
 Linux kernel internails - 1 -

 Linux kernel internails - 2 -

 Linux kernel internails - 3 -

In memoriam,
Dirk Verwomer

 Linux kernel internails - 4 -

PREFACE

This is the second edition of our book about the LINUX kernel. The book has been

updated to cover the 2.0 version of the kernel, which is a milestone in the
development of LINUX. LINUX 2.0 is now the standard UNIX desktop operating system,
giving you all the power of free UNIX software which has been developed over more
than 25 years, together with a growing number of commercial applications. It is both
stable and open. There are no hidden secrets. If you want to solve a problem, you can
get the source code. Such a philosophy is exactly what this book is about. We tell you
about the LINUX kernel so, you, the experienced computer user, are always in control.

It seems that a lot of early LINUX hackers, like ourselves, are now professional
software developers. As such, it is always helpful to know something about operating
systems. At least you will have seen some pieces of really good code. When we started
to play with LINUX, we did it for fun. Now there is a real return. Seen in this light, this
book is a good investment.

Recently some hackers told us that LINUX is boring. They want to have the
excitement of something really cool and new, and the joy of seeing something grow from
scratch. To us, though, developments such as a project to develop a LINUX graphical user
interface supporting a unique look-and-feel still seem very exciting. Such developments
will make LINUX usable for the famous 'rest of us'. For a lot of people LINUX is a better
UNIX than UNIX. We would really love to use a better Windows than Windows. Or to put
it another way:

simply make LINUX more like the Macintosh.
As in every preface, we want to thank all the people who made this edition

possible. We have to mention here Fiona Kinnear from Addison Wesley Longman. This
edition would not have been published without her commitment.

 Linux kernel internails - 5 -

Contents

Foreword vii

Preface ix

1 LINUX - the operating system 1
1.1 Main characteristics 3
1.2 Linux distributions 5

2 Compiling the kernel 6
2.1 Where is everything? 6
2.2 Compiling 9
2.3 Additional configuration facilities 11

3 Introduction to the kernel 15
3.1 Important data structures 20
3.1.1 The task structure 20
3.1.2 The process table 29
3.1.3 Files and inodes 31
3.1.4 Dynamic memory management 33
3.1.5 Queues and semaphores 34
3.1.6 System time and timers 36
3.2 Main algorithms 37
3.2.1 Signals 37
3.2.2 Interrupts 39
3.2.3 Booting the system 41
3.2.4 Timer interrupt 44
3.2.5 The scheduler 47

 Linux kernel internails - 6 -

Contents
3.3 Implementing system calls 51
3.3.1 How do system calls actually work? 51
3.3.2 Examples of simple system calls 53
3.3.3 Examples of more complex system calls 55
3.3.4 Implementing a new system call 65

4 Memory management 70
4.1 The architecture-independent memory modelin
LINUX 72

4.1.1 Pages of memory 72
4.1.2 Virtual address space 72
4.1.3 Converting the linear address 73
4.1.4 The page directory 74
4.1.5 The page middle directory 75
4.1.6 The page table 76

4.2 The virtual address space for a process 79
4.2.1 The user segment 79
4.2.2 Virtual memory areas 81
4.2.3 The system call brk 85
4.2.4 Mapping functions 86
4.2.5 The kernel segment 86
4.2.6 Static memory allocation in the kernel

segment 88
4.2.7 Dynamic memory allocation in the 88

4.3 Block device caching 92
4.3.1 Block buffering 92
4.3.2 The update and bdf Lush processes 94
4.3.3 List structures for the buffer cache 95
4.3.4 Using the buffer cache 96

4.4 Paging under LINUX 98
4.4.1 Page cache and management 100
4.4.2 Finding a free page 101
4.4.3 Page errors and reloading a page 106

5 Inter-process communication 108
5.1 Synchronization in the kernel 110
5.2 Communication via files 114
5.2.1 Locking entire files 115
5.2.2 Locking file areas 116
5.3 Pipes 119
5.4 Debugging using ptrace 121
5.5 System VIPC 125

 Linux kernel internails - 7 -

Contents

5.5.1 Access permissions, numbers and keys 125
5.5.2 Semaphores 126
5.5.3 Message queues 130
5.5.4 Shared memory 133
5.5.5 The i pcs and i pcrm commands 137

5.6 IPC with sockets 138
5.6.1 A simple example 139
5.6.2 The implementation of UNIX domain sockets 143

6 The LINUX file system 148
6.1 Basic principles 149
6.2 The representation of file systems in the kernel 152

6.2.1 Mounting 153
6.2.2 Superblock operations 155
6.2.3 The inode 158
6.2.4 Inode operations 161
6.2.5 The file structure 165
6.2.6 File operations 165
6.2.7 Opening a file 169
6.2.8 The directory cache 172

6.3 The Proc file system 173
6.4 The Ext2 file system 179

6.4.1 The structure of the Ext2 file system 180
6.4.2 Directories in the Ext2 file system 182
6.4.3 Block allocation in the Ext2 file system 183
6.4.4 Extensions of the Ext2 file system 184

Device drivers under LINUX 186
7.1 Character and block devices 188
7.2 Polling and interrupts 190

7.2.1 Polling mode 190
7.2.2 Interrupt mode 191
7.2.3 Interrupt sharing 193
7.2.4 Bottom halves 194
7.2.5 Task queues 196
7.2.6 DMA mode 198

7.3 The hardware 200
7.3.1 Hardware detection 203
7.3.2 Automatic interrupt detection 205

7.4 Implementing a driver 207
7.4.1 The setup function 209
7.4.2 init 210
7.4.3 open and release 212

 Linux kernel internails - 8 -

7.4.4 read and write 214
7.4.5 IOCTL 217
7.4.6 select 219
7.4.7 Lseek 220
7.4.8 mmap 220
7.4.9 readdir, f sync and fasync 221
7.4.10 check_media_change and revalidate 221

7.5 An example of DMA operation 221

Network implementation 227
8.1 Introductory summary 228

8.1.1 The layer model of the network
implementation 229
8.1.2 Getting the data from A to B 230
2 Important structures 234
8.2.1 The socket structure 234
8.2.2 The sk_buff structure-buffer
management in the network 235
8.2.3 The INET socket - a special part
of a socket 239
8.2.4 Protocol operations in the proto
structure 243
8.2.5 The general structure of a socket
address 246

8.3 Network devices under LINUX 247
8.3.1 Ethernet 254
8.3.2 SLIP and FLIP 255
8.3.3 The loopback device 255
8.3.4 The dummy device 255

8.4 ARP - the Address Resolution Protocol 256
8.5 IP 259

8.5.1 IP - general introduction 259
8.5.2 IP functions 260
8.5.3 Routing 263
8.5.4 IP multicasting and IGPM 265
8.5.5 IP packet filters 267
8.5.6 IP accounting and IP firewalling 268

8.6 UDP 269
8.6.1 Functions of UDP 269
8.6.2 Other functions 271

8.7 TCP 271
8.7.1 General notes on TCP 271
8.7.2 The TCP communication end-point -
a finitp stafp maHiinp 272

 Linux kernel internails - 9 -

8.7.3 Functions of TCP 273
8.8 The packet interface - an alternative? 277

9 Modules and debugging 279
 9.1 What are modules? 279
 9.2 Implementation in the kernel 280
 9.2.1 Signatures of symbols 283
 9.3 What can be implemented as a module? 283
 9.4 Parameter passing 285
 9.5 The kernel daemon . 285
 9.6 An example module ^ 287
 9.7 Debugging 289

9.7.1 Changes are the beginning of the end 289
 9.7.2 The best debugger -pnntkO 290
 9.7.3 Debugging with gdb 291

10 Multi-processing 293
10.1 The Intel multi-processor specification 293
10.2 Problems with multi-processor systems 295
10.3 Changes to the kernel 296

10.3.1 Kernel initialization 296
10.3.2 Scheduling 297
10.3.3 Message exchange between processors 298
10.3.4 Entering kernel mode 298
10.3.5 Interrupt handling 299

10.4 Compiling LINUX SMP 300

APPENDIX A - System calls 301
A. 1 Process management 302
A. 2 The file system 339
A. 3 Communication 370
A. 4 Memory management 373
A. 5 Initialization 378
A. 6 All that remains 379

APPENDIX B - Kernel-related commands 380
B.1 free - synopsis of the system memory 380
B.2 ps - display of process statistics 381
B.3 Additional kernel configuration 386
B.4 top-the CPU charts 387
B.5 i ni t - primus inter pares 389
B.6 shutdown - shutting down the system 395
B.7 s t race - monitoring a process 396

 Linux kernel internails - 10 -

B.8 Configuring the network interface 400
B.9 traceroute - Ariadne's thread in the Internet 400
B.10 Configuring a serial interface 403
B. 11 Configuring a parallel interface 405
B.12 mount 407

APPENDIX C - The Proc file system 415
C.I The /proc/ directory 415
C.2 The net/ directory 421
C.3 The self/ directory 422
C.4 The sys/ directory 426

APPENDIX D - The boot process 428
D.1 Carrying out the boot process 428
D.2 LILO - the Linux loader 431
D.2.1 LILO started by MS-DOS MBR 431
D.2.2 LILO started by a boot manager 431
D.2.3 LILO in the master boot record 432
D.2.4 LILO files 432
D.2.5 LILO boot parameters 437
D.2.6 LILO start-up messages 439
D.2.7 Error messages 439
APPENDIX E - Useful kernel functions 441

Preferences 457

Index 461

 Linux kernel internails - 11 -

1 LINUX - the operating system
Linux is obsolete! Andrew S.

Tanenbaum

1.1 Main characteristics 1.2 LINUX distributions

LINUX is a freely available UNIX-type operating system. Originally developed only for the
PC, it now runs on Digital Alpha and Spare workstations as well. Further ports, for example
to the Amiga and the PowerPC, are under development and are already relatively stable.

LINUX is compatible with the POSIX 1003.1 standard and includes large areas of the
functions of UNIX System V and BSD 4.3. Substantial parts of the LINUX kernel with which
we will be concerned in this book were written by Linus Torvalds, a Finnish student of
computer science. He placed the program source codes under the GNU Public License,
which means that everyone has the right to use, copy and modify the programs free of
charge.

The first version of the LINUX kernel was available on the Internet in November 1991.
A group of LINUX activists quickly formed, and continues to spur on the development of this
operating system. Numerous users test new versions and help to clear the bugs out of the
software.

The LINUX software is developed under open and distributed conditions. 'Open' means
that anyone can become involved if they are able. This requires LINUX activists to be able to
communicate quickly, efficiently and above all globally. The medium for this is the Internet.
It is therefore no surprise that many of the developments are the product of gifted students
with access to the Internet at their universities and colleges. The development systems
available to these students tend to be relatively modest; and it is no doubt for this reason

1

 Linux kernel internails - 12 -

 Chapter 1 LINUX - the operating system

that LINUX is the 32-bit operating system that uses the smallest resources, without
sacrificing functionality.

As LINUX is distributed under the conditions of the GNU Public License, the full
source code is available to users. This allows anyone to find out how the system works and
trace and remove any bugs. However, the real attraction for the authors of this book lies in
'experimenting' with the system.

Needless to say, LINUX has its drawbacks. It is just as much of a 'programmer's system'
as UNIX. Cryptic commands, configurations which are difficult to follow and documentation
which is not always comprehensive make the system far from easy to use - and not only for
beginners. However, it appears that many users accept this downside to escape the number
of limitations (technical as well as financial) found in proprietary systems such as MS-DOS,
Windows, or commercial UNIX derivatives for the PC. In the meantime many books on
LINUX accessible to beginners have been written in addition to the Linux Documentation
Project (LDP).

LINUX systems are used in software houses, by Internet providers, in schools and
universities and in private homes. There is no computer magazine that does not regularly
report on this operating system. The German LINUX market alone is worth several million
Marks per year. Considering LINUX simply as a pure hackers' toy no longer does justice to
reality.

Although there are ports to other hardware architectures, most users still run LINUX on
Intel 386 or compatible systems. Owing to the wide availability of these systems, there are
almost no problems under LINUX with peripheral device drivers. As soon as a new PC
expansion board is on the market, some LINUX user will implement a driver for that board.'
Since version 2.0, LINUX also supports multi-processor systems based on Intel and Spare
architectures.

To ensure reasonable performance under LINUX, the PC should have at least 8 Mbytes
of RAM, but if the X Window system is being used as the graphical user interface, at least
16 Mbytes are needed. With double that amount, performance remains acceptable even
when you are running several compilers in the background and trying to edit a text in the
.foreground. However, for special applications such as modem/fax servers or firewalls, 4
Mbytes are sufficient.

In principle, LINUX supports any readily available UNIX software. Thus, object-oriented
programs can be written in GNU C++ or graphics created under the X Window system.
Games such as Tetris will run, as will development systems for graphical user interfaces.
With their built-in network support, LINUX computers can be linked into existing networks
without problems.

1 Manufacturers who do not release information on the functioning of their hardware do not benefit from this.

 Linux kernel internails - 13 -

1.1 Main characteristics

LINUX will meet all the demands made nowadays of a modern, UNix-type operating system.

• Multi-tasking
LINUX supports true preemptive multi-tasking. All processes run entirely
independently of each other. No process needs to be concerned with making
processor time available to other processes.

• Multi-user access
LINUX allows a number of users to work with the system at the same time.
• Multi-processing

Since version 2.0, LINUX also runs on multi-processor architectures. This means that
the operating system can distribute several applications (in true parallel fashion)
across several processors.

• Architecture independence
LINUX runs on several hardware platforms, from the Amiga to the PC to DEC Alpha
workstations. Such hardware independence is achieved by no other serious operating
system.

• Demand load executables
Only those parts of a program actually required for execution are loaded into
memory. When a new process is created using -forkO, memory is not requested
immediately, but instead the memory for the parent process is used jointly by both
processes. If the new process subsequently accesses part of the memory in write
mode, this section is copied before being modified. This concept is known as copy-
on-write.

• Paging
Despite the best efforts to use physical memory efficiently, it can happen that the
available memory is fully taken up. LINUX then looks for 4 Kbyte memory pages
which can be freed. Pages whose contents are already stored on hard disk (for
example, program files) are discarded. All other pages are copied out to hard disk. If
one of these pages of memory is subsequently accessed, it has to be reloaded. This
procedure is known as paging. It differs from the swapping used in older variants of
UNIX, where the entire memory for a process is written to disk, which is certainly
significantly less efficient.

• Dynamic cache for hard disk
Users of MS-DOS will be familiar with the problems resulting from the need to
reserve memory of a fixed size for hard disk cache programs such as
SMARTDRIVE. LINUX dynamically adjusts the size of cache memory in use to suit
the current memory usage situation. If no more memory is

 Linux kernel internails - 14 -

available at a given time, the size of the cache is reduced to free memory. Once
memory is again released, the area of the cache is increased.

• Shared libraries
Libraries are collections of routines needed by a program for processing data. There
are a number of standard libraries used by more than one process at the same time.
It therefore makes sense to load the program code for these libraries into memory
only once, rather than once for each process. This is made possible by shared
libraries. As these libraries are loaded only when the process is run, they are also
known as dynamically linked libraries or, in other operating system environments,
as dynamic link libraries.

• Support for POSIX 1003.1 standard and in part System V and BSD
POSIX 1003.1 defines a minimum interface to a UNIX-type operating system. This
standard is now supported by all recent and relatively sophisticated operating
systems. LINUX (since version 1.2) fully supports POSIX 1003.1. Meanwhile there
are even LINUX distributions that have gone through the official certification
process and therefore have the right to call themselves officially 'POSIX
compatible'. Additional system interfaces for the UNIX System V and BSD
development lines are also implemented. Software written for UNIX can generally
be ported directly to LINUX.

• Various formats for executable files
It is naturally desirable to be able to run under LINUX programs which run in
different system environments. For this reason, emulators for MS-DOS and MS-
Windows are currently under development. LINUX can also execute programs from
other UNIX systems conforming to the iBCS2 standard. This includes, for example,
many commercial programs used under SCO UNIX. Also, in ports to other
hardware architectures (for example Spare and Alpha), care is taken that the
individual 'native binaries' can be executed. Thus, there is a wealth of commercial
software available to the LINUX user without its having been specially ported to
LINUX.

• Memory protected mode
LINUX uses the processor's memory protection mechanisms to prevent the process
from accessing memory allocated to the system kernel or other processes. This is a
major contribution to the security of the system. An erroneous program can
therefore (theoretically) no longer crash the system.

• Support for national keyboards and fonts
Under LINUX, a wide range of national keyboards and character sets can be used:
for example, the Latini set defined by the International Organization for
Standardization (ISO) which also includes European special characters.

 Linux kernel internails - 15 -

• Different file systems
LINUX supports a variety of file systems. The most commonly used file system at
present is the Second Extended (Ext2) File System. This supports filenames of up to
255 characters and has a number of features making it more secure than
conventional UNIX file systems.

Other file systems implemented are the MS-DOS file system and the VFAT file
system for accessing MS-DOS or Windows 95 partitions, the ISO file system for
accessing CD-ROMs and the NFS for accessing the file systems of other UNIX

computers present in the network. Less widely spread are the AFF file system for
accessing the Amiga Fast File system, the UPS and the SysyV file systems for
accessing UNIX file systems of other manufacturers, HPFS for accessing OS/2
partitions and the Samba file system for accessing file systems exported from
Windows computers. Other file systems, such as the Windows NT file system used
under Windows NT, are under development and available as beta versions. What
commercial operating system can offer such a range?

• TCP/IP, SLIP and PPP support
LINUX can be integrated into local UNIX networks. In principle, all network services,
such as the Network File System and Remote Login, can be used. SLIP and PPP
support the use of the TCP/IP protocol over serial lines. This means that it is possible
to link into the Internet via the public telephone network using a high-speed modem.

1.2 LINUX distributions

To install LINUX, the user requires a distribution. This consists of a boot diskette and other
diskettes or a CD-ROM. Installation scripts enable even inexperienced users to install
runnable systems. It helps that many software packages are already adapted to LINUX and
appropriately configured: this saves a lot of time. Discussions are constantly taking place
within the LINUX community on the quality of the various distributions; but these
frequently overlook the fact that compiling a distribution of this sort is a very lengthy and
complex task.

Internationally widely used are the RedHat, the Debian and the Slack-ware
distributions. Which of these distributions is used is just a matter of taste. Distributions
can be obtained from FTP servers, e-mail systems, public-domain distributors and some
bookshops. Sources of supply can be found by consulting specialist magazines or the
LINUX newsgroups in Usenet.

 Linux kernel internails - 16 -

2 Compiling the kernel

A system is anything with no system to it,
hardware is anything that clatters when you drop it,
and software is anything/or which there is a logical explanation
why it's not working.
Johannes Leckebusch

Before we go on to study the inner life of the LINUX kernel in the following chapters/we
will first take a look at the source and compiled versions of the kernel.

2.1 Where is everything?

As the source codes have already grown to a quite considerable size," different parts of the
kernel can be found in different directories.

In the LINUX system, the sources can normally be found under /usr/src/Linux. In the
following chapters, therefore, the pathnames given are always relative to this directory.
The exact directory structure is shown in Figure 2.1.

Ongoing porting to other architectures has resulted in changes as compared with
version 1.0 of the kernel. Architecture-dependent code is held in the subdirectories of
arch/. This at present contains the directories arch/alpha/ for the DEC Alpha, arch/1386/
for the Intel 386 and compatible processors, arch/nips/ for the MIPS architecture,
arch/ppc for the PowerPC architecture and arch/spare/ for the port to Spare workstations.
As LINUX is mainly used on PCs, we will only be considering this architecture in what
follows.

 Linux kernel internails - 17 -

Figure 2.1 The directory structure of the LINUX sources.

For the most part, the LINUX kernel is nothing other than a 'standard' C program. There
are only two real differences. The usual entry function, familiar in C programs as
maindnt argc, char **argv), appears in LINUX as start_kernel(void) and is not given
any arguments. In addition, the environment for the 'program' does not yet exist. This
means that there is a little preparatory work to be done before the first C function is
called. The assembler sources which take care of this are held in the directory
apch/i386/boot/. They also configure the hardware, so this section is highly machine-
specific.

The appropriate assembler routine loads the kernel. It then installs the interrupt
service routines, the global descriptor tables and the interrupt descriptor tables, which
are only used during the initialization phase. Address line A20 is enabled, and the
processor switches to Protected Mode.

The init/ directory contains all the functions needed to start the kernel. Among
the functions held here is start_kernel(), which was mentioned above. Its task is to
initialize the kernel correctly, taking account of the boot parameters passed to it. As
well as this, the first process is created without using the system call fork, that is,
'manually'.

The directories kernel/ and arch/i386/kernel/ contain, as their names suggest,
the central sections of the kernel. This is where the main system calls (such as fork,
exit, and so on) are implemented. In addition, the mechanism used by all system
calls to switch to system mode is defined. Other important sections are time
management (system time, timers, and so on), the scheduler, the DMA and interrupt
request management and signal handling.

Memory management sources for the kernel are stored in the directories ••/
and arch/i386/—/. This takes care of requesting and releasing kernel

 Linux kernel internails - 18 -

memory, saving currently unused pages of memory to hard disk (paging), inserting file
and memory areas at specified addresses (see the mmap system call,
page 373) and the virtual memory interface.

The virtual file system interface is in the -fs/ directory. The implementations of the
various file systems supported by LINUX are held in the respective subdirectories. The two
most important file systems are Proc and Ext2. The Proc file system is used for system
management; Ext2 is at present 'the' standard file system for LINUX.

Every operating system requires drivers for its hardware components.
These are held in the drivers/ directory and can be classified into groups according to
their subdirectories. These comprise:

• drivers/block/
the device drivers for block-oriented hardware (such as hard disks),

• drivers/cdroi/
the device drivers for proprietary CD-ROM drives (no SCSI or IDE

drives),
• drivers/char/

the drivers for character-oriented devices,
• drivers/isdn/

the ISDN drivers,
• drivers/net/

the drivers for various network cards,
• drivers/pci/

PCI bus access and control,
• drivers/sbus/

access and control of Spare machines' S buses,
• drivers/scsi/

the SCSI interface, and
• drivers/sound/

the sound card drivers.

The drivers listed here are partially architecture-dependent and would properly belong to
the arch/*/ directory, where - in arch/i386/math-emu/ - the emulation of the maths co-
processor's floating-point arithmetic is already located. This only comes into use if no
maths co-processor is present.

The ipc/ directory holds the sources for classical inter-process communication (IPC) as per
System V. These include semaphores, shared memory and

message queues.
The implementations of various network protocols (TCP/IP, ARP, and so on) and

the code for sockets to the UNIX and Internet domains have been stored in the net/
directory. As is usual in other systems, the user can access

 Linux kernel internails - 19 -

lower protocol layers (for example, IP and ARP). Because of its complexity, this section
has not yet been completed.

Some standard C library functions have been implemented in llb/, so that
programming in the kernel can use the conventions of programming in C.

The modules generated when the kernel is compiled are held in the •odule/
directory and can be added to the LINUX kernel later, at run-time. This directory will
therefore be empty until the first compilation is run.

Probably the most important directory for programming close to the kernel is
include/. This holds the kernel-specific header files. The incLude/asm-1386/ directory
contains the architecture-dependent include files for Intel PCs. To simplify access, the
symbolic link IncLude/asm/ points to the current architecture directory.

As the header files may change from version to version, it is simpler to set up
links in usr/include/ to the two subdirectories include/1 inux/ and IncLude/asm.
Thus, when LINUX kernel sources are changed, the header files are updated
automatically.

2.2 Compiling

In essence, a new kernel is generated in three steps. First, the kernel is configured by

make config

This runs the Bash script Con-figure, which reads in the arch/i386/config.in file,
which is located in the architecture directory and holds the definitions of the kernel
configuration options and default assignments, and interrogates it to see which
components are to be included in the kernel. arch/i386/config.in resorts to the Con-
fig.in files contained in the directories of the individual subsystems of the kernel.
Easier-to-handle configuration scripts can be called with

make config
for a menu-driven console installation or with # make

xconfig

for a menu-driven installation under the X Window system.
During this process, the two files <linux/autocon-f.h> and .config are created.

The .config file controls the sequencing of the compilation run, while
<linux/autoconf.h> takes care of conditional compiling within the kernel

 Linux kernel internails - 20 -

.

sources. The .config file is used if Configure is called again, to determine the default
responses to individual questions. A fresh configuration will thus return the last values as
the defaults. The command

make oldconfig

ensures that the default values are accepted without further interrogation. This enables a
.config file to be included in a new version of LINUX so that the kernel is compiled with
the same configuration.
Expansion packages for the kernel will extend the con fig. in file by entries in the form:

bool 'PC-Speaker and DAC driver support' CONFIG_PCSP n

so that they can-be added to or removed from the configuration. Further facilities for
configuring the LINUX kernel are described in the next section, but are not required as a
rule.
In the second step, the dependencies of the source codes are recalculated. This is done by
means of

make depend

and is a purely technical procedure. It uses the capability of the GNU C compiler to create
dependencies for the Makefiles. These dependencies are collected in the .depend files in
the individual subdirectories and subsequently inserted into the Makefiles.

The actual compilation of the kernel now begins, with the simple call:

make

After this, the vmlinux file should be found in the uppermost source directory. To create a
bootable LINUX kernel,

make boot

must be called. As only a compressed kernel can be booted on PCs, the result of this
command is the compressed, bootable LINUX kernel arch/i386/boot/zlmage.

However, other actions can be initiated using make. For example, the target zdisk
not only generates a kernel but also writes it to diskette. The target zlilo copies the
generated kernel to /vmlinuz, and the old kernel is renamed /vmLinuz.old. The LINUX

kernel is then installed by means of a call to the Linux loader (LILO), which must
however be configured beforehand (see Appendix D.2.4).

 Linux kernel internails - 21 -

For work on sections of the LINUX kernel (for example, writing a new driver) it is
not necessary to recompile the complete kernel or check the dependencies. Instead, a
call to

make drivers

will cause only the sources in the drivers/ subdirectory, that is, the drivers, to be
compiled. This does not create a new kernel. If a new linkage to the kernel is also
required,

make SUBDIRS=dnvers

should be called. This approach can also be used for the other subdirectories.
A large number of device drivers and file systems not linked into the kernel can be

created as modules. This can be done using

make modules
The modules created by this can be installed by means of

make modules_instaLL

The modules will be installed in the subdirectories net, scsi, fs and nnsc in the
/\ib/modu\.es/kernei_version directory.

2.3 Additional configuration facilities

In special circumstances it may be necessary to change settings within the sources.
Normally, however, one should try not to change the configuration in the kernel
sources at run-time.

The following pages describe the files in the LINUX kernel to which changes can
be made.

• MakefiLe
This is the only file to which changes cannot be avoided if the user does not have
a 'standard PC'. This file is used to set the hardware architecture on which the
kernel should run by means of

ARCH = i386

Other values currently possible for ARCH are alpha and spare. Additional
architectures are already partly supported, but not yet completely

 Linux kernel internails - 22 -

integrated into the standard kernel. Furthermore, it is possible to generate a kernel with
SMP (Symmetric Multi-Processing) support by entering the line

SMP = 1

It is also possible to define the root device, the screen mode used and the size of a
RAM disk. However, as these can also be specified at a later stage by means of the rdev
program (see Appendix B.3) or by means of parameter passing by the LINUX loader (see
Appendix D.2.5), they should not be changed in the Makefile.

drivers/char/serial.c
There is normally no problem with the serial interfaces, as most PCs only possess two of
these and they use by default IRQs 4 (COM1) and 3 (COM2). If more interfaces are
available because of special hardware (such as an internal modem or a fax card, and so on),
automatic IRQ recognition and support for various special cards (the AST Fourport card and
others) can be brought in. All this needs is for the preprocessor macros (for example
CONFIG_AUTO_IRQ) to be defined at the start of the file, which also gives an explanation of
this and other macros. As well as this, the default settings for the serial interfaces in the
rs_tabLe[] field can also be changed. This contains entries conforming to the async_struct
structure:

/* UART CLK PORT IRQ FLAGS */

{ BASE_BAUD, Ox3F8, 4, STD_COM_FLAGS }, /* ttySO */

{ BASE_BAUD, 0x000, 0, 0 >, t BASE_BAUD, 0x000, 0, 0 },
/* ttyS14 (user configurable) */

/* ttyS15 (user configurable) */

Here, the entries for ttyS14 and ttyS15 are intended for the user's own configuration. Once
the kernel has been recompiled, the devices /dev/ttyS14 (and cua14) and /dev/ttyS15 (and
cua15) can be used. If these do not yet exist, they must be set up.

It only remains to mention that the parameters can also be changed at system run-time
by means of the setserial program (see Appendix B.10).
drivers/char/Lp.c
The parallel interfaces are generally run in polling mode (see Section 7.2), which means that
they are constantly interrogated by the device driver.'

1The parallel interface is, of course, only polled when a process accesses it. Additional configuration facilities

 Linux kernel internails - 23 -

If there is frequent use of the parallel interface, this can at times become something of a
nuisance, as it uses computer time unnecessarily. For this reason, there is a facility to set up
IRQs for the individual interfaces in this file. In addition, a fourth parallel interface can be
added or I/O addresses altered by changing the Lp_tabLe[] field at the end of the file. This
field has the following structure:

struct lp_struct lp_table[] = {
/* PORT IRQ FLAGS CHARS TIME WAIT QUEUE BUF */

{ Ox3bc, 0, 0,LP_INIT_CHAR,LP_INIT_TIME,LP_INIT_WAIT,NULL,NULL},

{ 0x378, 0, 0,LP_INIT_CHAR,LP_INIT_TIME,LP_INIT_WAIT,NULL,NULL},

{ 0x278, 0, 0,LP_INIT_CHAR,LP_INIT_TIME,LP_INIT_WAIT,NULL,NULL},

};
#fdefine LP_NO 3

As with serial interfaces, the behaviour of a parallel interface can be changed at run-time
through appropriate I/O control calls or the tunetp program (see Appendix B.ll).

drivers/net/CONFIG
If the automatic recognition of network cards is not working, it can sometimes be necessary
to fix permanent settings of I/O addresses, IRQs or DMA channels. The precise
configuration of such a card can be laid down in this file. The file will be added to the
Makefile later.

Alternatively, the corresponding network driver can be compiled as a module and
configured when the module is loaded.

drivers/net/Space.c
For some network cards the facilities in the CON FIG file are no longer sufficient.

This file contains the initial configurations of the network devices. This allows the
device structures eth1_dev, and so on, defined as constants, to be altered.

static struct device eth1_dev = {
/* NAME RECVMEM MEM I/O-BASE IRQ FLAGS NEXT_DEV INIT */ "eth1",

0,0, 0,0, OxffeO, 0, 0,0,0, 8eth2_dev, ethif_probe};

Here, the I/O address OxffeO means that this device is not checked to see if it is present.
This can be avoided by entering a zero for the automatic test or the relevant I/O address. By
use of the boot parameter

ether =irq, port, mem_start, mem_end, name the settings can be changed on later start-up
of the system.

chapter 2 Compiling the kernel

 Linux kernel internails - 24 -

• Include/Linux/fs.h
For LINUX computers in larger networks it may be necessary to manage
more than 64 file systems. The number of file systems is, however, limited to 64 by the
preprocessor macro NR_SUPER. Here, this specification can be altered.

• include/linux/tasks.h
The maximum possible number of processes (NR_TASKS) is limited to 512
in this file and can be altered if necessary for big servers (see also Section
3.1.2).
«
This is a far from exhaustive survey of the configuration facilities in the LINUX kernel. Other
facilities will be described in the course of the following
chapters.
In conclusion, it should be stressed once again that the changes to the
kernel sources described in this section are usually not required and should only be carried
out when necessary.

 Linux kernel internails - 25 -

3Introduction to the kernel

Dijkstra probably hates me. Linus Torvalds

3.1 Important data structures
3.2 Main algorithms
3.3 Implementing system calls

This chapter will focus on the basic structure of the LINUX kernel and the interplay of its
main components, to provide a foundation for understanding the following chapters.
However, before we start, a few more general remarks on the LINUX kernel are in order.

LINUX was not designed on the drawing board but developed in an evolutionary
manner, and is continuing to develop. Every function of the kernel has been repeatedly
altered and expanded to get rid of bugs and incorporate new features. Anyone who has been
personally involved in a major project of this sort will know how quickly program code can
become impossible to follow and liable to error. In the face of this, Linus Torvalds, as
coordinator of the LINUX Project, has managed to keep the kernel organized in an easy-to-
follow form and constantly cleared it of hangovers from earlier versions.

Despite this, the LINUX kernel is certainly not in every respect a good model of
structured programming. There are 'magic numbers' in the program text instead of constant
declarations in header files, inline expanded functions instead of function calls, goto
instructions instead of a simple break, assembler instructions instead of C code, and many
other less than elegant features. Many of these distinctive features of unstructured
programming, however, were deliberately included. Large parts of the kernel are time-
critical; so the program code is optimized for good run-time behaviour rather than easy
readability. This distinguishes LINUX from, for example, MINIX (see Tanenbaum,

 Linux kernel internails - 26 -

1990) which was written as a 'teaching operating system' and never designed for everyday
use. LINUX, in contrast, is a 'real' operating system and, as such,
its kernel is structured remarkably well.

The aim of this book is to explain the main functioning of the LINUX kernel. Therefore,
the algorithms introduced in this and the next chapter represent a compromise between the
original source codes and understandable program code, but attention has been paid to
making the changes easy to
follow.

General architecture
Since UNIX came on the scene, the internal structure of operating systems has changed
radically. At that time it was revolutionary for most of the kernel to be written in a higher
programming language, C; now it is taken for granted. The present trend is towards a
microkernel architecture, such as that of the Mach kernel (see Tanenbaum, 1986) or the
kernel of Windows NT. The experimental UNIX MINIX (see Tanenbaum, 1990) and the Hurd
system currently under development are further examples of microkernel-based systems.
Here, the actual kernel provides only a necessary minimum of functionality (interprocess
communication and memory management) and can accordingly be implemented in a small
and compact form. Building on this microkernel, the remaining functions of the operating
system are relocated to autonomous processes, communicating with the microkernel via a
well-defined interface. The main advantage of these architectures (apart from a certain
elegance) is a system structure which is clearly less trouble to maintain. Individual compo-
nents work independently of each other, cannot affect each other unintentionally and are
easier to replace. The development of new components is simplified.

This in itself results in a drawback to these architectures. Microkernel architectures
force denned interfaces to be maintained between the individual components and prevent
sophisticated optimizations. In addition, in today's hardware architectures, the inter-process
communication required inside the microkernel is more extensive than simple function calls.
This makes the system slower than traditional monolithic kernels. This slight speed
disadvantage is readily accepted, because current UNIX hardware is generally fast enough
and because the advantage of simpler system maintenance reduces
development costs.

Microkernel architectures undoubtedly represent the future of operating system
development. LINUX, on the other hand, came into being on the 'slow' 386 architecture, the
lower limit for a reasonable UNIX system. Exploiting all possible ways of optimizing
performance to give good run-time behaviour was a primary consideration. This is one
reason why LINUX was implemented in the classical monolithic kernel architecture. Another
reason was undoubtedly the fact that a microkernel architecture depends on careful design
of the

 Linux kernel internails - 27 -

system. Since LINUX has grown by evolution, starting from the fun of developing a system,
this was simply not possible.

In spite of its monolithic foundation, LINUX is not a chaotic collection of program code.
Most components of the kernel are only accessed via accurately denned interfaces. A good
example of this is the Virtual File System (VFS), which represents an abstract interface to
all file-oriented operations. We will be taking a closer look at the VFS in Chapter 6. But the
chaos is apparent in the detail. At time-critical points, sections of programs are often written
in 'hand-optimized' C code, making them difficult to follow. Fortunately, these program
sections are quite rare and, as a rule, fairly well annotated.

The complete LINUX kernel in version 2.0 for the Intel architecture consists of around
470 000 lines of C code and some 8000 lines of assembler. By way of comparison, version
1.0 had only 165 000 lines and version 1.2 about 270 000 lines of C code.

Table 3.1 gives details of approximately how much of the program code is taken up by
each component. The assembler coding is principally used in emulating the maths co-
processor, booting the system and controlling the hardware. This is only to be expected.
However, it can also be seen that something as 'secondary'* as implementing the file
systems, the device drivers or the network accounts for a large proportion of the kernel
sources. On the other hand, the central routines for process and memory management (that
is, the kernel proper, in a microkernel context) only take up around 5 per cent, a relatively
small amount of the code.

It is possible to separate most device drivers from the kernel. They can be loaded as
autonomous, independent modules at run-time as required (see

Table 3.1 Proportions of source text accounted for by the individual components.

 C code Assembler
without header files instructions

Device 377 000 100
Network 25000

VFS layer 13
file systems

13500 50000 4000

2800

Co-processor 3550
'Remainder' 20000

1 Lectures on operating systems as a rule concentrate on memory management, scheduling and inter-prooess
communication, and only very seldom deal with other components such as file systems or device drivers.

 Linux kernel internails - 28 -

Chapter 9). Thus LINUX successfully tries to make use of the advantages of a microkernel
architecture without, however, giving up its original monolithic
design.

Processes and tasks
As seen by a process running under LINUX, the kernel is a provider of services. Individual
processes exist independently alongside each other and cannot affect each other directly.
Each process's own area of memory is protected against
modification by other processes.

The internal viewpoint of a running LINUX system is a different matter. Only one
program - the operating system - is running on the computer, and can access all the
resources. The various tasks are carried out by co-routines -that is, every task decides for
itself whether and when to pass control to another task.2 One consequence of this is that an
error in the kernel programming can block the entire system. Any task can access all the
resources for
other tasks and modify them.

Certain parts of a task run in the processor's less privileged User Mode. These parts of
the task appear from the outside (to someone looking into the kernel) to be processes. From
the viewpoint of these processes, true multitasking is taking place. Figure 3.1 should make
this clear.

In the following pages, however, we will not be making any precise distinction
between the concepts of tasks and processes, but using the two words to mean the same
thing. When a task is running in the privileged System Mode, it can take one of a number of
states. Figure 3.2 shows the most important of these. The arrows in this diagram show the
possible changes of state. The following states are possible:

Figure 3.1 The process as seen from outside and from inside.

 Linux kernel internails - 29 -

Figure 3.2 Chart of states within a process.

Running
The task is active and running in the non-privileged User Mode. In this
case the process will go through the program in a perfectly normal way.
This state can only be exited via an interrupt or a system call. In Section
3.3 we will see that system calls are in fact no more than special cases of
interrupts. In either case, the processor is switched to the privileged
System Mode and the appropriate interrupt routine is activated.
Interrupt routine
The interrupt routines become active when the hardware signals an
exception condition, which may be new characters input at the keyboard
or the clock generator issuing a signal every 10 milliseconds. Further
information on interrupt routines is provided in Section 3.2.2.
System call
System calls are initiated by software interrupts. Details of these are
given in Section 3.3. A system call is able to suspend the task to wait for
an event.
Waiting
The process is waiting for an external event. Only after this has occurred
will it continue its work.
Return from system call
This state is automatically adopted after every system call and after some interrupts. At this
point checks are made as to whether the scheduler needs to be called and whether there are
signals to process. The scheduler can switch the process to the 'Ready' state and activate
another process.

 Linux kernel internails - 30 -

• Ready
The process is competing for the processor, which is however occupied
with another process at the present time.

Processes and threads
In many modern operating systems a distinction is made between processes and threads. A
thread is a sort of independent 'strand' in the course of a program which can be processed in
parallel with other threads. As opposed to processes, threads work on the same main
memory and can therefore influence
each other.
Linux does not make this distinction. In the kernel, only the concept of
a task exists which can share resources with other tasks (for example, the same memory).
Thus, a task is a generalization of the usual thread concept. More details can be found in
Section 3.3.3.

3.1 Important data structures_____________

This chapter describes important data structures in the LINUX kernel. Understanding these
structures and how they interact is a necessary foundation for understanding the following
chapters.

3.1.1 The task structure
One of the most important concepts in a multi-tasking system such as LINUX is the task (or
process). The data structures and algorithms for process management form the central core
of LINUX.

The description of the characteristics of a process is given in the structure task_struct,
which is explained below. The first components of the structure are also accessed from
assembler routines. This access is not made, as it usually is in C, via the names of the
components, but via their offsets relative to the start of the structure. This means that the
start of the task structure must not be modified without first checking all the assembler
routines and modifying them if necessary.

struct task_struct {

volatile Long state;
The state variable contains a code for the current state of the process. If the process is
waiting for the CPU to be assigned or if it is running, state takes the value TASK_RUNNING.
If, on the other hand, the process is waiting for certain events (known as blocking system
calls) and is therefore at present idle, state

 Linux kernel internails - 31 -

takes the value TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE. The difference between
these two values is that in the TASK_INTERRUPTIBLE state a task can be reactivated by
signals, whilst in the TASK_UNINTERRUPTIBLE state it is typically waiting directly or
indirectly for a hardware condition and therefore will not accept any signals. TASK_STOPPED

describes a process which has been halted, either after receiving an appropriate signal
(SI6STOP, SIGSTP, SIGTTIN or SIGTTOU) or when the process is being monitored by another
process using the ptrace system call and has passed control to the monitoring process.
TASK_ZOMBIE describes a process which has been terminated but which must still have its
task structure in the process table ({see the system calls _exit and wait in Section 3.3.3).
There is also the TASK_SWAPPING constant, although it is not yet used in version 2.0. The
keyword volatile indicates that this component can also be altered asynchronously from
interrupt routines.

long counter;
long priority;

The counter variable holds the time in 'ticks' (see Section 3.2.4) for which the process can
still run before a mandatory scheduling action is carried out. The scheduler uses the counter
value to select the next process, counter thus represents something like the dynamic priority
of a process, while priority holds the static priority of a process. The scheduling algorithm
(see Section 3.2.5) uses priority to derive a new value for counter when necessary.

unsigned long signal;
unsigned Long blocked;

The signal variable contains a bit mask for signals received for the process;
blocked contains a bit mask for all the signals the process intends to handle later - that is,
those for which processing is at present blocked. As these two components are 32-bit
quantities,3 LINUX supports no more than 32 signals. Removing this limitation would require
modifications at various points in the kernel. This signal flag is evaluated in the routine
ret_from_sys_call(), which is called after every system call (see Section 3.3) and after slow
interrupts (see Section 3.2.4).

unsigned long flags;
int errno;
int debugreg[8];

flags contains the combination of the system status flags PF_ALIGNWARN, PF_PTRACED,
PF_TRACESYS, PF_STARTING and PF_EXITIN6.

3 This only applies, of course, when LINUX is running OH •32-bit Intel architecture. A higher value will apply for the port
to Alpha machines.

 Linux kernel internails - 32 -

PF_PTRACED and PF_TRACESYS indicate that the process is being monitored by another
process with the aid of the system call ptrace. Interested readers will find further
information on this system call in Section 5.4 and Appendix A.

PF_STARTING and PF_EXITING indicate that the process is just being initiated or
terminated. There are more flags (defined in include/Linux/sched.h), but these are only used
for process accounting (system call accr) and are not explained here. The errno variable
holds the error code for the last faulty system call. On return from the system call, this is
copied into the global variable errno (see Section 3.3). The debugreg variable contains the
80x86's debugging registers. These are at present used only by the system call ptrace.

struct exec_domain *exec_domain;

LINUX can run programs from other systems with an i386 base conforming to the iBCS2
standard. As the various iBCS2 systems differ slightly, a description of which UNIX is to be
emulated for each process is kept in the exec_domain

component for the process.
This completes the hard-coded part of the task structure. The following
components of the task structure are considered in groups for the sake of simplicity.

Process relationships
All processes are entered in a doubly linked list with the help of the two following

components:

struct task_struct *next_task;
struct task_struct *prev_task;

The start and end of this list are held in the global variable init_task.
In a UNIX system, processes do not exist independently of each other. Every process

(except for the process init_task) has a parent process, which has created it using the system
call fork() (see Section 3.3.3 and Appendix A). There are therefore 'family relationships'
between the processes, which are represented by the following components:
struct task_struct struct task_struct struct task_struct

struct task_struct struct task_struct

P_opptr; / original parent */
p_pptr; / parent */
p_cptr; / youngest child */
p_ysptr; / younger sibling */
p_osptr; / older sibling */

 Linux kernel internails - 33 -

The p_pptr variable is a pointer to the parent process's task structure. To enable a process to
access all its child processes, the task structure holds the

Figure 3.3 'Family relationships' between processes.

entry for the last child process created - the 'youngest child'. The child processes for the
same parent process are similarly linked together as a doubly linked list by p_ysptr (next
younger sibling) and p_osptr (next older sibling). Figure 3.3 should clarify the 'family
relationships' between processes.

The scheduler uses a list of all processes that apply for the processor. It is
implemented as a doubly linked list with the help of the two following components:

struct task_struct *next_task;
struct task_struct *prev_task;

Here too, the external variable in1t_task describes the start and end of this list.

Memory management
The data for each process needed for memory management are collected, for reasons of
simplicity, in their own substructure

struct miB_struct mm[1];

The components of this are:

unsigned long start_code, end_code, start_data, end_data;
unsigned Long start_brk, brk, unsigned long start_stack,start_mmap;

unsigned long arg_start, arg_end,
env_start, env_end;

 Linux kernel internails - 34 -

which describe the start and size of the code and data segments of the program currently
running. Further information is given in Chapter 4.

The structure task_struct has two more components relating to memory management.
When a process is operating in System Mode, it needs its own stack (differing from that for
the User Mode). The address of the stack is stored in

unsigned long kernel_stack_page;
For the MS-DOS emulator (or, more precisely, for the system call vm86) there is also the

unsigned long saved_kernel_stack;

in which the old stack pointer is stored.

Process ID
Every process has its own process ID number, pid, and is assigned to a process group, pgrp,
and a session, session. Every session has a leader process, Leader.

int pid, pgrp, session, leader;

To handle access control, every process has a user ID, uid, and a group ID, gid. These are
inherited by the child process from the parent process when a new process is created by the
fork system call (see Section 3.3.3 and Appendix A). However, for the actual access control
the effective user ID, euid, and the effective group ID, eg id, are used. A new feature in
LINUX is the component fsuid. This is used whenever identification is required by the file
system. As a general rule, (uid==euid)88(gid==egid) and (fsuid==euid)88(fsgid==egid).

Exceptions arise for so-called set-UID programs, where the values of euid and fsuid,
or those of eg id and fsgid, are set to the user ID and the group ID for the owner of the
executable file. This makes a controlled distribution of privileges possible.

As a rule, fsuid always takes the value of euid; and in other UNIX systems or older
versions of LINUX the effective user ID euid was always used in place of fsuid. However,
LINUX'S setfsuid system call allows fsuid to be altered without changing euid. This means
that daemons can limit their rights when accessing file systems with setfsuid (to the rights of
the user for whom they are providing services), but they will retain their privileges. The
reason this was introduced was a security gap in the NFS daemon. To limit its rights for file
system access, this had set euid to the user ID of the requesting user. The file access then
worked as expected, but it also allowed the user to send

 Linux kernel internails - 35 -

signals to the NFS daemon. This was not the desired result, and changes have now been
made. Similar considerations apply for the component fsgid and the system call setfsgid.

unsigned short uid, euid, suid, fsuid;
unsigned short gid, egid, sgid, fsgid;

Like most modern UNIX derivatives, LINUX allows a process to be assigned to a number of
user groups at the same time. These groups are considered when checking the access
permissions to files. Each process may belong to a maximum of NGROUPS groups, which
are held in the groups component of the task structure. It may seem odd at first sight that a
different data type is used here for the group ID gid than for the groups field, but can be
explained by the fact that groups can also hold the value NOGROUP==-1 for unused
entries.

int groupsCNGROUPS];

Files The file-system-specific data are stored in the substructure:

struct fs_struct fs[1];

This contains the four components:

int count;
unsigned short umask;
struct inode * root;
struct inode * pwd;

A process can affect the access mode of newly created files via the system call umask. The
values set using umask are also stored in the component umask. Under UNIX, every process
has a current directory, pwd,4 which is required when resolving relative pathnames and can
be changed by means of the system call chdir. Every process has in addition its own root
directory - root - which is used in resolving absolute pathnames. This root directory can
only be changed by the superuser (system call chroot). As this is only rarely used (for
example, in anonymous FTP), this fact is not well known. The count variable is reserved for
future expansions.
A process opening a file with open() or creat() is given a file descriptor by the kernel to use
in referencing the file in future. File descriptors are small

4 The abbreviation pwd most probably derives from the UNIX command pwd - Print
Working Directory - which outputs the name of the current directory.

 Linux kernel internails - 36 -

integers. The file descriptors are assigned to the files under LINUX via the fd[] field in the
substructure:

struct files_struct files[1];

This has four components:

int count;
fd_set close_on_exec;
fd_set open_fds;
struct file * fd[NR_OPEN];

File descriptors are used as an index in the fd[] field. This locates the file pointer assigned to
the file descriptor, and with its help the file itself can then be accessed. open_fds is a bit
mask of all file descriptors used.

The component close_on_exec in the files substructure contains a bit mask of all file
descriptors used that are to be closed when the system call exec is issued. The data type
fd_set is large enough to hold NR_OPEN (256) bits. Again, count is used as a reference
counter.

Timing
Various times are measured for each process. Under LINUX, times are always measured in
'ticks'. These ticks are generated by a timer chip every 10 milliseconds and counted by the
timer interrupt. In Sections 3.1.6 and 3.2.4 we will
be considering timing under LINUX in more detail.

The utime and stime variables hold the time the process has spent in User Mode and
System Mode, respectively, while cutime and cstime contain the totals of the corresponding
times for all child processes. These values can be polled by means of the times system call.

long utime, stime, cutime, cstime, start_time

start_time contains the time at which the current process was generated.
UNIX supports a number of process-specific timers. One of these is the system call

alarm, which ensures that the SIGALARM signal is sent to the process after a specified time.
Newer UNIX systems also support interval timers (see system calls setitimer and getitmer on
page 324).

unsigned long timeout;
unsigned long it_real_value, it_prof_value, 1t_virt_value;
unsigned long it_real_incr, it_prof_incr, it_virt_tncr;
struct timer_list real_timer;

 Linux kernel internails - 37 -

The components it_real_value, it_prof_value and it_virt_value contain the time in ticks until
the timer will be triggered. The components it_real_incr, it_prof_incr and it_virt_incr hold
the values required to reinitialize the timers after they run out. real_timer is used for the
implementation of the real-time interval timer. More information on this is given in the
description of the timer interrupt in Section 3.2.4.

Inter-process communication
The LINUX kernel implements a system of inter-process communication which is compatible
with System V. Among other things, this provides semaphores. A process can occupy a
semaphore, thereby blocking it. If other processes also wish to occupy this semaphore, they
are halted until the semaphore is released. This uses the component

struct sem_queue *semsleeping;

When the process is terminated, the operating system must release all semaphores occupied
by the process. The component

struct sem_undo *semundo;

contains the information required for this.

Miscellaneous The following components do not fit any of the above groups.

struct wait_queue *wait_chLdexit;

A process executing the system call wait4 must be halted until a child process terminates. It
joins the wait_chldexit wait queue in its own task structure, sets the status flag to the value
TASK_INTERRUPTIBLE and passes control to the scheduler. When a process terminates, it
signals this to its parent process via this queue. There is more on this in the section on wait
queues (see Section 3.1.5), the section on the system calls _exit and wait (Section 3.3.3) and
the source texts for the kernel function sys_wait4() (kernel/exit.c).

struct sigaction sigaction[32];

Every process can decide how it wishes to react to signals. This is specified in the sigaction
structure (see page 327).

 Linux kernel internails - 38 -

struct rlimIt rlim[RLIM_NLIMITS];

Every process can check its limits for the use of resources by means of the system calls
setrliait and getriimit (see page 325). These are stored in the

rl im structure.

int exit_code exit_signal;

The return code for the program and the signal by which the program has been aborted.
These data can be polled by a parent process after completion of

the child process.

char comm[16];
The name of the program executed by the process is stored in the component comrn. This

name is used in debugging.

unsigned Long personality;

As mentioned earlier, LINUX supports, via the iBCS interface, the execution of programs
from other UNIX systems. Together with the exec_domain component described above,
personality is used to give a precise description of the characteristics of this version of UNIX.
For standard LINUX programs, personality takes the value PER-LINUX (defined as 0 in
<Linux/personaLity.h>).

int dumpabLe:1;
Int did_exec:1;

The dumpable flag indicates whether a memory dump is to be executed by the
current process if certain signals occur.
A rather obscure semantic in the POSIX standard requires, when calling
setpgid, to distinguish whether a process is still running the original program or whether it
has loaded a new program with the system call execve. This information is monitored using
the flag did_exec.

struct desc_struct *ldt;

This entry has been included especially for the WINE Windows emulator, which needs
more information and different memory management routines as

compared with a standard LINUX program.
Another important component in the task structure is binfmt. This
describes the functions responsible for loading the program.

 Linux kernel internails - 39 -

struct linux_binfmt *'binfmt;
struct thread_struct tss;

The thread_struct structure holds all the data on the current processor status at the time of
the last transition from User Mode to System Mode. All the processor registers are saved
here to enable them to be restored on return to User Mode. In addition (unlike LINUX version
1.0), this now includes the components

struct vm86_struct * vm86_info; unsigned Long screen_bitmap;
unsigned Long v86flags, v86mask, v86mode;

to describe the 8086 emulation implemented by the system call vm86.
LINUX supports several scheduling algorithms. Besides the classic scheduling

(SCHED_OTHER) there are now two real-time scheduling algorithms (SCHED_RR and
SCHED_FIFO) described in POSIX.4. Each process can be assigned to one of these
scheduling classes which, together with the real-time priority, is stored in the task structure

unsigned Long poLicy; /* SCHED_FIPO, SCHED_RR, SCHED_OTHER */ unsigned Long rt_priority;

There is more information on this in Section 3.2.5.
Since LINUX 2.0 the kernel supports Symmetric Multi-Processing. Thus, for each task

the kernel needs to know on which processor the task is running.

#ifdef _SMP_
int processor, last_processor;
int lock_depth;

#endif } /* struct task_struct */

3.1.2 The process table
Every process occupies exactly one entry in the process table. In LINUX, this is statically
organized and restricted in size to NR_TASKS.

struct task_struct *task [NR_TASKS];

In older versions of the LINUX kernel, all the processes present could be traced by searching
the task[] process table for entries. In the newer versions this information is stored in the
linked lists next_task and prev_task, which can be

 Linux kernel internails - 40 -

found in the task_struct structure. The external variable init_task points to the start of the
doubly linked circular list.

struct task_struct init_task;

This is initialized with the first task INIT_TASK when the system is booted (described in
Section 3.2.3). Once the system has been booted, this is only responsible for the use of
unclaimed system time (the idle process). For this reason, it is rather in a class of its own
and should not be regarded as a

normal task.
Many of the algorithms in the kernel have to take note of every individual task. To make
this easier, the macro for_each_task() has been denned as

follows:
#define for_each_task(p) for(p = 8init_task ; (p

p->next_task) != &init_task ;)

As can be seen, init_task is skipped. In version 1, the entry for the currently running task
could be obtained via the global variable

struct task_struct current;
As version 2.0 supports multi-processing (SMP), this had to be extended - now there is a
current task for each processor.

#define current current_set[smp_processor_id()] task_struct
*current_set[NR_CPUS];

The entry task[0] has a special significance in LINUX. task[0] is the INIT_TASK
mentioned above, which is the first to be generated when the system is booted and has
something of a special role to play. This process is frequently accessed in the kernel via
task[0]; so this assignment_should not be

altered.
The static size of the process table is an anachronism in modern UNIX
operating systems. In LINUX, there are historical reasons for it. It is simpler to reserve a field
than to use dynamic memory management. However, development within LINUX tends
towards the removal of static limitations, such as the maximum number of processes. The
components next_task and prev_task have therefore been added to the task_struct described
above; together with init_task, these enable all active processes to be referenced. It is now
no longer necessary to hold all the process entries in a table.

 Linux kernel internails - 41 -

3.1.3 Files and inodes
UNIX systems traditionally make a distinction between the file structure and the inode
structure. The inode structure describes a file, which gives the term 'inode' a number of
meanings. Both the data structure in the kernel and the data structure on the hard disk
describe files (each from their own viewpoint), and are therefore called inodes. In the
following, we will always be referring to the data structure in memory. Inodes contain
information such as the file's owner and access rights. There is exactly one inode entry in
the kernel for each file used in the system.

File structures (that is, data structures of the struct file type), on the other hand, contain
the view of a process on these files (represented by inodes). This view on the file includes
attributes, such as the mode in which the file can be used (read, write, read+write), or the
current position of the next I/O operation.

File structure The structure file is defined in include/linux/fs.h

struct file {
mode_t f_mode;
Loff_t f_pos;
unsigned short f_flags;
unsigned short f_count;
struct file *f_next, *f_prev;
struct inode * f_inode;
struct file_operations * f_op;

};

The f_mode component describes the access mode in which the file was opened (read-only,
read+write or write only); f_pos holds the position of the read/ write pointer at which the
next I/O operation will be carried out. This value is updated by every I/O operation and by
the system calls I seek and llseek. Note that the offset is stored in the kernel as a 64-bit word
of the type Loff_t. This enables LINUX correctly to handle files larger than 2 gigabytes (231
bytes).

Additional flags controlling access to this file are contained in f_flags. these can be set
when a file is opened with the system call open and later read and modified using the
system call fcntl. The variable f_count is a simple reference counter. A number of file
descriptors may refer to the same file structure. As these are inherited through the system
call fork, the same file
Chapter 3 Introduction to the kernel

structure may also be referenced from different processes. When a file is opened, f_count is
initialized to 1. Every time the file descriptor is copied (by the system calls dup, dup2 or
fork) the reference counter is incremented by 1, and every time a file is closed (using the

 Linux kernel internails - 42 -

system calls close, _exit or exec) it is decreased by 1. The file structure is only released
once there is no longer any
process referring to it.
All file structures present in the system form part of a doubly linked list
through their components f_next and f_prev. The global variable struct file * f1rst_file;

constitutes the start of this list.
The inode (the actual description of the file) is referenced by f_inode,
whereas f_op refers to a structure of function pointers referencing all file operations. By
comparison with other UNIX systems, LINUX supports a very large number of file system
types. Each of these file systems implements accesses in a different way. For this reason, a
'virtual file system' (VFS) has been implemented in LINUX. The idea is that the functions
operating on the file system are not called directly, but via a function specific to the file
(system). The file-system-specific operations are part of the file or inode structure, which
corresponds to the principle of virtual functions in object-oriented programming languages.
Comprehensive information on the VFS is given in

Section 6.2.

Inodes The inode structure

struct inode {
is also defined in include/Linux/fs.h. Many of the components of this structure can be polled
via the system call stat.

dev_t i_dev;
unsigned long i_ino;
The component i_dev is a description of the device (the disk partition) on which the file is
located, while i_ino5 identifies the file within the device. The (dev, ino) pair thus provides
an identification of the file which is unique

throughout the system.

5 Here, too, i no stands for the inode, referring in this case to the block number of the data structure on the hard disk,
describing the file on the external memory device.
Important data structures

 Linux kernel internails - 43 -

umode_t i_mode;
uid_t i_uid;
gid_t i_gid;
off_t i_size;
time_t i_mtime;
time_t i_atime;
time_t i_ctime;

These components describe the access permissions to the file, its owner (user and group),
the size i_size in bytes, and the times of the last modification (i_mtime), the last access
(i_atime) and the last modification to the inode (i_ctime).

struct inode_operat ions * i_op;

Like the file structure, the inode also has a reference to a structure containing pointers to
functions which can be used on inodes (see Section 6.2.4). Further information on inodes is
given in Section 6.2.

3.1.4 Dynamic memory management
Under LINUX, memory is managed on a page basis. One page contains 212 bytes. The basic
operations to request a free page are the functions

unsigned Long _get_free_pages(int priority, unsigned Long order, int dma);

#define_get_free_page(priority) \
_get_free_pages((priority),0,0)
#define _get_dma_pages(priority, order) \
_get_free_pages((priority),(order),1)

which are defined in the file mm/swap.c. The value of priority controls the behaviour
of_get_free_page() if not enough pages are free in main memory. The following values are
legal for priority: GFP_BUFFER, GFP_ATOMIC, GFP_KERNEL, GFP_NOBUFFER and
GFP_NFS. order describes the number of pages to be reserved, which is 20rder. If dma is not
equal to 0, memory is requested that can be addressed by the DMA component.

Although _get_free_page() represents the basic operation to request a Page, it should
not be used in this form. A more suitable function is

unsigned Long get_free_page(int priority);

which additionally initializes the requested memory to zero. This is important 'or two
reasons. Firstly, some parts of the kernel expect freshly requested

 Linux kernel internails - 44 -

memory to be initialized to zero (for example, the system call exec). Secondly, this is a
security measure: if the page has already been used it may contain another user's data (for
example, passwords), which should not be made available to the current process.
C programmers will as a rule be accustomed to using malloc() and
free() to manage memory. There is similar provision in the LINUX kernel: the function

void *kmalloc(size_t size, int priority);
works in an analogous way to mallocO. The argument priority indicates how kmalloc() is to
request new pages of memory using get_free_page(). kmalloc() can request blocks of
memory up to an extent of 128 kbytes. In LINUX version 1.0 there was still a limit of 4072
bytes. The counterpart to

kmalloc() is the function

void kfree(void * ptr);

which releases an area of memory previously requested using kmallocO. There is more
information on how memory management operates under LINUX in

Chapter 4.

3.1.5 Queues and semaphores
Often a process will be dependent on the occurrence of certain conditions. For example, the
system call read has to wait until the data have been loaded into the process's area of
memory from the hard disk, or a parent process is using wait to wait for the end of a child
process. In each of these cases it is not

known how long the process will have to wait.
This 'wait until condition met' is implemented in LINUX by means of wait queues. A wait
queue is nothing other than a cyclical list containing as its

elements pointers to the process table.

struct wait_queue {
struct task_struct * task;
struct wait_queue * next; /

};
Wait queues are very sensitive creatures and are often modified from interrupt routines.
They should therefore only be modified using one of the two functions below. By blocking
the interrupts, these make sure that the wait queue is not modified from an interrupt routine
at the same time. Consistency is thus quaranteed.

 Linux kernel internails - 45 -

void add_wa1t_queue(struct wait_queue **queue, struct wait_queue *entry);

void remove_wait_queue(struct wait_queue **queue, struct wait_queue *entry);

The queue variable contains the wait queue to be modified, and entry the entry to be added
or removed.

A process wishing to wait for a specific event now enters itself in a wait queue of this
type and relinquishes control. There is a wait queue for every possible event. When the
relevant event occurs, all the processes in its wait queue are reactivated and can resume
operation. This semantic is implemented by the functions:

void sleep_on(struct wait_queue **p);
void interruptible_sleep_on(struct wait_queue **p);

These set the process status (current->state) to TASK_UNINTERRUPTIBLE or
TASK_INTERRUPTIBLE respectively, enter the current process (current) in the wait queue and
call the scheduler. The process then voluntarily relinquishes control.

It is only reactivated when the status of the process is set to TASK_RUNNING. This is
generally done by another process calling the functions

void wake_up(struct wait_queue **p);
void wake_up_interruptible(struct wait_queue **p);

to 'wake up' all the processes entered in the wait queue.

void sleep_on(struct wait_queue **queue) {
struct wait_queue entry = { current , NULL };
current->state = TASK_UNINTERRUPTIBLE;
add_wait_queue(queue , $entry);
schedule();

remove_wait_queue(queue ,&entry);
}

void wake_up(struct wait_queue **queue) {
struct wa1t_queue *p = *queue;
do {

P->task->state = TASKRUNNING ;
p = p->next;
} while (p != *queue);
}

 Linux kernel internails - 46 -

With the aid of wait queues, Linux also provides semaphores. These are used to synchronize
accesses by various kernel routines to shared data structures, These semaphores should not
be confused with semaphores provided for user

programs in UNIX System V.

struct semaphore { int count ;
struct wait_queue *wait;
};
A semaphore is taken to be occupied if count has a value less than or equal to 0. All the
processes wishing to occupy the semaphore enter themselves in the wait queue. They are
then notified when it is released by another process. There are two auxiliary functions to
occupy or release semaphores:

void down(struct semaphore * sem)
{
while(sem -> count <= 0)
sLeep_on(sem->wait);
sem -> count -- ;
1

void up(struct semaphore * semd)
{
sen -> count ++;
wake_up(& sem -> wait);
}

3.1.6 System time and timers
In the LINUX system, there is just one internal time base. It is measured in ticks elapsed
since the system was booted, with one tick equal to 10 milliseconds. These are generated by
a timer chip in the hardware and counted by the timer interrupt (see Section 3.2.4) in the
global variable jiffies. All the system

timings mentioned below always refer to this time base.
Why do we need timers? Many device drivers like to be sent a message
when the device is not ready. And in addition, there is sometimes a time gap before the next
set of data can be sent when a slow device is being used.

To support this, LINUX provides a facility to initiate functions at a denned future time.
In the course of LINUX'S development, two forms of timer have come about. On the one
hand, there are 32 reserved timers of the form:

struct timer_struct { unsigned Long expires;

 Linux kernel internails - 47 -

void (*fn)(void);
} timer_table[32];

Each entry is given a pointer to a function fn and a time expires at which the function is to
be called. A bit field

unsigned Long timer_active;

indicates which entries in the timer_tabLe[] are valid. This kind of timer is obsolete and
only used for certain device drivers.
For normal applications, there is a more recent interface of the form:

struct timer_List (
struct timer_List *next;
struct timer_List *prev;
unsigned Long expires;
unsigned Long data;

void (*function)(unsigned Long);
};
The entries next and Last in this structure are used for the internal management of all the
timers in a doubly linked sorted list. At the start of this list is the variable timer_head. The
component expires gives the time at which the function function is to be called with the
argument data. The two functions

extern void add_timer(struct timer_List * timer);
extern int deL_timer(struct timer_List * timer);

are used in the administration of the timer list. Note that add_timer() changes the meaning
of the component expire. As an argument for add_timer(), expire describes the time interval
after which the timer is to run out. Once add_timer() has entered the structure on the list,
expire signifies the time at which the function is to be called. In version 1.0 of LINUX, the
semantics of the expire component were exactly the other way round.

3.2 Main algorithms

This section describes the main algorithms for process management.

3.2.1 Signals
One of the oldest facilities for inter-process communication under UNIX consists of signals.
The kernel uses signals to inform processes about certain events. The

 Linux kernel internails - 48 -

user typically uses signals to abort processes or to switch interactive programs
to a defined state.

All signals are sent by the function send_sig(). For this function, alongside the
arguments giving the signal number and a description of the process which is to receive the
signal (or, more precisely, a pointer to the entry for the process in the task structure), there is
a third argument - the priority of the sender. At present, only two priorities are supported.
The signal can be sent from a process, or it can be generated by the kernel. The kernel can
send a signal to any process, while a normal user process is only allowed to do so under
specific conditions. It must either possess superuser rights or have the same UID and GID
as the receiving process. An exception to this is the SIGCONT signal, which may be sent
from any process in the same session.

If there is authority to send the signal and the process is not inclined to ignore this
signal, it is sent to the process. This is done by setting the bit for the signal number in the
signal component of the task structure for the receiving process. The signal has then been
sent. There is no immediate treatment of the signal by the receiving process: this happens
only after the scheduler has returned the process to the TASK_RUNNING state (see Section
3.2.5). In addition, the kernel has the possibility of sending signals by means of the
force_sig() function. This ensures that the signal is delivered even when the process has

blocked the signal or - worse - wants to ignore it.
When the process is reactivated by the scheduler, but before it is switched to User

Mode, the routine ret_from_sys_call (Section 3.3.1) is run. If signals are waiting for the
current process, this calls the do_signal() function, which takes over the actual signal
handling.

We have not yet dealt with the matter of how this function causes the signal handling
routine defined by the process to be called. This problem was solved by a clever stratagem
allowing the do_signal() function to manipulate the stack and the registers of the process.
The process's instruction pointer is set to the first instruction in the signal handling routine,
and the parameters for the signal handling routine are added to the stack. Now, when the
process resumes operation, it appears to it as if the signal handling routine has been

called like a normal function.
This is how it is done in principle; but in the actual implementation
there are two additional features.
Firstly, LINUX claims to be POSIX-compatible. The process can specify
which signals are to be blocked while a signal handling routine is running. This is
implemented by the kernel adding further signals to the signal mask current->blocked
before calling the user-defined signal handling routine. There is a problem, however: the
signal mask must be restored to its original state after the signal handling routine has
terminated. To deal with this, an instruction which activates the system call sigreturn is

 Linux kernel internails - 49 -

entered on the stack as the return address of the signal handling routine. This then takes care
of the clearing-up operations at the end of the user-defined signal handling routine.
Main algorithms

The second addition is an optimization. If a number of signal handling routines need to
be called, a number of stack frames are set up. As a result, the signal handling routines are
executed one after the other.

3.2.2 Interrupts
Interrupts are used to allow the hardware to communicate with the operating system.
Programming interrupt routines will be examined in more detail in Section 7.2.2. Here, we
are more interested in the principles governing the execution of an interrupt. The relevant
code is held in the files arch/i386/ kernet/irq.c and include/asm/irq.h.

There are two types of interrupt in LINUX: fast and slow. We could even say there are
three, with the third type represented by system calls, which are also triggered via interrupts.
However, this chapter will only deal with hardware interrupts.

Slow interrupts
Slow interrupts are the usual kind. Other interrupts are legal while they are being dealt with.
After a slow interrupt has been processed, additional activities requiring regular attention
are carried out by the system - for example, the scheduler is called as and when required. A
typical example of a slow interrupt is the timer interrupt (Section 3.2.4). The processing of
an interrupt involves the following activities.

PSEUDO_CODE IRQ(intr_num, intr_controller, intr_mask) {

First, all the registers are saved with SAVE_ALL and receipt of the interrupt is confirmed to
the interrupt controller with ACK. At the same time, further receipt of interrupts of the same
type is blocked.

SAVE_ALL; /* macro in include/asm/irq.h */ ENTER_KERNEL; /* macro in
include/asm/irq.h SUP Lock */ ACK(intr_controller, intr_mask);

In the case of a multi-processor system, the call to the ENTER_KERNEL routine is used to
synchronize the processors' access to the kernel.

The nesting depth of the interrupts is noted in the variable intr_count, after which
further interrupts are enabled and the interrupt routine itself is called. This is also provided
with a copy of the set of registers for the interrupted process. The registers are used by some
of the interrupt handlers (for example, the timer interrupt) to determine whether the interrupt
has interrupted the user process or the kernel.

 Linux kernel internails - 50 -

++intr_count;
sti();
do_IRGl(intr_num, Register)
Once the interrupt routine has been successfully executed, the interrupt controller is
informed that interrupts of this type can again be accepted. In addition, the interrupt counter
is decremented.

cli();
UNBLK(intr_controller, intr_mask) --intr_count;

A jump into the assembler routine ret_from_sys_call() is then made. This takes care of more
general administration tasks after any slow interrupt or system call (hence its name). This
function never returns. It restores the registers saved with SAV_ALL and carries out the iret
required at the end of an interrupt routine.

ret_from_sys_call() ;
} /* PSEUDO_CODE IRQ */

Fast interrupts
Fast interrupts are used for short, less complex tasks. While they are being handled, all other
interrupts are blocked, unless the handling routine involved explicitly enables them. A
typical example is the keyboard interrupt (drivers/char/keyboard.c).

PSEUDO_CODE fast_IRQ(intr_num, intr_controller, intr_mask) " (

First, as before, registers are saved - but only those which are modified by a normal C
function. This means that, if assembler code is to be used in the handling routine, the
remaining registers must be saved beforehand and restored afterwards.

SAVE_MOST; /* macro in include/asm/irq.h */
The interrupt controller is also informed and the variable intr_count incremented in the
same way as for slow interrupts. This time, however, no further interrupts are accepted
before the interrupt handler itself is called (sti 0 is not called).

ENTER_KERNEL; /* macro In Include/asm/irq.h */ ACK(intr_controller, intr.Jnask);

 Linux kernel internails - 51 -

++intr_count;
do_fast_IRQ(intr_num) UNBLK(intr_controller, Intr.Jiiask) —intr_count;
LEAVE_KERNEL

This completes the interrupt handling. RESTORER_MOST returns the saved registers to their
previous values and then calls iret to continue the interrupted process.

RESTORE_MOST; /* macro in IncLude/asm/lrq.h */ } /* PSEUDOCODE fast_IRQ */

3.2.3 Booting the system
There is something magical about booting a UNIX system (or, for that matter, any operating
system). The aim of this section is to make the process a little more transparent.

Appendix D explains how LILO (the LINUX LOader) finds the LINUX kernel and loads
it into memory. It then begins at the entry point start: which is held in the
arch/i386/boot/setup.S file. As the name suggests, this is assembler code responsible for
initializing the hardware. Once the essential hardware parameters have been established, the
process is switched into Protected Mode by setting the protected mode bit in the machine
status word.

The assembler instruction

jmp 0x1000 , KERNEL_CS

then initiates a jump to the start address of the 32-bit code for the actual operating system
kernel and continues from startup_32: in the file arch/i386/ kernel/head.S. Here more
sections of the hardware are initialized (in particular the MMU (page table), the co-
processor and the interrupt descriptor table) and the environment (stack, environment, and
so on) required for the execution of the kernel's C functions. Once initialization is complete,
the first C function, start_kernel() from init/main.c, is called.

