

• Table of Contents
• Index
• Reviews
• Reader Reviews
• Errata
• Academic

High Performance Linux Clusters with
OSCAR, Rocks, OpenMosix, and MPI
By Joseph D. Sloan

Publisher : O'Reilly
Pub Date : November 2004

ISBN : 0-596-00570-9
Pages : 360

This new guide covers everything you need to plan,
build, and deploy a high-performance Linux cluster.
You'll learn about planning, hardware choices, bulk
installation of Linux on multiple systems, and other
basic considerations. Learn about the major free
software projects and how to choose those that are
most helpful to new cluster administrators and
programmers. Guidelines for debugging, profiling,
performance tuning, and managing jobs from multiple
users round out this immensely useful book.

http://www.oreilly.com/catalog/highperlinuxc/reviews.html
http://www.oreilly.com/cgi-bin/reviews?bookident%3Dhighperlinuxc
http://www.oreilly.com/catalog/highperlinuxc/errata/
http://academic.oreilly.com

• Table of Contents
• Index
• Reviews
• Reader Reviews
• Errata
• Academic

High Performance Linux Clusters with
OSCAR, Rocks, OpenMosix, and MPI
By Joseph D. Sloan

Publisher : O'Reilly
Pub Date : November 2004

ISBN : 0-596-00570-9
Pages : 360

 Copyright
 Preface
 Audience
 Organization
 Conventions
 How to Contact Us
 Using Code Examples
 Acknowledgments
 Part I: An Introduction to Clusters
 Chapter 1. Cluster Architecture
 Section 1.1. Modern Computing and the Role of Clusters
 Section 1.2. Types of Clusters
 Section 1.3. Distributed Computing and Clusters
 Section 1.4. Limitations
 Section 1.5. My Biases
 Chapter 2. Cluster Planning
 Section 2.1. Design Steps
 Section 2.2. Determining Your Cluster's Mission
 Section 2.3. Architecture and Cluster Software
 Section 2.4. Cluster Kits

http://www.oreilly.com/catalog/highperlinuxc/reviews.html
http://www.oreilly.com/cgi-bin/reviews?bookident%3Dhighperlinuxc
http://www.oreilly.com/catalog/highperlinuxc/errata/
http://academic.oreilly.com

 Section 2.5. CD-ROM-Based Clusters

 Section 2.6. Benchmarks
 Chapter 3. Cluster Hardware
 Section 3.1. Design Decisions
 Section 3.2. Environment
 Chapter 4. Linux for Clusters
 Section 4.1. Installing Linux
 Section 4.2. Configuring Services
 Section 4.3. Cluster Security
 Part II: Getting Started Quickly
 Chapter 5. openMosix
 Section 5.1. What Is openMosix?
 Section 5.2. How openMosix Works
 Section 5.3. Selecting an Installation Approach
 Section 5.4. Installing a Precompiled Kernel
 Section 5.5. Using openMosix
 Section 5.6. Recompiling the Kernel
 Section 5.7. Is openMosix Right for You?
 Chapter 6. OSCAR
 Section 6.1. Why OSCAR?
 Section 6.2. What's in OSCAR
 Section 6.3. Installing OSCAR
 Section 6.4. Security and OSCAR
 Section 6.5. Using switcher
 Section 6.6. Using LAM/MPI with OSCAR
 Chapter 7. Rocks
 Section 7.1. Installing Rocks
 Section 7.2. Managing Rocks
 Section 7.3. Using MPICH with Rocks
 Part III: Building Custom Clusters
 Chapter 8. Cloning Systems
 Section 8.1. Configuring Systems
 Section 8.2. Automating Installations
 Section 8.3. Notes for OSCAR and Rocks Users
 Chapter 9. Programming Software
 Section 9.1. Programming Languages
 Section 9.2. Selecting a Library
 Section 9.3. LAM/MPI
 Section 9.4. MPICH
 Section 9.5. Other Programming Software
 Section 9.6. Notes for OSCAR Users
 Section 9.7. Notes for Rocks Users
 Chapter 10. Management Software
 Section 10.1. C3
 Section 10.2. Ganglia

 Section 10.3. Notes for OSCAR and Rocks Users

 Chapter 11. Scheduling Software
 Section 11.1. OpenPBS
 Section 11.2. Notes for OSCAR and Rocks Users
 Chapter 12. Parallel Filesystems
 Section 12.1. PVFS
 Section 12.2. Using PVFS
 Section 12.3. Notes for OSCAR and Rocks Users
 Part IV: Cluster Programming
 Chapter 13. Getting Started with MPI
 Section 13.1. MPI
 Section 13.2. A Simple Problem
 Section 13.3. An MPI Solution
 Section 13.4. I/O with MPI
 Section 13.5. Broadcast Communications
 Chapter 14. Additional MPI Features
 Section 14.1. More on Point-to-Point Communication
 Section 14.2. More on Collective Communication
 Section 14.3. Managing Communicators
 Section 14.4. Packaging Data
 Chapter 15. Designing Parallel Programs
 Section 15.1. Overview
 Section 15.2. Problem Decomposition
 Section 15.3. Mapping Tasks to Processors
 Section 15.4. Other Considerations
 Chapter 16. Debugging Parallel Programs
 Section 16.1. Debugging and Parallel Programs
 Section 16.2. Avoiding Problems
 Section 16.3. Programming Tools
 Section 16.4. Rereading Code
 Section 16.5. Tracing with printf
 Section 16.6. Symbolic Debuggers
 Section 16.7. Using gdb and ddd with MPI
 Section 16.8. Notes for OSCAR and Rocks Users
 Chapter 17. Profiling Parallel Programs
 Section 17.1. Why Profile?
 Section 17.2. Writing and Optimizing Code
 Section 17.3. Timing Complete Programs
 Section 17.4. Timing C Code Segments
 Section 17.5. Profilers
 Section 17.6. MPE
 Section 17.7. Customized MPE Logging
 Section 17.8. Notes for OSCAR and Rocks Users
 Part V: Appendix
 Appendix A. References

 Section A.1. Books
 Section A.2. URLs

 Colophon
 Index

Copyright © 2005 O'Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O'Reilly Media, Inc., 1005 Gravenstein Highway North,
Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales
promotional use. Online editions are also available for most titles
(http://safari.oreilly.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or
corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are
registered trademarks of O'Reilly Media, Inc. The Linux series designations,
High Performance Linux Clusters with OSCAR, Rocks, openMosix, and MPI,
images of the American West, and related trade dress are trademarks of
O'Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish
their products are claimed as trademarks. Where those designations appear in
this book, and O'Reilly Media, Inc. was aware of a trademark claim, the
designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the
publisher and author assume no responsibility for errors or omissions, or for
damages resulting from the use of the information contained herein.

http://safari.oreilly.com
mailto:corporate%40oreilly.com

Preface
Clusters built from open source software, particularly based on the GNU/Linux
operating system, are increasingly popular. Their success is not hard to explain
because they can cheaply solve an ever-widening range of number-crunching
applications. A wealth of open source or free software has emerged to make it
easy to set up, administer, and program these clusters. Each individual
package is accompanied by documentation, sometimes very rich and thorough.
But knowing where to start and how to get the different pieces working proves
daunting for many programmers and administrators.

This book is an overview of the issues that new cluster administrators have to
deal with in making clusters meet their needs, ranging from the initial
hardware and software choices through long-term considerations such as
performance.

This book is not a substitute for the documentation that accompanies the
software that it describes. You should download and read the documentation
for the software. Most of the documentation available online is quite good;
some is truly excellent.

In writing this book, I have evaluated a large number of programs and
selected for inclusion the software I believe is the most useful for someone
new to clustering. While writing descriptions of that software, I culled through
thousands of pages of documentation to fashion a manageable introduction.
This book brings together the information you'll need to get started. After
reading it, you should have a clear idea of what is possible, what is available,
and where to go to get it. While this book doesn't stand alone, it should reduce
the amount of work you'll need to do. I have tried to write the sort of book I
would have wanted when I got started with clusters.

The software described in this book is freely available, open source software.
All of the software is available for use with Linux; however, much of it should
work nicely on other platforms as well. All of the software has been installed
and tested as described in this book. However, the behavior or suitability of
the software described in this book cannot be guaranteed. While the material
in this book is presented in good faith, neither the author nor O'Reilly Media,
Inc. makes any explicit or implied warranty as to the behavior or suitability of
this software. We strongly urge you to evaluate the software and information
provided in this book as appropriate for your own circumstances.

One of the more important developments in the short life of high performance
clusters has been the creation of cluster installation kits such as OSCAR and

Rocks. With software packages like these, it is possible to install everything
you need and very quickly have a fully functional cluster. For this reason,
OSCAR and Rocks play a central role in this book.

OSCAR and Rocks are composed of a number of different independent
packages, as well as customizations available only with each kit. A fully
functional cluster will have a number of software packages each addressing a
different need, such as programming, management, and scheduling. OSCAR
and Rocks use a best-in-category approach, selecting the best available
software for each type of cluster-related task. In addition to the core software,
other compatible packages are available as well. Consequently, you will often
have several products to choose from for any given need.

Most of the software included in OSCAR or Rocks is significant in its own right.
Such software is often nontrivial to install and takes time to learn to use to its
full potential. While both OSCAR and Rocks automate the installation process,
there is still a lot to learn to effectively use either kit. Installing OSCAR or
Rocks is only the beginning.

After some basic background information, this book describes the installation
of OSCAR and then Rocks. The remainder of the book describes in greater
detail much of the software found in these packages. In each case, I describe
the installation, configuration, and use of the software apart from OSCAR or
Rocks. This should provide the reader with the information he will need to
customize the software or even build a custom cluster bypassing OSCAR or
Rocks completely, if desired.

I have also included a chapter on openMosix in this book, which may seem an
odd choice to some. But there are several compelling reasons for including this
information. First, not everyone needs a world-class high-performance cluster.
If you have several machines and would like to use them together, but don't
want the headaches that can come with a full cluster, openMosix is worth
investigating. Second, openMosix is a nice addition to some more traditional
clusters. Including openMosix also provides an opportunity to review
recompiling the Linux kernel and an alternative kernel that can be used to
demonstrate OSCAR's kernel_picker. Finally, I think openMosix is a really nice
piece of software. In a sense, it represents the future, or at least one possible
future, for clusters.

I have described in detail (too much, some might say) exactly how I have
installed the software. Unquestionably, by the time you read, this some of the
information will be dated. I have decided not to follow the practice of many
authors in such situations, and offer just vague generalities. I feel that readers
benefit from seeing the specific sorts of problems that appear in specific

installations and how to think about their solutions.

Audience

This book is an introduction to building high-performance clusters. It is written
for the biologist, chemist, or physicist who has just acquired two dozen
recycled computers and is wondering how she might combine them to perform
that calculation that has always taken too long to complete on her desktop
machine. It is written for the computer science student who needs help getting
started building his first cluster. It is not meant to be an exhaustive treatment
of clusters, but rather attempts to introduce the basics needed to build and
begin using a cluster.

In writing this book, I have assumed that the reader is familiar with the basics
of setting up and administering a Linux system. At a number of places in this
book, I provide a very quick overview of some of the issues. These sections are
meant as a review, not an exhaustive introduction. If you need help in this
area, several excellent books are available and are listed in the Appendix of
this book.

When introducing a topic as extensive as clusters, it is impossible to discuss
every relevant topic in detail without losing focus and producing an
unmanageable book. Thus, I have had to make a number of hard decisions
about what to include. There are many topics that, while of no interest to most
readers, are nonetheless important to some. When faced with such topics, I
have tried to briefly describe alternatives and provide pointers to additional
material. For example, while computational grids are outside the scope of this
book, I have tried to provide pointers for those of you who wish to know more
about grids.

For the chapters dealing with programming, I have assumed a basic knowledge
of C. For high-performance computing, FORTRAN and C are still the most
common choices. For Linux-based systems, C seemed a more reasonable
choice.

I have limited the programming examples to MPI since I believe this is the
most appropriate parallel library for beginners. I have made a particular effort
to keep the programming examples as simple as possible. There are a number
of excellent books on MPI programming. Unfortunately, the available books on
MPI all tend to use fairly complex problems as examples. Consequently, it is all
too easy to get lost in the details of an example and miss the point. While you
may become annoyed with my simplistic examples, I hope that you won't miss
the point. You can always turn to these other books for more complex, real-
world examples.

With any introductory book, there are things that must be omitted to keep the
book manageable. This problem is further compounded by the time constraints
of publication. I did not include a chapter on diskless systems because I believe
the complexities introduced by using diskless systems are best avoided by
people new to clusters. Because covering computational grids would have
considerably lengthened this book, they are not included. There simply wasn't
time or space to cover some very worthwhile software, most notably PVM and
Condor. These were hard decisions.

Organization

This book is composed of 17 chapters, divided into four parts. The first part
addresses background material; the second part deals with getting a cluster
running quickly; the third part goes into more depth describing how a custom
cluster can be built; and the fourth part introduces cluster programming.

Depending on your background and goals, different parts of this book are likely
to be of interest. I have tried to provide information here and at the beginning
of each section that should help you in selecting those parts of greatest
interest. You should not need to read the entire book for it to be useful.

Part I, An Introduction to Clusters

Chapter 1, is a general introduction to high-performance computing from
the perspective of clusters. It introduces basic terminology and provides a
description of various high-performance technologies. It gives a broad
overview of the different cluster architectures and discusses some of the
inherent limitations of clusters.

Chapter 2, begins with a discussion of how to determine what you want
your cluster to do. It then gives a quick overview of the different types of
software you may need in your cluster.

Chapter 3, is a discussion of the hardware that goes into a cluster,
including both the individual computers and network equipment.

Chapter 4, begins with a brief discussion of Linux in general. The bulk of
the chapter covers the basics of installing and configuring Linux. This
chapter assumes you are comfortable using Linux but may need a quick
review of some administrative tasks.

Part II, Getting Started Quickly

Chapter 5, describes the installation, configuration, and use of openMosix.
It also reviews how to recompile a Linux kernel.

Chapter 6, describes installing and setting up OSCAR. It also covers a few
of the basics of using OSCAR.

Chapter 7, describes installing Rocks. It also covers a few of the basics of
using Rocks.

Part III, Building Custom Clusters

Chapter 8, describes tools you can use to replicate the software installed
on one machine onto others. Thus, once you have decided how to install
and configure the software on an individual node in your cluster, this
chapter will show you how to duplicate that installation on a number of
machines quickly and efficiently.

Chapter 9, first describes programming software that you may want to
consider. Next, it describes the installation and configuration of the
software, along with additional utilities you'll need if you plan to write the
application programs that will run on your cluster.

Chapter 10, describes tools you can use to manage your cluster. Once you
have a working cluster, you face numerous administrative tasks, not the
least of which is insuring that the machines in your cluster are running
properly and configured identically. The tools in this chapter can make life
much easier.

Chapter 11, describes OpenPBS, open source scheduling software. For
heavily loaded clusters, you'll need software to allocate resources,
schedule jobs, and enforce priorities. OpenPBS is one solution.

Chapter 12, describes setting up and configuring the Parallel Virtual File
System (PVFS) software, a high-performance parallel file system for
clusters.

Part IV, Cluster Programming

Chapter 13, is a tutorial on how to use the MPI library. It covers the
basics. There is a lot more to MPI than what is described in this book, but
that's a topic for another book or two. The material in this chapter will get
you started.

Chapter 14, describes some of the more advanced features of MPI. The
intent is not to make you proficient with any of these features but simply
to let you know that they exist and how they might be useful.

Chapter 15, describes some techniques to break a program into pieces that
can be run in parallel. There is no silver bullet for parallel programming,
but there are several helpful ways to get started. The chapter is a quick
overview.

Chapter 16, first reviews the techniques used to debug serial programs
and then shows how the more traditional approaches can be extended and
used to debug parallel programs. It also discusses a few problems that are
unique to parallel programs.

Chapter 17, looks at techniques and tools that can be used to profile
parallel programs. If you want to improve the performance of a parallel
program, the first step is to find out where the program is spending its
time. This chapter shows you how to get started.

Part V, Appendix

The Appendix includes source information and documentation for the
software discussed in the book. It also includes pointers to other useful
information about clusters.

Conventions

This book uses the following typographical conventions:

Italics

Used for program names, filenames, system names, email addresses, and
URLs, and for emphasizing new terms.

Constant width

Used in examples showing programs, output from programs, the contents
of files, or literal information.

Constant-width italics

Used for general syntax and items that should be replaced in expressions.

Indicates a tip, suggestion, or general note.

Indicates a warning or caution.

How to Contact Us

In a sense, any book is a work in progress. If you have comments,
suggestions, or corrections, I would appreciate hearing from you. You can
contact me through booktech@oreilly.com.

We have tested and verified the information in this book to the best of our
ability, but you may find that features have changed (or even that we have
made mistakes!). Please let us know about any errors you find, as well as your
suggestions for future editions, by writing to:

O'Reilly & Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
1-800-998-9938 (in the U.S. or Canada)
1-707-829-0515 (international or local)
1-707-829-0104 (fax)

You can send us messages electronically. To be put on the mailing list or to
request a catalog, send email to:

info@oreilly.com

To ask technical questions or to comment on the book, send email to:

bookquestions@oreilly.com

We have a web site for the book, where we'll list examples, errata, and any
plans for future editions. You can access this page at:

http://www.oreilly.com/catalog/highperlinuxc/

For more information about this book and others, see the O'Reilly web site:

http://www.oreilly.com

mailto:booktech%40oreilly.com
mailto:info%40oreilly.com
mailto:bookquestions%40oreilly.com
http://www.oreilly.com/catalog/highperlinuxc/
http://www.oreilly.com

Using Code Examples

The code developed in this book is available for download for free from the
O'Reilly web site for this book http://www.oreilly.com/catalog/highperlinuxc.
(Before installing, take a look at readme.txt in the download).

This book is here to help you get your job done. In general, you can use the
code in this book in your programs and documentation. You don't need to
contact us for permission unless you're reproducing a significant portion of the
code. For example, writing a program that uses several chunks of code from
this book doesn't require permission. Selling or distributing a CD-ROM of
examples from O'Reilly books does require permission. Answering a question
by citing this book and quoting example code doesn't require permission.
Incorporating a significant amount of example code from this book into your
product's documentation does require permission.

We appreciate, but don't require, attribution. An attribution usually includes
the title, author, publisher, and ISBN. For example: "High Performance Linux
Clusers with OSCAR, Rocks, openMosix, and MPI, by Joseph Sloan. Copyright
2005 O'Reilly, 0-596-00570-9."

If you feel your use of code examples falls outside fair use or the permission
given here, feel free to contact us at permissions@oreilly.com.

http://www.oreilly.com/catalog/
mailto:permissions%40oreilly.com

Acknowledgments

While the cover of this book displays only my name, it is the work of a number
of people. First and foremost, credit goes to the people who created the
software described in this book. The quality of this software is truly
remarkable. Anyone building a cluster owes a considerable debt to these
developers.

This book would not exist if not for the students I have worked with both at
Lander University and Wofford College. Brian Bell's interest first led me to
investigate clusters. Michael Baker, Jonathan DeBusk, Ricaye Harris, Tilisha
Haywood, Robert Merting, and Robert Veasey all suffered through courses
using clusters. I can only hope they learned as much from me as I learned
from them.

Thanks also goes to the computer science department and to the staff of
information technology at Wofford Collegein particular, to Angela Shiflet for
finding the funds and to Dave Whisnant for finding the computers used to build
the clusters used in writing this book. Martin Aigner, Joe Burnet, Watts
Hudgens, Jim Sawyers, and Scott Sperka, among others, provided support
beyond the call of duty. Wofford is a great place to work and to write a book.
Thanks to President Bernie Dunlap, Dean Dan Maultsby, and the faculty and
staff for making Wofford one of the top liberal arts colleges in the nation.

I was very fortunate to have a number of technical reviewers for this book,
including people intimately involved with the creation of the software
described here, as well as general reviewers. Thanks goes to Kris Buytaert, a
senior consultant with X-Tend and author of the openMosix HOWTO, for
reviewing the chapter on openMosix. Kris's close involvement with the
openMosix project helped provide a perspective not only on openMosix as it is
today, but also on the future of the openMosix project.

Thomas Naughton and Stephen L. Scott, both from Oak Ridge National
Laboratory and members of the OSCAR work group, reviewed the book. They
provided not only many useful corrections, but helpful insight into cluster
software as well, particularly OSCAR.

Edmund J. Sutcliffe, a consultant with Thoughtful Solutions, attempted to
balance my sometimes myopic approach to clusters, arguing for a much
broader perspective on clusters. Several topics were added or discussed in
greater detail at his insistence. Had time allowed, more would have been
added.

John McKowen Taylor, Jr., of Cadence Design System, Inc., also reviewed the
book. In addition to correcting many errors, he provided many kind words and
encouragement that I greatly appreciated.

Robert Bruce Thompson, author of two excellent books on PC hardware,
corrected a number of leaks in the hardware chapter. Unfortunately,
developers for Rocks declined an invitation to review the material, citing the
pressures of putting together a new release.

While the reviewers unfailingly pointed out my numerous errors and
misconceptions, it didn't follow that I understood everything they said or
faithfully amended this manuscript. The blame for any errors that remain rests
squarely on my shoulders.

I consider myself fortunate to be able to work with the people in the O'Reilly
organization. This is the second book I have written with them and both have
gone remarkably smoothly. If you are thinking of writing a technical book, I
strongly urge you to consider O'Reilly. Unlike some other publishers, you will
be working with technically astute people from the beginning. Particular
thanks goes to Andy Oram, the technical editor for this book. Andy was
constantly looking for ways to improve this book. Producing any book requires
an small army of people, most of whom are hidden in the background and
never receive proper recognition. A debt of gratitude is owed to many others
working at O'Reilly.

This book would not have been possible without the support and patience of
my family. Thank you.

Part I: An Introduction to Clusters
The first section of this book is a general introduction to clusters. It is
largely background material. Readers already familiar with clusters may
want to quickly skim this material and then move on to subsequent
chapters. This section is divided into four chapters.

Chapter 1. Cluster Architecture
Computing speed isn't just a convenience. Faster computers allow us to solve
larger problems, and to find solutions more quickly, with greater accuracy, and
at a lower cost. All this adds up to a competitive advantage. In the sciences,
this may mean the difference between being the first to publish and not
publishing. In industry, it may determine who's first to the patent office.

Traditional high-performance clusters have proved their worth in a variety of
usesfrom predicting the weather to industrial design, from molecular dynamics
to astronomical modeling. High-performance computing (HPC) has created a
new approach to science modeling is now a viable and respected alternative to
the more traditional experiential and theoretical approaches.

Clusters are also playing a greater role in business. High performance is a key
issue in data mining or in image rendering. Advances in clustering technology
have led to high-availability and load-balancing clusters. Clustering is now
used for mission-critical applications such as web and FTP servers. For
example, Google uses an ever-growing cluster composed of tens of thousands
of computers.

1.1 Modern Computing and the Role of Clusters

Because of the expanding role that clusters are playing in distributed
computing, it is worth considering this question briefly. There is a great deal of
ambiguity, and the terms used to describe clusters and distributed computing
are often used inconsistently. This chapter doesn't provide a detailed
taxonomy it doesn't include a discussion of Flynn's taxonomy or of cluster
topologies. This has been done quite well a number of times and too much of it
would be irrelevant to the purpose of this book. However, this chapter does try
to explain the language used. If you need more general information, see the
Appendix A for other sources. High Performance Computing, Second Edition
(O'Reilly), by Dowd and Severance is a particularly readable introduction.

When computing, there are three basic approaches to improving
performance use a better algorithm, use a faster computer, or divide the
calculation among multiple computers. A very common analogy is that of a
horse-drawn cart. You can lighten the load, you can get a bigger horse, or you
can get a team of horses. (We'll ignore the option of going into therapy and
learning to live with what you have.) Let's look briefly at each of these
approaches.

First, consider what you are trying to calculate. All too often, improvements in
computing hardware are taken as a license to use less efficient algorithms, to
write sloppy programs, or to perform meaningless or redundant calculations
rather than carefully defining the problem. Selecting appropriate algorithms is
a key way to eliminate instructions and speed up a calculation. The quickest
way to finish a task is to skip it altogether.

If you need only a modest improvement in performance, then buying a faster
computer may solve your problems, provided you can find something you can
afford. But just as there is a limit on how big a horse you can buy, there are
limits on the computers you can buy. You can expect rapidly diminishing
returns when buying faster computers. While there are no hard and fast rules,
it is not unusual to see a quadratic increase in cost with a linear increase in
performance, particularly as you move away from commodity technology.

The third approach is parallelism, i.e., executing instructions simultaneously.
There are a variety of ways to achieve this. At one end of the spectrum,
parallelism can be integrated into the architecture of a single CPU (which
brings us back to buying the best computer you can afford). At the other end
of the spectrum, you may be able to divide the computation up among
different computers on a network, each computer working on a part of the
calculation, all working at the same time. This book is about that

approach harnessing a team of horses.

1.1.1 Uniprocessor Computers

The traditional classification of computers based on size and performance, i.e.,
classifying computers as microcomputers, workstations, minicomputers,
mainframes, and supercomputers, has become obsolete. The ever-changing
capabilities of computers means that today's microcomputers now outperform
the mainframes of the not-too-distant past. Furthermore, this traditional
classification scheme does not readily extend to parallel systems and clusters.
Nonetheless, it is worth looking briefly at the capabilities and problems
associated with more traditional computers, since these will be used to
assemble clusters. If you are working with a team of horses, it is helpful to
know something about a horse.

Regardless of where we place them in the traditional classification, most
computers today are based on an architecture often attributed to the
Hungarian mathematician John von Neumann. The basic structure of a von
Neumann computer is a CPU connected to memory by a communications
channel or bus. Instructions and data are stored in memory and are moved to
and from the CPU across the bus. The overall speed of a computer depends on
both the speed at which its CPU can execute individual instructions and the
overhead involved in moving instructions and data between memory and the
CPU.

Several technologies are currently used to speed up the processing speed of
CPUs. The development of reduced instruction set computer (RISC)
architectures and post-RISC architectures has led to more uniform instruction
sets. This eliminates cycles from some instructions and allows a higher clock-
rate. The use of RISC technology and the steady increase in chip densities
provide great benefits in CPU speed.

Superscalar architectures and pipelining have also increased processor speeds.
Superscalar architectures execute two or more instructions simultaneously.
For example, an addition and a multiplication instruction, which use different
parts of the CPU, might be executed at the same time. Pipelining overlaps the
different phase of instruction execution like an assembly line. For example,
while one instruction is executed, the next instruction can be fetched from
memory or the results from the previous instructions can be stored.

Memory bandwidth, basically the rate at which bits are transferred from
memory over the bus, is a different story. Improvements in memory

bandwidth have not kept up with CPU improvements. It doesn't matter how
fast the CPU is theoretically capable of running if you can't get instructions and
data into or out of the CPU fast enough to keep the CPU busy. Consequently,
memory access has created a performance bottleneck for the classical von
Neumann architecture: the von Neumann bottleneck.

Computer architects and manufacturers have developed a number of
techniques to minimize the impact of this bottleneck. Computers use a
hierarchy of memory technology to improve overall performance while
minimizing cost. Frequently used data is placed in very fast cache memory,
while less frequently used data is placed in slower but cheaper memory.
Another alternative is to use multiple processors so that memory operations
are spread among the processors. If each processor has its own memory and
its own bus, all the processors can access their own memory simultaneously.

1.1.2 Multiple Processors

Traditionally, supercomputers have been pipelined, superscalar processors with
a single CPU. These are the "big iron" of the past, often requiring "forklift
upgrades" and multiton air conditioners to prevent them from melting from the
heat they generate. In recent years we have come to augment that definition
to include parallel computers with hundreds or thousands of CPUs, otherwise
known as multiprocessor computers. Multiprocessor computers fall into two
basic categoriescentralized multiprocessors (or single enclosure
multiprocessors) and multicomputers.

1.1.2.1 Centralized multiprocessors

With centralized multiprocessors, there are two architectural approaches based
on how memory is manageduniform memory access (UMA) and nonuniform
memory access (NUMA) machines. With UMA machines, also called symmetric
multiprocessors (SMP), there is a common shared memory. Identical memory
addresses map, regardless of the CPU, to the same location in physical
memory. Main memory is equally accessible to all CPUs, as shown in Figure 1-
1. To improve memory performance, each processor has its own cache.

Figure 1-1. UMA architecture

There are two closely related difficulties when designing a UMA machine. The
first problem is synchronization. Communications among processes and access
to peripherals must be coordinated to avoid conflicts. The second problem is
cache consistency. If two different CPUs are accessing the same location in
memory and one CPU changes the value stored in that location, then how is
the cache entry for the other CPU updated? While several techniques are
available, the most common is snooping. With snooping, each cache listens to
all memory accesses. If a cache contains a memory address that is being
written to in main memory, the cache updates its copy of the data to remain
consistent with main memory.

A closely related architecture is used with NUMA machines. Roughly, with this
architecture, each CPU maintains its own piece of memory, as shown in Figure
1-2. Effectively, memory is divided among the processors, but each process
has access to all the memory. Each individual memory address, regardless of
the processor, still references the same location in memory. Memory access is
nonuniform in the sense that some parts of memory will appear to be much
slower than other parts of memory since the bank of memory "closest" to a
processor can be accessed more quickly by that processor. While this memory
arrangement can simplify synchronization, the problem of memory coherency
increases.

Figure 1-2. NUMA architecture

Operating system support is required with either multiprocessor scheme.
Fortunately, most modern operating systems, including Linux, provide support

for SMP systems, and support is improving for NUMA architectures.

When dividing a calculation among processors, an important concern is
granularity, or the smallest piece that a computation can be broken into for
purposes of sharing among different CPUs. Architectures that allow smaller
pieces of code to be shared are said to have a finer granularity (as opposed to
a coarser granularity). The granularity of each of these architectures is the
thread. That is, the operating system can place different threads from the
same process on different processors. Of course, this implies that, if your
computation generates only a single thread, then that thread can't be shared
between processors but must run on a single CPU. If the operating system has
nothing else for the other processors to do, they will remain idle and you will
see no benefit from having multiple processors.

A third architecture worth mentioning in passing is processor array, which, at
one time, generated a lot of interest. A processor array is a type of vector
computer built with a collection of identical, synchronized processing elements.
Each processor executes the same instruction on a different element in a data
array.

Numerous issues have arisen with respect to processor arrays. While some
problems map nicely to this architecture, most problems do not. This severely
limits the general use of processor arrays. The overall design doesn't work well
for problems with large serial components. Processor arrays are typically
designed around custom VLSI processors, resulting in much higher costs when
compared to more commodity-oriented multiprocessor designs. Furthermore,
processor arrays typically are single user, adding to the inherent cost of the
system. For these and other reasons, processor arrays are no longer popular.

1.1.2.2 Multicomputers

A multicomputer configuration, or cluster, is a group of computers that work
together. A cluster has three basic elementsa collection of individual
computers, a network connecting those computers, and software that enables
a computer to share work among the other computers via the network.

For most people, the most likely thing to come to mind when speaking of
multicomputers is a Beowulf cluster. Thomas Sterling and Don Becker at
NASA's Goddard Space Flight Center built a parallel computer out of
commodity hardware and freely available software in 1994 and named their
system Beowulf.[1] While this is perhaps the best-known type of
multicomputer, a number of variants now exist.

[1] If you think back to English lit, you will recall that the epic hero Beowulf was described as having
"the strength of many."

First, both commercial multicomputers and commodity clusters are available.
Commodity clusters, including Beowulf clusters, are constructed using
commodity, off-the-shelf (COTS) computers and hardware. When constructing
a commodity cluster, the norm is to use freely available, open source software.
This translates into an extremely low cost that allows people to build a cluster
when the alternatives are just too expensive. For example, the "Big Mac"
cluster built by Virginia Polytechnic Institute and State University was initially
built using 1100 dual-processor Macintosh G5 PCs. It achieved speeds on the
order of 10 teraflops, making it one of the fastest supercomputers in
existence. But while supercomputers in that class usually take a couple of
years to construct and cost in the range of $100 million to $250 million, Big
Mac was put together in about a month and at a cost of just over $5 million. (A
list of the fastest machines can be found at http://www.top500.org. The site
also maintains a list of the top 500 clusters.)

In commodity clusters, the software is often mix-and-match. It is not unusual
for the processors to be significantly faster than the network. The computers
within a cluster can be dedicated to that cluster or can be standalone
computers that dynamically join and leave the cluster. Typically, the term
Beowulf is used to describe a cluster of dedicated computers, often with
minimal hardware. If no one is going to use a node as a standalone machine,
there is no need for that node to have a dedicated keyboard, mouse, video
card, or monitor. Node computers may or may not have individual disk drives.
(Beowulf is a politically charged term that is avoided in this book.) While a
commodity cluster may consist of identical, high-performance computers
purchased specifically for the cluster, they are often a collection of recycled
cast-off computers, or a pile-of-PCs (POP).

Commercial clusters often use proprietary computers and software. For
example, a SUN Ultra is not generally thought of as a COTS computer, so an
Ultra cluster would typically be described as a proprietary cluster. With
proprietary clusters, the software is often tightly integrated into the system,
and the CPU performance and network performance are well matched. The
primary disadvantage of commercial clusters is, as you no doubt guessed, their
cost. But if money is not a concern, then IBM, Sun Microsystems, or any
number of other companies will be happy to put together a cluster for you.
(The salesman will probably even take you to lunch.)

A network of workstations (NOW), sometimes called a cluster of workstations
(COW), is a cluster composed of computers usable as individual workstations.
A computer laboratory at a university might become a NOW on the weekend

http://www.top500.org

when the laboratory is closed. Or office machines might join a cluster in the
evening after the daytime users leave.

Software is an integral part of any cluster. A discussion of cluster software will
constitute the bulk of this book. Support for clustering can be built directly into
the operating system or may sit above the operating system at the application
level, often in user space. Typically, when clustering support is part of the
operating system, all nodes in the cluster need to have identical or nearly
identical kernels; this is called a single system image (SSI). At best, the
granularity is the process. With some software, you may need to run distinct
programs on each node, resulting in even coarser granularity. Since each
computer in a cluster has its own memory (unlike a UMA or NUMA computer),
identical addresses on individual CPUs map different physical memory
locations. Communication is more involved and costly.

1.1.2.3 Cluster structure

It's tempting to think of a cluster as just a bunch of interconnected machines,
but when you begin constructing a cluster, you'll need to give some thought to
the internal structure of the cluster. This will involve deciding what roles the
individual machines will play and what the interconnecting network will look
like.

The simplest approach is a symmetric cluster. With a symmetric cluster (Figure
1-3) each node can function as an individual computer. This is extremely
straightforward to set up. You just create a subnetwork with the individual
machines (or simply add the computers to an existing network) and add any
cluster-specific software you'll need. You may want to add a server or two
depending on your specific needs, but this usually entails little more than
adding some additional software to one or two of the nodes. This is the
architecture you would typically expect to see in a NOW, where each machine
must be independently usable.

Figure 1-3. Symmetric clusters

There are several disadvantages to a symmetric cluster. Cluster management
and security can be more difficult. Workload distribution can become a
problem, making it more difficult to achieve optimal performance.

For dedicated clusters, an asymmetric architecture is more common. With
asymmetric clusters (Figure 1-4) one computer is the head node or frontend. It
serves as a gateway between the remaining nodes and the users. The
remaining nodes often have very minimal operating systems and are dedicated
exclusively to the cluster. Since all traffic must pass through the head,
asymmetric clusters tend to provide a high level of security. If the remaining
nodes are physically secure and your users are trusted, you'll only need to
harden the head node.

Figure 1-4. Asymmetric clusters

The head often acts as a primary server for the remainder of the clusters.
Since, as a dual-homed machine, it will be configured differently from the
remaining nodes, it may be easier to keep all customizations on that single
machine. This simplifies the installation of the remaining machines. In this
book, as with most descriptions of clusters, we will use the term public

interface to refer to the network interface directly connected to the external
network and the term private interface to refer to the network interface
directly connected to the internal network.

The primary disadvantage of this architecture comes from the performance
limitations imposed by the cluster head. For this reason, a more powerful
computer may be used for the head. While beefing up the head may be
adequate for small clusters, its limitations will become apparent as the size of
the cluster grows. An alternative is to incorporate additional servers within the
cluster. For example, one of the nodes might function as an NFS server, a
second as a management station that monitors the health of the clusters, and
so on.

I/O represents a particular challenge. It is often desirable to distribute a
shared filesystem across a number of machines within the cluster to allow
parallel access. Figure 1-5 shows a more fully specified cluster.

Figure 1-5. Expanded cluster

Network design is another key issue. With small clusters, a simple switched
network may be adequate. With larger clusters, a fully connected network may
be prohibitively expensive. Numerous topologies have been studied to
minimize connections (costs) while maintaining viable levels of performance.
Examples include hyper-tree, hyper-cube, butterfly, and shuffle-exchange
networks. While a discussion of network topology is outside the scope of this
book, you should be aware of the issue.

Heterogeneous networks are not uncommon. Although not shown in the
figure, it may be desirable to locate the I/O servers on a separate parallel
network. For example, some clusters have parallel networks allowing

administration and user access through a slower network, while
communications for processing and access to the I/O servers is done over a
high-speed network.

1.2 Types of Clusters

Originally, "clusters" and "high-performance computing" were synonymous.
Today, the meaning of the word "cluster" has expanded beyond high-
performance to include high-availability (HA) clusters and load-balancing (LB)
clusters. In practice, there is considerable overlap among these they are, after
all, all clusters. While this book will focus primarily on high-performance
clusters, it is worth taking a brief look at high-availability and load-balancing
clusters.

High-availability clusters, also called failover clusters, are often used in
mission-critical applications. If you can't afford the lost business that will result
from having your web server go down, you may want to implement it using a
HA cluster. The key to high availability is redundancy. An HA cluster is
composed of multiple machines, a subset of which can provide the appropriate
service. In its purest form, only a single machine or server is directly
available all other machines will be in standby mode. They will monitor the
primary server to insure that it remains operational. If the primary server
fails, a secondary server takes its place.

The idea behind a load-balancing cluster is to provide better performance by
dividing the work among multiple computers. For example, when a web server
is implemented using LB clustering, the different queries to the server are
distributed among the computers in the clusters. This might be accomplished
using a simple round-robin algorithm. For example, Round-Robin DNS could be
used to map responses to DNS queries to the different IP addresses. That is,
when a DNS query is made, the local DNS server returns the addresses of the
next machine in the cluster, visiting machines in a round-robin fashion.
However, this approach can lead to dynamic load imbalances. More
sophisticated algorithms use feedback from the individual machines to
determine which machine can best handle the next task.

Keep in mind, the term "load-balancing" means different things to different
people. A high-performance cluster used for scientific calculation and a cluster
used as a web server would likely approach load-balancing in entirely different
ways. Each application has different critical requirements.

To some extent, any cluster can provide redundancy, scalability, and improved
performance, regardless of its classification. Since load-balancing provides
greater availability, it is not unusual to see both load-balancing and high-
availability in the same cluster. The Linux Virtual Server Project (LVSR) is an
example of combining these two approaches. An LVSR server is a high-
availability server implemented by distributing tasks among a number of real

servers. Interested readers are encouraged to visit the web pages for the
Linux Virtual Server Project (http://www.linux-vs.org) and the High-
Availability Linux Project (http://www.linux-ha.org) and to read the relevant
HOWTOs. OSCAR users will want to visit the High-Availability OSCAR web site
http://www.openclustergroup.org/HA-OSCAR/.

http://www.linux-vs.org
http://www.linux-ha.org
http://www.openclustergroup.org/HA-OSCAR/

1.3 Distributed Computing and Clusters

While the term parallel is often used to describe clusters, they are more
correctly described as a type of distributed computing. Typically, the term
parallel computing refers to tightly coupled sets of computation. Distributed
computing is usually used to describe computing that spans multiple machines
or multiple locations. When several pieces of data are being processed
simultaneously in the same CPU, this might be called a parallel computation,
but would never be described as a distributed computation. Multiple CPUs
within a single enclosure might be used for parallel computing, but would not
be an example of distributed computing. When talking about systems of
computers, the term parallel usually implies a homogenous collection of
computers, while distributed computing typically implies a more heterogeneous
collection. Computations that are done asynchronously are more likely to be
called distributed than parallel. Clearly, the terms parallel and distributed lie
at either end of a continuum of possible meanings. In any given instance, the
exact meanings depend upon the context. The distinction is more one of
connotations than of clearly established usage.

Since cluster computing is just one type of distributed computing, it is worth
briefly mentioning the alternatives. The primary distinction between clusters
and other forms of distributed computing is the scope of the interconnecting
network and the degree of coupling among the individual machines. The
differences are often ones of degree.

Clusters are generally restricted to computers on the same subnetwork or LAN.
The term grid computing is frequently used to describe computers working
together across a WAN or the Internet. The idea behind the term "grid" is to
invoke a comparison between a power grid and a computational grid. A
computational grid is a collection of computers that provide computing power
as a commodity. This is an active area of research and has received
(deservedly) a lot of attention from the National Science Foundation. The most
significant differences between cluster computing and grid computing are that
computing grids typically have a much larger scale, tend to be used more
asynchronously, and have much greater access, authorization, accounting, and
security concerns. From an administrative standpoint, if you build a grid, plan
on spending a lot of time dealing with security-related issues. Grid computing
has the potential of providing considerably more computing power than
individual clusters since a grid may combine a large number of clusters.

Peer-to-peer computing provides yet another approach to distributed
computing. Again this is an ambiguous term. Peer-to-peer may refer to sharing
cycles, to the communications infrastructure, or to the actual data distributed

across a WAN or the Internet. Peer-to-peer cycle sharing is best exemplified by
SETI@Home, a project to analyze radio telescope data for signs of
extraterrestrial intelligence. Volunteers load software onto their Internet-
connected computers. To the casual PC or Mac user, the software looks like a
screensaver. When a computer becomes idle, the screensaver comes on and
the computer begins analyzing the data. If the user begins using the computer
again, the screensaver closes and the data analysis is suspended. This
approach has served as a model for other research, including the analysis of
cancer and AIDS data.

Data or file-sharing peer-to-peer networks are best exemplified by Napster,
Gnutella, or Kazaa technologies. With some peer-to-peer file-sharing schemes,
cycles may also be provided for distributed computations. That is, by signing
up and installing the software for some services, you may be providing idle
cycles to the service for other uses beyond file sharing. Be sure you read the
license before you install the software if you don't want your computers used
in this way.

Other entries in the distributed computing taxonomy include federated clusters
and constellations. Federated clusters are clusters of clusters, while
constellations are clusters where the number of CPUs is greater than the
number of nodes. A four-node cluster of SGI Altrix computers with 128 CPUs
per node is a constellation. Peer-to-peer, grids, federated clusters, and
constellations are outside the scope of this book.

1.4 Limitations

While clusters have a lot to offer, they are not panaceas. There is a limit to
how much adding another computer to a problem will speed up a calculation.
In the ideal situation, you might expect a calculation to go twice as fast on two
computers as it would on one. Unfortunately, this is the limiting case and you
can only approach it.

Any calculation can be broken into blocks of code or instructions that can be
classified in one of two exclusive ways. Either a block of code can be
parallelized and shared among two or more machines, or the code is
essentially serial and the instructions must be executed in the order they are
written on a single machine. Any code that can't be parallelized won't benefit
from any additional processors you may have.

There are several reasons why some blocks of code can't be parallelized and
must be executed in a specific order. The most obvious example is I/O, where
the order of operations is typically determined by the availability, order, and
format of the input and the format of the desired output. If you are generating
a report at the end of a program, you won't want the characters or lines of
output printed at random.

Another reason some code can't be parallelized comes from the data
dependencies within the code. If you use the value of x to calculate the value
of y, then you'll need to calculate x before you calculate y. Otherwise, you
won't know what value to use in the calculation. Basically, to be able to
parallelize two instructions, neither can depend on the other. That is, the
order in which the two instructions finish must not matter.

Thus, any program can be seen as a series of alternating sectionssections that
can be parallelized and effectively run on different machines interspersed with
sections that must be executed as written and that effectively can only be run
on a single machine. If a program spends most of its time in code that is
essentially serial, parallel processing will have limited value for this code. In
this case, you will be better served with a faster computer than with parallel
computers. If you can't change the algorithm, big iron is the best approach for
this type of problem.

1.4.1 Amdahl's Law

As just noted, the amount of code that must be executed serially limits how
much of a speedup you can expect from parallel execution. This idea has been

formalized by what is known as Amdahl's Law, named after Gene Amdahl, who
first stated the law in the late sixties. In a nutshell, Amdahl's Law states that
the serial portion of a program will be the limiting factor in how much you can
speed up the execution of the program using multiple processors.[2]

[2] While Amdahl's Law is the most widely known and most useful metric for describing parallel
performance, there are others. These include Gustafson-Barsus's, Sun's, and Ni's Laws and the
Karp-Flat and the Isoefficiency Metrics.

An example should help clarify Amdahl's Law. Let's assume you have a
computation that takes 10 hours to complete on a currently available
computer and that 90 percent of your code can be parallelized. In other words,
you are spending one hour doing instructions that must be done serially and
nine hours doing instructions that can be done in parallel. Amdahl's Law states
that you'll never be able to run this code on this class of computers in less
than one hour, regardless of how many additional computers you have
available. To see this, imagine that you had so many computers that you could
execute all the parallel code instantaneously. You would still have the serial
code to execute, which has to be done on a single computer, and it would still
take an hour.[3]

[3] For those of you who love algebra, the speedup factor is equal to 1/(s + p/N), where s is the
fraction of the code that is inherently serial, p is the fraction of the code that can be parallelized, and
N is the number of processors available. Clearly, p + s = 1. As the number of processors becomes
very large, p/N becomes very small, and the speedup becomes essentially 1/s. So if s is 0.1, the
largest speedup you can expect is a factor of 10, no matter how many processors you have
available.

In practice, you won't have an unlimited number of processors, so your total
time will always be longer. Figure 1-6 shows the amount of time needed for
this example, depending on the number of processors you have available.

Figure 1-6. Execution time vs. number of processors

You should also remember that Amdahl's law is an ideal. In practice, there is
the issue of the overhead introduced by parallelizing the code. For example,
coordinating communications among the various processes will require
additional code. This adds to the overall execution time. And if there is
contention for the network, this can stall processes, further slowing the
calculation. In other words, Amdahl's Law is the best speedup you can hope
for, but not the actual speedup you'll see.

What can you do if you need to do this calculation in less than one hour? As I
noted earlier, you have three choices when you want to speed up a
calculation better algorithms, faster computers, or more computers. If more
computers won't take you all the way, your remaining choices are better
algorithms and faster computers. If you can rework your code so that a larger
fraction can be done in parallel, you'll see an increased benefit from a parallel
approach. Otherwise, you'll need to dig deep into your pocket for faster
computers.

Surprisingly, a fair amount of controversy still surrounds what should be
obvious once you think about it. This stems in large part from the
misapplication of Amdahl's Law over the years. For example, Amdahl's Law has
been misused as an argument favoring faster computers over parallel
computing.

The most common misuse is based on the assumption that the amount of
speedup is independent of the size of the problem. Amdahl's Law simply does
not address how problems scale. The fraction of the code that must be
executed serially usually changes as the size of the problem changes. So, it is
a mistake to assume that a problem's speedup factor will be the same when
the scale of the problem changes. For instance, if you double the length of a
simulation, you may find that the serial portions of the simulation, such as the
initialization and report phases, are basically unchanged, while the
parallelizable portion of the code is what doubles. Hence, the fraction of the
time spent in the serial code will decrease and Amdahl's Law will specify a
greater speedup. This is good news! After all, it's when problems get bigger
that we most need the speedup. For most problems, the speedup factor will
depend upon the problem size. As the problem size changes, so does the
speedup factor. The amount will depend on the nature of the individual
problem, but typically, the speedup will increase as the size of the problem
increases. As the problem size grows, it is not unusual to the see a linear
increase in the amount of time spent in the serial portion of the code and a
quadratic increase in the amount of time spent in the parallelizable portion of

the code. Unfortunately, if you only apply Amdahl's Law to the smaller problem
size, you'll underestimate the benefit of a parallel approach.

Having said this, it is important to remember that Amdahl's Law does clearly
state a limitation of parallel computing. But this limitation varies not only from
problem to problem, but with the size of the problem as well.

One last word about the limitations of clustersthe limitations are often tied to
a particular approach. It is often possible to mix approaches and avoid
limitations. For example, in constructing your clusters, you'll want to use the
best computers you can afford. This will lessen the impact of inherently serial
code. And don't forget to look at your algorithms!

1.5 My Biases

The material covered in this book reflects three of my biases, of which you
should be aware. I have tried to write a book to help people get started with
clusters. As such, I have focused primarily on mainstream, high-performance
computing, using open source software. Let me explain why.

First, there are many approaches and applications for clusters. I do not believe
that it is feasible for any book to address them all, even if a less-than-
exhaustive approach is used. In selecting material for this book, I have tried to
use the approaches and software that are the most useful for the largest
number of people. I feel that it is better to cover a limited number of
approaches than to try to say too much and risk losing focus. However, I have
tried to justify my decisions and point out options along the way so that if your
needs don't match my assumptions, you'll at least have an idea where to start
looking.

Second, in keeping with my goal of addressing mainstream applications of
clusters, the book primarily focuses on high-performance computing. This is
the application from which clusters grew and remains one of their dominant
uses. Since high availability and load balancing tend to be used with mission-
critical applications, they are beyond the scope of a book focusing on getting
started with clusters. You really should have some basic experience with
generic clusters before moving on to such mission-critical applications. And, of
course, improved performance lies at the core of all the other uses for clusters.

Finally, I have focused on open source software. There are a number of
proprietary solutions available, some of which are excellent. But given the
choice between comparable open source software and proprietary software, my
preference is for open source. For clustering, I believe that high-quality,
robust open source software is readily available and that there is little
justification for considering proprietary software for most applications.

While I'll cover the basics of clusters here, you would do well to study the
specifics of clusters that closely match your applications as well. There are a
number of well-known clusters that have been described in detail. A prime
example is Google, with literally tens of thousands of computers. Others
include clusters at Fermilab, Argonne National Laboratory (Chiba City cluster),
and Oak Ridge National Laboratory. Studying the architecture of clusters
similar to what you want to build should provide additional insight. Hopefully,
this book will leave you well prepared to do just that.

One last comment if you keep reading, I promise not to mention horses again.

Chapter 2. Cluster Planning
This chapter is an overview of cluster planning. It begins by introducing four
key steps in developing a design for a cluster. Next, it presents several
questions you can ask to help you determine what you want and need in a
cluster. Finally, it briefly describes some of the software decisions you'll make
and how these decisions impact the overall architecture of the cluster. In
addition to helping people new to clustering plan the critical foundations of
their cluster, the chapter serves as an overview of the software described in
the book and its uses.

2.1 Design Steps

Designing a cluster entails four sets of design decisions. You should:

1. Determine the overall mission for your cluster.

2. Select a general architecture for your cluster.

3. Select the operating system, cluster software, and other system software
you will use.

4. Select the hardware for the cluster.

While each of these tasks, in part, depends on the others, the first step is
crucial. If at all possible, the cluster's mission should drive all other design
decisions. At the very least, the other design decisions must be made in the
context of the cluster's mission and be consistent with it.

Selecting the hardware should be the final step in the design, but often you
won't have as much choice as you would like. A number of constraints may
drive you to select the hardware early in the design process. The most obvious
is the need to use recycled hardware or similar budget constraints. Chapter 3
describes hardware consideration is greater detail.

2.2 Determining Your Cluster's Mission

Defining what you want to do with the cluster is really the first step in
designing it. For many clusters, the mission will be clearly understood in
advance. This is particularly true if the cluster has a single use or a few clearly
defined uses. However, if your cluster will be an open resource, then you'll
need to anticipate potential uses. In that case, the place to start is with your
users.

While you may think you have a clear idea of what your users will need, there
may be little semblance between what you think they should need and what
they think they need. And while your assessment may be the correct one, your
users are still apt to be disappointed if the cluster doesn't live up to their
expectations. Talk to your users.

You should also keep in mind that clusters have a way of evolving. What may
be a reasonable assessment of needs today may not be tomorrow. Good design
is often the art of balancing today's resources with tomorrow's needs. If you
are unsure about your cluster's mission, answering the following questions
should help.

2.2.1 What Is Your User Base?

In designing a cluster, you must take into consideration the needs of all users.
Ideally this will include both the potential users as well as the obvious early
adopters. You will need to anticipate any potential conflicting needs and find
appropriate compromises.

The best way to avoid nasty surprises is to include representative users in the
design process. If you have only a few users, you can easily poll the users to
see what you need.

If you have a large user base, particularly one that is in flux, you will need to
anticipate all reasonable, likely needs. Generally, this will mean supporting a
wider range of software. For example, if you are the sole user and you only
use one programming language and parallel programming library, there is no
point in installing others. If you have dozens of users, you'll probably need to
install multiple programming languages and parallel programming libraries.

2.2.2 How Heavily Will the Cluster Be Used?

Will the cluster be in constant use, with users fighting over it, or will it be used
on an occasional basis as large problems arise? Will some of your jobs have
higher priorities than others? Will you have a mix of jobs, some requiring the
full capabilities of the cluster while others will need only a subset?

If you have a large user base with lots of potential conflicts, you will need
some form of scheduling software. If your cluster will be lightly used or have
very few users who are willing to work around each other, you may be able to
postpone installing scheduling software.

2.2.3 What Kinds of Software Will You Run on the Cluster?

There are several levels at which this question can be asked. At a cluster
management level, you'll need to decide which systems software you want,
e.g., BSD, Linux, or Windows, and you'll need to decide what clustering
software you'll need. Both of these choices will be addressed later in this
chapter.

From a user perspective, you'll need to determine what application-level
software to use. Will your users be using canned applications? If so, what are
these applications and what are their requirements? Will your users be
developing software? If so, what tools will they need? What is the nature of
the software they will write and what demands will this make on your cluster?
For example, if your users will be developing massive databases, will you have
adequate storage? Will the I/O subsystem be adequate? If your users will carry
out massive calculations, do you have adequate computational resources?

2.2.4 How Much Control Do You Need?

Closely related to the types of code you will be running is the question of how
much control you will need over the code. There are a range of possible
answers. If you need tight control over resources, you will probably have to
write your own applications. User-developed code can make explicit use of the
available resources.

For some uses, explicit control isn't necessary. If you have calculations that
split nicely into separate processes and you'd just like them to run faster,
software that provides transparent control may be the best solution. For
example, suppose you have a script that invokes a file compression utility on a
large number of files. It would be convenient if you could divide these file
compression tasks among a number of processes, but you don't care about the

details of how this is done.

openMosix, code that extends the Linux kernel, provides this type of
transparent support. Processes automatically migrate among cluster
computers. The advantage is that you may need to rewrite user code.
However, the transparent control provided by openMosix will not work if the
application uses shared memory or runs as a single process.

2.2.5 Will This Be a Dedicated or Shared Cluster?

Will the machines that comprise the cluster be dedicated to the cluster, or will
they be used for other tasks? For example, a number of clusters have been
built from office machines. During the day, the administrative staff uses the
machines. In the evening and over the weekend, they are elements of a
cluster. University computing laboratories have been used in the same way.

Obviously, if you have a dedicated cluster, you are free to configure the nodes
as you see fit. With a shared cluster, you'll be limited by the requirements of
the computers' day jobs. If this is the case, you may want to consider whether
a dual-boot approach is feasible.

2.2.6 What Resources Do You Have?

Will you be buying equipment or using existing equipment? Will you be using
recycled equipment? Recycled equipment can certainly reduce your costs, but
it will severely constrain what you can do. At the very least, you'll need a
small budget to adapt and maintain the equipment you have. You may need to
purchase networking equipment such as a switch and cables, or you may need
to replace failing parts such as disk drives and network cards. (See Chapter 3
for more information about hardware.)

2.2.7 How Will Cluster Access Be Managed?

Will you need local or remote access or both? Will you need to provide
Internet access, or can you limit it to the local or campus network? Can you
isolate the cluster? If you must provide remote access, what will be the nature
of that access? For example, will you need to install software to provide a
graphical interface for remote users? If you can isolate your network, security
becomes less of an issue. If you must provide remote access, you'll need to

consider tools like SSH and VNC. Or is serial port access by a terminal server
sufficient?

2.2.8 What Is the Extent of Your Cluster?

The term cluster usually applies to computers that are all on the same subnet.
If you will be using computers on different networks, you are building a grid.
With a grid you'll face greater communications overhead and more security
issues. Maintaining the grid will also be more involved and should be
addressed early in the design process. This book doesn't cover the special
considerations needed for grids.

2.2.9 What Security Concerns Do You Have?

Can you trust your users? If the answer is yes, this greatly simplifies cluster
design. You can focus on controlling access to the cluster. If you can't trust
your users, you'll need to harden each machine and develop secure
communications. A closely related question is whether you can control physical
access to your computers. Again, controlling physical access will simplify
securing your cluster since you can focus on access points, e.g., the head node
rather than the cluster as a whole. Finally, do you deal with sensitive data?
Often the value of the data you work with determines the security measures
you must take.

2.3 Architecture and Cluster Software

Once you have established the mission for your cluster, you can focus on its
architecture and select the software. Most high-performance clusters use an
architecture similar to that shown in Figure 1-5. The software described in this
book is generally compatible with that basic architecture. If this does not
match the mission of your cluster, you still may be able to use many of the
packages described in this book, but you may need to make a few adaptations.

Putting together a cluster involves the selection of a variety of software. The
possibilities are described briefly here. Each is discussed in greater detail in
subsequent chapters in this book.

2.3.1 System Software

One of the first selections you will probably want to make is the operating
system, but this is actually the final software decision you should make. When
selecting an operating system, the fundamental question is compatibility. If
you have a compelling reason to use a particular piece of software and it will
run only under a single operating system, the choice has been made for you.
For example, openMosix uses extensions to the Linux kernel, so if you want
openMosix, you must use Linux. Provided the basic issue of compatibility has
been met, the primary reasons to select a particular operating system are
familiarity and support. Stick with what you know and what's supported.

All the software described in this book is compatible with Linux. Most, but not
all, of the software will also work nicely with other Unix systems. In this book,
we'll be assuming the use of Linux. If you'd rather use BSD or Solaris, you'll
probably be OK with most of the software, but be sure to check its
compatibility before you make a commitment. Some of the software, such as
MPICH, even works with Windows.

There is a natural human tendency to want to go with the latest available
version of an operating system, and there are some obvious advantages to
using the latest release. However, compatibility should drive this decision as
well. Don't expect clustering software to be immediately compatible with the
latest operating system release. Compatibility may require that you use an
older release. (For more on Linux, see Chapter 4.)

In addition to the operating system itself, you may need additional utilities or
extensions to the basic services provided by the operating system. For
example, to create a cluster you'll need to install the operating system and

software on a large number of machines. While you could do this manually
with a small cluster, it's an error-prone and tedious task. Fortunately, you can
automate the process with cloning software. Cloning is described in detail in
Chapter 8.

High-performance systems frequently require extensive I/O. To optimize
performance, parallel file systems may be used. Chapter 12 looks at the
Parallel Virtual File System (PVFS), an open source high-performance file
system.

2.3.2 Programming Software

There are two basic decisions you'll need to make with respect to programming
software the programming languages you want to support and the libraries you
want to use. If you have a small user base, you may be able to standardize on
a single language and a single library. If you can pull this off, go for it; life will
be much simpler. However, if you need to support a number of different users
and applications, you may be forced to support a wider variety of programming
software.

The parallel programming libraries provide a mechanism that allows you to
easily coordinate computing and exchange data among programs running on
the cluster. Without this software, you'll be forced to rely on operating system
primitives to program your cluster. While it is certainly possible to use sockets
to build parallel programs, it is a lot more work and more error prone. The
most common libraries are the Message Passing Interface (MPI) and Parallel
Virtual Machine (PVM) libraries.

The choice of program languages depends on the parallel libraries you want to
use. Typically, the libraries provide bindings for only a small number of
programming languages. There is no point in installing Ada if you can't link it
to the parallel library you want to use. Traditionally, parallel programming
libraries support C and FORTRAN, and C++ is growing in popularity. Libraries
and languages are discussed in greater detail in Chapter 9.

2.3.3 Control and Management

In addition to the programming software, you'll need to keep your cluster
running. This includes scheduling and management software.

Cluster management includes both routine system administration tasks and

monitoring the health of your cluster. With a cluster, even a simple task can
become cumbersome if it has to be replicated over a large number of systems.
Just checking which systems are available can be a considerable time sink if
done on a regular basis. Fortunately, there are several packages that can be
used to simplify these tasks. Cluster Command and Control (C3) provides a
command-line interface that extends across a cluster, allowing easy replication
of tasks on each machine in a cluster or on a subset of the cluster. Ganglia
provides web-based monitoring in a single interface. Both C3 and Ganglia can
be used with federated clusters as well as simple clusters. C3 and Ganglia are
described in Chapter 10.

Scheduling software determines when your users' jobs will be executed.
Typically, scheduling software can allocate resources, establish priorities, and
do basic accounting. For Linux clusters there are two likely choicesCondor and
Portable Batch System (PBS). If you have needs for an advanced scheduler,
you might also consider Maui. PBS is available as a commercial product,
PBSPro, and as open source software, OpenPBS. OpenPBS is described in
Chapter 11.

2.4 Cluster Kits

If installing all of this software sounds daunting, don't panic. There are a
couple of options you can consider. For permanent clusters there are, for lack
of a better name, cluster kits, software packages that automate the installation
process. A cluster kit provides all the software you are likely to need in a
single distribution.

Cluster kits tend to be very complete. For example, the OSCAR distribution
contains both PVM and two versions of MPI. If some software isn't included,
you can probably get by without it. Another option, described in the next
section, is a CD-ROM-based cluster.

Cluster kits are designed to be turnkey solutions. Short of purchasing a
prebuilt, preinstalled proprietary cluster, a cluster kit is the simplest approach
to setting up a full cluster. Configuration parameters are largely preset by
people who are familiar with the software and how the different pieces may
interact. Once you have installed the kit, you have a functioning cluster. You
can focus on using the software rather than installing it. Support groups and
mailing lists are generally available.

Some kits have a Linux distribution included in the package (e.g., Rocks),
while others are installed on top of an existing Linux installation (e.g.,
OSCAR). Even if Linux must be installed first, most of the configuration and
the installation of needed packages will be done for you.

There are two problems with using cluster kits. First, cluster kits do so much
for you that you can lose touch with your cluster, particularly if everything is
new to you. Initially, you may not understand how the cluster is configured,
what customizations have been made or are possible, or even what has been
installed. Even making minor changes after installing a kit can create problems
if you don't understand what you have. Ironically, the more these kits do for
you, the worse this problem may be. With a kit, you may get software you
don't want to deal with software your users may expect you to maintain and
support. And when something goes wrong, as it will, you may be at a loss
about how to deal with it.

A second problem is that, in making everything work together, kit builders
occasionally have to do things a little differently. So when you look at the
original documentation for the individual components in a kit, you may find
that the software hasn't been installed as described. When you learn more
about the software, you'll come to understand and appreciate why the changes
were made. But in the short term, these changes can add to the confusion.

So while a cluster kit can get you up and running quickly, you will still need to
learn the details of the individual software. You should follow up the
installation with a thorough study of how the individual pieces in the kit work.
For most beginners, the single advantage of being able to get a cluster up and
running quickly probably outweighs all of the disadvantages.

While other cluster kits are available, the three most common kits for Linux
clusters are NPACI Rocks, OSCAR, and Scyld Beowulf.[1] While Scyld Beowulf
is a commercial product available from Penguin Computing, an earlier,
unsupported version is available for a very nominal cost from
http://www.linuxcentral.com/. Donald Becker, one of the original Beowulf
developers, founded Scyld Computing, which was subsequently acquired by
Penguin Computing. Scyld is built on top of Red Hat Linux and includes an
enhanced kernel, tools, and utilities. While Scyld Beowulf is a solid system,
you face the choice of using an expensive commercial product or a somewhat
dated, unsupported product. Furthermore, variants of both Rocks and OSCAR
are available. For example, BioBrew (http://bioinformatics.org/biobrew/) is a
Rocks-based system that contains a number of packages for analyzing
bioinformatics information. For these reasons, either Rocks or OSCAR is
arguably a better choice than Scyld Beowulf.

[1] For grid computing, which is outside the scope of this book, the Globus Toolkit is a likely choice.

NPACI (National Partnership for Advanced Computational Infrastructure) Rocks
is a collection of open source software for creating a cluster built on top of Red
Hat Linux. Rocks takes a cookie-cutter approach. To install Rocks, begin by
downloading a set of ISO images from http://rocks.npaci.edu/Rocks/ and use
them to create installation CD-ROMs. Next, boot to the first CD-ROM and
answer a few questions as the cluster is built. Both Linux and the clustering
software are installed. (This is a mixed blessingit simplifies the installation but
you won't have any control over how Linux is installed.) The installation
should go very quickly. In fact, part of the Rocks' management strategy is
that, if you have problems with a node, the best solution is to reinstall the
node rather than try to diagnose and fix the problem. Depending on hardware,
it may be possible to reinstall a node in under 10 minutes. When a Rocks
installation goes as expected, you can be up and running in a very short
amount of time. However, because the installation of the cluster software is
tied to the installation of the operating system, if the installation fails, you can
be left staring at a dead system and little idea of what to do. Fortunately, this
rarely happens.

OSCAR, from the Open Cluster Group, uses a different installation strategy.
With OSCAR, you first install Linux (but only on the head node) and then

http://www.linuxcentral.com/
http://bioinformatics.org/biobrew/
http://rocks.npaci.edu/Rocks/

install OSCAR the installations of the two are separate. This makes the
installation more involved, but it gives you more control over the configuration
of your system, and it is somewhat easier (that's easier, not easy) to recover
when you encounter installation problems. And because the OSCAR
installation is separate from the Linux installation, you are not tied to a single
Linux distribution.

Rocks uses a variant of Red Hat's Anaconda and Kickstart programs to install
the compute nodes. Thus, Rocks is able to probe the system to see what
hardware is present. To be included in Rocks, software must be available as an
RPM and configuration must be entirely automatic. As a result, with Rocks it is
very straightforward to set up a cluster using heterogeneous hardware.
OSCAR, in contrast, uses a system image cloning strategy to distribute the
disk image to the compute nodes. With OSCAR it is best to use the same
hardware throughout your cluster. Rocks requires systems with hard disks.
Although not discussed in this book, OSCAR's thin client model is designed for
diskless systems.

Both Rocks and OSCAR include a variety of software and build complete
clusters. In fact, most of the core software is the same for both OSCAR and
Rocks. However, there are a few packages that are available for one but not
the other. For example, Condor is readily available for Rocks while LAM/MPI is
included in OSCAR.

Clearly, Rocks and OSCAR take orthogonal approaches to building clusters.
Cluster kits are difficult to build. OSCAR scales well over Linux distributions.
Rocks scales well with heterogeneous hardware. No one approach is better in
every situation.

Rocks and OSCAR are at the core of this book. The installation, configuration,
and use of OSCAR are described in detail in Chapter 6. The installation,
configuration, and use of Rocks is described in Chapter 7. Rocks and OSCAR
heavily influenced the selection of the individual tools described in this book.
Most of the software described in this book is included in Rocks and OSCAR or
is compatible with them. However, to keep the discussions of different software
clean, the book includes separate chapters for the various software packages
included in Rocks and OSCAR.

This book also describes many of the customizations made by these kits. At the
end of many of the chapters, there is a brief section for Rocks and OSCAR
users summarizing the difference between the default, standalone installation
of the software and how these kits install it. Hopefully, therefore, this book
addresses both of the potential difficulties you might encounter with a
cluster learning the details of the software and discovering the differences that

cluster kits introduce.

Putting aside other constraints such as the need for diskless systems or
heterogeneous hardware, if all goes well, a novice can probably build a Rocks
cluster a little faster than an OSCAR cluster. But if you want greater control
over how your cluster is configured, you may be happier with OSCAR in the
long run. Typically, OSCAR provides better documentation, although Rocks
documentation has been improving. You shouldn't go far wrong with either.

2.5 CD-ROM-Based Clusters

If you just want to learn about clusters, only need a cluster occasionally, or
can't permanently install a cluster, you might consider one of the CD-ROM-
based clusters. With these, you create a set of bootable CD-ROMs, sometimes
called "live filesystem" CDs. When you need the cluster, you reboot your
available systems using the CD-ROMs, do a few configuration tasks, and start
using your cluster. The cluster software is all available from the CD-ROM and
the computers' hard disks are unchanged. When you are done, you simply
remove the CD-ROM and reboot the system to return to the operating system
installed on the hard disk. Your cluster persists until you reboot.

Clearly, this is not an approach to use for a high-availability or mission-critical
cluster, but it is a way to get started and learn about clusters. It is a viable
way to create a cluster for short-term use. For example, if a computer lab is
otherwise idle over the weekend, you could do some serious calculations using
this approach.

There are some significant difficulties with this approach, most notably
problems with storage. It is possible to work around this problem by using a
hybrid approach setting up a dedicated system for storage and using the CD-
ROM-based systems as compute-only nodes.

Several CD-ROM-based systems are available. You might look at
ClusterKnoppix, http://bofh.be/clusterknoppix/, or Bootable Cluster CD
(BCCD), http://bccd.cs.uni.edu/. The next subsection, a very brief description
of BCCD, should give you the basic idea of how these systems work.

2.5.1 BCCD

BCCD was developed by Paul Gray as an educational tool. If you want to play
around with a small cluster, BCCD is a very straightforward way to get started.
On an occasional basis, it is a viable alternative. What follows is a general
overview of running BCCD for the first time.

The first step is to visit the BCCD download site, download an ISO image for a
CD-ROM, and use it to burn a CD-ROM for each system. (Creating CD-ROMs
from ISO images is briefly discussed in Chapter 4.) Next, boot each machine in
your cluster from the CD-ROM. You'll need to answer a few questions as the
system boots. First, you'll enter a password for the default user, bccd. Next,
you'll answer some questions about your network. The system should
autodetect your network card. Then it will prompt you for the appropriate

http://bofh.be/clusterknoppix/
http://bccd.cs.uni.edu/

driver. If you know the driver, select it from the list BCCD displays. Otherwise,
select "auto" from the menu to have the system load drivers until a match is
found. If you have a DHCP and DNS server available on your network, this will
go much faster. Otherwise, you'll need to enter the usual network
configuration information IP address, netmask, gateway, etc.

Once the system boots, log in to complete the configuration process. When
prompted, start the BCCD heartbeat process. Next, run the utilities bccd-
allowall and bccd-snarfhosts. The first of these collects hosts' keys used by SSH
and the second creates the machines file used by MPI. You are now ready to
use the system.

Admittedly, this is a pretty brief description, but it should give you some idea
as to what's involved in using BCCD. The boot process is described in greater
detail at the project's web site. To perform this on a regular basis with a
number of machines would be an annoying process. But for a few machines on
an occasional basis, it is very straightforward.

2.6 Benchmarks

Once you have your cluster running, you'll probably want to run a benchmark
or two just to see how well it performs. Unfortunately, benchmarking is, at
best, a dark art. In practice, sheep entrails may give better results.

Often the motivation for benchmarks is hubristhe desire to prove your system
is the best. This can be crucial if funding is involved, but otherwise is probably
a meaningless activity and a waste of time. You'll have to judge for yourself.

Keep in mind that a benchmark supplies a single set of numbers that is very
difficult to interpret in isolation. Benchmarks are mostly useful when making
comparisons between two or more closely related configurations on your own
cluster.

There are at least three reasons you might run benchmarks. First, a
benchmark will provide you with a baseline. If you make changes to your
cluster or if you suspect problems with your cluster, you can rerun the
benchmark to see if performance is really any different. Second, benchmarks
are useful when comparing systems or cluster configurations. They can provide
a reasonable basis for selecting between alternatives. Finally, benchmarks can
be helpful with planning. If you can run several with differently sized clusters,
etc., you should be able to make better estimates of the impact of scaling your
cluster.

Benchmarks are not infallible. Consider the following rather simplistic
example: Suppose you are comparing two clusters with the goal of estimating
how well a particular cluster design scales. Cluster B is twice the size of cluster
A. Your goal is to project the overall performance for a new cluster C, which is
twice the size of B. If you rely on a simple linear extrapolation based on the
overall performance of A and B, you could be grossly misled. For instance, if
cluster A has a 30% network utilization and cluster B has a 60% network
utilization, the network shouldn't have a telling impact on overall performance
for either cluster. But if the trend continues, you'll have a difficult time
meeting cluster C's need for 120% network utilization.

There are several things to keep in mind when selecting benchmarks. A
variety of different things affect the overall performance of a cluster, including
the configuration of the individual systems and the network, the job mix on
the cluster, and the instruction mix in the cluster applications. Benchmarks
attempt to characterize performance by measuring, in some sense, the
performance of CPU, memory, or communications. Thus, there is no exact
correspondence between what may affect a cluster's performance and what a

benchmark actually measures.

Furthermore, since several factors are involved, different benchmarks may
weight different factors. Thus, it is generally meaningless to compare the
results of one benchmark on one system with a different set of benchmarks on
a different system, even when the benchmarks reputedly measure the same
thing.

When you select a benchmark, first decide why you need it and how it will be
used. For many purposes, the best benchmark is the actual applications that
you will run on your cluster. It doesn't matter how well your cluster does with
memory benchmarks if your applications are constantly thrashing. The primary
difficulty in using actual applications is running them in a consistent manner
so that you have repeatable results. This can be a real bear! Even small
changes in data can produce significant changes in performance. If you do
decide to use your applications, be consistent.

If you don't want to use your applications, there are a number of cluster
benchmarks available. Here are a few that you might consider:

Hierarchical Integration (HINT)

The HINT benchmark, developed at the U.S. Department of Energy's Ames
Research Laboratory, is used to test subsystem performance. It can be
used to compare both processor performance and memory subsystem
performance. It is now supported by Brigham Young University.
(http://hint.byu.edu)

High Performance Linpack

Linpack was written by Jack Dongarra and is probably the best known and
most widely used benchmark in high-performance computing. The HPL
version of Linpack is used to rank computers on the TOP500
Supercomputer Site. HPL differs from its predecessor in that the user can
specify the problem size. (http://www.netlib.org/benchmark/hpl/)

Iozone

Iozone is an I/O and filesystem benchmark tool. It generates and performs

http://hint.byu.edu
http://www.netlib.org/benchmark/hpl/

a variety of file operations and can be used to access filesystem
performance. (http://www.iozone.org)

Iperf

Iperf was developed to measure network performance. It measures TCP
and UDP bandwidth performance, reporting delay jitter and datagram loss
as well as bandwidth. (http://dast.nlanr.net/Projects/Iperf/)

NAS Parallel Benchmarks

The Numerical Aerodynamic Simulation (NAS) Parallel Benchmarks (NPB)
are application-centric benchmarks that have been widely used to compare
the performance of parallel computers. NPB is actually a suite of eight
programs. (http://science.nas.nasa.gov/Software/NPB/)

There are many other benchmarks available. The Netlib Repository is a good
place to start if you need additional benchmarks, http://www.netlib.org.

http://www.iozone.org
http://dast.nlanr.net/Projects/Iperf/
http://science.nas.nasa.gov/Software/NPB/
http://www.netlib.org

Chapter 3. Cluster Hardware
It is tempting to let the hardware dictate the architecture of your cluster.
However, unless you are just playing around, you should let the potential uses
of the cluster dictate its architecture. This in turn will determine, in large part,
the hardware you use. At least, that is how it works in ideal, parallel
universes.

In practice, there are often reasons why a less ideal approach might be
necessary. Ultimately, most of them boil down to budgetary constraints. First-
time clusters are often created from recycled equipment. After all, being able
to use existing equipment is often the initial rationale for creating a cluster.
Perhaps your cluster will need to serve more than one purpose. Maybe you are
just exploring the possibilities. In some cases, such as learning about clusters,
selecting the hardware first won't matter too much.

If you are building a cluster using existing, cast-off computers and have a very
limited budget, then your hardware selection has already been made for you.
But even if this is the case, you will still need to make a number of decisions
on how to use your hardware. On the other hand, if you are fortunate enough
to have a realistic budget to buy new equipment or just some money to
augment existing equipment, you should begin by carefully considering your
goals. The aim of this chapter is to guide you through the basic hardware
decisions and to remind you of issues you might overlook. For more detailed
information on PC hardware, you might consult PC Hardware in a Nutshell
(O'Reilly).

3.1 Design Decisions

While you may have some idea of what you want, it is still worthwhile to
review the implications of your choices. There are several closely related,
overlapping key issues to consider when acquiring PCs for the nodes in your
cluster:

Will you have identical systems or a mixture of hardware?

Will you scrounge for existing computers, buy assembled computers, or
buy the parts and assemble your own computers?

Will you have full systems with monitors, keyboards, and mice, minimal
systems, or something in between?

Will you have dedicated computers, or will you share your computers with
other users?

Do you have a broad or shallow user base?

This is this most important thing I'll say in this chapter if at all possible, use
identical systems for your nodes. Life will be much simpler. You'll need to
develop and test only one configuration and then you can clone the remaining
machines. When programming your cluster, you won't have to consider
different hardware capabilities as you attempt to balance the workload among
machines. Also, maintenance and repair will be easier since you will have less
to become familiar with and will need to keep fewer parts on hand. You can
certainly use heterogeneous hardware, but it will be more work.

In constructing a cluster, you can scrounge for existing computers, buy
assembled computers, or buy the parts and assemble your own. Scrounging is
the cheapest way to go, but this approach is often the most time consuming.
Usually, using scrounged systems means you'll end up with a wide variety of
hardware, which creates both hardware and software problems. With older
scrounged systems, you are also more likely to have even more hardware
problems. If this is your only option, try to standardize hardware as much as
possible. Look around for folks doing bulk upgrades when acquiring computers.
If you can find someone replacing a number of computers at one time, there is
a good chance the computers being replaced will have been a similar bulk
purchase and will be very similar or identical. These could come from a
computer laboratory at a college or university or from an IT department doing

a periodic upgrade.

Buying new, preassembled computers may be the simplest approach if money
isn't the primary concern. This is often the best approach for mission-critical
applications or when time is a critical factor. Buying new is also the safest way
to go if you are uncomfortable assembling computers. Most system integrators
will allow considerable latitude over what to include with your systems,
particularly if you are buying in bulk. If you are using a system integrator, try
to have the integrator provide a list of MAC addresses and label each machine.

Building your own system is cheaper, provides higher performance and
reliability, and allows for customization. Assembling your own computers may
seem daunting, but it isn't that difficult. You'll need time, personnel, space,
and a few tools. It's a good idea to build a single system and test it for
hardware and software compatibility before you commit to a large bulk order.
Even if you do buy preassembled computers, you will still need to do some
testing and maintenance. Unfortunately, even new computers are occasionally
DOA.[1] So the extra time may be less than you'd think. And by building your
own, you'll probably be able to afford more computers.

[1] Dead on arrival: nonfunctional when first installed.

If you are constructing a dedicated cluster, you will not need full systems. The
more you can leave out of each computer, the more computers you will be
able to afford, and the less you will need to maintain on individual computers.
For example, with dedicated clusters you can probably do without monitors,
keyboards, and mice for each individual compute node. Minimal machines have
the smallest footprint, allowing larger clusters when space is limited and have
smaller power and air conditioning requirements. With a minimal
configuration, wiring is usually significantly easier, particularly if you use rack-
mounted equipment. (However, heat dissipation can be a serious problem with
rack-mounted systems.) Minimal machines also have the advantage of being
less likely to be reallocated by middle management.

The size of your user base will also affect your cluster design. With a broad
user base, you'll need to prepare for a wider range of potential usesmore
applications software and more systems tools. This implies more secondary
storage and, perhaps, more memory. There is also the increased likelihood
that your users will need direct access to individual nodes.

Shared machines, i.e., computers that have other uses in addition to their role
as a cluster node, may be a way of constructing a part-time cluster that would
not be possible otherwise. If your cluster is shared, then you will need

complete, fully functioning machines. While this book won't focus on such
clusters, it is certainly possible to have a setup that is a computer lab on work
days and a cluster on the weekend, or office machines by day and cluster
nodes at night.

3.1.1 Node Hardware

Obviously, your computers need adequate hardware for all intended uses. If
your cluster includes workstations that are also used for other purposes, you'll
need to consider those other uses as well. This probably means acquiring a
fairly standard workstation. For a dedicated cluster, you determine your needs
and there may be a lot you won't needaudio cards and speakers, video capture
cards, etc. Beyond these obvious expendables, there are other additional parts
you might want to consider omitting such as disk drives, keyboards, mice, and
displays. However, you should be aware of some of the potential problems
you'll face with a truly minimalist approach. This subsection is a quick review
of the design decisions you'll need to make.

