 187

Divide overflow

There must be an error in the command, in the system or in the computer
causing the command in question to be aborted.

Drive not compatible

The target drive type differs from the source drive type. The procedure can
not be executed.

Duplicate file name or file not found

The file has not been found on the disk indicated, or the name we wanted to
give to the file already exists.

Entry error

We have made an error in typing an EDLIN command or entering text.

Entry has a bad allocation error, size adjusted

A CHKDSK message. The File Allocation Table contains an invalid sector
number. The file in question has been truncated at the end of the last valid
sector number.

Entry has a bad attribute

A CHKDSK message. If the command is given with the /f parameter, CHKDSK will
try and correct the error.

Error loading operating system

The system failed to boot from the hard disk. We must put a system disk in
drive A and have the system loaded from there.

Error opening log file

Perhaps we made an error in indicating the drive or path, or else there is
no more room in the directory we indicated.

Error reading partition table

Error writing partition table

A technical error occurred on the hard disk. We must run FDISK again.

Errors found, F parameter not specified
Corrections will not be written to disk

A CHKDSK message. Some errors haven been found, but nothing will be done
about it until we re-run CHKDSK with the /f parameter,

Errors on list device indicate that
it may be off-line. Please check

188 MS-DOS AND PC-DOS - A PRACTICAL GUIDE

The printer is not (or not properly) connected or not switched on.

EXEC failure

An error was encountered. We must adjust the FILES= command in the CONFIG.
SYS file.

FASTOPEN already installed

The FASTOPEN utility has already been loaded. No further action is required.

File allocation table bad, drive x
Abort, Retry, Ignore?

The File Allocation Table is defective. In order to control and possibly to
repair it we must type an 'a' and issue a CHKDSK command with the /f para
meter.

File cannot be copied onto itself
0 File(s) copied

Apparently we have given the command to copy a file and to store the copy
under the same name on the same disk. This is not possible. We must either
give the copy another name or store it on another disk.

File creation error

We have included an invalid character in the file name, or there is no more
room in the directory. We should run CHKDSK to find out what is wrong.

File not found

The file named in the command formula has not been found in the specified
drive. Perhaps we have made a typing error, or maybe have failed to indicate
the correct drive or (sub-)directory.

File is cross-linked on cluster xx

Two files seem to share a cluster of data. We must copy these files by means
of a COPY or XCOPY command to another disk, and then erase the originals.

File is READ-ONLY

We cannot write to the file indicated. We have to undo its read-only status
first.

File name must be specified

We failed to indicate the file that we want to edit.

File not found

The file indicated could not be found. Perhaps we made a typing error, or we
put the wrong disk in the drive.

ERROR MESSAGES 189

File not in print queue

There is no file with that name in the queue. Perhaps we made a typing
error.

FIND: Invalid number of parameters

We have forgotten to include all the necessary information in the FIND
command formula. Perhaps we failed to type the characters we wanted to be
found.

FIND: Syntax error

Owing to an error in the FIND command formula, it cannot be executed. Per
haps we have forgotten to type one or more inverted commas.

First cluster number is invalid, entry truncated

A CHKDSK message. The problem has automatically been taken care of.

Fixed backup device n: is full

The target disk is full.

Format failure

An unrecoverable error has been found on the disk during the FORMAT proce
dure. We must reissue the command. If the message reappears, we may as well
discard the disk, as it can no longer be used.

General failure

An error for which no other error message exists has been found. Perhaps the
disk type and drive type do not match, or the disk is not properly format
ted.

Has invalid cluster, file truncated.

A CHKDSK message. The problem has automatically been taken care of.

Illegal device name

The MODE command cannot be executed in this form. Perhaps we made a typing
error.

Illegal parameter

The specified parameter of the command or the indication of the file is not
correct.

Incompatible drive types

The DISKCOPY command cannot be executed. Perhaps we have a disk drive with
an insufficient capacity.

190 MS-DOS AND PC-DOS - A PRACTICAL GUIDE

Incompatible system size

The transfer of the system files cannot take place since there is not enough
room on the target disk. We must format a blank disk instead and then copy
the files from the original disk.