This first saves all the data the assembler code has found about the hardware up to that
point. All areas of the kernel are then initialized.

asmlinkage void start_kernel(void) {
memory_start = paging_init(memory_start,memory_end);

trap_init();
init_IRQ();
sched_init();

 Linux kernel internails - 52 -

t1me_init();
parse_options(command_line);
init_modules<);

memory_start = console_int(memory_start,memory_end);
memory_start = pci_init(memory_start,memory_end);
• memory_start = kmalloc_init(memory_start,memory_end);

sti();

memory_start = inode_init(memory_start,BeBory_end);
memory_start = file_table_init(memory_start,memory_end);
memory_start = name_cache_init(memory_start,memory_end);
mem_init(memory_start,memory_end);

buffer_init();
sock_imit();
ipc_init();

The process now running is process 0. It now generates a kernel thread which executes the
init() function.

kernel_thread(init,NULL,0);

Subsequently, process 0 is only concerned with using up unused CPU time.

cpu_idle(NULL);
The initO function carries out the remaining initialization. It starts the bdflush and kswap
daemons which are responsible for synchronization of the buffer cache contents with the file
system and for swapping.

static Int initO {
kernel_thread(bdflush, NULL, 0);
kernel_thread(kswapd, NULL, 0);

Then the system call setup is used to initialize the file systems and to mount the root file

system.

setup();
Now an attempt can be made to establish a connection with the console and to open the file

descriptors 0, 1 and 2.

 Linux kernel internails - 53 -

if ((open("/dev/tty1",0_RDWR,0) < 0) $$ (open("/dev/ttySO",0_RDWR,0) < 0))

printk('Unable to open an initial console.");

(void) dup(O);
(void) dup(O);

Then an attempt is made to execute one of the programs /etc/init, /bin/init or /sbin/init.
These usually start the background processes running under LINUX and make sure that the
getty program runs on each connected terminal - thus a user can log in to the system.

execve("/etc/iflit",argv_init,envp_init);
execve("/bin/init",argv_init,envp_init);
execve("/sbin/init",argv_init,envp_init);

If none of the above-mentioned programs exists, an attempt is made to process /etc /rc and
subsequently start a shell so that the superuser can repair the system.

pid = kernel_thread(do_rc, "/etc/rc", SIGCHLD);
if (pid>0)
while (pid != wait(&i))

while (1) {

pid = kernel_thread(do_shell,
execute_command ? execute_command : "/bin/sh",

SIGCHLD);
if (pid < 0) {

printf("Fork failed in init");
continue;
}
while (1)
if (pid == wait(&i)) break;

printf("child %d died with code %04x",pid,i);
sync();
}
return -1;

}

 Linux kernel internails - 54 -

The procedure described above is meant only to give an overview of what happens when a
system is started. Owing to hardware initialization (MMU, SMP) and handling of
exceptions (UMSDOS, INITRD), the reality is far more

complicated.

3.2.4 Timer interrupt
All operating systems need a way of measuring time and keeping a system time. The system
time is usually implemented by arranging the hardware to trigger an interrupt at specified
intervals. These interrupt routines take over the time 'counting'. Under LINUX, system time is
measured in 'ticks' since the system was started up. One tick represents 10 milliseconds, so
the timer interrupt is triggered 100 times per second. The time is stored in the variable

unsigned Long volatile jiffies;

which should only be modified by the timer interrupt. However, this method
only provides an internal time base.
Applications, on the other hand, are more interested in the 'actual time'.
This is held in the variable

volatile struct timeval xtime;

which is also updated by the timer interrupt.
The timer interrupt is called relatively often and is therefore somewhat
time-critical. Therefore, its implementation in the 2.0 kernel is no longer as
clear as it was in version 1.0.
The interrupt routine proper simply updates the variable jiffies and
marks the bottom half routine (see Section 7.2.4) of the timer interrupt as active. This is
called by the system at a later point (after handling other interrupts) and carries out the rest
of the work. Since several timer interrupts can occur before the handling routines become
active, the timer interrupt also

increments the variables

unsigned long Lost_ticks;
unsigned long lost_ticks_system;

so that these can later be evaluated in the bottom half routines.
lost_ticks counts the timer interrupts that have passed since the last call of the bottom

half routine, whereas lost_ticks_system counts the timer interrupts during whose occurrence
the interrupted process was in System Mode.

 Linux kernel internails - 55 -

void do_timer(struct pt_regs *regs) {
++jiffies;
++lost_ticks;
if(!user_mode(regs))
++lost_ticks_system;
mark_bh(TIMER_BH);
if (tq_timer)
mark_bh(TQUEUE_BH);
}

The real work is then carried out by the bottom half routines of the timer interrupt.

void timer_bh(void) {
update_times();
run_old_ti timers(); run_timer_list();

}

Here, run_old_timers() and run_timer_list() process the functions for updating the system-
wide tuners described in Section 3.1.6, which also comprise the
real-time timers of the current task. update_times() is responsible for updating the times.

static inline void update_times(void) {
unsigned Long ticks;

ticks = xchg(&lost_ticks, 0);

if (ticks) {
unsigned long system; system = xchg(&Lost_ticks_system, 0);

calc_load(ticks);
update_wall_t ime (ticks);
update_process_times(ticks, system);
}

 Linux kernel internails - 56 -

Here, xchg() is a function which reads the memory address specified in the first argument
and sets the value specified in the second argument in an atomic way. Atomic means that
this read-and-set cycle cannot be interrupted, either by an interrupt or by a second processor
possibly present in the system. This guarantees that no ticks are lost even if a new timer
interrupt occurs during the processing of this routine. update_wall_time() now updates the
real time xtime, while update_process_time() is used to update the times of the current

process.
static void update_process_times(unsigned long ticks, unsigned Long
system)
{
unsigned Long user = ticks - system;
First, the counter component of the task structure is updated. When counter becomes zero,

the time slice of the current process has expired and the scheduler is activated at the next

opportunity.

current->counter -= ticks;
if (current-counter < 0) {

current->counter = 0;
need_resched =1;

}
Then, the utime and stime components of the task structure are updated for statistical

purposes.

current->utime += user;
current->stime += system;
Under LINUX it is possible to limit a process's 'CPU consumption' resource. This is done by
means of the system call setrlimit, which can also be used to limit other resources of a
process. Exceeding the time limit is checked in the timer interrupt, and the process is either
informed via the SIGXCPU signal or

aborted by means of the SIGKILL signal.

psecs = (current->stime + current->utime) / HZ;
if (psecs > current->rlim[RLIMIT_CPU].rlim_cur}
{
/* Send SIGXCPU every second.. */ if (psecs * HZ == current->stime + current-
>utime) send_sig(SIGXCPU, current, 1);
Main algorithms 47

 Linux kernel internails - 57 -

/* and SIGKILL when we go over max.. */ If (psecs > current-

>rlim[RLIMIT_CPU].rlim_max) send_sig(SIGKILL, current, 1);

Subsequently, the interval timers of the current task must be updated. When these have
expired, the task is informed by a corresponding signal.

unsigned Long it_virt = current->it_virt_vaLue;
unsigned Long it_prof = current->it_prof_vaLue;

if (it_virt) {

if (it_virt <= user)

{

it_virt = user + current->it_virt_incr;
send_sig(SIGVTALRM, current, 1);

} current->it_virt_vaLue = it_virt - user;

if (it_prof) {

if (it_prof <= ticks) {
it_prof = ticks + current->it_prof_incr;

send_sig(SIGPROF, current, 1);
} current->it_prof_vaLue = it_prof - ticks;

3.2.5 The scheduler
The scheduler is responsible for allocating the 'processor' resource (that is, computing time)
to the individual processes. The criteria by which this is done vary from operating system to
operating system. UNIX systems prefer traditional interactive processes to enable short
response times to be achieved and so make the system appear subjectively faster to the user.
In compliance with the POSIX standard 1003.4, LINUX supports various
scheduling classes which can be selected via the sched_setscheduler() system call.

On the one hand, there are real-time processes in the scheduling classes SCHED_FIFO
and SCHED_RR. Real time does not mean 'hard real time' with

 Linux kernel internails - 58 -

guaranteed process switching and reaction times, but 'soft real time'. When a process with
higher real-time priority (described in the rt_prionty component of the task structure) wishes
to run, all other processes with lower real-time
priorities are thrust aside.
The difference between SCHED_FIFO and SCHED_RR is that a process of the
SCHED_FIFO class can run until it relinquishes control or until a process with higher real-
time priority wishes to run. A process of the SCHED_RR class, in contrast, is also
interrupted when its time slice has expired or there are processes of the same real-time
priority. Thus, a classic round robin procedure is realized
among processes of the same priority.
On the other hand, there exists the scheduling class SCHED_OTHER which
implements a classic UNIX scheduling algorithm. According to POSIX 1003.4, every real-
time process has a higher priority than any process of the scheduling

class SCHED_OTHER.
The LINUX scheduling algorithm is implemented in the scheduLeO function

(kernel/sched.c). It is called at two different points. Firstly, there are system calls which call
the schedule() function (usually indirectly by calling sleep_on(); see Section 3.1.5).
Secondly, after every system call and after every slow interrupt, the flag need_resched is
checked by the ret_from_sys_caLL routine. If it is set, the scheduler is also called from
here. As at least the timer interrupt is called regularly and sets the need_resched flag if
necessary, the scheduler is activated regularly.
The schedule() function consists of three parts. Firstly, those routines
that must be called regularly are started. Theoretically, this would belong in the timer
interrupt (Section 3.2.4), but for reasons of efficiency has been placed in the scheduler.
Secondly, the process with the highest priority is determined. Here, real-time processes
always take precedence over 'normal' ones. Thirdly, the new process becomes the current
process, and the scheduler has accomplished its task.

Unfortunately, the real source code of the scheduler has become relatively unclear in
kernel version 2.0. The reason for this lies partly in the restructuring carried out for
efficiency reasons, but for a substantial part also
in the new multi-processor support.
Therefore, we will present a highly simplified version of the scheduLe()
function. Among other things, the details needed for SMP support have been omitted.

asmlinkage void schedule(void) {

int c;
struct task_struct * p;
struct task_struct * prev, * next;
unsigned Long timeout = 0;

prev = current;
next = &init_task;

 Linux kernel internails - 59 -

First the bottom halves (see Section 7.2.4) of the interrupt routines are called, then all
routines that are registered for the scheduler in the task queue (see Section 7.2.5). Both
kinds of routines are time-uncritical routines and have been taken out of the interrupt
handlers for efficiency reasons. However, as these routines may well manipulate
information capable of influencing the scheduling (for example, changing a task back into
the TASK_RUNNING state), they must be processed here at the latest.'

if (bh_active $ bh_mask) {

intr_count = 1;
do_bottom_half();

intr_count = 0;
}

run_task_queue(&tq_scheduler);

If scheduLeO was called because the current process must wait for an event, it is removed
from the run queue. If the current task belongs to the SCHED_RR scheduling class and the
task's time slice has expired, it is placed at the end of the run queue and thus after all other
ready-to-run tasks belonging to the SCHED_RR scheduling class.

The run queue is a list of all processes applying for the processor, and is doubly linked
by the components prev_run and next_run of the task structure.

if(prev->state != TASK_RUNNING) <

del_from_runqueue(prev);
}
else if <prev->policy == SCHED_RR && prev->counter == 0) {

prev->counter = prev->priority;
move_last_runqueue(prev);
}

Next, the scheduling algorithm itself is carried out, that is, the process in the run queue that
has the highest priority is sought. Here, real-time processes have a higher priority than
'normal' processes.

restart_re»chedule:

 Linux kernel internails - 60 -

next = &init_task; /* next process */ next_p = -1000; /* and its priority */

for(p = init_task->next_run; \
p != &init_task ; p = p->next_run)
{
if(p->policy != SCHED_OTHER)
weight = 1000 + p->rt_priority;
else
weight = p->counter;
1f(weight > next_p)
{
next_p = weight; next = p;
}
}
If next_p is greater than (), we have found a suitable candidate. If next_p is less than 0, there
is no ready-to-run process and we must activate the idle task. In both cases, next points to
the task to be activated next. If next_p is equal to 0, there are ready-to-run processes, but we
must recalculate their dynamic priorities (the value of counter). The counter values of all
other processes are recalculated as well. Then we restart the scheduler, but this time with
more

success.
if(next_p == 0) {

for_each_task(p)
{
p->counter = (p->counter / 2) + p->pnority;
{ goto restart_reschedule;
}
At this point, either next contains a ready-to-run process (next_p > 0), or there is no ready-
to-run process (next_p < 0) and next points to init_task. In any case, the task pointed to by
next will be activated:

if(prev != next)
switch_to(prev,next);
} /* schedule() */
This concludes the description of the scheduler. We stress again that the above source text is
a highly simplified version of the scheduler which, in our opinion, is however complete
enough to understand the scheduler's way of functioning.
Implementing system calls.

 Linux kernel internails - 61 -

3.3 Implementing system calls

The range of functions in the operating system is made available to the processes by means
of system calls. In this section we will look at implementing system calls under LINUX.

3.3.1 How do system calls actually work?
A system call works on the basis of a denned transition from User Mode to System Mode.
In LINUX, this is only possible using interrupts. The interrupt 0x80 is therefore reserved for
system calls.6

Normally, the user will always call a library function (such as fork()) to carry out a
certain task. This library function (as a rule generated from the _syscall macros in <asm-
i386/unistd.h>) writes its arguments and the number of the system call to defined transfer
registers and then triggers the 0x80 interrupt. When the relevant interrupt service routine
returns, the return value is read from the appropriate transfer register and the library
function terminates.

The actual work of the system calls is taken care of by the interrupt routine. This starts
at the entry address _system_call(), held in the arch/i386/ kernel/entry.S file. Unfortunately,
this routine is written entirely in assembler. For better readability, it will be illustrated here
by a C equivalent. Wherever symbolic labels occur in the assembler text, we have shown
them as labels in the C text.

The parameters sys_call_num and sys_call_args represent the number of the system
call (see<linux/unistd.h>) and its arguments.

PSEUDOCODE system_call(int sys_call_num , sys_call_args)
}
_system_caLL:
First, all the registers for the process are saved. SAVE_ALL; /* macro in entry.S */
If sys_call_num represents a legal value, the handling routine assigned to the system call
number is called. This is entered in the sys_calL_tabLe[] field (defined in the
arch/i386/kernel/entry.S file). If the process's PF_TRACESYS flag is set, it is monitored by
its parent process. The work entailed in this is taken care of by the syscaLL_trace function
(arch/i386/kernel/ptrace.c), which amends the state of the current process to TASK_STOPPED,
sends a SIGTRAP signal to the parent process and calls the scheduler. The current

6This applies to LINUX system calls on the PC. The iBCS emulation supported on the PC by LINUX uses a different
procedure - the so-called lcal 17 gate

 Linux kernel internails - 62 -

process is interrupted until the parent process reactivates it. As this is done before and after
every system call, the parent process has total control over the behaviour of the child
process.

if (sys_call_num >= NR_syscalls) errno = -ENOSYS;

else {
if (current->flags & PF_TRACESYS) {

syscaLL_trace();
errno=(*sys_calL_table[sys_call_num])(sys_call_args);

syscaLL_trace();
} else

errno=(*sys_call_table[sys_call_num])(sys_call_args);
}

The actual work of the system call is now complete. Before the process can continue,
however, there may still be some administrative tasks to deal with. In fact, the following
code is run not only after every system call, but also after every 'slow' interrupt, and
therefore includes some instructions which are only of significance to interrupt routines. As
it is perfectly possible for interrupt routines to be nested one within another, the variable
intr_count manages the nesting depth of the interrupt routines. If it is not zero, another
interrupt routine has been interrupted and ret_from_sys_call() immediately returns.

ret_from_sys_call:
if (intr_count) goto exit_now;

As interrupts can have a bottom half (see Section 7.2.4), the function do_bottom_haLf()
calls all the bottom halves marked as being active.

if (bh_mask & bh_active) { handle_bottom_half:

++intr_count;
sti{};
do_bottom_half()

--intr_coun;
} sti(); ——

From this point, interrupts in general are re-enabled. Although interrupt routines run with
blocked interrupts (for example, fast interrupts or interrupts which call cli()), the following
actions may be affected by interrupts.
Implementing system calls

 Linux kernel internails - 63 -

If scheduling has been requested (need_resched!=0), the scheduler is called. This
causes another process to become active. The schedule{} function will only return once the
process has been reactivated by the scheduler.

if (need_resched) { reschedule:
scheduleO;
goto ret_from_sys_call;
}

If signals have been sent for the current process and the process has not blocked receipt of
them, they are now processed. The function do_signal{} has been described in detail in
Section 3.2.1.

if (current->signal & "current->blocked)) (signal_return;
do_signal{};
}

This completes the necessary work, and the system call (or interrupt) returns. All the
registers are now restored and the interrupt routine is then terminated by the assembler
instruction iret.

exit_now:
RESTORE_ALL;
} /* PSEUDOCODE system_csll */

3.3.2 Examples of simple system calls
In this section we take a closer look at the implementation of some system
calls. This will also demonstrate the use of the algorithms and data structures introduced
above.

getpid

The getpid call is a very simple system call - it merely reads a value from the task structure
and returns it:

asmlinkage int sys_getpid(void)
{
return currcnt->pid;
}

 Linux kernel internails - 64 -

nice
The system call nice is a little more complicated: nice expects as its argument a number by
which the static priority of the current process is to be modified. All system calls which
process arguments must test the arguments for

plausibility.

asmlinkage int sys_nice(long increment)
{
int newpnority;
Only the superuser is allowed to raise his/her own priority. Note that a larger argument for
sys_nice() indicates a lower priority. This makes the name increment for the argument of
nice a little confusing.

if (increment < 0 && !suser()) return -EPERM;

suser() checks whether the current process has superuser privileges.7

The new priority for the process can now be calculated. Among other things, a check is
made at this point to ensure that the new priority for the
process is within a reasonable range. newpnority = ...

if (newpnority < 1)
newprionty = 1;
if (newpnority > DEF_PRIORITY*2)
newprionty = DEF_PRIORITY*2;
current->priority = newpnority;
return 0;
} /* sys_nice */

pause
A call to pause interrupts the execution of the program until the process is reactivated by a
signal. This merely amounts to setting the status of the current process to
TASK_INTERRUPTIBLE and then-calling the scheduler. This results in
another task becoming active.
7 The function not only checks this, but also records in the task structure when it was called successfully. This can be
used to detemine whether a process has used superuser privileges or not. Thefore, the suserO condition should only be
carried out after all other interrogations which might lead to a failure of the system call. Unfortunately, this rule is not
always observed in the current LINUX kernel.

 Linux kernel internails - 65 -

The process can only be reactivated if the status of the process is returned to
TASK_RUNNING, which occurs when a signal is received (see Section 3.2.5). The system call
pause then returns with the fault ERESTARTNOHAND and carries out the necessary actions for
the handling of the signal (as described in Section 3.2.1).

asmlinkage int sys_pause(void) {

current->state = TASK_INTERRUPTIBLE;
scheduLe();

return -ERESTARTNOHAND;
}

3.3.3 Examples of more complex system calls
We will now turn to rather more complex system calls. This section examines the system
calls for process management (fork, execve, _exit and wait).

fork
The system call fork is the only way of starting a new process. This is done by creating a
(nearly) identical copy of the process that has called fork.

As a matter of fact, fork is a very demanding system call. All the data of the process
have to be copied, and these can easily run to a few megabytes. In the course of developing
UNIX, a number of methods were adopted to keep the demands of fork as small as possible.
In the frequently occurring case where fork is followed directly by a call to exec, it is not
necessary to copy the data, as they are not needed. In the UNIX systems from the BSD
family, therefore, the system call vfork has been set up. Like fork, it creates a new process,
but it shares the data segment between the two processes. This is a rather dubious approach,
as one process can affect the data of the other process. To keep this interference as limited
as possible, further execution of the parent process is halted until the child process has either
been terminated by _exit or has started a new program with exec.

Newer UNIX systems, such as LINUX, for example, take a different approach, using the
copy-on-write technique. The thinking behind this is that a number of processes may very
well access the same memory at the same time -provided they do not modify the data.

Thus, under LINUX, the relevant pages of memory are not copied on a call to fork, but
used at the same time by the old and new processes. However, the pages used by both
processes are marked as write-protected - which means that they cannot be modified by
either process. If one of the processes needs to carry out a write operation on these pages of
memory, a page fault is triggered by the memory management hardware (MMU), the
process is interrupted and

 Linux kernel internails - 66 -

the kernel is informed. At this point, the kernel copies the pages of memory concerned and
assigns the writing process a copy of its own. This procedure is completely transparent -
that is, the processes themselves are unaware of it. The great advantage of this copy-on-
write method is that uneconomical copying of memory pages is only carried out when it is
actually needed.
A concept which exists alongside that of a process in current operating
systems is that of a 'thread' - an independent sequence of events within a process. A number
of different threads may be processed in parallel and independently of each other during the
execution of a process. The main way this differs from the concept of a process is that the
different threads within a process operate on the same area of memory and can therefore
affect each other. There are a variety of approaches to implementing threads. Simple vari-
ants, such as the widely used Pthread library, manage without any support from the kernel
of the operating system. The disadvantage of these methods is that the scheduling of the
individual threads has to be carried out by the user program: the kernel sees it as an ordinary
process. As a result, a blocking system call (for example, a read originating at the terminal)
blocks the entire process and thus all the threads. The ideal situation would be one in which
only the thread which has used the system call were to block. However, this requires
support for the thread concept by the kernel. Later versions of UNIX

(for example, Solaris 2.x) provide this support.
LINUX supports threads by making available the (LiNUX-specinc) system
call clone, which provides the necessary kernel support to implement threads. It works in a
similar way to fork - that is, it creates a new task. The main difference is that with с tone
both tasks can work with common data (for example, a common area of memory, a common
pid, and so on) after the system call. Up to now, however, there does not appear to be any
implementation of the POSIX

thread interface based on clone.
As fork and с tone essentially do the same thing, they are implemented
by a common function, which is simply called in a different way depending on the system

call used.

asmlinkage int sys_fork(struct pt_regs regs)
{
return do_fork(SIGCHLD, regs.esp, ®s);
}

asmlinkage int sys_clone(struct pt_regs regs)
{
unsigned long clone_flags;

 Linux kernel internails - 67 -

unsigned Long newssp;

clone_tlags = regs.ebx;
newsp = regs.ecx;
Implementing system calls 51

if(!newsp)
newsp = regs.ecx;
return do_fork(clone_flags, newsp, ®s);
}

The actual work is done by the function do_fork():

int do_fork(unsigned long clone_flags,
unsigned long usp, struct pt_regs *regs) {

int nr;
int error = -ENOMEM;
unsigned long new_stack;
struct task_struct *p;

First, the memory space required for the new task structure is allocated and a spare entry in
the task[] array is found.

p = (struct task_struct *) kmalloc(sizeof(*p), 6FP_KERNEL);
if (!p)
goto bad_fork;

new_stack = alloc_kernel_stack();
if (!new_stack)
goto bad_fork_free_p;
error = -EAGAIN;
nr = find_empty_process();
if (nr < 0)
goto bad_fork_free_stack;
task[nr] = p;

The child process p inherits all the parent process's entries.

*p = *current;

However, some of the entries need to be initialized for a new process.

p->did_exec = 0;
p->swappable = 0;
p->pid = get_pid(clone_flags);
p->next_run = NULL;
p->prev_run = NULL;

p->start_time = jiffies;

 Linux kernel internails - 68 -

p->swappable = 1;

p->exit_signal = clone_flags & CSIGNAL;
p->counter = current->counter » 1;

init_waitqueue(ap->wait_chldexit);
init_timer(8p->real_timer);
Now the substructures in the task structure are copied. Depending on the value of the
clone_flags, data structures will be either copied or shared. This is where the differences
between the system calls fork and clone are put into

effect.

if (copy_files(cl.one_flags, p))
goto bad_fork_cleanup;
if (copy_fs(cLone_flags, p))
goto bad_fork_cleanup_files;
If (copy_sighand(clone_fLags, p))

goto bad_fork_cleanup_fs;
if (copy_mm(clone_flags, p))
goto bad_fork_cleanup_sighand;
copy_thread(nr, clone_fLags, usp, p, regs);

Finally, the state of the new task is set to TASK_RUNNING so that it can be activated by the
scheduler. The old task (the parent process) returns from the system call with the process
identification number (PID) of the new process.

wake_up_process(p);
return p->pid;
If something has gone wrong, data structures requested up to that moment must be released.

bad_fork:

return error;
}
The copy_thread() function which is called in the above coding is also responsible for
initializing the registers for the new process. Among other things, the instruction pointer p-
>tss.eip is set to the start of the ret_from_sys_call() routine, so that the new process begins
processing as if it were the one which had issued the fork call. At the same time, the return
value is set to zero to enable the program to tell the parent process and child process apart
by reference to the different return values.

 Linux kernel internails - 69 -

execve
The system call execve enables a process to change its executing program. LINUX permits a
number of formats for executable files. As in UNIX, they are recognized by the so-called
'magic numbers' - the initial bytes of the file. By tradition, every UNIX system uses its own
format for executable files; but in the last few years two standards have developed: the
COFF and ELF formats.8 The trend clearly favours the ELF format, as it drastically
simplifies the handling of dynamic libraries. Interested readers can find more information
on the ELF format in the References at the back of this book under 'ELF'.

Both formats are now supported by LINUX. In addition, LINUX supports the script files
used in the BSD world. If a file begins with the pair of characters '#!', it is not loaded
directly, but passed for processing to an interpreter program specified in the first line of the
file. The familiar version of this is a line in the form

#!/bin/sh

at the start of shell scripts. Executing this file (that is, issuing an execve) is equivalent to
executing the file /bin/sh with the original file as its argument. The following gives (heavily
abridged) the annotated source text ofdo_execve().

static int do_execve(char *filename, char **argv, char **envp,
struct pt_regs * regs) {

First, an attempt is made to find the file relevant to the executing program (its inode) by
reference to the name of the program. The structure bprm is used to store all the data about
the file.

struct linux_binprm bprm;

retval = open_namei(filename, 0, 0, &bprm.inode, NULL);
bprm.filename = filename;
bprm.argc = count(argv);
bprro.envc = count(envp);

restart_interp:

After this, the access permissions for the file can be checked:

COFF stands for Common Object File Format and ELF stands for Executable and
Linkable Format.

 Linux kernel internails - 70 -

If (!S_ISREG(bprm.inode->i_mode)) {
retval = -EACCES;

goto exec_error2;
}

By examining the first block of the file, the way in which the file should be loaded can be
determined. To do this, the first 128 bytes of the file are read in:

retval = read_exec(bprm.inode,0,bprm.buf,128);
if (retval < 0) goto exec_error2;

Now, on the basis of the first bytes of the file, an attempt can be made to load the executable
file. LINUX uses a separate loading function for each file format it is familiar with. They are
each called in turn and 'asked' whether they can load the file. If the file can be loaded,
execve() terminates successfully; if not, it returns ENOEXEC.

for(fmt = formats; fmt ; fmt = fmt->next)
{
if (!fmt->load_binary) break;

retvaL = (fmt->load_binary)(&bprm, regs);
if (retvaL >= 0) (Iput(bprm.inode);

current->did_exec =1;
return retval;
}
if(retval != -ENOEXEC) break;

}

return(retval);
} /* do_execve() */
As this shows, the actual work is done by the function fmt->load_binary(). Let us take a
closer look at a function of this type:

int load_aout_binary(struct linux_binprm *bprm,
struct pt_regs *regs) {

 Linux kernel internails - 71 -

The buffer bprm->buf contains the first 128 bytes of the file to be loaded. First, this section
of the file is inspected to confirm that it is in the correct file format. If not, the function
returns the fault ENOEXEC, after which do_execve() can test for other formats. These tests
also extract from the header various items of information which will be needed later.

struct exec ex;

ex = *((struct exec *) bprm->buf);
If ((N_MAGIC(ex) != ZMAGIC && N_HAGIC(ex) != OHAGIC &&

N_MAGIC(ex) != QMAGIC) ||
ex.a_trsize || ex.a_drsize ||
bprm->inode->1_size < ex.a_text+ex.a_data+)

{
return -ENOEXEC;
}

fd_offset = N_TXTOFF(ex);

If these tests have been concluded successfully, the new program is loaded. The first action
at this stage is to release the process's memory, which still contains the old program. After
this release has taken place, execveO can no longer go back to the old program. If a fault
occurs while the file is being loaded, the current process will have to be aborted.

f Iush_old_exec(bprm);
Now the task structure can be updated. At this point, a note that the program is in a LiNux-
specific format is entered into the personality component.

current -> personality = PER_LINUX;

current->mm->start_code = N_TXTADDR(ex);
current->mm->end_code = current->mm->start_code + ex.a_text;
current->mm->end_data = current->mm->end_code + ex.a_data;
current->mm->start_brk = current->mm->end_data;
current->mm->brk = ex.a_bss + current->mm->start_brk;
current->mm->rss = 0;
current->mm->mmap = NULL;
current->suid = bprm->e_uid;
current->euid = bprm->e_uid;
current->fsuid = bprm->e_u1d;

 Linux kernel internails - 72 -

The file containing the new program is opened. The text and data segments are then inserted
into memory using do_mmap(). Note that do_mmap() is not loading the file at this point,
but only updating the page tables and thus telling the paging algorithm where to find the
pages of memory to be loaded when it needs them. Paging is described in Section 4.4.

fd = open_inode(bprm->inode, 0_RDONLY);

file = current->files->fd[fd];

error = do_mmap(file, N_TXTADDR(ex), ex.a_text,
PROT_READ | PROT_EXEC, MAP_FIXED | MAP_PRIVATE | MAP_DENYWRITE |
MAP_EXECUTABLE,
fd_offset);
error = do_mmap(fiLe, N_TXTADDR(ex) + ex.a_text, ex.a_data,

PROT_READ | PROT_WRITE | PROT_EXEC,
MAP_FIXED | MAP_PRIVATE | MAP_DENYWRITE | MAP_EXECUTABLE,

fd_offset + ex.a_text);
sys_cLose(fd);
Now the BSS segment is loaded. Under UNIX, it contains the non-initialized data for a
process. This is done by the function set_brk(). Initialization of the registers and, in
particular, the instruction pointer for the new program is then carried out; this is the job of
the function start_thread(). When the system call execve completes its work, program
execution for the process continues from the new address.

set_brk(current->mm->start_brk, current->mm->brk);
current->mm->start_stack = ...;
'start_thread(regs, ex.a_entry, p);
return 0;
} /* Load_aout_binary */
In reality, the functions do_execve() and Load_aout_binary() are considerably more
complicated than this, partly because of the necessary fault and exception handling.9 As
well as this, we have left a number of 'unimportant' details out of this illustration -
'unimportant' in the sense that they are unnecessary to an understanding of the basic
principles of do_execve0. Those who wish to explore these functions seriously and perhaps
implement a new file format will find they cannot avoid a study of the original sources.

9 It can happen, for example, that older LINUX binaries cannot be loaded using do_mmap(). This means that
load_aout_binary() has to load the program code and data in full and cannot fall back on 'demand loading'.

 Linux kernel internails - 73 -

exit
A process is always terminated by calling the kernel function do_exit. This is done either
directly by the system call _exit or indirectly on the occurrence of
a signal which cannot be intercepted.

As a matter of fact, do_exit() does not have much to do. It merely has to release the
resources claimed by the process and, if necessary, inform other processes. However, this
gives rise to a good deal of detail; so, once again, the following illustration of the do_exit()
function is heavily abridged. For example, we shall not take account of actions necessary for
clean management of the process groups.

NORET_TYPE void do_exit(long code) {

First, the process releases all structures that it occupies.

del_t imer(¤t->rea l_timeг);
sem_exit();
kerneld_exit();
exit_thread();
_exit_mm(current);
_exit_files(current);
_exit_fs(current);
_exit_sighand(current);

The parent process is informed of the termination of a child process. In some cases, it will
already be waiting for this event via the system call wait. When a process completes its
work, all the child processes must be given a new parent process. By default, all child
processes are inherited by process 1. If it no longer exists, they are bequeathed to process 0.
All this is done by the exit_notify() function.

exit_notify();

All the clearing-up operations have now been completed. No memory space is needed for
the process any longer (except for the task structure), and it becomes a zombie process. It
will remain a zombie process until the parent process issues the system call uait.

current->state = TASK_ZOMBIE;
current->exit_code = code;m

 Linux kernel internails - 74 -

Finally, do_exit() calls the scheduler and allows other processes to continue. As the status of
the current process is TASK_ZOMBIE, the schedule() function does not return to this point.

schedule();
/* NOTREACHED */ } /* do_exit */

wait
The system call wait4 enables a process to wait for the end of a child process and
interrogate the exit code supplied. Depending on the argument given, wait4 will wait for a
specified child process, a child process in a specified process group or any child process.
Similarly, it can be specified whether wait4 will actually wait for a child process to end or
only react to child processes which have already been completed. As all these distinctions
are rather boring, the following illustration shows a modified version of wait4 with
semantics more or less corresponding to those of wait. (Normally, uait is a library function
which calls wait4 with appropriate arguments.)

int sys_wait(...) (
repeat:

The function sys_wait0 consists of two parts. First, it tests whether there is already a child
process in the TASK_ZOMBIE state. If there is, we have found the process we are looking for
and sys_wait() can return successfully. Before it does so, however, it picks up statistical
data (system time used, exit code, and so on) from the child process's process table and then
releases its task structure. This is the only time a process entry can be removed from the
process table.

nr_of_childs = 0;
for <p = current->p_cptr ;p ; p = p->p_osptr) { ++nr_of_childs;

if(p->state == TASK_ZOMBIE) {
current->cutime += p->utime + p->cutime;
current->cstime += p->stime + p->cstime;
if (ru != NULL)
getrusage(p, RUSAGE_BOTH, ru);
flag = p->pid;
if (stat_addr)

put_fs_Long(p->exit_code, stat_addr);
Implementing system calls 65

release(p);

return flag;

 Linux kernel internails - 75 -

} }

If there is no child process, sys_wait() returns immediately.

if (nr_of_chiIds == 0) return 0;

However, if there are child processes, it waits for one of the child processes to end. To do
this, the parent process enters itself in the relevant wait queue in its own task structure. As
we have already seen, on the _exit system call every process wakes up all the processes
waiting in this wait queue via the wake_up() function. This guarantees that the parent
process is informed of the end of a child process.

interruptible_sleep_on(8current->wait.chldexit);

The signal SIGCHLD sent by do_exit() on terminating the child process is ignored. If a signal
is received in the meantime (interruptible_sleep_on0 can, after all, be interrupted by another
signal) the system call is terminated with an error message. In all other cases, we know that
there is now a child process in the TASK_ZOMBIE state, and we can start looking for it again
from the top.

current->signal &= ~(1<<(SIGCHLD-1);

if (current->signal К "current->blocked) return -EINTR;

goto repeat;

} /* sys_wait */

3.3.4 Implementing a new system call
Now that we have examined a few system calls, we will see in this section how a new
system call can be implemented in LINUX. This should always be done with care, as
programs using an operating system which has been modified in this way are no longer
portable.

 Linux kernel internails - 76 -

The example we shall use to document the implementation of a new system call is
fairly academic in character. This is because in principle LINUX already contains all the
important system calls. It concerns the implementation

of a semaphore for process synchronization.

#include <linux/Mait.h> #include <linux/errno.h> #include <asm/systen.h> #include
<linux/sched.h>

If a process wishes to occupy a semaphore which is already occupied, the process must wait
for the semaphore to be released. We therefore need to set

up a wait queue.
static struct wait_queue * semop_wait = NULL;

We shall use the variable sem_pid to store the state of the semaphore. If the semaphore is
not occupied sem_pid will hold a value of 0; otherwise it will
contain the process number of the occupying process. static long sem_pid; /* 0 ==> not

used */

int sys_semop(int semop_type)
{
int ret = 0;
int ok = 0;
If semop_type has a value of 1, we wish to occupy the semaphore. If sem_pid matches our
own process ID, the process has already successfully occupied the

semaphore and we can return successfully.
Otherwise, we wait via interruptible_sleep_on() until the variable
sem_pid has a value of 0. Note here that the interruptible_sleep_on() func tion may return,
even though the semaphore is occupied. This may be for one of two reasons. On the one
hand, a number of processes may have been waiting in the wait queue. These will then all
be woken into the TASK_RUNNING state by wake_up(). The process which is first to be
reactivated by the scheduler may then occupy the semaphore. interruptible_sleep_on() may
also return if it is interrupted by a signal. In this case, we will simply return with an appro-
priate error code.

switch(semop_type) { case 1: I* occupy semaphore */
if(sem_pid == current->pid) return 0;
while(sem_pid != 0)

 Linux kernel internails - 77 -

{
interruptible_sleep_on(8seraop_wait);
if(current->signal & "current->blocked)
return -EINTR;
}
/* Here always holds sem_pid == 0 ! */
sem_pid = current->pid;
return 0;

Note that no critical areas ('race conditions') are involved here, as the process cannot be
interrupted by another process while it is in System Mode (that is, during a system call), but
must always voluntarily relinquish control. This means that it is not possible for another
process to occupy the semaphore between sem_pid being tested for zero and its being set.

If semop_type has a value of zero, the semaphore is to be released. We only allow the
semaphore to be released by the process which has previously occupied it. Once the
semaphore has been released (sem_pid==0), all the processes waiting in the semop_wait
wait queue are reawakened via the wake_up_interruptible() function.

case 0: /* release semaphore */ if (!sem_pid) return 0;

if (sem_pid == current->pid) { sem_pid = 0;
if(semop_wait)
wake_up_interruptible(&seinop_wait5;
return 0;
> return -EPERM;

default:
return -EINVAL;
} } /* sys_semop */

What happens if a process occupies the semaphore but is then aborted for some reason? The
semaphore remains occupied and can no longer be used or released. It is a good idea,
therefore, to include the release of the semaphore in the_exit system call. All this requires is
an additional line

sys_semop(0);

in the function sys_exit().
This completes the implementation of our new system call. There are a number of

ways of linking it into the kernel. The traditional method involves

 Linux kernel internails - 78 -

inserting the new system call permanently into the kernel. The following will
describe how this is done. However, the newly supported kernel modules enable
new system calls to be added to the kernel at run-time. This will be

covered in Chapter 9.
Here we describe the traditional method. First, the system call must be
given a name and a unique number. For every system call known to the system,

the file <linux/unistd.h> contains an entry of the form

#define_NR_System call name system call number We add our system call at the next

available number:

#define _NR_semop 141 The arch/i386/kernel/entry.S file holds the initialized

table:

_sys_call_table:

.long _sys_setup /* 0 */

.long _sys_exit .Long _sys_fork

.long _sys_Llseek /* 140 */

.space (NR_syscalls-140)*4
Here we add, at position 141(_NR_semop), a pointer to the function handled by our

system call. In our case, therefore, the result will be:

_sys_call_table:
.long _sys_setup /* 0 */
.long _sys_exit .long _sys_fork

.long _sys_llseek /* 140 */

.long _sys_semop

.space (NR_syscalls-141)*4
Following the convention, we store the above source text for our new system call in
the file kernel/semop.c. It is advisable to use our own files for our own system calls,
as this makes porting to a later version of the LINUX kernel

easier.
Once we have added the file semop.o to the entry for OBJS in the MakefiIe,

 Linux kernel internails - 79 -

we are almost finished. A new kernel can now be generated and installed, as
described in Chapter 2, and this will support the new system call.
Implementing system calls 69

We should also set up a library function allowing the user actually to use the new
system call. To do this, we use the following short С program:
#include <linux/unistd.h> _syscall1(int, semop, int, semop_type)

The macro _syscall1 in <asm-i386/unistd.h> then expands this into the following function
definition:

Int semop(int semop_type) {

long _res;
_asm_volatile ("int $0х80" : "=a" (_res) : "0" (_NR_semop),"b"

((long)(semop_type)));

if (_res >= 0)
return (int) _res;
errno = -_res;
return -1;
}

Alternatively, we could also use the library function syscall() to call the new system call.

 Linux kernel internails - 80 -

4 Memory management
Data memories consist of thousands of memory cells. This means that the individual cells
must be arranged according to a purposeful and as far as possible simple system.

John S. Murphy

4.1 The architecture-independent 4.3 Block device caching
memory model in LINUX

4.2 The virtual address space fora process 4.4 Paging under LINUX

The quotation above is taken from a book originally published in 1958. The demands made
of memory management systems have changed radically since then, and hardly any
applications can get by on only a few thousand memory cells. But the need for simplicity
and purposefulness is as relevant as ever.

A multi-tasking system like LINUX makes particular demands of memory management.
The memory belonging to a process and that used by the kernel need to be protected against
access by other processes. This protection is vital to the stability of a multi-tasking
operating system. It prevents a process from writing at random into other processes' areas of
memory, causing them to crash. This can be caused in а С program, for example, simply by
exceeding
the limits of a field variable.

Dubious programming methods, such as uncontrolled modification of system data, will
certainly be used if they are not specifically excluded. Memory protection stops
programmers affecting the stability of the system as a
result of programming tricks.
Primary memory (RAM) has always been a scarce resource, and still is.
As the amount of working memory regularly available has grown, the memory

 Linux kernel internails - 81 -

requirements of applications have grown with it - and software for LINUX, such as the GNU
С compiler or the X Window system, is no exception. Given that a multi-tasking system like
LINUX can run a number of processes at the same time, it is possible that the memory
requirements of all the processes to be run may exceed the size of working memory. The
memory management system should be capable of solving this problem by using secondary
memory (for example, areas of the hard disk). It may also be necessary to run processes
whose memory requirement itself exceeds the size of primary memory.

If two process instances of a program are run in quasi-parallel, at least the data for the
two processes must be stored in different physical areas of memory. This means that the
data for the corresponding variables in each process will be stored at different physical
addresses. By far the most elegant method of dealing with this problem is to introduce a
virtual address space for each process. The programmer can then design his/her program
without regard to the actual locations of the code and data in the physical address space.
Mapping the virtual addresses onto the physical addresses is the responsibility of the
operating system's memory management system.

Memory protection prevents two processes exchanging data by changing areas of
memory used by both. In this case, inter-process communication must be carried out using
system calls. But the use of a system call is bound up with a large complex of operations
such as multiple saving of registers to the stack, saving of areas of memory, and so on. If
processes were able to share certain areas of memory, inter-process communication would
be more efficient.

This concept of shared memory is not restricted to communication with processes. For
example, areas of files could also be mapped into a process's memory: this could often save
many repeated system calls to read and write the file.

The efficient implementation of a state-of-the-art system for memory management
would be impossible without hardware support. As LINUX is also intended to run in the
future on systems not based on Intel architecture, an architecture-independent memory
model has to be defined. This memory model must be so universal that it can be used in
conjunction with the memory architectures of a wide range of different processor types.
This chapter starts by introducing this architecture-independent memory model. The
implementation of the model for the i386 processor family is then presented. CPUs in this
family will be referred to as x86 processors. To demonstrate the flexibility of the memory
model, we then look at its implementation on the DEC Alpha architecture.

The second part of this chapter explains how the architecture-independent memory
model is used to implement memory management. This brings in the memory management
algorithms used by LINUX. It should be noted that other ALgorithms and approaches to
memory management have been used and are Still used by other systems. Readers interested
in knowing more are referred to Bach (1986).

 Linux kernel internails - 82 -

4.1 The architecture-independent memory
model in LINUX___________________

A typical computer today has at its disposal a number of levels of memory with different
access times. The first level mostly consists of cache memory within the processor. A
second level of cache is frequently implemented, using SRAM chips with a fast access time
of around 20 ns. In almost all cases, the actual working memory consists of inexpensive
DRAM chips with access times around 70ns. As far as programming is concerned, the cache
levels are transparent once they have been initialized by the BIOS code. For this reason, the
cache levels are not mapped by the architecture-independent memory model and the term
physical memory is used to refer to RAM in general.

4.1.1 Pages of memory
The physical memory is divided into pages. The size of a memory page is denned by the
PAGE_SIZE macro in the asm/page.h file. For the x86 processor, the size is set to 4 Kbytes,
while the Alpha processor uses 8 Kbytes.

4.1.2 Virtual address space
A process is run in a virtual address space. In the abstract memory model, the virtual
address space is structured as a kernel segment plus a user segment. Code and data for the
kernel can be accessed in the kernel segment, and code and data for the process in the user
segment. A virtual address is given by reference to a segment selector and the offset within
the segment. When code is being processed, the segment selector is already set and only
offsets are used:
thus, С pointers only hold offsets. In the kernel, however, access is needed not only to data
in the kernel segment but also to data in the user segment, for the passing of parameters. For
this purpose, the put_user() and get_user() macros are denned in the asm/segment.h file. A
pointer to the datum to be copied is passed as an argument; the pointer type is used to
determine the number of bytes to be copied. The additional functions memcpy_tofs() and
memcpy_fromfs() are denned to allow the copying of any number of bytes to and from the
user segment.

The segment selectors for the kernel data (KERNEL_DS) and the user data
(USER_DS) are defined in asm/segment.h. Functions to read the current data segment
selector (get_ds()) and to read and set the selector register used for the user segment in the
kernel (get_fs() and set_fs()) are available. These allow system functions within the kernel
to be called up. The code for this system function assumes that all the pointers passed to the
function point to the user segment; if the segment selector register for the user segment - FS
in x86 processors - is set so that it points to the kernel segment, the kernel segment is
accessed via user segment access functions such as get_user_byte(). By carrying

 Linux kernel internails - 83 -

out a conversion on the segment selector register, a system function can be given pointers to
the kernel segment. This method is used, for example, by the UMSDOS file system to
simulate a UNIX file system in an MS-DOS file system, where the MS-DOS file system is
accessed via system functions.

The memory management unit (MMU) of an x86 processor converts the virtual address
into a linear address. The linear address space is limited to 4 Gbytes by the width of the
linear address, which is 32 bits. As all the segments have to be mapped into the linear
address space, the size of the user segment is restricted to 3 Gbytes via the macro
TASK_SIZE. The remainder of the address space is available to the kernel segment.

The Alpha processor does not support segmentation of the virtual address space. Here,
the offset of a virtual address is identical to the linear address, which means that the offset
addresses for the user segment are not permitted to overlap with the offset addresses for the
kernel segment. As the Alpha processor works with 64-bit addresses, however, this is not a
serious handicap, as the linear address space runs to 264 bytes. Functions to access the user
segment are defined, but access the offset addresses directly. The functions to set and read
the segment selector registers set a bit in the flags of the task status segment. This bit is used
for the checking of system call arguments.

4.1.3 Converting the linear address
The linear addresses require conversion to a physical address by either the processor or a
separate memory management unit (MMU). In the architecture-independent memory model,
this page conversion is a three-level process, in which the address for the linear address
space is split into four parts. The first part is used as an index in the page directory. The
entry in the page directory refers to what in LINUX is called a page middle directory. The
second part of the address serves as an index to a page middle directory. Referenced in this
way, the entry refers to a page table. The third part is used as an index to this page table.
The referenced entry should as far as possible point to a page in Physical memory. The
fourth part of the address gives the offset within the
selected page of memory. Figure 4.1 shows these relationships in graphical form.

The x86 processor only supports a two-level conversion of the linear address. Here,
the conversion for the architecture-independent memory model can be assisted by means of
a useful trick. This defines the size of the page middle directory as one and interprets the
entry in the page directory as a page middle directory. Of course, the operations to access
page conversion tables will also have to take this into consideration.

The linear address conversion must be given a three-level definition in the
architecture-independent memory model because the Alpha processor sup-Ports linear
addresses with a width of 64 bits. An address conversion in only two levels would result in
very large page directories and page tables if a

 Linux kernel internails - 84 -

Linear address

Figure 4.1 Linear address conversion in the architecture-independent memory model.

reduction of the useful linear address to 32 bits were to be avoided. In porting the memory
model to the Alpha architecture it was found that one page (8 Kbytes in the Alpha
processor) was used for each page directory and page table. This limits the number of
entries per level to 1024. As the base address for the page directory is also managed by the
page directory, the size of the virtual address space is limited to 1023 x 1024 x 1024 x 8192
bytes, or 8184 Gbytes - just below 8 terabytes; 2 terabytes = 241 bytes of this will be made

available to a user segment.

4.1.4 The page directory
Data types, functions and macros for access and the modification of the page tables and
directories are defined in the files asm/page.h and asm/pgtable.h.

An entry in the page directory is a pgd_t data type. To provide better support for the
type check in C, it is defined as a structure. This value must be accessed via the macro
pgd_val().

• pgd_aLLoc()
Allocates a page for the page directory and fills it with zeros.
• pgd_bad()
Can be used to test whether the entry in the page directory is valid.
• pgd_clear()
Deletes the entry in the page directory.
The architecture-independent memory model in LINUX 75

• pgd_free()
Releases the page of memory allocated to the page directory.
• pgd_none()

 Linux kernel internails - 85 -

Tests whether the entry has been initialized.
• pgd_offset()
Returns the pointer to the entry in the page directory for a linear address.
• pgd_page()
The address of the page to which the entry in the page directory refers -usually the base
address of a page middle directory.
• pgd_present()
Shows whether the entry in the page directory refers to a page middle
directory.
• pgd_set()
The entry in the page directory is set to the base address of a page middle
directory.
• SET_PA6E_DIR()
This macro/function resets the page directory base address for a task.

4.1.5 The page middle directory
Entries in the page middle directory are of the pmd_t data type. Access is by the macro
pmd_val(). The following functions are defined:

• pmd_alloc()
Allocates a page middle directory to manage memory in the user area.
• pmd_alloc_kernel()
Allocates a page middle directory for memory in the kernel segment. All
entries are set to invalid.
• pmd_bad()
Tests whether the entry in the page middle directory is valid.
• pmd_clear()
Deletes the entry in the page middle directory.
• pmd_free()
Releases a page middle directory for memory in the user segment.
• Pmd_free_kernel()
Releases a page middle directory for memory in the kernel segment.
• pmd_none()
Tests whether the entry in the page middle directory has been set.
• pmd_offset()
Returns the address of an entry in the page middle directory to which the address in the
argument is allocated: the correct directory entry must be passed as a further parameter.
Chapter 4 Memory management

• pmd_page()
Returns the base address of the page table to which the entry refers.
• pmd_present()
Tests for the presence of the page table relating to the entry in the page
middle directory.

 Linux kernel internails - 86 -

• pmd_set()
Sets the entry in the page middle directory to the base address of a page table; it is not
defined for the x86 architecture.

4.1.6 The page table
An entry in the page table is denned by the data type pte_t. As before, there is a macro
pte_vaL(), which provides access to the value of the data type. The most important task of
the page table entry is to address a page in physical memory.

In addition, a page table entry contains a number of flags which describe the legal
access modes to the memory page and their states. LINUX must map these architecture-
dependent flags onto architecture-dependent attributes. The 'presence' attribute indicates
whether or not the page is present in the virtual address space. There is one attribute each
for reading from and writing to the memory page and for executing code. One attribute
indicates whether the memory page has been accessed - in other words, this attribute
describes the 'age' of the page. The 'dirty' attribute is set when the contents of the memory
page has been modified.

The following attribute combinations are defined as macros of the pgprot_t type:

• PAGE_NONE
No physical memory page is referenced by the page table entry.
• PAGE_SHARED
All types of access are permitted.
• PAGE_COPY
This macro is historical and identical to PA6E_READONLY.
• PAGE_READONLY
Only read or execute access is allowed to this page of memory. With write access, an
exception is generated which allows this error to be handled. The memory page can be
copied, and the page table entry can be set to the physical address of the new page and its
attributes to PAGE_SHARED. This is exactly what is meant by 'copy-on-write'.

• PAGE_KERNEL
Access to this page of memory is only allowed in the kernel segment.

 Linux kernel internails - 87 -

Table 4.1 Semantics for the combinations of protection
attributes for x86 processors.

Attribute combination x86 semantics

--X Г-Х
-w- rwx
-wr rwx
r-- r-x
r-x w-x
rw- rwx
rwx rwx

As well as these, asm/pgtable.h holds definitions of the macros _POOO to _P111 and
_SOOO to _S111 which, together with the _PAGE_NORMAL() macro, enable any
combination of protection attributes to be defined. The bit positions in the macro names are
interpreted as 'xwr'. For the macros beginning with _P, the position of the 'write' attribute is
interpreted as the 'copy-on-write' attribute.

The x86 architecture does not support all combinations of the 'read', 'write' and
'execute' attributes. Table 4.1 shows the semantics of all the possible attribute combinations,
using the classical UNIX 'rwx' notation.

A range of functions have been defined to manipulate the page table entries and their
attributes. Note that the functions are described here by reference to the attributes explained
above. For architectures which do not support all the attributes for pages defined in the
architecture-independent memory model, the semantics may vary from those given here.

• mk_pte()
Returns a page table entry generated from the memory address of a page and a variable of
the pgprot_t type, which describes the memory protection for the page.

• pte_alloc()
Allocates a new page table.
• Pte_alloc_kepnel()
Allocates a new page table for memory in the kernel segment.
• pte_clear()
Clears the page table entry.
• pte_dirty()
Checks whether the 'dirty 'attribute is set.

 Linux kernel internails - 88 -

• pte_exec()
Checks whether the execution of code in the referenced page of memory is permitted, that
is, whether the 'execute' attribute is set.

• pte_exprotect()
Clears the 'execute' attribute.
• pte_free()
Releases the page table.
• pte_free_kernel()
Releases the page table responsible for managing the pages in the kernel
segment.
• pte_mkclean()
Clears the 'dirty' attribute.
• pte_mkdirty()
Sets the 'dirty' attribute.
• pte_ikexec()
Sets the 'execute' attribute, permitting code in the page to be executed.
• pte_mkold<)
Sets the 'age' attribute, that is, the system now assumes that this memory page has already
been accessed.

• pte_mkread()
Sets the 'read' attribute to allow read access to the page.
• pte_mkwrite()
Sets the 'write' attribute to allow write access to the page.
• pte_mkyoung()
Clears the 'age' attribute.
• pte_modify()
The protection attribute for the page of memory referenced by the page table entry is
modified as defined in the parameter.

• pte_none()
Checks whether the page table entry is set.
• pte_offset()
Returns a pointer to the page table entry referencing the page of memory to which the
address passed as a parameter refers. However, the parameter passed must be the entry in
the page middle directory valid for this page. \

• pte_page()
Returns the address of the page referenced by the page directory entry.
• pte_present()
Checks whether a page in physical memory is referenced by the page
table entry.

 Linux kernel internails - 89 -

• pte_rdprotect()
Clears the 'read' attribute to protect the page referenced by the page table entry against
read accesses.
• pte_read()
Checks whether the 'read' attribute is set.
• pte_write()
Checks write authorization for the referenced page by testing the 'write' attribute.
• pte_wrprotect()
Sets the 'write' attribute to activate write protection for the referenced
page.
• pte_young()
Checks that the 'age' attribute is not set, that is, that the page has not yet been accessed.
• set_pte()
Sets the page table entry.

4.2 The virtual address space for a process

As we have already mentioned in the last section, the virtual address space of a LINUX

process is segmented: a distinction is made between the kernel segment and the user
segment. For the x86 processor, two selectors along with their descriptors must be defined
for each of these segments. The data segment selector only permits data to be read or
modified, while the code segment selector allows code in the segment to be executed and
data to be read.

In x86 architecture, the user process can modify its local descriptor table, which holds
the segment descriptors, by making use of the system call modify_ldt. This enables a
process to enlarge its local address space by additional segments. This facility is used, for
example, by the Windows emulator WINE to imitate MS-Windows segment-based memory
management.

4.2.1 The user segment
In User Mode, privilege level 3 on x86 processors, a process can access only the user
segment. As the user segment contains the data and code for the process, this segment needs
to be different from those belonging to other processes, and this means in turn that the page
directories, or at least the individual page tables for the different processes, must also be
different. In the system call fork, the parent process's page directories and page tables are
copied for the child process. An exception to this is the kernel segment, whose Page tables
are shared by all the processes.

 Linux kernel internails - 90 -

The system call fork has an alternative: clone. Both system calls generate a new thread,
but in clone the old thread and the thread generated by clone can fully share the memory.
Thus, LINUX regards threads as tasks which share their address space with other tasks. The
handling of additional task-specific resources, such as the stack, can be controlled via
parameters of the system call clone.

The structure of the user segment during execution in ELF format is shown in Figure
4.2. The user segment for any process, other than the idle process (process no. 0), is
initialized by the loading or mapping of a binary file carried out by the system call execve.
A process generated by fork inherits the structure of its parent process.

The shared libraries shown in the user segment need some explanation. Originally, the
entire code of a program was statically linked into one binary. This led to the effect that,
with the growth of the libraries, binaries became ever larger. In order to prevent this, the
libraries were stored in separate library files and loaded at program start. However, owing to
restrictions in the a. out format, the shared libraries were linked to static addresses. Thus, all
shared libraries had to lie on different addresses. With ELF, a file structure and some
methods were defined which made this superfluous and allowed shared libraries to be
loaded during program execution. With a flexible design, shared libraries unknown at
compile time could now be linked into a program. Peri's automatic modules are a good
example, where the shared libraries are mapped at dynamically determined addresses.
However, the libraries must have been generated as position-independent code (PIC), that
is, there must be no absolute address references in the compiled code.

LINUX still supports the classic a. out format. Here, however, the user segment is
structured in a different way. The program text starts at virtual address 0, and the dynamic
libraries are mapped at static addresses between the heap and the stack. Because of the fixed
address allocation and the much more laborious way of generating shared libraries in the a.
out format, this binary format has been superseded.

In addition, Linux can handle scripts as true binaries. When a script is called, the
interpreter specified in the first line after the character combination #! is started with the
script as its argument. Java programs are supported in a similar way. The interpreter must be
made known to the system beforehand by describing the pseudo-files /proc/sys/kerneL/java-
interpreter and /proc/sys/kernel/java-appletviewer with their corresponding paths.

The environmental variables and arguments for a process are stored at the top end of
the user area as a sequence of character strings ending in zeros. Below this are the pointer
tables for the arguments and the environmental variables to which а С program will refer
using argv and environ respectively. Below this, the stack starts.

 Linux kernel internails - 91 -

Figure 4.2 Structure of the user segment for a process with a binary file in ELF format.

4.2.2 Virtual memory areas
As a shared library can be very large, it would not be a good idea if all of its code were
constantly being loaded into physical memory. We can be sure that the processes running at
any one time will not be using all of the functions in a library simultaneously. Loading the
code for unused functions squanders memory resources and is unnecessary. Even in larger
programs there will certainly be sections of code which will never be touched by a process
because (for example) certain program features are not used. Loading these parts of the
program is just as wasteful as loading the unused sections of a library.

If two processes are being run by the same executable file, the program code does not
need to be loaded into memory twice. Both processes can execute the same code in primary
memory. It is also possible that large parts of the data segments of these processes will
match. These can also be shared between the processes, provided neither process modifies
these data. Only when a process modifies a page of memory does a copy-on-write need to
be performed.

If a process reserves very large amounts of memory, the allocation of free pages of
physical memory would be extravagant. The process will only use these pages fully at a
later stage, and possibly not even then. The way to get round this problem is to use copy-on-
write, by which an empty page of

 Linux kernel internails - 92 -

memory is referenced more than once in the page tables for the process. It is only after a
modification has been made at a specific address in the user segment that this page needs to
be copied and mapped to the appropriate point
in the linear address space.

It is clear from this that the separate areas of the user segment must have different
attributes for the page table entries for the memory page, different handling routines for
access errors and different strategies for saving to secondary memory. It was for this reason
that the abstract concept of virtual memory was introduced during the development of
LINUX. A virtual memory area is denned by the data structure vm_area_struct.

struct vm_area_struct { /* parameters for virtual memory area */
struct mm_struct * vm_mm;
unsigned long vm_start;
unsigned long vm_end;
pgprot_t vm_page_prot;

unsigned short vm_fLags;
/* AVLtree for virtual memory area of a process,
* sorted by address. */ short vm_avl_height;

struct vm_area_struct * vm_avl_left;
struct vm_area_struct * vm_avl_right;
/* singly linked List of areas of virtual memory of a process
* sorted by address */ struct vm_area_struct * vm_next;
/* for areas with an inode, the doubly linked circular list
* inode->i_mmap */

/* for area of shared memory, the list of mappings */ /* otherwise unused */

struct vm_area_struct * vm_next_share;
struct vm_area_struct * vm_prev_share;
/* more */

struct vm_operations_struct * vm_ops;
unsigned long vm_offset;
struct inode * vm_inode;
unsigned long vm_pte; /* shared mem */

};
The components vm_start and vm_end determine the start and end addresses of the virtual
memory area managed by the structure.
The structure vm_mm is a pointer to a part of an entry in a process table. The protection
attributes for pages of memory in this area are fixed by
vm_page_prot. Information on the memory area type is held in vm_flags. This

 Linux kernel internails - 93 -

includes the current access permissions to the memory area and rules as to what protection
attributes can be set.

The virtual memory areas for a process are managed in two places: an AVL tree,
sorted by address, and a singly linked list, also sorted by address. For special purposes, such
as the mapping of a file or the use of System V shared memory, fields for a doubly linked
circular list are also defined.

The inode pointer vm_inode refers to the file or the hardware device whose contents
have been mapped to the virtual memory area starting at the offset vm__offset. If this
pointer is set to NULL, the process is referred to as 'anonymous mapping'. If a virtual
memory area is mapped anonymously, all the page table entries for this area point to one
and the same page of memory, which is completely set to NULL. If the process then writes to
a page in this area, a new physical page is initialized by copy-on-write handling routines and
entered in the page table. In this way, LINUX only allocates pages of memory for anonymous
areas of virtual memory if these are accessed by writing. This mechanism is used in the
system call brk. The vm_pte field is used when System V's shared memory is implemented.

As the virtual areas of memory are merely reserved, any attempt to access memory in
one of these areas will produce a page error, because either no entry in the page directory as
yet exists for the page, or else the referenced page of memory does not allow write access.
The processor generates a page error exception interrupt and activates the appropriate
handling routine. This routine then calls up an operation to provide the required pages in
memory. There are pointers to these operations in vm_ops. As well as these, vm_ops also
| contains pointers for additional operations which organize the initializing and release of a
virtual memory area. The structure vm_operations_struct defines the possible function
pointers enabling different operations to be assigned to different areas.

struct vm_operations_struct { void (*open)(struct vm_area_struct * area);
void (*close)(struct vm_area_struct * area);
void (*unmap)(struct vm_area_struct *area, unsigned Long,
size_t);
void (*protect)(struct vm_area_struct *area, unsigned long,
size_t, unsigned int newprot);
void (*sync)(struct vm_area_struct *area, unsigned long/
size_t, unsigned int flags);
void (*advise)(struct vm_area_struct *area, unsigned long,
size_t, unsigned int advise);
unsigned long (*nopage)(struct vm_area_struct * area,

unsigned long address, unsigned long page,
int write_access);

 Linux kernel internails - 94 -

unsigned long (*wppage)(struct vm_area_struct * area,
unsigned Long address, unsigned Long page);
void (*swapout)(struct vm_area_struct *,
unsigned Long, pte_t *);
pte_t (*swapin)(struct vm_area_struct *, unsigned long,
unsigned long);
};
The functions protect{}, sync(), advise() and wpprotect() are not used by version 2.0.
Memory access errors in cases where write access to the memory page is illegal are handled
in the central routine do_no_page() instead of by the

wpprotectO call.
The open() function is called if a new virtual memory area is mapped to the user

segment. To remove the mapped area of memory again, the function с Lose 0 is called. If a
file has been mapped to the virtual memory area, the changed data must be written back to
the file itself. The function unmap() is used to indicate that part of the data mapped to the
virtual memory area is being cleared. The virtual memory area is then split at the unmapped
area.

Errors caused by attempts to access a page which is not present in physical memory
and which has not been copied to secondary storage are handled by nopage(). The only job
of this function is to load the page to the page in physical memory referenced by the
parameter page.

The function swapout() copies to secondary storage the page within the memory area
pointed to by the offset given as a parameter. When this function is called, a check is made
to ensure that the 'dirty' bit for this page has been set. It is not possible for this function to
return an error. The function swapin() reloads the page of memory whose offset has already
been calculated relative to the component vm_offset in the virtual memory area's data struc-
ture. If the function fails it will return BAD_PAGE; otherwise it returns the appropriate page
table entry.

The function syncO writes changes in the memory area back to the inode associated
to that memory area.

In the LINUX kernel, virtual memory areas for a process can be set up using the
function do_mmap.

int do_mmap(struct file * file, unsigned long addr, unsigned long len, unsigned long
prot, unsigned Long flags, unsigned Long off)

At the do_mmap() call, file is either null or should point to a data structure of the fiLe type
with a function pointer for mmap entered in its operation vector. The argument Len gives
the length of the memory area to be mapped and off the offset in the file indicated by file. If

 Linux kernel internails - 95 -

fiLe is NULL, an empty page of memory of the size given by Len will be mapped to the
user segment of the process. This is also known as anonymous mapping.

Table 4.2 Values for prot as argument of the do_mmap() function.

Value Meaning
PROT_READ Area can be read

PROT_WRITE Area can be written to

PROT_EXEC Area can be executed

PROT_NONE Area cannot be accessed (not supported at present)

In prot the calling process specifies the access protection to be given to the virtual
memory area. The options for this are summarized in Table 4.2.

Attributes for the virtual memory area are given in fLags. MAP_FIXED can be used to
specify that the memory area should be mapped exactly at the given address. Care should be
taken in this case to ensure that any virtual memory areas previously mapped to this address
have been removed. The flags MAP_SHARED and MAP_PRIVATE control the handling of
memory operations in the virtual memory area: MAP_SHARED specifies that all write
operations will be carried out on the same pages of memory, while for MAP_PRIVATE any
write access will cause the pages to be duplicated. In other words, setting MAP_PRIVATE

switches on the 'copy-on-write' attribute for the pages concerned. The limitations of x86
architecture mean that it is not possible to achieve a complete implementation ofdo_mmap()
for x86 processors.

4.2.3 The system call brk
At the start of a process the value of the brk field in the process table entry (see also Section
3.1.1) points to the end of the BSS segment for non-statically initialized data. By modifying
this pointer, the process can allocate and release dynamic memory: this is usually done
when the standard С function maLLoc() is called. The allocation of memory must of course
be linked to the necessary changes to the page directory for the process. As this can only be
done under the control of the kernel, an appropriate system call is needed.

The system call brk can be used to find the current value of the pointer or to set it to a
new value. If the argument is smaller than the pointer to the end of the process code, the
current value of brk will be returned. Otherwise an attempt will be made to set a new value.

The new value is checked for consistency. Thus, a new value will be rejected if the
memory required exceeds the estimated size of the space currently available in primary and
secondary memory. As well as this, a check is made on the current limits for the size of

 Linux kernel internails - 96 -

process memory. The process is also prevented from setting brk to a value which would
overlap with the stack or a virtual memory area that has already been mapped.

After the consistency checks, the kernel function sys_brk() calls do_mmap() to map a
private and anonymous memory area between the old and new values of brk, corrected to
the nearest page boundary, and return the new brk value. The first write access to a page in
the virtual memory area will cause a copy of the memory page mapped via copy-on-write to
be created. The copy can then be modified as required. sys_brk() returns the new brk value.

4.2.4 Mapping functions
The С library provides three functions in the header file sys/mman.h.

«include <sys/mman.h>

extern caddr_t mmap (caddr_t addr, size_t len,
int prot, int flags, int fd, off_t off);
extern int munmap (caddr_t addr, size_t len);
extern int mprotect (caddr_t addr, size_t len, int prot);
extern int msync;

The mmap() function makes use of the system call mmap, which in turn calls do_mmap().
The file descriptor fd must be opened before the call. For anonymous mapping, the
additional flag MAP_ANON needs to be used.
The munmap() function makes use of the system call munmap to remove
memory areas mapped to the user segment.

The library function mprotect 0 implements the protection attributes for a memory area
in the user segment, using the macros PROT_NONE, PROT_READ, PROT_WRITE and
PROT_EXEC mentioned above. The implementation of this function is based on the system
call mprotect. This system call will of course check whether an area of memory has been
mapped at this point and whether the
new protection attributes are legal for the area.
It should be mentioned that, in x86 architecture, the semantics of setting
the attributes PROT_WRITE and PROT_EXEC will cause PROT_READ to be set for all of these
operations. In addition, the attribute PROT_EXEC is implicitly set when
PROT_READ is set.
Furthermore, additional functions for synchronizing the working memory
with the disk contents and the fixing of mapped memory areas in RAM are supported, so
that since LINUX 2.0 the whole range of mmap functionality is
available.

4.2.5 The kernel segment
When a system function is initiated, the process switches to system mode. In x86
architecture, a LINUX system call is generally initiated by the software interrupt 128 (0х80)
being triggered. The processor then reads the gate descriptor

 Linux kernel internails - 97 -

stored in the interrupt descriptor table. This is a trap gate descriptor pointing to the
assembler routine system_call in arch/i386/entry.S. The processor jumps to this address
with the segment descriptor in the CS register pointing to the kernel segment. The assembler
routine then sets the segment selectors in the DS and ES registers in such a way that
memory accesses will read or write to data in the kernel segment.

As the page tables for the kernel segment are identical for all processes, this ensures
that any process in system mode will encounter the same kernel segment. In the kernel
segment, physical addresses and virtual addresses are the same except for the virtual
memory areas mapped by vmalloc().

Alpha architecture does not support segments, which means that the kernel segment
cannot start at address 0. A PAGE_OFFSET is therefore provided between the physical and
virtual addresses, which is determined by the start address of the kernel segment in the
virtual address space.

In an x86 processor, the next step involves loading to the segment register FS a data
segment selector pointing to the user segment. Accesses to the user segment can then be
made using the put_user_ and get_user_ functions mentioned earlier. This may cause a
general protection error, if the referenced address is above the segment boundary
OxcOOOOOOO. It is also possible that the operation may be attempting to access an
address inside a write-protected page of memory. As the 386 ignores the write-protection
bits when it is in system mode, however, this could cause problems if the page concerned
has only been mapped by copy-on-write. This means that a user process would be able to
modify other processes' memory when using a system routine. Users of 486 and Pentium
machines have the advantage that these also take account of the protection bits in system
mode. On a 386, the handling routine for write protection must be called explicitly. Action
must also be taken in the kernel to prevent attempts to access virtual addresses in the user
segment for which no virtual memory area has been defined. Interrupting the code in the
kernel segment with the SIGSEGV signal would result in inconsistencies in kernel data
structures which have just been modified by the interrupted process.

#define VERIFY_READ 0 /* before read access */ «define VERIFY_WRITE 1 /*
before write access */

int verify_area(int type, void * addrs, unsigned long size);
To avoid these problems, system routines have to call the verify_area() function before they
access the user segment. This checks whether read or write access to the given area of the
user segment is permitted, investigating all the virtual memory areas affected by the area
involved. If there are write-protected Pages in the area, a 386 will call the handling routine
for write-protect errors. If access to the specified area of memory is permitted, the function
returns zero.

 Linux kernel internails - 98 -

4.2.6 Static memory allocation in the kernel segment
Before a kernel generates its first process when it is run, it calls initialization routines for a
range of kernel components. These routines are able to reserve memory in the kernel
segment. The initialization routine for character-oriented devices is called as follows by
start_kerneL in the init/main.c file:

memory_start = console_init(memory_start,memory_end);

The initialization function reserves memory by returning a value higher than the parameter
memory_stapt. The memory between the return value and memory_start can then be used as
desired by the initialized component.

4.2.7 Dynamic memory allocation in the kernel segment
In the system kernel, it is often necessary to allocate dynamic memory, for example for
temporary buffers. In the LINUX kernel, the functions used for this are kmalloc() and k-
free(). These are implemented in the file mm/kmalloc.c.

void * kmalLoc (size_t size, int priority);
void kfree (void *obj);
#define kfree_s(a,b) kfree(a)

The kmallocO function attempts to reserve the extent of memory specified by size.
The memory that has been reserved can be released again by the function kfree(). The

kfree_s() macro is provided to ensure compatibility with older versions of the kernel, in
which kfree_s(), with an indication of the size of the area allocated, was faster; but a more
recent implementation of kmaLLoc() has wiped out this difference. Version 1.0 of LINUX

only allowed memory to be reserved up to a size of 4072 bytes. After repeated
reimplementa-tion, it is now possible to reserve memory of up to 131048 bytes - just a
whisker short of 128 Kbytes.

To increase efficiency, the memory reserved is not initialized. When it is used, it is
important to remember that the process could be interrupted by the kmalloc() call. The
function _get_free_pages() may be called and, if no free pages are available and other pages
therefore need to be copied to secondary storage, this may block.

In the LINUX kernel 1.2, the _get_free_pages0 function can only be used to reserve
contiguous areas of memory of 4, 8, 16, 32, 64 and 128 Kbytes in size. As kmallocO can
reserve far smaller areas of memory, however, the free memory in these areas needs to be
managed. The central data structure for this is the table sizesCD, which contains descriptors
for different sizes of memory area. These descriptors include two pointers to linear page
descriptor lists. One of these lists manages memory suitable for DMA, while the other is

 Linux kernel internails - 99 -

responsible for ordinary memory. One page descriptor manages each contiguous area of
memory. The name page descriptor derives from an earlier implementation of kmallocO in
which only one page of memory was reserved at a time and the largest area of memory that
could be reserved using kmallocO was no larger than 4 Kbytes. This page descriptor is
stored at the beginning of every memory area reserved by kmalloc(). Within the page itself,
all the free blocks of memory are managed in a linear list. All the blocks of memory in a
memory area collected into one list are the same in size.

The block itself has a block header, which in turn holds a pointer to the next element if
the block is free, or else the actual size of the memory area allocated in the block. This
structure makes for very effective implementation of a free memory management system
inspired by the Buddy system' but allowing for the particularities of the x86 processor.
Figure 4.3 shows a possible content for this structure.

' The Buddy system is explained in Tanenbaum (1986).