3.1.1.1 CPUs and motherboards

While you can certainly purchase CPUs and motherboards from different
sources, you need to select each with the other in mind. These two items are
the heart of your system. For optimal performance, you'll need total
compatibility between these. If you are buying your systems piece by piece,
consider buying an Intel- or ADM-compatible motherboard with an installed
CPU. However, you should be aware that some motherboards with
permanently affixed CPUs are poor performers, so choose with care.

You should also buy your equipment from a known, trusted source with a
reputable warranty. For example, in recent years a number of boards have
been released with low-grade electrolytic capacitors. While these capacitors
work fine initially, the board life is disappointingly brief. People who bought
these boards from fly-by-night companies were out of luck.

In determining the performance of a node, the most important factors are
processor clock rate, cache size, bus speed, memory capacity, disk access
speed, and network latency. The first four are determined by your selection of
CPU and motherboard. And if you are using integrated EIDE interfaces and
network adapters, all six are at least influenced by your choice of CPU and
motherboard.

Clock speed can be misleading. It is best used to compare processors within
the same family since comparing processors from different families is an
unreliable way to measure performance. For example, an AMD Athlon 64 may
outperform an Intel Pentium 4 when running at the same clock rate. Processor
speed is also very application dependent. If your data set fits within the large
cache in a Prescott-core Pentium 4 but won't fit in the smaller cache in an
Athlon, you may see much better performance with the Pentium.

Selecting a processor is a balancing act. Your choice will be constrained by
cost, performance, and compatibility. Remember, the rationale behind a
commodity off-the-shelf (COTS) cluster is buying machines that have the most
favorable price to performance ratio, not pricey individual machines. Typically
you'll get the best ratio by purchasing a CPU that is a generation behind the
current cutting edge. This means comparing the numbers. When comparing
CPUs, you should look at the increase in performance versus the increase in
the total cost of a node. When the cost starts rising significantly faster than
the performance, it's time to back off. When a 20 percent increase in
performance raises your cost by 40 percent, you've gone too far.

Since Linux works with most major chip families, stay mainstream and you
shouldn't have any software compatibility problems. Nonetheless, it is a good
idea to test a system before committing to a bulk purchase. Since a primary
rationale for building your own cluster is the economic advantage, you'll
probably want to stay away from the less common chips. While clusters built
with UltraSPARC systems may be wonderful performers, few people would
describe these as commodity systems. So unless you just happen to have a
number of these systems that you aren't otherwise using, you'll probably want
to avoid them.[2]

[2] Radajewski and Eadline's Beowulf HOWTO refers to "Computer Shopper"-certified equipment.
That is, if equipment isn't advertised in Computer Shopper, it isn't commodity equipment.

With standalone workstations, the overall benefit of multiple processors (i.e.,
SMP systems) is debatable since a second processor can remain idle much of
the time. A much stronger argument can be made for the use of multiple
processor systems in clusters where heavy utilization is assured. They add
additional CPUs without requiring additional motherboards, disk drives, power
supplies, cases, etc.

When comparing motherboards, look to see what is integrated into the board.
There are some significant differences. Serial, parallel, and USB ports along
with EIDE disk adapters are fairly standard. You may also find motherboards
with integrated FireWire ports, a network interface, or even a video interface.

While you may be able to save money with built-in network or display
interfaces (provided they actually meet your needs), make sure they can be
disabled should you want to install your own adapter in the future. If you are
really certain that some fully integrated motherboard meets your needs,
eliminating the need for daughter cards may allow you to go with a small case.
On the other hand, expandability is a valuable hedge against the future. In
particular, having free memory slots or adapter slots can be crucial at times.

Finally, make sure the BIOS Setup options are compatible with your intended
configuration. If you are building a minimal system without a keyboard or
display, make sure the BIOS will allow you to boot without them attached.
That's not true for some BIOSs.

3.1.1.2 Memory and disks

Subject to your budget, the more cache and RAM in your system, the better.
Typically, the faster the processor, the more RAM you will need. A very crude
rule of thumb is one byte of RAM for every floating-point operation per second.
So a processor capable of 100 MFLOPs would need around 100 MB of RAM. But
don't take this rule too literally.

Ultimately, what you will need depends on your applications. Paging creates a
severe performance penalty and should be avoided whenever possible. If you
are paging frequently, then you should consider adding more memory. It
comes down to matching the memory size to the cluster application. While you
may be able to get some idea of what you will need by profiling your
application, if you are creating a new cluster for as yet unwritten applications,
you will have little choice but to guess what you'll need as you build the
cluster and then evaluate its performance after the fact. Having free memory
slots can be essential under these circumstances.

Which disks to include, if any, is perhaps the most controversial decision you
will make in designing your cluster. Opinions vary widely. The cases both for
and against diskless systems have been grossly overstated. This decision is
one of balancing various tradeoffs. Different contexts tip the balance in
different directions. Keep in mind, diskless systems were once much more
popular than they are now. They disappeared for a reason. Despite a lot of
hype a few years ago about thin clients, the reemergence of these diskless
systems was a spectacular flop. Clusters are, however, a notable exception.
Diskless clusters are a widely used, viable approach that may be the best
solution in some circumstances.

There are a number of obvious advantages to diskless systems. There is a
lower cost per machine, which means you may be able to buy a bigger cluster
with better performance. With rapidly declining disk prices, this is becoming
less of an issue. A small footprint translates into lowered power and HVAC
needs. And once the initial configuration has stabilized, software maintenance
is simpler.

But the real advantage of diskless systems, at least with large clusters, is
reduced maintenance. With diskless systems, you eliminate all moving parts
aside from fans. For example, the average life (often known as mean time
between failures, mean time before failure, or mean time to failure) of one
manufacturer's disks is reported to be 300,000 hours or 34 years of
continuous operation. If you have a cluster of 100 machines, you'll replace
about three of these drives a year. This is a nuisance, but doable. If you have
a cluster with 12,000 nodes, then you are looking at a failure, on average,
every 25 hoursroughly once a day.

There is also a downside to consider. Diskless systems are much harder for
inexperienced administrators to configure, particularly with heterogeneous
hardware. The network is often the weak link in a cluster. In diskless systems
the network will see more traffic from the network file system, compounding
the problem. Paging across a network can be devastating to performance, so it
is critical that you have adequate local memory. But while local disks can
reduce network traffic, they don't eliminate it. There will still be a need for
network-accessible file systems.

Simply put, disk-based systems are more versatile and more forgiving. If you
are building a dedicated cluster with new equipment and have experience with
diskless systems, you should definitely consider diskless systems. If you are
new to clusters, a disk-based cluster is a safer approach. (Since this book's
focus is getting started with clusters, it does not describe setting up diskless
clusters.)

If you are buying hard disks, there are three issues: interface type (EIDE vs.
SCSI), disk latency (a function of rotational speed), and disk capacity. From a
price-performance perspective, EIDE is probably a better choice than SCSI
since virtually all motherboards include a built-in EIDE interface. And unless
you are willing to pay a premium, you won't have much choice with respect to
disk latency. Almost all current drives rotate at 7,200 RPM. While a few
10,000 RPM drives are available, their performance, unlike their price, is
typically not all that much higher. With respect to disk capacity, you'll need
enough space for the operating system, local paging, and the data sets you will
be manipulating. Unless you have extremely large data sets, when recycling
older computers a 10 GB disk should be adequate for most uses. Often smaller

disks can be used. For new systems, you'll be hard pressed to find anything
smaller that 20 GB, which should satisfy most uses. Of course, other non-
cluster needs may dictate larger disks.

You'll probably want to include either a floppy drive or CD-ROM drive in each
system. Since CD-ROM drives can be bought for under $15 and floppy drives
for under $5, you won't save much by leaving these out. For disk-based
systems, CD-ROMs or floppies can be used to initiate and customize network
installs. For example, when installing the software on compute nodes, you'll
typically use a boot floppy for OSCAR systems and a CD-ROM on Rocks
systems. For diskless systems, CD-ROMs or floppies can be used to boot
systems over the network without special BOOT ROMs on your network
adapters. The only compelling reason to not include a CD-ROM or floppy is a
lack of space in a truly minimal system.

When buying any disks, don't forget the cables.

3.1.1.3 Monitors, keyboards, and mice

Many minimal systems elect not to include monitors, keyboards, or mice but
rely on the network to provide local connectivity as needed. While this
approach is viable only with a dedicated cluster, its advantages include lower
cost, less equipment to maintain, and a smaller equipment footprint. There are
also several problems you may encounter with these headless systems.
Depending on the system BIOS, you may not be able to boot a system without
a display card or keyboard attached. When such systems boot, they probe for
an attached keyboard and monitor and halt if none are found. Often, there will
be a CMOS option that will allow you to override the test, but this isn't always
the case.

Another problem comes when you need to configure or test equipment. A lack
of monitor and keyboard can complicate such tasks, particularly if you have
network problems. One possible solution is the use of a crash cart a cart with
keyboard, mouse, and display that can be wheeled to individual machines and
connected temporarily. Provided the network is up and the system is booting
properly, X Windows or VNC provide a software solution.

Yet another alternative, particularly for small clusters, is the use of a
keyboard-video-mouse (KVM) switch. With these switches, you can attach a
single keyboard, mouse, and monitor to a number of different machines. The
switch allows you to determine which computer is currently connected. You'll
be able to access only one of the machines at a time, but you can easily cycle

among the machines at the touch of a button. It is not too difficult to jump
between machines and perform several tasks at once. However, it is fairly easy
to get confused about which system you are logged on to. If you use a KVM
switch, it is a good idea to configure the individual systems so that each
displays its name, either as part of the prompt for command-line systems or as
part of the background image for GUI-based systems.

There are a number of different switches available. Avocet even sells a KVM
switch that operates over IP and can be used with remote clusters. Some KVM
switches can be very pricey so be sure to shop around. Don't forget to include
the cost of cables when pricing KVM switches. Frequently, these are not
included with the switch and are usually overpriced. You'll need a set for every
machine you want to leave connected, but not necessarily every machine.

The interaction between the system and the switch may provide a surprise or
two. As previously noted, some systems don't allow booting without a
keyboard, i.e., there is no CMOS override for booting without a keyboard. A
KVM switch may be able to fool these systems. Such systems may detect a
keyboard when connected to a KVM switch even when the switch is set to a
different system. On the other hand, if you are installing Linux on a computer
and it probes for a monitor, unless the switch is set to that system, the
monitor won't be found.

Keep in mind, both the crash cart and the KVM switch approaches assume that individual
machines have display adapters.

For this reason, you should seriously consider including a video card even
when you are going with a headless systems. Very inexpensive cards or
integrated adapters can be used since you won't need anything fancy.
Typically, embedded video will only add a few dollars to the price of a
motherboard.

One other possibility is to use serial consoles. Basically, the idea is to replace
the attached monitor and keyboard with a serial connection to a remote
system. With a fair amount of work, most Linux systems can be reconfigured
to work in this manner. If you are using rack-mount machines, many of them
support serial console redirection out of the box. With this approach, the
systems use a connection to a serial port to eliminate the need for a KVM
switch. Additional hardware is available that will allow you to multiplex serial
connections from a number of machines. If this approach is of interest, consult

the Remote Serial Console HOWTO at http://www.tldp.org/HOWTO/Remote-
Serial-Console-HOWTO/.

3.1.1.4 Adapters, power supplies, and cases

As just noted, you should include a video adapter. The network adapter is also
a key component. You must buy an adapter that is compatible with the cluster
network. If you are planning to boot a diskless system over the network, you'll
need an adapter that supports it. This translates into an adapter with an
appropriate network BOOT ROM, i.e., one with pre-execution environment
(PXE) support. Many adapters come with a built-in (but empty) BOOT ROM
socket so that the ROM can be added. You can purchase BOOT ROMs for these
cards or burn your own. However, it may be cheaper to buy a new card with
an installed BOOT ROM than to add the BOOT ROMs. And unless you are
already set up to burn ROMs, you'll need to be using several machines before
it becomes cost effective to buy an EPROM burner.

To round things out, you'll need something to put everything in and a way to
supply power, i.e., a case and power supply. With the case, you'll have to
balance keeping the footprint small and having room to expand your system. If
you buy too small a power supply, it won't meet your needs or allow you to
expand your system. If you buy too large a power supply, you waste money
and space. If you add up the power requirements for your individual
components and add in another 50 percent as a fudge factor, you should be
safe.

One last word about node selection while we have considered components
individually, you should also think about the system collectively before you
make a final decision. If collectively the individual systems generate more heat
that you can manage, you may need to reconsider how you configure
individual machines. For example, Google is said to use less-powerful
machines in its clusters in order to balance computation needs with total
operational costs, a judgment that includes the impact of cooling needs.

3.1.2 Cluster Head and Servers

Thus far, we have been looking at the compute nodes within the cluster.
Depending on your configuration, you will need a head node and possibly
additional servers. Ideally, the head node and most servers should be
complete systems since it will add little to your overall cost and can simplify
customizing and maintaining these systems. Typically, there is no need for

http://www.tldp.org/HOWTO/Remote-Serial-Console-HOWTO/

these systems to use the same hardware that your compute nodes use. Go for
enhancements that will improve performance that you might not be able to
afford on every node. These machines are the place for large, fast disks and
lots of fast memory. A faster processor is also in order.

On smaller clusters, you can usually use one machine as both the head and as
the network file server. This will be a dual-homed machine (two network
interfaces) that serves as an access point for the cluster. As such, it will be
configured to limit and control access as well as provide it. When the services
required by the network file systems put too great a strain on the head node,
the network file system can be moved to a separate server to improve
performance.

If you are setting up systems as I/O servers for a parallel file system, it is
likely that you'll want larger and faster drives on these systems. Since you
may have a number of I/O servers in a larger cluster, you may need to look
more closely at cost and performance trade-offs.

3.1.3 Cluster Network

By definition, a cluster is a networked collection of computers. For commodity
clusters, networking is often the weak link. The two key factors to consider
when designing your network are bandwidth and latency. Your application or
application mix will determine just how important these two factors are. If you
need to move large blocks of data, bandwidth will be critical. For real-time
applications or applications that have lots of interaction among nodes,
minimizing latency is critical. If you have a mix of applications, both can be
critical.

It should come as no surprise that a number of approaches and products have
been developed. High-end Ethernet is probably the most common choice for
clusters. But for some low-latency applications, including many real-time
applications, you may need to consider specialized low-latency hardware.
There are a number of choices. The most common alternative to Ethernet is
Myrinet from Myricom, Inc. Myrinet is a proprietary solution providing high-
speed bidirectional connectivity (currently about 2 Gbps in each direction) and
low latencies (currently under 4 microseconds). Myrinet uses a source-routing
strategy and allows arbitrary length packets.

Other competitive technologies that are emerging or are available include
cLAN from Emulex, QsNet from Quadrics, and Infiniband from the Infiniband
consortium. These are high-performance solutions and this technology is

rapidly changing.

The problem with these alternative technologies is their extremely high cost.
Adapters can cost more than the combined cost of all the other hardware in a
node. And once you add in the per node cost of the switch, you can easily
triple the cost of a node. Clearly, these approaches are for the high-end
systems.

Fortunately, most clusters will not need this extreme level of performance.
Continuing gains in speed and rapidly declining costs make Ethernet the
network of choice for most clusters. Now that Gigabit Ethernet is well
established and 10 Gigabit Ethernet has entered the marketplace, the highly
expensive proprietary products are no longer essential for most needs.

For Gigabit Ethernet, you will be better served with an embedded adapter
rather than an add-on PCI board since Gigabit can swamp the PCI bus.
Embedded adapters use workarounds that take the traffic off the PCI bus.
Conversely, with 100BaseT, you may prefer a separate adapter rather than an
embedded one since an embedded adapter may steal clock cycles from your
applications.

Unless you are just playing around, you'll probably want, at minimum,
switched Fast Ethernet. If your goal is just to experiment with clusters, almost
any level of networking can be used. For example, clusters have been created
using FireWire ports. For two (or even three) machines, you can create a
cluster using crossover cables.

Very high-performance clusters may have two parallel networks. One is used
for messages passing among the nodes, while the second is used for the
network file system. In the past, elaborate technology, architectures, and
topologies have been developed to optimize communications. For example,
channel bonding uses multiple interfaces to multiplex channels for higher
bandwidth. Hypercube topologies have been used to minimize communication
path length. These approaches are beyond the scope of this book. Fortunately,
declining networking prices and faster networking equipment have lessened
the need for these approaches.

3.2 Environment

You are going to need some place to put your computers. If you are lucky
enough to have a dedicated machine room, then you probably have everything
you need. Otherwise, select or prepare a location that provides physical
security, adequate power, and adequate heating and cooling. While these
might not be issues with a small cluster, proper planning and preparation is
essential for large clusters. Keep in mind, you are probably going to be so
happy with your cluster that you'll want to expand it. Since small clusters have
ways of becoming large clusters, plan for growth from the start.

3.2.1 Cluster Layout

Since the more computers you have, the more space they will need, plan your
layout with wiring, cooling, and physical access in mind. Ignore any of these at
your peril. While it may be tempting to stack computers or pack them into
large shelves, this can create a lot of problems if not handled with care. First,
you may find it difficult to physically access individual computers to make
repairs. If the computers are packed too tightly, you'll create heat dissipation
problems. And while this may appear to make wiring easier, in practice it can
lead to a rat's nest of cables, making it difficult to divide your computers
among different power circuits.

From the perspective of maintenance, you'll want to have physical access to
individual computers without having to move other computers and with a
minimum of physical labor. Ideally, you should have easy access to both the
front and back of your computers. If your nodes are headless (no monitor,
mouse, or keyboard), it is a good idea to assemble a crash cart. So be sure to
leave enough space to both wheel and park your crash cart (and a chair)
among your machines.

To prevent overheating, leave a small gap between computers and take care
not to obstruct any ventilation openings. (These are occasionally seen on the
sides of older computers!) An inch or two usually provides enough space
between computers, but watch for signs of overheating.

Cable management is also a concern. For the well-heeled, there are a number
of cable management systems on the market. Ideally, you want to keep power
cables and data cables separated. The traditional rule of thumb was that there
should be at least a foot of separation between parallel data cables and power
cables runs, and that data cables and power cables should cross at right

angles. In practice, the 60Hz analog power signal doesn't affect high-speed
digital signals. Still, separating cables can make your cluster more
manageable.

Standard equipment racks are very nice if you can afford them. Cabling is
greatly simplified. But keep in mind that equipment racks pack things very
closely and heat can be a problem. One rule of thumb is to stay under 100 W
per square foot. That is about 1000 W for a 6-foot, 19-inch rack.

Otherwise, you'll probably be using standard shelving. My personal preference
is metal shelves that are open on all sides. When buying shelves, take into
consideration both the size and the weight of all the equipment you will have.
Don't forget any displays, keyboards, mice, KVM switches, network switches, or
uninterruptible power supplies that you plan to use. And leave yourself some
working room.

3.2.2 Power and Air Conditioning

You'll need to make sure you have adequate power for your cluster, and to
remove all the heat generated by that power, you'll need adequate air
conditioning. For small clusters, power and air conditioning may not be
immediate concerns (for now!), but it doesn't hurt to estimate your needs. If
you are building a large cluster, take these needs into account from the
beginning. Your best bet is to seek professional advice if it is readily available.
Most large organizations have heating, ventilation, and air conditioning
(HVAC) personnel and electricians on staff. While you can certainly estimate
your needs yourself, if you have any problems you will need to turn to these
folks for help, so you might want to include them from the beginning. Also, a
second set of eyes can help prevent a costly mistake.

3.2.2.1 Power

In an ideal universe, you would simply know the power requirements of your
cluster. But if you haven't built it yet, this knowledge can be a little hard to
come by. The only alternative is to estimate your needs. A rough estimate is
fairly straightforward: just inventory all your equipment and then add up all
the wattages. Divide the total wattage by the voltage to get the amperage for
the circuit, and then figure in an additional 50 percent or so as a safety factor.

For a more careful analysis, you should take into account the power factor. A
switching power supply can draw more current than reported by their wattage

ratings. For example, a fully loaded 350 W power supply may draw 500 W for
70 percent of the time and be off the other 30 percent of the time. And since a
power supply may be 70 percent efficient, delivering those 500 W may require
around 715 W. In practice, your equipment will rarely operate at maximum-
rated capacity. Some power supplies are power-factor corrected (PFC). These
power supplies will have power factors closer to 95 percent than 70 percent.

As you can see, this can get complicated very quickly. Hopefully, you won't be
working with fully loaded systems. On the other hand, if you expect your
cluster to grow, plan for more. Having said all this, for small clusters a 20-amp
circuit should be adequate, but there are no guarantees.

When doing your inventory, the trick is remembering to include everything
that enters the environment. It is not just the computers, network equipment,
monitors, etc., that make up a cluster. It includes everythingequipment that is
only used occasionally such as vacuum cleaners, personal items such as the
refrigerator under your desk, and fixtures such as lights. (Ideally, you should
keep the items that potentially draw a lot of current, such as vacuum cleaners,
floor polishers, refrigerators, and laser printers, off the circuits your cluster is
on.) Also, be careful to ensure you aren't sharing a circuit unknowingly a
potential problem in an older building, particularly if you have remodeled and
added partitions.

The quality of your power can be an issue. If in doubt, put a line monitor on
your circuit to see how it behaves. You might consider an uninterruptible
power supply (UPS), particularly for your servers or head nodes. However, the
cost can be daunting when trying to provide UPSs for an entire cluster.
Moreover, UPSs should not be seen as an alternative to adequate wiring. If
you are interested in learning more about or sizing a UPS, see the UPS FAQ at
the site of the Linux Documentation Project (http://www.tldp.org/).

While you are buying UPSs, you may also want to consider buying other power
management equipment. There are several vendors that supply managed
power distribution systems. These often allow management over the Internet,
through a serial connection, or via SNMP. With this equipment, you'll be able
to monitor your cluster and remotely power-down or reboot equipment.

And one last question to the wise:

Do you know how to kill the power to your system?

http://www.tldp.org/

This is more than idle curiosity. There may come a time when you don't want
power to your cluster. And you may be in a big hurry when the time comes.

Knowing where the breakers are is a good start. Unfortunately, these may not
be close at hand. They may even be locked away in a utility closet. One
alternative is a scram switch. A scram switch should be installed between the
UPS and your equipment. You should take care to ensure the switch is
accessible but will not inadvertently be thrown.

You should also ensure that your maintenance staff knows what a UPS is. I
once had a server/UPS setup in an office that flooded. When I came in, the
UPS had been unplugged from the wall, but the computer was still plugged into
the UPS. Both computer and UPS were drencheda potentially deadly situation.
Make sure your maintenance staff knows what they are dealing with.

3.2.2.2 HVAC

As with most everything else, when it comes to electronics, heat kills. There is
no magical temperature or temperature range that if you just keep your
computers and other equipment within that range, everything will be OK.
Unfortunately, it just isn't that simple.

Failure rate is usually a nonlinear function of temperature. As the temperature
rises, the probability of failure also increases. For small changes in
temperature, a rough rule of thumb is that you can expect the failure rate to
double with an 18F (10C) increase in temperature. For larger changes, the
rate of failure typically increases more rapidly than the rise in temperature.
Basically, you are playing the odds. If you operate your machine room at a
higher than average temperature, you'll probably see more failures. It is up to
you to decide if the failure rate is unacceptable.

Microenvironments also matter. It doesn't matter if it is nice and cool in your
corner of the room if your equipment rack is sitting in a corner in direct
sunlight where the temperature is 15F (8C) warmer. If the individual pieces of
equipment don't have adequate cooling, you'll have problems. This means that
computers that are spread out in a room with good ventilation may be better
off at a higher room temperature than those in a tightly packed cluster that
lacks ventilation, even when the room temperature is lower.

Finally, the failure rate will also depend on the actual equipment you are
using. Some equipment is designed and constructed to be more heat tolerant,
e.g., military grade equipment. Consult the specifications if in doubt.

While occasionally you'll see recommended temperature ranges for equipment
or equipment rooms, these should be taken with a grain of salt. Usually,
recommended temperatures are a little below 70F (21C). So if you are a little
chilly, your machines are probably comfortable.

Maintaining a consistent temperature can be a problem, particularly if you
leave your cluster up and running at night, over the weekend, and over
holidays. Heating and air conditioning are often turned off or scaled back when
people aren't around. Ordinarily, this makes good economic sense. But when
the air conditioning is cut off for a long Fourth of July weekend, equipment can
suffer. Make sure you discuss this with your HVAC folks before it becomes a
problem. Again, occasional warm spells probably won't be a problem, but you
are pushing your luck.

Humidity is also an issue. At a high humidity, condensation can become a
problem; at a low humidity, static electricity is a problem. The optimal range is
somewhere in between. Recommended ranges are typically around 40 percent
to 60 percent.

Estimating your air conditioning needs is straightforward but may require
information you don't have. Among other things, proper cooling depends on
the number and area of external walls, the number of windows and their
exposure to the sun, the external temperature, and insulation. Your
maintenance folks may have already calculated all this or may be able to
estimate some of it.

What you are adding is heat contributed by your equipment and staff,
something that your maintenance folks may not have been able to accurately
predict. Once again, you'll start with an inventory of your equipment. You'll
want the total wattage. You can convert this to British Thermal Units per hour
by multiplying the wattage by 3.412. Add in another 300 BTU/H for each
person working in the area. Add in the load from the lights, walls, windows,
etc., and then figure in another 50 percent as a safety factor. Since air
conditioning is usually expressed in tonnage, you may need to divide the
BTU/H total by 12,000 to get the tonnage you need. (Or, just let the HVAC
folks do all this for you.)

3.2.3 Physical Security

Physical security includes both controlling access to computers and protecting
computers from physical threats such as flooding. If you are concerned about
someone trying to break into your computers, the best solution is to take

whatever steps you can to ensure that they don't have physical access to the
computers. If you can't limit access to the individual computers, then you
should password protect the CMOS, set the boot order so the system only
boots from the hard drive, and put a lock on each case. Otherwise, someone
can open the case and remove the battery briefly (roughly 15 to 20 minutes)
to erase the information in CMOS including the password.[3] With the password
erased, the boot order can be changed. Once this is done, it is a simple matter
to boot to a floppy or CD-ROM, mount the hard drive, and edit the password
files, etc. (Even if you've removed both floppy and CD-ROM drives, an intruder
could bring one with them.) Obviously, this solution is only as good as the
locks you can put on the computers and does very little to protect you from
vandals.

[3] Also, there is usually a jumper that will immediately discharge the CMOS.

Broken pipes and similar disasters can be devastating. Unfortunately, it can be
difficult to access these potential threats. Computers can be damaged when a
pipe breaks on another floor. Just because there is no pipe immediately
overhead doesn't mean that you won't be rained on as water from higher
floors makes its way to the basement. Keeping equipment off the floor and off
the top of shelves can provide some protection. It is also a good idea to keep
equipment away from windows.

There are several web sites and books that deal with disaster preparedness. As
the importance of your cluster grows, disaster preparedness will become more
important.

Chapter 4. Linux for Clusters
This chapter reviews some of the issues involved in setting up a Linux system
for use in a cluster. While several key services are described in detail, for the
most part the focus is more on the issues and rationales than on specifics.
Even if you are an old pro at Linux system administration, you may still want
to skim this chapter for a quick overview of the issues as they relate to
clusters, particularly the section on configuring services. If you are new to
Linux system administration, this chapter will probably seem very terse.
What's presented here is the bare minimum a novice system administrator will
need to get started. The Appendix A lists additional sources.

This chapter covers material you'll need when setting up the head node and a
typical cluster node. Depending on the approach you take, much of this may
be done for you. If you are building your cluster from the ground up, you'll
need to install the head node, configure the individual services on it, and build
at least one compute node. Once you have determined how a compute node
should be configured, you can turn to Chapter 8 for a discussion of how to
duplicate systems in an efficient manner. It is much simpler with kits like
OSCAR and Rocks.

With OSCAR, you'll need to install Linux on the head system, but OSCAR will
configure the services for you. It will also build the client, i.e., generate a
system image and install it on the compute nodes. OSCAR will configure and
install most of the packages you'll need. The key to using OSCAR is to use a
version of Linux that is known to be compatible with OSCAR. OSCAR is
described in Chapter 6. With Rocks, described in Chapter 7, everything will be
done for you. Red Hat Linux comes as part of the Rocks distribution.

This chapter begins with a discussion of selecting a Linux distribution. A
general discussion of installing Linux follows. Next, the configuration of
relevant network services is described. Finally, there is a brief discussion of
security. If you are adding clustering software to an existing collection of
workstations, presumably Linux is already installed on your machines. If this is
the case, you can probably skim the first couple of sections. But while you
won't need to install Linux, you will need to ensure that it is configured
correctly and all the services you'll need are available.

4.1 Installing Linux

If Linux isn't built into your cluster software, the first step is to decide what
distribution and version of Linux you want.

4.1.1 Selecting a Distribution

This decision will depend on what clustering software you want to use. It
doesn't matter what the "best" distribution of Linux (Red Hat, Debian, SUSE,
Mandrake, etc.) or version (7.3, 8.0, 9.0, etc.) is in some philosophical sense if
the clustering software you want to use isn't available for that choice. This
book uses the Red Hat distribution because the clustering software being
discussed was known to work with that distribution. This is not an
endorsement of Red Hat; it was just a pragmatic decision.

Keep in mind that your users typically won't be logging onto the compute
nodes to develop programs, etc., so the version of Linux used there should be
largely irrelevant to the users. While users will be logging onto the head node,
this is not a general-purpose server. They won't be reading email, writing
memos, or playing games on this system (hopefully). Consequently, many of
the reasons someone might prefer a particular distribution are irrelevant.

This same pragmatism should extend to selecting the version as well as the
distribution you use. In practice, this may mean using an older version of
Linux. There are basically three issues involved in using an older
version compatibility with newer hardware; bug fixes, patches, and continued
support; and compatibility with clustering software.

If you are using recycled hardware, using an older version shouldn't be a
problem since drivers should be readily available for your older equipment. If
you are using new equipment, however, you may run into problems with older
Linux releases. The best solution, of course, is to avoid this problem by
planning ahead if you are buying new hardware. This is something you should
be able to work around by putting together a single test system before buying
the bulk of the equipment.

With older versions, many of the problems are known. For bugs, this is good
news since someone else is likely to have already developed a fix or
workaround. With security holes, this is bad news since exploits are probably
well circulated. With an older version, you'll need to review and install all
appropriate security patches. If you can isolate your cluster, this will be less of
an issue.

Unfortunately, at some point you can expect support for older systems to be
discontinued. However, a system will not stop working just because it isn't
supported. While not desirable, this is also something you can live with.

The final and key issue is software compatibility. Keep in mind that it takes
time to develop software for use with a new release, particularly if you are
customizing the kernel. As a result, the clustering software you want to use
may not be available for the latest version of your favorite Linux distribution.
In general, software distributed as libraries (e.g., MPI) are more forgiving than
software requiring kernel patches (e.g., openMosix) or software that builds
kernel modules (e.g., PVFS). These latter categories, by their very nature,
must be system specific. Remember that using clustering software is the raison
d'être for your cluster. If you can't run it, you are out of business. Unless you
are willing to port the software or compromise your standards, you may be
forced to use an older version of Linux. While you may want the latest and
greatest version of your favorite flavor of Linux, you need to get over it.

If at all feasible, it is best to start your cluster installation with a clean install
of Linux. Of course, if you are adding clustering software to existing systems,
this may not be feasible, particularly if the machines are not dedicated to the
cluster. If that is the case, you'll need to tread lightly. You'll almost certainly
need to make changes to these systems, changes that may not go as smoothly
as you'd like. Begin by backing up and carefully documenting these systems.

4.1.2 Downloading Linux

With most flavors of Linux, there are several ways you can do the installation.
Typically you can install from a set of CD-ROMs, from a hard disk partition, or
over a network using NFS, FTP, or HTTP. The decision will depend in part on
the hardware you have available, but for initial experimentation it is probably
easiest to use CD-ROMs. Buying a boxed set can be a real convenience,
particularly if it comes with a printed set of manuals. But if you are using an
older version of Linux, finding a set of CD-ROMs to buy can be difficult.
Fortunately, you should have no trouble finding what you need on the
Internet.

Downloading is the cheapest and easiest way to go if you have a fast Internet
connection and a CD-ROM burner. Typically, you download ISO imagesdisk
images for CD-ROMs. These are basically single-file archives of everything on
a CD-ROM. Since ISO images are frequently over 600 MB each and since you'll
need several of them, downloading can take hours even if you have a fast
connection and days if you're using a slow modem.

If you decide to go this route, follow the installation directions from your
download site. These should help clarify exactly what you need and don't need
and explain any other special considerations. For example, for Red Hat Linux
the place to start is http://www.redhat.com/apps/download/. This will give you
a link to a set of directions with links to download sites. Don't overlook the
mirror sites; your download may go faster with them than with Red Hat's
official download site.

For Red Hat Linux 9.0, there are seven disks. (Earlier versions of Red Hat have
fewer disks.) Three of these are the installation disks and are essential. Three
disks contain the source files for the packages. It is very unlikely you'll ever
need these. If you do, you can download them later. The last disk is a
documentation disk. You'd be foolish to skip this disk. Since the files only fill a
small part of a CD, the ISO image is relatively small and the download doesn't
take very long.

It is a good idea to check the MD5SUM for each ISO you download. Run the
md5sum program and compare the results to published checksums.

[root@cs sloanjd]# md5sum FC2-i386-rescuecd.iso

22f4bfca5baefe89f0e04166e738639f FC2-i386-rescuecd.iso

This will ensure both that the disk image hasn't been tampered with and that
your download wasn't corrupted.

Once you have downloaded the ISO images, you'll need to burn your CD-
ROMs. If you downloaded the ISO images to a Windows computer, you could
use something like Roxio Easy Creator.[1] If you already have a running Linux
system, you might use X-CD-Roast.

[1] There is an appealing irony to using Windows to download Linux.

Once you have the CD-ROMs, you can do an installation by following the
appropriate directions for your software and system. Usually, this means
booting to the first CD-ROM, which, in turn, runs an installation script. If you
can't boot from the CD-ROM, you'll need to create a boot floppy using the
directions supplied with the software. For Red Hat Linux, see the README file
on the first installation disk.

http://www.redhat.com/apps/download/

4.1.3 What to Install?

What you install will depend on how you plan to use the machine. Is this a
dedicated cluster? If so, users probably won't log onto individual machines, so
you can get by with installing the minimal software required to run
applications on each compute node. Is it a cluster of workstations that will be
used in other ways? If that is the case, be sure to install X and any other
appropriate applications. Will you be writing code? Don't forget the software
development package and editors. Will you be recompiling the kernel? If so,
you'll need the kernel sources.[2] If you are building kernel modules, you'll
need the kernel header files. (In particular, these are needed if you install
PVFS. PVFS is described in Chapter 12.) A custom installation will give you the
most control over what is installed, i.e., the greatest opportunity to install
software that you don't need and omit that which you do need.

[2] In general, you should avoid recompiling the kernel unless it is absolutely necessary. While you
may be able to eke out some modest performance gains, they are rarely worth the effort.

Keep in mind that you can go back and add software. You aren't trapped by
what you include at this point. At this stage, the important thing is to
remember what you actually did. Take careful notes and create a checklist as
you proceed. The quickest way to get started is to take a minimalist approach
and add anything you need later, but some people find it very annoying to
have to go back and add software. If you have the extra disk space (2 GB or
so), then you may want to copy all the packages to a directory on your server.
Not having to mount disks and search for packages greatly simplifies adding
packages as needed. You only need to do this with one system and it really
doesn't take that long. Once you have worked out the details, you can create a
Kickstart configuration file to automate all this. Kickstart is described in more
detail in Chapter 8.

4.2 Configuring Services

Once you have the basic installation completed, you'll need to configure the
system. Many of the tasks are no different for machines in a cluster than for
any other system. For other tasks, being part of a cluster impacts what needs
to be done. The following subsections describe the issues associated with
several services that require special considerations. These subsections briefly
recap how to configure and use these services. Remember, most of this will be
done for you if you are using a package like OSCAR or Rocks. Still, it helps to
understand the issues and some of the basics.

4.2.1 DHCP

Dynamic Host Configuration Protocol (DHCP) is used to supply network
configuration parameters, including IP addresses, host names, and other
information to clients as they boot. With clusters, the head node is often
configured as a DHCP server and the compute nodes as DHCP clients. There
are two reasons to do this. First, it simplifies the installation of compute nodes
since the information DHCP can supply is often the only thing that is different
among the nodes. Since a DHCP server can handle these differences, the node
installation can be standardized and automated. A second advantage of DHCP
is that it is much easier to change the configuration of the network. You simply
change the configuration file on the DHCP server, restart the server, and
reboot each of the compute nodes.

The basic installation is rarely a problem. The DHCP system can be installed as
a part of the initial Linux installation or after Linux has been installed. The
DHCP server configuration file, typically /etc/dhcpd.conf, controls the
information distributed to the clients. If you are going to have problems, the
configuration file is the most likely source.

The DHCP configuration file may be created or changed automatically when
some cluster software is installed. Occasionally, the changes may not be done
optimally or even correctly so you should have at least a reading knowledge of
DHCP configuration files. Here is a heavily commented sample configuration
file that illustrates the basics. (Lines starting with "#" are comments.)

A sample DHCP configuration file.

The first commands in this file are global,

i.e., they apply to all clients.

Only answer requests from known machines,

i.e., machines whose hardware addresses are given.

deny unknown-clients;

Set the subnet mask, broadcast address, and router address.

option subnet-mask 255.255.255.0;

option broadcast-address 172.16.1.255;

option routers 172.16.1.254;

This section defines individual cluster nodes.

Each subnet in the network has its own section.

subnet 172.16.1.0 netmask 255.255.255.0 {

 group {

 # The first host, identified by the given MAC address,

 # will be named node1.cluster.int, will be given the

 # IP address 172.16.1.1, and will use the default router

 # 172.16.1.254 (the head node in this case).

 host node1{

 hardware ethernet 00:08:c7:07:68:48;

 fixed-address 172.16.1.1;

 option routers 172.16.1.254;

 option domain-name "cluster.int";

 }

 host node2{

 hardware ethernet 00:08:c7:07:c1:73;

 fixed-address 172.16.1.2;

 option routers 172.16.1.254;

 option domain-name "cluster.int";

 }

 # Additional node definitions go here.

 }

}

For servers with multiple interfaces, this entry says to ignore requests

on specified subnets.

subnet 10.0.32.0 netmask 255.255.248.0 { not authoritative; }

As shown in this example, you should include a subnet section for each subnet
on your network. If the head node has an interface for the cluster and a
second interface connected to the Internet or your organization's network, the
configuration file will have a group for each interface or subnet. Since the
head node should answer DHCP requests for the cluster but not for the
organization, DHCP should be configured so that it will respond only to DHCP
requests from the compute nodes.

4.2.2 NFS

A network filesystem is a filesystem that physically resides on one computer
(the file server), which in turn shares its files over the network with other
computers on the network (the clients). The best-known and most common
network filesystem is Network File System (NFS). In setting up a cluster,
designate one computer as your NFS server. This is often the head node for
the cluster, but there is no reason it has to be. In fact, under some
circumstances, you may get slightly better performance if you use different
machines for the NFS server and head node. Since the server is where your
user files will reside, make sure you have enough storage. This machine is a
likely candidate for a second disk drive or raid array and a fast I/O subsystem.
You may even what to consider mirroring the filesystem using a small high-
availability cluster.

Why use an NFS? It should come as no surprise that for parallel programming
you'll need a copy of the compiled code or executable on each machine on
which it will run. You could, of course, copy the executable over to the
individual machines, but this quickly becomes tiresome. A shared filesystem
solves this problem. Another advantage to an NFS is that all the files you will
be working on will be on the same system. This greatly simplifies backups.
(You do backups, don't you?) A shared filesystem also simplifies setting up
SSH, as it eliminates the need to distribute keys. (SSH is described later in
this chapter.) For this reason, you may want to set up NFS before setting up
SSH. NFS can also play an essential role in some installation strategies.

If you have never used NFS before, setting up the client and the server are
slightly different, but neither is particularly difficult. Most Linux distributions
come with most of the work already done for you.

4.2.2.1 Running NFS

Begin with the server; you won't get anywhere with the client if the server
isn't already running. Two things need to be done to get the server running.
The file /etc/exports must be edited to specify which machines can mount
which directories, and then the server software must be started. Here is a
single line from the file /etc/exports on the server amy:

/home basil(rw) clara(rw) desmond(rw) ernest(rw) george(rw)

This line gives the clients basil, clara, desmond, ernest, and george read/write
access to the directory /home on the server. Read access is the default. A
number of other options are available and could be included. For example, the
no_root_squash option could be added if you want to edit root permission files
from the nodes.

Pay particular attention to the use of spaces in this file.

Had a space been inadvertently included between basil and (rw), read access
would have been granted to basil and read/write access would have been
granted to all other systems. (Once you have the systems set up, it is a good
idea to use the command showmount -a to see who is mounting what.)

Once /etc/exports has been edited, you'll need to start NFS. For testing, you
can use the service command as shown here

[root@fanny init.d]# /sbin/service nfs start

Starting NFS services: [OK]

Starting NFS quotas: [OK]

Starting NFS mountd: [OK]

Starting NFS daemon: [OK]

[root@fanny init.d]# /sbin/service nfs status

rpc.mountd (pid 1652) is running...

nfsd (pid 1666 1665 1664 1663 1662 1661 1660 1657) is running...

rpc.rquotad (pid 1647) is running...

(With some Linux distributions, when restarting NFS, you may find it
necessary to explicitly stop and restart both nfslock and portmap as well.)
You'll want to change the system configuration so that this starts automatically

when the system is rebooted. For example, with Red Hat, you could use the
serviceconf or chkconfig commands.

For the client, the software is probably already running on your system. You
just need to tell the client to mount the remote filesystem. You can do this
several ways, but in the long run, the easiest approach is to edit the file
/etc/fstab, adding an entry for the server. Basically, you'll add a line to the file
that looks something like this:

amy:/home /home nfs rw,soft 0 0

In this example, the local system mounts the /home filesystem located on amy
as the /home directory on the local machine. The filesystems may have
different names. You can now manually mount the filesystem with the mount
command

[root@ida /]# mount /home

When the system reboots, this will be done automatically.

When using NFS, you should keep a couple of things in mind. The mount point,
/home, must exist on the client prior to mounting. While the remote directory
is mounted, any files that were stored on the local system in the /home
directory will be inaccessible. They are still there; you just can't get to them
while the remote directory is mounted. Next, if you are running a firewall, it
will probably block NFS traffic. If you are having problems with NFS, this is
one of the first things you should check.

File ownership can also create some surprises. User and group IDs should be
consistent among systems using NFS, i.e., each user will have identical IDs on
all systems. Finally, be aware that root privileges don't extend across NFS
shared systems (if you have configured your systems correctly). So if, as root,
you change the directory (cd) to a remotely mounted filesystem, don't expect
to be able to look at every file. (Of course, as root you can always use su to
become the owner and do all the snooping you want.) Details for the syntax
and options can be found in the nfs(5), exports(5), fstab(5), and mount(8)
manpages. Additional references can be found in the Appendix A.

4.2.2.2 Automount

The preceding discussion of NFS describes editing the /etc/fstab to mount
filesystems. There's another alternativeusing an automount program such as
autofs or amd. An automount daemon mounts a remote filesystem when an
attempt is made to access the filesystem and unmounts the filesystem when it
is no longer needed. This is all transparent to the user.

While the most common use of automounting is to automatically mount floppy
disks and CD-ROMs on local machines, there are several advantages to
automounting across a network in a cluster. You can avoid the problem of
maintaining consistent /etc/fstab files on dozens of machines. Automounting
can also lessen the impact of a server crash. It is even possible to replicate a
filesystem on different servers for redundancy. And since a filesystem is
mounted only when needed, automounting can reduce network traffic. We'll
look at a very simple example here. There are at least two different HOWTOs
(http://www.tldp.org/) for automounting should you need more information.

Automounting originated at Sun Microsystems, Inc. The Linux automounter
autofs, which mimics Sun's automounter, is readily available on most Linux
systems. While other automount programs are available, most notably amd,
this discussion will be limited to using autofs.

Support for autofs must be compiled into the kernel before it can be used.
With most Linux releases, this has already been done. If in doubt, use the
following to see if it is installed:

[root@fanny root]# cat /proc/filesystems

...

Somewhere in the output, you should see the line

nodev autofs

If you do, you are in business. Otherwise, you'll need a new kernel.

Next, you need to configure your systems. autofs uses the file
/etc/auto.master to determine mount points. Each line in the file specifies a
mount point and a map file that defines which filesystems will be mounted to
the mount point. For example, in Rocks the auto.master file contains the
single line:

http://www.tldp.org/

/home auto.home --timeout 600

In this example, /home is the mount point, i.e., where the remote filesystem
will be mounted. The file auto.home specifies what will be mounted.

In Rocks, the file /etc/auto.home will have multiple entries such as:

sloanjd frontend.local:/export/home/sloanjd

The first field is the name of the subdirectory that will be created under the
original mount point. In this example, the directory sloanjd will be mounted as
a subdirectory of /home on the client system. The subdirectories are created
dynamically by automount and should not exist on the client. The second field
is the hostname (or server) and directory that is exported. (Although not
shown in this example, it is possible to specify mount parameters for each
directory in /etc/auto.home.) NFS should be running and you may need to
update your /etc/exports file.

Once you have the configuration files copied to each system, you need to start
autofs on each system. autofs is usually located in /etc/init.d and accepts the
commands start, restart, status, and reload. With Red Hat, it is available through
the /sbin/service command. After reading the file, autofs starts an automount
process with appropriate parameters for each mount point and mounts
filesystems as needed. For more information see the autofs(8) and
auto.master(5) manpages.

4.2.3 Other Cluster File System

NFS has its limitations. First, there are potential security issues. Since the idea
behind NFS is sharing, it should come as no surprise that over the years
crackers have found ways to exploit NFS. If you are going to use NFS, it is
important that you use a current version, apply any needed patches, and
configure it correctly.

Also, NFS does not scale well, although there seems to be some disagreement
about its limitations. For clusters, with fewer than 100 nodes, NFS is probably
a reasonable choice. For clusters with more than 1,000 nodes, NFS is
generally thought to be inadequate. Between 100 and 1,000 nodes, opinions

seem to vary. This will depend in part on your hardware. It will also depend on
how your applications use NFS. For a bioinformatics clusters, many of the
applications will be read intensive. For a graphics processing cluster, rendering
applications will be write intensive. You may find that NFS works better with
the former than the latter. Other applications will have different
characteristics, each stressing the filesystem in a different way. Ultimately, it
comes down to what works best for you and your applications, so you'll
probably want to do some experimenting.

Keep in mind that NFS is not meant to be a high-performance, parallel
filesystem. Parallel filesystems are designed for a different purpose. There are
other filesystems you could consider, each with its own set of characteristics.
Some of these are described briefly in Chapter 12. Additionally, there are
other storage technologies such as storage area network (SAN) technology.
SANs offer greatly improve filesystem failover capabilities and are ideal for use
with high-availability clusters. Unfortunately, SANs are both expensive and
difficult to set up. iSCSI (SCSI over IP) is an emerging technology to watch.

If you need a high-performance, parallel filesystems, PVFS is a reasonable
place to start, as it is readily available for both Rocks and OSCAR. PVFS is
discussed in Chapter 12.

4.2.4 SSH

To run software across a cluster, you'll need some mechanism to start
processes on each machine. In practice, a prerequisite is the ability to log onto
each machine within the cluster. If you need to enter a password for each
machine each time you run a program, you won't get very much done. What is
needed is a mechanism that allows logins without passwords.

This boils down to two choicesyou can use remote shell (RSH) or secure shell
(SSH). If you are a trusting soul, you may want to use RSH. It is simpler to set
up with less overhead. On the other hand, SSH network traffic is encrypted, so
it is safe from snooping. Since SSH provides greater security, it is generally
the preferred approach.

SSH provides mechanisms to log onto remote machines, run programs on
remote machines, and copy files among machines. SSH is a replacement for
ftp, telnet, rlogin, rsh, and rcp. A commercial version of SSH is available from
SSH Communications Security (http://www.ssh.com), a company founded by
Tatu Ylönen, an original developer of SSH. Or you can go with OpenSSH, an
open source version from http://www.openssh.org.

http://www.ssh.com
http://www.openssh.org

OpenSSH is the easiest since it is already included with most Linux
distributions. It has other advantages as well. By default, OpenSSH
automatically forwards the DISPLAY variable. This greatly simplifies using the X
Window System across the cluster. If you are running an SSH connection
under X on your local machine and execute an X program on the remote
machine, the X window will automatically open on the local machine. This can
be disabled on the server side, so if it isn't working, that is the first place to
look.

There are two sets of SSH protocols, SSH-1 and SSH-2. Unfortunately, SSH-1
has a serious security vulnerability. SSH-2 is now the protocol of choice. This
discussion will focus on using OpenSSH with SSH-2.

Before setting up SSH, check to see if it is already installed and running on
your system. With Red Hat, you can check to see what packages are installed
using the package manager.

[root@fanny root]# rpm -q -a | grep ssh

openssh-3.5p1-6

openssh-server-3.5p1-6

openssh-clients-3.5p1-6

openssh-askpass-gnome-3.5p1-6

openssh-askpass-3.5p1-6

This particular system has the SSH core package, both server and client
software as well as additional utilities. The SSH daemon is usually started as a
service. As you can see, it is already running on this machine.

[root@fanny root]# /sbin/service sshd status

sshd (pid 28190 1658) is running...

Of course, it is possible that it wasn't started as a service but is still installed
and running. You can use ps to double check.

[root@fanny root]# ps -aux | grep ssh

root 29133 0.0 0.2 3520 328 ? S Dec09 0:02 /usr/sbin/sshd

...

Again, this shows the server is running.

With some older Red Hat installations, e.g., the 7.3 workstation, only the
client software is installed by default. You'll need to manually install the server
software. If using Red Hat 7.3, go to the second install disk and copy over the
file RedHat/RPMS/openssh-server-3.1p1-3.i386.rpm. (Better yet, download the
latest version of this software.) Install it with the package manager and then
start the service.

[root@james root]# rpm -vih openssh-server-3.1p1-3.i386.rpm

Preparing... ### [100%]

 1:openssh-server ### [100%]

[root@james root]# /sbin/service sshd start

Generating SSH1 RSA host key: [OK]

Generating SSH2 RSA host key: [OK]

Generating SSH2 DSA host key: [OK]

Starting sshd: [OK]

When SSH is started for the first time, encryption keys for the system are
generated. Be sure to set this up so that it is done automatically when the
system reboots.

Configuration files for both the server, sshd_config, and client, ssh_config, can
be found in /etc/ssh, but the default settings are usually quite reasonable. You
shouldn't need to change these files.

4.2.4.1 Using SSH

To log onto a remote machine, use the command ssh with the name or IP
address of the remote machine as an argument. The first time you connect to
a remote machine, you will receive a message with the remote machines'
fingerprint, a string that identifies the machine. You'll be asked whether to
proceed or not. This is normal.

[root@fanny root]# ssh amy

The authenticity of host 'amy (10.0.32.139)' can't be established.

RSA key fingerprint is 98:42:51:3e:90:43:1c:32:e6:c4:cc:8f:4a:ee:cd:86.

Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added 'amy,10.0.32.139' (RSA) to the list of known hosts.

root@amy's password:

Last login: Tue Dec 9 11:24:09 2003

[root@amy root]#

The fingerprint will be recorded in a list of known hosts on the local machine.
SSH will compare fingerprints on subsequent logins to ensure that nothing has
changed. You won't see anything else about the fingerprint unless it changes.
Then SSH will warn you and query whether you should continue. If the remote
system has changed, e.g., if it has been rebuilt or if SSH has been reinstalled,
it's OK to proceed. But if you think the remote system hasn't changed, you
should investigate further before logging in.

Notice in the last example that SSH automatically uses the same identity when
logging into a remote machine. If you want to log on as a different user, use
the -l option with the appropriate account name.

You can also use SSH to execute commands on remote systems. Here is an
example of using date remotely.

[root@fanny root]# ssh -l sloanjd hector date

sloanjd@hector's password:

Mon Dec 22 09:28:46 EST 2003

Notice that a different account, sloanjd, was used in this example.

To copy files, you use the scp command. For example,

[root@fanny root]# scp /etc/motd george:/root/

root@george's password:

motd 100% |*****************************| 0 00:00

Here file /etc/motd was copied from fanny to the /root directory on george.

In the examples thus far, the system has asked for a password each time a
command was run. If you want to avoid this, you'll need to do some extra
work. You'll need to generate a pair of authorization keys that will be used to
control access and then store these in the directory ~/.ssh. The ssh-keygen
command is used to generate keys.

[sloanjd@fanny sloanjd]$ ssh-keygen -b1024 -trsa

Generating public/private rsa key pair.

Enter file in which to save the key (/home/sloanjd/.ssh/id_rsa):

Enter passphrase (empty for no passphrase):

Enter same passphrase again:

Your identification has been saved in /home/sloanjd/.ssh/id_rsa.

Your public key has been saved in /home/sloanjd/.ssh/id_rsa.pub.

The key fingerprint is:

2d:c8:d1:e1:bc:90:b2:f6:6d:2e:a5:7f:db:26:60:3f sloanjd@fanny

[sloanjd@fanny sloanjd]$ cd .ssh

[sloanjd@fanny .ssh]$ ls -a

. .. id_rsa id_rsa.pub known_hosts

The options in this example are used to specify a 1,024-bit key and the RSA
algorithm. (You can use DSA instead of RSA if you prefer.) Notice that SSH will
prompt you for a passphrase, basically a multi-word password.

Two keys are generated, a public and a private key. The private key should
never be shared and resides only on the client machine. The public key is
distributed to remote machines. Copy the public key to each system you'll
want to log onto, renaming it authorized_keys2.

[sloanjd@fanny .ssh]$ cp id_rsa.pub authorized_keys2

[sloanjd@fanny .ssh]$ chmod go-rwx authorized_keys2

[sloanjd@fanny .ssh]$ chmod 755 ~/.ssh

If you are using NFS, as shown here, all you need to do is copy and rename
the file in the current directory. Since that directory is mounted on each
system in the cluster, it is automatically available.

If you used the NFS setup described earlier, root's home directory/root, is not shared. If
you want to log in as root without a password, manually copy the public keys to the target
machines. You'll need to decide whether you feel secure setting up the root account like
this.

You will use two utilities supplied with SSH to manage the login process. The
first is an SSH agent program that caches private keys, ssh-agent. This
program stores the keys locally and uses them to respond to authentication
queries from SSH clients. The second utility, ssh-add, is used to manage the
local key cache. Among other things, it can be used to add, list, or remove
keys.

[sloanjd@fanny .ssh]$ ssh-agent $SHELL

[sloanjd@fanny .ssh]$ ssh-add

Enter passphrase for /home/sloanjd/.ssh/id_rsa:

Identity added: /home/sloanjd/.ssh/id_rsa (/home/sloanjd/.ssh/id_rsa)

(While this example uses the $SHELL variable, you can substitute the actual
name of the shell you want to run if you wish.) Once this is done, you can log
in to remote machines without a password.

This process can be automated to varying degrees. For example, you can add
the call to ssh-agent as the last line of your login script so that it will be run
before you make any changes to your shell's environment. Once you have
done this, you'll need to run ssh-add only when you log in. But you should be
aware that Red Hat console logins don't like this change.

You can find more information by looking at the ssh(1), ssh-agent(1), and ssh-
add(1) manpages. If you want more details on how to set up ssh-agent, you
might look at SSH, The Secure Shell by Barrett and Silverman, O'Reilly, 2001.
You can also find scripts on the Internet that will set up a persistent agent so
that you won't need to rerun ssh-add each time.

One last word of warning: If you are using ssh-agent, it becomes very important that you
log off whenever you leave your machine. Otherwise, you'll be leaving not just one system
wide open, but all of your systems.

4.2.5 Other Services and Configuration Tasks

Thus far, we have taken a minimalist approach. To make like easier, there are
several other services that you'll want to install and configure. There really
isn't anything special that you'll need to dojust don't overlook these.

4.2.5.1 Apache

While an HTTP server may seem unnecessary on a cluster, several cluster
management tools such as Clumon and Ganglia use HTTP to display results. If
you will monitor your cluster only from the head node, you may be able to get
by without installing a server. But if you want to do remote monitoring, you'll
need to install an HTTP server. Since most management packages like these
assume Apache will be installed, it is easiest if you just go ahead and set it up
when you install your cluster.

4.2.5.2 Network Time Protocol (NTP)

It is important to have synchronized clocks on your cluster, particularly if you
want to do performance monitoring or profiling. Of course, you don't have to
synchronize your system to the rest of the world; you just need to be
internally consistent. Typically, you'll want to set up the head node as an NTP
server and the compute nodes as NTP clients. If you can, you should sync the
head node to an external timeserver. The easiest way to handle this is to
select the appropriate option when you install Linux. Then make sure that the
NTP daemon is running:

[root@fanny root]# /sbin/service ntpd status

ntpd (pid 1689) is running...

Start the daemon if necessary.

4.2.5.3 Virtual Network Computing (VNC)

This is a very nice package that allows remote graphical logins to your system.
It is available as a Red Hat package or from http://www.realvnc.com/. VNC can
be tunneled using SSH for greater security.

4.2.5.4 Multicasting

Several clustering utilities use multicasting to distribute data among nodes
within a cluster, either for cloning systems or when monitoring systems. In
some instances, multicasting can greatly increase performance. If you are
using a utility that relies on multicasting, you'll need to ensure that

http://www.realvnc.com/

multicasting is supported. With Linux, multicasting must be enabled when the
kernel is built. With most distributions, this is not a problem. Additionally, you
will need to ensure that an appropriate multicast entry is included in your
route tables. You will also need to ensure that your networking equipment
supports multicast. This won't be a problem with hubs; this may be a problem
with switches; and, should your cluster span multiple networks, this will
definitely be an issue with routers. Since networking equipment varies
significantly from device to device, you need to consult the documentation for
your specific hardware. For more general information on multicasting, you
should consult the multicasting HOWTOs.

4.2.5.5 Hosts file and name services

Life will be much simpler in the long run if you provide appropriate name
services. NIS is certainly one possibility. At a minimum, don't forget to edit
/etc/hosts for your cluster. At the very least, this will reduce network traffic
and speed up some software. And some packages assume it is correctly
installed. Here are a few lines from the host file for amy:

127.0.0.1 localhost.localdomain localhost

10.0.32.139 amy.wofford.int amy

10.0.32.140 basil.wofford.int basil

...

Notice that amy is not included on the line with localhost. Specifying the host
name as an alias for localhost can break some software.

4.3 Cluster Security

Security is always a two-edged sword. Adding security always complicates the
configuration of your systems and makes using a cluster more difficult. But if
you don't have adequate security, you run the risk of losing sensitive data,
losing control of your cluster, having it damaged, or even having to completely
rebuild it. Security management is a balancing act, one of trying to figure out
just how little security you can get by with.

As previously noted, the usual architecture for a cluster is a set of machines
on a dedicated subnet. One machine, the head node, connects this network to
the outside world, i.e., the organization's network and the Internet. The only
access to the cluster's dedicated subnet is through the head node. None of the
compute nodes are attached to any other network. With this model, security
typically lies with the head node. The subnet is usually a trust-based open
network.

There are several reasons for this approach. With most clusters, the
communication network is the bottleneck. Adding layers of security to this
network will adversely affect performance. By focusing on the head node,
security administration is localized and thus simpler. Typically, with most
clusters, any sensitive information resides on the head node, so it is the point
where the greatest level of protection is needed. If the compute nodes are not
isolated, each one will need to be secured from attack.

This approach also simplifies setting up packet filtering, i.e., firewalls.
Incorrectly configured, packet filters can create havoc within your cluster.
Determining what traffic to allow can be a formidable challenge when using a
number of different applications. With the isolated network approach, you can
configure the internal interface to allow all traffic and apply the packet filter
only to public interface.

This approach doesn't mean you have a license to be sloppy within the cluster.
You should take all reasonable precautions. Remember that you need to
protect the cluster not just from external threats but from internal ones as
well whether intentional or otherwise.

Since a thorough discussion of security could easily add a few hundred pages
to this book, it is necessary to assume that you know the basics of security. If
you are a novice system administrator, this is almost certainly not the case,
and you'll need to become proficient as quickly as possible. To get started, you
should:

Be sure to apply all appropriate security patches, at least to the head
node, and preferably to all nodes. This is a task you will need to do
routinely, not just when you set up the cluster.

Know what is installed on your system. This can be a particular problem
with cluster kits. Audit your systems regularly.

Differentiate between what's available inside the cluster and what is
available outside the cluster. For example, don't run NFS outside the
cluster. Block portmapper on the public interface of the head node.

Don't put too much faith in firewalls, but use one, at least on the head
node's public interface, and ensure that it is configured correctly.

Don't run services that you don't need. Routinely check which services are
running, both with netstat and with a port scanner like nmap.

Your head node should be dedicated to the cluster, if at all possible. Don't
set it up as a general server.

Use the root account only when necessary. Don't run programs as root
unless it is absolutely necessary.

There is no easy solution to the security dilemma. While you may be able to
learn enough, you'll never be able to learn it all.

Part II: Getting Started Quickly
This section describes the installation of three software packages that,
when installed, will provide you with a complete working cluster. These
packages differ radically. openMosix provides Linux kernel extensions
that transparently move processes among machines to balance loads and
optimize performance. While a truly remarkable package, it is not what
people typically think about when they hear the word "cluster." OSCAR
and Rocks are collections of software packages that can be installed at
once, providing a more traditional Beowulf-style cluster. Whichever way
you decide to go, you will be up and running in short order.

Chapter 5. openMosix
openMosix is software that extends the Linux kernel so that processes can
migrate transparently among the different machines within a cluster in order
to more evenly distribute the workload. This chapter gives the basics of setting
up and using an openMosix cluster. There is a lot more to openMosix than
described here, but this should be enough to get you started and keep you
running for a while unless you have some very special needs.

5.1 What Is openMosix?

Basically, the openMosix software includes both a set of kernel patches and
support tools. The patches extend the kernel to provide support for moving
processes among machines in the cluster. Typically, process migration is
totally transparent to the user. However, by using the tools provided with
openMosix, as well as third-party tools, you can control the migration of
processes among machines.

Let's look at how openMosix might be used to speed up a set of
computationally expensive tasks. Suppose, for example, you have a dozen files
to compress using a CPU-intensive program on a machine that isn't part of an
openMosix cluster. You could compress each file one at a time, waiting for one
to finish before starting the next. Or you could run all the compressions
simultaneously by starting each compression in a separate window or by
running each compression in the background (ending each command line with
an &). Of course, either way will take about the same amount of time and will
load down your computer while the programs are running.

However, if your computer is part of an openMosix cluster, here's what will
happen: First, you will start all of the processes running on your computer.
With an openMosix cluster, after a few seconds, processes will start to migrate
from your heavily loaded computer to other idle or less loaded computers in
the clusters. (As explained later, because some jobs may finish quickly, it can
be counterproductive to migrate too quickly.) If you have a dozen idle
machines in the cluster, each compression should run on a different machine.
Your machine will have only one compression running on it (along with a little
added overhead) so you still may be able to use it. And the dozen
compressions will take only a little longer than it would normally take to do a
single compression.

If you don't have a dozen computers, or some of your computers are slower
than others, or some are otherwise loaded, openMosix will move the jobs
around as best it can to balance the load. Once the cluster is set up, this is all
done transparently by the system. Normally, you just start your jobs.
openMosix does the rest. On the other hand, if you want to control the
migration of jobs from one computer to the next, openMosix supplies you with
the tools to do just that.

(Currently, openMosix also includes a distributed filesystem. However, this is
slated for removal in future releases. The new goal is to integrate support for a
clustering filesystem such as Intermezzo.)

5.2 How openMosix Works

openMosix originated as a fork from the earlier MOSIX (Multicomputer
Operating System for Unix) project. The openMosix project began when the
licensing structure for MOSIX moved away from a General Public License.
Today, it has evolved into a project in its own right. The original MOSIX
project is still quite active under the direction of Amnon Barak
(http://www.mosix.org). openMosix is the work of Moshe Bar, originally a
member of the MOSIX team, and a number of volunteers. This book focuses on
openMosix, but MOSIX is a viable alternative that can be downloaded at no
cost.

As noted in Chapter 1, one approach to sharing a computation between
processors in a single-enclosure computer with multiple CPUs is symmetric
multiprocessor (SMP) computing. openMosix has been described, accurately, as
turning a cluster of computers into a virtual SMP machine, with each node
providing a CPU. openMosix is potentially much cheaper and scales much
better than SMPs, but communication overhead is higher. (openMosix will work
with both single-processor systems and SMP systems.) openMosix is an
example of what is sometimes called single system image clustering (SSI) since
each node in the cluster has a copy of a single operating system kernel.

The granularity for openMosix is the process. Individual programs, as in the
compression example, may create the processes, or the processes may be the
result of different forks from a single program. However, if you have a
computationally intensive task that does everything in a single process (and
even if multiple threads are used), then, since there is only one process, it
can't be shared among processors. The best you can hope for is that it will
migrate to the fastest available machine in the cluster.

Not all processes migrate. For example, if a process only lasts a few seconds
(very roughly, less than 5 seconds depending on a number of factors), it will
not have time to migrate. Currently, openMosix does not work with multiple
processes using shared writable memory, such as web servers.[1] Similarly,
processes doing direct manipulation of I/O devices won't migrate. And
processes using real-time scheduling won't migrate. If a process has already
migrated to another processor and attempts to do any these things, the
process will migrate back to its unique home node (UHN), the node where the
process was initially created, before continuing.

[1] Actually, the migration of shared memory (MigSHM) patch is an openMosix patch that
implements shared memory migration. At the time this was written, it was not part of the main
openMosix tree. (Visit http://mcaserta.com/maask/.)

http://www.mosix.org
http://mcaserta.com/maask/

To support process migration, openMosix divides processes into two parts or
contexts. The user context contains the program code, stack, data, etc., and is
the part that can migrate. The system context, which contains a description of
the resources the process is attached to and the kernel stack, does not migrate
but remains on the UHN.

openMosix uses an adaptive resource allocation policy. That is, each node
monitors and compares its own load with the loads on a portion of the other
computers within the cluster. When a computer finds a more lightly loaded
computer (based on the overall capacity of the computer), it will attempt to
migrate a process to the more lightly loaded computer, thereby creating a
more balanced load between the two. As the loads on individual computers
change, e.g., when jobs start or finish, processes will migrate among the
computers to rebalance loads across the cluster, adapting dynamically to the
changes in loads.

Individual nodes, acting as autonomous systems, decide which processes
migrate. The communications among small sets of nodes within the cluster
used to compare loads is randomized. Consequently, clusters scale well
because of this random element. Since communications is within subsets in the
cluster, nodes have limited but recent information about the state of the whole
cluster. This approach reduces overhead and communication.

While load comparison and process migration are generally automatic within a
cluster, openMosix provides tools to control migration. It is possible to alter
the cluster's perception of how heavily an individual computer is loaded, to tie
processes to a specific computer, or to block the migration of processes to a
computer. However, precise control for the migration of a group of processes is
not practical with openMosix at this time.[2]

[2] This issue is addressed by a patch that allows the creation of process groups, available at
http://www.openmosixview.com/miggroup/.

The openMosix API uses the values in the flat files in /proc/hpc to record and
control the state of the cluster. If you need information about the current
configuration, want to do really low-level management, or write management
scripts, you can look at or write to these files.

http://www.openmosixview.com/miggroup/

5.3 Selecting an Installation Approach

Since openMosix is a kernel extension, it won't work with just any kernel. At
this time, you are limited to a relatively recent (at least version 2.4.17 or
more recent) IA32-compatible Linux kernel. An IA64 port is also available.
However, don't expect openMosix to be available for a new kernel the same
day a new kernel is released. It takes time to develop patches for a kernel.
Fortunately, your choice of Linux distributions is fairly broad. Among others,
openMosix has been reported to work on Debian, Gentoo, Red Hat, and SuSe
Linux. If you just want to play with it, you might consider Bootable Cluster CD
(BCCD), Knoppix, or PlumpOS, three CD-bootable Linux distributions that
include openMosix. You'll also need a reasonably fast network and a fair
amount of swap space to run openMosix.

To build your openMosix cluster, you need to install an openMosix extended
kernel on each of the nodes in the cluster. If you are using a suitable version
of Linux and have no other special needs, you may be able to download a
precompiled version of the kernel. This will significantly simplify setup.
Otherwise, you'll need to obtain a clean copy of the kernel sources, apply the
openMosix patches to the kernel source code, recompile the sources, and
install the patched kernel. This isn't as difficult as it might sound, but it is
certainly more involved than just installing a precompiled kernel. Recompiling
the kernel is described in detail later in this chapter. We'll start with
precompiled kernels.

While using a precompiled kernel is the easiest way to go, it has a few
limitations. The documentation is a little weak with the precompiled kernels,
so you won't know exactly what options have been compiled into the kernel
without doing some digging. (However, the .config files are available via CVS
and the options seem to be reasonable.) If you already have special needs that
required recompiling your kernel, e.g., nonstandard hardware, don't expect
those needs to go away.

You'll need to use the same version of the patched kernel on all your systems,
so choose accordingly. This doesn't mean you must use the same kernel
image. For example, you can use different compiles to support different
hardware. But all your kernels should have the same version number.

The openMosix user tools should be downloaded when you download the
openMosix kernel or kernel patches. Additionally, you will also want to
download and install openMosixView, third-party tools for openMosix.

5.4 Installing a Precompiled Kernel

The basic steps for installing a precompiled kernel are selecting and
downloading the appropriate files and packages, installing those packages, and
making a few minor configuration changes.

5.4.1 Downloading

You'll find links to available packages at http://openmosix.sourceforge.net.[3]

You'll need to select from among several versions and compilations. At the
time this was written, there were half a dozen different kernel versions
available. For each of these, there were eight possible downloads, including a
README file, a kernel patch file, a source file that contains both a clean copy
of the kernel and the patches, and five precompiled kernels for different
processors. The precompiled versions are for an Intel 386 processor, an Intel
686 processor, an Athlon processor, Intel 686 SMP processors, or Athlon SMP
processors. The Intel 386 is said to be the safest version. The Intel 686
version is for Intel Pentium II and later CPUs. With the exception of the text
README file and a compressed (gz) set of patches, the files are in RPM format.

[3] And while you are at it, you should also download a copy of Kris Buytaert's openMosix HOWTO
from http://www.tldp.org/HOWTO/openMosix-HOWTO/.

The example that follows uses the package openmosix-kernel-2.4.24-
openmosix.i686.rpm for a single processor Pentium II system running Red Hat
9. Be sure you read the README file! While you are at it, you should also
download a copy of the latest suitable version of the openMosix user tools from
the same site. Again, you'll have a number of choices. You can download
binaries in RPM or DEB format as well as the sources. For this example, the file
openmosix-tools-0.3.5-1.i386.rpm was used.

Perhaps the easiest thing to do is to download everything at once and burn it
to a CD so you'll have everything handy as you move from machine to
machine. But you could use any of the techniques described in Chapter 8, or
you could use the C3 tools described in Chapter 10. Whatever your preference,
you'll need to get copies of these files on each machine in your cluster.

There is one last thing to do before you install create an emergency boot disk if
you don't have one. While it is unlikely that you'll run into any problems with
openMosix, you are adding a new kernel.

http://openmosix.sourceforge.net
http://www.tldp.org/HOWTO/openMosix-HOWTO/

Don't delete the old kernel. As long as you keep it and leave it in your boot configuration
file, you should still be able to go back to it. If you do delete it, an emergency boot disk will
be your only hope.

To create a boot disk, you use the mkbootdisk command as shown here:

[root@fanny root]# uname -r

2.4.20-6

[root@fanny root]# mkbootdisk \

> --device /dev/fd0 2.4.20-6

Insert a disk in /dev/fd0. Any information on the disk will be lost.

Press <Enter> to continue or ^C to abort:

(The last argument to mkbootdisk is the kernel version. If you can't remember
this, use the command uname -r first to refresh your memory.)

5.4.2 Installing

Since we are working with RPM packages, installation is a breeze. Just change
to the directory where you have the files and, as root, run rpm.

[root@fanny root]# rpm -vih openmosix-kernel-2.4.24-openmosix1.i686.rpm

Preparing... ### [100%]

 1:openmosix-kernel ### [100%]

[root@fanny root]# rpm -vih openmosix-tools-0.3.5-1.i386.rpm

Preparing... ### [100%]

 1:openmosix-tools ### [100%]

Edit /etc/openmosix.map if you don't want to use the autodiscovery daemon.

That's it! The kernel has been installed for you in the /boot directory.

This example uses the 2.4.24-om1 release. 2.4.24-om2 should be available by
the time you read this. This newer release corrects several bugs and should be
used.

You should also take care to use an openMosix tool set that is in sync with the
kernel you are using, i.e., one that has been compiled with the same kernel
header files. If you are compiling both, this shouldn't be a problem. Otherwise,
you should consult the release notes for the tools.

5.4.3 Configuration Changes

While the installation will take care of the stuff that can be automated, there
are a few changes you'll have to do manually to get openMosix running. These
are very straightforward.

As currently installed, the next time you reboot your systems, your loader will
give you the option of starting openMosix but it won't be your default kernel.
To boot to the new openMosix kernel, you'll just need to select it from the
menu. However, unless you set openMosix as the default kernel, you'll need to
manually select it every time you reboot a system.

If you want openMosix as the default kernel, you'll need to reconfigure your
boot loader. For example, if you are using grub, then you'll need to edit
/etc/grub.conf to select the openMosix kernel. The installation will have added
openMosix to this file, but will not have set it as the default kernel. You should
see two sets of entries in this file. (You'll see more than two if you already
have other additional kernels). Change the variable default to select which
kernel you want as the default. The variable is indexed from 0. If openMosix is
the first entry in the file, change the line to setting default so that it reads
default=0.

If you are using LILO, the procedure is pretty much the same except that you
will need to manually create the entry in the configuration file and rerun the
loader. Edit the file /etc/lilo.conf. You can use a current entry as a template.

Just copy the entry, edit it to use the new kernel, and give it a new label.
Change default so that it matches your new label, e.g., default=openMosix. Save
the file and run the command /sbin/lilo -v.

Another issue is whether your firewall will block openMosix traffic. The
openMosix FAQ reports that openMosix uses UDP ports in the 5000-5700
range, UDP port 5428, and TCP ports 723 and 4660. (You can easily confirm
this by monitoring network traffic, if in doubt.) You will also need to allow any
other related traffic such as NFS or SSH traffic. Address this before you
proceed with the configuration of openMosix.

In general, security has not been a driving issue with the development of
openMosix. Consequently, it is probably best to use openMosix in a restrictive
environment. You should either locate your firewall between your openMosix
cluster and all external networks, or you should completely eliminate the
external connection.

openMosix needs to know about the other machines in your cluster. You can
either use the autodiscovery tool omdiscd to dynamically create a map, or you
can create a static map by editing the file /etc/openmosix.map (or
/etc/mosix.map or /etc/hpc.map on earlier versions of openMosix). omdiscd
can be run as a foreground command or as a daemon in the background.
Routing must be correctly configured for omdiscd to run correctly. For small,
static clusters, it is probably easier to edit /etc/openmosix.map once and be
done with it.

For a simple cluster, this file can be very short. Its simplest form has one entry
for each machine. In this format, each entry consists of three fieldsa unique
device node number (starting at 1) for each machine, the machine's IP
address, and a 1 indicating that it is a single machine. It is also possible to
have a single entry for a range of machines that have contiguous IP addresses.
In that case, the first two fields are the samethe node number for the first
machine and the IP address of the first machine. The third field is the number
of machines in the range. The address can be an IP number or a device name
from your /etc/hosts file. For example, consider the following entry:

1 fanny.wofford.int 5

This says that fanny.wofford.int is the first of five nodes in a cluster. Since
fanny's IP address is 10.0.32.144, the cluster consists of the following five
machines: 10.0.32.144, 10.0.32.145, 10.0.32.146, 10.0.32.147, and
10.0.32.148. Their node numbers are 1 through 5. You could use separate

entries for each machine. For example,

1 fanny.wofford.int 1

2 george.wofford.int 1

3 hector.wofford.int 1

4 ida.wofford.int 1

5 james.wofford.int 1

or, equivalently

1 10.0.32.144 1

2 10.0.32.145 1

3 10.0.32.146 1

4 10.0.32.147 1

5 10.0.32.148 1

Again, you can use the first of these two formats only if you have entries for
each machine in /etc/hosts. If you have multiple blocks of noncontiguous
machines, you will need an entry for each contiguous block. If you use host
names, be sure you have an entry in your host table for your node that has its
actual IP address, not just the local host address. That is, you need lines that
look like

127.0.0.1 localhost

172.16.1.1 amy

not

127.0.0.1 localhost amy

You can list the map that openMosix is using with the showmap command.
(This is nice to know if you are using autodiscovery.)

[root@fanny etc]# showmap

My Node-Id: 0x0001

Base Node-Id Address Count

------------ ---------------- -----

0x0001 10.0.32.144 1

0x0002 10.0.32.145 1

0x0003 10.0.32.146 1

0x0004 10.0.32.147 1

0x0005 10.0.32.148 1

Keep in mind that the format depends on the map file format. If you use the
range format for your map file, you will see something like this instead:

[root@fanny etc]# showmap

My Node-Id: 0x0001

Base Node-Id Address Count

------------ ---------------- -----

0x0001 10.0.32.144 5

While the difference is insignificant, it can be confusing if you aren't expecting
it.

There is also a configuration file /etc/openmosix/openmosix.config. If you are
using autodiscovery, you can edit this to start the discovery daemon whenever
openMosix is started. This file is heavily commented, so it should be clear what
you might need to change, if anything. It can be ignored for most small
clusters using a map file.

Of course, you will need to duplicate this configuration on each node on your
cluster. You'll also need to reboot each machine so that the openMosix kernel
is loaded. As root, you can turn openMosix on or off as needed. When you
install the user tools package, a script called openmosix is copied to /etc/init.d
so that openMosix will be started automatically. (If you are manually compiling
the tools, you'll need to copy this script over.) The script takes the arguments
start, stop, status, restart, and reload, as you might have guessed. For example,

[root@james root]# /etc/init.d/openmosix status

This is OpenMosix node #5

Network protocol: 2 (AF_INET)

OpenMosix range 1-5 begins at fanny.wofford.int

Total configured: 5

Use this script to control openMosix as needed. You can also use the setpe
command, briefly described later in this chapter, to control openMosix.

Congratulations, you are up and running.

5.5 Using openMosix

At its simplest, openMosix is transparent to the user. You can sit back and reap
the benefits. But at times, you'll want more control. At the very least, you may
want to verify that it is really running properly. (You could just time
applications with computers turned on and off, but you'll probably want to be a
little more sophisticated than that.) Fortunately, openMosix provides some
tools that allow you to monitor and control various jobs. If you don't like the
tools that come with openMosix, you can always install other tools such as
openMosixView.

5.5.1 User Tools

You should install the openMosix user tools before you start running
openMosix. This package includes several useful management tools (migrate,
mosctl, mosmon, mosrun, and setpe), an openMosix aware version of ps and
top called, suitably, mps and mtop, and a startup script /etc/init.d/openmosix.
(This is actually a link to the file /etc/rc.d/init.d/openmosix.)

5.5.1.1 mps and mtop

Both mps and mtop will look a lot like their counterparts, ps and top. The
major difference is that each has an additional column that gives the node
number on which a process is running. Here is part of the output from mps:

[root@fanny sloanjd]# mps

 PID TTY NODE STAT TIME COMMAND

...

19766 ? 0 R 2:32 ./loop

19767 ? 2 S 1:45 ./loop

19768 ? 5 S 3:09 ./loop

19769 ? 4 S 2:58 ./loop

19770 ? 2 S 1:47 ./loop

19771 ? 3 S 2:59 ./loop

19772 ? 6 S 1:43 ./loop

19773 ? 0 R 1:59 ./loop

...

As you can see from the third column, process 19769 is running on node 4. It
is important to note that mps must be run on the machine where the process
originated. You will not see the process if you run ps, mps, top, or mtop on any
of the other machines in the cluster even if the process has migrated to that
machine. (Arguably, in this respect, openMosix is perhaps a little too
transparent. Fortunately, a couple of the other tools help.)

5.5.1.2 migrate

The tool migrate explicitly moves a process from one node to another. Since
there are circumstances under which some processes can't migrate, the system
may be forced to ignore this command. You'll need the PID and the node
number of the destination machine. Here is an example:

[sloanjd@fanny sloanjd]$ migrate 19769 5

This command will move process 19769 to node number 5. (You can use home
in place of the node number to send a process back to the CPU where it was
started.) It might be tempting to think you are reducing the load on node
number 4, the node where the process was running, but in a balanced system
with no other action, another process will likely migrate to node 4.

5.5.1.3 mosctl

With mosctl, you have greater control over how processes are run on
individual machines. For example, you can block the arrival of guest processes
to lighten the load on a machine. You can use mosctl with the setspeed option
to override a node's idea of its own speed. This can be used to attract or

discourage process migration to the machine. mosctl can also be used to
display utilization or tune openMosix performance parameters. There are too
many arguments to go into here, but they are described in the manpage.

