
Ghost Process: a Sound Basis to Implement Process Duplication, Migration and

Checkpoint/Restart in Linux Clusters

Geoffroy Vallée1

ORNL/INRIA/EDF

Computer Science and Mathematics Division

Oak Ridge National Laboratory

Oak Ridge, TN 37831, USA

valleegr@ornl.gov

Fax: 865-576-5491

Renaud Lottiaux David Margery

Christine Morin

IRISA/INRIA, PARIS project-team

Campus Universitaire de Beaulieu

35042 Rennes, Cedex, France

{rlottiau, dmargery, cmorin}@irisa.fr

Fax: +33 2 99 84 71 71

Jean-Yves Berthou

EDF R&D

1 avenue de Général de Gaulle

BP408, 92141 Clamart, France

jyberthou@edf.fr

Fax: +33 1 47 65 34 99

Abstract

Process management mechanisms (process duplication,

migration and checkpoint/restart) are very useful for high

performance and high availability in clustering systems.

The single system image approach aims at providing a

global process management service with mechanisms for

process checkpoint, process migration and process dupli-

cation. In this context, a common mechanism for process

virtualization is highly desirable but traditional operating

systems do not provide such a mecahnism.

This paper presents a kernel service for process virtu-

alization called ghost process, extending the Linux kernel.

The ghost process mechanism has been implemented in the

Kerrighed single system image based on Linux.

Keywords: Linux cluster, distributed system, operating

system, single system image, process virtualization.

1 Introduction

Today, clusters are more and more widely used to ex-

ecute numerical applications. Mechanisms are needed to

1The submitted manuscript has been authored by a contractor of the

U.S. Government under Contract No. DE-AC05-00OR22725. Accord-

ingly, the U.S. Government retains a non-exclusive, royalty-free license

to publish or reproduce the published form of this contribution, or allow

others to do so, for U.S. Government purposes

ease cluster use and to take advantage of the cluster’s dis-

tributed resources. Process management mechanisms are

very useful in this respect. A process duplication mecha-

nism allows the deployment of processes of a parallel ap-

plication on several cluster nodes. Such a mechanism ex-

tends for a cluster the traditional fork mechanism provided

by the Linux system for process creation. However, to take

advantage of the complete cluster resources during the exe-

cution of a given workload, it may not be sufficient to cor-

rectly place the processes on the cluster nodes when they

are created. Dynamic load balancing strategies are advanta-

geous to keep the load balanced in a cluster. Such strategies

assume that an efficient process migration mechanism[8]

is implemented to move a process from one node to an-

other one. Finally, some cluster nodes may fail during the

execution of an application. Fault tolerance mechanisms

are needed to tolerate node failures during the execution of

a long-running application. Checkpointing is a traditional

fault tolerance technique well-suited to numerical applica-

tions. Checkpointing a process consists in periodically sav-

ing in stable storage the process state during failure-free ex-

ecution. In the event of a failure, the process is restarted

from its last checkpoint. All these mechanisms need a

mechanism for process virtualization.

For the sake of efficiency and ease of use, a kernel level

implementation of the mechanisms used for global process

management in a cluster (process duplication, migration,

checkpoint/restart) is highly desirable. However, the Linux

Proceedings of the 4th International Symposium on Parallel and Distributed Computing (ISPDC’05)

0-7695-2434-6/05 $20.00 © 2005 IEEE

kernel does not provide system services and interfaces for

process virtualization.

In this paper, we present the ghost process mechanism

for process virtualization based on the Linux kernel, which

provides a system service and an API to virtualize pro-

cesses. This mechanism eases the implementation of mech-

anisms for global process management. As example, we

present the implementation of two mechanisms for process

management at the cluster scale: a mechanism of process

migration and a mechanism of process checkpoint/restart.

The ghost process mechanism has been implemented in

the KERRIGHED Single System Image (SSI) cluster operat-

ing system[9, 10] based on Linux. It has been used to effi-

ciently and easily implement process duplication, migration

and checkpoint/restart in Kerrighed. Associated with global

process identification mechanisms and with other global re-

source management mechanisms (e.g. global signal man-

agement) which are out of the scope of this paper, it allows

global management of processes cluster wide.

The remainder of this paper is organized as follows: Sec-

tion 2 presents related works on global process management

mechanisms in clusters. Section 3 describes the ghost pro-

cess concept we propose for process virtualization. In Sec-

tion 4 we show how to simply implement process migration

and checkpoint/restart relying on the ghost process concept.