 Linux kernel internails - 100 -

The kmalLoc() algorithm searches for a free block in all the memory areas in charge of
blocks suitable for the size required. If none can be found, a new memory area with free
blocks must be set up. Once the block is found or made available, it is marked as occupied
and removed from the list of free blocks in its memory area.

The implementation of kfree(0 thus also becomes clear. If blocks are still occupied in
the memory area where the free block is located, the block that has been released will be
entered in the list of free blocks. If the memory area consists completely of free blocks it
will be released in its entirety.

In older versions of the kernel, kmalloc() provided the only facility for dynamic
allocation of memory in the kernel. In addition, the amount of memory that could be
reserved was restricted to the size of one page of memory. The situation was improved by
the function vmalloc() and its counterpart vmfree(). Using these, memory in multiples of a
page of memory can be reserved. Both functions are denned in mm/vmaLLoc.c.

void * vmalloc(unsigned Long size);
void * vmfree(void * addr);
A value which is not divisible by 4096 can also be entered in size, and will then be rounded
up. If areas smaller than 4072 bytes are being reserved, it makes more sense to use
kmaLLoc(). The maximum value for size is limited by the amount of physical memory
available. The memory reserved by vmaLLocO will not be copied to external storage, so
kernel programmers should take care not to overuse the function. As vmatLoc() calls the
function _get_free_page(), the process may risk being locked out in order to save pages of
memory to external storage. The memory that has been reserved is not initialized.

After size has been rounded up, an address is found at which the area to be allocated
can be mapped to the kernel segment in full. As we have mentioned, in the kernel segment
the entire physical memory is mapped from its start, so that the virtual addresses are the
same as the physical addresses apart from an offset dependent on the architecture.

With vmaLLocO, the memory to be allocated must be mapped above the end of
physical memory, as _get_free_page() (see Section 4.4.2) only allocates individual pages,
and not necessarily consecutive ones. In x86 architecture, the search begins at the next
address after physical memory, located on an 8 Mbyte boundary. The addresses here may
already have been allocated by previous vmalloc calls. One page of memory is left free after
each of the reserved areas, to cushion accesses exceeding the allocated memory area.

The free pages are mapped by vmaLloc() to the address range in memory which has
just been located. If it is necessary to generate new page tables, these are entered in the
memory map as reserved pages.

 Linux kernel internails - 101 -

Address conversion via linear address space

Figure 4.4 Operation of vmallос ().

Kernel addresses set up in this way are managed by LINUX very simply, using a linear
list. The related data structure vm_struct contains the virtual address of the area and its size,
which also includes the page not entered in the page table. As mentioned above, this is
intended to intercept cases where the address range is exceeded. This means that the
memory area that has been reserved is smaller by one page than the value held in vm_struct.
As well as this, there is a pointer to the last element in the list and a component flags which
is not used.

The clear advantage of the vmalloc() function is that the size of the area of memory
requested can be better adjusted to actual needs than when using kmallocO, which requires
128 Kbytes of consecutive physical memory to reserve just 64 Kbytes. Besides this,
vmalloc() is limited only by the size of free physical memory and not by its segmentation,
as kmaLLocO is. Since vmaLLoc() does not return any physical addresses and the reserved
areas of memory can be spread over non-consecutive pages, this function is not suitable for
reserving memory for DMA.

 Linux kernel internails - 102 -

4.3 Block device caching ____________

When judging the performance of a computer system, the speed of access to block devices
plays a decisive role. LINUX makes use of a dynamic cache system which employs primary
memory left unused by the kernel and the processes as buffer for block devices. If the
requirement for primary memory increases, the space allowed for buffering is reduced.
Since version 2.0, block device caching is complemented by the file-oriented memory page
caching described further below. Thus, for block devices there is a not very orthodox
division of tasks between the two cache systems: file-oriented memory page caching is used
for read operations, whereas write operations resort to the block buffer cache. Memory page
caching can, in a way, be interpreted as an addition to block buffer caching, using temporary
block buffer heads (see below) for reading in order to avoid administering data in two cache
systems simultaneously. In connection with write operations this can lead to additional
copying of data into the memory page cache. This does not really matter because, compared
to read operations, write operations occur far less frequently. One can, however, still think
about optimization, which would finally lead to management of the same data in the two
cache systems.

4.3.1 Block buffering
Files are held on block devices, which can process requests to read or write blocks of data.
The block size for a given device may be 512, 1024, 2048 or 4096 bytes. These blocks must
be held in memory via a buffering system. The device itself should only be accessed in two
events: a block may be loaded if it is not yet held in the buffer; and a block may be written
if the buffer contents for the block no longer match what is held on the external medium. To
handle the latter case, the respective block in the buffer is marked as 'dirty' after a
modification. There may be a delay in performing this write operation, however, as the valid
contents of the block are held in cache. A special case applies for blocks taken from files
opened with the flag 0_SYNC. These are transferred to disk every time their contents are
modified.

The implementation of the buffer cache in LINUX was originally based, with slight
modifications, on the concept described by Maurice J. Bach (1986) in The Design of the
UNIX® Operating System. The changes that have been made in the meantime, however,
justify our referring to a separate LINUX buffer cache system.
As mentioned earlier, the buffer cache manages individual block buffers
of varying size. For this, every block is given a buffer_head data structure. For simplicity, it
will be referred to below as the 'buffer head'. The definition of the buffer head is in
linux/fs.h:
I

 Linux kernel internails - 103 -

struct buffer_head { /* first cache line */
unsigned Long b_bllocknr; /* block number */ kdev_t b_dev; /* device

<B_FREE: buffer free) */ kdev_t b_rdev; /* real device */ unsigned Long

b_rsector; /* real position of buffer on

* hard disk */ struct buffer_head * b_next; /* hash list */ struct

buffer_head * b_this_page;

/* circular list of buffers inside
* one memory page */

/* second cache line */
unsigned long b_state; /* buffer status bitmap */
struct buffer_head * b_next_free;
unsigned int b_count; /* number of users of block */ unsigned Long b_size; /*

block size */

/* speed-uncritical area */
char * b_data; /* pointer to data block (1024 bytes) */
unsigned int b_list; /* list for buffer */
unsigned long b_flushtime; /* time from which (dirty) buffer

* should be written back */ unsigned Long b_lru_time; /* time

of last use of buffer */ struct wait_queue * b_wait;

struct buffer_head * b_prev; /* doubly Linked hash List */ struct buffer_head *

b_prev_free; /* doubly Linked List

* of buffers */
struct buffer_head * b_reqnext; /* request queue */ >;

The data structure is organized in such a way that frequently requested data lie very close
together and can be possibly kept in the processor cache.

The pointer b_data points to the block data in a specially reserved area of physical
memory. The size of this area exactly matches the block size b_size. This area and the
buffer head together form the block buffer. The value of b_dev specifies the device on
which the relevant block is stored, and b_blocknr the number of this block on the storage
medium used by the device. As it is possible that the referenced device is a pseudo-device
which combines several block devices (such as several partitions on a hard disk), there are
the additional pointers b_rdev and b_rsector which reference a real sector on a real device.

The number of processes currently using the block buffer is held in b_count. The
bitmap variable b_state combines a series of status flags. The

 Linux kernel internails - 104 -

block buffer matches the disk contents if the BH_Uptodate flag is set. The block buffer must
be written back to the medium if BH_Dirty is set. If BH_Lock is set, access to the block
buffer is locked: in this case, processes must wait in the wait queue b_wait. The flag
BH_Req indicates whether the block belonging to the buffer has been requested from a
device. For a block buffer marked as 'dirty', b_fLushtime shows in jiffies the time from
which the block buffer should be written back to the device. When the block is marked
'dirty', its b_flushtime is set to the current time plus a delay parameter. The buffer is then
only written back to the disk if no write access has been carried out over a lengthy period.
b_lru_time holds the time at which the buffer was last accessed by a buffer management
procedure.

The additional flags BH_Touched and BH_Has_aged are used to determine the time
when the block can be removed from memory if additional memory is needed.

The BH_FreeOnIO flag marks a buffer head which is used only temporarily for input
and output on block devices. This flag is mainly used for reading data into the memory page
cache.

4.3.2 The update and bdflush processes
The update process is a LINUX process which at periodic intervals calls the system call
bdfiush with an appropriate parameter. All modified buffer blocks that have not been used
for a certain time are written back to disk, together with all superblock and inode
information. The interval used by update as a default under LINUX is five seconds.

bdflush is implemented as a kernel thread and is started during kernel initialization in
init/main.c. In an endless loop, it writes back the number of block buffers marked 'dirty'
given in the bdflush parameter (default is 500). Once this is completed, a new loop starts
immediately if the proportion of modified ('dirty') block buffers to the total number of
buffers in the cache becomes too high. Otherwise, the process switches to the
TASK_INTERRUPTIBLE state.

The kernel thread can be woken up using the wakeup_bdfLush() function. If the wait
parameter is set when this function is called, the function will wait until the bdflush process
has completed a circuit of the loop.

The bdflush kernel thread is always activated when a block is released by means of
brelse(). It is also activated whenever new block buffers are requested or the size of the
buffer cache needs to be reduced, meaning that old block buffers - but not 'dirty' ones - have
to be discarded.

 Linux kernel internails - 105 -

The bdflush kernel thread can be configured during operation using the system
function sys_bdflush() and a range of parameters. Table 4.3 lists the individual parameters
with their default values and a short description.

The advantage of the combination of bdflush and update should be clear. They keep to
a minimum the number of 'dirty' block buffers in the buffer

Table 4.3 Parameters for the bdflush process. Parameter Default value Description

nfract 25 Fraction of 'dirty' buffer blocks above which the bdflush process is
activated, expressed as a percentage

ndirty 500 Maximum number of buffer blocks which may be written each time
bdflush is activated
nrefill 64 Number of clean block buffers generated by calling refill_freetist()
nref_dirt 256 Number of 'dirty' block buffers at which bdf Lush is activated in refi
ll_freelist()
clu_nfract 15 Fraction of buffer cache searched for free clusters (Ext2 file system),

expressed as a percentage
age_buffer 3000 Ticks by which writing a 'dirty' data block buffer is delayed

age_super 500 Ticks by which writing a 'dirty' superblock or inode block buffer is
delayed

lav_const 1884 Constant used in calculating the load average
lav_ratio 2 Value specifying the threshold for the pad average of a given block

size below which the number of block buffers for this block size is
reduced

cache. The different write delays give preference to the blocks which are important to the
consistency of file systems (blocks for inodes and superblocks).

4.3.3 List structures for the buffer cache
LINUX manages its block buffers via a number of different lists. Free block buffers are
managed in circular doubly linked lists. A list of this type is maintained by the table
free_listC3 for every possible block size. Blocks held in free_list[3 are marked by B_FREE
(Oxffff) entered in the b_dev field in their buffer heads. This makes it easy to determine that
a free block buffer has been entered in another list. The table nr_free[] contains the number
of free block buffers for every possible block size. These values must of course match with
free_list[].

Block buffers in use are managed in a set of special LRU (least recently used) lists. In
older LINUX versions, the block buffers were sorted into the LRU lists by the time of last
usage. As continuous re-sorting of lists is very expensive, this is no longer done, and old
block buffers are now marked by the status flags BH_Touched and BH_Has_aged. The

 Linux kernel internails - 106 -

individual LRU lists are collected in the table lru_listC3. The indices in this table specify
the type for the block buffers entered in each of the LRU lists. Table 4.4 shows the indices

Table 4.4 The various LRU lists.
LRU list (index) Description

 BUF_CLEAN Block buffers not managed in other lists - content matches

 relevant block on hard disk

BUF_UNSHARED Block buffers formerly (but no longer) managed in

 BUF_SHARED
BUF_LOCKED Locked block buffers (b_l ock != 0)
BUF_LOCKED1 Locked block buffers for inodes and superblocks
BUF_DIRTY Block buffers with contents not matching the relevant block

 on hard disk
BUF_SHARED Block buffers situated in a page of memory mapped to the

 user segment of a process

available, followed by the type of the related LRU list. Like the lists of free blocks, the LRU
lists are doubly linked circular lists, linked by means of the pointers prev_free_list and
next_free_List. A block buffer is sorted into the

correct LRU list by the function refile_buffer.
The buffer blocks used are referenced in the table hash_table[]. Memory for the table is

reserved on start-up of the system via vmalloc(), and its size will depend on the primary
memory available. It is used to trace block buffers by reference to their device and block
numbers. The procedure used for this is open hashing; the hash lists are implemented as
doubly linked linear lists using the pointers b_next and b_prev in the buffer head. The hash
function

used is defined as follows:

#define _hashfn(dev, block) (((unsigned)(dev^lock))%nr_hash)

4.3.4 Using the buffer cache
To read a block, the system routine calls the function bread(). This is denned in the

fs/buffer.c file.

struct buffer_head * bread(kdev_t dev, int block, int size)
First a check is made as to whether there is already a buffer to the device dev for the block
block, by accessing the block buffer hash table. If the buffer is found and if the

 Linux kernel internails - 107 -

BH_Uptodate flag is set, breadO terminates by returning the block buffer. If the flag is not
set, the buffer must be updated by reading the

external medium, after which the routine can return.
The block is read using the function ll_rw_block(), which generates the
appropriate request for the device driver. It is implemented in ll_rw_blk.c in the
drivers/block/ directory. However, after issuing the device driver request, the current
process has to wait for the request to be processed. The memory block returned by breadO
should be released once it is no longer required, by using brelse().

A variant of the breadO function is breada(). Depending on the block device to be read
from, this function reads not only the block requested into the buffer cache but also a
number of following blocks. However, breadaO only waits for the requested block to be
read. The remaining blocks are read asynchronously.

A modified ('dirty') block buffer must be written to the block device once the time
specified in b_flushtime has been reached. This is carried out using either the bdflush kernel
thread or the update process.

For reading and writing memory pages from and into working memory, the brw_page()
function is available.

int brw_page(int rw, struct page *page,
kdev_t dev, int b[], int size, int bmap)

This function writes or reads the blocks whose numbers are contained in the table b[] to or
from the page page of size size of the device dev. bmap is a flag which indicates that the
block number 0 is interpreted as a block of zeros. For the data held in the memory page,
temporary buffer heads are generated, which means that the read or written data is not
permanently managed in the block buffer cache.

However, LINUX also provides the classical system calls sync and fsync. The sync call
writes back all modified buffer blocks in the cache, including inodes and superblocks,
without waiting for the end of the write requests, while fsync writes back all the modified
buffer blocks for a single file, and waits for the write operation to be completed. In LINUX

this operation is implemented by writing back all 'dirty' block buffers of the device on which
the file is stored. Both functions call sync_buffers0.

static int sync_buffers(kdev_t dev, int wait);
The dev parameter can be set to 0, so as to update all the block devices. The wait parameter
determines whether the routines will wait for the write request to be performed by the
device drivers. If not, the entire buffer cache is inspected for modified block buffers. If any
are found by sync_buffers() it will generate the necessary write requests to the device
drivers by calling the ll_wr_block() routine.

 Linux kernel internails - 108 -

A more complicated situation arises if the routine is required to wait for successful
execution of the write operation. This involves going through the entire buffer cache three
times in all. In the first pass, the appropriate requests are generated for all the modified
blocks which are not locked. The second pass waits for completion of all the locked
operations. It could happen, however, that during the first pass a buffer locked by a read
operation is modified by another process while the routine is waiting; so write requests are
also generated for modified buffers during this second pass. The third pass only involves
waiting for all the operations which have locked buffers to be completed. This demonstrates
a particular advantage of asynchronous control of the device drivers. While block buffers
are being written to the block devices during the first pass, LINUX can already be searching
for the next modified block buffer.
When required, the buffer cache can use the computer's entire available
RAM apart from a small reserve of memory pages. The number of pages for this reserve is
determined by the variable imin_free_pages. This has a minimum value of 16 and is
otherwise dependent on the size of available main memory.

4.4 Paging under LINUX_________________
The RAM memory in a computer has always been limited and, compared to fixed disks,
relatively expensive. Particularly in multi-tasking operating systems, the limit of working
memory is quickly reached. Thus it was not long before someone hit on the idea of
offloading temporarily unused areas of primary
storage (RAM) to secondary storage (for example, a hard disk).

The traditional procedure for this used to be the so-called 'swapping', which involves
saving entire processes from memory to a secondary medium and reading them in again.
This approach does not solve the problem of running processes with large memory
requirements in the available primary memory. Besides this, saving and reading in whole
processes is very inefficient.

When new hardware architectures (VAX) were introduced, the concept of demand
paging was developed. Under the control of a memory management unit (MMU) the entire
memory is divided up into pages, with only complete pages of memory being read in or
saved as required. As all modern processor architectures, including the x86 architecture,
support the management of paged memory, demand paging is employed by LINUX. Pages of
memory which have been mapped directly to the virtual address area of a process using
do_mmap() without write authorization are not saved, but simply discarded. Their contents
can be read in again from the files which were mapped. Modified memory
pages, in contrast, must be written into swap space.
Pages of memory in the kernel segment cannot be saved, for the simple
reason that routines and data structures which read memory pages back from secondary
storage must always be present in primary memory. The most straightforward way of
making sure that this is the case is to lock all of the
kernel segment pages against saving.

LINUX can save pages to external media in two ways. In the first, a complete block
device is used as the external medium. This will typically be a partition on a hard disk. The

 Linux kernel internails - 109 -

second uses fixed-length files in a file system for its external storage. The rather loose
approach to terminology characteristic of LINUX has resulted in these areas being referred to,
confusingly, as swap devices or swap files. It would be more correct to call them paging
devices and paging files. However, as the two not quite correct terms have now become
standard, they will be used here: the term 'swap space' below may refer to either a swap
device or a swap file.

A common structure is defined for swap devices and swap files. The first 4096 bytes
contain a bitmap. Bits that have been set indicate that the page of memory for which the
number in the swap space matches the offset of the bit at the start of the space is available
for paging. From byte 4086 the character string 'SWAP_SPACE' is also stored as an identifier.
This means that only 4086 x 8 - 1 = 32687 pages of memory (130 784 Kbytes) can be
managed in a swap device or swap file. Given the size of hard disks usual today, this is not a
lot. In addition, it is possible to manage a number of swap files or devices in parallel. LINUX

specifies this number as 8 in MAX_SWAPFILES; but this value can be increased to 63. The
space available for swap files should, however, be enough for actual applications in nearly
all cases.

Using a swap device is more efficient than using a swap file. In a swap device, a page
is always saved to consecutive blocks, whereas in a swap file, the individual blocks may be
given various block numbers depending on how the particular file system fragmented the
file when it was set up. These blocks then need to be found via the swap file's inode. On a
swap device, the first block is given directly by the offset for the page of memory to be
saved or read in. The rest then follow this first block. When a swap device is used, only one
read or write request is needed for each page, while a swap file requires a number,
depending on the proportion of page size to block size. In a typical case (when a block size
of 1024 bytes is used) this amounts to four separate requests, to read areas on the external
medium which may not necessarily follow one after the other. On a hard disk, this causes
movements of the read/write head, which in turn affect the access speed. The system call
swapon logs on a swap device or file to the kernel.

int sys_swapon(const char * swap-file, int swapflags);

The parameter swapfile is the name of the device or file. The priority of the swap space can
be specified by the swapflags flags. The SWAP_FLAG_PREFER flag must be set, while the bits
in the SWAP_FLAG_PRIO_MASK specify the positive priority of the swap space. If no priority
is specified, the swap spaces are automatically assigned a negative priority, with the priority
decreasing with each call to swapon. The system routine completes an entry for the swap
space in the swap_info table. This entry is of the swap_info_struct type.

struct swap_info_struct { unsigned int flags;
kdev_t swap_device;

 Linux kernel internails - 110 -

struct mode * swap_file;
unsigned char * swap_map;
unsigned char * swap_lockmap;
int Lowest_bit;
int highest_bit;
int cluster_next;
int cluster_nr;
int prio; /* swap priority */ int pages;

unsigned Long max;
int next; /* next entry on swap list */ };

If the SWP_USED bit in flags is set, the entry in the swp_info table is already being used by
the kernel for another swap space. The kernel sets flags to SWP_WRITEOK once all the
initialization stages for the swap space have been completed. If a structure refers to a swap
file, the inode pointer swap_file will be set; otherwise the device number of the swap device
will be entered in swap_device. The swap_map pointer points to a table allocated via
vmalloc() in which each page in the swap space has been allocated one byte. This byte
keeps a count of how many processes are referring to this page. If the page cannot be used,
the value in swap_map is set to 0х80, or 128. The table swap_Lockmap provides one bit for
each page in the swap space. If set, the bit indicates a current access to the page. No new
read or write requests may then be generated. The integer component pages holds the
number of pages in this swap space that can be written to, while the values of Lowest_bit
and highest_bit define the maximum offset of a page in the swap space. The integer max
contains the value of highest_bit plus one, as this value is frequently required, prio holds the
priority assigned to the swap space.

New pages to be swapped are stored sequentially in clusters in the swap space. This
serves to prevent excessive head movements of the hard disk during consecutive swapping
of memory pages and is controlled by the variables cluster_nr and cluster_next of the
swap_info_struct structure.

The system call swapoff may be used to attempt to log off a swap file or device from
the kernel. However, this requires enough space to be available in the memory or in the
other swap spaces to accommodate the pages in the swap space that is being logged off.

Int sys_swapoff(const char * swapfiLe);

4.4.1 Page cache and management

 Linux kernel internails - 111 -

For each memory page, a data structure page or mem_map_t is managed in the kernel in a
table pointed to by mem_map. Data is organized in such a way that data that belong
together are stored in a cache line (16 bytes).

typedef struct page {
/* these must be first (free area handling) */
struct page *next;
struct page *prev;
struct inode *inode;
unsigned Long offset;
struct page *next_hash;
atomic_t count;
unsigned flags; /* atomic flags, some possibly * updated asynchronously */

unsigned dirty:16, age:8;
struct wait_queue *wait;
struct page *prev_hash;
struct buffer_head * buffers;
unsigned long swap_unlock_entry;
unsigned Long map_nr; /* page->map_nr == page - mem_map */ } mem_map_t;

The pointers prev and next are used for the management of this data structure in doubly
linked circular lists.

inode and offset specify the file or offset from which the memory page was read. For
each inode there is a list in which all pages are entered that have been read from the file
belonging to the inode. next_hash and prev_hash are used to reference the page in a hash
list, which is part of the hash table page_hash_tabLe. The hash function consists of the
inode address and the offset in the page's file. When a read request is made for a page from
a file, the hash table is checked for the existence of that page first. If it is found there, it does
not have to be read with the aid of the file system. Thus, file-oriented caching which
supports arbitrary file systems (in particular NFS) is implemented. Also, normal file system
read operations, such as read(), access data via the page cache.

Back to the page structure: the number of users of a page is held in count. The
buffer_head pointer references the block buffer if the page is part of a block buffer. map_nr
indicates the page number, while swap_unlock_entry specifies the number of the page in
swap space to be unlocked after the memory page has been read. The wait queue contains
the entries of the tasks which are waitin for the page to be unlocked. Table 4.5 explains the
meaning of the individual flags stored in flags, age holds a value regarding the age of the
page; the variable dirty is currently not used.

4.4.2 Finding a free page

 Linux kernel internails - 112 -

When physical pages of memory are being reserved, the kernel function get_free_pages() is
called. This is denned in the mm/page_alloc.c file.

Table 4.5 Memory page flags.

Flag Description

PG_locked The page is locked.

PG_error This flag indicates an error condition.
PG_referenced This page has been recently accessed.

PG_uptodate The page matches the hard disk contents.

PG_free_after The page should be released after an I/O operation.

PG_decr_after The counter nr_async_pages is decremented after reading the page.

PG_swap_unlock_after After reading from the swap space, the page should be unlocked by
calling the swap_after_unlock_page() function.

PG_reserved The page is reserved.

unsigned long _get_free_pages(int priority, unsigned long order, int dma)
The parameter priority controls the way the function is processed. The permissible values

are shown in Table 4.6.

GFP_ATOMIC is intended for calls to _get_free_pages() from interrupt
routines, and GFP_BUFFER is used in buffer cache management to prevent pages from

processes being discarded or, worse, buffers wiped. If other values are used for priority, it is

possible that the process may be interrupted and scheduling may be called.

The second parameter, order, specifies the order of size for the memory
block of consecutive pages that is being reserved. A block of order о is 2° pages in size. The
LINUX kernel only allows orders of size smaller than the macro NR_MEM_LISTS (default
value 6). This means that only blocks with a size of 4, 8, 16, 32, 64 or 128 Kbytes can be
allocated. The third parameter, dma,

specifies that the pages to be reserved should be suitable for DMA.
If _get_free_pages() is able to reserve the right block, it returns the
address of the block. The current implementation ensures that the block will
begin at an address which is divisible by its size in bytes.
The kernel manages the table free_area[] to allow for this. One table
entry contains a doubly linked circular list of free memory blocks in the different orders of
size. The header element references its own entry. The pointer map references a bitmap with
one bit reserved for two consecutive memory blocks in the same order of size. The bit is set

 Linux kernel internails - 113 -

if one of the two blocks is free and the other may be only partly reserved. Figure 4.5 shows
example contents of maps for the first three orders of size.

Table 4.6 Priorities for the function_get_free_pages().

Priority Description

GFP_BUFFER Free page to be returned only if free pages are still available in

physical memory.
GFP_ATOMIC The function _get_free_page must not interrupt the current process, but

a page should be returned if possible.
GFP_USER The current process may be interrupted to swap pages.

GFP_KERNEL This parameter is the same as GFP_USER.

GFP_NOBUFFER The buffer cache will not be reduced by an attempt to find a free page
in memory.

GFP_NFS The difference between this and GFP_USER is that the number of pages
reserved for GFP_ATOMIC is reduced from min_free_pages to five.
This should clearly speed up NFS operations.

 Linux kernel internails - 114 -

The LINUX implementation ensures that there are never two consecutive memory
blocks free which could be combined into a larger block. This can sometimes mean that no
blocks are free for the smaller orders of size. If a request for one of these is made, the
higher-order block will have to be split. The EXPAND macro in mm/page_aLloc.c updates
the relevant free_area data

structures accordingly.
The function _get_free_pages() attempts to reserve a block of memory
from the list of free blocks relating to the right order of size. If this is not possible, calls with
the parameter GFP_BUPFER or GFP_ATOMIC will return without result. In the remaining
cases, the function try_to_free_page() is called. If a free page was found, a jump to the start
of_get_free_pages() is carried out. If try_to_free_page() is not successful, _get_free_pages()
returns zero, indicating that LINUX was unable to find any free memory.

int try_to_free_page(int priority, int dma, int wait)
{
static int state = 0;
int i=6;
int stop;
/* we don't try as hard if we're not waiting.. */ stop = 3;

if (wait) stop = 0;
switch (state) { do { case 0:

if (shrink_mmap(i, dma)) return 1;

state = 1;
case 1:
if (shm_swap(i, dma)) return 1;

state = 2;
default:
if (swap_out(i, dma, wait)) return 1;

state = 0;
i--;
} while ((i - stop) >= 0);
}
return 0;
}

 Linux kernel internails - 115 -

As this shows, a maximum of six passes are made in the attempt to find at least one free
page. In the course of this, the various functions are called with a rising sequence of
priorities. The static variable state ensures that each call to try_to_free_page() starts a
different function, which ensures that calls to the different functions are equitably
distributed.

The function shrink_mmap() attempts to discard memory pages that are part of the
memory page cache or the buffer cache and currently have only one user. Only those
memory pages or block buffers that have not been referenced since the last cycle are
discarded. The number of inspected memory pages depends on the priority used to call
shrink_mmap().

The function shm_swap() attempts to save memory space reserved using the shared
memory function in System V's inter-process communication routines (see Chapter 5). The
function swap_out() is intended to swap out or discard pages of memory from the processes'
user segments. It is a very interesting function, as it uses a procedure which makes a less
intensive search for discardable or pageable pages in processes which have recently been
swapped in and out frequently. This makes use of a calculated value swap_cnt, which
indicates for each process how many pages of memory should be saved before swap_out()
moves on to the next process. The search for discardable or pageable pages by swap_out()
always begins after the page of the process at which the function was quit the previous time.
In Tanenbaum (1986) this procedure is called a 'clock algorithm'. The priority parameter
controls the maximum number of processes inspected by swap_out(0 during a call.

In older LINUX versions, swap_out() was calculated using a special algorithm. LINUX

2.0 simply uses a coefficient which indicates how many pages of memory per 1024 pages of
a process are to be inspected (see linux/swapctl.h).

The swap_out() function now attempts to save pages for the process it has just been
searching in, using the swap_out_process() function. This function searches the individual
virtual memory areas in the user segment for pages which can be paged out. This involves
searching through the page directories and then calling try_to_swap_out() for the individual
page table entries. In try_to_swap_out() a page from the process's virtual address area is
checked to see whether it is in fact in memory and not reserved. If the 'age' attribute in the
mem_map data structure is 0, the file is saved. Pages get younger when they are accessed,
and older when they are not. Thus, the pages most recently used are not paged out so
quickly.

For a 'dirty' page, either the virtual memory area's swapout() operation is called, or the
page of memory is swapped out if it is used by only one Process. An invalid value is entered
in the page table, in which the swap space and the address within the swap space are stored.
A page of memory which is already present in the swap space, or can simply be loaded, is

 Linux kernel internails - 116 -

simply deleted from the page table. It may happen that the page cannot yet be released if it
is used by several processes.

The kswapd kernel thread running in the background is activated every time the number of
free pages falls below a critical level. In this case, the

kernel thread repeatedly calls the try_to_free_page() function.
A block of memory is released using free_pages(). When the number of users of a page has
reached 0, the page is again entered in the free_area[] data structures.
The function get_free_page() and the macro _get_free_page() reserve
a free page in memory. The function get_free_page() also sets the content of the page to 0.
Both use _get_free_pages() to carry out their task.
A number of consecutive pages can be released using the function free_pages(). The macro
free_page() calls free_pages() for exactly one page.

4.4.3 Page errors and reloading a page
If the x86 processor is unable to access a page, it will generate a page fault interrupt. An
error code is written to the stack and the linear address at which the interrupt was triggered
is stored in register CR2.
Under LINUX, the routine do_page_fault() is now called.

void do_page_fault(struct pt_regs *regs)
unsigned long error_code);

It is passed the values of the registers when the interrupt occurred and the error number. The
routine searches for the virtual memory area of the currently active process in which the
address in the user segment which caused the fault is to be found.
If the address is not in a virtual memory area, the routine checks
whether the flag VM_GROWSDOWN for the next virtual memory area is set. An area of this
sort provides memory for the stack and may grow downwards. The do_page_fault() routine
takes care of the necessary expansion. If the next virtual memory area cannot be expanded,
do_page_fault() sends a SIGSEGV signal to the process which caused the error. This
segmentation violation signal

will be familiar to any serious UNIX programmer.
If an address pointing to the kernel segment was the cause of the access
error, a check is made on whether this involved a test on the write protection bit, which is
ignored by x86 processors in System Mode. When the write protection bit is ignored in the
kernel segment, special treatment by the verify_area() function is required, otherwise kernel
alarm messages will be printed out at the console by printk(), along with a variety of
debugging information, and the

process causing the error will be terminated.

 Linux kernel internails - 117 -

If the address is in a virtual memory area, the legality of the read or
write operation is checked by reference to the flags for the virtual memory area. If it was
legal, the page error handling routine calls do_no_page() or do_wp_page(). Otherwise the
SIGSEGV signal is sent again.

void do_no_page(struct task_struct * tsk, struct vm_area_struct * vma, unsigned

long address, int write_access)

void do_wp_page(struct task_struct * tsk, struct vm_area_struct * vma, unsigned

Long address, int write_access)

The do_wp_page() function checks whether a write-protected page is located at the given
address in the first place. If it is only referenced once, the write protection is simply
cancelled. If it is referenced a number of times, a copy of the page is generated and entered
without write protection to the page table for the process which caused the error.

If a non-empty entry is present in the page table without its presence attribute set, the
function do_no_page() calls the do_swap_page() function. If no nopage() handling routine
has been defined for the virtual memory area, an empty page is mapped to the memory area.
Otherwise a check is now made to establish whether the page can be shared with another
process. If not, the nopageO handling routine is called.

static inline void do_swap_page(struct task_struct * tsk,
struct vm_area_struct * vma, unsigned long address, pte_t * page_table, pte_t
entry, int write_access)

If no swapin() routine has been denned for the virtual memory area given as a parameter,
the swap_in() function is called.

void swap_in(struct task_struct * tsk, struct vm_area_struct * vma, pte_t *
page_table, unsigned long entry, int write_access)

This function reads in the page. The number of the relevant swap space and the page
number in the swap space are given in entry.

The page in the swap space is released using swap_free(). This decrements the
appropriate reference counter in the swap_map.

The swap_in<) routine for a virtual memory area loads a page. In the
next chapter, this function will be examined with respect to System V's shared memory.

 Linux kernel internails - 118 -

5Inter-process communication
 Is simplicity best

Or simply the easiest?

Martin L. Gore

5.1 Synchronization in the kernel 5.4 Debugging using ptrace
5.2 Communication via files 5.5 System V IPC
5.3 Pipes 5.6 IPC with sockets

There are many applications in which processes need to cooperate with each other. This is
always the case, for example, if processes have to share a resource (such as a printer). It is
important to make sure that no more than one process is accessing the resource - that is,
sending data to the printer - at any given time. This situation is known as a race condition
and communication between processes must prevent it. However, eliminating race
conditions is only one possible use of inter-process communication, which we take in this
book to mean simply the exchange of information between processes on one or more
computers.
There are many different types of inter-process communication. They
differ in a number of ways, including their efficiency. The transfer of a small natural
number between two processes could be effected, for example, by one of these generating a
matching number of child processes and the other counting

them.
This example, which is not meant entirely seriously, is of course very
unwieldy and slow and would not be considered. Shared memory can provide a
faster and more efficient answer to the problem.
A variety of forms of inter-process communication can be used under LINUX. These support
resource sharing, synchronization, connectionless and

connection-oriented data exchange or combinations of these. Synchronization

 Linux kernel internails - 119 -

mechanisms are used to eliminate the race conditions mentioned above.
Connectionless and connection-oriented data exchange differ from the first two

variants by different semantic models. In these models, a process sends messages to a
process or a specific group of processes.

In connection-oriented data exchange, the two parties to the communication must set
up a connection before communication can start. In connectionless data exchange a process
simply sends data packets, which may be given a destination address or a message type, and
leaves it to the infrastructure to deliver them. The reader will already be familiar with these
models from everyday life:
when we make a telephone call we are using a connection-oriented data exchange model,
and when we send a letter we rely on a connectionless model.

It is possible to implement one concept (for example, semaphores) based on another
(for example, connectionless data exchange). LINUX implements all the forms of inter-
process communication possible between processes in the same system by using shared
resources, kernel data structures and the 'wait queue' synchronization mechanism. Although
semaphores are available in the kernel for synchronization, these themselves rely on wait
queues.

LINUX processes can share memory by means of the System V shared memory facility.
The file system has been implemented from the start to allow files and devices to be used by
several processes at the same time. To avoid race conditions when files are accessed,
various file locking mechanisms can be used. System V semaphores can be used as a
synchronization mechanism between processes in a computer.

Signals are the simplest variant of connectionless data exchange. They can be
understood as very short messages sent to a specific process or process group (see Chapter
3). In this category, LINUX still provides message queues and the datagram sockets in the
INET address family. The datagram sockets are based on the UDP section of the TCP/IP
code and can be used so as to be transparent to the network (see Chapter 8).

The available methods for connection-oriented data exchange are pipes, named pipes
(also known in the literature as FIFOs),' UNIX domain sockets and stream sockets in the
INET address family. Stream sockets are the interface to the TCP part of the network and
are used to implement services such as FTP and TELNET, among others. These are also
examined in Chapter 8. The use of the socket program interface does not always amount to
inter-process communication, as the opposite number on the network need not be a process.
It could for example be a program in an operating system, with no process concept.

Maurice J. Bach's book Design and Implementation of the UNIX® Operating System
(1986) introduces the system call ptrace as a variant of inter-process communication. This
can be used by a process to control the operation of

1FIFO stands for 'First In, First Out', which describes the action of a pipe very well.

Table 5.1 Types of inter-process communication supported by LINUX.

 Linux kernel internails - 120 -

Kernel Processes Network

Resource Data structures, System V shared
sharing buffers memory, files,

anonymous mmap
Synchronization Wait queues System V method

semaphores semaphores,
file locking, lock files

Connectionless Signals Signals, System V Datagram

data exchange message queues, sockets (UDP)
 UNIX domain sockets

in datagram mode
Connection- Pipes, Stream
oriented data named pipes, sockets
 exchange UNIX domain sockets (TCP)

 in stream mode

another process right down to single-step processing and modify both the memory and the
registers for this process. It is especially used in debugging
work. Its implementation will be discussed in this chapter.

Table 5.1 gives a summary chart of the types of inter-process communication
supported by LINUX. As NFS is based on datagram sockets, the facility to send files over an
NFS system is not included. In version 2.0, the system call mmap is fully implemented,
which means that shared memory can be effected via anonymous mapping as in BSD
systems. The System V Transport Library
Interface is not supported.

5.1 Synchronization in the kernel

As the kernel manages the system resources, access by processes to these resources must be
synchronized. A process will not be interrupted by the scheduler so long as it is executing a
system call. This only happens if it locks or itself calls schedule() to allow the execution of
other processes. In kernel programming it should be remembered that functions like
_get_free_pages() and down() can lock. Processes in the kernel can, however, also be
interrupted by interrupt handling routines: this can result in race conditions even if the

process is not executing any functions which can lock.
Race conditions between the current process and the interrupt routines are excluded by the
processor's interrupt flag being cleared when the critical

section is entered and reset on exit. While the interrupt flag is cleared, the processor will not
allow any hardware interrupts except for the non-maskable interrupt (NMI), used in PC

 Linux kernel internails - 121 -

architecture to indicate RAM faults. In normal operation, the NMI should not occur. This
method has the advantage of being very simple but has the drawback that, if used too freely,
it slows the system down.

In standard operation it can happen that processes in the kernel need to wait for
specific events, such as a block being written to the hard disk. The current process should
lock to allow other processes to execute.

As already mentioned in Section 3:1.5, this is where wait queues come in. A program
can enter itself in a wait queue using the functions sleep_on() and interruptible_sleep_on().
The pair of functions wake_up() and wake_up_interruptible() switch the process back to the
TASK_RUNNING state. These routines in turn use the functions add_wai t_queue() and
remove_wait_queue(), which add or delete entries in a wait queue. However, they are also
used by interrupt routines to ensure that race conditions are prevented. This is implemented
as follows:

struct wait_queue {
struct task_struct * task;

struct wait_queue * next;
};

The wait queue is a singly linked circular list of pointers in the process table.

extern inline void add_wait_queue(struct wait_queue ** p,
struct wait_queue * wait) {

unsigned Long flags;

save_f lag's (flags);
cli();
_add_wait_queue(p, wait);
restore_f lags(flags);
}

This shows very clearly how mutual exclusion via the interrupt flag works. Before entry to
the critical area, the processor's flag register is stored in the variable flags, and the interrupt
flag is cancelled by cli(). On exit, flags is written back and the interrupt flag returned to its
old value by restore_fLags(). A simple sti() would only be correct if interrupts had been
permissible beforehand, which might not be the case. The critical region is defined
separately in an inline function add_wait_queue() which allows the code to be used in other
critical regions without having to disable the interrupts again.

extern Inline void _add_wait_queue(struct wait_queue ** p, struct wait_queue *

wait)

 Linux kernel internails - 122 -

{
struct wait_queue *head = *p;
struct wait_queue *next = WAIT_QUEUE_HEAD(p);

If (head) next = head;

*p = wait;
wait->next = next;
}
In _add_wait_queue(), the structure wait is inserted in the list referenced by the pointer p.
The function remove_wait_queue() has essentially the same structure as add_wait_queue().

extern inline void _remove_wait_queue(struct wait_queue ** p,
struct wait_queue * wait) {

struct wait_queue * next = wait->next;
struct wait_queue * head = next;

for (;;) {
struct wait_queue * nextlist = head->next;
if (nextlist == wait) break;

head = nextlist;
} head->next = next;

}

extern inline void remove_wait_queue(struct wait_queue ** p/
struct wa1t_queue * wait) {

unsigned long flags;

save_flags(flags); cli();

_remove_wait_queue(p wait);
restore_f lags(flags);
}

These two functions are used to implement kernel semaphores. Semaphores are counter
variables which can be incremented at any time, but can only be decremented if their value
is greater than zero. If this is not the case, the decrementing

process is blocked. Under UNUX, it is entered in a wait queue for a semaphore. The
implementation chosen under LINUX 2.0 is somewhat more complicated than the naive
approach:

 Linux kernel internails - 123 -

struct semaphore {
int count;
int waiting;

struct wait_queue * wait;
};

The value of the semaphore is the sum of count and wait. Incrementing can be carried out
with up(), decrementing with down().
The following pseudo-code explains the functioning of down 0:

pseudo void down(struct semaphore * psem) {

while (-psem->count <= 0) { psem->waiting++;

if (psem->count + psem->waiting <= 0) do {

sleep_uninteruptible(psem->wait);
У while (psem->count < 0);
/* normalization of semaphore */ psem->count += psem->waiting;

psem->waiting = 0;
} }

The actual implementation is more complex, in order to allow up() system calls from within
interrupt handling routines and avoid having to lock the interrupts in downO and upO. What
we see, however, is that in the case of success only the count variable is decremented. Thus,
if we need to block anyway, more operations must be executed. The normalization allows
the simple loop structure of the function.
In the best case, only one variable need be incremented in upO.

pseudo void up(struct semaphore) { if (++psem->count <= 0) {

/* normalization of semaphore */ psem->count += psem->waiting;

psem->waiting = 0;
wake_up(psem->wait);

This clever mechanism allows up() and down() to be implemented as inline assembler
routines which in principle consist only of incrementing and decrementing instructions,
together with a conditional jump into the code for more

 Linux kernel internails - 124 -

complex cases.

5.2 Communication via files

Communication via files is in fact the oldest way of exchanging data between programs.
Program A writes data to a file and program В reads the data out again. In a system in which
only one program can be run at any given time,

this does not present any problems.
In a multi-tasking system, however, both programs could be run as
processes at least quasi-parallel to each other. Race conditions then usually produce
inconsistencies in the file data, which result from one program reading a data area before the
other has completed modifying it, or both processes

modifying the same area of memory at the same time.
The situation therefore calls for locking mechanisms. The simplest method, of course,

would be to lock the whole file. For this LINUX, like other UNIX derivatives, offers a range of
facilities. More common and more efficient, however, is the practice of locking file areas.
This locking of file access can be either mandatory or advisory. Advisory locking allows
reading and writing to

the file to continue after the lock has been set.
However, lockings mutually exclude each other, depending on the
semantics determined by their respective types. Mandatory locking blocks read and write
operations throughout the entire area. With advisory locking, all processes accessing the file
for read or write operations have to set the appropriate lock and release it again. If a process
does not keep to this rule, inconsistencies are possible. However, mandatory locking
provides no better protection against malfunctions within processes: if processes have write
authorization to a file, they can produce inconsistencies by writing to unlocked areas. The
problems produced by faulty programs when mandatory locking is employed are extremely
critical, because the locked files cannot be modified as long as the process in question is still
running. Since version 2.0, LINUX supports mandatory locking, but the corresponding kernel
configuration parameter is by default disabled. For the reasons given above and as POSIX
1003.1 does not require mandatory locking, this is perfectly acceptable.

If mandatory locking is supported by a generated LINUX kernel, for each file that is to
support mandatory locking the group execution bit must be unset and the SGDI bit set.
Mandatory locking does not function with files mapped with mmap() and the MAP_SHARED
flag.

5.2.1 Locking entire files
There are two methods of locking entire files:

 Linux kernel internails - 125 -

(1) In addition to the file to be locked there is an auxiliary file known as a lock file which
refuses access to the file when it is present. In his book, Programmieren van Unix-
Netzen (Stevens, 1992b), W. Richard Stevens lists the following procedures:

(a) The first variant of this method exploits the fact that the system call (ink fails if the
reference to the file it is instructed to set up already exists. A file with the process
number as the filename is set up and then attempts to set up a link to the name of the
lock file, which will only be successful if this link does not yet exist. The reference with
the process number as its name can then be deleted. After a failure, the process can call
the library function sleep() to pause (but only for a short time) and then reattempt the
link.

(b) A second approach makes use of a characteristic of the system call creat:. this aborts
with an error code if the process which is being called does not possess the appropriate
access rights. When the lock file is set up, all the write access bits are cancelled. This
variant, however, also involves active waiting and cannot be used for processes running
with the superuser's access rights.

(c) The variant recommended for LINUX programming is based on the use of a combination
of the O_CREAT and O_EXCL flags with the system call open. The lock file can then only
be opened if it does not already exist; otherwise an error message will result. As pre-
scribed by POSIX, open cannot be interrupted.

The drawback to all three of these variants, however, is that after a failure the process must
repeat its attempt to set up a lock file. Usually, the process will call sleepO to wait for one
second and then try again. However, the process which has set up the lock file may be
terminated by a SIGKILL, so that the lock file can no longer be deleted. It must now be
explicitly deleted. For this reason many programs, such as the mail reader elm, place a
restriction on the number of attempts to set up a lock file and abort with an error message
once this number is exceeded, to draw the user's attention to this sort of situation.
(2) The second method is to lock the entire file by means of the system call fcntl. This is

also suitable for locking file areas, which is covered in the next section. Since version
2.0, the library function flock() to lock a complete file, derived from BSD 4.3, is
implemented as a separate system call. fLock() only supports advisory locking and is
based on the same data structures in the kernel as locking with fcntL(). As Lock() is
not defined by the POSIX standard, programmers are advised against using it.

5.2.2 Locking file areas

 Linux kernel internails - 126 -

Locking file areas is usually referred to as record locking; however, this terminology does
not help users of UNIX systems a great deal, because the UNIX file

concept does not support records.
Under LINUX, advisory locking of file areas can be achieved with the
system call fcntl.
int sys_fcntI(unsigned int fd, unsigned int cmd, unsigned Long arg);

The parameter fd is used to pass a file descriptor. For locking purposes, only the commands
F_GETLK, F_SETLK and F_SETLKW are of interest; if one of these commands is used, arg
must be a pointer to an flock structure. The F_GETLK command tests whether the lock
specified in flock would be possible; if not, the attempted lock is returned. F_SETLK sets the
lock. If it cannot do so, the function returns. F_SETLKW locks up if the lock cannot be set.
The last two commands can release a lock if the lock type l_type is set to F_UNLCK.

struct flock {
Short l_type; /* F_RDLCK, F_WRLCK, F_UNLCK, F_SHLCK,

* or F_EXLCK */ short l_whence; /* SEEK_SET, SEEK_CUR, SEEK_END */ off_t
l_start; /* offset relative to L_whence */ off_t l_len; /* length of area to be Locked */ pid_t l_pid; /* is
returned with F_GETLK */

};
The type F_RDLCK is used to set up a read lock for the file area, and F_WRLCK a write
lock. Table 5.2 shows the mutually exclusive nature of the locks. The access mode of files
which are being partially locked must allow the process

read or write access as appropriate.
A peculiarity of LINUX is that for l_type, F_SHLCK and F_EXLCK are also possible.

These were used by an older implementation of the library function flock(). Under LINUX,
the lock types mentioned above are mapped to F_RDLCK and F_WRLCK respectively, with
the difference that the file to be locked must be

Table 5.2 Semantics of fcntl locks.
Existing locks Set read Set write lock
None

More than one

read lock

One write lock

Possible

Possible

Not legal

Possible

Not legal

Not legal

 Linux kernel internails - 127 -

opened for reading and writing. This means that if a shared lock is interpreted as a read lock
and an exclusive lock as a write lock, the semantics are the same as for F_RDLCK and
F_WRLCK (see Table 5.2). However, the semantics of fcntl() and flock() locks differ in that
flockO locks are not associated to processes. For this reason, this ad hoc implementation is
faulty, but it is still supported in kernel version 2.0 to ensure that old С libraries will run.

The new flockO locks are managed in the kernel using the same data structures as
fcntl() locks, but they are marked accordingly to prevent locks of different types being
mixed. When an attempt is made to set a lock on a file in which locks of the other type have
already been set, an EBUSY error is returned. The two lock types have different handling
routines.

Locks can be removed using F_UNLCK, with the starting position given in l_whence
and l_start. For the l_whence parameter, the 'seek' parameters familiar from Iseek() can be
used: SEEK_SET for the start of the file, SEEK_CUR for the current position in the file and
SEEK_END for the end of the file. These values are then incremented by l_start. LINUX

converts SEEK_END to the current end of file, so that the lock is not set relative to the end of
the file. For example, it is not possible to use the same lock, independently of write opera-
tions, to inhibit access to the last two bytes at the end of the file.

In this, LINUX behaves in the same way as SVR4 and differs from BSD. The parameter
l_len defines the length of the area to be locked; an l_len of 0 is interpreted as indicating
that the area stretches to the current end of the file and any future end of file.

If the F_GETLK call finds an existing lock which would exclude locking the area
specified, the process number of the process which set up the lock is returned in l_pid. The
implementation of these functions centres on the doubly linked list file_lock_table with
entries consisting of flock-like file_lock data structures.

struct file_Lock {
struct file_lock *fl_next; /* singly linked list

* for this inode */ struct file_lock *fl_nextlink; /* doubly
Linked list

* of all locks */ struct f1le_lock *fl_prevlink; /* used for
simplified

* cancellation of a lock */ struct file_lock *fl_block;
struct task_struct *fl_owner;
struct wait_queue *fl_wait;
struct file *fl_file;
char fl_flags, fl_type;
off_t fl_start, fl_end;
};

static struct file_lock *file_locK_table = NULL;

The pointer fl_next is used to construct a linear list linking all locks for one

 Linux kernel internails - 128 -

file (inode->i_flock).
The component fl_owner stores the process which set up the lock and is
used in the command F_GETLCK. The file descriptor for the file locked by the
fl_owner process is held in fl_fd.

This parameter is used to distinguish between the fnctl() locks (F_POSIX), the new
flock() locks (F_FLOCK) and the old flock() locks (F_BROKEN). The component fl_type
holds the type of lock. The remaining parameters specify the locked area in the file and are
given as absolute offsets, resulting in the treatment of SEEK_END as in System V Release 4.
as mentioned earlier.

These structures determine the implementation of the commands GET_LK, SET_LK
and SET_LKW. GET_LK is executed by the function fcntl_getlk() in fs/Locks.c and tests
whether the file descriptor is open and the values of the flock structure are valid. The flock
structure is then copied to a file_lock structure. Running in a loop, fcntl_getlk() calls the
posix_lock_conflict() function to check whether there are any existing locks that would
exclude the

requested lock (file_lock structure).
If so, the function enters the obstructing lock in flock and returns. The commands

SET_LK and SET_LKW are executed by fcntl_setlk(). After the validity of the parameters has
been checked, this function checks whether the file is opened in the correct mode. All the
locks are then tested as to whether they conflict with the current lock, for which fcntl_setlk()
also uses the
posix_Lock_conflict() function.

If such a conflict is found, the function returns EAGAIN if called using SET_LK or
blocks if SET_LKW is used. In the latter case, the current process is entered in the wait queue
for the lock. When this lock is removed, all the processes in the wait queue are woken up
and retest the existing locks for conflicts. If no conflict can be found, the lock is entered in
the table.

Let us consider a simple scenario. In Figure 5.1, Process 1 has locked the first byte in
the file for read access and Process 2 has locked the second byte. Process 1 then attempts to
place a write lock on the second byte, but is blocked by Process 2. Process 2 in turn
attempts to lock the first byte and is likewise blocked. Both processes would now wait for
the other to release its lock, producing a deadlock situation. The scenarios for deadlocks are
generally more complex, as a number of processes may be involved. LINUX tracks down
situations of this type and the system call fcntl returns the error EDEADLK.

 Linux kernel internails - 129 -

The fcntI() locks are not transferred to the child process by fork, but are retained by
execve. This behaviour conforms to POSIX but is very simple to implement.

The flock() locks are not assigned to individual processes so that locks remain set as
long as the file is open. This is not hard to implement either.

5.3 Pipes__________________________

Pipes are the classical method of inter-process communication under UNIX. Users of UNIX

should not be unfamiliar with a command line such as

% Is -I | more

Here, the shell runs the processes Is and more, which are linked via a pipe. The first process
writes data to the pipe, and the second process then reads it.

Another variant of pipes consists of named pipes, also known as FIFOs (pipes also
operate on the 'First In, First Out' principle). In the following pages, the terms 'named pipe'
and 'FIFO' will be used interchangeably. Unlike pipes, FIFOs are not temporary objects
existing only as long as one file descriptor is still open for them. They can be set up in a file
system using the command

mkfifo pathname or

mknod pathname p

'% mkfifo fifo
% Is -I fifo
prw-r--r-- 1 kunitz users 0 Feb 27 22:47 fifo|

Linking the standard inputs and outputs of two processes is a little more complicated with
FIFOs.

% Is -I >fifo & more <fifo

There are obviously many similarities between pipes and FIFOs, and these are exploited by
the LINUX implementation. The inodes have the same specific components for pipes and
FIFOs.

 Linux kernel internails - 130 -

struct pipe_inode_info {
struct wait_queue * wait; /* a wait queue */
char * base; /* address of FIFO buffer */
unsigned int start; /* offset for current area */
unsigned int Len; /* length of current area */
unsigned int lock; /* lock */
unsigned int rd_openers; /* number of processes

* currently opening the
* pipe/FIFO for read access */ unsigned int wr_openers; /*

ditto for write access */ unsigned int readers; /* number of processes
* reading at this moment */

unsigned int writers; /* ditto, writing */ };

The system call pipe creates a pipe, which involves setting up a temporary inode and
allocating a page of memory to base. The call returns one file descriptor for reading and one
for writing: this is achieved by the use of separate file operation vectors.
For FIFOs there is an open function which allocates the page in memory
and returns a file descriptor that has been assigned an operation vector with read and write
operations. Its behaviour is summarized in Table 5.3.

FIFOs and pipes use the same read and write operations, with the memory assigned to
the pipe/FIFO interpreted as a circular buffer to which len bytes have been written, starting
at start, without yet having been read back. These operations always take into account
whether the O_NONBLOCK for the descriptor has been set or not: if it is set, the read and
write operations must not block. Unless the number of bytes to be written exceeds the
internal buffer size for the pipe (4096 bytes as default), the write operation must be carried
out atomically - that is, if a number of processes are writing to the pipe/FIFO, byte
sequences for the individual write operations are not interrupted. The semantics
implemented in LINUX are shown in Tables 5.4 and 5.5.

Table 5.3 Opening a FIFO.
 Blocking Non-blocking

Open FIFO
with connect
operations
Open FIFO

To read

To write

No writing processes
Writing processes

No reading processes
Reading processes

Block
Open FIFO

Block Open
FIFO

ENXIO error
Open FIFO

To read and write Open FIFO Open FIFO

 Linux kernel internails - 131 -

Table 5.4 Semantics of pipe/FIFO read operation.
Blocking Non-blocking

Locked
pipe

Block calling process

EAGAIN error

Empty
pipe

Block calling process if
writing processes
present, else return 0

EAGAIN error if writing
processes present, else()

Else

Read maximum number
of characters up to
requested position

As for blocking operation

Table 5.5 Semantics of pipe/FIFO write operation.

 Blocking Non-blocking
No reading
process

Send SIGPIPE signal
to writing process and

As for blocking

Locked pipe Block calling process EAGAIN error
Atomic write
possible, but not
enough space in

Block calling process

EAGAIN error

Buffer space
sufficient for
atomic write

Write requested
number of bytes to
buffer

As for blocking
write

Else

Continue blocking
until requested number
of bytes has been

Write maximum
possible number of
bytes

As processes very often block when accessing pipes or FIFOs, it follows that the read and
write operations often have to wake up processes in the mode's wait queue. All the
processes are managed in a single wait queue although they may be waiting for different
events.

5.4 Debugging using ptrace

No programmer is capable of writing bug-free programs first time. Any freshly written
software needs to be tested. UNIX provides the system call ptrace, which gives a process
control over another process. The process under its control can be run step by step and its
memory can be read and modified. Data can also be read from the process table. Debuggers
such as gdb are based on the ptrace() system call.

 Linux kernel internails - 132 -

Because it is dependent on the process architecture, this call is defined in the file

arch/i386/kernel/ptrace.c.

•int sys_ptrace(long request, long pid, long addr, Long data);
The function processes various requests defined in the parameter request. The parameter pid
specifies the process number of the process to be controlled.
Using PTRACE_TRACEME, a process can specify that its parent process controls it via
ptrace() - in other words, the trace flag (PF_PTRACED) for the process

is set.
The calling process can use PTRACE_ATTACH to make any process its child
process and set its PF_PTRACED flag. However, the user and group numbers for the calling
process must match the effective user and group numbers of the process to be controlled.
The new child process is sent a SIGSTOP signal, which will usually cause it to stop running.
After this request it will be under the

control of its new parent process.
With the exception of PTRACE_KILL, the following requests are only
processed by ptrace once the child process has been halted. The requests
PTRACE_PEEKTEXT and PTRACE_PEEKDATA can be used to read 32-bit values from the
controlled process's user memory area. LINUX does not make any distinction between the
two requests. PTRACE_PEEKTEXT .will read code, while PTRACE_PEEKDATA can be used to
read data. The request PTRACE_PEEKUSR will cause a long value to be read from the user
structure for the process. This is where debugging information is stored, such as the
process's debug register. They are updated by the processor after a debugging trap and
written to the process table by the appropriate handling routine. The user structure is virtual.
The sys_ptrace() function uses the address to be read to decide what information should be
returned and provides it. So the registers on the child process's stack and the debug registers
stored in the process table will be read by the

function.
The requests PTRACE_POKEDATA and PTRACE_POKETEXT allow the user area
for the process under control to be modified. If the area to be modified is write protected,
the relevant page is saved by copy-on-write. This is used, for example, to write a special
instruction to a particular location in the machine code so that a debugging trap is triggered.
In this way, break points can be set by debuggers. The code will be executed until the
instruction triggering the trap (int3 in the case of x86 processors) is processed, at which
point the debugging trap handling routine will interrupt the process and inform the parent
process.
It is also possible to use PTRACE_POKEUSR to modify the virtual user structure. The main
use for this is modifying the process's registers. After being interrupted by a signal (in most
cases SIGSTOP), the child process can be continued by the request PTRACE_CONT. The

 Linux kernel internails - 133 -

argument data can be used to decide what signal the process will handle when it resumes
execution.

 Linux kernel internails - 134 -

On receipt of the signal, the child process informs the parent process and halts. The parent
process can now continue the child process and decide whether it should handle the signal.
If the data argument is null, the child process will not process any signal.

The request PTRACE_SYSCALL causes the child process to resume in the same way as
PTRACE_CONT, but only until the next system call. The sys_ptrace() function will also set
the PF_TRACESYS flag. When the child process arrives at the next system call, it halts and
receives the SIGTRAP signal. The parent process could at this point, for example, inspect the
arguments for the system call. If the process is continued with a further
PTRACE_SYSCALL request, the process will halt on completing the system call; the result
and (eventually) the error variable can then be read by the parent process.

The request PTRACE_SINGLESTEP differs from PTRACE_CONT in setting the processor's
trap flag. The process thus executes only one machine code instruction and generates a
debug interrupt (No. 1). This sets the SIGTRAP signal for the process, which is then
interrupted again. In other words, the PTRACE_SIN-GLESTEP request allows the machine
code to be processed instruction by instruction. The request PTRACE_KILL continues the
child process with the signal SIGKILL set. The process is then aborted.

The PTRACE_DETACH request separates the process under control from the controlling
process. The former process is given back its old parent process and the flags PF_PTRACED

and PF_TRACESYS are cancelled along with the processor's trap flag.
A debugger uses ptrace in the following way. It executes the system call fork and calls

the function in the child process with PTRACE_TRACEME. There, the program to be
inspected is then started by execve. As the PF_PTRACED flag is set, the execve call sends a
SIGTRAP signal to itself. It will not allow ptrace to process programs for which an S bit is
set. It is not difficult to imagine the possibilities that would otherwise be open to hackers.
On return from execve the SIGTRAP signal is processed, the process is halted and the parent
process is informed by sending it a SIGCHLD signal. The debugger will wait for this via the
system call uait. It can then inspect the child process's memory, modify it and set break
points. The simplest way of doing this with x86 processors is to write an int3 instruction at
the appropriate address in the machine code. This instruction is only one byte long.

If the debugger calls ptraceO with the request PTRACE_CONT, the child process will
continue running until it processes the int3 instruction, at which Point the relevant interrupt
handling routine sends a SIGTRAP signal to the child Process, the child process is
interrupted and the debugger is again informed. It could then, for example, simply abort the
program to be inspected.

There are, of course, other ways of using this system call. The strace Program provides
a report ('trace') on all the system calls that have been carried out. This is illustrated below
by the output listing of strace cat motd. Naturally, strace uses PTRACE_SYSCALL.

 Linux kernel internails - 135 -

%strace cat motd
uselib("/lib/ld.so") = 0
getuidO = 15211
geteuidO = 15211
getgidO = 15200
getegidO = 15200
stat("/etc/ld.so.cache", '{st_mode=S_IFRE6|0644, st_size=3653,

...}) = 0
open("/etc/ld.so.cache", 0_RDONLY) =3
mmapCO, 3653, PROT_READ, MAP_SHARED, 3, 0) = 0x40000000
cLose(3) = 0 uselib("/Lib/Libc.so.4.6.27")
= 0 munniap(0x40000000, 3653) = 0
munmap(0x62f00000, 24576) = 0 brk(O)
= 0x3000 brk(0x6000) = 0x6000
brk(0x7000) = 0x7000
stat("/etc/locale/C/libc.cat", OxbfffflbO) = -1
ENOENT (No such file or directory)
stat("/usr/lib/locale/C/libc.cat", OxbfffflbO) = -1
ENOENT (No such file or directory)
stat("/usr/lib/locale/libc/C/usr/share/locale/C/libc.cat",
Oxbffff1bO) = -1
ENOENT (No such file or directory)

stat("/usr/local/share/locale/C/libc.cat", OxbfffflbO) = -1
ENOENT (No such file or directory) fstatd, {st_mode=S_IFCHR|0622,
st_rdev=makedev(4, 195), ...})== 0
open("motd", 0_RDONLY) = -1 ENOENT (No such
file or directory) urite(2, "cat: ", 5cat:) = 5 write(2,
"motd", 4motd) = 4 write(2, ": No such file or
directory", 27:
No such file or directory) = 27 write(2, "\\n", 1) =1
closed) = 0 _exit(1) = ?

The range of functions offered by ptrace() is wide enough to debug programs in multi-
tasking environments. On the negative side, it should be mentioned that it is very inefficient
to use a single system call to read or write a 32-bit value in the address area.

 Linux kernel internails - 136 -

As long ago as 1970, the classical forms of inter-process communication -semaphores,
message queues and shared memory - were implemented in a special variant of UNIX. These
were later integrated into System V and are now known as System V IPC. LINUX supports
these variants, although they are not included in POSIX. At present, shared memory is the
only way of allowing more than one process to access the same area of memory under
LINUX. The original LINUX implementation was produced by Krishna Balasubramanian, but
it has been modified by Eric Schenk, Bruno Haible and Bjorn Ekwall.

5.5.1 Access permissions, numbers and keys
In System V IPC, objects are created in the kernel. These must be assigned unique
identifiers to ensure that operations activated by the user process are carried out on the right
objects. The simplest form of identifier is a number:
these numbers are dynamically generated and returned to the process generating the object.
A process entirely separate from the creator process cannot access the object, as it does not
know the number. In a case of this sort, the two processes will have to agree a static key by
which they can reference the IPC object. The C library offers the ft ok function, which
generates a unique key from a filename and a character. A special key is IPC_PRIVATE,
which guarantees that no existing IPC object is referenced. Access to objects generated
using IPC_PRIVATE is only possible via their object numbers.

As with System V, access permissions are managed by the kernel in the structure
ipc_perm.

struct ipc_perm {
key_t key;
ushort uid; /* owner */
ushort gid; /* owner */
ushort cuid; /* creator */
ushort cgid; /* creator */
ushort mode; /* access modes */
ushort seq; /* counter, used to calculate the identifier */ };

If a process accesses an object, the routine ipcperms() is called, once again using the
standard UNIX access flags for the user, the group and others. The superuser, of course, has
access at all times. If the uid for the process attempting access matches that of the owner or
the creator, the user access permissions are checked. The same applies to checks on group
access permissions.

 Linux kernel internails - 137 -

5.5.2 Semaphores
The use of semaphores under System V expands the classical semaphore model. An array of
semaphores can be set up using a system call. It is possible to modify a number of
semaphores in an array in a single operation. A process can set semaphores to any chosen
value, and they can be incremented or decremented in steps greater than one. The
programmer can specify that certain
operations are reversed at the end of the process.
LINUX provides the following data structure for every reserved semaphore array:

struct sennd_ds {
struct ipc_perm sem_perm; /* access permissions */ time_t
sem_otime; /* time of Last semaphore

* operation */ time_t sem_ctime; /* time
of Last change */ struct sem *sem_base; /* pointer to first
semaphore

* in array */
struct sem_queue *sem_pending; /* operations pending */

struct sem_queue **sem_pending_Last; /* Last pending * operation
*/

struct sem_undo *undo; /* pointer to structure
* indicating operations
* to be reversed */ ushort

sem_nsems; /* number of semaphores

* in fieLd */
};

The semaphores in an array are stored consecutively in the same area of memory, so that
any semaphore can be accessed via an offset from base. The structure sem_queue includes
a wait queue in which processes block if their
operations cannot be executed.

The structure sem manages a single semaphore:

struct sem {
short semvaL; /* current value */ short sempid; /* process
number of Last operation */

};
A more complex situation is presented by the task of undoing individual semaphore
operations at the end of a process. The process can require any call to a semaphore
operation to be undone when it terminates: for these calls, sem_undo
structures are generated dynamically.

 Linux kernel internails - 138 -

struct sem_undo {
struct sem_undo *proc_next; * Linear List of all UNDO

* structures in a process */ struct sem_undo
id_next; / Linear List of all UNDO

* structures in a semaphore array */ int semid;
/* number of semaphore array */ short * semadj; /* values to which

* semaphores are reset */ };

A sem_undo structure stores all the semaphore operations of a process that are to be undone.
The kernel sets up a maximum of one sem_undo structure per process. When the process
terminates, the system call exit attempts to reset the semaphores to the semadj values, a
feature often referred to as adjust on exit. The process will not block on exit if this would
produce a value less than zero: the value of the semaphore is simply set to zero. The
semaphore operations are implemented with the structures explained.

int sys_semget (key_t key, int nsems, int semflg);
lot sys_semop (int semid, struct sembuf *sops, unsigned nsops);

int sys_semctL (int semid, int semnum, int cmd, void *arg);
Together with other operations in System V IPC, they are called using the system call ipc.
This in turn calls the appropriate functions by reference to its first argument. The C library
must convert all the relevant library calls into system calls. This might be called system call
multiplexing.

The call sys_semget() is used to find the number of a semaphore array with nsems
semaphores. The values which can be used for semfig are listed in Table 5.6.

Table 5.6 Flags for semget ().

Flag______________________________
0400 Read permissions for creator 0200 Write
permissions for creator 0040 Read permissions for creator
group 0020 Write permissions for creator group 0004
Read permissions for all 0002 Write permissions for all
IPC_CREAT A new object will be created if it is

not yet present IPC_EXCL If IPC_CREAT is set and
such an object

already exists, the function will return
with the error EEXIST

 Linux kernel internails - 139 -

The semop() call executes a number of operations from the semops table:
this number is given by nsops. An operation is described by the structure
sembuf.

struct sembuf {
ushort sem_num; /* index to semaphore In array */
short sem_op; /* operation */ short sem_flg; /*
flags */

};
The value in sem_op is added to the semaphore. The operation blocks if the sum would
yield a negative value. It must then wait for the semaphore to be incremented. If sem_op is
zero, the current process blocks if the value of the semaphore is not zero. It never blocks if
sem_op is greater than zero. If the value increases, all the processes waiting for this event
for this semaphore array are woken up. Similarly, all the processes waiting for a semaphore
in the array
to reach zero are woken up if this event occurs.
Two values are possible for sem_flg: IPC_NOWAIT and SEM_UNDO. If
IPC_NOWAIT is set, the process will never block. The effect of SEM_UNDO is to cause a
sem_undo structure to be set up or updated for all operations in this function call. The
negative operation value is entered in the sem_undo structure
or added to the old adjust value on updating.
The sys_semctl call can be used to perform a wide range of commands, which must be
entered as a parameter. Another parameter for this function is the union semun.

union semun {
int val; /* value for SETVAL */
struct semiclds *buf; /* buffer for IPC_STAT and IPC_SET */

ushort *array; /* field for GETALL and SETALL */
struct seminfo *_buf; /* buffer for IPC_INFO */
void *_pad;

};
IPC_INFO enters values in the seminfo structure (see Table 5.7). All the values are specified
as fixed values by separate macro definitions.
The ipcs program, which displays information about IPC objects, uses the SEM_INFO

variant of this command. This gives, the number of semaphore arrays that have been set up
in semusz and the total number of semaphores in the system in semaem. This command
cannot be called from a user program
without special macro definitions.

IPC_STAT returns the semid_ds structure for a semaphore array. For ipcs there is again
the SEM_STAT variant, which requires the index in the table of arrays to be specified rather
than the number of the semaphore array. The ipcs

 Linux kernel internails - 140 -

Table 5.7 Components in the sem_undo structure.
Compon Value Description
semmni 128 Maximum number of arrays
semmns 4096 Maximum number of semaphores in
semmsl 32 Maximum number of semaphores
semopm 32 Maximum number of operations per
semvmx 3276 Maximum value of a semaphore
semmnu 4096 Ignored by LINUX - maximum

number of semundo structures in
semmap 4096 Ignored by LINUX - number of

entries in a 'semaphore map'
semume 32 Ignored by LINUX - maximum

number of semundo entries for a
semusz 20 Ignored by LINUX - size of semundo

structure (false value)
semaem 1638

3
Ignored by LINUX - maximum value
for a semundo structure

program can provide information on all the arrays by counting from zero to seminfo.
semmni in a loop and calling semctl() with SEM_STAT and the counter as arguments.
IPC_SET allows the owner and mode of the semaphore array to be set to new values. This
command requires the semid_ds structure as a parameter, with only the sem_perm
component actually used. IPC_RMID deletes a semaphore array if the caller is the owner or
creator of the array or if the superuser has called semctLO. The remaining commands for
sys_semctl are listed in Table 5.8.

Table 5.8 Commands for sys_semctl().

Command Value returned and function

GETVAL Value of semaphore
GETPID Process number of last process to modify the semaphore GETNCNT
Number of processes waiting for semaphore to be incremented GETZCNT
Number of processes waiting for a value of zero
GETALL Values of all semaphores of the array in the field semun.array
SETVAL Sets value of semaphore SETALL Sets values of
semaphores

 Linux kernel internails - 141 -

5.5.3 Message queues
Messages consist of a sequence of bytes. In addition, IPC messages in System V include a
type code. Processes send messages to the message queues and can receive messages,
restricting reception to messages of a specified type if required. Messages are received in
the same order in which they are entered in the message queue. The basis of the
implementation under LINUX is the structure msqid_ds.

struct msqid_ds {
struct ipc_perm msg_perm; /* access permissions */
struct msg *msg_first; /* first message in queue */ struct msg *msg_Last;
/* last message in queue */ time_t msg_stime; /* time of last send */
ti(ne_t msg_rtime; /* time of fast receipt */ time_t msg_ctime; /*
time of Last change */ struct wait_queue *wwait; /* processes waiting for
queue

* to be read */
struct wait_queue *rwait; /* processes waiting for queue

* to be sent to */
ushort msg_cbytes; /* current number of bytes

* in queue */ ushort msg_qnum; /* number
of messages in queue */ ushort msg_qbytes; /* maximum for bytes in
queue */ ushort msg_Lspid; /* process number of last

* sender */
ushort msg_lrpid; /* process number of last

* receiver */ };
As well as management information, the structure contains two wait queues of its own,
wwait and rwait. A process enters itself in wwait if the message queue is full - that is,
when it is no longer possible to send the message without exceeding the maximum number
of bytes allowed in the message queue. The queue rwait contains processes waiting for
messages to be written to the

message queue.
The message queue is implemented as a linear list, with its first element

referenced by msg_first and its last by msg_Last. The msg_last pointer is maintained to
assist rapid execution of send operations: using this pointer, a new message can be
inserted in the queue without having to scan through all
the elements in the queue to find the last one.

A message is stored in the kernel in the msg structure.

struct msg {
struct msg *msg_next; /* next message in queue */

 Linux kernel internails - 142 -

long msg_type; /* message type "/
char *msg_spot; /* address of text of message */
time_t msg_time /* msgsnd time */
short msg_ta; /* length of message */

};
LINUX stores the message immediately after this structure, which means that
the pointer msg_spot is in fact unnecessary.

As with semaphores, functions are now required for initialization, for sending and
receiving messages, for returning information and for releasing message queues. Although
the operations to be performed are relatively simple, access protection and the updating of
statistical data make things more complicated. The relevant library functions call the system
call ipc, which passes on the call to the appropriate kernel functions. The function
sys_msgget() creates a message queue, using the standard parameters for the IPC get
functions.

int sys_msgget (key_t key, int msgfig);

The parameter key is a mandatory key and msgfig is the same as for the flags in semget()
(see Table 5.6). Messages are sent using the function sys_msgsnd().

struct msgbuf {
long mtype; /* message type */ char mtext[1]; /* text
of message */

};
int sys_msgsnd (int msqid, struct msgbuf *msgp, int msgsz, int msgfig);

The parameter msgsz is the length of the text in mtext and must be no greater than
MSGMAX. The process blocks if the new number of bytes in the message queue exceeds the
value in the component msg_qbytes, the permitted maximum. It only resumes processing
once other processes have read messages from the queue or when non-blocked signals are
sent to the process. Blocking can be
prevented by setting the flag IPC_NOWAIT.