Incorrect DOS version

We cannot use a system utility from another system version than the one we
loaded.

Incorrect number of parameters

We made an error in the number or the form of the parameters. We must retype
the command.

Incorrect parameter

The parameter we added was not recognised. Perhaps we made a typing error.

Insert disk with \COMMAND.COM disk in drive x
and strike any key when ready

The COMMAND.COM file could not be found. We must insert a disk containing
this file in the drive indicated.

Insert disk with batch file
and strike any key when ready

We have to put the disk containing the batch file back in the drive, before
the rest of the commands can be carried out.

Insert DOS disk in drive x
and strike any key when ready

Insert system disk in drive x
and strike any key when ready

The hidden system files could not be found. We must insert a system disk in
the drive indicated.

Insufficient disk space

The disk in question has not enough free storage space to contain the new
file. We have to remove one or more existing files first.

Insufficient memory

There is not enough memory available to load the program file(s) indicated.
Perhaps we can discard the RAM-disk, if one is installed.

Insufficient memory for system transfer

There is not enough storage room on the disk.

ERROR MESSAGES

Insufficient room in root directory
Erase files from root and repeat CHKDSK

191

CHKDSK has found so many remainders of files that the root directory is
full. We have to remove or erase some files first.

Intermediate file error during pipe

The procedure cannot be executed. Perhaps one of the files named in the
formula is not present or there is too little room on the disk to contain
the temporary files.

Invalid baud rate specified

The first number in the MODE command is not correct. Only 110, 150 300,
1200, 4800, 9600, and (in DOS 3.30 and up) 19200 are permitted, or at least
the first two figures of those rates.

Invalid characters in volume label

We have broken the rules of typing the name of the label in the formula. We
have probably used an invalid character.

Invalid COMMAND.COM in drive x

The COMMAND.COM file that the system tried to reload is from another DOS
version.

Invalid current directory

A CHKDSK message. The problem has automatically been taken care of.

Invalid date

The form in which the date has been typed is not correct. We may have made
an error in the order (month/day/year), or used the wrong division sign.
Only '-' and '/' are allowed.

Invalid device

We have not specified the channel or destination properly. Maybe we have
typed a colon or a numeral in the wrong place or included more than one
space after the actual command.

Invalid directory

The directory indicated does not exist. Perhaps we made a typing error.

Invalid disk change

We changed a disk when one or more files were still in use. We must re
insert the original disk.

Invalid drive specification

192 MS-DOS AND PC-DOS - A PRACTICAL GUIDE

The drive is not specified properly. Perhaps we forgot to type a drive let
ter, or a colon.

Invalid language specified

The language code in the KEYB command is not valid. Perhaps we made a typing
error.

Invalid media or track 0 bad - disk unusable

FORMAT was unable to format track 0 of the specified disk. Perhaps we used
the wrong parameter. If not, we must discard the disk and use another one.

Invalid number of parameters

We made an error in the number or the form of the parameters. We must retype
the command.

Invalid parameter

Invalid parameters

The parameter we added was not recognised. Perhaps we made a typing error.
If there were two or more, we may have typed them in the wrong order.

Invalid partition table

While trying to load DOS from the hard disk, the system found invalid infor
mation in the partition table. We must use FDISK to try and correct the
problem.

Invalid path, not directory,
or directory not empty

The specified or active (sub-)directory cannot be removed because it is not
empty, or because the path command contains an invalid name or character.

Invalid path or file name

A file name or (sub-)directory in the COPY command does not exist. Perhaps
we have forgotten to indicate the relevant drive.

Invalid path or parameter

We made an error in the APPEND command. The /x and /e parameter can only be
specified alone, and only the first time APPEND is loaded.

Invalid subdirectory

A CHKDSK message. With the /f parameter, CHKDSK will try and correct it.

Invalid subdirectory entry.
Tree past this point not processed.
Convert directory to file (Y/N)?