Section 5 provides a performance evaluation of the ghost

process mechanism in the framework of its use for process

checkpoint/restart. Finally, Section 6 concludes.

2 Background

A lot of cluster systems or toolkits allow application de-

ployment. Tools like rsh or ssh allow users to manually

deploy applications. Users individually choose a node for

process creation so there is no global resource manage-

ment. Other systems, like batch systems (e.g. PBS[5]), the

BProc[6] system or programming environments (e.g. MPI,

PVM) allow automatic and efficient deployment of applica-

tions. With such systems, users do no longer need to manu-

ally deploy processes.

Some systems, like Epckpt[11], condor[2] or BLCR[3]

offer checkpoint/restart mechanisms. With all these sys-

tems, a checkpoint mechanism is implemented by the ex-

traction of process information which is stored on a re-

source. Depending of the checkpoint mechanism, different

ways to store processes can be implemented. Traditionally,

resources used to store process checkpoint are (i) memory

for efficiency or (ii) disks for storage stability. Using these

images, a process can be restarted creating a clone process

from a checkpoint.

Other systems allow to dynamically migrate processes

between cluster nodes. A lot of academic studies have been

made to implement process migration[8]. Two major ap-

proaches allow implementation of process migration. First,

process migration can be implemented through a check-

point/restart mechanism: the process is checkpointed on a

shared file system (e.g. using NFS) and is restarted from the

file system on a remote node. This is the approach of sys-

tems like Condor. The second approach is to migrate pro-

cesses directly through the network for efficiency. In such

a system, the process is extracted from a node, directly sent

through the network to a remote node, and a new running

process is created. System like OpenSSI[13] or Mosix[1]

implement this approach.

Currently, no systems provide the complete set of mech-

anisms in an efficient way, excepted Genesis[4]. But Gene-

sis is based on a specific micro-kernel and does not provide

a complete Unix like interface.

3 The Ghost Process Concept for Process

Virtualization

The Linux kernel provides some simple interfaces to

manage processes on a single machine. Unfortunately, there

is no interface to extract a process from the system to create

an "image" of the process which is independent of the local

machine.

To have a convenient process virtualization, we need a

service to extract any process from the system and a sim-

ple interface to manage extracted processes. The different

mechanisms of process management should not be related

to the hardware access associated. For example, for pro-

cess migration, the process is extracted and then transfered

through the network on a remote node, whereas for process

checkpoint, the extracted process is saved on a stable de-

vice. Therefore, the interface of the process virtualization

services should integrate the definition of the resource used

to manipulate processes. This definition is very important

to guarantee a simple implementation of new mechanisms

for global process management. The capability is also in-

teresting to develop mechanism of global process manage-

ment adapted to specific hardware. For example, with a

simple definition of resource access, process migration can

be ported on a new network technology that uses a specific

programming interface.

Section 3.1 presents the service of process virtualization,

and Section 3.2 presents interfaces to virtualize processes

and to define resources access to use with the virtualization

mechanism.

3.1 Implementation of Process Virtualization

In a system, a process is represented by two kinds of in-

formation: process information that is available in the ker-

nel (e.g. open files, memory segments, pending signal, pro-

2

Proceedings of the 4th International Symposium on Parallel and Distributed Computing (ISPDC’05)

0-7695-2434-6/05 $20.00 © 2005 IEEE

cess identifier) and the register values associated to the pro-

cess execution.

With this data, it is possible to execute a process any-

where in a cluster. The ghost process mechanism allows

the extraction of all this information. The extraction of the

process’s context and address space is not an issue if kernel

information is accessible (if the extraction mechanism can

access the operating system data structures).

The extraction of the register values is more difficult.

With most processors and modern systems, these values are

only available in particular system states. For example, in

Linux using x86 processors, register values are only avail-

able in the kernel during return of exception, system calls

or interruptions. Therefore, to create a ghost process in the

Linux kernel, the system has to be in a state where register

values are available. It is should also be a state that enables

the activation of a process extraction at anytime, even if the

process is not active in the system (not running on a pro-

cessor). Such a state is very similar to the signal treatment

state. Therefore, we have created in the Linux kernel a new

state similar to the kernel signal state (see Figure 1). This

state is accessible after the treatment of pending signals, so

less information (a priori no signals) needs to be managed.