A message can be read back from the queue by means of sys_msgrcv().

int sys_msgrcv (int msqid, struct msgbuf *msgp, int msgsz, long msgtyp,
int msgfig);

The messages to be received are specified in msgtyp. If the value is zero, the first message
in the queue is selected. For a value greater than zero, the first Message of the given type in
the message queue is read. However, if the MSG_EXCEPT flag is set, the first message not
matching the message type is

 Linux kernel internails - 143 -

received. If msgtyp is less than zero, the function selects the first message of the type with
the smallest integer value that is smaller than or equal to the absolute value of msgtyp. The
length of the message must be smaller than msgsz, but no error will be returned for longer
messages if MSG_NOERROR is set:
instead, the first msgsz bytes of the message will be read. If no message matching the
specification is found, the process blocks. This can be prevented by setting the IPC_NOWAIT

flag.
Another function to manipulate the message queue is sys_msgctl(). This
function is very similar to sys_semctl().

int sys_msgctl() (int nisqid, int cmd, struct msq1d_ds *buf);

The command IPC_INFO outputs the maxima for the values relevant to message queues in
the structure msginfo. These maxima are listed in Table 5.9. As before, LINUX only uses a
small number of these values.
The macro for each of the components is defined in msg.h. The command MSG_INFO is the
variant of IPC_INFO designed for the ipcs program. This gives the number of wait queues
used in msgpool, the number of messages in msgmap and the total number of messages
stored by the system in msgtql.
IPC_STAT copies the msqid_id structure of the referenced message queue to the user
memory area. Like SEM_STAT, the MSG_STAT variant allows an index to the system-internal
table of the message queue as a parameter. This LINUX feature is also used by the ipcs
command.
IPC_SET enables the owner, mode and maximum possible number of bytes for the message
queue to be modified. Processes without superuser rights must not set this value higher than
MSGMNB (16 384). Without this restriction, a

Table 5.9 Components of the msginfo structure. Component Value

Description msgmni 128 Maximum number of message queues

msgmax 4056 Maximum size of a message in bytes

msgmnb 16 384 Standard value for the maximum size of a message

queue in bytes

msgmap 16 384 Not used - number of entries in a 'message map'

msgpool 2 048 Not used - size of 'message pool'

msgtql 16 384 Not used - number of 'system message headers'
msgssz 16 Not used - size of message segment
msgseg 0xffff Not used - maximum number of segments

 Linux kernel internails - 144 -

normal process would be in a position, by sending messages to the queue after setting this
value high, to allocate kernel memory which cannot be swapped out to secondary memory.
The owner or creator of the message queue as well as the superuser can delete the queue by
means of IPC_RMID.
Under Linux 2.0, message queues have the task of communicating with the kerneld
daemon. This daemon is responsible for automatic loading of kernel modules requested via
messages by kernel routines.

5.5.4 Shared memory
Shared memory is the fastest form of inter-process communication. Processes using a
shared section of memory can exchange data by the usual machine code commands for
reading and writing data. In all other methods this is only possible by recourse to system
calls to copy the data from the memory area of one process to that of the other. The
drawback to shared memory is that the processes need to use additional synchronization
mechanisms to ensure that race conditions do not arise. Faster communication is only
achieved by increased programming effort. Performing the synchronization via other system
calls makes for a portable implementation, but reduces the speed advantage. Another
possibility would be to exploit the machine code instructions for conditional setting of a bit
in the processors for different architectures: these instructions set a bit depending on its
value. As this occurs within a machine code instruction, the operation cannot be halted by
an interrupt. These instructions provide a very simple and quick way of implementing a
system of mutual exclusion. It has already been explained in Section 4.2.2 how complex the
shared use of memory areas is. As since version 2.0 it has become possible, with mmap(), to
map memory areas that can be written to by several processes, this mechanism too can be
used to implement shared memory applications.

As in the other IPC variants of System V, a shared segment of memory is identified by
a number, which refers to a shmid_ds data structure. This segment can be mapped to the
user segment in the virtual address space by a process with the aid of an attach operation,
and the procedure can be reversed with a detach operation. For simplicity, we will refer to
the memory managed by the shmid_ds structure as a segment, although this term is already
used for the segments of the virtual address space in x86 processors.

struct shnnd_ds {
struct ipc_perm shm_perm; /* access permissions */ int shm_segsz;
/* size of shared segment */ time_t shm_atime; /* last ATTACH
time */ time_t shm_dtime; /* Last DETACH time */-' time_t
shm_ctime; /* time of Last change */ unsigned short shm_cp1d;
/* process number of creator */

 Linux kernel internails - 145 -

unsigned short shm_l.pid; /* process number of last process
* to call an operation for the
* shared segment */ short shm_nattch; /*

number of current ATTACHes */ /* new components under Linux */
unsigned short shm_npages; /* number of memory pages */ unsigned
long *shm_pages; /* field for page table entries */ struct
vm_area_struct

attaches; / ATTACH descriptors*/
};

The modal components in the ipc_perm structure are used to store two flags. The flag
SHM_LOCKED prevents pages in the shared memory segment from being swapped out to
secondary devices, while SHM_DEST specifies that the segment is released on the last
detach operation.
The field shm_pages holds the page table entries for the pages of memory comprising the
shared segment. After a segment is created, no pages are actually allocated until a page in a
segment mapped to virtual address space is accessed. This field may also contain references
to pages which have been swapped.
After attach operations, management information is stored in the linear list attaches. The
entries in this list have the structure of the virtual memory areas. The attach descriptors for a
process are held in a circular list via the pointers vm_next_share and vm_prev_share.
By calling sys_shmget() a process can create or set up a reference to a segment.

int sys_shmget (key_t key, int size, int shmfig);

The parameter size specifies the size of the segment. If the segment has already been set up,
the parameter may be smaller than the actual size. The flags listed in Table 5.6 may again be
set in the parameter shmfig.
This function only initializes the shmid_ds data structure. No pages in memory are allocated
to the segment at this stage. The shm_pages field in the shmid_ds data structure contains
only blank entries after sys_shmget() is called.
By far the most important function when using shared memory is sys_shmat(). This maps
the segment to the process's user segment.

Int sys_shmat (int shmid, char *shmaddr, inst shmfig, ulong *raddr);

The parameter shmaddr can be used by the process to specify the address at which the
segment is to be mapped. If this is zero, the function will find a free

 Linux kernel internails - 146 -

area of memory for itself and the selected address will then be returned in raddr. This rather
complicated procedure using the parameter is unavoidable, since otherwise addresses over
2 gigabytes would be interpreted as errors on return to the user process.

The flags allowed in shmfig are SHM_RND, SHM_REMAP and SHM_R&ONLY. If
SHM_RND is set, the address that is passed will be rounded down to a page boundary, as
LINUX only allows segments to be mapped at a page boundary. SHM_RDONLY indicates
whether the mapped segment is to be read only or read and write.
LINUX'S System V IPC was implemented before the introduction of virtual memory areas,
and consequently a very sophisticated method was chosen for mapping the shared pages of
memory. Special entries based on a segment's signature are written to the page table for the
process during the execution of sys_shmat(). A signature combines a flag for read-only
access to a segment with the number of the segment. In addition, the swap type
SHM_SWP_TYPE is specified. The sys_shmat() function then enters the number of the
page in the segment and enters the resulting value of the signature in a page table. The
presence bit is not set.
If the process attempts to access a page in a newly mapped segment, a page error exception
interrupt is generated. The do_no_page() routine called during exception handling then calls
the shm_swap_in() function, which inspects the page table entry for the segment and the
number of the page in the segment so that it can write the correct entry from shm_pages to
the page table. The shm_pages field holds the page table entries for the pages in the shared
memory segment. If the page has been swapped out to secondary storage, it is loaded back.
If no page of memory has yet been allocated for the page in the shared memory segment, a
free page is reserved. Its page table entry is written to the page table and the shm_pages
field in the segment data structure.
The shm_swap() function attempts to swap out memory pages in shared segments. The
number of pages inspected by this process is controlled by the function's priority argument.
For each page in the segment, the page table entries for the processes that mapped the pages
are inspected. Setting the 'age' attribute in the page table entry prevents the pages most
recently accessed from being swapped. If the age attribute is not set, the value for the page
in the table mem_map is decremented and the page is removed from the address space tor
the process.
Once all the processes which had or still have the shared memory page mapped have been
gone through, a check is made on whether the page can be saved to secondary memory. This
is permissible if there is a 1 in the related mem__map entry. Only then is the page written to
a swap area by shm_swap().
The page's swapping number is written to the page table of the segment (shm_pages). The
function then updates the page tables for the processes sharing the page with the signature
of the segment, to which the index for the

 Linux kernel internails - 147 -

page has also been added. The swapped page can then be reloaded via the sh«_no_page
mechanism.
The function sys_shmdt() deletes a mapped page from the user segment of a process.

int sys_shmdt (char *shaiaddr);
The sys_shmctl() function is a counterpart to the functions sys_semctl() and sys_msgct 10
mentioned earlier.

int sys_shmctl() (int shmid, int cmd, struct shmid_ds *buf);
A call to this function using the IPC_INFO command will return the maximum values that
apply when using LINUX'S implementation of shared memory. The shminfo structure used
for this is summarized in Table 5.10.
The related macros (names in upper-case letters) are defined in include/ linux/shm.h.
Although a size of 1 is allowed for the segment, LINUX will always allocate a minimum of
one page of memory (4096 bytes) for shared use.
The SHM_INFO command fills in the shm_info structure, which is shown in Table 5.11.
The IPC_STAT command can be called to read the segment data structure Shmid_ds. The
SHM_STAT variant of this command performs the same task, but needs an index to the
table of segment data structures as a parameter in place of the segment number.
If sys_shmctl() is called with the command IPC_SET, the owner and access mode for a
segment can be modified by the old owner or the process that initialized the shared memory
segment.
Unlike the functions sys_semctl() and sys_msgctl(), the IPC_RMID command does not
enable the IPC data structure to be released in all cases, as there may still be processes with
the segment mapped. To mark the segment

Table 5.10 Components of the shminfo structure for the

IPC_INFO command. Component Value Description
shmmni 128 Maximum number of shared memory segments
shmmax 16777216 Maximum size of a segment in bytes shmmin
1 Minimum size of a segment
shmall 4194 304 Maximum number of shared pages of memory in entire
system
shmseg 128 Permitted number of segments per process

 Linux kernel internails - 148 -

Table 5.11 Components of the shminfo structure for the SHM_INFO
command.
Component Description used_ids Number of

segments used

shm_rss Number of shared pages allocated in main

memory

shm_tot Total number of shared pages shm_swp Number of

currently swapped pages swap_attempts Attempts to swap shared pages

swap_successes Number of shared pages swapped since system start-up

structure as deleted, the SHM_DEST flag in the mode field of the ipc_perm component is set.
The commands SHM_LOCK and SHM_UNLOCK allow the superuser to disable and re-

enable swapping of pages in a segment. Pages which have already been swapped are not
explicitly reloaded by the SHM_LOCK command.

5.5.5 The ipcs and ipcrm commands
One drawback to the System V IPC is that testing and developing programs that make use
of it can easily give rise to the problem whereby IPC resources remain present after the test
programs have been completed, when this was in no way intended. The ipcs command
allows the user to investigate the situation and to delete the resources in question using
ipcrm.
For example, a program may have set up three semaphore arrays. Information can be
obtained via ipcs on the shared memory segments, semaphore arrays and message queues to
which the user has access.

% ipcs

———— Shared Memory Segments —————
shmid owner perms bytes nattch status
~——— Semaphore Arrays ——•—— semid owner
perms nsems status
1152 kunitz 666 1
1153 kunitz 666 1
1154 kunitz 666 1

—-—— Message Queues ————
msqid owner perms used-bytes messages

 Linux kernel internails - 149 -

These semaphore arrays can now be deleted (one at a time) using ipcrm. The command can
also be used analogously for message queues and shared
memory segments.

%ipcrm sem 1153 resource deleted %
ipcs

——— Shared Memory Segments ————
shmid owner perms bytes nattch status

——— Semaphore Arrays ————
semid owner perms nsems status
1152 kunitz 666 1
1154 kumtz 666 1

——— Message Queues ————
msqid owner perms used-bytes messages

These two commands would be unnecessary if the resources were held as special files in the
file system: the system call seiect could then be used to monitor a number of resources at
the same time. Integrating the System V IPC resources into the proc file system could make
for an interesting programming exercise.

5.6 IPC with sockets___________________

So far, we have only looked at forms of inter-process communication supporting
communication between processes in one computer. The socket programming interface
provides for communication via a network as well as locally on a single computer. The
advantage of this interface is that it allows network applications to be programmed using the
long-established UNIX concept of file descriptors. A particularly good example of this is the
INET daemon. The daemon waits for incoming network service requests and then calls the
appropriate service program with the socket descriptor as standard input and output. For
very simple services, the program called need not contain a single line of network-relevant
code.
In this chapter, we limit ourselves to the use and implementation of UNIX domain sockets.
Sockets for the INET domain will be covered in Chapter 8.

 Linux kernel internails - 150 -

5.6.1 A simple example
Similar to FIFOs, UNIX domain sockets enable programs to exchange data the connection-
oriented way. The following example illustrates how this works. The same include files are
used for both the client and the server program.

/* sc.h */

#include <sys/types.h>
#include <stdio.h>
#include <sys/socket.h>
#include <sys/un.h>

#define SERVER "/Imp/server"

The job of the client is to send a message to the server along with its process number and to
write the server's response to the standard output.

/* cli.c - client, connection-oriented model */
#include "sc.h"

int main(void) {
int sock_fd;
struct sockaddr_un unix_addr;
char bufC20483;
int n;
if ((sock_fd = socket(AF_UNIX, SOCK_STREAM, 0)) < 0) {

perror("cli: socket()");
exit(1);

}

unix_addr.sun_family = AF_UNIX;
strcpy(unix_addr.sun_path, SERVER);
if (connect(sock_fd, (struct sockaddr*) &unix_addr,
sizeof(unix_addr.sun_family) + strlen(unix_addr.sun_path)) < 0) (

perror("cli: wnnect()");
exitd);

}

 Linux kernel internails - 151 -

sprintf(buf, "Hello Server, this is %d.\n", getpid());
n = strlen(buf) + 1;

if (write(sock_fd, buf, n) != n)
(

perror("cli: write()");
exit(1);

}

if ((n = read<sock_fd, but, 2047)) < 0) {
perror("cli; read()");
exit(1);

}

buf[n] = '\0';
printf("Client received: %s\n", buf);

exit(O);
}

First a socket file descriptor is created with socket 0. Then the address of the server is
generated; for UNIX domain sockets this consists of a filename - in our example this is
/tmp/server. The client then attempts to set up a connection to the server using connect 0. If
this is successful, it is possible to send data to the server using perfectly standard read and
write functions. To be precise, the client does this by sending the message

Hello Server, this is process number of client.
To enable the server to reply, we need a few more lines of C program. /* srv.c -

server, connection-oriented model */

#include <signal.h> #include "sc.h"

void stop() {
unlink(SERVER);
exit(O);

}
void server(void) {

 Linux kernel internails - 152 -

int sock_fd, cli_sock_fd;
struct sockaddr_un unix_addr;
char buf[2048];
int n, addr_len;
pid_t pid;
char *pc;

signal(SIGINT, stop);
`
signal(SIGTERM, stop);

if ((sock_fd = socket(AF_UNIX, SOCK_STREAM, 0)) < 0) {
perror("srv: socket()");

exit(1);
}

unix_addr.sun_family = AF_UNIX;
Strcpy(unix_addr.sun_path, SERVER);
addr_len = sizeof(unix_addr.sun_family) + strlen(unix_addr.sun_path);

unlink(SERVER);

if (bind(sock_fd, (struct sockaddr *) &unix_addr,
addr_len) < 0) {

perror("srv: bind()");
exit(1);

}
if (listen<sock_fd, 5) < 0)
{

perror("srv: client()");
unlink(SERVER); exit(1);

}

while ((cli_sock_fd =
accept(sock_fd, (struct sockaddr*) &unix_addr,

&addr_len)) >= 0) {
if ((n = read(cli_sock_fd, but, 2047)) < 0) {

perror("srv: read()");
close(cli_sock_fd); -' continue;

}

 Linux kernel internails - 153 -

buf[n] = '\0';
for (pc = buf; *pc != '\0' S& (*pc < '0' || *pc > '9');

pc++);

pid = atol(pc);

if (pid != 0) {
sprintf(buf, "Hello Client %d, this is the Server.\n", Pid);
n = strlen(buf) + 1;
if (write(cli_sock_fd, buf, n) != n) perror("srv: write()");

}

close(cli_sock_fd);
}

perror("srv: accept()");
unlink(SERVER);
exit(1);
}
int main(void) {

int r;
if ((r = fork()) == 0)
{ . server();
}
if (r < 0)

{
perror("srv; fork()");
exit(1);

>

exit(0);
}

The server calls fork() and terminates its run. The child process continues running in the
background and installs the handling routine for interrupt signals. Once a socket file
descriptor has been opened, the server's own address is bound to this socket and a file is
created under the pathname given in the

 Linux kernel internails - 154 -

address. By limiting the access rights to this file, the server can reduce the number of users
able to communicate with it. A client's connect call is only successful if this file exists and
the client possesses the necessary access rights. The call to listen() is necessary to inform
the kernel that the process is now ready to accept connections at this socket. It then calls
accept 0 to wait. If a connection is set up by a client using connect 0, accept 0 will return a
new socket file descriptor. This will then be used to receive messages from the client and
reply to them. The server simply writes back:

Hello Client process number of client, this is the Server.

The server then closes the file descriptor for this connection and again calls accept 0 to offer
its services to the next client.
The read and write operations usually block on the socket descriptor if either no data are
present or there is no more space in the buffer. If the 0_NON-BLOCK flag has been set
with font 10, these functions do not block.
Since version 2.0 it is possible to use UNIX domain sockets under LINUX in connectionless
mode by means of the functions sendto() and recvfrom().

5.6.2 The implementation of UNIX domain sockets
A socket is represented in the kernel by the data structure socket. Data contained in the
sockets is stored in skbuf structures. These are described in Chapter 8.

There is a range of socket-specific functions, such as socket 0 and setsockopt(). These
are all implemented via one system call, socketcali, which calls all the necessary functions
by reference to the first parameter. The file operations read(), write(), select(), ioctl(),
lseek(), close() and fasync() are called directly via the file descriptor's file operations.

All socket operations use protocol-specific functions included in the operation vector
proto_ops, which is contained in the socket structure. The semantics of operations for UNIX

domain sockets are briefly described below.

int sysk_socket(int family, int type, int protocol);

This sets up a socket descriptor. The function calls the protocol operation
unix_proto_create(), sets up the unix_socket structure which is identical with the sock
structure and creates the skbuf lists. This function may block. The status of the socket on
completion of this operation is SS_UNCONNECTED.

int sys_bind(int fd, struct sockaddr *umyaddr, int addrlen);
The address umyaddr is bound to the socket. The protocol operation naturally tests whether
the address belongs to the UNIX address family and attempts to

 Linux kernel internails - 155 -

set up the socket address file and open it for write access, bind is only successful if the
socket address file has not yet been bound by another program.

int sys_connect(int fd, struct sockaddr *uservaddr, int addrlen);

This operation attempts to bind the socket to the address uservaddr. This address must of
course be a UNIX address. An attempt is made to open the server's socket address file which,
for datagram sockets, is sufficient.
With stream sockets, the protocol operation unix_proto_connect() checks whether any
connections are being accepted at the server address. The socket switches to
SS_CONNECTING status, the server is woken up, and the process is blocked. If the process
continues but is not connected to the server, this indicates that either the process has been
sent a signal or the connection request has been refused by the server. If not, the
sock_connect() operation has been successful.

int sys_listen(int fd, int backlog);

With this operation the server informs the kernel that connections are being accepted from
now on. The socket flag SO_ACCEPTCON is now set, together with the parameter
max_ack_backLog which is set to the value of the argument.

int sys_accept(int id, struct sockaddr *upeer_sockaddr, int
*upeer_addrlen);

The process can only call this operation if the status of the socket is SS_CONNECTED and
listen() has first been called for this socket. The process blocks if there are no processes
which have called a connect 0 for the address of this socket.

int sys_getsockname(int fd, struct sockaddr *usockaddr, int
*usockaddr_len);

The protocol operation unix_proto_getname() is the basis of this function. The address
bound to the socket is returned.

Int sys_getpeername(int fd, struct sockaddr *usockaddr, int
*usockaddr_len);

This function can only be called if the status of the socket is SS_CONNECTED. The operation
is also based on the unix_proto_getname() protocol operation for the socket. However, a
parameter for this function specifies that the address of the bound socket (the peer) should
be returned.

 Linux kernel internails - 156 -

int sys_socketpair(int family, int type, int protocol, unsigned Long
usockvec[2]);

Two socket descriptors are generated and bound to each other - that is, the status of the new
sockets in usockvec[2] is SS_CONNECTED when the operation is
exited.

int sys_send(int fd, void * buff, int len, unsigned flags);
int sys_sendto(int fd, void * buff, int len, unsigned flags, struct sockaddr *addr,
int addr_len);
int sys_sendmsg(int fd, struct msghdr *msg, unsigned int flags);

These are the different socket operations for sending messages. They are all based on the
unix_sendmsg() protocol operation. The messages are divided across several skbuf
structures, if needed, and written into the receive list of the peer socket.

int sys_recv(int fd, void * buff, int len, unsigned flags);
int sys_recvfrom(int fd, void * ubuf, int size, unsigned flags, struct sockaddr
*addr, int *addr_len);
int sys_recvmsg(int fd, struct msghdr *msg, unsigned int flags);

These socket operations are realized via the unix_recvmsg() protocol operation. This
operation blocks if no data is present.

int sys_shutdown(int fd, int how)

This socket operation is realized via unix_shutdown0. The socket status is marked as to
whether sending and receiving is still allowed. A possibly present peer socket is marked
accordingly. The how parameter seems to have different values from the BSD model. Thus,
1 stands for blocking reception, 2 for blocking sending, and 3 for blocking both functions.

int sys_getsockopt(int fd, int level, int optname, char *optval,
int *optlen) int sys_setsockopt(int fd, int level, int optname, char *optval,
int option)

The corresponding protocol operations only allow access on the socket level and call
sock_getsock_opt() and sock_setsock_opt() which read or set the corresponding parameters
in the sock structure.
As it is intended that processes should be able to use sockets as they Would ordinary file
descriptors, the functions of nearly all file operations have

 Linux kernel internails - 157 -

to be supported. The only operations not to be implemented are mrnap(), open() and fsync().
The socket file operation sock_lseek() must be implemented to avoid the standard treatment
of the system call lseek(), as sockets do not allow positioning. The sock_readdir0 operation
sets the error value EBADF instead of ENOTDIR, but otherwise conforms. The remaining
operations, as used in the context of UNIX domain sockets, are briefly described below.

•int sock_read(struct inode *inode, struct file *file, char *ubuf, int
size);

This function calls the protocol operation unix_recvmsg().

int sock_wnte(struct inode *inode, struct file *file, char *ubuf, •int size);

This operation calls the protocol operation unix_sendmsg().

int sock_seLect(struct inode *inode, struct file *file, int sel_type,
select_table * wait);

This function calls the general select routine datagram_select(). With SEL_IN, it checks
whether data is present in the receive list, with SEL_OUT whether data is present in the
send list, and with SEL_EX whether the socket is in an error condition.

int sock_ioctl(struct inode *inode, struct file *file, unsigned int cmd,
unsigned Long arg);

The protocol operation ioctl() expects the command TIOCINQ or TIOCOUTQ. TIOCINQ
returns the number of bytes which can still be read from the socket, and TIOCOUTQ the
size of the buffer area to which data can still be written before a read or write operation
blocks the process.

void sock_c lose(struct inode *inode, struct file *file);

This operation first calls sock_fasync() so that the socket is deleted from the list for
asynchronous input-output of BSD. The operation then sets to SS_DISCONNECTING the status
of the socket at which the operation was called, the socket to which this socket may be
bound and the sockets wishing to bind to it. The protocol operation unix_release() is then
called for the socket. This allows no more operations on the send queue. The data
descriptor's data structure and the inode structure are also released.

 Linux kernel internails - 158 -

int sock_fasync(struct inode * inode, struct file *filp, int on);

This routine enters filp in the list for asynchronous input-output of the socket or deletes it
from it. Asynchronous input-output in the form implemented here derives from BSD and is
used to inform the process via the signal SIGIO that new data are waiting at the socket.
It should also be mentioned that the process can be prevented from blocking while
performing this operation by setting the file descriptor's 0_NONBLOCK flag. The file set
up by bind() can only be opened and closed.
The flag S_IFSOCK in the file's inode structure is set, marking the file as a special socket
address file. An Is -l for the socket address file in the example will produce the message:

% Is -I server srwxr-xr-x 1 kunitz mi89 0 Mar 7 00:09 server=

 Linux kernel internails - 159 -

6 The LINUX file system

"My dear Watson, coming by good information
is not difficult.
What is far more difficult is finding it again."
Conan Doyle, The Adventures of Sherlock Holmes

Basic principles 6.3 The Proc file system The representation of file
6.4 The Ext2 file system systems in the kernel

In the PC field, variety in file systems is common; practically every operating system has
its own file system, and each of these naturally claims to be 'faster, better and more secure'
than its predecessors.
The large number of file systems supported by LINUX is undoubtedly one of the main
reasons why LINUX has gained acceptance so quickly in its short history. Not every user
is in a position to put in the time and effort to convert his/her old data to a new file
system.
The range of file systems supported is made possible by the unified interface to the
LINUX kernel. This is the Virtual File System Switch (VFS), which will be referred to
below simply as the 'Virtual File System', although we are not dealing with a file system
so much as an interface providing a clearly defined link between the operating system
kernel and the different file systems (as illustrated in Figure 6.1).
The Virtual File System supplies the applications with the system calls for file
management (see Section A.2), maintains internal structures and passes tasks on to the
appropriate actual file system. Another important job of the VFS is performing standard
actions. As a rule, for instance, no file system implementation will actually provide an
lseek() function, as the functions of lseek() are provided by a standard action of the VFS.
We are therefore justified in calling VFS a file system.

 Linux kernel internails - 160 -

Figure 6.1 The layers in the file system.

In this chapter, we take a closer look at how VFS works and how it interacts with specific
file system implementations. As a simple example, the implementation of the Proc file
system will be considered. In addition, we examine the design and structure of the Ext2 file
system serving as the standard LINUX file system.

6.1 Basic principles

The importance of a good file management system is often underestimated. Where human
beings can use their memory or a notebook, a computer has to resort to other means.
A central demand made of a file system is the purposeful structuring of data. When
selecting a purposeful structure, however, two factors not to be neglected are the speed of
access to data and a facility for random access.
Random access is made possible by block-oriented devices, which are divided into a
specific number of equal-sized blocks. When using these, LINUX also has at its disposal the
buffer cache described in Section 4.3. Using the functions of the buffer cache, it is possible
to access any of the sequentially numbered blocks in a given device. The file system itself
must be capable of ensuring unique allocation of the data to the hardware blocks.
In UNIX, the data are stored in a hierarchical file system containing files
Of different types. These Comprise not Only regular files and directories but also

 Linux kernel internails - 161 -

device files, FIFOs (named pipes), symbolic links and sockets. These enable all the
resources of the system to be accessed via files.
From a programming point of view, files are simply data flows of unspecified content
containing no further structuring. The file system takes on the task of managing these 'data
flows' efficiently and allowing the representation of different file types (including pseudo-
files).
In UNIX, the information required for management is kept strictly apart from the data and
collected in a separate inode structure for each file. Figure 6.2 shows the arrangement of a
typical UNIX inode. The information contained includes access times, access rights and the
allocation of data to blocks on the physical media. As is shown in the figure, the inode
already contains a few block numbers to ensure efficient access to small files (which are
often encountered under UNIX). Access to larger files is provided via indirect blocks, which
also contain block numbers. Every file is represented by just one inode, which means that,
within a file system, each inode has a unique number and the file itself can also be accessed
using this number.
Directories allow the file system to be given a hierarchical structure. These are also
implemented as files, but the kernel assumes them to contain pairs consisting of a filename
and its inode number. There is no reason why a file cannot be accessed via a number of
names, which can even be held in

Figure 6.2 Structure of a UNIX inode.

 Linux kernel internails - 162 -

different directories (in the form of a hard link). In older versions of UNIX it was still
possible to modify directory files using a simple editor, but to ensure consistency this is no
longer permitted in recent versions. LINUX file systems will not even allow these to be read
with normal system calls.
The basic structure is the same for all the different UNIX file systems {see Figure 6.3). Each
file system starts with a boot block. This block is reserved for the code required to boot the
operating system (see Appendix D). As file systems should usually be able to exist on any
block-oriented device, and on each device, in principle, they will always have the same
structure (to ensure uniformity), the boot block will be present whether or not the computer
is booted from the device in question.
All the information which is essential for managing the file system is held in the superblock.
This is followed by a number of inode blocks containing the inode structures for the file
system. The remaining blocks for the device provide the space for the data. These data
blocks thus contain ordinary files along with the directory entries and the indirect blocks.
As file systems must be able to be implemented on different devices, the implementation of
the file system must also adapt to different device-level characteristics, such as block size,
and so on. At the same time, all operating systems aim for device independence, which will
make it immaterial what media the data have been stored on. In LINUX, this task is handled
by the respective file system implementation, enabling the Virtual File System to work with
device-independent structures.
In UNIX, the separate file systems are not accessed via device identifiers (such as drive
numbers), as is the case for other operating systems, but combined into a hierarchical
directory tree.
This arrangement is built up by the action of mounting the file system, which adds another
file system (of whatever type) to an existing directory tree. A new file system can be
mounted onto any directory. This original directory is then known as the mount point and is
covered up by the root directory of the new file system along with its subdirectories and
files. Unmounting the file system releases the hidden directory structure again.
A further aspect of major importance to the quality of a file system is data security. On the
one hand, this comprises facilities to maintain consistency and mechanisms ensuring data
protection. On the other hand, the file system should behave robustly in the event of system
faults, corruption of data or program crashes.

Figure 6.3 Schematic structure of a UNIX file system.

 Linux kernel internails - 163 -

6.2 The representation of file systems in the kernel

The representation of data on a floppy disk or hard disk may differ considerably from case
to case. In the end, however, the actual representation of data in LINUX'S memory works out
the same. Here, once again, LINUX sticks closely to its 'model', UNIX, because the
management structures for the file systems are very similar to the logical structure of a UNIX

file system.
These are the responsibility of the VFS, which calls the file-system-specific functions for
the various implementations to fill up the structures. These functions are provided by every
actual implementation and made known to the VFS via the function register_filesystem().

#ifdef CONFIG_MINIX_FS
register_filesystem(&(struct file_system_type)
{minix_read_super, "minix", 1, NULL});

#endif

By this means the VFS is given the name of the file system ('minix'), a function of the
implementation and a flag indicating whether a device is strictly necessary to mount the file
system from. The function passed, read_super0, forms the mount interface: it is only via this
function that further functions of the file system implementation will be made known to the
VFS.
The function sets up the file_system_type structure it has been passed in a singly linked list
whose beginning is pointed to by file_systems.

struct file_system_type {
struct super_block *(*read_super) (struct super_block *, void *, int);
char *name;
int requires_dev;
struct file_system_type *next;

} *fiLe_systems = NULL;

In older LINUX kernels (before version 1.1.8) the structures were still managed in a static
table, as all the file system implementations were known when the kernel was compiled.
With the introduction of modules it became desirable to load new file systems after the
LINUX system had started running.
Once a file system implementation has been registered with the VFS, file systems of this
type can be administered.

 Linux kernel internails - 164 -

6.2.1 Mounting
Before a file can be accessed, the file system containing the file must be mounted. This can
be done using either the system call mount or the function
inount_root().

The mount_root() function takes care of mounting the first file system (the root file
system). It is called by the system call setup (see page 378) after all the file system
implementations permanently included in the kernel have been registered. The setup call
itself is called just once,' immediately after the init process is created by the kernel function
init() (file init/main.c). This system call is necessary because access to kernel structures is
not allowed from user mode (which is the status of the init process).

Every mounted file system is represented by a super_block structure. These structures
are held in the static table super_blocks[] and limited in number to NR_SUPER.

The superblock is initialized by the function read_super() in the Virtual File System. It
interrogates floppy disks and CD-ROM for a change of media, tests whether the superblock
is already present and, if so, returns it. If it finds no superblock in existence it searches for a
new entry in the superblock table and calls the function to create a superblock which is
provided by every file system implementation. This file-system-specific function will have
been made known on registering the implementation with the VFS. When called, it will
contain:

• a superblock structure in which the elements s_dev and s_flags are filled in accordance
with Table 6.1,

• a character string (in this case void *) containing further mount options
for the file system, and

• a silent flag indicating whether unsuccessful mounting should be reported. This flag is
used only by the kernel function mount_root(), as this calls all the read_super0
functions present in the various file system implementations in turn when mounting
the root file system, and constant error messages during start-up would be disruptive.

The file-system-specific function read_super() reads its data if necessary from the
appropriate block device using the LINUX cache functions introduced in Section 4.3. This
also provides the reason why a process is required to mount file systems: the process can be
halted by the device driver (using the sleep/

1Nothing would be achieved by calling it a second time, as the system call setup returns an
error after it has been used once.

 Linux kernel internails - 165 -

Table 6.1 The file-system-independent mount flags in the superblock.
Macro Value Remarks
MSRDONLY 1 File system is read only
MSNOSUID 2 Ignores S bits
MSNODEV 4' Inhibits access to device files
MSNOEXEC 8 Inhibits execution of program
MSSYNCHR 16 Immediate write to disk
MSREMOU 32 Changes flags

wake-up mechanism; see Section 3.1.5), since it requires time to access the device. The
LINUX superblock is structured as follows:

struct super_block t
dev_t s_dev; /* device for file system */
unsigned Long s_blocksize; /* block size */
unsigned char s_blocksize_bits; /* Ld (block size) */
unsigned char s_Lock; /* superbLock lock */
unsigned char s_rd_onLy; /* not used (= 0) */
unsigned char s_dirt; /* superbLock changed */
struct file_system_type *s_type;/* file system type */
struct super_operations *s_op; /* superbLock operations */
unsigned Long s_fLags; /* fLags */
unsigned Long s_magic; /* fiLe system identifier */
unsigned Long s_time; /* time of change */
struct inode * s_covered; /* mount point */

 struct inode * s_mounted; /* root inode */
 struct wait_queue * s_wait; /* s_lock wait queue */
 union {

struct minix_sb_info minix_sb;
• • •

void *generic_sdp;
} u; /* file-system-specific information */ };

The superblock contains information on the entire file system, such as block size, access
rights and time of the last change. In addition, the union u at the end of the structure holds
special information on the relevant file systems. For file system modules mounted later,
there is a pointer generic_sdp.
The components s_Lock and s_wait ensure access to the superblock is synchronized. This
uses the functions Lock_super() and unLock_super(), which are defined in the file <linux/
Locks. h>.

 Linux kernel internails - 166 -

 extern inline void lock_super(struct super_block * sb) {

if (sb->s_lock)
_wa i t_on_super (sb) ;

sb->s_lock = 1;
}

extern inline void unIock_super(struct super_block * sb) {
sb->s_lock = 0;
wake_up(8sb->s_wait) ;

}

The superblock also holds references to the file system's root inode s_mounted and the
mount point s_covered.
Another task performed by the read_super() function in the actual file system
implementation involves making the file system's root inode available and entering it in the
superblock. This can be carried out using the functions of the VFS, such as the iget()
function, which will be described later, provided the components s_dev and s_op are set
correctly.

6.2.2 Superblock operations
The superblock structure provides, in the function vector s_op, functions for accessing the
file system, and these form the basis for further work on the file system.

struct super_operations {
void (*read_inode) (struct inode *); . int (*notify_change) (struct inode
*, struct iattr *);
void (*write_inode) (struct inode *);
void (*put_inode) (struct inode *);
void (*put_super) (struct super_block *);
void (*write_super) (struct super_block *);
void (*statfs) (struct super_block *, struct statfs *);

int (*remount_fs) (struct super_block *, int *, char *);
};

The functions in the super_operations structure serve to read and write an individual inode,
to write the superblock and to read file system information. This means that the superblock
operations contain functions to transfer the specific representation of the superblock and
inode on the data media to their general form in memory and vice versa. As a result, this
layer completely hides the actual representations. Strictly speaking, the inodes and the
superblock do

 Linux kernel internails - 167 -

not even have to exist. An example of this is the MS-DOS file system, in which the FAT
and the information in the boot block are transferred to the UNIX-internal view consisting of
the superblock and inodes. If a superblock operation is not implemented - that is, if the
pointer to the operation is NULL -no further action will take place.

• write_super(sb)
The write_super(sb) function is used to save the information of the superblock. This
need not necessarily guarantee the consistency of the file system.2 If the current file
system supports a flag indicating inconsistency {valid flag), this should be set. In
normal cases the function will cause the cache to write back the buffer for the
superblock: this is ensured by setting the buffer's b_dirt flag. The function is used in
synchronizing the device and is ignored by read-only file systems such as Isofs.

• put_super(sb)
The Virtual File System calls this function when unmounting file systems, when it
should also release the superblock and other information buffers (see brelse() in
Section 4.3) and/or restore the consistency of the file system, leaving the valid flag
correctly set. In addition, the s_dev entry in the superblock structure must be set to 0 to
ensure that the superblock is once again available after unmounting.

• statfs(sb, statfsbuf)
The two system calls statfs and fstatfs (see page 364) call the superblock operation which
in fact does no more than fill in the staffs structure. This structure provides information
on the file system, the number of free blocks and the preferred block size. Note that the
structure is located in the user address space. If the operation fails, the VFS ' returns the
error ENOSYS.

• remount_fs(sb, flags, options)
The remount_fs() function changes the status of a file system (see Table 6.1). This
generally only involves entering the new attributes for the file system in the superblock
and restoring the consistency of the file system.

• read_inode(inode)
This function is responsible for filling in the inode structure it has been passed, in a
similar way to read_super(). It is called by the function _iget(), which will already have
given the entries i_dev, i_ino, i_sb and i_flags their contents. The main purpose of the
read_inode0 function is to mark the different file types by entering inode operations in
the inode according to the file type. Almost every read_inode function

2 The data and inode blocks need not be written back, nor the lists and bitmaps for the free
blocks, which means that the file system may not be consistent.

 Linux kernel internails - 168 -

(the example is taken from the Ext2 file system) will therefore contain the following
lines:

if (S_ISREG(inode->i_mode))
1node->i_op = 8ext2_file_inode_operations;

else if (S_ISDIR<inode->i_mode))
inode->i_op = 8ext2_dir_inode_operations;

else if (S_ISLNK(inode->i_mode))
1node->i_op = 8ext2_symLink_inode_operat1ons;

else if (S_ISCHR(inode->i_mode))
inode->i_op = 8chrdev_inode_operations;

else if (S_ISBLK(inode->i_mode))
inode->i_op = 8bLkdev_inode_operations;

else if (S_ISFIFO(inode->i_mode))
init_fifo(inode);

• notify_change(inode, attr)
The changes made to the inode via system calls are acknowledged by notify_change().
This operation is missing from a number of file system implementations, but is of
interest for the NFS, for example, as this file system has, so to speak, a local and an
external inode. All inode changes are carried out on the local inode structure only, which
means that the computer exporting the file system needs to be informed. This is done
using the structure iattr:

struct iattr {
unsigned int ia_valid; /* flags for changed components */
 umode_t ia_mode; /* new access rights */
uid_t ia_uid; /* new user */ gid_t ia_gid; /*
new group */ off_t ia_size; /* new size */
time_t ia_atime; /* time of Last access */ time_t ia_mtime; /*
time of last modification */ time_t ia_ctime; /*
time of creation

};
The functions calling notify_change and the flags passed in the component i a_valid are
listed in Table 6.2.

• write_inode(inode)
This function saves the inode structure, analogous to write_super().
• put_i node(inode)

This function is called by iput() if the inode is no longer required. Its main task is to
delete the file physically and release its blocks if i_nl1nk is zero.

 Linux kernel internails - 169 -

Table 6.2 The flags for not fy_change.

6.2.3 The mode
When a file system is mounted, the superblock is generated and the root inode for the file
system is entered in the component i_mount at the appropriate mount point, that is, in its
inode structure. The definition of the inode structure is as follows:

struct Inode {
dev_t i_dev; /* file device number */
unsigned long i_ino; /* inode number */
umode_t i_mode; /* file type and access rights */
nlink_t i_nlink; /* number of hard Links */
uid_t i_uid; /* owner */
gid_t i_gid; /* owner */
 dev_t i_rdev; /* device, if device file */
 off_t i_size; /* size */
time_t i_atime; /* time of last access */
 time_t i_mtime; /* time of last modification */
time_t i_ctime; /* time of creation */
unsigned long i_blksize; /* block size */
unsigned long i_blocks; /* number of blocks */
unsigned long i_version; /* DCache version management */
struct semaphore i_sem; /* access control */
struct inode_operations * 1_0p; /* inode operations */
struct super_block * i_sb; /* superbLock */

 Linux kernel internails - 170 -

struct wait_queue * i_wait; /* wait queue */
struct file_lock * i_flock; /* file locks */
struct vm_area_struct * i_mmap; /* memory areas */
struct inode * i_next, * i_prev; /* inode linking . */
struct inode * i_hash_next, * 1_hash_prev;
struct inode * i_bound_to, * i_bound_by;
struct inode * i_mount; /* mounted inode */
struct socket * i_socket; /* socket management */
unsigned short i_count; /* reference counter */
unsigned short i_wcount; f* number authorized to write */
 unsigned short i_flags; /* flags (= i_sb->s_flags) */
unsigned char i_lock; /* lock */
 unsigned char i_dirt; /* inode has been modified */
 unsigned char i_pipe; /* inode represents pipe */
 unsigned char i_sock; /* inode represents socket */
unsigned char i_seek; /* not used */
unsigned char i_update; /* inode is current */
union {

struct pipe_inode_info pipe_i;
struct minix_inode_info minix_i;

• • •
void *generic_ip;

} u; /* file-system-specific information */ };

In the first section, this holds information on the file. The remainder contains
management information and the file-system-dependent union u.

In memory, the inodes are managed in two ways. First, they are managed in a
doubly linked circular list starting with first_i node, which is accessed via the entries
i_next and i_prev. The complete list of inodes is scanned through in the following way:

struct inode * inode, * next;

next = first_inode;
for(i = nr_inodes ; i > 0 ; i--) {

inode = next;
next = inode->i_pext;

}

This approach is not particularly efficient, as the complete list of modes also includes the
'free', unused inodes, for which the components i_count, i_dirt and i_lock should all be
zero. The unused inodes are generated via the

 Linux kernel internails - 171 -

grow_inodes() function, which is called every time that less than a quarter of all the inodes
are free but not more than NR_INODE are in existence. The number of unused inodes and the
count of all available inodes are held in the static variables nr_free and nr_inode
respectively.
For fast access, inodes are also stored in an open hash table hash_table[], where collisions
are dealt with via a doubly linked list using the components i_hash_next and i_hash_prev.
Access to any of the NR_IHASH entries is made through the device and inode numbers.
The functions for working with inodes are iget(), namei() and iputO.

inline struct inode *iget(struct super_block *sb, int nr) {
return _iget(sb, nr, 1);

}

struct inode *_iget(struct super_block * sb, int nr, int crossmntp);

void iput(struct inode * inode);
The igetO function supplies the inode specified by the superblock sb and the inode number
nr. In its turn it calls the _iget() function, which is instructed via a further parameter,
crossmntp, to resolve mount points as well - that is, if the requested inode is a mount point it
supplies the corresponding root inode for the mounted file system.

If the required inode is included in the hash table, the i_count reference counter is
simply incremented. If it is not found, a 'free' inode is selected (get_empty_inode()) and the
implementation of the relevant file system calls the superblock operation read_inode() to
fill it with information. The resulting inode is then added to the hash table.

An inode obtained using iget() has to be released using the function iputO. This
decrements the reference counter by 1 and marks the inode structure as 'free' if the former is
0.

Other functions to supply inodes are:

int namei(const char * pathname, struct inode ** res_inode);
int lnamei(const char * pathname, struct inode ** res_inode);
The filename pathname that has been passed is resolved and the address of the mode
structure is stored in res_inode. The lnamei() function differs from namei() in that lnamei()
does not resolve a symbolic link and will continue to supply the inode for the symbolic link.
Both functions call _namei(). Additional parameters passed to this function are the inode of
the base directory for the resolving procedures and a flag indicating whether symbolic links
are to be resolved using follow_link.

 Linux kernel internails - 172 -

The actual functioning of_namei() derives from dir_namei(). This function supplies the
inode for the directory that contains the file with the name specified. All functions return an
error code smaller than 0 if they are not successful.

6.2.4 Inode operations
The inode structure also has its own operations, which are held in the inode_operations
structure and mainly provide for file management. These functions are usually called
directly from the implementations of the appropriate system calls. Note that in all cases the
functions must use iputO to release the inodes that have been passed to them, since the
inode reference counter is incremented by 1 before the functions are called, to indicate that
they are in use. If an inode operation fails, the calling function performs default actions;
however, this often comprises the mere generation of an error.

struct inode_operations {
struct file_operations * defauLt_file_ops;

int (*create) (struct inode *,const char *,int,int,
struct inode **);

int (*lookup) (struct inode *,const char *,int,
struct inode **);

int (*Link) (struct inode *,struct inode *,const char *,int);
int (*unLink) (struct inode *,const char *,int);
int (*symLink) (struct inode *,const char *,int,const char *);
int (*mkdir) (struct inode *,const char *,int,int);
int (*rmdir) (struct inode *,const char *,int);
int (*mknod) (struct inode *,const char *,int,int,int);
int (*rename) (struct inode *,const char *,int,struct inode *,
const char *,int);

int (*readlink) (struct inode *,char *,int);
int (*follow_link) (struct inode *,struct inode *,int,int, struct inode **);
int (*bmap) (struct inode *,int);
void (•truncate) (struct inode *);
int (•"permission) (struct inode *, int);
int (*smap) (struct inode *, int);
};

• create(dir, name, len, mode, res_inode)
This function is called from within the VFS function open_namei(). It performs a
number of tasks. First, it extracts a free inode from the complete list of inodes with the
aid of the get_empty_inode()) function.

 Linux kernel internails - 173 -

The inode structure now needs to be filled with file-system-specific data, for which, for
example, a free inode on the media is sought out. After this, createO enters the filename
name of length ten in the directory specified by the inode dir. If createO is not present in
a file system implementation, the VFS returns the error EACCESS.

• Lookup(dir, name, Len, res_inode)
This function is supplied with a filename and its length and returns the inode for the file
in the argument res_inode. This is carried out by scanning the directory specified by the
inode dir. The Lookup() function must be defined for directories, otherwise the VFS will
return the error ENOTDIR.
The calling VFS function LookupO performs a special procedure for the name '..'. If the
process is already in its root directory, the root inode is returned. However, if the root
inode for a mounted file system is overstepped by '..', the VFS function uses the 'hidden'
inode to call the inode operation.

• Link(oldinode, dir, name, Len)
This function sets up a hard link. The file oldinode will be linked under the stated name
and the associated length in the directory specified by the inode dir. Before Link() is
called, a check is made that the inodes dir and oldinode are on the same device and that
the current process is authorized to write to dir. If this function is missing, the calling
function in the VFS returns the error EPERH.

• unLink(dir, name, Len)
This function deletes the specified file in the directory specified by the inode dir. The
calling function first confirms that this operation possesses the relevant permissions. If
un LinkO is not implemented, the VFS returns the error EPERM.

• symLink(dir, name, Len, symname)
This function sets up the symbolic link name in the directory dir, with Len giving the
length of the name name. The symbolic link points to the path symname. Before this
function is called by the VFS, the access permissions will have been checked by a call to
permission(). If symLink() is not present in a specific implementation, the VFS returns
the error EPERM.

• •kdir(dir, name, Len, mode)
This function sets up a subdirectory with the name name and the access rights mode in
the directory dir. The mkdir() function first has to check whether further subdirectories
are permitted in the directory, then allocate a free inode on the data media and a free
block, to which the directory is then written together with its default entries '.' and '..'.
The access rights will already have been checked in the calling VFS function. If the
mkdirO function is not implemented, the error EPERM is returned.

 Linux kernel internails - 174 -

• rmdir(dir, name, Len)
This function deletes the subdirectory name from the directory dir. The function first
checks that the directory to be deleted is empty and whether it is currently being used
by a process, as well as whether the process is the owner of the subdirectory if the
sticky bit is set in the directory dir. As with the functions already described, the access
rights are checked beforehand by a VFS function. If rmdir() is not available, the VFS
returns the error EPERM.

• •knod(dir, name, Len, mode, rdev)
This function sets up a new inode in the mode mode. This inode will be given the
name name in the directory dir. If the inode is a device file (in which case either
s_ISBLK(mode) or S_ISCHR(mode) applies), the parameter rdev gives the number of
the device. If this function is not implemented, the error EPERM is returned.

• rename(odir, oname, oLen, ndir, nnane, nlen)
This function changes the name of a file. This involves removing the old name oname
from the odir directory and entering the new name nname in ndir. The calling function
checks the relevant access permissions in the . directories beforehand, and a further check
is made to ensure that the directories '.' and '..' do not appear as the source or destination
of an operation. If the function is missing, an EPERM error is generated by the VFS.

• : readLink(Inode, but, size)
This function reads symbolic links and should copy into the buffer in the user address
space the pathname for the file to which the link points. If the buffer is too small, the
pathname should simply be truncated. If the inode is not a symbolic link, EINVAL
should be returned. This function is called directly from sys_read LinkO once the write
access . permission to the buffer buf has been checked and the inode has been found
using Lnamei(). If the implementation does not exist, the system call returns the error
EINVAL.

 • foLLow_Link(dir, inode, fLag, mode, res_inode) •
This function is used to resolve symbolic links. For the inode assigned to a symbolic
link, this function returns the inode to which the link points in the argument res_inode.
To avoid endless loops,3 the maximum number of links to be resolved is set at 5 in
LINUX. In the implementations, this count is 'hard-wired', and any implementations
written should follow this example.
If follow_link() is missing, the calling function of the same name in the VFS simply
returns inode, as if the link were pointing to itself. This behaviour means that the VFS
function can always be called

3 A symbolic link can, after all, point to another symbolic link.

 Linux kernel internails - 175 -

without testing whether the current inode describes a file or a symbolic
link.

• bmap(inode, block)
This function is called to enable memory mapping of files. In the argument block it
is given the number of a logical data block in the file. This number must be
converted by bmap() into the logical number of the block on the media. To do this,
bmap() searches for the block in the actual implementation of the specified inode
and returns its number. This may in some cases involve reading other blocks from
the media. A return value of 0 signifies an error and is returned by the Virtual File
System's calling function bmapO if a file-system-specific bmap function is not
defined.
This function is used by generic_mmap() to map a block from the file to an address
in the user address space. If it cannot be found, executable files must first be
loaded into memory completely, as the more efficient demand paging is not then
available.

• truncate(inode)
This function is mainly intended to shorten a file, but can also lengthen a file to
any length if this is supported by the specific implementation. The only parameter
required by truncate() is the inode of the file to be amended, with the i_size field
set to the new length before the function is called. The truncate() function is used
at a number of places in the kernel, both by the system call sys_truncate() and
when a file is opened. It will also release the blocks no longer required by a file.
Thus, the truncate() function can be used to delete a file physically if the inode on
the media is cleared afterwards. Although the functioning of this function is very
simple to describe, it can be very complicated to implement, as problems can arise
with synchronization. If this function is not implemented, no error message is
generated. In this case, as the i_size component has been set beforehand, the length
of the file will only appear to have changed.

• pernission(inode, flag)
This function checks the inode to confirm the access rights to the file given by the
mask. The possible values for the mask are HAY_READ, MAY_WRITE and
MAY_EXEC. If the function is not available, the calling function in the Virtual File
System checks the standard UNIX permissions, which means that implementation is
actually unnecessary, unless additional access mechanisms are to be implemented.

• smap(inode, sector)
This function is intended principally to allow swap files to be created on a
UMSDOS file system. Like bmap(), this inode operation supplies the logical sector
number (not block or cluster) on the media for the sector of the file specified. This
means that the operation is only of interest for

 Linux kernel internails - 176 -

the UMSDOS file system implementation, but is already provided by the MS-DOS
file system in the form of the msdos_smap() function, where it is, however, only used
internally. In the memory management function rw_swap_pagc(), the smap() function
is required to prepare to work with a swap file if bmapO is not available.

6.2.5 The file structure
In a multi-tasking system the problem often arises that a number of processes wish to access
a file at the same time, both to read and to write. Even a single process may be reading and
writing at different points in the file. To avoid synchronization problems and allow shared
access to files by different processes, UNIX has simply introduced an extra structure.

This relatively simple structure, file, contains information on a specific file's access
rights f_mode, the current file position f_pos, the type of access f_flags and the number of
accesses f_count.

struct file {
mode_t f_mode; /* access type */
loff_t f_pos; /* file position */
unsigned short f_flags; /* openO -flags */
unsigned short f_count; /* reference counter */
off_t f_reada; /* read ahead flag */
struct file *f_next,*f_prev;/* Links */
f_owner; /* PID or -PGRP for SIGIO */
struct inode *f_inode; /* related inode */
struct file_operations * f_op; /* file operations */
unsigned long f_version; /* Dcache version management */ void
private_data; / needed for tty driver */ };

The file structures are managed in a doubly linked circular list via the pointers f_next and
f_prev. This file table can be accessed via the pointer first_file.

6.2.6 File operations
The file_operations structure is the general interface for work on files, and contains the
functions to open, close, read and write files. The reason why these functions are not held in
inode_ope rat ions but in a separate structure is that they need to make changes to the file
structure.

The inode's inode_operations structure also includes the component default_file_ops,
in which the standard file operations are already specified.

 Linux kernel internails - 177 -

struct file_operations {
int (*Lseek) (struct inode *, struct file *, off_t, int);

int (*read) (struct inode *, struct file *, char *, int);
int (*wnte) (struct inode *, struct file *, char *, int);
int (*readdir) (struct inode *, struct file *, struct dirent *, int);
int (*select) (struct inode *, struct file *, int, select_table *);
int (*ioctl) (struct inode *, struct file *, unsigned int, unsigned long);
int (*mmap) (struct inode *, struct file *, struct vm_area_struct *);
int (*open) (struct inode *, struct file *);
void (*release) (struct inode *, struct file *);
int (*fsync) (struct inode *, struct file *);

int (*fasync) (struct inode *, struct file *, int);
int (*check_media_change) (dev_t);
int (*revalidate) (dev_t);
};

These functions are also useful for sockets and device drivers, as they contain the actual
functions for sockets and devices. The inode operations, on the other hand, only use the
representation of the socket or device in the related file system or its copy in memory.

• lseek(inode, filp, offset, origin)
The job of the lseek function is to deal with positioning within the file. If this function
is not implemented, the default action simply converts the file position f_pos for the file
structure if the positioning is to be carried out from the start or from the current
position. If the file is represented by an inode, the default function can also be
positioned from the end of the file. If the function is missing, the file position in the file
structure is updated by the VFS.

• read(inode, filp, buf, count)
This function copies count bytes from the file into the buffer but in the user address
space. Before calling the function, the Virtual File System first confirms that the entire
buffer is located in the user address space and can be written to, and also that the file
pointer is valid and the file has been opened to read. If no read function is
implemented, the error EINVAL is returned.

• write(inode, filp, buf, count)
The write function operates in an analogous manner to readcsn and copies data from
the user address space to the file.

 Linux kernel internails - 178 -

« r«addir(inode, flip, dirent, count)
This function returns the next directory entry in the dirent structure or an ENOTDIR or
EBADF error. If this function is not implemented, the Virtual File System returns
ENOTDIR.

• select(inode, filp, type, wait)
This function checks whether data can be read from a file or written to one. An
additional test for exception conditions can also be made. This function only serves a
useful purpose for device drivers and sockets. The main task of the function is taken
care of by the Virtual File System;
thus, when interrogating files the VFS always returns the value 1 if it is a normal file,
otherwise 0. Further consideration will be given to the select function in Section 7.4.6.

• loctl(inode, filp, cmd, arg)
Strictly speaking, the ioctl() function sets device-specific parameters. However, before
the Virtual File System calls the ioctl operation, it tests the following default
arguments:

FIONCLEX Clears the close-on-exec bit. FIOCLEX Sets the
close-on-exec bit.
FIONBIO If the additional argument arg refers to a value not equal to zero, the

O_NONBLOCK flag is set; otherwise it is cleared.
FIOASYNC Sets or clears the O_SYNC flag as for FIONBIO. This flag is not at

present evaluated.
If cmd is not among these values, a check is performed on whether filp refers to a normal
file. If so, the function file_ioctl() is called and the system call terminates. For other files,
the VFS tests for the presence of an iocli function. If there is none, the EINVAL error is
returned, otherwise the file-specific ioctL function is called. The following commands are
available to the file_ioctl() function:
 FIBMAP Expects in the argument arg a pointer to a block number and returns the

logical number of this block in the file on the device if the inode relating to
the file has a bmap function. This logical number is written back to the
address arg. Absence of the inode operations or bmap() generates an
EBADF or EINVAL error respectively.

FIGETBSZ Returns the block size of the file system in which the file is located. It
is written to the address arg if a superblock is assigned to the file.
Otherwise, an EBADF error is generated.

FIONREAD Writes the number of bytes within the file not yet read to the address
arg.

 Linux kernel internails - 179 -

As all of these commands write to the user address area, permission for this is always
obtained via the function verify_area(), and an access error may be returned. If the
command cmd is not among the values described, file_ioctl(), too, calls an existing file-
specific iocti function; otherwise the EINVAL error is returned.

• map(inode, flip, vm_area)
This function maps part of a file to the user address space of the current process. The
structure vm_area specified describes all the characteristics of the memory area to be
mapped: the components vm_start and vm_end give the start and end addresses of the
memory area to which the file is to be mapped and vm_offset the position in the file
from which mapping is to be carried out. For a more comprehensive description of the
mmap mechanism see Section 4.2.2.

• open(inode, flip)
This function only serves a useful purpose for device drivers, as the standard function in
the Virtual File System will already have taken care of all the necessary actions on
regular files, such as allocating the file structure.

• release(inode, flip)
This function is called when the file structure is released, that is, when its reference
counter f_count is zero. This function is primarily intended for device drivers, and its
absence will be ignored by the Virtual File System. Updating of the inode is also taken
care of automatically by the Virtual File System.

• fsync(inode, flip)
The fsync() function ensures that all buffers for the file have been updated and written
back to the device, which means that the function is only relevant for file systems. If a
file system has not implemented an fsyncO function, EINVAL is returned.

• fasync(inode, flip, on)
This function is called by the VFS when a process uses the system call fcnti to log on or
off for asynchronous messaging by sending a SIGIO signal. The messaging will take
place when data are received and the on flag is set. If on is not set, the process
unregisters the file structure from asynchronous messaging. Absence of this function is
ignored by the VFS. At present, only terminal drivers and socket handling implement a
fasync() function.

• check_media_change(dev)
This function is only relevant to block devices supporting changeable media. It tests
whether there has been a change of media since the last operation on it. If so, the
function will return a 1, otherwise a zero. The check_media_change() function is called
by the VFS function check_disk_change(); if a change of media has taken place, it calls

 Linux kernel internails - 180 -

put_super() to remove any superblock belonging to the device, discards all the buffers
belonging to the device dev which are still in the buffer cache, along with all the inodes on
this device, and then calls revalidate(). As check_disk_change() requires a considerable
amount of time, it is only called when mounting a device. Its return values are

the same as for check_media_change0. If it is not available, zero (that is,
no change) is always returned.

• revalidate(dev)
This function is called by the VFS after a media change has been recognized, to restore
the consistency of a block device. It should establish and record all the necessary
parameters of the media, such as the number of blocks, number of tracks and so on. If
this function is missing, the VFS takes no further action.

6.2.7 Opening a file
One of the most important operations when accessing data is opening a file with the system
call open. For this, the system not only has to make the appropriate preparations to ensure
access to data without problems, but also has to check the authorizations for the process.
This is also where the actual switching function of the Virtual File System is implemented,
passing data between the specific file system implementations and the various devices.

Once it has been confirmed that the calling process is entitled to open files in the first
place, a new file structure is requested via the function get_empty_filp() and entered in the
file descriptor table for the process. In this structure, appropriate contents are entered in the
fields f_fLags and f_mode, and the open_namei() function is called to obtain the inode for
the file to be opened.

Before this function is called, the open() flags are modified, leaving the two lowest
bits holding the access permissions - bit 0 for read and bit 1 for write operations. The
advantage of representing access to the file in this way is clear: it allows the access
authorizations to be checked using a simple bit test.

The open_namei0 function calls the function dir_namei() (mentioned earlier) and
resolves the filename except for the base name of the file, obtaining the mode for the
directory in which the file is located. The open_namei() function then performs a number
of tests.

• If a filename ends in a slash (/), the dir_namei() function has already supplied the inode
for the directory to be opened. If the process does not wish to write, the inode for the
directory will be returned after the access authorization test.

• If the O_CREAT flag is set, open_namei() not only calls the VFS function lookup() to
obtain the inode for the file, but in the event of an error

 Linux kernel internails - 181 -

indicating that the file does not exist, it will generate the file by calling the inode operation
create(), provided the directory has the appropriate access permissions. The O_EXCL flag is
also evaluated at this point.
Once the inode has been obtained using lookup(), symbolic links are resolved by calling the
follow_link() function. As both lookup() and follow_link() make use of the iget() function
and therefore also of the read_inode() function, the type of file (normal file, device file and
so on) is known from this point onwards. Thus, the inode operations contain the file
operations specific to the file type in the defauLt_file_ops component.
If the file is a directory and if the process is seeking write permission, open_namei0 returns
the error EISDIR.
The access rights of the inode are now checked. This uses the function permission(), which
completes its task by reference to those flags shown in Table 6.3 which have been changed.
If the file system implementation defines an inode operation permissionO, it is used instead
at this point.
If access to devices has been prohibited by the mount option MS_NODEV and if the file is
a device file, the error EACCES is returned.
If the file is not a device file and if the process is attempting to gain write access to a read-
only file system, the attempt is aborted with the EROFS error.
If the process is requesting write permission for an 'append only' file for which the open()
flag 0_APPEND is not set, open_namei() terminates with an EPERH error.
If the 0_TRUNC flag is set, open_namei () calls the function get_write_access() to check
that the file has not been mapped with VM_DENYWRITE set. If this returns successfully, the
notify_change0 function is called to propagate the change in size. Then open_namei0

Table 6.3 Conversion of the openO flags
Open() flag

Value

Bits 1 and 0
open namei

Permissions
required

 00 (symbolic links)
0_RDONL
Y

0 01 Read
0 WRONL 1 10 Write
0_RDWR 2 11 Read and write
0_CREAT 64 I* Write
0 TRUNC 512 I* Write

 Linux kernel internails - 182 -

sets the i_size component of the inode to zero and calls the inode Operation truncate()
and the function put_write_access().
The get_write_access0 function is used to announce a write access to a file represented
by its inode. If the inode is used a number of times, a check is made for each process to
confirm that the file has not been mapped with VM_DENYWRITE set. Also, the inode
component i_wcount is incremented. The complementary function put_write_access0
simply decrements the value of i_wcount. This makes it a simple matter to test whether
processes are currently writing to a file which is about to be executed.

If the file survives all of this, open_namei0 enters the inode for the newly opened file in
res_inode and returns zero to do_open0.

This function calls get_write_access0 to request write permission for the file where
necessary (if bit 1 is set). In addition, it fills the file structure with default values, so that the
current file position is set to 0 and the file operations to the default file operations f_inode-
>i_op->defauLt_fiLe_ops for the inode. The operation openO is then called if it is defined.

This operation takes care of the actions specific to the file type. If the file that has been
opened is a file for a character-oriented device, the function chrdev_open() is called at this
point, which in its turn modifies the file operations according to the major number of the
device.

int chrdev_open(struct mode * inode, struct file * filp) {
int i;

i = MAJOR(inode->i_rdev);
if (i >= MAX_CHRDEV || !chrdevs[i];fops)

return -ENODEV;
filp->f_op = chrdevs[i].fops;
if (filp->f_op->open)

return filp->f_op->open(inode,filp);
return 0;

}

The file operations for the device drivers are held in the chrdevs[] table, where they were
entered by the function register_chrdev0 (see Chapter 7) when the driver was initialized.
The device driver's openO function is certain to add further file operations according to the
minor number of the device. This is described in the next chapter.

If no error is returned by any of these open functions, the file has been successfully
opened, and the file descriptor, is returned to the process by the functions do open() or
sys_open().

 Linux kernel internails - 183 -

6.2.8 The directory cache
The directory cache originates in the Ext2 file system. Since LINUX version 1.1.37 it has
been part of the VFS and can be used by all file system implementations. This cache
maintains directory entries which help to speed up access when reading directories, which is
necessary when opening files. The entries in the cache have the following structure:

struct dir_cache_entry {
struct hash_list h; /* hash list management */
 unsigned Long dev; /* device number */
unsigned long dir; /* directory mode number */
 unsigned long version; /* directory version */
unsigned long ino; /* inode number of file */
unsigned char name_Len; /* length of directory entry */
char name[DCACHE_NAME_LEN]; /* directory entry *I
 struct dir_cache_entry ** lru_head; /* ptr to head of list */
struct dir_cache_entry * next_lru,

* prev_lru; /* links in list */
};

Only directory entries up to a length of DCACHE_NAME_LEN (that is, 15) are held in the
cache. This is not a severe limitation, however, as the most frequently used files and
directories will have short names.
The directory cache is a two-level cache, with both levels operating according to the LRU
(Least Recently Used) algorithm. Each of the levels consists of a doubly linked circular list,
which always contains DCACHE_SIZE entries. The pointers LeveL1_head and level2_head
point to the oldest element in each list, which will be the next to be overwritten. The
component lru_head in the structure is also a pointer to this, enabling every cache entry to
'know' which level of the cache it is in.
For rapid location of an entry already in the cache, use is made, as regularly occurs in the
LINUX kernel, of an open hash list. The hash key is formed from the device number dev, the
inode number dir of the directory and a hash function of the name.
To access the directory cache, two functions are exported. The function

void dcache_add(struct Inode * dir, const char * name, int len,
unsigned long ino);

enters the directory entry name of length len, located in the directory with the inode dir, in
the cache. The number Ino is the inode number of the directory entry.

 Linux kernel internails - 184 -

If the entry being made is already in the cache, it is revised to make it the youngest in its
list, and the function then terminates. A new entry, however, is always inserted in level 1.
This involves the oldest element, pointed to by the pointer level1_head, being first removed
from the hash table and then overwritten with the data for the new directory entry. The
pointer level1_head is moved on by one entry, so that the newly inserted entry becomes the
youngest. Finally, the new entry is added to the hash table.
The function

Int dcache_lookup(struct mode * dir, const char * name, int Len,
unsigned long ino);

is used to interrogate the cache. If the entry name cannot be found, the function returns zero.
If the entry is found in the cache, it is promoted to level 2, where it is entered (or updated, if
it was already there). The inode number of the directory entry found is returned in the
argument i no, and the function itself returns a 1.
Special importance is attached to the component i_version in the inode structure. This
component is compared with the version component in the cache entry, and only if the two
match is the cache entry still valid. Every file system implementation must give due
attention to the fact that this version is incremented each time the inode of a directory is
modified; otherwise it could happen that this function supplies a directory entry which is no
longer in the cache. Fortunately, however, this version can be simply updated by the line:

dir->i_version = ++event;
The variable event is defined in <linux/sched.h> as an unsigned long. This range of values
is wide enough to exclude any risk of overlap.

The directory cache thus serves to speed up the lookup function specific to a file
system, although it is at present used only by the Ext2 and ISO 9660 file systems. Finally, it
should be mentioned that the directory cache is particularly effective in speeding up file
access in systems with relatively little memory. On systems with larger memory, this is used
for caching block devices anyway, and therefore also maintains directories in memory.

6.3 The Proc file system

As an example of how the Virtual File System interacts with a file system implementation,
we now take a closer look at the Proc file system. The Proc file system in this form is
peculiar to LINUX. It provides, in a portable way, information on the current status of the
LINUX kernel and running processes.

 Linux kernel internails - 185 -

In its general concepts, it resembles the process file system of System V Release 4 and, in
some of its approaches, the experimental system Plan 9.4 Each process in the system which
is currently running is assigned a directory /proc/pid, where pid is the process identification
number of the relevant process. This directory contains files holding information on certain
characteristics of the process. A detailed breakdown of these files and their contents is given
in
Appendix C.
Let us now take a look at how this file system is implemented. As in so many other places
in this book, we will have to manage without reproducing the algorithms in full and restrict
ourselves instead to brief explanations of the most important fragments of the program. A
full implementation can be found
in the directory fs/proc.
When the Proc file system is mounted, the VFS function read_super() is called by
do_mount(), and in turn calls the function proc_read_super() for the Proc file system in the
file_systems list.

struct super_bLock *proc_read_super(struct super_block *s, void *data,
int silent)

{
lock_super(s);

s->s_blocksize = 1024;
s->s_bLocksize_bits = 10;
s->s_magic = PROC_SUPER_MAGIC;
s->s_op = 8proc_sops;
unlock_super(s);
if (!(s->s_mounted = iget(s,PROC_ROOT_INO))) { s->s_dev = 0;
printk("get root inode fai Led\n");
 return NULL;

}
parse_options(data, &s->s_mounted->i_uid, &s-
>s_Jiiounted->i_gid);

return s;
}

Among other things, this initializes the superblock operations ($_op) with the special
structure proc_sops: ,

static struct super_operations proc_sops = { proc_read_i
node, NULL,

4 Plan 9 has been developed by such notable names as Rob Pike and Ken Thompson at
AT&T's Bell Labs, and provides a perspective on what the developers of UNIX are currently
doing. A good survey of Plan 9 is given in Pike et al. (1991).

 Linux kernel internails - 186 -

proc_write_inode, proc_put_i node,
proc_put_super, NULL,

proc_statfs, NULL };

The following call to iget() then uses this structure to generate the inode for the Proc root
directory, which is entered in the superblock. The parse_options() function then processes
the mount options data that have been provided (for example, 'uid=1701,gid=42') and sets
the owner of the root inode.
Let us now take a look at what happens when this file system is accessed. An interesting
aspect is that in all cases the relevant data are only generated when they are needed.
Accessing the file system is always carried out by accessing the root inode of the file
system. The first access is made, as described above, by calling iget(). If the inode does not
exist, this function then calls the proc_read_inode() function entered in the proc_sops
structure.

void proc_read_inode(struct inode * inode) {
unsigned long ino, pid;
struct task_struct * p;
int i;

First, the inode is initialized with the default values:

inode->i_op = NULL;
inode->i_mode = 0;
inode->i_uid = 0;
inode->i_gid = 0;

tinode->i_nlink =1;
inode->i_size = 0;
inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
inode->i_blocks = 0;

inode->i_bLksize = 1024;
ino = inode->i_i no; After this, the action depends on the type of inode. We are

only interested here in cases in which the inode is the root node of the file system that has
been mounted:

if (ino == PROC_ROOT_INO) {
inode->i_mode = S_IFDIR | S_IRUGO | S_IXUGO;

 Linux kernel internails - 187 -

This inode describes a directory (S_IFDIR) with read (S_IRUGO) and execute permissions
(S_IXUGO) for all processes. The next step is to calculate the number of references to the
directory. As a rule, this will be two plus the number of subdirectories, as each of the
subdirectories possesses a reference in the form of '..'. This raises a problem: as the function
proc_read_inode() is only called once over the 'lifetime' of the inode in memory, i_Link can
only be calculated once. This means that the number of processes running at the time when
the Proc file system was mounted can be taken from the directory listing, especially as the
other subdirectories, such as net/, were not taken into account for i_nlink.
All that is required after that is for the inode operations to be set correctly.

inode->i_nlink = 2;
for (i = 1 ; i < NR_TASKS ; i++) if (task[i])

inode->i_nIink++;
inode->i_op = &proc_root_inode_operations;
return;
> /* if(ino == PROC_ROOT_INO) */

} /* proc_read_inode() */

The structure proc_root_inode_operations only provides two functions: the component
readdir in the form of the proc_readroot() function and the component Lookup as the
proc_lookuproot() function.''
Both functions operate using the table root_dir[], which contains the invariable entries for
the root directory.

static struct proc_dir_entry root_dir[] = ({ PROC_ROOT_INO,
1, "." }, { PROC_ROOT_INO, 2, ".."}, [PROCJ-OADAVG, 7,
"loadavg" }, { PROC_UPTIME, 6, "uptime"), (
PROC_MEMINFO, 7', "meminfo" }, { PROC_KMSG, 4,
"kmsg" }, { PROC_VERSION, 7,'"version" },

#ifdef CONFIG_PCI
{ PROC_PCI, 3, "pci"},

#endif
{ PROC_CPUINFO, 7, "cpuinfo" }, { PROC_SELF, 4, "self" }, /*
changes inode « */
{ PROC_IOPORTS, 7, "ioports"},

 Linux kernel internails - 188 -

#ifdef CONFIG_PROFILE
{ PROC_PROFILE, 7, "profile"}, #endif };

The individual structures contain the inode number, the length of the filename and the name
itself. When the root directory is read, the proc_readroot() function accordingly returns the
entries given in the field root_dir[] along with one entry per process running. However,
these directory entries are only generated once the proc_readroot() function is called.

