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Chapter	0:	Introduction

Storage:	a	hole	with	no	bottom,	into	which	you	pour	data.

The	last	50	years	of	computing	have	seen	countless	types	of	data	storage	hardware.
Modern	flash	drives	improve	on	spinning	disks,	which	in	turn	improved	on	punch	cards,
which	improved	on	tape,	which	was	a	lot	better	than	carved	marble	tablets.	BSD	operating
systems,	and	FreeBSD	in	particular,	have	been	around	for	most	of	that	time,	and	at	one
time	had	ways	to	utilize	many	different	data	storage	methods.	Support	for	that	hardware
remains	long	after	the	hardware	was	in	common	use.	Even	paper	tape	support	lingers	in
the	bcd(6)	command.

Once	you	pick	a	physical	medium,	though,	you	have	to	decide	how	you’re	going	to	use
it.	Different	operating	systems	have	evolved	entirely	different	filesystems	to	stuff	data
onto	each	sort	of	media.	Your	FreeBSD	installation	might	need	to	interoperate	with	all	of
these,	and	more.

Then	there	are	filesystems	developed	for	special	purposes,	such	as	devfs	and	the
Memory	File	System.	The	network	opens	up	many	storage	possibilities,	such	as	iSCSI	and
the	Network	File	System	and	various	replication	technologies.

To	truly	master	FreeBSD,	you	need	to	understand	many	of	these.	That’s	where	this
book	comes	in.	You	won’t	find	information	about	GEOM	and	the	Unix	File	System	here,
or	about	ZFS,	or	about	how	to	implement	filesystems	in	code.	Those	topics	have	their	own
books.	This	book	is	for	all	the	other	filesystems,	storage	methods,	and	data	storage	tricks.



Prerequisites

As	this	book	is	for	filesystems	meant	for	special	situations,	it	has	perhaps	the	widest	range
of	prerequisites	of	any	book	I’ve	ever	written.

While	the	individual	topics	in	this	book	aren’t	difficult,	they	presume	you	understand
FreeBSD’s	GEOM	storage	subsystem.	You	don’t	need	to	understand	how	to	write	storage
classes,	but	I	assume	you’re	familiar	with	commands	like	glabel(8)	and	geom	show.

Partitioning	is	another	complex	topic	you	need	to	bring	to	the	table.	Some	filesystems
assume	a	disk	uses	Master	Boot	Record	(MBR)	partitions,	while	others	work	only	on
Globally	Unique	ID	(GUID)	Partition	Tables	(GPT).	Similarly,	you’ll	need	to	understand
the	basics	of	the	Unix	File	System	(UFS),	including	critical	system	files	like	/etc/fstab.

We’ll	also	cover	some	ZFS	issues,	where	ZFS	interoperates	with	other	filesystem
attributes.

This	book	pulls	in	knowledge	from	the	whole	spectrum	of	systems	administration
practice.	If	you	want	to	use	FreeBSD’s	iSCSI	support,	you’d	best	know	something	about
TCP/IP	and	storage	hardware.	Using	the	Filesystem	in	Userspace	(FUSE)	support	with	the
SSH	module	means	you	should	understand	starting	and	stopping	services	as	well	as	SSH.

Filesystems	require	support	in	the	kernel.	That	support	might	be	included	in	the
GENERIC	kernel	or	a	kernel	module.	You	need	to	understand	how	to	load,	unload,	and
view	kernel	modules.

If	you’re	sketchy	on	any	of	these	prerequisites,	you	can	find	extensive	documentation
online	or	in	other	books.

This	book	addresses	FreeBSD	10.2	and	newer.	Many	topics	also	work	on	older
releases,	but	FreeBSD	10	includes	several	new	filesystem	features,	such	as	FUSE	and
iSCSI.	Those	features	have	grown	their	own	features	as	FreeBSD	10	has	progressed.

Finally,	any	complex	work	with	filesystems	requires	shell	scripts.	This	book	includes
several	to	get	you	started,	but	you’ll	need	to	modify	them	to	fit	your	environment.	For
your	convenience,	the	included	scripts	are	also	available	at	the	author’s	GitHub	site
(https://github.com/mwlucas).



FreeBSD	Mount	Commands

We	normally	use	the	mount	command	to	attach	a	filesystem	to	the	directory	tree.	Using

multiple	filesystems	changes	how	you	use	mount(8).

The	mount	command	assumes	that	any	local	disk	partitions	use	UFS.	If	you	try	to	mount

a	different	filesystem	you’ll	get	an	error.

#	mount	/dev/da4s1	/mnt

mount:	/dev/da4s1:	Invalid	argument

The	device	/dev/da4s1	exists,	but	it	contains	neither	a	UFS	nor	a	UFS2	filesystem.	You

need	to	tell	mount(8)	what	kind	of	filesystem	this	partition	contains.	Use	either	the	–t

command-line	argument	or	a	filesystem-specific	mount	command.

Every	filesystem	has	a	name,	listed	either	in	mount(8)	or	in	the	filesystem	manual
page.	(Every	filesystem	has	a	manual	page,	in	section	5).	Give	the	filesystem	name	as	an
argument	with	–t.

#	mount	-t	msdosfs	/dev/da4s1	/media

Many	filesystems	(but	not	all)	also	have	a	filesystem-specific	version	of	the	mount
command,	which	you	could	use	instead.

#	mount_msdosfs	/dev/da4s1	/media

If	a	non-UFS	filesystem	has	an	entry	in	/etc/fstab,	mount(8)	can	mount	that	filesystem

by	mount	point.	We’ll	see	example	/etc/fstab	entries	throughout	this	book.

#	mount	/media

Unmount	everything	with	umount(8).	The	filesystem	type	doesn’t	matter.	Give	it	a
directory	with	something	mounted	there,	and	umount	will	gleefully	disconnect	it.



About	This	Book

We’ll	start	with	filesystems	you	might	find	locally	attached,	such	as	the	Linux	filesystem,
ISO	9660	(used	for	CDs),	and	removable	media.	Then	we’ll	cover	logical	filesystems,
which	exist	only	in	the	memory	of	a	running	system.	This	includes	memory	filesystems,
devfs(5),	union	mounts,	and	more.	We’ll	proceed	to	network	filesystems,	including	NFS,
iSCSI,	and	CIFS.	Finally	we’ll	discuss	the	automounter	and	FUSE,	glues	you	can	deploy
to	hold	your	storage	together.

Chapter	1,	“Foreign	Filesystems,”	covers	filesystems	from	other	operating	systems.
FreeBSD	can	access	filesystems	such	as	Microsoft	FAT	and	certain	types	of	Linux	EXT
and	ReiserFS,	to	varying	degrees.	It	can	also	access	cross-platform	filesystems	like	those
on	CD-ROMs	and	Blu-ray	disks.

Chapter	2,	“devfs,”	discusses	the	device	filesystem	used	for	/dev.	FreeBSD’s	device

filesystem	dynamically	manages	device	nodes.	You	can	control	how	the	system	manages
hardware	and	make	FreeBSD	take	action	when	hardware	appears	or	disappears.

Chapter	3,	“Namespace	Filesystems,”	covers	informative	logical	filesystems	like	the
process	filesystem.	FreeBSD	also	includes	special-purpose	filesystems	that	offer	views
into	file	descriptors	and	Portable	Operating	System	Interface	(POSIX)	messaging	queues.

Chapter	4,	“Rearranging	Filesystems,”	describes	null	mounts	and	union	mounts,	two
ways	to	reuse	and	redirect	traditional	filesystems.

Chapter	5,	“Memory	Filesystems,”	gives	an	overview	of	two	different	memory-based
filesystems.	You’ll	learn	when	to	use	each,	as	well	as	using	memory	disks	to	view	disk
images.

Chapter	6,	“Network	File	System,”	discusses	the	venerable	NFS	protocol.	FreeBSD
supports	NFS	from	the	old-fashioned	version	2	up	to	NFS	version	4.1.

Chapter	7,	“Common	Internet	File	System	Client,”	covers	FreeBSD’s	built-in	support
for	accessing	file	shares	served	by	Microsoft	Windows-style	CIFS	servers.

Chapter	8,	“iSCSI,”	discusses	management	of	Internet	SCSI,	or	accessing	disk-like
devices	over	IP.	FreeBSD	includes	a	high-performance	iSCSI	initiator	and	target.

Chapter	9,	“GEOM_GATE	and	HAST,”	gives	an	overview	of	FreeBSD’s	custom
methods	for	sharing	disk-like	devices.

Chapter	10,	“Networked	Disk	Failover,”	discusses	creating	highly	available	storage



with	tools	like	iSCSI	or	HAST,	building	on	top	of	the	Common	Address	Redundancy
Protocol	(	CARP).

Chapter	11,	“NFSv4	Access	Control	Lists,”	covers	the	industry	standard	extended
permissions	scheme	created	for	the	latest	version	of	the	Networked	File	System.

Chapter	12,	“Filesystem	Glues,”	discusses	ways	to	simplify	systems	administration
through	filesystem-related	tools.	FUSE,	or	Filesystems	in	User	Space	lets	you	use	third-
party	modules	to	access	unsupported	filesystems,	or	transform	data	so	that	it’s	presented
as	a	filesystem.	Finally,	FreeBSD	can	automatically	mount	removable	and	dynamic
filesystems,	a	very	useful	feature	for	workstations.

This	book	doesn’t	cover	tape	storage.	Or	punch	cards.	They’re	too	special	even	for	a
book	on	specialty	filesystems.





Chapter	1:	Foreign	Filesystems
FreeBSD	can	read	and	write	filesystems	used	by	other	operating	systems.	You	can	grab
disks	from	non-FreeBSD	machines,	attach	them	to	your	FreeBSD	host,	and	read	files	from
them.	As	far	as	this	book	is	concerned,	any	permanent	physical	storage	that	uses	a
filesystem	other	than	UFS	or	ZFS	is	a	foreign	filesystem.	FreeBSD	supports	several
foreign	filesystems,	but	they	might	behave	differently	on	FreeBSD	than	on	their	native
operating	system.	Linux	filesystems	don’t	support	FreeBSD-style	file	flags,	and	FAT-
derived	filesystems	don’t	support	file	permissions	or	ownership.

This	chapter	discusses	the	various	Microsoft	FAT	filesystems,	the	ISO	9660	standard
used	by	CDs,	the	Universal	Data	Format	used	by	large	removable	storage,	and	the	Linux
EXT	and	ReiserFS	filesystems.	We’ll	start	with	the	basics	of	using	removable	media.



Removable	Media

Modern	computers	have	many	sorts	of	removable	storage	media,	from	CDs	and	USB
devices	to	entire	hard	drives.	Some	of	you	have	floppy	disks	lurking	around,	probably	for
reflashing	antediluvian	embedded	devices.

Working	with	removable	media	is	almost	exactly	like	using	permanently	attached
storage,	but	slightly	more	complicated.	Any	one	piece	of	removable	media	is	probably
used	only	occasionally,	though,	and	sometimes	doesn’t	have	a	useful—or	any—filesystem
or	partition	table.

Removable	Media	Device	Node

Using	removable	media	requires	knowing	the	media’s	device	node.	The	device	node
depends	on	the	type	of	device.	USB	drives,	both	spinning	and	flash,	show	up	as	a	/dev/da

device.	Optical	disks	like	CDs	and	Blu-ray	appear	as	/dev/cd,	even	if	they’re	USB	devices.

Floppy	disks	are	/dev/fd0.1	The	hard	part	is	figuring	out	the	device	number.	If	you	have

only	one	CD	device,	it’s	almost	certainly	/dev/cd0,	but	hard	drives	are	more	difficult.

The	easiest	way	to	identify	the	device	node	of	a	removable	storage	device	is	to	check
/var/log/messages	or	the	console	when	you	plug	the	device	in.	Some	people,	like	the	tech

editor	of	this	book,	prefer	to	read	through	geom	disk	list.	The	kernel	will	log	the	name

assigned	to	the	new	device.

Once	you	identify	the	device	node,	check	for	partitions	on	the	device.	Some	smaller
removable	storage,	like	floppies	and	small	USB	drives,	put	the	filesystem	straight	on	the
physical	device.	Others	use	partition	tables.	The	easiest	way	to	check	for	partitions	is	to
look	for	partition	device	nodes,	but	tools	like	gpart	show	also	work.

The	mount	point	can	be	any	existing	directory	on	the	system.	FreeBSD	includes	a
/media	directory	intended	for	removable	media,	and	it	also	offers	/mnt	for	whatever	random

short-term	mount	you	need.	You	can	mount	a	partition	on	any	directory	you	like,	however.

Attach	the	device	or	partition	to	the	directory	tree	point	with	mount(8).
#	mount	/dev/fd0	/mnt

Use	the	proper	mount(8)	flags	or	mount	program	for	the	type	of	filesystem	on	the
device.

Normally,	only	root	can	mount	filesystems.	If	you	want	to	grant	unprivileged	users	the
right	to	mount	removable	media,	set	the	sysctl	vfs.usermount	to	1.



Removing	Media

Removing	the	hardware	beneath	a	mounted	filesystem	can	cause	data	loss	or	program
crashes,	and	can	even	panic	the	system,	depending	on	the	disk’s	filesystem	and	what	was
happening	on	the	disk.	To	safely	remove	media	from	your	system,	first	unmount	all
filesystems	on	the	media.	Optical	trays	won’t	open	until	the	disc	is	unmounted,	which	is	a
helpful	reminder,	but	nothing	prevents	you	from	yanking	out	a	USB	flash	drive.

Using	Floppy	Disks

Floppy	disks	work	just	like	any	other	removable	media,	except	that	they	must	be
formatted	before	use.	This	low-level	format	prepares	the	disk	to	receive	a	filesystem.
Floppies	do	not	normally	use	partition	tables.	While	the	floppy	disk	factory	almost	always
formats	the	disks	before	shipping	them	out,	perfectly	good	floppies	often	need
reformatting.

Start	by	performing	a	low-level	format	with	fdformat(1).	This	program	requires	only
two	arguments:	the	size	of	the	floppy	and	the	device	name.	Here	I	format	a	standard	1.44
MB	floppy.
#	fdformat	–f	1440	/dev/fd0

Format	1440K	floppy	‘/dev/fd0.1440’?	(y/n):	y

The	fdformat(1)	command	runs	more	slowly	than	newfs(8).	Go	get	a	cup	of	coffee	and
come	back.

At	this	point	you	can	create	a	filesystem	on	the	floppy.

You	cannot	run	fdformat	on	a	USB	floppy	drive.	If	a	floppy	disk	needs	reformatting	and

you	have	a	USB	floppy	drive,	throw	the	disk	away.



MSDOS	Filesystems

The	File	Allocation	Table	(FAT)	is	probably	the	lowest	common	denominator	of
filesystems.	FAT	dates	back	from	the	Microsoft	DOS	days,	but	has	been	updated	over	the
years	to	support	more	modern	systems.

Today,	FAT	is	mostly	used	for	removable	media	such	as	USB	flash	drives	and,	if	you’re
in	a	very	dark	place,	floppy	disks.	FreeBSD	has	excellent	support	for	reading,	writing,	and
creating	the	various	versions	of	FAT,	lumping	them	all	together	as	msdos	filesystems.

Reading	MSDOS	Filesystems

Tell	mount(8)	that	a	FAT	filesystem	is	of	type	msdos,	or	use	the	mount_msdosfs(8)
command	to	mount	a	FAT	partition.
#	mount	-t	msdosfs	/dev/da4s1	/media

You	don’t	need	any	special	arguments	to	mount	older	FAT	types	such	as	FAT16	or
FAT12;	FreeBSD	automatically	detects	the	FAT	version	on	the	media.

You	can	mount	FAT	devices	through	their	label	names	as	they	appear	in	/dev/msdosfs.

Creating	MSDOS	Filesystems

Use	newfs_msdos(8)	to	create	a	FAT	filesystem.	For	most	modern	storage	media,	you’ll
put	the	filesystem	on	a	partition.	Floppy	disks	do	not	use	partition	tables,	and	some	older
entertainment	devices	that	use	FAT	don’t	support	partition	tables.	Put	the	filesystem	right
on	the	raw	disk	in	these	cases.

Here	I	create	an	MBR	partition	table	and	a	FAT	partition	on	the	2	GB	USB	flash	drive
da4.	(I	chose	to	use	MBR	rather	than	GPT	so	that	this	drive	is	compatible	my	old
television.)
#	gpart	create	-s	mbr	da4

da4	created

#	gpart	add	-t	fat32	da4

da4s1	added

Now	that	this	disk	has	a	partition	table,	I	can	create	a	FAT32	filesystem	on	it.

FreeBSD	can	assign	a	label	to	a	FAT	filesystem.	Use	–L	and	the	label	name.	A	FAT

label	can	be	up	to	11	characters.	Legitimate	characters	include	alphanumerics,	spaces,	and
a	couple	dozen	basic	symbol	characters.
#	newfs_msdos	-L	pertwee	/dev/da0s1

/dev/da0s1:	1953048192	sectors	in	30516378	FAT32	clusters	(32768	bytes/cluster)

BytesPerSec=512	SecPerClust=64	ResSectors=32	FATs=2	Media=0xf0	SecPerTrack=63	Heads=255	HiddenSecs=0

HugeSectors=1953525105	FATsecs=238410	RootCluster=2	FSInfo=1	Backup=2



This	FAT32	filesystem	is	ready	for	use.	I	now	have	a	flash	drive	to	hold	Doctor	Who
seasons	7	through	11.

If	you	need	to	create	an	older	version	of	FAT,	use	the	–F	argument	and	the	FAT	version

number.	FreeBSD	supports	three	versions	of	FAT:	FAT12,	FAT16,	and	FAT32.
#	newfs_msdos	–F	12	/dev/da4s1

Yes,	some	networks	(often	telecom)	have	hardware	so	old	it	only	speaks	FAT12.	And
you	thought	your	servers	were	old!

Fixing	FAT	Filesystems

FreeBSD	is	pretty	good	with	FAT,	but	not	everyone	is	so	careful.	If	you	have	a	device	with
a	corrupt	FAT,	fsck_msdosfs(8)	might	be	able	to	fix	it.

#	fsck_msdosfs	/dev/da4s1	**	/dev/da4s1	**	Phase	1	-	Read	and	Compare	FATs	**	Phase
2	-	Check	Cluster	Chains	**	Phase	3	-	Checking	Directories	**	Phase	4	-	Checking	for
Lost	Files	1	files,	2074816	free	(64838	clusters)

If	fsck_msdosfs(8)	finds	an	error,	it	offers	you	the	option	of	“fixing”	it.	You	should	end
up	with	a	usable	filesystem,	but	not	necessarily	all	the	files	you’d	hoped	to	recover.	As
with	any	filesystem,	your	ability	to	recover	a	FAT	with	complex	corruption	is	limited	only
by	your	understanding	of	FAT.

MSDOS	and	/etc/fstab

List	FAT	filesystems	in	/etc/fstab	to	easily	mount	them.	Here	I	list	my	new	FAT	device

with	a	mount	point	of	/media.
/dev/da4s1	/media	msdosfs	rw,noauto	0	0

Note	that	I	used	the	noauto	mount	option,	so	that	the	system	won’t	automatically	mount

this	device	at	boot.	I	don’t	want	my	system	to	hang	during	boot	because	I	unplugged	the
USB	drive!

Other	MSDOS	Hints

FreeBSD’s	mount_msdosfs(8)	includes	several	rarely	used	features	that	might	help	you
when	working	with	older	FAT	filesystems,	such	as	managing	Windows	95’s	long
filenames.	Always	check	the	man	page	when	you	have	a	FAT	issue.

While	FAT	filesystems	don’t	support	UTF-8	character	sets	or	other	locales,	you	can
have	FreeBSD	map	between	the	DOS	codepage	and	these	character	sets.	You	must	load
the	kernel	module	msdosfs_iconv.ko,	and	configure	your	locale.	Use	the	–L	flag	to	set	your

locale	and	–D	to	specify	the	DOS	codepage,	as	discussed	in	mount_msdosfs(8).



If	you	need	to	handle	a	whole	bunch	of	FAT	disks,	check	out	the	mtools	package.	It
contains	several	flexible	tools	for	working	with	FAT	filesystems	without	mounting	them.



CDs:	ISO	9660

The	ISO	9660	was	developed	to	support	CDs.	FreeBSD	supports	reading	and	writing	CD
images,	as	well	as	burning	those	images	to	disk.	The	overwhelming	majority	of	CDs	are
formatted	with	ISO	9660,	which	FreeBSD	calls	cd9660.	DVDs	and	Blu-ray	disks	use
UDF,	discussed	in	the	next	section.

Normal	CDs	are	read-only	media.	You	cannot	rewrite	most	CDs.	Rewritable	CDs	exist,
but	they	have	short	lives	and	are	mostly	supplanted	by	more	robust	USB	flash	drives,	so
we’re	not	going	to	discuss	them.

The	write-only	nature	of	CDs	can	be	an	advantage	in	some	environments,	however.
You	can	be	confident	that	the	files	you	burned	to	a	CD,	labeled	in	your	clumsy	I-use-a-
keyboard-not-a-pen	handwriting,	won’t	be	tampered	with.	A	CD	won’t	catch	viruses	from
an	infected	client	computer.	While	you	can	throw	a	switch	to	flip	some	USB	flash	drives
to	read-only	mode,	that	still	leaves	room	for	human	error	to	flip	the	switch	back	at	an
inconvenient	moment.

We’re	not	going	to	cover	multisession	disks.	Multisession	disks	let	you	append	data	to
the	end	of	a	read-write	optical	disk,	rather	than	overwriting	the	existing	filesystem.	Using
multisession	CDs	depends	largely	on	your	hardware.

Creating	a	CD	has	two	parts:	making	an	image	of	an	ISO	9660	filesystem,	and	burning
that	image	to	disk.	We’ll	cover	each	separately.

Multiple	CD	Drives

In	systems	with	multiple	CD	drives,	figuring	out	which	piece	of	hardware	corresponds
with	which	device	node	can	frustrate	anyone.	If	you	have	multiple	/dev/cd	devices,	the

easiest	way	to	identify	which	device	node	goes	to	which	drive	is	to	use	cdcontrol(1).

Close	the	doors	of	all	your	CD	trays.	For	each	device	node,	run	the	cdcontrol	eject

command.	Give	the	device	node	with	the	–f	flag,	like	so.
#	cdcontrol	-f	cd1	eject

And	voilà!	The	tray	of	the	hardware	associated	with	/dev/cd1	pops	open.

The	cdcontrol(1)	command	also	has	a	close	function,	but	not	all	CD	drives	support

automatic	closing.

My	examples	assume	that	you’re	using	the	CD	drive	/dev/cd0.

Reading	CDs



To	mount	a	CD,	tell	mount(8)	to	mount	filesystem	type	cd9660.
#	mount	–t	cd9660	/dev/cd0	/media

ISO	9660	neither	needs	nor	wants	partitions,	but	on	rare	occasions	you	might	find	an
optical	disk	burned	with	a	partition	table.	If	you	have	trouble	mounting	the	disk,	check	for
a	partition	table.

CD	drives	can	also	have	a	permanent	entry	in	/etc/fstab.
/dev/cd0	/cdrom	cd9660	ro,noauto	0	0

I	assign	this	CD	drive	a	mount	point	of	/cdrom.	If	I	want	to	use	/media	for	the	CD	drive,

I’ll	need	a	different	mount	point	for	any	USB	drives.	Removable	drives	in	/etc/fstab

should	always	use	the	noauto	option,	so	a	missing	CD	won’t	make	the	system	hang	at	boot.

All	CD	mounts	are	read-only.

Burning	CD	Images	to	Disk

So	you	have	an	ISO	image	and	want	to	get	it	on	disk.	Use	cdrecord(1)	from	the	cdrtools
package	to	burn	ISO	images	to	disk.	Give	the	image	file	as	an	argument.
#	cdrecord	FreeBSD-10.4-RELEASE-amd64-disc1.iso

If	you	have	multiple	CD	drives,	add	the	–dev	flag	and	the	device	name.
#	cdrecord	–dev=cd1	FreeBSD-10.2-RELEASE-amd64-disc1.iso

It	might	take	a	while	for	cdrecord(1)	to	burn	the	disk,	depending	on	the	CD	drive’s
speed.

Creating	ISO	9660	Images

Burning	existing	images	is	fine,	but	FreeBSD	also	lets	you	create	images	for	CD	drives
from	your	own	files.	Use	the	mkisofs(1)	utility	included	with	cdrtools	to	transform	a
directory	tree	into	a	filesystem	image.

Here	I’ve	put	the	files	and	directories	I	want	to	burn	in	the	directory	$HOME/cdfiles.	Take

a	look	at	what’s	in	that	directory.
#	ls	-la	cdfiles/

total	167

drwxr-xr-x			2	root		mwl						5	Aug	25	14:30	.

drwxr-xr-x		21	mwl			mwl					84			14:24	..

-rw-r--r--			1	mwl			mwl		50709	Mar	13		2014	exposition.zip

-rw-r--r--			1	root		mwl		50718	Aug	25	14:30	file1.zip

-rw-r--r--			1	root		mwl		50719	Aug	25	14:30	file3.zip

Now	transform	this	directory	into	an	ISO	9660	filesystem.	Give	the	destination	image



file	with	–o.
#	mkisofs	-o	cd1.iso	cdfiles/

The	image	file	is	now	ready	to	burn	to	CD.	Before	burning	it,	however,	double-check
the	contents	by	mounting	the	disk	image	as	discussed	in	Chapter	5.	You’ll	see	that	the
contents	are	slightly	different.
#	ls	-la	/media/

total	159

dr-xr-xr-x			1	root		wheel			2048	Aug	25	14:30	.

drwxr-xr-x		28	root		wheel					35	Aug	25	11:47	..

-r-xr-xr-x			1	root		wheel		50709	Mar	13		2014	expositi.zip

-r-xr-xr-x			1	root		wheel		50718	Aug	25	14:30	file1.zip

-r-xr-xr-x			1	root		wheel		50719	Aug	25	14:30	file3.zip

The	ownership	has	changed.	If	the	directory	had	symbolic	links,	they’d	be	missing.
And	one	file	has	a	truncated	name!

The	ISO	9660	standard	imposes	a	limit	of	eight	characters	on	a	filename,	plus	a	period
and	a	three-character	extension.	It	has	a	maximum	depth	of	eight	directories,	a	maximum
of	65,535	directories,	and	assorted	other	annoying	limitations.	Also,	ISO	9660	does	not
reflect	all	of	POSIX’s	filesystem	semantics—or	all	of	the	Microsoft	filesystem	standards.
Various	extensions	support	these	features,	however.

ISO	9660	Extensions	and	Features

Using	any	ISO	9660	extension	requires	specifying	the	extension	when	creating	the	ISO
image.	You	cannot	retrofit	extensions	onto	an	existing	ISO,	as	the	information	the
extensions	support	doesn’t	exist	in	the	ISO.	The	two	most	common	sets	of	extensions	are
Joliet	and	Rock	Ridge.

Microsoft	created	Joliet	extensions	to	support	Windows	filenames	and	attributes.
Filenames	on	an	ISO	with	Joliet	extensions	can	be	up	to	103	characters	long,	and
directories	can	run	more	than	eight	layers	deep.	Activate	Joliet	extensions	with	the	–J	flag.

Rock	Ridge	extensions	are	designed	for	Unix-like	systems.	They	also	allow	longer
filenames	and	greater	directory	depth,	but	also	encode	Unix	attributes	like	file	ownership,
symbolic	links,	and	more.	Enable	Rock	Ridge	extensions	with	the	–R	flag.

The	El	Torito	extensions	mark	an	ISO	as	a	bootable	device.	You	still	have	to	put	a	boot
loader	and	an	operating	system	in	the	ISO.	Enable	El	Torito	with	–b	and	the	path	to	the

boot	loader.	See	“Bootable	CDs”	later	this	chapter	for	more	information.

The	presence	of	any	of	these	extensions	will	not	interfere	with	reading	the	CD	on	other



operating	systems.	Windows	systems	can	open	CDs	created	with	Rock	Ridge	extensions,
but	ignore	the	Unix-style	permissions	and	symbolic	links.	Unix	hosts	can	open	Joliet	CDs,
but	won’t	use	Windows-specific	information.	FreeBSD’s	CD	driver	handles	all	these
extensions	by	default.

If	a	CD	will	be	used	only	on	FreeBSD	hosts,	you	can	completely	bypass	all	ISO
filename	restrictions	with	–U.	The	image	will	probably	violate	ISO	9660,	but	retain	all

filename	information.

I	normally	create	my	ISOs	with	both	the	Joliet	and	Rock	Ridge	extensions.	Unix	hosts
will	get	the	full	filename	and	other	POSIX	metadata,	while	Microsoft	systems	will	at	least
get	the	complete	name.

#	mkisofs	-JR	-o	cd1.iso	cdfiles/

Burn	the	image	to	disk	and	you’re	ready	to	go.

Bootable	CDs

In	addition	to	the	directory	tree,	bootable	CDs	need	a	boot	loader,	an	operating	system
kernel,	and	some	kind	of	userland.

Specify	the	boot	loader	with	–b.	FreeBSD	includes	a	boot	loader	for	running	FreeBSD

from	CD,	/boot/cdboot.	Unlike	many	other	boot	loaders,	cdboot	does	not	emulate	a	floppy

disk,	so	you’ll	have	to	also	add	the	–no-emul-boot	flag.

Copy	the	kernel	and	userland	into	your	source	directory	tree	before	creating	the	ISO.	A
FreeBSD	boot	loader	expects	to	find	a	kernel	and	any	kernel	modules	in	the	directory
/boot/kernel.	You	can	change	this,	if	you	hack	the	loader	internals.	The	userland	can	be

small,	but	to	actually	use	a	bootable	CD	you’ll	want	basic	programs	such	as	those	found	in
/bin	and	/sbin.

Here	I	have	my	complete	directory	tree	in	the	directory	cdfiles,	including	a	copy	of	the

boot	loader.	I	create	the	bootable	ISO	with	mkisofs(1).

#	mkisofs	–R	–no-emul-boot	–b	cdfiles/boot/cdboot	–o	cd1.iso	cdfiles

The	easiest	way	to	create	a	custom	FreeBSD	boot	CD,	including	custom	installation
media,	is	the	make	release	process.

Sadly,	CDs	are	approaching	obsolescence.	DVDs	and	Blu-ray	are	the	more	modern
optical	media.



DVD	and	Blu-ray:	UDF

You	can	use	the	CD-style	ISO	9660	filesystems	on	any	optical	media	up	to	4.3	GB.	This
means	you	can	use	a	CD	filesystem	on	a	single	layer	DVD.	Larger	optical	media,	like	a
multi-layer	DVD	or	Blu-ray,	uses	the	Universal	Data	Format	(UDF)	filesystem	or	a	hybrid
ISO	9660/UDF	filesystem.	Like	ISO	9660,	UDF	is	a	read-only	filesystem.	You	can	create
UDF	images	and	burn	them	to	disk,	but	you	can’t	edit	an	existing	image.

FreeBSD	supports	reading	from	and	writing	to	UDF	disks.	(UDF	is	a	read-only
filesystem,	but	FreeBSD	can	write	a	filesystem	to	a	disk,	exactly	like	an	ISO.)	You	can	use
DVD	and	Blu-ray	disks	to	store	and	transfer	data.	Writable	optical	media	is	not	a	durable
long-term	storage	medium,	but	in	some	environments	it’s	the	best	option.

UDF	support	is	not	the	same	thing	as	reading	commercial	DVDs	and	Blu-ray	disks.
Commercial	optical	disks,	like	those	used	for	films,	are	encrypted.	There	is	no	freely
available	solution	for	watching	DVD	or	Blu-ray	disks	on	any	open	source	operating
system.	An	Internet	search	will	expose	many	methods	for	breaking	much	of	that
encryption,	but	that’s	beyond	the	scope	of	this	book.

We’re	not	going	to	spend	time	exploring	the	specifics	of	the	DVD-Video	format,	a
specific	arrangement	of	files	suitable	for	a	Blu-ray	or	DVD	player.	That	quickly	becomes
complicated,	and	you	can	find	extensive	cross-platform	literature	on	DVD-Video.	Use
third-party	tools	like	the	dvdauthor	package	to	create	such	filesystems.

Finally,	as	with	CDs,	we’re	not	going	to	cover	multisession	disks.	Multisession	disks
are	where	you	append	data	to	the	end	of	a	read-write	optical	disk,	rather	than	overwriting
the	existing	filesystem.	Hardware	support	for	multisession	disks	is	mixed,	and	DVD-RW
and	DVD+RW	have	different	restrictions	on	their	use.	If	you	really	want	to	dive	into
multisession	disks,	check	the	FreeBSD	Handbook	for	all	the	tedious	details.	Instead,	we’ll
cover	what	all	the	UDF	users	must	know.

UDF	Hardware

DVD	disks	are	standardized.	And	you	get	several	standards	to	choose	from.

The	most	common	standards	for	DVD	disks	are	DVD-R	and	DVD+R.	Each	also	comes
in	a	read-write	format,	DVD-RW	and	DVD+RW.	DVD	drives	work	with	one	of	these,	but
might	not	support	both.	Most	DVD	drives	manufactured	today	are	classed	as	DVD+/-,	and
support	both	media	types.	Before	experimenting	with	reading	and	writing	DVDs,	be	sure
that	your	hardware	and	blank	media	are	compatible	with	each	other.	Burning	a	DVD-RW



on	a	drive	that	supports	only	DVD+RW	will	not	make	you	a	happy	sysadmin.

You’ll	burn	files	and	images	to	DVD-RW	and	DVD+RW	differently.	Be	sure	to	follow
the	instructions	for	your	blank	media.

You’ll	also	find	a	very	few	DVD-RAM	disks,	which	are	read-write	DVD	disks.	DVD-
RAM	drives	and	players	were	manufactured	in	small	numbers,	and	are	difficult	to	find
nowadays.	A	DVD-RAM	disk	can	be	rewritten	at	slow	speed	100,000	times.	(Faster
writing	speeds	reduce	the	number	of	rewrites.)	A	DVD-RAM	is	expected	to	be	stable	for
much	longer	than	either	other	type	of	disk.	With	its	high	rewrite	tolerance,	a	DVD-RAM
is	best	managed	like	a	regular	hard	drive.	Partition	it	with	gpart(8),	create	a	file	system

with	newfs(8),	and	stash	your	data.2

Blu-ray	disks	are	also	standardized.	Unlike	DVD,	there’s	only	one	standard.	Lucky
you.

Mounting	UDF	Disks

Mount	UDF	disks	with	mount_udf(8).	You’ll	need	two	arguments:	the	device	node	and	the
mount	point.	Here	I	mount	a	Blu-ray	at	/dev/cd0	(containing	all	of	the	FreeBSD	releases	I

use	in	my	test	lab)	on	/mnt.
#	mount_udf	/dev/cd0	/mnt

There	are	no	UDF-specific	mount	options.	While	you	can	theoretically	use	some
generic	options	from	mount(8),	I	don’t	know	of	any	case	where	they	are	useful.	UDF	is	a
read-only	filesystem.

Creating	UDF	Images

Use	mkisofs(8)	to	create	a	UDF	disk	image.	You’ll	need	the	–udf	and	the	–iso-level	3	flags,

in	addition	to	the	–R	and	-J	needed	for	an	ISO	9660	image.
$	mkisofs	–R	–J	–udf	–iso-level	3	–o	imagefilename	files

Here	I	bundle	up	all	of	the	FreeBSD	releases	in	/home/mwl/udf	into	the	UDF	image.
$	mkisofs	-R	-J	-udf	-iso-level	3	-o	FreeBSD-releases.udf	/home/mwl/udf/*

You’ll	get	a	bunch	of	spammy	status	messages	saying	exactly	how	far	along	the
filesystem	creation	process	is,	and	then	a	nice	summary.

If	you	have	any	doubt	about	the	quality	or	contents	of	your	UDF	image,	use
mdconfig(8)	as	discussed	in	Chapter	5	to	mount	the	disk	image	and	make	sure	it’s	correct.
Once	you’re	happy,	burn	the	image	to	disk.



Burning	UDF	Images

While	mkisofs(8)	can	burn	UDF	filesystems	to	disc,	it’s	generally	recommended	to	use
growisofs(1)	from	the	dvd+rw-tools	package.	Despite	the	name,	the	software	works	on
both	DVD	formats.

#	pkg	install	dvd+rw-tools

One	annoyance	with	growisofs	is	that	you	cannot	run	it	with	sudo(8).	Filesystem	tools

like	growisofs	need	to	access	arbitrary	data	on	the	disk,	and	running	growisofs	with	sudo

grants	clever	people	unrestricted	access	to	any	file	on	the	system.	It’s	as	if	fsdb(8)	checked
to	see	if	it	was	running	under	sudo	before	continuing.	To	burn	a	UDF	image,	you	must
actually	be	root.	This	means,	you	must	run	su	and	enter	the	root	password—running	sudo	su

will	not	work.	The	growisofs(8)	command	checks	for	the	presence	of	the
SUDO_COMMAND	environment	variable,	so	you	can	use	a	wrapper	script	to	strip	that
variable,	use	sudo	su	–l,	or	pull	out	the	shotgun	and	do	unsetenv	SUDO_COMMAND.

Once	you	have	a	clean	root	shell,	use	the	–dvd-compat	and	–Z	flags	to	burn	your	UDF

image	imagefile	to	the	disk	burner	/dev/burner.
#	growisofs	–dvd-compat	–Z	/dev/burner=imagefile

Yes,	that’s	an	equal	sign	between	the	disk	device	and	the	image	file.

Here	I	burn	the	image	FreeBSD-releases.udf	to	the	Blu-ray	writer	at	/dev/cd0.
#	growisofs	-dvd-compat	-Z	/dev/cd0=FreeBSD-releases.udf

Executing	‘builtin_dd	if=FreeBSD-releases.udf	of=/dev/pass11	obs=32k	seek=0’

/dev/pass11:	pre-formatting	blank	BD-R	for	24.8GB…

/dev/pass11:	“Current	Write	Speed”	is	6.1x4390KBps.

21659648/6213132288	(	0.3%)	@1.0x,	remaining	28:35	RBU	99.9%	UBU	3.0%

40435712/6213132288	(	0.7%)	@1.3x,	remaining	22:53	RBU	99.9%	UBU	100.0%

…

Go	refill	your	caffeine.	When	you	return,	you	should	have	a	disk	with	a	hybrid	ISO
9660/UDF	filesystem.

Dumping	Files	to	UDF

I	have	a	bias	towards	image	files,	but	for	one-time	burning	jobs	you	might	not	need	them.
You	can	dump	a	directory	hierarchy	straight	through	growisofs(8)	onto	disk,	without
creating	an	intermediate	UDF	image	file.	Instead	of	an	equal	sign	and	the	image	file,	use	a
space	and	the	path	to	the	files.
#	growisofs	–dvd-compat	–udf	–iso-level	3	–Z	/dev/burner	/files/to/burn/

If	I	have	a	bunch	of	files	in	/home/mwl/udf	that	I	want	to	burn	to	the	Blu-ray	burner	at



/dev/cd0,	I	can	do	it	like	this.
#	growisofs	-dvd-compat	-Z	/dev/cd0	/home/mwl/udf/

The	burn	messages	are	very	similar	to	those	that	show	up	in	burning	an	image	file,	and
the	process	takes	about	as	long.	It’s	a	good	time	to	clean	out	that	really	scary	bottom
drawer	where	you	spilled	the	cola	a	few	years	back.	Eventually,	you’ll	have	an	optical	disk
containing	your	files.



Linux	Filesystems

FreeBSD	supports	the	Linux	filesystems	ext2fs,	ext3fs,	ext4fs,	and	ReiserFS.	These
filesystems	support	many	of	the	same	features	as	UFS,	and	readily	map	to	FreeBSD
features.	Some	filesystems	are	better	supported	than	others,	however.

In	my	experience,	the	best	use	for	FreeBSD’s	Linux	filesystem	support	is	to	migrate	a
Linux	system	to	a	FreeBSD	one.	While	you	can	copy	files	over	the	network,	on	a	large
system	it’s	far	faster	to	remove	the	hard	drive	from	one	machine,	plug	it	into	the	new	host,
and	copy	from	the	old	filesystem	to	the	new	one.	FreeBSD	can	run	most	Linux	systems	in
a	jail.

Linux	filesystem	support	is	also	useful	on	a	dual-boot	desktop	or	laptop,	so	you	can
access	any	Linux	files	while	running	FreeBSD.	(In	all	fairness,	most	Linux	systems	can
also	mount	FreeBSD	UFS	partitions,	and	some	of	them	can	mount	ZFS.)

We’ll	discuss	ext	and	ReiserFS	separately.

ext	Filesystems

FreeBSD	classifies	all	ext	filesystems	as	type	ext2fs.	The	ext3fs	and	ext4fs	filesystems	are
expansions	and	variations	on	ext2fs.	You	must	load	the	kernel	module	/boot/kernel/ext2fs.ko

before	using	any	ext	filesystem.	There	is	no	ext-specific	mount	command,	so	you	must	use
mount(8)’s	–t	option	to	mount	it.
#	mount	–t	ext2fs	/dev/da4p2	/mnt

FreeBSD	has	full	read-write	support	for	ext2fs.

While	FreeBSD	can	both	read	and	write	ext3fs,	some	features	are	missing.	FreeBSD
can’t	journal	ext3fs.	Inodes	greater	than	128	bytes	are	not	supported.	Linux	extended
attributes	also	don’t	work,	although	many	of	those	attributes	don’t	directly	map	to
anything	on	FreeBSD,	so	that’s	not	terribly	surprising.

FreeBSD	mounts	all	ext4fs	filesystems	read-only.	FreeBSD	cannot	write	to	ext4fs
filesystems.

If	you	need	to	do	a	lot	of	work	with	ext	filesystems,	grab	the	e2fsprogs	package.	The
tools	let	you	create	and	fsck(8)	ext	filesystems.

ReiserFS

Many	ReiserFS	features	don’t	map	easily	onto	anything	FreeBSD	supports.	While
FreeBSD	can	mount	ReiserFS	volumes	read-only,	that	support	is	best	reserved	for



migrating	from	Linux,	digital	forensics,	or	other	non-production	uses.

FreeBSD	does	not	have	a	ReiserFS-specific	mount(8)	command.	You	must	use	the	–t

option	to	mount	a	ReiserFS	volume.
#	mount	–t	reiserfs	/dev/da4s1	/media

You	cannot	create,	repair,	or	edit	ReiserFS	volumes	on	FreeBSD.	And	there’s	really	no
reason	to	add	them	to	/etc/fstab.

Now	that	you	can	manage	local	storage,	let’s	go	on	to	FreeBSD’s	only	mandatory
logical	filesystem:	devfs.

	

1	Unless	you	have	more	than	one	floppy	drive,	in	which	case	figuring	out	the	device	node	is	the	least	of	your	problems.

2	You	could	theoretically	use	DVD-RAM	as	a	production	ZFS	storage	provider.	If	you	actually	do	this,	post	about	it	and
send	me	the	link.	I	appreciate	knowing	when	I’m	a	lunatic	influence	on	people.