The creation of this state requires a kernel modification of

about ten lines. This modification allows to mark a process

as waiting for an extraction (in a way similar to the way a

process is marked as having a pending signal). This new

state is active during the return of exceptions, system calls

or interruptions. Therefore, register values are available and

process extraction can be activated at any time.

3.2 Process Virtualization Interfaces

3.2.1 Virtualization Interfaces

To ease the use of process virtualization, an API is avail-

able to deal with ghost processes. This API is based on the

concepts of process exportation and process importation.

The process exportation (see Listing 1) allows to virtualize

a process from the local system and provides an object rep-

resenting the ghost process. This object has the complete

set of information to manage a process independently to its

location.

Listing 1. Ghost Process API
/∗ E xpor t a p r o c e s s ∗ /

i n t e x p o r t _ p r o c e s s (ghos t , p r o c e s s) ;

/∗ Impor t a p r o c e s s ∗ /

i n t i m p o r t _ p r o c e s s (g h o s t) ;

/∗ Plug a r e s o u r c e o b j e c t t o a g h o s t p r o c e s s ∗ /

i n t p l u g _ r e s o u r c e _ o b j e c t (c l a s s _ i d , g h o s t) ;

The process importation (see Listing 1) allows to transfer

the ghost process in the local memory (if the ghost process

is not locally available) and to create a clone process from a

ghost process.

The system programmer needs to give a ghost process

object provided by an exportation and a new process is cre-

ated (forking) and inserted in the local system (the process

is active and can run in the system). Therefore, after the

process importation a new process is ready to run on the

local node, independently to the source node.

3.2.2 Interfaces for Resource Access Definition

The mechanisms for ghost process management are always

associated to a resource object representing the device used

to back the ghost process. For example, process migration is

a combination of a resource object representing the network

and the generic ghost management mechanisms whereas

process checkpoint/restart is the result of the combination

of a resource object associated to a stable storage device

(e.g. hard drive) with those mechanisms. Therefore, an in-

terface is needed to specify the resource object used with a

ghost process. This specification defines a new mechanism

available for global process management, but is also used to

adapt the mechanisms to new network technologies which

provides their own network interface. We say a resource

access object is plugged in the mechanism of process virtu-

alization.

The interface between resource access objects and the

mechanism of process virtualization are based on read/write

methods. The write method is automatically called during

the process exportation, whereas the read method is called

during the process importation.

Some resource access objects need extra parameters. For

example, to access to the network, we need to know the

remote node address before sending the data. These pa-

rameters can be specified during the initialization step of

the resource access object. For example, we can specify

a memory buffer if memory access is plugged in a ghost

process. Then, the ghost process importation reads ghost

process information from the memory. A finalization step

is also implemented for resource access objects that need

finalization (like files).

The current implementation allows to read from and

write to memory, read from or write to disk and to receive

from and send to the network. Each resource access ob-

ject type is identified by a unique identifier cluster wide. To

plug such a resource object in a ghost process, a simple in-

terface is available for system programmers (see Listing 1).

To set a unique identifier to each resource access method,

the system programmer must update an internal function of

the ghost process mechanism. This function also set the

function to initialize/finalize the resource access method, to

read from/write in the resource.

A set of interface has been developed for file access,

3

Proceedings of the 4th International Symposium on Parallel and Distributed Computing (ISPDC’05)

0-7695-2434-6/05 $20.00 © 2005 IEEE

Figure 1. Kernel state for process virtualization

memory access and network access.

Memory Access The interface to manage buffers in mem-

ory is shown in Listing 2.

Listing 2. Kerrighed API for memory access
/∗ I n i t i a l i z a t i o n f u n c t i o n ∗ /

b u f f _ t c r e a t e _ n e w _ b u f f e r (b u f f e r _ s i z e) ;

/∗ Read f u n c t i o n ∗ /

i n t b u f f _ r e a d (d e s t i n a t i o n , b u f f e r , s i z e) ;

/∗ W r i t e f u n c t i o n ∗ /

i n t b u f f _ w r i t e (b u f f e r , source , s i z e) ;

/∗ F u n c t i o n t o p lug t h e memory a c c e s s method

i n an i n s t a n c e o f a g h o s t p r o c e s s ∗ /

i n t a s s o c i a t e _ b u f f e r _ t o _ g h o s t (b u f f e r , g h o s t) ;

This interface is integrated in the ghost process management

and it is possible to associate a buffer to a ghost using the

interface shown in Listing 2.