A more interesting function than proc_readroot(), however, is proc_Lookuproot(),
which determines the inode of a file by reference to the inode for the directory and the name
of a file contained in it. In this procedure, the inode numbers are generated in such a way
that they can be used later to identify uniquely the file that has been opened.

static int proc_lookuproot(struct inode * dir, const char * name, int Len,
struct inode ** result) {

unsigned int pid, c;
int i, ino;

First, the name of the file to be opened is checked to see if it is a name from the root_dir[]
table.

i = NR_ROOT_DIRENTRY;
while (i-- > 0 && !proc_match(len,name,root_dir+i)) /* nothing */;
if (i >= 0) {

If it is, the inode number can be read directly from the table. In this case, the inode number
PROC_SELF represents the directory self/ and is replaced by an encoded form of the PID for
the current process:

If (ino == 7) /* self modifying inode ... */ ino = (current->pid <<
16) + 2;

Otherwise, an attempt is made to convert the name into a number, which is then interpreted
as the process number. This is followed by a-check as to whether a matching process (still)
exists; and if not, an error is returned. If it does exist, the process number is stored in the
variable ino.

 Linux kernel internails - 189 -

{
pid = string_to_integer(name);

for (i = 0 ; i < NR_TASKS ; i++)
If (task[1] && task[i]->pid == pid) break;

If (!pid || 1 >= NR_TASKS) { iput(dir);
return -ENOENT;
} Ino = (pid << 16) + 2;

}

Now iget() is called again, to generate the inode. This function in turn calls the function
proc_read_inode() described above with the relevant inode number.

if (!(*result = iget(dir->i_sb,ino))) {
iput(dir);
return -ENOENT;

} iput(dir);
return 0;
} /* proc_Lookuproot() */

If the requested inode is that of a process directory, the function finally returns an inode for
which the inode operations are given in the structure proc_base_inode_operations.
However, this structure in its turn contains only the components readdir and lookup to
describe a directory.
This covers the representation of directories in a Proc file system, which only leaves the
question of how normal files are created. By means of the function proc_read_inode0, the
inode for most normal files is assigned the function vector proc_array_inode_operations. All
that is implemented in this, however, is the function array_read() in the standard file
operations to read the files.
If a process wishes, for example, to read the file /proc/uptime, it allocates a free page of
memory to the function array_read() by calling —get_free_page0 and passes it to the
function get_uptime(). This in turn generates the content of the file by entering the required
values in the memory page and returning the size of the buffer (in other words, the file). In
the sources, this appears as follows:

 Linux kernel internails - 190 -

static •int get_uptime(char * buffer) {
unsigned Long uptime;

 unsigned long idle;
 uptime = jiffies;

idle = task[0]->utime + task[0]->stime;
#if HZ !=100

return sprintf (buffer, "%lu.%O2lu %lu.%02lu\n", uptime / HZ,
(((uptime •/. HZ) * 100) / HZ) % 100, idle / HZ, (((idle
%HZ) * 100) / HZ) % 100);

#else
return sprintf(buffer,"%lu.%02lu %lu.%O2lu\n", uptime / HZ, uptime

'/. HZ, idle / HZ, idle %. HZ);
#endif }

The functions for the individual files are implemented in fs/proc/array.c or in the special
sources. The function get_module_list() for the file /proc/module, for example, is located in
the file kernel/module.c in the implementation of the module.

6.4 The Ext2 file system________________

As LINUX was initially developed under MINIX, it is hardly surprising that the first LINUX file
system was the MINIX file system. However, this file system restricts partitions to a
maximum of 64 Mbytes and filenames to no more than 14 characters, so the search for a
better file system was not long in starting. The result, in April 1992, was the Ext file system
- the first to be designed especially for LINUX. Although this allowed partitions of up to 2
Gbytes and filenames up to 255 characters, it left the LINUX community far from satisfied as
it was slower than its MINIX counterpart and the simple implementation of free block
administration led to extensive fragmentation of the file system. A file system which is now
little used was presented by Frank Xia in January 1993: the Xia file system. This is also
based on the MINIX file system and permits partitions of up to 2 Gbytes in size along with
filenames of up to

 Linux kernel internails - 191 -

248 characters; but its administration of free blocks in bitmaps and optimizing block
allocation functions make it faster and more robust than the Ext file system.
At about the same time, Remy Card, Wayne Davidson and others presented the Ext2 file
system as a further development of the Ext file system. It can be considered by now to be
the LINUX file system, as it is used in most LINUX systems and distributions.

6.4.1 The structure of the Ext2 file system
The design of the Ext2 file system was very much influenced by BSD's Fast File System
(BSD FFS). Thus, a partition is divided into a number of block groups, corresponding to the
cylinder groups in FFS, with each block group holding a copy of the superblock and inode
and data blocks, as shown in Figure 6.4. The block groups are employed with the aim of
keeping

• data blocks close to their inodes, and
• file inodes close to their directory inode

and thus reducing positioning time to a minimum, thereby speeding up access to data. As
well as this, every group contains the superblock, along with information on all the block
groups, allowing the file system to be restored in an emergency.
The physical superblock - defined as the structure ext2_super_block - is shown in Figure
6.5. It contains the control information on the file system, such as the number of inodes and
blocks. The block size used is not held directly, but as the dual logarithm of the block size
minus the minimum block size supported by the Ext2 file system - in a standard case 0. To
use this, all that needs to be done is to 'shift' the minimum block size
EXT2_MIN_BLOCK_SIZE by the value given. In addition, the superblock includes
information on the number of inodes and blocks per block group, along with the times of the
last mount operation, the last write to the superblock and the last file system test.

Figure 6.4 Structure of the Ext2 file system.

 Linux kernel internails - 192 -

Figure 6.5 The superblock in the Ext2 file system

It also holds information on the behaviour of the file system in the event of errors, the
maximum time interval to the next file system test, a mount counter and the maximum
number of mount operations, which indicates when a mandatory file system test should be
carried out. The values resuid and resgid specify which users or groups are allowed to use
the reserved blocks in addition to the superuser.

The superblock is made up to a size of 1024 bytes - the minimum block size
EXT2_MIN_BLOCK_SIZE - by inserting pad bytes. This makes it a simple matter both to
use the space for expansions and to read the superblock using bread().

The superblock is followed in each block group by the block group descriptors, which
provide information on the block groups. Each block group is described by a 32-byte
descriptor (see Figure 6.6). This contains the block numbers in the inode bitmap, block
bitmap and inode table, the number of free inodes and blocks and the number of directories
in this block group. The number of directories is used by the inode allocation algorithm for
the directories, which attempts to spread directories as evenly as possible over the block
groups - in other words, a new directory will be mounted in the block group with the
smallest number of directories.

Figure 6.6 The block group descriptors in the Ext2 file system.

 Linux kernel internails - 193 -

The bitmaps are each the size of one block. This restricts the size of a block group to 8192
blocks for blocks of 1024 bytes.
The inode table for a block group lists consecutive blocks, starting with the one specified,
and consists of inodes 128 bytes in size (see Figure 6.7). In addition to the data already
mentioned, these contain the time when the file was deleted (to use in restoring deleted
files), entries for ACLs (Access Control Lists to enable access permissions to be
differentiated more precisely) and information specific to the operating system used. At
present, ACLs are not implemented, which means that the function ext2_permission() tests
only the UNIX permissions and the S_IMMUTABLE flag.
If the inode refers to a device file (that is, if S_IFCHR or S_IFBLK in i_mode is set) the first
block number (i_bLock[0]) will give the device number. For a short symbolic link
(S_IFLNK) the block numbers include the path, so that no additional data block is required
and the 'number of blocks' field, i'_b locks, will contain a value of zero. If the symbolic link
is longer than

EXT2_N_BLOCKS * sizeof (long)

it will be stored in the first block. This limits the maximum length of a reference to the size
of a block.

Figure 6.7 The inode in the Ext2 file system.

6.4.2 Directories in the Ext2 file system
In the Ext2 file system, directories are administered using a singly linked list. Each entry
in this list has the following structure. .

 Linux kernel internails - 194 -

Figure 6.8 A directory entry in the Ext2 file system.

struct ext2_dir_entry {

unsigned long inode; /* inode number */
 unsigned short rec_len; /* length of directory entry */
unsigned short name_len; /* length of filename */
 char name[EXT2_NAME_LEN]; /* filename */

};

The field rec_len contains the length of the current entry, and is always rounded up to a
multiple of 4. This enables the start of the next entry to be calculated. The name_Len field
holds the length of the filename. It is perfectly possible for a directory entry to be longer
than is required to store the filename. A possible structure is shown in Figure 6.8.

An entry is deleted by setting the inode number to zero and removing the directory
entry from the linked list: that is, the previous entry is simply extended This eliminates the
need for shift operations in the directory, which might otherwise exceed the limits of the
buffers. However, the 'lost space' is not wasted but is reused when a new name is entered,
either by overwriting an entry with a value of 0 or by using the additional space provided by
removal of the link.

6.4.3 Block allocation in the Ext2 file system
A problem commonly encountered in all file systems is the fragmentation of files - that is,
the 'scattering' of files into small pieces as a result of the constant deleting and creating of
new files. This problem is usually solved by the use of 'defragmentation programs', such as
defrag for LINUX. Some tile systems attempt to prevent fragmentation as far as possible by
sophisticated systems of block allocation. The Ext2 file system similarly uses two
algorithms to limit the fragmentation of files.

• Target-oriented allocation
This algorithm always looks for space for new data blocks in the area of a 'target
block'. If this block is itself free, it is allocated. Otherwise, a free block is sought
within 32 blocks of the target block, and if found, is allocated. If this fails, the block
allocation routine tries to find a tree block which is at least in the same block group as
the target block. Only after these avenues have been exhausted are other block groups
investigated.

 Linux kernel internails - 195 -

• Pre-allocation
If a free block is found, up to eight following blocks are reserved (if they are free).
When the file is closed, the remaining blocks still reserved are released. This also
guarantees that as many data blocks as possible are collected into one cluster. Pre-
allocation of blocks can be deselected by removing the definition of
EXT2_PREALLOCATE from the file <linux/ ext2_fs.h>.

How is the target block itself determined? Let n be the relative number in the file of the
block to be allocated and I the logical block number of the last block allocated. The
block allocation algorithm then applies the following heuristics in the order given:

• The last block allocated had the relative number n-1. The target block is therefore
1+1.

• All existing blocks in the file, starting at block number n-1, are scanned to confirm
that they have been assigned logical blocks (that is, the block is not a 'gap'). The
target block is given by the number I of the first already allocated block found.

• The target block is the first block in the block group in which the inode for the file
is located.

6.4.4 Extensions of the Ext2 file system
The Ext2 file system has additional file attributes beyond those which exist in standard
UNIX file systems (see Table 6.4). In version 0.5a, which is current at the time of
writing, these are:

EXT2_SECRM_FL
If a file has this attribute, its data blocks are first overwritten with random bytes before

they are released via the truncate function. This ensures that the content of the file cannot
possibly be restored after it has been deleted.

EXT2_UNRM_FL
 This attribute will eventually be used to implement the restoration of deleted
files. At present, however, this function is not implemented. EXT2_COMPR_FL
This attribute will be used to indicate that the file has been compressed. Up to the
present, online compression has not yet been implemented.
EXT2_SYNC_FL
If a file has this attribute, all write requests are performed synchronously, that is, not
delayed by the buffer cache.

 Linux kernel internails - 196 -

Table 6.4 File attributes in the Ext2 file system (n.i. = not yet
implemented).

Macro Value Description
EXT2SECRMF 1 Secure deletion
EXT2UNRMF 2 Undelete (n.i.)
EXT2COMPRF 4 Compressed file
EXT2SYNCFL 8 Synchronous write
EXT2IMMUT 16 Unmodifiable file
EXT2APPEND 32 'Append only' file
EXT2NODUM 64 Do not archive file

EXT2_IMMUTABLE_FL
Files with this attribute cannot be deleted or amended. Renaming and the setting up of
further hard links are also prohibited. Even the superuser cannot modify the file so long
as it possesses this attribute. Directories with this attribute cannot be changed - that is,
no new files can be created or deleted. Existing files or subdirectories, however, can be
modified as desired.

EXT2_APPEND_FL
As for the previous attribute, files with this attribute cannot be deleted, renamed or
relinked. However, this attribute does allow a write to the file to add fresh data.
Directories with this attribute will only allow new files to be created. These will inherit
the EXT2_APPEND_FL attribute when they are created.

EXT2_MODUMP_FL
This attribute is not used by the kernel. It is intended to be used to mark files which are
not required in a backup.

However, these attributes can be changed using the chattr program. The program lsattr
displays them.
The development of the Ext2 file system is not yet complete. The list of
planned expansions includes:

• restoration of deleted files,
• ACLs, and
• automatic file compression.

 Linux kernel internails - 197 -

7 Device drivers under LINUX

A computer terminal is not an old lump of a television
with a typewriter keyboard sitting in front of it.
It is an interface
connecting body and spirit with the universe
and enabling bits of it to be moved around.
Douglas Adams

I Character and block devices 7.4 Implementing a driver ! Polling and interrupts
7.5 An example of DMA $ The hardware operation

There is a wide variety of hardware available for LINUX computers. This means that a
wide variety of software is required to operate this hardware. This is the job of device
drivers. Without these, an operating system like LINUX would have no means of input or
output (such as a keyboard and a monitor) and no file systems. Device drivers are the
nuts and bolts of any operating system.

In addition, the computer hardware in UNIX systems is meant to be hidden from
the user, without limiting its functions. This is done by having physical devices
represented by files, which allows portable programs to be developed that can access
both the various devices and the files with the same system calls, for example read and
write. To handle this, device drivers are integrated into the LINUX kernel and given
exclusive control of the hardware.

As a result, if a device driver has been properly implemented, the corresponding
device can never be used wrongly by the user. This protective function of a device
driver should not be underestimated.

In this chapter, we shall demonstrate the functioning and the correct
implementation of device drivers. The example chosen is the PC speaker driver, which
supports the output of sound samples to the internal speaker or a digital-analog
converter connected to the parallel interface. It is also designed to be compatible with
the sound card driver.

 Linux kernel internails - 198 -

As a number of device drivers have to exist side by side in the LINUX kernel, they are
uniquely identified by their major numbers. A device driver may be controlling a number of
physical and virtual devices, for example a number of hard disks and partitions; thus, the
individual device is accessed via its minor number, an integer between 0 and 255.

The exception to this rule is the device driver for terminals and serial interfaces, which
uses the two major numbers 4 and 5. The devices with the major number 4 are virtual
consoles, simple serial interfaces (call-in devices) and pseudoterminals.1 Virtual consoles
are given the minor numbers 0 (for ttyO) to 63. The special device /dev/tty0 or /dev/console
is always the current virtual console.

For every serial interface there are two logical devices, the dial-in device ttySn and the
call-out device cuan. When the dial-in device is opened, a process, such as getty, will be
blocked until the DTR line at the interface is active. A process opening the call-out device,
usually a dial-out program, will be given immediate access to the serial interface if no other
process is using it. This will also continue to block a process wishing to open the dial-in
device. The serial dial-in devices are given the minor numbers 64 (for ttySO) to 127.

The remaining minor numbers from 128 to 255 are used for pseudo-terminals. The
master terminal ptyn is given the minor number 128+n, while the corresponding slave
terminal ttypn has the minor number 192+n.

Major number 5 is reserved for the current terminal and for the call-out devices. The
device /dev/tty with the minor number 0 is always the terminal belonging to the process.
The call-out devices cuan have the corresponding minor numbers 64+n and thus differ from
their 'twins' only in their major numbers.

In the same way as for file systems, device drivers need to be made known to the
LINUX kernel. This is done when the system is started up or when the driver modules are
initialized, and uses one of the functions

int register_chrdev(unsigned int major, const char * name, struct
file_operations *fops);

int regi'ster_blkdev(unsigned int major, const char * name, struct
file_operations *fops);

The file operations specified and their symbolic names are entered under the major numbers
given in the table chrdevs[] (for character devices) or

1 Pseudoterminals are pairs of master and slave terminals, acting together like one terminal unit. The slave terminal is
the interface, acting like a terminal unit as far as the user program is concerned, while the master represents the other
end of the link (on a terminal, this is the user) (see Stevens (1992b)).

 Linux kernel internails - 199 -

blkdevs[] (for block devices). If a driver is already registered under the major number given
and if the file operations installed do not match those that have been registered,
register_chrdev() will return a negative value.
If the major number is 0, the highest available free entry in the table is located and its index
returned as the new major number. This allows unused major numbers to be allocated
during the development of special drivers. Some of the major numbers which are at present
firmly assigned are shown in Table 7.1; a complete list is contained in the file
Documentation/devices.txt. When a driver is published, it should be registered with the
LINUX Device Registrar2 who will then issue an official major number not used by any other
device driver. For example, the PC speaker driver discussed below was given the major
number 13 to avoid conflicts with the more recent iBCS2.

7.1 Character and block devices

There are two basic types of device: block-oriented devices and character-oriented devices.3
Block devices are those to which there is random access, which means that any block can be
read or written to at will. Under LINUX, these read and write accesses are handled
transparently by the cache. Random access is an absolute necessity for file systems, which
means that they can only be mounted on block devices.
Character devices, on the other hand, are devices which can usually only be processed
sequentially and are therefore accessed without a buffer. This class includes the commonest
hardware, such as sound cards, scanners, printers and so on, even where their internal
operation uses blocks.4 These blocks, however, are sequential in nature, and cannot be
accessed randomly.
Beyond this, LINUX deviates a little from the general UNIX philosophy, as it does not draw
such a strict distinction between block and character devices. Thus, in other UNIX systems
there are character devices corresponding to each of the block devices - that is, character-
oriented interfaces to block devices which are principally used to control5 the device itself.
In LINUX, the interface (VFS) to block and character devices is the same, which means that
no additional character devices are required.

2Atter a period when this position was without an incumbent, the job has now been taken
over by H. Peter Anvin (Peter.Anvin3Linux.org). 3 Referred to below simply as "block
devices' and "character devices'. 4 If largeamounts of data need to be transferred, block
transfer, for example DMA, is preferable.
5 Control programs for block devices in other UNIX systems, such as mkfs or fsck, operate

on the corresponding character-oriented raw device.

 Linux kernel internails - 200 -

Table 7.1 Excerpt from the LINUX major numbers list.
Major Character devices Block devices
0 unnamed for NFS, network and so on
1 Memory devices (mem) RAM disk
2 Floppy disks (fd*)
3 IDE hard disks (hd*)
4 Terminals
5 Terminals & AUX
6 Parallel interfaces
7 Virtual consoles (vcs*)
8 SCSI hard disks (sd*)
9 SCSI tapes (st*)
10 Bus mice (bm, psaux)
11 SCSI CD-ROM (scd*)
12 QIC02 tape
13 PC speaker driver XT 8-bit hard disks
14 Sound cards BIOS hard disk
15 Joystick Cdu31a/33a CD-ROM
16, 17, not used
19 Cyclades drivers DouBle compressing
20 Cyclades drivers
21 SCSI generic
22 2nd IDE interface
23 Mitsumi CD-ROM
24 Sony 535 CD-ROM
25 Matsushita CD-ROM
26 Matsushita CD-ROM
27 QIC117tape Matsushita CD-ROM
28 • Matsushita CD-
29 Frame buffer drivers Other CD-ROMs
30 iCBS2 Philips LMS-205 CD-

ROM

Each individual device can thus be uniquely identified by the device type (block or
character), the major number of the device driver and its minor number. Setting up a device
therefore simply requires the command:
mknod /dev/name type major minor

with the device type (type) set to b or c.
If additional hardware is to be accessed under LINUX, this will generally mean developing a
character device driver, as character-oriented hardware makes up the majority.

 Linux kernel internails - 201 -

7.2 Polling and interrupts

Where the synchronization of processor and hardware is concerned, there are a number of
requirements. Although the hardware is as a rule very slow compared with the processor,
specific access times have to be maintained for some devices. There are essentially two
ways of achieving this.

7.2.1 Polling mode
In polling, the driver constantly interrogates the hardware. This results in pointless wasting
of processor time; but it is sometimes the fastest way of communicating with the hardware.
The device driver for the parallel interface works by polling as the default option (see
Section 2.3). It thus interrogates the interface (in this case, the interface's status port) until it
is ready to accept a further lpchar character,' and then passes this character to the interface.
In the sources, this procedure looks like this:

#define LP_B(minor) lp_table[(minor)].base /* 10 address

*/

 #define LP_S(minor) inb_p(LP_B((minor)) + 1) /*

status port */

#define LP_CHAR(minor) lp_table[(mi'nor)]. chars /* busy

timeout */

static int lp_char_polled(char Ipchar, int minor) {
int status, wait = 0;
unsigned long count = 0; struct lp_stats *stats

do {
status = LP_S(minor);

count ++;

if(need_resched) schedule();
} while(!LP_READY(minor,sta tus) && count < LP_CHAR(minor));

if (count == LP_CHAR(minor)) { return 0;
/* Timeout, current character not printed */ outb_p(Ipchar,

LP_B(minor));

return 1;
}

 Linux kernel internails - 202 -

The polling count is kept to enable an error in the data terminal device to be detected (in
most cases, this will be a printer). It constitutes the timeout and means that the last character
has not been sent. The timeout error handling will then result in one of the messages 'lpn
off-line', 'lpn out of paper' or 'lpn reported invalid error status (on fire, eh?)'. The
LP_CHAR(minor) count is set by default to LP_INIT_CHAR and can be changed by the
system call ioctl.

7.2.2 Interrupt mode
The use of interrupts, on the other hand, is 'only possible if these are supported by the
hardware. Here, the device informs the CPU via an interrupt channel (IRQ) that it has
finished an operation. This breaks into the current operation and carries out an interrupt
service routine (ISR). Further communication with the device then takes place within the
ISR.

Thus, a process attempting to write to the parallel interface in interrupt mode is halted
by the device driver by means of the function

interruptible_sleep_on(&lp->lp_wait_q);

after a character has been written. If the parallel interface is able to accept more characters,
it triggers an IRQ. The ISR handling the procedure then wakes up the process and the
procedure is repeated. This keeps the ISR very simple.

static void lp_interrupt(int irq, void *dev_id

struct pr_regs *regs) {
struct lp_struct *lp = &lp_table[0];

while (irq != lp->irq) {

if (++lp >= 8lp_table[LP_N0]) return;
}

wake_up(&lp->lp_wait_q);
}

First, the interface that triggered the interrupt is determined, and then the waiting process
is brought back to life with wake_up().

A second example is the serial mouse, every movement of which sends data to the
serial port, triggering an IRQ. The data from the serial port is read first by the handling ISR,
which passes it through to the application program.

 Linux kernel internails - 203 -

IRQs are installed using the function

int request_irq(unsigned int irq,
void (*handler)(-int, struct pt_regs *), unsigned Long irqflags,
const char * devname void *dev_id)

As was mentioned in Section 3.2.4, there are two ways of processing IRQs under LINUX.
The argument irqflags specifies which type of interrupt is to be used. Slow interrupts run
with the interrupt flag set, which means that they can be interrupted in turn by other
interrupts. On completion of a slow interrupt the same algorithm is used as on termination
of a system call (see ret_-from_syscall). Fast interrupts, however, run with the interrupt flag
off. This means that if other interrupts are to be permitted in a fast interrupt routine, this
must be achieved by calling the macro sti(). As well as this, the only registers saved to the
stack are those used as standard in C routines, leaving the programmer of assembler routines
responsible for saving registers used in the routine. Fast interrupt routines terminate with an
iret instruction and return directly to the interrupted process.

Slow IRQs are installed without the SA_INTERRUPT flag in the irqflags argument;
fast IRQs with the SA_INTERRUPT flag. The argument name has no particular significance
for the kernel, but is used by the Proc file system to indicate the owner of an IRQ. It should
therefore point to the name of the driver using the IRQ. The argument dec_id is passed to
the interrupt routine unchanged and can thus be used to pass additional data. If the IRQ was
found to be free and has been taken, request_irq() returns 0.

The handling routine for an IRQ looks like this:

void do_irq(int irq, void *dev_id, struct pt_regs * regs);

The first argument for any ISR is the number of the IRQ calling the function. This means
that, in theory, one ISR can be used for a number of IRQs. The second argument is the
dev_id pointer described above, while the last argument is a pointer to the structure pt_regs
and contains all the registers for the process interrupted by the IRQ. This allows the timer
interrupt to determine, for example, whether a process has been interrupted in kernel or user
mode
and to increment the corresponding time for accounting. Fast interrupts are only passed a
NULL.

An example will demonstrate the installation of a fast interrupt - the lp_interrupt
described above:

ret = request_irq(irq, lp_interrupt, SA_INTERRUPT, "printer",
NULL);

 Linux kernel internails - 204 -

if (ret) {

• • •

print("lp%d unable to use interrupt %d, error %d\n", \ |
minor, irq, ret);

 • • •

return ret;

}

It is usually fast interrupts that will be used for communicating with the hardware.

7.2.3 Interrupt sharing
The number of free IRQs in a PC is limited. Thus it can be sensible for various pieces of
hardware to share interrupts. For PCI boards, this is mandatory.
The conditions required for such interrupt sharing are the possibility of interrogating the
hardware as to whether it generated the current interrupt or not, and the capability of the
ISR to forward an interrupt not triggered by its hardware.
LINUX version 2.0 supports interrupt sharing by its ability to build chains of interrupt
handling routines. When an interrupt occurs, each ISR in the chain is called by the do_lRQ()
or the do_fast_lRQ() function.

asmLinkage void do_IRQ(int irq, struct pt_regs * regs) {
struct irqaction * action = *(irq + irq_action);

int do_random = 0;

while (action) {

do_random |= action->flags;

action->handler<irq, action->dev_id, regs);

action = action->next;

}

}

If an ISR capable of interrupt sharing is installed, this must be communicated to the
request_irq function by setting the SA_SHIRQ flag. If another ISR also capable of interrupt
sharing was already installed on this IRQ number, a chain is built. However, it is not
possible to mix slow and fast interrupts, that is, an IRQ's handling routines must all be of the
same type. As an example, we show a fragment of the DE4x5 Ethernet driver.

 Linux kernel internails - 205 -

request_irq(dev->frq, (void *)de4x5_interrupt, SA_SHIRQ, Lp-
>adapter_name, dev)

static void de4x5_interrupt(int irq, void *dev_id,

struct pt_regs *regs) {

sts = inl(DE4X5_STS); /* read IRQ status register */ outl(sts,
DE4X5_STS); /* reset board interrupts */ if (!(sts & Lp->irq_mask))
break;/* not from board, ready */

}

7.2.4 Bottom halves
However, it frequently happens that not all the functions need to be performed immediately
after an interrupt occurs; although 'important' actions need to be taken care of at once, others
can be handled later or would take a relatively long time and it is preferable not to block the
interrupt. For cases like this, bottom halves have been created. After every
ret_from_syscalL, that is, after every slow interrupt, if no further interrupt is running at the
time,6 a list of up to 32 bottom halves is scanned. If they are marked as active, they are each
carried out once in turn and then automatically marked as inactive. These bottom halves are
atomic, that is, as long as one bottom half is active, none of the others can be performed, so
that it is not necessary to use cli() to protect them against interruptions.
The function to install a bottom half is init_bh which enters the bottom half into the function
pointer table bh_base.

void init_bh(int nr, void (*routine)(void));

enum {

TIMER_BH = 0,

CONSOLE_BH,

TQUEUE_BH,

DIGI_BH,

SERIAL_BH,

RISCOM8_BH,

BAYCOM_BH,

NET_BH,

6 This can easily happen, for example, if one slow interrupt is interrupted by another.

 Linux kernel internails - 206 -

IMMEDIATE_BH, KEYBOARD_BH,
CYCLADES_BH, CM206_BH };

In older Linux versions the bottom halves were entered 'manually' into a bh_struct structure;
in addition, they could also be passed a pointer to any desired data as an argument. By
default, all bottom halves are permitted, but they can be switched off and back on again
using the functions

void disable_bh(int nr);

void enable_bh(int nr);

The function

void mark_bh(int nr);

marks a bottom half, so that this bottom half is performed at the next available
opportunity.
We will now examine how bottom halves are used, taking as an example
the keyboard driver.

static void keyboard_interrupt(int int_pt_regs)

{

mark_bh(KEYBOARD_BH); /* kbd_bh() is marked */

}

static void kbd_bh(void * unused) {
unsigned char Leds = getleds();

if (Leds != ledstate) { ledstate = Leds;

} }

unsigned Long kbd_i nit(unsigned Long kmem_start) {

request_irq(KEYBOARO_IRa, keyboard_interrupt, 0,
"keyboard", NULL);

 Linux kernel internails - 207 -

/* keyboard bottom half is Initialized */ /* and immediately
marked */
1nit_bh(KEYBOARD_BH, kbd_bh);

Bark_bh(KEYBOARD_BH);

}

The init function of the keyboard driver installs kbd_bh() as the bottom half and
keyboard_interrupt() as a slow interrupt. On every call to the keyboard interrupt,
mark_bh(KEYBOARD_BH) is called - that is, the bottom half is run at the first opportunity
after completion of the keyboard interrupt, in this case immediately after it. The keyboard
bottom half, however, only updates the keyboard LEDs.

7.2.5 Task queues
As the previous section shows, direct use of bottom halves is somewhat difficult because
their number is limited to only 32, and some tasks are already assigned to fixed numbers. In
version 2.0, LINUX therefore offers task queues as a dynamic extension of the concept of
bottom halves.
Task queues allow an arbitrary number of functions to be entered in a queue and
processed one after another at a later time. Chaining of the functions to be executed is
carried out by means of the tq_struct structure.

struct tq_struct {
struct tq_struct *next; /* pointer to next entry */ int sync; /*
synchronization flag */ void (*routine)(void *); /* function to be called
*/ void *data; /* arbitrary function argument */ };

typedef struct tq_struct * task_queue;

Before a function can be entered in a task queue, a tq_struct structure must be created and
initialized. The routine component contains the address of the function to be called, while
data holds an arbitrary argument to be passed to the function at call time. The sync
component must be initialized to 0.
Insertion into a task queue is carried out by means of one of the following functions:

void queue_task(struct tq_struct *bh_pointer, task_queue *bh_list) {

If (!set_bit(0,&bh_pointer->sync)) { unsigned Long
flags;

save_flags(flags);

 Linux kernel internails - 208 -

cliO;
bh_pointer->next = *bh_Hst;

*bh_list = bh_pointer;

restore_flags(flags);

 }

}

void queue_task_irq(struct

tq_struct *bh_pointer,

task_queue *bh_list) {
if (!set_bit(0,8bh_pointer->sync)) { bh_pointer->next =
*bh_list;

*bh_list = bh_pointer;

} }

void queue_task_irq_off(struct tq_struct *bh_pointer,

task_queue *bh_list) {
if (!(bh_pointer->sync 8 1)) { bh_pointer->sync =
1;

bh_pointer->next = *bh_List;

*bh_list = bh_pointer;

} }

The application areas of these functions are reflected in their implementation. The sync
component of the tq_struct structure is used for synchronization. It is set when the structure
has been insterted into a task queue, thus preventing insertion into a further task queue.

The easiest case occurs when interrupts are disabled. Then it is sufficient to check
whether sync is already set. Therefore the queue_task_irq_off() function may only be called
when the interrupt flag is switched off. It is possible that inside an interrupt service routine
an additional ISR may be called, but no bottom half handler. Thus it is sufficient to carry
out checking and setting of the sync flag in an atomic way. This is achieved by the
implementation of the queue_task_irq0 function which must only be called from within
interrupt routines or with disabled interrupts. queue_task(), on the other hand, can be called
at any point because insertion into the task queue is protected by the cli() macro.

The function run_task_queue() takes care of processing a task queue.

Void run_task_queue(task_queue *list) " { '
struct tq_struct *p;

 Linux kernel internails - 209 -

 p = xchg(list,NULL);

while (p) { void *arg;
void (*f) (void *);

struct tq_struct *save_p;

arg = p -> data; f = p -> routine;

save_p = p;

p = p -> next;

save_p -> sync =0;

(*f)(arg);

} }

It takes a task queue as argument and processes all tq_struct structures inserted in the queue
by calling their functions. Before the function is called, the sync flag is cancelled, so that
within this function it would again be possible to insert the tq_struct structure into an
arbitrary task queue. In LINUX version 2.0 the following task queues are denned:

• tq_timer

is called after each timer interrupt or processed at the next possible point
in time after a timer interrupt.

• tq_immediate

is called at the next possible point in time after a call of the function
mark_bh(lMMEDlATE_BH) and thus corresponds to the bottom halves of version l.x.

• tq_scheduler
is called within the scheduler before a task change is carried out.
• tq_disk

is used by block devices and called at different points where the VFS
must wait for incoming buffers or similar.

tq_disk shows that task queues need not necessarily be linked only to bottom halves. Task
queues are implemented as pointers to a tci_struct structure and should be declared by
means of the DECLARE_TASK_QUEUE() macro. They can be processed at any point by
calling the function run_task_queue(). Processing of task queues inside interrupt service
routines should, however, be avoided to prevent interrupts from being blocked for an
unnecessarily long time.

7.2.6 DMA mode

When particularly large volumes of data are being continuously transported to or from a
device, DMA mode is an option. In this mode, the DMA controller

 Linux kernel internails - 210 -

transfers the data directly from memory to a device without involving the processor. The
device will generally trigger an IRQ after the transfer, so that the next DMA transfer can be
prepared in the ISR handling the procedure. This mode is ideal for multi-tasking, as the
CPU can take care of other tasks during the data transfer. Unfortunately, there are a number
of devices suitable for DMA operation which do not support IRQs; some hand-held
scanners fall into this category. In device drivers written for this class of device, the DMA
controller must be polled to check for the end of a transfer.
As well as this, DMA operation of devices throws up quite a different set of problems,
deriving in part from compatibility with the 'original' PCs.

• As the DMA controller works independently of the processor, it can
only access physical addresses.

• The base address register in the DMA controller is only 16 bits wide, which means that
DMA transfers cannot be carried out beyond a 64 Kbyte boundary. As the first
controller in the AT performs an 8-bit transfer, no more than 64 Kbytes at a time can
be transferred using the first four DMA channels. The second controller in the AT
performs a 16-bit transfer - that is, two bytes are transferred in each cycle. As the base
register for this is also only 16 bits wide, the second controller attaches a zero,
meaning that the transfer must always start at an even address (in other words, the
contents of the register are multiplied by 2). This allows the second controller to
transfer a maximum of 128 Kbytes, but not to go over any 128 Kbyte boundary.

• In addition to the base address register, there is a DMA page register to take care of
address bits from A 15 upwards. As this register is only 8 bits wide in the AT, the
DMA transfer can only be carried out within the first 16 Mbytes. Although this
restriction was removed by the EISA bus and a number of chip sets (but not,
unfortunately, in a compatible way), LINUX does not support this.

To overcome this problem, the sound driver of earlier LINUX versions, for example, reserved
the buffer for DMA transfer to the sound card by means of a special function.

As the physical addresses required in protected mode interfere with the DMA concept,
DMA can only be used by the operating system and device drivers. Accordingly, the sound
driver first copies the data to the DMA buffer with the aid of the processor, and then
transfers them to the sound card via DMA. Although this procedure is in conflict with the
idea of transferring data without involving the processor, it nevertheless makes sense, as it
means that attention does not have to be given to timing when transferring data to the sound
card or other devices. We take a more detailed look at the use of DMA below.

 Linux kernel internails - 211 -

7.3 The hardware

If we are proposing to write a device driver for the internal loudspeaker, we cannot avoid
taking a closer look at the hardware concerned and its control
system.

Although it has been part of the package since the earliest days of the PC, the internal
speaker is not well suited to reproducing samples. As Figure 7.1 shows, the construction
and programming of the speaker are both very simple.

The 8253 timer chip has three internal timers. Timer 2 is designed for use with the
speaker, for which the output from timer 2 is connected via an AND gate to bit 1 of the
system control latch at I/O address 0x61, with bit 0 used for starting or restarting timer 2.
Thus the speaker can only be fully turned on or switched off. The normal procedure is for
timer 2 to be programmed as a frequency divider (meaning that both bits are set). This
generates square waves, which account for the 'typical' sound of the internal speaker. The
frequency is given by dividing the timer's basic frequency of 1.193MHz (= 4.77 MHz/4) by
the timer constant that has been set.

To output an analog signal via the speaker, pulse-length modulation is employed. By
rapid variation between on and off phases of different lengths, corresponding to the
instantaneous analog value to be output, the mechanical inertia of the speaker can be
exploited to give an analog output. However, pulse-length modulation is very sensitive:
even one missing sample will produce an annoying click from the speaker.7

The central problem in using pulse-length modulation proves to lie in determining and
implementing the required time intervals. The first possibility

Figure 7.1 Block diagram of PC speaker connections.

7 This also accounts for the extraneous noise sometimes accompanying floppy disk access
or even mouse movements. If even a single interrupt fails to be handled, the dynamics of the
speaker break down.

 Linux kernel internails - 212 -

| is not to use timer 2 at all and control the output entirely with bit 1 of the system control
latch. The time intervals can be generated by wait loops. This approach is the simplest to
implement, but has two decisive drawbacks:

• The delay loops depend on the processor clock.
• Most of the time during output is spent on busy waiting; this is not acceptable in a

multi-tasking operating system.

The second approach consists in programming timer 2 as a retriggerable one-shot. The
timer is started by applying a 1 to the restart gate and produces 0 at the output. Once the
timer constant has counted down, 1 is output. After a certain time, corresponding to the
maximum sample value, a new constant is transferred to timer 2 and the timer is restarted.
This constant time interval can then be generated again using a delay loop or timer 0, which
generally runs in divider mode and generates an IRQ of 0 each time the timer constant
reaches 0. This frequency generated by timer 0 is also the sampling rate at which the
samples can be output. We shall refer to it below as the real sampling rate. Timer 2 must
then be reinitialized in the interrupt handling routine. This procedure is shown in Figure 7.2.
The timer chip has four I/O ports. Port 0x43 is the mode control register. Data ports 0x40 to
0x42 are assigned to timers 0 to 2. This means that to program a timer, an instruction must
be written to 0x43 and the timer constant to the appropriate data port. An instruction is very
simple in structure: bits 7 and 6 contain the number of the timer to be programmed, bits 5
and 4 one of ^ the access modes shown in Table 7.2 and bits 3 to 1 the timer mode. For
^example, to generate a 10 000 Hz tone the following steps are required:

Constant interval, generated by timer 0

Length of interval = Timer constant ^ 1193180

Figure 7.2 Pulse-length modulation using timers 0 and 2.

 Linux kernel internails - 213 -

Table 7.2 Bits 4 and 5 in the timer instruction.
Bits
54

Mode

Description

00

Latch

Counter is transferred to an internal register and can then be
read out

01

LSB only

Only the bottom 8 bits of the are
transferred

counter

10

MSB only

Only the top 8 bits of the cou
transferred

nter are

11 LSB/MSB First the bottom 8 bits of the counter
 are transferred, then the top 8 bits

outb_p (inb_p (0x61) | 3, 0x61);

/* opens the AND gate and */ /* sets the restart gate to
active */

tc = 1193180 / 10000;

/* calculates the timer constant required */

Outb_p (Oxb6, 0x43);

/* corresponds to the instruction: */ /* timer 2, read/write
LSB then MSB, timer mode 3 */

outb_p (tc & Oxff, 0x42); outb ((tc >> 8) 6 Oxff, 0x42);

/* writes the time constant to timer 2; */ /* from now on the
internal Loudspeaker will emit a tone */

The speaker can be silenced by:
outb(inb_p(0x61) & Oxfc, 0x61);

This switches off the speaker as well as halting the timer.
Unfortunately, only timer 0 can generate an interrupt in a standard PC, which means that the
second possibility described above is not entirely without danger, since the timer interrupt
IRQ 0, which is so important under LINUX, is modified. The new interrupt routine must
ensure that the original procedure is called again at exactly the same intervals. In addition,
interrupt handling in protected mode needs considerably more time than in real mode, so
that the larger number of interrupts triggered consumes noticeably more computing time.
Let us now return to pulse-length modulation. As mentioned earlier, the choice of time
interval is very important. Tests have shown that the best results are achieved with a real
sampling rate between 16000 and 18 000 Hz. The higher the sampling rate the better, as this
specific frequency is audible as a

 Linux kernel internails - 214 -

whistling.8 When using timer 2, these frequencies give possible timer constants between 1
and 74 (a 0 would mean 65 536 and is therefore not admissible); so, as the constants are
directly related to the samples, only six bits (1-65) can be output.
The maximum value possible for the real sampling rate is thus 18 357 Hz (or 1.193
MHz/65). However, this is not a very widely used figure; therefore other sampling rates are
supported by generating and adding in extra samples (oversampling). For considerations of
time, a simple algorithm arranges for the data to be 'stretched' by repeating each of the
samples.9 For example, if the output is to be at 10 000 Hz, each sample will need to be
repeated on average about 1.8 times.
Compared with this, output via a digital-analog converter (DAC) is very straightforward.
This simply connects to a parallel port and converts the incoming 8-bit sequence to an
analog signal. As the parallel port buffers the incoming values, the structure of a DAC can
be very elementary, and in the most basic version it just consists of a resistor network. The
parallel port can also output the data at virtually any speed, so timer 0 can be programmed
with the true sampling rate.
This solution also avoids the need to transform the samples into a 6-bit representation;
output via a DAC thus makes less demand on processor time than output via the internal
speaker. And the final 'plus' is that missing interrupts only make themselves felt as a slow-
down in the output sound and are in practice as good as inaudible (within certain limits).

7.3.1 Hardware detection
Although speakers in PCs are always at the same port addresses, this need not be the case
for all varieties of add-on hardware. As the design of the ISA bus limits the number of
possible port addresses,10 there can be address overlaps. Probably the most common
example is the occupation of the I/O address of the COM4 interface by ISA cards with the
S3 chip.

Also, developments in the market have resulted in widely differing hardware using the
same I/O address ranges. Usually it is possible to select different base addresses by means of
jumpers. Although there is often a good reason for this, it confuses less experienced users,
as the documentation generally merely

The point at which this frequency becomes audible depends on the individual: I start
hearing it from about 14 500 Hz onwards, others hear it as far as 17 000 Hz.
Normally, the extra samples would be calculated by interpolation. However, this will not

produce any improvement in quality when using the internal speaker for the output. 10 Only
the first 10 bits of a port address lie on the bus. This means that all 65536 possible port
addresses are mapped to the range 0-0x3ff.

 Linux kernel internails - 215 -

notes that the default configuration will usually be found to work without problem; if not,
jumper XX should be moved to position YY'.
In developing a driver, then, the 'safe option' is always available: all the parameters are fixed
before compilation. This is very safe, but not very convenient. Who wants to recompile the
kernel every time a jumper has been shifted?
What is needed, therefore, are algorithms that 'detect' the hardware. Ideally, it should be
possible to detect the hardware simply by reading the I/O ports, but unfortunately the
development of new hardware cuts out this option. There is no choice but to write values at
random, read the I/O ports and make a decision on this basis. This generally makes use of
certain peculiarities of specific chips (the so-called 'unused features', meaning bugs), which
can then result in a failure to detect compatible hardware from another manufacturer.
However, by far the most awkward problem is that this 'test writing' can obstruct the
operation of other hardware and ultimately cause the system to crash. The second of these
frequently occurs during the development of a driver, as it is only much later that the failure
of another device is noticed
For this reason, LINUX allows I/O address ranges to be blocked. One way of doing this is to
pass a boot parameter to the kernel on start-up containing all the blocked regions. If the
system will not run after a new card has been fitted, the first thing to try is to deactivate the
address range for this card. A fictional example will help to explain this.
Suppose a scanner card occupies addresses Ox300-0x30f (where there could also be a
network card). This area is cut out using the boot parameter

reserve=0x300,0x10

Thus, if a device driver wishes to test I/O ports, it should first obtain permission for this by
calling the function check_region(). To follow this, we will look at a fragment of the
skeleton for network drivers.

#include <Linux/ioport.h>

netcard_probe(struct device *dev) {

for (i = 0; netcard_portlist[i]; i++) { int ioaddr =
netcard_portlist[i];

if (check_region(ioaddr, NETCARD_IO_EXTENT)) continue;
if (netcard_probe1(dev, ioaddr) == 0) return 0;

}

return ENODEV;

 Linux kernel internails - 216 -

If check_region() returns a value not equal to 0, at least one port in this region is closed to
access and the test should be omitted.
In addition, a driver should block the I/O ports belonging to its hardware, so that they
cannot be accessed by other drivers. The corresponding function11

void request_region(unsigned int from, unsigned int num, const char *
name);

expects as parameters the number 'of the first I/O port to be blocked, the number of ports to
be blocked and the name of the driver blocking the ports. The name of the driver is only
used by the Proc file system, enabling the user/programmer to find out which ports are
being used by which driver. As modules can also be removed, they must release their I/O
ports afterwards, as they would otherwise lock themselves out the next time they attempt to
load. Releasing is carried out by the function

release_region(unsigned int from, unsigned int num);

This still leaves us with the problems of detecting IRQ and DMA channels. The first of
these, however, can easily be taken care of under LINUX.

7.3.2 Automatic interrupt detection
On many expansion cards, the IRQ used has to be set by means of jumpers. Only the latest
expansions, such as PCI or Plug-and-Play, allow the configuration of the expansion card to
be set up and read out. As a result, programmers are often faced with the problem of
determining the IRQs used during kernel initialization. However, as automatic interrupt
detection constitutes a factor of insecurity and can lead to a system crash, it should be
avoided during the loading of modules.
The methodology for detecting IRQs used is always the same, and simply involves
assigning all possible IRQs and 'forcing' the relevant device or expansion card to trigger an
IRQ. If only one of the previously assigned IRQs is triggered, the answer has in all
probability been found. All that remains is to release all the other IRQs.
However, LINUX provides functions to simplify this search. Let us first take as an example a
section of code from the PLIP driver.

unsigned intirqs = probe_irq_on();
/* switch on IRQ detection */

11 In older versions of LINUX this function was called snar'f_region(). It is, however, no longer supported.

 Linux kernel internails - 217 -

outb(0x00, PAR_CONTROL(dev));
udelay(1OOO);

outb(PAR_INTR_OFF, PAR_CONTROL(dev));

outb(PAR_INTR_ON, PAR_CONTROL(dev));

outb(PAR_INTR_OFF, PAR_CONTROL(dev));

udelay(IOOO);

irq = probe_irq_off(irqs); /* IRQ detection terminated */

if (irq > 0) {

dev->irq = irq;

printk("using probed IRQ %d.\n", dev->irq);

} else

printk("failed to detect IRQ(%d) —"

" Please set IRQ by ifconfig.\n", irq);

IRQ detection is selected by a call to the function probe_irq_on(). This returns in irqs a bit
mask in which all those IRQ numbers currently free and used for detection are encoded, and
then triggers an IRQ at the parallel interface. The udelay() function introduces a delay of
1000 microseconds in each case.12 The call to probe_irq_off() then terminates IRQ
detection. This call must be given as an argument the bit mask supplied by probe_irq_on0
and will return the number of the IRQ which has occurred. If this number is less than zero,
more than one IRQ has occurred. This may indicate a wrongly configured card or some
other hardware conflict. The detection could now be tried once again or, as in the example,
the assignment of IRQs can be left to the user. A value of 0 indicates that no IRQ has
occurred, for example because no IRQ jumper has been set. In this case, too, the user will
have to intervene. Only a positive return value indicates that an IRQ has been clearly
detected.
The operation of the pair of functions probe_i rq_on() and probe_irq_off() is very simple to
describe and essentially follows the outline given above. The first, probe_irq_on(), uses the
function request_irq() to activate all IRQs not yet taken, which while they were not yet
allocated were marked neither as slow nor as fast interrupts, but as BAD. The handling
routine for a BAD interrupt simply switches the interrupt off again in the interrupt
controller. Then the function pi-obe_irci_on0 waits another 100 ms, thus intercepting
interrupts which might occur without having been requested and returns the mask of all still
legal IRQs. Thus, the probe_irq_off() function only needs to test for which IRQs allocated
by probe_irq_on() have since been switched off again. This test is done by comparing the
argument irqs with the bit masks for all currently active IRQs. If the two masks differ by

 Linux kernel internails - 218 -

12 For this, udelay() uses the BogoMips calculated at kernel start-up.

 Linux kernel internails - 219 -

only one bit, only one BAD interrupt has been triggered and its number is easily
determined. If there are several mismatches, or none, an error is returned.
Detecting DMA channels is more tricky. Fortunately, most cards only support a few DMA
channels, or enable them to be selected via configuration registers. If this facility is not
available, the DMA channel should be set using setup parameters. An alternative approach
is simply to allocate all possible channels and trigger a DMA transfer. However, this will
only work if the hardware provides a facility for checking whether the transfer is successful.
Finally, the way the PC speaker driver detects Stereo-on-Ones should be mentioned. As this
was taken into account at the design stage (and the three possible parallel ports are
fortunately at fixed addresses), this is very simple. Data bit 7 is connected to the control
input BUSY. As this control signal is read inverted, the following function can be derived:

/* tests whether there is a Stereo-on-One at Ip(port) */

inline static int stereo1_detect(unsigned port)

{

outb(0, LP_B(port));

if (LP_S(port) & 0x80) { outb(OxFF, LP_B(port));
return (LP_S(port) & 0x80) ? 0 : 1;

} return 0;

}

7.4 Implementing a driver

Now that the internal speaker's hardware has been discussed in detail, the question arises as
to why a special device driver is required to take care of writing and reading at some I/O
ports.

To generate 'noises' we could write a program auplay,13 which would release the
relevant ports by means of the system call ioperm:

if (ioperm(0x61,1,1) 11 ioperm(0x42,1,1) || ioperm(Ox43,1,D) {

printf("can't get I/O permissions for internal speaker\n");

exit(-1);

}

and then output the samples itself. However, this would have the following drawbacks:
13 Rick Miller's auplay program provided the initial impetus for implementing a PC speaker driver.

 Linux kernel internails - 220 -

• The loperrn system call only works successfully with privileged authorizations. The
program thus requires the set UID rights assigned to root. As a rule, no programs with
the root set UID rights should exist in UNIX systems, as they would present a major
security problem. This can normally be guaranteed by setting up special users and
groups (for example, the group kmem to use the device /dev/kmem), but it is difficult
to avoid in our example.
A device driver, on the other hand, operates with kernel authorizations and thus has
free access to all resources - a fact which should always be borne in mind when
implementing a driver, as errors in a driver could have more serious consequences than
errors in a program.14

• Probably the main problem is precise time determination for a program in a multi-
tasking system. The only way of doing this is to use wait loops of the type:

for (j = 1; j < DELAY; j++);

This busy waiting is not acceptable, as no precise determination of the sampling rate is
possible. Use of the timer interrupt is a distinctly more elegant variant, but can only be
done in the kernel.

• Another problem is control of the PC speaker. Who guarantees that no other process
will access the I/O ports at the same time and corrupt the sample? Using System V IPC
here (in this case semaphores) is like using a sledgehammer to crack a nut, especially
as there is no way of knowing whether other programs may be accessing the same
ports.

Compared with this, access restriction for devices is relatively simple and will be described
below.

Writing an 'audio daemon' which will read the sampled data from a named pipe and be run
via the file re. Local when the system is booted is only of limited help. The problem of
coordinating the timing remains.
This makes a device driver the best option. The actual implementation of the PC speaker
driver involves filling in the structure file_operations described in the previous chapter,
although the programmer will not need to complete all the functions, depending on the type
of device. A further procedure to initialize the driver must also be provided.
The names of these C functions should all be formed on the same principle to avoid
conflicts with existing functions. The safest approach is to place an abbreviation for the
name of the driver in front of the function name. This gives for the PC speaker driver, or
'pcsp' in short, the functions pcsp_imt(), pcsp_read0 and so on, which will be explained in
detail below. The same principle should be applied for external and static C variables.

14 This is only true up to a point, as incorrect use of the mode control register for I/O address 0x43 by the auplay
program could confuse the timer interrupt and cause the computer to crash.

 Linux kernel internails - 221 -

7.4.1 The setup function
Sometimes it is desirable to pass parameters to a device driver or to the LINUX kernel in
general. This may be necessary where automatic detection of hardware is not possible or
may result in conflicts with other hardware, and can be done using the LINUX boot
parameters, which can be passed to the kernel during the boot process. As a rule, these
parameters will come in the form of a command line from the LINUX loader LILO (see
Section D.2.5).
This command line will be analysed into its component parts by the function
parse_options(), which is located in init/main.c. The checksetup() i function is called for
each of the parameters and compares the beginning of the parameter with the string stored
in the bootsetups[]; field, calling the corresponding setup() function whenever these match.
The structure of the parameter should be:

name=param1,... .paramn

The checksetup() function will attempt to convert the first ten parameters into integer
numbers. If this is successful, they will be stored in a field. Index 0 in this field contains the
number of converted parameters. The remainder of the line is simply passed on as a string.
The setup function for the PC speaker driver will serve as an example here.

void pcsp_setup(char *s, int *p) {
if (!strcmp(s, "off")) { pcsp_enabled = 0;

return;
} if (pC[3] > 0)

pcsp.maxrate = p[1];
pcsp_enabled =1;

}

As this shows, the function first tests for the presence of the word 'off, and thus the boot
parameter 'pcsp=off switches the PC driver off. Otherwise, if the number of numerical
parameters is not 0, the first parameter, p[1], is used to initialize a global variable in the PC
speaker driver.

This function now needs to be registered. This involves entering it in the field
bootsetups[], as the following lines illustrate.

struct {

char *str;

void (*setup_func)(char *, int *);

} bootsetups[] = {

 Linux kernel internails - 222 -

#1fdef CONFIG_PCSP

{ "pcsp=", pcsp_setup },

#endif
{ 0, 0 { };

When a setup function is used, it should always be called before the device driver is
initialized using its init() function. This means that the setup function should only set
global variables, which can then be evaluated by the init function.

7.4.2 init

The initO function is only called during kernel initialization, but is responsible for
important tasks. This function tests for the presence of a device, generates internal
device driver structures and registers the device.
The call to the init function must be carried out in one of the following functions,15
depending on the type of device driver:

dnvers/char/nem.c
The initialization of the device drivers (for example terminals, parallel
interfaces, first initialization of sound cards and so on) is handled by
chr_dev_init().

drivers/block/ LL_rw_bl. c
The initialization of the block drivers is handled by the function blk_dev_init().

driveps/scsl/scsi.c
The initialization of the SCSI devices is handled by scsi_dev_init().
drivers/net/net_init.c

The initialization of special 'exotic' network devices takes place in
net_dev_init().

Accordingly, the function pcsp_init() is called by the function chr_dev_init in the case we
are considering.

void pcsp_init(void) {

Before LINUX can make use of the driver, it must be registered using the function
register_chrdrv(), which contains:

• the major number of the device driver,

15 The functions are called in dev1ce_setup() (file drivers/block/genhd.c) in the order
shown.

 • the symbolic name of the device driver, and

 Linux kernel internails - 223 -

• the address of the file_operation structure (in this case, pcsp_fops).

If a zero is returned, the new driver is registered. If the major number has already been
taken by another device driver, register_chrdrv0 returns the error EBUSY.

- if (register_chrdev(PCSP_MAJOR, "pcsp", &pcsp_fops»

printk("unable to get major %d for pcsp devices\n",PCSP_MAJOR);

else (

printk("PCSP-device 1.0 init:\n");

In this case, an attempt can be made to allocate a free major number by giving the
register_chrdrv() function a 0 as the major number. The function then scans the list of all
major numbers, starting at MAX_CHRDEV-1, and registers the driver under the first free
number, returning this number. If no free number can be found, register_chrdrv() returns the
EBUSY error.

if (!register_chrdev(DEFAULT_MAJOR, "device", &device_ops))
printk(" Device registered.\n");
else {

major = register_chrdev<0, "device", &device_ops));

if (major > 0)

printk("Device registered using major %d.\n", major);

else {

printk("Cannot register device'!\n");

} }

The init() function is also the right place to test whether a device supported by the driver is
present at all. This applies especially for devices which cannot be connected or changed
during operation, such as hard disks. If no device can be found, this is the time for the driver
to say so (failure to detect a device could also indicate a hardware fault, after all) and make
sure that the device is not accessed later.
For example, if a CD-ROM driver is unable to find a CD drive, there is no point in the
driver taking up memory for a buffer, as the drive cannot be added during the running of the
program. For devices which can be connected at a later stage, the situation is different: if the
PC speaker driver fails to detect a Stereo-on-One,16 it will still permit it to be included
afterwards.

16 A Stereo-on-One is a simple stereo digital-analog converter designed by Mark J. Cox,
which only occupies one parallel port and can be detected by software.

 Linux kernel internails - 224 -

If one or more devices are detected, these should be initialized within the
init function if necessary.
Prior to version 2.0, the highest address used by the kernel so far was passed as a parameter
to the init function. This could be used to allocate memory for buffers quite easily, by just
noting the address, increasing it by the required number of bytes and passing it back as a
return value to the init() function. However, the area of memory allocated in this way was
permanently occupied and also not paged out. This means that it could be used for interrupt
buffers, but was otherwise unavailable for processes to use. Another disadvantage of this
method was that it was incompatible with the module init function. Since version 2.0, init()
is called without parameters, so that the same function can also be used as a module during
loading of the driver. Because of the change in memory allocation possibilities since version
1.2, it is also no longer necessary to allocate buffers for DMA and non-swappable memory
areas permanently.

7.4.3 open and release
The open function is responsible for administering all the devices and is called as soon as a
process opens a device file. If only one process can work with a given device (as in the
example we are following), -EBUSY should be returned. If a device can be used by a number
of processes at the same time, open() should set up the necessary wait queues where these
cannot be set up in read() or write(). If no device exists (for example, if a driver supports a
number of devices but only one is present), it should return -ENODEV. The openO function is
also the right place to initialize the standard settings needed by the driver. The PC speaker
driver uses the open function to set the audio format according to the minor number of the
opened device, to allocate two buffers to receive the samples, to set both buffers to a length
of 0 and to lock the driver against later access by another process. If the file has been
opened successfully, a 0 should be returned.

static Int pcsp_open(struct mode *inode, struct file *file) {
if (pcsp_active) return -EBUSY;

switch (minor) {

case PCSP_DSP_MINOR;

pcsp_set_format (AFHT_U8);

break;

case PCSP_AUD_MINOR:

pcsp_set_format(AFMT_MU_LAW); /* ULAW-Format */ break;
• • • •

}

 Linux kernel internails - 225 -

If (! (pcsp.buf[o] = vmalloc(pcsp.ablk_s1ze)))

return -ENOMEM;

If (! (pcsp.buf[1] = vmalloc(pcsp.ablk_size))) {

vfree(pcsp.buf[0]);

return -ENOMEM;

}
pcsp.buffer = pcsp.end = pcsp.buf[O];

pcsp.in[O] = pcsp.in[1] = 0;
pcsp.timer_on = 0;
pcsp.timer_on = pcsp.frag_size = t
pcsp.frag_cnt = 0;
 pcsp_active = 1;
 MOD_INC_USE_COUNT;
 return 0;
 }.

The release function, as opposed to openO, is only called when the file descriptor for the
device is released (see Section 6.2.6). The tasks of this function comprise cleaning-up
activities global in nature, such as clearing wait queues. For some devices it can also be
useful to pass through to the device all the data still in the buffers. In the case of the PC
speaker driver, this could mean that the device file can be closed before all the data in the
output buffers have been played out. The function pcsp_sync() therefore waits until both
buffers have been emptied and then releases them.

static void pcsp_release(struct inode *inode,
struct file *file) {

pcsp_sync();
pcsp_stop_timer();
outb_p(0xb6,0x43); /* binary, mode 2, LSB/HSB, ch 2 */
vfree(pcsp.buf[0]);
vfree(pcsp.buf[1]);

pcsp_active = 0;
HOD_DEC_USE_COUNT;
}

The release function is optional; however, configurations where it might be omitted are
difficult to imagine.

 Linux kernel internails - 226 -

7.4.4 read and write

In principle, the read() and write() functions are a symmetrical pair. As no data can be read
from the internal loudspeaker, only writeO is implemented in the PC speaker driver.
However, for the sake of simplicity, we will start by considering the structure of a write
function for drivers in polling mode, taking the printer driver as an example.

static int lp_write_poLLed(unsigned int minor,

char *onst char * but, int count) {
int retval, status;

char c;

const char *temp;

temp = buf;

while (count > 0) {

c = get_user(temp);

retval = lp_char_polled(c, minor);

if (retval) {

count--; temp++;

lp_tabLe[minor].runchars++;

} else { /* error handling */

} } return temp-buf;
}

Note that the buffer buf is located in the user address space and bytes therefore have to be
read using get_user().
If a data byte cannot be transferred for a certain period, the driver should abandon the
attempt (timeout) or else reattempt it after a further delay. The following mechanism can be
used for this.

if (current->signal & ~current->blocked) { if (temp != buf)
return temp-buf;
else

return -EINTR;

}

current->state = TASK_INTERRUPTIBLE;

current->timeout = jiffies + LP_TIME(minor);

scheduLe();

 Linux kernel internails - 227 -

This first tests whether the current process has received signals. If so, the function
terminates and returns the number of bytes transferred. Then the process is switched to
TASK_INTERRUPTIBLE mode and the 'waking up' time is determined by adding the minimum
waiting time in ticks to the current value of jiffies. A call to schedule() holds up the process
for this period or until a signal is received. The program then returns to scheduLe(); current-
>timeout will be 0 if a timeout has occurred.
We now take the PC speaker driver's simplified write function as an example of an interrupt
operation.
static int pcsp_write(struct inode *inode, struct file *file,

char *buffer, int count) (
unsigned Long copy_size;

unsigned Long max_copy_size;

unsigned Long totaL_bytes_written = 0;

unsigned bytes_written;

int i;

max_copy_size = pcsp.frag_size \

? pcsp.frag_size : pcsp.ablk_size;

do {

bytes_written = 0;

copy_size = (count <= max_copy_size) \

? count : max_copy_size;

i = pcsp.in[O] ? 1 : 0;

if (copy_size && !pcsp.in[i]) {

memcpy_fromfs(pcsp.buf[i], buffer, copy_size);

pcsp.in[i] = copy_size;

if (! pcsp.timer_on) pcsp_start_timer();
bytes_written += copy_size;

buffer += copy_size;

}

if (pcsp.in[O] && pcsp.in[1]) {

interruptibLe_sLeep_on(&pcsp_sleep);

if (current->signaL & ~current->bLocked) { if (totaL_bytes_written +
bytes_written)
return totaL_bytes_written + bytes_written;

eLse return -EINTR;} }

 Linux kernel internails - 228 -

total_bytes_written += bytes_written;

count-= bytes_written;

} while (count > 0);

return total_bytes_written;

}

Data from the user area are first transferred to the first freei buffer by means of a call to
memcpy_fromfs(). This is always necessary, as the interrupt may occur independently of the
current process, with the result that the data cannot be fetched from the user area during the
interrupt, since the pointer buffer would be pointing to the user address space for the current
process. If the corresponding interrupt is not yet initialized, it is now switched on
(pcsp_start_timer()). As the transfer of data to the device takes place in the ISR, write() can
begin filling the next buffer.
If all the buffers are full, the process must be halted until at least one buffer becomes free.
This makes use of the interruptible_sleep_on() function (see Section 3.1.5). If the process
has been woken up by a signal, writeO terminates; otherwise the transfer of data to the
newly released buffer continues.
Let us take a look at the basic structure of the ISR.

int pcsp_do_timer(void) {
•if (pcsp.index < pcsp.in[pcsp.actual]) (/* output of one
byte */

} if (pcsp.index >= pcsp.In[pcsp.actual]) {
i, pcsp.xfer = pcsp.index = 0;

pcsp.in[pcsp.actual] = 0;

pcsp.actual ^= 1;

pcsp.buffer = pcsp.buf[pcsp.actual];

if (pcsp_sleep)

wake_up_interruptible(8pcsp_sleep);

if (pcsp.in[pcsp.actual] == 0) pcsp_stop_timer();
}

• • •

}

As long as there are still data in the current buffer, these are output. If the buffer is empty,
the ISR switches to the second buffer and calls wake_up_interruptible() to wake up the
process. If the second buffer is empty too, the interrupt is disabled. The if before the call to
the function is not in

 Linux kernel internails - 229 -

fact necessary, as wake_up_interruptible() carries out this test itself. It is included here for
reasons of timing only.

As the example shows, this ISR does not fit the framework of fast and slow interrupts
explained earlier. This is because the timer interrupt in LINUX is a slow interrupt, but for
reasons of speed the PC speaker driver requires a fast interrupt. The PC speaker driver
therefore contains a 'third' type, with features of both fast and slow interrupts. The routine
pcsp_do_timer() is called like a fast interrupt (but with the interrupt flag set, meaning it is
interruptible); if it returns 0, the interrupt is terminated. Otherwise, the original timer
interrupt is started as a slow interrupt. As the original timer interrupt needs to be called far
less often, this approach gives a major speed advantage.

7.4.5 IOCTL
Although a device driver aims to keep the operation of devices as transparent as possible,
each device has its own characteristics, which may consist in different operation modes and
certain basic settings. It may also be that device parameters such as IRQs, I/O addresses and
so on need to be set at run-time.

The parameters passed to the ioctl function are an instruction and an argument. Since,
under LINUX, the following holds:

sizeof(unsigned long) == sizeof(void *)

a pointer to data in the user address space can also be passed as the argument. For this
reason, the iocti function usually consists of a long switch instruction, with an appropriate
type conversion occurring for the argument. Calls to iocti usually only change variables
global to the driver or global device settings. Let us consider a fragment of the PC speaker
driver's iocti function.
static int pcsp_ioctl(struct inode *inode, struct file *file,

unsigned int cmd, unsigned long arg) {

unsigned long ret;

unsigned long *ptr = (unsigned long *)arg;

int i, error;

switch (cmd) {

case SNOCTL_DSP_SPEED:

error = verify_area(VERIFY_READ, ptr, 4);

if (error)

return (error);

arg = pcsp_set_speed(get_user(ptr));

arg = pcsp_calc_srate(arg);

return Opcsp_ioctl_out(ptr, arg);

 Linux kernel internails - 230 -

case SNDCTL_DSP_SYNC;
pcsp_sync();

pcsp_stop_timer();

return (0);

}

The command SNDCTL_DSP_SPEED converts the argument arg to a pointer and uses it to read
the new sampling rate. The function pcsp_calc_srate() then simply calculates a number of
time constants depending oh the new sampling rate. SNDCTL_DSP_SYNC, on the other hand,
completely ignores the argument and calls the function pcsp_sync(), which suspends the
process until all the data still in the buffer have been played out. This synchronization
procedure becomes necessary if, for example, the sampling rate or the play mode (mono or
stereo) is changed during the playback of audio data or if the output of audio data needs to
be synchronized with events in another process.

Thus, the ioctl function can also be used to execute other functions within the driver
which are not included in the Virtual File System. Another example of this behaviour is
contained in the driver for the serial interface: the TIOCSERCONFIG command initiates
automatic detection of the UART chip and of the IRQs used for the interfaces.

In developing a custom driver, the coding of the IOCTL commands should conform to
a standard. The file <linux/ioctL.h> contains macros which should be used to code the
individual commands. If these macros are used, the various IOCTL commands can easily
be decoded.

As illustrated in Figure 7.3, bits 8-15 of the command contain a unique identifier for
the device driver. This ensures that if the IOCTL command is erroneously used on the
wrong device, an error will be returned, instead of possibly incorrectly configuring this
device driver. The unique identifier recommended for the device driver is its major number.

The macros to encode the IOCTL commands are given the driver identifier as the first
argument and the command number as the second:

_IO(c,d) for commands with no argument,

Figure 7.3 Coding of IOCTL commands.

 Linux kernel internails - 231 -

_low(c,d,t) for commands which write back to the user address space a value of the C type
t,

_IOR(c,d,t) for commands which read a value of the C type t from the user address space,
_lowR<c,d,t> for commands which both read and write.
In conclusion, let us take as an example the definitions for some IOCTLs for the sound
driver.

#define SNDCTL_DSP_RESET _IO CP', 0)

#define SNDCTL_DSP_SYNC _IO CP', 1)

#define SNDCTL_DSP_SPEED _IOWR('P', 2, int)

#define SNDCTL_DSP_STEREO _IOWR('P', 3, int)

Thus, while the SNDCTL_DSP_RESET command, for example, needs no arguments,
SNDCTL_DSP_SPEED reads an argument of the int type from the user address space and
writes one back. Of course, the file <linux/ioctl.h> also contains macros to simplify the
decoding of the IOCTL commands:
_IOC_DIR(CMD) returns whether it is an input or output command, _IOC_TYPE(CMD)
returns the device identifier, _IOC_NR(CMD) returns the command without type
information, _IOC_SIZE(CMD) returns the size of the argument received in bytes.
The file Documentation/ioctl-number.txt holds information on device identifiers already in
use.

7.4.6 select

Although select() is not implemented, its operation will be described here since this function
is particularly useful for character devices. As an example, we shall take the implementation
of select() for the ATI bus mouse driver:

static int mouse_select(struct inode *inode, struct file *file,

int sel_type, select_table * wait) {
if <sel_type != SEL_IN) return 0;

If (mouse.ready) return 1;
select_wait(&mouse.wait,wait);

return 0;

}
The task of the select function is to check whether data can be read from the device
(sel_type == SEL_IN) or written to it (SEL_OUT). SEL_EX can also be used

 Linux kernel internails - 232 -

to wait for the occurrence of an exception condition. As almost the entire complexity of this
is handled by the Virtual File System, the task of the select function is simple to describe.
If the argument wait is NULL, the device will only be interrogated. If it is ready for the
function concerned, select() will return a 1, otherwise a 0. If wait is not NULL, the process
must be held up until the device becomes available. However, sleep_on() is not used;
instead, the task is taken care of by the function \

void select_wait(struct wait_queue **wait_address,select_table *p)

The function expects as arguments a wait queue and the last argument given to the select
function. As select_wait() immediately returns if this latter argument is NULL, the
interrogation can be dispensed with, giving a structure for the function as shown in the
example above.
If the device becomes available (usually indicated by an interrupt), the process is woken up
by a wake_up_interruptibte(wait_address). This is indicated by the driver's mouse interrupt.

void mouse_interrupt(int unused) {

if (dx != 0 || dy != 0 || buttons != mouse.Latch_buttons) {
mouse.latch_buttons |= buttons; mouse.dx += dx;
mouse.dy += dy;
mouse, ready =1;

wake_up_interruptible(&mouse.wait);
}

}

7.4.7 Lseek

This function is not implemented in the PC speaker driver. It is also only of limited
relevance to character devices, as these cannot position. However, as the Virtual File
System's standard function Lseek() does not return an error message, an I. seek function
must be explicitly defined if the driver is required to react to LseekO with an error message.

7.4.8 mmap

The mmap function is used to map the device to the user address space. This function is not
relevant to character devices, as it assumes the 'addressing' of data within the device. This
means that mmap() is only for use by file systems

 Linux kernel internails - 233 -

and at best by block devices. An exception to this rule is the device /dev/mem, as this (of
course) does not represent an infinite data stream, but the finite and
addressable memory.

7.4.9 readdir, fsync and fasync

These functions are primarily intended for file systems and are not implemented in the PC
speaker driver. As the file_operations structure is not just used for devices, specifically
character devices, it includes functions not used by device drivers. The functions readdir()
and fasync(), for example, are meaningless for devices. Although block devices may have
an fsync function, they will then be using the block_fsync() function in the cache.

7.4.10 check_media_change and revalidate

These functions are not implemented in the PC speaker driver and are not relevant to
character devices. Block devices supporting exchangeable media should implement at least
check_media_change(). This function tests whether a media change has taken place and if
so returns a 1. If check_media_change() has detected a change, revalidate() is called by the
VFS. This function must be defined by block device drivers supporting media of different
formats, such as floppy disks or exchangeable hard disks. It should read the parameters for
the new media and configure the driver accordingly. For hard disk drivers, for example, this
will include reading in the partition table.

7.5 An example of DMA operation

To examine DMA in more detail, we need to start by considering how the DMA controller
is programmed. However, the following is only intended as a brief introduction: for more
detailed information the reader is referred to Messmer (1997).
As mentioned earlier, the DMA has a base register which holds the lower 16 bits of the
address of the area of memory to be transferred. A second 16-bit register, the base count
register, contains the number of data transfers to be carried out. This register is decremented
on each data transfer, and the point at which a value of OxFFFF is reached is called terminal
count (TC). Every DMA controller possesses four channels, with a base register and a base
count register assigned to each channel. An input signal DREQx and an output signal
DACKx are likewise assigned to each channel. A device requests a DMA transfer by
activating the DREQ signal. When the DMA controller has obtained control over the bus, it
indicates this by means of the DACK signal. At any given time, however, only a maximum
of one DACK can be

 Linux kernel internails - 234 -

active, and the individual DREQ signals are therefore given different priorities. Usually it is
DREQO which has the highest and DREQ3 the lowest priority. By modifying the request
register, DMA transfer can also be activated 'by hand', as if the relevant DREQ signal had
been received. However, this facility is not normally used; it is provided in the PC/XT and
other machines to allow a memory-to-memory transfer, but this is not possible on an AT, as
DMA channel 0 of the master controller, which is required fori this mode, is used to cascade
the slave controller.
In all, each DMA controller possesses 12 different registers governing its operation.
However, the functions in the LINUX kernel fully encapsulate these registers, so any further
explanation is unnecessary here.
The DMA controller also supports a number of different transfer modes, which must be set
in the mode register for each channel. These include the following operation modes:

• Demand transfer
In this mode, the DMA controller continues transferring data until the terminal count is
reached or the device deactivates the DREQ. The transfer is then suspended until the
device reactivates the DREQ.