5.5.1.4 mosmon

While mps won't tell you if a process has migrated to your machine, you can
get a good idea of what is going across the cluster with the mosmon utility.
mosmon is an ncurses-based utility that will display a simple bar graph
showing the loads on the nodes in your cluster. This can give you a pretty
good idea of what is going on. Figure 5-1 shows mosmon in action.

Figure 5-1. mosmon

In this example, eight identical processes are running on a six-node cluster.
Obviously, the second and sixth nodes have two processes each while the
remaining four machines are each running a single process. Of course, other
processes could be mixed into this, affecting an individual machine's load. You
can change the view to display memory, speed, and utilization as well as
change the layout of the graph. Press h while the program is running to display

the various options. Press q to quit the program.

Incidentally, mosmon goes by several different names, including mon and, less
commonly, mmon. The original name was mon, and it is often referred to by
that name in openMosix documentation. The shift to mosmon was made to
eliminate a naming conflict with the network-monitoring tool mon. The local
name is actually set by a compile-time variable.

5.5.1.5 mosrun

The mosrun command can also be used to advise the system to run a specific
program on a specified node. You'll need the program name and the
destination node number (or use -h for the home node). Actually, mosrun is
one of a family of commands used to control node allocation preferences.
These are listed and described on the manpage for mosrun.

5.5.1.6 setpe

The setpe command can be used to manually configure a node. (In practice,
setpe is usually called from the script /etc/init.d/openmosix rather than used
directly.) As root, you can use setpe to start or stop openMosix. For example,
you could start openMosix with a specific configuration file with a command
like

[root@ida sloanjd]# /sbin/setpe -w -f /etc/openmosix.map

setpe takes several options including -r to read the configuration file, -c to
check the map's consistency, and -off to shut down openMosix. Consult the
manpage for more information.

5.5.2 openMosixView

openMosixView extends the basic functionality of the user tools while providing
a spiffy X-based GUI. However, the basic user tools must be installed for
openMosixView to work. openMosixView is actually seven applications that can
be invoked from the main administration application.

If you want to install openMosixView, which is strongly recommended,
download the package from http://www.openmosixview.com. Look over the
documentation for any dependencies that might apply. Depending on what you
have already installed on your system, you may need to install additional
packages. For example, GLUT is one of more than two dozen dependences.
Fortunately (or annoyingly), rpm will point out to you what needs to be added.

Then, as root, install the appropriate packages.

[root@fanny root]# rpm -vih glut-3.7-12.i386.rpm

warning: glut-3.7-12.i386.rpm: V3 DSA signature: NOKEY, key ID db42a60e

Preparing... ### [100%]

 1:glut ### [100%]

[root@fanny root]# rpm -vih openmosixview-1.5-redhat90.i386.rpm

Preparing... ### [100%]

 1:openmosixview ### [100%]

As with the kernel, you'll want to repeat this on every node. This installation
will install documentation in /usr/local.

Once installed, you are basically ready to run. However, by default,
openMosixView uses RSH. It is strongly recommended that you change this to
SSH. Make sure you have SSH set up on your system. (See Chapter 4 for
more information on SSH.) Then, from the main application, select the Config
menu.

The main applications window is shown in Figure 5-2. You get this by running
the command openmosixview in an X window environment.

Figure 5-2. openMosixView

http://www.openmosixview.com

This view displays information for each of the five nodes in this cluster. The
first column displays the node's status by node number. The background color
is green if the node is available or red if it is unavailable. The second column,
buttons with IP numbers, allows you to configure individual systems. If you
click on one of these buttons, a pop-up window will appear for that node, as
shown in Figure 5-3. You'll notice that the configuration options are very
similar to those provided by the mosctl command.

Figure 5-3. openMosix configuration window

As you can see from the figure, you can control process migration, etc., with
this window. The third column in Figure 5-2, the sliders, controls the node
efficiencies used by openMosix when load balancing. By changing these, you
alter openMosix's idea of the relative efficiencies of the nodes in the cluster.
This in turn influences how jobs migrate. Note that the slider settings do not
change the efficiency of the node, just openMosix's perception of the node's
capabilities. The remaining columns provide general information about the

nodes. These should be self-explanatory.

The buttons along the top provide access to additional applications. For
example, the third button, which looks like a gear, launches the process
viewer openMosixprocs. This is shown in Figure 5-4.

Figure 5-4. openMosixprocs

openMosixprocs allows you to view and manage individual processes started on
the node from which openMosixprocs is run. (Since it won't show you
processes migrated from other systems, you'll need openMosixprocs on each
node.) You can select a user in the first entry field at the top of the window
and click on refresh to focus in on a single user's processes. By double-clicking
on an individual process, you can call up the openMosixprocs-Migrator, which
will provide additional statistics and allow some control of a process.

openMosixView provides a number of additional tools that aren't described
here. These include a 3D process viewer (3dmosmon), a data collection
daemon (openMosixcollector), an analyzer (openMosixanalyzer), an application
for viewing process history (openMosixHistory), and a migration monitor and
controller (openMosixmigmon) that supports drag-and-drop control on process
migration.

5.5.3 Testing openMosix

It is unlikely that you will have any serious problems setting up openMosix.
But you may want to confirm that it is working. You could just start a few
processes and time them with openMosix turned on and off. Here is the simple
C program that can be used to generate some activity.

#include <stdio.h>

int foo(int,int);

int main(void)

{

 int i,j;

 for (i=1; i<100000; i++)

 for (j=1; j<100000; j++)

 foo(i,j);

 return 0;

}

int foo(int x, int y)

{

 return(x+y);

}

This program does nothing useful, but it will take several minutes to complete
on most machines. (You can adjust the loop count if it doesn't run long enough
to suit you.) By compiling this (without optimizations) and then starting
several copies running in the background, you'll have a number of processes
you can watch.

While timing will confirm that you are actually getting a speedup, you'll get a
better idea of what is going on if you run mosmon. With mosmon, you can
watch process migration and load balancing as it happens.

If you are running a firewall on your machines, the most likely problem you
will have is getting connection privileges correct. You may want to start by
disconnecting your cluster from the Internet and disabling the firewall. This
will allow you to confirm that openMosix is correctly installed and that the
firewall is the problem. You can use the command netstat -a to identify which
connections you are using. This should give you some guidance in
reconfiguring your firewall.

Finally, an openMosix stress test is available for the truly adventurous. It can
be downloaded from http://www.openmosixview.com/omtest/. This web page
also describes the test (actually a test suite) and has a link to a sample report.
You can download sources or an RPM. You'll need to install expect before
installing the stress test. To run the test, you should first change to the
/usr/local/omtest directory and then run the script ./openmosix_stress_test.sh.
A report is saved in the /tmp directory.

The test takes a while to run and produces a very long report. For example, it
took over an hour and a half on an otherwise idle five-node cluster of Pentium
II's and produced an 18,224-line report. While most users will find this a bit of
overkill for their needs, it is nice to know it is available. Interpretation of the
results is beyond the scope of this book.

http://www.openmosixview.com/omtest/

5.6 Recompiling the Kernel

First, ask yourself why you would want to recompile the kernel. There are
several valid reasons. If you normally have to recompile your kernel, perhaps
because you use less-common hardware or need some special compile option,
then you'll definitely need to recompile for openMosix. Or maybe you just like
tinkering with things. If you have a reason, go for it. Even if you have never
done it before, it is not that difficult, but the precompiled kernels do work well.
For most readers, recompiling the kernel is optional, not mandatory. (If you
are not interested in recompiling the kernel, you can skip the rest of this
section.)

Before you start, do you have a recovery disk? Are you sure you can boot from it? If not,
go make one right now before you begin.

Let's begin by going over the basic steps of a fairly generic recompilation, and
then we'll go through an example. First, you'll need to decide which version of
the kernel you want to use. Check to see what is available. (You can use the
uname -r command to see what you are currently using, but you don't have to
feel bound by that.)

You are going to need both a set of patches and a clean set of kernel source
files. Accepted wisdom says that you shouldn't use the source files that come
with any specific Linux releases because, as a result of customizations, the
patches will not apply properly. As noted earlier in this chapter, you can
download the kernel sources and patches from
http://openmosix.sourceforge.net or you can just download the patches. If you
have downloaded just the patches, you can go to http://www.kernel.org to get
the sources. You'll end up with the same source files either way.

If you download the source file from the openMosix web site, you'll have an
RPM package to install. When you install this, it will place compressed copies of
the patches and the source tree (in gzip or bzip2 format) as well as several
sample kernel configuration files in the directory /usr/src/redhat/SOURCES.
The next step is to unpack the sources and apply the patches.

Using gunzip or bzip2 and then tar, unpack the files in the appropriate
directory. Where you put things is largely up to you, but it is a good idea to try
to be consistent with the default layout of your system. Move the patch files

http://openmosix.sourceforge.net
http://www.kernel.org

into the root directory of your source tree. Once you have all the files in place,
you can use the patch command to patch the kernel sources.

The next step is to create the appropriate configuration file. In theory, there
are four ways you can do this. You could directly edit the default configuration
file, typically /usr/src/linux/.config, or you can run one of the commands make
config, make menuconfig, or make xconfig. In practice, you should limit
yourself to the last two choices. Direct editing of the configuration file for
anything other than minor changes is for fools, experts, or foolish experts. And
while config is the most universal approach, it is also the most unforgiving and
should be used only as a last resort. It streams the configuration decisions past
you and there is no going back once you have made a decision. The remaining
choices are menuconfig, which requires the ncurses library, and xconfig, which
requires X windows and TCL/TK libraries. Both work nicely. Figure 5-5 shows
the basic layout with menuconfig.

Figure 5-5. Main menuconfig menu

Configuration parameters are arranged in groups by functionality. The first
group is for openMosix. You can easily move through this menu and select the
appropriate actions. You will be given a submenu for each group. Figure 5-6
shows the openMosix submenu.

Figure 5-6. openMosix system submenu

xconfig is very similar but has a fancy GUI.

Because there are so many decisions, this is the part of the process where you
are most apt to make a mistake. This isn't meant to discourage you, but don't
be surprised if you have to go through this process several times. For the most
part, the defaults are reasonable. Be sure you select the right processor type
and all appropriate file systems. (Look at /etc/fstab, run the mount command,
or examine /proc/filesystems to get an idea of what file systems you are
currently using.) If you downloaded the sources from the openMosix web page,
you have several sample configuration files. You can copy one of these over
and use it as your starting point. This will give you some reasonable defaults.
You can also get a description of various options (including openMosix
options!) by looking in the Documentation/Configure.help file in your source
tree. As a general rule of thumb, if you don't need something, don't include it.

Once you have the configuration file, you are ready to build the image. You'll
use the commands make dep, make clean, make bzImage, make modules, and
make modules_install. (You'll need modules enabled, since openMosix uses
them.) If all goes well, you'll be left with a file bzImage in the directory
arch/i386/boot/ under your source tree.

The next to last step is to install the kernel, i.e., arrange for the system to

boot from this new kernel. You'll probably want to move it to the /boot
directory and rename it. Since you are likely to make several kernels once you
get started, be sure to use a meaningful name. You may need to create a ram-
disk. You also need to configure your boot loader to find the file as described
earlier in this chapter. When copying over the new kernel, don't delete the
original kernel!

Now you are ready to reboot and test your new kernel. Pay close attention to
the system messages when you reboot. This will be your first indication of any
configuration errors you may have made. You'll need to go back to the
configuration step to address these.

Of course, this is just the kernel you've installed. You'll still need to go back
and install the user tools and configure openMosix for your system. But even if
you are compiling the kernel, there is no reason you can't use the package to
install the user tools.

Here is an example using Red Hat 9. Although Red Hat 9 comes with the
2.4.20 version of the kernel, this example uses a later version of the kernel,
openmosix-kernel-2.4.24-openmosix1.src.rpm. The first step is installing this
package.

[root@fanny root]# rpm -vih openmosix-kernel-2.4.24-openmosix1.src.rpm

 1:openmosix-kernel ### [100%]

[root@fanny root]# cd /usr/src/redhat/SOURCES

[root@fanny SOURCES]# ls

kernel-2.4.20-athlon.config kernel-2.4.24-athlon-smp.config

kernel-2.4.20-athlon-smp.config kernel-2.4.24-i386.config

kernel-2.4.20-i386.config kernel-2.4.24-i686.config

kernel-2.4.20-i686.config kernel-2.4.24-i686-smp.config

kernel-2.4.20-i686-smp.config linux-2.4.24.tar.bz2

kernel-2.4.24-athlon.config openMosix-2.4.24-1.bz2

As you can see, the package includes the source files, patches, and sample
configuration files.

Next, unpack the files. (With some versions, you may need to use gunzip
instead of bunzip2.)

[root@fanny SOURCES]# bunzip2 linux-2.4.24.tar.bz2

[root@fanny SOURCES]# bunzip2 openMosix-2.4.24-1.bz2

[root@fanny SOURCES]# mv linux-2.4.24.tar /usr/src

[root@fanny SOURCES]# cd /usr/src

[root@fanny src]# tar -xvf linux-2.4.24.tar

...

The last command creates the directory linux-2.4.24 under /usr/src. If you are
working with different versions of the kernel, you probably want to give this
directory a more meaningful name.

The next step is to copy over the patch file and, if you desire, one of the
sample configuration files. Then, you can apply the patches.

[root@fanny src]# cd /usr/src/redhat/SOURCES

[root@fanny SOURCES]# cp openMosix-2.4.24-1 /usr/src/linux-2.4.24/

[root@fanny SOURCES]# cp kernel-2.4.24-i686.config \

> /usr/src/linux-2.4.24/.config

[root@fanny SOURCES]# cd /usr/src/linux-2.4.24

[root@fanny linux-2.4.24]# cat openMosix-2.4.24-1 | patch -Np1

...

You should see a list of the patched files stream by as the last command runs.

Next, you'll need to create or edit a configuration file. This example uses the
supplied configuration file that was copied over as a starting point.

[root@fanny linux-2.4.24]# make menuconfig

Make whatever changes you need and then save your new configuration.

Once configured, it is time to make the kernel.

[root@fanny linux-2.4.24]# make dep

...

[root@fanny linux-2.4.24]# make clean

...

[root@fanny linux-2.4.24]# make bzImage

...

[root@fanny linux-2.4.24]# make modules

...

[root@fanny linux-2.4.24]# make modules_install

...

These commands can take a while and produce a lot of output, which has been
omitted here.

The worst is over now. You need to copy your kernel to /boot, create a ram-
disk, and configure your boot loader.

[root@fanny linux-2.4.24]# cd /usr/src/linux-2.4.24/arch/i386/boot/

[root@fanny boot]# cp bzImage /boot/vmlinuz-8jul04

If you haven't changed kernels, you may be able to use the existing ram-disk.
Otherwise, use the mkinitrd script to create a new one.

[root@fanny boot]# cd /boot

[root@fanny boot]# mkinitrd /boot/initrd-2.4.24.img 2.4.24-om

The first argument is the name for the ram-disk and the second argument is
the appropriate module directory under /lib/modules. See the manpage for
details.

The last step is to change the boot loader. This system uses grub, so the file
/etc/grub.conf needs to be edited. You might add something like the following:

title My New openMosix Kernel

 root (hd0,0)

 kernel /vmlinuz-8jul04 ro root=LABEL=/

 initrd /initrd-2.4.24.img

When the system reboots, the boot menu now has My New openMosix Kernel as
an entry. Select that entry to boot to the new kernel.

While these steps should be adequate for most readers, it is important to note
that, depending on your hardware, etc., additional steps may be required.
Fortunately, there has been a lot written on the general process of recompiling
Linux kernels. See the Appendix A for pointers to more information.

5.7 Is openMosix Right for You?

openMosix has a lot to recommend it. Not having to change your application
code is probably the biggest advantage. As a control mechanism, it provides
both transparency to the casual user and a high degree of control for the more
experienced user. With precompiled kernels, setup is very straightforward and
goes quickly.

There is a fair amount of communication overhead with openMosix, so it works
best on high-performance networks, but that is true of any cluster. It is also
more operating system-specific than most approaches to distributed
computing. For a high degree of control for highly parallel code, MPI is
probably a better choice. This is particularly true if latency becomes an issue.
But you should not overlook the advantages of using both MPI and openMosix.
At the very least, openMosix may improve performance by migrating processes
to less-loaded nodes.

There are a couple of other limitations to openMosix that are almost unfair to
mention since they are really outside the scope of the openMosix project. The
first is the inherit granularity attached to process migration. If your calculation
doesn't fork off processes, much of the advantage of openMosix is lost. The
second limitation is a lack of scheduling control. Basically, openMosix deals
with processes as it encounters them. It is up to the user to manage
scheduling or just take what comes. Keep in mind that if you are using a
scheduling program to get very tight control over your resources, openMosix
may compete with your scheduler in unexpected ways.

In looking at openMosix, remember that it is a product of an ongoing and very
active research project. Any description of openMosix is likely to become dated
very quickly. By the time you have read this, it is likely that openMosix will
have evolved beyond what has been described here. This is bad news for
writers like me, but great news for users. Be sure to consult the openMosix
documentation.

If you need to run a number of similar applications simultaneously and need to
balance the load among a group of computers, you should consider openMosix.

Chapter 6. OSCAR
Setting up a cluster can involve the installation and configuration of a lot of
software as well as reconfiguration of the system and previously installed
software. OSCAR (Open Source Cluster Application Resources) is a software
package that is designed to simplify cluster installation. A collection of open
source cluster software, OSCAR includes everything that you are likely to need
for a dedicated, high-performance cluster. OSCAR takes you completely
through the installation of your cluster. If you download, install, and run
OSCAR, you will have a completely functioning cluster when you are done.

This chapter begins with an overview of why you might use OSCAR, followed
by a description of what is included in OSCAR. Next, the discussion turns to
the installation and configuration of OSCAR. This includes a description of how
to customize OSCAR and the changes OSCAR makes to your system. Finally,
there are three brief sections, one on cluster security, one on switcher, and
another on using OSCAR with LAM/MPI.

Because OSCAR is an extensive collection of software, it is beyond the scope of
this book to cover every package in detail. Most of the software in OSCAR is
available as standalone versions, and many of the key packages included by
OSCAR are described in later chapters in this book. Consequently, this chapter
focuses on setting up OSCAR and on software unique to OSCAR. By the time
you have finished this chapter, you should be able to judge whether OSCAR is
appropriate for your needs and know how to get started.

6.1 Why OSCAR?

The design goals for OSCAR include using the best-of-class software,
eliminating the downloading, installation, and configuration of individual
components, and moving toward the standardization of clusters. OSCAR, it is
said, reduces the need for expertise in setting up a cluster. In practice, it
might be more fitting to say that OSCAR delays the need for expertise and
allows you to create a fully functional cluster before mastering all the skills
you will eventually need. In the long run, you will want to master those
packages in OSCAR that you come to rely on. OSCAR makes it very easy to
experiment with packages and dramatically lowers the barrier to getting
started.

OSCAR was created and is maintained by the Open Cluster Group
(http://www.openclustergroup.org), an informal group dedicated to simplifying
the installation and use of clusters and broadening their use. Over the years, a
number of organizations and companies have supported the Open Cluster
Group, including Dell, IBM, Intel, NCSA, and ORNL, to mention only a few.

OSCAR is designed with high-performance computing in mind. Basically, it is
designed to be used with an asymmetric cluster (see Chapter 1). Unless you
customize the installation, the computer nodes are meant to be dedicated to
the cluster. Typically, you do not log directly onto the client nodes but rather
work from the head node. (Although OSCAR sets up SSH so that you can log
onto clients without a password, this is done primarily to simplify using the
cluster software.)

While identical hardware isn't an absolute requirement, installing and managing an OSCAR
cluster is much simpler when identical hardware is used.

Actually, OSCAR could be used for any cluster application not just high-
performance computing. (A recently created subgroup, HA-OSCAR, is starting
to look into high-availability clusters.) While OSCAR installs a number of
packages specific to high-performance computing by default which would be of
little use for some other cluster uses, e.g., MPI and PVM, it is easy to skip the
installation of these packages. It is very easy to include additional RPM
packages to an OSCAR installation. Although OSCAR does not provide a simple
mechanism to do a post-installation configuration for such packages, you can
certainly include configuration scripts if you create your own packages. There

http://www.openclustergroup.org

is a HOWTO on the OSCAR web site that describes how to create custom
packages. Generally, this will be easier than manually configuring added
packages after the installation. (However, by using the C3 tool set included in
OSCAR, many post-install configuration tasks shouldn't be too difficult.)

Because of the difficulty in bringing together a wide variety of software and
because the individual software packages are constantly being updated, some
of the software included in OSCAR has not always been the most current
versions available. In practice, this is not a problem. The software OSCAR
includes is stable and should meet most of your needs.

While OSCAR was originally created using Red Hat Linux, a goal of the project
is to move beyond support for a single distribution and Mandrake Linux is now
also supported. The OSCAR project has shifted to SIS in order to eventually
support most RPM-based versions of Linux. But don't expect support for the
latest Linux versions to be immediately available as the new versions are
released.

6.2 What's in OSCAR

OSCAR brings together a number of software packages for clustering. Most of
the packages listed in this section are available as standalone packages and
have been briefly described in Chapter 2. Some of the more important
packages are described in detail in later chapters as well. However, there are
several scripts unique to OSCAR. Most are briefly described in this chapter.

It is likely that everything you really need to get started with a high-
performance cluster is included either in the OSCAR tar-ball or as part of the
base operating system OSCAR is installed under. Nonetheless, OSCAR provides
a script, the Oscar Package Downloader (opd) that simplifies the download and
installation of additional packages that are available from OSCAR repositories
in an OSCAR-compatible format. opd is so easy to use that for practical
purposes any package available through opd can be considered part of OSCAR.
opd can be invoked as a standalone program or from the OSCAR installation
wizard, the GUI-based OSCAR installer. Additional packages available using
opd include things like Myrinet drivers and support for thin OSCAR clients, as
well as management packages like Ganglia. Use of opd is described later in this
chapter.

OSCAR packages fall into three categories. Core packages must be installed.
Included packages are distributed as part of OSCAR, but you can opt out on
installing these packages. Third-party packages are additional packages that
are available for download and are compatible with OSCAR, but aren't
required. There are six core packages at the heart of OSCAR that you must
install:

Core

This is the core OSCAR package.

C3

The Cluster, Command, and Control tool suite provides a command-line
administration interface (described in Chapter 10).

Environmental Switcher

This is based on Modules, a Perl script that allows the user to make
changes to the environment of future shells. For example, Switcher allows
a user to change between MPICH and LAM/MPI.

oda

The OSCAR database application provides a central database for OSCAR.

perl-qt

This is the Perl object-oriented interface to the Qt GUI toolkit.

SIS

The System Installation Suite is used to install the operating systems on
the clients (described in Chapter 8).

OSCAR includes a number of packages and scripts that are used to build your
cluster. The installation wizard will give you the option of deciding which to
include:

disable-services

This script disables unneeded services on the clients, such as kudzu,
slocate, and mail services such as sendmail.

networking

This script configures the cluster server as a caching nameserver for the
clients.

ntpconfig

This script configures NTP. OSCAR uses NTP to synchronize clocks within

the cluster.

kernel_picker

This is used to change the kernel used in your SIS image before building
the cluster nodes.

loghost

This configures syslog settings, e.g., it configures nodes to forward syslog
messages to the head node.

OSCAR provides additional system tools, either as part of the OSCAR
distribution or through opd, used to manage your cluster:

Autoupdate

This is a Perl script used to update clients and the server (similar to
up2date or autorpm).

clumon (by opd)

Clumon is a web-based performance-monitoring system from NCSA.

Ganglia (by opd)

Ganglia is a real-time monitoring system and execution environment
(described in Chapter 10).

MAUI

This job scheduler is used with openPBS.

Myrnet drivers (by opd)

If you have Myrnet hardware, you need to load drivers for it.

openPBS

The portable batch system is a workload management system (described in
Chapter 11).

Pfilter

This package is used to generate sets of rules used for packet filtering.

PVFS (by opd)

Parallel Virtual File System is a high-performance, scalable, parallel virtual
file system (described in Chapter 12).

OPIUM

This is the OSCAR password installer and user management toolset.

thin client (by opd)

This package provides support for diskless OSCAR nodes.

Torque (by opd)

The Tera-scale Open-source Resource and QUEue manager resource
manager is based on openPBS.

VMI (by opd)

The Virtual Machine Interface provides a middleware communications layer
for SAN over grids.

Of course, any high-performance cluster would be incomplete without
programming tools. The OSCAR distribution includes four packages, while two
more (as noted) are available through opd:

HDF5

This is a hierarchical data format library for maintaining scientific data.

LAM/MPI

This is one implementation of the message passing interface (MPI) libraries
(described in Chapter 9).

MPICH

This is another implementation of the message passing interface (MPI)
libraries (also described in Chapter 9).

MPICH-GM (by opd)

This package provided MPICH with support for low-level message passing
for Myrnet networks.

MPICH-VMI (by opd)

This version of MPICH uses VMI.

PVM

This package provides the parallel virtual machine system, another

message passing library.

If you install the four included packages, the default, they should cover all
your programming needs.

Additionally, OSCAR will install and configure (or reconfigure) a number of
services and packages supplied as part of your Linux release.[1] These
potentially include Apache, DHCP, NFS, mySQL, openSSL, openSSH, rrdtool,
pcp, php, python, rsync, tftp, etc. Exactly which of these is actually installed or
configured will depend on what other software you elect to install. In the
unlikely event that you are unhappy with the way OSCAR sets up any of
these, you'll need to go back and reconfigure them after the installation is
completed.

[1] Sometimes OSCAR needs to make slight changes to packages. By convention, the replacement
packages that OSCAR uses have oscar as part of their names, e.g., lam-oscar-7.0-2.i586.rpm.

6.3 Installing OSCAR

This section should provide you with a fairly complete overview of the
installation process. The goal here is to take you through a typical installation
and to clarify a few potential problems you might encounter. Some
customizations you might want to consider are described briefly at the end of
this section. The OSCAR project provides a very detailed set of installation
instructions running over 60 pages, which includes a full screen-by-screen
walkthrough. If you decide OSCAR is right for you, you should download the
latest version and read it very carefully before you begin. It will be more
current and complete than the overview provided here. Go to
http://oscar.openclustergroup.org and follow the documentation link.

Because OSCAR is a complex set of software that includes a large number of
programs and services, it can be very unforgiving if you make mistakes when
setting it up. For some errors, you may be able to restart the installation
process. For others, you will be better served by starting again from scratch. A
standard installation, however, should not be a problem. If you have a small
cluster and the hardware is ready to go, with a little practice you can be up
and running in less than a day.

The installation described here is typical. Keep in mind, however, that your
installation may not go exactly like the one described here. It will depend on
some of the decisions you make. For example, if you select to install PVFS,
you'll see an additional console window early in the installation specific to that
software.

6.3.1 Prerequisites

There are several things you need to do before you install OSCAR. First, you
need to plan your system. Figure 6-1 shows the basic architecture of an
OSCAR cluster. You first install OSCAR on the cluster's head node or server,
and then OSCAR installs the remaining machines, or clients, from the server.
The client image is a disk image for the client that includes the boot sector,
operating system, and other software for the client. Since the head node is
used to build the client image, is the home for most user services, and is used
to administer the cluster, you'll need a well-provisioned machine. In particular,
don't try to skimp on disk spaceOSCAR uses a lot. The installation guide states
that after you have installed the system, you will need at least 2 GB (each) of
free space under both the / and /var directories while 4 GB for each is
recommended. Since the head is also the home for your users' files, you'll

http://oscar.openclustergroup.org

need to keep this in mind as well. It is a good idea to put the /, /var, and
/home directories on separate disk partitions. This will simplify reinstalls and
provide a more robust server.

Figure 6-1. OSCAR architecture

As you can see from the figure, the server or head is dual homed; that is, it
has two network interfaces. The interface attached to the external network is
called the public interface. The private interface attaches to the cluster's
network. While you don't have to use this configuration, be aware that OSCAR
will set up a DHCP server on the private interface. If you put everything on a
public network with an existing DHCP server, you may have a war between the
two DHCP servers. The remainder of this chapter assumes you'll be using a
configuration like the one shown in Figure 6-1.

It is strongly recommended that you begin with a clean install of your
operating system and that you customize your OSCAR installation as little as
possible the first time you install it. OSCAR is a complex collection of software.
With a vanilla installation, all should work well. This isn't to say you can't do
customizations, just do so with discretion. Don't be surprised if a custom install
takes a few tries to get right.

The installation documentation lists a few supported versions of Linux. It is
strongly recommend that you stick to the list. For Red Hat, a workstation
install that includes the Software Development group and an X Windows
environment should work nicely for the server. (You may also want to add
some network utilities such as VNC-server and Ethereal to make life easier,
and you may want to remove openOffice to discourage that kind of activity on
the cluster. That's your call; it won't affect your OSCAR installation either
way.) You should also do manual disk partitioning to ensure that you meet the
space requirements and to control the disk layout. (It is possible to work

around some allocation problems using links, but this is a nuisance best
avoided.) Don't install any updates to your system at this point. Doing so may
break the OSCAR installation, and you can always add these after you install
OSCAR.

6.3.2 Network Configuration

Since you have two interfaces, you need to make sure that your network
configuration is correct. The configuration of the public interface, of course,
will be determined by the configuration of the external network. For example,
an external DHCP server might be used to configure the public interface when
booting the server. For the cluster's network, use a private address space
distinct from the external address space. Table 6-1 lists reserved address
spaces that you might use per RFC 1918.

Table 6-1. Private IP address spaces

Address Spaces

10.0.0.0 to 10.255.255.255

172.16.0.0 to 172.31.255.255

192.168.0.0 to 192.168.255.255

By way of example, assume you have fewer than 255 computers and your
organization's internal network is already using the first address range
(10.X.X.X). You might select one of the class C ranges from the third address
range, e.g., 192.168.1.0 through 192.168.1.255. The usual IP configuration
constraints apply, e.g., don't assign the broadcast address to a machine. In this
example, you would want to avoid 192.168.1.0 (and, possibly, 192.168.1.255).
Once you have selected the address space, you can configure the private
interface using the tool of your choice, e.g., neat, ifconfig, or netcfg. You will
need to set the IP address, subnet mask, and default gateway. And don't forget
to configure the interface to be active on startup. In this example, you might
use an IP address of 192.168.1.1 with a mask of 255.255.255.0 for the private
interface.[2] The public interface will be the gateway for the private network.
This will leave 192.168.1.2 through 192.168.1.254 as addresses for your compute
nodes when you set up DHCP. Of course, if you plan ahead, you can also

configure the interface during the Linux installation.

[2] While this is the simplest choice, a better choice is to use 192.168.1.254 for the server and
starting at 192.168.1.1 for the clients. The advantage is that the low-order portion of the IP
addresses will match the node numbers, at least for your first 253 machines.

Once you have the interfaces configured, reboot the server and verify that
everything works. You can use ifconfig -a to quickly confirm that both
interfaces are up. If it is possible to put a live machine on the internal
network, you can confirm that routing works correctly by pinging the machine.
Do as much checking as you can at this point. Once the cluster is installed,
testing can be more difficult. You don't want to waste a lot of time trying to
figure out what went wrong with the OSCAR installation when the network was
broken before you began.

Another pre-installation consideration is the security settings for the server
you are building. If you have the security set too tightly on the server, it will
interfere with the client installation. If you have customized the security
settings on a system, you need to pay particular attention. For example, if you
have already installed SSH, be sure that you permit root logins to your server
(or plan to spend a lot of time at the server). If you can isolate the cluster
from the external network, you can just turn off the firewall.

Even if the installation goes well, you still may encounter problems later. For
example, with Red Hat 9, the default firewall settings may cause problems for
services like Ganglia. Since OSCAR includes pfilter, it is usually OK to just turn
off Red Hat's firewall. However, this is a call you will have to make based on
your local security policies.

You should also ensure that the head node's host name is correctly set. Make
sure that the hostname command returns something other than localhost and
that the returned name resolves to the internal interface. For example,

[root@amy root]# /bin/hostname

amy

[root@amy root]# ping -c1 amy

PING amy (172.16.1.254) 56(84) bytes of data.

64 bytes from amy (172.16.1.254): icmp_seq=1 ttl=64 time=0.166 ms

--- amy ping statistics ---

1 packets transmitted, 1 received, 0% packet loss, time 0ms

rtt min/avg/max/mdev = 0.166/0.166/0.166/0.000 ms

Notice that hostname returns amy and that when amy is pinged, the name
resolves to the address 172.16.1.254.

It is also a good idea to make sure you have enough disk space before going
on. You can use the df -h command. This is also a good point to do other basic
configuration tasks, such as setting up printers, setting the message of the
day, etc.

6.3.3 Loading Software on Your Server

The next step is to get the software you will need onto the server. This
consists of the OSCAR distribution and the Linux packages you need to build
the image for the client machines. For the Linux packages, first create the
directory /tftpboot/rpm and then copy over the packages. It will be a lot
simpler if you just copy everything over rather than try to figure out exactly
what is needed. For Red Hat 9, mount each of the three distribution disks and
copy over the all the RPM files from ../cdrom/RedHat/RPMS. The sequence
looks like this:

[root@amy /root]# mkdir -p /tftpboot/rpm

[root@amy /root]# mount /mnt/cdrom

[root@amy /root]# cd /mnt/cdrom/RedHat/RPMS

[root@amy RPMS]# cp *.rpm /tftpboot/rpm/

[root@amy RPMS]# cd /

[root@amy /]# eject cdrom

You repeat the last five steps two more times, once for each of the remaining
CD-ROMs. If your system automounts CD-ROMs, you'll skip the manual
mounts. You'll copy more than 1,400 packages, so this can take a while with
slower systems. (OSCAR will subsequently add additional packages to this
directory.)

If you are tight on disk space, you can install the packages on a different
partition and link to them. For example, if you've installed the packages in
/var/tftpboot/rpm, you could do the following:

[root@amy root]# mkdir /tftpboot/

[root@amy root]# ln -s /var/tftpboot/rpm /tftpboot/rpm

Note that the directory, not the individual packages, is linked.

You can download the OSCAR package from http://oscar.sourceforge.net.
You'll have the option of downloading OSCAR with or without the sources
(SRPMs) for most of the packages in OSCAR. Since it is unlikely you'll need the
sources and since you can download them separately later should you need
them, it is OK to skip them and go with the standard download. We'll download
to the /root directory, a safe place to install from.

Next, you will unpack the code

[root@amy root]# gunzip oscar-3.0.tar.gz

[root@amy root]# tar -xvf oscar-3.0.tar

...

This creates a directory, /root/oscar-3.0, which you should cd to for the next
phase of the installation process. You may also want to browse the
subdirectories that are created.

6.3.4 A Basic OSCAR Installation

Before the installation wizard can be run the first time, it must be configured

http://oscar.sourceforge.net

and installed. Log in as root or use su - to become root. Change to the
installation directory and run configure and make install.

[root@amy root]# cd /root/oscar-3.0

[root@amy oscar-3.0]# ./configure

...

[root@amy oscar-3.0]# make install

...

Now you are ready to run the wizard.

At this point, it is generally a good idea to start another shell so the
environment variables are sourced from /etc/profile.d. To start the installation,
change to the installation directory and run the install_cluster script from a
terminal window under X. The install_cluster script expects the private
interface as an argument. Be sure to adjust this parameter as needed. Here is
an example of starting the script:

[root@amy oscar-3.0]# cd $OSCAR_HOME && pwd

/opt/oscar

[root@amy oscar]# ./install_cluster eth1

The first time you run the wizard, you will be prompted for a password for the
MySQL database. Then, after a bit (depending on dependencies that need to be
addressed), the OSCAR GUI-style installation wizard will appear. It may take
several minutes for the wizard to appear. The console window from which the
script was run will provide additional output, so keep it visible. This
information is also written to an install log in the OSCAR installation directory.
Figure 6-2 shows the wizard.

Figure 6-2. OSCAR Installation Wizard

The Installation Wizard shows the basic steps that you will be going through to
install your cluster. You can get a helpful explanation for any step by using the
adjacent Help... button.

6.3.4.1 Step 0: Downloading additional packages

Before the installation can proceed, you should download any third-party
packages you'll want using opd. Since opd downloads packages over the
Internet, you'll need a working Internet connection to use it. Of course, if you
are not interested in any of the third-party packages, you can skip this step.
Also, it is possible to add packages later. But it is generally simpler if you do
everything at once. You'll miss out on some very nice software if you skip this
step.

Standalone opd

If you decide to run opd from the command line, you can find the command in the scripts
subdirectory.

[root@amy oscar]# scripts/opd

Running opd as a standalone program the first time may prove tricky since, with a fresh install,
several Perl modules that opd needs may not be installed. If this is the case, you'll get an error
message. While you could manually install these modules, the OSCAR installation script will also
install them. If you run the wizard but stop it when the wizard window opens, you'll get around this
problem and you'll be able to run the opd script.

When opd runs, after some initial output, it gives you a list of repositories for OSCAR packages to
select from. Enter the number for the repository of interest.

Please select a default repository:

1. NCSA OSCAR package repository

 = => http://sponge.ncsa.uiuc.edu/ftp/oscar/repository/

2. thin-OSCAR package repository

 = => http://thin-oscar.ccs.usherbrooke.ca/oscar-package/

3. GSC OSCAR package repository

 = => http://www.bcgsc.ca/downloads/oscar/repository/

4. Open Systems Lab, Indiana University

 = => http://www.osl.iu.edu/~jsquyres/opd_repository/

5. Network & Cluster Computing Group, Oak Ridge National Laboratory

 = => http://www.csm.ornl.gov/oscar/repository/

Selection (1-5): 1

Next, opd takes you to that repository. You should see some output as the connection is made and
then an opd> prompt. You can list the available packages with the list command.

...

= => NCSA OSCAR package repository

= => http://sponge.ncsa.uiuc.edu/ftp/oscar/repository/

= => 8 packages available

opd>list

1. clumon 1.2.1-6 (5.2MB)

2. Myrinet Driver (GM) 2.0.9-1 (15.4kB)

3. Maui 3.2.5p7-2 (18.5MB)

4. mpich-gm 1.2.5-4 (15.4MB)

5. MPICH-VMI 2.0.b3p1-1 (15.7MB)

6. PVFS 1.6-3 (707.9kB)

7. Torque 1.0.1p5-3 (5.5MB)

8. VMI 2.0.b3p1-1 (6.6MB)

To download a package (or packages), select the package by giving its number (or numbers
separated by commas), and then use the download command to retrieve it (or them).

opd>8

Package "VMI" is selected

opd>download

You see a fair number of messages as the package(s) are downloaded.

...

10:15:40 (157.47 KB/s) - `/var/cache/oscar/downloads/vmi20b3p1-1.tgz.opd'

saved [6992096]

Successful!

- Checking size... OK

- Checking MD5 sum... OK

- Checking SHA1 sum... OK

- Saving to /var/cache/oscar/downloads/vmi20b3p1-1.tgz... OK

- Unpacking into /var/lib/oscar/packages/... OK

opd>quit

Goodbye.

You can quit opd with the quit command. Other commands are listed with the help command. Much
of the output has been omitted in this example.

opd can be run as a separate program outside of the wizard or you can run it

from the wizard by clicking on the first button, Downloading Additional OSCAR
Packages.... Generally, it is easier to run opd from the wizard, so that's what's
described here. But there are some rare circumstances where you might want
use the command-line version of opd, so there is a very brief description in the
accompanying sidebar.

When you open opd from the wizard, a window will appear as shown in Figure
6-3. Another pop up will appear briefly displaying the message Downloading
Package Information... as the OSCAR repositories on the Internet are visited to
see what packages are available. (Keep in mind that packages are added over
time, so you may see additional packages not shown or discussed here.)

Using the downloader is straightforward. If you click on an item, it will display
information about the package in the lower pane, including a description,
prerequisite packages, and conflict. Just select the appropriate tab. In the
upper pane, put a checkmark next to the packages you want. Then click on the
Download Selected Packages button. A new pop up will appear with the
message Downloading Package File with a file name and a percentage. Be
patient; it may look like nothing is happening although the download is
proceeding normally.[3] If you have a reasonable connection to the Internet,
the download should go quickly. The packages are downloaded to the directory
/var/cache/oscar/downloads and are unpacked in separate directories under
/var/lib/oscar/packages/.

[3] The percentage refers not to an individual package download but to the percentage of the total
number of packages that have been downloaded. So if you are downloading five packages, the
percentages will jump by 20 percent as each package is retrieved.

6.3.4.2 Step 1: Package selection

The next step is to select the packages you want to install. When you click on
the Select OSCAR Packages to Install... button, the Oscar Package Selection
window will

be displayed as shown in Figure 6-4. This displays the packages that are
available (but not the individual RPMs).

Figure 6-3. OSCAR's GUI for opd

Figure 6-4. OSCAR's package selector

The information provided in the lower pane is basically the same as that

provided by the OSCAR Package Downloader window, except the information is
available for all the packages. The check boxes in the upper pane determine
whether the packages are to be installed. Any package that you added with
opd will also be included in the list, but by default, will not be selected. Don't
forget to select these. If you haven't downloaded any packages, you probably
won't need to change anything here, but scroll down the list and carefully look
it over. If there is something you don't need or want, disable it. But keep in
mind that it is generally easier to include something now than to go back and
add it later. Don't bother trying to remove any of OSCAR's core packages;
OSCAR won't let you. And it is strongly recommended that you don't remove
pfilter. (If you have a compelling reason not to include pfilter, be sure to
consult the installation manual for additional details explaining how to do this
correctly.)

OSCAR constructs an image for client nodes, i.e., a copy of the operating
system files and software that will be installed on the client. With OSCAR, you
can build multiple images. If you are going to build multiple images, it is
possible to define different sets of installation packages. The drop-down box at
the top of the window allows you to select among the sets you've defined. You
can define and manipulate sets by clicking on the Manage Sets button at the
top of the window. A pop-up window, shown in Figure 6-5, allows you to
manipulate sets, etc. The easiest way to create a new set is to duplicate an
existing set, rename the set, and then edit it.

Figure 6-5. Managing package sets

6.3.4.3 Step 2: Configuring packages

Step 2 is the configuration of selected OSCAR packages. All in all, the default

configurations should meet most users' needs, so you can probably skip this
step. Figure 6-6 shows the configuration menu. Most packages do not require
configuration at this point and are not included in the menu.

Figure 6-6. Package configuration

In this example, only five of the packages need or permit additional
configuration. Each of these, if selected, will generate a window that is self-
explanatory. The Environment Switcher allows you to select either LAM/MPI or
MPICH as the default. Since a user can change the default setting, your
selection isn't crucial. The switcher script can be run on the command line and
is described later in the chapter.

The kernel_picker is potentially a complicated option. Fortunately, if you are
using the default kernel, you can ignore it completely. Basically, the
kernel_picker allows you to change kernels used when building system images.
You could use it to install a previously built kernel such as one configured with
the openMosix extensions. The kernel_picker window is shown in Figure 6-7.
(See the kernel_picker(1) manpage for more information.)

Figure 6-7. GUI for kernel_picker

Figure 6-8 shows the ntpconfig window. The ntpconfig option allows you to
specify the address of NTP servers used by the cluster server. While the server
synchronizes to an external source, the clients synchronize to the cluster
server. There are several default NTP servers listed with check boxes, and you
can enter your own choices. In this example, salieri.wofford.int has been
added. If you have a local timeserver, you'll certainly want to use that instead
of the defaults, or if you know of a "closer" timeserver, you may prefer to use
it. But if in doubt, the defaults will work.

Figure 6-8. Configuring NTP

Pretty much everyone can expect to see the three choices just described. If
you have added additional packages, you may have other choices. In this
example, the packages for Ganglia and PVFS were both added, so there are
configuration windows for each of these. (With Ganglia you can change the
naming information and the network interface used to reach the client nodes.
With PVFS you can change the number of I/O servers you are using.)

When you complete a step successfully, you should see a message to that
effect in the console window, as shown in Figure 6-9. For some steps, there is
also a pop-up window that tells you when the step is finished. While the first
two steps are optional, in general be very careful not to go to the next step
until you are told to do so. The console window also displays error messages.
Unfortunately, the console can be a little misleading. You may see some
benign error messages, particularly from rpm and rsync, and occasionally real
error messages may get lost in the output. Nonetheless, the console is worth
watching and will give you an idea of what is going on.

Figure 6-9. Console window during installation

6.3.4.4 Step 3: Installing server software

In Step 3, you will install all the packages that the server needs and configure
them. There are no fancy graphics here, but you will see a lot of activity in the
console window. It will take several minutes to set up everything. A pop-up
window will appear, telling you that you were successful or that there was an
error, when this step completes. If all is well, you can close the popup window
and move on to the next step. If not, you'll need to go to the console window
and try to puzzle out the error messages, correct the problem, and begin
again. You should need to run this step only once.

6.3.4.5 Step 4: Building a client image

In Step 4, you build the client image. The client image is all the software that
will be installed on a client, including the operating system. Since it is possible
to create multiple client images, you are given the option to specify a few
details as shown in Figure 6-10. You can specify image names if you have
multiple images, the location of the packages used to build the image, and the
names of the package list and disk partition files. These last two files are
described later in this chapter. The defaults are shown in the figure. If you
aren't building multiple images, you can probably stick with the defaults. You
can also determine how the IP addresses of the clients are set and the

behavior of the clients once the installation completes. Your choices are dhcp,
static, and replicant. With static, the IP addresses will be assigned to the clients
once and for all at the time of the installation. This is the most reasonable
choice. dhcp used DHCP to set IP addresses, while replicant doesn't mess with
addresses. The next button allows you to turn multicasting on or off. The
possible post-install actions are beep, reboot, or shutdown. With beep, the
clients will unmount the file system and beep at you until rebooted. reboot and
shutdown are just what you would expect. All in all, OSCAR's defaults are
reasonable. When you have made your selection, click on Build Image.

Figure 6-10. Creating client images

OSCAR uses SIS to create the image. Unlike our example in Chapter 8, you do
not need to create a sample system. Image creation is done on the server.

This step takes a while to complete. There is a red bar that grows from left to
right at the bottom of the window that will give you some idea of your
progress. However, you will be done before the bar is complete. Another pop-
up window will appear when you are done. You'll run this step once for each
different image you want to create. For most clusters, that's one image. Keep
in mind that images take a lot of space. Images are stored in the directory
/var/lib/systemimager/images.

6.3.4.6 Step 5: Defining clients

Once you have built the image, things should start going a lot faster. Step 5

defines the scope of your network. This is done using the window shown in
Figure 6-11. If you have multiple images, you can select the image you want
to use in the first field. The next five fields are used to specify how node
names will be constructed. The host name is constructed by appending a
number to the base name. That number begins at the start value and is
padded with leading zeros, if needed, as specified by the padding field. The
domain name is then appended to the node name to form the fully qualified
domain name or FQDN. The number of hosts you create is specified in the
fourth field. In this example, four nodes are created with the names
node1.oscar.int, node2.oscar.int, node3.oscar.int, and node4.oscar.int. (With
padding set to 3, you would get node001.oscar.int, etc.) OSCAR assumes that
hosts are numbered sequentially. If for some reason you aren't building a
single block of sequential hosts, you can rerun this step to build the block's
hosts as needed.

The last three fields are used to set IP parameters. In this example, the four
hosts will have IP addresses from 172.16.1.1 through 172.16.1.4 inclusive.

Figure 6-11. Defining OSCAR clients

Once you have the fields the way you want them, click on the Addclients
button. You should see a small pop-up window indicating that you were
successful. If so, you can close the pop-up window and the client definition
window and go on to the next step.

6.3.4.7 Step 6: Setting up the network

Step 6, shown in Figure 6-12, sets up the DHCP server and maps IP addresses
to MAC addresses. (It is possible to run OSCAR without configuring the head as
a DHCP server, but that isn't described here.) This step requires several
substeps. First, you will need to collect the MAC or Ethernet addresses from
the adapters in each of the client machines. You can do this manually or use
OSCAR to do it. If you select the Collect MAC Addresses button and then power
on each client, OSCAR will listen to the network, capture MAC addresses from
DHCP requests, and display the captured addresses in the upper left pane.
However, if no DHCP requests are generated, the machines won't be
discovered. (Be sure to turn this option off when you have collected your
addresses.) Under some circumstances, it is possible to collect MAC addresses
from machines not in your cluster. If this happens, you can use the Remove
button to get rid of the addresses you don't want. If you collect the MAC
addresses, be sure to save them to a file using the Export MACs to file...
button.

Figure 6-12. Setting up networking

Alternately, if you know the MAC addresses, you can enter them into a file and
read the file with the Import MACs from file... button. To create the file, just
put one MAC address on a line with the fields separated by colons. Here is part
of a MAC file:

00:08:c7:07:6e:57

00:08:c7:07:68:48

00:08:c7:07:c1:73

00:08:c7:07:6f:56

OSCAR can be picky about the format of these addresses. (If you are collecting
MAC addresses rather than importing them from a file, it is a good idea to
export the collected MAC addresses. In the event you want to reinstall your
clusters, this can save some work.)

Once you have the MACs, you'll need to assign them to the clients displayed in
the top right pane. You can do this all at once with the Assign all MACs button,
or you can do it individually with the Assign MAC to Node button. While the
first method is quicker, you may prefer the second method to better control
which machine gets which address. With the second method, click on a MAC
address to select it, click on a client's interface, and then click the Assign MAC
to Node button. Repeat this step for each client.

If the Dynamic DHCP update checkbox is selected, then each time you assign
an MAC address, the DHCP server is refreshed. If not selected, then once you
have configured your nodes you can click on Configure DHCP Server. OSCAR
creates the DHCP configuration file /etc/dhcpd.conf and starts DHCP. If you
already have a DHCP configuration file, OSCAR will save it as
dhcpd.conf.oscarbak before creating the new file.

SIS is used to push files to the nodes. By default, images are transferred using
rsync. It is also possible to distribute images using flamethrower, a multicast-
based program. Because the multicast facilities are still somewhat
experimental, rsync is the recommended method for new users. If you elect to
use flamethrower, you'll need to ensure that your network is properly
configured to support multicasting. If the Enable Multicasting checkbox is
selected, flamethrower is used to push files. If it is unselected, rsync is used.
Chapter 8 provides a detailed description of SIS and rsync.

Next, you'll need to create an autoinstall diskette. When the potential client
machines are booted with this diskette, the process of downloading their image
begins. Click on the button in the lower left of the window and a new window
will take you through the creation of the floppy. Use the default standard when
prompted for a flavor. If you have a large cluster, you should create several

diskettes so you can install several systems at once.

The next step installs the software on the individual machines. This step will overwrite the
existing system! Are you sure you are ready to do this?

You are through with the Mac Address Collection window but there is one more
thing you must do before going to the next stepinstall the image on your
clients. While this sounds formidable, it is very straightforward with OSCAR.
Just insert the floppy you just created and reboot each system.

You should see a "SYSLINUX 2.0 Screen" with a boot prompt. You can hit
return at the prompt or just wait a few seconds. The system will go to the
OSCAR server and download and install the client operating system. Repeat
this process with each system. You can do all your clients at the same time if
you wish. The boot floppy is only used for a couple of minutes so once the
install is on its way, you can remove the floppy and move on to another
machine. If you have several floppies, you can get a number of installations
going very quickly. The installation will depend on how many clients you have,
how fast your network is, and how many packages went into your cluster
image, but it should go fairly quickly.

You may need to go into the ROM startup menu and change the client's boot configuration
so it will boot from a diskette. If you do, don't forget to change it back when you are done.

When a client's image is installed, the machine will start beeping. If you
haven't already removed the floppy, do so now and reboot the system. The
filesystems on the clients will not be mounted at this point so it is safe to just
cycle the power. (Actually, you could have set the system to automatically
reboot back in Step 4, but you'll need to make sure the floppy has been
removed in a timely manner if you do so.)

6.3.4.8 Step 7: Completing the setup

Once all the clients have booted, there are a few post-install scripts that need
to be run. Just click on the button. After a few minutes, you should get the

popup window shown in Figure 6-13. Well done! But just to be on the safe
side, you should test your cluster.

Figure 6-13. Success!

6.3.4.9 Step 8: Testing

Step 8 tests your cluster. Another console window opens and you see the
results from a variety of tests. Figure 6-14 shows what the output looks like
early in the process. There is a lot more output that will vary depending on
what you've installed. (Note that you may see some PBS errors because the
PBS server is initially shutdown. It's OK to ignore these.)

Figure 6-14. Testing the cluster

Congratulations! You have an OSCAR cluster up and running! This probably
seems like a complicated process when you read about it here, but it all goes
fairly quickly. And think for a moment how much you have accomplished.

If something may goes wrong with your installation, OSCAR provides a
start_over script that can be used to clean up from the installation and give

you another shot at installing OSCAR. This is not an uninstaller. It will not
return your machine to the pristine state it was in before the installation but
should clean things up enough so that you'll be able to reinstall OSCAR. If you
use this script, be sure to log out and back onto the system before you
reinstall OSCAR. On the other hand, you may just want to go back and do a
clean install.

6.3.5 Custom Installations

As should be apparent from the installation you just went through, there are
several things you can do to customize your installation. First, you can alter
the kernel using kernel_picker. For example, if you want to install the
openMosix kernel on each system, you would begin by installing the openMosix
kernel on the head node. Then, when installing OSCAR, you would use
kernel_picker to select the openMosix kernel. This is shown in Figure 6-15.

Figure 6-15. Using the openMosix kernel

Of course, for a new kernel to boot properly, you'll need to ensure that the

appropriate kernel load modules are available on each machine. For
openMosix, you can do this by installing the openMosix package.

Fortunately, it is straightforward to change the packages that OSCAR installs.
For example, if you are installing the openMosix kernel, you'll want the
openMosix tools as well. If you look back at Figure 6-10, one of the fields was
Package File. In the directory /opt/oscar/oscarsamples there are several files,
one for each supported Linux distribution. These files contain the packages
that will be installed by OSCAR. For example, for Red Hat 9 the file is redhat-
9-i386.rpmlist. If there are some additional packages that you would like to
install on the cluster nodes, you can make a backup copy of the desired lists
and then add those packages to the list. You should put one package per line.
You need to include only the package name, not its version number. For
example, to install the openMosix tools package, you could add a line with
openmosix-tools (rather than openmosix-tools-0.3.5-1.i386.rpm). The package list is
pretty basic, which leads to a quick install but a minimal client. Of course,
you'll need to make sure the packages are in (or linked to) the /tftpboot/rpm
directory and that you include all dependencies in the package list.

While you are in the /opt/oscar/oscarsamples directory, you can also alter the
disk setup by editing either the sample.disk.ide or sample.disk.scsi file. For
example, if you have an IDE drive and you want to use the ext3 file system
rather than ext2, just change all the ext2 entries to ext3 in the file
sample.disk.ide. Of course, unless you have a compelling reason, you should
probably skip these changes.

6.3.6 Changes OSCAR Makes

It is pretty obvious that OSCAR has just installed a number of applications on
your system. As you might expect, OSCAR made a number of additional,
mostly minor, changes. It will probably take you a while to discover everything
that has changed, but these changes shouldn't cause any problems.

While OSCAR tries to conform to standard installation practices, you won't get
exactly the same installation and file layout that you might have gotten had
you installed each application individually. The changes are really minimal,
however. If you've never done individual installations, the whole issue is
probably irrelevant unless you are looking at the original documentation that
comes with the application.

You can expect to find most configuration files in the usual placestypically but
not always under the /etc directory. Configuration files that OSCAR creates or

changes include c3.conf, crontab, dhcpd.conf, gmetad.conf, gmond.conf,
ntp.conf, ntp/step-tickers, pcp.conf, pfilter.conf, ssh/ssh_config, and files in
xinetd.d. OSCAR will also update /etc/hosts, /etc/exports, and /etc/fstab as
needed.

Several of the packages that are installed require accounts, which are created
during the install. Take a look at /etc/passwd to see which accounts have been
added to your system. For the global user profiles, OSCAR includes a link to a
script to set up SSH keys and adds some paths. You might want to look at
/etc/profile.d/ssh-oscar.sh and /etc/profile.d/ssh-oscar.csh. OSCAR restarts all
affected services.

6.3.7 Making Changes

There are three more buttons above the Quit button on the wizard. Each does
exactly what you would expect. The Add OSCAR Clients... adds additional
nodes. Adding a node involves three, now familiar steps. When you select Add
OSCAR Clients... you'll get the menu shown in Figure 6-16.

Figure 6-16. Adding nodes

The first step defines the client or range of clients. You'll get the same menu
(Figure 6-11) you used when you originally set up clients. Be sure you set
every field as appropriate. OSCAR doesn't remember what you used in the
past, so it is possible to end up with inconsistent host names and domains. (If
this happens, you can just delete the new nodes and add them again,
correcting the problem, but be sure to exit and restart OSCAR after deleting
and before adding a node back.) Of course, you'll also need to set the starting
node and number of nodes you are adding. In the second step, you map the
MAC address to a machine just as you've done before (see Figure 6-12).

Finally, with the last step you run the scripts to complete the setup.

Deleting a node is even easier. Just select the Delete OSCAR Clients... button
on the wizard. You'll see a window like the one shown in Figure 6-17 listing
the nodes on your cluster. Select the nodes you want to delete and click on
the Delete clients button. OSCAR will take care of the rest. (Deleting a node
only removes it from the cluster. The data on the node's hard disk is
unaffected as are services running on the node.)

Figure 6-17. Deleting nodes

Figure 6-18. Adding and removing packages

Finally, you can install and uninstall packages using the Install/Uninstall
OSCAR Packages... button. This opens the window shown in Figure 6-18. Set
the checkbox and click on the Execute button. Any new packages you've
checked will be installed, while old packages you've unchecked will be
uninstalled. This is a new feature in OSCAR and should be used with caution.

6.4 Security and OSCAR

OSCAR uses a layered approach to security. The architecture used in this
chapter, a single-server node as the only connection to the external network,
implies that everything must go through the server. If you can control the
placement of the server on the external network, e.g., behind a corporate
firewall, you can minimize the threat to the cluster. While outside the scope of
this discussion, this is something you should definitely investigate.

The usual advice for securing a server applies to an OSCAR server. For
example, you should disable unneeded services and delete unused accounts.
With a Red Hat installation, TCP wrappers is compiled into xinetd and available
by default. You'll need to edit the /etc/hosts.allow and /etc/hosts.deny files to
configure this correctly. There are a number of good books (and web pages) on
security. Get one and read it!

6.4.1 pfilter

In an OSCAR cluster, access to the cluster is controlled through pfilter, a
package included in the OSCAR distribution. pfilter is both a firewall and a
compiler for firewall rulesets. (The pfilter software can be downloaded
separately from http://pfilter.sourceforge.net/.)

pfilter is run as a service, which makes it easy to start it, stop it, or check its
status.

[root@amy root]# service pfilter stop

Stopping pfilter: [OK]

[root@amy root]# service pfilter start

Starting pfilter: [OK]

[root@amy root]# service pfilter status

pfilter is running

If you are having communications problems between nodes, you may want to

http://pfilter.sourceforge.net/

temporarily disable pfilter. Just don't forget to restart it when you are done!

You can request a list of the chains or rules used by pfilter with the service
command.

[root@amy root]# service pfilter chains

table filter:

...

This produces a lot of output that is not included here.

The configuration file for pfilter, /etc/pfilter.conf, contains the rules used by
pfilter and can be edited if you need to change them. The OSCAR installation
adds some rules to the default configuration. These appear to be quite
reasonable, so it is unlikely that you'll need to make any changes. The
manpages for pfilter.conf(5) and pfilter.rulesets(5) provide detailed instructions
should you wish to make changes. While the rules use a very simple and
readable syntax, instruction in firewall rulesets is outside the scope of this
book.

6.4.2 SSH and OPIUM

Within the cluster, OSCAR is designed to use the SSH protocol for
communications. Use of older protocols such as TELNET or RSH is strongly
discouraged and really isn't needed. openSSH is set up for you as part of the
installation. OPIUM, the OSCAR Password Installer and User Manager tool,
handles this. OPIUM installs scripts that will automatically generate SSH keys
for users. Once OSCAR is installed, the next time a user logs in or starts a new
shell, she will see the output from the key generation script. (Actually, at any
point after Step 3 in the installation of OSCAR, key generation is enabled.)
Figure 6-19 shows such a login. Note that no action is required on the part of
the user. Apart from the display of a few messages, the process is transparent
to users.

Figure 6-19. Key setup upon login

Once you set up the cluster, you should be able to use the ssh command to log
onto any node from any other node, including the server, without using a
password. On first use, you will see a warning that the host has been added to
the list of known hosts. All this is normal. (The changes are saved to the
directory /etc/profile.d.)

The openSSH configuration was not designed to work with other systems such as
Kerberos or NIS.

In addition to setting up openSSH on the cluster, OPIUM includes a sync_users
script that synchronizes password and group files among the cluster using C3
as a transport mechanism. By default, this is run every 15 minutes by cron. It
can also be run by root with the --force option if you don't want to wait for
cron. It cannot be run by other users. OPIUM is installed in /opt/opium with
sync_users in the subdirectory bin. The configuration file for sync_users,
sync_user.conf, is in the etc subdirectory. You can edit the configuration file to
change how often cron runs sync_user or which files are updated, among other
things. (sync_users is something of a misnomer since it can be used to update
any file.)

Because the synchronization is done from the server to the clients, it is important that
passwords always be changed on the server and never on the clients. The next time
sync_user runs, password changes on client will be lost as the password changes on the
server propagate to the clients.

6.5 Using switcher

switcher is a script that simplifies changes to a user's environment. It allows
the user to make, with a single command, all the changes to paths and
environmental variables needed to run an application. switcher is a script that
uses the modules package.

The modules package is an interesting package in its own right. It is a general
utility that allows users to dynamically modify their environment using
modulefiles. Each modulefile contains the information required to configure a
shell for a specific application. A user can easily switch to another application,
making required environmental changes with a single command. While it is not
necessary to know anything about modules to use switcher, OSCAR installs the
modules system and, it is available should you need or wish to use it. modules
can be downloaded from http://modules.sourceforge.net/.

switcher is designed so that changes take effect on future shells, not the
current one. This was a conscious design decision. The disadvantage is that
you will need to start a new shell to see the benefits of your change. On the
positive side, you will not need to run switcher each time you log in. Nor will
you need to edit your "dot" files such as .bashrc. You can make your changes
once and forget about them. While switcher is currently used to change
between the two MPI environments provided with OSCAR, it provides a general
mechanism that can be used for other tasks. When experimenting with
switcher, it is a good idea to create a new shell and test changes before closing
the old shell. If you have problems, you can go back to the old shell and
correct them.

With switcher, tags are used to group similar software packages. For example,
OSCAR uses the tag mpi for the included MPI systems. (You can list all
available tags by invoking switcher with just the --list option.) You can easily
list the attributes associated with a tag.

[sloanjd@amy sloanjd]$ switcher mpi --list

lam-7.0

lam-with-gm-7.0

mpich-ch_p4-gcc-1.2.5.10

http://modules.sourceforge.net/

In this example, we see the attributes are the two available MPI
implementations.

You use the --show option to use switcher to determine the default MPI
environment.

[sloanjd@amy sloanjd]$ switcher mpi --show

system:default=lam-7.0

system:exists=true

Alternately, you can use the which command:

[sloanjd@amy sloanjd]$ which mpicc

/opt/lam-7.0/bin/mpicc

From the path, we can see that we are set up to use LAM/MPI rather than
MPICH.

To change the default to MPICH, simply assign the desired attribute value to
the tag.

[sloanjd@amy sloanjd]$ switcher mpi = mpich-ch_p4-gcc-1.2.5.10

Attribute successfully set; new attribute setting will be effective for

future shells

The change will not take effect immediately, but you will be using MPICH the
next time you log in (and every time you log in until you run switcher again.)
After the first time you make a change, switcher will ask you to confirm tag
changes. (Also, the very first time you use switcher to change a tag, you'll
receive a tag "does not exist" error message that can be safely ignored.)

As root, you can change the default tag for everyone using the --system flag.

[root@amy root]# switcher mpi = lam-7.0 --system

One last word of warning! If you make a typo when entering the value for the
attribute, switcher will not catch your mistake.

6.6 Using LAM/MPI with OSCAR

Before we leave OSCAR, let's look at a programming example. You can use
this to convince yourself that everything is really working. You can find several
LAM/MPI examples in /usr/share/doc/lam-oscar-7.0/examples and the
documentation in /opt/lam-7.0/share/lam/doc. (For MPICH, look in /opt/mpich-
1.2.5.10-ch_p4-gcc/examples for code and /opt/mpich-1.2.5.10-ch_p4-gcc/doc
for documentation.)

Log on as a user other than root and verify that LAM/MPI is selected using
switcher.

[sloanjd@amy doc]$ switcher mpi --show

user:default=lam-7.0

system:exists=true

If necessary, change this and log off and back on.

If you haven't logged onto the individual machines, you need to do so now
using ssh to register each machine with ssh. You could do this with a separate
command for each machine.

[sloanjd@amy sloanjd]$ ssh node1

...

Using a shell looping command is probably better since it will ensure that you
don't skip any machines and can reduce typing. With the Bash shell, the
following command will initiate your logon to the machines node1 through
node99, each in turn.

[sloanjd@amy sloanjd]$ for ((i=1; i<100; i++))

> do

> ssh node${i}

> done

Just adjust the loop for a different number of machines. You will need to adjust
the syntax accordingly for other shells. This goes fairly quickly and you'll need
to do this only once.

Create a file that lists the individual machines in the cluster by IP address. For
example, you might create a file called myhosts like the following:

[sloanjd@amy sloanjd]$ cat myhosts

172.16.1.1

172.16.1.2

172.16.1.3

172.16.1.4

172.16.1.5

This should contain the server as well as the clients.

Next, run lamboot with the file's name as an argument.

[sloanjd@amy sloanjd]$ lamboot myhosts

LAM 7.0/MPI 2 C++/ROMIO - Indiana University

You now have a LAM/MPI daemon running on each machine in your cluster.

Copy over the example you want to run, compile it with mpicc, and then run it
with mpirun.

[sloanjd@amy sloanjd]$ cp /usr/share/doc/lam-oscar-7.0/examples/

alltoall/alltoall.c $HOME

[sloanjd@amy sloanjd]$ mpicc -o alltoall alltoall.c

[sloanjd@amy sloanjd]$ mpirun -np 4 alltoall

Rank 0 not sending to myself

Rank 1 sending message "1" to rank 0

Rank 2 sending message "2" to rank 0

...

You should see additional output. The amount will depend on the number of
machines in myhosts. Happy coding, everyone!

Chapter 7. Rocks
The previous chapter showed the use of OSCAR to coordinate the many
activities that go into setting up and administering a cluster. This chapter
discusses another popular kit for accomplishing roughly the same tasks.

NPACI Rocks is a collection of open source software for building a high-
performance cluster. The primary design goal for Rocks is to make cluster
installation as easy as possible. Unquestionably, they have gone a long way
toward meeting this goal. To accomplish this, the default installation makes a
number of reasonable assumptions about what software should be included
and how the cluster should be configured. Nonetheless, with a little more
work, it is possible to customize many aspects of Rocks.

When you install Rocks, you will install both the clustering software and a
current version of Red Hat Linux updated to include security patches. The
Rocks installation will correctly configure various services, so this is one less
thing to worry about. Installing Rocks installs Red Hat Linux, so you won't be
able to add Rocks to an existing server or use it with some other Linux
distribution.

Default installations tend to go very quickly and very smoothly. In fact, Rocks'
management strategy assumes that you will deal with software problems on a
node by reinstalling the system on that node rather than trying to diagnose
and fix the problem. Depending on hardware, it may be possible to reinstall a
node in under 10 minutes. Even if your systems take longer, after you start
the reinstall, everything is automatic, so you don't need to hang around.

In this chapter, we'll look briefly at how to build and use a Rocks cluster. This
coverage should provide you with enough information to decide whether Rocks
is right for you. If you decide to install Rocks, be sure you download and read
the current documentation. You might also want to visit Steven Baum's site,
http://stommel.tamu.edu/~baum/npaci.html.

http://stommel.tamu.edu/%7Ebaum/npaci.html

7.1 Installing Rocks

In this section we'll look at a default Rocks installation. We won't go into the
same level of detail as we did with OSCAR, in part because Rocks offers a
simpler installation. This section should give you the basics.

7.1.1 Prerequisites

There are several things you need to do before you begin your installation.
First, you need to plan your system. A Rocks cluster has the same basic
architecture as an OSCAR cluster (see Figure 6-1). The head node or frontend
is a server with two network interfaces. The public interface is attached to the
campus network or the Internet while the private interface is attached to the
cluster. With Rocks, the first interface (e.g., eth0) is the private interface and
the second (e.g., eth1) is the public interface. (This is the opposite of what was
described for OSCAR.)

You'll install the frontend first and then use it to install the compute nodes.
The compute nodes use HTTP to pull the Red Hat and cluster packages from
the front-end. Because Rocks uses Kickstart and Anaconda (described in
Chapter 8), heterogeneous hardware is supported.

Diskless clusters are not an option with Rocks. It assumes you will have hard
disks in all your nodes. For a default installation, you'll want at least an 8 GB
disk on the frontend. For compute nodes, by altering the defaults, you can get
by with smaller drives. It is probably easier to install the software on the
compute nodes by booting from a CD-ROM, but if your systems don't have CD-
ROM drives, you can install the software by booting from a floppy or by doing a
network boot. Compute nodes should be configured to boot without an
attached keyboard or should have a keyboard or KVM switch attached.

Rocks supports both Ethernet and Myrinet. For the cluster's private network,
use a private address space distinct from the external address space per RFC
1918. It's OK to let an external DHCP server configure the public interface, but
you should let Rocks configure the private interface.

7.1.2 Downloading Rocks

To install Rocks, you'll first need the appropriate CD-ROMs. Typically, you'll go
to the Rocks web site http://rocks.npaci.edu/Rocks/, follow the link to the

http://rocks.npaci.edu/Rocks/

download page, download the ISO images you want, and burn CD-ROMs from
these images. (This is also a good time to download the user manuals if you
haven't already done so.) Rocks currently supports x86 (Pentium and Athlon),
x86_64 (AMD Opteron), and IA-64 (Itanium) architectures.

Be sure to download the software that is appropriate for your systems. You'll
need at least two ISO images, maybe more depending upon the software you
want. Every installation will require the Rocks Base and HPC Roll. The core
install provides several flavors of MPICH, Ganglia, and PVFS. If you want
additional software that is not part of the core Rocks installation, you'll need to
download additional rolls. For example, if you want tripwire and chkrootkit, two
common security enhancements, you could download the Area 51 roll. If you
are interested in moving on to grid computing, Rocks provides rolls that ease
that process (see the sidebar, "Rocks and Grids").

Currently available rolls include the following:

Sun Grid Engine (SGE) roll

This roll includes the Sun Grid Engine, a job queuing system for grids.
Think of this as a grid-aware alternative to openPBS. This is open source
distributed management software. For more information on SGE, visit
http://gridengine.sunsource.net.

Grid roll

The NSF Middleware Initiative (NMI) grid roll contains a full complement of
grid software, including the Globus toolkit, Condor-G, Network Weather
Service, and MPICH-G2, to name only a few. For more information on the
NMI project, visit http://www.nsf-middleware.org.

Intel roll

This roll installs and configures the Intel C compiler and the Intel
FORTRAN compiler. (You'll still need licenses from Intel.) It also includes
the MPICH environments built for these compilers. For more information
on the Intel compilers and their use with Rocks, visit
http://www.intel.com/software/products/distributors/rock_cluster.htm.

http://gridengine.sunsource.net
http://www.nsf-middleware.org
http://www.intel.com/software/products/distributors/rock_cluster.htm

Area 51 roll

This roll currently includes tripwire and chkrootkit. tripwire is a security
auditing package. chrootkit examines a system for any indication that a
root kit has been installed. For more information on these tools, visit the
sites http://www.tripwire.org and http://www.chkrootkit.org.

Scalable Cluster Environment (SCE) roll

This roll includes the OpenSCE software that originated at Kasetsart
University, Thailand. For more information on OpenSCE, visit
http://www.opensce.org.

Java roll

The Java roll contains the Java Virtual Machine. For more information on
Java, visit http://java.sun.com.

PBS roll

The Portable Batch System roll includes the OpenPBS and Maui queuing
and scheduling software. For more information on these packages, see
Chapter 11 or visit http://www.openpbs.org.

Condor roll

This roll includes the Condor workload management software. Condor
provides job queuing, scheduling, and priority management along with
resource monitoring and management. For more information on Condor,
visit http://www.cs.wisc.edu/condor/.

Some rolls are not available for all architectures. It's OK to install more than
one roll, so get what you think you may need now. Generally, you won't be
able to add a roll once the cluster is installed. (This should change in the
future.)

http://www.tripwire.org
http://www.chkrootkit.org
http://www.opensce.org
http://java.sun.com
http://www.openpbs.org
http://www.cs.wisc.edu/condor/

Once you've burned CD-ROMs from the ISO images, you are ready to start the
installation. You'll start with the frontend.

Rocks and Grids

While grids are beyond the scope of this book, it is worth mentioning that, through its rolls
mechanism, Rocks makes it particularly easy to move into grid computing. The grid roll is particularly
complete, providing pretty much everything you'll need to get started literally dozens of software
tools and packages. Software includes:

Globus Toolkit a collection of modular technologies, including tools for authentication,
scheduling and file transfer that simplifies collaboration among sites.

Condor-G the Condor software with grid and Globus compatibility.

Network Weather Servicea monitoring service that dynamically forecasts network and resource
performance.

MPICH-G2 a grid-enabled implementation of MPICH.

Grid Packaging Tools a collection of packaging tools built around XML. This is a package
management system.

KX.509/KCA technology that provides a bridge between Kerberos and PKI infrastructure.

GSI OpenSSHa modified version of SSH that supports GSI authentication (Grid Security
Infrastructure).

MyProxya credential repository for grids.

Gridconfig Tools a set of tools to configure and tune grid technologies.

These are just the core. It you are new to grids and want to get started, this is the way to go. (The
Appendix A includes the URLs for these tools.)

7.1.3 Installing the Frontend

The frontend installation should go very smoothly. After the initial boot
screens, you'll see a half dozen or so screens asking for additional information
along with other screens giving status information for the installation. If
you've installed Red Hat Linux before, these screens will look very familiar. On
a blue background, you'll see the Rocks version information at the very top of
the screen and interface directions at the bottom of the screen. In the center
of the screen, you'll see a gray window with fields for user supplied
information or status information. Although you can probably ignore them, as
with any Red Hat installation, the Linux virtual consoles are available as
shown in Table 7-1. If you have problems, don't forget these.

Table 7-1. Virtual consoles

Table 7-1. Virtual consoles

Console Use Keystroke

1 Installation Cntl-Alt-F1

2 Shell prompt Cntl-Alt-F2

3 Installation log Cntl-Alt-F3

4 System messages Cntl-Alt-F4

5 Other messages Cntl-Alt-F5

Boot the frontend with the Rocks Base CD and stay with the machine. After a
moment, you will see a boot screen giving you several options. Type frontend at
the boot: prompt and press Enter. You need to do this quickly because the
system will default to a compute node installation after a few seconds and the
prompt will disappear. If you miss the prompt, just reboot the system and pay
closer attention.

After a brief pause, the system prompts you to register your roll CDs. When it
asks whether you have any roll CDs, click on Yes. When the CD drive opens,
replace the Rocks Base CD with the HPC Roll CD. After a moment the system
will ask if you have another roll CD. Repeat this process until you have added
all the roll CDs you have. Once you are done, click on No and the system will
prompt you for the original Rocks Base CD. Registration is now done, but at
the end of the installation you'll be prompted for these disks again for the
purpose of actual software installation.

The next screen prompts you for information that will be included in the web
reports that Ganglia creates. This includes the cluster name, the cluster
owner, a contact, a URL, and the latitude and longitude for the cluster
location. You can skip any or all of this information, but it only takes a
moment to enter. You can change all this later, but it can be annoying trying
to find the right files. By default, the web interface is not accessible over the
public interface, so you don't have to worry about others outside your
organization seeing this information.

The next step is partitioning the disk drive. You can select Autopartition and
let Rocks partition the disk using default values or you can manually partition

the disk using Disk Druid. The current defaults are 6 GB for / and 1 GB for
swap space. /export gets the remaining space. If you manually partition the
drive, you need at least 6 GB for / and you must have a /export partition.

The next few screens are used to configure the network. Rocks begins with the
private interface. You can choose to have DHCP configure this interface, but
since this is on the internal network, it isn't likely that you want to do this. For
the internal network, use a private address range that doesn't conflict with the
external address range. For example, if your campus LAN uses 10.X.X.X, you
might use 172.16.1.X for your internal network. When setting up clients, Rocks
numbers machines from the highest number downward, e.g., 172.16.1.254,
172.16.1.253,

For the public interface, you can manually enter an IP address and mask or
you can rely on DHCP. If you are manually entering the information, you'll be
prompted for a routing gateway and DNS servers. If you are using DHCP, you
shouldn't be asked for this information.

The last network setup screen asks for a node name. While it is possible to
retrieve this information by DHCP, it is better to set it manually. Otherwise,
you'll need to edit /etc/resolv.conf after the installation to add the frontend to
the name resolution path. Choose the frontend name carefully. It will be
written to a number of files, so it is very difficult to change. It is a very bad
idea to try to change hostnames after installing Rocks.

Once you have the network parameters set, you'll be prompted for a root
password. Then Rocks will format the filesystem and begin installing the
packages. As the installation proceeds, Rocks provides a status report showing
each package as it is installed, time used, time remaining, etc. This step will
take a while.

Once the Rocks Base CD has been installed, you'll be prompted for each of the
roll CDs once again. Just swap CDs when prompted to do so. When the last roll
CD has been installed, the frontend will reboot.

Your frontend is now installed. You can move onto the compute nodes or you
can stop and poke around on the frontend first. The first time you log onto the
frontend, you will be prompted for a file and passphrase for SSH.

Rocks Frontend Node - Wofford Rocks Cluster

Rocks 3.2.0 (Shasta)

Profile built 17:10 29-Jul-2004

Kickstarted 17:12 29-Jul-2004

It doesn't appear that you have set up your ssh key.

This process will make the files:

 /root/.ssh/identity.pub

 /root/.ssh/identity

 /root/.ssh/authorized_keys

Generating public/private rsa1 key pair.

Enter file in which to save the key (/root/.ssh/identity):

Enter passphrase (empty for no passphrase):

Enter same passphrase again:

Your identification has been saved in /root/.ssh/identity.

Your public key has been saved in /root/.ssh/identity.pub.

The key fingerprint is:

86:ad:c4:e3:a4:3a:90:bd:7f:f1:bd:7a:df:f7:a0:1c root@frontend.public

The default file name is reasonable, but you really should enter a
passphrase one you can remember.

7.1.4 Install Compute Nodes

The next step is to install the compute nodes. Before you do this, you may
want to make a few changes to the defaults. For example, you might want to
change how the disks will be partitioned, what packages will be installed, or
even which kernel will be used. For now, we'll stick with the defaults.
Customizations are described in the next two sections, so you may want to
read ahead before going on. But it's really easy to reinstall the compute nodes,
so don't feel you have to master everything at once.

To install the compute nodes, you'll begin by running the program insert-
ethers as root on the frontend. Next, you'll boot a compute node using the
Rocks Base CD. Since the Rocks Base CD defaults to compute node install, you
won't need to type anything on the cluster node. The insert-ethers program
listens for a DHCP query from the booting compute node, assigns it a name
and IP address, records information in its database, and begins the installation
of the client.

Let's look at the process in a little more detail. insert-ethers collects MAC
address information and enters it into the Rocks cluster database. It can also
be used to replace (--replace), update (--update), and remove (--remove)
information in the database. This information is used to generate the DHCP
configuration file and the host file.

There is one potential problem you might face when using insert-ethers. If you
have a managed Ethernet switch, when booted it will issue a DHCP request.
You don't want to treat it like a compute node. Fortunately, the Rocks
implementers foresaw this problem. When you start insert-ethers, you are
given a choice of the type of appliance to install. You can select Ethernet
Switch as an option and configure your switch. When you are done, quit and
restart insert-ethers. This time select Compute. Now you are ready to boot
your compute nodes. If you aren't setting up an Ethernet switch, you can just
select Compute the first time you run insert-ethers.

The next step is to boot your compute nodes. As previously noted, you can use
the Rocks Base CD to do this. If your compute nodes don't have CD-ROM
drives, you have two other options. You can use a network boot if your
network adapters support a PXE boot, or you can create a PXE boot floppy.
Consult your hardware documentation to determine how to do a PXE boot
using a network adapter. The Rocks FAQ, included in NPSCI Rocks Cluster
Distribution: Users Guide, has the details for creating a PXE boot floppy.