Chapter	2:	devfs
Unix-like	operating	systems	traditionally	put	the	filesystem’s	interface	to	the	hardware	in
the	/dev	directory.	The	special	files	in	/dev	are	called	device	nodes.	Running	commands	on

device	nodes	gives	instructions	to	the	hardware.	You’ve	seen	device	nodes	like	/dev/da0	or

/dev/ada0p3,	where	the	device	name	indicates	a	disk	or	a	partition	thereof.	You’ll	also	see

device	nodes	for	hardware	like	keyboards	(/dev/ukbd0	or	/dev/kbd0),	serial	ports	(/dev/cuaa0),

and	more.	You’ll	also	find	device	nodes	for	system	functions,	like	the	vaguely	randomish
number	generator	/dev/random,	terminal	sessions	(/dev/ttyv0),	and	so	on.

FreeBSD	creates	and	configures	these	device	nodes	automatically,	using	the	device	file
system	devfs(5)	and	the	supporting	process	devd(8).	With	no	special	configuration,	they
automatically	configure	all	typical	system	common	features	and	functions.	If	you	do
anything	different,	though,	you	might	need	to	reconfigure	devfs(5).	A	chrooted	process
that	can’t	access	/dev	might	need	a	device	node	for	logging,	but	it	certainly	doesn’t	need

access	to	disks	or	terminals	or	anything	like	that.	A	jail	needs	access	to	the	device	nodes
for	logging	in	and	basic	programs,	but	shouldn’t	see	any	of	the	host’s	underlying
hardware.	These	cases,	and	more,	require	that	the	sysadmin	reconfigure	devfs	to	provide
the	needed	infrastructure.

FreeBSD	breaks	device	node	management	into	three	pieces:	configuring	devices
present	at	boot,	configuring	devices	that	appear	after	boot,	and	managing	device	node
permissions	and	access	control.



Boot-time	/dev	Configuration

Sysadmins	can	change	device	nodes	using	normal	system	tools,	changing	their	ownership
and	permissions	as	desired.	But	suppose	an	unprivileged	process	needs	access	to	the	serial
terminal	/dev/cuaa1.	I	would	normally	add	that	user	to	the	dialer	group,	but	that	grants

access	to	all	the	serial	ports.	If	you	need	tighter	control,	you	can	change	the	owner	of
/dev/cuaa1	to	the	unprivileged	user.	Or	perhaps	a	piece	of	clunky	software	might	need	a

device	node	accessible	under	a	different	name.

The	problem	is,	devfs(5)	is	a	logical	filesystem.	It’s	in	system	memory.	When	you
reboot	the	server,	all	your	manual	changes	to	/dev	evaporate.	The	kernel	and	devfs	create	a

pristine	/dev	that	reflects	the	initial	hardware	configuration.

While	the	kernel	and	devfs	know	how	to	do	their	job	without	any	help	from	you,	they
read	/etc/devfs.conf	at	boot	to	see	if	you	have	any	special	instructions	for	them.	Rules	in

devfs.conf	have	the	format	of:
action	devicename	desiredvalue

The	action	describes	the	desired	change.	The	devicename	entry	is	the	device	node	you
want	to	change,	while	the	desiredvalue	is	a	new	value.	Using	these	rules	you	can	add	new
device	nodes,	change	their	ownership,	and	alter	their	permissions.

Devfs	only	reads	devfs.conf	at	boot.	To	make	a	change	take	effect	immediately,	change

the	existing	/dev	entries.	Any	time	you	change	devfs.conf,	reboot	to	verify	the	configuration.

New	Device	Nodes

The	link	action	creates	a	symlink	between	a	new	device	node	and	an	existing	node.	This

lets	you	create	aliases	for	existing	devices.
link	cd0	cdrom

link	cd0	acd0

Devfs	creates	two	new	device	nodes,	/dev/cdrom	and	/dev/acd0,	that	point	to	the	CD	drive

at	/dev/cd0.	Some	software	expects	the	CD	drive	to	be	at	/dev/cdrom,	and	I	don’t	feel	like

tweaking	those	preferences.	And	for	many	years,	FreeBSD’s	ATA	CD	drives	lived	at

/dev/acd0,	and	sometimes	my	fingers	revert	to	that	while	my	brain	is	otherwise	occupied.1

Device	Owner

Change	a	device	node’s	owner	and	group	with	the	own	action.	Here,	we	let	user	mwl	have

absolute	control	of	the	CD	drive.



own	cd0	mwl:mwl

Many	programs	that	work	on	device	nodes	have	internal	checks	to	verify	that	they’re
running	as	root	before	doing	anything.	I’ve	seen	more	than	one	program	shut	itself	down
when	it’s	not	run	as	root,	without	even	trying	to	access	the	target	device	nodes.	Changing
the	device	node	ownership	won’t	make	those	programs	work.

While	you	can	change	the	owner	of	a	device	node	alias,	that	change	applies	only	to	the
symlink,	not	the	target	node.	Always	change	the	owner	of	the	actual	device	node.

Device	Permissions

The	mode	keyword	changes	the	permissions	on	a	device	node.	Give	the	desired
permissions	in	octal	form.
mode	cd0	0664

This	grants	read	and	write	access	to	the	owner	and	group	owner	of	/dev/cd0.

As	with	ownership,	only	change	the	permissions	of	the	actual	device	node,	not	any
aliases.



Dynamic	Hardware

Devfs	dynamically	creates	new	device	nodes	when	new	hardware	gets	plugged	in,	and
deletes	device	nodes	when	the	hardware	is	removed.	Much	hot-pluggable	hardware	is	very
simple—when	a	new	USB	keyboard	appears,	FreeBSD	attaches	it	to	the	console.

Other	hardware	requires	more	complicated	configuration.	The	device	daemon	devd(8)
automatically	runs	userland	programs	when	hardware	appears,	disappears,	and	changes
state.	You	can	have,	say,	FreeBSD	automatically	run	dhclient(8)	when	you	plug	in	your
laptop’s	Ethernet	interface,	or	change	the	permissions	on	a	USB-to-serial-port	adapter.

The	devd(8)	daemon	reads	its	configuration	from	/etc/devd.conf	and	any	file	ending	in

.conf	in	the	directory	/usr/local/etc/devd.	As	/etc/devd.conf	is	a	system	file	and	upgrades

overwrite	it,	I	strongly	recommend	placing	your	local	rules	in	/usr/local/etc/devd.	You	could

use	a	single	file	for	your	rules,	but	if	your	rules	get	complicated	using	a	separate	local	rule
file	for	each	type	of	device	helps.

Devd	Rules

Devd	watches	for	four	separate	types	of	events:	attach,	detach,	nomatch,	and	notify.	Each
of	these	events	triggers	a	rule	of	that	type.	It	also	has	an	options	statement,	which	controls
how	devd(8)	itself	behaves.

Attach	rules	trigger	when	hardware	matching	the	rule	is	attached	to	the	system.	When

you	plug	in	a	USB	flash	drive,	an	attach	rule	can	mount	the	drive	and	scan	for	viruses.2

Removing	hardware	from	a	system	triggers	detach	rules.	The	kernel	automatically
notices	when	you	remove	hardware	and	removes	the	resources	from	the	system,	so	detach
rules	are	uncommon.	There’s	no	need	to	remove	the	network	configuration	from	a
nonexistent	interface.

A	nomatch	rule	triggers	when	you	plug	in	new	hardware	that	doesn’t	match	any	device
driver.	Generally	speaking,	hardware	without	a	device	driver	is	unusable.

The	notify	rules	apply	when	the	kernel	sends	a	matching	event	notice	to	userland.
These	messages	normally	appear	in	/var/log/messages	and	on	the	console.	The	message	that

a	network	interface	has	come	up	is	a	notify	event.

Each	rule	also	has	a	priority,	with	0	being	the	lowest;	devd(8)	processes	only	the
highest	matching	rule,	skipping	any	lower-priority	matching	rules.

Finally,	a	rule	has	a	bunch	of	matching	terms,	and	an	action	to	take.	If	the	matching



terms	match	the	device,	the	rule	type	matches	the	event,	and	no	higher-priority	rule	has
kicked	in,	devd(8)	triggers	the	specified	action.

Here’s	a	sample	rule.
notify	0	{

match	“system”	“IFNET”;

match	“subsystem”	“!usbus[0-9]+”;

match	“type”	“ATTACH”;

action	“/etc/pccard_ether	$subsystem	start”;

};

This	is	a	notify	rule,	so	it	activates	when	the	kernel	notifies	the	userland	of	an	event.
But	as	a	priority	0	rule,	it	triggers	only	if	no	rule	of	higher	priority	matches	the	specified
criteria.

The	matching	terms	appear	within	brackets.	For	this	rule	to	trigger,	it	must	match	the
system	IFNET.	The	device	subsystem	must	match	the	regular	expression	!usbus[0-9]+.	This

boils	down	to	“the	device	driver	can’t	start	with	usbus,”	which	excludes	USB	devices.
This	rule	matches	on	an	ATTACH,	or	when	the	kernel	notifies	userland	that	hardware	has
been	attached	to	the	system.	In	English,	this	rule	fires	when	the	kernel	announces	that	a
non-USB	network	device	is	plugged	in.	It’s	intended	for	the	removable	network	cards
found	on	older	laptops.

The	last	line	of	this	rule	(other	than	the	brackets)	gives	an	action	to	take.	This	rule	fires
up	the	network	configuration	script	for	removable	network	cards.

Taken	all	together,	this	rule	says	“When	you	plug	in	a	removable	non-USB	network
card,	configure	it.”

Match	Statements

You	can	match	almost	any	aspect	of	a	device	in	a	devd(8)	rule.	I’m	not	going	to	list	all	the
possible	matches	here,	as	that	would	be	pages	and	pages	of	stuff	you’ll	almost	never	use.
Read	devd.conf(5)	for	the	complete	list.	In	general,	though,	you	can	match	devices	by
manufacturer,	vendor,	model,	serial	number,	network	interface	media,	parent	device,
hardware	revision,	and	so	on.

Some	rule	types	permit	additional	terms.	In	attach	and	detach	rules,	for	example,	you
can	use	device-name	as	an	alias	for	match	device-name.	These	are	optional.

I	could	fill	this	entire	book	with	more	examples.	The	best	way	to	understand	devd.conf

rules	is	to	read	the	examples	in	/etc/devd.conf.



Creating	devd(8)	Rules

I	strongly	recommend	never	writing	your	own	devd(8)	rules	from	scratch.	Look	at
/etc/devd.conf.	Find	a	rule	that	does	something	like	what	you	want.	Copy	that	rule	into	a

.conf	file	in	/usr/local/etc/devd.	Edit	that	rule	until	it	does	what	you	want.

In	my	opinion,	the	easiest	rules	to	write	are	notify	rules.	You	can	read	/var/log/messages	or

check	the	console	to	see	exactly	what	messages	the	kernel	passes	to	userland,	and	use
them	as	match	terms.

But	easy	is	boring,	so	we’ll	create	a	simple	attach	rule.

Flash	Drives

If	I	plug	in	a	flash	drive,	I	probably	want	it	mounted	on	/media.	This	isn’t	always	true,	but

it’s	common	enough	that	I’m	willing	to	have	it	be	the	default.	I’d	much	rather	manually
unmount	/media	once	every	ten	inserts	than	manually	mount	it	nine	times	out	of	ten.

On	a	simple	system	with	SATA	drives	the	flash	drive	probably	appears	as	/dev/da0.	On	a

more	complex	system	it	might	be	any	device	node.	Insert	the	flash	drive	to	see	where	it
shows	up	on	your	system.
attach	10	{

match	“device-name”	“umass1”;

action	“sleep	2	&&	mount	-t	msdosfs	/dev/da4s1	/media”;

};

Some	USB	drives	need	a	second	or	two	to	wake	up	when	you	plug	them	in,	so	I	added
the	sleep(1)	command.	You	could	also	call	an	external	script.

FreeBSD	can’t	prevent	you	from	removing	a	mounted	hard	drive,	but	it	can	complain.
Here	we	automatically	force	unmounting	/media	when	devd(8)	detects	the	device	removal.
detach	10	{

match	“device-name”	“umass0”;

action	“umount	-f	/media”;

};

You	don’t	have	to	mount	the	drive,	however.	I	once	had	to	prepare	40	flash	drives	for	a
large	FreeNAS	deployment.	A	devd.conf	rule	and	a	simple	script	let	me	tell	a	minion	“when

the	light	stops	flashing,	put	the	next	one	in”	so	I	could	return	to	playing	FreeCell.	If	your
organization’s	operations	or	security	policies	say	“don’t	plug	USB	media	into	running
production	servers,”	a	devd.conf	rule	that	calls	newfs(8)	can	enforce	that.	(By	the	time

FreeBSD	could	run	newfs,	USB’s	inherent	security	flaws	could	have	already	destroyed	your

server.	Disconnecting	USB	ports	is	more	secure,	and	leaves	more	flexibility	for	future



maintenance	than	filling	the	ports	with	superglue.)

CARP	Failover

The	Common	Address	Redundancy	Protocol	(CARP)	lets	multiple	hosts	share	one	IP
address.	When	one	host	dies,	another	host	takes	over	the	address,	keeping	the	service
alive.	Some	services	need	a	quick	kick	when	failing	over.	Often	you	need	to	tell	the
backup	database	that	where	it	was	once	the	student,	it	is	now	the	master.

CARP	events	generate	kernel	notifications,	which	means	you	can	use	devd	to	tell	the

application	what’s	happening.	Here’s	a	devd.conf	configuration	to	run	a	script	when	the	host

takes	over	as	the	CARP	master.
notify	30	{

match	“system”										“CARP”;

match	“subsystem”							“[0-9]+@[0-9a-z]+”;

match	“type”												“MASTER”;

action	“/usr/local/scripts/carp-up”;

};

This	is	a	notification	rule,	which	means	it	triggers	when	the	kernel	sends	a	notification
message	to	userland.	We	have	more	complicated	matching	terms,	because	we	only	want	to
run	the	script	if	this	specific	interface	goes	up.	If	an	interface	becomes	the	CARP	master,
devd	runs	the	script	/usr/local/scripts/carp-up.

When	the	interface	goes	down,	devd	runs	a	second	command	to	inform	the	host	it’s	now

the	backup.
notify	30	{

match	“system”										“CARP”;

match	“subsystem”							“[0-9]+@[0-9a-z]+”;

match	“type”												“BACKUP”;

action	“/usr/local/scripts/carp-down”;

};

This	rule	is	almost	identical	to	the	first,	except	for	the	type	of	event	and	the	script	we
run.

Debugging	devd.conf

Debugging	devd(8)	rules	can	be	difficult.	I	strongly	recommend	using	logger(1)	in	action
rules,	so	that	the	commands	you	run	get	sent	to	the	system	log.	You	might	need	to	enable
the	system	debugging	log	/var/log/all.log	in	/etc/syslog.conf	to	catch	everything	that’s

happening,	or	look	at	the	system	console.

Any	time	you	need	to	perform	an	action	when	hardware	state	changes,	consider



devd.conf.	Many	functions	that	could	go	into	a	script	are	also	accessible	through	devfs	rules,

though.



devfs(5)	Rules

In	addition	to	changing	devfs	with	devfs.conf,	and	running	commands	on	dynamic	devices

with	devd(8),	you	can	use	devfs	rules	with	/etc/devfs.rules.	All	device	nodes,	whether

present	at	boot	or	dynamically	added,	are	subject	to	devfs.rules.	Rules	let	you	set

ownership	and	permissions	on	device	nodes,	and	make	device	nodes	visible	or	invisible.
In	addition	to	the	configuration	file,	you	can	add	devfs	rules	at	the	command	line.

Just	like	rc.conf	and	periodic.conf,	FreeBSD	has	a	default	devfs.rules	file	in	/etc/defaults/.

Upgrades	overwrite	this	file.	Put	your	own	devfs	rules	in	/etc/devfs.rules.	Entries	in

/etc/devfs.rules	override	rules	in	the	defaults	file	by	rule	number—that	is,	rule	5	in

/etc/devfs.rules	overrides	rule	5	in	/etc/defaults/devfs.rules.

devfs	Rule	Design

Every	devfs	rule	starts	with	a	unique	name	and	rule	number,	given	between	square
brackets.	You	can	refer	to	this	ruleset	by	name	elsewhere	in	devfs.rules.	The	number	is	only

a	unique	identifier—devfs	rules	don’t	have	a	priority	or	processing	order	outside	the	rule.
The	rule	then	has	a	statement	adding	an	action	this	ruleset	takes.

Here’s	a	complete	devfs	rule	from	the	default	devfs.rules.
[devfsrules_hide_all=1]

add	hide

This	rule	is	named	devfsrules_hide_all,	and	is	rule	number	1.	It	adds	one	action	to	this
ruleset:	hide.	It	hides	every	single	device	node,	giving	you	an	empty	/dev.

Rule	Content

All	devfs	rules	begin	with	the	word	add,	adding	a	rule	to	the	ruleset.	Then	there’s	either	a
path	keyword	and	a	regex	of	device	names,	or	a	type	keyword	and	a	device	type.	At	the
end	of	the	rule	you	have	an	action,	whatever	the	rule	does.	Here’s	a	complete	devfs	rule.
add	path	cuau*	user	mwl

This	rule	declares	that	the	user	mwl	owns	all	device	nodes	with	a	name	beginning	with

cuau.	These	device	nodes	go	to	serial	ports.	On	a	multi-user	system	this	would	be	a	bad
idea.	On	my	laptop,	where	I’m	the	only	one	who	should	ever	use	the	serial	ports,	it’s	not
terrible.

Devices	specified	by	path	use	shell	regular	expressions.	To	match	a	variety	of	devices,
use	an	asterisk	as	a	wildcard,	as	in	the	cuau	example	above.	You	can	use	the	wildcard	in



the	middle	of	the	string	as	well,	or	give	an	exact	device	name.	If	I	wanted	to	change	only

the	second	serial	port	on	my	laptop,	I	could	specify	device	cuau1.3

The	type	keyword	specifies	the	type	of	devices	this	rule	applies	to.	Valid	types	are	disk
(disk	devices),	mem	(memory	devices),	tape	(tape	drives),	and	tty	(terminals	and
pseudoterminals).	I	rarely	use	the	type	keyword	precisely	because	it’s	so	broad.	While	I
might	want	a	particular	disk	to	have	a	different	configuration,	I	don’t	want	all	my	system’s
disks	reconfigured.

If	you	include	neither	the	path	nor	type	keywords,	devfs	applies	the	rule	to	all	device
nodes.	If	you	don’t	know	why	this	is	a	bad	idea,	try	it	once	on	a	test	machine.	It’s	a	vital
part	of	your	education.

The	rule’s	action	can	be	any	one	of	group,	user,	mode,	hide,	and	unhide.

The	group	action	lets	you	set	the	device	node’s	group	owner	as	an	additional	argument.
Similarly,	the	user	action	assigns	the	device	node’s	owner.	I	changed	the	owner	in	our	first
example,	but	here	I	change	the	group	owner	of	the	same	device.
add	path	cuau*	group	wheel

The	mode	action	lets	you	assign	octal	permissions	to	the	device	node.
add	path	da4	mode	664

The	hide	keyword	lets	you	make	device	nodes	disappear,	and	unhide	shows	them
again.	Programs	cannot	use	hidden	device	nodes.	You	can	use	hide	and	unhide	for	chroots
and	jails,	where	the	system	should	have	access	to	only	a	small	subset	of	the	device	nodes.

Nesting	Rules

One	ruleset	can	include	other	rulesets.	Consider	this	default	ruleset.
[devfsrules_jail=4]

add	include	$devfsrules_hide_all

add	include	$devfsrules_unhide_basic

add	include	$devfsrules_unhide_login

add	path	zfs	unhide

This	ruleset	is	designed	for	jails.	It’s	assigned	the	name	devfs.rules_jail,	and	is	assigned
ruleset	number	4.	The	“add	include”	statements	pull	in	other	rulesets,	named
devfs.rules_hide_all,	devfs.rules_unhide_basic,	and	devfs.rules_unhide_login.	These	rules
are	defined	earlier	in	the	default	rules.	It	also	explicitly	unhides	the	device	nodes	under
/dev/zfs.

You	might	need	a	slightly	different	ruleset	for	a	particular	application.	Some	apps	that



run	in	a	chroot(8)	need	a	syslog	device	socket,	or	/dev/log.	You	could	create	your	own

ruleset	that	refers	to	the	hide_all	rule,	and	then	unhide	the	log	device.
[devfsrules_logonly=100]

add	include	$devfsrules_hide_all

add	path	log	unhide

Similarly,	you	might	have	a	jail	that	needs	access	to	a	specific	device.	You	can	refer	to
the	jail	devfs	rule	and	add	the	device	you	need.	Here	I	have	a	jail	used	for	serial	port
connections.
[devfsrules_serialjail=100]

add	include	$devfsrules_jail

add	path	cuau*	unhide

Nested	rules	let	you	create	any	variation	you	want,	while	letting	changes	percolate
through	the	ruleset.

Mounting	/dev	with	Rules

You	probably	won’t	want	to	change	the	devfs	rules	for	/dev.	The	main	system	should	have

access	to	all	the	devices	on	the	system.	Applications	like	jails	mount	their	own	/dev

filesystems	appropriately.	If	you	need	to	mount	a	device	filesystem	for	an	application	or	a
chroot,	however,	make	an	entry	in	/etc/fstab.
devfs	/var/app/dev	devfs	rw,ruleset=101

To	use	a	ruleset,	use	the	ruleset	mount	option	and	the	ruleset	number.	Be	sure	there’s
no	space	between	the	comma	and	the	ruleset.

Devfs	at	the	Command	Line

You	can	use	the	devfs(8)	command	to	add,	remove,	and	change	devfs	rules	at	the
command	line.	For	example,	running	devfs	rule	apply	hide	removes	all	your	device	nodes.

Go	ahead,	try	it.	Very	few	people	have	a	use	case	for	this	feature,	so	I’m	not	going	to
cover	it,	but	if	you	are	one	of	those	folks	read	devfs(8).

If	you	decide	to	play	with	this,	be	sure	to	use	the	–m	option	to	specify	a	mount	point	for

a	non-default	device	filesystem—otherwise,	you’ll	be	working	on	the	default	system	/dev,

and	you	might	need	to	reboot	your	system	to	recover.

Now	let’s	discuss	some	FreeBSD	supporting	filesystems.

1	Don’t	ask	what	I’m	preoccupied	with.	The	answer	would	not	make	you	a	happier	person.

2	Why	scan	for	viruses	on	a	FreeBSD	machine?	I’m	not	worried	about	the	FreeBSD	machine.	But	USB	flash	drives
carry	files	between	machines.	I’d	prefer	to	identify	any	viruses	before	infecting	my	Blu-ray	player	or	the	garbage



disposal.

3	Yes,	my	laptop	has	multiple	serial	ports.	It	also	has	multiple	hard	drives,	64	GB	RAM,	and	four	processors.	I	have	a
very	large	lap.





Chapter	3:	Namespace	Filesystems
FreeBSD	includes	several	smaller	filesystems	that	present	internal	system	information	in	a
filesystem	manner.	These	filesystems	are	almost	always	intended	to	support	or	debug
specific	software.	The	process	filesystem	procfs(5)	displays	process	information,	letting
you	examine	files	rather	than	using	tools	like	ps(1).	Some	Linux	software	also	expects	to
find	hardware	information	available	as	the	system	filesystem.	FreeBSD	also	supports	the
POSIX	message	queue	filesystem	with	mqueuefs(5)	and	the	file	descriptor	filesystem
fdescfs(5).

FreeBSD	doesn’t	enable	any	of	these	filesystems	by	default.	Load	or	mount	them	only
if	an	application	requires	them.

Running	mount	normally	requires	some	kind	of	storage	device	behind	it.	Namespace

filesystems	don’t	have	any	kind	of	backing	store,	however.	The	mount	command	expects	an

argument	in	the	space	where	the	backing	store	should	be.	For	namespace	filesystems	it’s
customary	to	use	the	type	of	filesystem	as	that	argument,	but	in	reality	mount	ignores	that

argument.



Process	Filesystems

The	process	filesystem	procfs(5)	displays	the	system’s	current	processes	as	files.	Using
procfs(5)	lets	you	gather	process	information	with	programs	like	cat(1)	and	grep(1),	rather
than	using	process-specific	tools	like	ps(1).	Process	information	is	security	sensitive,	and
procfs	across	operating	systems	has	a	long	history	of	security	problems,	so	FreeBSD	does
not	use	procfs	by	default.	All	information	available	in	procfs	is	also	available	through	the
preferred	sysctl	interface.

Some	add-on	packages,	notably	software	ported	from	Linux,	are	designed	to	use
procfs,	however.	And	procfs	is	useful	on	FreeBSD	jail	hosts—not	the	individual	jails,	but
the	OS	instance	that	supports	those	jails.	Sysadmins	managing	these	systems	need	procfs.

Mounting	procfs(5)

The	process	filesystem	is	normally	mounted	at	/proc.	The	mount	point	exists	in	a	default

install,	even	though	procfs	isn’t	mounted.	You	can	temporarily	mount	/proc	from	the

command	line.
#	mount	-t	procfs	proc	/proc

To	make	FreeBSD	mount	/proc	at	boot,	make	an	/etc/fstab	entry.
proc	/proc	procfs	rw

Now	that	you	have	/proc,	let’s	poke	at	it	a	little.

What’s	in	/proc?

Looking	at	/proc	shows	a	bunch	of	numbered	directories.	Each	represents	a	single	process

ID—that	is,	the	information	for	process	844	is	in	/proc/844.	Files	in	that	directory	are

owned	by	the	process	owner.	Each	process	has	different	files	that	represent	the	process’
state.	Read	procfs(5)	for	all	the	painful	details.

The	odd	directory	is	/proc/curproc.	This	gives	information	on	the	process	that’s	accessing

/proc/curproc.	Programs	use	/proc/curproc	to	check	their	own	condition.	If	you	examine	/proc

interactively,	using	tools	like	ls(1)	and	more(1),	/proc/curproc	describes	that	tool’s	process.

If	you	want	to	examine	your	shell	process	try	something	like	ls	/proc/$$,	which	the	shell

expands	for	you	before	firing	up	the	child	process.

The	process	filesystem	exposes	operating	system	internals.	You	should	never	assume
that	a	procfs	for	one	operating	system	will	match	that	used	by	another.	Notably,
FreeBSD’s	procfs	is	incompatible	with	Linux’s.



/proc	and	/sys	for	Linux

FreeBSD’s	Linux	mode	lets	you	run	native	Linux	software	on	FreeBSD.	Rather	than
emulating	Linux,	FreeBSD	supports	multiple	kernel	interfaces.	FreeBSD	directs	Linux
software	to	the	Linux	interface.	Some	Linux	programs	run	faster	on	FreeBSD	than	on	their
native	Linux.

Linux	programs	expect	to	have	a	supporting	Linux	userland.	Running	Linux	on
FreeBSD	requires	having	a	subset	of	a	Linux	userland	in	/compat/linux.	Similarly,	some

Linux	software	might	requires	a	Linux	/proc,	or	even	a	Linux	system	filesystem.

Linux	/proc

Linux	makes	extensive	use	of	/proc.	Linux	procfs	is	not	completely	compatible	with

FreeBSD’s,	however.	Some	files	in	the	Linux	procfs	have	the	same	names	as	those	in
FreeBSD,	but	include	different	information,	follow	a	different	format,	or	cover	concepts
not	used	in	FreeBSD.	A	FreeBSD	process	filesystem	doesn’t	have	/proc/cpuinfo,	for

example,	as	FreeBSD	has	no	concept	of	bogomips.	There’s	no	/proc/version	on	FreeBSD,

and	if	there	was,	it	wouldn’t	contain	the	same	information	as	/proc/version	on	Linux.

FreeBSD	includes	a	Linux-style	procfs	for	use	by	software	expecting	a	Linux	process
filesystem	or	software	run	in	Linux	mode,	linprocfs(5).	Linprocfs	requires	a	kernel
module,	linprocfs.ko,	which	loads	automatically	when	you	mount	the	filesystem.

Do	not	mount	a	Linux	procfs	on	/proc.	FreeBSD	software	that	can	use	procfs	would

think	that	it’s	a	FreeBSD	procfs.	Exposure	to	Linux	procfs	would	distress	such	software,
and	your	world	has	enough	unhappy	software.	Mount	Linux	procfs	at	/compat/linux/proc.
#	mount	–t	linprocfs	linproc	/compat/linux/proc

To	automate	mounting	Linux	procfs	at	boot,	make	an	/etc/fstab	entry.
linproc	/compat/linux/proc	linprocfs	rw

FreeBSD’s	Linux	emulation	layer	transforms	the	filesystem	for	Linux	software,	fooling
it	so	that	it	finds	a	Linux	procfs	in	/proc.

Linux	/sys

Linux	doesn’t	only	expose	process	information	via	a	filesystem.	It	also	exposes	hardware
information.	Linux’s	/sys	filesystem	declares	what	hardware	is	available	and	how	it’s

configured.	Like	/proc,	certain	Linux	software	expects	to	grub	around	in	/sys	to	find

information	and	address	hardware.	You	can	use	many	pieces	of	Linux-only	hardware



configuration	software	on	FreeBSD,	if	you	mount	a	Linux	/sys	using	linsysfs(5).

On	FreeBSD,	/sys	is	a	link	to	the	kernel	source	code.	Mount	the	Linux	/sys	under

/compat/linux/sys.
#	mount	–t	linsysfs	linsys	/compat/linux/sys

Mount	the	Linux	/sys	automatically	at	boot	with	an	/etc/fstab	entry.
linsys	/compat/linux/sys	linsysfs	rw

When	you’re	done	configuring	your	hardware	with	that	Linux-specific	software,	be
sure	to	yell	at	your	hardware	vendor	for	not	having	a	FreeBSD	version	of	their	utilities.

Both	linprocfs(5)	and	linsysfs(5),	as	well	as	the	FreeBSD-native	procfs(5),	are	built	on
top	of	a	filesystem	layer	called	pseudofs(9).	Pseudofs	is	a	kernel	programming	framework
for	presenting	filesystem	information	that	changes	every	time	you	access	it.	Sysadmin

never	directly	interact	with	pseudofs,	but	you’ll	occasionally	see	references	to	it.1



Messaging	Filesystems

Certain	messaging	and	process	management	facilities	are	also	implemented	as	filesystems
or	filesystem-like	features.	The	most	popular	are	the	file	descriptor	filesystem	and	the
POSIX	message	queue.	You	only	need	these	filesystems	if	an	application	demands	them.

File	Descriptor	Filesystem

The	file	descriptor	filesystem	fdescfs(5)	gives	processes	filesystem-style	access	to	their
own	file	descriptors.	File	descriptors	include	standard	input	(descriptor	0),	standard	output
(1),	and	standard	error	(2)	plus	any	descriptors	a	program	creates.

FreeBSD	shows	the	three	standard	file	descriptors	under	/dev/fd.	Processes	can	only	see

their	own	file	descriptors	in	that	directory.	Programs	can	create	dozens	or	hundreds	of	file
descriptors,	however,	and	some	programs	(notably	Java)	won’t	work	without	filesystem-
level	access	to	their	descriptors.	Viewing	those	additional	file	descriptors	requires
fdescfs(5).

Always	mount	fdescfs(5)	at	/dev/fd.
#	mount	–t	fdescfs	fdesc	/dev/fd

To	automatically	mount	fdescfs(5)	at	boot,	add	an	/etc/fstab	entry.
null	/dev/fd	fdescfs	rw

You	can	now	use	Java.2

POSIX	Message	Queues

The	POSIX	inter-process	communication	(IPC)	and	semaphore	standards	include	named
message	queues.	FreeBSD	gives	you	the	option	of	exposing	those	queues	as	a	filesystem.

Using	message	queues	requires	loading	both	the	message	queue	filesystem
mqueuefs(5)	and	the	semaphore	kernel	modules.	You	don’t	need	to	actually	mount	an
mqueuefs	partition;	the	presence	of	the	kernel	module	will	let	you	use	these	message
queues.	Load	the	modules	at	boot	with	these	loader.conf	entries.
sem_load=YES

mqueuefs_load=YES

Mounting	an	mqueue	filesystem	lets	you	view	the	existing	queues	as	files.	The	file’s
contents	describe	the	queue’s	attributes.	This	might	be	useful	for	debugging.	Here	I	mount
mqueuefs	at	/mnt.
#	mount	-t	mqueuefs	mqueue	/mnt

Examine	your	queues,	figure	out	your	problem,	and	unmount	the	filesystem.



To	automatically	mount	mqueuefs(5)	at	boot,	use	an	/etc/fstab	entry.
null	/mqueue	mqueuefs	rw

You	can	create	POSIX	queues	by	manually	creating	files,	although	this	is	strongly
discouraged.	POSIX	message	queues	are	designed	for	API	use,	not	at	the	command	line.

Now	let’s	take	a	look	at	how	FreeBSD	lets	you	rearrange	filesystems	on	the	disk.

1	Do	you	really	need	to	know	this?	Not	really.	But	one	day	you’d	stumble	across	pseudofs(9)	and	say,	“Why	didn’t	that
lazy	Lucas	cover	that	in	his	book?”

2	I’m	sorry.





Chapter	4:	Rearranging	Filesystems
Sometimes	you’ll	find	that	your	filesystem	isn’t	laid	out	as	you’d	like,	or	you	have
needless	duplication.	While	you	can’t	pick	up	and	relocate	UFS	filesystems,	and	shuffling
ZFS	filesystems	can	incur	penalties,	FreeBSD	includes	two	tools	for	arbitrarily
rearranging	and	recycling	filesystems:	null	mounts	and	union	mounts.

Null	mounts	and	union	mounts	are	counterintuitive	to	many,	and	best	understood	by
example.



Null	Mounts

A	null	mount,	sometimes	called	a	loopback	mount,	adds	a	second	way	to	access	part	of	an
existing	filesystem.	You	might	take	/usr/home	and	also	make	it	available	at	/home,	or	make

/media	accessible	as	/usr/src.	Most	mount	commands	work	on	partitions	or	disk	images.

Null	mounts	work	on	any	directory.	Create	null	mounts	with	mount_nullfs(8).

While	you	can	do	similar	tricks	with	symlinks,	commands	that	use	the	working	path	or
use	the	system	calls	getwd(3)	or	getcwd(3)	expose	the	non-symlinked	path.	With	a	null
mount,	this	software	sees	the	null	mount	path.	Null	mounts	work	with	both	UFS	and	ZFS.
Users	don’t	care	so	much	about	the	true	path,	but	applications	like	chroot(8)	and	jails	most
certainly	do.	A	null	mount	can	let	you	share	a	read-only	ports	tree	among	many	jails	on	a
system.

Understanding	how	null	mounts	change	system	behavior	is	easiest	through	example.
My	test	machine	puts	user	home	directories	at	/home.	FreeBSD’s	installer	puts	home

directories	under	/usr/home.	Here	I	use	a	null	mount	to	make	user	home	directories	available

in	both	locations.	Let’s	start	by	using	a	symlink.
#	cd	/usr

#	ln	-s	/home	.

I	can	now	access	my	home	directory	in	both	locations.
#	cd	/usr/home/mwl

#	pwd

/home/mwl

The	pwd(1)	command	understands	that	I’m	in	a	directory	tree	that’s	rooted	in	/home,

even	if	I	got	there	by	going	to	/usr/home/mwl.

Remove	the	symlink,	and	replace	it	with	a	null	mount.	The	mount_nullfs(8)	command
takes	two	arguments:	the	existing	directory	tree,	then	the	point	where	you	want	it	to	be
mounted.
#	mount_nullfs	/home	/usr/home

What	impact	does	this	have	on	users?	I	can	now	go	to	either	/usr/home/mwl	or	/home/mwl

and	reach	the	same	directory,	just	like	with	a	symlink.	Now	that	I’m	using	a	null	mount,
the	pwd(1)	command	shows	my	actual	location.
#	cd	/usr/home/mwl

#	pwd

/usr/home/mwl

While	the	real	filesystem	is	rooted	in	/home,	pwd(1)	saw	only	the	null	mount.



Many	of	us	have	closed-source	programs	or	unfamiliar	scripts	with	hard-coded	paths.
A	null	mount	can	keep	that	software	working	even	as	you	move	filesystems	around	your
server.

You	can	use	most	standard	mount(8)	options	with	mount_nullfs(8).	Use	–o	on	the

command	line	and	list	the	options,	separated	by	commas.
#	mount_nullfs	-o	ro	/home	/usr/home

The	–o	ro	option	makes	the	null	mount	read-only.	You	can	now	edit	your	files	under

/home,	but	the	copy	under	/usr/home	is	read-only.	This	particular	example	will	really	tick

people	off,	so	you	probably	shouldn’t	do	that.	But	it	might	make	sense	to	null	mount	a
filesystem	noexec	or	nosuid,	depending	on	your	use	case.	While	noatime	and	async	might	sound

sensible	for	your	use	case,	they	have	no	effect	in	null	mounts.

You	can	perform	null	mounts	automatically	at	boot	with	an	/etc/fstab	entry.
/home	/usr/home	nullfs	rw,noatime

If	you	decide	to	get	into	filesystem	programming,	null	mounts	are	a	great	place	to	start.
They	contain	the	bare	bones	of	a	filesystem	implementation.	See	mount_nullfs(8)	for
details.



Union	Mounts

All	FreeBSD	file	systems	are	stackable,	which	means	you	can	mount	one	above	another.
Users	can	only	see	the	filesystem	on	top.	Again,	this	is	better	demonstrated	than
explained.

Suppose	the	directory	/usr/src	contains	the	FreeBSD	source	code.	Here	I	mount	an

unused,	brand-new	filesystem	at	/usr/src.
#	mount	/dev/da0p1	/usr/src/

The	/usr/src	directory	now	appears	empty.	I’ve	stacked	the	new	filesystem	above	the

old.	The	original	/usr/src	is	still	on	the	disk,	but	nobody	can	see	it.	Unmounting	the	empty

partition	reveals	the	code.

A	union	mount	lets	users	see	the	contents	of	both	filesystems	simultaneously,	in	the
same	location.	If	I	union	mount	a	filesystem	above	/usr/src	and	run	ls(1),	I’ll	see	the

contents	of	both	filesystems.

Perform	union	mounts	with	mount_unionfs(8).	The	first	argument	is	the	filesystem	that
gets	mounted	on	top;	the	second,	the	mount	point	and	lower	filesystem.	Here’s	a	rather
messy	but	illustrative	demonstration.
#	mount_unionfs	/home/mwl/	/usr/src/

I’ve	mounted	my	home	directory	above	the	system	source	code.	The	/usr/src	directory

now	contains	everything	that	was	in	/usr/src	before,	plus	everything	that	was	in	my	home

directory.	So	there’s	/usr/src/UPDATING	and	/usr/src/.cshrc.

I	will	never	find	anything	ever	again.

Union	mounts	work	with	both	ZFS	and	UFS,	but	not	both	simultaneously.	You	can
union	mount	a	UFS	partition	over	another	UFS	partition,	or	a	ZFS	dataset	over	another
ZFS	dataset.	Union	mounting	UFS	over	ZFS	or	vice-versa	appears	to	work,	until	you	try
to	view	or	change	the	union-mounted	data.

Union	mounts	have	a	bad	reputation.	The	union	mount	feature	was	completely
rewritten	for	FreeBSD	7.0,	however,	and	it’s	more	reliable	than	it	once	was.	The
mount_unionfs(8)	manual	page	contains	big	scary	warnings.	The	common	cases,	such	as
typical	jail	deployments,	work	fairly	well	and	are	widely	deployed.	Union	mounts	still	do
many	things	filesystem	developers	consider	worrisome	to	awful,	however.	If	you	plan	to
use	union	mounts	in	a	novel	manner,	test	your	system	very	carefully	before	deploying.



Upper	and	Lower	Layers

When	you	query	the	filesystem,	FreeBSD	checks	the	upper	layer	first.	If	that	fails,	the
query	falls	through	to	the	lower	level.	Whenever	you	wonder	why	a	union	mount	behaves
the	way	it	does,	fall	back	to	this	fact.

Created	files	go	in	the	top	layer.	With	a	union	mount	of	/home/mwl	over	/usr/src,	if	I

create	the	file	/usr/src/test,	that	file	appears	in	the	filesystem	on	top—/home/mwl.	If	I

unmount	the	union,	the	file	/usr/src/test	disappears	with	my	.cshrc	and	all	my	other

personal	files.

Changed	files	also	go	in	the	top	layer.	If	I	edit	/usr/src/Makefile	in	this	sample	union

mount,	FreeBSD	copies	/usr/src/Makefile	to	the	top	layer,	creating	/home/mwl/Makefile.	The

edits	go	in	the	upper	layer.	When	I	disconnect	the	union	mount,	the	original
/usr/src/Makefile	is	unchanged	and	the	edited	version	appears	in	/home/mwl.

When	a	file	in	each	filesystem	has	the	same	name,	only	the	top	version	is	visible	in	the
union	mount.	If	I	had	/usr/src/UPDATING	and	/home/mwl/UPDATING,	in	this	union	mount	you’d	see

only	the	version	in	my	home	directory.

The	most	common	use	for	union	mounts	is	jails.	I’ll	use	a	jail	example	through	the	rest
of	this	section.	I’ve	placed	a	basic	FreeBSD	install	in	/jails/basejail.	I	want	to	use	it	as	the

bottom	layer	for	/jails/jail1,	/jails/jail2,	and	so	on.	These	individual	jail	directories	start

off	empty.

The	mount_unionfs(8)	command	uses	the	first	argument	as	the	upper	layer	and	the
second	argument	as	its	bottom	layer	and	the	mount	point.	We	need	exactly	the	opposite
behavior	for	reusing	a	read-only	directory	tree,	however.	The	layer	with	the	FreeBSD
install	needs	to	go	on	the	bottom,	so	any	changes	can	go	into	the	top	layer.	We	must	use
the	top	layer’s	mount	point,	however.	Use	the	–o	below	mount	option	to	achieve	this.
#	mount_unionfs	-o	below	/jails/basejail	/jails/jail1

The	rest	of	this	section	discusses	the	behavior	of	union	mounts	with	this	configuration.

atime	and	Union	Mounts

You’ll	quickly	notice	that	the	upper	layer	acquires	a	directory	hierarchy.	Reading	a
directory	updates	the	directory’s	atime	(access	time).	When	you	go	into	/jails/jail1	and

run	ls	/usr/bin,	a	/usr/bin	directory	appears	in	the	upper	layer.	The	directories	in	the	upper

layer	have	the	correct	atime	for	the	union	mount,	while	the	lower	layer	keeps	its	own



correct	atime.	These	are	called	shadow	directories.

Shadow	directories	can	confuse	you.	Suppose	you	go	to	the	lower	layer	and	move
/var/log/httpd/	to	/var/log/httpd-old.	The	union	mount	will	still	have	a	/var/log/httpd/

directory,	because	the	shadow	directory	still	exists.	You’d	need	to	delete	that	directory
separately.

Most	jails	and	virtual	hosts	don’t	need	atime	on	their	filesystem.	You	can	disable	atime
in	a	union	mount	without	disabling	it	in	the	lower	filesystem	by	using	the	noatime	mount

option.
#	mount_unionfs	-o	below,noatime	/jails/basejail	/jails/jail1

I	have	one	virtual	machine	that	does	require	atime,	but	that’s	because	I	read	mail
locally	on	the	machine.	Web,	database,	and	application	servers	generally	don’t	require	it.

Deleting	and	Renaming	Files

Removing	files	from	a	union	mount	behaves	differently	depending	on	the	underlying
filesystem.