• Single transfer
In this mode, the DMA controller transfers one value at a time and then returns the bus
to the processor. Each further transfer must be requested by the DREQ signal or an
access to the request register. This mode is used for slow devices, such as floppy disks
and scanners.

• Block transfer
In this mode, the DMA controller carries out a block transfer without relinquishing the
bus. The transfer is initiated by a DREQ.

• Cascade
Cascading of another DMA controller: in this mode the DMA controller passes on the
DMA requests it receives and thus enables more than one controller to be used. By
default, DMA channel 0 of the second controller (or DMA channel 4 in consecutive
numbering), which is the master in the AT, is in this mode.

These basic modes may be used in both read and write transfers. The DMA controller can
both increment and decrement the memory addresses, enabling a transfer to start with the
highest address. In addition, auto-initialization can be selected and deselected. If it is
selected, the relevant DMA channel will automatically be reinitialized to the starting value
when the terminal count is reached. This allows constant amounts of data to be transferred
to or from a fixed buffer in memory.

Let us take as an example of DMA operation the implementation of a driver for a
hand-held scanner. In the same way as the IRQs to be used, the DMA channel must first be
allocated.

 Linux kernel internails - 235 -

if ((err = request_dra(AC4096_DMA, AC4096_SCANNER_NAME))) {

printk("AC 4096: unable to get DMA%d\n", AC4096_DMA);

return err;

}

The functions request_dma() and free_dma() work in a similar way to request_irq() and
free_irq() described earlier. The request_dma() function expects to be given the number of
the DMA channel and the name of the driver wishing to use this channel. However, this
name is only inspected by the Proc file system. As with IRQs, DMA channels should only
be allocated if they are about to be used: as a rule, this will be done in a device driver's open
function. If a driver is using both IRQ and DMA channels, the interrupt should be allocated
first, followed by the DMA channel.
The allocation of buffers can also be carried out in the open function, but also as late as the
read() or write() stage, as memory is a far less critical \resource. Since LINUX version 1.2 it
is no longer necessary to assign permanent buffers for DMA transfer when booting the
kernel. This means that device drivers can now also be implemented as modules using
DMA transfer. The LINUX memory administration routines themselves ensure that memory
allocated for DMA buffers is below the 16 Mbytes limit and no 64 Kbyte boundary is
crossed. To use this facility, memory must be allocated using the kmaLLoc() function and
the additional flag GFP_DMA must be passed to it.

tmp = kmaLloc(blksize + HEADERSIZE, GFP_DMA | GFP_KERNEL);

The DMA transfer can now be initiated. As mentioned above, the functions for this
encapsulate the hardware to an extreme degree, so that the DMA transfer is easy to
program. As a general rule, it will even conform in all cases to the sequence shown in the
following example.

static void start_dma_xfer(char *buf) {
cli();

disabLe_dma (AC4096_DMA) ;
clear_dma_ff(AC4096_DMA);
set_dma_mode<AC4096_DMA, DNA_MODE_READ);

set_dma_addr(AC4096_DMA, (unsigned int) buf);
set_dma_count(AC4096_DMA, hw_modeinfo.bpl);

enabLe_dma(AC4096_DMA);
sti();

}
The function disable_dma() disables the DMA transfer on the channel given to the function
as an argument. The programming of the DMA controller can

 Linux kernel internails - 236 -

now be carried out. The cLear_dma_ff() function deletes the DMA pointer flip-flop. As the
DMA controller only has 8-bit data ports, accesses to internal 16-bit registers have to be
broken up. The DMA pointer flip-flop indicates whether the next value is to be interpreted
as LSB (least significant bit) or MSB (most significant bit). Each time it is deleted, the
DMA controller expects the LSB as the next value. As the calls to set_dma_addr0 and
set_dma_count() rely on this, cLear_dma_ff() should be called once before these functions
are used. The function set_dma_mode() sets the mode of the DMA channel. The modes
supported by LINUX via pre-defined macros are:

• DMA_MODE_READ
Single transfer from device to memory without auto-initialization, addresses
incremented.

• DMA_MODE_WRITE
Single transfer from memory to device without auto-initialization, addresses
incremented.

• DMA_MODE_CASCADE
Cascading of another controller.

However, these modes are adequate for most cases.
All that remains is to set the address of the buffer area by a call to set_dma_addr0 and the
number of bytes to be transferred via set_dma_count(). Both functions take care of the
proper conversion of the values they are given for the DMA controller and therefore expect
even addresses and an even number of bytes if a DMA channel for the second controller is
used.
If the device generates an interrupt after the transfer is completed, an ISR should be
implemented matching the one for pure interrupt operation. After testing, if necessary,
whether the interrupt really has been triggered by the device concerned, the waiting process
must be woken up by a call to wake_up_interruptibLe() and - if there is still data to be
transferred - the next DMA transfer must be initiated.
If, as in our example, the device does not trigger an interrupt, the DMA controller must be
interrogated as to whether the end of the DMA transfer has been reached. This involves
interrogating the status register in the relevant DMA controller. The lower four bits of the
register indicate whether the corresponding channel has reached a terminal count. If the bit
is set, the TC has been reached and the transfer is complete. Every time the status register is
read, however, these bits are cleared. The following function can be used for the
interrogation procedure.

int dina_tc_reached(int channel) {
if (channel < 4)

 Linux kernel internails - 237 -

return < inb(DMA1_STAT_REG) & (1 << channel));

else
return < inb(DMA2_STAT_RE6) & (1 « (channel & 3)));

} This can be used in a polling routine, for example as follows:

int dma_polled(void) {
unsigned long count = 0; • do (

count ++;

Tf(need_resched) scheduleO;
 } whiLe(!dma_tc_reached(dma_channel) && count < TIMEOUT);
However, depending on the device concerned, this may still result in a loss of data, as the
tine before the process is next activated (that is, before the process returns from schedule())
cannot be predicted. When using a scanner, this may mean the loss of scan lines if the
device has no buffer or only a very small one. Our example therefore uses a different
option: the DMA controller is interrogated in a tinier routine which is called 50 times per
second. This routine operates just like the corresponding ISR, but instead of testing whether
the device has triggered the interrupt, it tests whether the DMA transfer has been completed.

static inline void start_snooping(void) {
timer.expires = 2;

timer, function = test_dma_rdy;

add_timer(8timer);

}
static void test_dma_rdy(unsigned long dummy) {

static int needed_bytes;

char cmd;

•if (! xfer_going) return;

start_snooping(); /* restart timer */

if (dma_tc_reached(AC4096_DMA)) {

 Linux kernel internails - 238 -

stop_scanner(); /* halt scanner */

/* if a sufficiently large buffer Is still free */ if (WR_BUFSPC >=
hw_modeinfo.bpl) {

/* Initiate next DMA transfer */ start_dma_xfer(WR_ADDR);
} else xfer_going = 0;
} }

 Linux kernel internails - 239 -

8 Network implementation

 Then a voice spoke out of the chaos and said,
'Be quiet, it could get worse'. And I

kept quiet, and it got worse.
Unknown network administrator

8.1 Introductory summary 8.5 IP
8.2 Important structures 8.6 UDP fc 8.3 Network devices under LINUX 8.7

TCP 8.4 ARP - the Address Resolution 8.8 The packet interface - Protocol
an alternative?

Nowadays, support for network communication is one of the basic demands made of an
operating system. For LINUX, this requirement existed from the start. Such communication
lays the foundations for a range of network ser- vices, including services familiar to most
users such as ftp (file transfer), telnet and rlogin (remote log-in). In addition, there are
facilities to use file systems on other computers (NFS), receive e-mail and NetNews and
much more. The type of network used (OSI, IPX, UUCP and so on) is a secondary
consideration as far as the user is concerned.

In the UNIX world, the dominating protocols are those collected under the name of
TCP/IP. LINUX is modelled on UNIX and so, as might be expected, an
implementation of TCP/IP is provided which concentrates mainly on
communication via Ethernet. But LINUX can do more than this. Using SLIP (Serial
Line Interface Protocol) or FLIP (Parallel Line Interface Protocol} it is possible to
link computers together via their serial or parallel interfaces. The capabilities of the
SLIP protocol are particularly impressive, as it can use modems and telephone
lines to set up network links to anywhere in the world.

In its AX.25 protocol, LINUX even provides a way of communicating between
computers by radio. Communication via IPX, a protocol developed by

 Linux kernel internails - 240 -

Novell, has also been realized. The world of Apple data is accessible through an adaptation
of the AppleTalk protocol. Both for AppleTalk and IPX, software packages have been
developed that allow file access and printing.
In this chapter, we deal with the characteristics of the LINUX implementation of TCP/IP. It
is not the authors' intention to provide a description of how TCP/IP works,' but rather to
look at the design of its implementation under LINUX. The chapter therefore assumes that
the reader is familiar with the basics of TCP/IP.

8.1 Introductory summary

For the 'normal' programmer, access to network services is available via sockets. Under
LINUX, these have an extended functionality. The interface consists of the following C
library routines:

int socket(int addr_fami Ly,int type,int protocol);

int bind(int s,struct sockaddr *address,int address_len);

int listen(int s,int backlog);

int connect(int s,struct sockaddr *address,int address_len);

int accept(int s,struct sockaddr *address,int *address_len);

int send(int s,char *msg,int len,int flags);

int sendto(int s,char *msg,int len,int flags, struct sockaddr *to, int
tolen);
int recv(int s,char *buf,int Len,int flags);

int recvfrom(int s,char *buf,int len,int flags,

struct sockaddr *froro,int *fromlen);

int getsockopt(int s,int level,int oname,char *ovalue,

int *olen);

iht setsockopt(int s,int level,1nt oname,char *ovalue,

int *olen);

All of these functions are based on the system call socketcall (see page 371). In addition, the
system call 7-oct(to socket file descriptors enables network-specific configurations to be
changed.
As the C library routine socket 0 returns a file descriptor, the usual I/O system calls, such as
read and write, are of course also applicable.
A computer can be connected to a network via a great variety of hardware including, for
example, Ethernet cards and D-Link adaptors. The

' For more detailed reading on the subject of TCP/IP, we recommend Comer (1991) Comer
and Stevens (1991), Stevens (1994) and Washbum and Evans (1993).

 Linux kernel internails - 241 -

differences between these are hidden behind a unified interface, namely the network
devices. The network devices assigned to Ethernet cards have the names ethO, eth1 and so
forth. They also include the D-Link adaptors. The names for the devices handling SLIP and
PLIP links are slO, sl1, ... and plipO, plip1, ... respectively.
There is no representation in the file system for these network devices. They cannot be set
up in the /dev/ directory using the mknod command like ''normal' devices. A network device
can only be accessed if the initialization i function has identified the corresponding
hardware.

8.1.1 The layer model of the network implementation
I As communication with network components presents a fairly complex task, it : uses a
layer structure like the file system. The individual layers correspond to levels of abstraction,
with the level of abstraction increasing from layer to layer, starting with the hardware.
When a process communicates via the network, it uses the functions provided by the BSD
socket layer. This takes care of a range of tasks similar to those handled by the Virtual File
System and administers a general data structure for sockets which we shall call BSD
sockets. The BSD socket interface has been selected by virtue of its widespread use, which
simplifies the porting of network applications, most of which are already quite complex.
Below this layer is the INET socket layer. This manages the communication end points for
the IP-based protocols TCP and UDP. These are represented by the data structure sock,
which we shall call INET sockets.
In the layers we have mentioned so far, no type distinction is as yet made between the
sockets in the AF_INET address family. The layer that underlies the INET socket layer, on
the other hand, is determined by the type of socket, and may be the UDP or TCP layer or
the IP layer directly. The UDP layer implements the User Datagram Protocol on the basis
of IP, and the TCP layer similarly implements the Transmission Control Protocol for
reliable communication links. The IP layer contains the code for the Internet Protocol. This
is where all the communication streams from the higher layers come together.
Sockets of the SOCK_PACKET type are not included in this survey. Below the IP layer are
the network devices, to which the IP passes the final packets. These then take care of the
physical transport of the information.
True communication always takes place between two sides, producing a two-way flow of
information. For this reason, the various layers are also connected together in the opposite
direction. This means that when IP packets are received, they are passed to the IP layer by
the network devices and processed. The interaction between the different layers is
illustrated in Figure 8.1.

 Linux kernel internails - 242 -

Figure 8.1 The layer structure of a network.

8.1.2 Getting the data from A to B
To understand better the interaction between the various parts of the network
implementation, we shall follow the data which are sent through the network by process A
to process B.
We assume that both processes have already created a socket and are connected to each
other via connect 0 and accept 0, and will restrict our survey to one TCP connection under
LINUX. Data are to be sent from process A to process B. They are stored in a buffer of length
Length pointed to by the data pointer. Process A contains the following fragment of code:

write(socket,data. Length);

which it uses to call the kernel function sys_write() (see Section 6.2.6 and page 335), which
is a component of the Virtual File System.
This tests for a number of conditions, including whether a read access may be made to the
area of memory referenced by data (see verify_area() in Section 4.2.5) and whether a write
operation is entered in the descriptor's file operation vector. To use the Virtual File System,
a socket provides the classical file operations in a vector.
The write operation for the BSD sockets is sock_urite(), which only takes care of
administrative functions. This searches for the socket structure associated with the inode
structure. Then, the parameters of the write operation are transferred into a message
structure. As the socket we are concerned

 Linux kernel internails - 243 -

with belongs to the AF_INET address family, sock_write() calls the send function
inet_sendmsg(), to which it passes as parameters the pointer to the BSD socket data
structure, the pointer to the message structure, the length of the data, and an indication of
whether it is permissible to block the function, plus several additional flags.
From the data component of the BSD socket passed to it, the function inet_sendmsg()
extracts a pointer to the INET socket structure sock. In the present example, this structure
contains the essential data used in the TCP and IP layers. The prot pointer in this structure
refers to the operation vector of the TCP implementation. The inet_sendmsg() function
calls this vector's send operation, tcp_sendrasg(), passing to it parameters consisting of the
pointer to the INET socket, the pointer to the message structure, the length of the data, the
blocking flag and the additional flags. The flags are used to indicate data to be given
priority transfer 'out of band'. In the present example, however, this is not the case.
Up to now, the data have only passed through the different abstraction levels. In
tcp_sendmsg(), the actual handling of communication aspects proper begins. After tests for
a number of error conditions, such as the socket not being ready to send, the work itself is
carried out by the function do_tcp_sendmsg0. Memory, which will later contain an sk_buff
structure, the header and the TCP segment, is requested via a call to the TCP protocol
operation wmaLLoc. The do_tcp_sendmsg() function initializes the sk_buff structure by
calling the protocol operation buiLd_header() to complete the packet header. In the present
example, do_tcp_sendmsg0 calls the ip_buiLd_header() operation. Once the headers for
the lower-layer protocols have been initialized, the TCP protocol header is added by means
of a call to tcp_bui Ld_header().
The TCP send operation now copies the data from the process address space to the TCP
segment for the almost complete packet (see memcpy_fromfs() in Section 4.1.2). Usually,
after this, the checksum is calculated. To optimize this process, a function
csum_partiaL_copy_fromuser() is available which carries out both actions in one step. If
the length of the data exceeds the maximum segment size (MSS) they are divided into a
number of packets. However, it is also possible for short data blocks from a number of
send operations to be collected together in one TCP segment. A feature of LINUX is that all
the headers are written to memory in a linear sequence. In other TCP/IP implementations,
the packet is stored as a vector of separate fragments.
The packet stored in the sk_buff structure is transferred by a call to tcp_send_skb(). This
adds a variety of protocol-specific information to the header - for example, the checksum is
calculated on the TCP segment. A call to the protocol operation queue__xmit() (in the
present case, the ip_queue_xmit() function) then slots the packet into the wait queue of
packets ready for transfer.
Now, the ip_queue_xmit() function adds to the IP protocol header values which can only
now be established, such as the checksum for the IP

 Linux kernel internails - 244 -

header. It then passes the packet to the function dev_queue_xmit(). The discussion below
assumes that the device is an Ethernet card of type WD8013.

The dev_queue_xmit() function finally calls do_dev_queue_xmi()0 which uses the
pointer hard_start_xmit. For the WD8013 card, this points to the function ei_star-t_xmit(),
which passes the data to the network adaptor, which in turn sends it to the Ethernet.

We could say at this point that the data are halfway there. The data, embedded in an
Ethernet packet, are received by a network card in the destination computer. As before, we
assume here that the adaptor is a WD8013 card.

After receiving the Ethernet packet the network card triggers an interrupt. This is
handled by the ei_interrupt() function. If the transfer via the Ethernet was completed
without error, the ei_receive() function will be called with a reference to the network
device. This uses the block_input operation to write the packet to a newly set-up buffer,
using, in our example, the wd_bLock_input() function. As for the send operation, this
buffer includes space for the sk_buff structure, which is appropriately initialized in
ei_receive() after the call to wd_block_input().

Once this has been done, the function netif_rx() is called with the packet as argument.
This adds it to the backlog list. There is only one list of this type in the entire system,
which contains all the packets received by the system. All the functions so far described for
receiving packets are executed within the interrupt. The netif_rx() function then marks the
network implementation's bottom-half routine in the bottom-half mask bh_mask.

The net_bh() function is now called by do_bottom_half() with the mask marker set. The
do_bottom_haLf() function is called after system calls and slow (normal) interrupts. The
call is not made if an interrupt has interrupted another interrupt or do_bottom_haLf() itself.
Further information on the bottom-half mechanism is given in Section 3.3.1.
The net_bh() function sets the raw pointer of union h in the sk_buff structure to the
beginning of the protocol packet, after the Ethernet header. The packet type in the Ethernet
header then decides which receive function for the protocol is called. In the SLIP and PLIP
protocols the type is not held in the packet header but is implicit, as these protocols only
support IP packets.
In the case considered here, an IP packet has been received, and the receive function
ip_rcv() is called. This demonstrates the advantages of the union h. In the bottom-half
routine, the raw pointer was set to the header of the protocol packet. The IP header can now
be accessed via the iph pointer provided by the union h without the need to initialize it
specially, as it is identical to the raw pointer.
In ip_rcv(), the header is checked for correctness and the handling routines for the IP
options are executed if necessary. Packets addressed to other hosts are sent on by the
function ip_forward0 and fragmented packets are reassembled by ip_defrag().

 Linux kernel internails - 245 -

Let us assume that the packet has not been fragmented. The raw pointer 'in the union h in
the sk_buff structure is now set to the end of the IP header and thus points to the start of the
header for the next protocol. This protocol is specified in the protocol field of the IP
header; in the present case, it is TCP. The appropriate protocol receive function for this
protocol is now called. For TCP, this is tcp_rcv().
This calls the get_tcp_sock() function to determine, by reference to the sender and
destination addresses and the sender and destination port numbers, the INET socket to
which the TCP segment is addressed. After a number of consistency tests, tcp_data() enters
the buffer sk_buff in the list of data received for the socket. If fresh data have been
received in the sequence of the data flow, the appropriate acknowledge packets are sent
after a delay and the INET socket's data_ready operation is called. This wakes up all the
processes waiting for an event at the socket. The delay with which the acknowledgements
are sent is necessary to avoid sending superfluous packets over the network. Up to this
point, all the actions related to receiving a packet have been carried out in the kernel,
outside the program flow of any process. The processor time used for this cannot be
assigned to any process.
Process B wishes to receive the data sent by process A. To do so, it executes a read
operation with the socket file descriptor.

read(socket,data,Length);

This call is passed to a C library function via different abstraction levels and calls to
sys_read(), sock_read(), inet_rcvmsg() and tcp_rcvmsg(). If the INET socket's receive
buffer is empty, the process is forced to block. However, blocking can be prevented by
setting the 0_NONBLOCK flag using fcntl. As mentioned in the previous paragraph, the
process is woken up once data are received. After the process has been woken up, or if data
are already present in the buffer on the read call, these are copied to the data address in the
user area of the process's memory.
This completes the data's travels from process A to process B, which have led us through
various layers of the operating system. The data have been , copied only four times: from
the user area of process A to kernel memory, from there to the network card, from the
network card in the second computer to kernel memory and from there to the user area of
process B. In the LINUX implementation of the TCP/IP code, a great deal of care has been
taken to avoid unnecessary copy operations.
The network implementation is very tightly interwoven: there is a wealth of mutually
dependent functions, and it is not always easy to say to which layer any of these belong. A
glance at the sources shows that many of these functions are very long (more than 200
lines of source text), making them far

 Linux kernel internails - 246 -

from easy to follow. To be sure, the complexity of the C sources is a function of the subject
matter; but it is also a clear indication of the importance of good design in a network
implementation. In LINUX version 1.2, the interfaces between the layers were tailored to IP,
but several improvements have been integrated into version 2.0.
It is widely believed that a network implementation is a balancing act between speed of
operation and tidy structuring. The authors, however, do not consider these two aspects to
be necessarily exclusive. Other areas of the kernel (such as the Virtual File System) are
proof of this.

8.2 Important structures

One way of achieving tidy structuring is correct definition of the data structures forming the
basis of any function in a network. This section therefore provides an introduction to the
many different data structures in the LINUX network implementation.

8.2.1 The socket structure
The socket structure forms the basis for the implementation of the BSD socket interface. It
is set up and initialized with the system call socket. This section only deals with the
characteristics of sockets in the AF_INET address family.

struct socket{
short type;

Valid, entries for type are SOCK_STREAM, SOCK_DGRAM and SOCK_RAU. Sockets of the type
SOCK_STREAM are used for TCP connections, SOCK_DGRAM for the UDP protocol and
SOCK_RAW for sending and receiving IP packets. socket_state state;

In state, the current state of the socket is stored. The most important states are
SS_CONNECTED and SS_UNCONNECTED.

long flags;
struct proto_ops *ops;

For a socket in the INET address family, the ops pointer points to the operation vector
inet_proto_ops, where the specific operations for this address family are entered.

void *data;

 Linux kernel internails - 247 -

Figure 8.2 Relationships between the substructures within a socket.

The data pointer points to the substructure of the socket corresponding to the address
family. For AF_INET, this is the INET socket (see Figure 8.2).

struct socket *'conn; struct socket
*iconn;

struct socket *next;

struct wait_queue **wait;

struct inode *inode;

struct fasync_struct *fasync_list;

struct file *file;

};

The pointers conn, iconn and wait are not used by sockets in the AF_INET address family. In
LINUX, each file is described by an inode. There is also an inode for each BSD socket, so
that there is one-to-one mapping between the BSD sockets and their respective inodes. A
reference to the corresponding inode is stored in inode, whereas file holds a reference to the
primary file structure associated with this node.

However, this can give rise to certain problems during asynchronous processing of
files. Different file structures can refer to one and the same inode and as a result to the same
BSD socket. If processes have selected asynchronous handling of this file, all the processes
need to be informed of events. For this reason, they are held in fasync_list. The relationship
between inodes and file structure is described in more detail in Sections 3.1.1 and 6.2.6.

8.2.2 The sk_buff structure - buffer management in the network
The task of sk_buff buffers is to manage individual communication packets (see Figure 8.3).

 Linux kernel internails - 248 -

Figure 8.3 Normal use of the sk_buff structure.

struct sk_buff {

struct sk_buff *next, *prev;

struct sk_buff_head *list;

unsigned Long magic_debug_cookie;

To support fault-tracing, the type of list including the buffer is entered here.

struct sk_buff *link3;

Exactly as for the first two pointers in the structure, this pointer is required for linking in a
circular list and various other lists.

struct sock *sk;

The pointer sk points to the socket to which the buffer belongs (see Figure 8.4).

'volatile unsigned long when;

struct timeval stamp;

The variable when indicates when the packet was last transferred. The time unit used is
1/100 of a second. The value is simply taken over from the kernel variable jiffies (see
Section 3.2.4) at the time of transfer.
However, the buffers are used not only when sending packets but also when receiving them.
When a packet is forwarded by the network devices to the higher layers of the network
implementation, the function netif_rx() enters the current time in the structure stamp, using
the kernel variable xtine, which is also updated by the timer interrupt.

 Linux kernel internails - 249 -

Figure 8.4 The normal localization of sk_buff structures.

struct device *dev;

In the administration of network buffers, the identity of the network device by or via which
a packet is sent or received is of great importance. A pointer to the device is therefore
entered in dev.

union {

struct tcphdr *th;

struct ethhdr *eth;

struct iphdr *iph;

struct udphdr *uh;

unsigned char *raw;

void *filp;

} h;

Figure 8.5 Transfer of a packet before calling the xmi t function
(the buffer is in the socket)

 Linux kernel internails - 250 -

Figure 8.6 Transfer of a packet after calling the xmit function (the buffer

is now in the device, for example, ethO).

union {

unsigned char *raw;

struct ethhdr *ethernet;

} mac; struct iphdr *ip_hdr;

This union, mentioned earlier, serves in general as a pointer to various header structures
within the packet. The additional pointer to the IP header is used by sockets working
directly with the IP.

unsigned long Len, csum;

The variable Len gives the length of the packet; csum holds the checksum if it has been
calculated.

_u32 saddr, daddr, raddr;

The source and destination address respectively are held in saddr and daddr, while raddr
holds the next address to which the packet is to be sent.

_u32 seq, end_seq, ack_seq;

unsigned char proto_priv[16];

volatile char acked, used, free, arp;

unsigned char tries. Lock, Localroute,

pkt_type, pkt_bridged,

ip_sumraed;

unsigned short users, protocol,

truesize;

These are some variables used by different parts of the network implementation.

 Linux kernel internails - 251 -

atomic_t count;

struct sk_buff *data_skb;

unsigned char *head, *data, tall, *end;

void (*destructor)(struct sk_buff *);

These elements are concerned with the management of the memory belonging to the
structure. Unlike in implementations up to version 1.2, data need not necessarily be located
directly behind the sk_buf-f structure, but can also be stored in a separate sk_buff
structure. This makes the cloning function work very fast. It copies the sk__buff structure,
sets the reference counter to 1 and increments the reference counter of the sk_buff
structure that holds the data.

_u16 redirport;

};

redirport contains a redirection port. This field is only used when the kernel has been
configured with the 'IP: transparent proxy support' option.
The administration of the sk_buff structures normally uses double linked lists, so there is
also a structure to implement a list header.

struct sk_buff_head {
struct sk_buff *next, *prev;
_u32 qlen;
int magic_debug_cookie;

};

8.2.3 The INET socket - a special part of a socket
It is in the INET structure that the network-specific parts of the sockets are administered.
This is required for TCP, UDP and RAW sockets.

struct sock {
struct options *opt;
atomic_t wmem_alloc, rmem_alloc;
unsigned long allocation;

The opt pointer points to a structure containing the individual IP options to be used for this
socket. These have to be taken into account when setting up an IP protocol header. The
two variables wmem_aLloc and rmem_aLLoc indicate how much memory has already
been requested by this socket for writing and reading respectively. During creation of the
socket, allocation is assigned the priority with which memory is requested for this socket
(see Figure 4.3).

_u32 write_seq, send_seq, acked_seq, copied_seq,
rcv_ack_seq;

 Linux kernel internails - 252 -

unsigned short rcv_ack_cnt;

_u32 window_seq, fin_scq, urg_seq, urg_data;

The sequence numbers required by the TCP protocol are stored in these variables. They are
used to ensure that reliable transfer takes place. As TCP is connection-oriented, these
sequence numbers need to be administered separately for each socket.

int users;
volatile char dead, urginline, intr, blog,

done, reuse, keepopen, linger, delay_acks, destroy,
ack_timed, no_check, zapped, broadcast, nonagle,
bsdism;

unsigned long lingertime;

These variables contain various flags and values which can be set for a socket. int

proc;

The proc variable is used to store a process or process group which will be sent a signal on
receipt of out-of-band data.

struct sock *next,*prev;

The next component links sockets with the same hash value in the socket hash table. This
table speeds up the assignment of IP packets to specific sockets
using open hashing.

struct sock *pair;

The INET socket's protocol operation accept 0 sets up a new sock structure. The pair pointer
then points to the newly generated structure.

struct sk_buff *volatile send_head,

*volatile send_next;

•"•volatile send_tail;

struct sk_buff_head back_log;

struct sk_buff *partial;

struct timer_list partial_timer;

long retransmits;

struct sk_huff_head write_queue,

receive queue;

 Linux kernel internails - 253 -

All the above pointers are used in the management of buffers associated with the INET
socket. Circular lists are denned via the sk_buff_head structures for both the sending and the
receiving TCP segments (see Figure 8.4).

struct proto *prot;
This contains the operation vector for the protocol with which the socket is associated. In
most cases, this will be the address of one of the following structures: tcp_prot, udp_prot or
raw_prot.

struct wait_queue **sleep;
The sleep pointer points to a wait queue containing processes which have blocked during
actions on this socket.

_u32 daddr, saddr, rcv_saddr;
The source and destination addresses must be entered in each IP packet;
rcv_saddr specifies the address to which the socket has been bound.

unsigned short max_unacked, window;
_u32 lastwin_seq, high_seq;
volatile unsigned long ato, Ircvtime, idletime;
unsigned short bytes_rcv;
unsigned short mtu;
volatile unsigned short mss, user_niss, max_window;
unsigned long window_clamp;
unsigned int ssthresh;
unsigned short num;
volatile unsigned short cong_window, congL_count, packets_out,
shutdown;
volatile unsigned long rtt, mdev, rto;
volatile unsigned short backoff;

These fields in the structure are also for the use of TCP and contain other protocol-related
data.

int err, err_soft;
unsigned char protocol;
volatile unsigned char state;

unsigned char ack_backlog, max_ac ^backlog, priority,
debug;
unsigned short rcvbuf, sndbuf;

The err variable is an error indicator very similar to the errno variable in C. The state

 Linux kernel internails - 254 -

of the socket is given in state. The two buf quantities indicate the maximum amount of
memory which can be requested for this socket when sending or receiving packets.

unsigned short type;
unsigned char localroute;

The socket type specification type is taken over from the associated BSD socket
structure; Localroute is used to indicate that the packets should only be routed locally.

union {
struct umx_opt af_umx;

struct inet_packet_opt af_packet;
} protinfo;

Private data for each address family.

int ip_ttl, ip_tos;

These values are used when generating an IP header and are entered in the cor-
responding fields in the header.

struct tcphdr dummy_th;

Once a TCP connection has been set up, the basic framework of a TCP header is
entered here.

struct timer_list keepalive_timer, retransmit_timer;
deLac k_timer ;

int ip_xmit_timeout;
struct rtable *ip_route_cache;
unsigned char ip_hdrincL;
int timeout;
struct timer_List timer;
struct timevaL stamp;

These two components of the structure are used in the administration of timers
required for the implementation of TCP. As stamp is updated on receipt of each
packet, this enables the time when the last packet was received to be precisely
determined.

struct socket *socket;

 Linux kernel internails - 255 -

I This pointer points to the associated BSD socket.

void (*state_change)(struct sock *sk);
void (*data_ready)(struct sock *sk,int bytes);
void (*write_space)(struct sock *sk);
void (*error_report)(struct sock *sk);

The state_change0 function is executed every time the status of the socket has
changed. Similarly, data_ready0 is called when data have been received, write_space()
when the free memory available for writing has increased, and error_report0 when an
error occurs. In the present implementation, these operations only wake up those
processes that have blocked during operations on the socket.

In the following description, the term 'socket' is used to refer to the combination of a
BSD socket and an INET socket (see Figure 8.2).

8.2.4 Protocol operations in the proto structure
: In LINUX, protocols such as TCP and UDP are accessed via an abstract interface. This

consists of a number of operations and means that functions whose actions are the same
for all protocols only need to be programmed once. This helps to avoid implementation
errors and keep the code as compact as possible.

struct proto {
void (*close)(struct sock *sk, int timeout);

The close() function initiates the actions required to close a socket. For a TCP socket, for
example, a packet with the necessary ACK and a FIN is sent.

int (*buiLd_header)(struct sk_buff *skb, _u32 saddr, _u32
daddr, struct device **dev, int type, struct options
*opt, int Len, int tos, int ttL, struct rtable **rp);

At present, the ip_bui Ld_header() function, which initializes the IP protocol header, is
assigned to this pointer in all cases. It is not entirely clear, however, why this function
pointer is defined in this way, as its arguments are tailored to ip_build_header().
Therefore, it does not represent an abstraction of different protocols.

int (*connect)(struct sock *sk,
struct sockaddr_in *usin, int addr_len);

struct sock *(*accept) (struct sock *sk, int flags);

 Linux kernel internails - 256 -

The connect 0 function requires implementation for all protocols, whereas accept 0 is
not necessary for connectionless protocols. The semantics of connect 0 are different
for connectionless and connection-oriented protocols. For connectionless protocols, it
specifies an address to be used as the destination address for write calls, whereas for
TCP, connect() sets up the connection.

void (*queue_xmit)(struct sock *sk,
struct device *dev, struct sk_buff *skb,
int free);

void (*retransmit)(struct sock *sk, int all);
Here again no functions are to be found for the protocols mentioned so far except
those of IP (ip_queue_xmit() and ip_retransmit()). The function of queue_xmit is to
send the packet in the skb buffer. This action is illustrated in Figure 8.5.
The retransmit function is responsible for a repeat send of the packets still located at

the socket. This is only meaningful for TCP, however. The behaviour of this function is
controlled by the parameter all, which specifies whether all packets are to be retransmitted
or only the first.

This is another case where the authors feel that inclusion in the abstract interface is
questionable, especially as ip_retransmit() is called directly by the TCP implementation.

void (*write_wakeup)(struct sock *sk);
void (*read_wakeup)(struct sock *sk);

The wakeup functions are only used and implemented by TCP, and are used to
maintain a TCP connection. As a general rule, no packets are sent over a TCP
connection if no data are sent by the user. Therefore, it is not easy to determine
whether the communication partner has quit or whether the connection is already
closed. If the SO_KEEPALIVE option is set for a socket, an old sequence number is
sent by write_wakeup() at specified intervals, which is then acknowledged by the
receiver by means of read_wakeup(). If such an acknowledgement is no longer
received, the user is informed by a signal or an appropriate error message.

int (*rcv)(struct sk_buff *buff, struct device *dev,
struct options *opt, _u32 daddr,
unsigned short Len, _u32 saddr,
int redo, struct inet_protocol *protocol);

Every protocol must provide an rev function, to which the packets received by the
lower layers are passed. This function is entered in the associated inet_protocol
structure for each of the IP-based protocols.

 Linux kernel internails - 257 -

int (*select)(struct sock *sk, int which, select_table *wait);

The return value of select() is 1 if the condition specified in the parameters is met,
otherwise 0 (see Section 6.2.6). In the network implementation there are two functions
which implement select(): datagram_select() for UDP and tcp_select() for TCP.

int (*ioctl)(struct sock *sk, Int cmd, uns.igned long
arg);

A call to the ioctl function can be used, among other things, to find out the quantity of data
at a TCP or UDP socket yet to be read or sent and to select and deselect debugging output.

int (*init)(struct sock *sk);
A call to the in it function of the protocol in use executes the initialization procedures
required by the protocol unit. As TCP and UDP each have only one unit, the initialization
is carried out statically during LINUX start-up.

void (*shutdown)(struct sock *sk, int how);
int (*setsockopt)(struct sock *sk, int Level, int optname,
char *optval, int optLen);
 int (*getsockopt)(struct sock *sk, int level, int optname,
char *optval, int *optlen);

The first of these functions is at present used only by TCP connections, and can be used to
abort a TCP connection. The other two functions implement setsockopt() and getsockopt()
for the associated protocol. Strictly speaking, the protocols should call the corresponding
functions of the lower-layer protocol via the protocol structure, but this is not yet
implemented.

int (*sendmsg)(struct sock *sk, struct msghdr *msg,

int len, int noblock, int flags);

int (*recvmsg)(struct sock *sk, struct msghdr *msg,

int len, int noblock, int flags,

int *addr_len);

int (*bind)(struct sock *sk,

struct sockaddr *uaddr, int addr_len);
During the development of LINUX (1.2-2.0) substantial changes have been made to the
protocol interfaces. Thus, all send and receive functions were replaced by sendmsg and
recvmsg. Specific parameters are passed in the msghdr

 Linux kernel internails - 258 -

structure. In addition, in version 2.0, the functions readv() and wrItev() can now be
applied to sockets. With the bind() function, a socket is bound to a determined
address.

unsigned short max_header;
The value of max_header specifies the maximum size of the protocol header which is
possible using this protocol implementation. The value also includes headers for the
lower-layer protocols.

unsigned long retransmits;

This variable counts the repeat sends required by a protocol.

char name[80];
int inuse, highestinuse;
};
For fault-tracing purposes, name holds the name of the associated protocol (for
example, TCP). The other values are statistical in nature and are required for the
SNMP.

struct sock *sock_array[SOCK_ARRAY_SIZE];
By reference to the destination of a packet and this field, the INET socket to which the
packet is directed can be determined. This is the precise function of get_sock().

The proto structure which has just been described can be regarded as an interface
for protocols in the AF_INET family. A very similar structure describes the interface to
the next higher layer, the BSD socket layer. The name of this structure is proto_ops,
and it is provided for each of the protocol families implemented. In version 1.2 of
LINUX, this means AF_INET, AF_IPX and AF_UNIX.

8.2.5 The general structure of a socket address
As sockets have to support different address formats for different address families,
there is a general address structure containing the address family, the port number and
a field for addresses of different sizes. For Internet addresses, a special structure
sockaddr_in is defined, which matches the general structure sockaddr.

struct sockaddr {
unsigned short sa_family; /* address family AF_xxx */ char
sa_data[14]; /* start of protocol address */

};

 Linux kernel internails - 259 -

 struct sockaddr_in {
 short int sin_family; /* address family */
unsigned short int sin_port; /* port number */
 struct in_addr sin_addr; /* Internet address */

 /* pad bytes for sockaddr structure */
unsigned char _pad[_SOCK_SIZE_ - sizeof(short 1nt)

- sizeof(unsigned short int)
- sizeof(struct in_addr)3;

};

8.3 Network devices under LINUX

As we have already seen, there is a great variety of hardware that can be used to connect
computers. As a result, this hardware is controlled in many different ways. To hide this
from the upper layers, an abstract interface to the network hardware was introduced to
enable the upper network layers to be implemented independently of the hardware used.
This, of course, embodies a polymorphic approach to programming the operating system.

The data structure device controls an abstract network device. This is often referred to
as a network interface, meaning the interface to the network rather than to the hardware.

struct device {
char *name;

In LINUX, every network device has a unique name. A reference to this name is held in
name.

unsigned Long rmem_end;
unsigned Long rmem_start;
unsigned Long mem_end;
unsigned Long mem_start;
unsigned short base_addr;
unsigned char irq;

These elements describe the hardware of the device. The I/O address, which is important to
PC architecture, and the number of the interrupt associated with the device, are held in
base_addr and irq respectively. The ranges rmem_start to rmem_end and mem_start to
mem_end describe the device's receive and send memories. However, these parameters are
tailored to Ethernet cards; for other devices some of these fields in the structure are
employed with different semantics. For a SLIP device, base_addr holds the index to the
corresponding SLIP structure.

 Linux kernel internails - 260 -

volatile unsigned char start, interrupt;
unsigend Long tbusy;
struct device *next;

The variables start, interrupt and tbusy are used as flags, start indicating whether the
network device is running and interrupt being set when the interrupt is triggered. This
enables nested calls to the interrupt handling function to be avoided. The function of
tbusy is to indicate that the hardware has initiated the transfer of a packet.

Under LINUX, the network devices are managed in a list. The kernel variable
dev_base points to the first element in this list, with next used to link the elements. A
network device can be accessed in the kernel using its unique name and the function
dev_get().

int (*init)(struct device *dev);

This function detects whether the necessary hardware is present for this device and
initializes the device structure.

As described in Section 2.3, before the kernel is compiled it can be specified
which devices are to be tested for their presence. This includes network devices, and a
static list of structures of the device type is therefore held in drivers/net/Space.c. This
list contains elements consisting only of the public section of the device structure,
which runs from the start of the structure to the init component. The pointer dev_base
points to the start of this list. By modifying this list it can now be determined which
devices are tested for their presence during booting and which initialization functions
are used. This is especially important for the different types of Ethernet card, as the
separate card types are tested in sequence in the ethif_probe function.

If we turn once again to the sequence of actions when the kernel is started up, as
described in Section 3.2.3, we see that this involves a call to sock_init(). The task of
this function is to initialize the entire network part of the kernel. As part of this, the
BSD sockets are set to their default settings, after which the dev_init() function is
called. This init function initializes all the configured network devices by iteration
through the list of network devices pointed to by dev_base(). The init function is
called for each entry and fills the entire devi ce structure with correct values, including
the function pointers.

unsigned char if_port;
unsigned char dma;

The hardware of some network devices uses DMA and communication with I/O ports
for input and output. In version 1.2 of LINUX, the device structure therefore had to be
expanded by appropriate fields.

 Linux kernel internails - 261 -

struct enet_statisties* (*get_stats)(struct device *dev);

This is the statistics function for the current device. It is used whenever statistical
information is requested about the network device by another part of the
kernel.

unsigned long trans_start, last_rx;

These two fields are used to note the last time something was sent (trans_start) or received
(Last_rx). The time units used are hundredths of a second, taken from the variable jiffies.

unsigned short flags;
unsigned short family;
unsigned short metric;
unsigned short mtu;

These variables are used by the IP protocol. They can be modified using the system
command ifconfig (see Appendix B.8). The maximum size of a packet that can be
transferred by this device is given in mtu, and is the size excluding the hardware header (for
example, the header for Ethernet packets). The family is the address family to which the
device belongs. The possible values for -flags, which allows the behaviour of the device to
be modified, are shown in Table 8.1. The metric value is not used and appears to be
included for historical reasons only.

unsigned short type;
unsigned short hard_header_len;
void *pnv;

The device type, which in effect means the hardware, is entered in type. At the present
stage of development, however, all protocols use the type ARPHRD_ETHER, including SLIP
and PLIP. The variable hard_header_len specifies the length of the protocol header at
hardware level. The priv variable can hold a pointer to a structure specially adapted to the
device type.

 unsigned char broadcast[MAX_ADDR_LEN3, pad;
unsigned char dev_addr[MAX_ADDR_LEN3;
unsigned char addr_len;

The field dev_addr[] contains the hardware address for the device. The broad-cast[] field
also holds an address, which could be termed the broadcast address. Packets with this
destination address are received by all computers

 Linux kernel internails - 262 -

Table 8.1 Flags for network devices.

 Flag Description

IFFJ_UP The network device can receive

and send packets

IFF_BROADCAST The broadcast address in struct

device is valid and may be used

IFF_DEBUG Debugging is selected (at present not used)
IFF_LOOPBACK This device returns all packets received to its own computer
IFF_POINTOPOINT Point-to-point connection, with the protocol address of the

remote station (SLIP, PLIP) held in pa_dstaddr
IFF_NOTRAILERS Is always switched off, but was used in BSD systems for

the alternative positioning of the header at the end of a
packet

IFF_RUNNING Operational resources are in use IFF_NOARP
ARP is not used by this network device

IFF_PROMISC The network device will receive all packets on the
network, even those addressed to other devices

IFF_ALLMULTI The network device will receive all IP multicast
packets

IFF_MASTER Master-slave mode is activated: there is a slave for the
device

IFF_SLAVE This device is being used as a slave for another network
device

IFF_MULTICAST The hardware is capable of receiving IP multicast
packets

connected to the network. As the addresses are implemented as byte fields, they are
type-independent. The variable addr_Len details the length of the addresses, which is,
of course, limited by MAX_ADDR_LEN. The values in these fields are entered on
initializing the device and cannot be changed.

unsigned Long pa_addr;
unsigned Long pa_brdaddr;
unsigned long pa_dstaddr;
unsigned Long pa_mask;
unsigned short pa_alen;

These are the addresses of the protocol used to access the device, with pa_addr
holding the protocol address for the network device and pa_brdaddr the broadcast
address at protocol level. An important part is played by the network

 Linux kernel internails - 263 -

mask pa_mask, which is interpreted by the IP as a bit mask. The bits in an adress
which are set in the mask belong to the network address, and the remainder to the
host. In point-to-point connections this mask is not relevant, as there is only one
communication partner, and its protocol address is then held in pa_dstaddr. The data
type unsigned Long indicates that only IP idresses are supported. This makes it all the
more surprising to see the field pa_alen here, as it only makes sense for variable-
length addresses.

struct dev_mc_list *mc_List;
int mc_count;
struct ip_mc_list ip_mc_List;
_u32 tx_queue_Len;
unsigned long pkt_queue;
struct device *sLave;

These elements were added for versions 1.2 and 2.0 of LINUX. The components mc_List
and mc_count are used in implementing multicasting on hardware level and ip_mc_List
on IP level. The list holds the IP multicast addresses and mc_count the number of entries.
Each element in the list describes exactly one

IP multicast address; these addresses are already supported by the hardware in a number
of Ethernet cards.

The other two entries are no longer used in the current version, but were
previously used to distribute the packet load between two network devices.

struct net_aLias_info *aLias_info;
strcut net_aLias *my_alias;

These two elements are used for network devices with several protocol addresses.
struct sk_buff *voLatile buffs[DEV_NUMBUFFS3;
As shown in Figure 8.5, network devices administer the packets waiting to be ;
processed in lists. More of these are held in bu-ffsE], where the index in buffsC]
indicates the priority assigned to the packets in the list. Three priorities are allowed
for: SOPRI_INTERACTIVE, SOPRI_NORMAL and SOPRI_BACKGROUND.
SOPRI_INTERACTIVE, with a value ofO, is the highest priority.

int (*open)(struct device *dev);
 int (*stop)(struct device *dev);

j The operations open() and stop() should really be called start() and close(), which would
describe their interaction more precisely. After open() is called, packets can be sent via
the network device, but the function does not initialize the addresses. The stop() function
ends the transfer of packets and sets the
addresses to NULL.

 Linux kernel internails - 264 -

Int (*harcLstart_xm1t) (struct sk_buff *skb, struct device
*dev);

Int (*hard_header) (struct sk_buff *skb, struct device *dev,
unsigned short type, void *daddr, void *saddr,
unsigned Len);

Int (*rebuild_header) (void *eth,
struct device *dev, unsigned Long
raddr, struct sk_buff *skb);

The function hard_start_xmit() is hardware-dependent. Its parameters are set to the
appropriate values when a particular card is detected. It is charged with sending the
packet waiting in the indicated buffer. The global function dev_queue_xmit() can be
regarded as the buffered variant of hard_start_xmit(). If the device is not busy,
dev_queue_xmit() calls hard_start_xmit() and attempts to transfer the packet
immediately. Otherwise, the packet is added to one of the lists for packets waiting to
be sent, according to its priority. The hard_header() function writes the hardware
protocol header to the buffer indicated, while rebuild_header() updates the buffer
according to the data in the device structure pointed to by dev.

unsigned short (*type_trans) (struct sk_buff *skb, struct device
*dev);

void (*add_arp) (unsigned Long addr, struct sk_buff
*skb, struct device *dev);

The function add_arp() associates the protocol address addr with the hardware address
contained in the protocol header of the packet (see Section 8.4). The type of packet it
is passed is indicated by type_trans().

^define HAVEJ1ULTICAST
void (*set_muLticast_list)(struct device *dev);

^define HAVE_SET_MAC_ADDR
void (*set_inac_address)(struct device *dev, void *addr);

^define HAVE_PRIVATE_IOCTL
void (*do_ioctL)(struct device *dev, struct ifreq *ifr, int cmd);

#define HAVE_SET_CONFIG
void (*set_config)(struct device *dev, struct ifmap *map);

set_multicast_List() is a function which supports recent developments in the Internet.
It enables a network device to receive packets not sent to the protocol

 Linux kernel internails - 265 -

address. The implementation for Ethernet cards uses their 'promiscuous' mode, in
which the cards receive all packets sent to the network.

#define HAVE_SET_MAC_ADDR
int (*set_mac_address) (struct device *dev, void *addr);

#define HAVE_PRIVATE_IOCTL
int (*do_ioctl) (struct device *dev, void *addr);

#define HAVE_SET_CONFIG
int (*set_config) (struct device *dev, struct ifmap *map);
};

The set_mac_address() function has only been implemented for SLIP, to set the
hardware address. Using the do_ioctL function, network devices can enable special
configurations to be set from outside - with PLIP, for example, the value of the
timeout can be set or read. More general settings of the hardware are possible using
the set_config() function. This, for example, allows the number of the interrupt to be
set.

#define HAVE_HEAOER_CACHE
void (*header_cache_bind)(struct hh_cache **hhp, ;

struct device *dev,
unsigned short htype,^ _u32 daddr);

void (*header_cache_update)(struct hh_cache *hh, struct device
*dev, unsigned char *haddr);

#define HAVE_CHANGE_MTU
void (*change_intu) (struct device *dev, int new_mtu);

};

The two header_cache functions are needed for the implementation of the routing
cache. This has been added in Linux version 2.0 in order to achieve an improved
network throughput. The change_mtu function is called when a user program changes
the MTU of a network device.

The device structure we have described represents a mixture of elements from
the higher levels of the kernel and hardware-level data, and is not an example of good
programming style. It is also noticeable that a range of IP-specific components are
included in this abstract device description. This does not exclude the use of other
protocols on this device.

 Linux kernel internails - 266 -

8.3.1 Ethernet
LINUX supports two groups of adaptors for Ethernet. These include on the one hand the
classic Ethernet cards connected to the PC bus, and on the other adaptors linked to the PC
via the parallel interface or the PCMCIA bus.

The network devices for Ethernet cards are named 'ethO', ..., 'eth3'. This also applies
for pocket adaptors operated via the PCMCIA bus, which are included as a module. LINUX

assigns cards to devices in the sequence in which the hardware is detected. On start-up, the
kernel outputs a message on the cards detected and their allocation to the network devices.
For modules, of course, this output only takes place at the time of loading.

Information on which cards and/or adaptors LINUX supports can be found in the
'Ethernet HOWTO'.2 As cards compatible with the WD8013 and NE2000 cards are
supported, a large number of inexpensive Ethernet adaptors are available.

Let us take a close look at the Ethernet network devices. The Ethernet address of the
associated network card is held in the field dev_addr[]. Every Ethernet adaptor has a
completely unique address. These addresses are 6 bytes long; an example, represented as
text, would be 0:0:c0:9b:13:29. After the network device has been configured with an IP
address, an entry in the ARP table is generated when the card is selected (see ifconfig in
Appendix B.8).

A field in the hardware header of an Ethernet packet allows various types of Ethernet
packet to be differentiated. There are types for IP, ARP, IPX and other protocols. The type
determines which receive function the packet is passed to.

The allocation of packet types is carried out with the aid of a list. It is thus
possible to carry out dynamic modifications on the known packet types. For IP, for
example, there is a list element as follows:

static struct packet_type ip_packet_type = {
htons(ETH_P_IP),
°' ip-rcv, NULL, NULL };

This entry contains both the Ethernet packet type and the associated receive function.
The first zero indicates that no copies need to be made of packets of this type. At the
position of the NULL pointer, there may be a pointer to special data. The final pointer
links the elements in the list of all packet types.

2 The 'Ethernet HOWTO' is located in the file docs/HOMTO/Ethernet-HOWTO on the
CD-ROM accompanying this book.

 Linux kernel internails - 267 -

This list thus represents the interface between the network devices and the separate
protocols as far as the devices are concerned. Packets which do not match any of the
types registered in the list are discarded.

8.3.2 SLIP and PUP
Now let us turn to some more 'exotic-looking' devices. The only significant difference
between SLIP and PLIP is that the one protocol uses the computer's serial interface for
data transfer while the other transfers data via the parallel port. When we speak of the
parallel interface here, we do not mean Ethernet pocket adaptors but the 'bare'
interface.

PLIP enables a very powerful link to be set up between two computers. SLIP is
the simplest way of connecting a computer or a local network to the Internet via a
serial link (a modem connection to a telephone network). SLIP and PLIP differ from
Ethernet in that they can only transmit IP packets. For simplicity, SLIP does not even
use a hardware header. Nor does PLIP make great demands: it simply sets the
hardware address to 'fd:fd' plus the IP address and then uses the Ethernet functions for
the protocol header (see Figure 8.7).

8.3.3 The loopback device
The loopback device provides communication facilities to applications on the local
computer using sockets in the INET address family. It can be implemented with little
effort, as it immediately returns to the upper layers the packets to be sent. It can also
be used to test network applications on a computer: this excludes the possibility of
faults in the network hardware. The loopback device 'Lo' is generally assigned to the
IP address 127.0.0.1.

8.3.4 The dummy device
In the dummy device we encounter a rather exotic representative of network devices.
It behaves in fact like any other device, except that no real data transfer takes place.

Figure 8.7 The relationship of SLIP and PLIP packets to IP packets.

 Linux kernel internails - 268 -

It might well be asked what use a network device of this sort is. It is mostly used
to present a functioning network device to the higher-level areas of the network
implementation when there is not actually one present. By the higher-level areas of the
network implementation we also mean user processes.

8.4 ARP - the Address Resolution Protocol_

As the name implies, the task of the ARP is to convert the abstract IP addresses into
real hardware addresses; This conversion is required because a hardware network
cannot do anything with IP addresses. The ARP is not restricted to one hardware type,
but can resolve addresses for a number of types of network (for example, FDDI,
Ethernet and so on). The only condition made on the hardware is a facility to send a
packet to all the other stations on the network (in other words, to broadcast). The
LINUX ARP is capable of mapping Ethernet addresses, arcnet addresses and AX.25
addresses to the corresponding IP addresses. This is the reason for the rather odd
position in which the ARP is drawn in Figure 8.1: it does not belong directly to the IP,
although up to now only IP addresses have been considered as protocol addresses.

The reverse function is handled by RARP (reverse ARP). Unlike ARP, the
RARP in LINUX can at present only convert Ethernet addresses into IP addresses.

A further facility offered by LINUX is 'proxy' ARP. This enables subnetworks
which should really be directly interconnected by hardware to be separated. The
separate parts are then usually provided with gateways to communicate with each
other. The gateway in each subnetwork responds to ARP requests from local
computers with its own hardware address. If packets for a remote computer are
received at the gateway, it forwards these to the appropriate gateway.

The central element in address resolution is the ARP table, which consists of a
field of pointers to structures of the type arp_table. The size of the table is
ARP_TABLE_SIZE, which is defined in net/inet/arp.h. It must always be a power of 2, as
this is assumed by the hash function. In LINUX, there is only one such table and not, as
might be expected, one for each network interface. This makes the ARP entries easier
to administer.

struct arp_table {
struct arp_table *next;
volatile unsigned long last_used;
volatile unsigned long last_updated;
unsigned int flags;
u32 . ip;
u32 mask;

 Linux kernel internails - 269 -

Table 8.2 Flags for entries in the ARP table.
Flag Description
ATFCOM The entry is complete

ATFPERH There is no time limit on
ATFPUBL This is a proxy entry
ATFUSET The network devices uses
ATFNETM
ASK

The value in netmask is to
be used: this is a proxy
entry for an entire

b t k

unsigned char ha[MAX_ADDR_LEN];
struct device *dev;
struct hh_cache *hh;
struct timer_list timer;
int retries;
struct sk_buff_head skb;
};
Apart from the elements necessary for linking the entries, an entry in the ARP table
contains the protocol address and, if present, a reference to the list of hardware
headers. The use of an entry is largely determined by flags. If ATF_COM remains unset,
this means it has not yet been possible to determine the hardware address. As the ARP
is hardware-dependent information, each element is assigned to a network device. The
device to be used can be determined via the protocol's routing function; also all
queries are then sent via this device. To resolve hardware addresses, it is sometimes
necessary to send the query several times. When an query is generated, the timer
(timer) is set. If it has expired and no further repeat is indicated, the query is
considered not to have been answered. To make it simple to generate individual
repeats, the buffer that contains the packet at the entry that has not yet been given a
reply
is marked.

Proxy entries are marked with an ATF_PUBL flag and are of course permanent.
With 'proxy' ARP it is also possible to use subnetwork entries, which are then given
an ATF_NETMASK flag. In mask we also find the netmask belonging
to the subnetwork.

The following tasks are assigned to the ARP software:

• Address resolution for its own IP layer.
• Address resolution for queries from other hosts in the network.

If the resolution of the machine's own IP address is required by another host, a reply
packet is sent to the remote enquirer.

• Query generation for IP addresses not contained in the table.

 Linux kernel internails - 270 -

• Removal of time-expired entries from the table.
• Removal of invalid entries from the table.

If a network device is closed down, all associated entries are deleted, including the
proxy entries.

Access to the address resolution procedure is provided by ARP by means of the
function arp_find(), which either fetches the desired information direct from the table
or sends an ARP query to the network. It follows from this that the quality of the ARP
is primarily dependent on the ratio of 'hits' when accessing the ARP table. LINUX'S

ARP therefore includes a facility to optimize this: if an ARP query is received from
the network, the information about the enquirer's hardware address already held in the
network is included in the ARP table. This saves a further query to the network the
next time a local query is received.
The ARP packets are passed by the central function net_bh() (see Section 8.1.2) to the

arp_rcv() function appropriate to their protocol types, which also handles the optimization
procedure described above. If the query concerns our own machine, the reply is generated
and sent to the enquirer.

The deletion of obsolete entries is governed by timers. If an entry is filled with valid
values, the timer is started and on expiry calls the function arp_check_expire(). This tests
whether the entry has been used since the timer was reset: if not, the entry can be deleted.

Another element which can initiate the deletion of entries is the network timer, where
the entries for the communication partner of a recently closed connection are deleted. This
may seem pointless at first glance, but it should be borne in mind that if the IP hardware
address allocations change, the packets could be sent to the wrong hardware and
consequently to the wrong host.

struct rarp_table {
struct rarp_table *next;
unsigned long ip;
unsigned char ha[MAX_ADDR_LEN3;
unsigned char hlen
unsigned char htype;
struct device *dev;

};
Most elements in the RARP data structure should be self-explanatory, as they match
those in the ARP table. The hardware address is entered when the structure is
generated, and the IP address is added when the reply to an RARP query is received.

 Linux kernel internails - 271 -

8.5 IP
The IP layer is the most important section of all the communication software, as all of the
network traffic is carried by this layer. What are the tasks assigned to it?

8.5.1 IP - general introduction
The IP layer provides a packet transfer service - that is, it can be given a packet and the
addressees and it will take care of the transfer. IP, however, does not guarantee safe and
correct arrival of the packet at its intended destination: secure transfer of packets is ensured
by the TCP, which is dependent in turn on the services of the IP layer.

In principle, the packets being transferred can be divided into two categories. Those in
one category are generated by the local host and have to be sent to others. The other
category of packets are generated by other hosts, and the local host is merely a link in the
transmission chain. This process is known as IP forwarding.

The following much simplified picture describes the tasks of the IP layer. This
description does not include any true error handling, but is sufficient for a general
understanding.

The schematic flow of the outgoing packet stream of IP is as follows:

• Receipt of a packet.
• Option handling.
• Routing to the destination address.
• Generating the hardware header.

During the routing process, the device through which the packet has to be sent is
determined. A header for the hardware type of this device is
 then constructed, containing the hardware address of the next recipient.
• Creating the IP packet.

This involves generating an IP header, which is simply added to the hardware header along
with the data packet.

• Fragmenting the IP packet.
If the IP packet is too large for the device, it will need to be broken down into smaller
packets.

• Passing the IP packet to the appropriate network device.

The schematic flow of the incoming packet stream of IP is:

• Checking the IP header.

 Linux kernel internails - 272 -

Figure 8.8 Incoming and outgoing packet streams.

• Decrementing the ttl field.
If this results in the value reaching zero, the packet has to be discarded;

an appropriate ICMP message is sent to the sender.
• Comparing destination address with local address.

If the IP packet is not for the local computer, it is subsequently processed as an
outgoing packet.

• Defragmenting the IP packet.
If the packet is fragmented, it is reconstructed using fragments already received. If this
is not yet possible, the fragment is stored in the fragment list.

• Forwarding the packet to the next protocol.
Packets are demultiplexed according to the value of the protocol field in the IP header.

8.5.2 IP functions
The following section deals with the essential functions of the IP layer. For details of
their operation the reader is recommended to consult the implementation. We will
consider first the functions used by the other protocols, as shown in Table 8.3.

As mentioned above in the description of the data structures for the proto
structure in Section 8.2.4, some of the other protocols do not implement their own
functions and use the IP functions.

The two socket option functions are, of course, used by the higher protocols^ If
we look again at the layer model in Figure 8.1, it is clear that the layer in which the
options are located is specified by the Level parameter in setsockopt(). In each layer,
the strategy followed is: 'If it is not for me, it must be for the layer below me'.

 Linux kernel internails - 273 -

Table 8.3 Exported functions of the IP layer.
Function

AF_INET/
(R)ARP

Packet

UDP RAW

TCP ICMP

IGMP

ip chkaddr() x x x x
ip setsockopt() x x
ip getsockopt() x x

 ip bui Ldheader() x x x x x
ip queuexmit() x x x x x
ip buildxmit x x
ip sendcheck() x
ip_checkroute() x

Probably one of the most frequently used functions in the implementation of IP
and the protocols based on it is ip_chk_addr(). This is given an IP address as a
parameter and returns a value classifying this address. There are four groups of
addresses:

• addresses for a local network device,
• broadcast addresses,
• multicast addresses,
• all other addresses.

An important element throughout the network implementation is ip_bui
ld_header(), which is used by all the layers above the IP. Its job is to write the header
for the packet to a buffer. 'Header' here does not mean the IP protocol header only, but
all the header data needed by the corresponding network device. Consecutive calls to
each of the header routines are the only way linear memory organization in the buffers
can be achieved. However, this linearity also has its disadvantages: for example, the
maximum possible amount of memory must be reserved for each packet.

For TCP, the checksum is calculated by calling the ip_send_check0 function.
The ip_check_route() function checks whether the computer to which the packet is
next to be sent is still reachable.

The ip_queue_xmit() function is also already familiar to us. Like the last
function described, it is also used by the other protocols. This is particularly surprising
in the case of sockets of the SOCK_PACKET type, as these packets are sent direct to a
network device and the IP function is not really concerned with them. However, this is
just one of the minor inconsistencies we have found in the LINUX network
implementation. If the packet to be transferred is too large, that is, larger than the
MTU of the network device, the packet is split up into

el internails - 274 -

of fragments. The transfer is then initiated by a call to the dev_queue_xmit() function, with the
vice determined in the routing procedure passed as a parameter.
in LlNUX version 2.0 is the function ip_bui ld_xmitO. Its task is to create an IP packet, calculate the
nd send the packet off.
entioned in Section 8.1.2, the link to the lower layers is implemented by means of ip_rcv(). This
the only point of access to the IP for the lower layers, and only goes into action for IP packets,
s parameters pointers to the packet, the receiving device and the packet type. Once the protocol

been checked for correctness, the options held in it are processed. Next, the function checks whether
is addressed to the local computer. If the packet is not for the local host, and if the computer has
nfigured as a router,3 the packet is discarded; otherwise it is forwarded using ip_forward(). If any

ve conditions is not met, the packet is similarly discarded. This may also occur if the computer
has enough memory for the incoming packets. When a packet is discarded, an error message is

to the sender. This is taken care of by the ICMP protocol. To avoid a snowball effect, error
re never generated for faulty ICMP packets.
hat remains is to deal with fragmentation. If the packet is a fragment, we try to use it to build up a
acket with the aid of any other fragments that may have been received. This function is carried
efrag(). If we are successful or if we have received a complete packet, we forward the packet to the
bove the IP.
e function ip_forward() we check whether the packet's 'time to live' has been exceeded.4 We
ut the route to be taken by the packet when it leaves us. A new packet is now constructed, consisting
nts of the old one, including the IP header. The hardware header now holds the address of the next
n the packet's route to its destination. If necessary, the packet must again be split up into a
fragments. This, however, is the task of ip_fragmentO. Finally, all that is left is the trans-
lf, which is handled by the appropriate network device.
e have already seen in Section 8.3, it is perfectly possible that the different networks (for example
thernet) have different maximum packet sizes. This makes it necessary to divide oversize packets
ber of smaller ones. However, this type of fragmentation can clearly only be carried out in
functioning as routers.
se of this sort is handled by ip_fragment. The function splits the packet into as many parts as are
enable each of the parts to fit into a fragment along with the protocol header. The size of the

ust, of course, be smaller than the maximum packet size for the receiving network.

e 'IP: forwarding/gatewaying' has to be selected when configuring the LINUX kernel.
in the IP protocol header, and is decremented before the packet is forwarded.

el internails - 275 -

nts, which are no more than specially marked packets, are then delivered to the network device.
is process, special attention is required by packets which are themselves already fragments. An
acility provided by the IP protocol prohibits the fragmentation of packets by setting an option in
l header. In this case, a special ICMP error message is sent to the sender of the packet if a case arises

mentation is necessary.
e higher protocols should not be concerned with the details of fragmentation, this process is kept
to them. Accordingly, when fragments of an IP packet are received by the IP layer, nothing is

ntil all the fragments belonging to the packet have been received. They are then recombined into a
et, which can then be passed through to the higher protocols. This procedure, the opposite of
on, is known as defragmentation. For IP, it is carried out by the function ip_defrag().
ip_defrag() function is based on a number of utility routines (ip_expi re(), ip_glue(),
ip_find() and ip_f rag_createO). A central role in fragmentation is played by the ipq structure
ers it contains. In the ipq structure, all the fragments of an IP packet are collected together. The
tarted whenever a further fragment is received. If all the fragments arrive before the timer expires,
ned up and from then on treated as a newly received packet. If the timer expires, the fragments are
nd the sender informed via the ICMP.

outing

st be established by the IP for every packet that is sent. The decision on whom the packet is sent to,
ch network device, is made by reference to the Forwarding Information Base (FIB). Earlier versions
ed the routing table, but this became hopelessly slow for bigger tables. Therefore, a new structure
two-step hash method was designed. On the higher step, we find structures of the struct fib_zone
e are responsible for one zone each. A zone denotes all routes that have the same route mask.
ost routes are in the same zone.
zones manage all associated routes in a list or a hash table. Hash tables are only used when a

mber of routes must be dealt with. The list or hash table contains structures of the struct fib_node
ther with the corresponding struct fib_info they hold all information for a determined route. The

n is divided into two structures because much of the information for different routes is identical.
continuous fast access, there is yet another hash table of the struct ft able type. This is
ly extended with the necessary entries, while obsolete entries are deleted. As the routing cache
of the original type struct rtable, nothing has changed for the other parts of IP.

el internails - 276 -

The routing cache is located in the field ip_rt_hash_tableC]. The index is a hash value
culated from the destination address. The method used is open hashing because, with limited table
, several destination addresses are assigned the same hash value. The cache is also used to realize
amic routes which are valid only for a limited period of time.

struct rtable {
struct rtable *rt_next;

e element rt_next points to the next entry in the list mentioned above.

 Linux kernel internails - 277 -

rt_dst; rt_mask;

The variable rt_dst holds the destination address for the route, which can of course be an
entire network or subnetwork. The so-called default route, represented numerically by '0.0.0.0', is a special
case: it is used for all packets not covered by the other routes. The mask gives the network part of the
address. This enables a working subnetting to be run on routers. Practically all commercial products could do
worse than emulate LINUX in this respect.

rt_gateway;

Without a gateway, even the best route is useless. We need to know the address of the
host which is acting as a gateway.

rt_refcnt;
rt_use;
rt_window;
rt_lastuse; *rt_hh; *rt_dev;

rt_flags, rt_mtu, rt_irtt;
rt_tos;

The flags provide information on the status of the route (How should the route be
used? Is it only used for one host? Is the destination a gateway? Is it a dynamic route? and so on). The
metric indicates the assessed costs for this route: this parameter is used for the various routing protocols.

So much for the basic structure by which the separate routing functions operate. We are not concerned
here with the internal administration functions. We shall only describe the routines used by other parts of
the network implementation.

_u32
u32

u32

atomic_t atomic_t
unsigned Long
atomic_t struct
hh_cache
struct device
unsigned shart
unsigned char

 Linux kernel internails - 278 -

Table 8.4 Routing functions used externally.

Function INET
socket

TCP, UDP and IP
protocol/(R)ARP

ICMP
protocol

ip_rt_ioctl() x
ip_rt_route() X X

ip_rt_redi rectO X

ip_rt_f lushO X
ip_rt_put() X

One of the most important functions for routing is ip_rt_ioctl(), whic enables the routing table to be

manipulated. For reasons of compatibility, th function also reacts to ioctl commands of the old style. The
contents of th table can only be read via the Proc file system (/proc/net/route); there is n ioctl command to
do this. In addition, the contents of the routing cache ai also represented in the Proc file system
(/proc/net/rt_cache).

The correct processing of ICMP redirect messages also includes enterin the corresponding routes in the
routing table. For this, ICMP uses the functio ip_rt_add(). The routes generated or modified by this are always
marked a dynamic routes.

The central function in routing is ip_rt_route(). It evaluates the infoi mation held in the cache or in the
FIB and determines the route to be taken b the packet. This function is used at least once for each IP packet,
which mean that the overall speed of the TCP/IP implementation depends to a large degre on ip_rt_route().

The routes supplied by the ip_rt_route() function are marked as 'i use' and cannot be changed.
After using the routing information, the rout must therefore be released by means of ip_rt_put(). Once
released, the rout must no longer be accessed.

When a network device is deactivated, the transfer of packets via thi device is no longer possible. This
means that routes in the table which refer t this device are no longer operable, and they are therefore
automatically delete-from the table when a device is taken off the network. This task is handled b ip_rt_f lushO.
The function is given a pointer to a network device as a para meter and removes all relevant entries from the
routing table.

8.5.4 IP multicasting and IGPM

One of the central innovations in communication using TCP/IP is IP multi casting. Until now there were
really only two modes of communication under IF

1-to-l The packets are sent from one computer to just one other. The bes example of this is a TCP
connection.

I-to-NWhen packets are sent, all the computers in a network or subnetwork are potential

recipients. This type of communication is mostly used to find the remote station for a
following 1-to-l communication. An example of this is the BOOTP protocol.

For a number of reasons, it is desirable to be able to operate N-to-M communication.
This kind of communication mode greatly facilitates the implementation of programs
like IRC, as it already supplies the majority of the necessary functions.
To use IP multicasting, two conditions must be met: first, the computer on which the

relevant program is to run must support IP multicasting. Second, if the host group also
includes computers in other subnetworks, there must be a chain of IP multicasting routers to
allow packets to be forwarded.

The changes necessary to the computer are described in Deering (1989). These

 Linux kernel internails - 279 -

comprise on the one hand an implementation of IGMP as a component of the IP. On the
other, changes need to be carried out on the network devices.

For the Ethernet cards, the changes are relatively generic. The IP multicast addresses
are mapped to corresponding Ethernet addresses. However, receiving IP multicast addresses
is only possible with the support of the hardware. Packets not addressed to the local
hardware address must now also be received; this is handled by multicast support provided
by the Ethernet cards. However, this support normally relates only to a very limited number
of addresses. If this number is exceeded, or no multicast support is present, it is still
possible to receive all packets. These are then filtered out afterwards by the network device
or forwarded directly to the IP. The IP will then in any case discard packets which are not
required.

The location is not exactly as shown in Figure 8.9. As with all the other protocols
using the IP's transfer mechanism, the packets are passed to IGMP by a call to a receive
function (igmp_rcv()). The rest of the IGMP implementation is equally unproblematical.

The IGMP in version 1 described here supports two types of packet:

• Host membership query
These queries are sent by the IP multicast routers to find out the membership of the IP
multicast addresses for all hosts in a subnetwork. Once it has this information, a router
is then able to forward the IP multicast packets efficiently.

• Host membership report
These packets are sent by the individual computers in reply to packets of the type
above. The router only requires one reply for each IP multicast address.

As we do not want all the hosts in a subnetwork to create a reply packet to a query at
the same time, it has been specified in Deering (1989) that each of the

 Linux kernel internails - 280 -

Figure 8.9 Location of .the IGMP protocol module.

computers is to wait for a random interval before sending a reply packet. If, during
this waiting state, a computer receives a reply with the same content as the one it
would have sent, it is no longer necessary to do so. In the best case, this will reduce
the packet traffic on the Ethernet to one reply packet per IP multicast address.

A further aspect of IP multicasting in LINUX is its configuration. When the kernel
is generated, it must be told whether or not the code necessary for the use of IP
multicasting is to be generated. This is done by the configuration parameter
CONFIG_IP_MULTICAST.

8.5.5 IP packet filters
With IP packet filters, a very powerful tool has been placed in the hands of network
administrators. Using these filters, they can specify very precisely which IP packets
are to be forwarded or recorded. Figure 8.10 shows the logical location of the IP
packet filters.

Figure 8.10 Location of the packet filters.

 Linux kernel internails - 281 -

A filter consists of a list of packet patterns. If a packet matches a pattern in the list it
will be recognized by the corresponding filter. The semantics of a filter must however be
specified externally.

Users are provided with a variety of ways of specifying a packet pattern. For example,
exactly one connection may be specified. In this case, the source and destination addresses
will be given. The associated masks indicate the entire address range (Oxfffffff). The user
may specify in addition whether all packet types are to be included. However, this can also
be restricted to TCP and/or UDP. For the UDP and TCP types, the port numbers of the
protocol can also be specified. For each matching packet, the packet counter and byte
counters are incremented by the appropriate values.

struct ip_fw {
struct ip_fw *fw_next; /* Linking */
struct in_addr fw_src, fw_dst; /* source and destination */
struct in_addr fw_smsk, fu_dmsk;
struct in_addr fw_via;
struct device *fw_viadev;
unsigned short fw_flg; /* TCP/UDP */
unsigned short fw_nsp, fw_ndp;
unsigned short fw_pts[IP_FW_MAX_PORTS];
unsigned Long fw_pcnt, -fw_bcnt;
unsigned char fw_tosand, fw_tosxor;
char fw_vianame[IFNAMSIZ];

}

But this is not all a pattern can do. Taking the source and destination addresses
together with the masks, whole networks can be used as patterns. Also, the ports for
TCP and UDP can be omitted.