File Access KERRIGHED also provides an interface to

manage file read/write operations (see Listing 3).

Listing 3. Kerrighed API for file access
/∗ I n i t i a l i z a t i o n f u n c t i o n ∗ /

f i l e ∗ f i l e _ o p e n (pathname) ;

/∗ Read f u n c t i o n ∗ /

i n t f i l e _ r e a d (f i l e , d e s t i n a t i o n , s i z e) ;

/∗ W r i t e f u n c t i o n ∗ /

i n t f i l e _ w r i t e (f i l e , source , s i z e) ;

/∗ F i n a l i z a t i o n f u n c t i o n ∗ /

i n t f i l e _ c l o s e (f i l e) ;

/∗ F u n c t i o n t o p lug t h e f i l e a c c e s s method

i n an i n s t a n c e o f a g h o s t p r o c e s s ∗ /

i n t a s s o c i a t e _ f i l e _ t o _ g h o s t (f i l e , g h o s t) ;

This interface is integrated in the ghost process manage-

ment and it is possible to associate a file to a ghost using the

interface shown in Listing 3.

Network Access KERRIGHED also provides an interface

to send/receive data through the network (see Listing 4).

Listing 4. Kerrighed API for network access
/∗ Read f u n c t i o n ∗ /

i n t n e t w o r k _ r e a d (remote_node_ id , v a r i a b l e , s i z e) ;

/∗ W r i t e f u n c t i o n ∗ /

i n t n e t w o r k _ w r i t e (remote_node_ id , v a r i a b l e , s i z e) ;

/∗ F u n c t i o n t o p lug t h e ne twork a c c e s s method

i n an i n s t a n c e o f a g h o s t p r o c e s s ∗ /

i n t a s s o c i a t e _ n e t w o r k _ t o _ g h o s t (remote_node_ id ,

channe l , p o r t , g h o s t) ;

This interface is integrated in the ghost process manage-

ment and it is possible to associate a file to a ghost using the

interface shown in Listing 4.

3.3 Summary

The ghost process mechanism is a mechanism for pro-

cess virtualization which allows the implementation, in

an easy way, of mechanisms for global process manage-

ment such as process duplication, migration and check-

point/restart.

To illustrate the use of the ghost process mechanism, the

next section details the implementation of two global pro-

cess management mechanisms: (i) process migration and

(ii) process checkpoint/restart.

4

Proceedings of the 4th International Symposium on Parallel and Distributed Computing (ISPDC’05)

0-7695-2434-6/05 $20.00 © 2005 IEEE

4 Using Ghost Processes to Create Mecha-

nisms for Global Process Management

The API described in Section 3.2 is used to create new

mechanisms to globally manage processes. For each mech-

anism (e.g. process migration or duplication), after the cre-

ation of a ghost process, system programmers have to man-

age the process from which the ghost process has been cre-

ated and to manage the new active process created from the

ghost process. We illustrate this approach on the examples

of process migration in Section 4.1 and of process check-

point/restart in Section 4.2.

4.1 Process Migration

For example, Listing 5 shows a simple approach to im-

plement a process migration mechanism is to extract the

process in a ghost process in the memory of the source

node, then to send the ghost process through the network

to a remote destination node. On the destination node, the

ghost process needs to be received and then, the ghost pro-

cess needs to be imported to create a new active process.

When the new process is created on the destination node,

an acknowledgement is sent to the source node. When the

acknowledgement is received on the source node, the initial

process is destroyed.

Listing 5. Process migration
/∗ P r o c e s s m i g r a t i o n : a l g o r i t h m e x e c u t e d on

t h e s o u r c e node ∗ /

void m i g r a t e _ p r o c e s s (p i d)

{

/∗ f i n d a p r o c e s s t o m i g r a t e ∗ /

p r o c e s s = f i n d _ t a s k _ b y _ p i d (p i d) ;

/∗ c r e a t e a new i n s t a n c e o f g h o s t p r o c e s s ∗ /

g h o s t = c r e a t e _ n e w _ g h o s t () ;

/∗ plug t h e g h o s t p r o c e s s i n t o t h e memory

a c c e s s i n t e r f a c e ∗ /

p l u g _ r e s o u r c e _ i n t e r f a c e (MEMORY_WRITE, g h o s t) ;