A	union	mount	on	top	of	ZFS	will	not	let	you	delete	or	rename	files	from	the	lower
layer,	as	ZFS	lacks	whiteout	support.	The	rm(1)	command	appears	to	work,	but	actually
fails	silently.	If	you	try	to	move	a	file	with	mv(1),	you’ll	create	a	duplicate	of	the	file.

For	most	applications,	an	inability	to	change	the	lower	layer	is	a	benefit	rather	than	a
problem.	If	you’re	using	one	FreeBSD	installation	beneath	dozens	of	jails,	you	don’t	want
any	of	those	jails	to	change	the	underlying	installation.

UFS	supports	whiteouts,	which	allow	a	union	mount’s	upper	layer	to	hide	a	file	visible
in	the	lower	layer.	Removing	a	file	from	the	lower	layer	of	a	UFS-backed	union	mount
actually	creates	a	new	file	in	the	upper	layer	of	the	same	name	but	with	inode	number	1.
Inode	1,	by	definition,	is	not	part	of	any	file.	If	a	file	contains	inode	1,	it	doesn’t	exist.	The
lower	layer’s	copy	of	the	file	is	hidden,	not	removed.

Whiteouts	mean	that	files	can	be	undeleted.	The	–W	flag	to	rm(1)	attempts	to	undelete

whited-out	files.	Give	the	filename	as	an	argument.
#	rm	–W	/etc/motd

The	undelete	exposes	the	original	file	from	the	lower	layer.	I	could	edit	/etc/motd	within

the	jail	and	save	my	changes,	creating	a	file	in	the	upper	layer.	Removing	that	copy	adds	a
whiteout	for	the	lower	layer.	If	I	undelete	the	file	I	don’t	restore	the	edited	file;	rather,	I
see	the	lower	layer’s	/etc/motd.



A	union	mount	defaults	to	always	creating	a	whiteout	for	a	removed	file,	even	if	the
file	does	not	exist	in	the	lower	layer.	While	whiteouts	use	very	little	space,	if	you’re	using
a	union	mount	on	an	embedded	device	you	need	every	scrap	of	space	you	can	scrounge.
Set	the	whiteout	option	to	whenneeded	to	have	union	mounts	only	create	whiteouts	when

required.

Now	that	you	can	rearrange	your	on-disk	filesystems	any	way	you	choose,	let’s	create
some	filesystems	out	of	pure	memory.





Chapter	5:	Memory	Filesystems
FreeBSD	lets	you	create	filesystems	backed	by	system	RAM,	for	short-lived	memory
disks.	Reading	and	writing	from	memory	is	much	faster	than	accessing	files	on	disk,
which	makes	memory-backed	filesystems	a	fantastic	optimization	for	certain	applications.
As	with	everything	else	in	memory,	though,	at	system	shutdown	you	lose	the	filesystem.

FreeBSD	supports	two	different	RAM-based	disks:	tmpfs	(pronounced	“temp	f	s”)	and
memory	disks.	While	they	have	similar	concepts	behind	them,	the	underlying	code	is
completely	different,	and	they	serve	different	roles.	Use	tmpfs(5)	for	memory-backed
filesystems	on	long-running	systems.	Memory	disks	are	more	flexible	but	more	suited	for
short-term	use	(unless	carefully	configured)	or	mounting	disk	images.



tmpfs(5)

The	“tmp”	in	tmpfs	doesn’t	mean	“temporary.”	It	literally	means	tmp,	as	in	/tmp.	Use

tmpfs(5)	for	a	speedy	memory-backed	/tmp	and	similar	filesystems.	Don’t	deploy	tmpfs

everywhere	you	see	a	path	with	tmp	in	it,	though—remember,	data	in	/var/tmp	is	intended	to

survive	a	reboot.	You	might	also	use	tmpfs	for	application	lock	files	and	other	ephemeral
data	where	speed	would	improve	performance.	While	older	versions	of	tmpfs	had
problems,	as	of	FreeBSD	10	it’s	widely	deployed	and	considered	production-ready.

When	you	mount	a	tmpfs(5),	it	automatically	creates	a	filesystem.
#	mount	–t	tmpfs	tmpfs	/tmp

You	could	also	use	an	/etc/fstab	entry	to	have	your	tmpfs	automatically	mounted	at

boot.
tmpfs	/tmp	tmpfs	rw,mode=1777	0	0

If	users	are	permitted	to	mount	filesystems	(by	setting	the	sysctl	vfs.usermount	to	1),

they	can	create	and	mount	tmpfs	filesystems.	Machines	with	this	setting	generally	belong
to	a	single	user,	however.

Let’s	consider	some	tmpfs	options.

tmpfs	Size

Left	to	its	own	devices,	a	tmpfs	has	a	maximum	size	equal	to	the	amount	of	available
RAM	plus	the	amount	of	swap	space.	Copying	a	sufficiently	large	file	to	your	tmpfs
partition	would	exhaust	all	system	memory.	This	would	be	bad.

Use	the	mount	option	size	to	set	a	maximum	size	of	a	tmpfs.	Here	I	create	a	1	GB
tmpfs,	mounted	at	/mnt.
#	mount	–o	size=1g	-t	tmpfs	tmpfs	/mnt

If	you	mount	multiple	tmpfs	filesystems	without	a	maximum	size,	they	will	all	think
that	their	maximum	size	is	equal	to	the	entire	available	memory	and	swap	space.	This
means	you	could	have	two	half-full	tmpfs	instances	and	run	out	of	memory.

One	way	you	can	reduce	the	odds	of	memory	exhaustion	is	to	limit	the	size	of	files	that
can	go	on	a	tmpfs	with	the	maxfilesize	option.	Most	files	in	/tmp	or	/var/tmp	are	tiny,	and	on

most	systems	none	should	exceed	a	few	megabytes.	Here	I	set	a	maximum	file	size	of	10
MB	on	any	file	on	this	tmpfs.
#	mount	-o	maxfilesize=10m	-t	tmpfs	tmpfs	/tmp/

Copy	a	large	file	to	your	tmpfs,	and	you’ll	get	a	“File	too	large”	error.



If	you	want	to	restrict	how	many	files	can	exist	on	the	tmpfs,	consider	restricting	the
number	of	inodes.	While	every	file	and	directory	needs	inodes,	the	number	of	inodes	does
not	directly	correlate	to	the	number	of	files	and	directories.	You’ll	want	to	experiment	with
this	restriction	to	see	if	it	works	for	you	and	how	it	needs	adjusting.
#	mount	-o	inodes=10k	-t	tmpfs	tmpfs	/tmp

Ten	thousand	inodes	should	suffice	for	/tmp	on	most	systems.

tmpfs	Permissions

You	can	also	control	the	ownership	and	permissions	on	a	tmpfs	with	the	uid,	gid,	and	mode

options.	An	actual	/tmp	directory	should	be	world-writable	with	the	sticky	bit	set,	so	be

sure	to	use	the	option	mode=1777.	If	the	tmpfs	is	for	a	specific	user	or	application	account,

assign	that	user	ownership	of	the	tmpfs.

For	more	complicated	memory-backed	disks,	consider	a	traditional	memory	disk.



Memory	Disks

A	memory	disk	is	an	ephemeral	storage	device.	Despite	the	name,	a	memory	disk	is	not
always	a	chunk	of	memory	being	treated	as	a	disk.	It	can	be	such	a	device,	but	it	might
instead	use	a	file	or	swap	space	as	a	backing	store.	The	storage	device	disappears	at	a
reboot.

FreeBSD	supports	four	types	of	memory	disks:	malloc-backed,	swap-backed,	vnode-
backed,	and	null.

Malloc-backed	disks	are	pure	RAM.	Even	if	your	system	runs	out	of	memory,
FreeBSD	will	absolutely	not	page	or	swap	out	a	malloc-backed	disk.	Using	a	large	malloc-
backed	disk	is	a	great	way	to	exhaust	system	memory.	Malloc-backed	disks	are	most
useful	for	swapless	embedded	devices.

Swap-backed	disks	are	mostly	memory,	but	FreeBSD	can	shuffle	them	out	to	swap
space	if	necessary.	This	is	the	safest	way	to	get	a	high-performance	memory	disk.

Vnode-backed	memory	disks	are	built	on	top	of	files	on	the	disk’s	filesystem.	Using	a
file	for	backing	a	memory	disk	is	the	safest	way	to	use	a	memory	disk,	but	it’s	slower	than
just	having	the	files	on	the	partition’s	filesystem—reads	and	writes	have	to	traverse	the
memory	filesystem,	which	in	turn	calls	up	the	file	on	the	disk.	Two	layers	of	filesystems
are	involved.	Vnode-backed	memory	disks	are	useful	for	mounting	disk	images,	however,
as	well	as	for	testing.

A	null	memory	disk	discards	everything	sent	to	it.	Any	writes	are	successful,	while	any
reads	return	only	zeroes.	I	won’t	cover	null	devices,	as	I	prefer	to	lose	my	data	by	hand.

Creating	and	Mounting	Memory	Disks

The	mdmfs(8)	utility	is	a	convenient	wrapper	for	creating	common	memory	disks.	You
can	get	down	and	dirty	with	programs	like	mdconfig(8)	and	newfs(8),	but	mdmfs	bundles

everything	up	for	you.	You	only	need	to	know	the	size	of	the	disk	you	want	to	use,	the
type	of	memory	disk,	and	the	mount	point.	The	mdmfs(8)	command	defaults	to	swap-
backed	memory	disks,	the	most	common.

Unprivileged	users	cannot	create	memory	disks,	even	if	they’re	allowed	to	mount
removable	media.

Use	the	–s	flag	to	specify	the	filesystem	size.	Here	I	create	a	16	MB	swap-backed

memory	disk	on	/mnt.
#	mdmfs	-s	16m	md	/mnt



The	md	option	above	means	“I	don’t	care	which	memory	disk	device	node	this	gets,	just

give	me	the	next	free	one.”

You	can	also	view	what	mdmfs	does	behind	the	scenes	by	adding	the	–X	option.
#	mdmfs	-X	-s	16m	md	/mnt

DEBUG:	running:	/sbin/mdconfig	-a	-t	swap	-s	16m

DEBUG:	running:	/sbin/newfs	-U	/dev/md0

DEBUG:	running:	/sbin/mount	/dev/md0	/mnt

All	the	other	mdmfs	command-line	options	are	about	changing	the	behavior	of	those

other	programs.

Memory	Disk	Memory	Use

Traditionally,	a	swap-back	memory	disk	never	returned	used	memory	to	the	system.	Once
you	wrote	to	the	memory	disk,	that	memory	was	consumed.	If	you	needed	a	large	memory
disk,	you	had	to	permanently	allocate	memory	for	it.	This	was	one	of	the	reasons	FreeBSD
included	tmpfs(5).

If	the	filesystem	on	the	memory	disk	supports	TRIM,	though,	FreeBSD	8.1	and	later
will	return	unused	memory	to	the	system.	Enable	TRIM	in	mdmfs	with	the	–t	flag.	TRIM	is

probably	important	only	for	long-lived	large	memory	disks.

mdmfs	Options

We	have	many	mdmfs(8)	options	to	tweak	the	underlying	memory	disk.	Most	of	us	don’t
care	about	the	disk	geometry,	or	the	emulated	disk	rotation	speed,	or	the	number	of	blocks
per	inode	in	the	temporary	filesystem.	Here	are	the	most	commonly	useful	options.

To	use	a	malloc-backed	memory	disk,	add	the	–M	flag.

To	put	a	UFS	filesystem	on	an	existing	file	and	mount	it,	add	the	–F	flag	and	the	path	to

the	file.	This	is	destructive—any	filesystem	that	exists	on	the	disk	will	be	destroyed.	If
you	want	to	mount	an	existing	UFS	image	file	without	destroying	the	contents,	add	the	–P

flag.
#	mdmfs	-PF	ufsfs.img	md	/media/

Rather	than	using	the	next	available	memory	disk	device	node,	you	can	specify	a
device	node	at	the	command	line.	Here,	I	tell	mdmfs	to	use	device	md13.
#	mdmfs	–s	16M	md13	/mnt

The	new	filesystem	uses	the	newfs(8)	defaults,	which	might	not	really	make	sense	for	a
memory	disk.	Specifically,	soft	updates	are	not	useful	on	an	ephemeral	filesystem.	Neither



is	a	noasync	mount,	as	you	can’t	recover	this	disk	after	a	crash.	Disable	soft	updates	with	–

S.	Give	any	mount	options	with	–o.
#	mdmfs	-S	-o	async	-s	16m	md	/mnt

Specify	a	user	and	a	group	to	own	the	memory	disk	with	-w.	You	must	specify	both	the

owner	and	the	group—listing	only	one	or	the	other	is	an	error.	Similarly,	use	the	–p	flag	to

define	permissions	on	the	new	device.
#	mdmfs	–p	700	-w	mwl:mwl	-s	16m	md	/home/mwl/mnt

The	user	has	full	ownership	of	this	memory	device.

Destroying	Memory	Disks

While	mdmfs	simplifies	creating	memory	disks,	you’ll	need	mdconfig(8)	to	destroy	them.

Destroying	the	memory	disk	frees	the	memory	used	by	the	device.	To	find	the	disk	device,
run	mount	and	find	the	partition	containing	the	memory	disk.
/dev/md86	on	/mnt	(ufs,	asynchronous,	local)

The	/mnt	partition	is	built	on	memory	device	/dev/md86.	Unmount	the	partition,	and	then

destroy	the	device	with	mdconfig(8).
#	umount	/mnt

#	mdconfig	–d	–u	86

Unmounting	with	umount(8)	works	exactly	like	any	other	UFS	filesystem.	Use
mdconfig(8)	to	directly	manage	memory	devices.	The	–d	flag	means	destroy,	and–u	gives	a

device	node	number.	The	above	example	destroys	memory	disk	/dev/md86.	The	memory

used	by	the	device	is	now	available.

Viewing	Memory	Disks

Memory	disks	can	accumulate,	and	after	months	you	might	forget	which	disk	does	what
and	how	it’s	configured.	The	–l	option	to	mdconfig	displays	all	live	memory	disk	device

nodes.	Add	the	–v	flag	to	show	the	details	on	each.
#	mdconfig	-lv

md0	swap	16M

md1	vnode	690M	/home/mwl/	FreeBSD-disc1.iso

This	host	has	two	memory	disks,	one	swap-backed	16	MB	filesystem	and	one	attached
to	an	ISO.

Filesystems	in	a	File

While	mdmfs	lets	you	use	a	filesystem	on	a	file,	the	file	must	exist	first.	Use	dd(1)	to	create



files	for	filesystems.	The	dd	command	is	a	generic	tool	for	copying	and	altering	files,	but

these	days	it’s	most	commonly	used	to	create	disk	images.

Using	dd	demands	using	a	little	math.	It	copies	a	certain	number	of	blocks	of	a	given

size.	You	need	to	figure	out	how	many	blocks	of	that	size	you	need	to	generate	a	file	of	the
size	you	want.	There’s	a	whole	game	to	selecting	a	block	size,	and	with	some	research	you
can	choose	the	most	efficient	block	size,	but	I	find	using	1	MB	blocks	gives	reasonable
performance	on	modern	hardware.	So,	if	you	want	a	1	GB	disk	image,	how	many	1	MB
blocks	do	you	need?	Hardware	manufacturers	would	say	1,000,	while	most	sysadmins
would	say	1,024.	I’m	going	to	duck	that	question	entirely	and	create	a	512	MB	file.

Once	you	know	how	many	blocks	you	need,	you	need	a	place	to	get	those	blocks	from.
The	fastest	source	of	irrelevant	stuff	is	the	empty	device,	/dev/zero.	Here	I	create	a	512	MB

image	file	full	of	stuff.
#	dd	if=/dev/zero	of=ufs2.img	bs=1m	count=512

The	if=	gives	the	input	file,	or	the	source	I’m	copying	from.	The	of=	defines	the	output

file,	and	bs	is	the	block	size,	while	count	is	the	number	of	blocks.	So	I’m	copying	512	1MB

blocks	of…	absolutely	nothing.	The	result	is	a	512	MB	file.

If	you	need	large	files,	many	gigabytes	or	even	terabytes,	dd	can	run	very	slowly.

FreeBSD	lets	you	create	an	empty	file	of	arbitrary	size,	or	a	sparse	file.	A	sparse	file	is
marked	as	having	a	certain	size,	but	it	only	takes	up	a	single	block	on	the	disk.	Sparse	files
grow	once	you	put	stuff	in	them.	Use	the	–s	option	to	truncate(1)	to	create	a	sparse	file.

Give	it	one	argument,	the	size	of	the	file.

Here	I	create	a	512	MB	sparse	file.
#	truncate	–s	512M	sparse.img

The	result	is	a	file	that	claims	to	be	the	desired	size.
#	ls	-lh	sparse.img

-rw-r—r—	1	root	mwl	512M	Sep	2	13:39	sparse.img

Using	ls(1)	or	du(1)	to	get	the	number	of	disk	blocks	used	for	this	file,	however,	gives
a	different	story.
#	ls	-s	sparse.img

1	sparse.img

This	file	uses	one	filesystem	block.	On	this	disk,	that’s	512	bytes.

Sparse	files	are	great.	You	can	fit	trillions	of	these	tiny	files	in	a	lowly	gigabyte	of	disk
space.	When	you	write	data	to	sparse	files,	however,	they	expand.	You	can	fill	up	your



physical	disk	without	creating	any	new	files	just	by	using	sparse	files	to	back	filesystems.
Creating	a	filesystem	on	this	file	with	mdmfs	inflates	the	underlying	file,	as	does	every	disk

write.

Sparse	files	never	shrink.	They	can	only	grow.	Even	so,	if	you	need	to	fit	a	mostly
empty	10	TB	disk	image	on	a	2	TB	ZFS	pool,	you	might	find	them	useful.

Memory	Disks	and	/etc/fstab

Listing	memory	disks	in	/etc/fstab	tells	FreeBSD	to	automatically	create	them	at	boot.	The

device	name	is	md	and	the	filesystem	type	is	mfs.	In	the	options	column,	list	any	command-

line	mdmfs(8)	options	used	to	create	this	device,	as	shown	here.
md	/mnt	mfs	rw,-s16m

When	mounted	from	/etc/fstab,	memory	disks	are	world-writable	and	have	the	sticky

bit	set.	These	permissions	are	appropriate	for	/tmp,	but	not	so	much	for	anywhere	else.

Specify	the	permissions	as	a	mount	option,	but	remember	that	/etc/fstab	does	not	tolerate

extra	spaces.	Separate	the	various	options	with	commas,	and	eliminate	any	spaces	between
the	command-line	options	and	their	arguments.
md	/home/mwl/mnt	mfs	rw,-p700,-wmwl:mwl,-s16m



Disk	Images

You	can	mount	UFS	disk	images	with	mdmfs,	but	it’s	far	more	common	to	mount	ISO	or

UDF	images.	While	FreeBSD’s	tar(1)	can	extract	files	from	ISO	images	thanks	to

libarchive1,	that’s	often	overkill.	Also,	ISO	images	are	read-only.	You	can	inflict	fumble-
fingered	damage	on	files	extracted	with	tar(1),	but	ISOs	resist	tampering.	Also,	libarchive
cannot	extract	files	from	pure	UDF	images.	Sometimes	your	simplest	choice	is	mounting	a
disk	image.

To	mount	a	disk	image,	use	mdconfig(8)	to	attach	the	file	to	a	vnode-backed	memory
device.	When	you	give	only	a	filename	as	an	argument,	mdconfig	assumes	you	want	to	use

the	file	as	a	filesystem.
#	mdconfig	FreeBSD-10.2-RELEASE-amd64-disc1.iso

md1

In	response	you	get	the	device	node	for	this	memory	disk,	md1.	Now	use	the	proper

mount	command	to	mount	this	filesystem.
#	mount	–t	cd9660	/dev/md1	/media

Remember	that	mount(8)	assumes	that	all	filesystems	are	UFS	unless	told	otherwise.

When	you’re	done	accessing	the	disk	image,	unmount	the	image	and	destroy	the
memory	disk	device	as	you	would	any	other	memory	device.

Disk	Images	and	/etc/fstab

You	can	specify	a	memory	device	in	/etc/fstab	and	attach	it	to	a	disk	image.	Give	the

filesystem	type	as	mfs.	Specify	the	filesystem	is	read-only,	and	use	the	-F	flag	to	give	a

path	to	the	disk	image.	At	boot	this	entry	creates	memory	device	md10,	attaches	it	to

/iso/stuff.iso,	and	mounts	it	at	/stuff.
md10	/stuff	mfs	ro,-F/iso/stuff.iso	0	0

The	system	will	need	access	to	the	disk	image	early	in	the	boot	process.	If	the	image
isn’t	available,	the	process	will	hang.	You	might	need	to	use	noauto	for	disk	images	in	a

home	directory,	for	example.

By	combining	the	noauto	mount	option	and	autofs	(Chapter	12),	the	system	can	mount

the	image	only	when	needed	and	automatically	unmount	it	when	it’s	not	in	use.

You	can	also	use	mdconfig_md	entries	in	/etc/rc.conf	to	configure	memory	disks	at	boot,

and	then	use	simpler	/etc/fstab	entries,	but	that	method	is	less	flexible	than	pure	/etc/fstab



entries.

That	takes	us	through	every	filesystem	that	runs	on	the	local	machine.	Let’s	head	out
into	network-aware	filesystems.

1	All	hail	libarchive!





Chapter	6:	Network	File	System
FreeBSD	supports	the	venerable	Network	File	System	(NFS)	out	of	the	box.	NFS	lets	you
share	mount	points	and	directories	on	one	machine	with	other	hosts.	Entire	books	have
been	written	about	NFS,	its	various	versions,	and	the	good	and	bad	points.	This	book
doesn’t	take	you	deep	into	the	inner	workings	of	NFS,	but	instead	focuses	on	establishing
and	managing	NFS	services.

NFS	uses	a	client-server	model.	A	server	offers	filesystems	to	other	computers.	This	is
called	NFS	exporting,	and	the	offered	filesystems	are	called	exports.	NFS	clients	can
mount	exports	much	as	they	would	mount	any	other	filesystem.

NFS	was	not	designed	as	a	secure	protocol.	Do	not	put	NFS	servers	on	the	Internet
without	a	packet	filter	or	firewall.	Merely	restricting	access	at	the	NFS	level	is	utterly
insufficient—you	must	prevent	random	Internet	hosts	from	poking	at	the	host’s	Remote
Procedure	Call	(RPC)	services.	If	you	use	one	of	FreeBSD’s	built-in	packet	filters,	be	sure
to	restrict	NFS	access	by	IP	address	as	well	as	port	number.

Additionally,	NFS	is	not	encrypted.	Anyone	with	packet	sniffer	access	to	your	wire	can
see	files	as	clients	access	them.	Encrypting	NFS	requires	Kerberos,	which	could	be	an
entire	book	in	itself.

Use	NFS	to	share	files	between	Unix-like	systems,	or	with	non-Unix	clients	that	have
NFS	capability.



NFS	Versions

NFS	comes	in	three	versions:	NFSv2,	NFSv3,	and	NFSv4.	To	a	sysadmin,	versions	2	and
3	are	very	similar.	Most	hosts	can	negotiate	which	of	these	versions	to	use.

NFSv2	is	a	fairly	minimal	implementation,	dating	from	the	years	when	people	were
delighted	just	to	get	file	sharing	working	at	all,	regardless	of	performance.

NFSv3	contains	many	incremental	improvements	over	NFSv2	and	boasts	greatly
improved	performance.	Most	of	these	improvements	don’t	require	special	configuration,
however.	You	can	choose	to	tweak	settings,	but	you	don’t	have	to	specifically	enable
NFSv3	features.

NFSv4	is	an	entirely	different	beast,	and	breaks	many	of	the	long-standing	rules	of
NFS.	When	people	say	“NFS,”	they	almost	certainly	mean	versions	2	or	3.	I’ve	also	heard
versions	2	and	3	referred	to	as	“traditional	NFS.”	Someone	who	means	NFSv4	generally
says	“NFSv4.”	This	chapter	starts	with	versions	2	and	3.	Once	you	understand	them,	we’ll
cover	the	changes	that	make	NFSv4	unique.

While	almost	every	Unix-like	operating	system	supports	some	version	of	NFS,	each	of
those	operating	systems	implements	it	slightly	differently.	If	you	have	multiple	operating
systems	on	your	network,	don’t	be	shocked	if	some	of	the	hosts	need	tweaking	to
interoperate	nicely	with	the	other	hosts.	The	FreeBSD-net@FreeBSD.org	mailing	list
archive	contains	discussions	on	how	to	get	the	best	performance	out	of	just	about	every
possible	combination	of	operating	system	and	NFS	versions.	If	you	have	trouble,	check
there	first.



NFSv2/NFSv3	Protocol

To	a	sysadmin,	NFS	versions	2	and	3	appear	very	similar.	FreeBSD	uses	the	same	server
software	for	both	versions	of	NFS.

Traditional	NFS	is	stateless.	An	NFS	server	does	not	track	how	a	client	is	connecting
or	what	it’s	accessing.	Rebooting	an	NFS	server	won’t	crash	the	clients.	The	clients	won’t
be	able	to	access	files	on	an	unavailable	NFS	server,	but	once	the	server	returns	it’ll	pick
up	where	it	left	off.	Other	network	file	sharing	protocols	are	not	always	so	resilient.

Statelessness	causes	its	own	problems,	however.	For	example,	clients	cannot	know
when	a	file	they	currently	have	open	is	modified	by	another	client.	And	a	net-booted
diskless	host	will	probably	hang	when	the	server	disappears.

We’ll	configure	the	server	first,	then	discuss	the	client.



Enabling	the	NFS	Server

Enable	NFS	with	the	following	/etc/rc.conf	options.	While	not	all	environments	require	all

of	these	features,	enabling	them	provides	the	broadest	range	of	NFS	compatibility	and
decent	performance.
nfs_server_enable=YES

rpcbind_enable=YES

mountd_enable=YES

rpc_lockd_enable=YES

rpc_statd_enable=YES

These	services	work	together	to	provide	NFS	exports.	Those	learning	NFS	get	the	best
results	by	rebooting	the	server	to	ensure	everything	starts	in	the	correct	order.	People
familiar	with	NFS	can	start	the	nfsd,	lockd,	and	statd	services	to	activate	NFS.	The

sockstat(1)	program	should	show	rpc.lockd,	rpc.statd,	mountd,	and	rpcbind	listening	to	the

network.	If	you	don’t	see	all	of	these	programs	running,	check	/var/log/messages	to	see	why

they	didn’t	start.

The	key	NFS	program	is	rpcbind(8).	If	rpcbind	won’t	start,	try	running	it	in	debug	mode

with	–d.	It	won’t	detach	from	the	terminal,	but	prints	status	messages	instead.	Terminate

the	debug-mode	rpcbind(8)	with	CTRL-C,	like	any	other	program.

How	NFS	Services	Work

NFS	exports	require	support	in	the	kernel.	While	the	NFS	server	and	client	are	compiled
into	FreeBSD’s	default	kernel,	if	your	custom	kernel	lacks	that	support,	enabling	the	NFS
server	loads	the	kernel	module.

Clients	start	a	connection	by	contacting	the	server’s	rpcbind(8)	server.	This	daemon
maps	RPC	requests	into	local	network	addresses	and	ports.	Clients	contact	rpcbind	to

request	the	IP	and	port	of	the	NFS	mounting	daemon,	mountd(8).

The	mountd(8)	daemon	accepts	and	responds	to	requests	from	clients.	It’s	what	most
people	would	think	of	as	“the	NFS	server.”	It	listens	to	a	random	high-numbered	port.	The
only	way	a	client	can	find	the	running	mountd	daemon	is	to	ask	the	rpcbind	server.

While	rpc.lockd(8)	and	rpc.statd(8)	aren’t	strictly	necessary,	they	make	living	with
NFS	much	nicer.	The	rpc.lockd(8)	process	ensures	smooth	file	locking	operations	over
NFS,	so	that	clients	can	get	an	exclusive	lock	on	a	file.	The	rpc.statd(8)	process	monitors
client	connections.	When	an	NFS	client	disappears,	rpc.statd	frees	up	resources	dedicated

to	that	client.	These	services	impose	a	small	amount	of	state	on	an	otherwise	stateless



protocol.

NFS	Server	Options

You	can	change	how	the	NFS	server	connects	to	the	network,	which	versions	of	NFS	it
supports,	and	how	many	servers	it	runs.	You	can	also	fall	back	to	the	older	NFS	server	if
needed.	Set	all	of	these	as	options	to	nfsd(8),	using	the	nfs_server_flags	rc.conf	option.

NFS	can	work	over	TCP	or	UDP.	UDP	is	the	traditional	NFS	transport	protocol.	TCP
works	better	over	lossy	networks,	and	can	better	cope	with	varying	network	speeds.	TCP
is	a	stateful	protocol,	however.	An	interrupted	TCP	connection	won’t	transparently
resume.	Use	the	–u	flag	to	enable	UDP	and	–t	for	TCP.	FreeBSD	uses	TCP	by	default	but

enables	both.	If	you	add	your	own	mount	flags,	you	must	specify	which	protocol	you	want
the	mount	to	use.

The	NFS	server,	by	default,	listens	to	all	IP	addresses	on	a	machine.	This	causes
problems	with	UDP-based	NFS.	UDP	is	stateless,	so	replies	to	NFS	requests	can	come
from	any	IP	address	on	the	server,	possibly	confusing	the	clients.	When	an	NFS	server	has
multiple	IP	addresses,	configure	the	NFS	server	to	accept	connections	only	on	a	single	IP
with	the	–h	option	and	the	desired	IP.

Servers	that	process	NFS	traffic	from	many	clients	might	need	additional	instances	of
nfsd(8)	to	support	those	clients.	The	–n	flag	specified	how	many	copies	of	nfsd	FreeBSD

should	start.

This	rc.conf	entry	tells	FreeBSD	to	support	both	UDP	and	TCP	connections,	bind	to	the

IP	address	203.0.113.99,	and	run	six	copies	of	nfsd.
nfs_server_flags=”-uth	203.0.113.99	–n	6”

FreeBSD	9.0	and	above	has	completely	new	NFS	kernel	support,	written	so	that
FreeBSD	could	support	NFSv4.	It’s	possible	that	the	new	server	has	bugs	(although	it	was
extensively	tested).	By	using	the	–o	flag,	you	tell	nfsd	to	use	the	old	NFS	server.	One	way

to	determine	if	a	problem	is	specific	to	a	FreeBSD	NFS	server	or	somewhere	else	is	to
reproduce	the	problem	with	the	old	NFS	server.	If	you	find	an	NFS	issue	that	doesn’t	exist
in	the	old	NFS	server,	be	sure	to	file	a	bug	report.

Your	server	is	now	ready	to	export	filesystems	or	directories.



Export	Configuration

You	can	configure	exactly	what	a	server	may	export	to	which	clients.	You	could	export	all
directories	and	filesystems	on	the	entire	server,	but	that’s	begging	for	people	to	take
advantage	of	your	server.	If	someone	can	edit	any	file	on	the	server,	she	can	also	edit	the
exports	configuration.	An	ideal	NFS	configuration	permits	as	little	access	as	possible
while	letting	the	server	fulfill	its	duties	and	the	clients	reach	necessary	files.	While	clients
might	need	the	files	under	/home,	they	probably	don’t	need	to	remotely	mount	the	NFS

server’s	root	filesystem.

FreeBSD	lets	you	configure	exports	in	two	different	ways.	You	can	configure	all
exports	in	/etc/exports.	If	a	server	uses	ZFS,	however,	you	can	also	configure	exporting

each	dataset	via	the	sharenfs	property.	A	ZFS-based	server	creates	the	file	/etc/zfs/exports

out	of	the	property	settings.	Never	edit	/etc/zfs/exports	by	hand—always	use	the	dataset

sharenfs	property.

Choose	one	method	of	managing	your	NFS	exports.	Either	edit	/etc/exports,	or	use	zfs

and	/etc/zfs/exports.	Using	both	methods	simultaneously	will	at	best	confuse	and	frustrate

you,	and	at	worst	break	everything.	If	you’re	stuck	with	both	UFS	and	ZFS	on	one	host,
you	might	decide	to	use	/etc/exports	for	UFS	and	sharenfs	for	ZFS—you’ve	already	set

yourself	up	for	confusion	by	mixing	filesystems,	so	why	not	go	all	the	way?

Exports	Entries

While	the	following	discussion	focuses	on	“the	exports	file,”	almost	everything	applies	to
exports	managed	with	ZFS	as	well.	We’ll	discuss	the	differences	in	“Managing	NFS	with
ZFS	Properties”	later	this	chapter.	Understanding	those	limitations	on	ZFS	NFS	requires
understanding	how	to	configure	NFS	using	the	traditional	/etc/exports	method,	however.

Each	exports	entry	has	up	to	three	components.

-	Directories	or	partitions	to	be	exported

-	Options	and	permissions	on	that	export

-	Clients	that	may	connect

Each	combination	of	clients	and	a	disk	device	can	have	only	one	line	in	the	exports
file.	If	your	NFS	server	has	only	one	giant	partition,	as	in	the	default	FreeBSD	UFS
install,	and	you	want	to	export	both	/home	and	/usr/ports	to	your	clients,	they	must	both

appear	on	the	same	line.	The	two	exports	will	have	the	same	options	and	identical



permissions.

NFS	mounts	do	not	cross	partition	boundaries.	If	a	host	has	separate	UFS	partitions	for
/usr	and	/usr/src,	exporting	/usr	won’t	automatically	export	the	/usr/src	partition.

Of	the	three	parts	of	an	exports	entry,	only	the	directory	is	mandatory.	An	exports	line
cannot	contain	symlinks	or	periods.	Not	sure	if	a	directory	path	has	a	symlink?	Run	pwd	in

the	directory	to	get	that	directory’s	true	location,	regardless	of	how	you	got	there.

If	I	wanted	to	export	my	home	directory	to	the	entire	Internet,	I	could	use	an
/etc/exports	entry	including	only:
/home/mwl

This	has	no	options	and	no	restrictions	on	which	hosts	may	mount	the	share.	Your
firewall	or	packet	filter	should	protect	you	from	random	Internet	probes,	but	it’s	still	poor
practice.

After	changing	the	exports	file,	restart	or	SIGHUP	mountd.
#	service	mountd	reload

If	mountd	finds	any	problems,	it	makes	a	log	entry	in	/var/log/messages.	The	most	helpful

part	of	these	log	messages	is	the	line	number;	mountd	doesn’t	usually	give	any	more	detail

than	that.	My	most	common	mistake	in	/etc/exports	is	using	a	path	with	a	symlink.

NFS	and	Users

Traditional	NFS	communicates	file	ownership	and	permissions	by	UID	numbers.	A	file
isn’t	owned	by	user	mwl—it’s	owned	by	user	1001.	If	those	UID	numbers	map	to	the	same

username,	great!	If	not,	you	might	have	a	problem.	Large	NFS	deployments	normally	have
some	means	of	synchronizing	usernames	and	UIDs	across	all	systems,	such	as	LDAP	or
even	rdist.

On	a	network	where	untrusted	users	have	administrative	privileges	on	their	own
machine,	and	could	create	accounts	with	any	UID,	most	sites	implement	Kerberos	or	some
other	means	of	authentication	control.	On	a	smaller	network,	such	as	my	test	lab,
synchronizing	the	password	files	on	all	machines	usually	suffices.

The	root	user	is	handled	somewhat	differently.	An	NFS	server	can’t	trust	root	on	other

machines	to	execute	commands	as	root	on	the	server.	An	intruder	who	penetrates	an	NFS

client	shouldn’t	automatically	get	root	on	the	NFS	server	with	it!

NFS	maps	requests	from	root	on	a	client	machine	to	a	user	with	the	UID	and	GID	of	-2



on	the	server.	Traditional	systems	had	16-bit	user	IDs,	so	this	became	65534,	the	user	ID
for	the	nobody	account.	That’s	why	the	highly	unprivileged	nobody	user	was	originally

created.

The	nobody	account	seemed	useful	for	a	lot	of	server	programs,	though,	so	many

programs	appropriated	nobody	for	their	own	use.	Multiple	security	entities	simultaneously

using	nobody	creates	security	access	issues.	While	most	programs	now	expect	to	run	under

their	own	unprivileged	user	account,	some	random	software	on	one	of	your	systems
probably	runs	as	nobody.	Even	if	you	audit	all	your	machines	for	software	that	runs	as	nobody,

some	package	installed	by	a	minion	next	week,	next	month,	or	next	year	will	probably
want	to	run	as	nobody.	(I	consider	the	nobody	user	tainted,	and	don’t	want	it	on	my	network.)

Modern	Unix-like	operating	systems	use	32-bit	UIDs,	so	a	client’s	root	account	maps	to

UID	4,294,967,294	on	the	server.	FreeBSD	has	no	such	account	in	/etc/passwd.	I

recommend	creating	an	unprivileged	user,	nfsroot,	explicitly	for	use	by	NFS	for	root.	If

possible,	assign	that	user	UID	4294967294.

Explicitly	assign	a	root-to-nfsroot	mapping	with	the	-maproot	option.	Here	I	map	the

user	root	to	this	assigned	user.
/home/mwl	–maproot=nfsroot

If	you	truly	want	the	client’s	root	account	to	have	root	privileges	on	the	NFS	server,
you	can	use	–maproot=0.	Diskless	machines	need	this,	so	that	they	can	put	their	root

filesystem	on	the	server.

You	can	assign	group	memberships	for	the	nfsroot	user	in	the	exports	file.	This	group

membership	can	differ	from	that	assigned	in	/etc/group,	letting	you	use	share-specific	group

permissions.	Specify	groups	by	name	or	GID.	Use	colons	to	separate	the	groups	from	the
username.	Here,	the	nfsroot	user	is	also	a	member	of	www	and	staff.
/home/mwl	–maproot=nfsroot:www:staff

If	you	want	to	remove	all	group	membership	for	this	user	for	a	particular	share,	give	a
colon	and	no	groups	after	the	NFS	mapped	root	user.
/home/mwl	–maproot=nfsroot:

Instead	of	remapping	only	the	root	user,	you	can	remap	all	NFS	users	to	a	single

account	with	the	–mapall	option.	This	gives	all	users	identical	access.
/home/mwl	–mapall=nfsroot:

Assign	group	privileges	as	you	would	for	–maproot.



You	cannot	arbitrarily	remap	user	accounts	to	each	other.	In	complex	environments,	be
sure	you	synchronize	your	user	accounts	and	UIDs	on	all	machines	on	your	network.

One	thing	to	remember	is	that	users	in	NFS	can	belong	to	no	more	than	16	groups.
(Some	older	operating	systems	limit	their	NFS	servers	to	even	fewer	groups.)	Some
operating	systems	can	break	that	limit,	but	they	break	the	NFS	protocol	in	doing	so.	If	a
user	can’t	access	files	with	group-based	access	control,	check	the	number	of	groups	that
they’re	in.

Exporting	Multiple	Directories

You	might	want	to	export	multiple	directories	on	one	partition.	List	all	directories
exported	to	the	same	clients	on	one	line	in	/etc/exports,	separated	by	spaces.	Here	I	export

four	directories	on	this	system’s	root	partition.
/home/mwl	/usr/src	/var/log	/var/db	–maproot=nfsroot

Clients	may	mount	any	of	these	directories,	and	requests	from	root	get	mapped	to	the
user	nfsroot.

Perhaps	you	want	clients	to	be	able	to	mount	any	directory	on	a	partition.	Permit	this
with	the	–alldirs	option.	Here,	users	can	mount	any	directory	on	the	/home	partition.
/home	-alldirs

The	–alldirs	option	works	only	when	the	directory	is	a	partition	mount	point.	I	could

not	specify	a	directory	that’s	not	a	mount	point	and	permit	mounting	any	directory	beneath
it.

Long	Lines

Do	not	use	any	identifiers,	delimiters,	commas,	or	other	separators	between	the	various
parts	of	the	line.	Tabs	are	okay.

In	the	last	example,	having	each	directory	on	its	own	line	would	be	easier	to	read,	but
as	they’re	all	on	the	same	partition,	we	can’t	do	that.	The	FreeBSD	NFS	folks	could
redesign	/etc/exports	in	a	more	structured	manner,	but	then	FreeBSD	would	have	an

exports	file	incompatible	with	any	other	Unix-like	operating	system.	Yes,	organizations
frequently	share	the	exports	file	between	machines,	even	machines	with	different
operating	systems.

You	can	break	lines	up	with	a	backslash,	however.	Once	an	exports	line	gets	long
enough,	line	breaks	are	almost	mandatory.
/home/mwl	\



/usr/src	\

/var/log	\

/var/db	\

–maproot=65533

However	you	arrange	your	exports	file,	it’s	not	fun	to	read.	Choose	your	preferred	pain.

Restricting	Clients

By	default,	any	host	anywhere	in	the	world	may	access	exported	NFS	shares.	To	restrict
access,	list	permitted	hosts	at	the	end	of	the	/etc/exports	entry.	Here	I	restrict	access	to	my

home	directory	to	a	single	IP	address.
/home/mwl	203.0.113.111

Restrict	NFS	mounts	to	clients	on	a	specific	network	by	using	the	–network	and	–mask

qualifiers.
/home/mwl	–network	203.0.113.0	–mask	255.255.255.0

Here,	any	host	with	an	IP	address	beginning	in	203.0.113	can	access	my	home
directory.

Those	of	you	familiar	with	slash	netmask	notation	can	use	that	instead.
/home/mwl	–network	203.0.113.0/24

The	two	examples	above	are	functionally	identical,	but	I	find	the	second	more
readable.

You	can	have	only	one	network	statement	per	entry.	To	export	to	multiple	networks,
use	multiple	lines.
/home/mwl	–network	203.0.113.0/24

/home/mwl	–network	198.51.100.0/24

IPv6	addresses	work	exactly	the	same,	of	course.	Here	I	let	an	IPv6	block	access	my
NFS	share.
/home/mwl	–network	2001:db8:bad:code::/64

You	can	also	specify	hosts	by	hostnames	or	NIS	netgroups.	List	each	host	by	either
short	or	long	name	at	the	end	of	the	line,	separated	by	spaces.	Here	I	give	three	hosts
access	to	the	share.
/home/mwl	-maproot=nfsroot	blue	agouti	rex

Using	hostnames	creates	dependencies	on	name	resolution.	Losing	domain	name
service	(DNS)	is	sufficiently	unpleasant	without	adding	NFS	failures	to	that.	Additionally,
these	names	are	not	dynamic.	The	NFS	server	looks	up	the	IP	address	of	each	host	when
you	restart	mountd.	Changing	a	client’s	IP	means	both	reloading	the	name	service	and



restarting	mountd.

Using	individual	IP	addresses	instead	of	hostnames	in	the	exports	file	means	that	when
you	change	a	client’s	IP,	you	must	change	its	entry	in	/etc/exports	and	restart	mountd.

Either	way,	managing	per-host	NFS	assignments	takes	more	work.	Assign	NFS
permissions	as	broadly	as	possible	without	compromising	security.