ERROR MESSAGES 193

CHKDSK has found an entry error. We should return to the system level, to
try and copy all the files of this subdirectory. Next, we must re-run CHKDSK
with the /f parameter, and give 'y' for an answer.

Invalid switch

A '/' was found in the DEVICE=VDISK command, though not followed by an 'e'.

Invalid syntax

The formula is not correct. Perhaps we have made a typing error.

Invalid time

The form in which the time has been typed is not correct. We may have typed
an invalid division sign instead of a colon.

Invalid Volume Label

The text we typed does not match the volume label of the disk.

KEYB has not been installed

The message says it all.

*** Last file not backed up ***
The target disk was filled to capacity while the file was being backed up.

List output is not assigned to a device

Perhaps the printer is not (or not properly) connected, or not switched on.

Memory allocation error
Cannot load COMMAND, system halted

A technical error has occurred. We have to reload the system.

Missing file name

We have failed to type the old or new name of the file.

Missing operating system

The hard disk does not contain the system files. We must load the system
from a disk in drive A and FORMAT the hard disk with the /s parameter.

Must specify destination number

We probably forgot to specify a line number.

Must specify COMl, COM2, COM3 or COM4

The message is clear enough.

194 MS-DOS AND PC-DOS - A PRACTICAL GUIDE

Must specify ON or OFF

We have probably made a typing error. We have to issue the command again,
either In its bare form, or followed by ON or OFF.

No files found

On account of the criteria, no files were found to REPLACE.

No fixed disks present

The FDISK program did not detect a hard disk. Perhaps it was not properly
installed.

No operating system on fixed disk

There are no system files present on the hard disk.

No paper

The printer is either not turned on, or out of paper. We must tum the prin
ter on and press the On Line-switch, or add paper and retry.

No room for system on destination disk

No room has been reserved for the system files on the destination disk. The
SYS procedure cannot be carried out.

No room in directory for file

The directory on the drive Indicated is filled to capacity. The changes we
made to the file are lost.

No room in root directory

The volume label could not be created, probably because there was not enough
room left In the root directory. We must delete a file and try again.

Non-DOS disk

The File Allocation Table appears to contain Invalid Information. We must
re-format the disk.

Non-System disk or disk error
Replace and strike any key when ready

We have failed to load the system. There may be something wrong with the
hard disk. Or, if we work with a floppy disk, perhaps the disk does not con
tain any system files or we have not used the right system disk. Maybe we
should try another system disk.

No source drive specified

We must type the command again, this time Including source and target drive.

ERROR MESSAGES 195

No system on default drive

No hidden files were found on the disk in the active drive.

No target drive specified

We must type the command again, this time including source and target drive.

Not enough room to merge the entire file

Because of insufficient memory, EDLIN's T command was not able to merge all
of the specified file.

Not ready error reading drive x
Abort, Retry, Fail?

Not ready error writing drive x
Abort, Retry, Fail?

We are confronted with the problem that data cannot be found, deciphered or
stored on the disk in the drive indicated. Perhaps we have forgotten to
insert the disk in the drive, or maybe we have failed to close the latch of
the drive properly. In that case, we must correct the omission first and
then type an 'r'. In all other cases we must type an 'a', after which the
prompt will reappear and the computer's memory will have been emptied.

Out of paper

Either the printer is not properly connected or it has run out of paper, or
the output channel is not properly installed.

Parameter not compatible with fixed disk

A parameter has been added to the command which cannot possibly be meant for
the hard disk, such as /1 or /8.

Path name too long

The length of a path may not exceed 63 characters.

Print queue is empty

There is nothing wrong, but there are currently no files being processed.

Print queue is full

The maximum number of files (10) has been reached.

Printer error

Either the printer is not properly connected, or it has run out of paper.

Probable non-DOS disk.
Continue (Y/N) ?

196 MS-DOS AND PC-DOS - A PRACTICAL GUIDE

A CHKDSK message. There are difficulties reading the floppy or hard disk.
Perhaps it has not been formatted properly, if at all, or it is faulty.

Program too big to fit in memory

The file to be loaded is bigger than the amount of memory available. Perhaps
we can discard the RAM-disk, if one is installed.