When insert-ethers runs, it displays a window labeled Inserted Appliances. As
each compute node is booted, it displays the node's MAC address and assigned
name. Typically, insert-ethers will name the systems compute-0-0, compute-0-
1, etc. (The file /etc/host defines aliases for these, c0-0, c0-1, etc., for those of

us who don't type well.) If you start insert-ethers with the command-line
option --cabinet=1, it will generate the names compute-1-0, compute-1-1, etc.
This allows you to create a two-tier naming system, if you want. You can
change the starting point for the second number with the --rank. See the
insert-ethers(8) manpage for more details.

A couple of minutes after you reboot your compute node, it will eject the CD-
ROM. You can take the CD-ROM and move on to your next machine. If you
have a terminal connected to the system, you'll get a status report as the
installation proceeds.

If you need to reinstall a node, you can use the shoot-node command. This is
useful when changing the configuration of a node, e.g., adding a new package.
This command takes the name of the machine or machines as an argument.

[root@frontend root]# shoot-node compute-0-0

Since this is run on the frontend, it can be used to remotely reinstall a system.
This command is described in the shoot-node(8) manpage.

7.1.5 Customizing the Frontend

Since Rocks installs Linux for you, you will need to do a little digging to see
how things are set up. Among other services, Rocks installs and configures 411
(an NIS replacement), Apache, DHCP, MySQL, NFS, NTP, Postfix, and SSH, as
well as cluster-specific software such as Ganglia and PVFS. Configuration files
are generally where you would expect them. You'll probably want to browse
the files in /etc, /etc/init.d, /etc/ssh, and /etc/xinetd.d. Other likely files
include crontab, dhcpd.conf, exports, fstab, gmetad.conf, gmond.conf, hosts,
ntp.conf, and ntp/step-tickers. You might also run the commands

[root@frontend etc]# ps -aux | more

...

[root@frontend etc]# /sbin/service --status-all | more

...

[root@frontend etc]# netstat -a | more

...

The cluster software that Rocks installs is in /opt or /usr/share.

If you have been using Red Hat for a while, you probably have some favorite
packages that Rocks may not have installed. Probably the best way to learn
what you have is to just poke around and try things.

7.1.5.1 User management with 411

Starting with Rocks 3.1.0, 411 now replaces NIS. 411 automatically
synchronizes the files listed in /var/411/Files.mk. The password and group files
are among these. When you add users, you'll want to use useradd.

[root@frontend 411]# useradd -p xyzzy -c "Joe Sloan" \

> -d /export/home/sloanjd sloanjd

...

This automatically invokes 411. When a user changes a password, you'll need
to sync the changes with the compute nodes. You can do this with the
command

[root@frontend root]# make -C /var/411

A more complete discussion of 411 can be found in the Rocks user's guide. At
this time, there isn't a 411 man page. To remove users, use userdel.

7.1.5.2 X Window System

You'll probably want to start the X Window System so you can run useful
graphical tools such as Ganglia. Before you can run X the first time, you'll
need to run redhat-config-xfree86. If you are comfortable setting options, go

for it. If you are new to the X Window System, you'll probably be OK just
accepting the defaults. You can then start X with the xstart command. (If you
get a warning message about no screen savers, just ignore it.)

Once X is working, you'll need to do the usual local customizations such as
setting up printers, creating a message of the day, etc.

7.1.6 Customizing Compute Nodes

Rocks uses Kickstart and Anaconda to install the individual compute nodes.
However, rather than use the usual flat, text-based configuration file for
Kickstart, Rocks decomposes the Kickstart file into a set of XML files for the
configuration information. The Kickstart configuration is generated dynamically
from these. These files are located in the /export/home/install/rocks-
dist/enterprise/3/en/os/i386/build/nodes/ directory. Don't change these. If you
need to create customization files, you can put them in the directory
/home/install/site-profiles/3.2.0/nodes/ for Rocks Version 3.2.0. There is a
sample file skeleton.xml that you can use as a template when creating new
configuration files. When you make these changes, you'll need to apply the
configuration change to the distribution using the rocks-dist command. The
following subsections give examples. (For more information on rocks-dist, see
the rocks-dist(1) manpage.)

7.1.6.1 Adding packages

If you want to install additional RPM packages, first copy those packages to the
directory /home/install/contrib./enterprise/3/public/arch/RPMS, where arch is
the architecture you are using, e.g., i386.

[root@frontend root]# mv ethereal-0.9.8-6.i386.rpm \

> /home/install/contrib/enterprise/3/public/i386/RPMS/

[root@frontend root]# mv ethereal-gnome-0.9.8-6.i386.rpm \

> /home/install/contrib/enterprise/3/public/i386/RPMS/

Next, create a configuration file extend-compute.xml. Change to the profile
directory, copy skeleton.xml, and edit it with your favorite text editor such as

vi.

[root@frontend root]# cd /home/install/site-profiles/3.2.0/nodes

[root@frontend nodes]# cp skeleton.xml extend-compute.xml

[root@frontend nodes]# vi extend-compute.xml

...

Next, add a line to extend-compute.xml for each package.

<package> ethereal </package>

<package> ethereal-gnome </package>

Notice that only the base name for a package is used; omit the version
number and .rpm suffix.

Finally, apply the configuration change to the distribution.

[root@frontend nodes]# cd /home/install

[root@frontend install]# rocks-dist dist

...

You can now install the compute nodes and the desired packages will be
included.

7.1.6.2 Changing disk partitions

In general, it is probably a good idea to stick to one disk-partitioning scheme.
Unless you turn the feature off as described in the next subsection, compute
nodes will automatically be reinstalled after a power outage. If you are using
multiple partitioning schemes, the automatic reinstallation could result in

some drives with undesirable partitioning. Of course, the downside of a single-
partitioning scheme is that it may limit the diversity of hardware you can use.

To change the default disk partitioning scheme used by Rocks to install
compute nodes, first create a replacement partition configuration file. Begin by
changing to the directory where the site profiles are stored. Create a
configuration file replace-auto-partition.xml. Change to the profile directory,
copy skeleton.xml, and edit it.

[root@frontend root]# cd /home/install/site-profiles/3.2.0/nodes

[root@frontend nodes]# cp skeleton.xml replace-auto-partition.xml

[root@frontend nodes]# vi replace-auto-partition.xml

...

Under the main section, you'll add something like the following:

<main>

 <part> / --size 2048 --ondisk hda </part>

 <part> swap --size 500 --ondisk hda </part>

 <part> /mydata --size 1 --grow --ondisk hda </part>

</main>

Apart from the XML tags, this is standard Kickstart syntax. This example, a
partitioning scheme for an older machine, uses 2 GB for the root partition, 500
MB for a swap partition, and the rest of the disk for the /mydata partition.

The last step is to apply the configuration change to the distribution.

[root@frontend nodes]# cd /home/install

[root@frontend install]# rocks-dist dist

...

You can now install the system using the new partitioning scheme.

7.1.6.3 Other changes

By default, a compute node will attempt to reinstall itself whenever it does a
hard restart, e.g., after a power failure. You can disable this behavior by
executing the next two commands.

[root@frontend root]# cluster-fork '/etc/rc.d/init.d/rocks-grub stop'

compute-0-0:

Rocks GRUB: Setting boot action to 'boot current kernel': [OK]

...

[root@frontend root]# cluster-fork '/sbin/chkconfig --del rocks-grub'

compute-0-0:

...

The command cluster-fork is used to execute a command on every machine in
the cluster. In this example, the two commands enclosed in quotes will be
executed on each compute node. Of course, if you really wanted to, you could
log onto each, one at a time, and execute those commands. cluster-fork is a
convenient tool to have around. Additional information can be found in the
Rocks user's guide. There is no manpage at this time.

Creating and installing custom kernels on the compute nodes, although more
involved, is nonetheless straightforward under Rocks. You'll first need to
create a compute node, build a new kernel on the compute node, package it
using rpm, copy it to the frontend, rebuild the Rocks distribution with rocks-
dist, and reinstall the compute nodes. The details are provided in the Rocks
user's guide along with descriptions of other customizations you might want to
consider.

7.2 Managing Rocks

One of Rocks' strengths is the web-based management tools it provides.
Initially, these are available only from within the clusters since the default
firewall configuration blocks HTTP connections to the frontend's public
interface. If you want to allow external access, you'll need to change the
firewall configuration. To allow access over the public interface, edit the file
/etc/sysconfig/iptables and uncomment the line:

-A INPUT -i eth1 -p tcp -m tcp --dport www -j ACCEPT

Then restart the iptables service.

[root@frontend sysconfig]# service iptables restart

Some pages, for security reasons, will still be unreachable.

To view the management page locally, log onto the frontend, start the X
Window System, start your browser, and go to http://localhost. You should get
a screen that looks something like Figure 7-1.

Figure 7-1. Rocks' web interface

The links on the page will vary depending on the software or rolls you chose to
install. For example, if you didn't install PBS, you won't see a link to the PBS
Job Queue. Here is a brief description of the links shown on this page.

Cluster Database (SSL)

Rocks maintains a MySQL database for the server. The database is used to
generate service-specific configuration files such as /etc/hosts and
/etc/dhcpd.conf. This phpMyAdmin web interface to the database can be
accessed through the first link. This page will not be accessible over the
public interface even if you've changed the firewall. Figure 7-2 shows the
first screen into the database. You can follow the links on the left side of
the page to view information about the cluster.

Figure 7-2. Rocks database page

Cluster Status (Ganglia)

This link provides a way into Ganglia's home page. Ganglia, a cluster
monitoring package, is described in Chapter 10.

Cluster Top (Process Viewer)

This link takes you to a page that displays the top processes running on
the cluster. This is basically the Unix top command, but provides cluster-
wide information. The columns are similar to those provided by top except
for the first two. The first, TN, gives the age of the information in seconds,
and the second, HOST, is the host name for the cluster node that the
process is running on. You can look at the top(1) manpage for information
on how to interpret this page. Figure 7-3 shows the Cluster Top screen for
an idle cluster.

PBS Job Queue

PBS is described in Chapter 11. You should see the PBS link only if you've
installed the PBS roll.

News (RSS)

This is an alert system that sends RSS-style news items for events within
the cluster. It is documented in the Rocks Reference Guide.

Figure 7-3. Cluster Top

Proc filesystem

This link takes you into the /proc subdirectory. The files in this
subdirectory contain dynamic information about the state of the operating
system. You can examine files to see the current configuration, and, in
some cases, change the file to alter the configuration. This page is
accessible only on a local system.

Cluster Distribution

The Cluster Distribution link is a link into the /home/install directory on
the frontend. This directory holds the RPM packages used to construct the
cluster. This page is accessible only on a local system.

Kickstart Graph

This link provides a graphical representation of the information used to
create the Kickstart file. This is generated on the fly. Different display
sizes are available.

Roll Call

This link returns a page that lists the various rolls that have been installed
on your cluster.

Rocks User's Guide/Reference Guide

These are online versions of the Rocks documentation that have been
alluded to so often in this chapter.

Make Labels

This link generates a PDF document containing labels for each node in the
cluster. The labels contain the cluster name, node name, MAC address, and
the Rocks logo. If your cluster name is too long, the logo will obscure it.
You should be able to print the document on a standard sheet of labels
such as Avery 5260 stock.

Register Your Cluster

This will take you to the Rocks registration site, so you can add your
cluster to the list of other Rocks clusters.

Finally, there is a link to the Rocks home page.

7.3 Using MPICH with Rocks

Before we leave Rocks, let's look at a programming example you can use to
convince yourself that everything is really working.

While Rocks doesn't include MPI/LAM, it gives you your choice of several
MPICH distributions. The /opt directory contains subdirectories for MPICH,
MPICH-MPD, and MPICH2-MPD. Under MPICH, there is also a version of MPICH
for Myrnet users. The distinctions are described briefly in Chapter 9. We'll stick
to MPICH for now.

You can begin by copying one of the examples to your home directory.

[sloanjd@frontend sloanjd]$ cd /opt/mpich/gnu/examples

[sloanjd@frontend examples]$ cp cpi.c ~

[sloanjd@frontend examples]$ cd

Next, compile the program.

[sloanjd@frontend sloanjd]$ /opt/mpich/gnu/bin/mpicc cpi.c -o cpi

(Clearly, you'll want to add this directory to your path once you decide which
version of MPICH to use.)

Before you can run the program, you'll want to make sure SSH is running and
that no error or warning messages are generated when you log onto the
remote machines. (SSH is discussed in Chapter 4.)

Now you can run the program. (Rocks automatically creates the machines file
used by the system, so that's one less thing to worry about. But you can use
the -machinefile filename option if you wish.)

[sloanjd@frontend sloanjd]$ /opt/mpich/gnu/bin/mpirun -np 4 cpi

Process 0 on frontend.public

Process 2 on compute-0-1.local

Process 1 on compute-0-0.local

Process 3 on compute-0-0.local

pi is approximately 3.1416009869231245, Error is 0.0000083333333314

wall clock time = 0.010533

That's all there is to it.

Since Rocks also includes the High-Performance Linpack (HPL) benchmark, so
you might want to run it. You'll need the HPL.dat file. With Rocks 3.2.0, you
can copy it to your directory from /var/www/html/rocks-documentation/3.2.0/.
To run the benchmark, use the command

[sloanjd@frontend sloanjd]$ /opt/mpich/gnu/bin/mpirun -nolocal \

> -np 2 /opt/hpl/gnu/bin/xhpl

...

(Add a machine file if you like.) You can find more details in the Rocks user
manual.

Part III: Building Custom Clusters
This section describes individual components and software that you
should consider when building your cluster. Most of these components
are part of the OSCAR and Rocks distribution but can be installed
independently. Thus, by using the material in this section, you could
bypass OSCAR or Rocks and build a custom cluster. Or you could use
these chapters to learn more about the software that is part of OSCAR
and Rocks.

These chapters are largely independent and can be read in any order
with one minor exception. Chapter 12 uses the C3 tools introduced in
Chapter 10. However, you should have little trouble understanding
Chapter 12 even if you haven't read Chapter 10. In practice, you will
probably want to install the software described in Chapters 9 through 12
and then return to Chapter 8 to clone your systems. Since the other
chapters describe manually installing software, you might want to glance
over Chapter 8 before you begin those chapters so you'll know what can
be automated.

Chapter 8. Cloning Systems
Setting up a cluster means setting up machineshopefully, lots of machines.
While you should begin with a very small number of machines as you figure
out what you want, eventually you'll get to the point where you are mindlessly
installing system after system. Fortunately, most of those machines will have
identical setups. You could simply repeat the process for each machine, but
this will be both error prone and immensely boring. You need a way to
automate the process.

The approach you need depends on the number of machines to be set up and
configured, the variety of machines, how mission critical the cluster is, and
your level of patience. For three or four machines, a manual install and
configuration of each machine is a reasonable approach, particularly if you are
working with an odd mix of different machines so that each setup is different.
But even with a very small number of machines, the process will go more
smoothly if you can automate some of the post-installation tasks such as
copying configuration files.

Unless you have the patience of Job, with more than eight or ten machines in
your cluster, you'll want to automate as much of the process as possible. And
as your cluster's continuous operation becomes more crucial, the need for an
automated approach becomes even more important.

This chapter begins with a quick look at simple approaches to ease configuring
multiple systems after the operating system has been installed. These
techniques are useful for any size cluster. Even if you are clearly in the fully
automated camp, you should still skim this section since these techniques
apply to maintaining clusters as well as setting up clusters.

Next, three tools that are useful when building larger clusters are
describedKickstart, g4u (ghost for Unix), and SystemImager (part of the
Systems Installation Suite). These tools are representative of three different
approaches that can be used. Kickstart is a package-based installation program
that allows you to automate the installation of the operating system. g4u is a
simple image-based program that allows you to copy and distribute disk
images. SystemImager is a more versatile set of tools with capabilities that
extend beyond installing systems. The tools in SystemImager allow you to
build, clone, and configure a system. While these tools vary in scope, each
does what it was designed to do quite well. There are many other tools not
discussed here.

8.1 Configuring Systems

Cloning refers to creating a number of identical systems. In practice, you may
not always want systems that are exactly alike. If you have several different
physical configurations, you'll need to adapt to match the hardware you have.
It would be pointless to use the identical partitioning schemes on hard disks
with different capacities. Furthermore, each system will have different
parameters, e.g., an IP address or host name that must be unique to the
system.

Setting up a system can be divided roughly into two stagesinstalling the
operating system and then customizing it to fit your needs. This division is
hazy at best. Configuration changes to the operating system could easily fall
into either category. Nonetheless, many tools and techniques fall, primarily,
into one of these stages so the distinction is helpful. We'll start with the
second task first since you'll want to keep this ongoing process in mind when
looking at tools designed for installing systems.

8.1.1 Distributing Files

The major part of the post-install configuration is getting the right files onto
your system and keeping those files synchronized. This applies both to
configuring the machine for the first time and to maintaining existing systems.
For example, when you add a new user to your cluster, you won't want to log
onto every machine in the cluster and repeat the process. It is much simpler if
you can push the relevant accounting files to each machine in the cluster from
your head node.

What you will want to copy will vary with your objectives, but Table 8-1 lists a
few likely categories.

Table 8-1.

Types of Files

Accounting files, e.g., /etc/passwd, /etc/shadow, /etc/group, /etc/gshadow

Configuration files, e.g., /etc/motd, /etc/fstab, /etc/hosts, /etc/printcap.local

Security configuration files such as firewall rulesets or public keys

Packages for software you wish to install

Configuration files for installed software

User scripts

Kernal images and kernal source files

Many of these are one-time copies, but others, like the accounting files, will
need to be updated frequently.

You have a lot of options. Some approaches work best when moving sets of
files but can be tedious when dealing with just one or two files. If you are
dealing with a number of files, you'll need some form of repository. (While you
could pack a collection of files into a single file using tar, this approach works
well only if the files aren't changing.) You could easily set up your own HTTP or
FTP server for both packages and customized configuration files, or you could
put them on a floppy or CD and carry the disk to each machine. If you are
putting together a repository of files, perhaps the best approach is to use NFS.

With NFS, you won't need to copy anything. But while this works nicely with
user files, it can create problems with system files. For example, you may not
want to mount a single copy of /etc using NFS since, depending on your flavor
of Linux, there may be files in the /etc that are unique to each machine, e.g.,
/etc/HOSTNAME. The basic problem with NFS is that the granularity (a
directory) is too coarse. Nonetheless, NFS can be used as a first step in
distributing files. For example, you might set up a shared directory with all the
distribution RPMs along with any other software you want to add. You can then
mount this directory on the individual machines. Once mounted, you can
easily copy files where you need them or install them from that directory. For
packages, this can easily be done with a shell script.

While any of these approaches will work and are viable approaches on an
occasional basis, they are a little clunky, particularly if you need to move only
a file or two. Fortunately, there are also a number of commands designed
specifically to move individual files between machines. If you have enabled the
r-service commands, you could use rcp. A much better choice is scp, the SSH
equivalent. You could also consider rdist. Debian users should consider apt-get.
cpush, one of the tools supplied in C3 and described in Chapter 10, is another
choice. One particularly useful command is rsync, which will be described next.

8.1.1.1 Pushing files with rsync

rsync is GNU software written by Andrew Tridgell and Paul Mackerras. rsync is
sometimes described as a faster, more flexible replacement for rcp, but it is
really much more. rsync has several advantages. It can synchronize a set of
files very quickly because it sends only the difference in the files over the link.
It can also preserve file settings. Finally, since other tools described later in
this book such as SystemImager and C3 use it, a quick review is worthwhile.

rsync is included in most Linux distributions. It is run as a client on the local
machine and as a server on the remote machine. With most systems, before
you can start the rsync daemon on the machine that will act as the server,
you'll need to create both a configuration file and a password file.[1]

[1] Strictly speaking, the daemon is unnecessary if you have SSH or RSH.

A configuration file is composed of optional global commands followed by one
or more module sections. Each module or section begins with a module name
and continues until the next module is defined. A module name associates a
symbolic name to a directory. Modules are composed of parameter
assignments in the form option = value. An example should help clarify this.

a sample rsync configuration file -- /etc/rsyncd.conf

#

[systemfiles]

source/destination directory for files

path = /etc

authentication -- users, hosts, and password file

auth users = root, sloanjd

hosts allow = amy basil clara desmond ernest fanny george hector james

secrets file = /etc/rsyncd.secrets

allow read/write

read only = false

UID and GID for transfer

uid = root

gid = root

There are no global commands in this example, only the single module
[systemfiles]. The name is an arbitrary string (hopefully not too arbitrary)
enclosed in square brackets. For each module, you must specify a path option,
which identifies the target directory on the server accessed through the
module.

The default is for files to be accessible to all users without a password, i.e.,
anonymous rsync. This is not what we want, so we use the next three
commands to limit access. The auth user option specifies a list of users that can
access a module, effectively denying access to all other users. The hosts allow
option limits the machines that can use this module. If omitted, then all
machines will have access. In place of a list of machines, an address/mask
pattern can be used. The secrets file specifies the name of a password file used
for authentication. The file is used only if the auth user option is also used. The
format of the secrets file is user:password, one entry per line. Here is an
example:

root:RSpw012...

The secrets file should be readable only by root, and should not be writable or
executable. rsync will balk otherwise.

By default, files are read only; i.e., files can be downloaded from the server
but not uploaded to the server. Set the read only option to false if you want to
allow writing, i.e., uploading files from clients to the server. Finally, the uid
and gid options set the user and group identities for the transfer. The
configuration file is described in detail in the manpage rsyncd.conf(5). As you
might imagine, there are a number of other options not described here.

rsync usually uses rsh or ssh for communications (although it is technically
possible to bypass these). Consequently, you'll need to have a working version
of rsh or ssh on your system before using rsync.

To move files between machines, you will issue an rsync command on a local

machine, which will contact an rsync daemon on a remote machine. Thus, to
move files rsync must be installed on each client and the remote server must
be running the rsync daemon. The rsync daemon is typically run by xinetd but
can be run as a separate process if it is started using the --daemon option. To
start rsync from xinetd, you need to edit the file /etc/xinetd.d/rsync, change
the line disable = yes to disable = no, and reinitialize or restart xinetd. You can
confirm it is listening by using netstat.

[root@fanny xinetd.d]# netstat -a | grep rsync

tcp 0 0 *:rsync *:* LISTEN

rsync uses TCP port 873 by default.

rsync can be used in a number of different ways. Here are a couple of
examples to get you started. In this example, the file passwd is copied from
fanny to george while preserving the group, owner, permissions, and time
settings for the file.

[root@fanny etc]# rsync -gopt passwd george::systemfiles

Password:

Recall systemfiles is the module name in the configuration file. Note that the
system prompts for the password that is stored in the /etc/rsyncd.secrets file
on george. You can avoid this step (useful in scripts) with the --password-file
option. This is shown in the next example when copying the file shadow.

[root@fanny etc]# rsync -gopt --password-file=rsyncd.secrets shadow /
george::systemfiles

If you have the rsync daemon running on each node in your cluster, you could
easily write a script that would push the current accounting files to each node.
Just be sure you get the security right.

In the preceding examples, rsync was used to push files. It can also be used to
pull files. (fanny has the same configuration files as george.)

[root@george etc]# rsync -gopt fanny::systemfiles/shadow /etc/shadow

Notice that the source file is actually /etc/shadow but the /etc is implicit
because it is specified in the configuration file.

rsync is a versatile tool. It is even possible to clone running systems with
rsync. Other command forms are described in the manpage rsync(1).

8.2 Automating Installations

There are two real benefits from an automated installation it should save you
work, and it will ensure the consistency of your installation, which will
ultimately save you a lot more work. There are several approaches you can
take, but the key to any approach is documentation. You'll first want to work
through one or more manual installations to become clear on the details. You
need to determine how you want your system configured and in what order
the configuration steps must be done. Create an install and a post-install
checklist.

If you are only doing a few machines, you can do the installations manually
from the checklist if you are very careful. But this can be an error-prone
activity, so even small clusters can benefit from automated installs. If you are
building a large cluster, you'll definitely need some tools. There are many. This
chapter focuses on three fairly representative approachesRed Hat's Kickstart,
g4u, and SystemImager.

Each of the tools described in this chapter has it place. Kickstart does a nice
job for repetitive installations. It is the best approach if you have different
hardware. You just create and edit a copy of the configuration file for each
machine type. However, Kickstart may not be the best tool for post-installation
customizations.

With image software like g4u or SystemImager, you can install software and
reconfigure systems to your heart's delight before cloning. If you prepare your
disk before using it, g4u images use less space than SystemImager, and it is
definitely faster. g4u is the simplest tool to learn to use and is largely
operating system independent. SystemInstaller is the more versatile tool, but
comes with a significant learning curve. Used in combination with rsync, it
provides a mechanism to maintain your systems as well as install them. In the
long run, this combination may be your best choice.

8.2.1 Kickstart

Red Hat's Kickstart is a system designed to automate the installation of a large
number of identical Linux systems. Similar programs exist for other releases,
such as DrakX for Mandrake Linux and Fully Automatic Installation (FAI) for
Debian. A Kickstart installation can be done using a local CD-ROM or hard
drive, or over a network using FTP, NFS, or HTTP. We'll look at using a local
CD-ROM and using NFS over a network. NFS is preferable when working with a

large number of machines.

Warning! With any network-based approach, if you have problems, the first thing to check
is your firewall setting for your servers!

Anaconda is the Red Hat installation program. It is written in Python with
some custom modules in C. Anaconda is organized in stages. The first stage is
an installer which loads kernel modules needed later. It is this loader that goes
to the appropriate installation source. Finally, Anaconda has an auto-install
mechanism, Kickstart, that allows installs to be scripted via the Kickstart
configuration file.

8.2.1.1 Configuration file

The first step in using Kickstart is to create a Kickstart configuration file. Once
you have the configuration file, you'll create a boot disk and start the
installation. You have two options in creating a configuration file you can edit
an existing configuration file or you can use Red Hat's Kickstart Configurator
program to create a new file. While the configuration program has a nice GUI
and is easy to use, older versions don't give you the option of reopening an
existing configuration file. So with the older version, you'll need to get
everything right the first time, start over from scratch, or manually edit the
file that it creates after the fact.

Using Kickstart Configurator is straightforward. Since it provides a GUI, you'll
need to be running the X Window System. You can start it from a console
window with the command /usr/sbin/ksconfig or, if you are using gnome, from
Main Menu Button Programs System Kickstart Configurator. Figure 8-1 shows
the initial window.

Figure 8-1. Kickstart Configurator

Simply work your way down the lists on the left setting the fields on the right
as needed. Most of what you'll see will be familiar questions from a normal
installation, although perhaps in slightly more detail. On the second screen,
Installation Method, you'll be asked for the installation methodCD-ROM, FTP,
etc. The last two screens ask for pre-installation and post-installation scripts,
allowing you to add additional tasks to the install. When you are done, save
the file.

Alternatively, you could use an existing configuration file. The Red Hat
installation program creates a Kickstart file for the options you select when
you do an installation. This is saved as /root/anaconda-ks.cfg. (There is also a
template for a configuration file on the Red Hat documentation disk called
sample.ks, but it is a bit sparse.) If you have already done a test installation,
you may have something very close to what you need, although you may want
to tweak it a bit.

Once you have a configuration file, you may need to make a few changes.
Often, manually editing an existing configuration file is the easiest way to get
exactly what you want. Since the configuration is a simple text file, this is a
very straightforward process. The configuration file is divided into four sections
that must be in the order they are described here.

The command section comes first and contains basic system information such
as keyboard and mouse information, the disk partition, etc. Here is part of a
command section with comments explaining each command:

Kickstart file

Do a clean install rather than an upgrade (optional).

install

Install from a CD-ROM; could also be nfs, hard drive, or

a URL for FTP or HTTP (required).

cdrom

language used during installation (required)

lang en_US

languages to install on system (required)

langsupport --default en_US.iso885915 en_US.iso885915

type of keyboard (required)

keyboard us

type of mouse (required)

mouse genericps/2 --device psaux -emulthree

X configuration (optional)

xconfig --card "Matrox Millennium G200" --videoram 8192 --hsync 30.0-60.0

--vsync 47.5-125.0 --resolution 1024x768 --depth 16 --startxonboot

network setup (optional)

network --device eth0 --bootproto dhcp

root password (required)

rootpw --iscrypted 1ÌZ5ÙÏÍÙÑ$Ulh7W6TkpQ3O3eTHtk4wG1

firewall setup (optional)

firewall --medium --dhcp --port ssh:tcp

system authentication (required)

authconfig --enableshadow --enablemd5

timezone (required)

timezone --utc America/New_York

bootloader (required)

bootloader --md5pass=1Åq9erÒbE$HoYKj.adlPZyv4mGtc62W.

remove old partitions from disk (optional)

clearpart --all --drives=had

#partition information (required)

part /boot --fstype ext3 --size=50 --ondisk=hda

part / --fstype ext3 --size=1100 --grow --ondisk=hda

part swap --size=256 --ondisk=hda

Other options and details can be found in the first chapter of The Official Red
Hat Linux Customization Guide on the Red Hat documentation disk.

If you omit any of the required commands, the install will pause and prompt you for that
information, which is not what you want for an automatic installation.

The second part of the configuration file lists the packages that will be
installed. This section begins with the line %packages. Here is a part of a
sample listing for this section:

%packages

@ Printing Support

@ Classic X Window System

@ X Window System

@ GNOME

@ Sound and Multimedia Support

@ Network Support

@ Software Development

@ Workstation Common

...

balsa

gnumeric-devel

esound-devel

ImageMagick-c++-devel

mozilla-chat

...

Often you need to list only a component, not the individual packages. In this
example, the lines starting with @ are all components. The remaining lines are
all individual packages.

The last two sections, the pre-install and post-install configuration sections,
are optional. These are commands that are run immediately before and
immediately after installation. Here is an example that adds a user:

%post

/usr/sbin/useradd sloanjd

chfn -f 'Joe Sloan' sloanjd

/usr/sbin/usermod -p '1ÎgùyUDî$oyWJSirX8I0XElXVGXesG2.' Sloanjd

Note that a pre-install section is not run in a chroot environment, while a post-
install section is.[2] Basically, these sections provide a primitive way of doing
custom configurations. This can be useful for small changes but is awkward for
complex tasks. For more details about the configuration file, see the Red Hat
documentation.

[2] A chroot environment restricts access to the part of the filesystem you are working in, denying
access to the remainder of the filesystem.

8.2.1.2 Using Kickstart

Once you have the Kickstart file, you need to place the file where it will be
available to the system you are configuring. This can be done in several ways
depending on how you will boot the system. For a CD-ROM installation, you
could simply copy the file over to a floppy.

[root@amy root]# mount /mnt/floppy

[root@amy root]# cp ks.cfg /mnt/floppy/ks.cfg

[root@amy root]# umount /mnt/floppy

Reboot your system from an installation CD-ROM. (If your system won't boot
from a CD-ROM, you could create a floppy boot disk and copy the configuration
file onto it.) With this approach, you'll need to tell the system where to find
the configuration file. At the boot prompt, enter the command

boot: linux ks=floppy

While you will be able to complete the installation without typing anything
else, you will still need to swap CD-ROMs. This probably isn't what you had in
mind, but it is a good, quick way to test your Kickstart file.

If you want to do a network installation, you can provide the installation files
via FTP, NFS, or HTTP. You will need to set up the corresponding server, make
the appropriate changes to the Kickstart configuration file and copy it to the
server, and create a network boot disk. (A network or PXE boot is also an
option.) If you want to do an unattended installation, you will also need a
DHCP server to provide both the IP address and the location of the Kickstart
configuration file. Using a boot disk with an NFS server is probably the most
common approach.

To set up a NFS server, you'll need to identify a machine with enough free
space to hold all the installation CD-ROMS, copy over the contents of the CD-
ROMs, and configure the NFS server software. For example, to install Red Hat
9, you might begin by creating the directory /export/9.0 and copying over the
distribution files.

[root@fanny root]# mkdir -p /export/9.0

[root@fanny root]# mount /mnt/cdrom

[root@fanny root]# cp -arv /mnt/cdrom/RedHat /export/9.0

...

[root@fanny root]# eject cdrom

You'll repeat the last three steps for each CD-ROM.

To configure NFS, you'll need to install the NFS package if it is not already
installed, edit /etc/exports so that the target can mount the directory with the
files, e.g., /export/9.0, and start or restart NFS. For example, you might add
something like the following lines to /etc/exports.

/export/9.0 george hector ida james

/kickstart george hector ida james

This allows the four listed machines access to the installation directory and the
directory holding the Kickstart configuration file. You'll start or restart NFS
with either /sbin/service nfs start or /sbin/service nfs restart.

Since you are doing a network install, you'll need to replace the entry CDROM
in ks.cfg with information about the NFS server such as

nfs --server 10.0.32.144 --dir /export/9.0

network --device eth0 --bootproto dhcp

The second line says to use DHCP, which is the default if this information isn't
provided. While not always necessary, it may be safer in some circumstances
to use IP addresses rather than host names.

If you aren't using PXE, you'll need a network boot disk. It is tempting to think
that, since we have specified an NFS install in the Kickstart file, any boot disk
should work. Not so! Put a blank floppy in your floppy drive, mount the first
distribution CD-ROM, change to the images subdirectory, and then use the
following command:

[root@amy images]# dd if=bootnet.img of=/dev/fd0 bs=1440k

...

If you don't need to do an unattended installation, the simplest approach is to
copy the configuration file to the boot floppy and tell the boot loader where to
find the file, just as you did with the CD-ROM installation. If you want to do an
unattended installation, things are a little more complicated.

For an unattended installation, you will need to copy the Kickstart
configuration file onto your NFS server and edit the boot disk configuration
file. While you can place the file in the installation directory of your NFS
server, a more general approach is to create a separate directory for Kickstart
configuration files such as /kickstart. You'll need to export this directory via
NFS as shown earlier. If you only need one configuration file, ks.cfg is the

usual choice. However, if you create multiple Kickstart configuration files, you
can use a convention supported by Kickstart. Name each machine using the
format IP-number-kickstart where IP-number is replaced by the IP address of the
target node such as 10.0.32.146-kickstart. This allows you to maintain a
different configuration file for each machine in your cluster.

To access the file, you need to tell the client where to find the configuration
file. For testing, you can do this manually at the boot loader. For example, you
might enter something like

boot: linux ks=nfs:10.0.32.144:/kickstart/

This tells the loader to use the NFS server 10.0.32.144 and look in the
/kickstart directory. It will look for a file using the name format IP-number-
kickstart. Alternatively, you could give a complete file name.

For an unattended installation, you will need to edit syslinux.cfg on the boot
disk, changing the line

default

to something like

default linux ks=nfs:10.0.32.144:/kickstart/

You might also shorten the timeout. Once done, you just insert the floppy and
power up the node. The remainder of the installation will take place over your
network.

While Kickstart does what it was designed to do quite well, there are some
severe limitations to what it can do. As a package-based installation, there is
no easy way to deal with needs that aren't packaged-based. For example, if
you recompile your kernel, modify configuration files, or install non-package
software, you'll need to do some kind of scripting to deal with these special
cases. That may be OK for one or two changes, but it can become tedious very
quickly. It you need to make a number of customizations, you may be better
served with an image-based tool like g4u or SystemImager.

8.2.2 g4u

Image copying is useful in any context where you have a large number of
identical machines. While we will be using it to clone machines in a high-
performance cluster, it could also be used in setting up a web server farm, a
corporate desktop environment, or a computer laboratory. With image
copying, you begin by building a sample machine, installing all the software
needed, and doing any desired customizations. Then you copy over an image
of the disk to other machines, causing all the added software and
customizations to get copied as well.

g4u is a simple disk image installer. It allows you to copy the image of a
computer's disk to a server and then install that image on other machines in
your cluster. The design philosophy for g4u is very simple. g4u is indifferent to
what is on the disk it just copies bits. It doesn't matter what version of Unix or
what file system you use. It doesn't care if a disk sector is unusedit still gets
copied. The image is compressed while on the server, but otherwise is an exact
copy of the disk. If the image includes configuration files that are specific to
the original machine, e.g., a static IP address or a host-name file, you will
have to correct these after installing the image. (You can avoid most problems
of this sort if you use DHCP to configure your systems.) g4u works best when
used with disks with the same size and geometry but, under limited
circumstances, it may be finessed to work with other disks. Image copying is
the simplest approach to learn and to use and is usable with almost any
operating system.

There are three things you will need to do before using g4u. If you don't
already have an FTP server, you will need to create one to store the images.
You will need to download the g4u software. And, while not strictly required,
you should prepare your source system for cloning. All of these are very
straightforward.

To set up an FTP server, you'll need to install the software, edit the
configuration files, and start the daemon. Several FTP server implementations
are available. Select and install your favorite. The vsftpd (Very Secure FTP)
package is a good choice for this purpose. You'll need to edit the appropriate
configuration files, /etc/vsftpd/vsftpd.conf, /etc/vsftpd.ftpusers, and
/etc/vsftpd.user_list. Then start the service.

[root@fanny etc]# /etc/init.d/vsftpd start

Starting vsftpd for vsftpd: [OK]

(When you are through cloning systems, you may want to disable FTP until
you need it again because it poses a security risk. Just replace start with stop in
the above.) Consult the documentation with your distribution or the
appropriate manpages.

The g4u software consists of a NetBSD boot disk with the image-copying
software. While it is possible to download the sources, it is much simpler if you
just download a disk image with the software. You can download either a
floppy image or a CD-ROM ISO image in either zipped or uncompressed format
from http://www.feyrer.de/g4u/. (The uncompressed ISO image is smaller
than 1.5 MB so downloads go quickly.) Once you have downloaded the image,
unzip it if it is compressed and create your disk. With a floppy, you can use a
command similar to the following, adjusting the version number as needed:

[root@fanny root]# cat g4u-1.16.fs > /dev/fd0

(With Windows, you can use rawrite.exe, which can also be downloaded from
the web site.) For a CD-ROM, use your favorite software.

Since g4u creates a disk image, it copies not only files but unused sectors as
well. If there is a lot of garbage in the unused sectors on the disk, they will
take up space in the compressed image, and creating that image will take
longer. You can minimize this problem by writing zeros out to the unused
sectors before you capture the image. (Long strings of zeros compress quickly
and use very little space.) The g4u documentation recommends creating a file
of zeros that grows until it fills all the free space on the system, and then
deleting that file.

[root@ida root]# dd if=/dev/zero of=/0bits bs=20971520

dd: writing `/0bits': No space left on device

113+0 records in

112+0 records out

[root@ida root]# rm /0bits

rm: remove `/0bits'? y

http://www.feyrer.de/g4u/

Once the file is deleted, the unused sectors will still contain mostly zeros and
should compress nicely. While you don't have to do this, it will significantly
reduce storage needs and transfer time.

To use g4u, you will need to capture the original disk and then copy it to the
new machines. Begin by shutting down the source machine and then booting it
with the g4u disk. As the system boots, you'll see some messages, including a
list of commands, and then a command-line prompt. To capture and upload the
disk, use the uploaddisk command. For example,

uploaddisk sloanjd@fanny.wofford.int ida.g4u

The arguments to uploaddisk are the user's FTP server and the saved images.
You'll see a few more messages and then the system will prompt you for the
user's FTP password. As the disk image is captured and uploaded to the FTP
server, the software will display dots on the screen. When the upload is
complete, the software will display some statistics about the transfer.

To create new systems from the image, the process is almost the same. Boot
the new system from the g4u disk and use the slurpdisk command, like so:

slurpdisk sloanjd@fanny.wofford.int ida.g4u

You'll be prompted for a password again and see similar messages. However,
the download tends to go much faster than the upload. When the user prompt
returns, remove the g4u disk and reboot the system. Log in and make any
needed configuration changes. That's really all there is to it!

8.2.3 SystemImager

SystemImager is a part of the Systems Installation Suite (SIS), a set of tools
for building an image for a cluster node and then copying it to other nodes. In
many ways it is quite similar to g4u. However, there are several major
differences in both the way it works and in the added functionality it provides.
It is also a much more complicated tool how to learn to use. These differences
will be apparent as you read through this section.

As with g4u, with SIS you will set up a single node as a model, install the
operating system and any additional software you want, and configure the
machine exactly the way you want it. Next, copy the image of this machine to
a server, and then from the server to the remaining machines in the cluster.

SystemImager is also useful in maintaining clusters since it provides an easy
way to synchronize files among machines. For example, if you have a security
patch to install on all the machines in the cluster, you could install it on your
model computer and then update the cluster. Since SIS uses rsync, this is very
efficient. Only the files changed by the patch will be copied.

The Systems Installation Suite is made up of three tools, SystemConfigurator,
SystemImager, and SystemInstaller. From a pragmatic perspective,
SystemImager is the place to begin and, depending upon your needs, may be
the only part of the suite you will need to master.

SystemInstaller is generally used to build a pre-installation image on the
image server without having to first create a model system. For example,
OSCAR uses SystemInstaller to do just this. But if you are happy building the
model system, which is strongly recommended since it gives you an
opportunity to test your configuration before you copy it, there is no reason to
be in a hurry to learn the details of SystemInstaller.

SystemConfigurator allows you to do a post-installation configuration of your
system. While it is a useful standalone tool, it is integrated into SystemImager
so that its use is transparent to the user. So while you will need to install
SystemConfigurator, you don't need to learn the details of SystemConfigurator
to get started using SIS. Consequently, this section focuses on SystemImager.

Since SystemImager uses client-server architecture, you will need to set up
two machines initially before you can begin cloning systems. The image server
manages the installation, holds the clone image, and usually provides other
needed services such as DHCP. You will also need to set up the model node or
golden client. Once you have created the golden client, its image is copied to
the server and can then be installed on the remaining machines within the
cluster.

The installation of SystemImager can be divided into four multistep
phasessetting up the image server, setting up the golden client, transferring
the image to the image server, and copying the image to the remaining nodes
in the cluster. Each of these phases is described in turn. If you installed
OSCAR, this setup has already been done for you. However, OSCAR users may
want to skim this material to get a better idea of how OSCAR works and can be
used.

8.2.3.1 Image server setup

In setting up the image server, you will need to select a server, install Linux
and other system software as needed, install the SystemImager software on
the server, and determine both how you will assign IP addresses to clients and
how you will start the download.

You'll want to take care in selecting your server. Typically, the SystemImager
server will also act as the head node for your cluster and will provide
additional network services such as DHCP. While it is possible to distribute
some of this functionality among several machines, this isn't usually done and
won't be discussed here. If you already have a server, this is a likely choice
provided it has enough space.

Unlike g4u, the images SystemImager creates are stored as uncompressed
directory trees on the server. This has a number of advantages. First, it works
nicely with rsync. And as a live filesystem, you can chroot to it and make
changes or even install packages (if you are a brave soul). You'll only copy
useful files, not unused sectors. While this approach has a number of
advantages, even a single image can take up a lot of space. Heterogeneous
clusters will require multiple images. Taken together, this implies you'll want a
speedy machine with lots of disk space for your server.

Because of dependencies, you should install all of SIS even if you plan to use
only SystemImager. You have a couple of choices as to how you do this. There
is a Perl installation script that can be downloaded and run. It will take care of
downloading and installing everything else you need. Of course, you'll need
Internet access from your cluster for this to work. Alternatively, you can
download DEB or RPM packages and install. Downloading these packages and
burning them onto a CD-ROM is one approach to setting up an isolated cluster.
This chapter describes the installation process using RPM packages.

Since SIS supports a wide variety of different Linux releases, you'll need to
select the correct packages for your distribution, and you'll need a number of
packages to install SystemImager. These can be downloaded from
SourceForge. Go to http://sisuite.sourceforge.net and follow the links to
SystemConfigurator, SystemImager, and SystemInstaller, as needed, to
download the individual packages. If in doubt, you can read the release notes
for details on many of the packages.

There may be additional dependencies that you'll also need to address. For a
simple Red Hat install, you'll need to install the following packages, if they are
not already on your system, in this order: rsync, perl-AppConfig, perl-XML-

http://sisuite.sourceforge.net

Simple, systemconfigurator, systemimager-common, systemimager-server,
perl-MLDBM, and systeminstaller. You'll also need a boot package specific to
your architecture. For example, you would use systemimager-boot-i386-
standard for the Intel 386 family. rsync is usually already installed. Install
these as you would install any RPM.

[root@fanny sysimager]# rpm -vih perl-AppConfig-1.52-4.noarch.rpm

Preparing... ### [100%]

 1:perl-AppConfig ### [100%]

Repeat the process with each package. There is also an X interface to
SystemInstaller called tksis. If you want to install this, you will need to install
perl-DBI, perl-TK, and systeminstall-x11. (If you have problems with circular
dependencies, you might put the package names all on the same line and use
rpm -Uvh to install them.)

The SIS installation will create a directory /etc/systemimager containing the
configuration files used by SystemImager. By default, SystemImager is not
started. You can use the command service systemimager start to manually
start it. SystemImager starts the rsync daemon using the configuration file in
/etc/systemimager, so if rsync is already running on your system, you'll need
to turn it off first. As with any manual start, if you restart the system, you'll
need to restart SystemImager. (With a recent release, the names of several
services have changed. To ensure you are using the appropriate names, look
in /etc/init.d to see what is installed.)

There are a couple of other things you might want to set up on your server if
you don't already have them. With SIS, there are four installation methods.
You can boot the machine you are installing the image on from a floppy, from
CD-ROM, from its hard drive, or over the network using a PXE-based network
adapter. (The hard drive option is used for upgrading systems rather than for
new installs.)

If you are going to do a network boot, you will need a TFTP server. SIS
includes a command, mkbootserver, which will handle the configuration for
you, but you must first install some packagestftp-server, tftp, and pxe. Once
these packages are installed, the script mkbootserver will take care of
everything else. As needed, it will create the /tftpboot directory, modify
/etc/services, modify /etc/inetd.conf or /etc/xinetd.d/tftp, verify that the TFTP
server works, configure PXE creating /etc/pxe.conf, verify the pxe daemon is

running, verify the network interface is up, and pass control to the
mkdhcpserver command to configure a DHCP server. Once mkbootserver has
been run, your server should be appropriately configured for booting clients
and installing images via PXE. Of course, you'll need a PXE-enabled network
adapter in your client.

Even if you aren't booting via PXE, you will probably still want to use DHCP to
assign IP addresses. This isn't absolutely necessary since you can create a
configuration diskette for each machine with the appropriate information, but
it is probably the easiest way to go. Using DHCP implies you'll need a DHCP
server, i.e., both server software and a configuration file. Setting up the
software is usually just a matter of installing the dhcp package.

[root@fanny root]# rpm -vih dhcp-3.0pl1-23.i386.rpm

warning: dhcp-3.0pl1-23.i386.rpm: V3 DSA signature: NOKEY, key ID db42a60e

Preparing... ### [100%]

 1:dhcp ### [100%]

To create a configuration file, typically /etc/dhcpd.conf, use the mkdhcpserver
script. You'll need to collect information about your network such as the IP
address range, broadcast address, network mask, DNS servers, and the
network gateway before you run this script. Here is an example of using
mkdhcpserver for a simple network.

[root@fanny root]# mkdhcpserver

Welcome to the SystemImager "mkdhcpserver" command. This command will

prepare this computer to be a DHCP server by creating a dhcpd.conf file

for use with your ISC DHCP server (v2 or v3).

If there is an existing file, it will be backed up with the

.beforesystemimager extension.

Continue? (y/[n]): y

Type your response or hit <Enter> to accept [defaults]. If you don't

have a response, such as no first or second DNS server, just hit

<Enter> and none will be used.

What is your DHCP daemon major version number (2 or 3)? [2]: 2

Use of uninitialized value in concatenation (.) or string at /usr/sbin/

mkdhcpserver line 202, <STDIN> line 2.

What is the name of your DHCP daemon config file? []: /etc/dhcpd.conf

What is your domain name? [localdomain.domain]: wofford.int

What is your network number? [192.168.1.0]: 10.0.32.0

What is your netmask? [255.255.255.0]: 255.255.248.0

What is the starting IP address for your dhcp range? [192.168.1.1]: 10.0.32.145

What is the ending IP address for your dhcp range? [192.168.1.100]: 10.0.32.146

What is the IP address of your first DNS server? []: 10.0.80.3

What is the IP address of your second DNS server? []: 10.0.80.2

What is the IP address of your third DNS server? []:

What is the IP address of your default gateway? [192.168.1.254]: 10.0.32.2

What is the IP address of your image server? [192.168.1.254]: 10.0.32.144

What is the IP address of your boot server? []: 10.0.32.144

What is the IP address of your log server? []:

Will your clients be installed over SSH? (y/[n]): y

What is the base URL to use for ssh installs? [http://10.0.32.144/

systemimager/boot/]:

What... is the air-speed velocity of an unladen swallow? []:

Wrong!!! (with a Monty Python(TM) accent...)

Press <Enter> to continue...

Ahh, but seriously folks...

Here are the values you have chosen:

###

ISC DHCP daemon version: 2

DHCP daemon using fixed-address patch: n

ISC DHCP daemon config file: /etc/dhcpd.conf

DNS domain name: wofford.int

Network number: 10.0.32.0

Netmask: 255.255.248.0

Starting IP address for your DHCP range: 10.0.32.145

Ending IP address for your DHCP range: 10.0.32.146

First DNS server: 10.0.80.3

Second DNS server: 10.0.80.2

Third DNS server:

Default gateway: 10.0.32.2

Image server: 10.0.32.144

Boot server: 10.0.32.144

Log server:

Log server port:

SSH files download URL: http://10.0.32.144/systemimager/boot/

###

Are you satisfied? (y/[n]): y

The dhcp server configuration file (/etc/dhcpd.conf) file has been

created for you. Please verify it for accuracy.

If this file does not look satisfactory, you can run this command again

to re-create it: "mkdhcpserver"

WARNING!: If you have multiple physical network interfaces, be sure to

edit the init script that starts dhcpd to specify the interface that

is connected to your DHCP clients. Here's an example:

 Change "/usr/sbin/dhcpd" to "/usr/sbin/dhcpd eth1".

Depending on your distribution, you may be able to set this with the

"INTERFACES" variable in either "/etc/default/dhcp" or in your dhcpd

initialization script (usually "/etc/init.d/dhcpd").

Also, be sure to start or restart your dhcpd daemon. This can usually

be done with a command like "/etc/init.d/dhcpd restart" or similar.

Would you like me to restart your DHCP server software now? (y/[n]): y

Shutting down dhcpd: [FAILED]

Starting dhcpd: [OK]

As you can see, the script is very friendly. There is also important information
buried in the output, such as the warning about restarting the DHCP daemon.
Be sure you read it carefully. If you already have a DHCP configuration file, it
is backed up, usually as /etc/dhcpd.conf.beforesystemimager. You may need to

merge information from your old file into the newly created file.

As previously noted, you don't have to use DHCP. You can create a
configuration disk with a file local.cfg for each machine with the information
provided by DHCP. Here is an example.

HOSTNAME=hector

DOMAINNAME=wofford.int

DEVICE=eth0

IPADDR=10.0.32.146

NETMASK=255.255.248.0

NETWORK=10.0.32.0

BROADCAST=10.0.39.255

GATEWAY=10.0.32.2

IMAGESERVER=10.0.32.144

IMAGENAME=ida.image

Regardless of how you are booting for your install, the software will look for a
floppy with this file and use the information if provided. In this example, the
client names that have been automatically generated are not being used, so it
is necessary to rename the installation scripts on the image server. We'll come
back to this.

8.2.3.2 Golden client setup

The golden client is a model for the other machines in your cluster. Setting up
the golden client requires installing and configuring Linux, the SystemImager
software, and any other software you want on each client. You will also need
to run the prepareclient script to collect image information and start the rsync
daemon for the image transfer.

Because you are using an image install, your image should contain everything
you want on the cluster nodes, and should be compatible with the node's
hardware. In setting up the client, think about how it will be used and what
you will need. Doing as much of this as possible will save you work in the long
run. For example, if you generate SSH keys prior to cloning systems, you
won't have to worry about key distribution. However, getting the software
right from the start isn't crucial. SystemImager includes a script to update
clients, and since it uses rsync, updates go fairly quickly. Nonetheless, this is
something of a nuisance, so you'll want to minimize updates as much as
possible. If possible, set up your client and test it in the environment in which
it will be used.

Getting the hardware right is more important. The hardware doesn't have to
be identical on every node, but it needs to be close. For network and video
adapters, you'll want the same chipset. Although disk sizes don't have to be
identical, it is better to select for your golden client a machine with the
smallest disk size in your cluster. And you can't mix IDE and SCSI systems.
Having said all this, remember that you can have multiple images. So if you
have a cluster with three different sets of hardware, you can create three
images and do three sets of installs.[3]

[3] To some extent, you can install an image configured for different hardware and use kudzu to
make corrections once the system reboots. For example, I've done this with network adapters.
When the system boots for the first time, I delete the image's adapter and configure the actual
adapter in the machine. (Actually, SystemConfigurator should be able to manage NIC detection and
setup.)

Once you have built your client, you'll need to install the SystemImager client
software. This is done in much the same manner as with the server but there
is less to install. For a typical Red Hat install, you'll need perl-AppConfig,
systemconfigurator, systemimager-common, and systemimager-client packages
at a minimum.

Once all the software has been installed and configured, there is one final step
in preparing the client. This involves collecting information about the client
needed to build the image by running the prepareclient script. The script is
very friendly and describes in some detail what it is doing.

[root@ida sis]# prepareclient

Welcome to the SystemImager prepareclient command. This command may modify the

following files to prepare your golden client for having its image retrieved by

the imageserver. It will also create the /etc/systemimager directory and fill

it with information about your golden client. All modified files will be

backed up with the .before_systemimager-3.0.1 extension.

 /etc/services:

 This file defines the port numbers used by certain software on your system.

 I will add appropriate entries for rsync if necessary.

 /etc/inetd.conf:

 This is the configuration file for the inet daemon, which starts up certain

 server software when the associated client software connects to your

 machine. SystemImager needs to run rsync as a standalone daemon on your

 golden client until it's image is retrieved by your image server. I will

 comment out the rsync entry in this file if it exists. The rsync daemon will

 not be restarted when this machine is rebooted.

 /tmp/rsyncd.conf.13129:

 This is a temporary configuration file that rsync needs on your golden client

 in order to make your filesystem available to your image server.

See "prepareclient -help" for command line options.

Continue? (y/[n]): y

*********************************** WARNING ***********************************

This utility starts an rsync daemon that makes all of your files accessible

by anyone who can connect to the rsync port of this machine. This is the

case until you reboot, or kill the 'rsync --daemon' process by hand. By

default, once you use getimage to retrieve this image on your image server,

these contents will become accessible to anyone who can connect to the rsync

port on your imageserver. See rsyncd.conf(5) for details on restricting

access to these files on the imageserver. See the systemimager-ssh package

for a more secure method of making images available to clients.

*********************************** WARNING ***********************************

Continue? (y/[n]): y

Signaling xinetd to restart...

Using "sfdisk" to gather information about /dev/hda... done!

Starting or re-starting rsync as a daemon.....done!

This client is ready to have its image retrieved. You must now run

the "getimage" command on your imageserver.

As you can see from the output, the script runs the rsync server daemon on
the client. For this reason, you should wait to run this script until just before

you are ready to transfer the image to the image server. Also, be sure to
disable this rsync server after copying the client image to the image server.

8.2.3.3 Retrieving the image

This is perhaps the simplest phase of the process. To get started, run the
getimage script. You'll need to specify the name or address of the client and a
name for the image. It should look something like this:

[root@fanny scripts]# getimage -golden-client ida -image ida.image

This program will get the "ida.image" system image from "ida"

making the assumption that all filesystems considered part

of the system image are using ext2, ext3, jfs, FAT, reiserfs, or xfs.

This program will not get /proc, NFS, or other filesystems

not mentioned above.

*********************************** WARNING ***********************************

All files retrieved from a golden client are, by default, made accessible to

anyone who can connect to the rsync port of this machine. See rsyncd.conf(5)

for details on restricting access to these files on the imageserver. See the

systemimager-ssh package for a more secure (but less effecient) method of

making images available to clients.

*********************************** WARNING ***********************************

See "getimage -help" for command line options.

Continue? ([y]/n): y

Retrieving /etc/systemimager/mounted_filesystems from ida to check for mounted

filesystems...

------------- ida mounted_filesystems RETRIEVAL PROGRESS -------------

receiving file list ... done

/var/lib/systemimager/images/ida.image/etc/systemimager/mounted_filesystems

wrote 138 bytes read 114 bytes 504.00 bytes/sec

total size is 332 speedup is 1.32

------------- ida mounted_filesystems RETRIEVAL FINISHED -------------

Retrieving image ida.image from ida

------------- ida.image IMAGE RETRIEVAL PROGRESS -------------

...

At this point you'll see the names of each of the files whiz by. After the last file
has been transferred, the script will print a summary.

...

wrote 92685 bytes read 2230781 bytes 10489.69 bytes/sec

total size is 1382212004 speedup is 594.89

------------- ida.image IMAGE RETRIEVAL FINISHED -------------

Press <Enter> to continue...

IP Address Assignment

There are four ways to assign IP addresses to the client systems on an

ongoing basis:

1) DHCP

 --

 A DHCP server will assign IP addresses to clients installed with

 this image. They may be assigned a different address each time.

 If you want to use DHCP, but must ensure that your clients

 receive the same IP address each time, see "man mkdhcpstatic".

2) STATIC

 --

 The IP address the client uses during autoinstall will be

 permanently assigned to that client.

3) REPLICANT

 --

 Don't mess with the network settings in this image. I'm using

 it as a backup and quick restore mechanism for a single machine.

Which method do you prefer? [1]:

You have chosen method 1 for assigning IP addresses.

Are you satisfied? ([y]/n): y

Would you like to run the "addclients" utility now? (y/[n]): n

Unless you have edited /etc/systemimager/systemimager.conf, the image will
be stored in the directory /var/lib/systemimager/images as the subdirectory
ida.image.

The getimage command runs mkautoinstallscript, which creates the auto-install
script /var/lib/systemimager/scripts/ida.image.master in this case, and gives
you the option to move onto the next step. But before you do, you may want
to kill the rsync daemon on the golden client.

[root@ida sysconfig]# ps -aux | grep rsync | grep -v grep

root 13142 0.0 0.4 1664 576 ? S 15:46 0:00 rsync

--daemon --

[root@ida sysconfig]# kill 13142

8.2.3.4 Cloning the systems

The final steps of distributing the image to the clients require creating the
installation scripts for the clients, preparing any needed boot media, and then
booting the clients to initiate the process.[4]

[4] The latest release of SIS includes a program flamethrower. This is use to multicast images
speeding the file distribution process on multicast enabled networks. flamethrower is not discussed
in this chapter.

As noted above, you should now have an initial auto-install script. The next
script you'll run is addclients, which does three thingsit automatically
generates host names for each node, it creates symbolic links to the auto-
install script, one for each client, and it populates the /etc/hosts table.

[root@fanny root]# addclients

Welcome to the SystemImager "addclients" utility

...

A copy of the host table and the install scripts for the individual machines are
located in the directory /var/lib/systemimager/scripts. If you don't want to use
the automatically generated names, you'll need to edit /etc/hosts and
/var/lib/systemimager/scripts/hosts, replacing the automatically generated
names with the names you want. You'll also need to rename the individual
install scripts in /var/lib/systemimager/scripts to match your naming scheme.
Of course, if you are happy with the generated names, you can skip all this.

If you are using a network or PXE boot, you can restart the clients now. If you
are booting from a floppy or CD-ROM, you'll first need to make a boot disk.
You can use the scripts mkautoinstalldiskette or mkautoinstallcd to make,
respectively, a boot diskette or boot CD-ROM. Here is an example of making a
CD-ROM.

[root@fanny root]# mkautoinstallcd -out autoinstall.iso

Here is a list of available flavors:

 standard

Which flavor would you like to use? [standard]:

...

Note that the default or standard flavor was used. This was created when the
package systemimager-boot-i386-standard was installed. With the CD-ROM
script, an ISO image is generated that can be used to burn a CD-ROM.
Fortunately, this is a relatively small file, so it can easily be moved to another
system with a CD-ROM burner. If you elect to use the diskette script instead, it
will mount, format, and record the diskette for you. If you don't want to use
DHCP, put the file local.cfg on a separate diskette even if you are using a CD-
ROM to boot. When booting from a diskette, you'll need to put local.cfg on that
diskette. Be warned, you may run out of space if you use a diskette. If you
aren't using a local configuration file, you need only one boot disk. You need a
diskette for each machine, however, if you are using the local configuration
file. If you upgrade SystemImager, remember to regenerate your boot disks as
they are release dependent.

Now that you have the boot disk, all you need to do is reboot the client from
it. The client will locate the image server and then download and run the
installation script. You can sit back and watch the magic for a while. After a
short time, your systems should begin to beep at you. At this point, you can
remove any diskettes or CD-ROMs and reboot the systems. Your node is
installed.

There is one last script you may want to run if you are using DHCP. The script
mkdhcpstatic can update your DHCP configuration file, associating IP addresses
with MAC addresses. That is, if you run this script, each IP address will be tied
to a specific machine based on the MAC address of the machine to which it was
first assigned. Since IP addresses are handed out in numerical order, by
booting the individual machines in a specific order and then running
mkdhcpstatic, you can control IP assignments.

8.2.3.5 Other tasks

As if building your network isn't enough, SystemImager can also be used to
maintain and update your clients. The script updateclient is used to
resynchronize a client with an image. Its calling syntax is similar to getimage.

[root@hector root]# updateclient -server fanny -image ida.image

Updating image from module ida.image...

receiving file list ... done

...

You'll see a lot of file names whiz by at this point.

...

wrote 271952 bytes read 72860453 bytes 190201.31 bytes/sec

total size is 1362174476 speedup is 18.63

Running bootloader...

Probing devices to guess BIOS drives. This may take a long time.

Installation finished. No error reported.

This is the contents of the device map /boot/grub/device.map.

Check if this is correct or not. If any of the lines is incorrect,

fix it and re-run the script `grub-install'.

(fd0) /dev/fd0

(hd0) /dev/hda

Probing devices to guess BIOS drives. This may take a long time.

Probing devices to guess BIOS drives. This may take a long time.

It should be noted that the script is fairly intelligent. It will not attempt to
update some classes of files, such as log files, etc.

SystemInstaller also provides several commands for manipulating images. The
commands cpimage, mvimage, lsimage, and rmimage are, as you might guess,
analogous to cp, mv, ls, and rm.

8.3 Notes for OSCAR and Rocks Users

Since OSCAR installs and uses SIS, much of this material probably seemed
vaguely familiar to you. OSCAR uses SystemInstaller to build the image
directly on the server rather than capture the image from a golden client.
However, once you have installed OSCAR, you can use the SIS scripts as you
see fit.

The configuration file for rsync is in /etc/systemimager/rsync. OSCAR stores
the SystemImager files in /var/lib/systemimager. For example, the image files
it creates are in /var/lib/systemimager/images.

Rocks uses Kickstart. It uses XML files to record configuration information,
dynamically generating the Kickstart configuration file. Changing these XML
files is described in Chapter 7. You can interactively re-Kickstart a compute
node with the shoot-node command. See the manpage shoot-node(8) for more
details.

Chapter 9. Programming Software
After the operating system and other basic system software, you'll want to
install the core software as determined by the cluster's mission. If you are
planning to develop applications, you'll need software development tools,
including libraries that support parallel processing. If you plan to run a set of
existing cluster-ready applications, you'll need to select and install those
applications as part of the image you will clone.

This chapter presupposes you'll want to develop cluster software and will need
the tools to do so. For many clusters this may not be the case. For example, if
you are setting up a cluster to process bioinformatics data, your needs may be
met with the installation of applications such as BLAST, ClustalW, FASTA, etc.
If this is the path you are taking, then identifying, installing, and learning to
use these applications are the next steps you need to take.[1] For now, you
can safely skip this chapter. But don't forget that it is here. Even if you are
using canned applications, at some point you may want to go beyond what is
available and you'll need the tools in this chapter.

[1] Steven Baum's site, http://stommel.tamu.edu/~baum/npaci.html, while ostensibly about Rocks,
contains a very long list of cluster applications for those who want to write their own applications.

This chapter describes the installation and basic use of the software
development tools used to develop and run cluster applications. It also briefly
mentions some tools that you are likely to need that should already be part of
your system. For clusters where you develop the application software, the
software described in this chapter is essential. In contrast, you may be able to
get by without management and scheduling software. You won't get far
without the software described here.

If you've installed OSCAR or Rocks, you will have pretty much everything you
need. Nonetheless, you'll still want to skim this chapter to learn more about
how to use that software. For cluster application developers, this is the first
software you need to learn how to use.

http://stommel.tamu.edu/%7Ebaum/npaci.html

9.1 Programming Languages

While there are hundreds of programming languages available, when it comes
to writing code for high-performance clusters, there are only a couple of
realistic choices. For pragmatic reasons, your choices are basically FORTRAN or
C/C++.

Like it or not, FORTRAN has always been the lingua franca of high-
performance computing. Because of the installed base of software, this isn't
likely to change soon. This doesn't mean that you need to use FORTRAN for
new projects, but if you have an existing project using FORTRAN, then you'll
need to support it. This comes down to knowing how your cluster will be used
and knowing your users' needs.

FORTRAN has changed considerably over the years, so the term can mean
different things to different people. While there are more recent versions of
FORTRAN, your choice will likely be between FORTRAN 77 and FORTRAN 90.
For a variety of reasons, FORTRAN 77 is likely to get the nod over FORTRAN
90 despite the greater functionality of FORTRAN 90. First, the GNU
implementation of FORTRAN 77 is likely to already be on your machine. If it
isn't, it is freely available and easily obtainable. If you really want FORTRAN
90, don't forget to budget for it. But you should also realize that you may face
compatibility issues. When selecting parallel programming libraries to use with
your compiler, your choices will be more limited with FORTRAN 90.

C and C++ are the obvious alternatives to FORTRAN. For new applications that
don't depend on compatibility with legacy FORTRAN applications, C is probably
the best choice. In general, you have greater compatibility with libraries. And
at this point in time, you are likely to find more programmers trained in C
than FORTRAN. So when you need help, you are more likely to find a helpful C
than FORTRAN programmer. For this and other reasons, the examples in this
book will stick to C.

With most other languages you are out of luck. With very few exceptions, the
parallel programming libraries simply don't have binding for other languages.
This is changing. While bindings for Python and Java are being developed, it is
probably best to think of these as works in progress. If you want to play it
safe, you'll stick to C or FORTRAN.

9.2 Selecting a Library

Those of you who do your own dentistry will probably want to program your
parallel applications from scratch. It is certainly possible to develop your code
with little more than a good compiler. You could manually set up
communication channels among processes using standard systems calls.[2]

[2] In fairness, there may be some very rare occasions where efficiency concerns might dictate this
approach.

The rest of you will probably prefer to use libraries designed to simplify
parallel programming. This really comes down to two choicesthe Parallel Virtual
Machine (PVM) library or the Message Passing Interface (MPI) library. Work
was begun on PVM in 1989 and continued into the early '90s as a joint effort
among Oak Ridge National Laboratory, the University of Tennessee, Emory
University, and Carnegie-Mellon University. An implementation of PVM is
available from http://www.netlib.org/pvm3/. This PVM implementation
provides both libraries and tools based on a message-passing model.

Without getting into a philosophical discussion, MPI is a newer standard that
seems to be generally preferred over PVM by many users. For this reason, this
book will focus on MPI. However, both PVM and MPI are solid, robust
approaches that will potentially meet most users' needs. You won't go too far
wrong with either. OSCAR, you will recall, installs both PVM and MPI.

MPI is an API for parallel programming based on a message-passing model for
parallel computing. MPI processes execute in parallel. Each process has a
separate address space. Sending processes specify data to be sent and a
destination process. The receiving process specifies an area in memory for the
message, the identity of the source, etc.

Primarily, MPI can be thought of as a standard that specifies a library. Users
can write code in C, C++, or FORTRAN using a standard compiler and then link
to the MPI library. The library implements a predefined set of function calls to
send and receive messages among collaborating processes on the different
machines in the cluster. You write your code using these functions and link the
completed code to the library.

The MPI specification was developed by the MPI Forum, a collaborative effort
with support from both academia and industry. It is suitable for both small
clusters and "big-iron" implementations. It was designed with functionality,
portability, and efficiency in mind. By providing a well-designed set of function
calls, the library provides a wide range of functionality that can be

http://www.netlib.org/pvm3/

implemented in an efficient manner. As a clearly defined standard, the library
can be implemented on a variety of architectures, allowing code to move easily
among machines.

MPI has gone through a couple of revisions since it was introduced in the early
'90s. Currently, people talk of MPI-1 (typically meaning Version 1.2) and MPI-
2. MPI-1 should provide for most of your basic needs, while MPI-2 provides
enhancements.

While there are several different implementations of MPI, there are two that
are widely usedLAM/MPI and MPICH. Both LAM/MPI and MPICH go beyond
simply providing a library. Both include programming and runtime
environments providing mechanisms to run programs across the cluster. Both
are widely used, robust, well supported, and freely available. Excellent
documentation is provided with both. Both provide all of MPI-1 and
considerable portions of MPI-2, including ROMIO, Argonne National
Laboratory's freely available high-performance IO system. (For more
information on ROMIO, visit http://www.mcs.anl.gov/romio.) At this time,
neither is totally thread-safe. While there are differences, if you are just
getting started, you should do well with either product. And since both are
easy to install, with very little extra work you can install both.

http://www.mcs.anl.gov/romio

9.3 LAM/MPI

The Local Area Multicomputer/Message Passing Interface (LAM/MPI) was
originally developed by the Ohio Supercomputing Center. It is now maintained
by the Open Systems Laboratory at Indiana University. As previously noted,
LAM/MPI (or LAM for short) is both an MPI library and an execution
environment. Although beyond the scope of this book, LAM was designed to
include an extensible component framework known as System Service
Interface (SSI), one of its major strengths. It works well in a wide variety of
environments and supports several methods of inter-process communications
using TCP/IP. LAM will run on most Unix machines (but not Windows). New
releases are tested with both Red Hat and Mandrake Linux.

Documentation can be downloaded from the LAM site, http://www.lam-
mpi.org/. There are also tutorials, a FAQ, and archived mailing lists. This
chapter provides an overview of the installation process and a description of
how to use LAM. For more up-to-date and detailed information, you should
consult the LAM/MPI Installation Guide and the LAM/MPI User's Guide.

9.3.1 Installing LAM/MPI

You have two basic choices when installing LAM. You can download and install
a Red Hat package, or you can download the source and recompile it. The
package approach is very quick, easy to automate, and uses somewhat less
space. If you have a small cluster and are manually installing the software, it
will be a lot easier to use packages. Installing from the source will allow you to
customize the installation, i.e., select which features are enabled and
determine where the software is installed. It is probably a bad idea to mix
installations since you could easily end up with different versions of the
software, something you'll definitely want to avoid.

Installing from a package is done just as you'd expect. Download the package
from http://www.lam-mpi.org/ and install it just as you would any Red Hat
package.

[root@fanny root]# rpm -vih lam-7.0.6-1.i586.rpm

Preparing... ### [100%]

 1:lam ### [100%]

http://www.lam-mpi.org/
http://www.lam-mpi.org/

The files will be installed under the /usr directory. The space used is minimal.
You can use the laminfo command to see the details of the installation,
including compiler bindings and which modules are installed, etc.

If you need more control over the installation, you'll want to do a manual
install: fetch the source, compile, install, and configure. The manual
installation is only slightly more involved. However, it does take considerably
longer, something to keep in mind if you'll be repeating the installation on
each machine in your cluster. But if you are building an image, this is a one-
time task. The installation requires a POSIX- compliant operating system, an
appropriate compiler (e.g., GNU 2.95 compiler suite) and utilities such as sed,
grep, and awk, and a modern make. You should have no problem with most
versions of Linux.

First, you'll need to decide where to put everything, a crucial step if you are
installing more than one version of MPI. If care isn't taken, you may find that
part of an installation has been overwritten. In this example, the source files
are saved in /usr/local/src/lam-7.0.6 and the installed code in /usr/local/lam-
7.0.6. First, download the appropriate file from http://www.lam-mpi.org/ to
/usr/local/src. Next, uncompress and unpack the file.

[root@fanny src]# bunzip2 lam-7.0.6.tar.bz2

[root@fanny src]# tar -xvf lam-7.0.6.tar

...

[root@fanny src]# cd lam-7.0.6

You'll see a lot of files stream by as the source is unpacked. If you want to
capture this output, you can tee it to a log file. Just append | tee tar.log to the
end of the line and the output will be copied to the file tar.log. You can do
something similar with subsequent commands.

Next, create the directory where the executables will be installed and
configure the code specifying that directory with the --prefix option. You may
also include any other options you desire. The example uses a configuration
option to specify SSH as well. (You could also set this through an
environmental variable LAMRSH, rather than compiling it into the

http://www.lam-mpi.org/

code something you must do if you use a package installation.)

[root@fanny lam-7.0.6]# mkdir /usr/local/lam-7.0.6

[root@fanny lam-7.0.6]# ./configure --prefix=/usr/local/lam-7.0.6 \

> --with-rsh="ssh -x"

If you don't have a FORTRAN compiler, you'll need to add --without-fc to the
configure command. A description of other configuration options can be found
in the documentation. However, the defaults are quite reasonable and will be
adequate for most users. Also, if you aren't using the GNU compilers, you need
to set and export compiler variables. The documentation advises that you use
the same compiler to build LAM/MPI that you'll use when using LAM/MPI.

Next, you'll need to make and install the code.

[root@fanny lam-7.0.6]# make

...

[root@fanny lam-7.0.6]# make install

...

You'll see a lot of output with these commands, but all should go well. You may
also want to make the examples and clean up afterwards.

[root@fanny lam-7.0.6]# make examples

...

[root@fanny lam-7.0.6]# make clean

...

Again, expect a lot of output. You only need to make the examples on the

cluster head. Congratulations, you've just installed LAM/MPI. You can verify
the settings and options with the laminfo command.

9.3.2 User Configuration

Before you can use LAM, you'll need to do a few more things. First, you'll need
to create a host file or schema, which is basically a file that contains a list of
the machines in your cluster that will participate in the computation. In its
simplest form, it is just a text file with one machine name per line. If you have
multiple CPUs on a host, you can repeat the host name or you can append a
CPU count to a line in the form cpu=n, where n is the number of CPUs.
However, you should realize that the actual process scheduling on the node is
left to the operating system. If you need to change identities when logging into
a machine, it is possible to specify that username for a machine in the schema
file, e.g., user=smith. You can create as many different schemas as you want
and can put them anywhere on the system. If you have multiple users, you'll
probably want to put the schema in a public directory, for example,
/etc/lamhosts.

You'll also want to set your $PATH variable to include the LAM executables,
which can be trickier than it might seem. If you are installing both LAM/MPI
and MPICH, there are several programs (e.g., mpirun, mpicc, etc.) that have
the same name with both systems, and you need to be able to distinguish
between them. While you could rename these programs for one of the
packages, that is not a good idea. It will confuse your users and be a nuisance
when you upgrade software. Since it is unlikely that an individual user will
want to use both packages, the typical approach is to set the path to include
one but not the other. Of course, as the system administrator, you'll want to
test both, so you'll need to be able to switch back and forth. OSCAR's solution
to this problem is a package called switcher that allows a user to easily change
between two configurations. switcher is described in Chapter 6.

A second issue is making sure the path is set properly for both interactive and
noninteractive or non-login shells. (The path you want to add is /usr/local/lam-
7.0.6/bin if you are using the same directory layout used here.) The processes
that run on the compute nodes are run in noninteractive shells. This can be
particularly confusing for bash users. With bash, if the path is set in
.bash_profile and not in .bashrc, you'll be able to log onto each individual
system and run the appropriate programs, but you won't be able to run the
programs remotely. Until you realize what is going on, this can be a frustrating
problem to debug. So, if you use bash, don't forget to set your path in .bashrc.
(And while you are setting paths, don't forget to add the manpages when

setting up your paths, e.g., /usr/local/lam-7.0.6/man.)

It should be downhill from here. Make sure you have ssh-agent running and
that you can log onto other machines without a password. Setting up and
using SSH is described in Chapter 4. You'll also need to ensure that there is no
output to stderr whenever you log in using SSH. (When LAM sees output to
stderr, it thinks something bad is happening and aborts.) Since you'll get a
warning message the first time you log into a system with SSH as it adds the
remote machine to the known hosts, often the easiest thing to do (provided
you don't have too many machines in the cluster) is to manually log into each
machine once to get past this problem. You'll only need to do this once. recon,
described in the subsection on testing, can alert you to some of these
problems.

Also, the directory /tmp must be writable. Don't forget to turn off or
reconfigure your firewall as needed.

9.3.3 Using LAM/MPI

The basic steps in creating and executing a program with LAM are as follows:

1. Booting the runtime system with lamboot.

2. Writing and compiling a program with the appropriate compiler, e.g.,
mpicc.[3]

[3] Actually, you don't need to boot the system to compile code.

3. Execute the code with the mpirun command.

4. Clean up any crashed processes with lamclean if things didn't go well.

5. Shut down the runtime system with the command lamhalt.

Each of these steps will now be described.

In order to use LAM, you will need to launch the runtime environment. This is
referred to as booting LAM and is done with the lamboot command. Basically,
lamboot starts the lamd daemon, the message server, on each machine.

Since there are considerable security issues in running lamboot as root, it is configured so
that it will not run if you try to start it as root.

You specify the schema you want to use as an argument.

[sloanjd@fanny sloanjd]$ lamboot -v /etc/lamhosts

LAM 7.0.6/MPI 2 C++/ROMIO - Indiana University

n-1<9677> ssi:boot:base:linear: booting n0 (fanny.wofford.int)

n-1<9677> ssi:boot:base:linear: booting n1 (george.wofford.int)

...

n0<15402> ssi:boot:base:linear: finished

As noted above, you must be able to log onto the remote systems without a
password and without any error messages. (If this command doesn't work the
first time, you might give this a couple of tries to clear out any one time error
messages.) If you don't want to see the list of nodes, leave out the -v. You can
always use the lamnodes command to list the nodes later if you wish.

[sloanjd@fanny sloanjd]$ lamnodes

n0 10.0.32.144:1:origin,this_node

n1 10.0.32.145:1:

...

You'll only need to boot the system once at the beginning of the session. It will
remain loaded until you halt it or log out. (Also, you can omit the schema and
just use the local machine. Your code will run only on the local node, but this
can be useful for initial testing.)

Once you have entered your program using your favorite editor, the next step
is to compile and link the program. You could do this directly by typing in all
the compile options you'll need. But it is much simpler to use one of the
wrapper programs supplied with LAM. The programs mpicc, mpiCC, and mpif77
will respectively invoke the C, C++, and FORTRAN 77 compilers on your
system, supplying the appropriate command-line arguments for LAM. For
example, you might enter something like the following:

[sloanjd@fanny sloanjd]$ mpicc -o hello hello.c

(hello.c is one of the examples that comes with LAM and can be found in
/usr/local/src/lam-7.0.6/examples/hello if you use the same directory structure
used here to set up LAM.) If you want to see which arguments are being
passed to the compiler, you can use the -showme argument. For example,

[sloanjd@fanny sloanjd]$ mpicc -showme -o hello hello.c

gcc -I/usr/local/lam-7.0.6/include -pthread -o hello hello.c -L/usr/local/

lam-7.0.6/lib -llammpio -llamf77mpi -lmpi -llam -lutil

With -showme, the program isn't compiled; you just see the arguments that
would have been used had it been compiled. Any other arguments that you
include in the call to mpicc are passed on to the underlying compiler
unchanged. In general, you should avoid using the -g (debug) option when it
isn't needed because of the overhead it adds.

To compile the program, rerun the last command without -showme if you
haven't done so. You now have an executable program. Run the program with
the mpirun command. Basically, mpirun communicates with the remote LAM
daemon to fork a new process, set environment variables, redirect I/O, and
execute the user's command. Here is an example:

[sloanjd@fanny sloanjd]$ mpirun -np 4 hello

Hello, world! I am 0 of 4

Hello, world! I am 1 of 4

Hello, world! I am 2 of 4

Hello, world! I am 3 of 4

As shown in this example, the argument -np 4 specified that four processes be
used when running the program. If more machines are available, only four will
be used. If fewer machines are available, some machines will be used more
than once.

Of course, you'll need the executable on each machine. If you're using NFS to
mount your home directories, this has already been taken care of if you are
working in that directory. You should also remember that mpirun can be run
on a single machine, which can be helpful when you want to test code away
from a cluster.

If a program crashes, there may be extraneous processes running on remote
machines. You can clean these up with the lamclean command. This is a
command you'll use only when you are having problems. Try lamclean first and
if it hangs, you can escalate to wipe. Rerun lamboot after using wipe. This isn't
necessary with lamclean. Both lamclean and wipe take a -v for verbose output.

Once you are done, you can shut down LAM with the lamhalt command, which
kills the lamd daemon on each machine. If you wish, you can use -v for
verbose output. Two other useful LAM commands are mpitask and mpimsg,
which are used to monitor processes across the cluster and to monitor the
message buffer, respectively.