Invalid	Combinations

One	combination	of	a	partition	(or	directories	on	a	single	partition)	and	a	host	(or	group	of
hosts)	can	have	only	one	line	in	/etc/exports.	A	host	with	only	one	filesystem	cannot	use

these	exports	statements.	Remember,	FreeBSD’s	installer	creates	one	large	filesystem	by
default	when	using	UFS.
/usr/src	–maproot=0	203.0.113.5

/home	–maproot=nfsroot	203.0.113.5

We’re	trying	to	export	two	directories	on	the	same	partition,	to	the	same	host,	with
different	options.	This	is	invalid.	You	could	export	both	directories	to	the	same	host	with
the	same	options,	or	you	could	move	the	two	directories	to	separate	partitions.

Similarly,	you	couldn’t	export	these	to	different	hosts	with	different	options,	as	shown
here.
/usr/src	–maproot=0	203.0.113.5

/home	–ro	198.51.100.6

This	would	work	if	/usr/src	and	/home	were	on	different	partitions.

Exporting	only	mount	points	prevents	attempts	to	create	invalid	combinations	of
subdirectories	and	options.	An	NFS	server	should	always	have	multiple	partitions,	rather
than	the	single	large	partition	of	FreeBSD’s	default	UFS	install.	If	you	use	ZFS,	manage
NFS	with	ZFS	properties	as	discussed	later.

Other	Server	Options

You	might	want	to	give	clients	read-only	access	to	an	NFS	share.	The	–ro	option	permits

this.
/home	–ro	–network=203.0.113.0/24

Sometimes	you’ll	have	an	NFS	export	configured	that	isn’t	always	valid.	You	might
export	/media	to	share	your	DVD	drive,	for	example.	If	you	have	a	disc	mounted	when	you

restart	mountd,	everything	is	fine.	If	you	don’t	have	any	media	in	the	drive,	however,	mountd

logs	complaints.	You	don’t	need	those	complaints—you	know	what	the	problem	is.	Add	-



quiet	to	an	export	line	to	silence	common	warnings.
/media	–quiet

You	can	combine	multiple	NFS	server	options	on	a	single	line	by	removing	the	leading
hyphens	and	separating	them	with	commas.	Do	not	use	whitespace.	Here	I	set	a	share	to
read-only,	set	a	maproot	user,	and	silence	common	warnings.
/home	–ro,maproot=nfsroot,quiet

As	you	cannot	have	whitespace	between	options,	use	the	equals	sign	(=)	to	specify	the

user	for	the	maproot	option.

Now	that	you	can	configure	your	NFS	server	and	its	exports,	let’s	play	with
performance	a	little.



Managing	NFS	with	ZFS	Properties

Using	zfs(8)	to	manage	NFS	has	distinct	advantages.	You	can	configure	NFS	on	a	per-
dataset	basis,	and	you	don’t	need	to	restart	mountd	after	each	change.	Command-line

configuration	is	easier	to	automate,	and	many	folks	find	it	easier	as	well.

Use	the	sharenfs	property	to	enable,	disable,	and	configure	NFS	exports.	Set	this

property	to	on	to	globally	share	a	dataset	and	all	its	descendants.	This	is	equivalent	to
listing	the	dataset	on	its	own	in	/etc/exports.	Anyone	can	mount	it	or	any	of	its	child

datasets,	with	no	restrictions	and	no	options.
#	zfs	set	sharenfs=on	zroot/home

Similarly,	set	it	to	off	to	unshare	the	dataset.

You	probably	want	some	NFS	options	on	this	export,	however.	Set	sharenfs	to	the

options	you	want	for	this	share.	Here	I	establish	a	maproot	user	and	restrict	clients	to	a
single	network.
#	zfs	set	sharenfs=”-network	203.0.113.0/24	-maproot=nfsroot”	zroot/home

The	problem	with	using	ZFS	to	manage	your	NFS	exports	is	that	you	must	use	the
same	options	for	all	permitted	hosts.	That	is,	if	most	of	your	clients	use	the	–maproot=nfsroot

option,	but	you	have	one	problem	host	that	legitimately	needs	–maproot=root,	zfs(8)	can’t

help	you.	You	must	configure	such	exports	via	/etc/exports.	Similarly,	you	can	define	only

one	permitted	network	with	ZFS	properties.

I	encourage	you	in	the	strongest	possible	terms	to	choose	a	single	method	of	managing
NFS	and	stick	with	it.	Simpler	configurations	can	use	ZFS	properties,	but	more
complicated	NFS	setups	probably	want	/etc/exports.	Using	both	/etc/exports	and	sharenfs

causes	confusion.	Really,	don’t	do	it.1



NFS	Clients

Using	the	NFS	client	is	much	simpler	than	configuring	the	server.	FreeBSD	has	the
nfs_client_enable	option	in	/etc/rc.conf,	but	FreeBSD	automatically	starts	all	NFS	client

functions	when	you	try	to	mount	a	share	over	the	network.

Attach	NFS	exports	to	your	client	with	mount(8),	much	like	you	would	for	any	local
filesystem.	Instead	of	using	a	device	name,	use	the	NFS	server’s	host	name	or	IP	address
and	the	directory	you	want	to	mount.	Here	I	mount	the	directory	/home/mwl	from	the	server

agouti	onto	the	local	directory	/mnt.
#	mount	agouti:/home/mwl	/mnt

This	mount	uses	whatever	options	the	server	enforces.	If	the	server	exports	the
directory	read-only,	the	mount	is	read-only.	You	can	add	your	own	mount	options,	as	we’ll
see	below.

Available	Mounts

One	obvious	question	for	an	NFS	client	would	be	“what	can	I	mount	from	that	server?”
The	showmount(8)	command	can	list	all	exports	available	to	a	client.	Give	the	–e	flag	and

the	name	of	the	NFS	server.	Here	I	ask	the	server	agouti	what	it’s	willing	to	share	with	this

client.
#	showmount	-e	agouti

Exports	list	on	agouti:

/usr/src	203.0.113.0

/usr/obj	203.0.113.0

/home	203.0.113.0

The	showmount	command	does	not	display	any	server-side	options,	such	as	–ro	or	–maproot.

Those	details	are	not	readily	available	to	clients,	although	read-only	exports	are	pretty
easy	to	detect	with	touch(1).

NFS	Mount	Options

FreeBSD	uses	conservative	NFS	defaults,	so	that	it	can	interoperate	with	any	other	Unix-
like	operating	system.	If	your	environment	uses	only	newer	systems,	try	various	mount
options	to	see	if	they	improve	system	performance.	Specify	mount	options	with	–o,	as

shown	below.

Modern	FreeBSD	uses	TCP	by	default.	TCP	has	all	sorts	of	automatic	scaling	features,
and	adjusts	itself	to	provide	reasonable	throughput.	Not	all	NFS	hosts	support	TCP,
however.	To	serve	clients	that	can’t	do	NFS	over	TCP,	and	to	access	shares	on	an	NFS



server	that	doesn’t	handle	TCP,	you’ll	need	to	use	UDP	mounts.	The	mount	option	udp

enables	UDP.

NFS	servers	can	disappear	from	the	network	more	readily	than	hard	drives.	Programs
using	the	NFS	share	can	hang	until	the	NFS	server	returns,	which	might	never	happen.
Use	interruptible	mounts	to	let	you	stop	programs	when	the	filesystem	disappears.	You
can	interrupt	processes	hung	on	unavailable	but	interruptible	NFS	mounts	with	CTRL-C.

Make	mounts	interruptible	with	the	intr	option.

By	using	a	soft	mount,	FreeBSD	will	notify	programs	that	the	file	they	were	working
on	is	no	longer	available.	What	programs	do	with	this	information	depends	on	the
program,	but	they	will	no	longer	hang	forever.	Enable	soft	mounts	with	the	soft	option.

You	can	also	use	the	rw	and	ro	options	for	read-write	and	read-only	mounts.

Putting	everything	together,	you	could	use	soft,	interruptible	TCP	mounts	like	so.
#	mount	-o	soft,intr,tcp	agouti:/home/mwl	/mnt

You	could	put	this	in	/etc/fstab	like	so.
agouti:/home/mwl	/mnt	nfs	rw,tcp,soft,intr	0	0

While	simple	NFS	is	pretty	straightforward,	you	can	spend	many	hours	tuning	it.



NFS	Performance

NFS	performance	is	an	arcane	topic,	and	best	handled	on	a	case-by-case	basis.	Different
combinations	of	server	and	client	might	work	best	with	wildly	different	performance
settings.	Don’t	be	afraid	to	play	with	NFS	settings	and	configurations	to	see	if	you	can
improve	throughput	for	your	environment.	Most	NFS	tuning	happens	at	the	client;	the
server	responds	to	the	client’s	tuning	requests.

To	adjust	performance,	look	at	the	mount	options	rsize,	wsize,	wcommitsize,	readahead,	and

readdirsize.	While	you	can	set	these	options	to	any	value,	FreeBSD	clips	most	of	them	at	a

maximum	size	for	interoperability	or	protocol	reasons.

The	rsize	and	wsize	options	dictate	the	size	of	read	and	write	requests.	The	readdirsize

value	is	the	size	of	directory	read	requests.	With	UDP	mounts,	the	maximum	value	on
NFSv2	is	8K,	while	NFSv3	permits	16K.	NFSv4	doesn’t	use	UDP.

NFSv3	cannot	specify	separate	maximum	sizes	for	TCP	and	UDP	rsize,	wsize,	and

readdirsize.	Many	servers	cannot	handle	requests	greater	than	16K,	however,	so	FreeBSD

clips	these	values	to	16K.

The	server	uses	readahead	to	guess	what	the	client’s	going	to	ask	for	next	and	load	it	up

from	the	disk	before	the	client	asks	for	it.	Play	with	readahead	if	you	normally	use	NFS	to

access	large	files.

To	see	the	actual	values	used	by	a	mount,	use	nfsstat	–m.	Then	measure	performance,

experiment,	test,	and	test	some	more.



NFSv4

Now	that	you	understand	how	to	use	NFS	versions	2	and	3,	let’s	see	how	version	4	throws
all	the	pieces	up	in	the	air	and	puts	them	together	in	a	different	way.	NFSv4	adds	three
core	functions	to	NFS:	access	control	lists	(ACLs),	delegations,	and	referrals.	It	also	adds
state	and	changes	how	it	identifies	users.

Filesystem	ACLs	allow	extended	permissions	settings,	letting	people	add	many
different	layers	of	permissions	to	files.	ACLs	are	mostly	useful	for	systems	that	offer	file
shares	over	both	NFS	and	CIFS.	This	is	the	primary	use	case	for	FreeBSD’s	NFSv4
implementation.	Chapter	11	discusses	ACLs	in	detail.

Delegations	allow	a	client	to	edit	a	file	locally	and	send	the	updates	to	the	server.
FreeBSD’s	NFSv4	client	supports	delegations,	but	the	server	does	not.

Referrals	allow	servers	to	transparently	redirect	requests	to	another	server.	Again,
FreeBSD’s	NFSv4	client	supports	referrals,	but	the	server	does	not.

Unlike	older	versions	of	NFS,	version	4	is	stateful.	The	client	bundles	up	a	whole
bunch	of	RPC	calls	in	a	single	request	and	ships	them	to	the	server	as	a	single	unit,	for
improved	performance.	The	server	processes	the	requests	in	order.	If	one	of	the	requests
fails,	the	server	cancels	the	rest	of	the	requests	in	the	queue	and	sends	the	results	to	the
client.	NFSv4	always	runs	over	TCP.

Finally,	NFSv4	adds	the	nfsuserd(8)	daemon	to	identify	users.



nfsuserd(8)

Older	versions	of	NFS	use	an	account’s	UID	number	to	identify	the	user.	NFSv4	identifies
users	by	both	their	UID	and	a	combination	of	the	username	and	the	NFSv4	domain	name.

The	NFSv4	domain	name	is	a	string	of	text	that	usually	corresponds	to	the	host’s
domain	name.	Left	on	its	own,	FreeBSD	grabs	the	host’s	domain	name	and	uses	that	as	the
NFSv4	domain	name.	If	a	host	doesn’t	have	a	domain	name,	however,	or	if	your	NFS
hosts	have	different	domain	names,	you’ll	need	to	set	the	NFSv4	domain	manually.

Different	domain	names	can	impact	even	small	networks.	My	home	network	uses	one

domain	for	production2	and	a	separate	domain	for	testing.	Even	in	my	house,	I	need	to
pick	an	NFSv4	domain	and	tell	my	hosts	about	it.

Both	the	client	and	the	server	use	the	nfsuserd(8)	daemon	process	username
information.	Use	the	–domain	command-line	argument	to	tell	NFSv4	which	domain	to	use.

Your	domain	shouldn’t	change	often,	so	set	it	in	/etc/rc.conf.	Here,	I	both	enable	nfsuserd

and	tell	it	to	use	the	mwl.io	domain.
nfsuserd_enable=YES

nfsuserd_flags=”-domain	mwl.io”

Additional	configuration	depends	if	the	host	is	an	NFSv4	server	or	client.



NFSv4	Servers

Configuring	an	NFSv4	server	requires	enabling	required	services	and	configuring
filesystems	to	export.

Enable	the	NFSv4	Server

An	NFSv4	server	needs	the	following	rc.conf	options	set.
nfs_server_enable=YES

mountd_enable=YES

nfsv4_server_enable=YES

nfsuserd_enable=YES

NFSv4	listens	to	port	2049,	making	it	possible	to	put	a	packet	filter	between	an	NFSv4
client	and	server,	so	long	as	port	2049	is	open.	You	still	need	the	general	NFS	support
functions	in	nfsd(8),	though,	as	well	as	mountd(8).

Hosts	can	serve	and	mount	all	three	versions	of	NFS	simultaneously.

NFSv4	Exports

Unlike	older	versions	of	NFS,	NFSv4	exports	a	single	filesystem	and	all	directories
beneath	it.	You	can’t	export	multiple	disconnected	filesystems	with	NFSv4.	Each	NFSv4
server	has	a	single	export	root	directory.	Clients	can	mount	any	directory	beneath	that
mount	point.	If	you	want	to	export	disconnected	parts	of	a	server’s	directory	tree,	use	null
mounts	(Chapter	4)	to	attach	them	to	the	NFS	hierarchy.

Configure	your	NFS	export	in	/etc/exports,	on	a	line	starting	with	V4:.	Then	give	the

root	directory	and	any	NFS	options.	NFSv4	accepts	the	network	restriction	options	from
older	versions	of	NFS,	as	well	as	the	Kerberos	security	options,	but	other	options	like	–ro

or	–alldirs	have	no	effect.	Here	I	export	/home	to	my	network	via	NFSv4.
V4:	/home	-network	203.0.113.0/24

While	you	get	only	a	single	root	directory,	you	can	have	multiple	V4	export	lines	to
support	multiple	networks,	provided	they	all	have	the	same	root.

If	you	export	a	ZFS	dataset,	all	of	its	child	datasets	are	automatically	exported.	You
must	explicitly	use	the	sharenfs	property	to	de-export	child	datasets.

NFSv4	clients	do	not	use	the	mount	protocol	required	by	older	versions	of	NFS,	but	the
server	still	needs	to	run	mountd(8)	to	provide	some	supporting	services.	To	make
/etc/exports	changes	take	effect,	use	service	mountd	reload	or	pkill	-1	mountd,	exactly	as	you

would	for	older	NFS	versions.



NFSv4	Clients

Enabling	NFSv4	on	an	NFS	client	requires	only	running	nfsuserd(8).	All	other
dependencies	get	started	automatically.	Enable	nfsuserd(8)	in	/etc/rc.conf.
nfsuserd_enable=YES

NFSv4	uses	the	host’s	unique	identifier	from	gethostid(3).	FreeBSD	automatically
generates	this	ID	at	boot,	unless	someone	has	deliberately	disabled	it.	If	the	client’s	rc.conf

includes	hostid_enable=NO,	you	can’t	use	NFSv4	without	possibly	corrupting	files.

You	can	now	mount	NFS	shares	via	NFSv4.	FreeBSD	defaults	to	trying	to	mount	NFS
shares	with	version	3,	falling	back	to	version	2	if	that	fails.	The	automation	doesn’t	even
consider	NFSv4,	so	you	must	specify	the	NFS	version	as	a	mount	option.
#	mount	-o	nfsv4	agouti:/mwl	/mnt

It	is	possible	to	use	NFSv4	without	running	nfsuserd,	but	you’ll	get	incorrect

permissions	on	files.	If	you’re	running	nfsuserd	but	still	get	incorrect	permissions,	check

the	NFSv4	domain	name.

While	FreeBSD’s	NFSv4	server	does	not	support	delegations,	the	client	does.	NFSv4
clients	can	edit	files	locally,	reducing	bandwidth	and	improving	performance.	If	a	client
asks	to	access	a	file	delegated	to	another	client,	however,	the	NFS	server	must	be	able	to
poke	the	delegated	client	and	retrieve	the	current	file.	This	is	called	a	callback.	To	enable
delegation	support	on	a	FreeBSD	NFSv4	client,	enable	the	NFS	callback	daemon
nfscbd(8).
nfscbd_enable=YES

While	a	client	can	mount	NFSv4	exports	without	using	nfscbd,	the	client	won’t	get	any

delegations.

While	you	can	tune	NFS	to	meet	almost	any	situation,	it’s	not	the	only	network	storage
protocol	out	there.	Let’s	move	on	to	CIFS.

1	Around	now	I	usually	come	out	in	a	cheesy	long	black	hooded	robe,	point	a	single	chubby	finger	at	you,	and	say	in	the
deepest	voice	I	can	manage:	“Doom.	Doooom…”

2	“Production”	on	a	home	network	being	defined	as	“anything	whose	loss	would	interrupt	Netflix.”





Chapter	7:	Common	Internet	File	System	Client
The	typical	office	shares	network	drives	via	Microsoft’s	Common	Internet	File	Sharing
(CIFS)	protocol.	CIFS	also	gets	called	the	Windows	“Network	Neighborhood,”	Server
Message	Block	(SMB),	and	“why	can’t	I	map	that	drive?”	While	originally	available	only
on	Microsoft	operating	systems,	these	days	anything	with	even	modest	aspirations	as	a
corporate	file	server	supports	SMB	and	CIFS.

Strictly	speaking,	SMB	is	a	lower-level	protocol.	Microsoft	considers	CIFS	a	particular
dialect	of	that	protocol.

FreeBSD	includes	the	smbutil(8)	program	to	find,	mount,	and	use	CIFS	shares	as	a
CIFS	client.	FreeBSD	does	not	include	a	CIFS	server	in	the	base	system,	but	the	open
source	CIFS	server	Samba	(www.samba.org)	works	very	well	on	FreeBSD.	Samba	is	a
topic	that	fills	books	much	larger	than	this	one,	so	we	won’t	go	there.

Use	FreeBSD’s	CIFS	support	to	interoperate	with	existing	Windows	infrastructure.
You	wouldn’t	deploy	CIFS	to	support	Unix	systems—use	NFS	for	that	instead.



Prerequisites

You	need	a	few	pieces	of	information	before	you	can	even	try	to	mount	a	CIFS	share.
First,	get	a	valid	username	and	password	with	access	to	your	share,	along	with	the
Windows	domain	name.	Your	host	needs	the	ability	to	find	the	fileserver;	the	IP	address	of
the	Windows	DNS	server	will	do,	or	alternately	the	hostname	or	IP	of	the	fileserver	you
want	to	mount	a	share	from.

On	the	FreeBSD	side,	you’ll	need	to	load	the	smbfs.ko	kernel	module.	This	brings	the

modules	libiconv.ko	and	libmchain.ko	along	for	the	ride.	You	can	load	these	automatically	at

boot	time	with	a	/boot/loader.conf	entry.
smbfs_load=YES

With	this	ready,	you	can	configure	CIFS.



CIFS	Configuration

Unlike	NFS	or	iSCSI,	you	can	only	manage	CIFS	with	a	configuration	file.	CIFS	is
potentially	far	more	complex	than	either	of	those.	The	main	configuration	file	is
/etc/nsmb.conf,	but	users	can	have	personal	configurations	in	$HOME/.nsmbrc.	Any

configuration	in	/etc/nsmb.conf	overrides	a	user’s	personal	settings.	Both	files	use	the	same

configuration	syntax	and	keywords,	so	while	this	book	refers	to	nsmb.conf,	a	user	can

perform	the	same	type	of	configuration	in	their	personal	config	file.

The	configuration	file	is	divided	into	sections.	Each	section	starts	with	a	label,	in
square	brackets.	Settings	that	apply	to	every	CIFS	connection	are	in	the	[default]	section.
You’ll	create	other	labels	to	provide	configuration	settings	by	server,	username,	and	share,
like	this.

[server]

[server:user]

[server:user:share]

Settings	that	apply	to	an	entire	server	go	into	a	section	named	after	that	server.	Settings
that	apply	only	to	a	specific	user	on	a	server	go	in	a	section	named	after	the	server	and	the
user.	Settings	that	apply	only	to	a	single	share	go	in	a	section	named	after	the	server,	the
user,	and	the	share	name.

Configure	FreeBSD’s	CIFS	client	using	the	values	from	the	CIFS	host.	You	cannot	log
into	a	Windows	host	with	your	FreeBSD	account	credentials.



nsmb.conf	Keywords

Configure	CIFS	by	putting	keywords	and	values	in	the	appropriate	sections.	Assign	values
to	keywords	with	an	equals	sign	(=).	While	nsmb.conf(5)	lists	every	valid	keyword,	here

are	the	ones	you’ll	almost	certainly	need.

workgroup

The	workgroup	keyword	specifies	the	name	of	the	Windows	domain.	Workgroups	were
the	predecessor	to	domains.	Almost	all	CIFS	servers	have	a	Windows	domain.
workgroup=BigOrg

nbns

Set	the	IP	address	of	a	NetBIOS	(WINS)	nameserver	with	the	nbns	keyword.	You	can	put
this	line	in	the	[default]	section	or	under	a	particular	server.	For	most	environments,	use
the	IP	of	the	domain	controller.
nbns=203.0.113.8

While	modern	Windows	networks	use	DNS	to	find	hosts,	WINS	might	still	be	useful
on	older	networks.	Many	huge	corporations	still	have	WINS	kicking	around	in	back
offices.

password

The	password	keyword	lets	you	set	a	clear-text	password	for	a	user	or	share.	Yes,	clear-
text.	If	you	must	store	passwords	in	nsmb.conf,	be	absolutely	certain	that	only	root	can	read

the	file.	On	a	multi-user	system,	storing	passwords	in	$HOME/.nsmbrc	is	a	terrible	idea.

Automatically	mounting	a	share	at	boot	requires	using	a	hard-coded	password,	however.

FreeBSD	lets	you	assign	a	scrambled	password	to	this	keyword.	The	scrambling	is
easily	reversed,	but	protects	the	password	against	casual	exposure.	Scrambled	passwords
start	with	double	dollar	signs	($$).	Scramble	your	password	with	smbutil	crypt.
#	smbutil	crypt	RealPassword

$$15e5a5b3b0c320f10e9f2f8db

Use	password	in	a	section	with	user	information.

If	the	server’s	role	requires	that	access,	rather	than	using	your	own	account,	ask	your
Windows	team	for	an	account	that	only	has	access	to	mount	the	needed	share.

Taken	as	a	whole,	for	the	user	mwl	on	the	server	fileserver	in	the	workgroup	mwl	you

might	wind	up	with	an	/etc/nsmb.conf	much	like	this.
[default]



nbns=203.0.113.12

workgroup=MWL

[FILESERVER:mwl]

password=$$1744a412a293f03

Given	this	simple	configuration,	you	can	access	and	mount	CIFS	shares.



Using	CIFS

Working	with	CIFS	requires	finding	the	host,	mounting	and	unmounting	shares,	and
understanding	permissions	and	case.

CIFS	Name	Resolution

Before	FreeBSD	can	mount	a	share,	it	needs	to	find	the	host	the	share	is	on.	While
Microsoft	has	used	DNS	for	many	years	now,	typical	Windows	environments	often	have	a
whole	bucket	of	legacy	protocols.	Make	sure	FreeBSD’s	CIFS	client	can	find	the	CIFS
server	with	smbutil	lookup.
#	smbutil	lookup	fileserver

Got	response	from	203.0.113.77

IP	address	of	fileserver:	203.0.113.77

A	correct	answer	means	that	the	simplest	CIFS	functionality	works.	Now	let’s	access
some	data.

If	you	have	trouble	with	name	resolution,	you	might	need	to	use	the	address	keyword
in	nsmb.conf	to	manually	set	the	IP	address	of	any	host	you	want	to	access.	Address

resolution	should	always	work,	but	given	how	CIFS	has	changed	in	the	last	quarter
century	and	how	some	organizations	have	structured	their	environments,	it’s	nice	to	have
the	option.

Mounting	CIFS

Mount	a	CIFS	share	with	mount_smbfs(8).	The	mount	must	include	the	Windows
username,	as	shown	here.
#	mount_smbfs	//username@server/share	/mountpoint

I	want	to	mount	the	corporate	share	on	the	server	fileserver,	using	the	account	mwl.	This

share	will	get	mounted	at	/mnt.
#	mount_smbfs	//mwl@fileserver/corporate	/mnt

You’ll	get	prompted	for	a	password.	Once	you	give	a	vaild	password,	FreeBSD	mounts
the	share	and	you	can	easily	access	documents	on	the	Windows	server.

View	all	of	the	servers	you’re	logged	into	with	smbutil	lc.
#	smbutil	lc

SMB	connections:

VC:	\FILESERVER\MWL

(root:wheel)	711

Share:	CORPORATE(root:wheel)	711

This	FreeBSD	machine	is	connected	to	one	user	account	on	one	host.



Disconnect	the	CIFS	filesystem	with	umount(8),	exactly	like	any	other	filesystem.

CIFS	File	Ownership

Windows	and	Unix-like	systems	have	utterly	different	permissions	schemes.	FreeBSD
usernames	map	to	Windows	usernames	only	accidentally.	Combined,	these	mean	you	need
to	pay	careful	attention	to	permissions	when	mounting	CIFS	shares.

A	CIFS	mount	defaults	to	using	the	same	permissions	as	the	mount	point.	If	I	mount
the	share	on	/mnt,	the	files	will	get	the	root:wheel	ownership	and	mode	755	used	by	/mnt.	If

mounted	on	/home/mwl/mnt,	the	files	will	be	owned	by	the	user	mwl	and	get	whatever

permissions	the	directory	and	umask	dictate.

You	can	specify	an	owner	and	a	group	for	mounted	files	with	the	–u	and	–g	options	to

mount_smbfs.	Similarly,	use	–d	to	change	the	directory	mode	and	–f	to	change	the	permissions

mode.	Here	I	specifically	assign	my	mounted	files	to	be	owned	by	the	user	and	group	smb,

and	change	the	permissions	so	only	that	user	can	access	the	files.
#	mount_smbfs	-u	smb	-g	smb	-d	700	-f	600	//mwl@fileserver/corporate	/mnt

Despite	any	permissions	you	assign	on	the	FreeBSD	side,	the	Windows	permissions
also	apply.	If	the	Windows	user	you	use	to	mount	the	share	lacks	permission	to	view	or
edit	files,	the	FreeBSD	host	cannot	view	or	edit	those	files.

CIFS	and	Case

Microsoft	filesystems	are	case-insensitive.	FreeBSD	filesystems	are	case-sensitive.
FreeBSD	tends	to	leave	the	case	on	files	as	it	finds	it,	but	that	might	not	be	desirable.
Automated	processes	might	find	it	easier	to	identify	files	with	consistent	case.	The	–c	flag

tells	mount_smbfs(8)	to	give	everything	a	consistent	case.	Using	–c	l	changes	everything

to	lowercase,	while	–c	u	changes	everything	to	uppercase.

CIFS	and	NFS	let	you	access	filesystems	over	the	network.	Now	let’s	make	the
network	part	of	the	filesystem	itself,	with	iSCSI	and	HAST.





Chapter	8:	iSCSI
Sometimes	you	want	to	give	a	host	access	to	a	disk	over	the	network.	This	can	let	you
exceed	the	host’s	physical	limitations.	No	room	in	the	chassis	for	another	disk?	Add	disk
space	over	the	network!	Perhaps	several	hosts	need	access	to	the	same	hard	drive,	as	is
common	for	virtualization	systems.	Or	you	might	have	hardware	that	doesn’t	have	a	local
disk	at	all.

That’s	where	iSCSI	comes	in.	Most	storage	devices	use	the	Small	Computer	System
Interface	(SCSI)	command	set	or	a	subset	of	those	commands.	While	SCSI	hard	drives
disappeared	from	new	systems	years	ago,	SCSI	commands	linger	on	in	modern	SATA	and
SAS	drives.	iSCSI,	or	Internet	SCSI,	tunnels	SCSI	commands	inside	TCP.	Where
protocols	like	NFS	(Chapter	6)	and	CIFS	(Chapter	7)	require	teaching	the	client	about	a
whole	new	filesystem,	iSCSI	only	requires	wrapping	standard	SCSI	commands	inside	a
network	connection.	The	client	sees	the	iSCSI	drive	as	a	normal	local	drive	and	can	use	it
accordingly.	What	could	possibly	go	wrong?	Well,	the	network	is	not	a	SAS	cable—it’s
not	even	a	SCSI	cable,	so	the	answer	is	“quite	a	bit,	really.”

FreeBSD	10	and	newer	has	an	integrated	high-performance	iSCSI	stack,	interoperable
with	all	major	vendors.



Storage	and	Network	Speed

Networks	are	much	slower	than	storage	systems.	Most	modern	computers	use	gigabit
network	interfaces,	while	their	SATA	or	SAS	systems	run	at	six	times	that.	Combined	with
the	facts	that	not	all	gigabit	hardware	actually	runs	at	gigabit	speeds,	and	most	hosts	have
four	or	more	SATA	ports,	common	disk	activity	can	completely	saturate	a	network
interface.

If	you	start	to	have	performance	problems,	separate	your	storage	network	from	the	rest
of	your	network	traffic.	I	only	deploy	networked	storage	on	a	private	network.	If	I	have
only	two	machines	sharing	storage	over	the	network,	in	a	failover	configuration,	I’ll
connect	a	cable	directly	between	them	and	put	the	storage	traffic	there.	Using	iSCSI	or
other	raw	disk	protocols	over	the	network	demands	careful	attention	to	network
performance.



iSCSI	Essentials

iSCSI	is	something	like	a	client-server	protocol.	The	client	is	called	an	iSCSI	initiator.
iSCSI	uses	a	special	name	for	the	client	because	it	takes	its	terminology	from	SCSI.	The
client	initiates,	or	causes,	all	activity—that’s	why	it’s	called	the	initiator.	The	target
receives	the	requests	and	acts	on	them.	It’s	much	like	any	other	storage	device:	the
operating	system	makes	requests	and	the	drive	services	them.	FreeBSD	initiators	use	the
iscsid(8)	daemon	to	connect	to	targets.

FreeBSD	provides	server-side	iSCSI	services	with	the	CAM	Target	Layer	daemon
ctld(8).	An	iSCSI	server	exports	storage	devices	to	initiators.	These	storage	devices	might
be	actual	hardware,	ZFS	volumes,	or	files	on	disk.	Each	storage	device	offered	by	the
server	is	called	an	iSCSI	target.	One	iSCSI	server	can	offer	as	many	targets	as	the
underlying	operating	system	or	hardware	can	support.

An	iSCSI	portal	is	the	IP	address	and	TCP	port	where	the	iSCSI	server	accepts
requests	for	iSCSI	targets.	(iSCSI	defaults	to	TCP	port	3260.)	Portals	are	collected	into
portal	groups,	which	define	which	IP	addresses	the	portal	may	listen	on.	iSCSI	is	not	a
protocol	for	use	on	the	public	Internet.	Always	protect	your	storage	with	a	firewall	or
packet	filter.

iSCSI	supports	authentication	via	CHAP.	You	can	disable	authentication,	require	the
initiator	to	authenticate,	or	require	both	the	initiator	and	the	target	to	authenticate.	You	can
also	disallow	authentication,	but	that	prevents	anyone	from	talking	to	your	targets.

Finally,	iSCSI	supports	discovery,	where	an	initiator	asks	an	iSCSI	portal	group	to	list
all	accessible	storage	devices.

We’ll	start	into	all	this	with	iSCSI	device	naming.



iSCSI	Device	Naming

The	first	thing	most	people	choke	on	when	they	start	with	iSCSI	is	the	naming	scheme
used	for	both	clients	and	initiators.	Looking	at	a	string	like	iqn.1996-
03.com.sun:01:3a7b…	followed	by	a	whole	string	of	hexadecimal	numbers	and	some
more	periods	and	then	more	random	gobbledygook	can	be	intimidating,	annoying,	and
headache-inducing.	iSCSI	device	naming	doesn’t	have	to	be	that	difficult,	however.

All	iSCSI	names	start	with	the	string	iqn,	for	iSCSI	Qualified	Name,	followed	by	a
period.

Then	there’s	the	year	and	month	the	organization	was	founded,	separated	by	a	dash.

There’s	another	period,	and	the	organization’s	domain	name	in	reverse	order.	A	domain
like	michaelwlucas.com	becomes	com.michaelwlucas.

Last	you	have	a	colon	and	a	name	for	a	particular	device	on	the	iSCSI	target.

Let’s	put	this	all	together.	I’m	using	the	domain	name	mwl.io,	registered	in	November
2013.	My	iSCSI	devices	will	all	have	names	starting	with	iqn.2013-11.io.mwl.	Despite
what	many	storage	vendors	claim,	iSCSI	devices	don’t	need	a	big	long	unique	identifier.
Long	identifiers	make	sense	on	large	storage	farms,	but	a	simple	name	works	better	when
learning.	I’ll	call	my	first	initiator	iqn.2013-11.io.mwl:host1,	and	my	first	target	iqn.2013-
11.io.mwl:target1.	I	could	use	more	meaningful	names,	like	the	initiator’s	hostname	or	the
target	drive’s	LUN,	but	these	suffice	to	get	started.

The	important	thing	to	remember	about	all	these	names	is	that	they’re	private.	Nobody
else	outside	your	organization	will	ever	see	them.	If	you	have	a	horribly	long	domain
name	like	michaelwlucas.com,	don’t	use	it	in	the	iSCSI	name.	If	I	choose	to	use	a	short
domain	name	that	I	don’t	own,	or	if	I	arbitrarily	declare	that	my	organization	started	on
2000-01,	nobody	will	care.

We’ll	begin	by	creating	a	target,	then	an	initiator.	The	initial	configuration	will	get
iSCSI	working,	but	not	very	securely.	We’ll	add	security	and	discovery	as	we	go	on.



Target	Setup

Start	by	creating	a	ctld(8)	configuration	file,	/etc/ctl.conf.	This	file	should	not	be	world-

readable.
#	cd	/etc

#	touch	ctl.conf

#	chmod	600	ctl.conf

Then	enable	ctld	at	boot.
#	sysrc	ctld_enable=YES

Now	create	your	iSCSI	configuration	in	/etc/ctl.conf.	You	must	reload	or	restart	ctld	for

any	changes	to	take	effect.	Like	many	other	services,	running	service	ctld	reload	checks	the

configuration	file	for	errors.	It	will	not	restart	the	service	with	an	invalid	ctl.conf.

A	working	configuration	needs	at	least	two	parts:	a	portal	group	and	a	target.	All
targets	are	members	of	a	portal	group,	so	create	the	portal	group	first.
portal-group	group0	{

discovery-auth-group	no-authentication

listen	0.0.0.0

listen	[::]

}

We	start	with	the	portal-group	declaration,	followed	by	the	name	of	this	portal	group,
group0.	The	braces	that	follow	contain	the	configuration	for	the	portal	group.

iSCSI	discovery	happens	at	the	portal	group	level.	Discovery	normally	requires
authentication,	as	we’ll	discuss	later	this	chapter.	In	this	example,	we’ve	deliberately
disabled	authentication	for	discovery.

We	then	list	the	IPv4	and	IPv6	addresses	this	portal	group	listens	on.	The	0.0.0.0	means

to	listen	on	all	of	the	host’s	IPv4	addresses.	For	IPv6,	[::]	means	“all	available	IPv6

addresses.”

Now	that	you	have	a	portal	group	to	put	the	target	in,	create	the	target.
target	iqn.2013-11.io.mwl:target0	{

auth-group	no-authentication

portal-group	group0

lun	0	{

path	/dev/zvol/data/disk1

size	1T

}

}

A	target	declaration	begins	with	the	target	keyword	and	the	target	name.	I’ve	used	the
target	name	I	created	in	“iSCSI	Device	Naming”	earlier	this	chapter,	iqn.2013-



11.io.mwl:target0.	The	braces	that	follow	contain	the	target	configuration.

Every	iSCSI	target	needs	an	authentication	option	and	a	portal	group.	In	this	target,	the
auth-group	keyword	is	set	to	no-authentication,	meaning	that	this	target	does	not	require

authentication.	Anyone	who	can	connect	to	the	iSCSI	network	socket	can	attach	to	the
storage	devices	in	the	target.	The	portal-group	keyword	gives	the	name	of	the	portal	group
defined	earlier,	group0.

This	target	has	one	Logical	Unit	Number	(LUN).	Every	target	needs	a	LUN	0.
FreeBSD	won’t	mind	if	you	skip	LUN	0,	but	some	initiators	care	a	great	deal.	You	can
have	any	number	of	LUNs	in	the	target,	but	any	host	that	authenticates	to	the	target	can
access	every	LUN	in	the	target.

Each	LUN	has	two	statements:	the	path	to	the	storage	device	to	be	exported	over	iSCSI
and	the	size	of	that	device.	The	LUN	0	device	is	using	a	zvol	as	a	backing	store.

This	gives	you	a	minimal	iSCSI	configuration	that	exports	one	device	to	the	entire
world,	with	no	iSCSI-level	security.	Let’s	expand	this	into	something	you	might	want	to
actually	use.



iSCSI	Target	Authentication

You	probably	don’t	want	any	random	yahoo	to	connect	to	your	iSCSI	devices,	even	if
you’re	inside	your	organization’s	security	perimeter.	Even	if	you	trust	everyone	you	work
with,	we’ve	all	had	those	moments	when	we	hit	ENTER	and	abruptly	realize	we’ve	just
ruined	everything.	Requiring	authentication	to	access	remote	disks	helps	prevent	daft
mistakes.

iSCSI	supports	the	Challenge	Handshake	Authentication	Protocol,	or	CHAP,	for
username	and	password	authentication.	The	iSCSI	protocol	uses	two	types	of	CHAP:	plain
old	CHAP	and	mutual	CHAP.

With	standard	CHAP,	a	username	and	password	are	required	to	access	an	iSCSI	client.
Clients	must	provide	valid	credentials	to	access	an	iSCSI	target.

Mutual	CHAP	assigns	usernames	and	passwords	to	both	the	iSCSI	target	and	the
initiator.	With	mutual	CHAP,	the	initiator	presents	its	own	username	and	password	and
demands	the	target’s	username	and	password	in	return.	Mutual	CHAP	might	seem	like
overkill	in	your	environment,	but	authenticating	both	initiators	and	targets	reduces
accidents	and	can	help	detect	both	misconfigurations	and	security	incidents.	If	your	usual
iSCSI	target	suddenly	forgets	its	own	username	and	password,	something	is	very	wrong!

An	iSCSI	user’s	password	is	called	a	secret.	Secrets	are	normally	stored	in	plain	text	in
configuration	files.	There	are	legitimate	reasons	for	multiple	people	to	have	access	to	an
iSCSI	secret,	so	they	aren’t	stored	as	hashes	like	passwords.	Unlike	passwords,	you’ll	type
an	iSCSI	secret	only	rarely—usually	you	copy	and	paste	them.	While	the	example	secrets
in	this	book	are	short	and	easily	remembered,	CHAP	secrets	should	be	at	least	12
characters	long	and	contain	many	sorts	of	different	characters.

Configure	authentication	in	ctl.conf,	through	authentication	groups.

Authentication	Groups

Multiple	initiators	connecting	to	a	single	target	shouldn’t	all	use	the	same	username	and
secret.	FreeBSD	uses	authentication	groups	to	create	collections	of	usernames	and	secrets.
You	assign	an	authentication	group	to	a	target,	effectively	saying	“these	users	can	connect
to	this	target.”	While	you	can	assign	authentication	information	on	a	per-target	basis,
authentication	groups	let	you	reuse	authentication	across	multiple	portals	and	targets.

Authentication	groups	start	with	the	string	auth-group	and	a	name.	Each	authentication
group	needs	a	unique	name.	Here	I	define	an	authentication	group,	db,	with	two	valid



usernames.
auth-group	db	{

chap	bugs	daffy

chap	pinky	brain

}

Yes,	usernames	and	passwords	are	stored	in	plain	text,	in	a	text	file.	That’s	why
/etc/ctl.conf	needs	to	not	be	world-readable.	Only	users	who	should	have	access	to	the

host’s	iSCSI	secrets	should	be	able	to	read	the	file.

Each	target	needs	an	authentication	group,	set	by	the	auth-group	keyword.	Portals,
similarly,	require	an	authentication	group	for	discovery,	defined	by	the	discovery-auth-
group	keyword.

Each	authentication	group	can	only	contain	one	type	of	credentials.	You	cannot	mix
CHAP	and	mutual	CHAP	in	one	authentication	group.

The	ctld(8)	daemon	always	creates,	but	does	not	necessarily	use,	the	authentication
group	no-authentication.	This	group	lets	anyone	connect	to	a	target	without
authenticating.	Similarly,	the	authentication	group	default	prevents	anyone	from
authenticating	to	the	target.	Configure	any	other	authentication	groups	yourself.

CHAP	Authentication

To	define	CHAP	users,	use	the	string	chap,	a	username,	and	the	user’s	secret.	Here	I	define

the	user	pepe	and	the	secret	penelope.
chap	pepe	penelope

CHAP	user	definitions	must	go	inside	an	auth-group	or	target	statement,	as	shown
under	“Authentication	Groups”	above.

Do	not	combine	CHAP	and	mutual	CHAP	statements	in	a	single	auth	group.

Mutual	CHAP	Authentication

Configuring	mutual	CHAP	requires	two	usernames,	each	with	their	own	secret.	Use	the
chap-mutual	keyword.
chap-mutual	user	secret	target-user	target-secret

Here	the	initiator	has	the	username	mickey	and	the	password	minnie.	The	target	has	the
username	donald	and	the	password	goofy.
chap-mutual	mickey	minnie	donald	goofy

Your	own	secrets	should	be	12	characters	or	longer	and	far	more	complex	than	these
examples.



As	with	a	standard	CHAP	statement,	mutual	CHAP	can	only	be	defined	inside	an
authentication	group	or	a	target.	You	cannot	combine	chap	and	chap-mutual	statements	in	a

single	group.

Restricting	Initiators

In	addition	to	requiring	a	username	and	password	to	access	a	target,	you	can	also	restrict
which	initiators	can	connect	to	which	targets	by	using	the	initiator	name	and	IP	address.

Use	the	initiator-name	keyword	to	define	initiator	names	that	can	connect	in	an
authentication	group.	If	you	have	multiple	permitted	initiators,	list	each	initiator	name	on
its	own	line.	Here	I	require	the	initiator	to	use	the	name	I	created	earlier	this	chapter,	as
well	as	several	similar	initiator	names.
auth-group	db	{

chap	bugs	daffy

initiator-name	iqn.2013-11.io.mwl:host1

initiator-name	iqn.2013-11.io.mwl:host2

initiator-name	iqn.2013-11.io.mwl:host987

}

Most	initiator	software	can	set	the	initiator	name,	so	restricting	initiator	names	isn’t	a
security	measure.	If	someone	has	the	target’s	CHAP	username	and	secret,	they	can
probably	capture	the	initiator	name	as	well.	It’s	more	of	a	way	to	prevent	problems	caused
by	human	error.