/∗ e x p o r t t h e proces s , t h e g h o s t p r o c e s s

i s c r e a t e d i n memory ∗ /

e x p o r t _ p r o c e s s (ghos t , p r o c e s s) ;

/∗ send t h e g h o s t p r o c e s s t o t h e remote node ∗ /

s e n d _ g h o s t _ p r o c e s s (remote_node_ id , g h o s t) ;

/∗ w a i t f o r t h e acknowledgement s e n t by t h e

remote node a f t e r t h e remote p r o c e s s c r e a t i o n ∗ /

d i s t a n t _ p i d = w a i t _ a c k (remote_nod e _ i d) ;

/∗ when t h e remote p r o c e s s i s c r e a t e d , we ∗ /

/∗ d e s t r o y t h e p r o c e s s on t h e s o u r c e node ∗ /

d e s t r o y _ p r o c e s s (p r o c e s s) ;

/∗ P r o c e s s m i g r a t i o n : a l g o r i t h m e x e c u t e d on

t h e d e s t i n a t i o n node ∗ /

void r e c e i v e _ m i g r a t e d _ p r o c e s s (p i d)

{

/∗ r e c e i v e t h e g h o s t p r o c e s s from t h e

s o u r c e node t h e g h o s t p r o c e s s i s saved i n

a b u f f e r ∗ /

memory_buffer = r e c e i v e _ g h o s t (o r i g i n a l _ n o d e _ i d) ;

/∗ c r e a t e a new i n s t a n c e o f a g h o s t p r o c e s s ∗ /

g h o s t = c r e a t e _ n e w _ g h o s t () ;

/∗ a s s o c i a t e t h e memory b u f f e r w i t h t h e g h o s t

p r o c e s s ∗ /

a s s o c i a t e _ b u f f e r _ t o _ g h o s t (b u f f e r , g h o s t) ;

/∗ plug t h e g h o s t p r o c e s s i n t o t h e memory i n

read mode i n t e r f a c e ∗ /

p l u g _ r e s o u r c e _ i n t e r f a c e (MEMORY_READ, g h o s t) ;

/∗ t h e g h o s t p r o c e s s i s loaded , a new p r o c e s s i s

c r e a t e d ∗ /

n e w _ l o c a l _ p i d = i m p o r t _ p r o c e s s (ghos t , p r o c e s s) ;

/∗ i f t h e p r o c e s s i s s u c c e s s f u l l y c r e a t e d , an ∗ /

/∗ acknowledgement i s s e n t t o t h e s o u r c e node ∗ /

i f (p r o c e s s _ c r e a t i o n _ s u c c e e d) t h e n

send_ack (o r i g i n a l _ n o d e _ i d , n e w _ l o c a l _ p i d) ;

}

4.2 Process Checkpoint/Restart

A process checkpoint mechanism is quite simple. A pro-

cess image needs to be extracted and stored in a stable stor-

age device. The process restart mechanism is also simple.

An active process is created from the process image saved

in stable storage device. In KERRIGHED, checkpoints can

be saved either in memory or on disk.

This section details the implementation of the process

checkpoint/restart mechanism based on the ghost process

mechanism. We present in Section 4.3 the implementation

of a process checkpoint/restart mechanism in which check-

points are saved in the local memory of the checkpointed

process execution node. We present in Section 4.4 the im-

plementation of a process checkpoint/restart mechanism in

which checkpoints are saved in the local disk of the check-

pointed process execution node.

4.3 Implementation of a Memory Check-
point/Restart Mechanism

The algorithm to create a memory checkpoint is shown

in Listing 6.

Listing 6. Memory checkpoint/restart
b u f f _ t c h e c k p o i n t _ p r o c e s s _ i n _ m e m o r y

(p r o c e s s _ i d e n t i f i e r)

{

b u f f e r = c r e a t e _ n e w _ b u f f e r () ;

g h o s t = c r e a t e _ n e w _ g h o s t () ;

/∗ a s s o c i a t e memory a c c e s s method t o t h e

g h o s t p r o c e s s ∗ /

p l u g _ r e s o u r c e _ i n t e r f a c e (MEMORY_WRITE, g h o s t) ;

a s s o c i a t e _ b u f f e r _ t o _ g h o s t (b u f f e r , g h o s t)

p r o c e s s = f i n d _ t a s k _ b y _ p i d (p r o c e s s _ i d e n t i f i e r) ;

e x p o r t _ p r o c e s s (ghos t , p r o c e s s) ;

return b u f f e r ;