9.3.4 Testing the Installation

LAM comes with a set of examples, tests, and tools that you can use to verify
that it is properly installed and runs correctly. We'll start with the simplest
tests first.

The recon tool verifies that LAM will boot properly. recon is not a complete
test, but it confirms that the user can execute commands on the remote
machine, and that the LAM executables can be found and executed.

[sloanjd@fanny bin]$ recon

Woo hoo!

recon has completed successfully. This means that you will most likely

be able to boot LAM successfully with the "lamboot" command (but this

is not a guarantee). See the lamboot(1) manual page for more

information on the lamboot command.

If you have problems booting LAM (with lamboot) even though recon

worked successfully, enable the "-d" option to lamboot to examine each

step of lamboot and see what fails. Most situations where recon

succeeds and lamboot fails have to do with the hboot(1) command (that

lamboot invokes on each host in the hostfile).

Since lamboot is required to run the next tests, you'll need to run these tests
as a non-privileged user. Once you have booted LAM, you can use the tping
command to check basic connectivity. tping is similar to ping but uses the LAM
echo server. This confirms that both network connectivity and that the LAM
daemon is listening. For example, the following command sends two one-byte
packets to the first three machines in your cluster.

[sloanjd@fanny sloanjd]$ tping n1-3 -c2

 1 byte from 3 remote nodes: 0.003 secs

 1 byte from 3 remote nodes: 0.002 secs

2 messages, 2 bytes (0.002K), 0.006 secs (0.710K/sec)

roundtrip min/avg/max: 0.002/0.003/0.003

If you want to probe every machine, use n without a count.

The LAM test suite is the most comprehensive way to test your system. It can
be used to confirm that you have a complete and correct installation.
Download the test suite that corresponds to your installation and then
uncompress and unpack it.

[sloanjd@fanny sloanjd]$ bunzip2 lamtests-7.0.6.tar.bz2

[sloanjd@fanny sloanjd]$ tar -xvf lamtests-7.0.6.tar
...

This creates the directory lamtests-7.0.6 with the tests and a set of directions
in the file README. Next, you should start LAM with lamboot if you haven't
already done so. Then change to the test directory and run configure.

[sloanjd@fanny sloanjd]$ cd lamtests-7.0.6

[sloanjd@fanny lamtests-7.0.6]$./configure

...

Finally, run make.

[sloanjd@fanny lamtests-7.0.6]$ make -k check

...

You'll see lots of output scroll past. Don't be concerned about an occasional
error message while it is running. What you want is a clean bill of health when

it is finally done. You can run specific tests in the test suite by changing into
the appropriate subdirectory and running make.

9.4 MPICH

Message Passing Interface Chameleon (MPICH) was developed by William
Gropp and Ewing Lusk and is freely available from Argonne National
Laboratory (http://www-unix.mcs.anl.gov/mpi/mpich/). Like LAM, it is both a
library and an execution environment. It runs on a wide variety of Unix
platforms and is even available for Windows NT.

Documentation can be downloaded from the web site. There are separate
manuals for each of the communication models. This chapter provides an
overview of the installation process and a description of how to use MPICH. For
more up-to-date and detailed information, you should consult the appropriate
manual for the communications model you are using.

9.4.1 Installing

There are five different "flavors" of MPICH reflecting the type of machine it will
run on and how interprocess communication has been implemented:

ch_p4

This is probably the most common version. The "ch" is for channel and the
"p4" for portable programs for parallel processors.

ch_p4mpd

This extends ch_p4 mode by including a set of daemons built to support
parallel processing. The MPD is for multipurpose daemon. MPD is a new
high-performance job launcher designed as a replacement for mpirun.

ch_shmem

This is a version for shared memory or SMP systems.

globus2

http://www-unix.mcs.anl.gov/mpi/mpich/

This is a version for computational grids. (See http://www.globus.org for
more on the Globus project.)

ch_nt

This is a version of MPI for Windows NT machines.

The best choice for most clusters is either the ch_p4 model or ch_p4mpd
model. The ch_p4mpd model assumes a homogenous architecture while ch_p4
works with mixed architectures. If you have a homogenous architecture,
ch_p4mpd should provide somewhat better performance. This section will
describe the ch_p4 since it is more versatile.

The first step in installing MPICH is to download the source code for your
system. MPICH is not available in binary (except for Windows NT). Although
the available code is usually updated with the latest patches, new patches are
occasionally made available, so you'll probably want to check the patch list at
the site. If necessary, apply the patches to your download file following the
directions supplied with the patch file.

Decide where you want to install the software. This example uses
/usr/local/src/mpich. Then download the source to the appropriate directory,
uncompress it, and unpack it.

[root@fanny src]# gunzip mpich.tar.gz

[root@fanny src]# tar -xvf mpich.tar

...

Expect lots of output! Change to the directory where the code was unpacked,
make a directory for the installation, and run configure.

[root@fanny src]# cd mpich-1.2.5.2

[root@fanny mpich-1.2.5.2]# mkdir /usr/local/mpich-1.2.5.2

[root@fanny mpich-1.2.5.2]# ./configure --prefix=/usr/local/mpich-1.2.5.2 \
> -rsh=ssh

http://www.globus.org

...

As with LAM, this installation configures MPICH to use SSH.[4] Other
configuration options are described in the installation and user's guides.

[4] Alternatively, you could use the environmental variable $RSHCOMMAND to specify SSH.

Next, you'll make, install, and clean up.

[root@fanny mpich-1.2.5.2]# make

...

[root@fanny mpich-1.2.5.2]# make install

...

[root@fanny mpich-1.2.5.2]# make clean

...

Again, you'll see lots of output after each of these steps. The first make builds
the software while the make install, which is optional, puts it in a public
directory. It is also a good idea to make the tests on the head node.

MPICH on Windows Systems

For those who need to work in different environments, it is worth noting that MPICH will run under
Windows NT and 2000. (While I've never tested it in a cluster setting, I have used MPICH on XP to
compile and run programs.)

To install, download the self-extracting archive. By default, this will install the runtime DLLs, the
development libraries, jumpshot, and a PDF of the user's manual. I've used this combination without
problems with Visual Studio.NET and CodeWarrior. It is said to work with GCC but I haven't tested
it.

Installing MPICH on a laptop can be very helpful at times, even if you aren't attaching the laptop to a
cluster. You can use it to initially develop and test code. In this mode, you would run code on a
single machine as though it were a cluster. This is not the same as running the software on a
cluster, and you definitely won't see any performance gains, but it will allow you to program when
you are away from your cluster. Of course, you can also include Windows machines in your cluster
as compute nodes. For more information, see the MPICH ch_nt manual.

Before you can use MPICH, you'll need to tell it which machines to use by
editing the file machine.architecture. For Linux clusters, this is the file
machine.LINUX and is located in the directory ../share under installation
directory. If you use the same file layout used here, the file is
/usr/local/mpich-1.2.5.2/share/machines.LINUX. This file is just a simple list of
machines with one hostname per line. For SMP systems, you can append a :n
where n is the number of processors in the host. This file plays the same role
as the schema with LAM. (You can specify a file with a different set of
machines as a command-line argument when you run a program if desired.)

9.4.2 User Configuration

Since individual users don't set up schemas for MPICH, there is slightly less
you need to do compared to LAM. Besides this difference, the user setup is
basically the same. You'll need to set the $PATH variable appropriately (and
$MANPATH, if you wish). The same concerns apply with MPICH as with LAM you
need to distinguish between LAM and MPICH executables if you install both,
and you need to ensure the path is set for both interactive and noninteractive
logins. You'll also need to ensure that you can log onto each machine in the
cluster using SSH without a password. (For more information on these issues,
see the subsection on user configuration under LAM/MPI.)

9.4.3 Using MPICH

Unlike LAM, you don't need to boot or shut down the runtime environment
when running an MPICH program. With MPICH you'll just need to write,
compile, and run your code. The downside is, if your program crashes, you
may need to manually kill errant processes on compute nodes. But this
shouldn't be a common problem. Also, you'll be able to run programs as root
provided you distribute the binaries to all the nodes. (File access can be an
issue if you don't export root's home directory via NFS.)

The first step is to write and enter your program using your favorite text
editor. Like LAM, MPICH supplies a set of wrapper programs to simplify
compilation mpicc, mpiCC, and mpif77, and mpif90 for C, C++, FORTRAN 77,
and FORTRAN 90, respectively. Here is an example of compiling a C program:

[sloanjd@fanny sloanjd]$ mpicc -o cpi cpi.c

cpi.c is one of the sample programs included with MPICH. It can be found in
the directory ../examples/basic under the source directory.

You can see the options supplied by the wrapper program without executing
the code by using the -show option. For example,

[sloanjd@fanny sloanjd]$ mpicc -show -o cpi cpi.c

gcc -DUSE_STDARG -DHAVE_STDLIB_H=1 -DHAVE_STRING_H=1 -DHAVE_UNISTD_H=1 -DHAVE_

STDARG_H=1 -DUSE_STDARG=1 -DMALLOC_RET_VOID=1 -L/opt/mpich-1.2.5.10-ch_p4-gcc/

lib -o cpi cpi.c -lmpich

Obviously, you'll want to use the wrapper programs rather than type in
arguments manually.

To run a program, you use the mpirun command. Again, before the code will
run, you must have copies of the binaries on each machine and you must be
able to log into each machine with SSH without a password. Here is an
example of running the code we just compiled.

[sloanjd@fanny sloanjd]$ mpirun -np 4 cpi

Process 0 of 4 on fanny.wofford.int

pi is approximately 3.1415926544231239, Error is 0.0000000008333307

wall clock time = 0.008783

Process 2 of 4 on hector.wofford.int

Process 1 of 4 on george.wofford.int

Process 3 of 4 on ida.wofford.int

The argument -np 4 specified running the program with four processes. If you
want to specify a particular set of machines, use the -machinefile argument.

[sloanjd@fanny sloanjd]$ mpirun -np 4 -machinefile machines cpi

Process 0 of 4 on fanny.wofford.int

pi is approximately 3.1415926544231239, Error is 0.0000000008333307

wall clock time = 0.007159

Process 1 of 4 on george.wofford.int

Process 2 of 4 on fanny.wofford.int

Process 3 of 4 on george.wofford.int

In this example, four processes were run on the two machines listed in the file
machines. Notice that each machine was used twice. You can view the mpicc(1)
and mpirun(1) manpage for more details.

9.4.4 Testing the Installation

You can test connectivity issues and the like with the MPICH-supplied script
tstmachines, which is located in the ../sbin directory under the MPICH
installation. This script takes the architecture as an argument. For example,

[sloanjd@fanny sloanjd]$ /usr/local/mpich-1.2.5.2/sbin/tstmachines LINUX

If all is well, the script runs and terminates silently. If there is a problem, it
makes suggestions on how to fix the problem. If you want more reassurance
that it is actually doing something, you can run it with the -v argument.

For more thorough testing, MPICH provides a set of tests with the distribution.
You'll find a thorough collection of tests supplied with the source files. These
are in the directory ../examples/test. You run these tests by executing the
command:

[sloanjd@fanny test]$ make testing | tee make.log

...

You'll need to do this in the test directory. This directory must be shared
among all the nodes on the cluster, so you will have to either mount this
directory on all the machines or copy its contents over to a mounted directory.
When this runs, you'll see a lot of output as your cluster is put through its
paces. The output will be copied to the file make.log, so you'll be able to
peruse it at your leisure.

9.4.5 MPE

The Multi-Processing Environment (MPE) library extends MPI. MPE provides
such additional facilities as libraries for creating log files, an X graphics library,
graphical visualization tools, routines for serializing sections of parallel code,
and debugger setup routines. While developed for use with MPICH, MPE can be
used with any MPI implementation. MPE is included with MPICH and will be
built and installed. MPE includes both a library for collecting information and a
viewer for displaying the collected information. A user's guide is available that
provides greater detail. Use of MPE is described in greater detail in Chapter 17.

MPE includes four viewersupshot, nupshot, jumpshot-2, and jumpshot-3. These
are not built automatically since the software required for the build may not be
present on every machine. Both upshot and nupshot require Tcl/Tk and Wish.
jumpshot-2 and jumpshot-3 require Java.

There are three different output formats for MPE log filesalog, an ASCII format
provided for backwards compatibility; clog, alog's binary equivalent; and slog,
a scalable format capable of handling very large files. upshot reads alog files,
nupshot and jumpshot-2 read clog files, and jumpshot-3 reads slog files. MPE
includes two utilities, clog2slog and clog2alog, to convert between formats. The
basic functionality of the viewers is similar, so installing any one of them will
probably meet your basic needs.

Although the requirements are different, the compilation process is similar for
each tool. You can build the viewers collectively or individually. For example,
to compile jumpshot-3, you'll need to install Java if you don't already have it.
JDK-1.1, JDK-1.2, or JDK-1.3 can be used. (jumpshot-2 compiles only with
JDK-1.1.) If you don't have the appropriate Java, you can download it from
http://www.blackdown.org or http://java.sun.com and follow the installation
directions given at the respective site. Once Java has been installed, make
sure that you add its directory to your path. Next, change to the
../mpe/viewer/jumpshot-3 subdirectory under the MPICH directory, for
example, /usr/local/src/mpich-1.2.5.2/mpe/viewers/jumpshot-3. Now you can
configure and build jumpshot-3.

[root@fanny jumpshot-3]# ./configure

...

[root@fanny jumpshot-3]# make

...

[root@fanny jumpshot-3]# make install

...

jumpshot-3 will be installed in the /usr/local/bin directory as jumpshot. (You
will only need to install it on the head node.) For details on the installation of
the other viewer, see the MPE installation and user's guide.

To test your installation, you'll need to compile a program using the -mpilog
option and run the code to create a log file.

[sloanjd@fanny sloanjd]$ mpicc -mpilog -o cpi cpi.c

[sloanjd@fanny sloanjd]$ mpirun cpi

http://www.blackdown.org
http://java.sun.com

...

When you run the code, the log file cpi.clog will be created. You'll need to
convert this to a format that jumpshot-3 can read.

[sloanjd@fanny sloanjd]$ clog2slog cpi.clog

The conversion routines are in the directory ../mpich-1.2.5.2/bin. Now you can
view the output. Of course, you must have a graphical login for this to work.
With this command, several windows should open on your display.

[sloanjd@fanny sloanjd]$ jumpshot cpi.slog

As noted, the use of MPE will be described in greater detail in Chapter 17.

9.5 Other Programming Software

Keeping in mind that your head node will also serve as a software
development platform, there are other software packages that you'll want to
install. One obvious utility is the ubiquitous text editor. Fortunately, most
likely choices are readily available and will be part of your basic installation.
Just don't forget them when you install the system. Because personal
preferences vary so widely, you'll want to include the full complement.

9.5.1 Debuggers

Another essential tool is a software debugger. Let's face it, using printf to
debug parallel code is usually a hopeless task. With multiple processes and
buffered output, it is unlikely you'll know where the program was executing
when you actually see the output. The best solution is a debugger designed
specifically for parallel code. While commercial products such as TotalView are
available and work well with MPI, free software is wanting. At the very least,
you will want a good traditional debugger such as gdb. Programs that extend
gdb, such as ddd (the Data Display Debugger), are a nice addition. (Debugging
is discussed in greater detail in Chapter 16.) Since it is difficult to tell when
they will be needed and just how essential they will be, try to be as inclusive
as possible when installing these tools. As part of the gcc development
package, gdb is pretty standard fare and should already be on your system.
However, ddd may not be installed by default.

Since ddd provides a GUI for other debuggers such as gdb, there is no point
installing it on a system that doesn't have X Windows and gdb a or similar
debugger. ddd is often included as part of a Linux distribution; for instance,
Red Hat includes it. If not, you can download it from
http://www.gnu.org/software/ddd. The easiest way to install it is from an RPM.

[root@fanny root]# rpm -vih ddd-3.3.1-23.i386.rpm

warning: ddd-3.3.1-23.i386.rpm: V3 DSA signature: NOKEY, key ID db42a60e

Preparing... ### [100%]

 1:ddd ### [100%]

http://www.gnu.org/software/ddd

Depending on what is installed on your system, you may run into a few
dependencies. For example, ddd requires openmotif.

9.5.2 HDF5

Depending on the nature of the programming you do, there may be other
useful libraries that you'll want to install. One such package that OSCAR
includes is Hierarchical Data Format (Version 5) or HDF5. HDF5 is a freely
available software package developed by the HDF5 group at the National
Center for Supercomputing Applications (NCSA). The official web site is
http://hdf.ncsa.uiuc.edu/HDF5/.

HDF5 is both a file format standard and a library with utilities specifically
designed for storing scientific data. It supports very large files and is designed
and tuned for efficient storage on parallel computing systems. Data is stored in
two parts, a header and a data array. The header contains the information
needed to interpret the data array. That is, it describes and annotates the data
set. The data sets are essentially multidimensional arrays of items. The API is
available only in C. While HDF5 is beyond the scope of this book, you should
be aware it exists should you need it. An extensive tutorial, as well as other
documentation, is available at the software's web site.

9.5.3 SPRNG

Scalable Parallel Random Number Generators (SPRNG) is a library that
provides six different state-of-the-art random number generators for use with
parallel programs. SPRNG integrates nicely with MPI. Its use is described in
Chapter 15.

SPRNG is freely available from http://sprng.cs.fsu.edu/. At the time this was
written, the latest version sprng2.0a.tgz. First, download the package and
move it to an appropriate directory, e.g., /usr/local/src. The next step is to
unpack it.

[root@amy src]# gunzip sprng2.0a.tgz

[root@amy src]# tar -xvf sprng2.0a.tar

...

http://hdf.ncsa.uiuc.edu/HDF5/
http://sprng.cs.fsu.edu/

Then change to the directory to where you just unpacked the source. Before
you can build it, you need to edit a couple of files. In the first section of the
file make.CHOICES, select the appropriate platform. Typically, this will be
INTEL for Linux clusters. Make sure the line

PLAT = INTEL

is uncommented and the lines for other platforms are commented out. Because
you want to use it with MPI, in the second section, uncomment the line

MPIDEF = -DSPRNG_MPI

You should also comment out the two lines in the third section if libgmp.a is
not available on your system.

You should also edit the appropriate architecture file in the SRC subdirectory,
typically make.INTEL. You'll need to make two sets of changes for a Linux
cluster. First, change all the gcc optimization flags from -O3 to -O1. Next,
change all the paths to MPI to match your machine. For the setup shown in
this chapter, the following lines were changed:

MPIDIR = -L/usr/local/mpich-1.2.5.2/lib

and

CFLAGS = -O1 -DLittleEndian $(PMLCGDEF) $(MPIDEF) -D$(PLAT) \

-I/usr/local/mpich-1.2.5.2/include -I/usr/local/mpich-1.2.5.2/include

CLDFLAGS = -O1

FFLAGS = -O1 $(PMLCGDEF) $(MPIDEF) -D$(PLAT) \

-I/usr/local/mpich-1.2.5.2/include -I/usr/local/mpich-1.2.5.2/include -I.

F77LDFLAGS = -O1

Once you've done this, run make from the root of the source tree. If you want
to play with the MPI examples, run make mpi in the EXAMPLES subdirectory.

To use the library, you must adjust your compile paths to include the
appropriate directories. For example, to use SPRNG with OSCAR and MPICH,
the following changes should work.

MPIDIR = -L/opt/mpich-1.2.5.10-ch_p4-gcc/lib

MPILIB = -lmpich

Please include mpi header file path, if needed

CFLAGS = -O1 -DLittleEndian $(PMLCGDEF) $(MPIDEF) -D$(PLAT) -I/opt/mpich-

1.2.5.10-ch_p4-gcc/include -I/opt/mpich-1.2.5.10-ch_p4-gcc/include

CLDFLAGS = -O1

FFLAGS = -O1 $(PMLCGDEF) $(MPIDEF) -D$(PLAT) -I/opt/mpich-1.2.5.10-ch_p4-

gcc/include -I/opt/mpich-1.2.5.10-ch_p4-gcc/include -I.

F77LDFLAGS = -O1

Note this installation is specific to one version of MPI. See Chapter 15 for the
details of using SPRNG.

9.6 Notes for OSCAR Users

LAM/MPI, MPICH, and HDF5 are installed as part of a standard OSCAR
installation under the /opt directory to conform to the File System Hierarchy
(FSH) standard (http://www.pathname.com/fhs/). Both MPICH and HDF5 have
documentation subdirectories doc with additional information. OSCAR does not
install MPE as part of the MPICH installation. If you want to use MPE, you'll
need to go back and do a manual installation. Fortunately, this is not
particularly difficult, but it can be a bit confusing.

9.6.1 Adding MPE

First, use switcher to select your preferred version of MPI . Since you can't run
LAM/MPI as root, MPICH is probably a better choice. For example,

[root@amy root]# switcher mpi --list

lam-7.0

lam-with-gm-7.0

mpich-ch_p4-gcc-1.2.5.10

[root@amy root]# switcher mpi = mpich-ch_p4-gcc-1.2.5.10

Attribute successfully set; new attribute setting will be effective for

future shells

If you had to change MPI, log out and back onto the system.

Next, you'll need to retrieve and unpack a copy of MPICH.

[root@amy root]# cp mpich.tar.gz /usr/local/src

[root@amy root]# cd /usr/local/src

[root@amy src]# gunzip mpich.tar.gz

http://www.pathname.com/fhs/

[root@amy src]# tar -xvf mpich.tar

...

/usr/local/src is a reasonable location.

If you don't have it on your system, you'll need to install Java to build the
jumpshot.

[root@amy src]# bunzip2 j2sdk-1.3.1-FCS-linux-i386.tar.bz2

[root@amy src]# tar -xvf j2sdk-1.3.1-FCS-linux-i386.tar

...

Again, /usr/local/src is a reasonable choice.

Next, you need to set your PATH to include Java and set environmental
variables for MPICH.

[root@amy src]# export PATH=/usr/local/src/j2sdk1.3.1/bin:$PATH

[root@amy src]# export MPI_INC="-I/opt/mpich-1.2.5.10-ch_p4-gcc/include"

[root@amy src]# export MPI_LIBS="-L/opt/mpich-1.2.5.10-ch_p4-gcc/lib"

[root@amy src]# export MPI_CC=mpicc

[root@amy src]# export MPI_F77=mpif77

(Be sure these paths match your system.)

Now you can change to the MPE directory and run configure, make, and make
install.

[root@amy src]# cd mpich-1.2.5.2/mpe

[root@amy mpe]# ./configure

...

[root@amy mpe]# make

...

[root@amy mpe]# make install

...

You should now have MPE on your system. If you used the same directories as
used here, it will be in /usr/local/src/mpich-1.2.5.2/mpe.

9.7 Notes for Rocks Users

Rocks does not include LAM/MPI or HDF5 but does include several different
MPICH releases, located in /opt. MPE is included as part of Rocks with each
release. The MPE libraries are included with the MPICH libraries, e.g.,
/opt/mpich/gnu/lib. Rocks includes the jumpshot3 script as well, e.g.,
/opt/mpich/gnu/share/jumpshot-3/bin for MPICH. (Rocks also includes upshot.)

By default, Rocks does not include Java. There is, however, a Java roll for
Rocks. To use jumpshot3, you'll need to install the appropriate version of Java.
You can look in the jumpshot3 script to see what it expects. You should see
something like the following near the top of the file:

...

JAVA_HOME=/usr/java/j2sdk1.4.2_02

...

JVM=/usr/java/j2sdk1.4.2_02/bin/java

...

You can either install j2sdk1.4.2-02 in /usr/java or you can edit these lines to
match your Java installation. For example, if you install the Java package
described in the last section, you might change these lines to

JAVA_HOME=/usr/local/src/j2sdk1.3.1

JVM=/usr/local/src/j2sdk1.3.1/bin/java

Adjust the path according to your needs.

Chapter 10. Management Software
Now that you have a cluster, you are going to want to keep it running, which
will involve a number of routine system administration tasks. If you have done
system administration before, then for the most part you won't be doing
anything new. The administrative tasks you'll face are largely the same tasks
you would face with any multiuser system. It is just that these tasks will be
multiplied by the number of machines in your cluster. While creating 25 new
accounts on a server may not sound too hard, when you have to duplicate
those accounts on each node in a 200-node cluster, you'll probably want some
help.

For a small cluster with only a few users, you may be able to get by doing
things the way you are used to doing them. But why bother? The tools in this
chapter are easy to install and use. Mastering them, which won't take long,
will lighten your workload.

While there are a number of tools available, two representative tools (or tool
sets) are described in this chapter the Cluster Command and Control (C3) tools
set and Ganglia. C3 is a set of utilities that can be used to automate a number
of tasks across a cluster or multiple clusters, such as executing the same
command on every machine or distributing files to every machine. Ganglia is
used to monitor the health of your cluster from a single node using a web-
based interface.

10.1 C3

Cluster Command and Control is a set of about a dozen command-line utilities
used to execute common management tasks. These commands were designed
to provide a look and feel similar to that of issuing commands on a single
machine.[1] The commands are both secure and scale reliably. Each command
is actually a Python script. C3 was developed at Oak Ridge National Laboratory
and is freely available.

[1] A Python/TK GUI known as C2G has also been developed.

10.1.1 Installing C3

There are two ways C3 can be installed. With the basic install, you'll do a full
C3 installation on a single machine, typically the head node, and issue
commands on that machine. With large clusters, this can be inefficient because
that single machine must communicate with each of the other machines in the
cluster. The alternate approach is referred to as a scalable installation. With
this method, C3 is installed on all the machines and the configuration is
changed so that a tree structure is used to distribute commands. That is,
commands fan out through intermediate machines and are relayed across the
cluster more efficiently. Both installations begin the same way; you'll just need
to repeat the installation with the scalable install to alter the configuration file.
This description will stick to the simple install. The simple installation includes
a file README.scale that describes the scalable installation.

Since the C3 tools are scripts, there is very little to do to install them.
However, since they rely on several other common packages and services, you
will need to be sure that all the prerequisites are met. On most systems this
won't be a problem; everything you'll need will already be in place.

Before you can install C3, make sure that rsync, Perl, SSH, and Python are
installed on your system and available. Name resolution, either through DNS
or a host file, must be available as well. Additionally, if you want to use the C3
command pushimage, SystemImager must be installed. Installing
SystemImager is discussed in Chapter 8.

Once you have met the prerequisites, you can download, unpack, and install
C3. To download it, go to http://www.csm.ornl.gov/torc/C3/ and follow the link
to the download page. You can download sources or an RPM package. In this
example, sources are used. If you install from RPMs, install the full install RPM

http://www.csm.ornl.gov/torc/C3/

and profile RPM on servers and the client RPM on clients. Note that with the
simple installation you only need to install C3 on the head node of your
cluster. However, you will need SSH and the like on every node.

Once you have unpacked the software and read the README files, you can run
the install script Install-c3.

[root@fanny src]# gunzip c3-4.0.1.tar.gz

[root@fanny src]# tar -xvf c3-4.0.1.tar

[root@fanny src]# cd c3-4.0.1

[root@fanny c3-4.0.1]# ./Install-c3

The install script will copy the scripts to /opt/c3-4 (for Version 4 at least), set
paths, and install man pages. There is nothing to compile.

The next step is creating a configuration file. The default file is /etc/c3.conf.
However, you can use other configuration files if you wish by explicitly
referencing them in C3 commands using the -f option with the file name.

Here is a very simple configuration file:

cluster local {

 fanny.wofford.int

 george.wofford.int

 hector.wofford.int

 ida.wofford.int

 james.wofford.int

}

This example shows a configuration for a single cluster. In fact, the
configuration file can contain information on multiple clusters. Each cluster will

have its own cluster description block, which begins with the identifier cluster
followed by a name for a cluster. The name can be used in C3 commands to
identify the specific cluster if you have multiple cluster description blocks.
Next, the machines within the cluster are listed within curly braces. The first
machine listed is the head node. To remove ambiguity, the head node entry
can consist of two parts separated by a colon the head node's external interface
to the left of the colon and the head node's internal interface to the right of
the colon. (Since fanny has a single interface, that format was not appropriate
for this example.) The head node is followed by the compute nodes. In this
example, the compute nodes are listed one per line. It is possible to specify a
range. For example, node[01-64] would specify 64 machines with the names
node1, node2, etc. The cluster definition block is closed with another curly
brace. Of course, all machine names must resolve to IP addresses, typically via
the /etc/hosts file. (The commands cname and cnum, described later in this
section, can be discerning the details surrounding node indices.)

Within the compute node list, you can also use the qualifiers exclude and dead.
exclude is applied to range qualifiers and immediately follow a range
specification. dead applies to individual machines and precedes the machine
name. For example,

node[1-64]

exclude 60

alice

dead bob

carol

In this list node60 and bob are designated as being unavailable. Starting with
Version 3 of C3, it is possible to use ranges in C3 commands to restrict actions
to just those machines within the range. The order of the machines in the
configuration file determines their numerical position within the range. In the
example, the 67 machines defined have list positions 0 through 66. If you
deleted bob from the file instead of marking it as dead, carol's position would
change from 66 to 65, which could cause confusion. By using exclude and dead,
you effectively remove a machine from a cluster without renumbering the
remaining machines. dead can also be used with a dummy machine to switch
from 0-indexing to 1-indexing. For example, just add the following line to the

beginning of the machine list:

dead place_holder

Once done, all the machines in the list move up one position. For more details
on the configuration file, see the c3.conf(5) and c3-scale(5) manpages.

Once you have created your configuration file, there is one last thing you need
to do before C3 is ready to go. For the command ckill to work properly, the Perl
script ckillnode must be installed on each individual machine. Fortunately, the
rest of C3 is installed and functional, so you can use it to complete the
installation. Just issue these commands:

[root@fanny root]# cexec mkdir /opt/c3-4

************************* local *************************

--------- george.wofford.int---------

...

[root@fanny root]# cpush /opt/c3-4/ckillnode

building file list ... building file list ... building file list ... building

file list ... done

...

The first command makes the directory /opt/c3-4 on each machine in your
cluster and the second copies the file ckillnode to each machine. You should
see a fair amount of output with each command. If you are starting SSH
manually, you'll need to start it before you try this.

10.1.2 Using C3 Commands

Here is a brief description of C3's more useful utilities.

10.1.2.1 cexec

This command executes a command string on each node in a cluster. For
example,

[root@fanny root]# cexec mkdir tmp

************************* local *************************

--------- george.wofford.int---------

--------- hector.wofford.int---------

--------- ida.wofford.int---------

--------- james.wofford.int---------

The directory tmp has been created on each machine in the local cluster. cexec
has a serial version cexecs that can be used for testing. With the serial
version, the command is executed to completion on each machine before it is
executed on the next machine. If there is any ambiguity about the order of
execution for the parts of a command, you should use double quotes within the
command. Consider:

[root@fanny root]# cexec "ps | grep a.out"

...

The quotes are needed here so grep will be run on each individual machine
rather than have the full output from ps shipped to the head node.

10.1.2.2 cget

This command is used to retrieve a file from each machine in the cluster. Since
each file will initially have the same name, when the file is copied over, the
cluster and host names are appended. Here is an example.

[root@fanny root]# cget /etc/motd

[root@fanny root]# ls

motd_local_george.wofford.int

motd_local_hector.wofford.int

motd_local_ida.wofford.int

motd_local_james.wofford.int

cget ignores links and subdirectories.

10.1.2.3 ckill

This script allows you to kill a process running on each node in your cluster. To
use it, specify the process by name, not by number, because it is unlikely that
the processes will have the same process ID on each node.

[root@fanny root]# ckill -u sloanjd a.out

uid selected is 500

uid selected is 500

uid selected is 500

uid selected is 500

You may also specify an owner as shown in the example. By default, the local
user name will be used.

10.1.2.4 cpush

This command is used to move a file to each node on the cluster.

[root@fanny root]# cpush /etc/motd /root/motd.bak

building file list ... done

building file list ... done

motd

motd

building file list ... done

motd

wrote 119 bytes read 36 bytes 62.00 bytes/sec

total size is 39 speedup is 0.25

wrote 119 bytes read 36 bytes 62.00 bytes/sec

total size is 39 speedup is 0.25

wrote 119 bytes read 36 bytes 62.00 bytes/sec

total size is 39 speedup is 0.25

building file list ... done

motd

wrote 119 bytes read 36 bytes 62.00 bytes/sec

total size is 39 speedup is 0.25

As you can see, statistics for each move are printed. If you only specify one
file, it will use the same name and directory for the source and the
destination.

10.1.2.5 crm

This routine deletes or removes files across the cluster.

[root@fanny root]# crm /root/motd.bak

Like its serial counterpart, you can use the -i, -r and -v options for interactive,
recursive, and verbose deletes, respectively. Please note, the -i option only
prompts once, not for each node. Without options, crm silently deletes files.

10.1.2.6 cshutdown

This utility allows you to shut down the nodes in your cluster.

[root@fanny root]# cshutdown -r t 0

In this example, the time specified was 0 for an immediate reboot. (Note the
absence of the hyphen for the t option.) Additional options are supported, e.g.,
to include a shutdown message.

10.1.2.7 clist, cname, and cnum

These three commands are used to query the configuration file to assist in
determining the appropriate numerical ranges to use with C3 commands. clist
lists the different clusters in the configuration file.

[root@amy root]# clist

cluster oscar_cluster is a direct local cluster

cluster pvfs_clients is a direct local cluster

cluster pvfs_iod is a direct local cluster

cname lists the names of machines for a specified range.

[root@fanny root]# cname local:0-1

nodes from cluster: local

cluster: local ; node name: george.wofford.int

cluster: local ; node name: hector.wofford.int

Note the use of 0 indexing.

cnum determines the index of a machine given its name.

[root@fanny root]# cnum ida.wofford.int

nodes from cluster: local

ida.wofford.int is at index 2 in cluster local

These can be very helpful because it is easy to lose track of which machine has
which index.

10.1.2.8 Further examples and comments

Here is an example using a range:

[root@fanny root]# cpush local:2-3 data

...

local designates which cluster is within your configuration file. Because
compute nodes are numbered from 0, this will push the file data to the third
and fourth nodes in the cluster. (That is, it will send the file from fanny to ida
and james, skipping over george and hector.) Is that what you expected? For
more information on ranges, see the manpage c3-range(5).

Note that the name used in C3 commands must match the name used in the
configuration file. For C3, ida and ida.wofford.int are not equal even if there is
an alias ida that resolves to ida.wofford.int. For example,

[root@fanny root]# cnum ida.wofford.int

nodes from cluster: local

ida.wofford.int is at index 2 in cluster local

[root@fanny root]# cnum ida

nodes from cluster: local

When in doubt about what form to use, just refer back to /etc/c3.conf.

In addition to the commands just described, the C3 command cpushimage can
be used with SystemImager to push an image from server to nodes. There are
also several user-contributed utilities. While not installed, these can be found
in the C3 source tree in the subdirectory contrib. User-contributed scripts can
be used as examples for writing other scripts using C3 commands.

C3 commands take a number of different options not discussed here. For a
brief description of other options, use the --help option with individual
commands. For greater detail, consult the manpage for the individual
command.

10.2 Ganglia

With a large cluster, it can be a daunting task just to ensure that every
machine is up and running every day if you try to do it manually. Fortunately,
there are several tools that you can use to monitor the state of your cluster.
In clustering circles, the better known of these include Ganglia, Clumon, and
Performance Co-Pilot (CPC). While this section will describe Ganglia, you might
reasonably consider any of these.

Ganglia is a real-time performance monitor for clusters and grids. If you are
familiar with MRTG, Ganglia uses the same round-robin database package that
was developed for MRTG. Memory efficient and robust, Ganglia scales well and
has been used with clusters with hundreds of machines. It is also
straightforward to configure for use with multiple clusters so that a single
management station can monitor all the nodes within multiple clusters. It was
developed at UCB, is freely available (via a BSD license), and has been ported
to a number of different architectures.

Ganglia uses a client-server model and is composed of four parts. The monitor
daemon gmond needs to be installed on every machine in the cluster. The
backend for data collection, the daemon gmetad, and the web interface
frontend are installed on a single management station. (There is also a Python
class for sorting and classifying data from large clusters.) Data are transmitted
using XML and XDR via both TCP and multicasting.

In addition to these core components, there are two command-line tools. The
cluster status tool gstat provides a way to query gmond, allowing you to create
a status report for your cluster. The metric tool gmetric allows you to easily
monitor additional host metrics in addition to Ganglia's predefined metrics. For
instance, suppose you have a program (and interface) that measures a
computer's temperature on each node. gmetric can be used to request that
gmond run this program. By running the gmetric command under cron, you
could track computer temperature over time.

Finally, Ganglia also provides an execution environment. gexec allows you to
run commands across the cluster transparently and forward stdin, stdout, and
stderr. This discussion will focus of the three core elements of Gangliagmond,
gmetad, and the web frontend.

10.2.1 Installing and Using Ganglia

Ganglia can be installed by compiling the sources or using RPM packages. The

installation of the software for the management station, i.e., the node that
collects information from the other nodes and maintains the database, is
somewhat more involved. With large clusters, you may want to use a machine
as a dedicated monitor. For smaller clusters, you may be able to get by with
your head node if it is reasonably equipped. We'll look at the installation of the
management node first since it is more involved.

10.2.1.1 RRDTool

Before you begin, there are several prerequisites for installing Ganglia. First,
your network and hosts must be multicast enabled. This typically isn't a
problem with most Linux installations. Next, the management station or
stations, i.e., the machine on which you'll install gmetad and the web frontend,
will also need RRDtool and Perl and a PHP-enabled web server.[2] (Since you
will install only gmond on your compute nodes, these do not require Apache or
RRDtool.)

[2] It appears that only the include file and library from RRDtool is needed, but I have not verified
this. Perl is required for RRDtool, not Ganglia.

RRDtool is a round-robin database. As you add information to the database,
the oldest data is dropped from the database. This allows you to store data in a
compact manner that will not expand endlessly over time. Sources can be
downloaded from http://www.rrdtool.org/. To install it, you'll need to unpack it
and run configure, make, and make install.

[root@fanny src]# gunzip rrdtool-1.0.48.tar.gz

[root@fanny src]# tar -vxf rrdtool-1.0.48.tar

...

[root@fanny src]# cd rrdtool-1.0.48

[root@fanny rrdtool-1.0.48]# ./configure

...

[root@fanny rrdtool-1.0.48]# make

[root@fanny rrdtool-1.0.48]# make install

http://www.rrdtool.org/

...

You'll see a lot of output along the way. In this example, I've installed it under
/usr/local/src. If you want to install it in a different directory, you can use the -
-prefix option to specify the directory when you run configure. It doesn't really
matter where you put it, but when you build Ganglia you'll need to tell Ganglia
where to find the RRDtool library and include files.

10.2.1.2 Apache and PHP

Next, check the configuration files for Apache to ensure the PHP module is
loaded. For Red Hat 9.0, the primary configuration file is httpd.conf and is
located in /etc/httpd/conf/. It, in turn, includes the configuration files in
/etc/httpd/conf.d/, in particular php.conf. What you are looking for is a
configuration command that loads the PHP module somewhere in one of the
Apache configuration files. That is, one of the configuration files should have
some lines like the following:

LoadModule php4_module modules/libphp4.so

...

<Files *.php>

 SetOutputFilter PHP

 SetInputFilter PHP

 LimitRequestBody 524288

</Files>

If you used the package system to set up Apache and PHP, this should have
been done for you. Finally, make sure Apache is running.

10.2.1.3 Ganglia monitor core

Next, you'll need to download the appropriate software. Go to
http://ganglia.sourceforge.net/. You'll have a number of choices, including
both source files and RPM files, for both Ganglia and related software. The
Ganglia monitor core contains both gmond and gmetad (although by default it
doesn't install gmetad). Here is an example of using the monitor core
download to install from source files. First, unpack the software.

[root@fanny src]# gunzip ganglia-monitor-core-2.5.6.tar.gz

[root@fanny src]# tar -xvf ganglia-monitor-core-2.5.6.tar

...

As always, once you have unpacked the software, be sure to read the README
file.

Next, change to the installation directory and build the software.

[root@fanny src]# cd ganglia-monitor-core-2.5.6

[root@fanny ganglia-monitor-core-2.5.6]# ./configure \

> CFLAGS="-I/usr/local/rrdtool-1.0.48/include" \

> CPPFLAGS="-I/usr/local/rrdtool-1.0.48/include" \

> LDFLAGS="-L/usr/local/rrdtool-1.0.48/lib" --with-gmetad

...

[root@fanny ganglia-monitor-core-2.5.6]# make

...

[root@fanny ganglia-monitor-core-2.5.6]# make install

...

As you can see, this is a pretty standard install with a couple of small

http://ganglia.sourceforge.net/

exceptions. First, you'll need to tell configure where to find the RRDtool to
include file and library by setting the various flags as shown above. Second,
you'll need to explicitly tell configure to build gmetad. This is done with the --
with-gmetad option.

Once you've built the software, you'll need to install and configure it. Both
gmond and gmetad have very simple configuration files. The samples files
gmond/gmond.conf and gmetad/gmetad.conf are included as part of the source
tree. You should copy these to /etc and edit them before you start either
program. The sample files are well documented and straightforward to edit.
Most defaults are reasonable. Strictly speaking, the gmond.conf file is not
necessary if you are happy with the defaults. However, you will probably want
to update the cluster information at a minimum. The gmetad.conf file must be
present and you'll need to identify at least one data source. You may also want
to change the identity information in it.

For gmetad.conf, the data source entry is a list of the machines that will be
monitored. The format is the identifier data_source followed by a unique string
identifying the cluster. Next is an optional polling interval. Finally, there is a
list of machines and optional port numbers. Here is a simple example:

data_source "my cluster" 10.0.32.144 10.0.32.145 10.0.32.146 10.0.32.147

The default sampling interval is 15 seconds and the default port is 8649.

Once you have the configuration files in place and edited to your satisfaction,
copy the initialization files and start the programs. For gmond, it will look
something like this:

[root@fanny ganglia-monitor-core-2.5.6]# cp ./gmond/gmond.init \
> /etc/rc.d/init.d/gmond

[root@fanny ganglia-monitor-core-2.5.6]# chkconfig --add gmond

[root@fanny ganglia-monitor-core-2.5.6]# /etc/rc.d/init.d/gmond start

Starting GANGLIA gmond: [OK]

As shown, you'll want to ensure that gmond is started whenever you reboot.

Before you start gmetad, you'll want to create a directory for the database.

[root@fanny ganglia-monitor-core-2.5.6]# mkdir -p /var/lib/ganglia/rrds

[root@fanny ganglia-monitor-core-2.5.6]# chown -R nobody \
> /var/lib/ganglia/rrds

Next, copy over the initialization file and start the program.

[root@fanny ganglia-monitor-core-2.5.6]# cp ./gmetad/gmetad.init \

> /etc/rc.d/init.d/gmetad

[root@fanny ganglia-monitor-core-2.5.6]# chkconfig --add gmetad

[root@fanny ganglia-monitor-core-2.5.6]# /etc/rc.d/init.d/gmetad start

Starting GANGLIA gmetad: [OK]

Both programs should now be running. You can verify this by trying to TELNET
to their respective ports, 8649 for gmond and 8651 for gmetad. When you do
this you should see a couple of messages followed by a fair amount of XML
scroll by.

[root@fanny ganglia-monitor-core-2.5.6]# telnet localhost 8649

Trying 127.0.0.1...

Connected to localhost.

Escape character is '^]'.

<?xml version="1.0" encoding="ISO-8859-1" standalone="yes"?>

<!DOCTYPE GANGLIA_XML [

 <!ELEMENT GANGLIA_XML (GRID)*>

...

If you see output such as this, everything is up and running. (Since you are
going to the localhost, this should work even if your firewall is blocking
TELNET.)

10.2.1.4 Web frontend

The final step in setting up the monitoring station is to install the frontend
software. This is just a matter of downloading the appropriate file and
unpacking it. Keep in mind that you must install this so that it is reachable as
part of your website. Examine the DocumentRoot in your Apache configuration
file and install the package under this directory. For example,

[root@fanny root]# grep DocumentRoot /etc/httpd/conf/httpd.conf

...

DocumentRoot "/var/www/html"

...

Now that you know where the document root is, copy the web frontend to this
directory and unpack it.

[root@fanny root]# cp ganglia-webfrontend-2.5.5.tar.gz /var/www/html/

[root@fanny root]# cd /var/www/html

[root@fanny html]# gunzip ganglia-webfrontend-2.5.5.tar.gz

[root@fanny html]# tar -xvf ganglia-webfrontend-2.5.5.tar

There is nothing to build in this case. The configuration file is conf.php. Among
other things, you can use this to change the appearance of your web site by
changing the display themes.

At this point, you should be able to examine the state of this machine. (You'll

still need to install gmond on the individual nodes before you can look at the
rest of the cluster.) Start your web browser and visit your site, e.g.,
http://localhost/ganglia-webfrontend-2.5.5/. You should see something like
Figure 10-1.

Figure 10-1. Ganglia on a single node

This shows the host is up. Next, we need to install gmond on the individual
nodes so we can see the rest of the cluster. You could use the same technique
used above just skip over the prerequisites and the gmetad steps. But it is much
easier to use RPM. Just download the package to an appropriate location and
install it. For example,

[root@george root]# rpm -vih ganglia-monitor-core-gmond-2.5.6-1.i386.rpm

Preparing... ### [100%]

 1:ganglia-monitor-core-gm### [100%]

Starting GANGLIA gmond: [OK]

gmond is installed in /usr/sbin and its configuration file in /etc. Once you've
installed gmond on a machine, it should appear on your web page when you
click on refresh. Repeat the installation for your remaining nodes.

Once you have Ganglia running, you may want to revisit the configuration
files. With Ganglia running, it will be easier to see exactly what effect a
change to a configuration file has. Of course, if you change a configuration file,
you'll need to restart the appropriate services before you will see anything
different.

You should have no difficulty figuring out how to use Ganglia. There are lots of
"hot spots" on the pages, so just click and see what you get. The first page will
tell you how many machines are up and down and their loads. You can select a
physical view or collect information on individual machines. Figure 10-2 shows
information for an individual machine. You can also change the metric
displayed. However, not all metrics are supported. The Ganglia documentation
supplies a list of supported metrics by architecture.

Figure 10-2. Ganglia Node View

As you can see, these screen captures were made when the cluster was not

otherwise in use. Otherwise the highlighted load figures would reflect that
activity.

10.3 Notes for OSCAR and Rocks Users

C3 is a core OSCAR package that is installed in /opt/c3-4 and can be used as
shown in this chapter. Both Ganglia and Clumon (which uses Performance Co-
Pilot) may be available as additional packages for OSCAR. As add-ons, these
may not always be available immediately when new versions of OSCAR are
released. For example, there was a delay with both when OSCAR 3.0 was
released. When installing Ganglia using the package add option with OSCAR,
you may want to tweak the configuration files, etc.

Although not as versatile as the C3 command set, Rocks supplies the command
cluster-fork for executing commands across a cluster.

For OSCAR, the web-accessible reports for Clumon and Ganglia are installed in
/var/www/html/clumon and /var/www/html/ganglia, respectively. Thus, to
access the Ganglia web report on amy.wofford.int, the URL is
http://amy.wofford.int/ganglia/. The page format used by OSCAR is a little
different, but you would use Ganglia in much the same way.

Ganglia is fully integrated into Rocks and is available as a link from the
administrative home for the frontend.

http://amy.wofford.int/ganglia/

Chapter 11. Scheduling Software
Basically, scheduling software lets you run your cluster like a batch system,
allowing you to allocate cluster resources, such as CPU time and memory, on a
job-by-job basis. Jobs are queued and run as resources become available,
subject to the priorities you establish. Your users will be able to add and
remove jobs from the job queue as well as track the progress of their jobs. As
the administrator, you will be able to establish priorities and manage the
queue.

Scheduling software is not a high priority for everyone. If the cluster is under
the control of a single user, then scheduling software probably isn't needed.
Similarly, if you have a small cluster with very few users or if your cluster is
very lightly used, you may not need scheduling software. As long as you have
more resources than you need, manual scheduling may be a viable
alternative at least initially. If you have a small cluster and only occasionally
wish you had scheduling software, it may be easier to add a few more
computers or build a second cluster than deal with the problems that
scheduling software introduces.

But if you have a large cluster with a growing user base, at some point you'll
want to install scheduling software. At a minimum, scheduling software helps
you effectively use your hardware and provides a more equitable sharing of
resources. Scheduling software has other uses as well, including accounting
and monitoring. The information provided by good scheduling software can be
a huge help when planning for the future of your cluster.

There are several freely available scheduling systems from which you can
select, including Portable Batch System (PBS), Maui, Torque, and Condor.
OSCAR includes Portable Batch System (PBS) along with Maui. Torque is also
available for OSCAR via opd. Rocks provides a PBS roll that includes Maui and
Torque and a second roll that includes Condor. Since PBS is available for both
OSCAR and Rocks, that's what's described in this chapter. (For more
information on the alternatives, visit the web sites listed in the Appendix A.)

PBS is a powerful and versatile system. While this chapter sticks to the basics,
you should keep in mind that there is a lot more to PBS than described here.
Look at the Administrator Guide to learn more, particularly if you need help
with more advanced features.

11.1 OpenPBS

Before the emergence of clusters, the Unix-based Network Queuing System
(NQS) from NASA Ames Research Center was a commonly used batch-queuing
system. With the emergence of parallel distributed system, NQS began to show
its limitations. Consequently, Ames led an effort to develop requirements and
specifications for a newer, cluster-compatible system. These requirements and
specifications later became the basis for the IEEE 1003.2d POSIX standard.
With NASA funding, PBS, a system conforming to those standards, was
developed by Veridian in the early 1990s.

PBS is available in two formsOpenPBS or PBSPro. OpenPBS is the unsupported
original open source version of PBS, while PBSPro is a newer commercial
product. In 2003, PBSPro was acquired by Altair Engineering and is now
marketed by Altair Grid Technologies, a subsidiary of Altair Engineering. The
web site for OpenPBS is http://www.openpbs.org; the web site for PBSPro is
http://www.pbspro.com. Although much of the following will also apply to
PBSPro, the remainder of this chapter describes OpenPBS, which is often
referred to simply as PBS. However, if you have the resources to purchase
software, it is well worth looking into PBSPro. Academic grants have been
available in the past, so if you are eligible, this is worth looking into as well.

As an unsupported product, OpenPBS has its problems. Of the software
described in this book, it was, for me, the most difficult to install. In my
opinion, it is easier to install OSCAR, which has OpenPBS as a component, or
Rocks along with the PBS roll than it is to install just OpenPBS. With this
warning in mind, we'll look at a typical installation later in this chapter.

11.1.1 Architecture

Before we install PBS, it is helpful to describe its architecture. PBS uses a
client-server model and is organized as a set of user-level commands that
interact with three system-level daemons. Jobs are submitted using the user-
level commands and managed by the daemons. PBS also includes an API.

The pbs_server daemon, the job server, runs on the server system and is the
heart of the PBS system. It provides basic batch services such as receiving and
creating batch jobs, modifying the jobs, protecting jobs against crashes, and
running the batch jobs. User commands and the other daemons communicate
with the pbs_server over the network using TCP. The user commands need not
be installed on the server.

http://www.openpbs.org
http://www.pbspro.com

The job server manages one or more queues. (Despite the name, queues are
not restricted to first-in, first-out scheduling.) A scheduled job waiting to be
run or a job that is actually running is said to be a member of its queue. The
job server supports two types of queues, execution and routing. A job in an
execution queue is waiting to execute while a job in a routing queue is waiting
to be routed to a new destination for execution.

The pbs_mom daemon executes the individual batch jobs. This job executor
daemon is often called the MOM because it is the "mother" of all executing
jobs and must run on every system within the cluster. It creates an execution
environment that is as nearly identical to the user's session as possible. MOM
is also responsible for returning the job's output to the user.

The final daemon, pbs_sched, implements the cluster's job-scheduling policy.
As such, it communicates with the pbs_server and pbs_mom daemons to
match available jobs with available resources. By default, a first-in, first-out
scheduling policy is used, but you are free to set your own policies. The
scheduler is highly extensible.

PBS provides both a GUI interface as well as 1003.2d-compliant command-line
utilities. These commands fall into three categories: management, operator,
and user commands. Management and operator commands are usually
restricted commands. The commands are used to submit, modify, delete, and
monitor batch jobs.

11.1.2 Installing OpenPBS

While detailed installation directions can be found in the PBS Administrator
Guide, there are enough "gotchas" that it is worth going over the process in
some detail. Before you begin, be sure you look over the Administrator Guide
as well. Between the guide and this chapter, you should be able to overcome
most obstacles.

Before starting with the installation proper, there are a couple of things you
need to check. As noted, PBS provides both command-line utilities and a
graphical interface. The graphical interface requires Tcl/Tk 8.0 or later, so if
you want to use it, make sure Tcl/Tk is installed. You'll want to install Tcl/Tk
before you install PBS. For a Red Hat installation, you can install Tcl/Tk from
the packages supplied with the operating system. For more information on
Tcl/Tk, visit the web site http://www.scriptics.com/. In order to build the GUI,
you'll also need the X11 development packages, which Red Hat users can
install from the supplied RPMs.

http://www.scriptics.com/

The first step in the installation proper is to download the software. Go to the
OpenPBS web site (http://www-unix.mcs.anl.gov/openpbs/) and follow the
links to the download page. The first time through, you will be redirected to a
registration page. With registration, you will receive by email an account name
and password that you can use to access the actual download page. Since you
have to wait for approval before you receive the account information, you'll
want to plan ahead and register a couple of days before you plan to download
and install the software. Making your way through the registration process is a
little annoying because it keeps pushing the commercial product, but it is
straightforward and won't take more than a few minutes.

Once you reach the download page, you'll have the choice of downloading a
pair of RPMs or the patched source code. The first RPM contains the full PBS
distribution and is used to set up the server, and the second contains just the
software needed by the client and is used to set up compute nodes within a
cluster. While RPMs might seem the easiest way to go, the available RPMs are
based on an older version of Tcl/Tk (Version 8.0). So unless you want to
backpedal i.e., track down and install these older packages, a nontrivial
task installing the source is preferable. That's what's described here.

Download the source and move it to your directory of choice. With a typical
installation, you'll end up with three directory treesthe source tree, the
installation tree, and the working directory tree. In this example, I'm setting
up the source tree in the directory /usr/local/src. Once you have the source
package where you want it, unpack the code.

[root@fanny src]# gunzip OpenPBS_2_3_16.tar.gz

[root@fanny src]# tar -vxpf OpenPBS_2_3_16.tar

When untarring the package, use the -p option to preserve permissions bits.

Since the OpenPBS code is no longer supported, it is somewhat brittle. Before
you can compile the code, you will need to apply some patches. What you
install will depend on your configuration, so plan to spend some time on the
Internet: the OpenPBS URL given above is a good place to start. For Red Hat
Linux 9.0, start by downloading the scaling patch from http://www-
unix.mcs.anl.gov/openpbs/ and the errno and gcc patches from
http://bellatrix.pcl.ox.ac.uk/~ben/pbs/. (Working out the details of what you
need is the annoying side of installing OpenPBS.) Once you have the patches
you want, install them.

http://www-unix.mcs.anl.gov/openpbs/
http://www-unix.mcs.anl.gov/openpbs/
http://bellatrix.pcl.ox.ac.uk/%7Eben/pbs/

[root@fanny src]# cp openpbs-gcc32.patch /usr/local/src/OpenPBS_2_3_16/

[root@fanny src]# cp openpbs-errno.patch /usr/local/src/OpenPBS_2_3_16/

[root@fanny src]# cp ncsa_scaling.patch /usr/local/src/OpenPBS_2_3_16/

[root@fanny src]# cd /usr/local/src/OpenPBS_2_3_16/

[root@fanny OpenPBS_2_3_16]# patch -p1 -b < openpbs-gcc32.patch

patching file buildutils/exclude_script

[root@fanny OpenPBS_2_3_16]# patch -p1 -b < openpbs-errno.patch

patching file src/lib/Liblog/pbs_log.c

patching file src/scheduler.basl/af_resmom.c

[root@fanny OpenPBS_2_3_16]# patch -p1 -b < ncsa_scaling.patch

patching file src/include/acct.h

patching file src/include/cmds.h

patching file src/include/pbs_ifl.h

patching file src/include/qmgr.h

patching file src/include/server_limits.h

The scaling patch changes built-in limits that prevent OpenPBS from working
with larger clusters. The other patches correct problems resulting from recent
changes to the gcc complier.[1]

[1] Even with the patches, I found it necessary to manually edit the file srv_connect.c, adding the line
#include <error.h> with the other #include lines in the file. If you have this problem, you'll know
because make will fail when referencing this file. Just add the line and remake the file.

As noted, you'll want to keep the installation directory separate from the
source tree, so create a new directory for PBS. /usr/local/OpenPBS is a likely
choice. Change to this directory and run configure, make, make install, and

make clean from it.

[root@fanny src]# mkdir /usr/local/OpenPBS

[root@fanny src]# cd /usr/local/OpenPBS

[root@fanny OpenPBS]# /usr/local/src/OpenPBS_2_3_16/configure \

> --set-default-server=fanny --enable-docs --with-scp

...

[root@fanny OpenPBS]# cd /usr/local/src/OpenPBS_2_3_16/

[root@fanny OpenPBS-2.3.16]# make

...

[root@fanny OpenPBS-2.3.16]# /usr/local/src/OpenPBS

[root@fanny OpenPBS]# make install

...

[root@fanny OpenPBS]# make clean

...

In this example, the configuration options set fanny as the server, create the
documentation, and use scp (SSH secure copy program) when moving files
between remote hosts. Normally, you'll create the documentation only on the
server. The Administrator Guide contains several pages of additional options.

By default, the procedure builds all the software. For the compute nodes, this
really isn't necessary since all you need is pbs_mom on these machines. Thus,
there are several alternatives that you might want to consider when setting up
the clients. You could just go ahead and build everything like you did for the
server, or you could use different build options to restrict what is built. For
example, the option --disable-server prevents the pbs_server daemon from
being built. Or you could build and then install just pbs_mom and the files it
needs. To do this, change to the MOM subdirectory, in this example

/usr/local/OpenPBS/src/resmom, and run make install to install just MOM.

[root@ida OpenPBS]# cd /usr/local/OpenPBS/src/resmom

[root@ida resmom]# make install

...

Yet another possibility is to use NFS to mount the appropriate directories on
the client machines. The Administrator Guide outlines these alternatives but
doesn't provide many details. Whatever your approach, you'll need pbs_mom
on every compute node.

The make install step will create the /usr/spool/PBS working directory, and will
install the user commands in /usr/local/bin and the daemons and
administrative commands in /usr/local/sbin. make clean removes unneeded
files.

11.1.3 Configuring PBS

Before you can use PBS, you'll need to create or edit the appropriate
configuration files, located in the working directory, e.g., /usr/spool/PBS, or its
subdirectories. First, the server needs the node file, a file listing the machines
it will communicate with. This file provides the list of nodes used at startup.
(This list can be altered dynamically with the qmgr command.) In the
subdirectory server_priv, create the file nodes with the editor of your choice.
The nodes file should have one entry per line with the names of the machines
in your cluster. (This file can contain additional information, but this is enough
to get you started.) If this file does not exist, the server will know only about
itself.

MOM will need the configuration file config, located in the subdirectory
mom_priv. At a minimum, you need an entry to start logging and an entry to
identity the server to MOM. For example, your file might look something like
this:

$logevent 0x1ff

$clienthost fanny

The argument to $logevent is a mask that determines what is logged. A value
of 0X0ff will log all events excluding debug messages, while a value of 0X1ff will
log all events including debug messages. You'll need this file on every
machine. There are a number of other options, such as creating an access list.

Finally, you'll want to create a default_server file in the working directory with
the fully qualified domain name of the machine running the server daemon.

PBS uses ports 15001-15004 by default, so it is essential that your firewall
doesn't block these ports. These can be changed by editing the /etc/services
file. A full list of services and ports can be found in the Administrator Guide
(along with other configuration options). If you decide to change ports, it is
essential that you do this consistently across your cluster!

Once you have the configuration files in place, the next step is to start the
appropriate daemons, which must be started as root. The first time through,
you'll want to start these manually. Once you are convinced that everything is
working the way you want, configure the daemons to start automatically when
the systems boot by adding them to the appropriate startup file, such as
/etc/rc.d/rc.local. All three daemons must be started on the server, but the
pbs_mom is the only daemon needed on the compute nodes. It is best to start
pbs_mom before you start the pbs_server so that it can respond to the
server's polling.

Typically, no options are needed for pbs_mom. The first time (and only the
first time) you run pbs_server, start it with the option -t create.

[root@fanny OpenPBS]# pbs_server -t create

This option is used to create a new server database. Unlike pbs_mom and
pbs_sched, pbs_server can be configured dynamically after it has been started.

The options to pbs_sched will depend on your site's scheduling policies. For the
default FIFO scheduler, no options are required. For a more detailed discussion
of command-line options, see the manpages for each daemon.

11.1.4 Managing PBS

We'll begin by looking at the command-line utilities first since the GUI may not
always be available. Once you have mastered these commands, using the GUI
should be straightforward. From a manager's perspective, the first command
you'll want to become familiar with is qmgr, the queue management command.
qmgr is used to create job queues and manage their properties. It is also used
to manage nodes and servers providing an interface to the batch system. In
this section we'll look at a few basic examples rather than try to be
exhaustive.

First, identify the pbs_server managers, i.e., the users who are allowed to
reconfigure the batch system. This is generally a one-time task. (Keep in mind
that not all commands require administrative privileges. Subcommands such
as the list and print can be executed by all users.) Run the qmgr command as
follows, substituting your username:

[root@fanny OpenPBS]# qmgr

Max open servers: 4

Qmgr: set server managers=sloanjd@fanny.wofford.int

Qmgr: quit

You can specify multiple managers by adding their names to the end of the
command, separated by commas. Once done, you'll no longer need root
privileges to manage PBS.

Your next task will be to create a queue. Let's look at an example.

[sloanjd@fanny PBS]$ qmgr

Max open servers: 4

Qmgr: create queue workqueue

Qmgr: set queue workqueue queue_type = execution

Qmgr: set queue workqueue resources_max.cput = 24:00:00

Qmgr: set queue workqueue resources_min.cput = 00:00:01

Qmgr: set queue workqueue enabled = true

Qmgr: set queue workqueue started = true

Qmgr: set server scheduling = true

Qmgr: set server default_queue = workqueue

Qmgr: quit

In this example we have created a new queue named workqueue. We have
limited CPU time to between 1 second and 24 hours. The queue has been
enabled, started, and set as the default queue for the server, which must have
at least one queue defined. All queues must have a type, be enabled, and be
started.

As you can see from the example, the general form of a qmgr command line is
a command (active, create, delete, set, unset, list, or print) followed by a
target (server, queue, or node) followed by an attribute assignment. These
keywords can be abbreviated as long as there is no ambiguity. In the first
example in this section, we set a server attribute. In the second example, the
target was the queue that we were creating for most of the commands.

To examine the configuration of the server, use the command

Qmgr: print server

This can be used to save the configuration you are using. Use the command

[root@fanny PBS]# qmgr -c "print server" > server.config

Note, that with the -c flag, qmgr commands can be entered on a single line. To
re-create the queue at a later time, use the command

[root@fanny PBS]# qmgr < server.config

This can save a lot of typing or can be automated if needed. Other actions are

described in the documentation.

Another useful command is pbsnodes, which lists the status of the nodes on
your cluster.

[sloanjd@amy sloanjd]$ pbsnodes -a

oscarnode1.oscardomain

 state = free

 np = 1

 properties = all

 ntype = cluster

oscarnode2.oscardomain

 state = free

 np = 1

 properties = all

 ntype = cluster

...

On a large cluster, that can create a lot of output.

11.1.5 Using PBS

From the user's perspective, the place to start is the qsub command, which
submits jobs. The only jobs that the qsub accepts are scripts, so you'll need to
package your tasks appropriately. Here is a simple example script:

#!/bin/sh

#PBS -N demo

#PBS -o demo.txt

#PBS -e demo.txt

#PBS -q workq

#PBS -l mem=100mb

mpiexec -machinefile /etc/myhosts -np 4 /home/sloanjd/area/area

The first line specified the shell to use in interpreting the script, while the next
few lines starting with #PBS are directives that are passed to PBS. The first
names the job, the next two specify where output and error output go, the
next to last identifies the queue that is used, and the last lists a resource that
will be needed, in this case 100 MB of memory. The blank line signals the end
of PBS directives. Lines that follow the blank line indicate the actual job.

Once you have created the batch script for your job, the qsub command is
used to submit the job.

[sloanjd@amy area]$ qsub pbsdemo.sh

11.amy

When run, qsub returns the job identifier as shown. A number of different
options are available, both as command-line arguments to qsub or as
directives that can be included in the script. See the qsub (1B) manpage for
more details.

There are several things you should be aware of when using qsub. First, as
noted, it expects a script. Next, the target script cannot take any command-
line arguments. Finally, the job is launched on one node. The script must
ensure that any parallel processes are then launched on other nodes as
needed.

In addition to qsub, there are a number of other useful commands available to
the general user. The commands qstat and qdel can be used to manage jobs.
In this example, qstat is used to determine what is on the queue:

[sloanjd@amy area]$ qstat

Job id Name User Time Use S Queue

---------------- ---------------- ---------------- -------- - -----

11.amy pbsdemo sloanjd 0 Q workq

12.amy pbsdemo sloanjd 0 Q workq

qdel is used to delete jobs as shown.

[sloanjd@amy area]$ qdel 11.amy

[sloanjd@amy area]$ qstat

Job id Name User Time Use S Queue

---------------- ---------------- ---------------- -------- - -----

12.amy pbsdemo sloanjd 0 Q workq

qstat can be called with the job identifier to get more information about a
particular job or with the -s option to get more details.

A few of the more useful ones include the following:

qalter

This is used to modify the attributes of an existing job.

qhold

This is used to place a hold on a job.

qmove

This is used to move a job from one queue to another.

qorder

This is used to change the order of two jobs.

qrun

This is used to force a server to start a job.

If you start with the qsub (1B) manpage, other available commands are listed
in the "See Also" section.

Figure 11-1. xpbs -admin

Figure 11-2. xpbsmon

11.1.6 PBS's GUI

PBS provides two GUIs for queue management. The command xpbs will start a
general interface. If you need to do administrative tasks, you should include
the argument -admin. Figure 11-1 shows the xpbs GUI with the -admin option.
Without this option, the general appearance is the same, but a number of
buttons are missing. You can terminate a server; start, stop, enable, or disable
a queue; or run or rerun a job. To monitor nodes in your cluster, you can use
the xpbsmon command, shown for a few machines in Figure 11-2.

11.1.7 Maui Scheduler

If you need to go beyond the schedulers supplied with PBS, you should
consider installing Maui. In a sense, Maui picks up where PBS leaves off. It is
an external scheduler that is, it does not include a resource manager. Rather, it
can be used in conjunction with a resource manager such as PBS to extend the
resource manager's capabilities. In addition to PBS, Maui works with a number
of other resource managers.

Maui controls how, when, and where jobs will be run and can be described as a
policy engine. When used correctly, it can provide extremely high system

utilization and should be considered for any large or heavily utilized cluster
that needs to optimize throughput. Maui provides a number of very advanced
scheduling options. Administration is through the master configuration file
maui.cfg and through either a text-based or a web-based interface.

Maui is installed by default as part of OSCAR and Rocks. For the most recent
version of Maui or for further documentation, you should visit the Maui web
site, http://www.supercluster.org.

http://www.supercluster.org

11.2 Notes for OSCAR and Rocks Users

As previously noted, both OpenPBS and Maui are installed as part of the
OSCAR setup. The installation directory for OpenPBS is /opt/pbs. You'll find the
various commands in subdirectories under this directory. The working
directory for OpenPBS is /var/spool/pbs, where you'll find the configuration
and log files. The default queue, as you may have noticed from previous
examples, is workq. Under OSCAR, Maui is installed in the directory /opt/maui.
By default, the OpenPBS FIFO scheduler is disabled.

OpenPBS and Maui are available for Rocks as a separate roll. If you need
OpenPBS, be sure you include the roll when you build your cluster as it is not
currently possible to add the roll once the cluster has been installed. Once
installed, the system is ready to use. The default queue is default.

Rocks also provides a web-based interface for viewing the job queue that is
available from the frontend's home page. Using the web interface, you can
view both the job queue and the physical job assignments. PBS configuration
files are located in /opt/torque. Manpages are in /opt/torque/man. Maui is
installed under /opt/maui.

Chapter 12. Parallel Filesystems
If you are certain that your cluster will only be used for computationally
intensive tasks that involve very little interaction with the filesystem, you can
safely skip this chapter. But increasingly, tasks that are computationally
expensive also involve a large amount of I/O, frequently accessing either large
data sets or large databases. If this is true for at least some of your cluster's
applications, you need to ensure that the I/O subsystem you are using can
keep up. For these applications to perform well, you will need a high-
performance filesystem.

Selecting a filesystem for a cluster is a balancing act. There are a number of
different characteristics that can be used to compare filesystems, including
robustness, failure recovery, journaling, enhanced security, and reduced
latency. With clusters, however, it often comes down to a trade-off between
convenience and performance. From the perspective of convenience, the
filesystem should be transparent to users, with files readily available across
the cluster. From the perspective of performance, data should be available to
the processor that needs it as quickly as possible. Getting the most from a
high-performance filesystem often means programming with the filesystem in
mindtypically a very "inconvenient" task. The good news is that you are not
limited to a single filesystem.

The Network File System (NFS) was introduced in Chapter 4. NFS is strong on
convenience. With NFS, you will recall, files reside in a directory on a single
disk drive that is shared across the network. The centralized availability
provided by NFS makes it an important part of any cluster. For example, it
provides a transparent mechanism to ensure that binaries of freshly compiled
parallel programs are available on all the machines in the cluster.
Unfortunately, NFS is not very efficient. In particular, it has not been
optimized for the types of I/O often needed with many high-performance
cluster applications.

High-performance filesystems for clusters are designed using different criteria,
primarily to optimize performance when accessing large data sets from parallel
applications. With parallel filesystems, files may be distributed across a cluster
with different pieces of the file on different machines allowing parallel access.

A parallel filesystem might not provide optimal performance for serial
programs or single tasks. Because high-performance filesystems are designed
for a different purpose, they should not be thought of as replacements for NFS.
Rather, they complement the functionality provided by NFS. Many clusters
benefit from both NFS and a high-performance filesystem.

There's more good news. If you need a high-performance filesystem, there are
a number of alternatives. If you have very deep pockets, you can go for
hardware-based solutions. With network attached storage (NAS), a dedicated
server is set up to service file requests for the network. In a sense, NAS owns
the filesystem. Since serving files is NAS's only role, NAS servers tend to be
highly optimized file servers. But because these are still traditional servers,
latency can still be a problem.

The next step up is a storage area network (SAN). Typically, a SAN provides
direct block-level access to the physical hardware. A SAN typically includes
high-performance networking as well. Traditionally, SANs use fibre channel
(FC) technology. More recently, IP-based storage technologies that operate at
the block level have begun to emerge. This allows the creation of a SAN using
more familiar IP-based technologies.

Because of the high cost of hardware-based solutions, they are outside the
scope of this book. Fortunately, there are also a number of software-based
filesystems for clusters, each with its own set of features and limitations. While
many of the following might not be considered a high-performance filesystem,
you might consider one of the following, depending upon your needs. However,
you should be very careful before adopting any of these. Like most software,
these should be regarded as works in progress. While they may be ideal for
some uses, they may be problematic for others. Caveat emptor! These
packages are generally available as both source tar balls and as RPMs.

ClusterNFS

This is a set of patches for the NFS server daemon. The clients run
standard NFS software. The patches allow multiple diskless clients to
mount the same root filesystem by "reinterpreting" file names. ClusterNFS
is often used with Mosix. If you are building a diskless cluster, this is a
package you might want to consider (http://clusternfs.sourceforge.net/).

Coda

Coda is a distributed filesystem developed at Carnegie Mellon University. It
is derived from the Andrew File System. Coda has many interesting
features such as performance enhancement through client side persistent
caching, bandwidth adaptation, and robust behavior with partial network
failures. It is a well documented, ongoing project. While it may be too

http://clusternfs.sourceforge.net/

early to use Coda with large, critical systems, this is definitely a distributed
filesystem worth watching (http://www.coda.cs.cmu.edu/index.html).

InterMezzo

This distributed filesystem from CMU was inspired by Coda. InterMezzo is
designed for use with high-availability clusters. Among other features, it
offers automatic recovery from network outages (http://www.inter-
mezzo.org/).

Lustre

Lustre is a cluster filesystem designed to work with very large clustersup
to 10,000 nodes. It was developed and is maintained by Cluster File
Systems, Inc. and is available under a GPL. Since Lustre patches the
kernel, you'll need to be running a 2.4.X kernel (http://www.lustre.org/).

OpenAFS

The Andrew File System was originally created at CMU and now developed
and supported by IBM. OpenAFS is source fork released by IBM. It provides
scalable client-server-based architecture with transparent data migration.
Consider OpenAFS a potential replacement for NFS
(http://www.openafs.org/).

Parallel Virtual File System (PVFS)

PVFS provides high-performance, parallel filesystem. The remainder of this
chapter describes PVFS in detail (http://www.parl.clemson.edu/pvfs/).

This is only a partial listing of what is available. If you are looking to
implement a SAN, you might consider Open Global File System (OpenGFS)
(http://opengfs.sourceforge.net/). Red Hat markets a commercial, enterprise
version of OpenGFS. If you are using IBM hardware, you might what to look
into General Parallel File System (GPFS) (http://www-
1.ibm.com/servers/eserver/clusters/software/gpfs.html). In this chapter we
will look more closely at PVFS, an open source, high-performance filesystem

http://www.coda.cs.cmu.edu/index.html
http://www.inter-mezzo.org/
http://www.lustre.org/
http://www.openafs.org/
http://www.parl.clemson.edu/pvfs/
http://opengfs.sourceforge.net/
http://www-1.ibm.com/servers/eserver/clusters/software/gpfs.html

available for both Rocks and OSCAR.

12.1 PVFS

PVFS is a freely available, software-based solution jointly developed by
Argonne National Laboratory and Clemson University. PVFS is designed to
distribute data among the disks throughout the cluster and will work with both
serial and parallel programs. In programming, it works with traditional Unix
file I/O semantics, with the MPI-2 ROMIO semantics, or with the native PVFS
semantics. It provides a consistent namespace and transparent access using
existing utilities along with a mechanism for programming application-specific
access. Although PVFS is developed using X-86-based Linux platforms, it runs
on some other platforms. It is available for both OSCAR and Rocks. PVFS2, a
second generation PVFS, is in the works.

On the downside, PVFS does not provide redundancy, does not support
symbolic or hard links, and it does not provide a fsck-like utility.

Figure 12-1 shows the overall architecture for a cluster using PVFS. Machines
in a cluster using PVFS fall into three possibly overlapping categories based on
functionality. Each PVFS has one metadata server. This is a filesystem
management node that maintains or tracks information about the filesystem
such as file ownership, access privileges, and locations, i.e., the filesystem's
metadata.

Figure 12-1. Internal cluster architecture

Because PVFS distributes files across the cluster nodes, the actual files are
located on the disks on I/O servers. I/O servers store the data using the
existing hardware and filesystem on that node. By spreading or striping a file
across multiple nodes, applications have multiple paths to data. A compute
node may access a portion of the file on one machine while another node
accesses a different portion of the file located on a different I/O server. This
eliminates the bottleneck inherent in a single file server approach such as
NFS.

The remaining nodes are the client nodes. These are the actual compute nodes
within the clusters, i.e., where the parallel jobs execute. With PVFS, client
nodes and I/O servers can overlap. For a small cluster, it may make sense for
all nodes to be both client and I/O nodes. Similarly, the metadata server can
also be an I/O server or client node, or both. Once you start writing data to
these machines, it is difficult to change the configuration of your system. So
give some thought to what you need.

12.1.1 Installing PVFS on the Head Node

Installing and configuring PVFS is more complicated that most of the other
software described in this book for a couple of reasons. First, you will need to
decide how to partition your cluster. That is, you must decide which machine
will be the metadata server, which machines will be clients, and which
machines will be I/O servers. For each type of machine, there is different
software to install and a different configuration. If a machine is going to be
both a client and an I/O server, it must be configured for each role. Second, in
order to limit the overhead of accessing the filesystem through the kernel, a
kernel module is used. This may entail further tasks such as making sure the
appropriate kernel header files are available or patching the code to account
for differences among Linux kernels.

This chapter describes a simple configuration where fanny is the metadata
server, a client, and an I/O server, and all the remaining nodes are both
clients and I/O servers. As such, it should provide a fairly complete idea about
how PVFS is set up. If you are configuring your cluster differently, you won't
need to do as much. For example, if some of your nodes are only I/O nodes,
you can skip the client configuration steps on those machines.

In this example, the files are downloaded, compiled, and installed on fanny
since fanny plays all three roles. Once the software is installed on fanny, the
appropriate pieces are pushed to the remaining machines in the cluster.

The first step, then, is to download the appropriate software. To download
PVFS, first go to the PVFS home page (http://www.parl.clemson.edu/pvfs/)
and follow the link to files. This site has links to several download sites. (You'll
want to download the documentation from this site before moving on to the
software download sites.) There are two tar archives to download: the sources
for PVFS and for the kernel module.

You should also look around for any patches you might need. For example, at
the time this was written, because of customizations to the kernel, the current

http://www.parl.clemson.edu/pvfs/

version of PVFS would not compile correctly under Red Hat 9.0. Fortunately, a
patch from http://www.mcs.anl.gov/~robl/pvfs/redhat-ntpl-fix.patch.gz was
available.[1] Other patches may also be available.

[1] Despite the URL, this was an uncompressed text file at the time this was written.

Once you have the files, copy the files to an appropriate directory and unpack
them.

[root@fanny src]# gunzip pvfs-1.6.2.tgz

[root@fanny src]# gunzip pvfs-kernel-1.6.2-linux-2.4.tgz

[root@fanny src]# tar -xvf pvfs-1.6.2.tar

...

[root@fanny src]# tar -xvf pvfs-kernel-1.6.2-linux-2.4.tar

...

It is simpler if you install these under the same directory. In this example, the
directory /usr/local/src is used. In the documentation that comes with PVFS, a
link was created to the first directory.

[root@fanny src]# ln -s pvfs-1.6.0 pvfs

This will save a little typing but isn't essential.

Be sure to look at the README and INSTALL files that come with the sources.

Next, apply any patches you may need. As noted, with this version the kernel
module sources need to be patched.

[root@fanny src]# mv redhat-ntpl-fix.patch pvfs-kernel-1.6.2-linux-2.4/

http://www.mcs.anl.gov/%7Erobl/pvfs/redhat-ntpl-fix.patch.gz

[root@fanny src]# cd pvfs-kernel-1.6.2-linux-2.4

[root@fanny pvfs-kernel-1.6.2-linux-2.4]# patch -p1 -b <
\> redhat-ntpl-fix.patch

patching file config.h.in

patching file configure

patching file configure.in

patching file kpvfsd.c

patching file kpvfsdev.c

patching file pvfsdev.c

patching file pvfsdev.c

Apply any other patches that might be needed.

The next steps are compiling PVFS and the PVFS kernel module. Here are the
steps for compiling PVFS:

[root@fanny pvfs-kernel-1.6.2-linux-2.4]# cd /usr/local/src/pvfs

[root@fanny pvfs]# ./configure

...

[root@fanny pvfs]# make

...

[root@fanny pvfs]# make install

...

There is nothing new here.

Next, repeat the process with the kernel module.

[root@fanny src]# cd /usr/local/src/pvfs-kernel-1.6.2-linux-2.4

[root@fanny pvfs-kernel-1.6.2-linux-2.4]# ./configure

...

[root@fanny pvfs-kernel-1.6.2-linux-2.4]# make

...

[root@fanny pvfs-kernel-1.6.2-linux-2.4]# make install

install -c -d /usr/local/sbin

install -c mount.pvfs /usr/local/sbin

install -c pvfsd /usr/local/sbin

NOTE: pvfs.o must be installed by hand!

NOTE: install mount.pvfs by hand to /sbin if you want 'mount -t pvfs' to work

This should go very quickly.

As you see from the output, the installation for the kernel requires some
additional manual steps. Specifically, you need to decide where you want to
put the kernel module. The following works for Red Hat 9.0.

[root@fanny pvfs-kernel-1.6.2-linux-2.4]# mkdir \

> /lib/modules/2.4.20-6/kernel/fs/pvfs

[root@fanny pvfs-kernel-1.6.2-linux-2.4]# cp pvfs.o \

> /lib/modules/2.4.20-6/kernel/fs/pvfs/pvfs.o

If you are doing something different, you may need to poke around a bit to
find the right location.

12.1.2 Configuring the Metadata Server

If you have been following along, at this point you should have all the software
installed on the head node, i.e., the node that will function as the metadata
server for the filesystem. The next step is to finish configuring the metadata
server. Once this is done, the I/O server and client software can be installed
and configured.