Restricting	initiators	by	IP	address	is	probably	more	effective.	Use	the	initiator-portal
keyword	and	the	permitted	IP	address	or	network	block.	If	you	have	multiple	permitted	IP
blocks,	list	each	on	its	own	line	with	its	own	initiator-portal	keyword.
auth-group	db	{

chap	bugs	daffy

initiator-name	iqn.2013-11.io.mwl:host1

initiator-portal	203.0.113.0/24

initiator-portal	[2001:db8:bad:c0de::]/64

initiator-portal	192.0.2.87

}

While	restricting	connections	by	IP	address	is	probably	more	secure	than	limiting
initiator	names,	it	still	doesn’t	replace	firewalls	or	packet	filters.	You	really	need	a
network	access	control	device	between	your	targets	and	the	public	Internet.

Restrictions	by	IP	or	initiator	name	are	usable	only	in	addition	to	other	authentication
methods.	You	must	either	use	some	sort	of	CHAP	or	specifically	allow	access	without
authentication.



Portal	Groups

A	portal	group	is	the	glue	attaching	iSCSI	targets	to	an	IP	address.	It	also	lets	you	set	the
authentication	needed	for	discovery.

Portal	Address

While	your	iSCSI	server	might	listen	on	all	addresses	on	the	system,	sometimes	you	want
specific	targets	available	only	on	particular	IP	addresses.	Use	the	listen	keyword	and	an	IP
address.
portal-group	group0	{

discovery-auth-group	db

listen	192.0.2.1

listen	[2001:db8::ace]

}

This	is	useful	for,	say,	migration	situations.	Imagine	your	iSCSI	load	has	hit	a	point
where	you	need	to	split	the	server	into	two	hosts.	Add	a	second	IP	address	to	the	host.
Configure	half	of	your	hosts	to	use	the	new	IP	as	their	iSCSI	target.	On	migration	day,
move	the	new	IP	to	the	new	host	and	plug	the	associated	SCSI	shelf	into	the	new	server.

Discovery	Authentication

Use	the	discovery-auth-group	keyword	to	attach	one	and	only	one	authentication	group	to
the	portal	group.	When	an	initiator	queries	the	portal	to	learn	which	resources	are
available,	the	portal	will	require	a	username	and	secret	before	sending	any	information.



Targets

Targets	are	where	you	attach	on-disk	storage	to	the	iSCSI	service.	In	addition	to	the	back
end	storage,	you	can	assign	authentication	credentials,	aliases,	and	LUNs.

Each	target	starts	with	the	target	keyword	and	the	target’s	iSCSI	name.	A	working,
useful	target	must	contain	an	authentication	configuration,	a	portal	group,	and	at	least	one
LUN.	(You	can	write	a	ctl.conf	entry	that	lacks	some	of	these,	but	it	won’t	be	useful.)

Target	Authentication

The	simplest	(and,	in	my	opinion,	best)	way	to	configure	authentication	for	a	target	is	to
use	an	authentication	group,	abstracting	the	authentication	away	from	the	target	itself.	The
auth-group	keyword	tells	the	target	to	pull	in	an	authentication	configuration	from	a
previously	defined	group.
target	iqn.2013-11.io.mwl:target0	{

auth-group	databases

…

}

You	can	configure	authentication	information	directly	within	the	target,	however.	Use
the	auth-type	keyword	to	define	the	type	of	authentication	needed	to	access	this	target.
You	can	use	either	chap	or	chap-mutual,	meaning	that	you	get	to	set	up	usernames	and	secrets

later	in	this	target.	If	set	to	deny,	nobody	can	authenticate	to	this	target.	Finally,	none	tells	the

target	that	it	doesn’t	require	authentication	(but	it	might	have	other	restrictions).

The	chap	and	chap-mutual	keywords	work	inside	a	target	definition	exactly	as	they	do	in

an	authentication	group.	You	can	use	only	one	type	of	authentication	for	each	target—that
is,	you	can’t	set	auth-type	chap	and	then	have	a	chap-mutual	statement.
target	iqn.2013-11.io.mwl:target0	{

auth-type	chap

chap	dbuser	dbsecret

…

}

A	target	can	include	only	one	type	of	username	and	secret	authentication—either	auth-

group,	chap,	or	chap-mutual.	Multiple	targets	can	use	different	authentication	methods.

The	auth-type	keyword	is	most	often	optional.	If	you	don’t	explicitly	state	an

authentication	type,	the	presence	of	chap	or	chap-mutual	lets	FreeBSD	infer	the	authentication

type.	The	main	reason	the	auth-type	keyword	exists	is	so	you	can	explicitly	specify	auth-type

none.



If	a	target	does	not	offer	any	authentication	methods,	all	attempts	to	use	the	iSCSI
device	are	denied.	To	allow	access	without	authentication,	use	the	built-in	CHAP	group	no-

authentication.

You	can	also	use	the	initiator-name	and	initiator-portal	options	in	a	target,	exactly	as	in

an	authentication	group.	Here	I	permit	a	specific	IP	with	a	particular	initiator	name	to
access	the	target	without	a	password.
target	iqn.2013-11.io.mwl:target0	{

auth-type	none

initiator-name	iqn.2013-11.io.mwl:host1

initiator-portal	203.0.113.208

…

}

If	you	configure	an	initiator	to	use	authentication,	but	the	target	doesn’t	require
authentication,	the	connection	succeeds.

Portal	Group

Every	target	must	be	attached	to	a	portal	group.	Use	the	portal-group	keyword	and	the
name	of	a	previously	defined	portal	group.
target	iqn.2013-11.io.mwl:target0	{

portal-group	group0

…
}

Each	target	can	belong	to	only	one	portal	group.

Aliases

Add	a	human-readable	description	to	a	target	with	the	alias	keyword.
target	iqn.2013-11.io.mwl:target0	{

alias	database-storage

…
}

Aliases	cannot	contain	whitespace.

You’ll	see	the	alias	in	a	few	iSCSI	discovery	tools.	FreeBSD’s	initiator	shows	the	alias
in	verbose	mode.



Logical	Unit	Numbers	and	Backing	Stores

A	Logical	Unit	Number	(LUN)	is	a	storage	device.	It	might	be	a	ZFS	volume,	a	chunk	of
disk	space,	or	even	a	physical	device.	Each	iSCSI	target	requires	one	or	more	LUNs.	Any
initiator	that	connects	to	this	target	accesses	all	the	LUNs	in	the	target.	Define	LUNs
within	target	statements.	Each	LUN	requires	a	path	to	the	back	end	storage	device.	The

size	in	bytes	is	optional.

Here	I	define	a	target	with	three	LUNs.
target	iqn.2013-11.io.mwl:target0	{

alias	database-storage

auth-group	db

portal-group	group0

lun	0	{

path	/dev/zvol/db/disk1

size	1T

}

lun	1	{

path	/db/disk2.img

size	2T

}

lun	2	{

path	/dev/da0

size	1T

}

}

LUN	0	is	a	1	TB	ZFS	volume,	accessible	through	the	device	node	/dev/zvol/db/disk1.	For

optimal	performance,	create	the	volume	with	the	volmode	property	set	to	dev.	(Using	a

volmode	of	dev	lets	ZFS	bypass	GEOM	and	manage	I/O	sizes	more	flexibly.	It	also	enables

DPO	and	FUA	cache	control,	letting	ZFS	tell	the	drive	to	not	put	select	data	in	the	write
cache.)

LUN	1	is	backed	by	a	file	on	the	filesystem,	/db/disk2.img.	This	might	be	on	a	UFS

partition	or	a	file	on	a	ZFS	dataset.	It	could	be	a	regular	file	or	a	sparse	file.

LUN	2	is	a	physical	disk	with	the	device	node	/dev/da0.

Number	other	LUNs	with	any	positive	integers.1	I	didn’t	need	to	use	LUNs	2	and	3
here,	but	I	like	nice	short	numbers.	LUN	numbers	do	not	need	to	be	sequential.

If	you	have	many	iSCSI	devices	served	by	files	or	zvols,	seriously	consider	naming	the
backing	store	for	each	LUN	after	the	LUN.	Use	zvols	or	files	with	commas	in	the	name,
such	as	target1,l,0	for	target	1,	LUN	0.	(Note	that	the	middle	character	here	is	the	letter	l,



not	the	number	1.)

Any	initiator	that	connects	to	this	target	gets	access	to	all	three	LUNs.

LUN	Size

Each	LUN	can	have	a	size	statement,	giving	the	size	ctld	reports	to	the	initiator,	in	bytes.

You	can	use	abbreviations	like	G	for	gigabytes	and	T	for	terabytes.	If	you	don’t	specify	a
size,	FreeBSD	will	probe	the	device	to	figure	out	the	size.	I	like	the	size	statement	because

I’m	forgetful.

The	size	given	should	be	the	same	as	the	actual	size	of	the	storage	device,	but	that
doesn’t	always	happen.	In	the	example	above,	I	claim	that	the	disk	behind	LUN	3	is	one
terabyte.	It’s	a	physical	1	TB	disk,	which	means	that	the	manufacturer	measured	the	size
in	base	10.	FreeBSD	measures	disk	sizes	in	base	2.	Running	geom	disk	list	da0	gives	the

actual	size	of	this	specific	disk	as	1000204886016	bytes,	or	932	GB.	I’d	be	better	off
listing	the	actual	value	here	rather	than	rounding	it	off	to	the	nearest	terabyte.	Remember,
not	all	“1	TB”	disks	are	the	same	size.

In	addition	to	size	and	the	backing	store,	you	can	set	a	variety	of	other	LUN
characteristics.

Blocksize

While	physical	hard	drives	have	had	512-byte	sectors	for	decades,	newer	“advanced
format”	drives	have	4096-byte	physical	sectors.	For	physical	disks	and	ZFS	volumes,
ctld(8)	passes	the	physical	sector	size	to	the	initiator.	On	file-backed	iSCSI	volumes,	set
the	sector	size	with	the	blocksize	keyword.
lun	2	{

path	/jails/disk2.img

blocksize	4K

size	2T

}

If	you’re	using	file-backed	iSCSI	storage	rather	than	a	zvol	or	a	physical	disk,	setting
the	block	size	can	help	the	iSCSI	initiator	size	write	requests	correctly	for	the	underlying
storage.

Drive	Information

SCSI	commands	expose	a	physical	hard	drive’s	model	name,	serial	numbers,	and	other
vendor-specific	data.	You	can	set	this	same	information	within	an	iSCSI	LUN	definition.

The	ctld(8)	daemon	provides	the	device-id	and	serial	keywords.	Use	device-id	to



provide	something	like	a	model	name.	The	serial	keyword	is	for	anything	like	a	serial
number.	Neither	entry	can	have	spaces.

Here	I	use	device-id	to	let	people	who	administer	initiator	hosts	view	what	sort	of

storage	the	target	uses.	I’ve	assigned	a	meaningless	serial	number,	but	you	might	use	the
serial	number	to	pass	other	data	to	the	client.
lun	0	{

path	/dev/zvol/jails/disk1

size	500G

device-id	zvol

serial	0123456789abcdef

}

On	the	client,	the	device	ID	is	visible	in	the	lunname	and	lunid	values	of	geom	disk	list.

The	serial	number	is	visible	in	the	disk’s	ident	string.	Here	I	log	into	an	initiator	host	and

view	this	device	as	it	appears	on	the	local	system.
#	geom	disk	list	da5

…

descr:	FREEBSD	CTLDISK

lunname:	FREEBSD	zvol

lunid:	FREEBSD	zvol

ident:	0123456789abcdef

…

The	leading	FREEBSD	and	the	space	always	appear	in	the	LUN	name	and	LUN	ID.

ctld(8)	Performance

While	ctld	is	designed	to	perform	well,	you	can	tweak	a	few	things	in	its	behavior.

Each	incoming	TCP	connection	makes	ctld	spawn	a	child	process.	By	default,	ctld

limits	the	number	of	child	processes	to	30.	If	you’re	running	a	busy	iSCSI	server	with
many	initiators,	you	might	need	to	increase	this	with	the	maxproc	option.
maxproc	30

Setting	maxproc	to	0	allows	unlimited	child	processes.

Initiators	generate	a	nearly	constant	flow	of	traffic	to	their	targets.	Even	if	the	iSCSI
disk	is	idle,	the	target	will	receive	traffic	every	few	seconds.	Initiators	that	stop	sending
traffic	for	more	than	a	few	seconds	are	probably	gone.	The	timeout	value	lets	you	tell	ctld

how	long	to	maintain	an	idle	connection	before	dropping	it.	The	default	is	60,	a	reasonable
average.	Your	equipment	or	environment	might	need	a	different	timeout.
timeout	90

All	performance	and	debugging	options	go	at	the	top	level	of	ctl.conf,	not	inside	any



braces.

Debugging	ctld(8)

While	the	SCSI	command	set	gets	complicated,	iSCSI	itself	it	pretty	straightforward.	Even
so,	we	sysadmins	can	discover	many	ways	to	mess	up	our	iSCSI	configurations.	The
ctld(8)	debugging	features	usually	give	good	insight	into	problems.

Use	the	debug	statement	to	enable	debugging.	The	default	level,	0,	provides	only	bare

operational	messages.	A	debugging	level	of	3	gives	useful	information	when	an	iSCSI
connection	goes	awry,	so	that’s	what	I	normally	use.
debug	3

Information	from	ctld	appears	in	/var/log/messages.	You	cannot	change	the	log	facility

and	level	(daemon.debug),	so	if	you	want	to	log	them	separately	you’ll	need	to	split	them	out

in	syslogd(8).

Whenever	an	initiator	fails	to	authenticate,	or	when	the	storage	for	a	LUN	is	absent	or
faulty,	ctld(8)	logs	the	error.	Most	ctld	error	messages	are	actually	fairly	easy	to

understand.	Authentication	errors	describe	which	authentication	constraint	was	violated.
LUN	errors	are	more	generic,	but	normally	mean	that	you	mistyped	the	path	to	the
backing	storage	in	ctl.conf.

I	use	a	debug	level	of	3	during	normal	production	use,	to	easily	identify	and	resolve
issues.	Log	space	is	cheap.



Configuring	Initiators

The	iSCSI	initiator	programs	share	a	configuration	file,	/etc/iscsi.conf.	This	configuration

file	was	also	used	by	the	iSCSI	initiator	in	older	versions	of	FreeBSD,	so	its
documentation	includes	references	to	the	obsolete	iscontrol(8).	The	configuration	format
deliberately	did	not	change	between	the	two	sets	of	software,	however.

The	simplest	uses	of	the	iSCSI	initiator	do	not	require	a	configuration	file.	You	can
discover	targets	on	a	host,	connect	to	and	disconnect	from	them,	and	perform	CHAP
authentication	without	a	configuration	file.	A	configuration	file	permits	use	of	more
complex	options	like	mutual	CHAP,	and	allows	more	selective	iSCSI	management.	In
production,	always	use	a	configuration	file.

Each	iSCSI	target	gets	a	bracketed	section	in	iscsi.conf.
target-nickname	{

TargetAddress	=	storm.mwl.io

TargetName	=	iqn.2013-11.io.mwl:target0

InitiatorName	=	iqn.2013-11.io.mwl:host1

…

}

A	target’s	entry	starts	with	a	nickname.	This	sample	target	is	unimaginatively
nicknamed	target-nickname.

Inside	the	braces	we	have	the	various	iSCSI	settings	and	their	values,	as	defined	in
iscsi.conf(5).	We’ll	add	more	settings	in	the	relevant	topics,	but	the	three	here	are	very
commonly	used.

TargetAddress	can	be	a	hostname	or	IP	address.	It’s	the	IP	address	of	the	iSCSI	portal
providing	the	target.	My	iSCSI	server	is	called	storm.mwl.io.

TargetName	is	the	formal	name	of	the	iSCSI	target	you	want	to	connect	to.	This
connection	is	for	the	target	name	we	created	earlier	this	chapter.

InitiatorName	is	a	name	you’ve	chosen	to	assign	this	initiator.	If	you	don’t	assign	a
name	for	this	initiator,	FreeBSD	creates	one	for	you.	Assigning	an	initiator	name	is	a
convenience	for	you.

A	target	definition’s	closing	bracket	must	appear	on	a	line	by	itself.	Don’t	tack	it	onto
the	end	of	the	last	variable	setting.

When	using	iSCSI	disks,	remember	that	the	device	node	is	even	more	dynamic	than	on
normal	hardware.	The	disk	that	is	/dev/da5	today	might	be	a	completely	different	disk	node



tomorrow.	Always	manage	filesystems	on	iSCSI	disks	with	labels	rather	than	by	device
node.



Enabling	the	iSCSI	Initiator

FreeBSD	provides	iSCSI	initiator	services	through	iscsid(8)	and	iscsictl(8).	The	iscsid

daemon	handles	connections,	while	iscsictl	lets	you	issue	iSCSI	commands.

iscsid(8)

The	iSCSI	daemon	iscsid(8)	manages	an	initiator’s	iSCSI	logins	and	discovery.	Once
iscsid	establishes	a	connection,	it	hands	that	connection	to	the	FreeBSD	kernel.	To	enable

iscsid,	set	iscsid_enable	to	YES	in	/etc/rc.conf.
#	sysrc	iscsid_enable=YES

If	you	have	trouble	with	iSCSI	logins,	you	might	try	iscsid	debugging	mode.	The	–d

flag	tells	iscsid	to	run	in	the	foreground,	and	print	all	the	debugging	information	to	the

terminal.	Debug-mode	iscsid	terminates	after	handling	only	one	connection.	This	won’t

interrupt	existing	connections,	as	iscsid	handles	only	logins	and	discovery.	Even	without

iscsid,	established	iSCSI	connections	remain	up	until	something	interrupts	them.	With

iscsid	running,	interrupted	connections	automatically	resume.

While	iscsid	normally	gets	its	debugging	level	from	iscsi.conf,	you	can	override	that

setting	on	the	command	line	with	–l	and	a	log	level.	This	lets	you	debug	specific	problems

without	editing	the	configuration	file.	A	log	level	of	3	will	identify	most	problems.

Each	iSCSI	login	spawns	a	child	process.	These	child	processes	handle	authentication,
negotiate	various	iSCSI	parameters,	hand	the	connection	off	to	the	kernel,	and	exit.
Normally,	the	maximum	number	of	simultaneous	child	processes	is	30.	If	you	must
process	more	than	30	iSCSI	logons	simultaneously,	use	the	–m	flag	to	set	a	new	maximum.

Setting	the	maximum	to	0	removes	any	limits	on	the	number	of	child	processes.



Initiator	Controller:	iscsictl(8)

Configure	and	manage	your	iSCSI	initiator	through	iscsictl.	While	you	can	perform	some

configuration	at	the	command	line,	complex	setups	require	the	configuration	file
/etc/iscsi.conf.

An	iSCSI	initiator	has	three	core	functions:	discovering	targets,	connecting	to	targets,
and	disconnecting	from	targets.	You	can	also	list	existing	iSCSI	sessions.

Initiator	Authentication

Making	iSCSI	connections	and	performing	discovery	most	often	requires	authentication.
You	can	set	authentication	options	on	the	command	line	or	in	iscsi.conf.

By	default,	iscsictl	does	not	offer	authentication.	If	a	target	doesn’t	need

authentication,	don’t	include	any	authentication	information.	Offering	authentication
information	to	a	target	that	doesn’t	need	authentication	might	cause	the	connection	to	fail.

To	authenticate	with	CHAP	on	the	command	line,	use	–u	to	define	a	user	and	–s	to	give

the	secret.	Here	I	run	an	iSCSI	command	(discovery)	with	the	user	pinky	and	the	secret
brain.
#	iscsictl	-Ad	storm	-u	pinky	-s	brain

To	set	CHAP	authentication	in	iscsi.conf,	you	must	set	the	AuthMethod,	ChapIName,

and	ChapSecret	variables.	Here	I	set	that	same	username	and	secret	for	the	target
nicknamed	db.
db	{

TargetAddress	=	storm.mwl.io

InitiatorName	=	iqn.2013-11.io.mwl:host1

TargetName	=	iqn.2013-11.io.mwl:target0

AuthMethod	=	CHAP

ChapIName	=	pinky

ChapSecret	=	brain

…

}

If	a	target	requires	authentication,	set	AuthMethod	to	CHAP—even	if	the	target	uses
mutual	CHAP.	And	pay	special	attention	to	the	username	variable.	There’s	a	capital	I	in
the	middle	of	ChapIName.

You	cannot	perform	mutual	CHAP	on	the	command	line.	You	must	set	the	remote	user
and	secret	in	iscsi.conf,	using	the	tgtChapName	and	tgtChapSecret	values	as	shown	here.
db	{

TargetAddress	=	storm



TargetName	=	iqn.2013-11.io.mwl:target0

AuthMethod	=	CHAP

ChapIName	=	mickey

ChapSecret	=	minnie

tgtChapName	=	donald

tgtChapSecret	=	goofy

}

This	connects	the	initiator	to	the	mutual	CHAP	target	built	earlier	this	chapter.

Authentication	is	only	needed	for	discovery	and	connecting.	You	can	disconnect
without	authenticating.

iSCSI	Discovery

The	simplest	way	to	connect	an	initiator	to	a	portal	is	to	perform	an	iSCSI	discovery.	This
is	where	the	initiator	goes	to	the	iSCSI	portal	on	the	target	server	and	says,	“Hey,	what
LUNs	can	you	tell	me	about?”	If	the	initiator	successfully	authenticates,	the	portal	returns
a	list	of	targets.

The	–A	flag	tells	iscsictl	to	add	a	session.	The	–d	flag	triggers	discovery,	and	takes	one

argument:	the	hostname	or	IP	address	of	the	iSCSI	portal	group.	Here	I	perform	iSCSI
discovery	against	the	host	data1.mwl.io.
#	iscsictl	–A	–d	data1.mwl.io

When	the	initiator	gets	the	drive	information,	it	automatically	logs	into	the	system	and
attaches	all	of	the	discovered	LUNs	to	the	local	system.	The	only	way	to	see	what	your
initiator	discovered	is	to	view	the	existing	iSCSI	sessions.

Viewing	iSCSI	Session	and	Connections

To	see	all	active	iSCSI	sessions,	either	run	iscsictl	without	any	arguments	or	use	the	–L

flag.	Either	gives	the	same	result.
#	iscsictl	-L

Target	name	Target	portal	State

iqn.2013-11.io.mwl:target0	storm	Connected:	da4	da5

iqn.2013-11.io.mwl:target1	storm	Connected:	da3

This	initiator	has	connected	to	two	targets	on	this	host.	You’ll	see	the	target	names,	the
portal,	and	the	device	node	the	local	host	has	assigned	to	the	drives	in	this	target.

If	you	want	more	detail,	add	the	–v	flag	to	–L.
#	iscsictl	-Lv

Session	ID:	21

Initiator	name:	iqn.2013-11.io.mwl:host1

Initiator	portal:

Initiator	alias:



Target	name:	iqn.2013-11.io.mwl:target0

Target	portal:	storm

Target	alias:	database-storage

User:	pinky

Secret:	brain

Mutual	user:

Mutual	secret:

Session	type:	Normal

Session	state:	Connected

…

The	first	item,	the	session	ID,	is	a	unique	number	assigned	to	this	particular
connection.	If	you	disconnect	from	a	target	and	reconnect	to	it	later,	you’ll	get	the	next
free	session	ID	number.	ID	numbers	start	again	from	1	after	a	reboot.

The	verbose	listing	includes	the	complete	target	name	and	the	authentication
information,	including	any	secrets.	You	can	use	this	information	to	build	an	iscsi.conf	entry

for	this	target.	You’ll	also	see	the	target	alias	assigned	by	the	storage	administrator.

To	view	details	on	a	particular	disk,	fall	back	on	disk	management	tools	like	geom	disk

list	and	gpart(8).

Connecting	to	Targets

One	problem	with	discovery	is	that	the	initiator	automatically	connects	to	all	available
targets	on	the	portal.	Just	because	the	host	can	connect	doesn’t	mean	it	should,	though.
Once	you	know	what	targets	you	can	access,	iscsictl	lets	you	attach	them	more	selectively.

Adding	an	iSCSI	session	again	requires	the	–A	flag.

If	the	host	doesn’t	have	an	entry	for	the	desired	target	in	/etc/iscsi.conf,	use	the	–p	flag

to	specify	the	portal	hostname	or	IP,	as	well	as	the	–t	flag	to	give	the	name	of	the	desired

target.	Here	I	attach	to	the	target	iqn.2013-11.io.mwl:target1	on	the	host	storm.
#	iscsictl	-A	-p	storm	-t	iqn.2013-11.io.mwl:target1

If	iscsi.conf	has	an	entry	for	my	target,	I	can	connect	by	the	assigned	nickname.	The

nickname	is	the	first	item	in	the	target	description,	immediately	before	the	opening	brace.
Use	–n	to	specify	the	nickname.	The	sample	iscsi.conf	entry	above	uses	the	nickname	db,

so	let’s	connect	to	it.
#	iscsictl	–A	–n	db

The	host	connects	to	that	target,	and	only	that	target.

To	connect	to	all	iSCSI	disks	configured	in	iscsi.conf,	use	the	–a	flag.
#	iscsictl	–A	–a



Whenever	an	initiator	connects	to	a	target,	it	gets	all	of	the	disks	in	the	target.	There’s
no	way	to	connect	to	only	one	disk	of	several	in	a	target.

Disconnecting	From	Targets

Use	the	-R	flag	to	remove	connected	targets.	To	get	rid	of	all	iSCSI	connections,	add	the	-a

flag.
#	iscsictl	–R	–a

To	ditch	one	specific	connection	among	several,	specify	the	portal	with	–p	and	the

target	with	–t.	This	works	exactly	like	connecting	to	that	same	target,	except	it	uses	–R

instead	of	-A.
#	iscsictl	-R	-p	storm	-t	iqn.2013-11.io.mwl:target1

Finally,	for	targets	configured	in	iscsi.conf,	specify	a	nickname	to	disconnect	with	–n.
#	iscsictl	–R	–n	db

You	can	now	create	and	use	iSCSI	disks.



Initiator	Tuning

The	FreeBSD	iSCSI	initiator	lets	you	adjust	timing,	failure,	performance,	and	logging
behavior	through	boot-time	tunables.	Although	you	can	read	these	values	through
sysctl(8),	you	can	only	change	them	in	/boot/loader.conf.

iSCSI	log	messages	normally	appear	in	/var/log/messages.	The	sysctl	kern.iscsi.debug

enables	these	messages.	It	defaults	to	1,	for	on.	To	disable	most	iSCSI	logging,	set
kern.iscsi.debug	to	0.	You’ll	still	get	messages	when	you	attach	and	detach	drives,	but	your

logs	will	be	much	smaller.	Disabling	logging	also	disables	any	hope	of	diagnosing
problems,	though.

The	tunable	kern.iscsi.maxtags	puts	a	maximum	limit	on	the	number	of	I/O	requests	the

initiator	will	have	outstanding	at	any	given	time.	The	default,	255,	is	a	reasonable	setting.
If	you	consider	increasing	this,	spend	time	improving	the	performance	of	your	storage
network	and/or	your	iSCSI	target	instead.

iSCSI	Timing

You	can	adjust	the	time	the	iSCSI	client	spends	waiting	for	various	parts	of	the	iSCSI
process.

The	tunable	kern.iscsi.iscsid	sets	the	number	of	seconds	iscsid(8)	waits	for	the	target	to

respond	to	a	connection	request	and	establish	a	session.	The	default	is	60	seconds.	If	your
iSCSI	server	can’t	establish	a	connection	within	60	seconds,	something’s	wrong	with	your
network	or	the	target	server.

Similarly,	kern.iscsi.login_timeout	sets	the	number	of	seconds	iscsid(8)	waits	for	the

iSCSI	target	to	process	the	login.	The	default	is	also	60	seconds.	If	the	iSCSI	target	can’t
process	a	simple	login	within	a	minute,	you	probably	don’t	want	to	try	sending	I/O
through	it	either.

Finally,	the	kern.iscsi.ping_timeout	tunable	gives	the	number	of	seconds	the	initiator	will

wait	for	the	target	to	respond	to	a	NOP-Out	request,	or	an	“iSCSI	ping.”	The	default	is
five	seconds.	If	the	target	can’t	service	a	“hello,	are	you	there?”	request	within	five
seconds,	you	probably	don’t	want	to	send	any	I/O	to	it	anyway.	Some	iSCSI	stacks
(notably,	particular	Linux	versions)	do	not	support	NOP-Out	requests,	however,	and	you
might	need	to	disable	them	for	those	stacks.

iSCSI	Failure	Behavior



It’s	rare	that	all	your	systems	will	fail	simultaneously.	You	can	tell	the	initiator	how	to
react	when	the	target	disappears.

By	default,	the	FreeBSD	initiator	retains	the	device	nodes	for	the	missing	drives.	The
iscsid(8)	daemon	keeps	trying	to	restore	the	connection	to	the	targets.	In	some	settings	it
makes	more	sense	to	remove	the	device	nodes,	however,	such	as	the	failover	discussed	in
Chapter	10.	To	make	the	initiator	remove	the	device	nodes	when	the	target	disappears,	set
the	tunable	kern.iscsi.fail_on_disconnection	to	1.

Now	that	you	can	compel	iSCSI	to	obey	your	will,	let’s	move	on	to	HAST.

1	No,	you	can’t	have	LUN	π.





Chapter	9:	GEOM_GATE	and	HAST
In	addition	to	exporting	filesystems	across	the	network,	FreeBSD	lets	you	export	device
nodes.	Device	nodes	are	very	operating	system	specific—there’s	rarely	a	reason	to,	say,
address	a	Linux	device	node	directly	on	a	FreeBSD	host	or	vice-versa.	But	perhaps	you
need	to	access	the	CD	burner	in	machine	A	from	machine	B,	or	you	need	to	get	a
filesystem	image	on	a	host	that	doesn’t	have	enough	space	to	store	that	image,	or	you	just
need	some	temporary	storage	space.	FreeBSD	includes	the	geom_gate	kernel	module,	or
ggate,	that	can	transport	storage	device	nodes	(disks	and	partitions,	memory	devices,	and
optical	drives)	across	the	network.

Exporting	device	nodes	across	the	network	makes	all	kinds	of	things	possible.	The
most	obvious	is	to	mirror	a	disk	partition	between	two	hosts,	so	that	the	hosts	constantly
synchronize	data	on	those	partitions.	FreeBSD’s	HAST,	or	Highly	Available	Storage,	lets
you	synchronize	disks	across	the	network.

These	disk	device	exports	are	neither	encrypted	nor	authenticated.	Anyone	who	can
intercept	the	traffic	can	view	the	transactions.	Very	few	network	people	can	identify	disk
device	transactions,	so	you	get	a	small	amount	of	security	through	obscurity,	but	never
rely	on	an	attacker’s	ignorance.	If	you	don’t	trust	the	network	layer,	tunnel	this	traffic
inside	a	VPN	or	over	SSH.	These	exports	use	TCP	port	3080	by	default.	If	you	deploy
geom_gate	or	HAST	on	a	public	network,	protect	TCP/3080	with	a	firewall	or	packet
filter.	Better	still,	directly	connect	the	mirrored	hosts	with	a	direct	(crossover-style)	cable
or	private	VLAN.



geom_gate	Drawbacks

The	geom_gate	protocol	manages	to	combine	the	disadvantages	of	user	space	filesystems
(Chapter	12)	with	the	disadvantages	of	networked	disks	as	used	by	iSCSI	(Chapter	8).

Like	FUSE,	both	geom_gate	and	HAST	pass	storage	through	userland	programs.
Userland	programs	occasionally	crash	and	die.	While	these	programs	are	pretty
thoroughly	tested	and	widely	trusted,	deploying	userland	programs	for	storage	means	that
you	very	much	need	proactive	monitoring	and	automated	process	recovery	when	things	go
wrong.

Similarly,	accessing	storage	devices	across	the	network	increases	network	load.
Occasional	uses	of	geom_gate	to	access	device	nodes	at	a	low	priority	shouldn’t	be	an
issue.	If	you’re	mirroring	block	devices	across	the	network	with	HAST,	or	expect	good
performance	from	geom_gate,	separate	your	storage	traffic	from	your	regular	network
traffic—not	with	a	VLAN	on	the	main	network	interface,	but	with	a	separate	network
interface	and	a	separate	switch.	If	you	have	two	servers	using	HAST	to	back	each	other
up,	connect	them	with	a	private	direct	cable.

Many	times,	the	filesystem	is	the	wrong	place	to	have	redundancy.	Clustering
databases	is	best	done	in	the	database	server,	not	the	filesystem.	If	you	truly	need
redundancy	at	the	filesystem	layer,	though,	FreeBSD	supports	you.



Exporting	Storage	Devices:	geom_gate

The	geom_gate	GEOM	class	can	export	only	optical	drives,	memory	disks	(disk	images),
disks,	and	partitions.	You	can’t	export	tape	drives,	terminals,	/dev/random,	or	other	such

devices.	If	you	can’t	mount	it,	you	can’t	export	it.	You	cannot	export	mounted	devices.

geom_gate	Server	Setup

Exporting	device	nodes	requires	setting	up	an	exports	file	and	starting	the	ggated(8)
daemon.

The	file	/etc/gg.exports	lists	exported	devices,	each	on	its	own	line.	Each	entry	has	three

parts.
host	permissions	device

The	host	can	either	be	an	IP	address	like	192.0.2.8,	a	network	like	(203.0.113.0/24),	or
a	hostname	(like	www.mwl.io).

Exported	devices	can	have	one	of	three	permissions:	read-write	(rw),	read-only	(ro),	or

write-only	(wo).

The	last	entry	is	the	exact	device	node	you	want	to	export.

Here,	I	export	the	disk	device	/dev/da0	read-write	to	the	hosts	on	my	local	network.
203.0.113.0/24	RW	/dev/da0

Once	you	have	an	exports	file,	start	ggated(8).	There’s	no	startup	script	for	this
daemon,	but	it	doesn’t	need	any	command-line	arguments.
#	ggated

Restart	ggated	any	time	you	change	/etc/gg.exports.

You	can	now	set	up	a	client.

geom_gate	Client	Setup

The	geom_gate	client	does	everything	from	the	ggatec(8)	program.	There	is	no
configuration	file.	To	attach	to	an	exported	device	run	ggatec	create	with	two	arguments:

the	hostname	of	the	ggated	server,	and	the	device	node.
#	ggatec	create	server	device

Our	sample	ggated	server	exported	the	device	node	/dev/da0.	The	server’s	hostname	is

storm.	Here	I	connect	to	that	device	node.
#	ggatec	create	storm	/dev/da0

ggate0



The	ggatec(8)	command	returns	the	local	device	node	(/dev/ggate0)	that	it	has	mapped	to

the	remote	device	node	/dev/da0.	You	can	use	it	like	any	other	disk	device.

#	gpart	show	/dev/ggate0

=>								40		1953525088		ggate0		GPT		(932G)

										40		1953525088										-	free	-		(932G)

Create	your	partitions	and	filesystems	exactly	like	you	would	a	local	disk.
#	gpart	add	-t	freebsd-ufs	ggate0

#	newfs	/dev/ggate0p1

This	works	fine	in	the	short	term,	but	more	complex	setups	might	require	more
flexibility.

To	disconnect	this	device,	use	the	ggatec	destroy	command,	the	–u	option,	and	the

number	of	the	geom_gate	device.	We	created	/dev/ggate0,	or	device	number	0.	Let’s	detach

it.
#	ggatec	destroy	-u	0

To	see	all	of	the	devices	attached	to	the	system,	run	ggatec	list.	Add	the	–v	flag	to	see

details	of	the	assorted	devices.

ggatec(8)	Options

With	ggatec(8)	you	can	control	the	permissions	on	attached	devices,	the	device	number,
and	more.	While	the	manual	lists	every	option,	here	are	the	most	commonly	used.

Just	because	the	server	offers	full	access	to	a	device	node	doesn’t	mean	you	necessarily
want	that	access.	Use	the	–o	option	to	set	the	permissions	on	attached	devices.	Use	ro	for

read-only,	wo	for	write-only,	and	rw	for	read-write.	Here	I	attach	an	exported	disk	read-only.
#	ggatec	create	-o	ro	storm	/dev/da0

If	you’re	using	multiple	geom_gate	devices	on	a	long-term	basis,	you	might	want	to

assign	specific	device	numbers	to	each	of	them.	While	you	should	always	manage	disks
with	labels,	not	all	storage	devices	can	have	labels.	You	can	label	optical	disks,	but	not	the
drives	they’re	in.	It’s	nice	when,	say,	/dev/ggate0	is	always	the	CD	drive	and	/dev/ggate1	is

always	the	DVD	drive.	Assign	a	specific	device	number	with	–u.
#	ggatec	create	-u	5	storm	/dev/da0

I	normally	use	–u	in	startup	scripts,	where	I	plan	to	use	a	geom_gate	device	in	the	long

term.

geom_gate	Failures



Adding	network	to	storage	adds	a	delightful	layer	of	uncertainty	to	your	data.	You	can	feel
confident	that	a	server’s	SATA	cable	won’t	decide	to	stop	passing	bits.	The	network	is	less
certain.	Using	geom_gate	adds	userland	programs	into	the	mix,	and	userland	processes	have

been	known	to	choke	on	their	own	bile.

If	a	geom_gate	component	dies,	storage	requests	back	up	on	the	client.	Recover	the

broken	connection	by	using	the	ggatec	rescue	command,	the	–u	option,	and	the	device

number.	Here	I	kickstart	a	new	ggatec	process	for	/dev/ggate3.
#	ggatec	rescue	-u	3	storm	/dev/da0

When	you	rescue	the	process,	any	buffered	storage	requests	get	sent	to	the	server.

If	you	specifically	want	long-term	mirrored	storage,	check	out	Highly	Available
Storage.



Highly	Available	Storage

The	ability	to	access	disks	across	the	network	immediately	leads	to	the	idea	of
mirroring	disks	across	the	network.	You	could	build	your	own	networked	mirrored	disks
with	raw	iSCSI	or	geom_gate,	but	FreeBSD	includes	the	Highly	Available	Storage	(or
HAST)	system	engineered	exactly	for	this.

HAST	works	as	a	GEOM	layer.	It	sits	on	top	of	a	storage	provider	such	as	a	disk,	ZFS
volume,	or	image	file.	Each	HAST	instance	is	paired	with	a	HAST	provider	on	another
system.	The	HAST	support	daemon,	hastd(8),	keeps	the	two	HAST	devices	synchronized.
Any	change	to	the	provider	gets	mirrored	on	the	partner	provider.

The	sysadmin	assigns	one	of	the	HAST	servers	the	primary	role	and	the	other	the
secondary	role.	HAST	offers	a	device	node	in	/dev/hast	for	each	pair	of	mirrored	storage

devices.	Use	that	device	node	as	you	would	any	other	node—partition	it,	put	a	filesystem
on	it,	use	it	as	part	of	a	ZFS	pool,	whatever.

When	the	primary	host	fails,	the	secondary	host	can	make	itself	primary,	mount	the
filesystem,	and	resume	providing	service.	This	failover	is	not	automatic,	but	is	pretty	easy
to	automate	through	the	Common	Address	Redundancy	Protocol	(CARP)	and	devd(8).

Before	configuring	HAST,	consider	carefully	if	you	need	disk-level	redundancy.	Does
your	app	truly	require	synchronized	filesystems	on	two	machines?	Or	is	HAST	just	easier
to	configure	than	real-time	MySQL	replication?	Mirroring	storage	across	the	network
introduces	many	possible	points	of	failure.	While	your	database	software’s	replication
methods	might	drive	you	to	the	edge	of	madness,	recovering	a	wonky	database	is	much
easier	than	recovering	a	scrambled	filesystem.

HAST	is	best	suited	to	an	environment	where	you	have	two	physical	servers	and	want
to	mirror	a	chunk	of	storage	between	them.	If	you	have	a	larger	infrastructure	than	two
hosts,	consider	using	two	iSCSI	drives	on	two	servers	as	the	data	store	and	having
multiple	hosts	configure	them	as	ZFS	or	GEOM	mirrors.	If	you	need	interoperability	with
other	operating	systems,	use	iSCSI	instead.

Configuring	HAST	requires	assigning	devices	to	participate	in	the	mirror,	configuring
and	initializing	the	mirror,	creating	a	filesystem,	and	configuring	failover.

Provisioning	HAST

Assigning	storage	for	HAST	should	be	easy,	right?	Assign	a	disk	in	each	machine	to	be
the	storage	provider	and	get	on	with	your	day.	It	can	be	that	easy—if	you	want	to	have	a



really	bad	day.

Always	consider	what	happens	in	a	catastrophic	failure.	Suppose	one	of	your	HAST
nodes	catches	fire	and	needs	complete	replacement.	The	replacement	HAST	secondary
node	must	initialize	its	copy	of	the	HAST	data.	HAST,	unlike	ZFS,	does	not	understand
the	filesystem	running	on	top	of	it.	If	you	have	a	measly	little	4	TB	drive	backing	your
highly	available	storage,	the	backup	must	transfer	all	four	terabytes	over	the	network.
How	fast	is	your	network	interface,	1	Gb/s?	Your	4	TB	drive	holds	roughly	32,000
gigabits.	Assuming	that	your	network	interface	can	actually	send	a	full	gigabit	per	second
(unlikely,	but	let’s	be	generous),	re-initializing	that	mirror	will	take	almost	nine	hours.

Make	your	HAST	providers	no	larger	than	necessary	to	fulfill	their	purpose.	Perhaps
you	truly	do	need	that	4	TB	drive.

In	most	cases,	I	recommend	using	ZFS	volumes	as	the	back	end	for	HAST	storage.
You	can	easily	clone	and	snapshot	zvols	when	(not	if)	something	goes	wrong.	If	you’re
using	UFS,	use	a	disk	image	file	instead.	For	these	examples,	both	of	my	HAST	hosts	are
using	a	1	GB	ZFS	volume,	zroot/hast1.	This	application	stores	only	the	very	latest	or	most

vital	data	on	this	volume.	This	reduces	recovering	lost	HAST	nodes	to	seconds.

One	goal	in	designing	your	HAST	configuration	should	be	to	minimize	the	amount	of
metadata	you	need	to	synchronize.	You	could	use	four	zvols	as	the	backing	store	for
HAST	and	then	build	a	striped	mirror	on	top	of	them,	but	then	you	must	pass	a	bunch	of
ZFS	metadata	back	and	forth	between	the	hosts.	Networked	disk	is	already	slow—why
make	it	slower?	It’s	more	efficient	and	faster	to	put	a	single	redundant	device	beneath	your
HAST,	and	handle	any	filesystem	redundancy	locally.	If	you	need	multiple	HAST	devices
as	separate	entities,	though,	go	ahead	and	use	them.	Just	don’t	do	your	striping	or
mirroring	on	the	client	side.

You	can	use	HAST	on	larger	filesystems,	but	this	requires	that	you	pay	careful
attention	to	filesystem	integrity	and	system	administration	practice.	A	multi-terabyte
HAST-backed	filesystem	can	go	right	on	a	disk	partition,	but	demands	a	configuration
with	the	maximum	number	of	safety	checks	possible.	If	restoring	your	redundant	storage
takes	nine	hours,	you’ll	want	to	perform	that	restoration	as	rarely	as	possible.