Requested drive is not available

The drive specified does not exist.

Restore file sequence error

We did not insert the backup disks in the correct order.

Sector not found reading drive x
Abort, Retry, Fail?

Sector not found writing drive x
Abort, Retry, Fail?

Some data cannot be found, deciphered or stored on the disk in the drive
indicated. First we type an 'r', to repeat the command. If it fails, we may
type an 'f', which causes the system to try and skip the problem area.

Source diskette bad or incompatible

The DISCOPY procedure was aborted. Either some bad sectors were found while
reading the source disk, or the disk is not compatible with the drive type.

Source does not contain backup files

The files on the disk were not created by a BACKUP procedure.

Specified drive does not exist,
or is non-removable

No valid drive letter was indicated. Perhaps we made a typing error.

Target cannot be used for backup

No files could be created on the target disk. We must try another one.

Target diskette may be unusable

The target disk may be irreparably damaged. In order to control and possibly
to repair it, we have to issue a CHKDSK command.

Target diskette write protected
Correct, then strike any key

The target floppy disk is write-protected. We must either remove the protec
ting tab or use another disk.

ERROR MESSAGES 197

Target is full

There is no more room on athe target disk. We must either delete some files,
or use another disk with more storage room.

Track 0 bad-disk unusable

During a format procedure, one or more bad sectors have been found on track
0 of the disk. This disk can no longer be used.

Tree past this point not processed

Some error has occurred. The procedure cannot be completed past this point.

Unable to create directory

The subdirectory specified cannot be created. There may already be a sub
directory with this name or maybe the root directory is full.

Unrecognized command in CONFIG.SYS

The CONFIG.SYS file contains an invalid command. Perhaps we have made a
typing error. We have to recreate the file first and then reload the system.

Unrecoverable read error on drive x
Track a, side b

Unrecoverable read error on source
Track a, side b

Unrecoverable read error on target
Track a, side b

Unrecoverable verify error on target
Track a, side b

Unrecoverable write error on target
Track a, side b

An unrecoverable error has been found on the specified place of the source
or the target disk. The procedure will be continued but data may be missing.

Warning-directory full

The root directory is filled to its maximum. The RECOVER procedure will be
aborted.

Warning! Diskette is out of sequence
Replace the diskette or continue
Strike any key when ready

We have made an error in the order of the BACKUP disks. There is now an
opportunity to insert the right disk in the drive. The RESTORE procedure
will resume as soon as we press a key.

INDEX OF COMMANDS

In this index of commands, anything between square brackets indicates an
alternative or a facultative addition to the command in question; "x:" and
"y:" mean the designation of a drive; "{text}" stands for a string of cha
racters or a certain formula; "{file}" for a file or a group of files;
"{name}" for the name of a sub-directory; and "{channel}" for an input or
output channel.

ATTRIB [+r] [x:]{file}
[-r]

BACKUP x:[{file}] y:[/d][/m][/s]

BASIC [[x:]{file}]

BASICA [[x:]{file}]

BREAK [ON]
[OFF]

CD [[x:]\{name}]

CHOIR [[x:]\{name}]

CHKDSK [[x:]{file}][/f][/v]

CLS

COMP [[x:]{file}] [[y:]{file}]

COPY {channel} [x:]{file}
[x:]{file} {channel}
{channell} {channel2}
[[x:][{filel}[+[y:][{file2}]]]]

CTTY {channel}

DATE [{text}]

DEBUG [[x:]{file}]

DEL [x:]{file}

DIR [[x:]{name}][/p][/w]

DISKCOMP [x:] [y:]

DISKCOPY x: [y:][/1]

65

92, 180

156

156

127

86

86

32, 62

19

60

55, 117, 176

[y:][{file3}][/v]

124

20, 130

72

61

28

37

34

200 MS-DOS AND PC-DOS - A PRACTICAL GUIDE

ECHO [ON]
[OFF]
[{text}]

EDLIN [x:]{file}

ERASE [x:]{file}

FDISK

FIND[/c][/n][/v] "{text}" [x:]{file}

FORMAT [x:][/1][/8][/b][/s][/v]
[/4]