Configuring the meta-server is straightforward. First, create a directory to
store filesystem data.

[root@fanny pvfs-kernel-1.6.2-linux-2.4]# mkdir /pvfs-meta

Keep in mind, this directory is used to store information about the PVFS
filesystem. The actual data is not stored in this directory. Once PVFS is
running, you can ignore this directory.

Next, create the two metadata configuration files and place them in this
directory. Fortunately, PVFS provides a script to simplify the process.

[root@fanny pvfs-kernel-1.6.2-linux-2.4]# cd /pvfs-meta

[root@fanny pvfs-meta]# /usr/local/bin/mkmgrconf

This script will make the .iodtab and .pvfsdir files

in the metadata directory of a PVFS file system.

Enter the root directory (metadata directory):

/pvfs-meta/

Enter the user id of directory:

root

Enter the group id of directory:

root

Enter the mode of the root directory:

777

Enter the hostname that will run the manager:

fanny

Searching for host...success

Enter the port number on the host for manager:

(Port number 3000 is the default)

3000

Enter the I/O nodes: (can use form node1, node2, ... or

nodename{#-#,#,#})

fanny george hector ida james

Searching for hosts...success

I/O nodes: fanny george hector ida james

Enter the port number for the iods:

(Port number 7000 is the default)

7000

Done!

Running this script creates the two configuration files .pvfsdir and .iodtab. The
file .pvfsdir contains permission information for the metadata directory. Here is

the file the mkmgrconf script creates when run as shown.

84230

0

0

0040777

3000

fanny

/pvfs-meta/

/

The first entry is the inode number of the configuration file. The remaining
entries correspond to the questions answered earlier.

The file .iodtab is a list of the I/O servers and their port numbers. For this
example, it should look like this:

fanny:7000

george:7000

hector:7000

ida:7000

james:7000

Systems can be listed by name or by IP number. If the default port (7000) is
used, it can be omitted from the file.

The .iodtab file is an ordered list of I/O servers. Once PVFS is running, you should not
change the .iodtab file. Otherwise, you will almost certainly render existing PVFS files

inaccessible.

12.1.3 I/O Server Setup

To set up the I/O servers, you need to create a data directory on the
appropriate machines, create a configuration file, and then push the
configuration file, along with the other I/O server software, to the appropriate
machines. In this example, all the nodes in the cluster including the head node
are I/O servers.

The first step is to create a directory with the appropriate ownership and
permissions on all the I/O servers. We start with the head node.

[root@fanny /]# mkdir /pvfs-data

[root@fanny /]# chmod 700 /pvfs-data

[root@fanny /]# chown nobody.nobody /pvfs-data

Keep in mind that these directories are where the actual pieces of a data file
will be stored. However, you will not access this data in these directories
directly. That is done through the filesystem at the appropriate mount point.
These PVFS data directories, like the meta-server's metadata directory, can be
ignored once PVFS is running.

Next, create the configuration file /etc/iod.conf using your favorite text editor.
(This is optional, but recommended.) iod.conf describes the iod environment.
Every line, apart from comments, consists of a key and a corresponding value.
Here is a simple example:

iod.conf-iod configuration file

datadir /pvfs-data

user nobody

group nobody

logdir /tmp

rootdir /

debug 0

As you can see, this specifies a directory for the data, the user and group
under which the I/O daemon iod will run, the log and root directories, and a
debug level. You can also specify other parameters such as the port and buffer
information. In general, the defaults are reasonable, but you may want to
revisit this file when fine-tuning your system.

While this takes care of the head node, the process must be repeated for each
of the remaining I/O servers. First, create the directory and configuration file
for each of the remaining I/O servers. Here is an example using the C3
utilities. (C3 is described in Chapter 10.)

[root@fanny /]# cexec mkdir /pvfs-data

...

[root@fanny /]# cexec chmod 700 /pvfs-data

...

[root@fanny /]# cexec chown nobody.nobody /pvfs-data

...

[root@fanny /]# cpush /etc/iod.conf

...

Since the configuration file is the same, it's probably quicker to copy it to each
machine, as shown here, rather than re-create it.

Finally, since the iod daemon was created only on the head node, you'll need
to copy it to each of the remaining I/O servers.

[root@fanny root]# cpush /usr/local/sbin/iod

...

While this example uses C3's cpush, you can use whatever you are
comfortable with.

If you aren't configuring every machine in your cluster to be an I/O server,
you'll need to adapt these steps as appropriate for your cluster. This is easy to
do with C3's range feature.

12.1.4 Client Setup

Client setup is a little more involved. For each client, you'll need to create a
PVFS device file, copy over the kernel module, create a mount point and a
PVFS mount table, and copy over the appropriate executable along with any
other utilities you might need on the client machine. In this example, all nodes
including the head are configured as clients. But because we have already
installed software on the head node, some of the steps aren't necessary for
that particular machine.

First, a special character file needs to be created on each of the clients using
the mknod command.

[root@fanny /]# cexec mknod /dev/pvfsd c 60 0

...

/dev/pvfsd is used to communicate between the pvfsd daemon and the kernel
module pvfs.o. It allows programs to access PVFS files, once mounted, using
traditional Unix filesystem semantics.

We will need to distribute both the kernel module and the daemon to each
node.

[root@fanny /]# cpush /usr/local/sbin/pvfsd

...

[root@fanny /]# cexec mkdir /lib/modules/2.4.20-6/kernel/fs/pvfs/

...

[root@fanny /]# cpush /lib/modules/2.4.20-6/kernel/fs/pvfs/pvfs.o

...

The kernel module registers the filesystem with the kernel while the daemon
performs network transfers.

Next, we need to create a mount point.

[root@fanny root]# mkdir /mnt/pvfs

[root@fanny /]# cexec mkdir /mnt/pvfs

...

This example uses /mnt/pvfs, but /pvfs is another frequently used alternative.
The mount directory is where the files appear to be located. This is the
directory you'll use to access or reference files.

The mount.pvfs executable is used to mount a filesystem using PVFS and
should be copied to each client node.

[root@fanny /]# cpush /usr/local/sbin/mount.pvfs /sbin/

...

mount.pvfs can be invoked by the mount command on some systems, or it can
be called directly.

Finally, create /etc/pvfstab, a mount table for the PVFS system. This needs to
contain only a single line of information as shown here:

fanny:/pvfs-meta /mnt/pvfs pvfs port=3000 0 0

If you are familiar with /etc/fstab, this should look very familiar. The first field
is the path to the metadata information. The next field is the mount point. The
third field is the filesystem type, which is followed by the port number. The
last two fields, traditionally used to determine when a filesystem is dumped or
checked, aren't currently used by PVFS. These fields should be zeros. You'll
probably need to change the first two fields to match your cluster, but
everything else should work as shown here.

Once you have created the mount table, push it to the remaining nodes.

[root@fanny /]# cpush /etc/pvfstab

...

[root@fanny /]# cexec chmod 644 /etc/pvfstab

...

Make sure the file is readable as shown.

While it isn't strictly necessary, there are some other files that you may want
to push to your client nodes. The installation of PVFS puts a number of utilities
in /usr/local/bin. You'll need to push these to the clients before you'll be able
to use them effectively. The most useful include mgr-ping, iod-ping, pvstat,
and u2p.

[root@fanny root]# cpush /usr/local/bin/mgr-ping

...

[root@fanny root]# cpush /usr/local/bin/iod-ping

...

[root@fanny root]# cpush /usr/local/bin/pvstat

...

[root@fanny pvfs]# cpush /usr/local/bin/u2p

...

As you gain experience with PVFS, you may want to push other utilities across
the cluster.

If you want to do program development using PVFS, you will need access to
the PVFS header files and libraries and the pvfstab file. By default, header and
library files are installed in /usr/local/include and /usr/local/lib, respectively. If
you do program development only on your head node, you are in good shape.
But if you do program development on any of your cluster nodes, you'll need
to push these files to those nodes. (You might also want to push the manpages
as well, which are installed in /usr/local/man.)

12.1.5 Running PVFS

Finally, now that you have everything installed, you can start PVFS. You need
to start the appropriate daemons on the appropriate machines and load the
kernel module. To load the kernel module, use the insmod command.

[root@fanny root]# insmod /lib/modules/2.4.20-6/kernel/fs/pvfs/pvfs.o

[root@fanny root]# cexec insmod /lib/modules/2.4.20-6/kernel/fs/pvfs/pvfs.o

...

Next, run the mgr daemon on the metadata server. This is the management
daemon.

[root@fanny root]# /usr/local/sbin/mgr

On each I/O server, start the iod daemon.

[root@fanny root]# /usr/local/sbin/iod

[root@fanny root]# cexec /usr/local/sbin/iod

...

Next, start the pvfsd daemon on each client node.

[root@fanny root]# /usr/local/sbin/pvfsd

[root@fanny root]# cexec /usr/local/sbin/pvfsd

...

Finally, mount the filesystem on each client.

[root@fanny root]# /usr/local/sbin/mount.pvfs fanny:/pvfs-meta /mnt/pvfs

[root@fanny /]# cexec /sbin/mount.pvfs fanny:/pvfs-meta /mnt/pvfs

...

PVFS should be up and running.[2]

[2] Although not described here, you'll probably want to make the necessary changes to your
startup file so that this is all done automatically. PVFS provides scripts enablemgr and enableiod for
use with Red Hat machines.

To shut PVFS down, use the umount command to unmount the filesystem,
e.g., umount /mnt/pvfs, stop the PVFS processes with kill or killall, and unload
the pvfs.o module with the rmmod command.

12.1.5.1 Troubleshooting

There are several things you can do to quickly check whether everything is
running. Perhaps the simplest is to copy a file to the mounted directory and
verify that it is accessible on other nodes. If you have problems, there are a
couple of other things you might want to try to narrow things down.

First, use ps to ensure the daemons are running on the appropriate machines.

For example,

[root@fanny root]# ps -aux | grep pvfsd

root 15679 0.0 0.1 1700 184 ? S

Jun21 0:00 /usr/local/sbin/pvfsd

Of course, mgr should be running only on the metadata server and iod should
be running on all the I/O servers (but nowhere else).

Each process will create a log file, by default in the /tmp directory. Look to see
if these are present.

[root@fanny root]# ls -l /tmp

total 48

-rwxr-xr-x 1 root root 354 Jun 21 11:13 iolog.OxLkSR

-rwxr-xr-x 1 root root 0 Jun 21 11:12 mgrlog.z3tg11

-rwxr-xr-x 1 root root 119 Jun 21 11:21 pvfsdlog.msBrCV

...

The garbage at the end of the filenames is generated to produce a unique
filename.

The mounted PVFS will be included in the listing given with the mount
command.

[root@fanny root]# mount

...

fanny:/pvfs-meta on /mnt/pvfs type pvfs (rw)

...

This should work on each node.

In addition to the fairly obvious tests just listed, PVFS provides a couple of
utilities you can turn to. The utilities iod-ping and mgr-ping can be used to
check whether the I/O and metadata servers are running and responding on a
particular machine.

Here is an example of using iod-ping:

[root@fanny root]# /usr/local/bin/iod-ping

localhost:7000 is responding.

[root@fanny root]# cexec /usr/local/bin/iod-ping

************************* local *************************

--------- george.wofford.int---------

localhost:7000 is responding.

--------- hector.wofford.int---------

localhost:7000 is responding.

--------- ida.wofford.int---------

localhost:7000 is responding.

--------- james.wofford.int---------

localhost:7000 is responding.

The iod daemon seems to be OK on all the clients. If you run mgr-ping, only
the metadata server should respond.

12.2 Using PVFS

To make effective use of PVFS, you need to understand how PVFS distributes
files across the cluster. PVFS uses a simple striping scheme with three striping
parameters.

base

The cluster node where the file starts, given as an index where the first
I/O server is 0. Typically, this defaults to 0.

pcount

The number of I/O servers among which the file is partitioned. Typically,
this defaults to the total number of I/O servers.

ssize

The size of each strip, i.e., contiguous blocks of data. Typically, this
defaults to 64 KB.

Figure 12-2 should help clarify how files are distributed. In the figure, the file
is broken into eight pieces and distributed among four I/O servers. base is the
index of the first I/O server. pcount is the number of servers used, i.e., four in
this case. ssize is the size of each of the eight blocks. Of course, the idea is to
select a block size that will optimize parallel access to the file.

Figure 12-2. Overlap within files

You can examine the distribution of a file using the pvstat utility. For example,

[root@fanny pvfs]# pvstat data

data: base = 0, pcount = 5, ssize = 65536

[root@fanny pvfs]# ls -l data

-rw-r--r-- 1 root root 10485760 Jun 21 12:49 data

A little arithmetic shows this file is broken into 160 pieces with 32 blocks on
each I/O server.

If you copy a file to a PVFS filesystem using cp, it will be partitioned
automatically for you using what should be reasonable defaults. For more
control, you can use the u2p utility. With u2p, the command-line option -s sets
the stripe size; -b specifies the base; and -n specifies the number of nodes.
Here is an example:

[root@fanny /]# u2p -s16384 data /mnt/data

1 node(s); ssize = 8192; buffer = 0; nanMBps (0 bytes total)

[root@fanny /]# pvstat /mnt/data

/mnt/data: base = 0, pcount = 1, ssize = 8192

Typically, u2p is used to convert an existing file for use with a parallel
program.

While Unix system call read and write will work with the PVFS without any
changes, large numbers of small accesses will not perform well. The buffered
routines from the standard I/O library (e.g., fread and fwrite) should work
better provided an adequate buffer is used.

To make optimal use of PVFS, you will need to write your programs to use
PVFS explicitly. This can be done using the native PVFS access provided
through the libpvfs.a library. Details can be found in Using the Parallel Virtual
File System, part of the documentation available at the PVFS web site.
Programming examples are included with the source in the examples

subdirectory. Clearly, you should understand your application's data
requirements before you begin programming.

Alternatively, PVFS can be used with the ROMIO interface from
http://www.mcs.anl.gov. The ROMIO is included with both MPICH and
LAM/MPI. (If you compile ROMIO, you need to specify PVFS support. Typically,
you use the compile flags -lib=/usr/local/lib/libpvfs.a and -
file_system=pvfs+nfs+ufs.) ROMIO provides two important optimizations, data
sieving and two-phase I/O. Additional information is available at the ROMIO
web site.

http://www.mcs.anl.gov

12.3 Notes for OSCAR and Rocks Users

Both OSCAR and Rocks use NFS. Rocks uses autofs to mount home directories;
OSCAR doesn't. (Automounting and autofs is discussed briefly in Chapter 4.)

PVFS is available as an add-on package for OSCAR. By default, it installs
across the first eight available nodes using the OSCAR server as the metadata
server and mount point. The OSCAR server is not configured as an I/O server.
OSCAR configures PVFS to start automatically when the system is rebooted.

With OSCAR, PVFS is installed in the directory /opt/pvfs, e.g., the libraries are
in /opt/pvfs/lib and the manpages are in /opt/pvfs/man. The manpages are not
placed on the user's path but can be with the -M option to man. For example,

[root@amy /]# man -M /opt/pvfs/man/ pvfs_chmod

The PVFS utilities are in /opt/pvfs/bin and the daemons are in /opt/pvfs/sbin.
The mount point for PVFS is /mnt/pvfs. Everything else is pretty much where
you would expect it to be.

PVFS is fully integrated into Rocks on all nodes. However, you will need to do
several configuration tasks. Basically, this means following the steps outlined
in this chapter. However, you'll find that some of the steps have been done for
you.

On the meta-server, the directory /pvfs-meta is already in place; run
/usr/bin/mkmgrconf to create the configuration files. For the I/O servers, you'll
need to create the data directory /pvfs-data but the configuration file is
already in place. The kernel modules are currently in /lib/modules/2.4.21-
15.EL/fs/ and are preloaded. You'll need to start the I/O daemon /usr/sbin/iod,
and you'll need to mount each client using /sbin/mount.pvfs. All in all it goes
quickly. Just be sure to note locations for the various commands.

Part IV: Cluster Programming
The final section of this book describes programming tools. If you will be
writing your own applications for your cluster, these chapters should get
you started.

Chapter 13. Getting Started with MPI
This chapter takes you through the creation of a simple program that uses the
MPI libraries. It begins with a few brief comments about using MPI. Next, it
looks at a program that can be run on a single processor without MPI, i.e., a
serial solution to the problem. This is followed by an explanation of how the
program can be rewritten using MPI to create a parallel program that divides
the task among the machines in a cluster. Finally, some simple ways the
solution can be extended are examined. By the time you finish this chapter,
you'll know the basics of using MPI.

Three versions of the initial solution to this problem are included in this
chapter. The first version, using C, is presented in detail. This is followed by
briefer presentations showing how the code can be rewritten, first using
FORTRAN, and then using C++. While the rest of this book sticks to C, these
last two versions should give you the basic idea of what's involved if you would
rather use FORTRAN or C++. In general, it is very straightforward to switch
between C and FORTRAN. It is a little more difficult to translate code into C++,
particularly if you want to make heavy use of objects in your code. You can
safely skip either or both the FORTRAN and C++ solutions if you won't be
using these languages.

13.1 MPI

The major difficulty in parallel programming is subdividing problems so that
different parts can be executed simultaneously on different machines. MPI is a
library of routines that provides the functionality needed to allow those parts
to communicate. But it will be up to you to determine how a problem can be
broken into pieces so that it can run on different machines.

The simplest approach is to have the number of processes match the number
of machines or processors that are available. However, this is not required. If
you have a small problem that can be easily run on a subset of your cluster, or
if your problem logically decomposes in such a way that you don't need the
entire cluster, then you can (and should) execute the program on fewer
machines. It is also possible to have multiple processes running on the same
machine. This is particularly common when developing code. In this case, the
operating system will switch between processes as needed. You won't benefit
from the parallelization of the code, but the job will still complete correctly.

13.1.1 Core MPI

With most parallelizable problems, programs running on multiple computers do
the bulk of the work and then communicate their individual results to a single
computer that collects these intermediate results, combines them, and reports
the final results. It is certainly possible to write a different program for each
machine in the cluster, but from a software management perspective, it is
much easier if we can write just one program. As the program executes on
each machine, it will first determine which computer it is running on and,
based on that information, tackle the appropriate part of the original problem.
When the computation is complete, one machine will act as a receiver and all
the other machines will send their results to it.

For this approach to work, each executing program or process must be able to
differentiate itself from other processes. Let's look at a very basic example that
demonstrates how processes, i.e., the program in execution on different
computers, are able to differentiate themselves. While this example doesn't
accomplish anything particularly useful, it shows how the pieces fit together. It
introduces four key functions and one other useful function. And with a few
minor changes, this program will serve as a template for future programs.

#include "mpi.h"

#include <stdio.h>

int main(int argc, char * argv[])

{

 int processId; /* rank of process */

 int noProcesses; /* number of processes */

 int nameSize; /* length of name */

 char computerName[MPI_MAX_PROCESSOR_NAME];

 MPI_Init(&argc, &argv);

 MPI_Comm_size(MPI_COMM_WORLD, &noProcesses);

 MPI_Comm_rank(MPI_COMM_WORLD, &processId);

 MPI_Get_processor_name(computerName, &nameSize);

 fprintf(stderr,"Hello from process %d on %s\n", processId, computerName);

 MPI_Finalize();

 return 0;

}

This example introduces five MPI functions, defined through the inclusion of
the header file for the MPI library, mpi.h, and included when the MPI library is

linked to the program. While this example uses C, similar libraries are
available for C++ and FORTRAN.

Four of these functions, MPI_Init, MPI_Comm_size, MPI_Comm_rank, and
MPI_Finalize, are seen in virtually every MPI program. We will look at each in
turn. (Notice that all MPI identifiers begin with MPI_.)

13.1.1.1 MPI_Init

MPI_Init is used to initialize an MPI session. All MPI programs must have a call
to MPI_Init. MPI_Init is called once, typically at the start of a program. You can
have lots of other code before this call, or you can even call MPI_Init from a
subroutine, but you should call it before any other MPI functions are called.
(There is an exception: the function MPI_Initialized can be called before MPI_Init.
MPI_Initialized is used to see if MPI_Init has been previously called.)

In C, MPI_Init can be called with the addresses for argc and argv as shown in the
example. This allows the program to take advantage of command-line
arguments. Alternatively, these addresses can be replaced with a NULL.

13.1.1.2 MPI_Finalize

MPI_Finalize is called to shut down MPI. MPI_Finalize should be the last MPI call
made in a program. It is used to free memory, etc. It is the user's
responsibility to ensure that all pending communications are complete before a
process calls MPI_Finalize. You must write your code so that every process calls
MPI_Finalize. Notice that there are no arguments.

13.1.1.3 MPI_Comm_size

This routine is used to determine the total number of processes running in a
communicator (the communications group for the processes being used). It
takes the communicator as the first argument and the address of an integer
variable used to return the number of processes. For example, if you are
executing a program using five processes and the default communicator, the
value returned by MPI_Comm_size will be five, the total number of processes
being used. This is number of processes, but not necessarily the number of
machines being used.

In the example, both MPI_Comm_size and MPI_Comm_rank used the default
communicator, MPI_COMM_WORLD. This communicator includes all the
processes available at initialization and is created automatically for you.
Communicators are used to distinguish and group messages. As such,
communicators provide a powerful encapsulation mechanism. While it is
possible to create and manipulate your own communicators, the default
communicator will probably satisfy most of your initial needs.

13.1.1.4 MPI_Comm_rank

MPI_Comm_rank is used to determine the rank of the current process within the
communicator. MPI_Comm_rank takes a communicator as its first argument and
the address of an integer variable is used to return the value of the rank.

Basically, each process is assigned a different process number or rank within a
communicator. Ranks range from 0 to one less than the size returned by
MPI_Comm_size. For example, if you are running a set of five processes, the
individual processes will be numbered 0, 1, 2, 3, and 4. By examining its rank,
a process can distinguish itself from other processes.

The values returned by MPI_Comm_size and MPI_Comm_rank are often used to
divvy up a problem among processes. For example, suppose that for some
problem you want to divide the work among five processors. This is a decision
you make when you run your program; your choice is not coded into the
program since it may not be known when the program is written. Once the
program is running, it can call MPI_Comm_size to determine the number of
processes attacking the problem. In this example, it would return five. Each of
the five processes now knows that it needs to solve one fifth of the original
problem (assuming you've written the code this way).

Next, each individual process can examine its rank to determine its role in the
calculation. Continuing with the current example, each process needs to decide
which fifth of the original problem to work on. This is where MPI_Comm_rank
comes in. Since each process has a different rank, it can use its rank to select
its role. For example, the process with rank 0 might work on the first part of
the problem; the process with rank 1 will work on the second part of the
problem, etc.

Of course, you can divide up the problem differently if you like. For example,
the process with rank 0 might collect all the results from the other processes
for the final report rather than participate in the actual calculation. Or each
process could use its rank as an index to an array to discover what parameters

to use in a calculation. It is really up to you as a programmer to determine
how you want to use this information.

13.1.1.5 MPI_Get_processor_name

MPI_Get_processor_name is used to retrieve the host name of the node on which
the individual process is running. In the sample program, we used it to display
host names. The first argument is an array to store the name and the second
is used to return the actual length of the name.

MPI_Get_processor_name is a nice function to have around, particularly when
you want to debug code, but otherwise it isn't used all that much. The first
four MPI functions, however, are core functions and will be used in virtually
every MPI program you'll write. If you drop the relevant declarations, the call
to MPI_Get_processor_name, and the fprintf, you'll have a template that you can
use when writing MPI programs.

Although we haven't used it, each of the C versions of these five functions
returns an integer error code. With a few exceptions, the actual code is left up
to the implementers. Error codes can be translated into meaningful messages
using the MPI_Error_string function. In order to keep the code as simple as
possible, this book has adopted the (questionable) convention of ignoring the
returned error codes.

Here is an example of compiling and running the code:

[sloanjd@amy sloanjd]$ mpicc hello.c -o hello

[sloanjd@amy sloanjd]$ mpirun -np 5 hello

Hello from process 0 on amy

Hello from process 2 on oscarnode2.oscardomain

Hello from process 1 on oscarnode1.oscardomain

Hello from process 4 on oscarnode4.oscardomain

Hello from process 3 on oscarnode3.oscardomain

There are a couple of things to observe with this example. First, notice that
there is no apparent order in the output. This will depend on the speed of the
individual machines, the loads on the machines, and the speeds of the
communications links. Unless you take explicit measures to control the order
of execution among processors, you should make no assumptions about the
order of execution.

Second, the role of MPI_Comm_size should now be clearer. When running the
program, the user specifies the number of processes on the command line.
MPI_Comm_size provided a way to get that information back into the program.
Next time, if you want to use a different number of processes, just change the
command line and your code will take care of the rest.

13.2 A Simple Problem

Before we can continue examining MPI, we need a more interesting problem to
investigate. We will begin by looking at how you might write a program to
calculate the area under a curve, i.e., a numerical integration. This is a fairly
standard problem for introducing parallel calculations because it can be easily
decomposed into parts that can be shared among the computers in a cluster.
Although in most cases it can be solved quickly on a single processor, the
parallel solution illustrates all the basics you need to get started writing MPI
code. We'll keep coming back to this problem in later chapters so you'll
probably grow tired of it. But sticking to the same problem will make it easy
for us to focus on programming constructs without getting bogged down with
the details of different problems.

If you are familiar with numerical integration, you can skim this section
quickly and move on to the next. Although this problem is a bit mathematical,
it is straightforward and the mathematics shouldn't create much of a problem.
Each step in the problem in this section is carefully explained, and you don't
need to worry about every detail to get the basic idea.

13.2.1 Background

Let's get started. Suppose you are driving a car whose clock and speedometer
work, but whose odometer doesn't work. How do you determine how far you
have driven? If you are traveling at a constant speed, the distance traveled is
the speed that you are traveling multiplied by the amount of time you travel.
If you go 60 miles an hour for two hours, you travel 120 miles. If your speed
is changing, you'll need to do a lot of little calculations and add up the results.
For example, if you go 60 for 30 minutes, slow down to 40 for construction for
the next 30 minutes, and then hotfoot it at 70 for the next hour to make up
time, your total distance is 30 plus 20 plus 70 or 120 miles. You just calculate
the distance traveled at each speed and add up the results.

If we plot speed against time, we can see that what we are calculating is the
area under the curve. Basically, we are dividing the area into rectangles,
calculating the area of each rectangle, and then adding up the results. In our
example, the first rectangle has a width of one half (half an hour) and a height
of 60, the second a width of one half and a height of 40, and the third a width
of 1 and a height of 70. If your speed changes a lot, you will just have more
rectangles. Figure 13-1 gives the basic idea.

Figure 13-1. Area is distance traveled

Of course, in practice, your speed will change smoothly rather than in steps so
that you won't be able to fit rectangles perfectly into the area. But the area
under the curve does give the exact answer to the problem, and you can
approximate the area by adding up rectangles. Generally, the more rectangles
you use, the better your approximation.

In Figure 13-2, three rectangles are used to estimate the area under a curve
for a similar problem. In Figure 13-3, six rectangles are used. The shaded
areas in each determine the error in the approximation of the total area.
However, since some of these areas are above the curve and some below, they
tend to cancel each other out, at least in part. Unfortunately, this is not always
the case.[1]

[1] Those of you who remember your calculus recognize that we are calculating definite integrals.
But as a numerical technique, this approximation will work even if you can't do the integration. (Ever
run across an integral you couldn't evaluate?) You may also be asking why we aren't using the
trapezoid rule. We are trying to keep things simple. The trapezoid rule is left as an exercise for those
of you who remember it.

Figure 13-2. Approximating with three rectangles

Figure 13-3. Approximating with six rectangles

We can do this calculation without bothering to do the graph. All we need are
the heights and widths of the rectangles. Widths are easy we just divide the
trip duration by however many rectangles we want. For the heights, we will
need a way to calculate the speed during the rectangle. What we really want is
the average speed. As an approximation, the simplest approach is to use the
speed at the middle of a rectangle. For most problems of this general type,
some function or rule is used to calculate this value.

Let's turn this into to a more generic problem. Suppose you want to know the
area under the curve f(x) = x2 between 2 and 5. This is the shaded region in
Figure 13-4, which shows what the graph of this problem would look like if we
use three rectangles.

Figure 13-4. Area under x2 from 2 to 5 with three rectangles

With three rectangles, the width of each will be 1. To find the height, we take
the center of each rectangle (2.5, 3.5, and 4.5) and evaluate the function
(2.52 = 6.25, 352 = 12.25, and 4.52 = 20.25). Multiplying height by width for
each rectangle and adding the results gives an area of 38.75. (Using calculus,
we know the exact answer is 39.0, so we aren't far off.)

13.2.2 Single-Processor Program

Being computer types, we'll want to write a program to do the calculation. This
will allow us to easily use many more rectangles to get better results and will
allow us to easily change the endpoints and functions we use. Here is the code
in C:

#include <stdio.h>

/* problem parameters */

#define f(x) ((x) * (x))

#define numberRects 50

#define lowerLimit 2.0

#define upperLimit 5.0

int main (int argc, char * argv[])

{

 int i;

 double area, at, height, width;

 area = 0.0;

 width = (upperLimit - lowerLimit) / numberRects;

 for (i = 0; i < numberRects; i++)

 { at = lowerLimit + i * width + width / 2.0;

 height = f(at);

 area = area + width * height;

 }

 printf("The area from %f to %f is: %f\n", lowerLimit, upperLimit, area);

 return 0;

}

After entering the code with our favorite text editor, we can compile and run
it.

[sloanjd@cs sloanjd]$ gcc rect.c -o rect

[sloanjd@cs sloanjd]$./rect

The area from 2.000000 to 5.000000 is: 38.999100

This is a much better answer.

This code should be self-explanatory, but a few comments can't hurt. First,
macros are used to define the problem parameters, including the function that
we are looking at. For the parameters, this lets us avoid the I/O issue when we
code the MPI solution. The macro for the function is used to gain the greater
efficiency of inline code while maintaining the clarity of a separate function.
While this isn't much of an issue here, it is good to get in the habit of using
macros. The heart of the code is a loop that, for each rectangle, first calculates
the height of the rectangle and then calculates the area of the rectangle,
adding it to a running total. Since we want to calculate the height of the
rectangle at the middle of the interval, we add width/2.0 when calculating at,
the location we feed into the function. Obviously, there are a few things we
can do to tighten up this code, but let's not worry about that right now

13.3 An MPI Solution

Now that we've seen how to create a serial solution, let's look at a parallel
solution. We'll look at the solution first in C and then in FORTRAN and C++.

13.3.1 A C Solution

The reason this area problem is both interesting and commonly used is that it
is very straightforward to subdivide this problem. We can let different
computers calculate the areas for different rectangles. Along the way, we'll
introduce two new functions, MPI_Send and MPI_Receive, used to exchange
information among processes.

Basically, MPI_Comm_size and MPI_Comm_rank are used to divide the problem
among processors. MPI_Send is used to send the intermediate results back to
the process with rank 0, which collects the results with MPI_Recv and prints the
final answer. Here is the program:

#include "mpi.h"

#include <stdio.h>

/* problem parameters */

#define f(x) ((x) * (x))

#define numberRects 50

#define lowerLimit 2.0

#define upperLimit 5.0

int main(int argc, char * argv[])

{

 /* MPI variables */

 int dest, noProcesses, processId, src, tag;

 MPI_Status status;

 /* problem variables */

 int i;

 double area, at, height, lower, width, total, range;

 /* MPI setup */

 MPI_Init(&argc, &argv);

 MPI_Comm_size(MPI_COMM_WORLD, &noProcesses);

 MPI_Comm_rank(MPI_COMM_WORLD, &processId);

 /* adjust problem size for subproblem*/

 range = (upperLimit - lowerLimit) / noProcesses;

 width = range / numberRects;

 lower = lowerLimit + range * processId;

 /* calculate area for subproblem */

 area = 0.0;

 for (i = 0; i < numberRects; i++)

 { at = lower + i * width + width / 2.0;

 height = f(at);

 area = area + width * height;

 }

 /* collect information and print results */

 tag = 0;

 if (processId = = 0) /* if rank is 0, collect results */

 { total = area;

 for (src=1; src < noProcesses; src++)

 { MPI_Recv(&area, 1, MPI_DOUBLE, src, tag, MPI_COMM_WORLD, &status);

 total = total + area;

 }

 fprintf(stderr, "The area from %f to %f is: %f\n",

 lowerLimit, upperLimit, total);

 }

 else /* all other processes only send */

 { dest = 0;

 MPI_Send(&area, 1, MPI_DOUBLE, dest, tag, MPI_COMM_WORLD);

 };

 /* finish */

 MPI_Finalize();

 return 0;

}

This code is fairly straightforward, and you've already seen most of it. As
before, we begin with the definition of the problem function and parameters.
This is followed by the declaration of the variable that we'll need, first for the
MPI calls and then for the problem. There are a few MPI variables whose use
will be described shortly. Next comes the section that sets up MPI, but there is
nothing new here.

The first real change comes in the next section where we adjust the problem
size. In this example, we are calculating the area between 2 and 5. Since each
process only needs to do part of this calculation, we need to divide the problem
among the processes so that each process gets a different part (and all the
parts are accounted for.) MPI_Comm_size is used to determine the number of
parts the problem will be broken into, noProcesses. That is, we divide the total
range (2 to 5) equally among the processes and adjust the start of the range
for an individual process based on its rank. For example, with four processes,
one process could calculate from 2 to 2.75, one from 2.75 to 3.5, one from 3.5
to 4.25, and one from 4.25 to 5.

In the next section of code, each process calculates the area for its part of the
problem. This code keeps the number of rectangles fixed in this example
rather than adjust it to the number of processes. That is, regardless of the
number of processes used, each will use the same number of rectangles to
solve its portion of the problem. Thus, if the number of processes increases
from one run to the next, the answer won't come back any quicker but, up to a
point, the answer should be more accurate. If your goal is speed, you could
easily set the total number of rectangles for the problem, and then, in each
process, divide that number by the number of processes or use some similar
strategy.

Once we have completed this section, we need to collect and combine all our
individual results. This is the new stuff. One process will act as a collector to
which the remaining processes will send their results. Using the process with
rank 0 as the receiver is the logical choice. The remaining processes act as
senders. There is nothing magical about this choice apart from the fact that
there will always be a process of rank 0. If a different process is selected,
you'll need to ensure that a process with that rank exists. A fair amount of MPI

code development can be done on a single processor system and then moved
to a multiprocessor environment, so this isn't, as it might seem, a moot point.

The test (ProcessId = = 0) determines what will be done by the collector process
and what will be done by all the remaining processes. The first branch
following this test will be executed by the single process with a rank of 0. The
second branch will be executed by each of the remaining processes. It is just
this sort of test that allows us to write a single program that will execute
correctly on each machine in the cluster with different processes doing
different things.

13.3.2 Transferring Data

The defining characteristic of message passing is that the transfer of data from
one process to another requires operations to be performed by both processes.
This is handled by MPI_Send and MPI_Recv. The first branch after this test
contains a loop that will execute once for each of the remaining nodes in the
cluster. At each execution of the body of the loop, the rank 0 process collects
information from one of the other processes. This is done with the call to
MPI_Recv. Each of the other processes executes the second branch after the
test once. Each process uses the call to MPI_Send to pass its results back to
process 0. For example, for 100 processes, there are 99 calls to MPI_Send and
99 calls to MPI_Recv. (Process 0 already knows what it calculated.) Let's look at
these two functions more closely.

13.3.2.1 MPI_Send

MPI_Send is used to send information from one process to another process.[2] A
call to MPI_Send must be matched with a corresponding call to MPI_Recv in the
receiving process. Information is both typed and tagged. Typing is needed to
support communications in a heterogeneous environment. The type
information is used to insure that the necessary conversions to data
representation are applied as data moves among machines in a transparent
manner.

[2] Actually, a process can send a message to itself, but this possibility can get tricky so we'll ignore
it.

The first three arguments to MPI_Send, collectively, are used to specify the
transmitted data. The first argument gives the address of the data, the second

gives the number of items to be sent, and the third gives the data type. In this
sample code, we are sending the area, a single double, so we specify
MPI_DOUBLE as the type. In addition to MPI_DOUBLE, the other possible types
are MPI_BYTE, MPI_CHAR, MPI_UNSIGNED_CHAR, MPI_SHORT,
MPI_UNSIGNED_SHORT, MPI_INT, MPI_UNSIGNED_INT, MPI_LONG,
MPI_UNSIGNED_LONG, MPI_LONG_DOUBLE, MPI_FLOAT, and MPI_PACKED.

The next argument is the destination. This is just the rank of the receiver. The
destination is followed by a tag. Since MPI provides buffering, several
messages can be outstanding. The tag is used to distinguish among multiple
messages. This is a moot point in this example. MPI_COMM_WORLD is the
default communicator, which has already been described.

13.3.2.2 MPI_Recv

The arguments to MPI_Recv are similar but include one addition, a status field.
MPI_STATUS is a type definition for a structure that holds information about the
actual message size, its source, and its tag. In C, the status variable is a
structure composed of three fieldsMPI_SOURCE, MPI_TAG, and MPI_ERRORthat
contain the source, tag, and error code, respectively. With MPI_Recv, you can
use a wildcard for either or both the source and the tagMPI_ANY_SOURCE and
MPI_ANY_TAG. The status field allows you to determine the actual source and
tag in this situation.

You should be aware that MPI_Send and MPI_Recv are both blocking calls. For
example, if you try to receive information that hasn't been sent, your process
will be blocked or wait until it is sent before it can continue executing. While
this is what you might expect, it can lead to nasty surprises if your code isn't
properly written since you may have two processes waiting for each other.

Here is the output:

[sloanjd@amy sloanjd]$ mpicc mpi-rect.c -o mpi-rect

[sloanjd@amy sloanjd]$ mpirun -np 5 mpi-rect

The area from 2.000000 to 5.000000 is: 38.999964

Of course, all of this assumed you wanted to program in C. The next two
sections provide alternatives to C.

13.3.3 MPI Using FORTRAN

Let's take a look at the same program written in FORTRAN.

 program main

 include "mpif.h"

 parameter (NORECS = 50, DLIMIT = 2.00, ULIMIT = 5.00)

 integer dst, err, i, noprocs, procid, src, tag

 integer status(MPI_STATUS_SIZE)

 double precision area, at, height, lower, width, total, range

 f(x) = x * x

********** MPI setup **********

 call MPI_INIT(err)

 call MPI_COMM_SIZE(MPI_COMM_WORLD, noprocs, err)

 call MPI_COMM_RANK(MPI_COMM_WORLD, procid, err)

********** adjust problem size for subproblem **********

 range = (ULIMIT - DLIMIT) / noprocs

 width = range / NORECS

 lower = DLIMIT + range * procid

********** calculate area for subproblem **********

 area = 0.0;

 do 10 i = 0, NORECS - 1

 at = lower + i * width + width / 2.0

 height = f(at)

 area = area + width * height

 10 continue

********** collect information and print results **********

 tag = 0

********** if rank is 0, collect results **********

 if (procid .eq. 0) then

 total = area

 do 20 src = 1, noprocs - 1

 call MPI_RECV(area, 1, MPI_DOUBLE_PRECISION, src, tag,

 + MPI_COMM_WORLD, status, err)

 total = total + area

 20 continue

 print '(1X, A, F5.2, A, F5.2, A, F8.5)', 'The area from ',

 + DLIMIT, ' to ', ULIMIT, ' is: ', total

 else

********** all other processes only send **********

 dest = 0;

 call MPI_SEND(area, 1, MPI_DOUBLE_PRECISION, dest, tag,

 + MPI_COMM_WORLD, err)

 endif

********** finish ***********

 call MPI_FINALIZE(err)

 stop

 end

I'm assuming that, if you are reading this, you already know FORTRAN and
that you have already read the C version of the code. So this discussion is
limited to the differences between MPI in C and in FORTRAN. As you can see,
there aren't many.

Don't forget to compile this with mpif77 rather than mpicc.

FORTRAN 77 programs begin with include "mpi.f". FORTRAN 90 may substitute
use mpi if the MPI implementation supports modules.

In creating the MPI specification, a great deal of effort went into having similar
binding in C and FORTRAN. The biggest difference is the way error codes are
handled. In FORTRAN there are explicit parameters included as the last
argument to each function call. This will return either MPI_SUCCESS or an
implementation-defined error code.

In C, function arguments tend to be more strongly typed than in FORTRAN,
and you will notice that C tends to use addresses when the function is
returning a value. As you might expect, the parameters to MPI_Init have
changed. Finally, MPI_STATUS is an array rather than a structure in FORTRAN.

Overall, the differences between C and FORTRAN aren't that great. You should
have little difficulty translating code from one language to another.

13.3.4 MPI Using C++

Here is the same code in C++:

#include "mpi.h"

#include <stdio.h>

/* problem parameters */

#define f(x) ((x) * (x))

#define numberRects 50

#define lowerLimit 2.0

#define upperLimit 5.0

int main(int argc, char * argv[])

{

 /* MPI variables */

 int dest, noProcesses, processId, src, tag;

 MPI_Status status;

 /* problem variables */

 int i;

 double area, at, height, lower, width, total, range;

 /* MPI setup */

 MPI::Init(argc, argv);

 noProcesses = MPI::COMM_WORLD.Get_size();

 processId = MPI::COMM_WORLD.Get_rank();

 /* adjust problem size for subproblem*/

 range = (upperLimit - lowerLimit) / noProcesses;

 width = range / numberRects;

 lower = lowerLimit + range * processId;

 /* calculate area for subproblem */

 area = 0.0;

 for (i = 0; i < numberRects; i++)

 { at = lower + i * width + width / 2.0;

 height = f(at);

 area = area + width * height;

 }

 /* collect information and print results */

 tag = 0;

 if (processId = = 0) /* if rank is 0, collect results */

 { total = area;

 for (src=1; src < noProcesses; src++)

 { MPI::COMM_WORLD.Recv(&area, 1, MPI::DOUBLE, src, tag);

 total = total + area;

 }

 fprintf (stderr, "The area from %f to %f is: %f\n",

 lowerLimit, upperLimit, total);

 }

 else /* all other processes only send */

 { dest = 0;

 MPI::COMM_WORLD.Send(&area, 1, MPI::DOUBLE, dest, tag);

 };

 /* finish */

 MPI::Finalize();

 return 0;

}

If you didn't skip the section on FORTRAN, you'll notice that there are more
differences in going from C to C++ than in going from C to FORTRAN.

Remember, you'll compile this with mpiCC, not mpicc.

The C++ bindings were added to MPI as part of the MPI-2 effort. Rather than
try to follow the binding structure used with C and FORTRAN, the C++
bindings were designed to exploit MPI's object-oriented structure.
Consequently, most functions become members of C++ classes. For example,
MPI::COM_WORLD is an instance of the communicator class. Get_rank and
Get_size are methods in the class. All classes are part of the MPI namespace.

Another difference you'll notice is that Get_size and Get_rank return values.
Since the usual style of error handling in C++ is throwing exceptions, which
MPI follows, there is no need to return error codes.

Finally, you notice that the type specifications have changed. In this example,
we see MPI::DOUBLE rather than MPI_DOUBLE which is consistent with the
naming conventions being adopted here. We won't belabor this example. By
looking at the code, you should have a pretty clear idea of how the bindings
have changed with C++.

Now that we have a working solution, let's look at some ways it can be
improved. Along the way we'll see two new MPI functions that can make life
simpler.

13.4 I/O with MPI

One severe limitation to our solution is that all of the parameters are
hardwired into the program. If we want to change anything, we need to
recompile the program. It would be much more useful if we read parameters
from standard input.

Thus far, we have glossed over the potential difficulties that arise with I/O and
MPI. In general, I/O can get very messy with parallel programs. With our very
first program, we saw messages from each processor on our screen. Stop and
think about it how did the messages from the other remote processes get to
our screen? That bit of magic was handled by mpirun. The MPI standard does
not fully specify how I/O should be handled. Details are left to the
implementer. In general, you can usually expect the rank 0 process to be able
to both read from standard input and write to standard output. Output from
other processes is usually mapped back to the home node and displayed. Input
calls by other processes are usually mapped to /dev/zero, i.e., they are
ignored. If in doubt, consult the documentation for your particular
implementation. If you can't find the answer in the documentation, it is fairly
straightforward to write a simple test program.

In practice, this strategy doesn't cause too many problems. It is certainly
adequate for our modest goals. Our strategy is to have the rank 0 process read
the parameters from standard input and then distribute them to the remaining
processes. With that in mind, here is a solution. New code appears in boldface.

#include "mpi.h"

#include <stdio.h>

/* problem parameters */

#define f(x) ((x) * (x))

int main(int argc, char * argv[])

{

 /* MPI variables */

 int dest, noProcesses, processId, src, tag;

 MPI_Status status;

 /* problem variables */

 int i, numberRects;

 double area, at, height, lower, width, total, range;

 double lowerLimit, upperLimit;

 /* MPI setup */

 MPI_Init(&argc, &argv);

 MPI_Comm_size(MPI_COMM_WORLD, &noProcesses);

 MPI_Comm_rank(MPI_COMM_WORLD, &processId);

 tag = 0;
 if (processId = = 0) /* if rank is 0, collect parameters */
 {
 fprintf(stderr, "Enter number of steps:\n");
 scanf("%d", &numberRects);
 fprintf(stderr, "Enter low end of interval:\n");
 scanf("%lf", &lowerLimit);
 fprintf(stderr, "Enter high end of interval:\n");
 scanf("%lf", &upperLimit);

 for (dest=1; dest < noProcesses; dest++) /* distribute parameters */
 {
 MPI_Send(&numberRects, 1, MPI_INT, dest, 0, MPI_COMM_WORLD);
 MPI_Send(&lowerLimit, 1, MPI_DOUBLE, dest, 1, MPI_COMM_WORLD);
 MPI_Send(&upperLimit, 1, MPI_DOUBLE, dest, 2, MPI_COMM_WORLD);
 }

 }
 else /* all other processes receive */
 { src = 0;
 MPI_Recv(&numberRects, 1, MPI_INT, src, 0, MPI_COMM_WORLD, &status);
 MPI_Recv(&lowerLimit, 1, MPI_DOUBLE, src, 1, MPI_COMM_WORLD, &status);
 MPI_Recv(&upperLimit, 1, MPI_DOUBLE, src, 2, MPI_COMM_WORLD, &status);
 }

 /* adjust problem size for subproblem */

 range = (upperLimit - lowerLimit) / noProcesses;

 width = range / numberRects;

 lower = lowerLimit + range * processId;

 /* calculate area for subproblem */

 area = 0.0;

 for (i = 0; i < numberRects; i++)

 { at = lower + i * width + width / 2.0;

 height = f(at);

 area = area + width * height;

 }

 /* collect information and print results */

 tag = 3;

 if (processId = = 0) /* if rank is 0, collect results */

 { total = area;

 fprintf(stderr, "Area for process 0 is: %f\n", area);

 for (src=1; src < noProcesses; src++)

 {

 MPI_Recv(&area, 1, MPI_DOUBLE, src, tag, MPI_COMM_WORLD, &status);

 fprintf(stderr, "Area for process %d is: %f\n", src, area);

 total = total + area;

 }

 fprintf (stderr, "The area from %f to %f is: %f\n",

 lowerLimit, upperLimit, total);

 }

 else /* all other processes only send */

 { dest = 0;

 MPI_Send(&area, 1, MPI_DOUBLE, dest, tag, MPI_COMM_WORLD);

 }

 /* finish */

 MPI_Finalize();

 return 0;

}

The solution is straightforward. We need to partition the problem so that the
input is only attempted by the rank 0 process. It then enters a loop to send
the parameters to the remaining processes.

While this approach certainly works, it introduces a lot of overhead. While it
might be tempting to calculate a few of the derived parameters (e.g. range or
width) and distribute them as well, this is a false economy. Communication is
always costly, so we'll let each process calculate these values for themselves.
Anyway, they would have been idle while the rank 0 process did the
calculations.

13.5 Broadcast Communications

In this subsection, we will further improve the efficiency of our code by
introducing two new MPI functions. In the process, we'll reduce the amount of
code we have to work with.

13.5.1 Broadcast Functions

If you look back to the last solution, you'll notice that the parameters are sent
individually to each process one at a time even though each process is
receiving the same information. For example, if you are using 10 processes,
while process 0 communicates with process 1, processes 2 through 10 are idle.
While process 0 communicates with process 2, processes 3 through 10 are sill
idle. And so on. This may not be a big problem with a half dozen processes, but
if you are running on 1,000 machines, this can result in a lot of wasted time.
Fortunately, MPI provides an alternative, MPI_Bcast.

13.5.1.1 MPI_Bcast

MPI_Bcast provides a mechanism to distribute the same information among a
communication group or communicator. MPI_Bcast takes five arguments. The
first three define the data to be transmitted. The first argument is the buffer
that contains the data; the second argument is the number of items in the
buffer; and the third argument, the data type. (The supported data types are
the same as with MPI_Send, etc.)

The next argument is the rank of the process that is generating the broadcast,
sometimes called the root of the broadcast. In our example, this is 0, but this
isn't a requirement. All processes use identical calls to MPI_Bcast. By comparing
their rank to the rank specified in the can, a process can determine whether it
is sending or receiving data. Consequently, there is no need for any additional
control structures with MPI_Bcast. The final argument is the communicator,
which effectively defines which processes will participate in the broadcast.
When the call returns, the data in the root's communications buffer will have
been copied to each of the remaining processes in the communicator.

Here is our numerical integration code using MPI_Bcast (and MPI_Reduce, a
function we will discuss next). New code appears in boldface.

#include "mpi.h"

#include <stdio.h>

/* problem parameters */

#define f(x) ((x) * (x))

int main(int argc, char * argv[])

{

 /* MPI variables */

 int noProcesses, processId;

 /* problem variables */

 int i, numberRects;

 double area, at, height, lower, width, total, range;

 double lowerLimit, upperLimit;

 /* MPI setup */

 MPI_Init(&argc, &argv);

 MPI_Comm_size(MPI_COMM_WORLD, &noProcesses);

 MPI_Comm_rank(MPI_COMM_WORLD, &processId);

 if (processId = = 0) /* if rank is 0, collect parameters */

 {

 fprintf(stderr, "Enter number of steps:\n");

 scanf("%d", &numberRects);

 fprintf(stderr, "Enter low end of interval:\n");

 scanf("%lf", &lowerLimit);

 fprintf(stderr, "Enter high end of interval:\n");

 scanf("%lf", &upperLimit);

 }

 MPI_Bcast(&numberRects, 1, MPI_INT, 0, MPI_COMM_WORLD);
 MPI_Bcast(&lowerLimit, 1, MPI_DOUBLE, 0, MPI_COMM_WORLD);
 MPI_Bcast(&upperLimit, 1, MPI_DOUBLE, 0, MPI_COMM_WORLD);

 /* adjust problem size for subproblem*/

 range = (upperLimit - lowerLimit) / noProcesses;

 width = range / numberRects;

 lower = lowerLimit + range * processId;

 /* calculate area for subproblem */

 area = 0.0;

 for (i = 0; i < numberRects; i++)

 { at = lower + i * width + width / 2.0;

 height = f(at);

 area = area + width * height;

 }

 MPI_Reduce(&area, &total, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);

 /* collect information and print results */

 if (processId = = 0) /* if rank is 0, print results */

 { fprintf (stderr, "The area from %f to %f is: %f\n",

 lowerLimit, upperLimit, total);

 }

 /* finish */

 MPI_Finalize();

 return 0;

}

Notice that we have eliminated the control structures as well as the need for
separate MPI_Send and MPI_Recv calls.

13.5.1.2 MPI_Reduce

You'll also notice that we have used a new function, MPI_Reduce. The process of
collecting data is so common that MPI includes functions that automate this
process. The idea behind MPI_Reduce is to specify a data item to be
accumulated, a storage location or variable to accumulate in, and an operator
to use when accumulating. In this example, we want to add up all the

individual areas, so area is the data to accumulate, total is the location where
we accumulate the data, and the operation is adding or MPI_SUM.

More specifically, MPI_Reduce has seven arguments. The first two are the
addresses of the send and receive buffers. The third is the number of elements
in the send buffer, while the fourth gives the type of the data. Both send and
receive buffers will manipulate the same number of elements which will be of
the same type. The next operation identifies the function used to combine
elements. MPI_SUM is used to add elements. MPI defines a dozen different
operators. These include operators to find the sum of the data values
(MPI_SUM), their product (MPI_PROD), the largest and smallest values (MPI_MAX
and MPI_MIN), and numerous logical operations for both logical and bitwise
comparisons using AND, OR, and XOR (MPI_LAND, MPI_BAND, MPI_LOR, MPI_BOR,
MPI_LXOR, and MPI_BXOR). The data type must be compatible with the selected
operation.

The next to the last argument identifies the root of the communications, i.e.,
the rank of the process that will accumulate the final answer, and the last
argument is the communicator. These must have identical values in every
process. Notice that only the root process will have the accumulated result. If
all of the processes need the result, there is an analogous function
MPI_Allreduce that is used in the same way.

Notice how the use of MPI_Reduce has simplified our code. We have eliminated
a control structure, and, apart from the single parameter in our recall to
MPI_Reduce, we no longer need to distinguish among processes. Keep in mind
that it is up to the implementer to determine the best way to implement these
functions. Details will vary. For example, the "broadcast" in MPI_Bcast simply
means that the data is sent to all the processes. It does not necessarily imply
that an Ethernet-style broadcast will be used, although that is one obvious
implementation strategy. When implementing for other networks, other
strategies may be necessary.

In this chapter we have introduced the six core MPI functionsMPI_Init,
MPI_Comm_size, MPI_Comm_rank, MPI_Send, MPI_Recv, and MPI_Finalizeas well as
several others that simplify MPI coding. These six core functions have been
described as the six indispensable MPI functions, the functions that you really
can't do without. On the other hand, most MPI programs, with a little extra
work, could be rewritten with just these six functions. Congratulations! You
are now an MPI programmer.

Chapter 14. Additional MPI Features
This chapter is an overview of a few of the more advanced features found in
MPI. The goal of this chapter is not to make you an expert on any of these
features but simply to make you aware that they exist. You should come away
with a basic understanding of what they are and how they might be used. The
four sections in this chapter describe additional MPI features that provide
greater control for some common parallel programming tasks.

If you want more control when exchanging messages, the first section
describes MPI commands that provide non-blocking and bidirectional
communications.

If you want to investigate other collective communication strategies, the
second section describes MPI commands for distributing data across the
cluster or collecting data from all the nodes in a cluster.

If you want to create custom communication groups, the third section
describes how it is done.

If you want to group data to minimize communication overhead, the last
section describes two alternativespacked data and user-defined types.

While you may not need these features for simple programs, as your projects
become more ambitious, these features can make life easier.

14.1 More on Point-to-Point Communication

In Chapter 13, you were introduced to point-to-point communication, the
communication between a pair of cooperating processes. The two most basic
commands used for point-to-point communication are MPI_Send and MPI_Recv.
Several variations on these commands that can be helpful in some contexts
are described in this section.

14.1.1 Non-Blocking Communication

One major difference among point-to-point commands is how they handle
buffering and the potential for blocking. MPI_Send is said to be a blocking
command since it will wait to return until the send buffer can be reclaimed. At
a minimum, the message has to be copied into a system buffer before MPI_Send
will return. Similarly, MPI_Recv blocks until the receive buffer actually contains
the contents of the message.

14.1.1.1 MPI_Isend and MPI_Irecv

Although more complicated to use, non-blocking versions of MPI_Send and
MPI_Recv are included in MPI. These are MPI_Isend and MPI_Irecv. (The "I"
denotes an immediate return.) With the non-blocking versions, the
communication operation is begun or, in the parlance, a message is posted. At
some later point, the program must explicitly complete the operation. Several
functions are provided to complete the operation, the simplest being MPI_Wait
and MPI_Test.

MPI_Isend takes the same arguments as MPI_Send with one exception. MPI_Isend
has had one additional parameter at the end of its parameter list. This is a
request handle, an opaque object that is used in future references to this
message exchange. That is, the handle identifies the pending operation.
(Handles are of type MPI_Request.) In MPI_Irecv the status parameter, which is
now found in MPI_Wait, has been replaced by a request handle. Otherwise, the
parameters to MPI_Irecv are the same as MPI_Recv.

14.1.1.2 MPI_Wait

MPI_Wait takes two arguments. The first is the request handle just described;

the second is a status variable, which contains the same information and is
used in exactly the same way as in MPI_Recv. MPI_Wait blocks until the
operation identified by the request handle completes. When it returns, the
request handle is set to a special constant, MPI_REQUEST_NULL, indicating that
there is no longer a pending operation associated with the request handle.

Code for MPI_Irecv and MPI_Wait might look something like this fragment:

...

int datum1, datum2;

MPI_Status status;

MPI_Request handle;

if (processId = = 0)

{

 MPI_Send(&datum1, 1, MPI_INT, 1, 1, MPI_COMM_WORLD, &handle);

...

}

else

{

 MPI_Irecv(&datum2, 1, MPI_INT, 0, 1, MPI_COMM_WORLD, &handle);

 ...

 MPI_Wait(&handle, &status);

}

...

In this example, the contents of datum1 are received in datum2. As shown here,
it is OK to mix blocking and non-blocking commands. For example, you can
use MPI_Send to send a message that will be received by MPI_Irecv as shown in
the example.

14.1.1.3 MPI_Test

MPI_Test is a non-blocking alternative to MPI_Wait. It takes three arguments:
the request handle, a flag, and a status variable. If the exchange is complete,
the value returned in the flag variable is true, the request handle is set to
MPI_REQUEST_NULL, and the status variable will contain information about the
exchange. If the flag is still set to false, then the exchange hasn't completed,
the request variable is unchanged, and the status variable is undefined.

14.1.1.4 MPI_Iprobe

If you want to check up on messages without actually receiving them, use
MPI_Iprobe. (There is also a blocking variant called MPI_Probe.) MPI_Iprobe can
be called multiple times without actually receiving the message. Once you
know the exchange has finished, you can use MPI_Test or MPI_Wait to actually
receive the message. MPI_Iprobe takes five arguments: the rank of the source,
the message tag, the communicator, a flag, and a status object. If the flag is
true, the message has been received and the status object can be examined. If
false, the status is undefined.

14.1.1.5 MPI_Cancel

If you have a pending, non-blocking communication operation, it can be
aborted with the MPI_Cancel command. MPI_Cancel takes a request handle as its
only argument. You might use MPI_Cancel in conjunction with MPI_Iprobe. If you
don't like the status information returned by MPI_Iprobe, you can use
MPI_Cancel to abort the exchange.

14.1.1.6 MPI_Sendrecv and MPI_Sendrecv_replace

If you need to exchange information between a pair of processes, you can use
MPI_Sendrecv or MPI_Sendrecv_replace. With the former, both the send and

receive buffers must be distinct. With the latter, the received message
overwrites the sent message. These are both blocking commands.

While these examples should give you an idea of some of the functions
available, there are other point-to-point functions not described here. For
example, there is a set of commands to create and manipulate persistent
connections similar to communication ports (MPI_Send_init, MPI_Start, etc.). You
can specify dummy sources and destinations for messages (MPI_PROC_NULL).
There are variants on MPI_Wait and MPI_Test for processing lists of pending
communication operations (MPI_Testany, MPI_Testall, MPI_Testsome, MPI_Waitany,
etc.) Additional communication modes are also supported: synchronous-mode
communication and ready-mode communication.

14.2 More on Collective Communication

Unlike point-to-point communication, collective communication involves every
process in a communication group. In Chapter 13, you saw two examples of
collective communication functions, MPI_Bcast and MPI_Reduce (along with
MPI_Allreduce). There are two advantages to collective communication
functions. First, they allow you to express a complex operation using simpler
semantics. Second, the implementation may be able to optimize the operations
in ways not available with simple point-to-point operations.

Collective operations fall into three categories: a barrier synchronization
function, global communication or data movement functions (e.g., MPI_Bcast),
and global reduction or collective computation functions (e.g., MPI_Reduce).
There is only one barrier synchronization function, MPI_Barrier. It serves to
synchronize the processes. No data is exchanged. This function is described in
Chapter 17. All of the other collective functions are nonsynchronous. That is, a
collective function can return as soon as its role in the communication process
is complete. Unlike point-to-point operations, nonsynchronous mode is the
only mode supported by collective functions.

While collective functions don't have to wait for the corresponding functions to
execute on other nodes, they may block while waiting for space in system
buffers. Thus, collective functions come only in blocking versions.

The requirements that all collective functions be blocking, nonsynchronous,
and support only one communication mode simplify the semantics of collective
operations. There are other features in the same vein: no tag argument is
used, the amount of data sent must exactly match the amount of data
received, and every process must call the function with the same arguments.

14.2.1 Gather and Scatter

After MPI_Bcast and MPI_Reduce, the two most useful collective operations are
MPI_Gather and MPI_Scatter.

14.2.1.1 MPI_Gather

MPI_Gather, as the name implies, gathers information from all the processes in
a communication group. It takes eight arguments. The first three arguments
define the information that is sent. These are the starting address of the send

buffer, the number of items in the buffer, and the data type for the items. The
next three arguments, which define the received information, are address of
the receive buffer, the number of items for a single receive, and the data type.
The seventh argument is the rank of the receiving or root process. And the
last argument is the communicator. Keep in mind that each process, including
the root process, sends the contents of its send buffer to the receiver. The root
process receives the messages, which are stored in rank order in the receive
buffer. While this may seem similar to MPI_Reduce, notice that the data is
simply received. It is not combined or reduced in any way.

Figure 14-1 shows the flow of data with a gather operation. The root or
receiver can be any of the processes. Each process sends a different piece of
the data, shown in the figure as the different x's.

Figure 14-1. Gathering data

Here is an example using MPI_Gather.

#include "mpi.h"

#include <stdio.h>

int main(int argc, char * argv[])

{

 int processId;

 int a[4] = {0, 0, 0, 0};

 int b[4] = {0, 0, 0, 0};

 MPI_Init(&argc, &argv);

 MPI_Comm_rank(MPI_COMM_WORLD, &processId);

 if (processId = = 0) a[0] = 1;

 if (processId = = 1) a[1] = 2;

 if (processId = = 2) a[2] = 3;

 if (processId = = 3) a[3] = 5;

 if (processId = = 0)

 fprintf(stderr, "Before: b[] = [%d, %d, %d, %d]\n", b[0], b[1], b[2],

b[3]);

 MPI_Gather(&a[processId], 1, MPI_INT, b, 1, MPI_INT, 0, MPI_COMM_WORLD);

 if (processId = = 0)

 fprintf(stderr, "After: b[] = [%d, %d, %d, %d]\n", b[0], b[1], b[2],

b[3]);

 MPI_Finalize();

 return 0;

}

While this is a somewhat contrived example, you can clearly see how
MPI_Gather works. Pay particular attention to the arguments in this example.
Note that both the address of the item sent and the address of the receive
buffer (in this case just an array name) are used. Here is the output:

[sloanjd@amy C12]$ mpirun -np 4 gath

Before: b[] = [0, 0, 0, 0]

After: b[] = [1, 2, 3, 5]

MPI_Gather has a couple of useful variants. MPI_Gatherv has an additional
argument, an integer array giving displacements. MPI_Gatherv is used when the
amount of data varies from process to process. MPI_Allgather functions just like
MPI_Gather except that all processes receive copies of the data. There is also an
MPI_Allgatherv.

14.2.1.2 MPI_Scatter

MPI_Scatter is the dual or inverse of MPI_Gather. If you compare Figure 14-2 to
Figure 14-1, the only difference is the direction of the arrows. The arguments
to MPI_Scatter are the same as MPI_Gather. You can think of MPI_Scatter as
splitting the send buffer and sending a piece to each receiver, i.e., each
receiver receives a unique piece of data. MPI_Scatter also has a vector variant
MPI_Scatterv.

Figure 14-2. Scattering data

Here is another contrived example, this time with MPI_Scatter:

#include "mpi.h"

#include <stdio.h>

int main(int argc, char * argv[])

{

 int processId, b;

 int a[4] = {0, 0, 0, 0};

 MPI_Init(&argc, &argv);

 MPI_Comm_rank(MPI_COMM_WORLD, &processId);

 if (processId = = 0) { a[0] = 1; a[1] = 2; a[2] = 3; a[3] = 5; }

 MPI_Scatter(a, 1, MPI_INT, &b, 1, MPI_INT, 0, MPI_COMM_WORLD);

 fprintf(stderr, "Process %d: b = %d \n", processId, b);

 MPI_Finalize();

 return 0;

}

Notice that we are sending an array but receiving its individual elements in
this example. In summary, MPI_Gather sends an element and receives an array
while MPI_Scatter sends an array and receives an element.

As with point-to-point communication, there are additional collective
operations (for example, MPI_Alltoall, MPI_Reduce_scatter, and MPI_Scan). It is
even possible to define your own reduction operator (using MPI_Op_create) for
use with MPI_Reduce, etc. Because the amount and nature of the data that you
need to share varies with the nature of the problem, it is worth becoming
familiar with MPI's collective functions. You may need them sooner than you
think.

14.3 Managing Communicators

Collective communication simplifies the communication process but has the
limitation that you must communicate with every process in the communicator
or communication group. There are times when you may want to communicate
with only a subset of available processes. For example, you may want to divide
your processes so that different groups of processes work on different tasks.
Fortunately, the designers of MPI foresaw that possibility and included
functions that allow you to define and manipulate new communicators. By
creating new communicators that are subsets of your original communicator,
you'll still be able to use collective communication. This ability to create and
manipulate communicators has been described as MPI's key distinguishing
feature, i.e., what distinguishes MPI from other message passing systems.

Communicators are composed of two parts: a group of processes and a
context. New communicators can be built by manipulating an existing
communicator or by taking the group from an existing communicator and,
after modifying that group, building a new communicator based on that group.
The default communicator MPI_COMM_WORLD is usually the starting point, but
once you have other communicators, you can use them as well.[1]

[1] Although it sounds like there is only one default communicator, there are actually two. The other
default communicator is MPI_COMM_SELF. Since this is defined for each process and contains
only that process, it isn't all that useful when defining new communicators.

14.3.1 Communicator Commands

MPI provides a number of functions for manipulating groups. The simplest way
to create a new group is to select processes from an existing group, either by
explicitly including or excluding processes. In the following example, process 0
is excluded from the group associated with MPI_COMM_WORLD to create a new
group. You might want to do this if you are organizing your program using one
process as a master, typically process 0, and all remaining processes as
workers. This is often called a master/slave algorithm. At times, the slave
processes may need to communicate with each other without including process
0. By creating a new communicator (newComm in the following example), you
can then carry out the communication using collective functions.

#include "mpi.h"

#include <stdio.h>

int main(int argc, char * argv[])

{

 int processId, i, flag = 0;

 int processes[1] = {0};

 MPI_Group worldGroup, newGroup;
 MPI_Comm newComm;

 MPI_Init(&argc, &argv);

 MPI_Comm_rank(MPI_COMM_WORLD, &processId);

 MPI_Comm_group(MPI_COMM_WORLD, &worldGroup);
 MPI_Group_excl(worldGroup, 1, processes, &newGroup);
 MPI_Comm_create(MPI_COMM_WORLD, newGroup, &newComm);

 fprintf(stderr, "Before: process: %d Flag: %d\n", processId, flag);

 if (processId = = 1) flag = 1;

 if (processId != 0)

 MPI_Bcast(&flag, 1, MPI_INT, 0, newComm);

 fprintf(stderr, "After process: %d Flag: %d\n", processId, flag);

 if (processId !=0)
 { MPI_Comm_free(&newComm);
 MPI_Group_free(&newGroup);
 }

 MPI_Finalize();

 return 0;

}

Relevant portions of this program appear in boldface.

The first things to notice about the program are the new type declarations
using MPI_Group and MPI_Comm. MPI_Group allows us to define handles for
manipulating process groups. In this example, we need two group handles, one
for the existing group from MPI_COMM_WORLD and one for the new group, we
are defining. The MPI_Comm type is used to define a variable for the new
communicator being created.

14.3.1.1 MPI_Comm_group

Next, we need to extract the group from MPI_COMM_WORLD, our starting point
for the new group. We use the function MPI_Comm_group to do this. It takes
two arguments: the first is the communicator; the second argument is a
handle used to return the group for the specified communicator, in this case,
MPI_COMM_WORLD's group.

14.3.1.2 MPI_Group_incl and MPI_Group_excl

Once we have an existing group, we can use it to create a new group. In this
example, we exclude process from the original group using the MPI_Group_excl
command. Exclusion is the easiest way to handle this particular case since only
one process needs to be specified. MPI_Group_incl should be used when it is
simpler to list processes to include rather than exclude. The four arguments to
MPI_Group_incl and MPI_Group_excl are the same: the first argument is the
original group you are using as a starting point; the second argument is the
number of processes that will be included or excluded; the third argument is
an integer array giving the ranks of the processes to be included or excluded;
and the last parameter is the address of the group's handle.

In this example, since process 0 is excluded, we have used the array process to
list the single process rank that we want excluded. We could have

accomplished the same thing with the array

int processes[3] = {1, 2, 3};

and the call

MPI_Group_incl(worldGroup, 3, processes, &newGroup);

Either way works fine.

14.3.1.3 MPI_Comm_create

Finally, we need to turn the new group into a communicator. This is done with
the MPI_Comm_create command, which takes three arguments: the original
communicator, the new group, and the address for the new communicator's
handle. Once this call is made, we have our communicator.

In the code sample given above, the next block of code shows how the new
communicator could be used. In the example, there is a variable flag initially
set to 0. It is changed in process 1 to 1 and then broadcast to the remaining
processes within the new communicator. Here is what the output for four
processes looks like.

[sloanjd@amy COMM]$ mpirun -np 4 comm

Process: 0 Flag: 0

Process: 0 Flag: 0

Process: 1 Flag: 0

Process: 2 Flag: 0

Process: 3 Flag: 0

Process: 1 Flag: 1

Process: 2 Flag: 1

Process: 3 Flag: 1

Note that the value changes for every process except process 0.

There are a couple of things worth noting about how the new communicator is
used. First, notice that only the relevant processes are calling MPI_Bcast.
Process 0 has been excluded. Had this not been done, the call in process 0
would have returned a null communicator error since it is not part of the
communicator. The other thing to note is that the process with rank 1 in
MPI_COMM_WORLD has a rank of 0 in the new communicator. Thus, the fourth
argument to MPI_Bcast is 0, not 1.

14.3.1.4 MPI_Comm_free and MPI_Group_free

It is good housekeeping to release any communicators or groups you are no
longer using. For these two functions, the handles will be set to
MPI_COMM_NULL and MPI_GROUP_NULL, respectively. While releasing these isn't
absolutely necessary, it can be helpful at times. For example, doing so may
alert you to the inadvertent use of what should be defunct groups or
communicators. Each of these two functions takes the address of the
communicator or of the group as an argument, respectively. It doesn't matter
which function you call first.

Since process 0 is not part of the new communicator in the last example, we
need to guard againt using the new communicator within process 0. This isn't
too difficult when a single process is involved but can be a bit of a problem
when more processes are involved. So in some instances, splitting
communicators is a better approach. Here is a simple example.

#include "mpi.h"

#include <stdio.h>

int main(int argc, char * argv[])

{

 int processId, i, flag = 0, color = 0;

 MPI_Comm newComm;

 MPI_Init(&argc, &argv);

 MPI_Comm_rank(MPI_COMM_WORLD, &processId);

 if (processId = = 0 || processId = = 1) color = 1;

 MPI_Comm_split(MPI_COMM_WORLD, color, processId, &newComm);

 fprintf(stderr, "Process: %d Flag: %d\n", processId, flag);

 if (processId = = 0) flag = 1;

 MPI_Bcast(&flag, 1, MPI_INT, 0, newComm);

 fprintf(stderr, "Process: %d Flag: %d\n", processId, flag);

 MPI_Comm_free(&newComm);

 MPI_Finalize();

 return 0;

}

Notice that, in this example, the communicator is manipulated directly without
resorting to dealing with groups.

14.3.1.5 MPI_Comm_split

The function MPI_Comm_split is at the heart of this example. It is used to break
a communicator into any number of pieces. The first argument is the original
communicator. The second argument, often referred to as the color, is used to
determine which communicator a process will belong to. All processes that
make the call to MPI_Comm_split with the same color will be in the same
communicator. Processes with different values (or colors) will be in different
communicators. In this example, processes 0 and 1 have a color of 1 so they
are in one communicator while processes 2 and above have a color of 0 and
are in a separate communicator. (If the color is MPI_UNDEFINED, the process is
excluded from any of the new communicators.) The third argument, often
called the key, is used to determine the rank ordering for processes within a
communicator. When keys are the same, the original rank is used to break the
tie. The last argument is the address of the new communicator.

Table 14-1 gives a slightly more complicated example of how this might work.
Using the data in this table, three new communicators are created. The first
communicator consists of processes A, C, and D with ranks in the new
communicator of 1, 0, and 2, respectively. The second communicator consists
of processes B and E with ranks 0 and 1, respectively. The last communicator
consists of the single process F with a rank of 0. Process G is not included in
any of the new communicators.

Table 14-1. Communicator assignments

Process A B C D E F G

Original rank 0 1 2 3 4 5 6

Color 1 2 1 1 2 3 MPI_UNDEFINED

Key 3 3 2 3 3 a 0

Returning to the code given above, with four processes, two communicators
will be created. Both will be called newComm. The first will have the original
processes 0 and 1 with the same ranks in the new communicator. The second
will have the original processes 2 and 3 with new ranks 0 and 1, respectively.
Notice that a communicator is defined for every process, all with the same
name.

These two examples should give you an idea of why communicators are useful
and how they are used. Group management functions include functions to

access groups (e.g., MPI_Group_size, MPI_Group_rank, and MPI_Group_compare)
and functions to construct groups (e.g., MPI_Group_difference, MPI_Group_union,
MPI_Group_incl, and MPI_Group_range_incl). There are also a number of different
communicator management functions (e.g., MPI_Comm_size, MPI_Comm_dup,
MPI_Comm_compare, and MPI_Comm_create).

14.4 Packaging Data

Since communication is expensive, the fewer messages sent, the better your
program performance will be. With this in mind, MPI provides several ways of
packaging data. This allows you to maximize the amount of information
exchanged in each message. There are three basic strategies.

Although we glossed over it, you've already seen one technique. You'll recall
that the messaged package in MPI_Send consists of a buffer address, a count,
and a data type. Clearly, this mechanism can be used to send multiple pieces
of information as a single message, provided they are of the same type. For
example, in our first interactive version of the numerical integration program,
three calls to MPI_Send were used to distribute the values of numberRects,
lowerLimit, upperLimit to all the processes.

MPI_Send(&numberRects, 1, MPI_INT, dest, 0, MPI_COMM_WORLD);

MPI_Send(&lowerLimit, 1, MPI_DOUBLE, dest, 1, MPI_COMM_WORLD);

MPI_Send(&upperLimit, 1, MPI_DOUBLE, dest, 2, MPI_COMM_WORLD);

We could have eliminated one of these calls by putting lowerLimit and upperLimit
in an array and sending it in a single call.

 params[0] = lowerLimit;

 params[1] = upperLimit;

 MPI_Send(params, 2, MPI_DOUBLE, dest, 1, MPI_COMM_WORLD);

If you do this, don't forget to declare the array params and to make
corresponding changes to call to MPI_Recv to retrieve the data from the array.

For this to work, items must be in contiguous locations in memory. While this
is true for arrays, there are no guarantees for variables in general. Hence,
using an array was necessary. This is certainly a legitimate way to write code
and, when sending blocks of data, is very reasonable and efficient. In this case
we've removed only one call so its value is somewhat dubious. Furthermore,
we weren't able to include numberRects since it is an integer rather than a

double.

It might seem that a structure would be a logical way around this last problem
since the elements in a structure are guaranteed to be in contiguous memory.
Before a structure can be used in an MPI function, however, it is necessary to
define a new MPI type. Fortunately, MPI provides a mechanism to do just that.

14.4.1 User-Defined Types

A user-defined data type can be used in place of the predefined data types
included with MPI. Such a type can be used as the data type in any MPI
communication function. MPI type-constructor functions are used to describe
the memory layout for these new types in terms of primitive types. User-
defined or -derived data types are opaque objects that specify the sequence of
the primitive data types used and a sequence of displacements or offsets.

Here is the numerical integration problem adapted to use a user-defined data
type.

#include "mpi.h"

#include <stdio.h>

/* problem parameters */

#define f(x) ((x) * (x))

int main(int argc, char * argv[])

{

 /* MPI variables */

 int noProcesses, processId;

 int blocklengths[3] = {1, 1, 1};
 MPI_Aint displacements[3] = {0, sizeof(double), 2*sizeof(double)};
 MPI_Datatype rectStruct; /* the new type */

 MPI_Datatype types[3] = {MPI_DOUBLE, MPI_DOUBLE, MPI_INT};

 /* problem variables */

 int i;

 double area, at, height, lower, width, total, range;

 struct ParamStruct
 { double lowerLimit;
 double upperLimit;
 int numberRects;
 } params;

 /* MPI setup */

 MPI_Init(&argc, &argv);

 MPI_Comm_size(MPI_COMM_WORLD, &noProcesses);

 MPI_Comm_rank(MPI_COMM_WORLD, &processId);

 /* define type */
 MPI_Type_struct(3, blocklengths, displacements, types, &rectStruct);
 MPI_Type_commit(&rectStruct);

 if (processId = = 0) /* if rank is 0, collect parameters */

 {

 fprintf(stderr, "Enter number of steps:\n");

 scanf("%d", ¶ms.numberRects);

 fprintf(stderr, "Enter low end of interval:\n");

 scanf("%lf", ¶ms.lowerLimit);

 fprintf(stderr, "Enter high end of interval:\n");

 scanf("%lf", ¶ms.upperLimit);

 }

 MPI_Bcast(¶ms, 1, rectStruct, 0, MPI_COMM_WORLD);

 /* adjust problem size for subproblem*/

 range = (params.upperLimit - params.lowerLimit) / noProcesses;

 width = range / params.numberRects;

 lower = params.lowerLimit + range * processId;

 /* calculate area for subproblem */

 area = 0.0;

 for (i = 0; i < params.numberRects; i++)

 { at = lower + i * width + width / 2.0;

 height = f(at);

 area = area + width * height;

 }

 MPI_Reduce(&area, &total, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);

 /* collect information and print results */

 if (processId = = 0) /* if rank is 0, collect results */

 { fprintf(stderr, "The area from %f to %f is: %f\n",

 params.lowerLimit, params.upperLimit, total);

 }

 /* finish */

 MPI_Finalize();

 return 0;

}

To simplify the new MPI type definition, a structure type ParamStruct was
defined. params is an instance of that structure. To access the individual
elements of the structure, constructs such as params.numberRects must be used.
These constructs have not been highlighted. All other changes related to user-
defined types appear in boldface in the code.

14.4.1.1 MPI_Type_struct

MPI_Type_struct was used to define the new type. This function takes five
arguments. The first four are input parameters while the last is the output
parameter. The first is an integer that gives the number of blocks of elements
in the type. In our example, we have three blocks of data. Our blocks are two
doubles and an integer, but a block could be an aggregate data type such as
an array. The next argument is an array giving the lengths of each block. In
this example, because we've used scalars instead of arrays for our three
blocks, the argument is just an array of 1's, one for each block. The third
argument is an array of displacements. A displacement is determined by the

size of the previous blocks, and the first displacement is always zero. Note the
use of the type MPI_Aint. This bit of MPI magic is an integer type defined to be
large enough to hold any address on the target architecture.[2] The fourth
argument is an array of primitive data types. Basically, you can think of an
MPI data type as a set of pairs, each pair defining the basic MPI type and its
displacement in bytes.

[2] MPI also supplies a function MPI_Address that can be used to calculate an offset. It takes a
variable and returns its byte address in memory.

14.4.1.2 MPI_Type_commit

Before a derived type can be used, it must be committed. You can think of this
as "compiling" the new data type. The only argument to MPI_Type_commit is the
type being defined.

As you can see from the example, the new type is used just like any existing
type once defined. Keep in mind that this is a very simplistic example. Much
more complicated structures can be built. MPI provides a rich feature set for
user-defined data types.

14.4.2 Packing Data

Another alternative to packaging data is to use the MPI functions MPI_Pack and
MPI_Unpack. MPI_Pack allows you to store noncontiguous data in contiguous
memory while MPI_Unpack is used to retrieve that data.

14.4.2.1 MPI_Pack

MPI_Pack takes seven arguments. The first three define the message to be
packed: the input buffer, the number of input components, and the data type
of each component. The next two parameters define the buffer where the
information is packed: the output buffer and the buffer size. The next to the
last argument gives the current position in the buffer in bytes, while the last
parameter is the communicator for the message.

Here is an example of how data is packed.

position = 0;

MPI_Pack(&numberRects, 1, MPI_INT, buffer, 50, &position, MPI_COMM_WORLD);

MPI_Pack(&lowerLimit, 1, MPI_DOUBLE, buffer, 50, &position, MPI_COMM_WORLD);

MPI_Pack(&upperLimit, 1, MPI_DOUBLE, buffer, 50, &position, MPI_COMM_WORLD);

In this instance, buffer has been defined as an array of 50 chars and position is
an int. Notice that the value of position is automatically incremented as it is
used.