Configuring	HAST

Configure	HAST	with	hastctl(8)	and	in	/etc/hast.conf.	The	configuration	file	should	be

identical	on	both	hosts.	I	strongly	recommend	maintaining	the	file	in	a	config	management
tool	such	as	Ansible	or	Puppet	to	guarantee	consistency.



HAST	calls	each	mirror	of	block	devices	a	resource.	A	minimal	hast.conf	describes	a

single	resource,	without	any	special	options.	Each	host	in	the	mirror	has	a	subsection
within	the	resource	description.	Here’s	a	hast.conf	for	bare	minimum	replication.
resource	hast1	{

on	www1	{

local	/dev/zvol/zroot/hast1

remote	192.0.2.2

}

on	www2	{

local	/dev/zvol/zroot/hast1

remote	192.0.2.1

}

}

This	creates	a	single	HAST	device,	called	mirror1.	Two	hosts	support	this,	www1	and

www2.	You	must	use	the	actual	hostname	for	each	host.	Each	host	has	two	mandatory

settings,	where	to	find	the	local	and	remote	parts	of	the	mirror.	For	this	mirror	I	created	the
ZFS	volume	hast1	on	each	host.	I	also	give	the	IP	address	where	the	remote	mirror	is

found.	(These	two	hosts	happen	to	be	connected	by	a	private	cable.)

Some	HAST	configuration	happens	only	within	a	resource	entry.	Other	configuration
can	be	outside	any	resource,	and	applies	to	all	resources.	The	integrity	options	discussed
later,	for	example,	can	be	set	on	a	global	level	so	they	apply	to	all	resources.	Options	in	a
resource	entry	override	global	settings.

Use	hastctl(8)	to	initialize	the	HAST	resource	on	both	nodes.	Then	enable	and	start
hastd(8)	on	both	hosts.
#	hastctl	create	hast1

#	sysrc	hastd_enable=YES

hastd_enable:	NO	->	YES

#	service	hastd	start

Starting	hastd.

Use	hastctl(8)	to	tell	the	primary	node	that	it’s	primary	for	the	resource	hast1.
#	hastctl	role	primary	hast1

On	the	secondary	node,	use	hastctl	to	set	it	as	backup.
#	hastctl	role	secondary	hast1

The	first	time	you	create	the	device	and	assign	roles,	HAST	quickly	initializes	your
storage	device.

HAST	Status

To	check	the	status	of	a	HAST	device,	use	hastctl	status.	If	you	add	the	name	of	a	HAST



resource,	you’ll	see	only	that	resource.	Here	I	look	at	the	sample	HAST	resource	I	just
created.

#	hastctl	status	hast1

Name			Status			Role					Components

hast1		complete	primary		/dev/zvol/zroot/hast1		192.0.2.2

This	shows	a	single	resource,	hast1.	The	status,	complete,	means	that	the	two	hosts	are
synchronized.	We	then	have	this	host’s	role	in	the	HAST	mirror,	primary,	and	the	storage
nodes	that	are	part	of	this	resource.

To	see	more	complete	statistics	for	a	host’s	HAST	resources,	use	hastctl	list	and	(if

desired)	the	resource	name.	This	gives	everything	from	the	number	of	dirty	blocks	to	the
number	of	local	write	errors.

HAST	Filesystems

Each	HAST	resource	has	a	device	node	in	/dev/hast,	named	after	the	resource.	Device

nodes	for	a	particular	resource	appear	only	on	the	primary	host	for	that	resource.	Our
sample	resource,	hast1,	is	available	as	/dev/hast/hast1	on	the	primary	node.

Here	I	create	a	ZFS	pool	on	the	HAST	resource
#	zpool	create	hast1	/dev/hast/hast1

You	can	use	newfs(8)	if	UFS	is	preferable.	I	strongly	recommend	using	soft	updates
journaling	(newfs	–j)	on	UFS.

For	UFS	or	ZFS	alike,	setting	noatime	helps	reduce	the	amount	of	HAST	traffic	and

makes	it	easier	for	your	hosts	to	synchronize	the	HAST	device.

When	your	primary	and	secondary	hosts	switch	roles,	the	device	node	for	the	HAST
resource	appears	on	the	secondary	node.



HAST	Failover

Switching	a	HAST	host	from	the	secondary	role	to	primary	requires	demoting	the	primary
node	and	promoting	the	secondary	node.

The	unceremonious	way	to	demote	the	primary	node	is	to	yank	the	power.	For	a	more
decorous	migration,	though,	start	by	deactivating	everything	using	the	HAST	resource.
Shut	down	programs	writing	or	reading	to	the	resource,	and	unmount	the	filesystem	or
export	the	zpool.
#	zpool	export	–f	hast1

You	can	then	use	hastctl	on	the	primary	node	to	tell	it	it’s	now	the	secondary	node.
#	hastctl	role	secondary	hast1

The	host	is	now	standing	by	waiting	for	someone	to	claim	the	primary	for	this	resource.
Both	nodes	will	have	a	status	somewhat	like	this.

#	hastctl	status

Name			Status		Role							Components

hast1		-							secondary		/dev/zvol/zroot/hast1		192.0.2.2

The	status	on	both	hosts	is	a	dash,	indicating	that	this	resource	is	idle.

Over	on	the	backup	node,	claim	the	primary	role	and	import	the	pool.
#	hastctl	role	primary	hast1

#	zpool	import	hast1

If	you’re	using	UFS,	run	fsck	before	mounting	the	filesystem.	While	the	filesystem

should	be	clean	after	you	manually	switch	roles,	a	fsck	before	mounting	the	filesystem	is

best	practice.	On	small	filesystems	fsck	doesn’t	take	long,	and	on	large	filesystems	you

really	need	to	use	soft	updates	journaling.



Synchronization	and	Integrity	Options

While	HAST’s	default	behavior	is	acceptable	for	most	uses,	you	can	fine-tune
synchronization	between	hosts	to	best	fit	your	environment	and	requirements.	You	can
adjust	the	replication	mode,	the	use	of	checksums,	compression,	and	more.

These	options	are	set	either	per-resource	or	globally.	Setting	an	option	globally,	outside
of	any	resource,	means	that	it	applies	to	every	HAST	resource	in	the	configuration	file.
Here	I	set	the	replication	option	globally.
replication	fullsync

	

resource	hast1	{

on	www1	{

…

Some	resources	might	have	different	performance	or	integrity	requirements	than
others.	You	can	set	these	options	on	a	per-resource	basis.	Here	I	set	the	replication	option

for	the	resource	hast1.
resource	hast1	{

replication	fullsync

on	www1	{

…

Set	options	wherever	needed.

Replication	Mode

The	HAST	replication	mode	controls	when	the	operating	system	acknowledges	writing	the
data	to	disk.	Just	as	filesystems	can	work	in	synchronous	mode,	asynchronous	mode,	or
something	in	between,	HAST	lets	you	decide	when	the	kernel	should	tell	the	application
that	a	write	is	complete.	Replication	mode	heavily	impacts	the	apparent	speed	of	the
storage	system.	Many	programs	that	write	to	disk	will	not	proceed	to	the	next	step	until
the	storage	system	acknowledges	receipt	of	the	data.	Experienced	sysadmins	call	this
“blocking	on	disk.”

The	default	mode,	memsync,	acknowledges	the	write	when	the	data	is	on	the	primary
host’s	disk	and	in	the	secondary	host’s	memory.	The	data	doesn’t	need	to	be	on	the
secondary	host’s	disk,	only	in	memory.	The	secondary	host	will	store	the	data	right	away
as	part	of	normal	operation,	but	the	program	can	proceed	without	waiting	for	the	disk.

The	safest	way	to	use	HAST	is	fullsync	mode.	HAST	only	acknowledges	receipt	of	a
write	when	it’s	safely	on	disk	on	both	the	primary	and	secondary	nodes.	This	guarantees



the	data	makes	it	to	disk.	The	writes	must	leave	the	primary	node,	traverse	the	network,
pass	through	the	secondary	node,	and	get	on	the	secondary	node’s	disk	before	the
application	can	move	on.	If	your	data	is	critical,	you	probably	want	fast	disk	hardware	and
fullsync	mode.

Memsync	mode	is	faster	than	fullsync,	but	increases	risk.	If	the	secondary	node	fails	at
exactly	the	wrong	moment,	that	data	won’t	get	to	disk.	If	the	primary	node	fails	while	the
secondary	node	is	rebooting,	that	data	might	be	entirely	lost	on	both	nodes.	As	HAST
exists	below	the	filesystem,	missing	data	might	corrupt	the	filesystem.	When	I	truly	need
redundant	block	device	storage	on	multiple	machines,	I	use	fullsync	mode.	If	my
application	can’t	take	the	small	performance	hit,	I	reconsider	my	whole	design.

HAST	also	has	async	mode,	where	it	acknowledges	data	as	soon	as	it’s	written	to	the
primary	node’s	disk.	The	data	will	be	sent	to	the	secondary	node,	and	will	get	written	to
the	disk	there,	but	the	program	won’t	wait	for	that.	Async	mode	dramatically	increases	the
risk	of	data	loss,	as	the	primary	node	might	fail	before	the	secondary	node	even	receives
the	data.

Every	time	I’ve	used	async	mode,	I’ve	regretted	it.	The	only	time	you	should	even
consider	async	mode	is	if	the	secondary	node	is	so	far	away	from	the	primary	that	the
speed	of	light	induces	unacceptable	latency.	Even	then,	I	would	encourage	re-architecting
your	application	rather	than	using	async	mode.

Set	the	replication	mode	with	the	replication	keyword	and	the	desired	value.
replication	fullsync

Replication	mode	is	only	one	way	to	manage	integrity,	though.

Checksum

HAST	can	calculate	a	checksum	for	each	chunk	of	data,	and	transmit	that	checksum	with
the	data.	The	secondary	host	uses	that	checksum	to	verify	that	the	data	it	writes	to	disk	is
the	same	as	the	data	the	primary	host	sent.

The	HAST	checksum	is	not	intended	for	protection	against	a	malicious	attacker.	Both
the	checksum	and	the	data	are	transmitted	in	plain	text	on	the	same	wire.	An	intruder	who
can	alter	that	data	can	also	alter	the	checksum	to	match.	Checksums	are	useful	for
detecting	transmission	errors,	however.	HAST	supports	the	CRC32	and	SHA256
checksums.

Set	the	checksum	with	the	checksum	keyword.
checksum	sha256



I	always	use	a	checksum	in	production.	Most	modern	systems	have	processing	power
that	far	exceeds	either	their	disk	or	network	throughput.	Calculating	SHA256	checksums
requires	more	processing	power	than	calculating	the	CRC32	checksums.	The	CRC32
checksum	is	perfectly	adequate	to	catch	the	common	sorts	of	bit	errors	you’ll	probably
encounter.	Personally,	I’m	still	a	SHA256	bigot.

By	default,	HAST	does	not	use	any	checksums.	You	must	enable	them	if	you	want
them.

Compression

Compression	exchanges	processor	time	for	network	bandwidth.	If	you	have	a	lot	of	disk
writes,	compressing	them	can	reduce	the	amount	of	bandwidth	HAST	requires	so	that	it
will	actually	fit	on	your	network.	Use	the	compression	keyword	to	set	a	compression
method.

HAST	defaults	to	hole	compression,	which	means	that	only	blocks	made	up	of	all
zeroes	get	compressed.	Hole	compression	vastly	accelerates	resource	initialization,	as	a
brand-new	disk	device	contains	only	zeroes.	It	doesn’t	do	much	for	day-to-day
performance,	however.

If	you	want	to	routinely	compress	data,	HAST	supports	the	lzf	compression	algorithm.
LZF	gets	used	in	many	places,	including	in	ZFS.	Compression	won’t	hurt,	but	it	doesn’t
always	help	as	much	as	you	might	hope.	Enabling	LZF	in	HAST	when	you	have	LZF
compression	on	the	ZFS	filesystem	on	top	of	the	HAST	device	won’t	do	you	much	good.

You	can	also	completely	disable	compression	with	the	none	option.1

compression	lzf

I	normally	use	LZF,	because	even	when	compression	doesn’t	help	it	won’t	hurt.

Metadata	Flushing

Hard	drive	write	caches	can	make	the	hardware	put	data	on	disk	out	of	order.	HAST	might
tell	the	hard	drive	to	write	block	A	and	then	block	B,	but	the	write	cache	can	get	in	the
middle	and	decide	to	write	block	B	first.	If	block	B	requires	block	A,	though,	and	the
system	fails	between	writing	the	two	blocks,	the	hardware	has	just	corrupted	the
filesystem.	This	is	most	common	with	filesystem	metadata.

The	metaflush	option	tells	hastd	to	automatically	flush	the	write	cache	after	every

metadata	update.	HAST	normally	flushes	the	write	cache	after	updating	metadata.	If	the
hardware	doesn’t	support	write	cache	flushing,	though,	HAST	stops	trying	to	flush	it.



I’m	not	aware	of	any	time	you	would	want	to	set	metaflush	to	off.	I	only	bring	up	this

option	to	encourage	you	to	buy	good	hard	drives	that	support	write	cache	flushing.



HAST	Networking

You	can	control	how	HAST	listens	to	the	network,	where	it	sends	connections,	and	the
source	address	it	binds	to	for	outgoing	connections.

The	listen	keyword	tells	hastd	what	address	to	bind	to	for	incoming	connections.	This	is

the	IP	address	and	port	where	the	secondary	host	listens	for	updates,	and	where	the
primary	listens	for	acknowledgements.	HAST	defaults	to	listening	to	TCP	port	8457	on	all
available	IP	addresses	and	interfaces.

You	can	use	the	listen	option	globally,	or	in	a	special	per-server	section	of	hast.conf.

Here	I	lock	hastd	down	to	one	IP	address	on	each	of	my	hosts.
on	www1	{

listen	192.0.2.1

}

	

on	www2	{

listen	192.0.2.2

}

	

resource	hast1	{

on	www1	{

…

You	can	use	IPv6	addresses	as	well,	of	course.	And	you	can	change	the	port	by
specifying	the	new	port	with	a	colon	and	the	port	number.
listen	192.0.2.1:8888

If	you	use	the	listen	keyword	globally,	you’re	saying	that	all	hosts	listen	to	the	network

on	the	stated	IP	address.	The	whole	point	of	IP	addresses	is	that	they’re	unique	to	a
machine.	A	global	listen	keyword	is	only	useful	to	change	the	TCP	port	hastd	uses	when

your	hosts’	hastd	attaches	to	all	available	IP	addresses.
listen	0.0.0.0:80

I	encourage	you	to	create	per-host	entries	and	limit	the	number	of	addresses	hastd

listens	on.

Within	each	node	entry	for	each	resource,	you	can	control	the	address	of	the	remote
peer	and	the	local	address	used	to	send	to	that	peer.	We’ve	already	seen	the	remote

keyword,	a	necessary	part	of	any	HAST	configuration.	The	source	keyword	goes	right
next	to	remote,	and	lets	you	dictate	the	source	port	for	outgoing	connections	to	that	peer.

on	www1	{

local	/dev/zvol/zroot/hast1

remote	192.0.2.2



source	192.0.2.1

}

You	would	need	to	use	source	if	your	host	has	multiple	IP	addresses	on	that	subnet	and

the	remote	peer	uses	packet	filtering	to	restrict	connections	to	hastd.



Failures,	Startup,	and	Split	Brain

A	HAST	pair	with	only	one	working	node	enters	the	degraded	state.	If	a	HAST	node
reboots,	the	other	node	sees	the	HAST	device	as	degraded.

#	hastctl	status

Name				Status			Role					Components

hast1			degraded	primary		/dev/zvol/zroot/hast1		192.0.2.2

If	the	primary	node	fails,	presumably	you	or	the	system	will	switch	the	secondary	node
to	be	primary	until	the	other	node	comes	back	to	life.	Or,	maybe	not.

This	uncertainty	dictates	a	key	aspect	of	HAST	behavior.	While	you	can	start	hastd	on

boot,	HAST	makes	no	assumptions	about	the	peer	state.	At	system	boot,	HAST	devices
enter	the	init	state.	They’re	ready	for	action,	as	soon	as	you	tell	them	how	they	fit	into

your	world.

#	hastctl	status

Name			Status		Role		Components

hast1		-							init		/dev/zvol/zroot/hast1		192.0.2.1

You	must	use	hastctl	after	the	system	boots	to	tell	each	HAST	device	its	role.

In	normal	operation,	you’d	think	that	a	newly	booted	HAST	server	would	assume	a
secondary	role	so	that	the	primary	can	send	all	the	updates	needed	to	bring	the	freshly
booted	device	up	to	date.	That	would	work—except	when	both	machines	are	newly
booted.	When	both	machines	boot	simultaneously	they’ll	both	sit	there,	wait	for	the	other
to	claim	the	primary	role,	and	whinge	into	/var/log/messages.	You	need	a	way	to	for	one

node	to	claim	the	primary	role.	If	you	have	a	log-watching	program,	you	could	have	it
promote	a	preferred	node	when	the	relevant	log	messages	appear.	You	could	log	in	and
manually	promote	one	of	the	nodes	to	primary.	FreeBSD	can	automatically	promote	one
for	you	through	CARP	and	devd(8),	as	discussed	in	Chapter	10.

HAST	behaves	cautiously	because	it	is	possible	to	have	multiple	hosts	simultaneously
claim	the	primary	role,	causing	a	split	brain	condition.	Split	brain	is	bad.	Each	host
modifies	the	HAST	device	as	it	thinks	it	should,	and	sends	updates	to	the	HAST	peer.	The
peer	doesn’t	listen,	because	it	thinks	it’s	the	master.	The	data	on	each	copy	of	the	device
differs.	It’s	your	job	to	figure	out	how	to	resolve	those	differences.

If	software	can	readily	examine	the	data	on	the	two	HAST	devices—say,	if	ls(1)
displays	what	you	need	to	know—you	could	programmatically	resolve	the	difference	with
shell	scripting.	If	they’re	more	complex	records,	such	as	a	database	or	logs,	you’ll	need	to



analyze	the	data	itself	to	capture	and	reconcile	the	changes.	How	you	do	that	depends
entirely	on	the	data.

The	split	brain	issue	is	why	I	recommend	not	using	HAST	as	database	storage	back
end.	Clustered	databases	like	PostgreSQL,	and	even	MySQL	or	MariaDB,	have	built-in
routines,	well	understood	processes,	or	accepted	hacks	for	resolving	split	brain	problems.
Filesystems	do	not.

In	many	cases,	sysadmins	struggle	with	data	reconciliation,	give	up,	and	resolve	the
split	brain	by	destroying	one	copy	of	the	HAST	device,	re-initializing	it,	and	letting	HAST
resync.	They	accept	a	small	amount	of	data	loss	in	the	name	of	restoring	service.

Once	you’ve	reconciled	the	data	differences	caused	by	the	split	brain,	resynchronize
the	two	HAST	providers.	You	can’t	tell	HAST	to	shuffle	bits	back	and	forth	until	the	two
devices	are	all	caught	up	with	each	other.	Rather,	you	must	wipe	out	and	re-initialize	the
HAST	resource	on	the	secondary	host,	forcing	a	complete	resynchronization	of	the	backup
host.	Put	the	resource	in	init	mode,	then	rerun	the	create	command	and	assign	it	the

secondary	role.	Here	I	recreate	the	backup	HAST	resource	hast1.
#	hastctl	role	init	hast1

#	hastctl	create	hast1

#	hastctl	role	secondary	hast1

The	primary	feeds	the	secondary	everything	on	the	device,	restoring	integrity.

But	it’s	best	to	manage	HAST	meticulously	and	not	split	the	brain	in	the	first	place.



Commands	on	HAST	Events

Use	the	exec	keyword	to	tell	HAST	to	run	a	command	on	an	event.	HAST	runs	this	script
when	the	resources	change	roles,	at	the	initial	hastd	connection	between	hosts,	when	a	hastd

peer	disconnects,	when	a	secondary	resource	starts	synchronizing	with	the	primary,	when
a	resource	finishes	synchronizing,	an	interrupted	synchronization,	and	when	hastd	detects	a

split	brain	condition.	Here	I	run	the	script	/usr/local/scripts/haststates.sh	any	time	any	event

happens.
exec	/usr/local/scripts/haststates.sh

You	cannot	have	per-event	scripts;	one	script	must	handle	all	of	these	events.	HAST
gives	the	script	different	arguments	depending	on	the	event.

The	script	runs	immediately	after	the	event.	You	cannot	put	commands	to	prepare	for
the	event	in	the	switch.	For	example,	having	the	script	export	your	HAST-backed	ZFS
pool	when	the	host	switches	to	the	secondary	role	won’t	work—the	pool’s	back	end	is
gone	when	hastd	runs	the	script!	You	could	have	the	script	import	a	ZFS	pool	when	the

host	assumes	the	primary	role,	however.

Script	Arguments	and	Execution

At	a	role	change,	hastd	runs	the	command	with	four	arguments:	the	word	role,	the	resource

name,	the	old	role,	and	the	new	role.	Both	hosts	run	the	script.

When	hastd	on	two	hosts	first	connect	to	each	other,	both	run	the	script	with	two

arguments:	the	word	connect	and	the	name	of	the	HAST	resource.	The	script	gets	run	once

for	each	resource	the	hosts	share.	Similarly,	when	two	hosts	lose	their	hastd	connection,	the

script	runs	with	the	argument	disconnect	and	the	name	of	the	resource.

The	synchronization	events	run	the	script	with	the	event	name	(either	syncstart,	syncdone,

or	syncintr	for	interruptions)	and	the	resource	name.	Synchronization	events	only	trigger

the	script	on	the	primary	node.

Finally,	in	the	event	of	a	split	brain,	the	script	is	run	with	the	argument	split-brain	and

the	resource	name.	The	script	runs	on	both	primary	nodes.

hastd(8)	Scripts

A	hastd	script	is	a	set	of	nested	case	statements.	I	recommend	starting	with	a	simple	script

on	test	servers	to	log	these	arguments	and	whenever	the	script	is	run.	Abuse	your	test
servers	and	see	what	sort	of	messages	get	logged.



#!/bin/sh

logger	hastd	event:	$1	$2	$3	$4

Here	I	use	the	script	for	two	functions.	First,	it	mails	the	server’s	root	account2

whenever	a	HAST	resource	starts	synchronizing.	Ideally,	you’d	replace	the	email	with	an
SNMP	trap	or	another	call	to	the	monitoring	system.	Theoretically,	HAST	resources
should	always	be	synchronized.	A	deliberate	sync	is	a	hint	that	something’s	wrong	with
the	connection	between	the	two	hosts.	(You’ll	also	see	synchronization	whenever	the	two
hosts	switch	roles,	so	this	notification	does	double	duty.)	Secondly,	it	imports	a	ZFS	pool
named	after	the	resource	when	the	host	is	promoted	to	primary	role.	That	is,	when	this
host	becomes	primary	for	the	HAST	resource	shared1,	it	then	imports	a	ZFS	pool	also
called	shared1.	You	could	also	start	processes	here.	Last,	all	events	get	logged.
#!/bin/sh

	

HOSTNAME=$(hostname)

	

case	$1	in

	

role)

case	$4	in

primary)

sleep	3

zpool	import	-f	$2

logger	“importing	pool	$2”

#	start	your	programs	here

;;

*)

;;

esac

;;

	

syncstart)

mail	-s	“sync	started	for	$2	on	$HOSTNAME”	root	<<EOF

HAST	sync	started,	what	happened?

EOF

;;

*)

;;

	

esac

	

logger	hastd	event:	$1	$2	$3	$4

Add	other	cases	as	needed	for	your	environment.

Note	that	the	script	waits	three	seconds	between	becoming	the	master	node	and
importing	the	ZFS	pool.	HAST	needs	a	little	bit	of	time	to	perform	the	switch	and	verify
everything	is	caught	up.	If	you	have	a	large	HAST	device,	test	the	switch	and	adjust	the



timing	as	needed.

If	you’re	using	UFS	on	HAST,	you	can	replace	the	zpool	import	with	a	call	to	fsck	and

a	mount	command.	Giving	the	mount	point	and	the	HAST	resource	the	same	name	will

simplify	your	script.

The	hast.conf(5),	hastd(8),	and	hastctl(8)	manual	pages	have	even	more	on	configuring
and	using	HAST.	To	see	how	to	automatically	switch	the	primary	device	when	a	host	fails,
however,	read	the	next	chapter.

1	I	am	not	aware	of	any	circumstances	in	which	you	would	need	to	disable	HAST	compression,	but	I	have	faith	you	can
find	it.	At	3	AM,	while	a	bunch	of	angry	people	scream	at	you.

2	Your	server	is	configured	to	send	mail	to	a	human	being	with	the	job	of	reading	it,	isn’t	it?	Isn’t	it?





Chapter	10:	Networked	Disk	Failover
Running	disks	and	filesystems	over	the	network	presents	interesting	possibilities.	The
most	obvious	is	the	ability	to	keep	a	data	store	running	even	when	the	host	supporting	it
goes	down.	FreeBSD	includes	tools	to	let	a	backup	host	take	over	when	a	primary	host
fails,	using	standard	hardware	found	in	every	datacenter.

When	you	first	try	networked	disk	failover,	use	a	test	environment.	Be	prepared	to
reboot.	A	lot.

Any	type	of	failover	automation	requires	that	you	be	comfortable	with	basic	shell
scripts.	This	book	provides	scripts	to	get	you	started.	They’re	also	available	on	the
author’s	GitHub	site	(https://github.com/mwlucas).



Clustering	Risks

Any	two-node	clustering	solution	on	commodity	hardware	has	a	risk	of	going	some	style
of	split	brain.	HAST	can	issue	a	literal	“split	brain”	error,	but	iSCSI-backed	high
availability	can	have	identical	problems	when	multiple	hosts	mount	the	same	UFS
filesystem	or	import	the	same	ZFS	pool.	A	flaky	network	switch	can	not	only	interrupt
client	connectivity,	but	also	convince	each	server	that	its	peer	has	gone	down	and	that	it
should	become	master.	Merely	unplugging	a	network	cable	can	trigger	this	error.	Certain
stages	of	operating	a	two-node	cluster	really	do	require	highly	intelligent	management.

Advanced	cluster	systems	usually	have	at	least	three	hosts	involved	in	the	cluster,	so
that	they	can	use	a	quorum	method	for	determining	the	master	host.	In	a	quorum	system,	a
majority	of	the	hosts	involved	must	agree	on	which	host	is	acting	as	master.	One	isolated
host	cannot	declare	itself	to	be	the	dictator.	These	systems	fill	a	book	on	their	own	and
have	greater	hardware	requirements.

Look	carefully	at	your	hardware,	and	investigate	FreeBSD’s	support	for	it.	Some
hardware	has	solutions	for	these	problems.	For	example,	if	you’re	one	of	the	lucky	few
with	shared	SCSI	shelves,	you	could	use	SPC-3	SCSI	persistent	reservations	via
camcontrol(8)	in	your	failover	script.	If	you	have	multipath	SCSI	behind	your	iSCSI
devices,	investigate	FreeBSD’s	high	availability	support	through	Asymmetric	Logical
Unit	Access	(ALUA)	as	discussed	in	ctl(4).

Any	specific	hardware	recommendations	I	would	make	would	go	obsolete	before	you
could	read	this	book,	so	I	encourage	you	to	do	your	own	hardware	research.

The	systems	described	here	are	as	safe	as	possible	given	the	software’s	limitations	and
commodity	hardware.	If	you	decide	to	build	a	two-host	cluster,	be	prepared	to	recover
should	the	worst	happen.

Many	people	successfully	use	CARP	for	filesystem	failover.	They’ve	thought	long	and
hard	about	how	to	recover	from	problems.	Be	sure	you	do	the	same	before	deploying.



Failover	Architecture

Failover	automation	is	built	on	top	of	two	key	technologies,	CARP	and	devd(8).	How	they
get	used	depends	on	the	storage	back	end	used.

CARP

The	Common	Address	Redundancy	Protocol	(CARP)	is	an	OpenBSD	creation	for	sharing
IP	addresses	between	machines.	It	lets	network	addresses	float	between	machines	as
needed.	CARP	resembles	Cisco’s	Virtual	Router	Redundancy	Protocol	(VRRP),	but	also
includes	checks	for	security	and	integrity.	Additionally,	CARP	lacks	the	burden	of	patents,
so	you’re	free	to	use,	distribute,	or	re-implement	it	for	any	purpose	whatsoever.

Each	host	in	a	CARP	cluster	has	a	CARP	attribute	attached	to	one	or	more	interfaces.
Each	interface	with	CARP	continually	announces	its	presence	to	the	other	hosts	on	the
network.	The	hosts	negotiate	to	see	which	one	will	be	the	master.	While	each	interface
running	CARP	has	an	IP	address	assigned	just	for	that	machine,	the	CARP	master	answers
all	requests	for	the	floating	CARP	IP	address.	When	the	master	host	stops	responding,
another	host	in	the	cluster	takes	over	service	and	claims	the	CARP	IP.

Clients	know	only	about	the	CARP	IP	address,	not	the	individual	machine’s
management	address.	When	the	address	floats	to	the	other	machine,	client	requests	follow
it.	The	trick	is	to	get	the	filesystem	and	server	processes	to	follow	it.

Devd

When	a	CARP	interface	goes	up	or	down,	taking	over	or	relinquishing	an	IP	address,	it
sends	an	event	to	devd(8).	As	Chapter	2	discusses,	devd	events	can	trigger	commands.	You

can	have	FreeBSD	activate	storage	when	the	CARP	interface	goes	up	and	deactivate
storage	when	the	interface	goes	down.

Storage	Back	Ends

FreeBSD	has	two	block	storage	systems	that	hosts	can	share:	iSCSI	(Chapter	8)	and
HAST	(Chapter	9).	Which	you	should	use	depends	on	your	environment.

In	a	large	environment,	iSCSI	is	the	best	choice	for	networked	storage	devices.	Have
two	separate	servers	offer	iSCSI	targets,	and	another	two	client-facing	servers.	The	client-
facing	servers	can	use	one	drive	from	each	iSCSI	server	to	create	a	mirror,	or	multiple
drives	from	each	to	create	striped	mirrors.	The	environment	can	withstand	the	failure	of
one	iSCSI	server	and	one	client-facing	server.	So	long	as	you	have	one	server	of	each	type
active	and	working,	the	service	remains	up.	You	can	easily	expand	this	environment	and



replace	hardware	as	needed.	You	will	probably	want	a	stand-alone	Storage	Area	Network
(SAN),	to	separate	your	storage	traffic	from	the	client	and	management	traffic.	For	even
higher	availability,	investigate	multipath	SCSI.

Using	RAID-Z	for	high	availability	is	possible,	but	requires	more	iSCSI	targets	on
more	independent	servers.	An	eight-disk	RAID-3	can	withstand	the	loss	of	three	disks.	If
you	have	two	iSCSI	servers,	losing	one	server	means	losing	four	disks—and	the	pool.	You
could	create	a	separate	RAID-Z	device	on	each	iSCSI	server,	and	then	mirror	the	pools.

If	you	have	only	two	hosts,	HAST	is	your	only	real	choice	for	failover	filesystem.	It
would	be	possible	to	use	iSCSI	between	only	two	hosts,	each	providing	a	drive	to	the
other,	but	that	reaches	astonishing	new	levels	of	clunky.	Ideally,	the	HAST	hosts	will	have
a	private	network	connection	between	them,	such	as	a	crossover	cable.

Let’s	work	through	this	architecture	one	piece	at	a	time.



Configuring	CARP

In	FreeBSD	10	and	later,	CARP	is	an	attribute	attached	to	an	existing	interface.	Older
versions	of	FreeBSD	(and	all	versions	of	OpenBSD)	created	a	virtual	interface	for	CARP,
but	the	new	model	simplifies	management	on	hosts	with	many	interfaces.	CARP	is
incredibly	flexible,	so	we’ll	only	cover	its	basic	configuration.	For	far	more	details,	see
carp(4).

Start	by	loading	the	carp(4)	kernel	module	at	boot	with	a	loader.conf	entry.
carp_load=YES

The	basic	unit	of	CARP	is	the	virtual	host.	A	virtual	host,	and	IP	addresses	attached	to
that	virtual	host,	can	float	between	machines.	Each	virtual	host	needs	an	ID	number,	or
VHID.	Most	people	start	numbering	VHIDs	at	1.

Each	VHID	also	needs	a	password.	The	password	prevents	rogue	hosts	on	the	same
network	from	spoofing	CARP	announcements.	Like	iSCSI	passwords,	a	CARP	password
is	stored	in	plain	text	on	each	machine,	as	anyone	who	configures	the	host’s	network
needs	access	to	it.

Configure	CARP	as	an	Ethernet	interface	alias	in	/etc/rc.conf.	Here	interface	em0	has

its	own	address,	but	it	also	has	a	CARP	VHID.
ifconfig_em0=“inet	203.0.113.214	netmask	255.255.255.0”

ifconfig_em0_alias0=“vhid	1	pass	Gelato	alias	203.0.113.219/32”

Both	hosts	need	exactly	the	same	CARP	alias	configuration.	(They	need	unique
primary	IP	addresses,	of	course.)	You	could	add	additional	CARP	configuration	to	both,
such	as	hard-coding	one	host	as	the	CARP	master,	but	that	imposes	additional	risks.	See
“Cluster	Startup”	later	this	chapter.

Reboot	the	first	host.	You	should	see	the	CARP	information	in	ifconfig.
#	ifconfig	em0

…

inet	203.0.113.214	netmask	0xffffff00	broadcast	203.0.113.255

inet	203.0.113.219	netmask	0xffffffff	broadcast	203.0.113.219	vhid	1

…

carp:	MASTER	vhid	1	advbase	1	advskew	0

This	host	has	its	own	IP	address,	203.0.113.214.	It	also	has	the	IP	203.0.113.219,	as
part	of	VHID	1.	The	last	line	shows	that	this	interface	is	a	CARP	master,	meaning	that	it’s
currently	servicing	requests	for	this	VHID.

Reboot	the	second	host.	Its	ifconfig	output	should	show	that	host	in	the	backup	state.	If



the	master	fails,	the	backup	will	assume	service.

Force	a	host	to	change	roles	by	using	ifconfig.	Give	the	interface	name,	the	VHID,	and

the	new	state.
#	ifconfig	em0	vhid	1	state	backup

I	normally	run	such	commands	on	the	master	host	to	tell	it	to	demote	itself	to	backup
status,	but	they	work	just	as	well	on	the	backup.

If	this	is	your	first	experience	of	CARP,	play	with	it	before	continuing.	Start	an
ongoing	ping	of	your	VHID	IP.	Reboot	the	master	CARP	host.	Depending	on	your
network	switch	and	the	server	hardware,	your	client	might	drop	a	ping	as	the	CARP	IP
address	moves	from	one	host	to	the	other.	When	the	host	finishes	rebooting,	it	will	see	that
the	other	host	has	claimed	master	status	and	will	take	the	backup	role	for	itself.

Once	you	understand	how	VHIDs	float	between	machines,	we’ll	configure	devd.



CARP	and	devd(8)

On	FreeBSD,	CARP	interfaces	send	events	to	devd(8)	when	they	change	roles.	On	older
versions,	when	CARP	ran	as	a	virtual	interface,	those	events	were	up	and	down
notifications.	Now	that	CARP	is	an	attribute	applied	to	an	existing	interface,	those	events
specifically	notify	devd	when	the	interface	assumes	the	master	or	backup	role.	If	you’re

unclear	on	how	any	of	this	works,	review	Chapter	2.

Processing	these	events	requires	custom	rules	to	trigger	shell	scripts.	I	advise	putting
these	rules	in	/usr/local/etc/devd/carp.conf.	As	we	don’t	have	filesystem	failover	scripts	yet,

here	I	use	these	events	to	trigger	a	log	entry.
notify	30	{

match	“system”	“CARP”;

match	“subsystem”	“[0-9]+@[0-9a-z]+”;

match	“type”	“MASTER”;

action	“/usr/bin/logger	devd	carp	up	event	detected”;

};

	

notify	30	{

match	“system”	“CARP”;

match	“subsystem”	“[0-9]+@[0-9a-z]+”;

match	“type”	“BACKUP”;

action	“/usr/bin/logger	devd	carp	down	event	detected”;

};

Have	your	hosts	switch	between	the	master	and	backup	roles	a	few	times.	Run	tail	–f

/var/log/messages	in	a	separate	terminal	window,	so	you	can	see	the	logs	appear.	Once	it’s

clear	that	devd	runs	commands	as	you	expect,	you’re	ready	to	actually	implement

filesystem	failover.



Failover	Scripts

No	matter	which	storage	back	end	you	use	for	your	high-availability	networked	disk,
you’ll	need	three	basic	scripts.

At	system	boot,	you	must	put	the	storage	in	a	usable	state.	This	startup	script	can’t
make	the	newly	booted	host	the	cluster	master—that’s	likely	to	cause	a	HAST	split	brain
or	a	corrupt	ZFS	pool.	But	at	boot	you	can	safely	attach	iSCSI	targets,	or	put	HAST
devices	in	a	secondary	role.

When	a	host	becomes	the	CARP	master,	you’ll	need	to	activate	the	storage.	HAST
hosts	must	switch	to	the	primary	role	and	import	or	mount	any	filesystems.	iSCSI	hosts
must	import	or	mount	any	filesystems.	Finally,	this	script	needs	to	start	any	processes	that
use	the	filesystem.

When	a	host	becomes	the	CARP	backup,	quickly	stop	any	processes	using	the
filesystem.	Those	processes	are	no	longer	serving	client	requests—the	IP	address	clients
go	to	for	service	is	no	longer	attached	to	this	machine.	After	terminating	the	processes,
unmount	or	export	the	filesystem.	If	you’re	using	a	HAST	device,	the	host	switches	the
HAST	device	to	the	secondary	role.

Before	deploying	failover	scripts,	test	them.	Use	the	script	to	demote	the	master	to	a
backup.	Then	run	the	promotion	script	on	the	alternate	host.	Make	sure	that	everything
mounts	automatically.	Reverse	the	process:	demote	the	new	master,	and	then	promote	the
backup.	Remember,	you	can’t	have	two	master	hosts	simultaneously—that	causes	split
brain	problems	or	an	otherwise	corrupt	filesystem.	Once	you’re	confident	that	the	scripts
work	with	your	environment,	edit	/usr/local/etc/devd/carp.conf	to	have	CARP	state	changes

automate	the	failover	process.	Then	trigger	failovers	by	changing	CARP	state.	Reboot
each	host	and	see	that	the	other	takes	over.	Last,	perform	“unceremonious	shutdown”
tests.	Pull	the	power	cord	on	one	host,	and	make	sure	that	the	other	takes	over.

Batter	and	abuse	your	test	hosts	as	thoroughly	as	possible.	Each	test	you	perform
before	you	deploy	reduces	the	risk	of	data	loss	in	production.

Here	are	some	sample	scripts	for	each	storage	back	end.	These	scripts	use	ZFS,	but	you
can	easily	modify	them	to	use	UFS.	They	conform	to	my	scripting	prejudices—
specifically,	they’re	small	scripts	that	perform	a	single	task	each.	The	promotion	and
demotion	scripts	are	based	on	Freddie	Cash’s	HAST	and	CARP	failover	scripts.	I’ve
folded,	spindled,	and	mutilated	them	so	badly	that	while	he	certainly	needs	credit	for	his
work,	he	no	longer	bears	any	responsibility	for	their	failures.	Feel	free	to	rearrange	them



to	suit	your	environment	and	prejudices.	I	did.

HAST	Failover	Scripts

When	hastd	starts,	it	places	all	HAST	devices	in	init	mode.	They’re	ready	to	do	something,

as	soon	as	you	tell	them	what	to	do.	This	is	for	safety	reasons;	if	two	hosts	both	decide
that	they’re	the	primary	node	for	the	same	HAST	devices,	you	and	your	server	both
develop	a	split	brain	error.

When	you’re	designing	a	HAST-backed	failover	system,	remember	that	HAST
synchronizes	devices	in	serial,	rather	than	parallel.	A	host	must	synchronize	every	HAST
device	before	switching	roles.	If	a	host	has	eight	HAST	devices,	the	slowest	part	of	the
failover	process	will	take	eight	times	longer	than	it	would	with	only	one	device.

You	can	automatically	put	your	HAST	devices	in	the	secondary	role	safely,	however.	If
the	other	node	has	been	running	and	has	assumed	the	master	role,	everything	will	just
work.	If	both	nodes	boot	simultaneously,	they’ll	both	be	in	secondary	mode.	Services
won’t	be	up,	but	you	won’t	have	data	loss.	You	must	run	hastctl	after	hastd	starts,	however.

Here’s	a	very	stripped-down	rc.d	script	that	accomplishes	this.	I’ve	skipped	most	of	the
rcorder(8)	functions,	as	putting	your	HAST	devices	in	a	usable	state	isn’t	really	a	service.
#!/bin/sh

#

	

#	PROVIDE:	hastctl

#	REQUIRE:	hastd

	

hastctl	role	secondary	hast1

hastctl	role	secondary	hast2

Make	an	entry	for	each	of	your	HAST	devices.	Or	add	loops,	for	fancy.	If	you	have	so
many	HAST	devices	that	you	need	loops,	though,	reconsider	your	application	architecture.
It’s	best	to	put	any	ZFS	redundancy	below	the	HAST	devices.	Remember,	the	purpose	of
sending	ZFS	metadata	over	HAST	is	to	make	your	redundant	disk	slower.	Copy	this	script

to	/usr/local/etc/rc.d/hastctl	and	make	it	executable.1

These	failover	scripts	assume	that	your	ZFS	pools	have	the	same	name	as	your	HAST
resources.	Each	pool	should	have	only	one	device	beneath	it—remember,	any	redundancy
belongs	below	the	HAST	device.

If	you	use	UFS	with	HAST,	also	name	your	UFS	mount	points	after	your	HAST
resources.	Replace	the	zpool(8)	commands	with	calls	to	umount(8).



For	the	master-to-backup	script,	you	must	set	resources	to	the	name	of	your	HAST

resources.	You	also	must	identify	processes	to	stop.	In	this	example	I’ve	used	httpd,	and

stopped	it	by	using	service(8).	If	all	else	fails,	your	script	can	use	pkill	-9	to	terminate

processes	with	prejudice.	By	the	time	this	script	runs,	the	CARP	VHID	is	on	the	other
host.	This	machine	is	no	longer	providing	service.
#!/bin/sh

	

#	The	names	of	the	HAST	resources,	as	listed	in	hast.conf

#	Use	the	same	name	for	your	pool	or	mount	point

	

resources=“hast1	hast2”

	

#logging

log=“local0.debug”

name=“hast-carp-demote.sh”

	

#terminate	processes	here

	

service	httpd	stop

	

#end	of	user	configurable	stuff

#do	not	go	beyond	this	point

	

for	disk	in	${resources};	do

	
#forcibly	unmount	the	filesystem

	

zpool	export	-f	${disk}	2>&1

if	[	$?	-ne	0	];	then

logger	-p	$log	-t	$name	“Unable	to	export	the	pool	${disk}.”

exit	1

fi

	

#	Switch	roles	for	the	HAST	resources

hastctl	role	secondary	${disk}	2>&1

if	[	$?	-ne	0	];	then

logger	-p	$log	-t	$name	“Unable	to	switch	role	to	secondary	for	resource	${disk}.”

exit	1

fi

	

logger	-p	$log	-t	$name	“Role	switched	to	secondary	for	resource	${disk}.”

done

Copy	this	script	to	/usr/local/scripts/hast-carp-demote.sh	and	make	it	executable.

