
A lightweight, i686-optimized Linux distribution

Release 2.0

chris commenda

Table of Contents

CRUX-2.0 (www.crux.nu)

• Goals for a New Linux Distro

• Installation and Special Features

• Package System

• Ports System

• Native POSIX Thread Library (NPTL)

1

Goals for a New Linux Distro

”make it simple as possible, but not too simple..”
(A. Einstein)

CRUX design:

• leightweight:
whole distribution fits into an iso-image of 212MB

• optimized: initially i686/PowerPC optimized

• simple: tar.gz-based package system (slackware)

• small: collection of trimmed packages

• source based: complete rebuild possible (gentoo)

• up to date: ports system Pkgfiles with source location and
build instructions (bsd)

• community: Crux Linux Community (CLC), with search-
able packages database, mailing list...

• new: Linux features,
(kernel-2.6.7, gcc-3.3.4, glibc-2.3.3 with nptl, XOrg, AMD64?)

• extensible: ports of gnome, kde, openoffice, xine, mplayer,
transcode...

2

Installation Procedure

1. The ISO image is bootable, just insert the CD and reboot
your computer

2. Login as root (no password required)

3. Create (if necessary) and format the partition(s) you want
CRUX to be installed on.

$ fdisk /dev/discs/disc?/disc
$ mkreiserfs /dev/discs/disc?/part?
$ mkswap /dev/discs/disc?/part?

special feature: devfs pseudo and reiserfs

4. Mount the partition on which you want to install this dis-
tribution

$ mount /dev/discs/disc?/part? /mnt

5. Activate your swap partition(s)

$ swapon /dev/discs/disc?/part?

6. Type setup to start the package installation script

3

7. Now it’s time to compile your kernel and do basic system
configuration. The kernel compilation requires that you ch-
root into your new CRUX installation.

$ mount -t devfs devfs /mnt/dev
$ mount -t proc proc /mnt/proc
$ chroot /mnt /bin/bash

8. Edit /etc/fstab to configure your filesystem(s). Editors
vim and pico are available

9. Edit /etc/rc.conf to configure font, keyboard, timezone,
hostname and services.

/etc/rc.conf: system configuration
#
FONT=default
KEYMAP=de
TIMEZONE=UTC
HOSTNAME=seth
SERVICES=(net crond sshd portmap nfs cups)
End of file

10. Edit /etc/rc.d/net, /etc/hosts and /etc/resolv.conf to con-
figure your network (ip-address/gateway/hostname/domain/dns)

/etc/rc.d/net: start/stop network
#
case $1 in
start)
/sbin/ifconfig lo 127.0.0.1
/sbin/ifconfig eth0 192.1.168.1 netmask 255.255.255.0
#/sbin/route add default gw xxx.xxx.xxx.xxx
;;
stop)
/sbin/ifconfig eth0 down
/sbin/ifconfig lo down
;;
restart)
$0 stop
$0 start
;;
)
echo "usage: $0 [start|stop|restart]"
;;
esac
End of file

11. Go to /usr/src/linux-2.6.7, configure and compile a new
kernel

$ cd /usr/src/linux-2.6.7
$ make menuconfig
$ make -j 2 all
$ make modules install
$ cp arch/i386/boot/bzImage /boot/vmlinuz
$ cp System.map /boot/

12. Edit /etc/lilo.conf to boot the kernel you just compiled and
run lilo to make the new system bootable

13. Remove the CRUX CD-ROM from your drive and reboot
from harddisk

Package System

• Installing a package is done by using

$ pkgadd bash#2.05-1.pkg.tar.gz

• Upgrading a package

$ pkgadd -u bash#2.05-1.pkg.tar.gz

• Removing a package is done by using

$ pkgrm bash

• Querying the package database is done using pkginfo

$ pkginfo -i
autoconf 2.52-1
automake 1.5-1
<...>
xmms 1.2.7-1
zip 2.3-1
zlib 1.1.4-1

$ pkginfo -l bash
bin/bash
bin/sh
etc/
etc/profile
usr/
usr/man/
usr/man/man1/
usr/man/man1/bash.1.gz
usr/man/man1/sh.1.gz

4

$ pkginfo -o bin/ls
e2fsprogs usr/bin/lsattr
fileutils bin/ls
modutils sbin/lsmod

• Creation of a package is done by pkgmk using a Pkgfile

Description: LAM (Local Area Multicomputer)
an MPI programming environment
URL: http://www.lam-mpi.org
Maintainer: Chris Commenda <chris.commenda@gmx.net>
Group: net

name=lam
version=7.0.6
release=1
source=(http://www.lam-mpi.org/download/$name-$version.tar.bz2)

build(){
cd $name-$version
./configure --prefix=/usr --sysconfdir=/etc --with-exceptions
--without-fc
make -j 2
make DESTDIR=$PKG install
rm -rf $PKG/usr/share
}

• Package guidelines:

– install in specific directories

– remove junk files (info pages, online documentation,
Files related to NLS (national language support)

Ports System

The use of the word port in this context is borrowed from the
BSD world. CRUX users use the ports utility to download ports
from the CVS repositorty and place them in /usr/ports/. The
ports utility uses CVSup or httpup (behind firewall) to do the
actual downloading and synchronization.

• bring your local ports structure up to date

$ ports -u
Connected to cvsup.fukt.bth.se
Updating collection base/cvs
...
Updating collection opt/cvs
...
Finished successfully

• listing local ports

$ ports -l
base/autoconf
base/automake
base/bash
base/bin86
base/binutils
base/bison
...

• listing version differences

$ ports -d
Collection Name Port Installed
base glibc 2.3.2-2 2.3.3-1
opt gtk 2.2.0-1 2.4.0-1

• download, build and upgrade

$ cd /usr/ports/my/lam
$ pkgmk -d -u

5

Native POSIX Thread Library (NPTL)

1. What is a thread ?

A thread–sometimes called an execution context or a lightweight
process–is a single sequential flow of control within a pro-
gram. You use threads to isolate tasks. Each operation
in a thread runs independently from the operations in the
others threads, but at the same time.

2. First Implementation of Linux Thread Library (1996)

• each user-level thread is handled by one kernel thread

• no use of registers (thread local memory located using
fixed relationships between stack pointer and position
of thread descriptor)

• no synchronization primitives; fragile signals used in-
stead by the kernel

• manager thread handels signals, thread creation, pro-
cess management...

3. Improvements over time

• use of thread registers
location of thread-local data is no longer a time con-
suming operation. Brought more speed and flexibil-
ity, but restricted number of threads (IA32 - register
starved, 8192 threads)

• improvement of kernel (2.4.xx), by using segment reg-
isters and improved creation of kernel threads

6

4. Goals for New Implementation

• POSIX standard compliance

• effective use of Symmetric Multi Processing (SMP)

• Low startup and link-in costs

• binary compatibility

• scalability

• machine architecture support

• integration with C++ (exception handling)

5. Design Decisions

• 1-on-1 (one user-level thread for on kernel thread)

• avoid manager thread

• list of all threads still necessary

• new functionality added to kernel to implement syn-
chronization

• optimization of memory allocation for fast startup

6. Performance Results

Program csfast5a will be assigned to start any number of threads,
where each thread locks and unlocks (using a process synchro-
nization primitive) a given number of times, and when done,
records the time it took.

The Bibliography

1. http://www.crux.nu

2. http://people.redhat.com/drepper/nptl-design.pdf

3. http://www-106.ibm.com/developerworks/linux/library/l-rt10/
index.html?t=gr,lnxw01=ConSwiP2

7