GOTO {text}

GRAPHICS [{text}[/r][/b]]

GWBASIC [[x:]{file}]

IF [NOT] EXIST [x:]{file} {command}

KEYB {text}

LABEL [x:] {text}

MD [x:]\{name}

MKDIR [x:]\{name}

MODE {channel}{text}
{text}
{channel1}={channel2}

MORE < [x:]{file}

PATH [\;]\{name1}[;\{name2} •••]

PAUSE [{text}]

38, 81,

120, 122,

PRINT [x:]{file1}[/c][/p] [[y:]{file2}[/c][/p]][/t] 136,
{text}

PROMPT [{text}]

RD [x:]\{name}

RMDIR [x:]\{name}

RECOVER [x:][{file}]

REM {text}

133,

147

96

61

80

73

169

150

135

157

149

173

43

83

83

172

54

90

147

158

152

85

85

64

146

INDEX OF COMMANDS

REN [x:]{namel} {name2}

RESTORE x: y:[{file}][/s]

SET [{text}]

SORT [/{text}] <[x:]{filel}] [>[y:]{file2}][/r]

SYS [x:]

TIME [{text}]

TREE [x:]

TYPE [x:]{file}

VER

VERIFY [ON]
[OFF]

VOL [x:]

201

52

93

153

142

44

20, 130

88

51

19

54

19

INDEX OF NAMES AND CONCEPTS

.$$$ - 97

Active drive - 17, 29, 35, 153
Active line - 102, 106, 112
Adapter - 119
Address - 72
Alternate mode - 75
ALT key - 16, 18, 75
ANSI - 67, 75
ANSI.SYS - 132, 133
APPEND command - 179
Apple II - 10
Arrow keys - 105
ASCII - 67, 75
- characters - 72
- code - 67, 70, 165
- file - 53, 166
- table - 68, 69, 70, 75, 164
ATTRIB command - 65
AUTOEXEC.BAT - 122, 134, 139, 148
AUX: - 119, 122

BACKUP command - 92, 93, 176, 180
Backspace - 70
- key - 18, 50, 105
Bad sector - see Sector
.BAK - 53, 99
.BAS - 53, 166
BASIC - 10, 15, 25, 47, 155
- Advanced Disk - 156
- cassette - 15, 156
- Disk - 156
BASICA - 155, 156
.BAT - 53
Batch file - 53, 145
Baud rate - 124
Binary
- digits - 32
- system - 67
- value - 67
BIOS - see ROM BIOS
Bit - 32
Boot - 79, 82
.<BREAK> - 98, 127
BREAK key - 127, 176
Buffer - 22, 127, 129
Byte - 27, 32, 47

·c - 51, 11, 98, 121
Cancel function - 71
Carriage return - 70, 71
- character - 70
CD command - 86, 87
Central Processing Unit - 13, 17, 26
Centronics - see Parallel channel
CHDIR command - see CD command
Chip - 25
CHKDSK command - 32, 42, 43, 47,

49, 62, 63
CLS command - 19, 157
Clusters - 63
Colour/graphics adapter - 119, 121
Colour monitor - 120, 121
.COM- 53
COMl: device - 59, 122
Command - 17, 49
- line - 17, 22
COMMAND.COM - 44, 48, 49
COMP command - 60
Compatibles - 10, 13
CON: device - 58, 59
CONFIG.SYS file - 126, 181
Console - 58, 124
Control
- codes - 70
- instructions - 18, 51, 70, 71
COPY command - 55, 59
COPY CON: command - 49, 50, 58, 95
Country code - 130, 173
CPU - see Central Processing Unit
CTRL key - 16, 18, 70
CTTY device - 124
Cursor - 16

Date - 20, 21, 23
- current - 20
- invalid - 23
DATE command - 20, 21, 148
DEBUG command - 72
DEL
- command - 49
- key - 18, 104
Delete - 61, 91, 115
Density - 25
Device - 119, 126
- driver - 119, 122, 181