The	backup-to-master	script	below	also	requires	that	you	set	resources	to	the	name	of
your	HAST	resources.	This	script	doesn’t	actually	mount	any	filesystems.	Use	a	HAST
events	script,	as	shown	in	Chapter	9,	to	mount	the	filesystems.	Start	any	processes	either



in	the	HAST	events	script	or	at	the	end	of	this	script.
#!/bin/sh

	

#	The	names	of	the	HAST	resources,	as	listed	in	hast.conf

#	Use	the	same	name	for	your	pool	or	mount	point

	

resources=“hast1	hast2”

	

#logging

log=“local0.debug”

	

	

#end	of	user	configurable	stuff

#do	not	go	beyond	this	point

	

name=“hast-carp-promote.sh”

	

logger	-p	$log	-t	$name	“Switching	to	primary	provider	for	${resources}.”

	

	

#	Wait	for	all	“hastd	secondary”	processes	to	stop

	

for	disk	in	${resources};	do

while	$(	pgrep	-lf	“hastd:	${disk}	\(secondary\)”	>	/dev/null	2>&1	);

do

sleep	1

done

	
#	Switch	role	for	each	disk

hastctl	role	primary	${disk}

if	[	$?	-ne	0	];	then

logger	-p	$log	-t	$name	“Unable	to	change	role	to	primary	for	resource	${disk}.”

exit	1

fi

done

	

logger	-p	$log	-t	$name	“Role	for	HAST	resources	${resources}	switched	to	primary.”

	

#Let	HAST	script	mount	the	filesystem

	

service	httpd	start

Copy	this	script	to	/usr/local/scripts/hast-carp-promote.sh.

Test	your	scripts	as	described	at	the	beginning	of	this	section.	Once	you’re	confident
that	they	work,	you	can	edit	/usr/local/etc/devd/carp.conf	to	trigger	these	scripts

automatically.
notify	30	{

match	“system”	“CARP”;

match	“subsystem”	“[0-9]+@[0-9a-z]+”;



match	“type”	“MASTER”;

action	“/usr/local/scripts/hast-carp-promote.sh”;

};

	
notify	30	{

match	“system”	“CARP”;

match	“subsystem”	“[0-9]+@[0-9a-z]+”;

match	“type”	“BACKUP”;

action	“/usr/local/scripts/hast-carp-demote.sh”;

};

You	now	have	HAST-backed	failover.

iSCSI	Failover

iSCSI	failover	is	both	simpler	and	more	complicated	than	HAST-based	failover.	iSCSI-
backed	systems	are	far	more	flexible	than	HAST	and	allow	much	greater	expansion.	On
the	other	hand,	HAST	is	specifically	designed	as	a	failover	protocol.	Its	very	design	lets
you	verify	that	storage	is	not	in	use	before	mounting	it.	Any	number	of	hosts	can
simultaneously	attach	to	iSCSI	targets.	Multiple	hosts	simultaneously	mounting	a	UFS
partition	or	using	a	ZFS	pool	on	those	targets	will	corrupt	the	filesystem.	Not	might—will.
Those	accesses	might	even	panic	the	hosts,	corrupt	the	buffer	cache,	spread	the	problem	to
other	filesystems,	and	trigger	a	rain	of	frogs.	It	will	unquestionably	cause	meetings,	with
you	in	the	hot	seat.

Performing	iSCSI-based	failover	requires	a	protocol	specifically	designed	for	failover.
You	need	to	know,	conclusively,	that	the	other	host	is	not	using	the	disk	before	trying	to
import	it.	Fortunately,	we	have	one.	We’ll	use	HAST.	We	won’t	use	any	data	on	the	HAST
device,	but	rather	piggyback	on	the	HAST	protocol.	You	can	find	other	options,	including
failover	daemons	written	for	this	specific	purpose,	but	they	don’t	have	any	features	we
need,	and	HAST	is	included	in	the	base	system.

Start	by	creating	a	very	small	HAST	device.	I’m	using	a	10	MB	zvol	as	the	backing
store.
#	zfs	create	-V	10M	zroot/failover

With	a	HAST	device	like	this,	we	don’t	need	much	in	the	way	of	data	integrity.	The
presence	of	the	HAST	device	permits	mounting	the	filesystem,	not	any	data	stored	on	the
HAST	device.	Here’s	a	bare-bones	but	completely	sufficient	hast.conf	file.
resource	failover	{

on	www1	{

local	/dev/zvol/zroot/failover

remote	192.0.2.2

}



on	www2	{

local	/dev/zvol/zroot/failover

remote	192.0.2.1

}

}

As	with	any	HAST	environment,	you	must	have	a	solid	and	reliable	network	between
the	hosts.	A	crossover	cable,	as	many	other	failover	solutions	require,	would	certainly	not
be	amiss.	But	the	data	load	is	tiny,	so	you	might	be	fine	running	this	flag	through	the
primary	network	interface.	If	your	organization	has	invested	lots	of	money	in	a	big	iSCSI
array,	though,	you’ll	feel	really	embarrassed	if	a	bad	network	on	the	front	end	causes	ZFS
corruption	because	you	wanted	to	save	a	network	card.

You’ll	need	a	startup	script	to	put	the	HAST	device	in	a	backup	state	at	system	boot.
(See	“Cluster	Startup”	later	this	chapter	for	more	discussion	of	system	state	at	boot.)
You’ll	also	need	to	log	onto	the	iSCSI	targets.	The	cluster	startup	script
/usr/local/etc/rc.d/cluster	looks	like	this.
#!/bin/sh

#

	

#	PROVIDE:	cluster

#	REQUIRE:	hastd

	

hastctl	role	secondary	failover

iscsictl	-Aa

The	host	serving	as	HAST	primary	now	has	a	device	node,	/dev/hast/failover.	We’ll	use

the	presence	of	this	device	node	as	a	trigger	to	mount	or	import	the	iSCSI-backed
filesystem.

The	backup-to-master	iSCSI	script	must	first	check	to	see	if	the	host	still	thinks	it’s	a
HAST	backup	node.	Once	it’s	no	longer	acting	as	a	HAST	backup,	the	host	can	promote
itself	to	primary,	import	the	pools,	and	start	services.	You’ll	need	to	edit	this	script	to	name
your	pools	at	the	beginning,	and	start	services	at	the	end.
#!/bin/sh

	

pools=“data1	data2”

	

#logging

log=“local0.debug”

name=“iscsi-carp-promote.sh”

	

#main	script

logger	-p	$log	-t	$name	“Becoming	main	storage,	waiting	for	completed	export”

	

while	$(	pgrep	-lf	“hastd:	failover	\(secondary\)”	>	/dev/null	2>&1	);	do



sleep	1

done

	

hastctl	role	primary	failover

	

logger	-p	$log	-t	$name	“Clear	to	become	main	storage,	importing	${pools}.”

	

for	pool	in	${pools};	do

zpool	import	-f	${pool}

if	[	$?	-ne	0	];	then

logger	-p	$log	-t	$name	“Unable	to	import	${pool}.”

exit	1

fi

done

	

logger	-p	$log	-t	$name	“Pools	${pools}	imported.”

	

#start	your	services	here

	

service	httpd	start

Copy	this	script	to	/usr/local/scripts/iscsi-carp-promote.sh	and	make	it	executable.

The	master-to-backup	script	here	is	simpler,	and	requires	only	that	you	set	the	name	of
your	ZFS	pools	and	configure	commands	to	terminate	processes	using	those	pools.
Remember,	when	the	host	switches	to	backup	mode,	clients	are	no	longer	accessing	this

host.	You	can	ungracefully	kill	most	software	if	necessary.2

#!/bin/sh

	

#	The	names	of	the	ZFS	pools	available	on	iSCSI

	

pools=“data1	data2”

	

#logging

log=“local0.debug”

name=“iscsi-carp-demote.sh”

	

#terminate	processes	here,	forcibly	if	needed

	

service	httpd	stop

	

#end	of	user	configurable	stuff

	

for	pool	in	${pools};	do

	

#forcibly	unmount	the	filesystem

	

zpool	export	-f	${pool}	2>&1

if	[	$?	-ne	0	];	then

logger	-p	$log	-t	$name	“Unable	to	export	${pool}.”

exit	1



fi

	

logger	-p	$log	-t	$name	“Pools	${pool}	exported.”

done

	

#if	we	get	this	far,	we	signal	HAST	that	the	other	host	can	import.

	

hastctl	role	secondary	failover

logger	-p	$log	-t	$name	“HAST	demotion	triggered.”

Copy	this	script	to	/usr/local/scripts/iscsi-carp-demote.sh.	Test	your	failover	by	hand,	as

discussed	at	the	beginning	of	this	section.	Once	you’re	certain	they	work,	integrate	them
into	devd(8)	as	shown	here.
notify	30	{

match	“system”	“CARP”;

match	“subsystem”	“[0-9]+@[0-9a-z]+”;

match	“type”	“MASTER”;

action	“/usr/local/scripts/iscsi-carp-promote.sh”;

};

	
notify	30	{

match	“system”	“CARP”;

match	“subsystem”	“[0-9]+@[0-9a-z]+”;

match	“type”	“BACKUP”;

action	“/usr/local/scripts/iscsi-carp-demote.sh”;

};

You	now	have	live	failover	of	iSCSI-backed	systems.



Cluster	Startup

These	scripts	place	a	host	in	backup	mode	at	boot.	If	you	reboot	one	host	at	a	time,
everything	fails	over	correctly.	A	cold	start	of	both	nodes,	however,	is	more	problematic.
An	individual	system	has	no	way	to	tell	that	the	whole	cluster	has	been	cold	booted.

FreeBSD	starts	its	network	early	in	the	boot	process.	The	network	includes	CARP,	of
course.	It	starts	CARP	before	HAST	or	iSCSI	are	live.	Do	you	want	a	rebooting	server	to
automatically	claim	the	master	role	from	a	fully	functional	peer?	Probably	not—it	won’t
have	the	storage	ready,	or	its	applications,	or	even	SSH.	Debugging	a	troubled	server
means	rebooting	it	multiple	times.

When	both	nodes	boot	simultaneously,	I	recommend	having	a	third	party	decide	which
node	to	make	the	master.	This	third	party	might	be	you.	It	might	be	a	piece	of	software	on
another	machine.	Running	the	promote	script	on	the	select	master	node	should	bring	it	fully

up	and	initiate	the	failover.

Are	there	alternatives?	Sure.	They	all	boil	down	to:	what	risks	can	you	accept?	You
could	write	a	system	boot	script	to	enable	and	configure	CARP	well	after	the	host	boots.
You	could	declare	that	host	A	always	claims	the	master	role	when	it	boots.	Each	of	these
has	risks,	depending	entirely	on	your	environment	and	architecture.	Think	carefully,	and
choose	the	most	automated	solution	that	imposes	only	acceptable	risk.

To	really	dive	into	risk,	let’s	talk	about	Access	Control	Lists.

1	If	I	have	to	tell	you	how	to	make	a	file	executable,	you	should	not	be	implementing	highly	available	filesystems.

2	If	you	can’t	kill	this	particular	software	ungracefully,	it’s	probably	a	database.	And	I	warned	you	against	running
databases	on	filesystem-level	failover	back	in	Chapter	9,	so	I	have	a	complete	lack	of	sympathy	for	you.





Chapter	11:	NFSv4	Access	Control	Lists
Using	FreeBSD	as	a	storage	back	end	for	a	corporate	NFS	or	CIFS	file	store	requires
replicating	the	organization’s	structure	and	information	control	in	file	permissions.	The
traditional	Unix	user/group/everyone	model	just	won’t	cut	it.	You	need	an	access	control
model	that	lets	you	construct	permissions	and	privileges	any	way	you	need.

That’s	where	Access	Control	Lists,	or	ACLs,	come	in.

ACLs	let	you	select	from	a	list	of	privileges,	and	apply	them	to	any	system	user	or
group,	creating	rules	for	who	may	access	what.	You	want	a	file	readable	by	anyone	in	the
company,	but	editable	only	by	the	people	in	Billing,	except	for	Fred,	because	he	ticked	off
the	chief	accountant?	An	ACL	can	do	that.	Maybe	you	have	some	files	that	you	want	users
to	be	able	to	write	to,	but	not	delete.	That’s	an	ACL.	Or	perhaps	you	have	dozens	of	users,
each	of	whom	gets	slightly	different	access	to	a	specific	file.	An	ACL	can	do	that.	You’ll
go	totally	bonkers	from	administrative	overhead,	mind	you,	but	it’s	possible.

While	understanding	ACLs	is	pretty	straightforward,	the	actual	practice	of
implementing	and	managing	ACLs	quickly	gets	complicated.	The	reason	Windows	NTFS
ACLs	are	so	frequently	cursed	is	not	because	they’re	on	Windows.	It’s	because	people	use
ACLs	to	map	and	emulate	human	relationships,	and	human	relationships	often	merit
cursing.	Ponder	any	large	organization	you’re	a	member	of,	and	all	the	ways	different
groups	of	people	in	that	organization	want	to	offer	and	control	access.	Imagine	writing
rules	in	software	to	emulate	that.	Plus,	today’s	heroic	employee	is	tomorrow’s	scapegoat,
so	you’ll	have	to	redo	everything	at	random	intervals.

The	key	to	successful	ACL	management	is	simplicity.	Don’t	assign	ACLs	just	because
you	can.	Assign	them	only	when	needed.

ACLs	are	always	interpreted	on	the	local	host.	If	you’re	sharing	a	filesystem	via	NFS
or	Samba,	the	client	can	think	whatever	it	wants	about	the	mounted	share	and	can	issue
requests	accordingly.	The	server	interprets	any	ACL	itself,	though,	and	responds	to	the
client	as	the	ACL	dictates.



ACL	types

While	many	different	styles	of	Access	Control	Lists	have	been	implemented	over	the
years,	the	three	you’ll	encounter	most	often	today	are	POSIX,	NTFS,	and	NFSv4.

Portable	Operating	System	Interface	(POSIX)	is	a	set	of	standards	for	operating	system
interoperability.	One	proposed	POSIX	standard,	POSIX.1e,	describes	a	set	of	Access
Control	List	behaviors.	The	proposed	ACL	standard	underwent	several	revisions,	and
many	operating	systems	implemented	one	of	those	revisions.	Everyone	who	implemented
these	draft	ACLs	assumed	that	they’d	update	their	implementation	when	the	final	draft
became	a	standard.	At	the	end,	though,	POSIX.1e	was	not	adopted	as	a	standard.	All	of
these	operating	systems	thus	have	slightly	different	“POSIX”	ACL	implementations.
FreeBSD	supports	POSIX.1e	ACLs,	but	they’re	not	recommended,	and	so	I	don’t	cover
them.	Anything	that	can	be	implemented	with	a	POSIX	ACL	can	also	be	implemented
with	an	NFSv4	ACL.

Microsoft	created	NTFS	Access	Control	Lists.	The	NTFS	ACL	model	has	more
features	and	types	of	access	control	than	POSIX	ACLs,	and	is	widely	deployed	in
enterprise	environments.	Entries	in	an	NTFS	ACL	are	processed	in	order,	on	a	first-match
basis.

NFSv4	ACLs	were	created	as	part	of	the	NFS	version	4	negotiations.	They	closely
resemble	NTFS	ACLs,	and	were	specifically	created	to	allow	Unix-like	hosts	to	better
serve	Windows	clients.	They’re	so	close	that	NFSv4	ACLs	can	be	used	on	a	Samba	server
and	managed	via	Windows	security	tools.	Like	NTFS	ACLs,	entries	in	an	NFSv4	ACL	are
processed	in	order.	Unlike	other	ACLs,	each	privilege	is	checked	separately.	The	first
matching	rule	for	each	privilege	wins.	A	request	can	accumulate	its	needed	privileges
from	several	different	access	rules.	(See	“ACE	Ordering	and	Deny”	for	more	discussion.)
Also	like	NTFS,	NFSv4	ACLs	default	to	denying	access.	If	you	need	ACLs	on	FreeBSD,
use	NFSv4	ACLs.

FreeBSD’s	NFSv4	ACL	implementation	is	deliberately	modeled	after	that	found	in
OpenSolaris-derived	operating	systems.	The	management	interface	differs,	but	the	various
permissions	and	ACL	handling	traces	OpenSolaris	fairly	closely.	Other	operating	systems
implement	these	ACLs	differently.	Linux,	for	example,	implements	its	NFSv4	ACL
support	atop	POSIX	ACLs,	creating	something	compliant	enough	for	most	users.

This	chapter	does	not	cover	everything	there	is	to	know	about	NFSv4	ACLs.	The
NFSv4	specification	is	about	135,000	words,	or	almost	three	times	the	size	of	this	entire



book,	and	the	ACL	details	are	layered	throughout	it.	Much	of	that	is	written	in
pseudocode.	Converting	that	to	a	systems	administration	text	would	fill	many	volumes,
and	would	include	lots	of	stuff	a	sysadmin	doesn’t	need	(or	want!)	to	know.	The	goal	here
is	to	orient	you	to	how	NFSv4	ACLs	function	and	behave,	so	that	you	can	make	vaguely
sensible	design	decisions	and	have	a	reasonable	hope	of	identifying	and	solving	common
problems.



ACLs	and	Filesystems

All	ACL	implementations	require	support	in	the	underlying	filesystem.	UFS	supports
POSIX	and	NFSv4	ACLs.	Both	UFS	and	ZFS	support	NFSv4	ACLs,	but	they	behave
slightly	differently.	I’ll	give	the	details	in	“ACL	Inheritance”	later	this	chapter,	but	here
are	the	basics.

ZFS	is	preferable	for	NFSv4	ACLs,	and	ZFS	enables	them	by	default.	ZFS	offers	two
modes	of	passing	directory	ACLs	down	to	files	and	subdirectories.	Users	who	want	the
more	popular	way	of	inheriting	ACLs,	the	one	expected	by	Windows	clients,	need	to	set
the	properties	aclmode	and	aclinherit	to	passthrough	on	any	dataset	before	creating	any	files	or

directories	that	will	need	ACLs.	Set	this	value	before	creating	any	files	or	applying	any
ACLs.

You	can	use	NFSv4s	ACLs	on	UFS	filesystems.	UFS	filesystems	support	only	one
method	of	ACL	inheritance,	however,	and	while	it’s	the	less	popular	method,	it	might	do
for	you.	You	must	enable	ACLs	with	the	nfsv4acls	mount(8)	option.



ACL	Format

An	NFSv4	Access	Control	List	contains	a	list	of	Access	Control	Entries	(ACEs).	Each
ACE	describes	the	permissions	assigned	to	a	single	entity	such	as	a	user,	a	group,	or
everyone	on	the	system.	The	easiest	way	to	understand	ACLs	is	to	look	at	a	simple	one.
Use	getfacl(1)	to	view	the	ACL	on	a	file	or	directory.

Here	I	have	a	file	with	very	common	permissions.
#	ls	-l	file1

-rwxrw-r—	1	mwl	mwl	0	Nov	16	13:16	file1

I	have	not	assigned	any	special	ACLs	to	this	file.	The	owner	can	read,	write,	and
execute	the	file,	members	of	the	owning	group	can	read	and	write	the	file,	and	everyone
else	can	read	it.	Let’s	see	how	these	permissions	show	up	as	an	ACL.

#	getfacl	file1

#	file:	file1

#	owner:	mwl

#	group:	mwl

												owner@:rwxp--aARWcCos:-------:allow

												group@:rw----a-R-c--s:-------:allow

									everyone@:r-----a-R-c--s:-------:allow

Where	did	this	ACL	come	from?	It’s	built	out	of	the	standard	file	permissions.	Once	I
apply	an	actual	ACL	to	this	file,	the	filesystem	permissions	and	the	ACL	diverge.	This
ACL	contains	three	ACE	entries,	each	with	four	colon-separated	fields.

The	first	field,	the	ACL	tag,	gives	the	type	of	entity	this	ACE	applies	to.	The	tag	for
the	first	entry,	owner@,	says	that	this	ACE	is	for	the	file	owner.	The	second	ACE	tag,	group@,

means	this	ACL	is	for	the	group	owner,	while	the	third,	everyone@,	represents	everyone	on

the	system.	(“Everyone”	in	traditional	Unix	permissions	means	“everyone	except	the
owner	and	group	owner,”	while	in	NFSv4	ACLs	it	means	“everyone	including	the
owners.”)

The	second	field	gives	the	ACL	permissions	assigned	to	the	tag.	The	first	three
characters	of	each	should	look	familiar;	they’re	the	standard	Unix-style	permissions	for
this	user	or	group.	For	example,	the	tag	owner@	(representing	the	file	owner)	gets	rwx,	just	as

you	see	in	ls	–l.	These	get	a	whole	bunch	of	new	possible	settings,	though,	represented	by

the	jumble	of	letters	after	the	leading	three.	We’ll	see	what	privilege	each	letter	represents
in	“ACL	Permissions,”	later	this	chapter.

The	third	field	gives	any	inheritance	settings	for	the	files	and	directories.	Files	and
directories	can	inherit	ACL	settings	from	their	parent	directories	or	directories	above



them.	As	this	file	has	built	its	ACL	out	of	standard	Unix-style	permissions	and	there’s	no
ACL	on	the	parent	directory,	it	hasn’t	inherited	any	ACL-specific	information.

The	last	entry,	the	ACL	type,	says	that	matching	items	are	either	allowed	or	denied.

Now	let’s	look	at	a	file	with	an	ACL.
#	ls	-l	file2

-rwxrw-r—+	1	mwl	mwl	0	Nov	16	13:47	file2

Note	that	the	standard	Unix-style	permissions	are	identical	to	the	first	file	we	looked	at.
The	permissions	end	with	a	plus	(+)	sign,	however.	This	indicates	extended	permissions,	or

an	ACL.	Let’s	look	at	these	permissions.	I’m	adding	the	–q	flag,	to	eliminate	the

commented-out	information	at	the	top.

#	getfacl	–q	file2

										user:jkh:rwxp--aARWcCos:-------:allow

												owner@:rwxp--aARWcCos:-------:allow

												group@:rw-p--a-R-c--s:-------:allow

									everyone@:r-----a-R-c--s:-------:allow

These	permissions	are	very	similar	to	the	ones	for	file1,	but	the	ACL	has	an	extra

Access	Control	Entry.	The	first	non-commented	line	has	five	fields.	What	appears	as	the
first	field	in	the	later	entries	is	two	fields	here.

In	addition	to	the	owner@,	group@,	and	everyone@	tags	that	map	to	traditional	Unix

permissions,	the	tag	can	specify	a	user	or	a	group.	These	tags	are	followed	by	a	qualifier,
narrowing	down	exactly	who	this	ACE	applies	to.	The	first	entry	in	this	ACL	applies	to

the	user	jkh1.

Reading	this	ACL,	the	user	jkh	has	exactly	the	same	permissions	on	this	file	as	the	file

owner.	We	thus	have	four	groups	of	permissions	on	the	file,	something	normal	Unix
permissions	don’t	permit.

The	user	identification	part	of	an	ACE—either	the	tag	derived	from	Unix-style
permissions,	or	the	combination	of	a	tag	and	a	qualifier—is	called	a	principal.	Every	ACE
includes	a	principal,	permissions,	inheritance,	and	type.



ACL	Permissions

What	do	all	of	those	permissions	letters	mean,	anyway?	Let’s	dismantle	them	and	find	out.

Each	permission	can	be	represented	by	either	a	single	character	(such	as	x	or	c)	or	a

name	(such	as	execute	or	read_acl).	Remembering	what	all	these	letters	mean	is	annoying,

though.	If	you	use	the	–v	flag	to	getfacl(8),	you’ll	get	the	name	of	each	privilege	rather

than	the	letter	code.
#	getfacl	-qv	file2

	

user:jkh:read_data/write_data/execute/append_data/read_attributes/write_attributes/read_xattr/write_xattr/read_acl/write_acl/write_owner/synchronize::allow

…

Even	the	most	cryptic	names	are	slightly	easier	to	remember	than	single	letters.

You	can	use	the	long	names	in	commands,	rather	than	the	separate	letters.	Separate
long	names	by	slashes,	as	shown	above.	The	single-character	privileges	don’t	need	any
separators.

Here	are	the	privileges	grouped	by	general	functions:	reading,	writing,	deletion,	and
others.	We’ll	also	discuss	privilege	groups.

Read	Permissions

These	permissions	control	a	user’s	ability	to	access	information	in	a	file.

The	read_data	(r)	permission	controls	access	to	the	file’s	contents,	exactly	like	the

standard	Unix-style	read	permission.	This	permission	usually,	but	not	necessarily,	comes
with	access	to	all	the	other	read	privileges.

The	read_attributes	(a)	permission	determines	access	to	Unix-level	file	metadata,	such	as

the	inodes	and	size,	rather	than	the	file	contents.	If	a	principal	lacks	this	permission,	he
can	see	that	the	file	exists	by	using	ls(1),	but	requesting	details	with	ls	–l	generates	an

error.	The	user	can	see	that	the	file	exists,	but	nothing	about	the	file.	If	the	user	has	the
read_data	permission	but	lacks	read_attributes,	he	can	cat(1)	the	file,	but	not	view	the	file’s

size,	timestamp,	ACL,	and	so	on.

The	read_xattr	(R)	permission	is	ignored	on	FreeBSD	and	Solaris.	Theoretically,	it	lets

the	principal	read	extended	attributes	other	than	those	used	for	ACLs.	While	UFS	and	ZFS
do	have	extended	attributes	for	storing	special	data,	most	sysadmins	never	need	to	access
them.

The	read_acl	(c)	privilege	permits	reading	the	special	subset	of	extended	attributes	that



contain	ACL	data.	If	a	user	has	read_data	but	doesn’t	have	read_acl,	running	ls(1)	on	the	file

both	shows	the	file	and	gives	an	error.	The	ls	command	can’t	check	the	ACL	to	see	if	it

should	print	the	+	sign	after	the	permissions.	Perversely,	the	presence	of	the	error	is	a

giveaway	that	the	file	does	have	additional	attributes	that	the	user	is	not	allowed	to	see.

Write	Permissions

These	permissions	control	a	user’s	ability	to	change	a	file.

The	write_data	(w)	privilege	is	identical	to	the	standard	Unix-style	write	permission.	The

principal	can	change	the	file.	This	privilege	usually,	but	not	necessarily,	comes	with	all	of
the	other	write	permissions	as	well.

The	append_data	(p)	privilege	is	intended	to	allow	the	principal	to	add	data	to	the	end	of

the	file,	but	not	otherwise	change	it.	Both	OpenSolaris	and	FreeBSD	ignore	this	flag	on
files,	and	check	for	write_data	instead.	For	directories,	though,	append_data	lets	the	principal

create	a	subdirectory.	For	this	reason,	it’s	a	good	idea	to	always	assign	append_data	with

write_data.

The	write_attributes	(A)	permission	lets	the	principal	arbitrarily	change	the	access,

modification,	and	creation	timestamps	on	a	file.	A	user	who	can	write	to	a	file	could
programmatically	change	all	of	the	timestamps	on	a	file	to,	say,	23	February	1972,	without
otherwise	accessing	the	file.	Lacking	this	privilege	doesn’t	mean	that	these	times	don’t
change	when	the	user	accesses	the	file;	rather,	it	means	that	the	user	can’t	change	them	by
means	other	than	accessing,	modifying,	or	creating	the	file.

The	write_xattr	(W)	privilege	is	ignored	on	FreeBSD	and	Solaris.	(In	theory,	it	would

allow	the	principal	to	write	extended	attributes	on	the	file,	other	than	ACLs.)

The	write_acl	(C)	privilege	allows	the	principal	to	edit	the	ACLs	on	a	file.

The	write_owner	(o)	privilege	permits	changing	ownership	on	the	file.	Without	this

privilege,	chown(8)	and	chgrp(1)	will	not	work.	It’s	disabled	for	normal	users,	for	security
reasons.	You	don’t	want	users	giving	executable	scripts	to	root.

Deletion	Permissions

You	can	use	ACLs	to	remove	the	ability	to	delete	a	file,	through	the	delete	and	delete_child

privileges.

The	delete_child	(D)	privilege	controls	a	principal’s	ability	to	delete	files	within	a



directory.	By	denying	this	privilege,	you	make	the	files	within	a	directory	non-deletable.

The	delete	(d)	privilege	controls	a	principal’s	ability	to	remove	a	file.	Normally,	this

comes	along	with	the	ability	to	write	to	the	file,	and	so	it’s	not	generally	granted.	Use
delete	when	you	want	to	override	delete_child	on	a	specific	file	in	a	directory.

So,	a	directory	can	declare	all	of	the	files	in	it	irremovable,	except	for	files	specifically
marked	removable.	Any	user	that	can	change	the	ACL	on	the	file	can	add	the	delete

privilege,	so	you’ll	need	to	block	that	access	as	well	if	you	want	files	to	be	unmovable.

This	sort	of	thing	is	why	so	many	sysadmins	drink.

Other	Permissions

These	two	permissions	don’t	really	fit	in	anywhere	else.

The	execute	(x)	permission	lets	the	user	run	the	file	as	a	program	or	open	a	directory.	It’s

the	same	as	assigning	the	execute	bit	with	chmod(8).	I	would	still	encourage	you	to
manage	access	to	a	program	with	groups	rather	than	individuals,	but	using	an	ACL	will	let
you	give	multiple	groups	execute	permission.	Just	as	with	chmod(8),	denying	execute
permission	on	an	interpreted	script	(such	as	a	shell	or	Perl	script)	doesn’t	prevent	the	user
from	running	the	script	by	calling	it	as	an	argument	to	the	interpreter.	You	can	disallow
someone	from	running	/home/mwl/script.sh,	but	if	they	can	read	the	file,	they	can	run	/bin/sh

/home/mwl/script.sh.

The	synchronize	(s)	permission	is	ignored	on	FreeBSD	and	OpenSolaris-derived	systems.

It	lets	a	file	be	accessed	synchronously	at	the	server	and	at	the	client	simultaneously,
which	happens	anyway	as	part	of	the	filesystem.

Permission	Sets

Some	of	these	permissions	make	sense	to	be	granted	or	revoked	en	masse.	If	a	user	should
be	able	to	write	to	a	file,	you’ll	want	him	to	have	all	the	privileges	needed.	Reading	a	file
without	errors	requires	the	ability	to	see	the	file	metadata.	That’s	where	the	permission
sets	come	in.	Permission	sets	have	no	single-character	representations.

The	full_set	includes	all	permissions.	The	principal	is	allowed	or	denied	access	to

everything.

The	modify_set	grants	the	principal	everything	except	write_acl	and	write_owner.	He	cannot

change	file	ownership	or	the	ACL	on	the	file,	but	he	can	modify	it	any	other	way.



The	read_set	gives	the	principal	the	ability	to	read	the	file,	its	metadata,	its	ACL,	and

any	extended	attributes.

Finally,	write_set	lets	the	user	write	to	the	file,	its	metadata,	and	its	extended	attributes,

but	not	its	ACL.

Implicit	ACEs	for	Owner

The	file	owner	always	gets	the	rights	read_acl,	write_acl,	read_attributes,	and	write_attributes,

even	if	they	don’t	appear	in	any	ACE	in	the	ACL.	Users	cannot	lock	themselves	out	of
their	own	files—that	takes	a	sysadmin.



Setting	ACLs

Now	that	you	have	some	idea	what	these	ACL	privileges	mean,	let’s	apply	some.	Use
setfacl(8)	to	edit	ACLs.

ACE	order	is	crucial	in	interpreting	ACLs,	as	discussed	in	“ACL	Ordering	and	Deny”
later	this	chapter.	Many	changes	require	that	you	pick	a	spot	to	insert	a	new	ACE,	or	pick
the	number	of	an	ACE	you	want	to	remove.	ACEs	in	an	ACL	are	numbered	starting	with
0,	just	like	chapters	in	this	book.

Adding	ACEs

Use	the	–a	flag	to	add	an	Access	Control	Entry	to	an	ACL.	This	flag	takes	two	arguments:

the	rule	number	where	you	want	this	ACE	inserted	and	the	ACE	itself.	You	can	give
multiple	ACEs,	separated	by	commas.	Multiple	ACEs	will	be	inserted	in	the	order	you
give.	Then	give	the	file	to	be	changed.

Here’s	the	original	ACL	for	our	example	file.

#	getfacl	-q	file2

										user:jkh:rwxp--aARWcCos:-------:allow

												owner@:rwxp--aARWcCos:-------:allow

												group@:r-----a-R-c--s:-------:allow

									everyone@:r-----a-R-c--s:-------:allow

The	ACE	for	the	user	jkh	is	identical	to	that	of	the	file	owner.

I	need	to	give	the	user	phk2	the	same	privileges	as	the	user	jkh,	so	I	copy	his	ACE	and

change	the	principal,	removing	the	dashes	because	I	can.	When	adding	ACEs,	you	can
abbreviate	user	as	u.	I	want	to	insert	this	ACE	at	line	1.
#	setfacl	-a	1	u:phk:rwxpaARWcCso::allow	file2

This	file	now	has	the	following	ACL.

										user:jkh:rwxp--aARWcCos:-------:allow

										user:phk:rwxp--aARWcCos:-------:allow

												owner@:rwxp--aARWcCos:-------:allow

												group@:r-----a-R-c--s:-------:allow

									everyone@:r-----a-R-c--s:-------:allow

Users	phk	and	jkh	have	the	exact	same	privileges,	which	will	probably	annoy	both	of

them.

Managing	ACLs	on	a	per-user	basis	is	poor	practice.	Ideally,	we’d	have	a	system	group
for	the	role	fulfilled	by	phk	and	jkh.	Otherwise,	your	ACLs	get	very	large	very	quickly.	Any



time	a	person	changes	job	roles,	you	need	to	change	the	ACLs	on	however	many	files	that
user	had	access	to.	Managing	everything	with	groups,	even	if	the	group	starts	with	only
one	person	in	it,	is	far	more	sustainable	and	much	less	likely	to	drive	the	sysadmin
bonkers.	When	adding	an	ACE,	you	can	abbreviate	group	as	g.	Here	I’ve	created	a	system

group	for	phk	and	jkh,	and	am	adding	a	group	ACE	for	their	access.	Rather	than	using	the

whole	list	of	permissions,	I’m	using	the	privilege	set	full_set.
#	setfacl	-a	1	g:vermin:full_set::allow	file2

Now	that	their	privileges	are	expressed	via	a	group	ACE,	I	need	to	remove	their
individual	ACEs.

Removing	ACEs

Use	the	–x	flag	to	remove	an	ACE	from	an	ACL.	You	either	need	the	ACE	itself,	or	the

rule	number	of	the	ACE.	Remember,	ACEs	start	numbering	at	0.	Here’s	our	sample	ACL
now.

#	getfacl	–q	file2

										user:jkh:rwxp--aARWcCos:-------:allow

						group:vermin:rwxp--aARWcCos:-------:allow

										user:phk:rwxp--aARWcCos:-------:allow

												owner@:rwxp--aARWcCos:-------:allow

												group@:r-----a-R-c--s:-------:allow

									everyone@:r-----a-R-c--s:-------:allow

To	delete	a	rule	by	the	ACE,	give	the	ACE	as	an	argument	to	–x.	You	can	delete	any

dashes,	and	you	can	abbreviate	user	as	u.	Here	I	fry	the	access	for	user	jkh	by	specifying	his

ACE.
#	setfacl	-x	u:jkh:rwxpaARWcCos::allow	file2

This	ACE	is	no	longer	in	the	ACL.

I	find	it	much	easier	to	remove	ACEs	by	number,	rather	than	typing	in	the	whole	ACE
at	the	command	line.	In	the	list	above,	the	rule	allowing	phk	access	is	rule	2.	I	removed	an

earlier	rule,	however,	shifting	all	the	rules	up	by	one	space.	ACE	2	is	now	the	one	that
gives	the	file	owner	access.	Removing	it	will	annoy	the	file	owner.	Always	double-check
the	ACL	before	removing	rules	by	number.
#	setfacl	-x	1	file2

User	phk	no	longer	has	a	personal	ACE.

To	completely	wipe	out	the	ACL,	burning	it	to	the	ground	until	only	traditional	Unix
privileges	remain,	use	setfacl	–b.



#	setfacl	-b	file2

You	can	now	start	over	and	try	to	do	it	right	this	time.

You	can	also	use	the	–m	flag	to	edit	an	ACL.	The	–m	flag	automatically	puts	the	new

ACEs	at	the	beginning	of	the	list	and	modifies	existing	ACEs	to	match	the	ACE	on	the
command	line.	Using	–m	is	discouraged,	as	–a	and	–x	are	much	more	precise.	It’s	not	that

the	effect	of	–m	is	random,	rather	that	the	effect	of	–m	feels	random	for	anyone	not

intimately	familiar	with	its	innards.

ACL	Files

You	can	apply	an	ACL	from	a	file,	or	copy	the	ACL	on	a	file	to	another	file.	Storing	an
ACL	in	a	file	is	as	simple	as	running	getfacl(8)	and	redirecting	the	output	to	a	file.	It	might
make	sense	to	add	the	–q	flag,	eliminating	the	commented	information.
#	getfacl	-q	file2	>	acl1

You	can	then	apply	this	ACL	to	another	file	by	using	the	–M	option	to	setfacl(8).	Use	the

file	containing	the	ACL	as	an	argument	to	–M.	This	adds	any	new	entries	to	the	beginning

of	the	target	file’s	ACL.	Here,	I	apply	the	ACL	in	the	file	acl1	to	file4.
#	setfacl	-M	acl1	file4

This	would	allow	you	to	set	a	common	ACL	on	every	file	in	a	directory,	but	using
inheritance	for	managing	directories	is	much	easier,	as	discussed	later	this	chapter.

Adding	ACEs	to	an	ACL	gets	tricky	when	a	file	already	has	an	ACL	with	some	of
those	same	principals.	The	easiest	thing	to	do	is	remove	the	old	ACL	before	applying	the
new	one,	using	the	–b	flag	before	the	-M.
#	setfacl	-b	-M	acl1	file4

If	the	–b	appears	after	–M,	setfacl	applies	the	new	ACL	and	immediately	blows	it	away.

Just	skip	–M	if	that’s	what	you	want	to	do.

But	what	if	you	don’t	want	to	blow	away	the	old	ACL,	but	rather	merge	the	two?
Here’s	the	ACL	on	a	file.

						group:vermin:rwxp--aARWcCos:-------:allow

												owner@:rwxp--aARWcCos:-------:allow

												group@:r-----a-R-c--s:-------:allow

									everyone@:r-----a-R-c--s:-------:allow

The	group	vermin	has	complete	access	to	this	file.	But	here’s	an	ACL	I	want	to	add.

												owner@:rwxp--aARWcCos:-------:allow

						group:vermin:r-x---a-R-c--s:-------:allow



							group:wheel:rw-p--aARWcCos:-------:allow

				group:operator:r-xp--a-R-c---:-------:allow

												group@:r-----a-R-c--s:-------:allow

									everyone@:r-----a-R-c--s:-------:allow

This	ACL	gives	access	to	new	principals,	the	wheel	and	operator	groups.	But	it	has

conflicting	rules	for	the	vermin	group.	The	file’s	original	ACL	gives	vermin	full	access,	while

in	the	new	ACL	vermin	has	only	read	and	execute	access.	Let’s	apply	the	ACL	and	see	what

happens.

#	setfacl	-M	acl2	file4

#	getfacl	–q	file4

							group:wheel:rw-p--aARWcCos:-------:allow

				group:operator:r-xp--a-R-c---:-------:allow

						group:vermin:r-x---a-R-c--s:-------:allow

												owner@:rwxp--aARWcCos:-------:allow

												group@:r-----a-R-c--s:-------:allow

									everyone@:r-----a-R-c--s:-------:allow

The	new	ACEs	granting	wheel	and	operator	access	appear	at	the	front	of	the	ACL,	even

though	they	appeared	in	the	middle	of	the	ACL	file.	The	ACE	for	vermin	has	been

overwritten	with	the	ACE	from	the	file.

NFSv4	ACLs	really	want	the	owner,	group	owner,	and	everyone	permissions	to	appear
at	the	end	of	the	ACL.	You	can	put	these	rules	in	your	ACL-in-a-file	anywhere	you	like,
but	when	you	apply	the	ACL	to	a	file	they’ll	be	automatically	shifted	to	the	end.
Remember,	NFSv4	ACLs	work	on	a	per-privilege	first-match	basis.	The	old-fangled	Unix-
style	permissions	are	the	last	stop	before	the	implicit	“nope”	at	the	end.

What’s	more,	managing	ACLs	on	a	file-by-file	basis	is	also	a	last	resort.	You	want	files
to	inherit	their	ACLs.



ACL	Inheritance

ACL	management	is	normally	performed	on	a	per-directory	basis.	You	set	an	ACL	on	a
directory,	and	tell	it	that	all	files	and	directories	within	that	directory	inherit	the	ACL.
When	you	need	to	change	the	ACL,	change	it	at	the	directory	and	it	automatically
percolates	down	through	the	filesystem.

Strictly	speaking,	inheritance	is	a	feature	standardized	in	NFS	4.1,	while	the	rest	of	the
ACL	implementation	comes	from	the	NFS	4	specification.	Inheritance	is	compatible	with
NFS	4,	however,	and	it’s	an	important	feature.

Inheritance	Styles

NFSv4	ACLs	have	two	different	primary	inheritance	models,	and	a	few	less	widely	used
ones.	We’ll	talk	about	the	popular	ones	separately,	then	dive	into	the	lesser-known	ones.

The	default	inheritance	model	combines	the	user’s	umask	with	the	inherited	ACL	to	set
permissions	and	privileges	on	newly	created	files	and	directories.	The	owner	loses	the
write_owner	and	write_acl	privileges	on	any	inherited	ACL,	meaning	that	they	can’t	change

the	file	permissions	with	chmod(8).	This	retains	much	of	the	traditional	Unix	model,
where	the	user	adjusts	their	umask	to	set	permissions.	Microsoft	clients	have	no	concept	of
a	umask,	and	CIFS	servers	like	Samba	can’t	make	reasonable	guesses	on	what	umask	it
should	use	for	all	the	different	files	and	directories	it	creates.	Using	this	model	completely
confuses	users.

In	addition	to	the	default	model,	ZFS	supports	a	passthrough	mode.	This	ignores	the
user’s	umask	and	simply	propagates	a	directory’s	ACL	down	to	files	and	subdirectories.	If
you’re	serving	Windows	clients,	you	almost	certainly	want	passthrough	mode.	To	enable
passthrough	mode,	set	the	ZFS	properties	aclmode	and	aclinherit	to	passthrough.
#	zfs	set	aclmode=passthrough	zroot

#	zfs	set	aclinherit=passthrough	zroot

Change	these	settings	before	creating	any	files	or	directories,	especially	for	Windows
clients.

Inheritance	Options

You	can	adjust	a	ZFS	dataset’s	aclinherit	property	to	dictate	how	inheritance	functions.

While	passthrough	mode	is	the	most	popular,	other	options	might	fit	special	situations.

The	default,	restricted,	strips	any	inherited	write_owner	and	write_acl	permissions	on	new

files	and	directories.	Only	the	file	owner	can	change	the	ACL	of	their	own	files.	The



inherited	ACL	cannot	assign	privileges	beyond	those	permitted	by	the	user’s	umask.