14.4.2.2 MPI_Unpack

The first argument is the input buffer, a contiguous storage area containing
the number of bytes specified in the second argument. The third argument is
the position where unpacking should begin. The fourth and fifth arguments
give the output buffer and the number of components to unpack. The next to
last argument is the output data type while the last argument is the
communicator for the message. You need not unpack the entire message.

Here is an example of unpacking the data just packed.

if (processId !=0)

 { position = 0;

 MPI_Unpack(buffer, 50, &position, &numberRects, 1, MPI_INT,

 MPI_COMM_WORLD);

 MPI_Unpack(buffer, 50, &position, &lowerLimit, 1, MPI_DOUBLE,

 MPI_COMM_WORLD);

 MPI_Unpack(buffer, 50, &position, &upperLimit, 1, MPI_DOUBLE,

 MPI_COMM_WORLD);

 }

This is the call to MPI_Bcast used to send the data.

MPI_Bcast(buffer, 50, MPI_PACKED, 0, MPI_COMM_WORLD);

As you can see, it's pretty straightforward. The most likely mistake is getting
parameters in the wrong order or using the wrong type.

In general, if you have an array of data, the first approach (using a count) is
the easiest. If you have lots of different data scattered around your program,
packing and unpacking is likely to be the best choice. If the data are stored at
regular intervals and of the same type, e.g., the column of a matrix, a derived
type is usually a good choice.

This chapter has only scratched the surface. There is a lot more to know about
MPI. For more information, consult any of the books described in the Appendix
A.

Chapter 15. Designing Parallel Programs
There are no silver bullets for parallel program design. While many parallel
programs may appear to match one of several standard parallel program
designs, every significant program will have its own quirks that make it
unique. Nevertheless, parallel program design is the essential first step in
writing parallel programs. This chapter will introduce you to some of the
basics. This should provide help in getting started. Just remember there is a lot
more to learn.

We are going to look at a couple of different ways of classifying or approaching
problems in this chapter. While there is considerable overlap, these various
schemes will provide you with different perspectives in the hope that they at
least will suggest a solution or approach that may fit your individual needs.

15.1 Overview

Algorithm design is a crucial part of the development process for parallel
programs. In many cases, the best serial algorithm can be easily parallelized,
while in other cases a fundamentally different algorithm will be needed. In this
chapter, we'll focus on parallelizing a serial algorithm. Keep in mind that this
may not provide the best solution to your problem. There are a number of
very detailed books on parallel algorithm design, parallel programming in
general, and on MPI programming in particular. Most have extensive
examples. Whenever possible, you should look for an existing, optimized
solution rather than trying to develop your own. This is particularly true when
faced with a problem that requires an algorithm that is fundamentally different
from the serial algorithm you might use. Don't reinvent the wheel.

The optimal algorithm will depend on the underlying architecture that is used.
For parallel programming, most algorithms will be optimized for either a
shared memory architecturea scheme where global memory is shared among
all processesor a message passing architecture. If you are looking at existing
algorithms, be sure to take this into account.

Since this is a book about clusters, we will be looking at parallel program
design from the perspective of message passing. This isn't always the best
approach for every problem, but it is the most common for use with a cluster.

Parallel algorithms are more complicated than serial algorithms. While a serial
algorithm is just a sequence of steps, a parallel algorithm must also specify
which steps can be executed in parallel and provide adequate control
mechanisms to describe the concurrency.

The process of parallel algorithm design can be broken into several steps.
First, we must identify the portions of the code that can, at least potentially,
be executed safely in parallel. Next, we must devise a plan for mapping those
parallel portions into individual processes (or onto individual processors). After
that, we need to address the distribution of data as well as the collection and
consolidation of results. This step also includes addressing any synchronization
issues that might arise, which must be done so that we can, finally,
synchronize the execution of the processes.

15.2 Problem Decomposition

When decomposing a program, we will talk in terms of tasks. The meaning of
this word may vary slightly depending upon context. Typically, a task is a
portion of a program that can be executed as a unit. It may be used to mean
that part of a program that can become an independent process, or it may be
used to mean a piece of the work that that process will execute. It should be
clear from context which meaning is intended.

Let's begin by looking at some of the issues involved in decomposing a problem
into parallelizable parts. The first issue we must face is task granularity.
Depending on the problem, a task may be broken into very small pieces (fine
granularity), into relatively large pieces (coarse granularity), or into a mixture
of pieces of varying sizes.

Granularity, in one sense, establishes a limit on how many compute nodes or
processors you may be able to use effectively. For example, if you are
multiplying two 10 by 10 matrices, then you will need to do 100
multiplications. Since you won't be able to subdivide a multiplication, you
won't be able to divide this problem into more than 100 pieces. Consequently,
having more than 100 processors won't allow you to do the multiplications any
faster. In practice, the number of processors you can effectively use will be
lower. It is essential to realize that there are a number of trade-offs that must
be balanced when dividing a problem. In particular, coarse granularity tends to
limit communication overhead but may result in increased idle time and poor
processor utilization. We will discuss each of these concerns in detail in this
chapter.

We can also speak of the degree of concurrency, i.e., the number of tasks that
can execute at the same time. Realize that this will vary during programming
execution depending on the point you are at in the program. Thus, it is often
more meaningful to talk about the maximum or the average degree of
concurrency of a program. Generally, both the maximum and average
concurrency are larger with fine-grained than coarse-grained problems.

A data (or task) dependency graph (or diagram) is one way of visually
representing a program. This can be helpful when investigating and describing
potential concurrency. The idea is to break the algorithm into pieces of code or
tasks based on the data required by that task. A graph is then drawn for the
algorithm that shows the set of tasks as nodes connected by arrows indicating
the flow of data between connected pairs of tasks.

Figure 15-1 is a data dependency graph for the numerical integration program

developed in Chapter 13. The amount of detail will vary in these graphs
depending on your purpose. In this case, I've kept things very simple. If you
desire, you can increase the detail to the point of having a single node for
each instruction and arrows for each variable.[1]

[1] Some authors distinguish between data and task dependency graphs and between dependencies
and interactions. Feel free to adjust your graphs as you see fit.

The idea is that graphs such as these help you think about and locate potential
concurrencies in your code. If you have two blocks of code or tasks that don't
depend on each other and have everything they need to execute, these are
potentially parallelizable tasks. Data flow graphs can be used for both data and
task partitioning. Data flow graphs should also provide you with some idea of
the critical paths through code, i.e., those paths that will likely take the
longest amount of time to complete. You won't be able to shorten the runtime
of a program to less time than it takes to complete the critical path. In other
words, if you want to shorten the runtime of a program, you must shorten the
critical path.

Figure 15-1. Data flow for numerical integration

There are some limitations to this approach. You'll need to give loops some
thought when drawing these graphs, since the body of a loop is a potentially
parallelizable piece of code. The essential step in parallelizing the numerical
integration problem in Chapter 13 was packaging as individual tasks, with
pieces of the loop used to calculate the area using the individual rectangles.
You should also realize that the graph provides no information about the
relative execution time for each task. Finally, and perhaps most important, the

graph doesn't clearly indicate how idle time might show up. Depending on how
we code the task Consolidate Results in Figure 15-1, most of the Calculate
Chunk blocks may be idle waiting for an opportunity to report their results.
(Moreover, depending on how they are coded, the individual Calculate Chunk
tasks may not all be of the same length.)

15.2.1 Decomposition Strategies

There are several different decomposition strategies worth considering.
Roughly speaking, decomposition strategies fall into two different
categoriesdata decomposition, sometimes called data partitioning, and control
decomposition or task partitioning. With data decomposition, the data is broken
into individual chunks and distributed among processes that are essentially
similar. With control decomposition, the problem is divided in such a way that
each process is doing a different calculation. In practice, many algorithms
show characteristics of both strategies.

15.2.1.1 Data decomposition

Data decomposition is generally much easier to program than control
decomposition and is usually the best approach when trying to adapt serial
algorithms for parallel use. Data decomposition also tends to scale very well, a
crucial consideration when dealing with problems that may grow.

The numerical integration program from the last chapter used data
decomposition. Each process had a different set of bounds, so the area that
each calculated was different, but the procedure was the same.

One of the most common approaches to data decomposition is a divide-and-
conquer strategy. This works particularly well with recursive algorithms. If a
problem can be treated as a set of independent subproblems, it is an ideal
candidate for data decomposition. Consider the problem of finding the largest
value in a large collection of data. The data could be divided into different sets,
the largest in each set could be found, and finally, this collection of largest
values could be examined. Finding the largest value in each of the smaller sets
could be handled by a different processor. Finding the final answer is an ideal
use of MPI_Reduce. This is a pretty trivial example of how divide and conquer
works.

For a more involved example, consider the merge sort algorithm.[2] The serial
algorithm takes a set of data, divides it into smaller sets of data, sorts these

smaller individual data sets, and then merges the sorted sets back together. To
sort a smaller set of data, merge sort uses the same strategy recursively.
Eventually, the smaller sets of data are reduced to sets of single items that are
obviously sorted. Merging sorted data is straightforward since you only have to
compare the first item in each group and select accordingly until you've
worked your way through the smaller sets.

[2] The sorting algorithm described here is just one possible approach, not necessarily the best.
Sorting in a parallel environment is particularly difficult and is an area of active, ongoing research.

In a parallel environment, you'll want to divide the data equally among the
available processors, but you probably won't want to continue dividing up the
data beyond that point because of the communications overhead. Once you
have the data distributed, you'll need to sort it locally on each individual
processor. You could use the serial version of merge sort or some other serial
sorting algorithm.

Merging the data back together will be more problematic. Not only will you
need code to merge two data sets, but you'll need to develop a
communications strategy to do this efficiently. If you use a single process to
collect and merge data, you will have a large amount of idle time. A more
appropriate strategy is to have pairs of processes merge their data, i.e., one
sends its data and dies while the other receives the sent data and merges that
data with its own. Repeat this strategy with the remaining processes until only
a single process remains. It will have all the data sorted.

For example, if you have eight processes, processes 0 and 1, processes 2 and
3, processes 4 and 5, and processes 6 and 7 could all merge their data at the
same time. Next, processes 0 and 2 and processes 4 and 6 could merge their
data simultaneously. Finally, processes 0 and 4 could merge their data. This
strategy, shown in Figure 15-2, has three sets of parallel merges or stages.
This is much more efficient than having process 0 merge its data repeatedly
with each of the other seven processes sequentially, a seven-stage procedure.

Figure 15-2. Merging data

With this strategy, for instance, 1,024 processes could merge their data in 10
stages. It would take 1,023 stages with a single receiving process, roughly 100
times as long.

15.2.1.2 Control decomposition

With control decomposition, each processor has different tasks. One common
model for control decomposition is pipelining or stream parallelism. With
pipelining, each task, except the first and last, plays the role of both producer
and consumer. A task receives or consumes data, processes that data, and
then sends the results on to the next consumer. For example, consider a set of
processes designed to manipulate a video stream. The first process might crop
a frame, the second might adjust brightness within the frame, the third might
adjust color levels, etc. Each process does something different and will require
radically different code.

Note that the second process must wait for the first process to finish before it
can begin since the second process consumes and processes the data produced
by the first. Similarly, the third process can't begin until the second sends its
data, and so on. Getting enough data into the system so that all processes are
active is referred to as priming the pipeline. Figure 15-3 shows how processes
overlap.

Figure 15-3. Ideal process overlap

You must have a lot more data than processes for this approach to be efficient.
Otherwise, the idle time at both the beginning and at the end will render this
approach pointless. Granularity is a key consideration here. If the granularity
is coarse, priming the pipeline is particularly costly.

A second issue with pipelining is balance. Each of the processes must run for
about the same amount of time. If one process takes much longer than the
other processes, they will be idle much of the time and overall efficiency will

be lost. (This is a likely problem with video processing, for example, as
described.) Figure 15-4 shows the effect of having one process take longer.
Note the idle time.

Figure 15-4. Process overlap with idle time

However, even though task 2 takes twice as long as the other tasks in this
four-task example, there is still a speedup using the pipeline.

A number of algorithms fall between these two extremes. That is, they appear
to have elements of both strategies. For example, a common approach in
artificial intelligence is to describe algorithms in terms of a search space. A
fundamental part of a chess-playing program is to examine a number of
different moves to see which appears to be the best. Since it evaluates each
move in the same manner, it is reasonable to approach this as a data
decomposition problem. Each process will be given a different board
configuration, i.e., a different set of data. But once the data has been
distributed, the different processes go their different ways. One process may
terminate quickly having determined the board position is abysmal (a process
known as pruning), while another may be following a hot move recursively
through several levels.

15.3 Mapping Tasks to Processors

Being able to decompose a problem is only the first step. You'll also need to be
able to map the individual tasks to different processors in your cluster. This is
largely a matter of developing appropriate control structures and
communication strategies. Since the ultimate goal is to reduce the time to
completion, task mapping is largely a balancing act between two conflicting
subgoalsthe need to maximize concurrency and the need to minimize the
overhead introduced with concurrency. This overhead arises primarily from
interprocess communications, from process idle time, and to a lesser extent,
from redundant calculations.

Consider redundant calculations first. When we separate a program into
multiple tasks, the separation may not always go cleanly. Consequently, it
may be necessary for each process to do redundant calculations, calculations
that could have been done once by a single process. Usually, this doesn't add
to the program's overall time to completion since the rest of the processes
would have been idle while a single process did the calculation. In fact, having
the individual processors each do the calculation may be more efficient since it
eliminated the communication overhead that would be required to distribute
the results of the calculation. However, this is not always the case, particularly
with asymmetric processes. You should be aware of this possibility.

15.3.1 Communication Overhead

Communication overhead is a more severe problem. Returning to the matrix
multiplication example, while we might obtain maximum concurrency by
having a different processor for each of the 100 multiplications, the overhead
of distributing the matrix elements and collecting the results would more than
eliminate any savings garnered from distributing the multiplications. On the
other hand, if we want to minimize communication overhead, we could
package everything in one process. While this would eliminate any need for
communication, it would also eliminate all concurrency. With most problems,
the best solution usually (but not always) lies somewhere between maximizing
concurrency and minimizing communication.

In practice, you'll need to take an iterative approach to find the right balance
between these two extremes. It may take several tries to work out the details.
There are three useful factors. The most important is task size. Keep in mind
that tasks may be uniform, i.e., all the same size, or nonuniform. Decomposing
into uniform pieces will usually minimize idle time, but this isn't always true.

First, you will need to be able to distribute data efficiently so that some
processes aren't waiting. Second, if some of the compute nodes are faster than
others or if some are more heavily loaded, the benefit of uniformity can be lost
and may even be a disadvantage.

Some tasks are inherently nonuniform. Consider searching through an array of
data for an item. In one instance, you may be able to find the item very
quickly. In another instance, it may take much longer. If two processes are
sorting data, depending on the algorithm, the one that receives a nearly
sorted set of data may have a tremendous advantage over similar processes
sorting a highly random set of data.

In addition to task size, there is the issue of task generation. For some
problems, task generation is clearly defined. Task generation is said to be
static for these problems. For example, if we want to sort a million numbers,
we can clearly determine in advance how we want to generate the tasks. But
not all problems are static. Consider the problem of playing chess. The boards
you will want to consider will depend on a number of factors that vary from
game to game, so they aren't known in advance. Both the number and size of
the task will depend on how the pieces are positioned on the board. For such
problems, task generation is said to be dynamic.

A third consideration is the communication pattern that the problem will
generate. Like tasks, communications may be static (the pattern is known in
advance) or dynamic. In general, static communication is easier to program
since dynamic communication tends to be unpredictable and error prone.

When programming, there are several very straightforward ways to minimize
the impact of communications. First, try to reduce the volume of the data you
send. Avoid sending unnecessary data. Can one process duplicate a calculation
more efficiently than a pair of processes can exchange a value? Next, try to
minimize the number of messages sent. If possible, package data so that it can
be sent in a single message rather than as a series of messages. Look for
hotspots in your communication pattern. When possible, overlap
communications with computation to minimize network congestion. Finally,
when feasible, use the collective operations in your message-passing library to
optimize communication.

There are a number of other important questions that need to be answered to
fully characterize communication patterns. Do all the processes need to
communicate with each other or can communication be managed through a
single process? Then there is the issue of communication timing, i.e., is
communication synchronized? Can all the data be distributed at once, or will it
be necessary to update the data as the program runs? Is communication

unidirectional or bidirectional? What is the source and destination for data,
i.e., does it come from another process, is it sent to another process, or is the
filesystem used? There are no right or wrong answers to these questions, but
you do need to know the answers to understand what's going on.

15.3.2 Load Balancing

As previously noted, idle time is a major source of overhead. The best way to
minimize idle time is to balance the computing requirements among the
available processors. There are several sources of idle time in parallel
programs. One source is a mismatch between tasks and processors. If you try
to run five processes on four processors, two of the processes will be
competing for the same processor and will take twice as long as the other
processes. Another source of idle time is nonuniform tasks as shown in Figure
15-4. Differences in processor speeds, memory, or workload on cluster nodes
can also result in some processes taking longer than expected to complete,
leaving other processes idle as they wait to send data to or receive data from
those processes.

One way to minimize the overhead resulting from idle time is load balancing.
Depending on the context, load balancing can mean different things. In the
larger context of operating systems, load balancing may mean running
different programs or processes on different machines. In the current context
of parallel programming, it refers to a technique of breaking a program into
tasks and distributing those tasks based on processor availability.

An example should help. Suppose you have 100 nodes in your cluster, some
fast and some slow. If you divide your problem into 100 tasks and send one
task to each node, then you won't finish until the slowest, most heavily loaded
node finishes. If, however, you divide your problem into 1,000 tasks and write
your code so that when a processor finishes one task it receives another, the
faster and less loaded processors can take on a larger share of the work while
the slower processors will do less. If all goes well, you will finish quicker.

This is the basic idea behind a work pool. The work is distributed by
maintaining a pool of tasks that are sent to processors whenever a processor
becomes idle. Typically, a master-slave arrangement is usedone (sometimes
more) processor acts as a master distributing work and collecting results, while
the remaining processes act as slaves that process a single task, return the
results to the master, and wait for their next task. Typically, slaves are idle
only toward the end of the program's execution when there are fewer
uncompleted tasks than slaves.

In order to use a work pool effectively, you need to reduce the granularity of
your tasks so that you have more tasks than slaves. The key issue, when
reducing the granularity, is at what point communication overhead begins to
outweigh the benefits of reduced idle time. In general, a work pool works best
when the communication overhead is small compared to the amount of
computing needed. You should also be aware that the master process can
become a bottleneck if it must deal with too many tasks. This may happen if
the task size is too small.

Here is the numerical integration problem rewritten using a master-slave,
work pool approach.

#include "mpi.h"

#include <stdio.h>

/* problem parameters */

#define f(x) ((x) * (x))

int main(int argc, char * argv[])

{

 /* MPI variables */

 int dest, noProcesses, processId;

 MPI_Status status;

 /* problem variables */

 int i, chunk, numberChunks, numberRects;

 double area, at, height, lower, width, total, range;

 double lowerLimit, upperLimit;

 /* MPI setup */

 MPI_Init(&argc, &argv);

 MPI_Comm_size(MPI_COMM_WORLD, &noProcesses);

 MPI_Comm_rank(MPI_COMM_WORLD, &processId);

 if (processId = = 0) /* if rank is 0, collect parameters */

 {

 fprintf(stderr, "Enter number of chunk to divide problem into:\n");
 scanf("%d", &numberChunks);

 fprintf(stderr, "Enter number of steps per chunk:\n");

 scanf("%d", &numberRects);

 fprintf(stderr, "Enter low end of interval:\n");

 scanf("%lf", &lowerLimit);

 fprintf(stderr, "Enter high end of interval:\n");

 scanf("%lf", &upperLimit);

 }

 MPI_Bcast(&numberChunks, 1, MPI_INT, 0, MPI_COMM_WORLD);

 MPI_Bcast(&numberRects, 1, MPI_INT, 0, MPI_COMM_WORLD);

 MPI_Bcast(&lowerLimit, 1, MPI_DOUBLE, 0, MPI_COMM_WORLD);

 MPI_Bcast(&upperLimit, 1, MPI_DOUBLE, 0, MPI_COMM_WORLD);

 /* collect information and print results */

 /* if rank is 0, assign chunk, collect results, print results */

 if (processId = = 0)

 { total = 0.0;

 if (noProcesses - 1 < numberChunks) chunk = noProcesses - 1;

 else chunk = 0;

 for (i = 1; i <= numberChunks; i++)

 { MPI_Recv(&area, 1, MPI_DOUBLE, MPI_ANY_SOURCE, MPI_ANY_TAG,

 MPI_COMM_WORLD, &status);

 fprintf(stderr, "Area for process %d, is: %f\n", status.MPI_TAG,

 area);

 total = total + area;

 if (chunk != 0 && chunk < numberChunks) chunk++;

 else chunk = 0;

 MPI_Send(&chunk, 1, MPI_INT, status.MPI_TAG, chunk, MPI_COMM_WORLD);

 }

 fprintf (stderr, "The area from %f to %f is: %f\n",

 lowerLimit, upperLimit, total);

 }

 else

 /* all other processes, calculate area for chunk and send results */

 {

 if (processId > numberChunks) chunk = 0; /* too many processes */

 else chunk = processId;

 while (chunk != 0)

 { /* adjust problem size for subproblem */

 range = (upperLimit - lowerLimit) / numberChunks;

 width = range / numberRects;

 lower = lowerLimit + range * (chunk - 1);

 /* calculate area for this chunk */

 area = 0.0;

 for (i = 0; i < numberRects; i++)

 { at = lower + i * width + width / 2.0;

 height = f(at);

 area = area + width * height;

 }

 /* send results and get next chunk */

 dest = 0;

 MPI_Send(&area, 1, MPI_DOUBLE, dest, processId, MPI_COMM_WORLD);

 MPI_Recv(&chunk, 1, MPI_INT, 0, MPI_ANY_TAG, MPI_COMM_WORLD,

 &status);

 }

 }

 /* finish */

 MPI_Finalize();

 return 0;

}

There are two major sets of changes to this code. First, the number of regions
(numberChunks) is now a parameter entered by the user. Previously, we divided
the problem into the same number of regions as processors, i.e., each
processor had its own well-defined region to evaluate. Now the total number of
regions exceeds (or should exceed) the number of processes. The total number
of regions is broadcast to each process so that the process can go ahead and
begin calculating the area for its first region.

Process 0 is the master process and no longer calculates the area for a region.
Rather, it keeps track of what needs to be done, assigns work, and collects
results. All remaining processes are slaves and do the actual work. If one of
these is heavily loaded, it may only calculate the area of one region while
other, less-loaded nodes may calculate the area of several regions. Notice that
a value of 0 for chunk signals a slave than no more regions need to be
calculated.

15.4 Other Considerations

The issues we have examined up to this point are fairly generic. There are
other programming-specific issues that may need to be addressed as well. In
this section, we will look very briefly at two of the more common of
these parallel I/O and random numbers. These are both programming tasks
that can cause particular problems with parallel programs. You'll need to take
care whenever your programs use either of these. In some instances, dealing
with these issues may drive program design.

15.4.1 Parallel I/O

Large, computationally expensive problems that require clusters often involve
large data sets. Since I/O is always much more costly than computing, dealing
with large data sets can severely diminish performance and must be
addressed.

There are several things you can do to improve I/O performance even before
you start programming. First, you should buy adequate I/O hardware. If your
cluster will be used for I/O-intensive tasks, you need to pay particular
attention when setting up your cluster to ensure you are using fast disks and
adequate memory. Next, use a fast filesystem. While NFS may be an easy way
to get started with clusters, it is very slow. Other parallel filesystems
optimized for parallel performance should be considered, such as PVFS, which
is described in Chapter 12.

When programming, if memory isn't a problem, it is generally better to make a
few large requests rather than a larger number of smaller requests. Design
your programs so that I/O is distributed across your processes. Because of
historical limitations in parallel I/O systems, it is typical for parallel programs
to do I/O from a single process. Ideally, you should use an interface, such as
MPI-IO, that spreads I/O across the cluster and has been optimized for parallel
I/O.

The standard Unix or POSIX filesystem interface for I/O provides relatively
poor performance when used in a parallel context, since it does not support
collective operations and does not provide noncontiguous access to files. While
the original MPI specification avoided the complexities of I/O, the MPI-2
specification dealt with this issue. The MPI-2 specification for parallel I/O
(Chapter 9 of the specification) is often known as the MPI-IO. This standard
was the joint work of the Scalable I/O Initiative and the MPI-IO Committee

through the MPI Forum.

ROMIO, from Argonne National Laboratory, is a freely available, portable,
high-performance implementation of the MPI-IO standard that runs on a
number of different architectures. It is included with MPICH and LAM/MPI and
provides interfaces for both C and FORTRAN.

MPI-IO provides three types of data access mechanismsusing an explicit offset,
using individual file pointers, or using shared file pointers. It also provides
support for several different data representations.

15.4.2 MPI-IO Functions

MPI-IO optimizations include collective I/O, data sieving, and hints. With
collective I/O, larger chunks of data are read with a single disk access. The
data can then be distributed among the processes as needed. Data sieving is a
technique that combines a number of smaller noncontiguous reads into one
large read. The system selects and returns the sections requested by the user
and discards the rest. While this can improve disk performance, it can put a
considerable strain on memory. Hints provide a mechanism to inform the
filesystems about a program's data access patterns, e.g., desired caching
policies or striping.

The following code fragment shows how MPI-IO functions might be used:

...

#define BUFFERSIZE 1000

...

int buffer[BUFFERSIZE];

MPI_File filehandle;

...

MPI_File_open(MPI_COMM_WORLD, "filename", MPI_MODE_RDONLY, MPI_INFO_NULL,

 &filehandle);

MPI_File_seek(filehandle, processId*BUFFERSIZE*sizeof(int), MPI_SEEK_SET);

MPI_File_read(filehandle, buffer, BUFFERSIZE, MPI_INT, &status);

MPI_File_close(&filehandle);

...

The last four function calls would be executed by each process and, like all MPI
functions, would be sandwiched between calls to MPI_Init and MPI_Finalize. In
this example, each process opens the file, moves to and reads a block of data
from the file, and then closes it.

15.4.2.1 MPI_File_open

MPI_File_open is used to open a file. The first argument is the communication
group. Every process in the group will open the file. The second argument is
the file name. The third argument defines the type of access required to the
file. MPI_MODE_RDONLY is read-only access. Nine different modes are supported
including MPI_MODE_RDWR (reading and writing), MPI_MODE_WRONLY (write
only), MPI_MODE_CREATE (create if it doesn't exist),
MPI_MODE_DELETE_ON_CLOSE (delete file when done), and MPI_MODE_APPEND
(set the file pointer at the end of the file). C users can use the bit-vector OR
(|) to combine these constants. The next to last argument is used to pass hints
to the filesystem. The constant MPI_INFO_NULL is used when no hint is
available. Using hints does not otherwise change the semantics of the
program. (See the MPI-2 documentation for the rather complex details of
using hints.) The last argument is the file handle (on type MPI_File), an opaque
object used to reference the file once opened.

15.4.2.2 MPI_File_seek

This function is used to position the file pointer. It takes three arguments: the
file handle, an offset into the file, and an update mode. There are three update
modes: MPI_SEEK_SET (set pointer to offset), MPI_SEEK_CUR (set pointer to
current position plus offset), and MPI_SEEK_END (set pointer to end of file plus
offset). In this example we have set the pointer to the offset. Notice that
processId is used to calculate a different offset into the file for each process.

15.4.2.3 MPI_File_read

MPI_File_read allows you to read data from the file specified by the first
argument, the file handle. The second argument specifies the address of the
buffer, while the third element gives the number of elements in the buffer.
The fourth element specifies the type of the data read. The options are the
same as with other MPI functions, such as MPI_Send. In this example, we are
reading BUFFERSIZE integers into the array at buffer. The last argument is a
structure describing the status of read operation. For example, the number of
items actually read can be determined from status with the MPI_Get_count
function.

15.4.2.4 MPI_File_close

MPI_File_close closes the file referenced by the file handle.

The four new functions in this sample example, along with MPI_File_write, are
the core functions provided by MPI-IO. However, a large number of other MPI-
IO functions are also available. These are described in detail in the MPI-2
documentation.

15.4.3 Random Numbers

Generating random (or pseudorandom) numbers presents a particular problem
for parallel programming. Pseudorandom number generators typically produce
a stream of "random" numbers where the next random number depends upon
previously generated random numbers in some highly nonobvious way.[3]

While the numbers appear to be random, and are for most purposes, they are
in fact calculated and reproducible provided you start with the same
parameters, i.e., at the same point in the stream. By varying the starting
parameters, it will appear that you are generating a different stream of
random numbers. In fact, you are just starting at different points on the same
stream. The period for a random number generator is the number of entries in
the stream before the stream starts over again and begins repeating itself. For
good random number generators, the periods are quite large and shouldn't
create any problems for serial programs using random number generators.

[3] As you can imagine, coming up with a good generator is very, very tricky.

For parallel programs, however, there are some potential risks. For example, if
you are using a large number of random numbers on a number of different
processors and using the same random number generator on each, then there
is a chance that some of the streams will overlap. For some applications, such
as parallel Monte Carlo simulations, this is extremely undesirable.

There are several ways around this. One approach is to have a single process
serve as a random number generator and distribute its random numbers
among the remaining processes. Since only a single generator is used, it is
straightforward to ensure that no random number is used more than once. The
disadvantage to this approach is the communication overhead required to
distribute the random numbers. This can be minimized, somewhat, by
distributing blocks of random numbers, but this complicates programming
since each process must now manage a block of random numbers.

An alternative approach is to use the same random number generator in each
process but to use different offsets into the stream. For example, if you are
using 100 processes, process 0 would use the 1st, 101st, 201st, etc., random
numbers in the stream. Process 1 would use the 2nd, 102nd, 202nd, etc.,
random numbers in the stream, etc. While this eliminates communication
overhead, it adds to the complexity of the program.

Fortunately, there are libraries of random number generators designed
specifically for use with parallel programs. One such library is Scalable Parallel
Random Number Generators (SPRNG). This library actually provides six
different state-of-the-art random number generators (Table 15-1). SPRNG
works nicely with MPI. (You'll need to download and install SPRNG before you
can use it. See Chapter 9 for details.)

Table 15-1. SPRNG's random number generators

Code Generator

0 Additive Lagged Fibonacci Generator

1 48-bit Linear Congruential Generator with Prime Addend

2 64-bit Linear Congruential Generator with Prime Addend

3 Combined Multiple Recursive Generator

4 Multiplicative Lagged Fibonacci Generator

5 Prime Modulus Linear Congruential Generator

To give you an idea of how to use SPRNG, we'll look at a simple Monte Carlo
simulation that estimates the value of (in case you've forgotten). The way the
simulation works is a little like throwing darts.

Imagine throwing darts at a dart board with a circle in the center like the one
in Figure 15-5. Assuming that you are totally inept, the darts could land
anywhere, but ignore those that miss the board completely. If you count the
total number of darts thrown (total) and if you count those that land in the
circle (in), then for random tosses, you'd expect the ratio in/total to be just the
ratio of the area of the circle to the square. If the square is 1 foot on a side,
the area of the circle is /4 square feet. Using this information, you can
estimate as 4*in/total, i.e., four times the ratio of the area of the circle to the
area of the square.

Figure 15-5. Monte Carlo dartboard

You'll need to throw a lot of darts to get a reasonable estimate. If you know a
lot of inept dart enthusiasts, you can recruit them. Each one throws darts and
keeps track of their total. If you add the results, you should get a better
estimate.

The code that follows uses this technique to estimate the value of . Multiple
processes are used to provide a larger number of tosses and a better estimate.
The code uses SPRNG to generate separate streams of random numbers, one
for each process.

#include <stdio.h>

#include <math.h>

#include "mpi.h"

#define SIMPLE_SPRNG /* simple interface */
#define USE_MPI /* MPI version of SPRNG */
#include "sprng.h"

main(int argc, char *argv[])

{

 int i, in, n, noProcesses, processId, seed, total;

 double pi;

 n = 1000;

 MPI_Init(&argc, &argv);

 MPI_Comm_size(MPI_COMM_WORLD, &noProcesses);

 MPI_Comm_rank(MPI_COMM_WORLD, &processId);

 seed = make_sprng_seed();
 init_sprng(3, seed, SPRNG_DEFAULT);
 print_sprng();

 in = hits(n);

 MPI_Reduce(&in, &total, 1, MPI_INT, MPI_SUM, 0, MPI_COMM_WORLD);

 /* estimate and print pi */

 if(processId = = 0)

 { pi = (4.0 * total) / (n * noProcesses);

 printf("Pi estimate: %18.16f \n", pi);

 printf("Number of samples: %12d \n", n * noProcesses);

 }

 MPI_Finalize();

}

/* count darts in target */

int hits(int n)

{

 int i, in = 0;

 double x, y;

 for (i = 0; i < n; i++)

 { x = sprng();

 y = sprng();

 if (x * x + y * y < 1.0) in++;

 }

 return in;

}

For simplicity, this code considers only the top right-hand corner (one-fourth)
of the board. But since the board is symmetric, the ratio of the areas is the
same. The code simulates randomly throwing darts by generating a pair of
random numbers for the coordinates of where the dart might land, and then
looks to see if they are within the circle by calculating the distance to the
center of the circle.[4] This is done in the function hits.

[4] Strictly speaking, it is using the square of the distance to avoid evaluating a square root for each
point, a costly operation.

Apart from the SPRNG code, shown in boldface, everything should look
familiar. For MPI programming, before including the SPRNG header file, you
need to define two macros. In this example, the macro SIMPLE_SPRNG is used to
specify the simple interface, which should be adequate for most needs. The
alternative or default interface provides for multiple streams per process. The
macro USE_MPI is necessary to let the init_sprng routine make the necessary
MPI calls to ensure separate streams for each process.

Before generating random numbers, a seed needs to be generated and an
initialization routine called. The routine make_sprng_seed generates a seed
using time and date information from the system. When used with MPI, it
broadcasts the seed to all the processes. init_sprng initializes the random
number streams. (This call can be omitted if you want to use the defaults.) The
first argument to init_sprng is an integer from 0 to 5 inclusive, specifying which
of the random number generators to use. Table 15-1 gives the possibilities.
The second argument is the seed, an encoding of the start state for the
random number generator, while the third argument is used to pass additional
parameters required by some generators.

The call to print_sprng, also optional, will provide information about each of the
streams as shown in the output below. Finally, to generate random numbers, a
double between 0 and 1, the call sprng is used as seen in the hits routine.

Here is an example of compiling the code. On this system, SPRNG has been
installed in the directory /usr/local/src/sprng2.0.

[sloanjd@fanny SPRNG]$ mpicc pi-mpi.c -I/usr/local/src/sprng2.0/include \

> -L/usr/local/src/sprng2.0/lib -lsprng -lm -o pi-mpi

Note the inclusion of path and library information. (Look at the Makefile file in
the EXAMPLES subdirectory in the installation tree for more hints on
compiling.)

Here is part of the output for this program.

[sloanjd@fanny SPRNG]$ mpirun -np 4 pi-mpi

Combined multiple recursive generator

 seed = 88724496, stream_number = 0 parameter = 0

Pi estimate: 3.0930000000000000

Number of samples: 4000

Combined multiple recursive generator

 seed = 88724496, stream_number = 2 parameter = 0

...

The output for two of the streams is shown. It is similar for the other streams.
If rounded, the answer is correct to two places. That's using 4,000 darts.

The documentation for SPRNG provides a number of the details glossed over
here. And the installation also includes a large number of detailed examples.

These two examples, I/O and random numbers, should give you an idea of the
types of problems you may encounter when writing parallel code. Dealing with
problem areas like these may be critical when determining how your programs
should be designed. At other times, performance may hinge on more general
issues such as balancing parallelism with overhead. It all depends on the
individual problem you face. While good design is essential, often you will need
to tweak your design based on empirical measurements. Chapter 17 provides
the tools you will need to do this.

Chapter 16. Debugging Parallel Programs
If you are using a cluster, you are probably dealing with large, relatively
complicated problems. As problem complexity grows, the likelihood of errors
grows as well. In these circumstances, debugging becomes an increasingly
important skill. It is a simple fact of lifeif you write code, you are going to have
to debug it.

In this chapter, we'll begin by looking at why debugging parallel programs can
be challenging. Next, we'll review debugging in general. Finally, we'll look at
how the traditional serial debugging approaches can be extended to parallel
problems. Parallel debugging is an active research area, so there is a lot to
learn. We'll stick to the basics here.

16.1 Debugging and Parallel Programs

Parallel code presents new difficulties, and the task of coordinating processes
can result in some novel errors not seen in serial code. While elaborate
classification schemes for parallel problems exist, there are two broad
categories of errors in parallel code that you are likely to come up against.
These are synchronization problems that stem from inherent nondeterminism
found in parallel code and deadlock. While we can further subclassify
problems, you shouldn't be too concerned about finer distinctions. If you can
determine the source of error and how to correct it, you can leave the
classification to the more academically inclined.

Synchronization problems result from variations in the order that instructions
may be executed when spread among multiple processes. By contrast, serial
programs are deterministic, executing each line of code in the order it was
written. Once you start forking off processes, all bets are off. Moreover, since
the loads on machines fluctuate, as does the competition for communications
resources, the timing among processes can vary radically from run to run. One
process may run before another process one day and lag behind it the next. If
the order of execution among cooperating processes is important, this can lead
to problems. For example, the multiplication of matrices is not commutative. If
you are multiplying a chain of matrices, you'll need to explicitly control the
order in which the multiplications occur when dividing the problem among the
processes. Otherwise, a race condition may exist among processes.

Deadlock occurs when two or more processes are waiting on each other for
something. For example, if process A is waiting for process B to send it
information before it can proceed, and if process B is waiting for information
from process A before it can proceed, then neither process will be able to
advance and send the other process what it needs. Both will wait, very
patiently, for the other to act first. While this may seem an obvious sort of
problem that should be easy to spot, deadlock can involve a chain of different
processes and may depend on a convoluted path through conditional
statement in code. As such, it can occur in very nonobvious ways. A variant of
deadlock is livelock, where the process is still busy computing but can't
proceed beyond some point.

This shouldn't intimidate you. While you may occasionally see explicitly
parallel problems, most of the problems you are likely to see are not new.
They are the same mistakes you'll have made with serial code. This is good
news! It means you should already be familiar with most of the problems you'll
see. It also suggests a strategy for developing and debugging code.

Start, whenever possible, with a serial version of the code. This will help you
identify potential problems and work out the details of your code. Once you
have the serial version fully debugged, you can move on to the parallel
version. Depending of the complexity of the problem, the next step may be
running the code with a small number of processes on the same machine. Only
after this is working properly should you scale up the problem.

Since most problems are serial, we'll start with a quick review of debugging in
general and then look at how we can expand traditional techniques to parallel
programs.

16.2 Avoiding Problems

I would be remiss if I didn't begin with the usual obligatory comments about
avoiding bugs in the first place. Life will be much simpler if you can avoid
debugging. While this is not always possible, there are several things you can
do to minimize the amount of debugging you'll need.

Carefully design your program before you begin coding.

Be willing to scrap what you've done and start over.

Comment your code and use reasonable naming conventions.

Don't try to get too clever.

Develop and test your code incrementally.

Never try to write code when you are fatigued or distracted.

Master all the programming tools that are available to you.

Of course, you already knew all of this. But sometimes it doesn't hurt to
badger someone just a little.

16.3 Programming Tools

On most systems, a number of debugging tools are readily available. Others
can be easily added. While most are designed to work with serial code, they
are still worth mastering, since most of your errors will be serial in nature.

First, you should learn to use the features built into your programming
language. For example, in C you might use asserts to verify the correct
operation of your code. You should also learn how to write error handlers. This
advice extends beyond the language to any libraries you are using. For
example, MPI provides two error handlers, MPI_ERROR_ARE_FATAL and
MPI_ERRORS_RETURN. And the MPICH implementation defines additional error
handlers. While we have been ignoring them in our programming examples in
order to keep the code as simple as possible, almost all MPI functions return
error codes.

Next, learn to use the features provided by your compiler. Most compilers
provide a wealth of support that is only a compile option or two away. Since
the added checking increases compile time, these are generally disabled by
default. But if you take the time to read the documentation, you'll find a lot of
useful features. For example, with gcc you can use the options -Wall to turn on
a number of (but not all) warnings, -ansi to specify the language standard to
use, and -pedantic to issue all mandatory diagnostics, including those
frequently omitted. mpicc will pass options like these on to the underlying
compiler, so you can use them when compiling MPI programs. When using
these, you'll likely see a number of warning messages that you can safely
ignore, but you may find a pearl or two as well. Keep in mind that there are a
large number of additional options available with gcc, so be sure to read the
documentation.

Additionally, many systems have other utilities that can be helpful. The
granddaddy of them all is lint. This is a program that analyzes code for
potential errors with which most older compilers didn't bother. Most of the
problems that lint checks for are now caught by modern compilers (if you use
the right flags). Fortunately, lint has been superceded with more extensive
checkers. If you are running Linux, you probably already have splint installed.

Here is an example of using splint. The -I option is used to include the path to
the file mpi.h.

[sloanjd@amy AREA]$ splint -I/opt/lam-7.0/include rect.c

Splint 3.0.1.7 --- 24 Jan 2003

...

rect.c:80:13: Return value (type int) ignored: MPI_Recv(&chunk,...

rect.c:85:5: Return value (type int) ignored: MPI_Finalize()

Finished checking --- 29 code warnings

Most of the output has been deleted (out of embarrassment), but you should
get the idea. Of course, this is a working program. It just could be better.

There are a number of other tools that you might want to investigate. For
example, memory checkers will examine your code for potential memory
leaks. Probably the best known is the commercial product purify, but you
might want to look at the GNU product checkergcc. Symbolic debuggers are
described later in this chapter. And don't overlook profilers (described in
Chapter 17). While not designed as debugging tools, they frequently reveal
lots of problems.

16.4 Rereading Code

There are three basic escalating strategies for locating errorsrereading code,
printing information at key points, and using a symbolic debugger. There is an
interesting correspondence between these debugging strategies and search
strategies, i.e., linear search, binary search, and indexed search. When
reading code we are searching linearly for the error. Printing works best when
we take a binary approach. Through the breakpoints a symbolic debugger
provides, we are often able to move directly to a questionable line of code.

Rereading (or reading for the first time in some cases) means looking at the
code really hard with the hope the error will jump out at you. This is the best
approach for new code since you are likely to find a number of errors as well
as other opportunities to improve the code. It also works well when you have a
pretty good idea of where the problem is. If it is a familiar error, if you have
just changed a small segment of code, or if the error could only have come
from one small segment of code, rereading is a viable approach.

Rereading relies on your repeatedly asking the question, "If I were a
computer, what would I do?" You can still play this game with a cluster, you
just have to pretend to be several computers at once and keep everything
straight. With a cluster, the order of operations is crucial. If you take this
approach, you'll need to take extra care to ensure that you don't jump beyond
a point in one process that relies on another process without ensuring the
other process will do its part. An example may help explain what I mean.

As previously noted, one problem you may encounter with a parallel program
is deadlock. For example, if two processes are waiting to receive from each
other before sending to each other, both will be stalled. It is very easy when
manually tracing a process to skim right over the receive call, assuming the
other process has sent the necessary information. Making that type of
assumption is what you must guard against when pretending to be a cluster of
computers. Here is an example:

#include "mpi.h"

#include <stdio.h>

int main(int argc, char * argv[])

{

 int datum1 = 19, datum2 = 23, datum3 = 27;

 int datum4, datum5, datum6;

 int noProcesses, processId;

 MPI_Status status;

 /* MPI setup */

 MPI_Init(&argc, &argv);

 MPI_Comm_size(MPI_COMM_WORLD, &noProcesses);

 MPI_Comm_rank(MPI_COMM_WORLD, &processId);

 if (processId = = 0) /* for rank 0 */

 { MPI_Recv(&datum4, 1, MPI_INT, 2, 3, MPI_COMM_WORLD, &status);
MPI_Send(&datum1, 1, MPI_INT, 1, 0, MPI_COMM_WORLD);

 fprintf (stderr, "Received: %d\n", datum4);

 }

 else if (processId = = 1) /* for rank 1 */

 { MPI_Recv(&datum5, 1, MPI_INT, 0, 0, MPI_COMM_WORLD, &status);
MPI_Send(&datum2, 1, MPI_INT, 2, 1, MPI_COMM_WORLD);

 fprintf (stderr, "Received: %d\n", datum5);

 }

 else /* for rank 2 */

 { MPI_Recv(&datum6, 1, MPI_INT, 1, 1, MPI_COMM_WORLD, &status);
MPI_Send(&datum3, 1, MPI_INT, 0, 3, MPI_COMM_WORLD);

 fprintf (stderr, "Received: %d\n", datum6);

 }

 MPI_Finalize();

 return 0;

}

This code doesn't do anything worthwhile other than illustrate deadlock. It is
designed to be run with three processes. You'll notice that each process waits
for another process to send it information before it sends its own information.
Thus process 0 is waiting for process 1 which is waiting for process 2 which is
waiting for process 0. If you run this program, nothing happensit hangs.

While this example is fairly straightforward and something that you probably
could diagnose simply by reading the source, other examples of deadlock can
be quite subtle and extraordinarily difficult to diagnose simply by looking at
the source code.

Deadlock is one of the most common problems you'll face with parallel code.
Another common problem is mismatching parameters in function calls,
particularly MPI functions. This is something that you can check carefully while
rereading your code.

16.5 Tracing with printf

Printing information at key points is a way of tracing or following the execution
of the code. With C code, you stick printf's throughout the code that let you
know you've reached a particular point in the code or tell you what the value
of a variable is. By using this approach, you can zero in on a crucial point in
the program and see the value of parameters that may affect the execution of
the code. This quick and dirty approach works best when you already have an
idea of what might be going wrong. But if you are clueless as to where the
problem is, you may need a lot of print statements to zero in on the problem,
particularly with large programs. Moreover, it is very easy for the truly useful
information to get lost in the deluge of output you create.

On the other hand, there is certainly nothing wrong with printing information
that provides the user with some sense of progress and an indication of how
the program is working. We did this in our numerical integration program
when we printed the process number and the individual areas calculated by
each process.

It can be particularly helpful to echo values that are read into the program to
ensure that they didn't get garbled in the process. For example, if you've
inadvertently coerced a floating point number into an integer, the truncation
that occurs will likely cause problems. By printing the value, you may be
alerted to the problem.

Including print statements can also be helpful when you are working with
complicated data structures since you will be able to format the data in
meaningful ways. Examining a large array with a symbolic debugger can be
challenging. Since it is straightforward to conditionally print information, print
statements can be helpful when the data you are interested in is embedded
within a large loop and you want to examine it only under selective conditions.

In developing code, programmers will frequently write large blocks of
diagnostic code that they will discard once the code seems to be working.
When the code has to be changed at a later date, they will often find
themselves rewriting similar code as new problems arise. A better solution is
to consider the diagnostic code a key part of the development process and
keep it in your program. By using conditional compile directives, the code can
be disabled in production versions so that program efficiency isn't
compromised, but can be enabled easily should the need arise.

A technique that is often used with printf is deleting extraneous code. The idea
is, after making a copy of your program, to start deleting code and retesting to

see whether the problem has disappeared. The goal is to produce the smallest
piece of code that still exhibits the problem. This can be useful with some
types of problems, particularly when you are trying to piece together how
some feature of a language works. It can also be helpful when generating a
bug report.

With parallel code, the printf approach can be problematic. Earlier in this book,
you saw examples of how the output from different processes could be printed
in a seemingly arbitrary order. Buffering further complicates matters. If your
code is crashing, a process may die before its output is displayed. That output
will be lost. Also, output can change timings which can limit its effectiveness if
you are dealing with a race problem. Finally, print statements can seriously
deteriorate performance.

If you are going to use the printf approach with parallel programs, there are
two things you should do. First, if there is any possibility of the source of the
output being confused, be sure to label the output with the process number or
machine name. Second, follow your calls to printf with a call to fflush so that the
output is actually printed at the moment the program generates it. For
example,

...

int processId;

char processName[MPI_MAX_PROCESSOR_NAME];

...

MPI_Comm_rank(MPI_COMM_WORLD, &processId);

MPI_Get_processor_name(processName, &nameSize);

...

fprintf(stdout, "Process %d on %s at checkpoint 1. \n", processId,

processName);

fflush(stdout);

...

If you want to control the order of the output, you'll need to have the master
process coordinate output.

16.6 Symbolic Debuggers

If these first two approaches don't seem to be working for you, it's time to turn
to a symbolic debugger. (Arguably, the sooner you switch to a symbolic
debugger, the better.) Symbolic debuggers will allow you to trace the
execution of your program, stop and examine variables, make changes, and
resume execution. While you'll need to learn how to use them, most are fairly
intuitive and don't take long to master. All you really need to do is learn a few
basic commands to get started. You can learn more commands as the need
arises.

There are a number of symbolic debuggers available, including debuggers that
are specifically designed to work with parallel programs such as commercial
products like TotalView. With a little extra effort, you'll probably be able to get
by with some more common debuggers. In this chapter we'll look at gdb and
ddd, first with serial programs and then with parallel programs.

gdb is a command-line symbolic debugger from the GNU project. As such, it is
freely available. You probably already have it installed on your Linux system.
ddd is a GUI frontend that can be used with gdb (or other debuggers) in an X
Window System environment.[1] You may need to install ddd, but the process
is straightforward and is described in Chapter 9.

[1] There are other friendly ways of running gdb. xxgdb is an X Windows System version. gdb is
often run from within Emacs.

16.6.1 gdb

To demonstrate gdb, we'll use the program area.c from Chapter 13 with one
slight added error. (Also, the macro for f has been replaced with a function.)
Here is the now buggy code:

#include <stdio.h>

/* problem parameters */

#define numberSteps 50

#define lowerLimit 2.0

#define upperLimit 5.0

double f(double x)

{

 return x*x;

}

int main (int argc, char * argv[])

{

 int i;

 double area = 0.0;

 double step = (upperLimit - lowerLimit) / numberSteps;

 double at, height;

 for (i = 0; i <= numberSteps; i--)

 { at = lowerLimit + i * step + step / 2.0;

 height = f(at);

 area = area + step * height;

 }

 printf ("The area from %f to %f is: %f\n",

 lowerLimit, upperLimit, area);

 return 0;

}

If you try to run this, it doesn't print anything and doesn't return. With that
kind of behavior, it is pretty easy to guess that there is something wrong with
the loop. But let's play dumb for a moment and see how we could discover this
using gdb.

Before you can run gdb with a program, you should compile that program with
the -g option.

[sloanjd@amy DEBUG]$ gcc -g area.c -o area

The -g option generates code that produces debugging information. This is
necessary to make the symbol table available so that you can refer to
variables by name.

Unlike most compilers, gcc will allow you to use an optimization option (-O)
with -g. Keep in mind that optimizing code may reorder instructions or may
eliminate variables. This can be mind-boggling to a debugger so, in general,
you should avoid optimizing your code when you plan to use a symbolic
debugger. With gcc, you have some latitude, but beware!

Once the code is properly compiled, you can start gdb. There are several ways
to do this, but the simplest is to pass the name of the program as a command-
line argument. For example,

[sloanjd@amy DEBUG]$ gdb -q area

(gdb)

In this case, the -q option is used to suppress the general information that it
prints by default. When the program is loaded and ready to go, it returns the

(gdb) prompt. You can get a list of command categories by typing help at the
prompt. To see a listing of the commands within a category, type help followed
by the category name, for example, help data. Commands may be abbreviated
provided the shortened name is unambiguous. For example, append may be
shortened to app but not to ap since it would be confused with apropos.

The most reasonable place to start is probably the list command (abbreviated
l). list will begin listing your program, 10 lines at a time.

(gdb) l

7

8 double f(double x)

9 {

10 return x*x;

11 }

12

13 int main (int argc, char * argv[])

14 {

15 int i;

16 double area = 0.0;

If you continue with list, it will display the next 10 lines of code. If you give it a
single numeric value, it will list 10 lines starting at that line. If you give it two
numeric values separated by a comma, it will treat those values as a range
and print that code. For example,

(gdb) l 18,20

18 double at, height;

19

20 for (i = 0; i <= numberSteps; i--)

If you enter help list at the prompt, you'll see a list of additional ways to use
list.

Next, let's put a breakpoint on line 20. A breakpoint allows you to start a
program and have it automatically stop when it reaches the target line. If the
line is never reached, e.g., it is embedded in a conditional statement that fails,
then the code won't stop. If the line is executed several times, such as a
breakpoint within a loop, it will stop each time.

(gdb) b 20

Breakpoint 1 at 0x804836e: file area.c, line 20.

You can list breakpoints with the info breakpoint command. Type help b at the
prompt to learn more breakpoints and the commands that can be used with
them. (gdb also supports watchpoints, which stop when a watched variable
changes, and catchpoints, which catch an exception).

Now let's run the program.

(gdb) run

Starting program: /home/sloanjd/DEBUG/area

Breakpoint 1, main (argc=1, argv=0xbfffe774) at area.c:20

20 for (i = 0; i <= numberSteps; i-)

You'll note that it stopped at our breakpoint as expected.

Let's look at a few variables to make sure everything has been initialized
correctly.

(gdb) print area

$1 = 0

(gdb) print step

$2 = 0.059999999999999998

So far, everything looks good.

(gdb) print numberSteps

No symbol "numberSteps" in current context.

This may look like a problem, but it isn't. You'll recall that numberSteps isn't a
program variable. It was defined with a #define statement. The preprocessor
substitutes the value for the name throughout the program before compilation,
so we won't be able to look at this with the debugger. That's not a big problem
but something you should be aware of.

We can step through individual lines of code with the next command.

(gdb) n

21 { at = lowerLimit + i * step + step / 2.0;

(gdb) n

22 height = f(at);

(gdb) n

23 area = area + step * height;

(gdb) n

24 for (i = 0; i <= numberSteps; i++)

The step command is just like the next command except that next will treat a
subroutine call as one instruction while step will enter into the subroutine.

We'll come back to step after we have looked at some of the variables.

(gdb) print area

$3 = 0.24725399999999992

(gdb) print height

$4 = 4.1208999999999989

(gdb) print step * height

$5 = 0.24725399999999992

Notice that print will handle expressions as well as simple variables, a real
convenience. Everything still looks good.

Going back to step, here is the second iteration of the loop traced with step.

(gdb) s

21 { at = lowerLimit + i * step + step / 2.0;

(gdb) s

22 height = f(at);

(gdb) s

f (x=2.0899999999999999) at area.c:10

10 return x*x;

(gdb) s

11 }

(gdb) s

main (argc=1, argv=0xbfffe774) at area.c:23

23 area = area + step * height;

(gdb) s

20 for (i = 0; i <= numberSteps; i++)

Notice that we are diving into the function f.

The body of the loop seems to be working correctly. Maybe there is something
wrong with the print statement? To examine the values it is getting, we'll set a
second breakpoint and resume execution.

(gdb) l 25,27

25

26 printf ("The area from %f to %f is: %f\n",

27 lowerLimit, upperLimit, area);

(gdb) b 26

Breakpoint 2 at 0x80483c4: file area.c, line 26.

(gdb) continue

Continuing.

At this point the program hangs. Since the body of the loop looks OK and we
aren't getting to the printf, there must be something wrong with the loop
control structure.

Let's interrupt the program (CTRL-C) and examine the counter i.

Program received signal SIGINT, Interrupt.

0x0804833d in f (x=-83775291.069999993) at area.c:10

10 return x*x;

(gdb) print i

No symbol "i" in current context.

(gdb) n

11 }

(gdb) n

main (argc=1, argv=0xbfffd774) at area.c:23

23 area = area + step * height;

(gdb) print i

$7 = -1396254885

When the program was interrupted, we were in the function f so i was out of
scope. We needed to step through a couple of instructions to return to the
main program to examine i. And when we did, we saw that something was
obviously wrong.

We can change the value of i and continue.

(gdb) set var i=51

(gdb) continue

Continuing.

Breakpoint 2, main (argc=1, argv=0xbfffd774) at area.c:26

26 printf ("The area from %f to %f is: %f\n",

With an appropriate value of i, we exit the loop. Clearly, i isn't being updated
appropriately.

We can continue until the end now, although our output won't make much
sense, and then exit gdb.

(gdb) continue

Continuing.

The area from 2.000000 to 5.000000 is: 203220027199808325287936.000000

Program exited normally.

(gdb) q

Or we could have just quit where we were.

No doubt you noticed that the code had been changed from i++ to i-- long
before the end of this section. This is definitely a problem that rereading the
code should have found. Nevertheless, you should have an idea of how to use
gdb at this point.

16.6.2 ddd

Data Display Debugger is a frontend for command-line debuggers (or inferior
debugger, in ddd parlance). We'll use it with gdb, but it is not limited to gdb.
You must have the X Window System running. Since ddd is a frontend to gdb
and you already know how to use gdb, there isn't much new to learn. But ddd
does have a few nice tricks. Although we won't go into it here, one of ddd's
real strengths is displaying complex data structures such as linked lists.

As with gdb, compile your program with the -g option. Next, open ddd with
executable as an argument.

[sloanjd@amy DEBUG]$ ddd area

A ddd splash screen will appear briefly and then three windows will open. The
top window is the ddd Tip of the Day window[2] as shown in Figure 16-1.

[2] Tip #31, the tip in this figure, tells you how to get rid of the ddd Tip of the Day.

Figure 16-1. ddd Tip of the Day #31

Read the tip, if you like, and then close the window.

The large window underneath the tip window is the main window you'll be
working from. Off to the side you'll see a smaller window with a few ddd
commands. The small command window can be repositioned so that it doesn't
overlap with the main window if you wish. Figure 16-2 shows both of these
windows.

Figure 16-2. ddd's main window

The window is pretty self-explanatory. The upper pane holds your source code,
while the lower pane is a text interface to gdb. You can type gdb commands in
the lower pane just as you did on the command line. gdb commands are also
available via the menus at the top of the window, or you can use the command
window to enter the most common commands. For example, if you want to edit
the source, you can type edit in the command window (just as you would in
gdb) or you can click on the edit button. Either way, you'll be thrown into an
editor. (Sorry, you can't edit it directly in the upper pane.)

To add a breakpoint, you can select a line in the upper pane and then click on
the break button (with the stop sign) on the tool bar. As you step through the
code, a large green arrow at the edge of the top pane points to the current
line. If you move the cursor over a variable, after a few seconds, a pop-up box
will display the variable's current values.

The display can be reconfigured if you wish. For example, if you want to look
at the machine code in addition to (or instead of) the source listings, you can
open a machine language window (and close the source window). You can also
resize windows and change fonts to your heart's content.

16.7 Using gdb and ddd with MPI

Thus far we have used the debugger to start the program we want to debug.
But with MPI programs, we have used mpirun or mpiexec to start programs,
which would seem to present a problem.[3] Fortunately, there is a second way
to start gdb or ddd that hasn't been described yet. If a process is already in
execution, you can specify its process number and attach gdb or ddd to it. This
is the key to using these debuggers with MPI.

[3] Actually, with some versions of mpirun, LAM/MPI, for instance, it is possible to start a debugger
directly. Since this won't always work, a more general approach is described here.

With this approach you'll start a parallel application the way you normally do
and then attach to it. This means the program is already in execution before
you start the debugger. If it is a very short program, then it may finish before
you can start the debugger. The easiest way around this is to include an input
statement near the beginning. When the program starts, it will pause at the
input statement waiting for your reply. You can easily start the debugger
before you supply the required input. This will allow you to debug the program
from that point. Of course, if the program is hanging at some point, you won't
have to be in such a hurry.

Seemingly, a second issue is which cluster node to run the debugger on. The
answer is "take your pick." You can run the debugger on each machine if you
want. You can even run different copies on different machines simultaneously.

This should all be clearer with a couple of examples. We'll look at a serial
program first the flawed area program discussed earlier in this chapter. We'll
start it running in one window.

[sloanjd@amy DEBUG]$./area

Then, in a second widow, we'll look to see what its process number is.

[sloanjd@amy DEBUG]$ ps -aux | grep area

sloanjd 19338 82.5 0.1 1340 228 pts/4 R 09:57 0:32 ./area

sloanjd 19342 0.0 0.5 3576 632 pts/3 S 09:58 0:00 grep area

If it takes you several tries to debug your program, watch out for zombie
processes and be sure to kill any extraneous or hung processes when you are
done.

With this information, we can start a debugger.

[sloanjd@amy DEBUG]$ gdb -q area 19338

Attaching to program: /home/sloanjd/DEBUG/area, process 19338

Reading symbols from /lib/tls/libc.so.6...done.

Loaded symbols for /lib/tls/libc.so.6

Reading symbols from /lib/ld-linux.so.2...done.

Loaded symbols for /lib/ld-linux.so.2

0x080483a1 in main (argc=1, argv=0xbfffe1e4) at area.c:22

22 height = f(at);

(gdb)

When we attach to it, the program will stop running. It is now under our
control. Of course, part of the program will have executed before we attached
to it, but we can now proceed with our analysis using commands we have
already seen.

Let's do the same thing with the deadlock program presented earlier in the
chapter. First we'll compile and run it.

[sloanjd@amy DEADLOCK]$ mpicc -g dlock.c -o dlock

[sloanjd@amy DEADLOCK]$ mpirun -np 3 dlock

Notice that the -g option is passed transparently to the compiler. Don't forget
to include it. (If you get an error message that the source is not available, you
probably forgot.)

Then look for the process number and start ddd.

[sloanjd@amy DEADLOCK]$ ps -aux | grep dlock

sloanjd 19473 0.0 0.5 1600 676 pts/4 S 10:16 0:00 mpirun -np 3

dlock

sloanjd 19474 0.0 0.7 1904 904 ? S 10:16 0:00 dlock

sloanjd 19475 0.0 0.5 3572 632 pts/3 S 10:17 0:00 grep dlock

[sloanjd@amy DEADLOCK]$ ddd dlock 19474

Notice that we see both the mpirun and the actual program. We are interested
in the latter.

Once ddd is started, we can go to Status Backtrace to see where we are. A
backtrace is a list of the functions that called the current one, extending back
to the function with which the program began. As you can see in Figure 16-3,
we are at line 19, the call to MPI_Recv.

Figure 16-3. ddd with Backtrace

If you want to see what's happening on another processor, you can use ssh to
connect to the machine and repeat the process. You will need to change to the
appropriate directory so that the source will be found. Also, of course, the
process number will be different so you must check for it again.

[sloanjd@amy DEADLOCK]$ ssh oscarnode1

[sloanjd@oscarnode1 sloanjd]$ cd DEADLOCK

[sloanjd@oscarnode1 DEADLOCK]$ ps -aux | grep dlock

sloanjd 23029 0.0 0.7 1908 896 ? S 10:16 0:00 dlock

sloanjd 23107 0.0 0.3 1492 444 pts/2 S 10:39 0:00 grep dlock

[sloanjd@oscarnode1 DEADLOCK]$ gdb -q dlock 23029

Attaching to program: /home/sloanjd/DEADLOCK/dlock, process 23029

Reading symbols from /usr/lib/libaio.so.1...done.

Loaded symbols for /usr/lib/libaio.so.1

Reading symbols from /lib/libutil.so.1...done.

Loaded symbols for /lib/libutil.so.1

Reading symbols from /lib/tls/libpthread.so.0...done.

[New Thread 1073927328 (LWP 23029)]

Loaded symbols for /lib/tls/libpthread.so.0

Reading symbols from /lib/tls/libc.so.6...done.

Loaded symbols for /lib/tls/libc.so.6

Reading symbols from /lib/ld-linux.so.2...done.

Loaded symbols for /lib/ld-linux.so.2

Reading symbols from /lib/libnss_files.so.2...done.

Loaded symbols for /lib/libnss_files.so.2

0xffffe002 in ?? ()

(gdb) bt

#0 0xffffe002 in ?? ()

#1 0x08066a23 in lam_ssi_rpi_tcp_low_fastrecv ()

#2 0x08064dbb in lam_ssi_rpi_tcp_fastrecv ()

#3 0x080575b4 in MPI_Recv ()

#4 0x08049d4c in main (argc=1, argv=0xbfffdb44) at dlock.c:25

#5 0x42015504 in _ _libc_start_main () from /lib/tls/libc.so.6

The back trace information is similar. The program is stalled at line 25, the
MPI_Recv call for process with rank 1. gdb was used since this is a text-based
window. If the node supports X Window System (by default, an OSCAR
compute node won't), I could have used ddd by specifying the head node as
the display.

16.8 Notes for OSCAR and Rocks Users

gdb is part of the default Linux installation and should be available on your
system. You will need to add ddd to your system if you wish to use it. Since
OSCAR installs X Window System only on the head node, you will not be able
to run ddd on your compute nodes. Rather, you will need to run gdb on your
compute node as shown in the last example in this chapter.

gdb and ddd are included with Rocks on the frontend and compute nodes.
However, you'll need to forward ddd sessions to the frontend using the
DISPLAY environment variable since the X Window System is not set up to run
locally on compute nodes.

Chapter 17. Profiling Parallel Programs
Since the raison d'être for a cluster is higher performance, it stands to reason
that if you really need a cluster, writing efficient code should be important to
you. The key to improving the efficiency of your code is knowing where your
code spends its time. Thus, the astute cluster user will want to master code
profiling. This chapter provides an introduction to profiling in general, to the
problems you'll face with parallel programs, and to some of the tools you can
use.

We'll begin by looking briefly at issues that impact program efficiency. Next,
we'll look at ways you can time programs (and parts of programs) using readily
available tools and the special features of MPI. Finally, we'll look at the MPE
library, a library that extends MPI and is particularly useful for profiling
program performance. Where appropriate, we'll look first at techniques
typically used with serial programs to put the techniques in context, and then
at extending them to parallel programs.

17.1 Why Profile?

You have probably heard it beforethe typical program will spend over 90% of
its execution time in less that 10% of the actual code. This is just a rule of
thumb or heuristic, and as such, will be wildly inaccurate or totally irrelevant
for some programs. But for many, if not most, programs, it is a reasonable
observation. The actual numbers don't matter since they will change from
program to program. It is the idea that is important for most programs, most of
the execution time spent is in a very small portion of the code.

This is extremely important to keep in mind in this critical portion of code. If
your application spends 95% of its time in 5% of the code, there is little to be
gained by optimizing the other 95% of the code. Even if you could completely
eliminate it, you'd only see a 5% improvement. But if you can manage a 10%
improvement in the critical 5% of your code, for example, you'll see a 9.5%
overall improvement in your program. Thus, the key to improving your code's
performance is to identify that crucial 5%. That's where you should spend your
time optimizing code.[1]

[1] In this chapter optimization means optimizing the time a program spends executing. Space
optimizations will be ignored.

Keep in mind that there is a point of diminishing returns when optimizing
code. You'll need to balance the amount of time you spend optimizing code
with the amount of improvement you actually get. There is a point where your
code is good enough. The goals of profiling are two-foldto decide how much
optimization is worth doing and to identify which parts of code should be
optimized.

The first step to optimizing code begins before you start writing it. To write the
most efficient code, you should begin by selecting the most appropriate or
efficient algorithm. As the program size grows, an unoptimized O(n log2 n)
algorithm will often outperform an optimized O(n2) algorithm. Of course,
algorithm selection will depend on your specific application. Unfortunately, it
can be problematic for parallel applications.

For serial algorithms, you can often make reasonable estimates on how time is
being spent by simply examining and analyzing the algorithm. The standard
approach characterizes performance using some measurement of the problem
size. For example, when sorting an array of numbers, the problem size would
be the number of elements in the array. Some problems are easily
characterized by a single number while others may be more difficult to
characterize or may depend on several parameters. Since the problem size

often provides a bound for algorithmic performance, this approach is
sometimes called asymptotic analysis.

Asymptotic analysis can be problematic with parallel programs for several
reasons. First, it may be difficult to estimate the cost of communications
required by a parallel solution. This can be further complicated by the need for
additional code to coordinate communications among the processors. Second,
there is often a less than perfect overlap among the communicating processes.
A processor may be idle while it waits for its next task (as with our numerical
integration programs in earlier chapters). In particular, it may be difficult to
predict when a processor will be idle and what effect this will have on overall
performance. For these and other reasons, an empirical approach to estimating
performance is often the preferred approach for parallel programs. That is, we
directly measure performance of existing programs.

Thus, with parallel programs, the most appropriate strategy is to select the
best algorithm you can and then empirically verify its actual performance.

17.2 Writing and Optimizing Code

Code optimization can be done by hand or by the compiler. While you should
avoid writing obviously inefficient code, you shouldn't get carried away doing
hand optimizations until you've let your compiler have a try at optimizing your
code. You are usually much better off writing clean, clear, maintainable code
than writing baroque code that saves a few cycles here or there. Most modern
compilers, when used with the appropriate compiler options, are very good at
optimizing code. It is often possible to have the best of both worldscode that
can be read by mere mortals but that compiles to a fully optimized executable.

With this in mind, take the time to learn what optimization options are
available with your compiler. Because it takes longer to compile code when
optimizing, because time-optimized code can be larger than unoptimized code,
and because compiler optimizations may reorder instructions, making code
more difficult to debug and profile, compilers typically will not optimize code
unless specifically directed to do so.

With gcc, the optimization level is set with the -O compiler flag. (That's the
letter O.) With the flag -O1, most basic optimizations are done. More
optimizations are done when the -O2 flag is used and still more with the -O3
flag. (-O0 is used to suppress optimization and -Os is used to optimize for size.)
In addition to these collective optimizations, gcc provides additional flags for
other types of optimizations, such as loop unrolling, that might be useful in
some situations. Consult your compiler's documentation for particulars.

If you have selected your algorithm carefully and your compiler has done all it
can for you, the next step in optimizing code is to locate what portions of the
code may benefit from further attention. But locating the hot spots in your
code doesn't mean that you'll be able to eliminate them or lessen their impact.
You may be working with an inherently time-consuming problem. On the other
hand, if you don't look, you'll never know.

Larger problems that you may be able to identify and address include problems
with memory access, I/O (I/O is always expensive), load balancing and task
granularity, and communication patterns. Basically, anything that results in
idle processors is worth examining.

Your extreme hotspots will be blocks of code that are executed repeatedly.
These typically occur within loops or, especially, nested loops. For these, some
hand optimization may be worthwhile. A number of techniques may be used,
but they all boil down to eliminating unnecessary operations. Basically, you'll
need to focus on and locate the instructions in question and look for ways to

eliminate the number of instructions or replace them with less costly
instructions. For example, moving instructions out of a loop will reduce the
number of times the instructions are executed, while replacing an
exponentiation with a multiplication can reduce the cost of an individual
instruction.

A detailed description of the various techniques that can be used is outside the
scope of this book. Several sources are listed in the Appendix A. The
remainder of this chapter describes tools that will help you locate inefficient
code.

17.3 Timing Complete Programs

With many programs, the first and most logical step is simply to time how long
the program takes to execute from beginning to end. The total elapsed time is
usually called the program's wall-clock time. While the wall-clock time reflects
a number of peripheral concerns such as system loads caused by other users,
it really is the bottom line. Ultimately, what you are really interested in is how
long you are going to have to wait for your answers, and this is just what the
wall-clock time measures.

Linux shells typically provide an internal timing command, usually called time.
This command measures the total execution time for a program when
executed by the shell. Here is an example with the bash shell:

[sloanjd@amy PROFILE]$ time ./demo

real 0m6.377s

user 0m5.350s

sys 0m0.010s

In this example, the program demo ran for a total of 6.377 seconds. This
number is the total elapsed time or wall-clock time. Of that time, it spent
5.350 seconds executing the user or non-kernel mode and another 0.010
seconds for system calls or in kernel mode. The difference between the elapsed
or real time and the sum of the user and sys times is time spent by the system
doing computing for other tasks.

While most Unix shells provide a timing command, different shells provide
different levels of information. Here is the same program timed under the C
shell.

[sloanjd@amy PROFILE]$ csh

[sloanjd@amy ~/PROFILE]$ time ./demo

5.340u 0.000s 0:06.37 83.8% 0+0k 0+0io 65pf+0w

[sloanjd@amy ~/PROFILE]$ exit

exit

In addition to user, system, and wall-clock times, with the C shell you also get
percent of CPU time (83.8% in this example), shared and unshared memory
usage (0 and 0), block input and output operations (0 and 0), number of page
faults (65), and number of swaps (0).

With some shells such as the Korn shell, there is another timer, timex. timex,
when used with the -s option, provides still more information. See the
appropriate manpage for more details.

If you don't want to worry about shell-specific commands, you can get pretty
much the same information if you use Linux's external time command.

[sloanjd@amy PROFILE]$ /usr/bin/time ./demo

5.32user 0.00system 0:06.51elapsed 81%CPU (0avgtext+0avgdata 0maxresident)k

0inputs+0outputs (66major+12minor)pagefaults 0swaps

And if you want to be overwhelmed with information, use the -v option. (You
might try /bin/time if you aren't running Linux.)

With MPICH or LAM/MPI you can run the time command by simply inserting it
on the command line before the call to mpirun.

[sloanjd@amy PROFILE]$ time mpirun -np 4 rect

(This is not guaranteed to work with all versions of MPI.)

While you'll have already formed an opinion as to whether your code is taking
too long well before you get around to timing it, time does let you to put some
number on your impression so that you'll sound more professional when
complaining about system performance. Also, the difference between the wall-
clock time and the time your program takes will give you an idea of how much
of the time is caused by your code and how much of the time depends on

system load. (Of course, if you are timing an entire program, you needn't be
concerned about any code reordering caused by optimizing compilers.) Finally,
several timings with different input sizes can be used to get a very rough idea
of how your program will scale.

17.4 Timing C Code Segments

The primary limitation to the various versions of time is that they don't tell
you what part of your code is running slowly. To know more, you'll need to
delve into your code. There are a couple of ways this can be done. The most
straightforward way is to "instrument" the codethat is, to embed commands
directly into the code that record the system time at key points and then to
use these individual times to calculate elapsed times.

The primary advantage to manual instrumentation of code is total control. You
determine exactly what you want or need. This control doesn't come cheap.
There are several difficulties with manual instrumentation. First and foremost,
it is a lot of work. You'll need to add variables, determine collection points,
calculate elapsed times, and format and display the results. Typically, it will
take several passes to locate the portion of code that is of interest. For a large
program, you may have a number of small, critical sections that you need to
look at. Once you have these timing values, you'll need to figure out how to
interpret them. You'll also need to guard against altering the performance of
your program. This can be a result of over-instrumenting your code,
particularly at critical points. Of course, these problems are not specific to
manual instrumentation and will exist to some extent with whatever approach
you take.

The traditional way of instrumenting C code is with the time system call,
provided by the time.h library. Here is a code fragment that demonstrates its
use:

...

#include <sys/time.h>

int main(void)

{

 time_t start, finish;

 ...

 time(&start);

 /* section to be timed */

 ...

 time(&finish);

 printf("Elapsed time: %d\n", finish - start);

 ...

}

The time function returns the number of seconds since midnight (GMT)
January 1, 1970. Since this is a very large integer, the type time_t (defined in
<sys/times.h>) can be used to ensure that time variables have adequate
storage. While easy to use if it meets your needs, the primary limitation for
time is that the granularity (1 second) is too large for many tasks.

You can get around the granularity problem by using a different function,
gettimeofday, which provides microsecond granularity. gettimeofday is used with
a structure composed of two long integers, one for seconds and one for
microseconds. Its use is slightly more complicated. Here is an example:

...

#include <sys/time.h>

int main(void)

{

 struct timeval start, finish;

 struct timezone tz;

 ...

 gettimeofday(&start, &tz);

 printf("Time---seconds: %d microseconds: %d \n",

 start.tv_sec, start.tv_usec);

 /* section to be timed */

 ...

 gettimeofday(&finish, &tz);

 printf("Time---seconds: %d microseconds: %d \n",

 finish.tv_sec, finish.tv_usec);

 printf("\nElapsed time---seconds: %d microseconds: %d \n",

 ((start.tv_usec > finish.tv_usec) ?

 finish.tv_sec - start.tv_sec - 1 :

 finish.tv_sec - start.tv_sec),

 (start.tv_usec > finish.tv_usec) ?

 1000000 + finish.tv_usec - start.tv_usec :

 finish.tv_usec - start.tv_usec);

 return 0;

}

The first argument to gettimeofday is the structure for the time. The second is
used to adjust results for the appropriate time zone. Since we are interested in
elapsed time, the time zone is treated as a dummy argument. The first two

printfs in this example show how to display the individual counters. The last
printf displays the elapsed time. Because two numbers are involved, calculating
elapsed time is slightly more complicated than with time.

Keep in mind that both time and gettimeofday return wall-clock times. If the
process is interrupted between calls, the elapsed time that you calculate will
include the time spent during the interruption, even if it has absolutely
nothing to do with your program. On the other hand, these functions should
largely (but not completely) be immune to problems caused with code
reordering for compiler optimizations, provided you stick to timing basic
blocks. (A basic block is a block of contiguous code that has a single entry
point at its beginning and a single exit point at its end).

Typically, timing commands are placed inside #ifdef statements so that they
can be compiled only as needed. Other languages, such as FORTRAN, have
similar timing commands. However, what's available varies from compiler to
compiler, so be sure to check the appropriate documentation for your compiler.

17.4.1 Manual Timing with MPI

With the C library routines time and gettimeofday, you have to choose between
poor granularity and the complications of dealing with a structure. With
parallel programs, there is the additional problem of synchronizing processes
across the cluster.

17.4.2 MPI Functions

MPI provides another alternative, three additional functions that can be used
to time code.

17.4.2.1 MPI_Wtime

Like time, the function MPI_Wtime returns the number of seconds since some
point in the past. Although this point in the past is not specified by the
standard, it is guaranteed not to change during the life of a process. However,
there are no guarantees of consistency among different processes across the
cluster. The function call takes no arguments. Since the return value is a
double, the function can provide a finer granularity than time. As with time,
MPI_Wtime returns the wall-clock time. If the process is interrupted between

calls to MPI_Wtime, the time the process is idle will be included in your
calculated elapsed time. Since MPI_Wtime returns the time, unlike most MPI
functions, it cannot return an error code.

17.4.2.2 MPI_Wtick

MPI_Wtick returns the actual resolution or granularity for the time returned by
MPI_Wtime (rather than an error code). For example, if the system clock is a
counter that is incremented every microsecond, MPI_Wtick will return a value of
roughly 0.000001. It takes no argument and returns a double. In practice,
MPI_Wtick's primary use is to satisfy the user's curiosity.

17.4.2.3 MPI_Barrier

One problem with timing a parallel program is that one process may be idle
while waiting for another. If used naively, MPI_Wtime, time, or gettimeofday
could return a value that includes both running code and idle time. While
you'll certainly want to know about both of these, it is likely that the
information will be useful only if you can separate them. MPI_Barrier can be
used to synchronize processes within a communication group. When MPI_Barrier
is called, individual processes in the group are blocked until all the processes
have entered the call. Once all processes have entered the call, i.e., reached
the same point in the code, the call returns for each process, and the
processes are no longer blocked. MPI_Barrier takes a communicator as an
argument and, like most MPI functions, returns an integer error code.

Here is a code fragment that demonstrates how these functions might be used:

...

#include "mpi.h"

...

int main(int argc, char * argv[])

{

 double start, finish;

 ...

 MPI_Barrier(MPI_COMM_WORLD);

 start = MPI_Wtime();

 /* section to be timed */

 ...

 MPI_Barrier(MPI_COMM_WORLD);

 finish = MPI_Wtime();

 if (processId = = 0)

 fprintf(stderr, "Elapsed time: %f\n", finish-start);

 ...

}

Depending on the other code in the program, one or both of the calls to
MPI_Barrier may not be essential. Also, when timing short code segments, you
shouldn't overlook the cost of measurement. If needed, you can write a short
code segment to estimate the cost of the calls to MPI_Barrier and MPI_Wtime by
simply repeating the calls and calculating the difference.

17.4.3 PMPI

If you want to time MPI calls, MPI provides a wrapper mechanism that can be
used to create profiling interface. Each MPI function has a dual function whose
name begins with PMPI rather than MPI. For instance, you can use PMPI_Send
just as you would MPI_Send, PMPI_Recv just as you would MPI_Recv, and so on.
What this allows you to do is write your own version of any function and still
have a way to call the original function. For example, if you want to write your
own version of MPI_Send, you'll still be able to call the original version by
simply calling its dual, PMPI_Send. Of course, to get this to work, you'll need to
link to your library of customized functions before you link to the standard MPI
library.