204 MS-DOS AND PC-DOS - A PRACTICAL GUIDE

DIR command - 28, 29, 43, 49
Directory - 28
- current - 88
- root - 83
Disk drive - see Drive
DISKCOMP command - 37
DISKCOPY command - 33, 35, 36, 37
Disk - 25
- double-density - 27
- double-sided - 27, 34
- floppy - 26
- flexible - 26
- fixed - 25
- hard - 10, 15, 25, 79, 92
- single-sided - 34, 36
- source - 34
- system - 34
- target - 34
- virtual - see RAM disk
- Winchester - see hard disk
Disk Operating System - 13
Drive - 13, 14, 26, 27, 91, 181
- double density - 27
- double-sided - 27, 36
- high capacity - 27, 40
- high density - 27
- single-sided - 27
- type - 27
- quad density - 27, 40
.DOC- 53
DOS - 10, 13, 14
- Partition - 80
Double-sided - see Disk
DSDD- 27
DSQD- 27

ECHO command - 147
Editing keys - 22
EDLIN command - 50, 95
Electronic disk - see RAM disk
END key- 16
End of file-symbol - 58, 71
ENTER key - 14, 16
Epson printer - 165
ERASE command - 49, 61
Error messages - 11, 15, 16, 18
ESC- 70
- character - 164
- code - 132, 164
- key - 16, 18, 50, 105
.EXE - 53
EXIT command - 149
Extended character set - 75, 76, 77,

173

Extension - 29, 47, 53
F1 key - 22, 104, 107, 108
F2 key - 23, 104, 108
F3 key - 22, 23, 104, 105, 108, 110
F4 key - 23, 107, 110
F5 key - 108, 110
F6 key - 96, 113
FAT - see File Allocation Table
FC command - 17 4
FDISK command - 80
FF - see Formfeed
File Allocation Table - 47, 48
File - 47, 126
- ASCII - 53
- backup - 99
- batch - 53
- name - 29
- program - 47
- size - 29, 47
- system - 33, 44, 45, 47, 48
Filter - 139
FIND command - 73, 112, 144
Fixed disk - see Disk
Flexible disk - see Disk
Floppy disk - see Disk
FOR command - 163
FORMAT command - 38, 81, 169
Formfeed - 67, 71
Function keys - 16, 22, 23, 104,

132, 134

Gates, Bill - 155
GOTO command - 150
Graphics - 121, 135, 167
- adapter - 120
- mode - 121
GW-BASIC - 155, 157, 167

AH - 18, 70, 105
Hard copy - 107
Head crash - 79
Hercules graphics card - 121
Hexadecimal value - 67, 70, 72, 132
Hidden files - 33, 43, 44, 48, 49
High Capacity - see Drive
High Density - see Drive
HOME key - 16
.<HOME> - 157

IBM - 10, 13
- colour printer - 135
- compatibles - 14
- graphics printer - 135
- PC - 10, 13, 15, 79

INDEX OF NAMES AND CONCEPTS

IBMBIO.COM - 33
IBMDOS.COM - 33
IF EXIST command - 149
Initialising - 38
Input channel - 59, 119
INS key - 16, 104
Installable device drivers - 126
Intel
- 8086 - 10
- 8088 - 10
Interface - 1 7
Interrupt function - 127, 176
Italics - 165

Joystick - 13

Kb - see Kilobyte
Kemeny, John G. - 155
Key bar - 159
KEYB command - 173
Keyboard - 13, 16, 49, 74, 132, 173
- European- 74, 129, 173
- layout - 129
-QWERTY 16
Keypad - 16
Kilobyte - 32
Kurtz, Thomas E. - 155

Label - 19, 33, 42, 150
LF - see Line feed
Line editor - 95
Line printer - 159
Line feed - 67
- function - 71
LOAD - 167
Loading the system - 14, 82
Loop - 163
LPRINT command - 159, 164
LPTI: - 59, 123
LPT2: - 59
LPT3: - 59