To	disable	all	ACL	inheritance	on	newly	created	files	and	directories,	set	aclinherit	to

discard.

If	we	set	aclinherit	to	noallow,	new	files	and	directories	inherit	only	deny	ACEs.	An

outside	process	must	assign	any	allow	ACEs.

Setting	aclinherit	to	passthrough	ignores	umask,	creating	files	with	Unix-style

permissions	based	on	the	ACLs.

Lastly,	an	aclinherit	value	of	passthrough-x	restricts	execute	permissions	on	new	files.	If

an	inheritable	ACE	includes	execute	permission,	and	the	umask	permits	creating
executable	files,	new	files	inherit	the	executable	permission.

Mode	Options

The	aclmode	property	dictates	how	chmod(8)	can	change	the	file’s	permissions.

An	aclmode	setting	of	groupmask	makes	the	user’s	umask	the	maximum	permissions	level	a

file	can	have.	See	“Umask	and	ACL	Inheritance”	later	this	chapter	for	a	full	discussion.

Having	aclmode	set	to	discard	lets	chmod(8)	remove	all	ACL	information.

An	aclmode	of	passthrough	sends	the	ACL	straight	through	to	new	files.

Inheritance	Flags

You	can	dictate	exactly	how	a	directory	propagates	its	ACL	by	using	inheritance	flags.
You	remember	that	next-to-last	field	in	each	ACE	that’s	always	been	dashes?	Here’s
where	we	fill	that	in.	These	flags	can	only	be	placed	on	directories,	not	on	individual	files.
As	with	privilege	flags,	you	cannot	mix	names	and	letters.

The	file_inherit	(f)	flag	means	that	all	files	within	the	directory	inherit	the	ACL	on	the

directory.

The	dir_inherit	(d)	flag	means	that	the	directory’s	subdirectories	inherit	the	directory’s

ACLs.

The	inherit_only	(i)	flag	means	that	newly	created	directories	and	files	within	the

directory	get	this,	but	this	ACL	doesn’t	apply	to	this	directory.	This	gets	applied	if,	say,	the
files	in	the	directory	have	loose	permissions	but	you	don’t	want	anyone	to	delete	the
directory	itself.



The	no_propagate	(n)	flag	tells	the	directory	to	add	its	ACL	to	child	directories,	but	not

their	children.

While	only	directories	can	have	these	inheritance	flags,	you	will	see	one	inheritance
flag	on	files.	The	inherited	(I)	flag	means	that	the	ACL	on	this	file	or	directory	was

inherited.	This	flag	is	only	supported	in	FreeBSD	11	and	later.

Files	and	directories	inherit	their	ACLs	when	they’re	added	to	the	filesystem.	On	a	file
server,	this	might	be	when	a	user	uploads	a	document.	For	local	users,	it’s	at	file	creation
time.

Directories	and	Inheritance

Let’s	apply	an	ACL	to	a	directory	and	add	some	files.	We’ll	start	with	the	common	case,	a
ZFS	dataset	with	ACLs	in	passthrough	mode.	Note	that	while	I	use	the	full	name	of	a
privilege	set,	I	use	the	letters	for	the	inheritance	options.	I	can’t	mix	full	names	of
privileges	with	letter	privileges,	or	the	full	names	of	inheritance	options	with	letters,	but	I
can	use	different	methods	for	privilege	and	inheritance.

#	mkdir	support

#	setfacl	-a0	g:vermin:full_set:fd:allow	support/

#	getfacl	–q	support

						group:vermin:rwxpDdaARWcCos:fd-----:allow

												owner@:rwxp--aARWcCos:-------:allow

												group@:r-x---a-R-c--s:-------:allow

									everyone@:r-x---a-R-c--s:-------:allow

My	system	group	vermin	has	full	access	to	this	directory.	The	f	(file_inherit)	and	d

(dir_inherit)	inheritance	flags	tell	the	system	to	apply	this	same	ACL	to	any	files	and

subdirectories.

User	phk	uploads	a	file,	phones.docx,	containing	instructions	on	how	to	set	up	new	phones.

He	doesn’t	do	anything	special	to	the	file.	Get	its	ACL.

#	getfacl	-q	phones.docx

						group:vermin:rwxpDdaARWcCos:------I:allow

												owner@:rw-p--aARWcCos:-------:allow

												group@:r-----a-R-c--s:-------:allow

									everyone@:r-----a-R-c--s:-------:allow

The	ACL	on	this	file	differs	from	that	on	the	directory	only	by	the	inheritance	flags.
The	I	means	that	this	ACL	is	inherited.

If	a	user	in	this	group	creates	a	subdirectory,	it	will	get	the	same	ACL,	plus	the	f	and	d

inheritance	flags.



#	mkdir	serverroom

#	getfacl	-q	serverroom/

						group:vermin:rwxpDdaARWcCos:fd----I:allow

												owner@:rwxp--aARWcCos:-------:allow

												group@:r-x---a-R-c--s:-------:allow

									everyone@:r-x---a-R-c--s:-------:allow

Files	within	this	new	subdirectory	will	get	the	same	ACL.	User	jkh	uploads	the

document	alarms.docx	to	the	serverroom	directory,	recording	what	to	do	the	next	time	he	sets

off	the	alarm.	It	gets	the	same	ACL	as	the	file	above	it.

Changing	ACLs	and	Inheritance

ACL	inheritance	kicks	in	at	file	and	directory	creation	time.	Let’s	see	how	that	affects	the
system	in	practice.	Here	I	change	the	inheritance	so	that	ACLs	do	not	propagate	to	files
within	subdirectories,	by	adding	the	n	inheritance	flag.	I	also	give	everyone	in	the	staff

group	read-only	access.
#	setfacl	-a0	g:vermin:full_set:fdn:allow	support

#	setfacl	-x	1	support/

#	setfacl	-a0	g:staff:read_set:fdn:allow	support

Now	check	an	existing	file	in	the	support	directory,	such	as	phones.docx,	and	you’ll	see

the	ACL	is	unchanged.	The	staff	group	can’t	read	this	file.	Create	a	new	file	like

keycards.docx,	though,	and	it	has	the	new	ACL.

#	getfacl	-q	keycards.docx

							group:staff:r-----a-R-c---:------I:allow

						group:vermin:rwxpDdaARWcCos:------I:allow

												owner@:rw-p--aARWcCos:-------:allow

												group@:r-----a-R-c--s:-------:allow

									everyone@:r-----a-R-c--s:-------:allow

That	seems	simple	enough,	but	subdirectories	are	slightly	less	intuitive.	I	turned	off	the
“propagate	to	files	in	subdirectories”	inheritance	option,	so	let’s	go	to	the	subdirectory
serverroom	and	see	what	happens	there.	The	existing	file,	alarms.docx,	has	the	same	ACL	as

when	we	created	it.

Create	a	new	file	in	the	serverroom	directory,	racks.docx.	Check	its	ACL,	and	you’ll	find	it

has	the	same	ACL	as	the	old	file	alarms.docx.	Those	ACLs	aren’t	supposed	to	propagate	any

more—what	happened?

The	top	level	directory	had	an	ACL	change	that	said	to	not	propagate	ACLs	to	files	in
subdirectories,	but	the	subdirectory	serverroom	already	existed.	Directories	inherit	their

ACLs	at	creation	time.	The	change	to	the	top-level	directory	did	not	propagate	to	the



subdirectory,	so	the	subdirectory	retains	its	own	ACL.

If	you	create	a	new	subdirectory,	it	will	inherit	the	new	ACL	from	the	parent	directory.
Files	in	that	new	subdirectory	will	not	inherit	the	ACL.

This	is	no	different	than	you’d	experience	on	a	Microsoft	system.	Changing	the	ACL	in
a	directory	and	having	it	propagate	to	the	entire	directory	tree	rooted	there	causes	a	lot	of
disk	churn	as	the	system	touches	every	single	file.	Recursively	changing	the	ACLs	on	a
whole	ZFS	directory	tree	probably	requires	two	find(1)	commands:	one	for	the	files,	and	a
separate	one	for	the	directories.	You’re	best	off	reading	the	ACL	from	a	file	with	-M,	and

removing	the	existing	ACL	with	–b	before	applying	the	new	one.

Umask	and	ACL	Inheritance

If	you’re	using	ACLs	on	UFS,	or	you	don’t	want	to	use	ZFS’	passthrough	mode,	the	user’s
umask	gives	the	upper	limit	on	permissions	in	an	ACL.	If	you’re	not	familiar	with	umask
and	permissions	at	file	creation	time,	go	read	umask(2)	and	any	number	of	tutorials	on	the
Internet.	Every	systems	administrator	must	understand	umask	before	even	beginning	to
ponder	thinking	about	implementing	ACLs.

The	default	FreeBSD	umask	is	022,	meaning	that	files	get	created	with	a	mode	that	the
owner	can	read	and	write	them,	while	the	group	owner	and	everyone	else	can	only	read
them.	If	you’re	using	this	umask	and	create	a	file,	those	are	the	maximum	permissions	the
file	can	have.	If	your	inherited	ACL	says	“this	other	group	should	have	read	and	write
access	to	the	file,”	and	your	umask	says	“everybody	else	gets	read-only	access	to	a	file	I
create,”	the	umask	wins.

FreeBSD	gives	users	a	default	umask	of	022	for	very	good	reasons.	In	some	cases	it
might	make	sense	to	increase	the	umask—on	some	shared	systems	I	set	my	umask	to	027,
so	that	random	system	users	can’t	view	the	contents	of	my	files.	It	rarely	makes	sense	to
lower	your	umask.

If	you	don’t	use	ZFS’s	ACL	passthrough	features,	you’ll	need	to	reduce	your	umask	to
0	when	working	within	an	ACL-protected	part	of	the	directory	tree,	then	increase	it	back
to	022	when	you’re	done.	I	can’t	be	bothered	to	remember	to	do	that,	not	when
passthrough	mode	handles	it	for	me.



ACE	Ordering	and	Deny

NFSv4	ACLs	are	processed	on	a	first-match	basis.	A	match	doesn’t	trigger	the	whole
ACE,	however.	Rather,	each	permission	gets	checked	separately.	Consider	the	following
file.
#	touch	daft

#	chmod	157	daft

#	ls	-l	daft

–xr-xrwx	1	mwl	mwl	0	Nov	19	14:55	daft

This	really	is	a	daft	file.	It’s	executable	by	the	owner.	It’s	readable	and	executable	by
the	group	owner.	And	it’s	writable,	readable,	and	executable	by	everyone	except	the

owners.	You	would	almost3	never	do	this	in	the	real	world.

#	getfacl	–v	daft

												owner@:rw-p----------:-------:deny

												group@:-w-p----------:-------:deny

												owner@:--x---aARWcCos:-------:allow

												group@:r-x---a-R-c--s:-------:allow

									everyone@:rwxp--a-R-c--s:-------:allow

This	is	the	first	time	I’ve	shown	a	deny	ACE	in	an	ACL,	so	let’s	touch	on	that	quickly.

Generally	speaking,	deny	ACEs	should	appear	at	the	beginning	of	the	ACL.	Microsoft

clients	in	particular	throw	a	hissy	fit	when	deny	statements	appear	intermixed	with	allow

statements.	The	only	deny	ACE	that	commonly	appears	after	an	allow	is	the	implicit	one	at

the	very	end.	Some	ACLs	don’t	permit	putting	all	of	the	deny	statements	at	the	beginning
of	the	file,	though.	Run	chmod	00101	on	a	file	and	look	at	the	ACL.

When	a	principal	tries	to	access	a	file,	each	privilege	it	tries	to	use	gets	checked
separately.	Each	check	“drops	down”	through	the	ACL	until	it	hits	a	match	of	principal
and	privilege.

Suppose	the	file	owner	wants	to	execute	the	daft	file.	The	principal	on	the	first	ACE	is

the	owner.	This	ACE	specifically	forbids	reading	and	writing,	but	says	nothing	about
execution.	We	check	the	next	ACE,	and	the	next,	until	an	ACE	permits	execution,	an	ACE
explicitly	denies	execution,	or	we	hit	the	terminal	implied	deny.

This	example	looks	trivial,	but	the	same	theory	applies	to	complex	ACLs.	A	user	might
get	access	to	one	privilege	as	a	member	of	one	principal,	then	a	second	privilege	as	a
member	of	another	principal.	Each	individual	privilege	check	falls	through	the	ACL	until
it	is	either	granted	to	the	user	or	blocked.



ACLs	and	Samba

NFSv4	ACLs	are	most	commonly	deployed	on	Samba	4	servers	(http://www.samba.org),
as	storage	back	ends	for	CIFS	clients.	Here	are	a	few	things	that	commonly	trip	up	these

sysadmins,	courtesy	of	John	Hixson4,	the	FreeNAS	support	guy	who	answers	most	ACL
questions.

Always	use	ZFS.	Once	you	have	ZFS,	always	set	aclmode	and	aclinherit	to	passthrough	on

datasets	for	Samba.

Do	not	use	world-writable	files	(mode	777),	or	use	a	umask	of	000.	If	you	do,	you	will
suffer.

Windows	Search	on	directories	requires	allow	on	at	least	the	rxaRc	privileges.

ACLs	can	get	far	more	complicated	than	the	examples	in	this	chapter.	Remember,
simplicity	is	the	key	to	successful	ACL	deployment.	Good	luck.

After	ACLs,	FUSE	and	autofs	will	seem	positively	trivial.

1	All	usernames	are	randomly	generated.	Any	resemblance	to	primordial	FreeBSD	core	team	members,	living	or	dead,	is
purely	coincidental.

2	Still	a	coincidence.

3	I	would	say	“absolutely	never,”	but	then	some	annoying	clever	reader	would	tell	me	exactly	why	they	used	this.

4	Hixson	would	also	like	it	known	that	no	user	named	jkh	should	ever	get	access	to	anything,	ever.





Chapter	12:	Filesystem	Glues
This	last	chapter	covers	a	couple	different	tools	that	aren’t	exactly	filesystems,	but
simplify	working	with	filesystems:	FUSE	and	autofs(5).

FUSE,	or	Filesystem	in	Userspace,	lets	users	manage	filesystems,	mount	filesystems
not	supported	by	the	FreeBSD	kernel,	and	transform	their	own	data	to	be	accessible	in	a
filesystem-like	manner.

The	automounter	filesystem	autofs(5)	can	automatically	mount	filesystems	for	you,
either	via	NFS	or	when	physically	attached	to	the	system.

We’ll	start	with	FUSE,	and	proceed	to	autofs.



FUSE

Filesystem	in	Userspace,	or	FUSE,	presents	a	way	for	userland	programs	to	handle	and
process	unusual	filesystems.	FUSE	programs	run	as	user	processes,	interpreting	data	and
handing	the	kernel	predigested	memory	structures	so	the	kernel	can	present	the	filesystem
to	the	system.	This	allows	a	userland	program	to	provide	filesystem	support	to	the	kernel.

A	filesystem	can	be	more	than	just	a	place	to	stick	data.	Filesystems	can	also	be	useful
tools	for	accessing	data	in	novel,	unexpected	ways.	Consider	devfs	(Chapter	2),	which
FreeBSD	uses	to	let	programs	access	hardware	through	a	filesystem.	Optional	tools	like
fdescfs	and	mqueuefs	(Chapter	3)	let	you	access	kernel	memory	structures	as	a	filesystem.
But	many	users	could	benefit	from	exposing	their	own	data	in	ways	you	can’t	even	guess
at.

FUSE	also	supports	interesting	data	transformations,	such	as	mounting	a	filesystem
over	SSH.	The	FreeBSD	developers	would	never	permit	an	SSH	client	in	the	kernel,	but
since	we’re	out	in	userland	anyway,	you	might	as	well	fire	up	SSH	while	you’re	there.	Or
an	MP3	transcoder.	Or	an	HTTP	client,	letting	you	mount	and	examine	an	ISO	on	a	web
server	without	downloading	the	whole	thing.	There’s	even	a	Wikipedia	FUSE	module,
letting	you	view	and	edit	Wikipedia	as	a	filesystem.	Some	filesystems,	such	as	MooseFS
(www.moosefs.org)	are	implemented	entirely	for	FUSE.	FreeBSD	has	over	three	dozen
FUSE	modules	as	I	write	this,	with	more	appearing	regularly.

FUSE	modules	are	frequently	portable	between	operating	systems.	The	data	structures
of	a	Microsoft	NTFS	disk	don’t	change	based	on	the	operating	system	you’re	reading	it
on.	FUSE	modules	do	need	changes	to	work	between	operating	systems—FreeBSD
expects	different	filesystem	memory	structures	than	Linux	or	Solaris—but	that’s	trivial
compared	to	the	difficulty	of	implementing	a	filesystem	inside	the	kernel.

Using	FUSE	is	not	risk-free.	FUSE	modules	feed	data	into	the	kernel.	While	the	kernel
sanitizes	the	data,	a	corrupt	filesystem	might	throw	garbage	into	the	kernel.	A	clever
intruder	might	be	able	to	leverage	his	way	into	privileged	access.

Sometimes,	though,	FUSE	is	the	best	way	to	solve	a	problem.	You	need	to	investigate
files	on	another	server?	Use	SSH.	A	program	needs	to	investigate	files	on	another	server,
but	it	can	only	look	at	local	files?	Stick	FUSE’s	mount-over-SSH	module	in	the	middle
and	go	on.



FUSE	Prerequisites

FreeBSD	implements	its	FUSE	support	as	a	kernel	module,	fuse.ko.	Load	it	with

kldload(8),	or	at	boot-time	in	/boot/loader.conf.

Using	FUSE	requires	access	to	the	/dev/fuse	device.	By	default,	only	root	and	users	in

the	operator	group	get	access.	Assigning	users	with	FUSE	privileges	to	operator	is

reasonable	on	some	systems.	If	that	doesn’t	suit	your	environment,	create	a	special	group
for	FUSE	and	use	a	devd(8)	rule	to	assign	/dev/fuse	to	that	group	owner.	If	you	want

unprivileged	users	to	have	access	to	FUSE,	you’ll	need	to	set	the	vfs.usermount	sysctl	to	1.

We’ll	use	the	FUSE	SSH	module	as	an	example.	Once	you	understand	how	to	use
sshfs(1),	deploying	other	modules	should	be	a	matter	of	understanding	the	module’s	target
—that	is,	to	deploy	the	FUSE	NTFS	module,	you’ll	need	to	dive	into	NTFS.	After
covering	sshfs	we’ll	delve	into	details	of	FreeBSD’s	mount_fusefs(8),	which	lets	you	fine-

tune	how	FreeBSD	treats	FUSE	filesystems.



SSHFS

The	fusefs-sshfs	FUSE	module	lets	you	mount	a	remote	directory	over	SSH.	This	lets	you

treat	a	remote	filesystem	as	local,	and	run	commands	on	files	stored	on	the	remote	host.
Once	you’ve	installed	the	package,	use	sshfs(1).	You’ll	need	two	arguments:	the	remote
host,	and	the	directory	on	which	you	want	the	SSH	filesystem	mounted.

I	strongly	encourage	use	of	public	key	authentication	with	SSH.	If	you’re	still	using
password-based	authentication	with	SSH,	check	out	any	number	of	online	tutorials	or	my
own	SSH	Mastery	(Tilted	Windmill	Press,	2012).

Here	I	use	sshfs(1)	as	a	regular	user,	mounting	my	home	directory	on	the	server	mail	on

a	directory	I	own,	$HOME/mnt.
$	sshfs	mail:	mnt/

If	I	go	into	the	mnt	directory	I’ll	se	the	files	from	my	home	directory	on	the	server.	I	can

move,	copy,	and	rename	these	files	as	I	wish.

The	sshfs	module	deliberately	shares	much	syntax	with	the	SSH	client.	To	use	a
different	username,	put	it	before	the	hostname,	separated	by	an	“at”	(@)	sign.	If	you	want	to

mount	a	different	directory,	put	that	directory	after	the	colon.	Change	the	port	with	–p	and

the	port	number.
$	sshfs	-p	2222	mail:/tmp	mnt/

To	unmount	the	sshfs,	use	umount(8)	as	normal.
$	umount	/home/mwl/mnt

If	you	have	weird	behavior,	add	the	–d	to	enable	FUSE	debugging.	The	sshfs	command

won’t	detach	from	the	terminal,	instead	showing	only	debugging	information	as	you	use
the	filesystem.
$	sshfs	–d	mail:	mnt/

See	sshfs(1)	for	many	more	options,	most	of	which	most	of	us	won’t	need.	Most	of
these	exist	as	arguments	to	–o,	exactly	as	in	ssh(1).

Permissions	and	Execution

FUSE	filesystems	get	treated	slightly	differently	than	other	filesystems.

Only	the	user	who	mounted	a	FUSE	filesystem	can	access	it.	While	root	can	see	that	a

user	has	mounted	a	FUSE	filesystem,	it	can’t	see	the	contents	of	that	filesystems.	Attempts
to	cd	into	that	directory	will	be	met	with	“Operation	not	permitted.”



Also,	file	ownership	and	privileges	on	the	FUSE-mounted	filesystem	might	not	directly
match	to	the	permissions	on	the	local	filesystem.	I	can	mount	a	remote	filesystem	with
sshfs,	but	sshfs	doesn’t	coordinate	user	and	group	IDs	between	my	workstation	and	the
server.	I	can	manipulate	those	remote	files	exactly	as	if	I	was	logged	in	at	a	command	line.
My	workstation	might	support	NFSv4	ACLs,	but	files	mounted	via	sshfs	use	whatever
permission	scheme	the	SSH	server	uses.

Finally,	just	because	an	sshfs	mount	has	files	that	are	executable,	don’t	assume	that
those	programs	will	actually	function	on	your	host.	You’ll	need	the	correct	shared
libraries,	and	any	other	resources	the	program	requires.	I	find	that	even	many	of	my
simple	shell	scripts	don’t	work	the	way	I	expected	when	run	on	a	sshfs	mount,	as	I	wrote
them	assuming	they’d	only	be	executed	on	the	server.

Sharing	FUSE	Filesystems

FreeBSD’s	FUSE	allows	only	the	user	who	mounted	the	filesystem	to	access	it.	The	root

user	can	override	this,	making	a	FUSE	filesystem	available	to	everyone.	Most	FUSE
modules	have	an	option	to	request	this	behavior.	For	sshfs,	it’s	the	allow_other	option.

(You’ll	also	see	an	allow_root	option,	but	that	has	no	effect	on	FreeBSD.)	Here	I

specifically	mount	an	SSH	FUSE	filesystem	so	that	anyone	can	access	it.
#	sshfs	-o	allow_other	mwl@mail:	/mnt

This	can	only	be	run	by	root.	Using	allow_other	as	a	non-root	user	triggers	an	error.

Because	of	the	nature	of	FUSE,	this	mount	point	lacks	all	permissions	protections.	Any
user	who	can	access	/mnt	gains	complete	access	to	the	SSH	session	underlying	the

filesystem.	Carefully	restrict	access	to	this	directory!

FUSE	opens	nearly	limitless	storage	options.	One	of	them	might	fix	your	intractable
problem.	For	more	details	on	FreeBSD’s	FUSE	implementation	and	management,	read
mount_fusefs(8).



Automounting	with	autofs

FreeBSD	10	and	later	include	a	new	automounter	service,	autofs(5).	It	replaces	the	more
complicated	automounter	amd(8)	in	older	versions.	Autofs	automatically	identifies	and
mounts	filesystems	for	users,	even	if	they	don’t	have	permissions	to	mount	anything.	If
you	plug	in	a	flash	drive,	FreeBSD	can	examine	it,	identify	the	filesystems	on	it,	and
mount	them,	all	without	human	intervention.	When	a	user	tries	to	access	an	NFS	share,
autofs	mounts	it	if	the	server	permits.	Autofs	automatically	handles	removable	media,
NFS	shares	and	filesystems	configured	in	/etc/fstab	with	the	noauto	flag,	and	can	be

configured	to	handle	almost	anything	FreeBSD	can	mount.	While	many	sysadmins	won’t
want	servers	to	automount	removable	media,	they	might	find	automounting	NFS	shares
very	useful.

In	previous	versions	of	FreeBSD,	the	sysadmin	could	allow	unprivileged	users	to
mount	removable	filesystems	by	setting	the	sysctl	vfs.usermount	to	1.	Users	could	then

mount	media	on	directories	that	they	owned.	While	many	sysadmins	feel	lucky	if	more
than	half	of	their	users	can	remember	to	log	out	when	they	walk	away	from	the	terminal,
mounting	required	that	users	remember	how	to	run	mount(8).	For	most	users,	this	wasn’t
going	to	happen.	Automounting	gives	the	sysadmin	better	control	over	what	media	their
users	can	mount,	and	where	it	gets	mounted.

FreeBSD’s	autofs	was	deliberately	designed	to	be	compatible	with	the	Solaris
automounter.	The	underlying	code	is	quite	different,	but	the	practice	should	be	the	same.
Any	tasks	that	feel	over-engineered	as	well	as	any	particularly	distressing	behaviors	can

be	blamed	on	Oracle.1	If	you	have	automounter	problems,	you	might	check	Solaris
documentation	as	well	as	that	for	FreeBSD.	Sun	Microsystems	licensed	their	automounter
to	just	about	every	commercial	Unix	vendor,	so	your	existing	automounter	experience
should	apply.

Enabling	autofs

Enable	autofs	in	/etc/rc.conf.
#	sysrc	autofs_enable=YES

The	default	autofs	configuration	expects	to	mount	removable	media	in	/media	and	NFS

shares	in	/net.	(Automounting	of	removable	media	is	disabled	by	default,	but	we’ll	cover

that	shortly.)	While	/media	exists	in	default	FreeBSD	installs,	/net	does	not.	Create	the	/net

directory	before	enabling	autofs.	The	directory’s	absence	won’t	prevent	autofs	from



starting,	but	it	will	prevent	you	from	automounting	NFS	shares.

autofs	Components

You	won’t	find	an	autofs	startup	script.	FreeBSD	manages	each	of	the	three	major
components	separately,	all	controlled	by	the	autofs_enable	setting.

The	automount(8)	command	is	used	to	manage	automounted	filesystems.	The
/etc/rc.d/automount	startup	script	loads	the	autofs	kernel	module	autofs.ko.

The	automountd(8)	daemon	handles	mount	requests.	When	you	go	to	a	directory	used
by	autofs,	autofs	checks	for	filesystems	of	that	type.	Visit	/media,	and	automountd	checks	for

the	presence	of	removable	media.	Once	you	try	to	access	the	media,	automountd	calls

mount(8)	or	a	variant	thereof	to	perform	the	mount.

Automatically	mounted	filesystems	can	pile	up.	Autofs’	autounmountd(8)	disconnects
unused	filesystems	after	a	timeout.	Yanking	mounted	removable	media	from	the	system
can	damage	the	media’s	filesystem,	and	automatic	unmounting	reduces	the	risk	of	that
happening.	Unmounting	unused	NFS	shares	reduces	load	on	your	NFS	server.

Most	of	these	programs	take	their	instructions	from	the	autofs	map	file,	/etc/auto_master

and	the	related	map	files	in	/etc/autofs.



Configuring	autofs

Autofs	is	configured	through	maps.	A	map	correlates	a	device	or	partition	with	a	method
of	mounting	that	entity.

FreeBSD	includes	several	special	maps.	Special	maps	are	generic	maps	for	handling
entire	classes	of	media.	FreeBSD	includes	special	maps	for	removable	media,	NFS	shares,
noauto	filesystems,	and	preventing	autofs	mounts.	Special	maps	can	handle	nearly	any
automounting	configuration	you	might	have.

If	you’re	one	of	the	very	few	who	can’t	use	the	special	maps,	you	can	create	custom
maps	to	automatically	mount	directories	and	media.	The	auto_master(5)	man	page	gives
the	whole	syntax	for	/etc/auto_master	and	custom	maps.	In	most	(but	not	all)	cases,	using	a

custom	map	is	an	administrative	choice	rather	than	a	technical	necessity.

We’ll	focus	our	attention	on	the	special	maps.

auto_master

The	file	/etc/auto_master	points	to	the	automounter	maps.	Each	line	is	a	single	mapping,

with	two	or	three	parts:	the	mount	point,	the	name	of	the	map,	and	if	desired	any	options.
The	default	configuration	contains	only	one	uncommented	map,	the	NFS	special	map.
/net	-hosts	-nobrowse,nosuid,intr

This	map	controls	the	mount	point	/net.	It	uses	the	map	named	–hosts.	When	something

checks	for	directories	under	this	mount	point,	autofs	mounts	the	requested	NFS	share	with
the	options	nosuid	and	intr.	The	nobrowse	option	is	specific	to	autofs,	and	prevents	autofs

from	automatically	creating	subdirectories	for	all	the	hosts	in	/etc/hosts.

Any	time	you	edit	auto_master,	you	must	run	automount	to	reconfigure	the	maps	for	the

autofs	support	daemons.

Autofs	attaches	to	all	the	mount	points	referenced	in	auto_master.	Run	automount	–L	to

view	all	those	directories.
#	automount	-L

/net	-nobrowse,nosuid,intr	-hosts

The	/net	directory	now	has	an	autofs	instance	mounted	on	it,	using	the	map	–hosts.	As

BSD	filesystems	are	stackable	you	can	mount	something	else	on	/net,	but	you	shouldn’t

unless	unnecessary	confusion	amuses	you.

/etc/autofs



You	can	put	maps	directly	in	/etc,	or	use	special	maps	in	/etc/autofs.	Special	maps	are

scripts.	Autofs	runs	the	script	when	the	mount	point	is	accessed.	Non-executable	files	are
almost	certainly	custom	maps	created	by	the	sysadmin.	Autofs	opens	and	parses	these	files
like	any	other	map.

All	of	the	maps	in	the	/etc/autofs	directory	shipped	with	FreeBSD	are	special	maps.



Automounting	with	Special	Maps

FreeBSD	comes	with	four	special	maps:	-hosts,	-media,	-noauto,	and	-null.	(There’s	also	a
special	map	to	read	map	information	out	of	LDAP,	but	that’s	highly	environment-
dependent,	so	we	won’t	cover	it.)	You	know	a	map	is	classed	as	special	because	its	name
in	/etc/auto_master	begins	with	a	dash.

The	–hosts	special	map,	in	/etc/autofs/special_hosts,	identifies	the	NFS	shares	available

on	a	host.	When	you	trigger	an	NFS	automount	request,	the	special	map	queries	the	NFS
server	to	see	what’s	available	to	you.

The	–media	special	map	in	/etc/autofs/special_media	probes	unmounted	devices,	like

removable	media,	and	helps	mount	them.

The	–noauto	special	map,	/etc/autofs/special_noauto,	checks	/etc/fstab	for	devices	that	are

not	automatically	mounted	at	boot,	and	mounts	them	when	you	try	to	use	them.

Finally,	the	–null	special	map	/etc/autofs/special_null	ties	up	a	mount	point	so	that

automountd(8)	can’t	mount	anything	there.

Automounting	NFS

Let’s	try	this	automounting	thing	with	NFS.	My	test	network	has	two	NFS	servers,	mail

and	www.	I	know	that	my	workstation	can	access	shares	on	both	because	I’ve	previously

mounted	them	manually.

To	automount	from	a	server,	look	in	a	directory	named	after	the	server	in	/net.	The

directory	won’t	exist	before	you	look	for	it,	but	look	anyway.	Right	now,	my	workstation’s
/net	directory	is	empty.	To	see	the	shares	available	on	the	host	mail,	I	cd	or	ls	the	/net/mail

directory.
#	ls	/net/mail

usr	var

Nothing	is	actually	mounted	at	this	point:	autofs	only	displays	the	available	shares.	On
the	plus	side,	directories	for	the	available	NFS	shares	now	exist.

This	mail	server	exports	/var/log	via	NFS.	Once	I	try	to	examine	/net/mail/var/log	on	my

workstation,	autofs	mounts	the	NFS	share	on	that	directory.	I	have	whatever	access	the
mail	server	is	configured	to	permit,	exactly	as	if	my	sysadmin	had	mounted	this	share	for
me.

If	an	NFS	server	disappears,	mount	requests	can	still	hang.	That’s	why	autofs	defaults



to	mounting	NFS	shares	with	the	intr	option,	so	a	user	can	CTRL-C	and	get	a	terminal	back

without	bugging	the	sysadmin.

Automounting	Removable	Media

The	default	configuration	in	/etc/auto_master	includes	a	commented-out	line	for

automounting	removable	drives	on	/media.	It’s	not	enabled	by	default;	while	/media	is

intended	for	removable	drives,	many	sysadmins	use	it	for	manual	media	mounts.	Having
the	automounter	suddenly	monopolize	/media	would	violate	the	Principle	of	Least

Astonishment.2

/media	-media	-nosuid

This	rule	reserves	the	/media	directory	for	the	automounter.	It	applies	the	special	map	–

media,	and	mounts	everything	with	the	nosuid	option.	Uncomment	the	line	and	run	automount

as	root	to	activate	it.

You’ll	also	need	a	devd.conf	entry	to	flush	old	automounter	cache	entries.	In	FreeBSD

version	10.2	and	later,	this	entry	appears	in	/etc/devd.conf	but	is	commented	out.	Create	a

/usr/local/etc/devd/autofs.conf	that	contains	the	following.
#	Discard	autofs	caches,	useful	for	the	-media	special	map.

notify	100	{

match	“system”	“GEOM”;

match	“subsystem”	“DEV”;

action	“/usr/sbin/automount	-c”;

};

If	you	have	removable	media	plugged	into	your	machine,	you’ll	suddenly	get	new
directories	in	/media.
#	ls	/media

10_2_RELEASE_AMD64_CD

da0

da0p1

Apparently	this	machine	had	an	optical	drive	in	it	that	I	was	unaware	of.	Some	gremlin
must	have	stuffed	a	FreeBSD	10.2-RELEASE	CD	therein.	Autofs	found	the	disk	and
mounted	it	by	the	filesystem	label.	If	I	go	into	/media/10_2_RELEASE_AMD64_CD,	autofs	will	mount

the	CD	for	me.

I	don’t	have	privileges	to	unmount	the	disk,	but	I	can	run	cdcontrol	eject	cd0	to	have	the

drive	spit	the	disk	out.	The	automounted	filesystem	remains	mounted	until	the	next
autounmountd(8)	run	(see	“Auto-Unmounting”	later	this	chapter).



If	I	later	put	another	CD	into	the	drive,	though,	it’ll	show	up	with	its	label.	The	old
label	remains,	however.
#	ls	/media

10_2_RELEASE_AMD64_CD

USENIX06_TECH_SESSIONS

da0

While	the	CD	drive	now	has	the	Usenix	2006	proceedings	disc	in	it,	the	directory	for
the	FreeBSD	10.2	disc	remains.	Not	even	root	can	remove	the	directory.

Automounting	Noauto	Filesystems

A	noauto	filesystem	is	one	listed	in	/etc/fstab	with	the	noauto	option.	Noauto	filesystems	are

preconfigured	on	a	host.	If	the	sysadmin	has	preconfigured	the	mount	and	enables	the	–
noauto	special	map,	unprivileged	users	can	mount	the	device.

There’s	a	commented-out	entry	for	-noauto	filesystems	in	/etc/auto_master.	Uncomment

it	and	run	automount	to	activate	it.
/-	-noauto

The	-noauto	special	map	has	no	mount	options.	The	sysadmin	presumably	configures
any	mount	options	in	/etc/fstab.	Sensible	options	for	an	NFS	share	don’t	really	apply	to	a

CD	drive.	Here	are	a	couple	of	common	entries	that	might	appear	in	a	filesystem	table.
/dev/cd0	/cdrom	cd9660	ro,noauto	0	0

mail:/usr/ports	/usr/ports	nfs	rw,tcp,soft,intr,noauto	0	0

The	first	assigns	the	first	CD	drive	the	mount	point	of	/cdrom.	The	second	NFS-mounts

/usr/ports	from	the	host	mail	onto	/usr/ports	on	the	local	host.	Neither	gets	mounted

automatically	at	boot.	When	you	run	automount,	autofs	gets	mounted	on	each	of	these	mount

points	instead.

Autofs	doesn’t	have	to	worry	about	what	sort	of	filesystem	is	on	the	mount	point,	the
mount	options,	or	anything	else.	The	sysadmin	has	done	all	of	that.	The	only	thing	autofs
needs	to	do	is	mount	the	partition	when	a	user	accesses	it,	and	unmount	it	after	it	times
out.

Null	Automounts

The	-noauto	map	can	overlap	with	the	other	two	maps.	A	user	could	access	the	same	NFS
share	via	/net/mail/usr/ports	or	/usr/ports.	He	could	access	a	CD	in	/cdrom	or	in	a	subdirectory

of	/media.	Also,	some	maps	might	allow	overlapping	access.	So	what?

So	some	user	or	program	will	make	it	a	problem.	Because	that’s	what	users	and



programs	do.	That’s	what.

Use	the	–null	special	map	to	block	these	automount	interactions.	While	blocking	all	the
possible	CD	drive	labels	is	impractical,	blocking	NFS	mounts	is	straightforward.

My	host	uses	the	–noauto	special	map	to	mount	/usr/ports	from	the	NFS	server	mail.	I

also	have	configured	NFS	automounting	in	/net.	I	want	to	prevent	my	host	from	mounting

the	/usr/ports	share	twice.	Here’s	a	–null	map	to	do	exactly	that.
/net/mail/usr/ports	-null

Run	automount,	and	you’ll	get	a	new	autofs	instance	mounted	at	/net/mail/usr/ports.	A	user

who	goes	there	will	find	only	an	empty	directory.3

Automounting	with	Regular	Maps

Between	the	four	types	of	special	maps,	there’s	very	little	need	to	hand-craft	automounter
maps.	If	you	don’t	know	how	to	write	these	maps,	there’s	little	reason	to	acquire	this
rarely	used	skill.

If	you	are	already	a	user	of	hand-crafted	Solaris	automounter	maps,	though,	FreeBSD
will	accept	your	maps.	FreeBSD	can	slip	straight	into	your	Solaris-based	infrastructure,
and	it	accepts	the	maps	distributed	by	your	configuration	management	system.	You’ll	have
other	issues	integrating	FreeBSD	with	Solaris,	but	the	automounter	isn’t	one	of	them.



Debugging	Automounting

Automounting	uses	two	processes:	the	automount(8)	command	you	run	whenever	you
update	/etc/auto_master,	and	the	automountd(8)	daemon	that	watches	the	mount	points	for

activity	and	performs	the	mounts.	Both	commands	use	the	–v	flag	to	increase	verbosity.

The	automounter	daemon	logs	all	the	debugging	information	generated	with	–v	to

syslogd	with	the	facility	daemon.debug,	so	it	won’t	appear	in	/var/log/messages.	You’ll	need

a	debugging	log	or	the	all-encompassing	all.log	demonstrated	in	/etc/syslogd.conf	to	capture

these	messages.	Alternately,	you	can	stop	the	main	automountd(8)	service	and	run
automountd	in	foreground	debugging	mode	with	-d.	This	puts	all	debugging	information

straight	to	the	terminal.
#	automountd	-dv

You’ll	get	some	startup	information,	then	helpful	lines	like	this.
automountd:	executing	“mount	-t	cd9660	-o	ro,noauto,automounted	/dev/cd0	/cdrom/”	as	pid	1230

automountd:	“mount	-t	cd9660	-o	ro,noauto,automounted	/dev/cd0	/cdrom/”,	pid	1230,	terminated

gracefully

If	automount	requests	fail,	this	is	where	the	error	messages	appear.

Running	automount(8)	with	–v	shows	more	detail	about	its	activity,	including	how	it

parses	/etc/auto_master.	Try	it	sometime	when	automounting	works,	just	to	see	what	normal

output	looks	like.



Auto-Unmounting

Automounting	is	helpful,	but	what	about	unmounting	filesystems?

Unprivileged	users	cannot	unmount	automounted	filesystems.	The	autounmountd(8)
daemon	watches	automounted	filesystems,	however.	It	tries	to	unmount	the	filesystems
every	so	often—by	default,	every	10	minutes.

If	an	automounted	filesystem	is	in	use,	in	any	way,	autounmountd(8)	will	not	unmount
it.	Even	an	idle	command	prompt	in	the	directory	will	block	unmounting,	exactly	as	if	you
were	running	umount(8).

You	can	adjust	how	often	autounmountd	tries	to	unmount	the	filesystem.	The	-t	flag	lets

you	set	the	number	of	seconds	after	automounting	that	autounmountd	makes	its	first	attempt

to	unmount,	while	–r	sets	the	number	of	seconds	to	wait	before	retrying.	This	rc.conf

setting	tells	autounmountd	to	try	to	unmount	a	filesystem	three	minutes	after	mounting,	and

retry	every	60	seconds	thereafter,	because	my	users	are	whiny	and	impatient.
autounmountd_flags=”-t	150	–r	60”

You	can	increase	autounmountd(8)’s	verbosity	with	–v,	and	run	it	in	the	foreground	for

debugging	with	–d.	Exactly	like	automountd,	autounmountd	uses	the	syslog	facility

daemon.debug,	so	you’ll	need	to	configure	a	log	file	to	capture	that.

The	systems	administrator	can	unmount	every	automounted	filesystem	with	automount	–

u.
#	automount	–u

This	disconnects	specifically	automounted	filesystems,	but	leaves	the	general
automount(8)	infrastructure	in	place	and	functioning.

You	can	shut	down	automounting,	while	leaving	the	daemons	in	place,	by	unmounting
all	autofs(5)	filesystems	with	umount(8).
#	umount	–At	autofs

Suddenly	/net	is	empty	and	ls	/media	does…	nothing.	Run	automount	to	restore	the	autofs

mounts.

Automounting	can	help	ease	the	sysadmin’s	job,	and	FUSE	can	make	some	difficult
tasks	merely	annoying.

1	Yes,	automounting	was	originally	created	by	Sun.	But	Oracle	owns	Sun,	and	blaming	Oracle	is	never	wrong.

2	“would	violate	the	Principle	of	Least	Astonishment”	is	a	polite	but	long-winded	way	to	say	“would	really	tick	off	the



sysadmin.”

3	He’ll	then	call	the	helpdesk	to	complain,	but	that’s	a	separate	issue	best	solved	with	carefully	targeted	“Authentic
Oregon	Trail”™	brand	dysentery.





Afterword
While	I’m	a	fan	of	several	different	BSD-based	operating	systems,	FreeBSD’s	filesystems
really	are	a	killer	feature	that	offers	a	flexibility	unmatched	by	any	other	operating	system.
FreeBSD	doesn’t	pat	you	on	the	head	and	tell	you	it	knows	how	your	storage	should	work.
FreeBSD	lets	you	make	your	own	decisions,	and	configure	storage	in	ways	that	the
developers	never	even	conceived	of.	The	specialty	filesystems	herein,	combined	with	tools
like	GEOM	and	ZFS,	will	let	you	make	FreeBSD	work	almost	anywhere,	under	almost
any	conditions,	and	address	problems	other	operating	systems	can’t	approach.

Of	all	the	books	I’ve	written,	this	has	unexpectedly	been	among	the	most	difficult.
Exploring	so	many	different	filesystems,	all	with	their	own	uses	and	sharp	edges,	has
demanded	that	I	fill	my	brain	to	overflowing	and	empty	it	many	times.

I	hope	you	find	this	book	worthwhile.

If	not,	it’s	easily	recyclable.
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