}

void m e m o r y _ r e s t a r t (memory_checkpoin t_ id)

{

i f (p r o c e s s _ s t a t e == r u n n i n g) t h e n

5

Proceedings of the 4th International Symposium on Parallel and Distributed Computing (ISPDC’05)

0-7695-2434-6/05 $20.00 © 2005 IEEE

d e s t r o y _ p r o c e s s () ;

g h o s t = c r e a t e _ n e w _ g h o s t () ;

/∗ a s s o c i a t e memory a c c e s s t o g h o s t p r o c e s s

mechanism ∗ /

p l u g _ r e s o u r c e _ i n t e r f a c e (MEMORY_READ, g h o s t) ;

b u f f e r = f ind_memory_ch ec k po in t

(memory_checkpoin t_ id) ;

a s s o c i a t e _ b u f f e r _ t o _ g h o s t (b u f f e r , g h o s t) ;

i m p o r t _ p r o c e s s (g h o s t) ;

}

We have seen that the ghost process mechanism is com-

posed of two parts: the definition of the ghost process data

and the resource access method. For a memory checkpoint,

the ghost process mechanism has to use the local memory,

using a resource access method defined in KERRIGHED (see

Figure 2). The memory access method is based on the KER-

RIGHED memory access interface presented in Listing 2.

Figure 2: Process

checkpoint on memory

based on ghost process

Figure 3: Process

checkpoint on disk

based on ghost process

The restart mechanism is quite simple. The original pro-

cess (if it is still running) needs to be stopped. Then, a

new process is created from a memory checkpoint (see List-

ing 6). To restart a process from a memory checkpoint,

the ghost process mechanism needs to be associated to a

method to access the local memory.

4.4 Implementation of a Disk Checkpoint/Restart
Mechanism

The algorithm used to create a disk checkpoint is shown

in Listing 7.

Listing 7. Disk checkpoint/restart
g h o s t _ t d i s k _ c h e c k p o i n t (p r o c e s s _ i d e n t i f i e r)

{

f i l e = f i l e _ o p e n (pathname) ;

/∗ a s s o c i a t e d i s k a c c e s s method t o t h e g h o s t

p r o c e s s ∗ /

p l u g _ r e s o u r c e _ i n t e r f a c e (FILE_WRITE , g h o s t) ;

a s s o c i a t e _ f i l e _ t o _ g h o s t (f i l e , g h o s t)

p r o c e s s = f i n d _ t a s k _ b y _ p i d (p r o c e s s _ i d e n t i f i e r) ;

e x p o r t _ p r o c e s s (ghos t , p r o c e s s) ;

/∗ a s s o c i a t e t h e d i s k a c c e s s method t o ∗ /

Matrix

size

Ghost size (KBytes)

500x500 4 229

750x750 9 354

1000x1000 12 429

1250x1250 20 629

1500x1500 24 729

1750x1750 28 833

2000x2000 32 933

Table 1. Ghost process size for the MGS ap-
plication according to the matrix size

/∗ t h e g h o s t p r o c e s s mechanism ∗ /

f l u s h (f i l e) ;

return g h o s t ;

}

void d i s k _ r e s t a r t (d i s k _ c h e c k p t _ i d)

{

i f (p r o c e s s _ s t a t e == r u n n i n g) t h e n

d e s t r o y _ p r o c e s s ;

g h o s t = c r e a t e _ n e w _ g h o s t () ;

/∗ a s s o c i a t e d i s k a c c e s s t o g h o s t p r o c e s s

mechanism ∗ /

p l u g _ r e s o u r c e _ i n t e r f a c e (FILE_READ , g h o s t) ;

f i l e = f i n d _ f i l e _ c h e c k p o i n t (d i s k _ c h e c k p t _ i d) ;

a s s o c i a t e _ b u f f e r _ t o _ g h o s t (f i l e , g h o s t) ;

i m p o r t _ p r o c e s s (g h o s t) ;

}

For a disk checkpoint, the ghost process mechanism needs

to use the local file system, using a resource access method

defined in KERRIGHED (see Figure 3). The disk access

method is based on the KERRIGHED disk access interface

presented in Listing 3.