Interesting, you say, but how is this useful? For profiling MPI commands, you
can write a new version of any MPI function that calls a timing routine, then
calls the original version, and, finally, calls the timing routine again when the
original function returns. Here is an example for MPI_Send:

int MPI_Send(void * buf, int count, MPI_Datatype datatype, int dest,

 int tag, MPI_Comm comm)

{

 double start, finish;

 int err_code;

 start = MPI_Wtime();

 err_code = PMPI_Send(buf, count, datatype, dest, tag, comm);

 finish = MPI_Wtime();

 fprintf(stderr, "Elapsed time: %f\n", finish - start);

 return err_code;

}

For this function definition, the parameter list was copied from the MPI
standard. For the embedded MPI function call, the return code from the call to
PMPI_Send is saved and passed back to the calling program. This example just
displays the elapsed time. An alternative would be to return it through a global
variable or write it out to a file.

To use this code, you need to ensure that it is compiled and linked before the
MPI library is linked into your program. One neat thing about this approach is
that you'll be able to use it with precompiled modules even if you don't have
their source. Of course it is a lot of work to create routines for every MPI

routine, but we'll see an alternative when we look at profiling using MPE later
in this chapter.

17.5 Profilers

Thus far we have been looking at timing code manually. While this provides a
lot of control, it is labor intensive. The alternative to manual timing is to use a
profiler. A profiler attempts to capture the profile of a program in execution;
that is, a set of timings for an application that maps where time is spent within
the program. While with manual timing you'll want to focus in on part of a
program, a profiler typically provides information for the entire application in
one fell swoop. While a profiler may give more results than you actually need,
you are less likely to overlook a hotspot in your code using a profiler,
particularly when working with very complicated programs. Most profilers are
easy to use and may give you some control over how much information is
collected. And most profilers not only collect information, but provide a
mechanism for analyzing the results. Graphical output is common, a big help
with large, complicated programs.

There are a number of profilers available, particularly if you include
commercial products. They differ in several ways, but it usually comes down to
a question of how fine a granularity you want and how much detail you need.
Choices include information on a line-by-line basis, information based on the
basic blocks, or information based on function calls or modules. Profilers may
provide timing information or simply count the number of times a statement is
executed.

There are two basic categories for profilesactive and passive. (Some profilers,
such as gprof, have features that span both categories.) A passive profiler
gathers information without modifying the code. For example, a passive
profiler might collect information by repeatedly sampling the program counter
while the program is running. By installing an interrupt service routine that
wakes up periodically and examines the program counter, the profiler can
construct a statistical profile for the program.

While passive profiles are less intrusive, they have a couple of problems. First,
they tend to provide a flat view of functions within an application. For
example, if you have a function that is called by several different functions, a
passive profiler will give you an idea of how often the function is called, but no
information about what functions are making the call. Second, passive profilers
are inherently statistical. Key performance issues are how often you sample
and how many samples are taken. The quality of your results will depend on
getting these parameters right.

Active profiles automatically add code to collect profile information. Code can
be added either directly to the source code or to the object code generated by

the compiler. While active compilers avoid some of the problems passive
profilers face, they introduce their on set of problems. Perhaps the most
significant of these is the confounding effect on timing measurement caused by
the execution of the added instructions.

In this section, we'll look at two profilers, gprof and gcov. These profilers
modify the application so that it will count how often functions are called and
individual instructions are executed, respectively. (Additionally, gprof uses
passive profiling to estimate execution times.) The two tools we'll examine use
compiler options to add the profiling code to the object code generated by the
compiler. While both of these tools were designed for serial programming and
were not intended for use with parallel programs, they can, with a little added
effort, be used with parallel programs. We'll examine their use with serial code
first and then look at how they can be used with parallel code.

17.5.1 gprof

gprof generates profiles and call graphs (a report of which routines call which).
There is both a Berkeley Unix gprof and a GNU gprof that provide essentially
the same information. gprof is available on most systems today. (If your
system doesn't have gprof, you might look to see if prof is installed. While it's
not as versatile as gprof, you'll still be able to generate the flat profiles
described in this section.)

Using gprof is remarkably straightforward. You'll need to compile and link the
program you want to profile using the -gp option. (Compiler optimizations
shouldn't cause much trouble with gprof.) Next, run the program. This will
create a file gmon.out with the profile information. If the file already exists
from a previous run, it will be overwritten. The gprof program is then run to
convert the binary output in gmon.out into a readable format.

Here is an example:

[sloanjd@amy PROFILE]$ gcc demo.c -pg -o demo

[sloanjd@amy PROFILE]$./demo

[sloanjd@amy PROFILE]$ gprof -b demo > demo.gprof

This example uses the -b option to suppress the annotations that gprof

includes by default. You may want to leave this off the first time you run gprof,
but if you run gprof often, you'll want to use this option. gprof has other
options that you might want to investigate if you find you are using it a lot,
such as excluding functions from the reports. In this example, I've also
redirected the output to a file to make it easier to examine.

Here is the code that I profiled.

main()

{ int i;

 for (i=0; i<200; i++)

 { foo();

 bar();

 baz(); }

}

foo()

{ int j;

 for (j=0; j<250; j++) bar();

}

bar()

{ int k;

 for (k=0; k<50; k++);

}

baz()

{ int m;

 for (m=0; m<100; m++) bang();

}

bang()

{ int n;

 for (n=0; n<200; n++) bar();

}

As you can see, it doesn't do anything worthwhile, but it provides a reasonable
demonstration of gprof's capabilities.

The output from gprof consists of three parts: a flat profile, a call graph, and a
function index. Here is the first part of the output, the flat profile:

Flat profile:

Each sample counts as 0.01 seconds.

 % cumulative self self total

 time seconds seconds calls ms/call ms/call name

 96.97 6.09 6.09 4050200 0.00 0.00 bar

 1.27 6.17 0.08 20000 0.00 0.30 bang

 1.27 6.25 0.08 200 0.40 30.87 baz

 0.48 6.28 0.03 200 0.15 0.53 foo

This is not difficult to interpret. The routines are profiled, one per line, with
their names given in the last column name. The column % time gives the
amount of time spent in each routine. self seconds gives the time spent in an
individual routine while cumulative seconds provides the total for the named
routine along with the ones above it. calls reports the number of times the
function is called while self ms/call gives the average time spent in the routine
per call. total ms/call gives the average time spent in the function and its
descendents. All times are given in milliseconds.

It should be clear that optimizing or eliminating calls to bar would provide the
greatest improvement. What's not clear is the interrelationship among the
calls. Since bar is called by several functions, improvement to these will help
as well. To see this you need more information. This is provided by a call
graph.

Here is the call graph for this code:

 Call graph

granularity: each sample hit covers 4 byte(s) for 0.16% of 6.28 seconds

index % time self children called name

 <spontaneous>

[1] 100.0 0.00 6.28 main [1]

 0.08 6.09 200/200 baz [2]

 0.03 0.08 200/200 foo [5]

 0.00 0.00 200/4050200 bar [4]

 0.08 6.09 200/200 main [1]

[2] 98.3 0.08 6.09 200 baz [2]

 0.08 6.01 20000/20000 bang [3]

 0.08 6.01 20000/20000 baz [2]

[3] 97.0 0.08 6.01 20000 bang [3]

 6.01 0.00 4000000/4050200 bar [4]

 0.00 0.00 200/4050200 main [1]

 0.08 0.00 50000/4050200 foo [5]

 6.01 0.00 4000000/4050200 bang [3]

[4] 97.0 6.09 0.00 4050200 bar [4]

 0.03 0.08 200/200 main [1]

[5] 1.7 0.03 0.08 200 foo [5]

 0.08 0.00 50000/4050200 bar [4]

The first thing you'll notice is that the numbers in the % time column don't add
up to 100 percent. The reason is that each timing includes the total time spent
in the function and its children. The next two columns give the actual time
spent in the function (self) and in the functions it calls (children). The called
column gives the number of times the function was called. When two numbers

are given in this column, the top number is the number of calls by the parent
to the child and the bottom number is the total number of calls to the child.
For example, consider the next to last line in section [4].

 6.01 0.00 4000000/4050200 bang [3]

Since section [4] describes calls to bar, this line tells us that bang makes
4,000,000 of the 4,050,200 total calls made to bar.

The table is sorted numerically with a unique number of each function. This
number is printed next to each function to make it easier to look up individual
functions. A function index is also included at the end of the report.

Index by function name

 [3] bang [2] baz

 [4] bar [5] foo

This is relatively useless for a small program but can be helpful with larger
programs.

As noted above, the number of function calls is determined actively, so this
number should be totally accurate. The percentage of time in each is
determined passively with a sampling rate that may be too slow for short
programs to capture enough data to be statistically reliable. You will have
observed that the basic granularity of gprof is a routine. Depending on the
code, this may not provide enough information. For example, it may not be
immediately obvious whether the poor performance you are seeing is the
result of the computational complexity of your code or of poor memory
utilization if you are looking at a large routine. To improve resolution and gain
more information, you could break a program into more routines. Or you could
use gcov.

17.5.2 gcov

gcov is a test-coverage program that is often used as a profiler. When a test
suite is designed for a program, one of the objects is to exercise all parts of
the code. A test-coverage program records the number of times each line of
code is executed. The idea is that you can use this coverage data to ensure
that your test suite is adequate. Of course, this is also the sort of data you
might want when profiling code.

gcov is part of the gcc development packages, so if you have gcc on your
system, you should have gcov. It does not work with other compilers, but
similar programs may be available for them (e.g., tcov with Solaris).

To use gcov, you need to compile code with two options, -fprofile-arcs and -ftest-
coverage, which tell the compiler to add, respectively, the additional code
needed to generate a flow graph and extra profiling information.

[sloanjd@amy PROFILE]$ gcc -fprofile-arcs -ftest-coverage demo.c -o demo

You should avoid optimizations when using gcov, since optimizations that
rewrite code will make the results difficult to interpret. When the code is
compiled, two new files will be created with the same name as your program
but with the extensions .bb and .bbg. The first contains a list of source files
with line numbers corresponding to basic blocks. The second is used to
reconstruct a flow graph for the program.

Once you have compiled the code, you'll need to run it.

[sloanjd@amy PROFILE]$./demo

This will create yet another file with the run data. It will have the same name
as your program but with a .da extension. This is created in the directory
where the original program was compiled.

Finally, you can run gcov to generate your report.

[sloanjd@amy PROFILE]$ gcov demo

100.00% of 13 source lines executed in file demo.c

Creating demo.c.gcov.

You'll notice that the command reports what percentage of the source is
actually executed, something you would want to know if you are using it as a
coverage tool rather than a profiler. The actual report is created in a file with
the extension .gcov.

Here is an example for the demonstration program that we looked at earlier.

 main()

 2 { int i;

 201 for (i=0; i<200; i++)

 200 { foo();

 200 bar();

 200 baz(); }

 }

 foo()

 400 { int j;

 200 for (j=0; j<250; j++) bar();

 }

 bar()

 8100400 { int k;

 4050200 for (k=0; k<50; k++);

 }

 baz()

 400 { int m;

 200 for (m=0; m<100; m++) bang();

 }

 bang()

 40000 { int n;

 20000 for (n=0; n<200; n++) bar();

 }

As you can see, a count giving the number of times each line was executed is
appended to each line. Take care; if you execute the program multiple times,
these counts accumulate. If this isn't what you want, delete or rename the
data file between runs.

17.5.3 Profiling Parallel Programs with gprof and gcov

Depending on the version of MPI you are using, you may be able to use gprof
and gcov with your MPI programs. However, you'll need to make some
adjustments. If we naively try to profile an MPI program with gprof or gcov, we
run into problems. Here is an example using rect from Chapter 14:

[sloanjd@amy PROFILE]$ mpicc -pg rect.c -o rect

[sloanjd@amy PROFILE]$ mpirun -np 4 rect

Enter number of chunk to divide problem into:

7

Enter number of steps per chunk:

20

Enter low end of interval:

2.0

Enter high end of interval:

5.0

Area for process 1, is: 2.107855

Area for process 2, is: 2.999984

Area for process 3, is: 4.049546

Area for process 1, is: 5.256543

Area for process 2, is: 6.620975

Area for process 3, is: 8.142841

Area for process 1, is: 9.822141

The area from 2.000000 to 5.000000 is: 38.999885

Everything appears to work. All the expected files are created. Here is the flat
profile.

[sloanjd@amy PROFILE]$ gprof -bp rect

Flat profile:

Each sample counts as 0.01 seconds.

 no time accumulated

 % cumulative self self total

 time seconds seconds calls Ts/call Ts/call name

 0.00 0.00 0.00 40 0.00 0.00 f

 0.00 0.00 0.00 2 0.00 0.00 chunkArea

 0.00 0.00 0.00 1 0.00 0.00 _GLOBAL_ _I_mainGCOV

We've obviously profiled something. The question is what. Because we are
using NFS, all the processes are writing out their logfiles to the same
directory. Since files are overwritten, what we have is the data from the last
process to finish. For the data, we can see this is either process 2 or process 3.

If we are going to avoid this problem, we need to use the local filesystem on
each node. For example, we could copy the compiled code over to /tmp on
each machine and run it from there.[2]

[2] This example uses scp to copy the file. If you have installed the C3 tools, discussed in Chapter 9,
then you can use cpush instead.

[sloanjd@amy PROFILE]$ cp rect /tmp/

[sloanjd@amy PROFILE]$ scp rect oscarnode1:/tmp/

rect 100% |*****************************| 372 KB 00:00

[sloanjd@amy PROFILE]$ scp rect oscarnode2:/tmp/

rect 100% |*****************************| 372 KB 00:00

[sloanjd@amy PROFILE]$ scp rect oscarnode3:/tmp/

rect 100% |*****************************| 372 KB 00:00

[sloanjd@amy PROFILE]$ cd /tmp

[sloanjd@amy tmp]$ mpirun -np 4 rect

Enter number of chunk to divide problem into:

7

Enter number of steps per chunk:

20

Enter low end of interval:

2.0

Enter high end of interval:

5.0

Area for process 1, is: 2.107855

Area for process 2, is: 2.999984

Area for process 3, is: 4.049546

Area for process 1, is: 5.256543

Area for process 2, is: 6.620975

Area for process 3, is: 8.142841

Area for process 1, is: 9.822141

The area from 2.000000 to 5.000000 is: 38.999885

Here is the flat profile for oscarnode1:

[sloanjd@oscarnode1 tmp]$ gprof -bp rect

Flat profile:

Each sample counts as 0.01 seconds.

 no time accumulated

 % cumulative self self total

 time seconds seconds calls Ts/call Ts/call name

 0.00 0.00 0.00 60 0.00 0.00 f

 0.00 0.00 0.00 3 0.00 0.00 chunkArea

 0.00 0.00 0.00 1 0.00 0.00 _GLOBAL_ _I_mainGCOV

And here is the flat profile for oscarnode2:

[sloanjd@oscarnode2 tmp]$ gprof -bp rect

Flat profile:

Each sample counts as 0.01 seconds.

 no time accumulated

 % cumulative self self total

 time seconds seconds calls Ts/call Ts/call name

 0.00 0.00 0.00 40 0.00 0.00 f

 0.00 0.00 0.00 2 0.00 0.00 chunkArea

 0.00 0.00 0.00 1 0.00 0.00 _GLOBAL_ _I_mainGCOV

If you compare these to the output, you'll see the calls to chunkArea now
make sense it is called three times by process 1 on oscarnode1 and twice by
process 2 on oscarnode2. (We could also look at the head node, amy, but
because of the master/slave design of the program, there isn't much to see.)

Unfortunately, using gcov with a parallel program is even more complicated.
You'll recall that the compile options used with gcov create two additional files
and that a datafile is created when the program is run. To run gcov, you'll
need all these files as well as the executable and the original source code file.
To further complicate matters, the datafile that is created when the program is
run is created in the directory where the source was compiled.

To use gcov on a cluster, first copy the source code file to /tmp or a similar
directory. Next, compile the program with the appropriate switches. Once
you've done this, you'll need to copy the compiled code, the original source
code, the .bb file, and the .bbg file to each node on the cluster. Now you can
run the program. A datafile will be created on each cluster in /tmp. Once you
have done this, you can then log onto each node and run gcov. For example,

[sloanjd@oscarnode1 tmp]$ gcov rect

 66.67% of 57 source lines executed in file rect.c

Creating rect.c.gcov.

Don't forget that the datafile accumulates information with gcov. If you want
fresh data, you'll need to delete it from each node. This is a lot of copying, so
you'll want to automate it as much as possible. You'll also need to clean up
after you are done. In this example, I copied rect, rect.c, rect.bb, and rect.bbg
to each node. Fortunately, for this demonstration I only needed to copy them
to a few nodes.

A couple of warnings are in order. All of this is based on the assumption that
each MPI process will be able to access and write to the local filesystem. With
MPI, there is no guarantee this is the case. The approach outlined here seems
to work with LAM/MPI and MPICH, but if you are using some other version of
MPI, all bets are off.

17.6 MPE

If gprof and gcov seem too complicated for routine use, or if you just want to
investigate all your possibilities, there is another alternative you can
consider Multi-Processing Environment (MPE). If you built MPICH manually on
your cluster, you already have MPE. If you installed MPICH as part of OSCAR,
you'll need to add MPE. Fortunately, this is straightforward and is described in
Chapter 9. Although MPE is supplied with MPICH, it can be used with other
versions of MPI.

MPE provides several useful resources. First and foremost, it includes several
libraries useful to MPI programmers. These include a library of routines that
create logfiles for profiling MPI programs. It also has a tracing library and a
real-time animation library that are useful when analyzing code. MPE also
provides a parallel X graphics library. There are routines than can be used to
ensure that a section of code is run sequentially. There are also debugger
setup routines. While this section will focus on using logfiles to profile MPI
program performance, remember that this other functionality is available
should you need it.

MPE's logging capabilities can generate three different logfile formatsALOG,
CLOG, and SLOG. ALOG is an older ASCII-based format that is now
deprecated. CLOG is the current default format, while SLOG is an emerging
standard. Unlike SLOG, CLOG does not scale well and should be avoided for
large files.

MPE includes four graphical visualization tools that allow you to examine the
logfiles that MPE creates, upshot, nupshot, jumpshot-2, and jumpshot-3. The
primary differences between these four tools are the file formats they read and
their implementation languages.

upshot

This tool reads and displays ALOG files and is implemented in Tcl/Tk.

nushot

This tool reads and displays CLOG files. Because it is implemented in an
older version of Tcl/Tk, it is not automatically installed.

jumpshot-2

This tool reads and displays CLOG files and is implemented in Java 1.1.
(Unlike jumpshot-3, jumpshot-2 is not compatible with newer versions of
Java.)

jumpshot-3

This tool reads and displays SLOG files and is implemented in Java.

To build each of these, you will need the appropriate version of TCL/TK or Java
on your system.

Finally, MPE provides several utilities that simplify dealing with logfiles.

clog2slog

This utility that converts CLOG files into SLOG files.

clog2alog

This converts from CLOG to ALOG format.

slog_print and clog_print

These print programs for SLOG and CLOG files, respectively.

viewers

This utility invokes the appropriate visualization tool needed to display a
logfile based on its format.

There are two basic approaches to generating logfiles with MPE. When you link
to the appropriate MPE library, logfiles will be generated automatically using

the PMPI profiling interface described earlier in this chapter. Alternatively, you
can embed MPE commands in a program to manually collect information. It is
also possible to combine these approaches in a single program.

17.6.1 Using MPE

In order to use MPE, you'll need to link your programs to the appropriate
libraries. Since MPE has been integrated into the MPICH distribution, using
MPICH is the easiest way to go because MPICH provides compiler flags that
simplify compilation.

If you are using another version of MPI, instead of or in addition to MPICH,
your first order of business will be locating the MPE libraries on your system
and ensuring they are on your compile/link paths, typically /usr/local/lib. If in
doubt, use whereis to locate one of the libraries. They should all be in the
same place.

[sloanjd@amy sloanjd]$ whereis libmpe.a

libmpe: /usr/local/lib/libmpe.a

Once you've got your path set correctly, using MPE shouldn't be difficult.

MPICH includes several demonstration programs, so you may find it easier if
you test things out with these rather than with one of your own programs. In
the next two examples, I'm using cpi.c and cpilog.c, which are found in the
examples directory under the MPICH source tree. cpi.c is an ordinary MPI
program that estimates the value of . It does not contain any MPE commands.
We'll use it to see how the automatic profiling library works.

To compile cpi.c under MPICH, use the -mpilog compiler flag.

[sloanjd@amy MPEDEMO]$ mpicc cpi.c -mpilog -o cpi

It is only slightly more complicated with LAM/MPI. You'll need to be sure that
the libraries can be found and you'll need to explicitly link both libraries,
liblmpe.a and libmpe.a as shown:

[sloanjd@amy MPEDEMO]$ mpicc cpi.c -llmpe -lmpe -o cpi

(Be sure you link them in the order shown.)

When you run the program, you'll notice that a logfile is created.

[sloanjd@amy MPEDEMO]$ mpirun -np 4 cpi

Process 0 of 4 on amy

pi is approximately 3.1415926544231239, Error is 0.0000000008333307

wall clock time = 0.005883

Writing logfile.

Finished writing logfile.

Process 2 of 4 on oscarnode2.oscardomain

Process 1 of 4 on oscarnode1.oscardomain

Process 3 of 4 on oscarnode3.oscardomain

By default, a CLOG file will be created. You can change the default behavior by
setting the environment variable MPE_LOG_FORMAT.[3] For example,

[3] While setting MPE_LOG_FORMAT works fine with MPICH, it doesn't seem to work with
LAM/MPI.

[sloanjd@amy MPEDEMO]$ export MPE_LOG_FORMAT=SLOG

You can view the CLOG file directly with jumpshot-2, or you can convert it to a
SLOG file with clog2slog utility and then view it with jumpshot-3. I'll use the
latter approach since I haven't installed jumpshot-2 on this system.

[sloanjd@amy MPEDEMO]$ clog2slog cpi.clog

[sloanjd@amy MPEDEMO]$ jumpshot cpi.slog

Remember that you'll need to execute that last command in an X Window
System environment.

jumpshot-3 opens three windows. The first is the main window for jumpshot-3,
which you can use to open other logfiles and change program defaults. If you
close it, the other jumpshot-3 windows will all close as well. See Figure 17-1.

Figure 17-1. Main Jumpshot-3 window

The next window to open will be the legend. This gives the color code for the
data display window, which opens last. See Figure 17-2.

Figure 17-2. Legend

Since cpi.c only uses two MPI commands, only two are shown. If other MPI
functions had been used in the program, they would have been added to the
window. If the colored bullets are not visible when the window opens, which is
often the case, just resize the window and they should appear.

The last window, the View & Frame Selector, displays the actual profile
information. The graph is organized vertically by process and horizontally by
time. Once you have this window open, you can use the options it provides to
alter the way your data is displayed. See Figure 17-3.

Figure 17-3. View & Frame Selector

You can find an introductory tutorial on jumpshot-3 under the MPICH source
tree in the directory mpe/viewers/jumpshot-3/doc. Both PDF and HTML
versions are included.

As noted earlier, if you want more control over how your program is profiled,
you can embed MPE profiling commands directly into the code. With MPICH,
you'll compile it in exactly the same way, using the -mpilog flag. With LAM/MPI,
you only need to link to the libmpe.a library.

[sloanjd@amy MPEDEMO]$ mpicc cpilog.c -lmpe -o cpilog

The file cpilog.c, compiled here, is an MPE demonstration program that
includes embedded MPE commands. An explanation of these commands and an
example are given in the next subsection of this chapter.

Before we leave compiling MPE programs, it is worth mentioning the other MPE
libraries that are used in much the same way. With MPICH, the compiler flag -
mpianim is used to link to the animation library, while the flag -mpitrace is used
to link to the trace library. With LAM/MPI, you'll need to link these directly
when you compile. For example, to use the trace library libtmpe.a, you might
enter

[sloanjd@amy MPEDEMO]$ mpicc cpi.c -ltmpe -o cpi

With the trace library you'll get a trace printout for all MPI calls when you run
the program. Here is a partial listing for cpi.c:

[sloanjd@amy MPEDEMO]$ mpirun -np 4 cpi

Starting MPI_Init...

Starting MPI_Init...

Starting MPI_Init...

Starting MPI_Init...

[0] Ending MPI_Init

[1] Ending MPI_Init

[2] Ending MPI_Init

[3] Ending MPI_Init

[1] Starting MPI_Comm_size...

[2] Starting MPI_Comm_size...

[3] Starting MPI_Comm_size...

[1] Ending MPI_Comm_size

[2] Ending MPI_Comm_size

[3] Ending MPI_Comm_size

[1] Starting MPI_Comm_rank...

[2] Starting MPI_Comm_rank...

[3] Starting MPI_Comm_rank...

[1] Ending MPI_Comm_rank

[2] Ending MPI_Comm_rank

[3] Ending MPI_Comm_rank

[2] Starting MPI_Get_processor_name...

[1] Starting MPI_Get_processor_name...

[3] Starting MPI_Get_processor_name...

[1] Ending MPI_Get_processor_name

[2] Ending MPI_Get_processor_name

[3] Ending MPI_Get_processor_name

Process 1 of 4 on oscarnode1.oscardomain

Process 2 of 4 on oscarnode2.oscardomain

Process 3 of 4 on oscarnode3.oscardomain

[2] Starting MPI_Bcast...

[1] Starting MPI_Bcast...

[3] Starting MPI_Bcast...

...

There's a lot more output that has been omitted. As you can see, the program
output is interspersed with the trace. The number in the square bracket is the
process.

17.7 Customized MPE Logging

If you want more control over the information that MPE supplies, you can
manually instrument your code. This can be done in combination with MPE
default logging or independently. Here is an example of adding MPE command
to rect2.c, a program you are already familiar with. The new MPE commands
are in boldface. (You'll notice a few other minor differences as well if you look
closely at the code.)

#include "mpi.h"

#include "mpe.h"

#include <stdio.h>

/* problem parameters */

#define f(x) ((x) * (x))

#define numberRects 50

#define lowerLimit 2.0

#define upperLimit 5.0

int main(int argc, char * argv[])

{

 /* MPI variables */

 int dest, noProcesses, processId, src, tag;

 int evnt1a, evnt1b, evnt2a, evnt2b, evnt3a, evnt3b, evnt4a, evnt4b;

 double start, finish;

 MPI_Status status;

 /* problem variables */

 int i;

 double area, at, height, lower, width, total, range;

 /* MPI setup */

 MPI_Init(&argc, &argv);

 MPI_Comm_size(MPI_COMM_WORLD, &noProcesses);

 MPI_Comm_rank(MPI_COMM_WORLD, &processId);

 if (processId = = 0) start = MPI_Wtime();

 MPE_Init_log();

 /* Get event ID from MPE */
 evnt1a = MPE_Log_get_event_number();
 evnt1b = MPE_Log_get_event_number();
 evnt2a = MPE_Log_get_event_number();
 evnt2b = MPE_Log_get_event_number();
 evnt3a = MPE_Log_get_event_number();
 evnt3b = MPE_Log_get_event_number();
 evnt4a = MPE_Log_get_event_number();
 evnt4b = MPE_Log_get_event_number();

 if (processId = = 0) {
 MPE_Describe_state(evnt1a, evnt1b, "Setup", "yellow");
 MPE_Describe_state(evnt2a, evnt2b, "Receive", "red");
 MPE_Describe_state(evnt3a, evnt3b, "Display", "blue");
 MPE_Describe_state(evnt4a, evnt4b, "Send", "green");
 }

 MPE_Start_log();
 MPI_Barrier(MPI_COMM_WORLD);

 MPE_Log_event(evnt1a, 0, "start setup");

 /* adjust problem size for subproblem*/

 range = (upperLimit - lowerLimit) / noProcesses;

 width = range / numberRects;

 lower = lowerLimit + range * processId;

 /* calculate area for subproblem */

 area = 0.0;

 for (i = 0; i < numberRects; i++)

 { at = lower + i * width + width / 2.0;

 height = f(at);

 area = area + width * height;

 }

 MPE_Log_event(evnt1b, 0, "end setup");

 MPI_Barrier(MPI_COMM_WORLD);

 /* collect information and print results */

 tag = 0;

 if (processId = = 0) /* if rank is 0, collect results */

 { MPE_Log_event(evnt2a, 0, "start receive");

 total = area;

 for (src=1; src < noProcesses; src++)

 { MPI_Recv(&area, 1, MPI_DOUBLE, src, tag, MPI_COMM_WORLD, &status);

 total = total + area;

 }

 MPE_Log_event(evnt2b, 0, "end receive");
 MPE_Log_event(evnt3a, 0, "start display");

 fprintf(stderr, "The area from %f to %f is: %f\n",

 lowerLimit, upperLimit, total);

 }

 else /* all other processes only send */

 { MPE_Log_event(evnt4a, 0, "start send");

 dest = 0;

 MPI_Send(&area, 1, MPI_DOUBLE, dest, tag, MPI_COMM_WORLD);

 MPE_Log_event(evnt4b, 0, "end send");

 }

 if (processId = = 0)

 { finish = MPI_Wtime();

 printf("Elapsed time = %f\n", finish-start);

 MPE_Log_event(evnt3b, 0, "end display");

 }

 /* finish */

 MPE_Finish_log("rect2-log");

 MPI_Finalize();

 return 0;

}

Let's examine the changes. First, you'll notice that the mpe.h header file has
been included. Next, in this example, we want to look at four sections of code,
so we've added variables to record event numbers for each, evnt1a through
evnt4b. We'll need a pair of variables for each block of code. Event numbers are
just distinct integers used to identify events. You could make up your own as
long as you are consistent, but it is better to use the MPE function
MPE_Log_get_event_number, which ensures that you have unique numbers. It is
essential that you use it if you are putting these commands in functions stored
in a library or functions that call libraries. With each pair of event numbers,
we've associated a description and color using the MPE_Describe_state function.
This is used to create the legend, color the graphs, etc. Notice that one event
starts a block that you want measured and a second event ends it. Make sure
your events are paired and are called exactly once.

You'll notice that all the other MPE function calls are bracketed between calls
to MPE_Init_log and MPE_Finish_log. If you are combining your logging with MPE's
default logging, i.e., linking your program to liblmpe.a, these function calls
should not be included. They will be called by MPI_Init and MPI_Finish,
respectively. However, if you are using the MPE function call
independently that is, without using MPE's default loggingyou'll need these two
calls. Note that MPE_Finish_log allows you to specify a name for the logfile.

Once we've got everything set up, we are ready to call MPI_Start_log to begin
recording events. Next, we simply put the sections of code we want to profile
between pairs of calls to MPE_Log_event. For example, the initial MPI_Bcast call
is profiled by surrounding it with the MPE_Log_event calls for evnt1a and evnt1b.

Once you've got the code instrumented, it is just a matter of compiling it with
the appropriate MPE options, running the code, and then examining the
logfiles. Here is the display for this program. This is shown in Figure 17-4.

Figure 17-4. Timeline

In this example, I've opted to display the timeline for the program. For this
particular display, I chose MPI-Process under View Options and clicked on the
Display button under Frame Operations. (If you try this example, you may find
it educational to run it with and without the calls to MPI_Barrier.)

17.8 Notes for OSCAR and Rocks Users

With OSCAR, you should have all of the basic commands described earlier in
this chapter including gprof and gcov. Both MPICH and LAM/MPI are installed
under the /opt directory with OSCAR. The MPI commands are readily available,
but you'll need to install MPE if you wish to use it. Rocks also includes gprof
and gcov. Several different MPICH releases are included under /opt. MPE is
installed but you will need to configure the viewers. More information on
setting up MPE is included in Chapter 9.

Part V: Appendix
This appendix offers useful sources of information for all the aspects of
setting up and programming a cluster that were covered in this book.

Appendix A. References
While these listings are far from complete, they are the sources that I found
the most useful and should certainly keep you busy for a long time.

A.1 Books

If you are a new Linux user, the books by Powers or Siever are both good
general references. If you want to know more about Linux system
administration, my favorite is Nemeth. Frisch, a quicker read but less detailed
book, is also a good place to begin. If you need more information on the Linux
kernel, Bovet is a reasonable book to look at. For fine-tuning your system,
Musumeci is a good resource. For a detailed overview of Unix security issues,
you might look at Garfinkel. Limoncelli provides a general overview of system
administration practices.

A robust network is a crucial part of any cluster. While general Linux books
will take you a long way, at some point you'll need more specialized
information than a general administration book can provide. If you want a
broad overview of networking, Tanenbaum is very readable. For Ethernet,
Spurgeon is a great place to start. If you want more information on TCP/IP,
Comer, Hall, and Stevens are all good starting points. For setting up a TCP/IP
network, you should consider Hunt. For more information on firewalls, look at
Cheswick or Sonnenreich.

Of course, setting up a system will require configuring a number of network
services. Hunt provides a very good overview. If you need to delve deeper,
there are a number of books dedicated to individual network services,
particularly from O'Reilly. For Apache, consider Laurie. For DNS, you won't do
better than Albitz. For NFS, look at Callaghan or Stern. For SSH, you might
consult Barrett.

For general information on parallel computing, good choices include Culler,
Dongarra, and Dowd. Culler is more architecture and performance oriented.
Dongarra is a very good source for information on how parallel computing is
used. Dowd provides a wealth of information on parallel programming
techniques.

For additional information on clusters, the best place to start is Sterling's book.
Many of the tools described in this text are discussed by their creators in the
book edited by Sterling, listed below. Although uneven at times, parts of
Bookman are very helpful.

There are a number of books available on parallel programming with MPI. For
a general introduction, look to Gropp or Pacheco. Both will provide you with
more examples and greater depth that I had space for in this book. Snir is an
indispensable reference. If you are using PVM, Geist is the best place to start.
For producing efficient code, Bentley is wonderful. Unfortunately, it is out of

print, but you may be able to find it in a local library. Dowd is also useful.

Albitz, Paul and Cricket Liu. DNS and BIND. Fourth Edition. Sebastopol, CA:
O'Reilly & Associates, Inc., 2001.

Barrett, Daniel and Richard Silverman. SSH, the Secure Shell: The Definitive
Guide. Sebastopol, CA: O'Reilly & Associates, Inc., 2001.

Bentley, Jon Louis. Writing Efficient Programs. Upper Saddle River, NJ:
Prentice-Hall, Inc., 1982.

Bookman, Charles. Linux Clustering: Building and Maintaining Linux Clusters.
Indianapolis, IN: New Riders Publishing, 2002.

Bovet, Daniel and Marco Cesati. Understanding the Linux Kernel. Second
Edition. Sebastopol, CA: O'Reilly & Associates, Inc., 2002.

Callaghan, Brent. NFS Illustrated. Reading, MA: Addison Wesley Professional,
1999.

Cheswick, William, Steven Bellovin, and Aviel Rubin. Firewalls and Internet
Security: Repelling the Wiley Hacker. Second Edition. Reading, MA: Addison
Wesley Publishing Co., 2003.

Comer, Douglas. Internetworking with TCP/IP: Principles, Protocols, and
Architectures. Volume 1. Fourth Edition. Upper Saddle River, NJ: Prentice Hall,
2000.

Culler, David, Jaswinder Pal Singh, with Anoop Gupta. Parallel Computer
Architecture: A Hardware/Software Approach. San Francisco, CA: Morgan
Kaufmann Publishers, Inc., 1998.

Dowd, Kevin and Charles Severance. High Performance Computing. Second
Edition. Sebastopol, CA: O'Reilly & Associates, Inc., 1998.

Dongarra, Jack et al., eds. Sourcebook of Parallel Computing. San Francisco,
CA: Morgan Kaufmann Publishers, Inc., 2003.

Frisch, Æleen. Essential System Administration. Sebastopol, CA: O'Reilly &
Associates, Inc., 1991.

Garfinkel, Simson, Gene Spafford, and Alan Schwartz. Practical Unix &
Internet Security. Third Edition. Sebastopol, CA: O'Reilly & Associates, Inc.,
1993.

Geist, Al et al. PVM: Parallel Virtual Machine: A User's Guide and Tutorial for
Networked Parallel Computing. Cambridge, MA: MIT Press, 1994.

Gropp, William, Ewing Lusk, and Anthony Skjellum. Using MPI: Portable
Parallel Programming with the Message-Passing Interface. Second Edition.
Cambridge, MA: MIT Press, 1999.

Hall, Eric A. Internet Core Protocols: The Definitive Guide with CD-ROM.
Sebastopol, CA: O'Reilly & Associates, Inc., 2000.

Hunt, Craig. TCP/IP Network Administration. Second Edition. Sebastopol, CA:
O'Reilly & Associates, Inc., 1998.

Jain, Raj. The Art of Computer Systems Performance Analysis. New York, NY:
John Wiley & Sons, 1991.

Laurie, Ben and Peter Laurie. Apache: The Definitive Guide. Third Edition.
Sebastopol, CA: O'Reilly & Associates, Inc., 2002.

Limoncelli, Thomas and Christine Hogan. The Practice of System and Network
Administration. Upper Saddle River, NJ: Addison Wesley, 2002.

Message Passing Interface Forum. MPI-2: Extensions to the Message-Passing
Interface. Knoxville, TN: University of Tennessee, 1997.

Musumeci, Gian-Palol and Mike Loukides. System Performance Tuning. Second
Edition. Sebastopol, CA: O'Reilly & Associates, Inc., 2002.

Nemeth, Evi et al. Linux Administration Handbook. Upper Saddle River, NJ:
Prentice Hall, 2002.

Oram, Andy, ed. Peer-to-Peer: Harnessing the Power of Disruptive
Technologies. Sebastopol, CA: O'Reilly & Associates, Inc., 2001.

Pacheco, Peter. Parallel Programming with MPI. San Francisco, CA: Morgan
Kaufmann Publishers, Inc., 1997.

Powers, Shelley et al.. Unix Power Tools. Third Edition. Sebastopol, CA:
O'Reilly & Associates, Inc., 2003.

Siever, Ellen, Aaron Weber, and Stephen Figgins. Linux in a Nutshell. Fourth
Edition. Sebastopol, CA: O'Reilly & Associates, Inc., 2003.

Snir, Marc et al. MPI: The Complete Reference. 2 vols. Cambridge, MA: MIT
Press, 1998.

Sonnenreich, Wes and Tom Yates. Building Linux and OpenBSD Firewalls. New
York, NY: John Wiley & Sons, Inc., 2000.

Spurgeon, Charles. Ethernet: The Definitive Guide. Sebastopol, CA: O'Reilly &
Associates, Inc., 2000.

Stallman, Richard et. al. Debugging with GDB: The GNU Source-Level
Debugger. Boston, MA: GNU Press, 2003.

Sterling, Thomas, ed. Beowulf Cluster Computing with Linux. Cambridge, MA:
MIT Press, 2002.

Stern, Hal, Mike Eisler, and Ricardo Labiaga. Managing NFS and NIS. Second
Edition. Sebastopol, CA: O'Reilly & Associates, Inc., 2001.

Stevens, W. Richard. TCP/IP Illustrated. Volume 1, The Protocols. Reading, MA:
Addison Wesley Longman, 1994.

Tanenbaum, Andrew. Computer Networks. Fourth Edition. Saddle River, NJ:
Pearson Education, 2002.

Thompson, Robert and Barbra Thompson. Building the Perfect PC. Sebastopol,
CA: O'Reilly & Associates, Inc., 2004.

Thompson, Robert and Barbra Thompson. PC Hardware in a Nutshell. Third
Edition. Sebastopol, CA: O'Reilly & Associates, Inc., 2003.

Wilkinson, Barry and Michael Allen. Parallel Programming: Techniques and
Applications Using Networked Workstations and Parallel Computers. Upper
Saddle River, NJ: Prentice-Hall, Inc., 1999.

A.2 URLs

These URLs offering software and documentation were current when this book
was written. They are grouped roughly by category. Within a category, they
are organized roughly in alphabetic order. However, closely related items are
grouped together. Most categories are short, so you shouldn't have too much
trouble locating an item even if you need to skim the entire category.

A.2.1 General Cluster Information

http://www.beowulf.org. This site has general information on Beowulf clusters,
including tutorials.

http://clustering.foundries.sourceforge.net. Clustering Foundry is a source for
cluster software.

http://www.clusterworld.com. This is the web site for ClusterWorld magazine.

http://www.dell.com/powersolutions. Dell Power Solutions Magazine has
frequent articles or special issues devoted to clustering.

http://www.linux-ha.org. This is the home for the Linux High-Availability
Project. It provides many links to information useful in setting up an HA
cluster.

http://www.lcic.org. Linux Clustering Information Center is a great source of
information and links.

http://www.tldp.org. Linux Documentation Project is the home to a vast store
of Linux documentation, including FAQs, HOWTOs, and other guides.

http://www.linux-vs.org. This is the home to the Linux Virtual Server Project,
another site of interest if you want high availability or load balancing.

http://www.linuxhpc.org. This is the home to LinuxHPC.org, another site to
visit for high-performance cluster information.

http://www.tldp.org/HOWTO/Remote-Serial-Console-HOWTO/. This is the
Remote Serial Console HOWTO.

http://setiathome.ssl.berkeley.edu. This is the home for the SETI@Home
project.

http://www.beowulf.org
http://clustering.foundries.sourceforge.net
http://www.clusterworld.com
http://www.dell.com/powersolutions
http://www.linux-ha.org
http://www.lcic.org
http://www.tldp.org
http://www.linux-vs.org
http://www.linuxhpc.org
http://www.tldp.org/HOWTO/Remote-Serial-Console-HOWTO/
http://setiathome.ssl.berkeley.edu

http://www.top500.org. If you want to know what computers are currently on
the 500 top supercomputers list, visit this site.

http://clusters.top500.org. For the top 500 clusters, visit this site.

http://www.redbooks.ibm.com. Although IBM-Scentric, the Redbooks series
contains a wealth of information. Look for the Redbooks on SANs or Globus.

A.2.2 Linux

http://bccd.cs.uni.edu. This is the home of the Bootable Cluster CD (BCCD).

http://www.debian.org. This is the home for Debian Linux.

http://www.gentoo.org. This is the home for Gentoo Linux.

http://www.knoppix.org. This is the home for Knoppix. Click on a flag for the
language of your choice. For a cluster version of Knoppix, visit
http://bofh.be/clusterknoppix/.

http://www.kernel.org. The Linux Kernels Archive provides kernel sources.

http://www.mandrakesoft.com. This is the home for Mandrake Linux

http://plumpos.sourceforge.net. This is the home for PlumpOS.

http://www.redhat.com. This is the home for Red Hat Linux.

http://www.suse.com. This is the home for SUSE Linux.

A.2.3 Cluster Software

http://bioinformatics.org/biobrew/. Visit the Biobrew site for information on a
Rocks-based bioinformatics cluster.

http://www.mosix.org. This is site for the Mosix project.

http://openmosix.sourceforge.net. This is the site for the openMosix project.

http://www.openmosixview.com. If you are running openMosix, visit this site
for the openMosixView tools.

http://www.top500.org
http://clusters.top500.org
http://www.redbooks.ibm.com
http://bccd.cs.uni.edu
http://www.debian.org
http://www.gentoo.org
http://www.knoppix.org
http://bofh.be/clusterknoppix/
http://www.kernel.org
http://www.mandrakesoft.com
http://plumpos.sourceforge.net
http://www.redhat.com
http://www.suse.com
http://bioinformatics.org/biobrew/
http://www.mosix.org
http://openmosix.sourceforge.net
http://www.openmosixview.com

http://howto.ipng.be/Mosix-HOWTO/. Visit this site for the most recent version
of Kris Buytaert's openMosix HOWTO.

http://mcaserta.com/maask/. For more information on the MigSHM openMosix
patch, visit this site.

http://oscar.openclustergroup.org. This is the home of the Open Cluster Group
and the site to visit for OSCAR.

http://www.openclustergroup.org/HA-OSCAR/. This is the home for the high
availability OSCAR branch.

http://rocks.npaci.edu. This is the home for Rocks.

http://stommel.tamu.edu/~baum/npaci.html. This is Steven Baum's Rocks
site, another good source of information on Rocks. This has very nice sections
on grids and on applications available for clusters.

http://www.scyld.com. This is the home for Scyld Beowulf. An earlier,
nonsupported version of Scyld Beowulf can be purchased at
http://www.linuxcentral.com.

A.2.4 Grid Computing and Tools

http://www.globus.org. If you are interested in grid computing, you should
start by visiting the Globus Alliance site.

http://gridengine.sunsource.net. This is the home for the Sun Grid Engine.

http://www.nsf-middleware.org. This is the home for the NSF middleware grid
software.

http://www.opensce.org. This is the home for the OpenSCE (Scalable Cluster
Environment) project.

http://nws.cs.ucsb.edu. This is the home for the Network Weather Service.

http://www.ncsa.uiuc.edu/Divisions/ACES/GPT/. This is the home for the Grid
Packaging Tools.

http://www.citi.umich.edu/projects/kerb_pki/. This is the home for KX.509 and
KCA.

http://grid.ncsa.uiuc.edu/ssh/. This is the home for GSI OpenSSH.

http://howto.ipng.be/Mosix-HOWTO/
http://mcaserta.com/maask/
http://oscar.openclustergroup.org
http://www.openclustergroup.org/HA-OSCAR/
http://rocks.npaci.edu
http://stommel.tamu.edu/%7Ebaum/npaci.html
http://www.scyld.com
http://www.linuxcentral.com
http://www.globus.org
http://gridengine.sunsource.net
http://www.nsf-middleware.org
http://www.opensce.org
http://nws.cs.ucsb.edu
http://www.ncsa.uiuc.edu/Divisions/ACES/GPT/
http://www.citi.umich.edu/projects/kerb_pki/
http://grid.ncsa.uiuc.edu/ssh/

http://grid.ncsa.uiuc.edu/myproxy/. This is the home for MyProxy.

http://rocks.npaci.edu/gridconfig/. A user's manual for the Rocks Gridconfig
Tools can be found at this site.

A.2.5 Cloning and Management Software

http://www.csm.ornl.gov/torc/C3/. This is the home for Cluster Command and
Control (C3).

http://sourceforge.net/projects/clumon. If you need Clumon, it can be
downloaded from SourceForge.

http://www.feyrer.de/g4u/. This is the home for g4u.

http://ganglia.sourceforge.net. Ganglia can be downloaded from this site.

http://oss.sgi.com/projects/pcp/. This is the home for SGI's Performance Co-
Pilot.

http://sisuite.sourceforge.net. This is the home for System Installation Suite
(SIS). It provides links to System Configurator, SystemImager, and System
Installer.

A.2.6 Filesystems

http://clusternfs.sourceforge.net. This is the home for ClusterNFS.

http://www.coda.cs.cmu.edu/index.html. This is the home for the Coda file
system

http://www-1.ibm.com/servers/eserver/clusters/software/gpfs.html. This site
provides information for GPFS, the General Parallel File System.

http://www.inter-mezzo.org. This is the home for the InterMezzo filesystem.

http://www.lustre.org. This is the home for the Luster filesystem.

http://www.openafs.org. This is the home for the Open Andrew filesystem.

http://opengfs.sourceforge.net. This is the home for OpenGFS Project.

http://grid.ncsa.uiuc.edu/myproxy/
http://rocks.npaci.edu/gridconfig/
http://www.csm.ornl.gov/torc/C3/
http://sourceforge.net/projects/clumon
http://www.feyrer.de/g4u/
http://ganglia.sourceforge.net
http://oss.sgi.com/projects/pcp/
http://sisuite.sourceforge.net
http://clusternfs.sourceforge.net
http://www.coda.cs.cmu.edu/index.html
http://www-1.ibm.com/servers/eserver/clusters/software/gpfs.html
http://www.inter-mezzo.org
http://www.lustre.org
http://www.openafs.org
http://opengfs.sourceforge.net

http://www.parl.clemson.edu/pvfs/. This is the home to the PVFS. For PVFS2,
go to http://www.pvfs.org/pvfs2/.

A.2.7 Parallel Benchmarks

http://www.netlib.org. The Netlib Repository is a good place to start if you
need benchmarks.

http://hint.byu.edu. This is the home for the Hierarchical Integration (HINT)
benchmark.

http://www.netlib.org/benchmark/hpl/. This is the home for High Performance
Linpack benchmark.

http://www.iozone.org. This is the home for Iozone, an I/O and file system
benchmark tool.

http://dast.nlanr.net/Projects/Iperf/. This is the home for Iperf, a network
performance measurement tool.

http://science.nas.nasa.gov/Software/NPB/. This is the home for the NAS
Parallel Benchmarks.

A.2.8 Programming Software

http://www.gnu.org/software/ddd/. This is the Data Display Debugger's home
page.

http://gcc.gnu.org. This is the home page for the gcc compiler project. This
project includes gprof and gcov.

http://hdf.ncsa.uiuc.edu/HDF5/. This is the home page for HDF5.

http://java.sun.com. This is Sun's Java page. Java can also be downloaded
from http://www.blackdown.org.

http://www.lam-mpi.org. This is the home page for the LAM/MPI project.

http://www.mpi-forum.org. This is the home page for the MPI Forum. Visit this
site for standards documents and other information on MPI.

http://www-unix.mcs.anl.gov/mpi/mpich/. This is the home page for MPICH.

http://www.parl.clemson.edu/pvfs/
http://www.pvfs.org/pvfs2/
http://www.netlib.org
http://hint.byu.edu
http://www.netlib.org/benchmark/hpl/
http://www.iozone.org
http://dast.nlanr.net/Projects/Iperf/
http://science.nas.nasa.gov/Software/NPB/
http://www.gnu.org/software/ddd/
http://gcc.gnu.org
http://hdf.ncsa.uiuc.edu/HDF5/
http://java.sun.com
http://www.blackdown.org
http://www.lam-mpi.org
http://www.mpi-forum.org
http://www-unix.mcs.anl.gov/mpi/mpich/

http://www.netlib.org/pvm3/. This is the home page for PVM.

http://www.mcs.anl.gov/romio/. This is the home page for ROMIO.

http://www.splint.org. This is the home page for SPLINT.

http://sprng.cs.fsu.edu/. This is the home page for SPRNG, the Scalable
Parallel Random Number Generator.

http://www.scriptics.com. This is the home page for Tcl/Tk.

http://vmi.ncsa.uiuc.edu. This is NCSA's page for the Virtual Machine Interface
or VMI.

A.2.9 Scheduling Software

http://www.cs.wisc.edu/condor. This is the home for the Condor Project.

http://www.supercluster.org. This is the Center for HPC Cluster Resource
Management and Scheduling. Visit this site for Maui and Torque.

http://umbc7.umbc.edu/nqs/nqsmain.html. This is the home for the Network
Queuing Systems software.

http://www.openpbs.org. This is the home for the open software branch for
PBS. For OpenPBS patches, you might visit http://www-
unix.mcs.anl.gov/openpbs/ and http://bellatrix.pcl.ox.ac.uk/~ben/pbs/.

http://www.pbspro.com This is the home for the commercial branch for PBS.

A.2.10 System Software and Utilities

http://www.chkrootkit.org. This is the home for the chkrootkit security
program.

http://modules.sourceforge.net. The modules package, on which switcher is
based, can be downloaded from SourceForge.

http://www.myri.com. This commercial site is the home for Myricom, the
creators of Myrinet.

http://sourceforge.net/projects/pfilter. If you want the pfilter software, you

http://www.netlib.org/pvm3/
http://www.mcs.anl.gov/romio/
http://www.splint.org
http://sprng.cs.fsu.edu/
http://www.scriptics.com
http://vmi.ncsa.uiuc.edu
http://www.cs.wisc.edu/condor
http://www.supercluster.org
http://umbc7.umbc.edu/nqs/nqsmain.html
http://www.openpbs.org
http://www-unix.mcs.anl.gov/openpbs/
http://bellatrix.pcl.ox.ac.uk/%7Eben/pbs/
http://www.pbspro.com
http://www.chkrootkit.org
http://modules.sourceforge.net
http://www.myri.com
http://sourceforge.net/projects/pfilter

can download it from SourceForge.

http://www.rrdtool.org. This is the home for Tobi Oetiker's RRDtool.

http://samba.anu.edu.au/rsync. Visit this site for more information or the
latest version of rsync.

http://www.tripwire.org. This is the home for the tripwire security auditing
tool.

http://vsftpd.beasts.org. This is the home for Very Secure FTP.

http://www.rrdtool.org
http://samba.anu.edu.au/rsync
http://www.tripwire.org
http://vsftpd.beasts.org

Colophon
Our look is the result of reader comments, our own experimentation, and
feedback from distribution channels. Distinctive covers complement our
distinctive approach to technical topics, breathing personality and life into
potentially dry subjects.

The cover image of cowboys herding cattle is a 19th-century engraving from
the Dover Pictorial Archive. Using their horsemanship and lariat skills, cowboys
in the American West managed herds of several thousand cattle. These
abilities would become especially valuable after the Civil War, when an
increased demand for beef in the northern and eastern parts of the country
left Texas ranchers needing a way to transport their product. Cowboys would
drive Texas Longhorn cattle over 1,000 miles north to railroad cow towns in
Kansas and Nebraska. These grueling journeys would take several months to
complete, with those in charge of the herd working, eating, and sleeping on
the open plain.

Adam Witwer was the production editor and copyeditor for High Performance
Linux Clusters with OSCAR, Rocks, openMosix, and MPI. Leanne Soylemez was
the proofreader. Claire Cloutier and Sanders Kleinfeld provided quality control.
John Bickelhaupt wrote the index.

Emma Colby designed the cover of this book, based on a series design by
Hanna Dyer and Edie Freedman. Clay Fernald produced the cover layout with
QuarkXPress 4.1 using Adobe's ITC Garamond font.

David Futato designed the interior layout. The chapter opening images are
from Marvels of the New West: A Vivid Portrayal of the Stupendous Marvels in
the Vast Wonderland West of the Missouri River, by William Thayer (The Henry
Bill Publishing Co., 1888). This book was converted to FrameMaker 5.5.6 by
Joe Wizda with a format conversion tool created by Erik Ray, Jason McIntosh,
Neil Walls, and Mike Sierra that uses Perl and XML technologies. The text font
is Linotype Birka; the heading font is Adobe Myriad Condensed; and the code
font is LucasFont's TheSans Mono Condensed. The illustrations that appear in
the book were produced by Robert Romano and Jessamyn Read using
Macromedia FreeHand MX and Adobe Photoshop CS. The tip and warning icons
were drawn by Christopher Bing. This colophon was written by Adam Witwer.

The online edition of this book was created by the Safari production group
(John Chodacki, Ken Douglass, and Ellie Cutler) using a set of Frame-to-XML
conversion and cleanup tools written and maintained by Erik Ray, Benn Salter,
John Chodacki, Ellie Cutler, and Jeff Liggett.

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M]
[N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M]
[N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

$PATH variable
411(Rocks)

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M]
[N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

adaptive resource allocation policy
addclients script
air conditioning
 microenvironments
alog
ALOG log file format
Amdahl's Law
Amdahl, Gene
Anaconda
anonymous rsync
Apache
Apache and PHP with Ganglia
Area 51 roll (Rocks)
area.c
 debugging example
asymmetric clusters
asymptotic analysis
author biases

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M]
[N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

Bar, Moshe
Barak, Amnon
base striping parameter (PVFS)
bash shell and LAM/MPI configuration
bash shell, time command
Baum, Steven
BCCD (Bootable Cluster CD)
bccd-allowall
bccd-snarfhosts
Becker, Donald 2nd
benchmarking
Beowulf clusters 2nd
ÒBig MacÓ cluster
boot loader
 openMosix default, configuring for
Bootable Cluster CD (BCCD)
breakpoints
BTUs (British Thermal Units)
 wattage, conversion to

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M]
[N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

C programming language
 MPI numerical integration program
 timing code segments
 gettimeofday function
 MPI, manual timing [See MPI, code timing with]
 time system call
C shell, time command
C++ programming language
 MPI numerical integration problem
C3 (Cluster Command and Control) 2nd
 commands
 cexec
 cget
 ckill
 clist
 cname
 cnum
 cpush
 cpushimage
 crm
 cshutdown
 options
 installing
 ckillnode script
 configuration file, creating
 dependencies
 pushimage command
 OSCAR and
 Python and

 Rocks and
cable management
cache consistency
catchpoints
CD-ROM based clusters
centralized multiprocessors
ch_nt MPICH
ch_p4 MPICH
ch_p4mpd MPICH
ch_shmem MPICH
checkergcc
cLAN
clients
 automating setup [See cloning]
clog
CLOG log file format
clog2slog utility
cloning
 automating installations
 documenting
 g4u 2nd
 Kickstart 2nd
 SystemImager 2nd
 definition
 files, distribution and synchronization
 rsync
Clumon
Cluster Command and Control software package [See C3]
cluster hardware [See hardware]
cluster head
cluster kits 2nd
 distributions
 OSCAR [See OSCAR]
 Rocks [See Rocks]
cluster nodes, cloning [See cloning]
cluster of workstations (COW)
cluster planning

 access control
 architecture
 CD-ROM based clusters
 cluster kits [See cluster kits]
 clusters versus grids
 control
 design steps
 mission determining
 scheduling
 security
 shared versus dedicated clusters
 software
 control and management software
 programming software
 system software
 user base
cluster-fork command
ClusterKnoppix
ClusterNFS
clusters 2nd 3rd
 benchmarking
 Beowulf clusters 2nd
 ÒBig MacÓ cluster
 clients, automating setup [See cloning]
 commodity clusters
 distributed computing and
 filesystems, selecting [See parallel filesystems]
 limitations
 management software [See management software]
 multicomputers
 network design and
 NOW cluster

 planning [See cluster planning]
 POP
 programming software [See programming software]
 proprietary clusters
 scheduling software [See scheduling software]
 single system image clustering
 software
 structure
 types
Coda
code examples
code optimization
 gcc and -O compiler flag
 profiling and
color
commodity clusters
commodity, off-the-shelf (COTS) computers
communication versus concurrency
communicators (MPI) 2nd
compilers
 debugging and
computational grid
computers 2nd [See also clusters]
 centralized multiprocessors
 COTS computers
 improving performance
 memory bandwidth
 multicomputer architecture
 multiple processors
 pipelining
 processor array architecture
 RISC architecture
 superscalar architecture
 von Neumann bottleneck

 von Neumann computer
Condor roll (Rocks) 2nd
constellations
control and management software
control decomposition
COTS (commodit, off-the-shelf) computers
COW (cluster of workstations)
cpi.c program example
cpilog.c program example

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M]
[N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

data decomposition
data dependency graphs
Data Display Debugger [See ddd]
data partitioning
ddd (Data Display Debugger) 2nd
 attaching to a process number
 MPI, using with
 OSCAR and Rocks notes
deadlock
debuggers
debugging parallel programs [See parallel programs,
debugging]
debugging tools
 printf
 fflush, using with
 symbolic debuggers
 ddd
 gdb [See gdb]
dedicated clusters 2nd
degree of concurrency
DHCP (Dynamic Host Configuration Protocol)
dhcp client images
diskless clusters and Rocks
distributed computing
distributed filesystems [See PVFS, parallel filesystems]
DrakX

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M]
[N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

electric power requirements
embedded adapters, Ethernet
emergencies
 cutting power
environment
 air conditioning
 microenvironments
 cable management
 cluster layout
 cluster power requirements, estimating
 humidity
 physical security
 temperature recommendations
equipment failure and heat
error handlers
errors
 deadlock
 synchronization problems
Ethernet

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M]
[N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

failover clusters
federated clusters
fflush
file-sharing peer-to-peer networks
files, distributing
filesystems
 openMosix
 parallel filesystems [See parallel filesystems]
firewalls
 installations over networks and
 openMosix traffic and
flamethrower
FORTRAN programming language
 numerical integration with MPI
frontend

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M]
[N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

g4u 2nd
 compressing unused sectors
 FTP server setup
 slurpdisk command
 uploaddisk command
Ganglia 2nd
 configure script
 gmetad
 gmetric
 gmond
 gmond.conf and gmetad.conf files
 gstat
 installation and use
 Apache and PHP
 Ganglia monitor core
 RRDtool
 web frontend
 OSCAR and
 prerequisites
 Rocks and
 web interface frontend
gcc
 -O flag
 -g option
gcov
 compiling requirements for use of
 MPI, using with
gdb
 attaching to a process number

 breakpoints
 info breakpoint command
 list command
 MPI, using with
 next command
 OSCAR and Rocks notes
 -q option
 step command
General Parallel File System (GPFS)
getimage script
gettimeofday function
Gigabit Ethernet
globus2 MPICH
gmon.out file
golden client 2nd
GPFS (General Parallel File System)
gprof
 -b option
 MPI, using with
granularity 2nd
grid computing
 Rocks and
grid roll (Rocks)
Gropp, William
grub
 openMosix default, configuring for

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M]
[N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

hardware
 design decisions
 building yourself
 cluster head and servers
 cluster networking
 dedicated clusters
 environment
 identical systems for nodes
 node hardware [See nodes, hardware]
 system integrators
 user base, size of
 heat and failure rate
 humidity and
HDF5 (Hierarchical Data Format v.5)
head node 2nd
 host name
 Rocks
Hierarchical Data Format v. 5 (HDF5)
Hierarchical Integration (HINT)
high-availability (HA) clusters
High-Availability Linux Project
High-Availability OSCAR web site
High-Performance Linpack (HPL) benchmark
HINT (Hierarchical Integration)
HPC (high-performance computing)

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M]
[N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

I/O (input/output)
 in parallel program design
 impact of hardware
 MPI and
image copying software
 g4u 2nd
 SystemImager 2nd
image server
images
Infiniband
info breakpoint command
insert-ethers program
insmod command (PVFS)
Intel roll (Rocks)
InterMezzo
iod-ping and mgr-ping utilities
iod.conf file (PVFS)
.iodtab file
Iozone
IP addresses, private address spaces
Iperf

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M]
[N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

Java roll (Rocks)
jumpshot-2 2nd
jumpshot-3 2nd

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M]
[N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

kernel_picker (OSCAR) 2nd
kernels
 precompiled kernels [See precompiled kernels]
Kickstart 2nd
 configuration file
 editing
 package list
 Configurator program
 multiple configurations
 network installations
 NFS server setup
 Rocks and
 using

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M]
[N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

LAM/MPI 2nd
 bash shell, configuration in
 installing
 from a package
 from source
 testing
 recon tool
 tping command
 user configuration
 $PATH variable
 schemas
 SSH and stderr
 using
 wrapper programs
lamboot command
lamclean command
lamhalt command
laminfo command
lamnodes command
LAMRSH environment variable
libraries
 parallel programming libraries
library selection
Òlive filesystemÓ CDs
LILO openMosix default configuration
Linpack
lint
Linux
 cluster security
 distributions, selecting from
 older versus newer
 downloading

 installing
 checklists
 OSCAR and
 services, configuring
 Apache
 DHCP
 host file and name services
 multicasting
 NFS
 NTP
 SSH
 VNC
 time command
Linux Virtual Server Project (LVSR)
load balancing 2nd
 minimizing idle time
 work pools
Local Area Multicomputer/Message Passing Interface [See LAM/MPI]
local.cfg file
Lusk, Ewing
Lustre

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M]
[N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

MAC addresses, client machines
make_sprng_seed routine
managed power distribution systems
management software
 C3 [See C3]
 Clumon
 CPC (Performance Co-Pilot)
 Ganglia [See Ganglia]
master/slave algorithms
Maui scheduler 2nd 3rd
md5sum program
memory bandwidth
memory requirements
Message Passing Interface [See MPI]
Message Passing Interface Chameleon [See MPICH]
migrate (openMosix tool)
mkautoinstallscript
mkbootserver command
mkdhcpserver script
mkdhcpstatic
mknod command
modules package
MOM
Monte Carlo simulations
mosctl (openMosix tool)
MOSIX (Multicomputer Operating System for Unix)
mosmon (openMosix tool)
mosrun (openMosix tool)
mount command (PVFS)
MPE (Multi-Processing Environment)
 customized logging
 MPE commands
 graphical visualization tools
 libraries
 log file formats

 output formats
 parallel programs, profiling with
 using
 viewers
MPI (Message Passing Interface) 2nd 3rd 4th
 broadcast (collective) communications 2nd
 categories
 MPI_Bcast function
 MPI_Gather function
 MPI_Reduce
 MPI_Scatter function
 code timing with
 MPI_Barrier function
 MPI_Wtick function
 MPI_Wtime function
 PMPI wrapper functions
 communicator commands
 communicator assignments
 communicator management functions
 group management functions
 MPI_Comm_create function
 MPI_Comm_free and MPI_Group_free functions
 MPI_Comm_group function
 MPI_Comm_split function
 MPI_Group_incl and MPI_Group_excl functions
 communicators 2nd
 core functions
 C version error codes
 MPI_Comm_rank
 MPI_Comm_size
 MPI_Finalize

 MPI_Get_processor_name
 MPI_Init
 data transfer (point-to-point communication) 2nd
 MPI_Cancel function
 MPI_Iprobe function
 MPI_Isend and MPI_Irecv functions
 MPI_Recv
 MPI_Send
 MPI_Sendrecv and MPI_Sendrecv_replace functions
 MPI_Test function
 MPI_Wait function
 error handlers
 gdb and ddd, using with
 I/O (input/output)
 library
 non-blocking communication
 numerical integration problem
 C language
 C++ language
 FORTRAN language
 non-MPI example
 packaging data
 MPI_Type_commit function
 MPI_Type_struct function
 user-defined types
 packing data
 MPI_Pack function
 MPI_Unpack function
 parallel programming and division of problems 2nd
MPI-2 specification for parallel I/O
MPI-IO
MPI-IO functions

 MPI_File_close
 MPI_File_open
 MPI_File_seek
MPI_Reduce function
MPICH (Message Passing Interface Chameleon)
 demonstration programs
 flavors
 installing
 Windows systems
 machine.architecture file
 MPE
 Rocks, inclusion in
 Rocks, programming in
 testing
 user configuration
 using
 wrapper programs for compilation
mpimsg command
mpirun command 2nd
mpitask command
mps and mptop (openMosix tools)
Multi-Processing Environment [See MPE]
multicasting
multicomputers
multiple processor computers
Myrinet

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M]
[N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

NAS (network attached storage)
NAS (Numerical Aerodynamic Simulation) Parallel Benchmarks
netstat
network attached storage (NAS)
network design and clustering
network of workstations (NOW)
Network Queuing System (NQS)
networks
 design concerns
 OSCAR, configuration on
 parallel networks
 private IP address spaces
 public and private interfaces
NFS (Network File System) 2nd
NIS
nmap
nodes
 allocation preferences, setting (openMosix)
 cloning [See cloning]
 configuring
 configuring (openMosix)
 design concerns
 hardware
nonuniform memory access (NUMA)
NOW (network of workstations)
NPACI Rocks [See Rocks]
NPB
NQS (Network Queuing System)
NSF Middleware Initiative (NMI) grid roll
NTP (Network Time Protocol)
ntpconfig (OSCAR)
NUMA (nonuniform memory access)
Numerical Aerodynamic Simulation (NAS) Parallel Benchmarks
numerical integration problem

 MPI parallel example [See MPI]
 single-processor program
nupshot 2nd

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M]
[N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

omdiscd tool
opd (Oscar Package Downloader)
Open Cluster Group 2nd
Open Global File System (OpenGFS)
Open Source Cluster Application Resources [See OSCAR]
open source software
OpenAFS
OpenGFS (Open Global File System)
openMosix 2nd 3rd
 adaptive resource allocation policy
 advantages and disadvantages
 CD-bootable versions
 cluster control and /proc/hpc data
 contexts, user and system
 filesystem
 firewalls and
 history
 installation
 planning
 kernel patches
 kernel, recompiling
 configuration file
 documentation
 example
 installing the kernel
 recovery disk
 unpacking and patching
 Linux, compatible versions
 openmosix startup script 2nd
 openMosixView

 SSH, switching to from RSH
 precompiled kernels
 available packages
 configuring
 downloading
 installing
 processes
 migration
 single system image clustering
 SMP and
 support tools
 testing
 mosmon, using for
 stress test
 user tools
 migrate
 mosctl
 mosmon
 mosrun
 mps and mtop
 setpe
openMosixprocs command
openmosixview command
OpenPBS
 architecture
 configuring
 graphical user interface
 xpbs command
 xpbsmon command
 installing
 patching the code
 PBS Administrator Guide 2nd

 Tcl/Tk 8.0 dependency
 managing
 pbsnodes command
 qdel command
 qmgr command
 qstat
 qsub command
 useful commands
 pbs_mom daemon
 client machines
 pbs_sched daemon
 pbs_server daemon
 disabling the build for nodes
 problems with
 using
 web site
openSSH
operating systems, selection
OPIUM (OSCAR Password Installer and User Manager)
optimization [See code optimization]
OSCAR 2nd 3rd
 C3 and
 cluster testing
 collecting client MAC addresses
 custom configurations, creating
 ddd and
 Environment Switcher
 Ganglia and
 gdb and
 head node
 host name
 loading software to

 public and private interfaces
 images
 installation wizard, configuration
 installing
 basic installation
 building a client image
 changes OSCAR makes
 clients, adding
 clients, defining
 completing setup
 configuring packages
 custom installations
 downloading third-party packages
 network configuration
 network setup
 package selection
 prerequisites
 server software installation
 testing
 kernel_picker
 LAM/MPI
 Linux and
 MPE, adding
 ntpconfig
 opd (Oscar Package Downloader) 2nd
 command line operation
 OPIUM
 packages
 cluster building
 core packages
 programming tools

 usable Linux packages
 pfilter
 profiling notes
 programming software and
 purpose
 PVFS and
 Rocks, compared to
 scheduling software and
 security
 server, loading software to
 SIS (Systems Installation Suite) and
 suppported Linux distributions
 switcher
overheating, preventing

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M]
[N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

parallel filesystems
 ClusterNFS
 Coda
 Intermezzo
 Lustre
 NFS (Network File System)
 OpenAFS
 PVFS [See PVFS]
parallel networks
parallel program design
 algorithm design
 MPI-IO
 MPI-IO functions
 parallel I/O
 impact of hardware
 parallel versus serial algorithms
 problem decomposition
 control decomposition
 data decomposition 2nd
 data dependency graphs
 decomposition strategies
 degree of concurrency
 tasks and task granularity
 random numbers
 libraries for generating
 SPRNG (Scalable Parallel Random Number Generators)
 tasks, mapping to processors
 communication overhead
 communication, minimizing impact of

 load balancing
 redundant calculations
 task characteristics, evaluating
 work pools
parallel programming
 subdivision of problems 2nd
parallel programming libraries 2nd
parallel programs
 debugging
 compiler features, using
 ddd
 deadlock
 diagnostic code
 fflush, using with printf
 gdb [See gdb]
 lint and splint
 memory leaks, checking for
 printf, tracing with
 programming tools
 rereading code
 symbolic debuggers
 synchronization problems
 profiling [See profiling]
Parallel Virtual File System [See PVFS]
parallelism
PBS (Portable Batch System) 2nd 3rd [See also OpenPBS]
PBS roll (Rocks)
pbsnodes command (PBS)
pcount striping parameter (PVFS)
peer-to-peer networks
performance hardware
PFC (power-factor corrected) power supplies
pfilter
pile-of-PCs (POP)

pipelining 2nd
POP (pile-of-PCs)
Portable Batch System [See PBS]
Portable Batch System (PBS) roll
power factor, calculating
power requirements, estimating
precompiled kernels
 installing
prepareclient script
printf
 debugging, issues of using for
private interface
private IP address spaces
process migration (openMosix)
processor array
prof
profilers
 gcov
 gprof
profiling
 asymptotic analysis
 code optimization and
 gcc and -O compiler flag
 justification for
 MPE
 MPI, gprof, and gcov
 OSCAR and
 Rocks and
 timing C-language code segments
 gettimeofday function
 MPI, manual timing [See MPI, code timing with]
 time system call
 timing programs
 profilers [See profilers]
 writing code versus optimization

programming software 2nd
 choosing
 debuggers
 HDF5
 LAM/MPI
 installing
 testing
 user configuration
 using
 library selection
 MPI
 PVM
 MPICH
 installing
 MPE (Multi-Processing Environment)
 on Windows systems
 testing
 user configuration
 using
 OSCAR and
 programming languages
 Rocks and
 SPRNG
proprietary clusters
ps command
pseudorandom number generators
public interface
purify
pushimage command
PVFS (Parallel Virtual File System) 2nd 3rd
 advantages and disadvantages
 architecture
 client setup

 mknod command
 pvfstab file
 useful utilities
 cluster partitioning
 downloading
 head node configuration
 head node, installing on
 I/O server setup
 metadata server, configuring
 needed patches
 OSCAR and Rocks
 ownerships and permissions, setting
 running
 daemons, starting up
 insmod command
 iod-ping and mgr-ping utilities
 mount command
 ps command
 troubleshooting
 striping scheme and parameters
 using
 pvstat utility
 ROMIO interface
 u2p utility
 ÒUsing the Parallel Virtual File SystemÓ documentation
 web site
pvfstab file (PVFS)
PVM (Parallel Virtual Machine) library
pvstat utility (PVFS)

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M]
[N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

qdel command (PBS)
qmgr command (PBS)
QsNet
qstat command (PBS)
qsub command (PBS)

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M]
[N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

racks versus shelving
random numbers in parallel program design
 libraries for random number generation
 SPRNG (Scalable Parallel Random Number Generators)
recon tool
Red Hat Linux
 Rocks and
replace-auto-partition.xml
replicant client images
RISC (reduced instruction set computer) architecture
Rocks 2nd 3rd 4th
 cluster-fork command 2nd
 ddd and
 diskless clusters and
 downloading
 available rolls
 frontend or head node
 Ganglia and
 gdb and
 Grids and
 insert-ethers program
 installing 2nd
 compute nodes 2nd
 compute nodes, customizing
 default installations
 disk partitioning, compute nodes
 frontend
 frontend, customizing
 required software downloads
 Kickstart and

 managing
 web-based management tools
 MPICH
 programming
 network support
 OSCAR, compared to
 profiling notes
 programming software and
 public and private interfaces
 PVFS and
 Red Hat Linux and
 scheduling software and
 supported processors
 web-based management tools
 links
 X Window System
ROMIO
ROMIO interface
round-robin databases
Round-Robin DNS
RRDtool
rsync 2nd
 anonymous rsync

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M]
[N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

SAN (storage area network)
Scalable Cluster Environment (SCE) roll (Rocks)
Scalable Parallel Random Number Generators (SPRNG) 2nd
scheduling software 2nd
 available systems
 Maui
 OpenPBS
 architecture
 configuring
 graphical user interface
 installing
 managing
 using
 OSCAR and
 Rocks and
schemas
scientific data, HDF5 storage format
scram switch
Scyld Beowulf
security
 checking services
 OSCAR
 SSH
 physical environment
servers
service systemimager start command
SETI@Home
setpe (openMosix tool)
shared clusters
shelving versus racks
shoot-node command 2nd
showmap command
SIMPLE_SPRNG macro

single system image (SSI)
single system image clustering
SIS (Systems Installation Suite)
 mkbootserver command
 OSCAR and
 supported Linux distributions
 SystemConfigurator
 SystemImager [See SystemImager]
 SystemInstaller
skeleton.xml
slog
SLOG log file format
slog_print and clog_print utility
slurpdisk command
SMP (symmetric multiprocessors) 2nd
snooping
software
 compatibility
 control and management software
 image copying software [See image copying software]
 management software [See management software]
 operating system compatiblity
 programming software 2nd [See programming software]
 scheduling software 2nd [See scheduling software]
 system software
splint
SPRNG (Scalable Parallel Random Number Generators) 2nd
SSH (Secure Shell)
 OSCAR and
SSI (single system image)
SSI (System Service Interface)
ssize striping parameter (PVFS)
static client images
Sterling, Thomas
storage area network (SAN)
stream parallelism
Sun Grid Engine (SGE) roll (Rocks)

supercomputers
superscalar architectures
switcher
symbolic debuggers
 ddd
 gdb [See gdb]
symmetric clusters
symmetric multiprocessors [See SMP]
sync_users script (OPIUM)
synchronization problems, debugging
system context
system integrators
System Service Interface (SSI)
SystemImager 2nd
 client maintenance using
 cloning the system
 DHCP address assignment
 golden client 2nd
 image retrieval
 image server
 local.cfg file
SystemImager, mkdhcpserver script
Systems Installation Suite [See SIS]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M]
[N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

task partitioning
tasks and task granularity
Tcl/Tk 8.0 and PBS
temperature recommendations, operating environment
time command
time system call
TotalView
tping command
tstmachines script

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M]
[N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

u2p utility (PVFS)
UHN (unique home node)
UMA (uniform memory access)
uniform memory access (UMA)
uniprocessor computers
unique home node (UHN)
updateclient script
uploaddisk command
UPS (uninterruptible power supply)
upshot 2nd
USE_MPI macro
user context

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M]
[N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

viewers (MPE)
VNC (Virtual Network Computing)
von Neumann bottleneck
von Neumann computer

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M]
[N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

wall-clock tim
watchpoints
wattage, conversion to BTUs
work pools

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M]
[N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

X Window System
 Rocks and
xpbs command (PBS)
xpbsmon command (PBS)

	High Performance Linux Clusters with OSCAR, Rocks, OpenMosix, and MPI
	Table of Contents
	Copyright
	Preface
	Audience
	Organization
	Conventions
	How to Contact Us
	Using Code Examples
	Acknowledgments

	Part I: An Introduction to Clusters
	Chapter 1. Cluster Architecture
	1.1 Modern Computing and the Role of Clusters
	1.2 Types of Clusters
	1.3 Distributed Computing and Clusters
	1.4 Limitations
	1.5 My Biases

	Chapter 2. Cluster Planning
	2.1 Design Steps
	2.2 Determining Your Cluster's Mission
	2.3 Architecture and Cluster Software
	2.4 Cluster Kits
	2.5 CD-ROM-Based Clusters
	2.6 Benchmarks

	Chapter 3. Cluster Hardware
	3.1 Design Decisions
	3.2 Environment

	Chapter 4. Linux for Clusters
	4.1 Installing Linux
	4.2 Configuring Services
	4.3 Cluster Security

	Part II: Getting Started Quickly
	Chapter 5. openMosix
	5.1 What Is openMosix?
	5.2 How openMosix Works
	5.3 Selecting an Installation Approach
	5.4 Installing a Precompiled Kernel
	5.5 Using openMosix
	5.6 Recompiling the Kernel
	5.7 Is openMosix Right for You?

	Chapter 6. OSCAR
	6.1 Why OSCAR?
	6.2 What's in OSCAR
	6.3 Installing OSCAR
	6.4 Security and OSCAR
	6.5 Using switcher
	6.6 Using LAM/MPI with OSCAR

	Chapter 7. Rocks
	7.1 Installing Rocks
	7.2 Managing Rocks
	7.3 Using MPICH with Rocks

	Part III: Building Custom Clusters
	Chapter 8. Cloning Systems
	8.1 Configuring Systems
	8.2 Automating Installations
	8.3 Notes for OSCAR and Rocks Users

	Chapter 9. Programming Software
	9.1 Programming Languages
	9.2 Selecting a Library
	9.3 LAM/MPI
	9.4 MPICH
	9.5 Other Programming Software
	9.6 Notes for OSCAR Users
	9.7 Notes for Rocks Users

	Chapter 10. Management Software
	10.1 C3
	10.2 Ganglia
	10.3 Notes for OSCAR and Rocks Users

	Chapter 11. Scheduling Software
	11.1 OpenPBS
	11.2 Notes for OSCAR and Rocks Users

	Chapter 12. Parallel Filesystems
	12.1 PVFS
	12.2 Using PVFS
	12.3 Notes for OSCAR and Rocks Users

	Part IV: Cluster Programming
	Chapter 13. Getting Started with MPI
	13.1 MPI
	13.2 A Simple Problem
	13.3 An MPI Solution
	13.4 I/O with MPI
	13.5 Broadcast Communications

	Chapter 14. Additional MPI Features
	14.1 More on Point-to-Point Communication
	14.2 More on Collective Communication
	14.3 Managing Communicators
	14.4 Packaging Data

	Chapter 15. Designing Parallel Programs
	15.1 Overview
	15.2 Problem Decomposition
	15.3 Mapping Tasks to Processors
	15.4 Other Considerations

	Chapter 16. Debugging Parallel Programs
	16.1 Debugging and Parallel Programs
	16.2 Avoiding Problems
	16.3 Programming Tools
	16.4 Rereading Code
	16.5 Tracing with printf
	16.6 Symbolic Debuggers
	16.7 Using gdb and ddd with MPI
	16.8 Notes for OSCAR and Rocks Users

	Chapter 17. Profiling Parallel Programs
	17.1 Why Profile?
	17.2 Writing and Optimizing Code
	17.3 Timing Complete Programs
	17.4 Timing C Code Segments
	17.5 Profilers
	17.6 MPE
	17.7 Customized MPE Logging
	17.8 Notes for OSCAR and Rocks Users

	Part V: Appendix
	Appendix A. References
	A.1 Books
	A.2 URLs

	Colophon
	Index
	index_SYMBOL
	index_A
	index_B
	index_C
	index_D
	index_E
	index_F
	index_G
	index_H
	index_I
	index_J
	index_K
	index_L
	index_M
	index_N
	index_O
	index_P
	index_Q
	index_R
	index_S
	index_T
	index_U
	index_V
	index_W
	index_X