8.5.6 IP accounting and IP firewalling
Having familiarized ourselves with the basic technology, we will now look at the use
of the IP packet filters.

The characteristics of IP packet filters we have described make them suitable for
use in two areas. Firstly, it is possible using the filters to find out exactly which
computer in the local network has sent a packet to the Internet. This is the basis for IP
accounting, which can also be used, of course, to monitor network traffic from the
local computer to other networks and hosts.

The necessary conditions for precise accounting, however, do not usually exist.
Unfortunately, the IP packet filters presented here do not allow network traffic to be
broken down to individual users, as this requires a one-to-one relation of IP addresses
to users.

IP accounting is normally not present in the LINUX kernel. If it is required, it
must be included by setting the configuration parameter CONFIG_IP_ACCT when the
kernel is generated.

 Linux kernel internails - 282 -

However, the demands made by IP firewalling are well within the capabilities of
the IP packet filters. As an IP firewall machine is always located at a gateway, the
checking mechanisms can be implemented relatively easily. The function
caLL_fw_firewaLL() is concerned with forwarding IP packets received. This makes it
the obvious place for the control mechanism which is to be implemented by IP
firewalling. caLL_in_firewaLL() and call_out_firewall() restrict receiving and sending
of IP packets, respectively.

There are two IP packet filters for the administration of IP firewalling. This
allows the restrictions for the IP packet to be applied in stages. The first filter is
located directly in the IP receive function. If a packet matches a pattern in this
blocking filter, it is subsequently ignored by the IP.

Firewalling too is normally not present in the LINUX kernel and must be included
by setting the configuration parameter CONFIG_IP_FIREWALL when the kernel is
generated.

8.6 UDP___________________________

Before we turn to the complexities of TCP, we will provide an 'introduction' by
describing UDP. It has only a few functional expansions as compared with IP.

8.6.1 Functions of UDP
As with the IP protocol, a rev function again plays a decisive role. The udp_rcv
function is charged with processing packets received. As Figure 8.11 shows, the
function has to find the destination socket for the packet. For this, it falls back on the
services of get_sock0. It then has the INET socket and the IP packet as a basis from
which to work.

Figure 8.11 Demultiplexing in UDP.

 Linux kernel internails - 283 -

Table 8.5 Functions exoorted from the UDP layer.
Function

struct struct RAW
inet_protocol proto
protocol udp_protocol udp_prot

udp err(x
udp rcv(x x
udp con x x
udp clos x
udp sen x
udp rec x
udp_ioct x

If we have not been able to find a socket matching the destination port for the
packet, we send the sender an error message. This again uses ICMP. We then analyse
the checksum, if one is provided. The UDP protocol does not make the use of a
checksum mandatory; however, if there is one and it is not correct, the packet is
rejected. Now the socket, the receiving network device, the packet length and the
source and destination addresses are entered in the buffer containing the packet. As
each of the sockets only has a limited amount of memory available to it, a test is
carried out to see whether the new packet will exceed the limit. If there is sufficient
memory, the buffer is entered in the list of packets received for the socket. After this,
the process to which this socket belongs must be notified, for which we use the
socket's _sock_queue_rcv_skb and data_ready functions. This wakes up all the
processes sleeping on the socket.

The data are now assigned to the socket, and the process can fetch them using
the library functions recvfromO or read(). Here, both the read() and the recvfromO
functions are mapped to the protocol operation recvmsg(). This is followed by the
standard procedures for a read system call: first test the area of memory where the
results will be written; calculate the results (which in this case means checking
whether a packet is there); finally, output the results, that is, copy the contents of the
packet to the process's buffer and the address into the address structure provided. That
is all there is to it. However, if there is no packet there, and the nob Lock flag tells us
that the process should not wait, we return the appropriate error message. Otherwise
the process blocks at the socket and only wakes up if a change is made to the socket.
The sleep/ wake-up mechanism is described more fully in Section 3.1.5.

The data flow in the opposite direction is equally uncomplicated. All this
involves is determining the correct address using udp_sendto(). The actual work is
done by udp_sendmsg(), which reserves memory for the buffer including the packet.
We now use the address received by udp_sendto() to make IP

 Linux kernel internails - 284 -

generate a protocol header. After this header, the UDP writes its own protocol header
into the buffer. All that remains is to copy the contents into the buffer and pass the
packet to the IP, which takes care of everything else. Finally, it should be mentioned
as before that udp_write() is an alias of udp_sendmsg(). However, no destination is
given, which assumes that the socket has been assigned to a destination address by
means of the system call connect.

Finally, let us look at a few less interesting functions. The user can call
udp_ioctl() to find the size of the data to be read or written. The function udp_err() is
concerned with the error messages received from ICMP that are relevant to UDP.
These primarily comprise ICMP_SOURCE_QUENCH messages, telling us to stop sending
data so quickly. The udp_connect() function in effect simply sets the destination
address for the socket, as mentioned above, and udp_close() initiates the release of the
socket because a direct communication partner to be informed does not exist.

8.6.2 Other functions
For reasons connected with the implementation, some functions included in the UDP
protocol have been located in the 'datagram' section. These functions also include the
select function used in UDP.

Its name is therefore datagra(n_select(). It checks whether the condition passed
to it is met. The write condition is met if the memory space which can still be
requested by this socket for writing is above the minimum value. Only an error event
constitutes an exception condition. The select function (see Section 6.2.6) returns 1 if
the relevant condition is true, otherwise 0.

8.7 TCP___________________________

Now that we are familiar with the basic approach to a protocol in UDP, we will
explore the mysteries of the LINUX network implementation more deeply. We should
bear in mind that the transition from the connectionless, insecure UDP to the
connection-oriented, secure TCP represents not only a quantitative difference. Rather,
we are dealing with a new quality of service.

8.7.1 General notes on TCP
First, a few preliminary remarks on TCP. To guarantee secure data transfer (TCP) on
the basis of insecure data transfer (IP), we need timers. It is only these that enable the
TCP protocol to be implemented with correct timing behaviour. In LINUX we have
timers which are used by calling the functions add_timer() and del_timer() in the
kernel. This facility is not used in the network implementation. A new interface for
network timers has been written,

 Linux kernel internails - 285 -

which includes the functions reset_timer() and delete_timer() as well as the timer for
the network, net_timer(), which is mainly concerned with the requirements of TCP.
This interface has simplified the use of timers in the network code: users do not have
to implement their own timeout functions everywhere and the handling is carried out
centrally in the net_timer() function, controlled via the states of the INET socket and
the timings of the timers. It is not only in the functions belonging directly to TCP that
state transitions take place in a finite state machine, but also here in the network timer.

8.7.2 The TCP communication end-point - a finite state machine
The behaviour of TCP connections is specified in Postel (1981). The following
description outlines the specification for the finite state machine for the TCP end
points. In this description, the paragraph numbering matches the numbers in Figure
8.12.

First we look at the server side of communication set-up.

(1) The transition to the LISTEN state is initiated by the process itself by a call to the
function listen(). With this, the process then blocks, informing the kernel that it should
handle incoming communication requests.
(2) A segment containing a SYN has been received and one containing a SYN/ACK
returned to the sender. The process is now waiting for the concluding ACK from the
communication partner.
(3) The ACK has been received, and the connection is now established. We now

look at the client side of communication set-up.

(4) The client uses the function connect 0 to set up a connection to the server. The
function sends a segment containing a set SYN to the server and then goes over to the
SYN_SENT state. The process now remains blocked until it receives the SYN/ACK
from the server.
(5) When the SYN/ACK has been received from the server, the client sends back the
concluding ACK. As far as the client is concerned, connection

set-up is now completed.

When breaking the connection we cannot speak of a server and client as in the set-up
phase. We must now distinguish between the initiator and its counterpart.

(6) By calling closeO or a similar termination, one side of the TCP connection
initiates the release of the connection. This sends a FIN to the opposite
communication end-point. Note that further segments may continue to arrive from the
other side.

 Linux kernel internails - 286 -

Figure 8.12 State transition diagram for TCP end-points.

(7) An ACK has been received, but no FIN. Here again, further data may still arrive from
the other station.

(8) The FIN/ACK has now been received. However, to ensure proper handling of
segments still in the network, we wait for a further specified

(interval (twice the maximum lifetime of a TCP segment). If a FIN/ACK is received
during the FIN_WAIT1 state, FIN_WAIT2 is skipped.
(9) The connection is now terminated. All information related to it is deleted. The
communication end-point can be reused.

(10) We have received a FIN from the remote station. We send the buffered data and
report the start of connection release to the program.

(11) The program has been informed of the release of the connection. A FIN is sent. Now
we are only waiting for the ACK from the other side, which acknowledges our FIN.

(12) The other communication end-point informs us via an ACK that it has also released
the connection. We can now initiate a new connection setup for this end-point.

8.7.3 Functions of TCP
As can be seen in the layer implementation of LINUX, the tcp_rcv() function is at the centre
of the processing of incoming packets. This is hardly surprising, as the description of the
TCP protocol for the lower layers consists only of the tcp_protocoL structure, where only
the rev function is listed.

We will now follow the operation of the tcp_rcv() function. As in the other protocols,
it first obtains an INET socket. Then the checksum for the

 Linux kernel internails - 287 -

Table 8.6 Functions exported by the TCP layer.
Function

INET
sock
et

stru
ct
inet

str
uct
pro

tcpdequeuepar x
tcpconnected0 x
tcperr0 x
tcprcv() x x
tcpclose() x
tcpsendinsg0 x
tcprecvmsg() x
tcpconnect() x
tcpaccept() x
tcpretransmit0 x
tcpwritewakeu x
tcpreadwakeu x
tcpselect0 x
tcpioctl() x
tcpshutdown() x
tcpsetsockopt(x
tcpgetsockopt(
)

 x

segment is checked for correctness. If an error occurs, we simply release the buffer
memory and ignore the segment. The fields in the sk_buff structure used by TCP are
now initialized to 0. The buffer memory is considered to belong to the socket, so is
included in the memory reserved for reading. After this, various if instructions are
used to simulate the finite state machine, with the behaviour for the separate states
described in the various branches. The behaviour of almost the entire protocol is
described here. The processing of the data held in the segment is carried out by the
tcp_data0 function; for out-of-band data this task is taken over by tcp_urg0 (for
'urgent'). Here, the 'receive acknowledgements' central to the operation of TCP are
extracted and entered in the INET socket.

In the TCP protocol, the data are not necessarily returned immediately when they
are written to the socket by the process. To keep the protocol overhead as small as
possible, the protocol first waits for half a second to check that no further data are
incoming from the process before sending off the TCP segment. If the quantity of data
has by now become greater than the maximum segment size, a segment is sent to the
remote station at once. This mechanism
is implemented in the functions tcp_enqueue_partiat(), tcp_send_partiat() and
tcp_dequeue_partial().

 Linux kernel internails - 288 -

The tcp_connected() function divides the states which can be adopted by the
INET socket into two classes. If tcp_connected() returns with a value other than 0, this
means that the socket is connected to another. A return value of 0 indicates that the
socket is not connected.

If the ICMP receives an error message of the type ICMP_. . .UNREACH or
ICMP_SOURCE_QUENCH, the error handling routine for the next higher protocol is
called. This uses tcp_eri-(). As each ICMP error message must contain the first 80
bytes of the packet causing the error, TCP can precisely determine the related INET
socket. By accessing the field icmp_err_convert[3, the function then fetches the error
code for the socket and can then establish whether the error should cause the
connection to be terminated. The error code is then entered in the INET socket. Only
ICMP_QUENCH messages are processed by reducing the protocol window: these do not
result in an error entry in the socket.

A call to tcp_close() initiates the active phase of connection release (see Section
8.7.2 and Figure 8.12) on the local host. All packets yet to be read are discarded and
the remaining data are sent to the remote station with a FIN. We then switch from the
current state to the next state. Normally this will be FIN WAIT 1 or FIN_WAIT2.

tcp_sendmsg() and tcp_recvmsg() receive the address information from the
INET socket. The system calls read() and write() are already converted to the
corresponding protocol operations in the BSD socket layer.

But now let us look at the two central communication functions in TCP.
Specifying the flag MSG_OOB can cause the tcp_recvmsg() function to read only out-
of-band data, and this will then be carried out by the tcp_rcv_urg() function. The
buffers present at the INET socket are then examined. Here, particular attention is
given to the out-of-band data: the processing of these data can be modified by the
socket option SO_OOBINLINE. If this option is set, the out-of-band data are regarded as
forming part of the standard data stream and handled as such. If the option has not
been set, these data are simply skipped when read without a MSG_OOB. If data have
already been found, and then out-of-band data arrive, the read process is terminated at
the stage reached. The data in all valid buffers are then copied to the process address
space. We then go on to the next buffer. If no data have been received at the INET
socket, the process blocks at the socket, and is woken up when fresh data arrive.

Data transfer in the opposite direction is handled by tcp_sendmsg0. This first
carries out a number of tests required by the TCP protocol, and then checks whether
the INET socket is in a state (see Figure 8.12) which permits data exchange. We now
investigate whether a packet which has already been started on is waiting at the
socket. If so, we fill the packet using the data we have received. If we reach the
maximum segment size, or if we have to deal with out-of-band data, the packet is sent
off immediately. Otherwise, the packet will wait at the socket, but for no more than
half a second. If there is

 Linux kernel internails - 289 -

not yet a packet at the INET socket, we allocate memory using the socket's walloc function.
The struct sk_buff included in memory is initialized and a protocol header is written to the
buffer using the protocol's build_header function (in this case ip_build_header()). Now our
own bui Ld_header function -tcp_bui Ld_header() - is called. From this point, the
procedure continues as if we had a packet which had already been started on. However, it is
possible that we have already taken up the maximum memory for the socket. The process
will in that case go to sleep at the socket. When memory is released for the socket it will be
woken up.

To be able to set up a TCP connection in the first place, the active phase of
connection set-up must be carried out. This task is assigned to the function
tcp_connect(), where the address to which a connection is to be set up is checked for
correctness. It is then entered in the INET socket structure. We now create a TCP
packet for the connection set-up. For this, the sequence numbers for the INET socket
are set to random starting values. We then use the protocol's build_header() function
to write a protocol header to the buffer we have requested by calling walloc(). To this
we add our own protocol header, with the SYN flag set. As well as this, the packet
also contains the initial window size for our protocol unit. The INET socket then goes
over to the SYN_SENT state and waits for a reply from the other communication end-
point.

The tcp_accept() function implements the passive phase of connection set-up. At
least, this is how it appears to the process. However, all the function does is fetch the
INET socket which has already been created and which has been entered in the
sk_buff structure of the connection set-up packet, and returns this to the higher
protocol layer. The actual work is done while processing the incoming TCP packets
and cannot be assigned to any process. If a packet is received there for connection set-
up, an INET socket structure is generated for it (see the tcp_conn_request() function in
net/ipv4/tcp_input.c).

In the case of tcp_retransmit it is probably safer to call it an alias rather than a
true function. This simply reduces the size of the transmission window; the actual
work is done by tcp_do_retransnnt().

We now come to the function which could be called the heart of 'secure' data
transfer: tcp_do_retransmit(). The parameter all allows the function to be controlled in
respect of whether all packets waiting at the INET socket are to be retransmitted, or
only the first one. Here, tcp_do_retransmit() checks every packet to see whether the
network device for the following transfer is known. If necessary, the protocol header
is recreated. The current time is entered in the buffer containing the packet and the
dev_queue_xmi t function is then called. In the socket and in its related proto
structure, this action is recorded by incrementing the counters (retransmits) for
statistical purposes. Where necessary, these steps are repeated for each packet.

If the ack_backLog field in the INET socket structure is set, tcp_read_wakeup0
returns to the communication partner an otherwise empty

 Linux kernel internails - 290 -

segment with a receive acknowledgement for the segments so far received. The
tcp_write_wakeup() function sends a similar packet, but with the acknowledged
sequence number one smaller. The two wakeup functions are mainly used by the
network timer,

The select() function in TCP is almost the same as in UDP. In TCP, however, the
receipt of out-of-band data is treated as a trigger for the exception conditions.

In addition to the functions mentioned in Section 8.2.4, the tcp_ioctL() function
can also be used to check whether the current read position is on out-of-band data or
not. This calls for the use of the symbolic value SIOCATMARK.

The tcp_shutdown() function terminates an existing connection 'slowly'. This
function generates a segment that includes a FIN, which is added to the end of the list
of packets waiting to be transferred. This means that all the unacknowledged data are
first transferred before the release of the connection is initiated.

The functions tcp_getsockopt() and tcp_setsockopt() enable the maximum
segment size and character buffering to be read or set, respectively. The character
buffering (maximum half a second) is deselected by interactive programs such as
telnet and rlogin in order to achieve acceptable response times, while ftp and fpd
derive an advantage from this buffering.

8.8 The packet interface - an alternative?

LINUX has also introduced new approaches to network implementation. An interface
has been created, for example, which can operate on network devices directly. This, of
course, is only possible if the general layer model is circumvented, and we will
therefore take a closer look at the sequence of actions involved in creating an interface
of this type. Although there exists a separate stack for the Apple network protocol, an
alternative approach will be considered. A process to implement the network
communication functions of 'AppleTalk' on the basis of Ethernet could look like the
following.

#include <sys/socket.h>
#define ETH_P_APPLETALK Ox809B
#define HAX_PACKET_SIZE 2048

extern void do_appletalk(unsigned char *, int);

main() { int id, len;
unsigned char bufCHAX_PACKET_SIZE3;

 Linux kernel internails - 291 -

fd = socket(AF_INET, SOC_PACKET, ETH_P_APPLETALK);
if (fd < 0) exit(1);

for(;;) {
if (den = read(fd, buf, MAX_PACKET_SIZE)) < 0) exit(2);

do_appletalk(buf, Len);
} }

The section of principal interest to us is carried out in the call to socket. As we have
already mentioned, this takes us into the kernel via the system call socketcall. This is
given SYS_SOCKET as a call parameter, while args points to the original parameters
passed to socket(). Processing then continues with the function sock_socket(), which
looks almost the same as our original socket call. This sets up the BSD socket
structure. By reference to the protocol family, this function recognizes which lower
protocol needs to be brought in to handle the function. We now leave the BSD socket
layer and reach the INET socket via the INET protocol. The protocol's create function
- in this case, inet_create0 - is then called. We can now set up the INET socket
structure. The functions for a packet socket are entered in the INET socket in accor-
dance with the type parameters provided to socketO, and finally the protocol's init
function is called with the protocol parameter. This will be the packet_init0 function.
The packet_imt() function creates a new packet-type structure (see Section 8.3.1). The

rev function used is packet_rcv0, and our INET socket is entered in the data pointer. The
gist of the packet interface is that the type for the Ethernet packets to be received is passed
as the protocol number. The type is now entered in the packet_type structure. We then
report the new packet type to the network devices using the function dev_add_pack(). From
now on, packets of this type will no longer be discarded but will be forwarded to our
socket. The packet_rcv() function in the packet driver has nothing else to do but take each
packet from the queue of incoming packets and pass it to the process, which then takes care
of interpreting the packet data.

The packet_sendmsg() function is also simple in construction. In the address structure
we. pass it the name of the network device, via which the packet contained in the data will
be sent. Now we simply request a buffer, initialize the sk_buff structure and copy the data
to the buffer. Finally, it is

simply a matter of calling the network device's queue_xmit() function, and the packet
is on its way.

This is how simple it is to implement another communications protocol under
LINUX. The method has the additional crowning advantage that the implementation of
the protocol is carried out in a user process, so that the system is safe from unpleasant
crashes during development.

 Linux kernel internails - 292 -

9 Modules and debugging

'Good luck guys,' chirped the computer, 'impact
minus thirty seconds...'
Douglas Adams

9.1 What are modules? 9.4 Parameter passing
9.2 Implementation in the kernel 9.5 The kernel daemon
9.3 What can be implemeted 9.6 An example module
as a module? 9.7 Debugging

The LINUX kernel is increasing in size as version follows version. This is a result of
both the continuous improvement and expansion of kernel functions and the addition
of new device drivers, file systems and emulations such as iBCS2. As LINUX is a
monolithic system, however, all the device drivers and file systems used are
permanently incorporated into the kernel. This means on the one hand that when the
configuration is changed the kernel has to be recompiled, and on the other hand that
drivers and file systems occupy permanent space in memory even if they are only used
very rarely. Another disadvantage makes itself felt to developers of new kernel code:
however trivial the modification, it means that a new kernel has to be created and
installed and the computer rebooted. These and many other reasons have led to the
develop ment of modules. To begin with, this raises the question: what are modules?

9.1 What are modules?_________________

From the point of view of the kernel, modules consist of object code linkable and
removable at run-time, usually comprising a number of functions (at least two). This
object code is integrated into the already running kernel with equal

 Linux kernel internails - 293 -

rights, which means that it runs in system mode. The monolithic structure of the
kernel is not changed: unlike the microkernel, the newly added functions do not run as
processes in their own right. One advantage of implementing device drivers or file
systems as modules is that only the documented interfaces can be used.
For the user, modules enable a small and compact kernel to be used, with other

functions only being added as and when required. With the kernel daemon support of
version 2.0, it is even possible to load modules automatically, without the user having to
attend to this him/herself. As a further example we can mention the PCMCIA card
manager.

The structure of the source text for the LINUX kernel is described in Section 2.1. The C
files are organized in directories comprising functional groupings of various kinds. On
compilation, the functional sub-units are collected into an object file, so that when the
kernel is subsequently loaded as a whole there is no need to access every object file
individually. These functional units can often be used as modules.

9.2 Implementation in the kernel

Now that we have seen the advantages of using modules, we will consider their
implementation. For this, LINUX provides three system calls: create_module,
init_moduie and deiete_module. A further system call is used by the user process to
obtain a copy of the kernel's symbol table.
The administration of modules under LINUX makes use of a list in which all the

modules loaded are included. The form of the entries is shown on page 299. This list also
administers the modules' symbol tables and references.

As far as the kernel is concerned, modules are loaded in two steps corresponding to the
system calls create_moduie and init_moduie. For the user process, this procedure divides
into four phases.

(1) The process fetches the content of the object file into its own address space. In a
normal object file the code and the data are arranged as if they started from address 0
after loading. To get the code and data into a form in which they can actually be
executed, the actual load address must be added at various points. This process is
known as relocating. References to the required points are included in the object file.
There may also be unresolved references in the object file. When the object file is
analysed, the size of the object module is also obtained (see Figure 9. la).

' Further details on the structure and use of object files can be found in Gircys (1990)
and ELF (executable and linkable format).

 Linux kernel internails - 294 -

Figure 9.1 The address space on loading a module.

(2) The system call create_module is now used, firstly to obtain the final address of the
object module and secondly to reserve memory for it. To do this, a structure module
is entered for the module in the list of modules and the memory is allocated. The
return value gives us the

;' address to which the module will later be copied (see Figure 9.1b).
(3) The load address received by create_modute is used to relocate the object file.

This procedure takes place in a memory area belonging to the process - that is, at this
point the object module is still not at the right address, but is relocated for the load
address of the module in the kernel segment.
Unresolved references can be solved using the kernel symbols, for which LINUX

provides the system call get_kernel_syms. When the function is called, LINUX makes a
distinction between two different cases. If the null pointer NULL is passed as a
parameter, it is possible to find out the size of the kernel's symbol table. If other
parameters are used, the location indicated will provide memory for a copy of the
symbol table. This enables a process first to determine the table's size and then request
a corresponding amount of memory and use the get_kernel_synis() system call again.
Note that there is no type information of any sort in the table, only addresses. Care
must therefore

 Linux kernel internails - 295 -

be taken during the development of a module to ensure that the correct header files are
included.

To achieve the greatest possible degree of flexibility, the modules themselves can
add symbols to the kernel's symbol table. This allows another module to use functions
from one loaded earlier. This mechanism is known as module stacking. All the
symbols exported by a module are collected in a separate symbol table (see Figure
9.1c).

(4) Once the preliminary work is complete, we can load the object module. This uses the
system call imt_module, which is given among its parameters pointers to a structure
mod_routines and the module's symbol table. The module's administration functions
are entered in the mod_routines structure, and LINUX now copies the object module
into the kernel address space. The administration function initO is called once the code
and data have been installed, and within this the relevant register function should also
be called.

The return value determines whether or not the installation procedure is judged to
have been successful. The second administration function cleanup() is called when the
module is deinstalled, and initiates the relevant unregister function.

The symbol table for the kernel is denned in the file kernel/ksyms.c. Each exported
function has an entry in the table symbol_table. The name of the function or variable
in each case is transferred to symbol_table by the macro X().
The module's own symbol table lists not only the symbols to be exported, but also

references to symbols in the kernel which have been used by the module. This enables the
mutual dependence of the modules to be gauged. As a result, a module which is still being
used by another module will not be deinstalled.

An additional aid in avoiding problems when deinstalling modules after use is the
USE_COUNT mechanism. If, for example, we have implemented a device driver as a module
and it has been loaded, the use counter will be incremented every time the module is
opened and decremented every time it is closed. This means that when deinstalling the
module we can find out whether it is still in use. It should be mentioned that the locations
where the use counter is changed are in some cases difficult or impossible to find.

As a final recourse in particularly difficult cases, it is of course possible to increment
the use counter as a one-off operation during the init() function. This means that the module
can never be removed.

The flexibility of modules does not only lie in the fact that they can be loaded
dynamically. By using the system call deiete_moduLe, a module that has been loaded
can be removed again. Two preconditions need to be met for this:
there must be no references to the module and the module's use counter must hold a
value of zero. Before the module is released, the cLeanup() function

 Linux kernel internails - 296 -

registered during installation is called. In this function, dynamic resources requested
during operation and in the initO function can be released.

9.2.1 Signatures of symbols
A common problem in module implementation is the module's dependence on the
version of the kernel. Because of the continued rapid development of the LINUX
kernel, exported structures and functions are also in continuous change. • For every
new version of the kernel, therefore, all the modules should be recompiled to make
sure that symbols are being used in accordance with their definitions. A way out of
this dilemma is offered by symbol names containing a signature to the associated C
object (the function or elements of the structure). A similar mechanism is used in
C++: for example, for functions and name spaces, where it is unequivocal.
In the LINUX kernel a different model is used, in which the symbols to be exported are

expanded to their full definitions and 32-bit checksums are calculated on the results, which
are then added to the original symbol. Although this procedure is not unequivocal, the
likelihood of a clash is sufficiently small. However, this mechanism must be included when
configuring the kernel. This is achieved by answering 'yes' to the question

Set version information on all symbols for modules
The creation of this special symbol information is handled by the genksyms program, which
is included in the module tools.

The insmod program included in this automatically tests for matching checksums
when a module with signature information is loaded. This avoids the situation in which a
module is loaded that is liable to call a function with the wrong parameters or access a
structure for which the definition has changed.

9.3 What can be implemented as a module?

As a basic rule, the aim should always be to use as few symbols or functions from the
kernel or other modules as possible. In addition, the facility to register and unregister the
module dynamically should be retained. It can be taken as a general rule of thumb that there
should be a registering and unregistering function for the functions implemented by a
module. This condition is met by a number of kernel elements; the best-known example of
this is offered by file system implementations, for which there are the register_filesystem()
and unregister_filesystem() functions. These satisfy all the conditions, including suitable
points where the use counter can be

 Linux kernel internails - 297 -

Table 9.1 Functional units which can be implemented as modules.
File system

register_filesystem()
unregister_filesystem()
read_super function

Block device
drivers

register_bLkdev()
unregister_bLkdev() open
function release function

Character device
drivers

register_chrdev()
unregister_chrdev() open
function release function

Network device
drivers

registernetdev0
unregisternetdev() open
function close function

Exec domain

register_exec_domain()
unregister_exec-domain()
load_binary function, fork

Binary format

register_binfmt()
unregiste_rbinfmt()
load binary function, fork

PCMCIA Ethernet
card

register_pcmcia_driver()
unregister_pcmcia-driver()
open function close function

administered. As described in Section 9.2, modules must be prevented from being
removed while they are still in use. In file system implementations, this is relatively
simple: a file system implementation is in use if a file system of this type is mounted.
During the mount procedure, the read_super function of the file system
implementation is called, and in this the counter can be incremented before successful
termination. The counterpart to the mount procedure is unmounting, for which the
function is put_super().

Table 9.1 lists the functional units which can be implemented as modules. The
registration and unregistration functions are given for each, as well as the functions in
which the administration of the use counter must take place. This is already
implemented in the system calls.

 Linux kernel internails - 298 -

9.4 Parameter passing

At module start, it is sometimes necessary to pass parameters, such as the I/O address or
the interrupt used by an ISA device, because modules normally should not carry out
automatic recognition of hardware resources on the ISA bus.2 Therefore, modules can be
passed numeric or string parameters. Inside the module, variables of int, int[] or char *
type bearing the parameter name must be defined. During loading of the module, the
variables are initialized with the specified numeric parameters; string parameters are first
allocated, then the pointer is adjusted, as shown in the following example.

 static int ioCMAX_I03 = { 0, };
 static char *name = NULL;

 int init_module(void)
 {

int dev;

for (dev = 0; dev < HAX_IO; ++dev) { if (io[dev]) (
/* address was passed */

} if (name) {
/* name was passed */

 }

}

A call to insmod module io=0x300,0x308 names-test" initializes the io array with the
values 0x300 and 0x308 and the name pointer with the passed string.

9.5 The kernel daemon

One of the novelties of LINUX kernel version 2.0 is the kernel daemon. This is a process
which automatically carries out loading and removing of modules without the system user
noticing it. But how does the kernel daemon know that modules need to be loaded?

2 As devices cannot be uniquely distinguished on the ISA bus, this might lead to erroneous programming and crashes
of other devices.

 Linux kernel internails - 299 -

Communication between the Linux kernel and the kernel daemon is carried out
by means of IPC. The kernel daemon opens a message queue with the new flag
IPC_KERNELD. This queue is then automatically used by the kernel as a message queue
for the kernel daemon. For this purpose, the existing IPC implementation was
extended with the function

int kerneLd_send(int msgtype, int return_size, int msgsz,
const chap *text, const char *return_value);

which is responsible for sending messages to the kernel daemon. The following
structure is transmitted:

struct kerneld_msg {
long mtype;
long id;
short version;
short pid;
char textC13;

};
The mtype component contains the message; id indicates whether the kernel expects
an answer. If id is not equal to zero, then after termination of the requested operation,
the kernel daemon sends a message with the contents of id as mtype and passes the
return value of the executed command as the new id value. The pid component holds
the PID of the process that triggered the kernel request. The kernel daemon passes this
PID to all programs it starts by entering it into the environment variable
KERNELD_TRIGGER. This could be a way to call a just-in-time debugger automatically,
when a process triggers an exception.

Responsibility for loading and releasing modules lies with the functions

int request_module (const char *name);
int release_module (const char *name, int wait_flag);
int delayed_release_moduLe (const char *name);
int cancet_reLease_module (const char *name);

With request_module() the kernel requests the loading of a module and waits
until the operation has been carried out. The function release_moduLe() removes a
module, with the wait_fLag specifying whether the termination of the operation
should be waited for. The delayed_release_module() function allows a module to be
removed with a specified delay. This function marks a module, which is automatically
removed after 60 seconds if the operation has not been aborted by means of
canceL_reLease_module(). If, for example, a file system type cannot be found when
mounting a data resource, the kernel executes the following code:

 Linux kernel internails - 300 -

for (fs = fiLe_systeiiis; fs && strcmp(fs->name, name);
fs = fs->next) ;

#ifdef CONFIG_KERNELD
if (!fs && (request_module(name) == 0)) {

for (fs = file_systems; fs 86 strcinp(fs->naBe, name);
fs = fs->next) ;

}
#endif

In this way, unknown file systems are always loaded when the module name is
identical with the file system name. For device drivers, generic requests are generated
following the char-major-major or block-major-magor pattern. The kernel daemon
converts requests for loading and releasing modules into calls to modprobe -k. This
system program can assign the names of the modules to be loaded from the generic
requests. It already possesses the names of all modules used in the LINUX kernel, so
that only new modules must be registered with an entry in the file /etc/modules.conf
or /etc/conf .modules. In order, for example, to load the PC speaker driver
automatically, the entry

alias char-major-13 pcsnd

is needed. The -k parameter ensures that the modules are marked with the autoclean
attribute. Modules with this attribute are automatically removed after 60 seconds when
their reference counter has reached zero.

9.6 An example module

An interesting modular application is the PCMCIA card manager, which combines the
dynamic characteristics of modules with those of the PCMCIA system. Just as a
PCMCIA card is only slotted into the computer if its services are required, the
PCMCIA card manager ensures that the modules for the card are loaded.

As a basis for this service a PCMCIA device is implemented. With its help, the
PCMCIA card manager is informed of every status change in the PCMCIA hardware.
In addition, this device provides for the card identifier to be read. Using this identifier
and the information in its database, the PCMCIA card manager is now able to load
and remove modules.

Modules have also been chosen to implement the necessary basic functions in
the kernel. There is a central module which contains the general standard for
PCMCIA. A second module drives the PCMCIA controller chip. As there are two
different types of the latter, there are also two different modules for this task. Finally,
there is a module in which the interfaces are

 Linux kernel internails - 301 -

Figure 9.2 The daemon for dynamic loading and removal of modules.

implemented: these include the character device driver for the PCMCIA device and
the functions for the device drivers based on this system.
The function of the PCMCIA card manager can be described relatively simply. It

opens the character devices associated with the individual sockets (PCMCIA inserts). By
accessing these devices, the PCMCIA card manager can keep itself informed of status
changes at the sockets. It can also obtain detailed information on the inserted cards.

The information that decides its behaviour is taken from the database, which is usually
located in the file /etc/pcmcia/config and holds definitions for various devices. The
definitions comprise the modules to be loaded and programs to be executed for the addition
and removal of cards.

device "de650_cs"
module "net/8390", "de650_cs"
start "/etc/pcmcia/network start %d%"
Stop "/etc/pcmcia/network stop%d%"

The other part of the data is concerned with detecting various cards. Each of the
PCMCIA cards contains an ASCII character string with its name. By reference to this
information, /the'various cards are assigned to the devices.

card "Accton EN2212 EtherCard"
version "ACCTON", "EN2212", "ETHERNET", "*" bind
"de650_cs"

card "D-Link DE-650 Ethernet Card"
version "D-Link", "DE-650", "*", "*" bind "de650_cs"

 Linux kernel internails - 302 -

card "GVC NIC-2000P Ethernet Card"
version "6VC", "NIC-ZOOOp", "*", "*" bind
"de650_cs"

The drivers produced up to version 2.5.0 comprise Ethernet cards, memory cards,
serial cards, modem cards, SCSI cards and many others.

Furnished with all this information, the PCMCIA card manager does not have a great
deal more to do. By means of selectO, it waits for a change at any of the devices. If

one occurs, it fetches the corresponding data from the device, then refers to the
database to determine the appropriate actions, which it then carries out. This takes care
of all the events and the manager can return I to waiting with select 0 until its services

are required again.

9.7 Debugging

Only in vanishingly few cases will a section of program code be free of bugs as soon
as it is written. Usually the program will need debugging, for which it will be loaded
into a debugger such as gdb and run step by step until the error has been found.
Unfortunately, software exists which cannot be debugged so easily. This includes real-
time applications, (quasi-) parallel processes and software which runs without a host
operating system. Unfortunately, the LINUX kernel (like all operating system kernels)
matches all three of these conditions. It hardly needs stressing that changes to an
operating system kernel are equally -and particularly - liable to error. This section
suggests ways out of the dilemma.

9.7.1 Changes are the beginning of the end
A useful general tip is: Try not to change the kernel, because if you don't amend the
LINUX kernel, you will not have to debug it and you will save yourself lots of
problems. Simple though this statement is, it is not without meaning for the kernel
programmer.
We have no wish to prevent people carrying out creative work on the LINUX kernel.

However, anyone contemplating this should seriously ask him/ herself whether the
expansion that is planned really has any business in the kernel. It is often possible to
implement it wholly or partly as an external program, or at least to divert some of the
functions to an external process. A privileged process (that is, one with a UID of 0) can do
practically anything a driver in the kernel can do. As often as not, communication with the
hardware is only carried out via I/O ports, and a privileged process can do that too. This
approach is used in the svgalib library, which takes care of controlling the graphic modes
for various SVGA cards. Of course, there are also cases where this approach does not
achieve the desired result.

 Linux kernel internails - 303 -

Figure 9.3 Operation of the User file system.

Device drivers communicating with the hardware via interrupts need, at the very
least, purposeful support by the LINUX kernel, as this alone has the right to handle
interrupts. Only the really necessary functions are implemented in the kernel; the
actual work should be handled by a normal process. The User file system is a rather
good example of this approach. However, it is not a part of the standard kernel: it can
be found in the directory src/extensions/userfs-0.8.1 on the CD-ROM accompanying
this book.

The logical grouping of data on a physical device is traditionally carried out in
the operating system kernel, although strictly speaking this is not where it belongs.
The User file system enables this set of functions to be located in an ordinary process.
The kernel merely contains an interface for the queries, which are then forwarded to
the process. One advantage is immediately obvious: the greater part of the code is in a
normal process, which means that it can be debugged using the standard tools. A
further advantage becomes apparent when we consider why the file system
implementation always has to access a hard disk or similar. The process can make any
data it likes available as a file system. Thus, in the current implementation of the User
file system there is also an FTP file system, which accesses the data via the FTP
protocol. This enables any FTP server to be made available to the user as if he/she
were accessing it via NFS. There is one disadvantage of the User file system
architecture that should not be ignored, however: access to data is not particularly fast.

9.7.2 The best debugger -printk()
A test printout at a strategic point can save hours of debugging. Unfortunately, a little
experience is required to find the right points

For this reason, test printouts from a driver should be planned for even at the
design stage: these are short but highly informative. When debugging the kernel,
break points can only be included if major changes are made to the kernel itself.
Instead, we can make do with suitable test printouts at these points, for example by
means of the printkO function (see Appendix E).

 Linux kernel internails - 304 -

Once again, an expansion of the GNU C compiler will serve excellently here.
This permits C preprocessor macros to be used with a variable number of arguments.
A debugging macro can thus be defined along the following lines:

 #ifdef DEBUG
 #define MY_PRINTK(format, a...) printk(format, ## a)
 #else

#define MY_PRINTK(format, a...)
#endif /* DEBUG */

Defined in this way, MY_PRINTK can be used in exactly the same way as the function
printkO. However, it allows a decision on whether or not test printouts should be
produced to be made at compile-time. A second advantage is that it saves a lot of
writing in comparison with ordinary C macros. If, in addition, the printouts are made
dependent on a flag in the kernel, the process becomes even more dynamic. The flag
then needs to be set by an external event: for this we can fall back on a system call of
our own or an iocti command.

As described in Appendix E, only printouts with a level lower than the kernel
variable console_LogLevel are also displayed on the console. As it is sometimes
useful to have the information there as well, because the kernel crashes immediately
afterwards or for some similar reason, the value of consoLe_Loglevel will need to be
changed appropriately. There are a number of ways of doing this:

• using the system call syslog or
• by direct modification of the variable.

When serious problems (traps) occur, the kernel automatically sets the level to the
highest value, so that all messages appear at the console.

The user of modules should also be aware that direct manipulation of the variable
consoLe_LogleveL is only possible in quite a roundabout way, as the associated
symbol is not included in the global symbol table. This means that this external
reference must be resolved using the map file system, map in the kernel, or else the
symbol must be entered in the file kerneL/ksyms.c.

9.7.3 Debugging with gdb
Finally, the LINUX kernel can also be debugged with ease using the GNU debugger
gdb. However, a number of conditions need to be satisfied first. The kernel, or at least
the area of the kernel to be debugged, must be compiled with debugging information.
This calls for nothing more than replacing the line in the kernel's central makefile

 Linux kernel internails - 305 -

CFLAGS = -Wall -WstMct-prototypes -02 -fomit-frame-polnter

with

CFLAGS = -Wall -WstMct-prototypes -02 -g
The relevant area can then be compiled and the kernel relinked. Memory requirements
should not be underestimated, and the computer used should have adequate memory
for the task. For example, if the entire kernel has been compiled with debugging
information, gdb alone will need some 9 Mbytes of memory.

We can now run the debugger via

gdb /usr/src/llnux/vmiinux /proc/kcore
As is evident from the command line, /proc/kcore is read in by the debugger as the
core file for the kernel. This enables all the structures in the kernel to be read, but no
local variables. Unfortunately, it is not possible to change values or call kernel
functions: the functions are restricted to simple reading of values. Despite this, many
errors can be tracked down. Unlike the use of standard core files, gdb reads the values
from memory, which means that it is always the current, updated value that is given.

 Linux kernel internails - 306 -

10 Multi-processing

10.1 The Intel multi-processor 10.3 Changes to the kernel
specification
10.2 Problems with multi-processor systems 10.4 Compiling LINUX SMP

Even though ever more advanced and faster processors are entering t market, there
will always be applications that require still more process power. In multi-tasking
systems, a solution to this problem is to employ sevel processors in order to achieve
true parallel processing of tasks. As in all tru parallel systems, performance does not
increase linearly with the number processors employed. Rather, it is the operating
system that bears an increas responsibility to distribute all tasks among the
processors in such a way that few processors as possible hamper each other. This
chapter deals with Symm ric Multi Processing (SMP) which is supported by LINUX
version 2.0.

10.1 The Intel multi-processor specification

Most of the currently available multi-processor main boards for PCs use i4 Pentium
or Pentium Pro processors. The Pentium already has some inter functions which
support multi-processor operation, such as cache synchro zation, inter-processor
interrupt handling and atomic operations for checki setting and exchanging values in
main memory. Cache synchronization particular greatly facilitates SMP
implementation in the kernel.

 Linux kernel internails - 307 -

Intel's multi-processor specification Version 1.4 (Intel, 1997) defines the
interaction between hardware and software in order to facilitate the development of
SMP-capable operating systems and to create the possibility of making these systems
run on new hardware. The aim of the specification is to create a multi-processor
platform which remains 100% compatible with the PC/AT. It defines a highly
symmetrical architecture in terms of:

• Memory symmetry
All processors share the same main memory; in particular, all physical addresses are
the same. This means that all processors execute the same operating system, all data
and applications are visible to all processors and can be used or executed on every
processor.

• I/O symmetry
All processors share the same I/O subsystem (including the I/O port and the interrupt
controller). I/O symmetry allows reduction of a possible I/O bottleneck. However,
some MP systems assign all interrupts to one
single processor.

Figure 10.1 shows the hardware overview of a typical SMP system with two
processors. Both are connected via the ICC (Interrupt Controller Communications)
bus with one or more I/O APICs (Advanced Programmable Interrupt Controller).
Pentium processors have their own integrated local APIC. These

Figure 10.1 A typical SMP system with two Pentium processors.

 Linux kernel internails - 308 -

local APICs, together with the I/O APICs, constitute a unit which deals with the
distribution of incoming interrupts.

One processor is chosen by the BIOS; it is called the boot processor (BSP) and is used
for system initialization. All other processors are called application processors (AP) and are
initially halted by the BIOS. The MP specification defines a configuration structure which
is filled in by the BIOS and informs the operating system about the existing MP system.
The BIOS initially forwards all interrupts only to the boot processor, so that single-
processor systems see no difference and run only on the BSP.

10.2 Problems with multi-processor systems

For the correct functioning of a multi-tasking system it is important that data in the
kernel can only be changed by one processor so that identical resources cannot be
allocated twice. In UNix-like systems, there are two approaches to the solution of this
problem. Traditional UNIX systems use a relatively coarsegrained locking; sometimes
even the whole kernel is locked so that only one process can be present in the kernel.
Some more advanced systems implement a finer grained locking which, however,
entails high additional expenditure and is normally used only for multi-processor and
real-time operating systems. In the latter, fine-grained locking reduces the time that a
lock must be kept, thus allowing a reduction of the particularly critical latency time.

 In the LINUX kernel implementation, various rules were established. One of them is that
no process running in kernel mode is interrupted by another process running in kernel
mode, except when it releases control and sleeps. This rule ensures that large areas of the
kernel code are atomic with respect to other processes and thus simplifies many functions
in the LINUX kernel.

A further rule establishes that interrupt handling can interrupt a process running in
kernel mode, but that in the end control is returned back to this same process. A process can
block interrupts and thus make sure that it will not be interrupted.

The last rule that is important for us states that interrupt handling cannot be
interrupted by a process running in kernel mode. This means that the interrupt handling will
be processed completely, or at most be interrupted by another interrupt of higher priority.

In the development of the multi-processor LINUX kernel a decision was made to
maintain these three basic rules, on the one hand to facilitate the first implementation, on
the other to allow a simple integration of already existing code. One single semaphore is
used by all processes to monitor the transition to kernel mode. Each processor that owns
this lock can always enter kernel mode, for example for interrupt handling. As soon as the
process no longer owns the lock, it is no longer allowed to change to kernel mode.

 Linux kernel internails - 309 -

This semaphore is used to ensure that no process running in kernel mode can be
interrupted by another process. Furthermore, it guarantees that only a process running
in kernel mode can block the interrupts without another process taking over the
interrupt handling.

This design decision results, however, in low performance of I/0-inten-sive
applications because the CPU time in kernel mode becomes a bottleneck. At a later
point in the development, it will become necessary to change over to a finer grained
locking. Only this can ensure a higher parallelism and consequently a higher system
performance. The transition can be carried out hierarchically, by substituting one
semaphore with several others which cover an increasingly smaller area of the LINUX
kernel. The current LINUX multiprocessor implementation achieves good performance
for CPU-intensive processes which are in user mode most of the time, whereas
processes with a large amount of I/O cause the system to degenerate into a single-
processor system.

10.3 Changes to the kernel_______________

In order to implement SMP in the LINUX kernel, changes have to be made to both the
portable part and the processor-specific implementations.

10.3.1 Kernel initialization
The first problem with the implementation of multi-processor operation arises when
starting the kernel. All processors must be started because the BIOS has halted all APs
and initially only the boot processor is running. Only this processor enters the kernel
starting function start_kernel(). After it has executed the normal LINUX initialization,
smp_init() is called. This function activates all other processors by calling
smp_boot_cpus().

Each processor receives its own stack in which initially the trampoline code is
entered. When starting up, the processor executes this code and then also jumps into
the start_kerneL function. There, however, once exception handling and interrupt
handling have been initialized, the processors are again trapped by smp_caLLin()
inside the start_secondary0 function.

asmLinkage void start_secondary(void) {
trap_init(); init_IRQ();
smp_callin();

cpu_idte(NULL);
}

 Linux kernel internails - 310 -

void smp_callin(void) {

/* determine the processor's BogoMlps */
calibrate_delay();
/* save processor parameters */
smp_store_cpu_info(cpind);

while(!simp_commenced);

But how can a halted processor be started? This purpose is served by the APIC. It allows
each processor to send other processors a so-called inter-processor interrupt (IPI).
Furthermore, it is possible to send each processor an INIT (INIT IPI). On a Pentium
processor, an INIT signal works like a reset, but the cache, FPU and write buffer are reset
as well. Then, via its reset vector, the processor jumps into the BIOS. If previously the
warm start flag was set in CMOS, and the warm start vector (0040:0067) was set to a real-
mode routine, the processor will then jump into that routine. Furthermore, it is possible to
send Pentium processors a STARTUP IPI. With this, the processor begins to execute a real
mode routine at the address VVOO:0000.'

Let us now go back to the smp_init() function. After all remaining processors have
been started, the variable smp_num_cpus contains the number of all currently running
processors. Now, a separate idle task is created for each processor. This is necessary
because in SMP operation the idle task must run in user mode in order not to block the
kernel mode for all other processors.

After termination of smp_init() the boot processor generates the init task which finally
calls smp_commence(). This function sets the smp_commenced flag, at which point
all APs can quit the smp_callin() function and process their individual idle tasks.

10.3.2 Scheduling
The LINUX scheduler shows only slight changes. First of all, the task structure now has a
processor component which contains the number of the running processor or the constant
NO_PROC_ID if no processor has been assigned as yet. The last_processor component
contains the number of the processor which processed the task last.

Each processor works through the schedule and is assigned a new task which is
executable and has not yet been assigned to any other processor. Furthermore, those tasks
are preferred that last ran on the currently available

1 The MP specification defines the precise algorithm of how to start APs. Amongst others, Pentiums are sent one INIT
IPI and two STARTUP IPIs.

 Linux kernel internails - 311 -

processor. This can lead to an improvement in system performance when the internal
processor caches still contain the data valid for the selected process.

Also, since now each processor possesses its own active process, the current
symbol which normally points to the current process expands to

current_set[smp_processor_id()];
where the smp_processor_id() function supplies the number of the currently running
processor.

10.3.3 Message exchange between processors
Messages in the form of inter-processor interrupts are handled via interrupts 13 and
16. In 386 processors, interrupt 13 had the task of informing the system about FPU
errors. Since the 486, which is the smallest processor supported by the Intel MP
specification, this is now carried out by exception 16 which is the only one used in
SMP mode. Interrupt 13 is defined as a fast interrupt which, however, does not need
the kernel lock and can thus always be processed. This interrupt cannot be used to
trigger the scheduler, but only to distribute messages. Interrupt 16, on the contrary, is
a slow interrupt which waits for the kernel lock and can trigger scheduling. It is used
to start the schedulers on the

other processors.

10.3.4 Entering kernel mode
As already described, the kernel is protected by a single semaphore. All interrupt handlers,
syscall routines and exception handlers need this semaphore and wait in a processor loop
until the semaphore is free. This could lead to a deadlock problem when the processor that
is running in kernel mode changes the memory mapping and wants to inform all other
processors about this fact. It triggers an IPI and waits until all processors have carried out a
TLB flush.2 Processors that wait for the kernel lock with deactivated interrupts do not
handle the IPI. For this reason, while waiting for the kernel lock, each processor checks its
own bit in the variable smp_invaLidate_needed and carries out a TLB flush when it is set.
If at a later stage the IPI is handled, the handling routine sees that the flush has already been
carried out and does nothing.

The enter code for the kernel is defined in the ENTER_KERNEL assembler
macro and the Lock_kernel() function.

2 Since Intel processors possess a cache (Translation Lockaside Buffer) for paging, this cache must be adjusted when
the paging is changed. On the 386 this was only possible by emptying the entire cache (TLB flush). Since the 486, it is
also possible to change individual cache entries.

 Linux kernel internails - 312 -

void lock_kernel(void) {

unsigned Long flags;
int proc = smp_processor_id();

save_fLags(flags);
cLi();
/* set_bit is an atomic operation under SMP */

while(set_bit(0, (void *)8kernel_flag)) { /*

* if the processor already owns the kernel lock
*/
if (proc == active_kernel_processor)

break;

do {
if (test_bit(proc, (void *)8smp_invaLidate_needed))

if (clear_bit(proc, (void *)8smp_invalidate_needed))

LocaL_fLush_tLb();

} whiLe(test_bit(0, (void *)8kernel_fLag));
} /*

* now we have our kernel Lock
*/ active_kerneL_processor = proc;

kerneL_counter++;
restore_f Lags(fLags);

This macro is used for all assembler entry points in the kernel, whereas the
Lock_kerneL function must be called at the beginning by all kernel daemons, such as
kswapd.

10.3.5 Interrupt handling
Interrupts are distributed to the processors by the I/O APIC. At system start, however,
all interrupts are forwarded only to the BSP. Each SMP operating system must
therefore switch the APIC into SMP mode, so that other processors too can handle
interrupts (exception: IPI).

Currently, however, LINUX does not use this operating mode, that is, during the
whole time the system is operating, interrupts are only delivered to the BSP. This
compromises the latency time, since incoming interrupts can only be handled when no
processor or the BSP is in the kernel. However, if there is an AP in the kernel, the
interrupt handling routine must wait until the

 Linux kernel internails - 313 -

AP has left the kernel. In order to be able to use the APIC's SMP mode, changes must
be made to the current interrupt handling.

10.4 Compiling LINUX SMP

In order to compile an SMP-capable kernel, it is necessary to edit the topmost
Makefile and remove the comment character from the following line:

SMP = 1
In addition, it is sensible to activate the SMP profiling in order to view some statistics:

SMP_PROF = 1

Then, the smp file in the Proc file system supplies information on the current
system:
CPUS: 2

 sun PO P1
0: 599296 599296 0 timer
1: 20113 20113 0 keyboard
2; 0 0 0 cascade
4: 2413 2413 0 + serial
8: 0 0 0 + rtc
9: 13497 13497 0 3c590 Vortex 10Mbps

 13: 8573 1110 7463 + IPI
14 97091 97091 0 + ideO
LCK: 12153103 8328361 3824742 spins from int
LCK: 0 0 0 spins from
syscaLL LCK: 0 0 0 spins
from sysidle IDLE 1140565 569172 571393 idle
ticks
IPI: 8573 received

As can be clearly seen, interrupts are only handled by the first processor. The spins
lines supply information on how often each processor has cycled through the waiting
loop while waiting for the kernel lock. Currently, however, no distinction is made
between individual cases, so that the line spins from int displays the sum of all
waiting times.

 Linux kernel internails - 314 -

APPENDIX A
System calls
Call unto me, and I will answer thee, and show thee great
and mighty things which thou knowest not.
Jeremiah 33:3

This appendix describes the implementation of all system calls in LINUX. With regard
to architecture-dependent implementations, the emphasis' is on the LINUX system
running on the Intel PC. A description of the other architectures is not possible for
several reasons (including time and the lack of documentation). A basic knowedge is
given in the previous chapters. We also recommend having a look at the
corresponding source files of the kernel.

A precise distinction has to be made between the system call2 and its
corresponding kernel function. A system call is the transition of a process from user
mode to system mode. In LINUX this is done by calling the interrupt 0x80, together
with the actual register values. The kernel (in system mode) calls a kernel function out
of the _sys_caLl_table table. These functions, which in the source text begin with
'sys_', are described in the following sections.

The conversion from a function used by a program to the system call is carried
out in the C library. This allows, for example, several functions to be handled with one
single kernel function, as is shown rather nicely by sys_socketcall(). Such functions
have a typical characteristic: parameters whose structure can vary are passed to the
kernel function as unsigned Long, which is then used as an address. In LINUX it is
common to provide generally known system calls as library functions - which blurs
the borderline between system calls and C library functions.

' It is, however, explicitly mentioned when a system call is not available for a different architecture.

 2 The discussion ' What is a system call? kept us busy tor quite a while!

 Linux kernel internails - 315 -

The kernel functions are divided into six groups: process management, file system,
inter-process communication, memory management, initialization and the rest (not or not
yet implemented system calls). The division can be roughly expressed as follows: system
calls whose source files can be found in
the same subdirectory are described together in a group.

The description of a kernel function is structured similarly to a UNIX
manual page: top left we find the name of the kernel function, top right the origin of the
corresponding system call (POSIX, BSD, SVR4). Below there is the name of the file in
which the kernel function is implemented. If special header files are needed for the
corresponding system call, these are also listed, The prototype of the function and the
description follow. The interface provided by the C library and any peculiarities are
described in the implementatior section. The description finishes with a list of errors that
can occur during execution of the kernel function.

A.I Process management

The following calls access the kernel of each and every UNIX system, the scheduler and
the process management. The foundations for this are described in
Chapters 3 and 4.

File: kemel/time.c

((include <sys/tiiBex.h> int sys_adjtimex(struct

timex *txc_p);

The sys_adjtimex() call allows reading and setting of the kernel's time structures, or
more precisely, of the variables beginning with 'time_'. As these control the timer, the
system's time behaviour can be controlled.3 The tinex structure is an extension of the
timeval structure:

struct timex (
unsigned int modes; /* -function */
long offset; /* time offset (usec) */
long freq; /* frequency offset (scaled ppm) */

3 The commented source obde calls it *to discipline the kernel clock oscillator'.

 Linux kernel internails - 316 -

long maxerror; /* max. error (usec) */
long esterror; /* estimated error (usec) */
int status; /* clock status */
long constant; /* PLL time constant */
long precision; /* clock precision (usec) (ro) */
long tolerance; /* frequency variations (ppm) (ro) */
 struct timeval time; /* system time (read only) */
 long tick; /* microseconds between two ticks */
Long ppsfreq; /* PPS frequency (scaled ppm) (ro) */
long jitter; /* PPS jitter (us) (ro) */
int shift; /* interval duration (s) (shift) (ro) */
long stabil; /* PPS stability (scaled ppm) (ro) */
long jitcnt; /* jitter limit exceeded (ro) */
long calcnt; /* calibration intervals (ro) */
long errcnt; /* calibration errors (ro) */
long stbcnt; /* stability Limit exceeded (ro) */

 int :32; int :32; int :32; int :32; int :32; int :32;

int :32; int :32; int :32; int :32; int :32; int :32;
};

If mode is zero, the values are read, otherwise they are written. The following values
are possible (also in combination):

ADJ_STATUS - time_status is set.
ADJ_FREflUENCY - time_freq derives from txc.frequency.
ADJ_MAXERROR - time_maxerror is set.
ADJ_ESTERROR - time_esterror is set.
ADJ_TIMECONST - time_constant is set.
ADJ_OFFSET - If, in addition, ADJ_OFFSET_SINGLESHOT is set, the time_adjust value

derives from txc.offset. Otherwise, time_offset is set to the value txc.offset <<
SHIFT_UPDATE and time_reftime to xtime.tv.sec, and time_freq is recalculated.

ADJ_TICK - tick is set to txc.tick. For reasons of stability, the value txc.tick must not deviate
more than 10 per cent from the normal value (1000).

ADJ_OFFSET_SINSLESHOT - allows, together with ADJ_OFFSET, emulation of the well-known
system call adj time.

As the timer interrupt would disturb the settings, interrupts are disabled while
copying. After copying, the txc structure is filled with the currently valid time_ values
(offset contains the previously stored time_adjust value) and returned.

 Linux kernel internails - 317 -

Implementation
The system call is converted with the syscall macro. Furthermore, the well-known
system call adjtime is based on the function adjtimex(), as shown in the following
(abridged) source text.

int adjtime(struct timeval * itv, struct timevaL * otv) { struct
timex tntx;

if (itv) { struct timeval tmp;

tmp.tv_sec = itv->tv_sec + itv->tv_usec / 1000000L;
tmp.tv_usec = itv->tv_usec % 1000000L;

tntx.offset = tmp.tv_usec + tmp.tv_sec * 1000000L;
tntx.mode = ADJ_OFFSET_SINGLESHOT;

} else tntx.mode = 0;
if (adjtimex(&tntx) < 0) return -1;
return 0;

}

Errors
EPERM - a write access was attempted without superuser privileges. EINVAL - a
value in the txc structure is not valid.

File: kernel/sched.c

int sys_alarm<long seconds);

sys_alarm() sets a timer to the value seconds. After the timer's expiry, the SIGALRM
signal is triggered. When seconds equals zero, the timer is restarted.

If a previous alarm is still running, its remaining time (in seconds) is returned
and the timer is restarted. The execution of the alarm is described in Section 3.2.1.

Implementation
The conversion is carried out through the syscall macros This function is not

available on Alpha machines.

(File: kemel/sys.c

int sys_brk(unsigned long new_brk);
sys_brk(), changes the size of the unused area of the data segment. It sets the value mm-

 Linux kernel internails - 318 -

>brk of the task structure to new_brk, after rounding up brk to the beginning of the next
memory page.

The value new_brk must be bigger than the text segment and lie 4 memory pages
before the end of the stack in order to leave it enough space. If this cannot be achieved, the
segment is not changed.

The do_mmap() function (see Section 4.2.2) organizes the necessary memory (vma
zones) and sets the flags PROT_READ, PROT_WRITE, PROT_EXEC, MAP_FIXED and
MAP_PRIVATE. The new brk value is returned.

Implementation
In Intel systems, the system call does not use the syscall macro, but jumps directly via
assembler code into the interrupt 0x80.

This system call is used in malloc() to allocate memory. The memory requested by
mallocO is added to the current brk value and claimed.4

Errors
ENONEH - no memory available for a bigger brk value.

File: kemel/exit.c

int sys_exit(int status);
When a process is terminated, it calls (explicitly or implicitly) _exit0. The kernel function
sys_exit() releases all resources used by the process in the kernel and informs the processes
concerned.

The status value is returned to the parent process. The function is described in Section
3.3.3.

Implementation
The system call is converted into the kernel function with no modification of
the parameters.

4 The function used for this has the typical name morecore(), but is only a pointer to brk().

 Linux kernel internails - 319 -

File: kernel/fork.c

Int sys_fork(struct pt_regs regs);
int sys_clone(struct pt_regs regs);

sys_fork() generates a new process (child process) as a copy of the current
process (parent process). In order to be able to distinguish between parent and child
process, the PID of the child process is returned in the parent process, while a 0 is
returned in the child process. In LINUX, copy-on-write is used, so that only the page
tables and the task structure are duplicated. The maximum number of processes is
limited to the value specified in NR_TASKS. The termination signal of the child process
is SIGCHLD.

In order to extend the semantics of the fork system call, LINUX provides a system
call done. By means of the regs registers, two parameters are passed:

in regs.ebx this is a pointer used as the stack pointer of the child. If it is zero, the
stack pointer of the parent process is used. The register regs.ecx contains the flags and
the signal. The signal is located in the lower two bytes and is passed to the parent
process upon termination of the child. Interestingly enough, the signal is later masked
out with Ox-ft, which would allow for up to 255 signals. The flags control the
'nursery' of the new process:

CLONE_VM - Parent and child process share the same memory pages. If this flag is not
specified, the memory pages of the child are generated via copy-on-write.

CLONE_FILES - Parent and child process use the same descriptors. Otherwise, the file
descriptors are copied.

CLONE_FS - Parent and child process use the same file system structure (with the counter
being incremented). Otherwise, the structure is copied.

CLONE_SIGHAND - Parent and child process share the same signal handling routines.
Otherwise, these structures are copied.

Thus, the calls sys_fork() and sys_clone(0, SIGCHLD | COPYVM) have the same
effect. The implementation of the system calls is described in Section 3.3.3.

Implementation
The conversion of fork() is carried out via the syscall macro. The pt_regs

structure of <asm/ptrace.h> contains exactly those registers in their correct order
which a system call puts on the stack. Thus, the kernel) function can

 Linux kernel internails - 320 -

access them, although the call itself is parameteriess. The clone() call too is
converted via the syscall macro.

Errors
EAGAIN - if sys_fork() cannot allocate memory for the page table and the task structure.

S
ystem

g
etpid

get
uid

get
euid

POSI
X

 g
etgid

get
euld

get
egid

4.3+
BSD

 g
t id

get
id

get
 s

t id
,

t id
set

ld

setregi

set
fsuid

sct
fsgid

File; kernel/sched.c kernel/sys.c

int sys_getpid(void);
int sys_getuid(void);
int sys_geteuid(void);
int sys_getgid(void);
int sys_getegid(void);
int sys_getppid(void);
int sys_getpgid(pi'd_t pid);
int sys_getpgrp(void);
int sys_setuid(uid_t uid);
int sys_setgid(gid_t gid);
int sys_setreuid(uid_t ruid, uid_t eind);
int sys_setregid(uid_t rgid, uid_t egid);

 int sys_setpgid(pid_t pid,pid_t pgid);
int sys_setsid(void);
int sys_setfsuid(uid_t uid);
int sys_setfsgid(gid_t gid);

sys_getpid() and sys_getpgrp() determine the process identification (PID) and
the process group (PGRP)5 of the current process. sys_getpgid0 returns the process
group of an arbitrary process pid; if pid is zero, it returns its own group. The
sys_getppid() function returns the process identification of the parent process (PPID).

The sys_getuid0 function returns the user identification (UID) and the
sys_getgid0 function the group identification (GID) of the calling process.

5 You may also find PGID as the denomination of the process group (for example, in ps).

 Linux kernel internails - 321 -

The effective user (EUID) and group (EGID) identifications are determined by
the kernel functions sys_geteuid0 and sys_getegid0.

All these functions simply read the task structure of the calling process.

asmlinkage int sys_getppid(void) {
return current->p_opptr->pid }

sys_setpgid() sets the process group to pgid for the current process or one of its
children. If pid and pgid are zero, the values of the calling process will be used. The
PGRP is not changed if one of the following conditions is met: the process is the
process group leader, the indicated child process belongs to a different session or there
already exists a process with the requested PGRP, but it belongs to a different session.
The call checks all current processes.

The functions sys_setreuid<) and sys_setregid() manipulate the UIDs and GIDs
of a process. Provided that the parameter (ruid or euid) is not equal to -1, the
following occurs: if the calling process has privileges in setreuidO, the UID is set to
ruid. Privileges in this case means: the process has superuser rights or UID equals ruid
(the value is already set) or the EUID equals ruid. Otherwise, an error is returned. In
order to set the EUID to euid, one of the following conditions must be met: superuser
rights; UID, EUID or SUID equal euid. Here, too, the function returns an error
otherwise. If ruid or euid are equal to -1, the SUID of the process is given the value of
the EUID. If no error has occurred until then, the function finally sets FSUID to EUID
and returns zero.

Thus, a user with no superuser privileges can only exchange effective and
normal (real) IDs. setreuid(geteuid(),getuid()) performs the exchange;

if the call is repeated, the original values are restored. The superuser has free
access.

sys_setuid0 sets the UIDs of a process to uid. For the superuser, these are UID,
EUID, SUID and FSUID. For normal users, only FSUID and EUID are set, provided
that uid is equal to the UID or the SUID. As an equivalent for the setting of the
process GIDs, there is the sys_setgid() function. The functions are the SVR4
counterpart to the above set calls, which originate from the world of BSD. It has to be
borne in mind that there is no possibility of resetting a EUID once it has been
changed, as is possible with sys_setreuid0. The return value is zero upon successful
execution and a negative value in the event of an error.

The functions sys_setfsuid0 and sys_setfsgid() set the FSUID and FSGID, that
is, the IDs with which the file system is accessed. These functions are used in access()
and in the NFS daemon. The return value is the old ID.

sys_setsid() makes the calling process the process session leader. It sets
SESSION and PGRP to PID, the Leader component of the task structure to 1

 Linux kernel internails - 322 -

and deletes its controlling terminal. If the process is already the session leader, an
error is returned. The return value is the new PGRP.

Implementation
Owing to the simplicity of the functions, the conversion of the system calls is carried

out via the syscall macro. The get*id() functions are not available on Alpha machines.
The well-known system calls soteuid, setegid and setpgrp are provided by LINUX as

library functions. The conversion is shown taking seteuid() and setpgrp() as examples.

int seteuid(uid_t uid) {

return setreuid(-1, uid);
}

Errors

EINVAL - if an invalid PID, PGID and so on is passed to a function.
EPERH - if the function used is not allowed. Generally, only the superuser may change all

process data. Normal users can only change their group and user IDs.

ESRCH - if no processes are found by sys_setpgid().

File: kernel/sys.c

#include <sys/time.h> #include
<sys/resource.h>

Int sys_getpriority(int which, Int who);
int sys_setpriority(int which, Int who, int niceval);

The kernel functions sys_getpriority() and sys_setpriority() administer the priorities
for scheduling.

sys_getpriority() is used for interrogation. The which parameter specifies whether the
priority of a process, a process group or a user is requested. In who, the value is specified.
The following values are allowed for which:

 Linux kernel internails - 323 -

Appendix A System calls

PRIO_PROCESS - the value in who specifies a PID. , PRIO_PGRP -
the value in who specifies a PGRP. PRIO_USER - the value in who
specifies a UID.

If zero is specified for who, the kernel uses the value of the calling process.
All processes are searched to find out whether they match the specified values

(proc_seLO). The return value is the highest value found, if more than one entry has been
found (process group).

The sys_setpnonty() function sets the priority for the processes selected via which
and who, where niceval must lie between [-20,20]. The priority is scaled to time slice units
and assigned to all processes found. Only the superuser is allowed to increase the priority
of a process.

Implementation
While setpriority() simply uses the syscall macro, the getprionty() call assembles the

interrupt 0x80 by hand and calculates the mirroring at PZERO back in order to make the
return value of getpriorityO match the value passed to sys_setpriority().

This constitutes a dangerous exception'. It is possible that the library function
getpriority() returns -1 without an error having occurred. In this case, for the purpose of
error checking, not only the return value, as is normally done in UNIX, but also errno should
be tested.

Errors
ESRCH - if no matching process could be found for whi ch and who. EINVAL -

if an invalid value is specified for which.
EPERM - if in sys_setpnonty() the EUID of the specified process is not equal to the EUID

of the calling process.
EACCES - if a non-privileged user wants to increase the priority.

File: arch/i386/kemel/ioport.c

int sys_ioperm(unsigned Long from, unsigned Long
nun), int turn_on);

int sys_iopL(int LeveL);

These calls can only be used with superuser privileges. The bits of the port access
rights are set by sys_1operm(), that is, num bits beginning with the

 Linux kernel internails - 324 -

atddress from are set to the value turn_on. The value 1 means full access to the
port (read and write) and 0 no access. Only the first 1023 (32xlo_pITHAP_SIZE)
•ports can be set.

 In order to access all 65 536 ports under LINUX, for example for the X (server,
the system call 7 opi is provided. The corresponding kernel function
sys_iopL () sets the I/O privilege level of the process. Normally, only two of
the four possible levels are used: level 0 and level 3.

Implementation
 Both system calls work with the syscall macro.

Errors
EINVAL - if a negative value has been specified for num, from+num is greater than
1023 or Level is greater than 3. EPERM - if the calling process

has no superuser rights.

Pile: kernel/exit.c
#include <signaL.h> int sys_kiLL(int pid, int sig);

sys_kill() sends the signal sig to a process or a process group. If pid is greater than
zero, the signal is sent to the process with the PID pid. If pid is zero, the signal is sent to
the process group of the current process. If pid is less than -1, the signal is sent to all
processes of the process group -pid. In POSIX, the behaviour of ki LL(-1,sig) is not
defined. In LINUX, the signal is sent to all processes with a PID greater than 1 (except the
current one).

Implementation
The system call is converted via the syscall macro.

Errors
EINVAL - if sig is not valid.
ESRCH - if the process or the process group pid does not exist.
EPERH - the privileges of the calling process do not allow the signal to be sent.

 Linux kernel internails - 325 -

File: arch/i386/kernel/ldt.c
(MncLude <linux/ldt.h> int sys_modify_Ldt(int func, void *ptr, unsigned long

count);

In the course of the implementation of WINE it became necessary to emulate the
internal functions of MS-Windows. These include manipulation of the local descriptor
table. This is precisely the task of the system call modify_ldt. Being a part of the task
structure, this table can be manipulated quite easily.
If -func equals zero, the local descriptor table of the current process is read. If it does

not yet possess a table, the default table {0,0> is provided. The required size can be set with
the count parameter. If the table is smaller, only the table of size
LDT_ENTRIES*LDT_ENTRY_SIZE is read. The return value is the actual size of the table; ptr
is a pointer to the structure desc_struct:

typedef struct desc_struct { unsigned Long a,b;
} desc_table[256];

In order to change an entry in this table, func must be 1. Then ptr is a pointer to the
structure modify_Ldt_Ldt_s:

struct modify_Ldt_Ldt_s (
unsigned int entry_number; /* index of the required entry */
unsigned Long base_addr;

unsigned int Limit;
unsigned int seg_32bit:1;
unsigned int contents:2;
unsigned int read_exec_onLy:1;
unsigned int Limit_in_pages:1;
unsigned int seg_not_present:1;
};

count must indicate exactly the size of the structure. The specified structure is
described in the table of the current process. If this does not yet possess a local descriptor
table, a table is initialized. It is also possible to delete an entry (by entering 0).

Implementation
The C library does not provide an interface to this system call. Users must proceed in

the same way as specified for sys_sysinfo() (see page 332).

 Linux kernel internails - 326 -

Errors '
ENOSYS - func is invalid. EINVAL - ptr is 0 (for reading) or incorrectly set

(for writing).

System
call

Create_mo
duLe

Delete_moduLe
get_kerneL_sy

LI
NUX

File: kernel/module.c

unsigned Long sys_create_moduLe(char *name, unsigned Long size);
int sys_init_moduLe(char *name, char *code, unsigned codesize,

struct mod_routines *routines, struct symbol_table *symtab);
int sys_deLete_moduLe(char *name);
int sys_get_kerneL_syms(struct kerneL_sym *tabLe);

The sys_create_moduLe() function allocates memory for a module. The size of
the required memory is specified by size. The call generates an instance of the module
structure, where name is the name of the module. The following values of the
structure are set: the name, the size (number of pages), the start address of the memory
allocated for the module and the status (to MOD_UNINITIALIZED). All other values are
initialized with NULL.

. struct module -C
 struct moduLe *next; /* the next moduLe */
 struct moduLe_re-f *ref; /* List of moduLes that */
 /* point to myself */
 struct symbol_table *symtab; /* symbol table */

 char *name; /* name of the module */
int size; /* module size in pages */
void* addr; /* address of the module */
int state; /* status flags of the module */
void (*cleanup)(void); /* cleanup routine */
};

If a module of the same name already exists, an error is returned, otherwise the
return value is the address of the memory allocated in the kernel address space.
sys_init_module() loads the module and activates it. code is the address where the
module is loaded, codesize its size in bytes. This must not exceed the value stored in
moduLe->size. If the loaded module does not end on a page address, the remainder is
initialized with 0. The pointer routines to the structure mod_routines is the interface
for the administration of the module. It consists of two function pointers, one to an
initialization, the other to a delete function for the module.