The restart mechanism is quite simple and very similar

to the memory restart. The original process (if it is still

running) needs to be stopped. A new process is created from

a disk checkpoint (see Listing 7). To restart a process from

a disk checkpoint, the ghost process mechanism needs to be

associated to a method to access to local file system.

5 Evaluation

In this section, we present the results of an experi-

mental evaluation of the ghost process mechanism through

its use in the process checkpoint/restart mechanism. The

evaluations have been done using the implementation of

these mechanisms in the Kerrighed cluster operating system

based on Linux 2.4.24. Our results are for a cluster in which

each node is a PC containing a 1 GHz PIII processor, a 512

MB RAM, a 100Mps Ethernet NIC and a local hard disk.

All the evaluations have been performed with a process ex-

ecuting a sequential version of the Modified Gram-Schmidt

(mgs) application. mgs produces from a set of vectors an

orthonormal basis of the space generated by these vectors.

Table 1 shows the size of the ghost process for a range

of matrix sizes. Typically, the ghost process’s size is pro-

6

Proceedings of the 4th International Symposium on Parallel and Distributed Computing (ISPDC’05)

0-7695-2434-6/05 $20.00 © 2005 IEEE

portional to the size of the application memory space. The

bigger the memory space is, the bigger the ghost process is.

For the mgs application, only the memory size impacts on

the ghost size because the other process information has a

constant size (the application always accesses the same files

for example).

Figure 4. Cost of the creation of a memory

process checkpoint

We evaluated the cost of the process checkpoint/restart

mechanism, regarding the cost of the exportation/importa-

tion mechanism. So we have computed the total time for

creating a checkpoint (i.e. the time between the beginning

of the process checkpoint and the end of memory write of

the ghost process) and the exportation time (ghost process

extraction time). Note that the exportation time is a part of

the total checkpoint creation time.

5.1 Evaluation of the Checkpoint/Restart Mecha-
nism Using the Local Memory

Figure 4 shows the time to checkpoint a process in local

memory, presenting both the total checkpoint creation time

and the ghost process exporation time. The ghost process

Figure 5. Restart cost from a memory check-

point

exportation (and so memory accesses, data being saved in

memory during the process extraction) time is a major part

of the total checkpoint time. So, the efficiency of the check-

point mechanism, using the local memory, depends on the

efficiency of the exportation mechanism.

Figure 5 shows the time needed to restart a process from

a memory checkpoint. The cost of a process restart from a

memory checkpoint is quite similar to the cost of process

checkpoint in memory. The efficiency of the restart mecha-

nism depends on the efficiency of the ghost process mecha-

nism. The ghost process importation time is the major part

of the restart time.

5.2 Evaluation of the Checkpoint/Restart Mecha-
nism Using the Local Disk

The file access API of Kerrighed uses the local file sys-

tem. When a checkpoint file is created to store a ghost pro-

cess, this file is also stored in the local system file cache

(with a flush of all file buffers to be sure that data is physi-

cally stored on disk). Moreover, to be sure that no cache ef-

fects improve artificially performances, all restart are done

after a machine reboot.

Figure 6 shows the time needed to checkpoint a process

on the local disk for different matrix sizes. As for memory

Figure 6. Cost of a process disk checkpoint

checkpoints, the file access time (through the exportation

phase) is a major part of the total checkpoint time.

Figure 7 shows the cost for restarting a process from a

checkpoint stored on disk assuming that the checkpoint file

is not cached. The importation time is a major part of the

restart time. The restart cost is due to the disk accesses.

We observed that in our configuration the disk checkpoint

cost is about 10 times higher than the cost of a memory

checkpoint.

5.3 Summary

The performance evaluation shows that for both check-

point/restart in memory and on disk, performance depends

directly on the performance of the ghost process manage-

ment. So, improving the efficiency of the ghost process

7

Proceedings of the 4th International Symposium on Parallel and Distributed Computing (ISPDC’05)

0-7695-2434-6/05 $20.00 © 2005 IEEE

Figure 7. Restart cost from a disk checkpoint

mechanism, and in particular the efficiency of resource ac-

cesses, the efficiency of mechanisms for global process

management will be improved.