Mb - see Megabyte
MD command - 83, 86, 87
Megabyte - 32
Memory- 32
- expansion - 129
Menu - 80
Microprocessor - 13
Microsoft - 10, 32, 155, 169
MITS Altair - 155
MKDIR command - see MD command
MODE command - 120, 121, 122, 124,

172

Modem - 13, 125
Monitor - 13
- adjustment - 120
- colour - 120
- monochrome - 120
MORE command - 54, 140
Mouse - 13
MS-DOS - 9, 13, 16
- Generic - 169, 174
- system disk - 48
- version - 10, 169

NEXT command - 163
Non-contiguity - 62
Norton Utilities - 61
NUL: - 69
Numeric keypad - 16, 75
NUM LOCK key - 16

Operating system - see System
Output channel - 59, 119
Overlay file - 53
.OVR - 53

4 p - 51, 71
Parallel channel - 59, 122, 123
Parameter - 30
Path - 90, 179
PATH command - 88
PAUSE command - 147
PC - see Personal Computer
PC-DOS - 9, 13, 16, 169, 171
PC Jr - 10
PC AT - 10, 27, 40, 79, 170
PC XT - 10, 79
Personal Computer - 10, 13
PG DN key- 16
PG UP key- 16
Pipeline - 139, 144
Plotter - 13
Printing - 51, 58, 136, 137, 158,

160
PRINT command - 137
Printer - 122, 159, 164
- daisywheel - 122
- dot-matrix - 122, 165
- instruction - 71, 164
- laser - 122
- parallel - 122
- serial - 122
PRN: device - 58, 59, 123
Processor - 16
Program - 155
Programming language - 155

205

206 MS-DOS AND PC-DOS - A PRACTICAL GUIDE

PROMPT command - 133, 152
Prompt - 15, 17, 133, 134, 139, 152
PRT SC key - 16, 51, 135
PS/2 - 79, 134

Quick Unerase - 61
QWERTY- 16

RAM - see Random Access Memory
- disk - 128
- size - 128, 129
Random Access Memory - 25, 32, 119
RD command - 85
Read-only file - 65
Read-Only Memory - 25, 156
RECOVER command - 64
Redirecting - 140
REM command - 146
Remote control - 124
REN command - 51, 99
REPLACE command - 178
RESET procedure - 18
RESTORE command - 92, 93, 180
RETURN key - 14, 16, 50
RMDIR command - see RD command
ROM - see Read-Only Memory
ROM BIOS - 25, 82
Root directory - 83, 86, 88, 90
RUN command - 167

As - 71
Screen - 120, 158
- dump - 135
- editor - 95
SCROLL LOCK key - 16
Search - 112
- path - 90
Seattle Computer Products - 10
Sector - 26, 27
- bad - 33
- size - 27
Serial
- channel - 122
- printer - 122
SET command - 153
SHIFT keys - 16
Single-sided - see Disk
SORT command - 139, 142
Sound - 172
Source - see Disk
Space - 142
Spacebar - 16
Speed - 172
SSDD - 27

STEP command - 163
Storage
- media - 25
- capacity - 27, 32, 38, 82
Sub-directory - 83, 84, 86, 87, 91
SUBST command - 91
Syntax error - 158
SYS command - 44, 53
System - 13, 14, 15, 47, 71, 157
- disk - 14, 1 7, 34, 48
- files - 32, 45
- version - 19

TAB key - 16, 71, 105
Tape streamer - 79
Target - see Disk
Text
- file - 47, 50
- mode - 120, 121
TIME command - 20, 148
Tracks - 26
TREE command - 88, 89
Tree structure - 88
TYPE command - 49, 51, 140
.TXT - 53

UnErase - 61
Unformat - 170
Utility - 48, 49, 126

Variable - 151, 162
VDISK - 128
VER command - 19, 54
Verifying - 54, 55
Version - 19
Virtual disk - see RAM disk
VOL command - 19, 43
Volume - see Label

Wildcard - 31, 52
Winchester - see Disk
Wordprocessing - 50
WordPerfect - 95
WordStar - 95

XCOPY command - 36, 176

Az - 51, 71, 96, 113