 Linux kernel internails - 327 -

struct mod_routines {
int (*init)(void); /* Initialization */
void (*cleanup)(vo1d); /* cleanup */
};

The symtab pointer points to the symbol table. This is loaded and its pointer is
recalculated by adding the address of the table (in the module). In addition, references
to other modules are entered in their reference lists.
After the module has been loaded, its own initialization routine init() is called and the

status is set to MOD_RUNNING; now the module is activated. sys_delete_moduLe() removes
modules. If name is specified, that particular module is released. There must be no
references to the module, and its usage counter must be 0. If the module is running
[MOD_RUNNING], its own cleanup function is called and the status set to MOD_DELETED.
Then the module can be removed by a call to free_modules(). If no name is specified, the
function searches the list of all modules and tries to release all modules that are no longer in
use.

sys_get_kernel_syms() allows access to the symbol table. It copies the symbol table to
the location referenced by table and returns the number of known symbols. First, the call
checks whether there is enough memory for writing following the address. Therefore, the
size of the table is normally determined by means of a call to get_kernel_syms(0), then the
necessary memory is allocated, after which get_kernel_syms0 is called again. Except for
the system call get_kernei_syms, these system calls are reserved for use by the superuser.

Errors
EPERH - if a non-privileged user uses one of these system calls. ENOENT - if the

module name does not exist. This error message is possible with
sys_init_module<) and sys_delete_module(). EEXIST - if the module name already

exists. This error can be returned by
sys_create_module().

ENOHEH - if with sys_create_module0 there is not enough free memory. EBUSY -
if the initialization routine fails or an attempt is made to remove a
module that is still in use.

File: kemel/sched.c

1nt sys_nanosleep(struct timespec *rqtp, struct tiaespec *rmtp);

 Linux kernel internails - 328 -

The increased clock frequency of today's CPUs allows (or necessitates) more precise
time structures. This kernel function allows halting of the current process on nanosecond
level. The required period of time is specified in rqtp:

Struct timespec {
long tv_sec; /* seconds */
long tv_nsec; /* nanoseconds */ };

Provided that SCHED_OTHER is not set, a period of up to 2 ms is delayed by the process
itself in a short -for loop. Otherwise, the pause is converted into jiffies and entered as the
process's timeout, after which the scheduler is called. If the timeout has not yet expired after
re-entering the function, the remaining time is returned in rmtp.

Errors
EINVAL - if a negative period of time or more than 1000000000 nanoseconds were

specified.
EINTR - if a period of time remains.

File: kernel/sched.c ' int sys_nice(long

inc);

sys_nice() sets the priority of the current process. As priorities are measured in
time slices, some conversions are needed. The new priority is (approximately)
obtained by ^subtracting inc from the old priority. This means that the higher the
value of inc, the lower the priority of the process after the execution of the call. Only
the superuser is allowed to specify negative values for inc and thus increment the
priority. First, however, the new priority is set to inc and limited to a maximum of 40,
then it is scaled to one time slice (DEF_PRIORITY). Then the new priority is
subtracted from the old one, the resulting value is limited to the interval [1,
DEF_PRIORITY*2] and assigned to the process. sys_nice() does not use
sys_setpriority0. The reason for this is probably that sys_nice() has simply been
implemented earlier.

Implementation
The system call is converted via the syscall macro.

 Linux kernel internails - 329 -

Errors
EPERH - if a non-privileged user specifies a negative value for Inc.

File: kemel/sched.c

int sys_pause(void);

The sys_pause0 function is a very simple system call. It sets the status of the current
process to TASK_INTERRUPTIBLE and calls the scheduler. With this, the process
voluntarily relinquishes control. It can only continue to work if it is woken up by a signal.
The function returns -ERESTARTNOHAND; this error message is changed into -EINTR by the
routine ret_from_sys_call.

Implementation
The system call is converted via the syscall macro. This function is not available on

Alpha machines.

File: kernel/exec_domain.c

#include <personality.h> int sys_personality(unsigned Long

personality);

The LINUX kernel supports several execution environments, called exec-domams.
During booting, the kernel generates the first exec-domain (filled with LINUX-specific
data); all others can be loaded at a later stage via modules. A domain has the following
structure:

struct exec_domain {
char *name;
lcall7_func handler;
unsigned char pers_low, pers_high;
unsigned long * signal_map;
unsigned Long * signal_invmap;
int *use_count;

struct exec_domain *next;
};

 Linux kernel internails - 330 -

The values pers_low and pers_high are not, as one might think, the higher and lower
byte values of personality; they represent, instead, a (numerical) upper and lower limit for
the operating system located in personality. The personality parameter is divided into two
areas. The upper word contains flags for known bugs,6 the lower word contains the
operating system. The values can be found in the header file <linux/personality.h>.

By means of sys_personality(), a certain domain can now be set or the current
domain can be interrogated. If in the call all bits in personality are set (Oxffffffff), the
current value is returned. Otherwise a domain that matches personality is sought. For this,
the lower 2 bytes of personality must lie between the low and the high value.

This domain is entered, together with personality, in the task structure of the current
process. The counter of the old domain (use_count) is decremented, that of the new
domain is incremented. The return value is the old value of personality.

Errors
EINVAL - There is no domain that matches personality.

, File: arch/i396/kernel/ptrace.c

 #include <sys/ptrace.h>

Int sys_ptrace(long request, long pid, long addr, long data);

By means of the system call ptrace a process can monitor the execution of
another process. This system call is used, for example, in the implementation of
debug algorithms. A process in whose task structure the PF_PTRACED flag is set,
is stopped upon a signal. It halts and its parent process is informed via the system

call wait. The memory of the halted process can then be read and written to. The
parent process can make the child process continue. In pid, the PID of the
required process is specified. Obviously, not every arbitrary process can be
monitored: one should generally keep one's hands off
init; further conditions depend on the desired request. The value in request

determines the exact meaning of the call:

PTRACE_TRACENE - The process sets the flag PF_TRACED. The parent process is requested
to monitor the process. If this flag is already set, an error occurs.

6 It would be more correct to refer to them not as bugs, but as features of the operating systems concerned. One
example is the flag STICKY_TIMEOUTS; see also Appendix A.2.

 Linux kernel internails - 331 -

PTRACE_ATTACH - Sets the PF_PTRACED flag in the process specified by pid. For this, one
of the following conditions must be met: the UID (GID) of the current process must
match the UID, EUID or SUID (GID, EGID or SGID) of the desired process, the
child is 'willing' (dumpable) or the user is the superuser. Furthermore, the flag must
not be set yet. If all these obstacles have been surmounted, the flag is set, the current
process becomes the father of the child and sends it the SIGSTOP signal.

PTRACE_PEEKTEXT, PTRACE_PEEKDATA - Reads a word (32 bits) from the address addr.
The value is stored in data and returned. As yet, there is no distinction between text
and data segment.

PTRACE_PEEKUSR - Reads a word from the address addr out of the user structure of the
process. The value is stored in data and returned.

PTRACE_POKETEXT, PTRACE_POKEDATA - Writes the value contained in data to the
address addr.

PTRACE_POKEUSR - Writes the value contained in data to the address addr of the user
structure. Great care is taken to ensure that no register or task structure information is
overwritten. Only a few debug registers are allowed.

PTRACE_SYSCALL, PTRACE_CONT - Continues processing the child process. With
PTRACE_SYSCALL, the PF_TRACESYS flag is set. This causes processing to stop
after the return of the next system call. With PTRACE_CONT, this flag is deleted.
Then the contents of data are entered into the exit code of the child and it is woken up.
Finally, the trap flag7 is deleted.

PTRACE_KILL - Sends a SIGKILL signal to the child process. In addition, the trap flag is
deleted.

PTRACE_SINGLESTEP - The PF_TRACESYS flag is deleted. The trap flag is set instead and
data is entered as the exit code.

PTRACE_DETACH - Releases the process stopped by PTRACE_ATTACH. The PF_TRACED

and PF_TRACESYS flags of the task structure are deleted, the process is woken up, data
is entered as the exit code, the original father is re-entered as the parent process, and
finally the trap bit in the EFlags register is deleted.

Implementation
Since in the peek calls the value of the data parameter is not used but is nevertheless

placed on the stack (for the interrupt), the C library provides a secure pointer by placing a
dummy value on the stack.

7 This flag (also known as single step) is located in the processor's EFlags register. If it is set and a SIGTRAP is
sent to the monitored process, the process executes exactly one instruction.

 Linux kernel internails - 332 -

 int ptracednt request, int pid, int addr, int data)
{

 long ret; long res;
 if (request > 0 88 request < 4) (long *)data = 8ret;

 _asm_volatile ("int $0x80"' :"=a" (res)
:"0" (SYS_ptrace),"b" (request), "c" (pid), "d" (addr), "S"

(data));

if (res >= 0) {
if (request > 0 88 request < 4) { errno = 0; return (ret);
} return (int) res;

}

errno = -res; return -1;

}

Errors
EPERH - if no sys_ptrace0 can be executed for the process specified by pid or there is one

already running.
ESRCH - if the process specified by pid does not exist. EIO - if an

invalid value is specified for request.

File: kernel/sys.c

int sys_reboot(int magic, int magic_too, int flag);

sys_reboot() boots the system or enables booting via the key combination
Ctrl+|Alt+Del. The parameters magic and magic_too are fixed. They must be set to
Oxfeeldead and 672274793;8 the function depends on flag. If flag equals

0x1234567 the system reboots,
Ox89abcdef booting via Ctrl+Alt+Del is enabled,
0 booting via Ctrl+Alt+Del is disabled or

8 If you find this number somewhat strange, look at it in hexadecimal.

 Linux kernel internails - 333 -

OxCDEF0123 the system is merely shut down. The message 'System halted' is displayed on
the console and all running processes are terminated (sys_kill(-1, SIGKILD). If Power
of/shutdown and APM BIOS were configured during compilation of the kernel, the
apm_set_pouer_state() function of the BIOS is activated as well.

It should be noted that sys_reboot() does not call sys_sync0!

Implementation
The system call is converted via the syscall macro.

Errors
EINVAL - if an invalid value is specified for one of the parameters. EPERM - if a

non-privileged user calls the function.

File: kernel/sched.c

int sys_sched_getparam(pid_t pid, struct sched_param *param);
int sys_sched_setparam(pid_t pid, struct sched_param *param);

int sys_sched_getscheduler<pid_t pid);
int sys_sched_setscheduLer(pid_t pid, int policy, struct sched_param

*param);

A process can control its handling by the scheduler. The parameters (only one up
to now) are combined in a structure:

struct sched_param { int sched_priority; };

The function sys_sched_getparam() returns the basic priority of real-time
processes (rt_priority) of the process pid in the param structure.
sys_sched_setparam() enters the passed value as the rt_priority of the process pid and

calls the scheduler. The value must lie between 0 and 99. A non-privileged user may only
change his/her own processes.

The function sys_sched_getscheduLer() returns the scheduler tactics for the process.
The scheduler knows three tactics:

SCHED_OTHER - The rt_priority of these processes is 0. Thus they receive a normal value
when the priority is recalculated.

 Linux kernel internails - 334 -

SCHED_FIFO - Small, time-critical processes. They get a priority bonus of 1000.
SCHED_RR - Big, time-critical processes. When their counter has expired, they are

inserted at the very back of the scheduler's process list.

With sys_sched_setscheduLer(), a process can change its tactics and its
rt_priority value. If policy is negative, the old value is maintained. The priority must
also correspond to the tactics; only the superuser is allowed to assign time-critical
tactics.

Errors
EPERH - if a normal user attempts to change another process.

ESRCH - if the process pid could not be found. EINVAL - if an invalid

parameter is passed.

File: Kernel/sched.c

int sys_sched_get_priority_min(int policy);
int sys_sched_get_priority_max(int policy);
int sys_sched_yieLd(void);

int sys_sched_rr_get_interval(pid_t pid, struct timespec
*interval)

The first two functions return the lower and upper limit of the rt_pnbr1ty
values of the individual scheduler tactics.

With sys_sched_yield(), a process can acquiesce in its fate. It is inserted at the end of
the list of running processes and treated by the scheduler accordingly.

The function sys_sched_rr_get_interval0 is not yet implemented; it
returns -ENOSYS.

Errors
EINVAL - if incorrect tactics were passed.

File: kernel/sys.c

 Linux kernel internails - 335 -

int sys_setdomainname(const char *name, int len);
The sys_setdomainname() function overwrites the domain name with the name

specified in name. The name does not have to terminate with a null byte: this is
entered by the function itself.

Implementation
The system call setdomainname is converted via the syscall macro. The system

call getdomainname is implemented in the C library. A call to _uname() is made and
the domain name read. The return value (upon success) is 0.

int getdomainname(char *name, size_t len) {
struct utsname uts;

if (name == NULL) {
errno = EINVAL; return -1;

} if (_uname(&uts) == -1) return -1;
if (strlen(uts.domainname)+1 > len) { errno = EINVAL; return -

1;
} strcpy(name, uts.domainname);
return 0;
}

Errors
EINVAL - if in getdomainname() the String supplied by sys_unaine() points to

NULL or is greater than len. If in sys_setdomainname()
len is too big.

EPERM - if a non-privileged user calls sys_setdomainname().

File: kernel/sys.c

#include <sys/types.h>

int sys_getgroups<int len, gid_t •groups);
int sys_setgroups(int len, gid_t *groups);

 Linux kernel internails - 336 -

The functions sys_getgroups() and sys_setgroups() allow several group privileges for
a process to be read and set. sys_getgroups() provides the groups, where Len is the
maximum number required. If this is specified as zero, the call just returns the number of
groups. The groups are part of the task structure (see Section 3.3.1). sys_setgroups() sets the
group privileges. It is only possible to set all groups at once, as the old groups are
overwritten. The number of groups is given by Len. Only the superuser can execute this
call.

Implementation
Both system calls are converted via the syscall macro.

Errors
EINVAL - if in sys_setgroups() the value Len is greater than NGROUPS. EPERM -

if a non-privileged user calls sys_setgroups().

File: kernel/sys.c

int sys_sethostname(char *name, int len);

This function allows a write access to the computer name. It works analogously to
set_setdomainname(). sys_sethostname() can only be executed by the superuser. Upon
success, 0 is returned.

Implementation
The system call sethostname is converted via the syscall macro. The system call

gethostoame is implemented in the C library and makes use of_uname().
int gethostname(char *name, size_t len)
{

struct utsname uts;

if (name == NULL) {
errno = EINVAL; return -1;

}
if (_uname(Suts) == -1) return -1;
if (strlen(uts.nodename)+1 > len) {

errno = EINVAL; return -1;
}

 Linux kernel internails - 337 -

strcpy(name, uts.nodename);
return 0;

Errors
EINVAL - if in sys_sethostname() the name string points to NULL or the size specified in

len exceeds _NEW_UTS_LEN. The value is defined as 64 in <linux/utsname.h>.
EPERH - if a non-privileged user calls sys_sethostname().

File: kemel/itimer.c

#include <sys/time.h>

int sys_getitimer(int which, struct itimerval *value);
int sys_setitimer(int which, const struct itimerval *value, struct itimerval

*ovalue);

These functions allow better time monitoring of a process than does sys_alarm().
Three special timers can be programmed for the current process, specified by which:

ITIHER_REAL - refers to real time. The alarm is updated each time a process is triggered in
the scheduler and, on expiry, provides a SIGALRM.

ITIHER_VIRTUAL - is the time during which the process is active but is not in a system call
(system mode). The alarm is updated by the do_timer0 routine and, on expiry, provides
a SIGVTALRM.

ITIMER_PROF - indicates the total time the process is running. After expiry of the alarm, a
SIGPROF is sent. Together with ITIMER_VIRTUAL, this makes it possible to distinguish
between the time consumed in system mode and in user mode.

The times are indicated in the following structure:

struct itimerval {
struct timeval it_interval; /* interval */ struct timeval it_value; /*

starting value */
};

 Linux kernel internails - 338 -

struct tineval {
long tv_sec;
long tv_usec;

};

sys_getitimer() returns the current value for the alarm set in which. sys_setitimer()
sets the alarm specified in which to value. The old value is returned in ovalue. At its first
start, the timer is set to the value it_value. When the timer has expired, a signal is generated
and the alarm reset, from now on to the value it_interval, as described in Section 3.2.4. The
alarm may be triggered slightly later than the specified time: this depends on the system
clock. Generally, the delay is 10 milliseconds.

Under LINUX, generation and sending of signals are separate. Thus it is possible that
under pathologically heavy load a SIGALRM is sent before the process has received the
signal of the previous cycle. Then the second signal is ignored.

Implementation
Both system calls are converted via the syscall macro.

Errors
EFAULT - if value or ovalue are invalid pointers. EINVAL - if

which is invalid.

File: kernel/sys.c

#include <sys/resource.h>

int sys_getrlimit(unsigned int resource, struct rlimit *rLim);
int sys_setrlimit(unsigned int resource, struct rlimit *rlim);
int sys_getrusage(int who, struct rusage *usage);

sys_getrlimit() reads the size of a resource of the current process and stores it in
rlim. Setting is possible by means of the function setrlinit(). The following values are
defined in <linux/resource.h> as resource:

 Linux kernel internails - 339 -

RLIMIT_CPU - maximum CPU time (sum of utime and stime of the process) in
milliseconds.
RLIMIT_FSIZE - maximum file size.
RLIMIT_DATA - maximum size of the data segment used.
RLIMIT_STACK - maximum stack size.
RLIMIT_CORE - maximum size of a core file.
RLIMIT_RSS - maximum memory size for arguments and environment (RSS).
RLIMIT_NPROC - maximum number of child processes.
RLIMIT_NOFILE - maximum number of open files.
RLIHIT_MEMLOCK - maximum memory size a process can block.
RLIMIT_AS - maximum address space.

The rlimit structure is defined in the same file:

struct rlimit {
int rLim_cur; /* soft limit */
int rlim_max; /* hard limit */ };

There are two limits for a process: the soft limit (current limit) and the hard limit
(upper limit). A non-privileged process can set the soft limit to an arbitrary value
between zero and the hard limit, and it can lower the hard limit down to the soft limit.
Lowering the hard limit cannot be undone. If the value of a resource is RLIM_INFINITY,
there is no restriction. For RLIMIT_NOFILE, NR_OPEN is the maximum upper limit,
both for rlim_cur and rlim_max. A process that exceeds its current soft limit is
aborted. Both calls return 0 upon successful execution.

While the above functions administer the environment of a process, the
sys_getrusage() function provides information about the process itself. The individual
values are defined in the rusage structure:

struct rusage {
struct timeval ru_utime; /* user time */
struct timeval ru_stime; /* system time */
long ru_maxrss; /* max. RSS */
long ru_ixrss; /* size o-f shared RSS */
long ru_idrss; /* size of unshared RSS */
 long ru_isrss; /* stack size */
long ru_minflt; /* number of minor faults */
long ru_majflt; /* number of major faults */
long ru_nswap; /* swap operations */

long ru_inblock; /* block input operations */
 long ru_oubLock; /* block output operations */
long ru_msgsnd; /* messages sent */
long ru_msgrcv; /* messages received */
 long ru_nsignals; /* signals received */

 Linux kernel internails - 340 -

long ru_nvcsM; /* voluntary context changes */
 long ru_nivcsw; /* involuntary context changes */
};

The function does not, however, fill the complete structure. Only the values for
ru_utime and ru_stime, together with the indication for the memory pages (minor
faults and major faults), are filled in. If the value RUSAGE_SELF is specified for who,
the information refers to the process itself. Data about child processes are obtained by
specifying RUSAGE_CHILDREN. All other values for who supply the sum of both.

Implementation
Both system calls are converted via the syscall macro.

Errors
EINVAL - if sys_aetrlimit0 and sys_setrlimit() are called with an invalid resource value

or if the who value in sys_getrusage0 is invalid.
EPERH - if a non-privileged user calls sys_setrlimit().

File: kernel/signal.c
arch/i386/kemel/signal.c

#include <signal.h>

unsigned long sys_signal(int signum, void (*handler)<'fnt)):
int sys_srgaction(int signum, const struct sigaction *new, struct sigaction

*old);
int sys_sgetmask(void);
int sys_ssetmask(int newmask);
int sys_sigpending(sigset_t *buf);

 Linux kernel internails - 341 -

int sys_sigsuspend(1nt restart, unsigned long oldmask, unsigned long set);
Int sys_sigprocmask (int how, const sigset_t *&et, sigset_t *old_set);
int sys_sigreturn(unsigned long _unused);

The sys_signal() function sets the handling routine for the signum signal. The
handler routine can be a user-defined function or a macro taken from <signa I. h>. The
following are possible:

SIG_DFL - standard handling of the signal is carried out.

SIG_I6N - the signal is ignored.

The handling routine is entered in the sigaction structure of the current process.
The flags SA_ONESHOT and SA_NOMASK are set and all other values are initialized
with 0. Upon success, the address of the old routine is returned, otherwise a negative
value (-1) is returned. For the SIGKILL and SIGSTOP signals no new handlers can be
implemented, and the signal number must be lower than

32 (set in the source text).
According to POSIX 3.3.1.3 the following holds: if SIG_IGN is specified as a routine,

any signal still pending is deleted (except for SIGCHLD). If the routine is SIG_DFL, the
signal is deleted if it is not one of SIGCONT, SIGCHLD or SIGWINCH. In both cases, it does
not matter whether the signal is blocked or not. This is handled by the check_pending0
function.

The sys_sigaction0 function is the up-to-date and extended version of sys_signal(). It
is used to specify the routine for the signal more precisely. In new, the new routine is
defined. If old is different from NULL, the old routine is returned. The sigaction structure
is defined as follows:

struct sigaction {
void (*sa_handler)dnt);
sigset_t sa_mask;
int sa_fLags;

void (*sa_restorer)(void);
};

If in sa_flags the value SA_NOMASK is not set, the signal is entered in the signal
mask. Again, the final call is to check_pending(). Please note that SIGKILL and
SIGSTOP cannot be blocked.
For simply setting and interrogating the signal mask of blocked signals the functions

are sys_sgetmask() and sys_ssetmask0. Whereas the first function simply returns current-
blocked, the second deletes SIGKILL and SIGSTOP from the passed mask and enters them
in the task structure.

sys_sigpending0 checks whether there are blocked signals pending for the process.
The signals are stored in buf; the return value is 0.

 Linux kernel internails - 342 -

With the functions sys_sgetmask() and sys_ssetmask(), blocking of signals can be
toggled. sys_sigsuspend() makes it possible to set a signal mask and stop the process in a
single action. The process is set to sleep until a non-blocked signal arrives.

If only the mask for blocking signals has to be set, the sys_sigproc-maskO function
can be used. The how parameter specifies how the new signal mask should be used:

SIG_BLOCK - the signals set in the signal mask are blocked. The new mask is superimposed
on the old mask using | =.

SIG_UNBLOCK - the signals set in the signal mask are deleted. The new mask is
superimposed on the old mask using &= ".

SIG_SETMASK - the signal mask is taken over as the signal mask for the current
process.
The call first deletes the signal bits for SIGKILL and SIGSTOP from the passed

mask. Ifold_set is different from NULL, the old mask is returned.
The sys_sigreturn() function organizes the return from a signal interrupt. It is

called internally in order to return to system mode after a signal handling routine. To
do this, for each signal to be handled, a frame is generated on the stack of the process
which ensures that the system call sigreturn is triggered.9

Implementation
The functions sys_signal(), sys_sigprocmask(), sys_sgetmask() and

sys_ssetmask are not available on Alpha machines. Curiously enough, the library
function s igna 10 does not work with the system call signal, but is based on sigaction.

__sighandler_t signal (int sig, _sighandler_t handler) {

int ret;
struct sigaction action, oaction;
action.sa_handler = handler;
_sigemptyset (8action.sa_mask);
action.sa_flags = SA_ONESHOT | SA_NOMASK | SA_INTERRUPT;
action;sa_flags 8= "SA_RESTART;
ret = _sigaction (sig, 8action, Soaction);

return (ret == -1) ? SIG_ERR : oaction.sa_handler;
}

9For this purpose, all important registers and the machine code (!) that triggers sigreturn are Put on the stack as
a frame.

 Linux kernel internails - 343 -

The remaining calls work with the syscall macro, whereas for sy8_sigreturn() there is
no external interface.

Errors
EINVAL - if an invalid signal number is used. EFAULT - if the handling routine is

bigger than the permitted process size
(TAS<_SIZE). EINTR - if the process returns from

sys_sigsuspend().

File: kemel/sysctl.c

int sys_sysctl(struct _sysctl_args *args);

This function allows extensive administration of system-relevant information. This
information is held in internal tables and mapped onto /proc/sys. The precise effect of the
function is controlled via the _sysctl_args structure.

struct _sysctL_args {
int *name; /* name of information */
int nLen; /* extent of information */
void *oldvaL; /* pointer to old value */
size_t *oLdLenp; /* length of old value */
 void *newval; /* pointer to new value */
size_t newlen; /* length of new value */
unsigned long _ynusedC43;

};

The information results from name and nien. These components are, however, not yet
completely implemented. The second parameter specifies which area the information refers
to:

CTL_KERN - kernel and control structures
CTL_VM - VM managment
CTL_NET- network
CTL_PROC - process information
CTL_FS - file systems
CTL_DEBU6 – debugging
CTL_DEV — devices

 Linux kernel internails - 344 -

The first parameter contains the required information. The following values are
implemented a a standard; they are listed together with their type:
KERN_OSTYPE - a string: the operating system

KERN_OSRELEASE - a string: the version

KERN_VERSION - a string: the compile information
KERN_NODENAHE - a string: the host name

KERN_DOMAINNAHE - a string: the domain name

KERN_NRINODE - two numbers: the current inode number and the number of free inodes
KERN_NRFILE - a number: the number of open files
KERN_HAXFILE - a number: the maximum number of open files
KERN_SECURELVL - a number: the security level
KERN_PANIC - a number: timeout in case of a panic message
KERN_REALROOTDEV - device which actually holds the root (only with configured
CONFIG_BLK_DEV_INITRD)
KERN_NFSRNAME - a string: name of the root file system (only with configured
ROOT_NFS)

KERN_NFSRADDRS - a string: the address of the root file system (only with config-
ured ROOT_NFS)

KERN_JAVA_INTERPRETER - a string: the path of the Java interpreter
KERfUAVA_APPLETVlEWER - a string: the path of the Java applet viewer
VM_SWAPCTL - a structure,; the parameters of the swap process

 VM_KSWAPD - a structure: the parameters of the kswap daemon

 VM_FREEPG - three numbers: the values of free page grades

VM_BDFLUSH - a structure: the parameters of the bd_flush0 process
In order to read a value, name and nien must be entered, and the required value

and its size are returned in oldval and oldlenp. Ifnewval and newlen are not
equal to 0, the memory area of size newlen addressed by newval is entered.

Implementadon
The C library does not provide an interface. Also, the kernel function does not

yet check fo superuser privileges!

Errors
ENOTDIR - if nien or name are invalid.
EFAULT - If oldlenp equals 0.

 Linux kernel internails - 345 -

File: kemel/info.c

^include <linux/sys.h> ffinclude <linux/kernel.h>

int sys_sysinfo(struct sysinfo *info);
sys_sysinfo() provides information about the system load. The data are returned

in the following structure:

struct sysinfo {
long uptime; /* seconds since start */
unsigned Long loadsE33; /* Load 1, 5 and 15 mm. ago */
unsigned Long totaLram; /* size of RAM memory */
unsigned Long freeram; /* free RAM memory */
unsigned Long sharedram; /* size of shared memory */
unsigned Long bufferram; /* size of buffer memory */
unsigned Long totaLswap; /* size of swap memory */
 unsigned Long freeswap; /* free swap memory */
unsigned short procs; /* number of running processes */
 char _f[22]; /* dummy, rounds up to 64 bytes */

};
sys_sysinfo provides a generally accessible method for obtaining system information.

This is simpler and less risky than reading /dev/kmem.

Implementation
This system call is not supported by the C library. In order to use it, a file sysinfo.c

with the following contents should be created.
#include <unistd.h> _syscall1(int, sysinfo, struct sysinfo *, s)

This corresponds to the process of implementing a system call as described in Section
3.3.4.

Errors
EFAULT - if the pointer to Info is invalid.

 Linux kernel internails - 346 -

File: kernel/printk.c

int sys_sysLogdnt type, char *buf, int Leni sys_sys Log 0 administers the log
book of the system and sets the log level. The log book is a memory area in the kernel
8 Kbytes in size and is filled by the printk() function (see Appendix E). The log level
is the priority level for the behaviour of the printkO function. Only messages whose
priority is higher than the log level are displayed by printkO on the console.

#define LOG_BUF_LEN 8192 static char
Log_buf[LOG_BUF_LEN3;

There are three variables for the access:

unsigned Long Log_size = 0;
static unsigned Long Log_start = 0;
static unsigned Long Logged_chars = 0;

 The first variable describes the size of the log book, which can vary between 0 and
LOG_BUF_LEN, the second gives the beginning of the current message. With the access
operation

(log_start+Log_size) S (LOG_BUF_LEN-1)

 we thus arrive at the last position of the current entry. The overall number of characters in
the log book is stored in Logged_chars.

The precise functioning of syslog can be specified in type, using the following values:

0. Closes the log book. This is not implemented. The return value is 0.
1. Opens the log book. This is not implemented. The return value is 0.
2. Reads Len characters from the log book. For this, the variable logL_size is evaluated. If

the book is empty (Log_size equals 0) this call blocks until a process has left an entry
and then reads it. log_size is decremented by the number of characters actually read.

3. Reads entries from the log book into the buffer buf of length I en. This
function does not block. Len is first checked against the values LOG_BUF_LEN
and Logged_chars and (if greater) set to this value.

4. As 3; in addition, the call clears the log book by setting logged_chars to 0.

 Linux kernel internails - 347 -

5 The call clears the log book.
6 Sets the log level for the printkO function to 1. Only messages of the highest priority

are displayed on the console.
7 Sets the log level for the printkO function to the default value (7).
8 Sets the log level for the printkO function to the value of Len, which in this ca
9 se must lie between 0 and 9.

The return value is the number of characters actually read (in cases 2, 3 and 4) or
O.

Implementation
There is no conversion in the C library. Linking is possible with the following

file:
#incLude <unistd.h> _syscaLL1(int, syslog, int, type, char *, buf, int, Len)

Errors
EPERM - if a non-privileged user calls sys_syslog() with a type other than 3.

EINVAL - if buf is NULL or len is negative.

File: kernel/time.c

#include <time.h>

int sys_time(Long *t);
int sys_stime(const time_t *t);
int sys_gettimeofday(struct timevaL *tv,

struct timezone *tz);
int sys_settimeofday(struct timevaL *tv,

struct timezone *tz);
sys_time() stores in t the time passed since 1 January 1970, 0.00 am, in seconds,

and returns it using the macro CURRENT_TIME.
sys_stime() sets the system time, more precisely xtime.tv_sec, to the value

specified in t. Only the superuser may execute this function. It returns 0 upon success
and a negative number in the event of an error.

 Linux kernel internails - 348 -

sys_gettimeofday() and sys_settimeofday0 allow a more exact time
management. tv is the same structure as the one specified in sys_setitimer0:

struct timevaL {
Long tv_sec; /* seconds */
Long tv_usec; /* microseconds */ };

land tz is a time zone:

struct timezone {
int tz_nnnuteswest;
/* minutes west of Greenwich */
int tz_dsttime;
/* uses summer time */ };

The file <sys/time.h> defines the values for the specification of summer time, ;for
example DST_NONE for no summer time, DSTJJSA for USA summer time and
'DST_MET for mid-European summer time. The header file also defines some macros
for the handling of timevaL values. The timerisset(tvp) macro checks whether the time
tvp is 0, while timercmp(tvp, uvp, cmp) compares two times using cmp.

The sys_settimeofday() function, like sys_stime(), can only be executed by the
superuser. If tv or tz are set to NULL, the corresponding system value does not
change. At the first call10 with tz set, the CMOS clock is changed to UTC. The data
are transferred into the address space of the kernel and the system values updated. For
the setting of the tv values, the interrupts are disabled and time_status is set to
TIME_BAD. The system call returns 0 upon success. The functioning of the
underlying timer is described in Section 3.1.6.

Implementation
All four system calls are converted via the syscall macro. The first two functions

are not available on Alpha machines.

Errors
EPERM - if thev process calling sys_stime0 or settimeofday does not have super-user

privileges.
EINVAL - if an invalid value (time zone, and so on) is specified.

10This should happen as early as possible in order not to confuse other possibly running programs. Usually, a
script in /etc/rc is used.

 Linux kernel internails - 349 -

File: kernel/sys.c
#include <sys/times.h> long sys_t1mes(struct tins *buf);

sys_times() writes the time used by the current process and its children into the
tructure buf. The structure tms is defined in <li mix/times. h> as follows:

struct tms (
time_t tms_utime; /* user time */
time_t tms_stime; /* system time */
 time_t tms_cutime; /* user time of children */
time_t tms_cstime; /* system time o-f children */

};
sys_times() returns the jiffies of the system.

Implementation
The system call is converted via the syscall macro.

File:' kernel/sys.c
#include <sys/utsname.h> int sys_newuname(struct

new_utsname *buf);

sys_uname() returns information about the system. The information can then be
found in buf. The structure utsname appears as follows:

struct utsname (
char sysname[65]; /* operating system name */
 char nodename[65]; /* computer name */
char release[65]; /* operating system release */
char version[65]; 7* operating system version */
char machine[65]; /* processor type */
char domainname[65]; /* computer domain */

};

 Linux kernel internails - 350 -

Release is the current state of development of the system (e.g. 1.2.0). Version is
the number of hitherto existing kernel configurations together with the time of the
most recent compilation (e.g. #95 Sat Apr 1 05:08:15 MET DST 1995).

For reasons of compatibility, there are another two simplified versions:
the first one (old_utsname) lacks the domain; the second one (oldold_utsname)

additionally limits the entry lengths to 9 bytes (POSIX defines entries for the structure
that are only 8 bytes long (plus the space for the null byte)).

Implementation
The system call is converted via the syscall macro.

Errors , EFAULT - if buf is NULL.

File: arch/i386/kernel/vm86.c #include <sys/vm86.h> •int

sys_vm86(struct vm86_struct * info);

The sys_vm86() function sets the process into virtual 8086 mode. To control
this, the register set of the 8086, regs, can be used.

struct vm86_struct {
struct vm86_regs regs;
unsigned long flags;

unsigned long screen_bitmap;
};

The registers DS, ES, FS and GS are set to 0. In addition, the EFlags register is
controlled. The function stores the current stack of the kernel and then jumps into
virtual mode. The call is used by the DOS emulator.

Implementation
The system call is converted via the syscall macro.

Errors
EPERN - if the stack has already been stored.

 Linux kernel internails - 351 -

File: kenel/exit.c

int sys_waitpid(pid_t pid, unsigned Long *stat_addr, int options);

int sys_wait4(pid_t pid, unsigned long *stat_addr, int options, struct rusage
*ru);

sys_wait4() waits for the process pid to terminate. In addition, the function writes the
exit code to the address stat_addr and information about resources used by the process into
the structure ru. Possible options are the values:

_WC LONE - only processes generated with cLoneO are waited for.
WUNTRACED - also those stopped processes are considered in which PF_TRACE is not set.

WNOHANG - sys_wait4() does not block.

The function interrogates all child processes in a loop to check whether one of them is
in the ZOMBIE or STOPPED state. If pid is

>0 wai t4() waits for the child process with PID equal to pid.
0 wait40 waits for each child process whose PGRP matches the PGRP of the calling process.

-1 wait40 waits for all child processes. <-1 wait40 waits for each child
process whose PGRP equals -pid.

If no process was found, sys_wait40 returns if WNOHANG was set. Otherwise, the
scheduler is called and the loop entered again.

sys_wait40 returns when the process (that is being waited for) terminates or is a
zombie, if WNOHANG is set or a non-blocking signal was received. Return values are a
negative number in the event of an error, the PID of the terminated process or 0 (with
WNOHANG).

sys_waitpid() waits for the process pid with the specified options options. The
sys_waitpid0 function is only still provided for compatibility reasons and could well be
implemented in the C library in future versions.

asmlinkage int sys_waitpid(pid_t pid, unsigned Long * stat_addr,
int options) {
return sys_wait4(pid, stat_addr, options, NULL);

}

 Linux kernel internails - 352 -

The exact interplay of sys_wait4(), sys_exit() and the scheduler is described
in Section 3.3.3.

Implementation
The system calls wa1t4 and waitpid are converted via the syscall macro. The function
waitpid() is not available on Alpha machines. wait() is no longer provided as a system
call, but only as a library function (in unistd.h).

static inline pid_t wait(int.*wait_stat)
{
return waitpid(-1, wait_stat, 0);
}

Errors
ERESTARTSYS - if WNOHANG is not set and the process receives a non-blocking signal or

a SIGCHLD.
ECHILD - if the child process pid does not exist.

A.2 The file system

The following system calls establish connection with the file system. Because of the
existence of a virtual file system in LINUX the transition from the user to the kernel is just
an intermediate step of the real work involved.

Nearly all system calls execute a parameter check first and then call the corresponding
inode or file operation of the file system implementation. All system calls that possess a
path parameter use the namei() function. This function determines the inode belonging to
the name and is described in detail in Section 6.2.3.

File: fs/open.c
 #inctude <unistd.h>

int sys_access(const char *filename, int mode);

The sys_access() function checks whether a user has the access rights mode for
the file fi lename. Possible values for mode are:

 Linux kernel internails - 353 -

F_OK - if the file exists. R_OK - if the file can
be read. W_OK - if the file can be written to.
X_OK - if the file can be executed.

For the access to the file system, sys_access0 does not use the effective UID
(EUID), but only the normal ones, which for the access test are copied into the
FSUID. If the inode operations provide a permission component, this function is used
to determine the access rights. Otherwise the decision is made with inode->i_mode
according to the UNIX rights.

Implementation
The conversion is simply carried out via the syscall macro.

Errors
EINVAL - if the rights specified in mode do not coincide with the rights of the file or if the

file -filename does not exist.
EACCES - if access with the specified rights is not permitted.

File: fs/buffer.c

int sys_bdflush(int func, long data);

The kernel function sys_bdflush() organizes the swapping out of the blocks
marked as 'dirty' in the buffer cache.

The LINUX kernel administers the buffer cache by means of two tables (among
other things).

#define NR_LIST 6

static struct buffer_head * lru_listCNR_LIST3 = (NULL, };
int nr_buffers_type[NR_LIST3 = {0,};

The first table contains pointers to doubly linked lists each of which contains a
class of blocks. A class can be, for example, BUF_SHARED or BUF_LOCKED. The
second table contains the number of blocks in the corresponding list.

The pointer lru_List[BUF_DlRTY] points to the list administered by bdflush(),
which contains the blocks not yet swapped out to the storage media.

 Linux kernel internails - 354 -

The number of blocks in this list is contained in nr_buffers_type[BUF_DlRTY]
A block is administered by means of the structure buffer_head and appears as follows:

struct buffer_head {
char * b_data; /* pointer to data block */
unsigned Long b_size; /* block size */
unsigned long b_blocknr; /* block number */
dev_t b_dev; /* device */
unsigned short b_count; . /* number of users */
unsigned char b_uptodate; /* read flag */
unsigned char b_dirt; /* 0 clean, 1 dirty */
unsigned char b_lock; /* 0 ok, 1 locked */
unsigned char b_req; /* operations flag */
unsigned char b_list;
unsigned char b_retain;
unsigned long b_flushtime; /* write tine */
unsigned Long b_Lru_time; /* last time used */
struct wait_queue * b_wait;
struct buffer_head * b_prev; /* list of hash tables */
struct buffer_head * b_next;
struct buffer_head * b_prev_free; /* list of buffers */
struct buffer_head * b_next_free;
struct buffer_head * b_this_page; /* buffer of current page */
struct buffer_head * b_reqnext;

};
In order to control swapping, there is a structure that contains the neccessary

parameters.
 static union bdflush_param {
struct {
 int nfract; /* activation threshold in per cent */
 Int ndirty; /* max. number of blocks to be swapped */
 /* out in one cycle */
int nrefill; /* number of free blocks that are */
/* loaded by means of refill_freelist */
 int nref_dirt;
int (Clu_nfract; /* percentage of buffer cache to be */
/* searched for free clusters */
int age_buffer; /* ageing time for data blocks */
Int age_super; /* ageing time for metablocks */
/* (directories and so on) */
int lav_const;
 /* load constant for calculating */
/* the buffer size */

 Linux kernel internails - 355 -

int lav_ratio; /* load minimum for recalculating */
/* the buffer size */
} b_un;

unsigned int dataCN_PARAM3;
} bdf_prm = {{25, 500, 64, 256, 15, 30*HZ, 50*HZ, 1884, 2}};

Apart from the default values, the kernel also sets the minimum and maximum
values.

static int bdflush_min[N_PARAM] =
{ 0, 10, 5, 25, 0, 100, 100, 1, 1};

static int bdflush_max[N_PARAM] =
{100, 5000, 2000, 2000, 100, 60000, 60000, 2047, 5};

If the argument func is 1, all marked blocks are swapped out. If func is greater
than 1, a parameter is modified, where (func-2)>>1 is the number of the parameter.
An even value of func means that the parameter is filled with the word contained in
data, whereas an odd value yields the reading of the parameter." During writing a
check is made as to whether data lies between minimum and maximum.
Formerly, with func equal 0, the daemon itself was activated. Now, this is carried out
by initO in main.c. In this case, the kernel function returns 0.

Implementation
The C library does not provide an interface for converting the system call into

the kernel function.

Errors
EPERM - Only the superuser may execute this function.

EINVAL - The value for func or data is invalid.

File: fs/open.c

int sys_chdir(const char *path);
int sys_fchdir(unsigned int fd);

" For example, 2 means 'write parameter 0', 3 'read parameter 0', 4 'write parameter 1' and so on.

 Linux kernel internails - 356 -

sys_chdir() sets the current working directory to the directory specified in path. It
determines the inode belonging to path and enters it in the fs.pwd component of the
task structure. sys_fchdir() works in the same way, except that by using the file
descriptor passed, the function can determine the inode somewhat more easily.

Implementation
Both system calls use the syscall macro.

Errors
ENOTDIR - if path is not a directory.
EBADF - if fd is invalid.
ENOENT - if there exists no inode for path.
EACCES - if no execution rights are set for the directory.

File: fs/open.c
#include <sys/types.h> #include <sys/stat.h>

int sys_chmod(const char *filename, mode_t mode);
int sys_fchmod(unsigned int fildes, mode_t mode);
int sys_chown(const char *filename, uid_t owner, gid_t group);

int sys_fchown(unsigned int fd, uid_t owner, gid_t group);

sys_chmod() sets the rights of the file filename to the rights specified in mode.
Bits that are higher than S_ISUID (for example S_IFIFO) are first masked out in order to
prevent manipulation. If mode is set to -1, the current access rights remain unchanged;
only c time is reset. In sys_fchmod0, a file descriptor is

specified instead of the name.
sys_chown0- changes the owner and group of a file in owner and group. The

call sys_fchown() has the same function, except that a descriptor is specified. If the
UID or GID of the file is changed, the corresponding set s bit (S_ISGID only if
S_IXGRP is not set) is deleted. In both functions, the quotas are Updated (transferred)
according to the new users.

All four calls update their inode information using the notify_change0 function.
Only the owner of the file or the superuser can execute these system calls.

 Linux kernel internails - 357 -

Implementation
All four system calls work with the syscall macro.

Errors
EACCES - if the EUID of the process is different from the UID of the file or
other than 0. ENOENT - if the file does not exist. EROFS - if the file

system is read-only. EDQUOT - if the quotas of the new owner do not allow
the operation.

File: fs/open.c

int sys_chroot(const char * filename);
sys_chroot() sets the directory -filename as root directory for the calling process.

The call determines the inode belonging to fi Lename, checks whether it is a directory
and enters it as fs.root in the task structure. The FSUID of the

process must be 0.

Implementation
The conversion is carried out via the syscall macro.

Errors

EPERM - if a non-privileged user executes the call.
EROFS - if the directory lies on a read-only file system.
ENAMETOOLONG - if the specified name is too long.
ENOENT - if the directory does not exist.
ENOTDIR - if a part of the path is not a directory, but a file.

File: fs/fcntl.c
int sys_dup(unsigned -int otdfd);
int sys_dup2(unsigned int oldfd, unsigned int neu-fd);

 Linux kernel internails - 358 -

sys_dup() and sys_dup2() generate a copy of the file descriptor. Afterwards, both
descriptors point to the same file structure. A set close_on_exec flag is deleted. sys_dup()
returns the first free descriptor for the copy; sys_dup2() uses newfd as a copy. If newfd is
not yet free, the corresponding file is closed. Both system calls are mapped onto the
dupfd() function.

Implementation The conversion of both system calls is carried out via the

syscall macro.

Errors
IEBADF - if an invalid file descriptor is used. EMFILE - if there is

no free file descriptor in sys_dup0.

File: fs/exec.c
arch/i386/kernel/process.c

int sys_execve(struct pt_regs regs);

This function is passed the register stack pt_regs as arguments in the kernel. As these
arguments are obviously different for the individual architectures, the function (which is an
interface to the actual do_execve() function) is located in the architecture directory.

sys_execve() executes a new program. The necessary parameters can be found in the
register structure. Thus regs.ebx contains a pointer to the file name of the program,
filename, regs.ecx a pointer to the arguments to be passed to the specified program and
regs.edx the address of the environment in which the process should be running.

The file filename must be a binary file whose format is known to LINUX, or a script.
The script must begin with the characters '#!' and the first line must not exceed a length of
127 characters.

The program called with sys_execve() completely overlays the calling process, which
means that text and data segments plus stack and BBS are overwritten with those of the
loaded program. The program takes over the PID of the calling process and its opened file
descriptors. Pending signals are deleted. In the event of an error, a negative number is
returned; there is no return value upon success. The implementation of the call is described
in Section 3.3.3.

If the current process is executed with ptrace(), the system call ex e eve returns a
SIGTRAP signal after successful completion. In addition, UID and

 Linux kernel internails - 359 -

GID are set to EUID and EGID of the current process in order to prevent
programs with set SUID or SGID bits from being modified by ptrace().
sys_execve0 analyses the file filename, searches the list of known binary formats
(plus kerneld, if configured) and tries to load the file by means of the Load_binary
fucntion.

Implementation
The structure pt_regs in <asm/ptrace.h> contains exactly one image of the reg-

isters on the stack which are deposited there during a system call before the kernel
function is called. LINUX supports several binary formats, and each format carries
along its own function for loading binaries. To this function, the name of the program
(which might be an interpreter with a script as an argument) is passed together with
the registers (see Section 3.3.3).

The normal system calls, such as execi or execv, are implemented as library
functions. In execv() the current environment is passed to the actual system call,
whereas in execvp() the command name is sought in the current path and a new
argument assembled. In argument list functions, such as execI(), the passed argument
list is, in addition, copied into a vector.

Errors
EACCES - if filename is not a normal file. EPERM - if the file system

has been mounted with MS_NOEXEC.

ENOEXEC - if no file identification (magic number) or no shell could be found
after #!. E2BIG - if there is no memory free in the kernel.

File: fs/fcntl.c
net/inet/sock.c

#include <fcntl.h>

int sys_fcntl(unsigned int fd, unsigned int cmd, unsigned long arg);

The system call sys_fcntl() modifies the characteristics of an opened file fd-The
corresponding operation is specified by cmd:

 Linux kernel internails - 360 -

F_DUPPD - the file descriptor fd is duplicated in arg. This corresponds to the functioning of
sys_dup2(). The error messages, however, are different. Upon success, the new file
descriptor is returned.

F_GETFD - reads the close-on-exec flag of the specified file descriptor. If the lowest bit of
the return value is 0, the file remains opened during the system call execve, otherwise it
is closed.

F_SETFD - sets or deletes, depending on arg, the close-on-exec flag of the specified file
descriptor. Only the lowest bit of arg is evaluated.

F_GETFL - returns the flags of the descriptor. The flags are the same as described in
sys_open().

F_SETFL - sets the flags to the value specified in arg. Internally, only O_APPEND, FASYNC

and O_NONBLOCK are set. The flags and their semantics are the same as in sys_open().
If the file has been created as an append-only file and O_APPEND is not specified in the
flags (that is, it has to be deleted), the function reacts with an error message. Upon
modification of the FASYNC flag, the file operation fasync() is called.

FJSETLK, F_SETLK and F_SETLKW - sets or reads the locks of a file. Functioning
and use of file locking is described in detail in Section 5.2.2.

F_GETOWN - returns the PID (PGRP) of the process that uses the socket fd. Process
groups are returned as negative values! The value can be found in f_owner of the file
structure.

F_SETOWN - sets the PID (PGRP) for the specified file descriptor. The process is
identified by arg, values greater than 0 indicate a PID, values less than 0 a PGRP. If
this value does not match the current process, the first matching process in the process
table is used.

If the file descriptor fd is connected to a socket, the call is mapped to the cor-
responding function for sockets.

Implementation
The conversion is carried out via the syscall macro.

Errors
EBADF - if fd is not a descriptor of an opened file.
EINVAL - if with F_DUPFD a negative or excessively large value has been specified for arg, or

if the process has already reached its maximum number of open files, or if an invalid
value has been specified for cmd.

EPERH - no privileges for F_SETOWN.

 Linux kernel internails - 361 -

File: fs/locks.c

Int sys_fLock(unsigned int fd, unsigned int cmd);
This function is used to administrate locks on files. If several locks exist for one

file, they are administrated in a list. For this purpose, each mode contains a reference
to a fil.eJ.ock structure:

 struct fileJock {
 struct file_lock *fl_next;
struct file_Lock *fL_nextlink;
struct file_Lock *fL_prevlink; struct file_lock *fl_bLock;
struct task_struct *fl_owner;
struct wait_queue *fL_wait;
struct file *fl_file;
char fl_llags;
char fL_type;
off_t fl_start;
off_t fl_end;
};

The function always affects the entire file. Subordinate functions allow more precise
locking by means of specifying file areas. The following values are permitted for cmd:

LOCK_SH - the file is locked for read access. LOCK_EX -
the file is locked for write access.

LOCK.UN - all locks are removed. All processes that
entered a waiting loop by accessing the lock are woken up.

Implementation
Implementation is carried out in two steps. First, the kernel function is called via the

syscall macro. If this fails, an attempt is made to use sys_fcntl0.

Errors
EBADF - the descriptor is invalid. EINVAL - the

cmd value is invalid.

 Linux kernel internails - 362 -

ENOLCK - no further entry can be made in the list. EBUSY -
the F_POSIX flag is set.

.File: fs/ioctl.c

#Include <fs/ioctl.h>
int sys_ioctl(unsigned int fd, unsigned int cmd, unsigned long arg);

The sys_ioctl() function manipulates the parameters of a device. This function is
mainly used to control device drivers. The first parameter is an opened descriptor of
the corresponding file.

The required function is specified in the argument cmd. Macros and definitions
for the use of this call are to be found in <linux/ioctl.h>. Some functions are permitted
for all file descriptors:

FIOCLEX - the close_on_exec flag is set. FIONCLEX - the
close_on_exec flag is deleted.

FIONBIO - if the value specified by the address arg equals 0, the 0_NONBLOCK flag is
deleted, otherwise it is set.

 FIOASYNC - as with FIONBIO the OJ5YNC flag is set or deleted. The synchronization flag has
not yet been implemented, but is dealt with for reasons of completeness.

These four functions are handled by the call itself. All others are passed on to the
ioctl functions of the file system, either to the function fileJoctK) if fd refers to a
regular file, or to the file operation ioctLO (see Section 6.2.6).

Implementation
The system call is converted via the syscall macro.

Errors
EBADF - if fd is invalid.
ENOTTY - if fd does not refer to a character-oriented device or the cmd used is

not supported by the device fd.
EINVAL - if cmd or arg are invalid.

 Linux kernel internails - 363 -

File: fs/namei.c

int sys_link(const char *oldname, const char *newname);
int sys_rename(const char *oLdname, const char *newname);
int sys_rmdir(const char *name);
int sys_symlink(const char *oldname, const char *newname);
int sys_unLink(const char *name);

sys_link() and sys_symLink() create references (hard links) and symbolic ref-
erences (soft links) with the name newname which refer to oldname. sys_link() first
checks the file oldname using the function namei(), copies newname to the kernel
segment (for reasons of runtime performance) and then calls the function do_link()
with the inode obtained.
sys_symlink() copies oLdname and newname and then calls the function

do_symLink(). In addition, the quota structure of the directory in which the reference is
created is initialized.

sys_rename() recreates the file under the name newname and deletes the old file. Here
too, the quota structure of the directory in which the reference is created is initialized.

The sys_unLink() function deletes, with the appropriate rights, the file name.
sys_rmdir() works similarly to sys_unlink(), but removes the directory.

These kernel functions are internally converted into the corresponding inode
operations after the necessary rights have been tested.

Implementation
The system calls are converted via the syscall macro.

Errors
EACCES - if the directory has no execution rights.
ENOENT - if oldname does not exist or the path name is invalid.
ENOTDIR — if name in sys_rmdir() is not a directory.
EPERM - if the inode of the file does not permit the link, newname is invalid or

the file system does not support the operation.
EXDEV - if in sys_link0 oldname and newname lie on different file systems.

 Linux kernel internails - 364 -

File: fs/read_write.c

#include <sys/types.h>
long sys_lseek(unsigned int fd, off_t offset, unsigned int origin) int

sys_llseek(unsigned int fd, unsigned long offset_high,
unsigned long oftset_low, Loff_t * result,
unsigned int origin);

sys_lseek() sets a new current position in the file relative to offset and origin.
LINUX first tries to use the sys_lseek() function of the file system to which the file
belongs. If this does not possess an I seek function, the kernel calculates the new
position itself. The following values are permitted for origin:

SEEK_SET - offset indicates the absolute position.
SEEK_CUR - the new position is the sum of offset and the current position.
SEEK_END - sys_lseek0 positions relative to the end of the file.
The new absolute address is returned. Current position and file size can then be

easily determined;

pos = lseek(fd, 0, SEEK_CUR); size = lseek(fd, -1, SEEK^END);
The sys_llseek() function is used to position in larger files. To do this, a new

offset of type long long is assembled from offset_high and offset_low.
offset = (loff_t) (((unsigned long long) offset_high « 32) I offset_low);

If the file system supports an IseekO inode operation, this is called. Then,
however, the offset values are limited to the long value range; higher values return an
error! Otherwise, the function tries to calculate the new position itself. This function
returns 0 upon success. The new position is stored in result.

Implementation
While the system call (see* is converted, as usual, via the syscall macro, there

exists only a restricted implementation in the C library for sys_llseek() on
Intel computers.

Loff_t _lseek(int fd, loff_t offset, int origin)

 Linux kernel internails - 365 -

Errors
EBADF - if fd is invalid.
EINVAL - if offset is greater than 2 or the new position cannot be calculated.
ESPIPE - if fd points to a pipe.

File: fs/super.c
int sys_mount(chap * dev_name, char * dir_name, char * type, unsigned long

new_flags, void * data);
int sys_umount(const char *devname);

sys_mount() mounts the file system located on the block device devname in the
directory dirname. type contains the type of the file system, for example ext2. The
new_flags control the mounting process and the properties of the mounted file system.

HS_RDONLY - the file system is read-only.
HS_NOSUID - SUID and SGID bits are ignored.
HS_NODEV - access to device files is prohibited.
HS_NOEXEC - execution of files is prohibited.
MS_SYNCHRONOUS - write accesses are immediately executed on disk.
MS_REMOUNT - the flags of an already mounted file system are modified

(remount).
S_WRITE - when deleting an inode, its quota structure is released. S_APPEND- the

O_APPEND flag must be set when opening files for writing. S_IMMUTABLE - the files
and their inodes must not be modified. MS_MGC_VAL - indicates the more recent
version of the system call mount.
Without this signature in bits 16-31, only the first 4 options are evaluated.

data is a pointer to an arbitrary structure of maximum size PAGE_SIZE-1 that
may contain file-system-specific information.12

With MS_REMOUNT, no type and device have to be indicated. In this case, the call
just updates the information contained in new_flags and data. The functioning is
described in Section 6.2.1.

12 These data are stored in the u union of the superblock, see Section 6.2.1.

 Linux kernel internails - 366 -

sys_umount() removes the file system. It writes the superblock back and releases
the file system's device. If dev_name holds the root directory, the quotas are disabled,
a sync_dev() is called and the device is remounted MS_RDONLY. This decreases the
risk of file system inconsistencies. Both system calls are reserved for use by the
superuser.

Implementation
Both system calls are converted via the syscall macro.

Errors
EPERH - no superuser privileges.
ENODEV - no file system is known for type.
EACCES - dev_name is not a device.
ENOTBLK - dev_name is not a block device or does not provide file operations.
ENXIO - the major number of the device is invalid.
EBUSY - a process is running in the directory or the directory is already mounted.
ENOTDIR - dir_name is not a directory.
EINVAL - read_super() has failed or dev_name is not mounted.

File: fs/open.c fs/namei.c

#include <sys/types.h>

int sys_close(unsigned int fd);
int sys_creat(const char *file_name, int mode) int sys_mkdir(const char *fi

le_naine, int mode);
int sys_mknod(const char *file_name, int mode, dev_t dev);
int sys_open(const char *file_name, int flag, int mode);

sys_open() opens a file indicated by file_na»e for the operations specified by
flag. The possible values for flag are:
O_RDONLY - the file is opened for reading only. O_WRONLY

- the file is opened for writing only.

 Linux kernel internails - 367 -

0_RDMR - both reading and writing are possible.
0_CREAT - the file is created if it does not exist. The third parameter, mode, must be

specified, mode is then combined with umask ("umask S mode).
0 EXCL - an error is returned if O_CREAT is specified and the file already exists.

With this, a simple lock mechanism can be implemented. O_NOCTTY - the
terminal specified in file_name becomes the controlling terminal.

This flag is not implemented. 0_TRUNC - if the file exists and is writeable, it is set to size
0. O_APPEND - data of subsequent write operations are appended to the file.
O_NONBLOCK - operations on the file do not block. O_NDELAY - is mapped to
O_NONBLOCK. 0_SYNC - changes to the file in (buffer) memory are immediately
written to the
device. This operation is only implemented for block devices and files of
the Ext2 file system.
sys_creat() does exist as a system call, but the kernel calls sys_open0 with the

corresponding flags.
asmlinkage int sys_creat(const char * pathname, int mode) {

return sys_open(pathname, 0_CREAT | 0_WRONLY | 0_TRUNC, mode);
}

The sys_close() function closes the file descriptor fd. Any existing file locks
(i_flock) are deleted and a release is executed.

sys_mkdir(), after checking the rights, creates the directory file_name by using
the inode operation mkdirO. sys_mknod() creates a pseudofile, with mode specifying
the type and access rights of the pseudofile to be created. For device files, dev
contains the device number. Creation of FIFOs is permitted to all users. For all other
file types, superuser privileges are required.

Implementation
All five system calls work with the syscall macro. The sys_creat0 function is not

available on Alpha maschines. The system call mkflfo is implemented in the C library
by means ofmknod():

int mkfifo(const char path, mode_t Mode) {
return mknod (path, mode | S_IFIFO, 0);

}

 Linux kernel internails - 368 -

Errors
ENFILE - if too many files are open. EACCES - if the

directory has no execution rights.
ENFILE - if no free file descriptors are available to the system or the process. Both values

are defined in <linux/-fs.h>.
EEXIST - if a file is to be created that already exists as a directory.

EISDIR - if a directory is to be opened that cannot be read or if with sys_open0 the flags
O_CREATE or 0_TRUNC are set.

ENOENT - if the path name is invalid. EPERH - if the inode of the file does
not permit the requested operation.

File: arch/i386/kernel/sys_i386.c

int sys_pipe(unsigned long * fildes);

sys_pipe() creates two descriptors and writes them into a field addressed by
•fildes. fildes[O] is opened for read operations and -fildes[1] for write operations,
provided that the process has two free descriptors available.

Implementation
The system call is converted via the syscall macro. As other architectures use the

stack registers as arguments for the kernel functions, it has been moved to the
architecture-dependent directory.

Errors
EMFILE - if there are no free descriptors in the system. ENFILE

- if there are no free descriptors for the process. EINVAL - if fi
Ides is invalid.

File: kernel/sched.c

#include <linux/sys.h> #include <linux/quota.h>

 Linux kernel internails - 369 -

int sys_quotactl(int cmdo, conit char *special, Int Id, caddr_t addr);

This kernel function represents the entry point of the quota program. Currently,
only disk quotas are considered; for process quotas, use of r limits is

probably the most suitable way. The quotas look as
follows:

struct dquot {
unsigned int dq_1d; /* for which ID (uid, gid) */
short dq_type; /* type */
kdev_t dq_dev; /* device */
short dq_flags; /* flags */
short dq_count; /* reference counter */
struct vfsmount *dq_mnt; /* VFS mount point */
 struct dqblk dq_dqb; /* usage */
struct wait_queue *dq_wait; /* processes waiting for */

 /* a quota change */
struct dquot *dci_prev;
struct dquot *dq_next;
struct dquot *dq_hash_prev;
struct dquot *dq_hash_next;
};
struct dqblk {
_u32 dqb_bhardlimit; /* hard limit of usable blocks */
_u32 dqb_bsoftlimit; /* soft limit of usable blocks */
_u32 dqb_curblocks; /* current number of blocks */
_u32 dqb_i hard limit; /* hard limit of usable inodes */
 _u32 dqb_isoftlimit; /* soft limit of usable Inodes */
_u32 dqb_curinodes; /* current number of inodes */
 time_t dqb_btime; /* time limit for a soft */

/* excess (blocks) */
tlBC_t dqb_itime; /* time limit for a soft */

/* excess (inodes) */

};
Time limits have their meaning. Usually, for example in response to interroga-

tions, the expiration time of the limit is supplied in seconds. Limits are set by entering
the value in the vfsmount structure of the device. The value is used as the interval for
updating the limit (new expiration = current time + interval). In addition, the following
structure is used for administration:

struct dqstats {

 Linux kernel internails - 370 -

_u32 drops;
_u32 reads; /* number of quotas read */
_u32 writes; /* number of quotas written */
_u32 cache_hits;
_u32 pages_allocated; /* number of pages occupied */
_u32 allocated_dquots; /* quotas used */
_u32 free_dquots; /* quotas free */
_u32 syncs; /* number of sync operations */
};

The cmdo parameter contains the command and type of the call. It can be
assembled via the QCMD(cmd, type) macro.13 The function disassembles cmdo again.
If no cmd is given, QUOTA_SYSCALL is entered. The next three parameters have the
following meaning (if not specified otherwise):

special - the required device type - specification whether id is a UID or GID or
the index of the dq_mnt

array. Id - ID that the quotas shall refer to.

The following values are permitted as commands:

Q_GETQUOTA - supplies the quotas and their current usage. A non-privileged process
may only call its own quotas.

QSYNC - a sync on the list of quotas is executed.
Q_GESATS - addr is a pointer to a dqstats structure. However, only the number of used and

free quotas is entered.
The remaining commands are only permitted if the FSUID of the current process

equals 0.

Q_QUTAON - enables the quotas for a file. addr holds the name of the file, type is used as
an index for the mnt_quotas array.

Q_QUOTAOFF - disables the quotas. With type=-1, all mnt_quotas quotas are disabled for
the device.

For the next four functions, a new inode is created first, then dev, id and type are
entered, and the inode is entered in the list and hash table, addr is a pointer to a dqblk
structure.

Q_SETQLIM - if id == 0, the time limits are reset; if id>0, all limits are set to the
values passed.

13 It is defined as («cmd) « SUBCMDSHIFT) | ((type) S SUBCMDMASK)).

 Linux kernel internails - 371 -

Q_SETUSE - the curinodes and curblocks values are set and if the soft limit is exceeded,
the time limits are updated. If id==0, all time limits are reset at

the end.
 Q_SETQUOTA - combines the effects of the last two flags.
 Q_.SYSCALL - if id==0, the time limits are reset.

Implementation
The C library does not provide a syscall macro; the quota package must be
used instead.

Errors
EINVAL - type is greater than MAXBUOTAS. EPERM - a non-privileged process

attempts to change other quotas or call a
privileged command. ENOTBLK - special is not a block device.

ESRCH - if no matching quota structure could be found.

File: fs/read_write.c

#include <sys/types.h>

int sys_read(unsigned int fd, char * buf,unsigned int count), int sys_wnte(unsigned Int -
fd, char * buf/unsigned int count);

sys_read() tries to read count bytes from the file fd. The bytes are stored in the buffer
but. The system call sys_write0 works with the same parameters, except that the bytes are
written to the descriptor. Previously, a check is made as to whether the corresponding area
was blocked by an FLOCK. In addition, the S_ISUID and IS_ISGID bits are deleted (the latter
only if S_IXGRP is set).

The return value is the number of bytes actually read or written, 0 upon EOF and a
negative number in the event of an error. In the last analysis, it is the corresponding file
operations that are actually called.

Implementation
Both system calls work via the syscall macro.

 Linux kernel internails - 372 -

Errors
EBADF - if fd is invalid or the file has been opened incorrectly.

EINVAL - if there are no read or write rights set for the file.

File: fs/read_write.c

#include <sys/types.h> #include <sys/uio.h>

int sys_readv(unsigned long fd, const struct iovec * vector,
long count)

int sys_writev(unsigned long fd, const struct iovec * vector,
long count)

Both functions read (or write) data via a file descriptor. The difference from the
known read/write functions lies in the type of buffers passed. The iovec structure
looks as follows:

struct iovec
{

void *iov_base; /* pointer to a memory area */ int iov_len; /* size of
memory area */

};

The number of buffers is held in count, the upper limit being
UIO_MAXIOV=16.

The areas are checked one after the other for readability or writeability, their
lengths are added, and the resulting area of the file is checked for an FLOCK.

If fd refers to a socket, the socket operations are used, otherwise the file
operations are used. In sys_readv() the buffers are filled one after the other by reading
from the descriptor; in sys_write() they are written one after the other into the
descriptor.

The return value is the number of bytes actually read or written, 0 upon EOF and
a negative number in the event of an error.

Implementation
Both system calls work via the syscall macro.

 Linux kernel internails - 373 -

Errors
EBADF - if fd is invalid or the file has been opened incorrectly.

EINVAL - if an invalid parameter has been passed.

File: fs/read_write.c fs/readdir.c

int sys_readdi [-(unsigned int fd, struct dirent *dirent, unsigned int count);
int sys_getdents(unsigned int fd, void * dirent, unsigned int count)

The sys_readdir() function fills the dirent structure with the data of the fd
directory, count specifies the maximum space to be filled with dirent structures. The
di rent structure looks as follows:

struct dirent {
long d_ino;
off_t d_off;
unsigned short d_reclen;

char d_name[NAME_MAX+1];
};

LINUX forwards the call to the operations of the Virtual File System by calling
the corresponding file operation (see Section 6.2.6).
In the meantime, the new improved sys_getdents0 function has become available. It

also comprises two new structures:

struct linux_dirent {
unsigned Long d_ino;
unsigned Long d_off;
unsigned short d_recLen;

char d_nameE13;
};

struct getdents_caLLback {
struct Linux_dirent * current_d1r;
struct linux_d1rent * previous;
int count;
int error; };

 Linux kernel internails - 374 -

The function reads several entries, as long as the sum of their sizes (calculated from
the offset of the current name and its length) does not exceed the value count. The return
value is the difference between count and the size of the entries actually read.

Implementation
Both system calls are used by the library function readdirO. The old sys_readdir()

call is called when no sys_getdents() is available. Both kernel functions are directly
jumped into via the 0x80 interrupt.

Errors
EBADF - if fd is invalid. ENOTDIR - if no sys_readdir() file

operation exists.

File: fs/stat.c

int sys_readLink(const char *path, char *buf, int bufsize);

The sys_readLink() function reads the path to which a symbolic link refers. A
maximum of bufsize characters are stored in the buffer buf by the corresponding inode
operation. No null byte is appended to the end of but. The function, however, returns the
length of the path.

Implementation
The system call is converted via the syscall macro.

Errors
EINVAL - if bufsize is negative, the call is not supported by the file system or path is not a

reference.
ENOENT - if path does not exist.

File: fs/select.c

 Linux kernel internails - 375 -

#include <sys/t1me.h>
 #Include <sys/types.h>
int sys_selectt(1nt n, fd_set *inp, fd_set *outp, fd_set *exp, struct timeval

*tvp)

The sys_select() function allows multiplexing of input and output operations.
The time interval is converted to jiffies and entered as the timeout of the process. The
process sleeps after the call, until one of the descriptors in inp, outp or exp is available
or the time span tvp has elapsed.

The function returns the number of available descriptors. If the flag
STICKY_TIMEOUTS is set in personality, tvp is updated as well. Several macros are
defined for their use:

FD__ZERO(fdset) - deletes all bits infdset.

FD_CLR(fd, fdset) - deletes the descriptor fd infdset.

FD_SET(fd, fdset) - sets the descriptor/^ infdset.
FD_ISSET(fd, fdset) - checks the descriptor fd in fdset. Returns a value other than 0
iffd is set.

Implementation
The system call is converted via the syscall macro.

Errors
EBADF - if there is an invalid descriptor in one of the fields.
EINTR - if a non-blocking signal has been received.
EINVAL - if fd is negative.
ENOHEH - if there is not enough memory for internal tables in the kernel.

File: is/stat.c

#include <sys/stat.h>

int sys_stat(const char *file_name, struct old_stat *buf);
int sys_fstat (unsigned int •fd, struct old_stat *buf);

int sys_lstat(const char *file_name, struct old_stat *buf);

 Linux kernel internails - 376 -

sys_stat(), sys_fstat() and sys_lstat() return a filled data structure that is defined in
<asm/stat.h>:

struct old_stat {
unsigned short st_dev; /* device */
unsigned short st_ino; /* inode */
unsigned short st_mode; /* access privileges */
unsigned short st_nlink; /* number of hard links */
 unsigned short st_uid; /* DID of owner */
unsigned short st_gid; , /* GID of owner */
unsigned short st_rdev; /* device type */
unsigned short st_size; /* size in bytes */
unsigned long st_atime; /* time of last access */
 unsigned Long st_mtime; /* time of last change (file) */
unsigned long st_ctime; /* time of last change (mode) */
};

For the future, there is an extended structure (new_stat) which contains two new
items of information and is extended by pad data to a size of 64 bytes. This structure is
used by functions beginning with 'new_'.

struct new_stat {
unsigned short st_dev; unsigned short _pad1;
unsigned long st_ino;
unsigned short st_mode;
unsigned short st_nlink;
unsigned short st_uid;
unsigned short st_gid;
unsigned short st_rdev; unsigned short _pad2;
unsigned long st_size;
unsigned long st_blksize; /* block size */
unsigned Long st_blocks; /* file size in blocks */
 unsigned long st_atime; unsigned Long _unusedl;

unsigned long st_mtime; unsigned Long _unusedZ;
unsigned long st_ctime; unsigned Long _unused3;
unsigned long _unused4; unsigned Long _unusedS;
};

sys_stat() returns the data for the file fiLe_name. For references, there is
sys_Lstat(), which returns the data for the symbolic link itself. sys_fstat() is identical
to sys_stat0, but uses a descriptor fd instead of the name.

All three calls determine the inode of the object passed and call the kernel
function cp_oLd_stat(). This simply reads most of the data from the inode. The new
functions use cp_new_stat(). If the file system does not support st_bLocks and
st_bLksize, these are determined by means of a simple algorithm

 Linux kernel internails - 377 -

Implementation
The system calls are converted via the syscall macro.

Errors
EBADF - if fd is invalid. ENOENT - if

file_name does not exist.

File: fs/open.c

ffinclude <sys/vfs.h>

int sys_statfs(const char *path, struct staffs *buf);
int sys_fstatfs(unsigned int fd, struct staffs *buf);

The sys_statfs() function returns the information about the file system on which
the file path is located. In sys_fstatfs0 a descriptor is specified instead of the name.
The structure but is defined in <linux/vfs.h>:

struct staffs {
long f_type; /* type of file system */
Long f_bsize; /* optimum block size */
long f_blocks; /* number of blocks */

 long f_bfree; /* total number of free blocks */
 Long f_bavail; /* free blocks for user */
long f_files; /* number of inodes */
 long f_ffree; /* number of free inodes */
tsid_t f_fsid; /* file system ID */
Long f_namelen; /* max. file name length */
 long f_spareC63; /* not used */
};

Fields which are not defined in the file system are set to -1. The data are read
using the superblock operations (see Section 6.2.2).

asmllnkage int sys_statfs(const char * path, struct statfs * but)
{

crpor=nameT(path,&1node); if (error) return error;

 Linux kernel internails - 378 -

inode->i_sb->s_op->statfs(inode->i_sb, but, ^
sizeof(struct staffs));

return 0;
}

Implementation
The system call is converted via the syscall macro.

Errors
 EBADF - if fd is not a valid descriptor. EFAULT -

if buf points to an invalid address.

File: fs/buffer.c

int sys_sync(void);
int sys_fsync(unsigned int fd);
int sys_fdatasync(unsigned int fd);

sys_sync() writes all information stored in memory, such as buffers, super-blocks
and inodes, to the disk. The function always returns 0.

void sync_dev(dev_t dev)
{

sync_buffers(dev, 0); sync_supers(dev);
sync_inodes(dev); sync_buffers(dev, 0);
}

asmlinkage Int sys_sync(void) (

sync_dev(0);
return 0;

}

The function works via sync_dev(). The specification 0 as device means that all
block devices are to be synchronized. The parameter 0 in sync_buffers() means that
waiting for successful execution of write operations is not required.

 Linux kernel internails - 379 -