6 Conclusion

In this paper, we have presented the ghost process mech-

anism for process virtualization and how it can be used to

ease the implementation of various mechanisms for global

process management. The ghost process mechanism pro-

vides a full system service for process virtualization (thanks

to the exportation/importation mechanism) and a set of in-

terfaces to plug in ghost process instances various methods

to access resources. Thanks to ghost processes, traditional

mechanisms of process management can be extended at the

cluster scale. This approach guarantees the ease of mainte-

nance and development of new mechanisms for global pro-

cess management. The second benefit is that improving the

efficiency of the ghost process mechanism, all global pro-

cess management mechanisms become more efficient.

The ghost process mechanism has been implemented in

the KERRIGHED SSI cluster operating system. The KER-

RIGHED’s global process scheduler uses the process dupli-

cation, migration and checkpoint restart mechanisms based

on the ghost processes[12].

Kerrighed provides different distributed services that

are in charge of global resource management. Combin-

ing global memory management, ghost processes (used to

implement process duplication) and a cluster wide pro-

cess synchronization service, a complete support of POSIX

threads has been implemented[7] in Kerrighed.

Systems that provides some mechanisms for process

virtualization (e.g. process migration, process check-

point/restart) at the kernel level are all based on a specific

kernel patch. Nevertheless, all these patches are similar.

Therefore, a common patch and the integration of this patch

in the kernel should be very usefull and should simplify the

development of such a virtualization mechanism for clus-

tering systems. The ghost process mechanism can easily be

ported on such a common patch.

References

[1] A. Barak and O. La’adan. The MOSIX multicomputer

operating system for high performance cluster computing.

Future Generation Computer Systems, 13(4–5):361–372,

1998.

[2] J. Basney and M. Livny. Deploying a high throughput com-

puting cluster. In R. Buyya, editor, High Performance Clus-

ter Computing: Architectures and Systems, Volume 1. Pren-

tice Hall PTR, 1999.

[3] J. Duell, P. Hargrove, and E. Roman. The design and imple-

mentation of berkeley lab’s linux checkpoint/restart. Tech-

nical report, Berkeley Lab, 2003.

[4] A. Goscinski, M. Hobbs, and J. Silcock. Genesis: an effi-

cient, transparent and easy to use cluster operating system.

Parallel Comput., 28(4):557–606, 2002.

[5] Henderson and L. Robert. Job scheduling under the portable

batch system. In D. G. Feitelson and L. Rudolph, editors,

Job Scheduling Strategies for Parallel Processing, pages

279–294. Springer-Verlag, 1995. Lecture Notes in Com-

puter Science vol. 949.

[6] E. Hendriks. BProc: the Beowulf distributed process space.

In Institute for Crustal Studies (ICS) 2002, pages 129–136,

New York City, USA, June 2002.

[7] D. Margery, G. Vallée, R. Lottiaux, C. Morin, and J.-Y.

Berthou. Kerrighed: a SSI cluster OS running OpenMP. In

Proc. 5th European Workshop on OpenMP (EWOMP ’03),

Sept. 2003.

[8] D. S. Milojicic, F. Douglis, Y. Paindaveine, R. Wheeler,

and S. Zhou. Process migration. ACM Computing Surveys

(CSUR), 32(3):241–299, 2000.

[9] C. Morin, P. Gallard, R. Lottiaux, and G. Vallée. Towards

an efficient Single System Image cluster operating system.

Future Generation Computer Systems, 20(2), Jan. 2004.

[10] C. Morin, R. Lottiaux, G. Vallée, P. Gallard, G. Utard,

R. Badrinath, and L. Rilling. Kerrighed: a single system im-

age cluster operating system for high performance comput-

ing. In Proc. of Europar 2003: Parallel Processing, volume

2790 of Lect. Notes in Comp. Science, pages 1291–1294.

Springer Verlag, Aug. 2003.

[11] E. Pinheiro. Truly-transparent checkpointing of parallel ap-

plications.

[12] G. Vallée, C. Morin, J.-Y. Berthou, and L. Rilling. A new ap-

proach to configurable dynamic scheduling in clusters based

on single system image technologies. In Industrial Track of

the International Parallel an Distributed Processing Sympo-

sium, Nice, France, Apr. 2003.

[13] B. J. Walker. Open single system image (openssi) linux clus-

ter project. Technical report, Hewlett-Packard, 2000.

8

Proceedings of the 4th International Symposium on Parallel and Distributed Computing (ISPDC’05)

0-7695-2434-6/05 $20.00 © 2005 IEEE

